
jEdit 3.1 User’s Guide

Slava Pestov

John Gellene

jEdit 3.1 User’s Guide
by Slava Pestov and John Gellene

Copyright © 1998-2001 by Slava Pestov
Copyright © 2001 by John Gellene

Legal Notice

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free

Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no

“Invariant Sections”, “Front-Cover Texts” or “Back-Cover Texts”, each as defined in the license. A copy of the

license is included in the fileCOPYING.DOC.txt included with jEdit.

Table of Contents
I. Using jEdit ..7

1. Basic Concepts...8
1.1. Conventions..8
1.2. Starting jEdit...8
1.3. Buffers...9
1.4. Views...9
1.5. The Text Area..10
1.6. Command Repetition..11

2. Working With Files..12
2.1. Creating New Files...12
2.2. Opening Files..12
2.3. Saving Files...12

2.3.1. Autosave and Backups...13
2.3.2. Line Separators..13

2.4. The File System Browser..14
2.5. Reloading Files...15
2.6. Multi-Threaded I/O...16
2.7. Printing Files...16
2.8. Closing Files and Exiting jEdit...16

3. Editing Text..17
3.1. Moving The Caret...17
3.2. Selecting Text..17
3.3. Inserting and Deleting Text...18
3.4. Undo and Redo...19
3.5. Working With Words..19
3.6. Working With Lines..20
3.7. Working With Paragraphs...21
3.8. The Clipboard...21
3.9. Scrolling..22
3.10. Markers...22
3.11. Registers..23

3.11.1. Text Registers...23
3.11.2. Position Registers...24

3.12. Search and Replace...24

3

3.12.1. Searching For Text...24
3.12.2. Replacing Text...25
3.12.3. HyperSearch...25
3.12.4. Multiple File Search...25
3.12.5. The Search Bar...26

4. Edit Modes...28
4.1. Mode Selection...28
4.2. Syntax Highlighting..28
4.3. Writing Edit Modes...29

4.3.1. An XML Primer...29
4.3.2. The Preamble...30
4.3.3. The MODE Tag..30
4.3.4. The PROPS Tag...30
4.3.5. The RULES Tag...32

4.3.5.1. The TERMINATE Rule..32
4.3.5.2. The WHITESPACE Rule..33
4.3.5.3. The SPAN Rule...33
4.3.5.4. The EOL_SPAN Rule...34
4.3.5.5. The MARK_PREVIOUS Rule...35
4.3.5.6. The MARK_FOLLOWING Rule.......................................35
4.3.5.7. The SEQ Rule...36
4.3.5.8. The KEYWORDS Rule..36
4.3.5.9. Token Types..37

4.4. Installing Edit Modes..37
5. Editing Source Code..39

5.1. Abbreviations..39
5.2. Bracket Matching..39
5.3. Tabbing and Indentation...40

5.3.1. Soft Tabs..40
5.3.2. Automatic Indent...41

5.4. Commenting Out Code...42
5.5. Folding..43

5.5.1. Narrowing..44
6. Customizing jEdit..46

6.1. The Buffer Options Dialog Box..46
6.2. Buffer-Local Properties...46
6.3. The Global Options Dialog Box...47

4

6.4. The jEdit Settings Directory...50
7. Installing and Using Plugins..52

7.1. The Plugin Manager..52
7.2. Installing Plugins..52
7.3. Updating Plugins...52

A. Keyboard Shortcuts...54
B. History Text Fields..60
C. Glob Patterns...61
D. Regular Expressions..62
E. The Activity Log...65
F. Command Line Usage...66

II. Extending jEdit With Macros ..68

8. Macro Basics..69
8.1. What is BeanShell?...69
8.2. Recording Macros...70
8.3. How jEdit Organizes Macros..70
8.4. Single Execution Macros..71

9. A Few Simple Macros...73
9.1. The Mandatory First Example..73
9.2. Helpful Methods in the Macros Class...75
9.3. Now For Something Useful..77

10. A Dialog-Based Macro..81
10.1. Use of the Macro...81
10.2. Listing of the Macro..81
10.3. Analysis of the Macro...84

10.3.1. Import Statements..84
10.3.2. Create the Dialog...85
10.3.3. Create the Text Fields..86
10.3.4. Create the Buttons..87
10.3.5. Register the Action Listeners...87
10.3.6. Make the Dialog Visible..88
10.3.7. The Action Listener...89
10.3.8. Get the User’s Input...89
10.3.9. Call jEdit Methods to Manipulate Text..90
10.3.10. The Main Routine..91

11. Macro Tips and Techniques...92
11.1. Getting Input for a Macro...92

5

11.1.1. Getting a Single Line of Text...92
11.1.2. Getting Multiple Data Items..93
11.1.3. Selecting Input From a List..96
11.1.4. Using a Single Keypress as Input..97

11.2. Using a Startup Macro..99
11.3. Debugging Macros..104

11.3.1. Identifying Exceptions...104
11.3.2. Using a Message Box As a Tracing Tool...................................105
11.3.3. Writing Trace Messages to the Activity Log.............................105

G. jEdit API Quick Reference...107
G.1. Class jEdit..107
G.2. Class View..110
G.3. Class DockableWindowManager...111
G.4. Class JEditTextArea...111
G.5. Class Buffer..115
G.6. Class Macros..117
G.7. Class SearchAndReplace...118
G.8. Class GUIUtilities..121
G.9. Class TextUtilities..121
G.10. Class MiscUtilities...122
G.11. Class BeanShell..123

H. Macros Included With jEdit..125
H.1. File Management Macros...125
H.2. Text Macros..125
H.3. Java Code Macros..127
H.4. Search Macros..128

H.4.1. The Find_Occurrence Macro Group...129
H.5. Console Plugin Macros..130
H.6. Macros for Other Plugins...132
H.7. Macros for Listing Properties..132
H.8. Miscellaneous Macros..133

6

I. Using jEdit

Chapter 1. Basic Concepts

1.1. Conventions
Whenever a specific menu item selection is referenced, the top level menu is listed first,
followed by successive levels of submenus, finally followed by the menu item itself. All
menu components are separated by greater-than symbols (“>”). For example,
View>Scrolling>Scroll to Current Line refers to theScroll to Current Line command
contained in theScrolling submenu of theView menu.

As with many other applications, menu items that end with ellipsis (...) display dialog
boxes or windows when invoked. An additional jEdit-only convention is that menu items
that end with “[x]” expect a character to be typed at the keyboard after being invoked.

Many jEdit commands can be also be invoked using keystrokes. This speeds up editing
by letting you keep your hands on the keyboard. Not all commands with keyboard
shortcuts are accessible with one key stroke; for example, the keyboard shortcut for
Scroll to Current Line is Control -E Control -J. That is, you must first pressControl -E,
followed byControl -J.

1.2. Starting jEdit
Exactly how jEdit is started depends on the operating system; on Unix systems, usually
you would run the “jedit” command at the command line, or select jEdit from a menu; on
Windows, you might double click on the jEdit icon. Unless initial files to open were
specified on the command line or dropped onto jEdit’s icon, jEdit will load any files that
were open in the previous editing session.

If jEdit is started while another copy is already running, control is transferred to the
running copy, and a second instance is not loaded. This saves time and memory if jEdit is
started multiple times. Communication between instances of jEdit is implemented using
TCP/IP sockets; the initial instance is known as theserver, and subsequent invocations
are known asclients.

If the -background command line switch is specified, jEdit will continue running and
waiting for client requests even after all editor windows are closed. The advantage of
background mode is that you can open and close jEdit any number of times, only having

8

Chapter 1. Basic Concepts

to wait for it to start up the first time. The downside of background mode is that jEdit
will continue to consume memory when no windows are open.

For more information about command line switches that control the server feature, see
Appendix F.

The edit server and security

Not only does the server pick a random TCP port number on startup, it also
requires that clients provide anauthorization key; a randomly-generated number
only accessable to processes running on the local machine. So not only will “bad
guys” have to guess a 64-bit integer, they will need to get it right on the first try;
the edit server shuts itself off upon receiving an invalid packet.

In environments that demand absolute security, the edit server can be disabled by
specifying the-noservercommand line switch.

1.3. Buffers
Several files can be opened and edited at once. Each open file is referred to as abuffer.
The combo box above the text area selects the buffer to edit. Different emblems are
displayed next to buffer names in the list, depending the buffer’s state; a red disk is
shown for buffers with unsaved changes, a lock is shown for read-only buffers, and a
spark is shown for new buffers which don’t yet exist on disk.

In addition to the buffer combo box, various commands can also be used to select the
buffer to edit.

View>Go to Previous Buffer (keyboard shortcut:Control -Page Up) switches to the
previous buffer in the list.

View>Go to Next Buffer (keyboard shortcut:Control -Page Down) switches to the next
buffer in the list.

View>Go to Recent Buffer (keyboard shortcut:Control -‘) switches to the buffer that
was being edited prior to the current one.

9

Chapter 1. Basic Concepts

1.4. Views
Each editor window is referred to as aview. It is possible to have multiple views open at
once, and each view can be split into multiple panes.

View>New View creates a new view.

View>Close View closes the current view. If only one view is open, closing it will exit
jEdit, unless background mode is on; see Section 1.2 for information about starting jEdit
in background mode.

View>Splitting>Split Horizontally (shortcut:Control -2) splits the view into two text
areas, above each other.

View>Splitting>Split Vertically (shortcut:Control -3) splits the view into two text
areas, next to each other.

View>Splitting>Unsplit (shortcut:Control -1) removes all but the current text area from
the view.

When a view is split, editing commands operate on the text area that has keyboard focus.
To give a text area keyboard focus, click in it with the mouse, or use the following
commands.

View>Splitting>Go to Previous Text Area (shortcut:Alt -Page Up) shifts keyboard
focus to the previous text area.

View>Splitting>Go to Next Text Area (shortcut:Alt -Page Down) shifts keyboard
focus to the next text area.

Clicking the text area with the right mouse button displays a popup menu. Both this
menu and the tool bar at the top of the view offer quick mouse-based access to
frequently-used commands. The contents of the tool bar and right-click menu can be
changed in theUtilities>Global Options dialog box.

The file system browser, HyperSearch results window, and many plugin windows can
optionally be docked into the view. This can be configured in theDocking pane of the
Utilities>Global Options dialog box.

When windows are docked into the view, the commands in theView>Docking menu
(shortcuts:Control -E 1, 2, 3, 4) can be used to show or hide the top, bottom, left and
right docking areas, respectively. Double-clicking on the borders of docking areas has
the same effect.

10

Chapter 1. Basic Concepts

1.5. The Text Area
Text editing takes place in the text area. It behaves in a similar manner to many Windows
and MacOS editors; the few unique features will be described in this section.

The text area will automatically scroll up or down if the caret is moved closer than three
lines to the first or last visible line. This feature is calledelectric scrollingand can be
disabled in theText Area pane of theUtilities>Global Options dialog box.

To aid in locating the caret, the current line is drawn with a different background color.
To make it clear which lines end with white space, end of line markers are drawn at the
end of each line. Both these features can be disabled in theText Area pane of the
Utilities>Global Options dialog box.

The column and line number containing the caret, as well as the total number of lines in
the buffer, is shown in the bottom-left corner of the text area.

The strip on the left of the text area is called agutter. The gutter displays marker and
register locations; it will also display line numbers if theView>Line Numbers
(shortcut:Control -E Control -T) command is invoked.

1.6. Command Repetition
To repeat a command any number of times, invokeUtilities>Repeat Next Command
(shortcut:Control -Enter) and enter the desired repeat count, followed by the command
to repeat (either a keystroke or menu item selection). For example, “Control -Enter 1 4
Control -D” will delete 14 lines, and “Control -Enter 8 #” will insert “########” in the
buffer.

11

Chapter 2. Working With Files

2.1. Creating New Files
File>New File (shortcut:Control -N) opens a new untitled buffer. When it is saved, a file
will be created on disk. Another way to create a new file is to specify a non-existent file
name when starting jEdit from your operating system’s command line.

2.2. Opening Files
File>Open File (shortcut:Control -O) displays a file selector dialog box and loads the
specified file into a new buffer. Multiple files to open can be selected by holding down
Control .

File>Insert File displays a file selector dialog box and inserts the specified file into the
current buffer.

TheFile>Current Directory menu lists all files in the current buffer’s directory.

TheFile>Recent Files menu lists recent files. When a recent file is opened, the caret is
automatically moved to its previous location in that file. The number of recent files to
remember can be changed and caret position saving can be disabled in theGeneral pane
of theUtilities>Global Options dialog box.

Files that you do not have write access to are opened in read-only mode, and editing will
not be permitted.

GZipped Files

jEdit supports transparent editing of GZipped files; files with the.gz extension are
automatically decompressed before loading, and compressed when saving.

2.3. Saving Files
Changed made to a buffer do not affect the file on disk until the buffer issaved.

12

Chapter 2. Working With Files

File>Save (shortcut:Control -S) saves the current buffer to disk.

File>Save All Buffers (shortcut:Control -E Control -S) saves all open buffers to disk,
asking for confirmation first.

File>Save As saves the buffer to a different specified file on disk. The buffer is then
renamed, and subsequent saves also save to the specified file.

File>Save a Copy As saves the buffer to a different specified file on disk, but doesn’t
rename the buffer, and doesn’t clear the “modified” flag.

2.3.1. Autosave and Backups
The autosave feature protects your work from computer crashes and such. Every 30
seconds, all buffers with unsaved changes are written out to their respective file names,
enclosed in hash (“#”) characters. For example,program.c will be autosaved to
#program.c# .

Saving a buffer using one of the commands in the previous section automatically deletes
the autosave file, so they will only ever be visible in the unlikely event of a jEdit (or
operating system) crash.

If an autosave file is found while a buffer is being loaded, jEdit will offer to recover the
autosaved data.

The backup feature can be used to roll back to the previous version of a file after changes
were made. When a buffer is saved for the first time after being opened, its original
contents are preserved in the buffer’s file name suffixed with a tilde (“~”). For example,
paper.tex will be backed up topaper.tex~ .

The autosave and backup features can be configured in theLoading and Saving pane of
theUtilities>Global Options dialog box.

2.3.2. Line Separators
The three major operating systems use different conventions to mark line endings in text
files. The MacOS uses Carriage-Return characters (\r, ^M) for that purpose. Unix uses
Newline characters (\n, ^J). Windows uses both (\r\n, ^M^J). jEdit can read and write
files in all three formats. When a file is opened, the line separator is automatically
detected. The line separator can be set on a buffer-specific basis in theUtilities>Buffer

13

Chapter 2. Working With Files

Options dialog box. The default for new files can be set in theLoading and Saving
pane of theUtilities>Global Options dialog box.

2.4. The File System Browser
Utilities>File System Browser displays a file system browser window. By default, the
file system browser is shown in a floating window; it can be set to dock into the view in
theDocking pane of theUtilities>Global Options dialog box.

The directory path to view is specified in thePath text field. A subset of the current
directory to display can be specified in the form of a glob pattern in theFilter text field.
See Appendix C for information about glob patterns. Pressing theUp andDown keys in
both text fields recalls previously entered strings; see Appendix B for details.

You can view an entire directory hierarchy at once by clicking the expander controls next
to directories in the tree.

The toolbar buttons perform the following actions, from left to right:

• Up - displays the current directory’s parent in the file system view. The popup arrow
next to this button displays a menu listing all the parent directories of the current
directory, up to the filesystem root

• Reload - reloads the file list

• Local Drives - displays all local drives. On Windows, this will be a list of drive
letters; on Unix, the list will only contain one entry, the root directory

• Home Directory - displays your home directory in the file system browser

• Parent Directory of Current Buffer - displays the directory containing the current
buffer in the file system browser

Clicking theMore button displays a menu containing several less frequently-used
commands:

• Show Hidden Files - a check box menu item that controls if hidden files will be
shown in the file list

• New Directory - creates a new directory, prompting for the desired name

14

Chapter 2. Working With Files

• Add to Favorites - adds the currently selected (or the currently displayed, if there
is nothing selected) directory to the favorites list

• Go to Favorites - displays the favorites list. To remove a directory from the list,
right-click on it and selectDelete from the resulting popup menu

Right-clicking on a file in the file system browser displays a popup menu, containing
commands for manipulating that file, in addition to all the commands from theMore
menu. If the file is already open, the popup will have commands to display it in the
current view, display it in a new view, or close it. Unopened file popups have commands
for opening, deleting and renaming. Note that attempting to delete a directory containing
files will give an error; only empty directories may be deleted.

The file system browser can be navigated from the keyboard:

• Enter - opens the currently selected file or directory

• Left - goes to the current directory’s parent

• Up - selects previous file in list

• Down - selects next file in list

• Typing the first few characters of a file’s name will select that file

The file system view must have keyboard focus for these keys to work. In theOpen File
dialog box, it is given keyboard focus by default. In other instances, it can be given
keyboard focus by clicking with the mouse.

The file system browser can be customized in theFile System Browser pane of the
Utilities>Global Options dialog box.

2.5. Reloading Files
If an open buffer is modified on disk by another application, a warning dialog box is
displayed, offering to either continue editing (and lose changes made by the other
application) or reload the buffer from disk (and lose any usaved changes). This feature
can be disabled in theGeneral pane of theUtilities>Global Options dialog box.

File>Reload can be used to discard unsaved changes and reload the current buffer from
disk at any other time; a confirmation dialog box will be displayed first if the buffer has
unsaved changes.

15

Chapter 2. Working With Files

File>Reload All Buffers discards unsaved changes in all open buffers and reload them
from disk, asking for confirmation first.

2.6. Multi-Threaded I/O
To improve responsiveness and perceived performance, jEdit executes all input/output
operations asynchronously. While I/O is in progress, a small disk icon is displayed in the
menu bar, in addition to progress meters for each running operation. TheUtilities>I/O
Progress Monitor command displays a window with more detailed status information.
Requests can also be aborted in this window. Note that aborting a buffer save can result
in data loss.

By default, four I/O threads are created, which means that up to four buffers can be
loaded or saved simultaneously. The number of threads can be changed in theLoading
and Saving pane of theUtilities>Global Options dialog box. Setting the number to
zero disables multi-threaded I/O completely; doing this is not recommended.

2.7. Printing Files
File>Print (shortcut:Control -P) will print the current buffer. By default, the printed
output will have syntax highlighting, and each page will have a header with the file
name, and a footer with the current date/time and page number. The appearance of
printed output can be customized in thePrinting pane of theUtilities>Global Options
dialog box.

2.8. Closing Files and Exiting jEdit
File>Close Buffer (shortcut:Control -W) closes the current buffer. If it has unsaved
changes, jEdit will ask if they should be saved first.

File>Close All Buffers (shortcut:Control -E Control -W) closes all buffers. If any
buffers have unsaved changes, they will be listed in a dialog box where they can be saved
or discarded. In the dialog box, multiple buffers to operate on at once can be selected by
clicking on them in the list while holding downControl .

File>Exit (shortcut:Control -Q) will completely exit jEdit.

16

Chapter 3. Editing Text

3.1. Moving The Caret
The most direct way to move the caret is to click the mouse at the desired location in the
text area. It can also be moved using the keyboard.

TheLeft , Right, Up andDown keys move the caret in the respective direction, and the
Page UpandPage Downkeys move the caret up and down one screenful, respectively.

When pressed once, theHomekey moves the caret to the first non-whitespace character
of the current line. Pressing it a second time moves the caret to the beginning of the line.
Pressing it a third time moves the caret to the first visible line.

TheEnd key behaves in a similar manner, going to the last non-whitespace character, the
end of the line, and finally to the last visible line.

Control -HomeandControl -End move the caret to the beginning and end of the buffer,
respectively.

More advanced caret movement is covered in Section 3.5, Section 3.6 and Section 3.7.

3.2. Selecting Text
A selectionis a a block of text marked for further manipulation. A selection can either
span a range of text or cover a rectangular area.

Dragging the mouse creates a range selection from where the mouse was pressed to
where it was released. Holding downShift while clicking a location in the buffer will
create a selection from the caret position to the clicked location.

Holding downShift in addition to a caret movement key (Left , Up, Home, etc) will
extend the selection in the specified direction. If no selection exists, one will be created.

Edit>Select All (shortcut:Control -A) selects the entire buffer.

Edit>Select None (shortcut:Escape) deactivates the selection.

Holding downControl and dragging will create a rectangular selection. Holding down
Shift andControl while clicking a location in the buffer will create a rectangular

17

Chapter 3. Editing Text

selection from the caret position to the clicked location.

It is possible to select a rectangle with zero width but non-zero height. This can be used
to insert a new column between two existing columns, for example. Such zero-width
selections are shown as a thin vertical line.

Rectangles can be deleted, copied, pasted, and operated on using any other command.

Edit>Rectangular Selection (shortcut:Control -\) toggles the current selection
between range and rectangle mode.

Note: Rectangular selections are implemented using character offsets, not
absolute screen positions, so they might not behave as you might expect if a
proportional-width font is being used, or hard tabs are enabled. For information
about changing the font used in the text area, see Section 6.3. For more
information about hard and soft tabs, see Section 5.3.1.

3.3. Inserting and Deleting Text
Text entered at the keyboard is inserted into the buffer. If overstrike mode is on, one
character is deleted from in front of the caret position for every character that is inserted.
To activate overstrike mode, pressInsert. The caret is drawn as horizontal line while in
overstrike mode. This serves as a reminder of the differing behavior.

Inserting text while there is a selection will replace the selection with the inserted text.

Inserting text at the end of a line beyond the wrap column will automatically break the
line at the appropriate word boundary. The wrap column is indicated in the text area as a
faint blue line and its location (specified in number of character positions from the left
margin) can be changed in one of several ways:

• On a global or mode-specific basis in theEditing andMode-Specific panes of the
Utilities>Global Options dialog box.

• In the current buffer for the duration of the editing session in theUtilities>Buffer
Options dialog box.

• In the current buffer for future editing sessions by placing the following in one of
the first 10 lines of the buffer, wherecolumn is the desired wrap column position:

18

Chapter 3. Editing Text

:maxLineLen= column :

To disable word wrap completely, set the wrap column to 0 using any of the above
means.

Note: Word wrap is implemented using character offsets, not screen positions, so it
might not behave like you expect if a proportional-width font is being used. For
information about changing the font used in the text area, see Section 6.3.

When inserting text, keep in mind that theTab andEnter keys might not behave entirely
like you expect because of various indentation features; see Section 5.3 for details.

The simplest way to delete text is with theBackspaceandDeletekeys. If nothing is
selected, they delete the character before or after the caret, respectively. If a selection
exists, both delete the selection.

More advanced deletion commands are described in Section 3.5, Section 3.6 and Section
3.7.

3.4. Undo and Redo
Edit>Undo (shortcut:Control -Z) undoes the effects of the most recent text editing
command. For example, this can be used to restore unintentionally deleted text. More
complicated operations, such as a search and replace, can also be undone. By default, the
undo queue remembers the last 100 edits; older edits are discarded. The undo queue size
can be changed in theEditing pane of theUtilities>Global Options dialog box.

Edit>Redo (shortcut:Control -R) goes forward in the undo queue, redoing changes
which were undone. For example, if some text was inserted,Undo will remove it from
the buffer.Redo will insert it again.

3.5. Working With Words
Holding downControl in addition toLeft or Right moves the caret a word at a time.
Holding downShift andControl in addition toLeft or Right extends the selection a
word at a time.

19

Chapter 3. Editing Text

A single word can be selected by double-clicking with the mouse, or using the
Edit>Text>Select Word command (shortcut:Control -E W). A selection that begins
and ends on word boundaries can be created by double-clicking and dragging.

PressingControl in addition toBackspaceor Deletedeletes the word before or after the
caret, respectively.

Edit>Word Count displays a dialog box with the number of characters, words and lines
in the current buffer.

Edit>Complete Word (shortcut:Control -B) searches the current buffer for possible
completions of the current word. This feature be used to avoid retyping previously
entered identifiers in program source, for example.

If there is only one completion, it will be inserted into the buffer immediately. If multiple
completions were found, they will be listed in a popup below the caret position. To insert
a completion from the list, either click it with the mouse, or select it using theUp and
Down keys and pressEnter. To close the popup without inserting a completion, press
Escape.

3.6. Working With Lines
An entire line can be selected by triple-clicking with the mouse, or using the
Edit>Text>Select Line command (shortcut:Control -E L). A selection that begins and
ends on line boundaries can be created by triple-clicking and dragging.

Edit>Go to Line (shortcut:Control -L) displays an input dialog box and moves the caret
to the specified line number.

Edit>Select Line Range (shortcutControl -E Control -L) selects all text between
between two specified line numbers, inclusive.

Edit>Text>Join Lines (shortcut:Control -J) removes any whitespace from the start of
the next line and joins it with the current line. For example, invokingJoin Lines on the
first line of the following Java code:

new Widget(Foo
.createDefaultFoo());

Will change it to:

20

Chapter 3. Editing Text

new Widget(Foo.createDefaultFoo());

Edit>Text>Delete Line (shortcut:Control -D) deletes the current line.

Edit>Text>Delete to Start Of Line (shortcut:Shift-Backspace) deletes all text from
the caret to the start of the current line.

Edit>Text>Delete to End Of Line (shortcut:Shift-Delete) deletes all text from the
caret to the end of the current line.

Edit>Text>Remove Trailing Whitespace (shortcut:Control -E R) removes all
whitespace from the end of each selected line, or the current line if there is no selection.

3.7. Working With Paragraphs
As far as jEdit is concerned, “paragraphs” are delimited by double newlines. This is also
how TeX defines a paragraph. Note that jEdit doesn’t parse HTML files for “<P>” tags,
nor does it support paragraphs delimited only by a leading indent.

Holding downControl in addition toUp or Down moves the caret to the previous and
next paragraph, respectively. As with other caret movement commands, holding down
Shift in addition to the above extends the selection, a paragraph at a time.

Edit>Text>Select Paragraph (shortcut:Control -E P) selects the paragraph containing
the caret.

Edit>Text>Delete Paragraph (shortcut:Control -E D) deletes the paragraph containing
the caret.

Edit>Text>Format Paragraph (shortcut:Control -E F) splits and joins lines in the
current paragraph to make them fit within the wrap column position. See Section 3.3 for
information and word wrap and changing the wrap column.

3.8. The Clipboard
Edit>Cut (shortcut:Control -X) places the selected text in the clipboard and removes it
from the buffer.

Edit>Copy (shortcut:Control -C) places the selected text in the clipboard and leaves it
in the buffer.

21

Chapter 3. Editing Text

File>Paste (shortcut:Control -V) inserts the clipboard contents in place of the selection
(or at the caret position, if there is no selection).

Edit>Paste Previous (shortcut:Control -E Control -V) displays a dialog box listing
recently copied and pasted text. By default, the last 20 strings are remembered; this can
be changed in theGeneral pane of theUtilities>Global Options dialog box.

The X Window System

The X Window System on Unix actually has two storage areas for text; the
“primary selection”, and the “clipboard”. jEdit only uses the clipboard. However,
the XClipboard plugin (see Chapter 7 for information about installing plugins)
allows read-only access to the primary selection.

3.9. Scrolling
View>Scrolling>Scroll to Current Line (shortcut:Control -E Control -J) centers the
line containing the caret on the screen.

View>Scrolling>Center Caret on Screen (shortcut:Control -E Control -I) moves the
caret to the line in the middle of the screen.

View>Scrolling>Line Scroll Up (shortcut:Control -’) scrolls the text area up by one
line.

View>Scrolling>Line Scroll Down (shortcut:Control -/) scrolls the text area down by
one line.

View>Scrolling>Page Scroll Up (shortcut:Alt -’) scrolls the text area up by one
screenful.

View>Scrolling>Page Scroll Down (shortcut:Alt -/) scrolls the text area down by one
screenful.

The above scrolling commands differ from the caret movement commands in that they
don’t actually move the caret; they just change the scroll bar position.

View>Scrolling>Synchronized Scrolling is a check box menu item, that if selected,
forces scrolling performed in one text area to be propagated to all other text areas in the
current view. Invoking the command a second time disables the feature.

22

Chapter 3. Editing Text

3.10. Markers
Once amarkerhas been set at a particular location in a buffer, it can be quickly returned
to at any time. Any number of markers can be set in each buffer, and markers are
persistent; they are saved to. filename .marks , wherefilename is the file name. (The
dot prefix makes the marker file hidden on Unix systems).

Search>Set Marker (shortcut:Control -E Control -M) prompts for a marker name (the
default being the selected text) and set a marker with that name at the caret position.

Selecting a marker from theSearch>Go to Marker menu moves the caret to the
marker’s location. Selecting a marker from theSearch>Clear Marker menu removes it
from the buffer.

Search>Go to Previous Marker (shortcut:Alt -Up) goes to the nearest marker before
the caret position.

Search>Go to Next Marker (shortcut:Alt -Down) goes to the nearest marker after the
caret position.

3.11. Registers
Eachregistercan hold either a text string or caret position for later use. Registers have
single-character names, hence their number is limited by how many keys can be typed on
your keyboard. Register contents are global to the editor; all buffers and views share the
same set. Registers are not persistent; their contents are lost when jEdit exits. The
register$ is an alias for the clipboard, and therefore registers can be considered as an
extension of the clipboard concept.

Edit>Registers>View Registers displays a dialog box for viewing register contents.
The popup menu in the dialog box lists all defined registers; selecting one will display its
contents and type (text or position). It is not possible to change or add registers in this
dialog box; it is for viewing only.

All register commands except forView Registers listen for the next key press and
operate on the register with that name. For example, to copy the selection to registerX,
pressControl -R Control -C X (The character “x” will not be inserted into the buffer).

23

Chapter 3. Editing Text

3.11.1. Text Registers
Edit>Registers>Cut to Register (shortcut:Control -R Control -X) stores the selected
text in the specified register, removing it from the buffer.

Edit>Registers>Copy to Register (shortcut:Control -R Control -C) stores the selected
text in the specified register, leaving it in the buffer.

Edit>Registers>Append to Register (shortcut:Control -R Control -A) adds the
selected text to the existing contents of the specified register.

Edit>Registers>Paste from Register (shortcut:Control -R Control -V) replaces the
selection with the contents of the specified register.

3.11.2. Position Registers
Edit>Registers>Save Position to Register (shortcut:Control -T) stores the current
buffer name and caret position in the specified register.

Edit>Registers>Go to Position in Register (shortcut:Control -Y) opens the buffer
named in the specified register (if necessary), and moves the caret to the saved position.

Edit>Registers>Select to Position in Register (shortcut:Control -U) creates a
selection from the current caret position to the position saved in the specified register.

Edit>Registers>Swap Position with Register (shortcut:Control -K) goes to the
position stored in the specified register, and saves the previous position in that register.

Note: Caret positions cannot be saved to the register $ (clipboard).

3.12. Search and Replace

3.12.1. Searching For Text
Search>Find (shortcut:Control -F) displays the search and replace dialog box.

The search string can be entered in theSearch for text field. Pressing theUp andDown
keys in this text field recalls previously entered strings; see Appendix B for details.

24

Chapter 3. Editing Text

The search can be made case insensitive (for example, searching for “Hello” will match
“hello”, “HELLO” and “HeLlO”) by selecting theIgnore case check box. Regular
expressions may be used to match inexact sequences of text if theRegular expressions
check box is selected; see Appendix D for more information about regular expressions.
Note that regular expressions can only be used when searching forwards.

If the Reverse search check box is not selected, clickingFind will locate the next
occurrence of the search string after the caret position. Otherwise, it will locate the
previous occurence before the caret position. If theKeep dialog check box is selected,
the dialog box will remain open; otherwise, it will be closed after the search string is
located. If no occurrences could be found, a dialog box will be displayed, offering to
restart the search from the beginning (or end, if reverse search is enabled) of the buffer.

Search>Find Next (shortcut:Control -G) locates the next occurrence of the most recent
search string without displaying the search and replace dialog box.

Search>Find Previous (shortcut:Control -H) locates the previous occurrence of the
most recent search string without displaying the search and replace dialog box.

Search>Find Selection (shortcut:Control -E Control -F) displays the search and
replace dialog box with the currently selected text entered in theSearch for: text field.

3.12.2. Replacing Text
The replacement string can be entered in theReplace with text field of the search and
replace dialog box. Pressing theUp andDown keys in this text field recalls previously
entered strings; see Appendix B for details.

Clicking Replace will replace the current selection with the replacement string.
Clicking Replace & Find will replace the current selection, and locate the next
occurrence of the search string. ClickingReplace All will replace all occurrences of the
search string with the replacement string.

3.12.3. HyperSearch
If the HyperSearch check box in the search and replace dialog box is selected, clicking
Find will list all occurrences of the search string, rather than locating them one by one.

By default, HyperSearch results are shown in a floating window; the window can be set
to dock into the view in theDocking pane of theUtilities>Global Options dialog box.

25

Chapter 3. Editing Text

Running searches can be stopped in theUtilities>I/O Progress Monitor dialog box.

3.12.4. Multiple File Search
Searching, replacement and HyperSearch can also be performed in all open buffers or all
files in a directory.

If the All buffers radio button in the search and replace dialog box is selected, all open
buffers whose names match the filter entered in theFilter text field will be searched. The
filter is specified in the form of a glob pattern; see Appendix C for more information
about glob patterns.

If the Directory radio button is selected, all files in the directory whose names match the
filter will be searched. The directory to search in can either be entered in theDirectory
text field, or chosen in a file selector dialog box by clickingChoose. If the Search
subdirectories check box is selected, all subdirectories of the specified directory will
also be searched. Keep in mind that searching through directories with many files can
take a long time and consume a large amount of memory.

Pressing theUp andDown keys in theFilter andDirectory text fields recalls previously
entered strings; see Appendix B for details.

3.12.5. The Search Bar
The search bar at the top of the view provides a convenient way to perform simple
searches without opening the search and replace dialog box first. Neither multiple file
search or replacement can be done from the search bar.

Initially, the search bar is inincremental searchmode. In incremental search mode, the
first occurrence of the search string is located in the current buffer as is it is being typed.
Subsequent occurrences can be located by pressingEnter andShift-Enter to search
forwards and backwards, respectively. Once the desired occurrence has been found, press
Escapeto return keyboard focus to the text area.

If the HyperSearch check box is selected, entering a search string and pressingEnter
will perform a HyperSearch. When in HyperSearch mode, theUp andDown keys can be
used to recall previously entered strings; see Appendix B for details.

The search bar can be accessed from the keyboard using theSearch>Quick
Incremental Search (shortcut:Control -,) andSearch>Quick HyoerSearch (shortcut:

26

Chapter 3. Editing Text

Control -.) commands.

The search bar can be disabled in theGeneral pane of theUtilities>Global Options
dialog box.

27

Chapter 4. Edit Modes
An edit modeis an editor configuration intended to edit a specific type of file. Edit modes
can specify syntax highlighting rules, auto indent behavior, and various useful
customizations.

4.1. Mode Selection
When a file is opened, jEdit first checks the file name against a list of known patterns.
For example, files whose names end with “.c” are edited in C mode, and files named
Makefile are edited in Makefile mode. If a suitable match based on file name cannot be
found, jEdit checks the first line of the file. For example, files whose first line is
“#!/bin/sh” are edited in shell script mode.

If automatic mode selection is not appropriate, the edit mode can be specified manually.
To set the current buffer’s edit mode on a one-time basis, specify it in the
Utilities>Buffer Options dialog box. To have a buffer open with a specific edit mode
every time, place the following in one of the first 10 lines of the buffer, whereedit
mode is the name of the desired edit mode:

:mode= edit mode :

4.2. Syntax Highlighting
Syntax highlighting is the display of programming language tokens using different fonts
and colors. This makes the code easier to follow and errors such as misplaced quotes
easier to spot. All edit modes except for the plain text mode perform syntax highlighting.

The colors and styles used to highlight syntax tokens can be changed in theStyles pane
of theUtilities>Global Options dialog box.

Syntax highlighting can be enabled or disabled in one of several ways:

• On a global or mode-specific basis in theEditing andMode-Specific panes of the
Utilities>Global Options dialog box.

28

Chapter 4. Edit Modes

• In the current buffer for the duration of the editing session in theUtilities>Buffer
Options dialog box.

• In the current buffer for future editing sessions, by placing the following in one of
the first 10 lines of the buffer, whereflag is either “true” or “false”:

:syntax= flag :

4.3. Writing Edit Modes
Edit modes are defined using XML, theextensible markup language; mode files have the
extension.xml . XML is a very simple language, and as a result edit modes are easy to
create and modify. This section will start with a short XML primer, followed by detailed
information about each supported tag and highlighting rule.

4.3.1. An XML Primer
A very simple edit mode looks like so:

<?xml version="1.0"?>

<!DOCTYPE MODE SYSTEM "xmode.dtd">

<MODE>
<PROPS>

<PROPERTY NAME="commentStart" VALUE="/*" />
<PROPERTY NAME="commentEnd" VALUE="*/" />

</PROPS>

<RULES>

<BEGIN>/*</BEGIN>
<END>*/</END>

</RULES>

</MODE>

Note that each opening tag must have a corresponding closing tag. If there is nothing
between the opening and closing tags, for example<TAG></TAG>, the shorthand notation
<TAG /> may be used. An example of this shorthand is the<PROPERTY>tag above.

29

Chapter 4. Edit Modes

XML is case sensitive.Span or span is not the same asSPAN.

To insert a special character such as < or > literally in XML (for example, inside an
attribute value), you must write it as anentity. An entity consists of the character’s
symbolic name enclosed with “&” and “;”. A full list of entities is out of the scope of this
section, but the most important are:

• < - The less-than (<) character

• > - The greater-than (>) character

• & - The ampersand (&) character

For example, the following will cause a syntax error:

<SEQ TYPE="OPERATOR">&</SEQ>

Instead, you must write:

<SEQ TYPE="OPERATOR">&</SEQ>

Now that the basics of XML have been covered, the rest of this section will cover each
construct in detail.

4.3.2. The Preamble
Each mode definition must begin with the following:

<?xml version="1.0"?>
<!DOCTYPE MODE SYSTEM "xmode.dtd">

4.3.3. The MODE Tag
Each mode definition must contain at least oneMODEtag. All other tags (PROPS, RULES)
must be placed inside theMODEtag.

4.3.4. The PROPS Tag
ThePROPStag and thePROPERTYtags inside it are used to define mode-specific

30

Chapter 4. Edit Modes

properties. EachPROPERTYtag must have aNAMEattribute set to the property’s name, and
a VALUEattribute with the property’s value.

All buffer-local properties listed in Section 6.2 may be given values in edit modes. In
addition, the following mode properties have no buffer-local equivalent:

• indentCloseBrackets - A list of characters (usually brackets) that subtract indent
from thecurrent line. For example, in Java mode this property is set to “}”.

• indentOpenBrackets - A list of characters (usually brackets) that add indent to the
nextline. For example, in Java mode this property is set to “{”.

• indentPrevLine - When indenting a line, jEdit checks if the previous line matches
the regular expression stored in this property. If it does, a level of indent is added.
For example, in Java mode this regular expression matches language constructs
such as “if”, “else”, “while”, etc.

• doubleBracketIndent - If a line matches theindentPrevLine regular expression
and the next line contains an opening bracket, a level of indent will not be added to
the next line, unless this property is set to “true”. For example, with this property set
to “false”, Java code will be indented like so:

while(objects.hasMoreElements())
{

((Drawable)objects.nextElement()).draw();
}

On the other hand, settings this property to “true” will give the following result:

while(objects.hasMoreElements())
{

((Drawable)objects.nextElement()).draw();
}

Here is the complete<PROPS>tag for Java mode:

<PROPS>
<PROPERTY NAME="indentOpenBrackets" VALUE="{" />
<PROPERTY NAME="indentCloseBrackets" VALUE="}" />
<PROPERTY NAME="indentPrevLine" VALUE="\s*(((if|while)

\s*\(|else|case|default)[^;]*|for\s*\(.*)" />
<PROPERTY NAME="doubleBracketIndent" VALUE="false" />
<PROPERTY NAME="commentStart" VALUE="/*" />
<PROPERTY NAME="commentEnd" VALUE="*/" />

31

Chapter 4. Edit Modes

<PROPERTY NAME="boxComment" VALUE="*" />
<PROPERTY NAME="blockComment" VALUE="//" />
<PROPERTY NAME="noWordSep" VALUE="_" />
<PROPERTY NAME="wordBreakChars" VALUE=",+-=<>/?^&*" />

</PROPS>

4.3.5. The RULES Tag
RULEStags must be placed inside theMODEtag. EachRULEStag defines aruleset. A
ruleset consists of a number ofparser rules, with each parser rule specifying how to
highlight a specific syntax token. There must be at least one ruleset in each edit mode.
There can also be more than one, with different rulesets being used to highlight different
parts of a buffer (for example, in HTML mode, one rule set highlights HTML tags, and
another highlights inline JavaScript). For information about using more than one ruleset,
see Section 4.3.5.3.

TheRULEStag supports the following attributes, all of which are optional:

• SET - the name of this ruleset. All rulesets other than the first must have a name.

• HIGHLIGHT_DIGITS - if set toTRUE, digits (0-9, as well as hexadecimal literals
prefixed with “0x”) will be highlighted with theDIGIT token type. Default isFALSE.

• IGNORE_CASE- if set toFALSE, matches will be case sensitive. Otherwise, case will
not matter. Default isTRUE.

• DEFAULT- the token type for text which doesn’t match any specific rule. Default is
NULL. See Section 4.3.5.9 for a list of token types.

Each child element of theRULEStag defines a parser rule. More specific rules must be
defined before general ones; for example, a rule matching the string “hello” rule must be
placed before one matching “he”.

Here is an exampleRULEStag:

<RULES IGNORE_CASE="FALSE" HIGHLIGHT_DIGITS="TRUE">
...

</RULES>

32

Chapter 4. Edit Modes

4.3.5.1. The TERMINATE Rule

TheTERMINATErule specifies that parsing should stop after the specified number of
characters have been read from a line. The number of characters to terminate after should
be specified with theAT_CHARattribute. Here is an example:

<TERMINATE AT_CHAR="1" />

This rule is used in Patch mode, for example, because only the first character of each line
affects highlighting.

4.3.5.2. The WHITESPACE Rule

TheWHITESPACErule specifies characters which are to be treated as keyword delimiters.
Most rulesets will haveWHITESPACEtags for spaces and tabs. Here is an example:

<WHITESPACE> </WHITESPACE>
<WHITESPACE> </WHITESPACE>

4.3.5.3. The SPAN Rule

TheSPANrule highlights text between a start and end string. The start and end strings are
specified inside child elements of theSPANtag. The following attributes are supported:

• TYPE- The token type to highlight the span with. See Section 4.3.5.9 for a list of
token types

• AT_LINE_START - If set toTRUE, the span will only be highlighted if the start
sequence occurs at the beginning of a line

• EXCLUDE_MATCH- If set toTRUE, the start and end sequences will not be
highlighted, only the text between them will

• NO_LINE_BREAK- If set toTRUE, the span will be highlighted with theINVALID

token type if it spans more than one line

• NO_WORD_BREAK- If set toTRUE, the span will be highlighted with theINVALID

token type if it includes whitespace

33

Chapter 4. Edit Modes

• DELEGATE- text inside the span will be highlighted with the specified ruleset. To
delegate to a ruleset defined in the current mode, just specify its name. To delegate
to a ruleset defined in another mode, specify a name of the formmode:: ruleset .
Note that the first (unnamed) ruleset in a mode is called “MAIN”.

Here is aSPANthat highlights Java string literals, which cannot include line breaks:

<BEGIN>"</BEGIN>
<END>"</END>

Here is aSPANthat highlights Java documentation comments by delegating to the
“JAVADOC” ruleset defined elsewhere in the current mode:

<BEGIN>/**</BEGIN>
<END>*/</END>

Here is aSPANthat highlights HTML cascading stylesheets inside<STYLE> tags by
delegating to the CSS ruleset in another mode:

<BEGIN><style></BEGIN>
<END></style></END>

4.3.5.4. The EOL_SPAN Rule

An EOL_SPANis similar to aSPANexcept that highlighting stops at the end of the line, not
after the end sequence is found. The text to match is specified between the opening and
closingEOL_SPANtags. The following attributes are supported:

• TYPE- The token type to highlight the span with. See Section 4.3.5.9 for a list of
token types

• AT_LINE_START - If set toTRUE, the span will only be highlighted if the start
sequence occurs at the beginning of a line

34

Chapter 4. Edit Modes

• EXCLUDE_MATCH- If set toTRUE, the start sequence will not be highlighted, only the
text after it will

Here is anEOL_SPANthat highlights C++ comments:

<EOL_SPAN TYPE="COMMENT1">//</EOL_SPAN>

4.3.5.5. The MARK_PREVIOUS Rule

TheMARK_PREVIOUSrule highlights from the end of the previous syntax token to the
matched text. The text to match is specified between opening and closing
MARK_PREVIOUStags. The following attributes are supported:

• TYPE- The token type to highlight the text with. See Section 4.3.5.9 for a list of
token types

• AT_LINE_START - If set toTRUE, the text will only be highlighted if it occurs at the
beginning of the line

• EXCLUDE_MATCH- If set toTRUE, the match will not be highlighted, only the text
before it will

Here is a rule that highlights labels in Java mode (for example, “XXX:”):

<MARK_PREVIOUS AT_LINE_START="TRUE"
EXCLUDE_MATCH="TRUE">:</MARK_PREVIOUS>

4.3.5.6. The MARK_FOLLOWING Rule

TheMARK_FOLLOWINGrule highlights from the start of the match to the next syntax
token. The text to match is specified between opening and closingMARK_FOLLOWING

tags. The following attributes are supported:

• TYPE- The token type to highlight the text with. See Section 4.3.5.9 for a list of
token types

• AT_LINE_START - If set toTRUE, the text will only be highlighted if the start
sequence occurs at the beginning of a line

35

Chapter 4. Edit Modes

• EXCLUDE_MATCH- If set toTRUE, the match will not be highlighted, only the text
after it will

Here is a rule that highlights variables in Unix shell scripts (“$CLASSPATH”, “$IFS”,
etc):

<MARK_FOLLOWING TYPE="KEYWORD2">$</MARK_FOLLOWING>

4.3.5.7. The SEQ Rule

TheSEQrule highlights fixed sequences of text. The text to highlight is specified between
opening and closingSEQtags. The following attributes are supported:

• TYPE- the token type to highlight the sequence with. See Section 4.3.5.9 for a list of
token types

• AT_LINE_START - If set toTRUE, the sequence will only be highlighted if it occurs
at the beginning of a line

The following rules highlight a few Java operators:

<SEQ TYPE="OPERATOR">+</SEQ>
<SEQ TYPE="OPERATOR">-</SEQ>
<SEQ TYPE="OPERATOR">*</SEQ>
<SEQ TYPE="OPERATOR">/</SEQ>

4.3.5.8. The KEYWORDS Rule

There can only be oneKEYWORDStag per ruleset. TheKEYWORDSrule defines keywords to
highlight. Keywords are similar toSEQs, except thatSEQs match anywhere in the text,
whereas keywords only match whole words.

TheKEYWORDStag supports only one attribute,IGNORE_CASE. If set toFALSE, keywords
will be case sensitive. Otherwise, case will not matter. Default isTRUE.

Each child element of theKEYWORDStag should be named after the desired token type,
with the keyword text between the start and end tags. For example, the following rule
highlights the most common Java keywords:

<KEYWORDS IGNORE_CASE="FALSE">

36

Chapter 4. Edit Modes

<KEYWORD1>if</KEYWORD1>
<KEYWORD1>else</KEYWORD1>
<KEYWORD3>int</KEYWORD3>
<KEYWORD3>void</KEYWORD3>

</KEYWORDS>

4.3.5.9. Token Types

Parser rules can highlight tokens using any of the following token types:

• NULL - no special highlighting is performed on tokens of typeNULL

• COMMENT1

• COMMENT2

• FUNCTION

• INVALID - tokens of this type are automatically added if aNO_WORD_BREAKor
NO_LINE_BREAK SPANspans more than one word or line, respectively.

• KEYWORD1

• KEYWORD2

• KEYWORD3

• LABEL

• LITERAL1

• LITERAL2

• MARKUP

• OPERATOR

4.4. Installing Edit Modes
There are two locations where new edit modes can be installed; themodes subdirectory
of the jEdit settings directory, and themodes subdirectory of the jEdit install directory.
The location of the settings directory is operating system-specific; see Section 6.4.

37

Chapter 4. Edit Modes

Edit modes must be listed in amode catalogfile, otherwise they will not be available to
jEdit. There is a catalog file in each mode directory, namedcatalog .

Catalogs are also written in XML. They consist of aMODEStag, containing a number of
MODEtags. Each mode tag associates a mode name with an XML file and a filename and
first line glob. A sample mode catalog looks like follows:

<?xml version="1.0"?>
<!DOCTYPE CATALOG SYSTEM "catalog.dtd">

<MODES>
<MODE NAME="shellscript" FILE="shellscript.xml"

FILE_NAME_GLOB="*.sh"
FIRST_LINE_GLOB="#!/*sh*" />

</MODES>

TheMODEtag supports the following attributes:

• NAME- the name of the edit mode, as it will appear in theBuffer Options dialog
box, and so on

• FILE - the name of the XML file, containing the mode definition

• FILE_NAME_GLOB- files whose names match this glob pattern will be opened in this
edit mode. See Appendix C for information about glob patterns

• FIRST_LINE_GLOB - files whose first line matches this glob pattern will be opened
in this edit mode. See Appendix C for information about glob patterns

38

Chapter 5. Editing Source Code

5.1. Abbreviations
Using abbreviations reduces the time spent typing long but commonly used strings. For
example, in Java mode, the abbreviation “sout” is defined to expand to
“System.out.println()”, so to insert “System.out.println()” in a Java buffer, you only need
to type “sout” followed byControl -;. Each abbreviation can either be global, in which
case it will expand in all edit modes, or mode-specific. Abbreviations can be edited in the
Abbrevs pane of theUtilities>Global Options dialog box.

Edit>Expand Abbreviation (keyboard shortcut:Control -;) attempts to expand the word
before the caret. If no expansion could be found, it will offer to define one.

Automatic abbreviation expansion can be enabled in theAbbrevs pane of the
Utilities>Global Options dialog box. If enabled, pressing the space bar will
automatically expand the word before the caret, assuming it is a valid abbreviation.

If automatic expansion is enabled, a space can be inserted without expanding the word
before the caret by pressingControl -E V Space.

5.2. Bracket Matching
Misplaced and unmatched brackets are one of the most common syntax errors
encountered when writing code. jEdit has several features to make brackets easier to deal
with.

If the character immediately before the caret position is a bracket, the matching one will
be highlighted (assuming it is visible on the screen). Bracket highlighting can be
disabled in theText Area pane of theUtilities>Global Options dialog box.

Edit>Source Code>Go to Matching Bracket (shortcut:Control -]) goes to the bracket
matching the one before the caret.

Double-clicking on a bracket in the text area will select all text between the bracket and
the one matching it.

39

Chapter 5. Editing Source Code

Edit>Source Code>Select Code Block (shortcut:Control -[) selects all text between
the two brackets nearest to the caret.

Edit>Source Code>Go to Previous Bracket (shortcut:Control -E [) moves the caret
to the previous opening bracket.

Edit>Source Code>Go to Next Bracket (shortcut:Control -E]) moves the caret to the
next closing bracket.

Note: jEdit’s bracket matching algorithm only checks syntax tokens with the same
type as the original bracket for matches. So brackets inside string literals and
comments will not cause problems, as they will be skipped.

5.3. Tabbing and Indentation
jEdit makes a distinction between thetab width, which is is used when displaying tab
characters, and theindent width, which is used when a level of indent is to be added or
removed, for example by mode-specific smart indent routines. Both can be changed in
one of several ways:

• On a global or mode-specific basis inEditing andMode-Specific panes of the the
Utilities>Global Options dialog box.

• In the current buffer for the duration of the editing session in theUtilities>Buffer
Options dialog box.

• In the current buffer for future editing sessions by placing the following in one of
the first 10 lines of the buffer, wheren is the desired tab width, andmis the desired
indent width:

:tabSize= n:indentSize= m:

Edit>Source Code>Shift Indent Left (shortcut:Alt -Left) adds one level of indent to
each selected line, or the current line if there is no selection.

Edit>Source Code>Shift Indent Right (shortcut:Alt -Right) removes one level of
indent from each selected line, or the current line if there is no selection.

40

Chapter 5. Editing Source Code

5.3.1. Soft Tabs
Because files indented using tab characters may look less than ideal when viewed on a
system with a different default tab size, it is sometimes desirable to use multiple spaces,
known assoft tabs, instead of real tab characters, to indent code.

Soft tabs can be enabled or disabled in one of several ways:

• On a global or edit mode-specific basis in theEditing andMode-Specific panes of
theUtilities>Global Options dialog box.

• In the current buffer for the duration of the editing session in theUtilities>Buffer
Options dialog box.

• In the current buffer for future editing sessions by placing the following in one of
the first 10 lines of the buffer, whereflag is either “true” or “false”:

:noTabs= flag :

Changing the soft tabs setting has no effect on existing tab characters; it only affects
subsequently-inserted tabs.

Edit>Source Code>Spaces to Tabs converts soft tabs to hard tabs in the current
selection.

Edit>Source Code>Tabs to Spaces converts hard tabs to soft tabs in the current
selection.

5.3.2. Automatic Indent
The auto indent feature inserts the appropriate number of tabs or spaces at the beginning
of a line.

If indent on enter is enabled, pressingEnter will create a new line with the appropriate
amount of indent automatically. If indent on tab is enabled, pressingTab on an
unindented line will insert the appropriate amount of indentation. Pressing it again will
insert a tab character.

By default, indent on enter is enabled and indent on tab is disabled. This can be changed
in one of several ways:

41

Chapter 5. Editing Source Code

• On a global or mode-specific basis in theEditing andMode-Specific panes of the
Utilities>Global Options dialog box.

• In the current buffer for the duration of the editing session in theUtilities>Buffer
Options dialog box.

• In the current buffer for future editing sessions by placing the following in the first
10 lines of a buffer, whereflag is either “true” or “false”:

:indentOnEnter= flag :indentOnTab= flag :

Auto indent behavior is mode-specific. In most edit modes, the indent of the previous
line is simply copied over. However, in C-like languages (C, C++, Java, JavaScript),
curly brackets and language statements are taken into account and indent is added and
removed as necessary.

Edit>Source Code>Indent Selected Lines (shortcut:Control -I) indents all selected
lines, or the current line if there is no selection.

To insert a literal tab or newline without performing indentation, prefix the tab or
newline withControl -E V. For example, to create a new line without any indentation,
typeControl -E V Enter .

5.4. Commenting Out Code
Most programming and markup languages support “comments”, or regions of code
which are ignored by the compiler/interpreter. jEdit has commands which make inserting
comments more convenient.

Edit>Source Code>Wing Comment (shortcut:Control -E Control -C) encloses the
selection with comment start and end strings. An example of Java wing commented code
looks like so:

/* if(obj instanceof DBConnection)
((DBConnection)obj).close(); */

Comment start and end strings can be changed on a mode-specific basis in the
Mode-Specific pane of theUtilities>Global Options dialog box, or on a buffer-specific
basis using buffer-local properties. For example, placing the following in one of the first
10 lines of a buffer will change the wing comment strings to “(*” and “*)”:

42

Chapter 5. Editing Source Code

:commentStart=(*:commentEnd=*):

Edit>Source Code>Box Comment (shortcut:Control -E Control -B) encloses the
selection with comment start and end strings, and places the box comment string at the
start of each line. An example of Java box commented code looks like so:

/* if(obj instanceof DBConnection)
* ((DBConnection)obj).close(); */

The strings used for box commenting can be changed on a mode-specific basis in the
Mode-Specific pane of theUtilities>Global Options dialog box, or on a buffer-specific
basis using buffer-local properties. For example, placing the following in one of the first
10 lines of a buffer will change the box comment strings to “(*” and “*”), with “**”
placed at the start of each line:

:commentStart=(*:commentEnd=*):boxComment=**:

Edit>Source Code>Block Comment (shortcut:Control -E Control -K) inserts the
block comment string at the start of each selected line. An example of Java block
commented code looks like so:

// if(obj instanceof DBConnection)
// ((DBConnection)obj).close();

The block comment string can be changed on a mode-specific basis in the
Mode-Specific pane of theUtilities>Global Options dialog box, or on a buffer-specific
basis using buffer-local properties. For example, placing the following in one of the first
10 lines of a buffer will change the block comment string to “#”:

:blockComment=#:

5.5. Folding
The folding feature allows lines to be hidden or shown, depending on their indent level.
Since most programming languages use indentation to nest code, folding away lines with
a lot of indent has the effect of displaying an “overview” of the buffer only, while
displaying higher indent levels “zooms in” on the code and shows more “detail”.

43

Chapter 5. Editing Source Code

A set of consecutive lines with the same leading indent is referred to as afold. The
visibility of each fold can be set independently. Text hidden by folding is still present in
the buffer, and can be made visible again using the appropriate commands. Cursor
movement commands skip over the hidden text, but text manipulation commands act on
it.

The initial fold visibility level, in multiples of the current tab size, can be specified on a
mode-specific or global basis in theUtilities>Global Options dialog box. Folds with a
level higher than this will be automatically collapsed after a buffer is loaded. Setting this
value to zero makes all folds expanded initially (this is the default).

The simplest way to expand and collapse folds is to click the fold markers in the gutter to
the left of the text area; a fold marker is drawn next to the first line of each fold. An
empty square is drawn next to an expanded fold; a filled square next to a collapsed fold.
Unless theShift key is held down, clicking a filled square will expand the fold by one
level only; nested folds will remain collapsed. Holding downShift while clicking will
filly expand the fold and all nested folds.

View>Folding>Collapse Fold (keyboard shortcut:Alt -Backspace) collapses the fold
containing the caret.

View>Folding>Expand Fold One Level (keyboard shortcut:Alt -Enter) expands the
fold containing the caret. Nested folds will remain collapsed.

View>Folding>Expand Fold Fully (keyboard shortcut:Alt -Shift-Enter) expands the
fold containing the caret, also expanding any nested folds.

View>Folding>Expand All Folds (keyboard shortcut:Control -E Enter) reads the next
character entered at the keyboard, and expands all folds in the buffer with a fold level
less than that specified, and collapsed all others.

View>Folding>Expand All Folds (keyboard shortcut:Control -E X) expands all folds
in the buffer.

View>Folding>Select Fold (keyboard shortcut:Control -E S) selects all lines in the
fold containing the caret. Control-clicking on a fold marker in the gutter on the left of the
text area has the same effect.

Because folding is based on indent levels, changing the leading indent of a line while
folds are collapsed may result in portions of the buffer becoming temporarily
inaccessable. In such a case, simply invokeExpand All Folds to restore the visibility of
the hidden lines.

44

Chapter 5. Editing Source Code

5.5.1. Narrowing
The narrowing feature hides all parts of the buffer except for one specified region. While
that region appears to be all there is, the rest of the text is still in the buffer; just not
visible. While it may seem unrelated to folding, both folding and narrowing are
implemented using the same code internally.

View>Folding>Narrow Buffer to Selection (keyboard shortcut:Control -E N) hides all
lines the buffer except those in the selection.

View>Folding>Expand All Folds (keyboard shortcut:Control -E X) will make visible
any lines hidden by narrowing.

45

Chapter 6. Customizing jEdit

6.1. The Buffer Options Dialog Box
Utilities>Buffer Options displays a dialog box for changing editor settings on a
per-buffer basis. Any changes made in this dialog box are lost after the buffer is closed.

The “Corresponding buffer-local properties” text field displays buffer-local properties
that duplicate the current settings in the dialog box.

6.2. Buffer-Local Properties
Buffer-local properties provide an alternate way to change editor settings on a per-buffer
basis. While changes made in the Buffer Options dialog box are lost after the buffer is
closed, buffer-local properties take effect each time the file is opened, because they are
embedded in the file itself.

When jEdit loads a file, it checks the first 10 lines for colon-enclosed name/value pairs.
The following example changes the indent width to 4 characters, enables soft tabs, and
sets the buffer’s edit mode to Perl:

:indentSize=4:noTabs=true:mode=perl:

Note that adding buffer-local properties to a buffer only takes effect after the next time
the buffer is loaded.

The following table describes each buffer-local property in detail.

Property name Description

blockComment The block comment string. A block comment extends to the
end of the line. For example, in Java mode the default value is
“//”. See Section 5.4.

boxComment The box comment string. A box comment is one delimited by
the wing comment start and end strings, with the box comment
string at the beginning of each line. For example, in Java mode
the default value is “*”. See Section 5.4.

46

Chapter 6. Customizing jEdit

Property name Description

collapseFolds Folds with a level of this or higher will be collapsed when the
buffer is opened. If set to zero, all folds will be expanded
initially. See Section 5.5.

commentEnd The wing comment end string. For example, in Java mode the
default value is “*/”. See Section 5.4.

commentStart The wing comment start string. For example, in Java mode the
default value is “/*”. See Section 5.4.

indentOnEnter If set to “true”, indentation will be performed when theEnter
key is pressed. See Section 5.3.

indentOnTab If set to “true”, indentation will be performed when theTab
key is pressed. See Section 5.3.

indentSize The width, in characters, of one indent. Must be an integer
greater than 0. See Section 5.3.

maxLineLen The maximum line length and wrap column position. Inserting
text beyond this column will automatically insert a line break at
the appropriate position. See Section 3.3.

mode The default edit mode for the buffer. See Chapter 4.

noTabs If set to “true”, soft tabs (multiple space characters) will be
used instead of “real” tabs. See Section 5.3.

noWordSep A list of non-alphanumeric characters that arenot to be treated
as word separators.

syntax If set to “false”, syntax highlighting will be not be performed.
See Section 4.2.

tabSize The tab width. Must be an integer greater than 0. See Section
5.3.

wordBreakChars Characters, in addition to spaces and tabs, at which lines may
be split when word wrapping. See Section 3.3.

6.3. The Global Options Dialog Box
Utilities>Global Options displays the global options dialog box. The dialog box is

47

Chapter 6. Customizing jEdit

divided into several panes, each pane containing a set of related options. Use the list on
the left of the dialog box to switch between panes. Only panes created by jEdit are
described here; some plugins add their own option panes, and information about them
can be found in the documentation for the plugins in question.

The General Pane

TheGeneral option pane lets you change various miscellaneous settings, such as the
number of recent files to remember, the Swing look & feel, and such.

The Loading and Saving Pane

TheLoading and Saving option pane lets you change settings such as the autosave
frequency, backup settings, file encoding, and so on.

The Editing Pane

TheEditing option pane lets you change settings such as the tab size, syntax highlighting
and soft tabs on a global basis.

Due to the design of jEdit’s properties implementation, changes to some settings in this
option pane only take effect in subsequently opened files.

The Mode-Specific Pane

TheMode-Specific option pane lets you change settings such as the tab size, syntax
highlighting and soft tabs on a mode-specific basis.

TheFile name glob andFirst line glob text fields let you specify a glob pattern that
names and first lines of buffers will be matched against to determine the edit mode.

This option pane does not change XML mode definition files on disk; it merely writes
values to the user properties file which override those in mode files. To find out how to
edit mode files directly, see Section 4.3.

The Text Area Pane

TheText Area option pane lets you customize the appearance of the text area.

The Gutter Pane

TheGutter option pane lets you customize the appearance of the gutter.

48

Chapter 6. Customizing jEdit

The Colors Pane

TheColors option pane lets you change the text area’s color scheme.

The Styles Pane

TheStyles option pane lets you change the text styles and colors used for syntax
highlighting.

The Docking Pane

TheDocking option pane lets you specify which dockable windows should be floating,
and which should be docked in the view.

The Context Menu Pane

TheContext Menu option pane lets you edit the text area’s right-click context menu.

The Tool Bar Pane

TheTool Bar option pane lets you edit the tool bar, or disable it completely.

The Shortcut Editing Panes

TheCommand Shortcuts, Plugin Shortcuts andMacro Shortcuts option panes let
you change keyboard shortcuts. Each command can have up to two shortcuts associated
with it.

To change a shortcut, click the appropriate table entry and press the keys you want
associated with that command in the resulting dialog box.

The Abbreviations Pane

TheAbbreviations option pane lets you enable or disable automatic abbreviation
expansion, and edit currently defined abbreviations.

The combo box labelled “Abbrev set” selects the abbreviation set to edit. The first entry,
“global”, contains abbreviations available in all edit modes. The subsequent entries
contain mode-specific abbreviations.

To change an abbreviation expansion, click the appropriate table entry, which will
display a dialog box for doing so.

49

Chapter 6. Customizing jEdit

To add an abbreviation, enter it in the last line of the list, which is always blank. When
the last line is changed, a new, blank, line is added.

The Printing Pane

ThePrinting option pane lets you customize the appearance of printed output.

The File System Browser Pane

TheFile System Browser option pane lets you customize jEdit’s file system browser.

6.4. The jEdit Settings Directory
jEdit stores all settings, macros, and so on as files inside itssettings directory. In most
cases, editing these files is not necessary, since graphical tools and commands can do the
job. However, being familiar with the structure of the settings directory still comes in
handy in certain situations, for example when you want to copy jEdit settings between
computers.

The location of the settings directory is system-specific; it is printed to the activity log
(Utilities>View Activity Log). For example:

[message] jEdit: Settings directory is /home/slava/.jedit

Specifying the-settingsswitch on the command line instructs jEdit to store settings in a
different directory. For example, the following command will instruct jEdit to store all
settings in thejedit subdirectory of theC: drive:

C:\jedit> jedit -settings=C:\jedit

The-nosettingsswitch will force jEdit to not look for or create a settings directory.
Default settings will be used instead.

jEdit creates the following files and directories inside the settings directory; plugins may
add more:

• jars - this directory contains plugins. See Chapter 7.

• macros - this directory contains macros. See Part II injEdit 3.1 User’s Guide.

• modes - this directory contains custom edit modes. See Chapter 4.

50

Chapter 6. Customizing jEdit

• PluginManager.download - this directory is usually empty. It only contains files
while the plugin manager is downloading a plugin. For information about the plugin
manager, see Chapter 7.

• session - a list of files, used when restoring previously open files on startup.

• abbrevs - a plain text file which stores all defined abbreviations. See Section 5.1.

• activity.log - a plain text file which contains the full activity log. See Appendix
E.

• history - a plain text file which stores history lists, used by history text fields and
theEdit>Paste Previous command. See Section 3.8 and Appendix B.

• properties - a plain text file which stores the majority of jEdit’s settings.

• recent - a plain text file which stores the list of recently opened files and where the
caret was positioned within them.

• server - a plain text file that only exists while jEdit is running. The edit server’s
port number and authorization key is stored here. See Section 1.2.

51

Chapter 7. Installing and Using
Plugins
Plugins are loadable modules of code that extend jEdit’s functionality. This chapter only
covers installing and updating plugins. Usage instructions for individual plugins can be
found in theHelp menu.

7.1. The Plugin Manager
Plugins>Plugin Manager displays the plugin manager window, which shows a list of
installed plugins. Clicking on a plugin will display information about it. To remove some
plugins, select them and clickRemove Selected Plugins. This will issue a
confirmation dialog box first.

7.2. Installing Plugins
Clicking theInstall New Plugins button in the plugin manager will obtain a list of
plugins which are not yet installed from the jEdit web site, and display them in the
plugin installer dialog box.

Plugins to install can be selected by clicking the check box next to their names.

Radio buttons in the plugin installer dialog box select the location where plugins are to
be installed. Plugins can be installed in either thejars subdirectory of the jEdit install
directory, or thejars subdirectory of the jEdit settings directory. The location of the
setting directory is operating system-specific; see Section 6.4.

Once plugins to install have been selected and the installation directory specified,
clicking Install will begin downloading the new plugins.

Note: jEdit must be restarted before newly-installed plugins may be used.

52

Chapter 7. Installing and Using Plugins

7.3. Updating Plugins
To check if updated versions of installed plugins are available, click theUpdate Plugins
button in the plugin manager. The plugin manager will then connect to the jEdit web site
and compare currently installed plugins against the latest available ones. Plugins to
update can be selected by clicking the check box next to their names. ClickingUpdate
will begin downloading the updated plugins.

Note: jEdit must be restarted before updated plugins may be used.

53

Appendix A. Keyboard Shortcuts

Files
For details, see Section 1.3, Section 1.4 and Chapter 2.

Control-N New file.

Control-O Open file.

Control-W Close buffer.

Control-E Control-W Close all buffers.

Control-S Save buffer.

Control-E Control-S Save all buffers.

Control-P Print buffer.

Control-Page Up Go to previous buffer.

Control-Page Down Go to next buffer.

Control-‘ Go to recent buffer.

Control-Q Exit jEdit.

Views
For details, see Section 1.4.

Control-E Control-T Toggle gutter (line numbering).

Control-2 Split view horizontally.

Control-3 Split view vertically.

Control-1 Unsplit.

Alt-Page Up Go to previous text area.

Alt-Page Down Go to next text area.

Control-E 1; 2; 3; 4 Collapse/expand top; bottom; left; right docking
area.

54

Appendix A. Keyboard Shortcuts

Repeating
For details, see Section 1.6.

Control-Enter number
command

Repeat the command (it can be a keystroke, menu
item selection or tool bar click) the specified number
of times.

Moving the Caret
For details, see Section 3.1, Section 3.5, Section 3.6, Section 3.7 and Section 5.2.

Arrow Move caret one character or line.

Control-Arrow Move caret one word or paragraph.

Page Up; Page Down Move caret one screenful.

Home First non-whitespace character of line, beginning of
line, first visible line (repeated presses).

End Last non-whitespace character of line, end of line,
last visible line (repeated presses).

Control-Home Beginning of buffer.

Control-End End of buffer.

Control-] Go to matching bracket.

Control-E [;] Go to previous; next bracket.

Control-L Go to line.

Selecting Text
For details, see Section 3.2, Section 3.5, Section 3.6, Section 3.7 and Section 5.2.

Shift-Arrow Extend selection by one character or line.

Control-Shift- Arrow Extend selection by one word or paragraph.

Shift-Page Up; Shift-Page
Down

Extend selection by one screenful.

55

Appendix A. Keyboard Shortcuts

Shift-Home Extend selection to first non-whitespace character of
line, beginning of line, first visible line (repeated
presses).

Shift-End Extend selection to last non-whitespace character of
line, end of line, last visible line (repeated presses).

Control-Shift-Home Extend selection to beginning of buffer.

Control-Shift-End Extend selection to end of buffer.

Control-[Select code block.

Control-E W; L; P Select word; line; paragraph.

Control-E Control-L Select line range.

Control-\ Switch between range and rectangular selection
mode.

Scrolling
For details, see Section 1.4.

Control-E Control-J Center current line on screen.

Control-E Control-I Center caret on screen.

Control-’; Control-/ Scroll up; down one line.

Alt-’; Alt-/ Scroll up; down one page.

Text Editing
For details, see Section 3.4, Section 3.3, Section 3.5, Section 3.6 and Section 3.7.

Control-Z Undo.

Control-E Control-Z Redo.

Backspace; Delete Delete character before; after caret.

Control-Backspace;
Control-Delete

Delete word before; after caret.

Control-D; Control-E D Delete line; paragraph.

56

Appendix A. Keyboard Shortcuts

Shift-Backspace; Shift-Delete Delete from caret to beginning; end of line.

Control-E R Remove trailing whitespace from the current line (or
all selected lines).

Control-J Join lines.

Control-B Complete word.

Control-E F Format paragraph (or selection).

Clipboard and Text Registers
For details, see Section 3.8 and Section 3.11.1.

Control-X Cut selected text to clipboard.

Control-C Copy selected text to clipboard.

Control-V Paste clipboard contents.

Control-R Control-X key Cut selected text to registerkey.

Control-R Control-C key Copy selected text to registerkey.

Control-R Control-A key Append selected text to registerkey.

Control-R Control-V key Paste contents of registerkey.

Control-E Control-V Paste previous.

Markers and Position Registers
For details, see Section 3.10 and Section 3.11.2.

Control-E Control-M Set marker.

Alt-Up; Alt-Down Move caret to previous; next marker.

Control-T key Save position to registerkey.

Control-Y key Go to position saved in registerkey.

Control-U key Select to position saved in registerkey.

Control-K key Go to position saved in registerkey, and save
previous position to that register.

57

Appendix A. Keyboard Shortcuts

Search and Replace
For details, see Section 3.12.

Control-F Open search and replace dialog box.

Control-G Find next.

Control-H Find previous.

Control-E Control-F Find selection.

Control-E Control-R Replace in selection.

Control-E Control-G Replace in selection and find next.

Control-E Control-A Replace all.

Control-, Quick incremental search.

Control-. Quick HyperSearch.

Source Code Editing
For details, see Section 5.1, Section 5.3 and Section 5.4.

Control-; Expand abbreviation.

Alt-Left; Alt-Right Shift current line (or all selected lines) left; right.

Control-I Indent current line (or all selected lines).

Control-E Control-C Wing comment selection.

Control-E Control-B Box comment selection.

Control-E Control-K Block comment selection.

Folding and Narrowing
For details, see Section 5.5 and Section 5.5.1.

Alt-Backspace Collapse fold containing caret.

Alt-Enter Expand fold containing caret one level only.

Alt-Shift-Enter Expand fold containing caret fully.

58

Appendix A. Keyboard Shortcuts

Control-E Enter level Expand folds with level less thanlevel,
collapse all others.

Control-E X Expand all folds.

Control-E S Select fold.

Control-E N Narrow to selection.

Macros
For details, see Part II injEdit 3.1 User’s Guide.

Control-M Control-R Record macro.

Control-M Control-M Record temporary macro.

Control-M Control-S Stop recording.

Control-M Control-P Run temporary macro.

Control-M Control-L Run most recently played or recorded macro.

59

Appendix B. History Text Fields
The text fields in the search and replace dialog box and file system browser remember
the last 20 entered strings by default. The number of strings to remember can be changed
in theGeneral pane of theUtilities>Global Options dialog box.

PressingUp recalls previous strings. PressingDown after recalling previous strings
recalls later strings.

PressingControl -Up or Control -Down will search backwards or forwards, respectively,
for strings beginning with the text already entered in the text field.

Clicking the text field with the right mouse button will display a pop-up menu of all
previously entered strings; selecting one will input it into the text field. Holding down
Control while clicking will display a menu of all previously entered strings that begin
with the text already entered.

60

Appendix C. Glob Patterns
jEdit uses glob patterns similar to those in the various Unix shells to implement file name
filters in the file system browser. Glob patterns resemble regular expressions somewhat,
but have a much simpler syntax. The following character sequences have special
meaning within a glob pattern:

• ? matches any one character

• * matches any number of characters

• {a,b,c } matches any one ofa, b or c

Character class expressions ([abc], etc) are supported in globs and behave exactly like
regular expression character classes; see Appendix D for details.

61

Appendix D. Regular Expressions
jEdit uses regular expressions to implement inexact search and replace. A regular
expression consists of a string where some characters are given special meaning with
regard to pattern matching.

Within a regular expression, the following characters have special meaning:

Positional Operators

• ^ matches at the beginning of a line

• $ matches at the end of a line

• \b matches at a word break

• \B matches at a non-word break

• \< matches at the start of a word

• \> matches at the end of a word

One-Character Operators

• . matches any single character

• \d matches any decimal digit

• \D matches any non-digit

• \n matches the newline character

• \s matches any whitespace character

• \S matches any non-whitespace character

• \t matches a horizontal tab character

• \w matches any word (alphanumeric) character

• \W matches any non-word (alphanumeric) character

• \\ matches the backslash (“\”) character

62

Appendix D. Regular Expressions

Character Class Operator

• [abc] matches any character in the seta, b or c

• [^ abc] matches any character not in the seta, b or c

• [a-z] matches any character in the rangea to z , inclusive. A leading or trailing
dash will be interpreted literally

Within a character class expression, the following sequences have special meaning:

• [:alnum:] Any alphanumeric character

• [:alpha:] Any alphabetical character

• [:blank:] A space or horizontal tab

• [:cntrl:] A control character

• [:digit:] A decimal digit

• [:graph:] A non-space, non-control character

• [:lower:] A lowercase letter

• [:print:] Same as[:graph:] , but also space and tab

• [:punct:] A punctuation character

• [:space:] Any whitespace character, including newlines

• [:upper:] An uppercase letter

• [:xdigit:] A valid hexadecimal digit

Subexpressions and Backreferences

• (abc) matches whatever the expressionabc would match, and saves it as a
subexpression. Also used for grouping

• (?: ...) pure grouping operator, does not save contents

• (?# ...) embedded comment, ignored by engine

• \ n where 0 <n < 10, matches the same thing thenth subexpression matched. Can
only be used in the search string

63

Appendix D. Regular Expressions

• $n where 0 <n < 10, substituted with the text matched by thenth subexpression.
Can only be used in the replacement string

Branching (Alternation) Operator

• a| b matches whatever the expressiona would match, or whatever the expressionb
would match.

Repeating Operators

These symbols operate on the previous atomic expression.

• ? matches the preceding expression or the null string

• * matches the null string or any number of repetitions of the preceding expression

• + matches one or more repetitions of the preceding expression

• { m} matches exactlymrepetitions of the one-character expression

• { m, n} matches betweenmandn repetitions of the preceding expression, inclusive

• { m,} matchesmor more repetitions of the preceding expression

Stingy (Minimal) Matching

If a repeating operator (above) is immediately followed by a?, the repeating operator
will stop at the smallest number of repetitions that can complete the rest of the match.

64

Appendix E. The Activity Log
Theactivity log is very useful for troubleshooting problems, and helps when developing
plugins. jEdit writes the following information to the activity log:

• Information about your Java implementation (version, operating system,
architecture, etc)

• All error messages and runtime exceptions (most errors are shown in dialog boxes
as well; but the activity log usually contains more detailed and technical
information)

• All sorts of debugging information that can be helpful when tracking down bugs

• Information about loaded plugins

Utilities>View Activity Log displays the last 500 lines of the activity log. The complete
log can be found in theactivity.log file inside the jEdit settings directory, the path of
which is shown inside the activity log window.

While jEdit is running, the log file on disk may not always accurately reflect what has
been logged, due to buffering being done for performance reasons. To ensure the file on
disk is up to date, invoke theUtilities>Update Activity Log on Disk command. The log
file is also automatically updated on disk when jEdit exits.

65

Appendix F. Command Line Usage
On operating systems that support a command line, jEdit can be passed a multitude of
options that control its behavior.

When opening files from the command line, a line number or marker to position the caret
on can be specified like so:

$ jedit MyApplet.java +line:10
$ jedit thesis.tex +marker:chapter5

Switch Effect

-background Runs jEdit in background mode. In background mode, the edit
server will continue listening for client connections even after
all views are closed. See Section 1.2.

-newview Only valid when connecting to another instance. Instead of
opening files in an existing view, they will be opened in a new
view.

-nogui Only valid when running in background mode. Forces jEdit to
start without an initial view.

-norestore jEdit will not attempt to restore previously open files on
startup. This feature can also be set permanently in theLoading
and Saving pane of the Utilities>Global Options dialog
box. Has no effect when connecting to another instance
via the edit server.

-noserver Disables the edit server. Does not attempt to connect to the
server, and does not start one either. For information about the
edit server, see Section 1.2.

-nosettings Starts jEdit without loading user-specific settings. See Section
6.4.

-nosplash Starts jEdit without displaying the splash screen. Has no effect
when connecting to another instance via the edit server.

-server=name Stores the server port info in the file namedname. File
names for this parameter are relative to
the settings directory.

66

Appendix F. Command Line Usage

Switch Effect

-settings=dir Loads and saves the user-specific settings from the directory
nameddir, instead of the default
user.home/.jedit. dir will be created if it does

not exist. Has no effect when connecting to

another instance via the edit server.

-usage Shows a brief command line usage message without starting
jEdit. This message is also shown if an invalid switch was
specified.

-version Shows the version number without starting jEdit.

- - Specifies the end of the command line switches. Further
parameters are treated as file names, even if they begin with a
dash. Can be used to open files whose names start with a dash,
and so on.

67

II. Extending jEdit With Macros

68

Chapter 8. Macro Basics
This part of the user’s guide is an introduction to using and writing macros in jEdit. First
we will tell you a little about BeanShell, jEdit’s macro scripting language, and how to
invoke and organize your macros. Next, we will walk through a few simple macros. We
then discuss some of the building blocks you will use in writing more complicated
macros. Finally, we provide a reference guide of the most frequently used jEdit APIs.

Throughout this part of the user’s guide, we will be referring to some of the plugins
available for use with jEdit (in particular, the Console plugin). If you have not installed
plugins, you really should consider doing so (see Chapter 7 for information), but you
will not need plugins for most of what we discuss.

8.1. What is BeanShell?
Here is how BeanShell’s author, Pat Niemeyer, describes his creation:

“BeanShell is a small, free, embeddable, Java source interpreter with object scripting
language features, written in Java. BeanShell executes standard Java statements and
expressions, in addition to obvious scripting commands and syntax. BeanShell supports
scripted objects as simple method closures like those in Perl and JavaScript(tm).”

As you might gather from this short quote, BeanShell is very similar to Java and is
designed to be easy for Java programmers to pick up. If you know how to program in
Java, you already know how to write BeanShell macros. Nonetheless, the premise of this
guide is that you should not have to know anything about Java to begin writing your own
macros for jEdit.

If you are not a Java programmer, you will have to learn a little about Java classes and
syntax, but that’s not a bad thing. You will also have to learn a little (but not too much)
about some of the classes that are defined and used by the jEdit program itself. That is in
fact the major strength of using BeanShell with a program written in Java: it allows the
user to customize the program’s behavior by employing the same interfaces designed and
used by the program’s developer. Thus, BeanShell can turn a well-designed application
into a powerful toolkit.

This guide focuses on using BeanShell in macros. If you are interested in learning more
about BeanShell generally, consult the BeanShell web site (http://www.beanshell.org).

69

Chapter 8. Macro Basics

8.2. Recording Macros
The simplest use of macros is to record a series of key strokes and menu commands as a
BeanShell script, and play them back at a later time. While this doesn’t let you take
advantage of the full power of BeanShell, it is still a great time saver and can even be
used to “prototype” more complicated macros.

Macros>Record Macro (shortcut:Control -M Control -R) prompts for a macro name
and begins recording. The file name extension.bsh is automatically appended to the
macro name, and all spaces are converted to underscore characters, in order to make the
macro name a valid file name. These two operations are undone when macros are
displayed in theMacros menu. See Section 8.3 for details.

While recording is in progress, the string “(recording)” is displayed in the menu bar.
jEdit records key strokes, menu item commands, tool bar clicks, and search and replace
operations. Mouse clicks in the text area arenot recorded; to record the equivalent of
mouse operations, use the text selection commands or arrow keys.

Macros>Stop Recording (shortcut:Control -M Control -S) stops recording. It also
switches to the buffer containing the recorded macro, giving you a chance to check over
the recorded commands and make any necessary changes. When you are happy with the
macro, save the buffer and it will appear in theMacros menu. To discard the macro,
close the buffer without saving.

If a complicated operation only needs to be repeated a few of times, using the temporary
macro feature is easier than saving a new macro file.

Macros>Record Temporary Macro (shortcut:Control -M Control -M) begins
recording to a buffer namedTemporary_Macro.bsh . Once recording is complete, you
don’t need to save theTemporary_Macro.bsh buffer before playing it back.

Macros>Play Temporary Macro (shortcut:Control -M Control -P) plays the macro
recorded to theTemporary_Macro.bsh buffer.

If you do not save the temporary macro, you must keep the buffer containing the macro
script open during your jEdit session. To have the macro available for your next jEdit
session, save the bufferTemporary_Macro.bsh as an ordinary macro with a descriptive
name of your choice. The new name will then be displayed in theMacros menu.

70

Chapter 8. Macro Basics

8.3. How jEdit Organizes Macros
Every macro, whether or not you originally recorded it, is stored on disk and can be
edited as a text file. The file names of macros must have a.bsh extension. By default,
jEdit associates a.bsh file with the “beanshell” edit mode for purposes of syntax
highlighting, indentation and other formatting. However, BeanShell syntax does not
impose any indentation or line break requirements.

TheMacros menu lists all macros stored in two places: themacros subdirectory of the
jEdit install directory, and themacros subdirectory of the user-specific settings directory
(see Section 6.4 for information about the settings directory). Any macros you record
will be stored in the user-specific directory.

The listing of individual macros in theMacros menu item can be organized in a
hierarchy using subdirectories in the general or user-specific macro folders. Each
subdirectory containing BeanShell macros appears as a submenu. You will find such a
hierarchy in the default macro set included with jEdit.

When jEdit first loads, it scans the designated macro directories and assembles a listing
of individual macros in theMacros menu. When scanning the names, jEdit will delete
underscore characters and the.bsh extension for menu labels, so that
List_Useful_Information.bsh , for example, will be displayed in theMacros menu
asList Useful Information. To update the menu listing by rescanning the general and
user-specific macro directories, invokeMacros>Rescan Macros.

If a macro namedStartup.bsh exists in either of the designated macro directories, it is
executed near the end of the jEdit startup sequence. Unlike with other macros, any
variables and methods defined in the startup macro are available to all other macros and
BeanShell commands. If you take advantage of this feature, be sure to have only one
macro namedStartup.bsh (capitalization matters!), and place it in the either of the two
macro directories. See Section 11.2 for a more detailed discussion on the use of a startup
macro.

You can run any macro, regardless of where it is located, by invokingMacros>Run
Other Macro. You will be presented with the usual file selection dialog box.

You can also assign a macro to a toolbar button, a keyboard shortcut or the context
pop-up menu in theMacro Shortcuts, Tool Bar andContext Menu panes of the
Utilities>Global Options dialog box.

71

Chapter 8. Macro Basics

XInsert plugin

The XInsert plugin has a feature that lists the title of macros, organized by
subdirectories, as part of its tree list display. Clicking on the leaf of the tree
corresponding to a macro name causes jEdit to execute the macro immediately.
The plugin allows you to keep a list of macros and cut-and-paste text fragments
available while editing without opening menus. For information about installing
plugins, see Chapter 7.

8.4. Single Execution Macros
There are two ways jEdit lets you use BeanShell quickly on a “one time only” basis. You
will find both of them in theUtilities menu.

Utilities>Evaluate BeanShell Expression causes jEdit to display a text input dialog
that asks you to type a single line of BeanShell commands. You can type more than one
BeanShell statement so long as each of them ends with a semicolon. If BeanShell
successfully interprets your input, a message box will appear with the return value of the
last statement. You can do the same thing using the BeanShell interpreter provided with
the Console plugin; the return value will appear in the output window.

Utilities>Evaluate Selection evaluates the selected text as a BeanShell script and
replaces the selected text with the return value of the last BeanShell statement.

UsingEvaluate Selection is an easy way to do arithmetic calculations inline while
editing. BeanShell uses numbers and arithmetic operations in an ordinary, intuitive way.

Try typing an expression like(3745*856)+74 in the buffer, select it, and choose
Utilities>Evaluate Selection. The selected text will be replaced by the answer,
3205794 .

72

Chapter 9. A Few Simple Macros
Now we’ll look at some simple macro scripts and show you how they work.

9.1. The Mandatory First Example

Macros.message(view, "Hello world!");

Running this one line script causes jEdit to display a message box (more precisely, a
JOptionPane object) with the famous beginner’s message and anOK button. Let’s see
what is happening here.

This statement calls a static method (or function) namedmessage in jEdit’s Macros

class. If you don’t know anything about classes or static methods or Java (or C++, which
employs the same concept), you will need to gain some understanding of a few terms.
Obviously this is not the place for academic precision, but if you are entirely new to
object-oriented programming, here are a few skeleton ideas to help you with BeanShell.

• An objectis a collection of data that can be initialized, accessed and manipulated in
certain defined ways.

• A classis a specification of what data an object contains and what methods can be
used to work with the data.

• A subclass(or child class) is a class which uses (or “inherits”) the data and
methods of its parent class along with additions or modifications that alter the
subclass’s behavior.

• A method(or function) is a procedure that works with data in a particular object,
other data (including other objects) supplied asparameters, or both. Methods
typically are applied to a particular object which is aninstanceof the class to which
the method belongs.

• A static methoddiffers from other methods in that it does not deal with the data in
a particular object but is included within a class for the sake of convenience.

Java has a rich set of classes defined as part of the Java platform. Like all Java
applications, jEdit is organized as a set of classes that are themselves derived from the
Java platform’s classes. We will refer toJava classesandjEdit classesto make this

73

Chapter 9. A Few Simple Macros

distinction. Some of jEdit’s classes (such as those dealing with regular expressions and
XML) are derived from or make use of classes in other open-source Java packages.
Except for BeanShell itself, we won’t be discussing them in this guide.

In our one line script, the static methodMacros.message() has two parameters because
that is the way the method is defined in theMacros class. You must specify both
parameters when you call the function. The first parameter,view , is a a variable naming
a View object - an instance of jEdit’sView class. AView represents a “parent” or
top-level frame window that contains the various visible components of the program,
including the text area, menu bar, toolbar, and any docked windows. It is a subclass of
Java’sJFrame class. With jEdit, you can create and display multiple views
simultaneously. The variableview is predefined for purposes of BeanShell as the current,
activeView object. This is in fact the variable you want to specify as the first parameter.
Normally you would not want to associate a message box with anything other than the
currentView .

The second parameter, which appears to be quoted text, is astring literal - a sequence of
characters of fixed length and content. Behind the scenes, BeanShell and Java take this
string literal and use it to create aString object. Normally, if you want to create an
object in Java or BeanShell, you must construct the object using thenew keyword and a
constructormethod that is part of the object’s class. We’ll show an example of that later.
However, both Java and BeanShell let you use a string literal anytime a method’s
parameter calls for aString .

If you are a Java programmer, you might wonder about a few things missing from this
one line program. There is no class definition, for example. You can think of a BeanShell
script as an implicit definition of amain() method in an anonymous class. That is in fact
how BeanShell is implemented; the class is derived from a BeanShell class calledXThis .
If you don’t find that helpful, just think of a script as one or more blocks of procedural
statements conforming to Java syntax rules. You will also get along fine (for the most
part) with C or C++ syntax if you leave out anything to do with pointers or memory
management - Java and BeanShell do not have pointers and deal with memory
management automatically.

There are noimport statements in this script, and many BeanShell scripts written for
jEdit will not require them. In Java, animport statement makes public classes from
other files visible without a full specification of the class’s classpath. Without an import
statement or a fully qualified name, Java cannot identify most classes using a single name
as an identifier. Theimport statement operates similarly to theusing statement in C++.

74

Chapter 9. A Few Simple Macros

In implementing BeanShell, jEdit causes a number ofimport statements to be read into
the BeanShell interpreter everytime a script runs. These “hidden” import statements
make the jEdit editor core classes available without specifying a full classpath. If you
have downloaded the jEdit source code, you can find the automatically imported classes
in the fileorg/gjt/sp/jedit/jedit.bsh .

Sometimes it is unclear if animport statement is required. You will rarely go wrong if
you keep a few points in mind:

• You will not need an import statement for any macro that you record.

• When you are constructing a new object in a macro (for example, a dialog window
or other GUI elements) you will need use import statements or fully qualified class
names for those components - see Chapter 10 for details.

• If you try to use a class that is not imported and is not specified by its full classpath,
the BeanShell interpreter will complain, usually with an error message relating to
the offending line of code.

Another missing item from a Java perspective is apackage statement. In Java, such a
statement is used to bundle together a number of files so that their classes become visible
to one another. Packages are not part of BeanShell. With the exception of a designated
startup macro (see Section 8.3), variables defined in a BeanShell script (other than the
script’s return value) are visible only within the script. You don’t need to know anything
about Java packages to write BeanShell macros.

9.2. Helpful Methods in the Macros Class
Includingmessage() , there are four static methods in theMacros class that allow you to
converse easily with your macros. They all encapsulate calls to methods of the
JOptionPane class.

• public static void message (View view , String message);

• public static void error (View view , String message);

• public static String input (View view , String prompt);

• public static String input (View view , String prompt , String

defaultValue);

75

Chapter 9. A Few Simple Macros

If this format is unfamiliar to you, here is a short explanation. The format is used in
defining the methods in the source code of theMacros class. It is also found in a format
calledjavadocthat extracts information from source code to provide online
documentation to the class. For example, you can find the javadoc for jEdit’sMacros

class on the Giant Java Tree web site
(http://www.gjt.org/javadoc/org/gjt/sp/jedit/Macros.html).

The first three words for each of thesedeclarationstell you how the method is used. The
keywordpublic means that the method can be used outside theMacros class. The
alternatives areprivate andprotected . For purposes of BeanShell, you just have to
know that BeanShell can only use public methods of other Java classes. The keyword
static we have already discussed. It means that the method does not operate on a
particular object. You call a static function using the name of the class (likeMacros)
rather than the name of a particular object (likeview). The third word is the type of the
value returned by the method. The keywordvoid is Java’s way of saying the the method
does not have a return value.

Theerror() method works just likemessage() but displays an error icon in the
message box. Theinput() method furnishes a text field for input, anOK button and a
Cancel button. If “Cancel” is pressed, the method returnsnull , if OK is pressed, a
String containing the contents of the text field is returned. Note that there are two forms
of the input() method; the first displays an empty input field initially, the other lets you
specify a default value.

For those without Java experience, it is important to know thatnull is not the same as an
empty, “zero-length”String . It is Java’s way of saying that there is no object associated
with this variable. Whenever you seek to use a return value frominput() in your macro,
you should test it to see if it isnull . BeanShell will complain if you call any methods on
thenull object. In most cases, you will want to exit gracefully from the script with a
return statement, because the user intended to cancel macro execution.

We’ve looked at usingMacros.message() . To use the other methods, you would write
something like the following:

Macros.error(view, "Goodbye, cruel world!");

String result = Macros.input(view, "Type something here.");

String result = Macros.input(view, "What is your name?",
"Slava Pestov");

76

Chapter 9. A Few Simple Macros

In the last two examples, placing the wordString before the variable nameresult tells
BeanShell that the variable refers to aString object, even before a particularString

object is assigned to it. In BeanShell, this declaration of thetypeof result is not
necessary; BeanShell can figure it out when the macro runs. This is good if you are not
comfortable with types and classes; just use your variables and let BeanShell worry
about it.

Without an explicittype declarationlike String result , BeanShell variables can
change their type at runtime depending on the object or data assigned to it. This dynamic
typing allows you to write code like this (if you really wanted to):

// note: no type declaration
result = Macros.input(view, “Type something here.”);

// this is our predefined, current View
result = view;

// this is an “int” (for integer);
// in Java and BeanShell, int is one of a small number
// of “primitive” data types which are not classes
result = 14;

However, if you first declaredresult to be typeString and and then tried these
reassignments, BeanShell would complain.

One last thing before we bury our first macro. The double slashes in the examples just
above signify that everything following them on that line should be ignored by
BeanShell as a comment. As in Java and C/C++, you can also embed comments in your
BeanShell code by setting them off with pairs of/* */ , as in the following example:

/* This is a long comment that covers several lines
and will be totally ignored by BeanShell regardless of how
many lines it covers */

9.3. Now For Something Useful
Here is a macro that inserts the path of the current buffer in the text:

String newText = buffer.getPath();

77

Chapter 9. A Few Simple Macros

textArea.setSelectedText(newText);

Two of the new names we see here,buffer andtextArea , are predefined variables like
view . The variablebuffer represents a jEditBuffer object, andtextArea represents a
JEditTextArea object. ABuffer represents the contents of an open text file. It is
derived from Java’sPlainDocument class. The variablebuffer is predefined as the
current buffer. AJEditTextArea is the visible component that displays the file being
edited. It is derived from theJComponent class. The variabletextArea represents the
currentJEditTextArea object, which in turn displays the current buffer.

Unlike in our first macro example, here we are calling class methods on particular
objects. First, we callgetPath() on the currentBuffer object to get the full path of the
text file currently being edited. Next, we callsetSelectedText() on the current text
display component, specifying the text to be inserted as a parameter.

In precise terms, thesetSelectedText() method substitutes the text currently selected
with the contents of the String parameter. If no text is selected, the effect of this
operation is to insert text at the caret position.

Here’s a few alternatives to the full file path that you could use to insert various useful
things:

// the file name (without full path)
String newText = buffer.getName();

// today’s date
import java.util.Date;
import java.text.DateFormat;

String newText = DateFormat.getDateInstance()
.format(new Date());

// a line count for the current buffer
String newText = "This file contains "

+ textArea.getLineCount() + " lines.";

Here are brief comments on each:

• In the first, the call togetName() invokes another method of theBuffer class.

78

Chapter 9. A Few Simple Macros

• The syntax of the second example chains the results of several methods. You could
write it this way:

Date d = new Date();
DateFormat df = DateFormat.getDateInstance();
String result = df.format(d);

Taking the pieces in order:

• A JavaDate object is created using thenew keyword. The empty parenthesis
afterDate signify a call on the constructor method ofDate having no
parameters; here, aDate is created representing the current date and time.

• DateFormat.getDateInstance() is a static method that creates and returns
a DateFormat object. As the name implies,DateFormat is a Java class that
takesDate objects and produces readable text. The method
getDateInstance() returns aDateFormat object that parses and formats
dates. It will use the defaultlocaleor text format specified in the user’s Java
installation.

• Finally, DateFormat.format() is called on the newDateFormat object
using theDate object as a parameter. The result is aString containing the
date in the default locale.

• The third example shows three items of note:

• getLineCount() is a method in jEdit’sJEditTextArea class. It returns an
int representing the number of lines in the current text buffer. We call it on
textArea , the pre-defined, currentJEditTextArea object.

• The use of the+ operator (which can be chained, as here) appends objects and
string literals to return a concatenatedString .

79

Chapter 9. A Few Simple Macros

One more pre-defined variable

In addition toview , buffer andtextArea , there is one more pre-defined variable
available for use in macros –editPane , which is set to the currentEditPane

instance. An edit pane contains a text area and buffer switcher, and among other
things, contains methods for selecting the buffer to edit. Views can contain
multiple edit panes if they are split. Edit panes will not be discussed any futher
because they are not particularly useful from a macro writer’s perspective.

80

Chapter 10. A Dialog-Based Macro
Now we will look at a more complicated macro which will demonstrate some useful
techniques and BeanShell features.

10.1. Use of the Macro
Next we will look at a macro that adds prefix and suffix text to a series of selected lines.
This macro can be used to reduce typing for a series of text items that must be preceded
and following by identical text. In Java, for example, if we are interested in making a
series of calls toStringBuffer.append() to construct a lengthy, formatted string, we
could type the parameter for each call on successive lines as follows:

profileString_1
secretThing.toString()
name
address
addressSupp
city
"state/province"
country

Our macro would ask for input for the common “prefix” and “suffix” to be applied to
each line; in this case, the prefix isourStringBuffer.append(and the suffix is
); . After selecting these lines and running the macro, the the resulting text would look
like this:

ourStringBuffer.append(profileString_1);
ourStringBuffer.append(secretThing.toString());
ourStringBuffer.append(name);
ourStringBuffer.append(address);
ourStringBuffer.append(addressSupp);
ourStringBuffer.append(city);
ourStringBuffer.append("state/province");
ourStringBuffer.append(country);

81

Chapter 10. A Dialog-Based Macro

10.2. Listing of the Macro
The macro script follows. You can find it in the jEdit distribution in theText

subdirectory of themacros directory. You can also try it out by invoking
Macros>Text>Add Prefix and Suffix.

// beginning of Add_Prefix_and_Suffix.bsh

// import statements (see Section 10.3.1)
import javax.swing.*;
import javax.swing.border.*;

// main routine
void prefixSuffixDialog()
{

// create dialog object (see Section 10.3.2)
title = "Add prefix and suffix to selected lines";
dialog = new JDialog(view, title, false);
content = new JPanel(new BorderLayout());
content.setBorder(new EmptyBorder(12, 12, 12, 12));
content.setPreferredSize(new Dimension(320, 160));
dialog.setContentPane(content);

// add the text fields (see Section 10.3.3)
fieldPanel = new JPanel(new GridLayout(4, 1, 0, 6));
prefixField = new HistoryTextField("macro.add-prefix");
prefixLabel = new JLabel("Prefix to add:");
suffixField = new HistoryTextField("macro.add-suffix");
suffixLabel = new JLabel("Suffix to add:");
fieldPanel.add(prefixLabel);
fieldPanel.add(prefixField);
fieldPanel.add(suffixLabel);
fieldPanel.add(suffixField);
content.add(fieldPanel, "Center");

// add the buttons (see Section 10.3.4)
buttonPanel = new JPanel();
buttonPanel.setLayout(new BoxLayout(buttonPanel,

BoxLayout.X_AXIS));
buttonPanel.setBorder(new EmptyBorder(12, 50, 0, 50));
buttonPanel.add(Box.createGlue());
ok = new JButton("OK");

82

Chapter 10. A Dialog-Based Macro

cancel = new JButton("Cancel");
ok.setPreferredSize(cancel.getPreferredSize());
dialog.getRootPane().setDefaultButton(ok);
buttonPanel.add(ok);
buttonPanel.add(Box.createHorizontalStrut(6));
buttonPanel.add(cancel);
buttonPanel.add(Box.createGlue());
content.add(buttonPanel, "South");

// register this method as an ActionListener for
// the buttons and text fields (see Section 10.3.5)
ok.addActionListener(this);
cancel.addActionListener(this);
prefixField.addActionListener(this);
suffixField.addActionListener(this);

// locate the dialog in the center of the
// editing pane and make it visible (see Section 10.3.6)
dialog.pack();
dialog.setLocationRelativeTo(view);
dialog.setDefaultCloseOperation(JDialog.DISPOSE_ON_CLOSE);
dialog.setVisible(true);

// this method will be called when a button is clicked
// or when ENTER is pressed (see Section 10.3.7)
void actionPerformed(e)
{

if(e.getSource() != cancel)
{

processText();
}
dialog.dispose();

}

// this is where the work gets done to insert
// the prefix and suffix (see Section 10.3.8)
void processText()
{

prefix = prefixField.getText();
suffix = suffixField.getText();
if(prefix.length() == 0 && suffix.length() == 0)

return;
if(prefix.length() != 0)

83

Chapter 10. A Dialog-Based Macro

prefixField.addCurrentToHistory();
if(suffix.length() != 0)

suffixField.addCurrentToHistory();

// text manipulation begins here using calls
// to jEdit methods (see Section 10.3.9)
end = textArea.getSelectionEndLine() + 1;
for(line = textArea.getSelectionStartLine();

line < end; ++line)
{

offsetBOL = textArea.getLineStartOffset(line);
textArea.setCaretPosition(offsetBOL);
textArea.goToStartOfWhiteSpace(false);
textArea.goToEndOfWhiteSpace(true);
text = textArea.getSelectedText();
if(text == null) text = "";
textArea.setSelectedText(prefix + text + suffix);

}
}

}

// this single line of code is the script’s main routine
// (see Section 10.3.10)
prefixSuffixDialog();

// end of Add_Prefix_and_Suffix.bsh

10.3. Analysis of the Macro

10.3.1. Import Statements

// import statements
import javax.swing.*;
import javax.swing.border.*;

These statements make all classes in the specified packages visible to the BeanShell
interpreter without having to use thefully qualified class nameeach time one of the
classes is referenced. As we mentioned previously (see Section 9.1), jEdit’s
implementation of BeanShell causes a number of classes to be automatically imported.

84

Chapter 10. A Dialog-Based Macro

Those classes that are not automatically imported must be named by a full qualified
name or be the subject of animport statement.

Most often,import statements are used when a macro needs classes that are part of the
Java platform but which BeanShell does not implicitly import. These include GUI
elements found in the Swing or AWT packages. In this macro, we are using a number of
Swing classes:JDialog , JPanel , JLabel , JButton andEmptyBorder . We take a
sweeping approach for the sake of convenience by importing all of the classes in the
javax.swing andjavax.swing.border packages.

10.3.2. Create the Dialog

// create dialog object
title = "Add prefix and suffix to selected lines";
dialog = new JDialog(view, title, false);
content = new JPanel(new BorderLayout());
content.setBorder(new EmptyBorder(12, 12, 12, 12));
dialog.setContentPane(content);

To get input for the macro, we need a dialog that permits input of the prefix and suffix
string, anOK button to perform text insertion, and aCancel button in case we change
our mind. We have decided to make the dialog window non-modal. This will allow us to
move around in the text buffer to find things we may need (including text to cut and
paste) to run the macro.

The Java object we need is aJDialog object. To construct one, we use thenew keyword
and call aconstructorfunction. The constructor we use takes three parameters, the owner
of the new dialog, the title to be displayed in the dialog frame, and a boolean parameter
(true or false) that specifies whether the dialog will be modal or non-modal. We define
the variabletitle using a string literal, then use it immediately in theJDialog

constructor.

In basic terms, aJDialog object is designed as a window containing a single object
called acontent pane. The content pane in turns contains the various visible components
of the dialog. WhileJDialog creates its own content pane when it is itself constructed,
we will create our own content pane and attach it to theJDialog . We do this by creating
a JPanel object. AJPanel is a lightweight container for other components that can be
set to a given size and color. It also contains alayoutscheme for arranging the size and
position of its components. Here we are constructing aJPanel as a content pane with a

85

Chapter 10. A Dialog-Based Macro

BorderLayout . We put aEmptyBorder inside it to serve as a margin between the edge
of the window and the components inside. We then attach theJPanel as the dialog’s
content pane.

A BorderLayout is one of the simpler layout schemes available for Java Swing objects.
A BorderLayout divides the container into five sections: North, South, East, West and
Center. Components are added to the layout using the container’sadd method,
specifying the component to be added and the section to which it is assigned. Building a
component like our dialog window involves building a set of nested containers and
specifying the location of each of their member components. We have taken the first step
by creating aJPanel as the dialog’s content pane.

10.3.3. Create the Text Fields

// add the text fields
fieldPanel = new JPanel(new GridLayout(4, 1, 0, 6));
prefixField = new HistoryTextField("macro.add-prefix");
prefixLabel = new JLabel("Prefix to add:");
suffixField = new HistoryTextField("macro.add-suffix");
suffixLabel = new JLabel("Suffix to add:");
fieldPanel.add(prefixLabel);
fieldPanel.add(prefixField);
fieldPanel.add(suffixLabel);
fieldPanel.add(suffixField);
content.add(fieldPanel, "Center");

Next we shall create a smaller panel containing two fields for entering the prefix and
suffix text and two labels identfying the input fields.

For the text fields, we will use jEdit’sHistoryTextField class. It is derived from the
Java Swing classJTextField . This class offers the enhancement of a stored list of prior
values used as text input. The up and down keys scroll through the prior values for the
variable.

To create theHistoryTextField objects we use a constructor method that takes a single
parameter: the name of the tag under which history values will be stored in thehistory

file. Here we choose names that are not likely to conflict with existing jEdit history items.

The labels areJLabel objects from the Java Swing package. The constructor we use
takes the label text as a singleString parameter.

86

Chapter 10. A Dialog-Based Macro

We wish to arrange these four components from top to bottom, one after the other. To
achieve that, we use aJPanel object namedfieldPanel that will be nested inside the
dialog’s content pane that we have already created. In the constructor forfieldPanel ,
we assign a newGridLayout with the indicated parameters: four rows, one column, zero
spacing between columns (a meaningless element of a grid with only one column, but
nevertheless a required parameter) and six pixel spacing between rows. The spacing
between rows spreads out the four "grid" elements. After the components, the panel and
the layout are specified, the components are added tofieldPanel top to bottom, one
"grid cell" at a time. Finally, the completefieldPanel is added to the dialog’s content
pane to occupy the "Center" section of the content pane.

10.3.4. Create the Buttons

// add the buttons
buttonPanel = new JPanel();
buttonPanel.setLayout(new BoxLayout(buttonPanel,

BoxLayout.X_AXIS));
buttonPanel.setBorder(new EmptyBorder(12, 50, 0, 50));
buttonPanel.add(Box.createGlue());
ok = new JButton("OK");
cancel = new JButton("Cancel");
ok.setPreferredSize(cancel.getPreferredSize());
dialog.getRootPane().setDefaultButton(ok);
buttonPanel.add(ok);
buttonPanel.add(Box.createHorizontalStrut(6));
buttonPanel.add(cancel);
buttonPanel.add(Box.createGlue());
content.add(buttonPanel, "South");

Creating the buttons repeats the pattern we used in creating the text fields. First, we
create a new, nested panel with aBoxLayout . A BoxLayout places components either in
a single row or column, depending on the parameter passed to its constructor. We put an
EmptyBorder in the new panel to set margins for placing the buttons. Then we create the
buttons, using aJButton constructor that specifies the button text. After setting the size
of theOK button to equal the size of theCancel button, we designate theOK button as
the default button in the dialog. This causes theOK button to be outlined as the default
button. Finally, we place the button side by side with a 6 pixel gap between them (for

87

Chapter 10. A Dialog-Based Macro

aesthetic reasons), and place the completedbuttonPanel in the “South” section of the
dialog’s content pane.

10.3.5. Register the Action Listeners

// register this method as an ActionListener for
// the buttons and text fields
ok.addActionListener(this);
cancel.addActionListener(this);
prefixField.addActionListener(this);
suffixField.addActionListener(this);

In order to specify the action to be taken upon clicking a button or pressing theEnter
key, we must register anActionListener for each of the four active components of the
dialog - the twoHistoryTextField components and the two buttons. In Java, an
ActionListener is aninterface- an abstract class specification that a derived class
implements. TheActionListener interface contains a single method to be
implemented:

public void actionPerformed (ActionEvent e);

BeanShell does not permit a script to create derived classes. However, BeanShell offers a
useful substitute: a method is treated as a scripted object that can implement methods of
a number of Java interfaces. The methodprefixSuffixDialog() that we are writing
can thus be treated as anActionListener . To accomplish this, we call
addActionListener() on each of the four components specifyingthis as the
ActionListener . We still need to implement the interface. We will do that shortly.

10.3.6. Make the Dialog Visible

// locate the dialog in the center of the
// editing pane and make it visible
dialog.pack();
dialog.setLocationRelativeTo(view);
dialog.setDefaultCloseOperation(JDialog.DISPOSE_ON_CLOSE);
dialog.setVisible(true);

88

Chapter 10. A Dialog-Based Macro

Here we do three things. First, we activate all the layout routines we have established by
calling thepack methods. Next we center the dialog’s position in the active jEditview

by callingsetLocationRelativeTo() on the dialog. We also call the
setDefaultCloseOperation() function to specify that the dialog box should be
immediately disposed if the user clicks the close box. Finally, we activate the dialog by
calling setVisible() with the state parameter set totrue .

At this point we have a decent looking dialog window that doesn’t do anything. Without
more code, it will not respond to user input and will not accomplish any text
manipulation. The remainder of the script deals with these two requirements.

10.3.7. The Action Listener

// this method will be called when a button is clicked
// or when ENTER is pressed
void actionPerformed(e)
{

if(e.getSource() != cancel)
{

processText();
}
dialog.dispose();

}

The methodactionPerformed() nested insideprefixSuffixDialog() implements
the implicit ActionListener interface. It looks at the source of theActionEvent ,
determined by a call togetSource() . What we do with this return value is simple: if the
source is not the "Cancel" button, we call theprocessText() method to insert the prefix
and suffix text. Then the dialog is closed by calling itsdispose() method.

10.3.8. Get the User’s Input

// this is where the work gets done to insert
// the prefix and suffix
void processText()
{

prefix = prefixField.getText();
suffix = suffixField.getText();

89

Chapter 10. A Dialog-Based Macro

if(prefix.length() == 0 && suffix.length() == 0)
return;

if(prefix.length() != 0)
prefixField.addCurrentToHistory();

if(suffix.length() != 0)
suffixField.addCurrentToHistory();

The methodprocessText() does the work of our macro. First we obtain the input from
the two text fields with a call to theirgetText() methods. If they are both empty, there
is nothing to do, so the method returns. If there is input, any text in the field is added to
that field’s stored history list by callingaddCurrentToHistory() .

10.3.9. Call jEdit Methods to Manipulate Text

// text manipulation begins here using calls
// to jEdit methods
end = textArea.getSelectionEndLine() + 1;
for(line = textArea.getSelectionStartLine();

line < end; ++line)
{

offsetBOL = textArea.getLineStartOffset(line);
textArea.setCaretPosition(offsetBOL);
textArea.goToStartOfWhiteSpace(false);
textArea.goToEndOfWhiteSpace(true);
text = textArea.getSelectedText();
if(text == null) text = "";
textArea.setSelectedText(prefix + text + suffix);

}
}

The text manipulation routine loops through each selected line in the text buffer. We get
the loop parameters by callingtextArea.getSelectionStartLine() and
textArea.getSelectionEndLine() . For each of the lines in the loop’s range, we
apply the following routine:

• Get the buffer position of the start of the line (expressed as a zero-based index from
the start of the buffer) by callingtextArea.getLineStartOffset(line) ;

• Move the caret to that position by callingtextArea.setCaretPosition() ;

90

Chapter 10. A Dialog-Based Macro

• Find the first and last non-whitespace characters on the line by calling
textArea.goToStartOfWhiteSpace() and
textArea.goToEndOfWhiteSpace() ;

ThegoTo... methods inJEditTextArea take a single parameter which tells jEdit
whether the text between the current caret position and the desired position should
be selected. Here, we calltextArea.goToStartOfWhiteSpace(false) so that no
text is selected, then calltextArea.goToEndOfWhiteSpace(true) so that all of
the text between the beginning and ending whitespace is selected.

• Retrieve the selected text by storing the return value of
textArea.getSelectedText() in a new variabletext .

If the line is empty,getSelectedText() will return null . In that case, we assign
an empty string totext .

• Change the selected text toprefix + text + suffix by calling
textArea.setSelectedText() . If there is no selected text (for example, if the line
is empty), the prefix and suffix will be inserted without any intervening characters.

10.3.10. The Main Routine

// this single line of code is the script’s main routine
prefixSuffixDialog();

The call toprefixSuffixDialog() is the only line in the macro that is not inside an
enclosing block. BeanShell treats such code as a top-levelmain method and begins
execution with it.

Our analysis ofAdd_Prefix_and_Suffix.bsh is now complete. In the next section, we
look at other ways in which a macro can obtain user input.

91

Chapter 11. Macro Tips and
Techniques

11.1. Getting Input for a Macro
The dialog-based macro discussed in Chapter 10 reflects an approach to obtaining input
that is conventional from a Java perspective. Nevertheless, it can be too lengthy or
tedious for someone trying to write a macro quickly. Not every macro needs a user
interface specified in such detail; some macros require only a single keystroke or no
input at all. In this section we outline some other techniques for obtaining input that will
help you write macros quickly.

11.1.1. Getting a Single Line of Text
As mentioned earlier in Section 9.2, the methodMacros.input() offers a convenient
way to obtain a single line of text input. Here is an example that inserts a pair of HTML
markup tags specified by the user.

// Insert_Tag.bsh

void insertTag()
{

caret = textArea.getCaretPosition();
tag = Macros.input(view, “Enter name of tag:”);
if(tag == null || tag.length() == 0) return;
text = textArea.getSelectedText();
if(text == null) text = “”;
sb = new StringBuffer();
sb.append(“<”).append(tag).append(“>”);
sb.append(text);
sb.append(“</”).append(tag).append(“>”);
textArea.setSelectedText(sb.toString());
if(text.length() == 0)

textArea.setCaretPosition(caret + tag.length() + 2);
}

insertTag();

92

Chapter 11. Macro Tips and Techniques

// end Insert_Tag.bsh

Here the call toMacros.input() seeks the name of the markup tag. This method sets
the message box title to a fixed string, “Macro input”, but the specific messageEnter
name of tag provides all the information necessary. The return valuetag must be tested
to see if it is null. This would occur if the user presses theCancel button or closes the
dialog window displayed byMacros.input() .

11.1.2. Getting Multiple Data Items
If more than one item of input is needed, a succession of calls toMacros.input() is a
possible, but awkward approach, because it would not be possible to correct early input
after the corresponding message box is dismissed. Where more is required, but a full
dialog layout is either unnecessary or too much work, the Java method
JOptionPane.showConfirmDialog() is available. The version to use has the following
prototype:

• public static int showConfirmDialog (Component parentComponent ,

Object message , String title , int optionType , int messageType);

The usefulness of this method arises from the fact that themessage parameter can be an
object of any Java class (since all classes are derived fromObject), or any array of
objects. The following example shows how this feature can be used.

// excerpt from Write_File_Header.bsh

// *****import statements for excerpt*****

import javax.swing.Box;
import javax.swing.JCheckBox;
import javax.swing.JLabel;
import javax.swing.JOptionPane;
import javax.swing.JPanel;
import javax.swing.JTextField;
import javax.swing.SwingConstants;

// *****portions of macro script omitted*****

93

Chapter 11. Macro Tips and Techniques

title = "Write file header";

currentName = buffer.getName();

nameField = new JTextField(currentName);
authorField = new JTextField("Your name here");
descField = new JTextField("", 25);

namePanel = new JPanel(new GridLayout(1, 2));
nameLabel = new JLabel("Name of file:", SwingConstants.LEFT);
nameLabel.setForeground(Color.black);
saveField = new JCheckBox("Save file when done",

!buffer.isNewFile());
namePanel.add(nameLabel);
namePanel.add(saveField);

message = new Object[9];
message[0] = namePanel;
message[1] = nameField;
message[2] = Box.createVerticalStrut(10);
message[3] = "Author’s name:";
message[4] = authorField;
message[5] = Box.createVerticalStrut(10);
message[6] = "Enter description:";
message[7] = descField;
message[8] = Box.createVerticalStrut(5);

if(JOptionPane.OK_OPTION !=
JOptionPane.showConfirmDialog(view, message, title,

JOptionPane.OK_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE))

return null;

// *****remainder of macro script omitted*****

// end excerpt from Write_File_Header.bsh

This macro takes several items of user input and produces a formatted file header at the
begining of the buffer. The full macro is included in the set of macros installed by jEdit.
There are a number of input features of this excerpt worth noting.

94

Chapter 11. Macro Tips and Techniques

• The macro takes the approach of listing every “imported” class in a separate
import statement. If you don’t feel a need to keep track of which classes you are
using in a macro, the global statementimport javax.swing.*; will work just as
well.

• The macro uses a total of seven visible components. Two of them are created
behind the scenes byshowConfirmDialog() , the rest are made by the macro. To
arrange them, the script creates an array ofObject objects and assigns components
to each location in the array. This translates to a fixed, top-to-bottom arrangement in
the message box created byshowConfirmDialog() .

• The macro usesJTextField objects to obtain most of the input data. The fields
nameField andauthorField are created with constructors that take the initial text
to be displayed in the field as a parameter. When the message box is displayed, the
initial text will appear and can be altered or deleted by the user.

• The text fielddescField uses an empty string for its initial value. The second
parameter in its constructor sets the width of the text field component, expressed as
the number of characters of “average” width. WhenshowConfirmDialog()

prepares the layout of the message box, it sets the width wide enough to
accomodatedescField . This technique produces a message box and input text
fields that are wide enough for your data with one line of code.

• The displayed message box includes aJCheckBox component that determines
whether the buffer will be saved to disk immediately after the file header is written.
To conserve space in the message box, we want to display the check box to the right
of the labelName of file:. To do that, we create aJPanel object and populate it
with the label and the checkbox in a left-to-rightGridLayout . TheJPanel

containing the two components is then added to the beginning ofmessage array.

• The two visible components created byshowConfirmDialog() appear at positions
3 and 6 of themessage array. Only the text is required; they are rendered as text
labels. Note that it was necessary to set the foreground colornameLabel to black.
The default text color ofJLabel objects is gray for Java’s default look-and-feel, so
the color was reset for consistency with the rest of the message box.

• There are three invisible components created byshowConfirmDialog() . Each of
them involves a call toBox.createVerticalStrut() . TheBox class is a
sophisticated layout class that gives the user great flexibility in sizing and
positioning components. Here we use astatic method of theBox class that
produces a transparent component whose width expands to fill its parent component

95

Chapter 11. Macro Tips and Techniques

(in this case, the message box). The single parameter indicates the fixed height of
the spacing “strut” in pixels. The final call tocreateVerticalStrut() separates
the description text field from theOK andCancel buttons that are automatically
added byshowConfirmDialog() .

• Finally, the call toshowConfirmDialog uses the defined constants the option type
(usingOK andCancel buttons) and the message type (aQUERY_MESSAGEthat
causes the message box to display a question mark icon. The return value of the
method is tested against the valueOK_OPTION. If the return value is something else
(because theCancel button was pressed or because the message box window was
closed without a button press), anull value is returned to a calling function,
signalling that the user cancelled macro execution. If the return value isOK_OPTION,
each of the input components can yield their contents for further processing by calls
to JTextField.getText() (or, in the case of the check box,
JCheckBox.isSelected()).

11.1.3. Selecting Input From a List
Another useful way to get user input for a macro is to use a combo box containing a
number of pre-set options. If this is the only input required, one of the versions of
showInputDialog() in theJOptionPane class provides a shortcut. Here is its
prototype:

• public static Object showInputDialog (Component parentComponent ,

Object message , String title , int messageType , Icon icon ,

Object[] selectionValues , Object initialSelectionValue);

This method creates a message box containing a drop-down list of the options specified
in the method’s parameters, along withOK andCancel buttons. Compared to
showConfirmDialog() , this method lacks anoptionType parameter and has three
additional parameters: anicon to display in the dialog (which can be set tonull), an
array ofselectionValues objects, and a reference to one of the options as the
initialSelectionValue to be displayed. In addition, instead of returning an int
representing the user’s action,showInputDialog() returns theObject corresponding to
the user’s selection, ornull if the selection is cancelled.

The following macro fragment illustrates the use of this method.

96

Chapter 11. Macro Tips and Techniques

// fragment illustrating use of showInputDialog()

import javax.swing.JOptionPane;

options = new Object[5];
options[0] = "JLabel";
options[1] = "JTextField";
options[2] = "JCheckBox";
options[3] = "HistoryTextField";
options[4} = "- other -";

result = JOptionPane.showInputDialog(view,
"Choose component class",
"Select class for input component",
JOptionPane.QUESTION_MESSAGE,
null, options, options[0]);

The return valueresult will contain either theString object representing the selected
text item ornull representing no selection. Any further use of this fragment would have
to test the value ofresult and likely exit from the macro if the value equallednull .

A set of options can be similarly placed in aJComboBox component created as part of a
larger dialog orshowMessageDialog() layout. Here are some code fragments showing
this approach:

// fragments from Display_Abbreviations.bsh
// import statements and other code omitted

// from main routine, a method returning an array of Strings
// representing the names of abbreviation sets

abbrevSets = getActiveSets();

// from showAbbrevs() method

combo = new JComboBox(abbrevSets);
// set width to uniform size regardless of combobox contents
Dimension dim = combo.getPreferredSize();
dim.width = Math.max(dim.width, 120);
combo.setPreferredSize(dim);
combo.setSelectedItem(STARTING_SET); // defined as "global"

97

Chapter 11. Macro Tips and Techniques

// end fragments

11.1.4. Using a Single Keypress as Input
Some macros may choose to emulate the style of character-based text editors such as
emacs or vi. They will require only a single keypress as input that would be handled by
the macro but not displayed on the screen. If the keypress corresponds to a character
value, jEdit can pass the character value as a parameter to a BeanShell script.

The jEdit classInputHandler is an abstract class that that manages associations
between keyboard input and editing actions, along with the recording of macros.
Keyboard input in jEdit is normally managed by the derived class
DefaultInputHandler . One of the methods in theInputHandler class handles input
from a single keypress:

• public void readNextChar (String code);

The contents of thecode parameter will be run as a BeanShell script, with one important
modification. The first time the string__char__ appears in the parameter script, it will
be substituted by the character value of the next key pressed afterreadNextChar() is
called. The value of the key pressed is “consumed” byreadNextChar() . It will not be
displayed on the screen or otherwise processed by jEdit.

UsingreadNextChar() requires a macro within the macro, formatted as a single,
potentially lengthy string literal. The following macro illustrates this technique. It selects
a line of text from the current caret position to the first occurrence of the character next
typed by the user. If the character does not appear on the line, no new selection occurs
and the display remains unchanged.

// Next_Char.bsh

script = new StringBuffer(512);
script.append("start = textArea.getCaretPosition();");
script.append("line = textArea.getCaretLine();");
script.append("end = textArea.getLineEndOffset(line) + 1;");
script.append("text = buffer.getText(start, end - start);");
script.append("ch = __char__;");
script.append("match = text.indexOf(ch, 1);");
script.append("if(match != -1) {");

98

Chapter 11. Macro Tips and Techniques

script.append("if(ch != ’\\n’) ++match;");
script.append("textArea.select(start, start + match - 1);");
script.append("}");

view.getInputHandler().readNextChar(script.toString());

// end Next_Char.bsh

Once again, here are a few comments on the macro’s design.

• A StringBuffer object is used for efficiency; it obviates multiple creation of
fixed-lengthString objects. The parameter to the constructor ofscript specifies
the initial size of the buffer that will receive the contents of the child script.

• Besides the quoting of the script code, the formatting of the macro is entirely
optional but (hopefully) makes it easier to read.

• It is important that the child script be self-contained. It does not run in the same
namespace as the “parent” macroNext_Char.bsh and therefore does not share
variables, methods, or scripted objects defined in the parent macro.

• It is also important that the child script define and set a local variable equal to the
__char__ if the value will be used more than once. This is because__char__ is not
a true variable but a placeholder token in the child script string. The implementation
of readNextChar substitutes the character value of the keypress for__char__ the
first time it occurs in the child script string; then it executes the resulting string as a
macro.

• Finally, access to theInputHandler object used by jEdit is available by calling
getInputHandler() on the current view.

11.2. Using a Startup Macro
One useful feature in jEdit allows the user to run a macro script at startup near the end of
the program’s initialization routine. The name of the macro script must beStartup.bsh

(capitalization matters!) and it must be located in one of the two macro directories.

The startup macro can perform additional initialization that cannot be handled by
command line options or ordinary configuration options. It could, for example, open a

99

Chapter 11. Macro Tips and Techniques

designated file (whether or not it was open at the close of the preceding jEdit session). It
could write logging information to jEdit’s activity log or an external file, or activate
another application. It can also add variables, methods and scripted object to the
namespace used by the BeanShell interpreter when running other macro scripts. This last
feature allows you to create a personal library of methods and objects that can be
accessed at any time during the editing session in another macro, the BeanShell shell of
the Console plugin, or menu items such asUtilities>Evaluate BeanShell Expression.

Here are a few short scripts that illustrate the startup macro process.

Startup.bsh . This macro defines a method and several variables, and looks for a
second startup macro. If the second macro can be found, it is executed and the variable
orphanMessage is modified.

// Startup.bsh

foo()
{

fooMessage = “This is from Startup.bsh and ”
+ “is part of a foo() object.”;

return this;
}

orphanMessage = “This is from Startup.bsh ”
+ “but is not part of a scripted object.”;

startup2 = Macros.getMacro(“Startup2”);
if(startup2 != null)
{

BeanShell.runScript(view, startup2.path, false, false);
orphanMessage += “\nStartup2 was found.”;

}
else
{

orphanMessage += “\nStartup2 was not found.”;
}

// end of Startup.bsh

Startup2.bsh . This macro is called by the startup macro. It adds its own method and
variable, and modifies one of the variables defined inStartup.bsh if it can find it.

100

Chapter 11. Macro Tips and Techniques

// Startup2.bsh

bar()
{

barMessage = “This is from Startup2.bsh and ”
+ “is part of a bar() object.”;

return this;
}

orphanMessage2 = “This is from Startup2.bsh ”
+ “but is not part of a scripted object.”;

if(orphanMessage != null)
orphanMessage = orphanMessage.toUpperCase();

// end of Startup2.bsh

Namespace_Test.bsh.We will run this macro manually after startup. Among other
things, it obtains the BeanShell namespace through successive calls to jEdit’s
BeanShell.getInterpreter() and BeanShell’s ownInterpreter.getNamespace()

methods. The names and values of variables in the namespace are obtained by calls to
BeanShell’sNamespace.getVariableNames() andNamespace.getVariable()

methods. The rest of the script formats output and displays the result in a new buffer.

// Namespace_Test.bsh

jEdit.newFile(view);

namespace = BeanShell.getInterpreter().getNameSpace();
v = namespace.getVariableNames();

sb = new StringBuffer();

sb.append("***** begin test of startup ");
sb.append("macro namespace capability *****\n\n");
sb.append("List of BeanShell namespace variables:\n\n");

for (i = 0; i < v.length; ++i)
{

sb.append(v[i] + "\n");
o = namespace.getVariable(v[i]);
if(o != null)

101

Chapter 11. Macro Tips and Techniques

{
sb.append(o)

.append("\n\n");
}
else
{

sb.append("Value of variable ")
.append(String.valueOf(i))
.append(" is null.\n");

}
}
sb.append("***** end variable list *****\n\n");
textArea.setSelectedText(sb.toString());

f = foo();
b = bar();

sb.setLength(0);

sb.append(“\n\n”)
.append(“foo().fooMessage = \n”)
.append(f.fooMessage)
.append(“\n\n”);

sb.append(“bar().barMessage = \n”)
.append(b.barMessage)
.append(“\n\n”);

sb.append(“orphanMessage = \n”)
.append(this.orphanMessage)
.append(“\n\n”);

sb.append(“orphanMessage2 = \n”)
.append(this.orphanMessage2)
.append(“\n\n”);

sb.append(“***** end test *****\n”);

textArea.setSelectedText(sb.toString());

// end of Namespace_Test.bsh

The results. Here are the result of runningNamespace_Test.bsh after startup occurs:

102

Chapter 11. Macro Tips and Techniques

***** begin test of startup macro namespace capability *****

List of BeanShell namespace variables:

startup2
Startup2

classLoader
org.gjt.sp.jedit.JARClassLoader@3bc473

orphanMessage
THIS IS FROM STARTUP.BSH BUT IS NOT PART OF A SCRIPTED OBJECT.
Startup2 was found.

bsh
’this’ reference (XThis) to Bsh object: Bsh System Object

orphanMessage2
This is from Startup2.bsh but is not part of a scripted object.

***** end variable list *****

foo().fooMessage =
This is from Startup.bsh and is part of a foo() object.

bar().barMessage =
This is from Startup2.bsh and is part of a bar() object.

orphanMessage =
THIS IS FROM STARTUP.BSH BUT IS NOT PART OF A SCRIPTED OBJECT.
Startup2 was found.

orphanMessage2 =
This is from Startup2.bsh but is not part of a scripted object.

***** end test *****

You will see that objects and variables from both macros were available to the test macro
when it ran after startup. In addition, the script inStartup2.bsh altered the variable
orphanMessage defined inStartup.bsh by capitalizing the string contents. After that,

103

Chapter 11. Macro Tips and Techniques

control returned toStartup.bsh , which added additional lower casetext to
orphanMessage .

This example shows that the startup macro feature can provide additional opportunities
for controlling jEdit’s behavior. It also allows the creation of customized variables and
methods that a user can apply in other macros or BeanShell code executed during the
editing session.

11.3. Debugging Macros
Here are a few techniques that can prove helpful in debugging macros.

11.3.1. Identifying Exceptions
An exceptionis a condition reflecting an error or other unusual result of program
execution that requires interruption of normal program flow and some kind of special
handling. Java has a rich (and extendable) collection of exception classes which
represent such conditions. Exceptions that are not handled within an application will
usually result in an abrupt exit from the program. BeanShell saves a jEdit session from
an untimely demise by catching any exceptions thrown by a macro and halting macro
execution. When a BeanShell macro throws an exception in this fashion, it almost
certainly means there is a bug in the macro.

Exceptions thrown while BeanShell runs a macro script, like other exceptions occuring
during jEdit execution, result in entries being written to jEdit’s activity log, see
Appendix E. There are two broad categories of errors that will result in exceptions:

• Interpreter errors, which may arise from typing mistakes like mismatched brackets
or missing semicolons, or from BeanShell’s failure to find a class corresponding to
a particular variable;

• Execution errors, which result from runtime exceptions thrown by the Java
platform when macro code is executed.

An execution error will usually cause two exceptions to be written to the activity log: an
exception tied to theAWT-EventQueue that orchestrates program execution, and an
exception tied to BeanShell itself. An interpreter error results in only a single exception
thrown by BeanShell. Usually the interpreter error is the subject of a message box.

104

Chapter 11. Macro Tips and Techniques

The error messages emitted by BeanShell can often seem cryptic. Thestack tracewritten
by jEdit for an unhandled exception often refers to unrevealing methods like
Interpreter.eval() . Nevertheless, examining the contents of the activity log may
reveals clues as to the cause of a macro bug. If only an interpreter exception appears, it is
a good idea to look for typing mistakes, uninitialized variables, or class names that are
neither fully qualified nor subjects of animport statement. If there is an underlying Java
exception thrown as well, the Java exception message may offer better clues as to the
source of the error. The clues may include the type of exception thrown and the type of
the object that the macro was manipulating when the exception occurred.

11.3.2. Using a Message Box As a Tracing Tool
Sometimes the activity log or other information will tell you what kind of error occurred
but not where it arose in the macro script. If the error causes the display of an error box,
there is a simple technique that will often pinpoint or narrow the range of offending
code, without requiring repeated consultation of the activity log. Insert the following line
of code at some point in the macro near the suspected error:

Macros.message(view, “tracing”);

Of course, the message can be as descriptive as you like, and multiple messages can be
used at different points in the macro code. It would be helpful to use a common tag as
part of each function call, or in adjacent comments, so the messages can be easily found
and removed from the finished macro script. If a “tracing” message pops up during macro
execution, you know that the macro got that far in the script safely. If the BeanShell
message appears first, the error is occurring before the “tracing” message box command
is reached. Iteration of these steps will usually identify the location of a macro error.

11.3.3. Writing Trace Messages to the Activity Log
The most laborious, but often the most effective technique, is to insert code in the macro
that writes additional messages to the activity log before the exception occurs, then to
examine the activity log by choosingUtilities>View Activity Log after the macro
completes execution. The messages would trace program execution and, when desired,
report the value of significant variables. To write a message to the activity log, use the
folllowing method of theLog class:

105

Chapter 11. Macro Tips and Techniques

• public static void log (int urgency , Object source , Object

message);

The parameterurgency can take the defined valuesLog.DEBUG, Log.MESSAGE,
Log.NOTICE , Log.WARNINGor Log.ERROR. Thelog() method will write a formatted
string that contains the level of urgency and representations of thesource andmessage

parameters.

The following code would send a typical debugging message to the activity log:

Log.log(Log.DEBUG, BeanShell.class,
"counter = " + String.valueOf(counter)
+ "; line = " + line);

The corresponding activity log entry might read as follows:

[debug] BeanShell: counter = 15; line = The corresponding
activity log entry might read as follows:

106

Appendix G. jEdit API Quick
Reference
The source code for jEdit covers over 200 classes (not counting classes from other open
source packages like BeanShell and the GNU regular expression package). Embedding a
BeanShell interpreter within jEdit makes most of those classes available to the user to
help customize and extend the program. For the vast majority of circumstances, however,
only a handful of classes will be needed for writing a macro script. The following is a
quick guide to some of the principal jEdit classes that are useful in writing macros.

G.1. Class jEdit
This is the main class of the application. The methods likely to be invoked in macros are
all static methods, so they are called with the following syntax:

jEdit. name_of_method (parameters)

Here are a few key methods:

• public static Buffer openFile (View view , String path);

Opens the file namedpath in the givenView ; to open a file in the current view, use
the predefined variableview for the first parameter.

• public static Buffer newFile (View view);

This creates a new, Untitled buffer in the givenView .

• public static boolean closeBuffer (View view , Buffer buffer);

Closes the buffer namedbuffer in the view namedview ; the user will be prompted
to save the buffer before closing if there are unsaved changes.

• public static void saveAllBuffers (View view , boolean confirm);

This saves all open buffers with unsaved changes in the givenView ; the parameter
confirm determines whether jEdit initially asks for confirmation of the save
operation.

107

Appendix G. jEdit API Quick Reference

• public static boolean closeAllBuffers (View view);

Closes all buffers in the givenView ; a dialog window will be displayed for any
buffers with unsaved changes to obtain user instructions.

• public static void exit (View view , boolean reallyExit);

This method causes jEdit to exit; ifreallyExit is false and jEdit is running in
background mode, simply close all buffers and views and remain in background
mode.

• public static final String getProperty (String name);

Returns the value of the property named byname, or null if the propoerty is
undefined.

• public static final boolean getBooleanProperty (String name);

Returns a booleanvalue oftrue or false for the property named byname by
examining the String contents of the property; returnsfalse if the property cannot
be found.

• public static final void setProperty (String name, String

property);

This method sets the property named byname with the valueproperty ; an existing
proerty is overwritten.

• public static final void setBooleanProperty (String name, boolean

value);

This method sets the property named byname to value ; the boolean value is stored
internally as the string “true” or “false”.

• public static final void setTemporaryProperty (String name, String

property);

This sets a property that will not be stored during the current jEdit session only; this
method is useful for storing a value obtained by one macro for use by another
macro.

• public static String getJEditHome ();

108

Appendix G. jEdit API Quick Reference

Returns the path of the directory containing the jEdit executable file.

• public static String getSettingDirectory ();

Returns the path of the directory in which user-specific settings are stored.

The jEdit object also maintains a number of collections which a macro may need to use.
They include the following:

• public static EditAction[] getActions ();

Returns an array of “actions” or short routines maintained and used by the editor.

• public static EditAction getAction (String action);

Returns the action namedaction , or null if it does not exist.

• public static Buffer[] getBuffers ();

Returns an array of open buffers.

• public static final Properties getProperties ();

Returns a JavaProperties object (a class derived fromHashtable) holding all
properties currently used by the program. The constituent properties fall into three
categories: application properties, “site” properties, and “user” properties. Site
properties take precedences otber application properties with the same “key” or
name, and user properties take precedence over both application and site properties.
User settings are written to a file namedproperties in the user settings directory
upon program exit or wheneverjEdit.saveSettings() is called.

• public static int getBufferCount ();

Returns the number of open buffers.

• public static Buffer getBuffer (String path);

Returns theBuffer object containing the file namedpath . or null if the buffer
does not exist.

• public static Mode[] getModes ();

Returns an array containing all editing modes used by jEdit.

109

Appendix G. jEdit API Quick Reference

• public static Mode getMode (String name);

Returns the editing mode named byname, or null if such a mode does not exist.

• public static EditPlugin[] getPlugins ();

Returns an array containing all existing plugin applications.

• plugin static EditPlugin getPlugin (String name);

Returns the plugin named byname, or null if such a plugin does not exist.

G.2. Class View
This class represents the “parent” or top-level frame window in which the editing occurs.
It contains the various visible components of the program, including the editing pane,
menubar, toolbar, and any docking windows containing plugins.

Some useful methods from this class include the following:

• public void splitHorizontally ();

Splits the view horizontally.

• public void splitVertically ();

Splits the view vertically.

• public void unsplit ();

Unsplits the view.

• public synchronized void showWaitCursor ();

Shows a “waiting” cursor (typically, an hourglass).

• public synchronized void hideWaitCursor ();

Removes the “waiting” cursor. This method andshowWaitCursor() are
implemented using a reference count of requests for wait cursors, so the macro
writer should be careful to use these methods in tandem.

• public DockableWindowManager getDockableWindowManager ();

110

Appendix G. jEdit API Quick Reference

The object returned by this method keeps track of all plugins that can be contained
in dockable windows above, below and to the left and right of the editing pane.
Calling this method followed by a call to
DockableWindowManager.getDockableWindow(String pluginName) is an
efficient way to access and (if necessary) activate a plugin application.

G.3. Class DockableWindowManager
Windows conforming to jEdit’s docking API can appear in window “panes” located
above, below or to the left or right of the main editing pane. They can also be displayed
in “floating” frame windows. ADockableWindowManager keeps track of the plugins
associated with a particularView . EachView object contains an instance of this class.

• public DockableWindow getDockableWindow (String name);

This method returns theDockableWindow object named by thename parameter.
The name of aDockableWindow is a required property of the plugin. If there is no
DockableWindow bearing the requested name, the method returnnull .

• public void addDockableWindow (String name);

If the DockableWindow named by thename parameter does not exist, a message is
sent to the associated plugin application to create it. TheDockableWindow is then
made visible.

• public void showDockableWindow (String name);

• public void removeDockableWindow (String name);

• public void toggleDockableWindow (String name);

These methods, respectively show, hide and toggle the visibility of the
DockableWindow object named by thename parameter. If the
DockableWindowManager does not contain a reference to the window, these
methods send an error message to the activity log and have no other effect. Only
addDockableWindow() can cause the creation of aDockableWindow .

111

Appendix G. jEdit API Quick Reference

G.4. Class JEditTextArea
This class is the visible component that displays the file being edited. It is derived from
Java’sJComponent class.

There are many methods inJEditTextArea that can be helpful in writing macros. Here
is a summary grouped by function.

Methods to get, set and move the position of the editing caret:

• public final int getCaretPosition ();

Returns a zero-based index of the caret position in the existing buffer.

• public final void setCaretPosition (int caret);

Sets the caret position atcaret without selecting text.

• public final void moveCaretPosition (int caret);

This moves the caret without moving the mark (the other end of a selection of text).
This has the effect of extending or reducing the selected text.

• public final int getCaretLine ();

Returns the line on which the caret is positioned.

• public final int getLineOfOffset (int offset);

Returns the line on which the given offset is found.

• public int getLineStartOffset (int line);

• public int getLineEndOffset (int line);

Returns the offset of the beginning or end of the given line.

Methods to get and set selected text:

• public final int getSelectionStart ();

• public final int getSelectionEnd ();

Returns the buffer position of the beginning or end of the current selection.

112

Appendix G. jEdit API Quick Reference

• public final int getSelectionStartLine ();

• public final int getSelectionEndLine ();

Returns the line containing the position of the selection’s beginning or end.

• public void select (int start , int end);

• public final void setSelectionStart (int selectionStart);

• public final void setSelectionEnd (int selectionEnd);

Set the beginning or end of the selected text (or both) at the given buffer positions.

• public void selectBlock ();

Selects the code block surrounding the caret.

• public void selectWord ();

• public void selectLine ();

• public void selectParagraph ();

• public void selectAll ();

• public void selectNone ();

• public final String getSelectedText ();

• public void setSelectedText (String selectedText);

Get and replaces the selected text.

• public void indentSelectedLines ();

Methods to get buffer text without regard to a selection:

• public final String getText (int start , int len);

Returns the text located between buffer offset positions.

• public final String getLineText (int lineIndex);

Returns the text on the given line.

• public String getText ();

Returns the entire text in the text area.

113

Appendix G. jEdit API Quick Reference

• public void setText (String text);

Sets (and replaces) the entire text of the text area.

Methods for creating comments:

• public void blockComment ();

This creates a block-style comment for each line in the selected text.

• public void boxComment();

This creates a box-style comment encompassing the line in the selected text.

• public void wingCommnt ();

This creates a comment, using a single set of comment delimiters, beginning and
ending with the selected text.

Shortcut methods that move the caret and select text (each taking a boolean parameter to
determine whether or not intervening text will be selected):

• public void goToStartOfLine (boolean select);

• public void goToEndOfLine (boolean select);

• public void goToStartOfWhiteSpace (boolean select);

• public void goToEndOfWhiteSpace (boolean select);

• public void goToFirstVisibleLine (boolean select);

• public void goToLastVisibleLine (boolean select);

• public void goToNextCharacter (boolean select);

• public void goToPrevCharacter (boolean select);

• public void goToNextWord (boolean select);

• public void goToPrevWord (boolean select);

• public void goToNextLine (boolean select);

• public void goToPrevLine (boolean select);

• public void goToNextParagraph (boolean select);

114

Appendix G. jEdit API Quick Reference

• public void goToPrevParagraph (boolean select);

• public void goToNextBracket (boolean select);

• public void goToPrevBracket (boolean select);

Methods to delete text:

• public void delete ();

Deletes the character to the left of the editing caret.

• public void deleteWord ();

• public void deleteLine ();

• public void deleteParagraph ();

• public void deleteToStartOfLine ();

• public void deleteToEndOfLine ();

Methods to get statistics on the buffer being edited:

• public final int getBufferLength ();

Returns the length of the buffer being edited.

• public final int getLineCount ();

Returns the number of lines in the buffer being edited.

• public final int getLineLength ();

Returns the length of the line numberline (using a zero-based count).

G.5. Class Buffer
A Buffer represents the contents of an open text file as it is maintained in the
computer’s memory (as opposed to how it may stored on a disk). It is derived from Java’s
PlainDocument class.

Here are some useful methods from theBuffer class:

115

Appendix G. jEdit API Quick Reference

• public final String getName ();

• public final String getPath ();

• public final File getFile ();

• public final Mode getMode ();

• public void setMode (Mode mode);

Gets and sets the editing mode for the buffer.

• public int getIndentSize ();

• public int getTabSize ();

These method returns the size of an inital indentation at the beginning of a line and
the distance between tab stops, each measured in character columns. If these
propoerties are not individually set for a specific buffer, they are inherited from the
properties of the buffer’s associated editing mode.

• public void beginCompoundEdit ();

• public void endCompoundEdit ();

Marks the beginning and end of a series of operations that will be dealt with by a
singleUndo command.

• public void addMarker (String name, int start , int end);

Sets a marker namedname for the section of text beginning at offsetstart and
ending at offsetend .

• public void removeMarker (String name);

• public void removeAllMarkers ();

• public final boolean isNewFile ();

Returns whether a buffer lacks a corresponding version on disk.

• public final boolean isDirty ();

116

Appendix G. jEdit API Quick Reference

Returns whether there have been unsaved changes to the buffer.

• public final boolean isReadOnly ();

• public final boolean isUntitled ();

• public boolean save (View view , String path);

• public boolean save (final View view , String path , final boolean

rename);

Therename parameter causes a buffer’s name to change if set totrue ; if false ,
a copy is saved topath .

• public boolean saveAs (View view , boolean rename);

Prompts the user for a new name for saving the file.

• public void removeTrailingWhiteSpace (int first , int last);

Removes trailing whitespace from linesfirst to last .

The following methods are inherited byBuffer from its parent class. They are useful in
extracting text from aBuffer object for searching purposes or other manipulation.

• public String getText (int offset , int length);

• public void getText (int offset , int length , Segment text);

These methods extract a portion of buffer text having lengthlength beginning at
offset positionoffset . The first method returns a newly createdString containing
the requested excerpt. The second version initializes an existingSegment object
with the location of the requested excerpt. TheSegment object represents array
locations within theBuffer object’s data and should be used on a read-only basis;
calling toString() on theSegment will create a new object suitable for
manipulation.

G.6. Class Macros
The following shortcut methods are useful in displaying output messages or obtaining

117

Appendix G. jEdit API Quick Reference

input.

• public static void message (View view , String message);

Displays the text ofmessage (with an information icon) in a modal message box
centered on the designatedview .

• public static void error (View view , String message);

Similar tomessage but displays an error icon.

• public static String input (View view , String prompt);

Displays the text ofprompt , a text input field, and a question icon in the
designatedview . Returns the contents of the text field if the dialog box is
dismissed by pressing theOK button, ornull if the Cancel button is pressed.

• public static String input (View view , String prompt , String

defaultValue);

Displays the text ofprompt , a text input field, and a question icon in the
designatedview . The text field will initially contain the text ofdefaultValue .
Returns the contents of the text field if the dialog box is dismissed by pressing the
OK button, ornull if the Cancel button is pressed.

G.7. Class SearchAndReplace
Search and replace routines are undertaken by jEdit’sSearchAndReplace class.

The following static methods allow you to set or get the parameters for a search. You can
do this prior to or even without activating the search dialog.

• public static void setSearchString (String search);

• public static String getSearchString ();

• public static void setReplaceString (String replace);

• public static String getReplaceString ();

• public static void setIgnoreCase (boolean ignoreCase);

118

Appendix G. jEdit API Quick Reference

• public static boolean getIgnoreCase ();

• public static void setRegexp (boolean regexp);

• public static boolean getRegexp ();

Determines whether the search term is interpreted as a regular expression.

• public static void setReverseSearch (boolean reverse);

• public static boolean getReverseSearch ();

Determines whether a reverse search will conducted from the current position to the
beginning of a buffer. Currently, only literal reverse searches are supported.

• public static void setSearchFileSet (SearchFileSet fileset);

A SearchFileSet is an abstract class representing the set of files that are the
subject of a search. There are three classes derived fromSearchFileSet :

class DirectoryListSet

This represents a set of files taken from a directory. It can be extended recursively to
include files in subdirectories. The constructor for this class has the following
syntax:

• public DirectoryListSet (String directory , String glob ,

boolean recurse);

The parameterglob is the glob pattern that determines which files from the
directory will be selected (see Appendix C for information about glob
patterns), andrecurse determines whether the selection will recurse into
subdirectories.

class AllBufferSet

This class represents the set of all buffers currently open. The constructor for this
class takes a file mask as a single parameter:

• public AllBufferSet (String glob);

class CurrentBufferSet

This class represents a buffer set consisting of the current buffer only. The
constructor has no parameters.

119

Appendix G. jEdit API Quick Reference

• public CurrentBufferSet ();

The actual tasks of searching and replacing, based on these parameters, are performed by
the following methods. The return value of each indicates whether the operation
succeeded.

• public static boolean find (View view);

This will select the next instance of matching text if the search is successful.

• public static boolean replace (View view);

This will replace the each occurrence of the “search string” in selected text with the
“replace string”. If no text is selected, the method has no effect.

• public static boolean replaceAll (View view);

This method performs a replacement in all buffers in theSearchFileSet . Text
selection is ignored.

• public static boolean hyperSearch (View view);

This collects all instances of matching text in the members of theSearchFileSet

and displays them in a dedicated window. Text selection is ignored.

• public static void showSearchDialog (View view , String

defaultFind);

When activated, the dialog will reflect any options programatically set by
setIgnoreCase() , setRegexp() andsetSearchFileSet() , but not the search or
replace strings. The parameterdefaultFind (which may benull) contains the
search text that will be displayed in the corresponding field of the dialog.

The “HyperSearch” and “Keep dialog” features, as reflected in checkbox options in the
search dialog, are not handled from withinSearchAndReplace . If you wish to have
these options set before the search dialog appears, make a prior call to either or both of
the following:

jEdit.setBooleanProperty(“search.hypersearch.toggle”,true);
jEdit.setBooleanProperty(“search.keepDialog.toggle”,true);

120

Appendix G. jEdit API Quick Reference

If you are not using the dialog to undertake a search or replace, you may call any of the
search and replace methods (includinghyperSearch()) without concern for the value of
these properties.

G.8. Class GUIUtilities
One static method in this class encapsulates the creation and display of file selection
dialogs.

• public static String[] showVFSFileDialog (View view , String path ,

int type , boolean multipleSelection);

This method displays theVFSFileChooserDialog provided by jEdit. Ifpath is
set tonull , the dialog will display the directory of the current buffer. Thetype
parameter can either beJFileChooser.OPEN_DIALOG or
JFileChooser.SAVE_DIALOG (you might need to import theJFileChooser class
from thejavax.swing package). The final parameter determines whether multiple
selection of files is permitted.

G.9. Class TextUtilities
This class contains a number of static methods that can be helpful in handling buffer text.

• public static int findMatchingBracket (Buffer buffer , int line ,

int offset);

Returns the offset of the bracket matching the one at offsetoffset of line line
of the buffer; returns -1 if the bracket is unmatched or if the specified character is
not a bracket. The method throws aBadLocationException if the line or
offset parameters are out of range.

• public static int findWordStart (String line , int pos , String

noWordSep);

• public static int findWordEnd (String line , int pos , String

noWordSep);

121

Appendix G. jEdit API Quick Reference

Returns the position on which the word found on lineline , positionline begins
or ends. The parameternoWordSep contains those non-alphanumeric characters
that will be treated as part of a word for purposes of finding the beginning or end of
word (such as an underscore character).

• public static String format (String text , int maxLineLength);

Reformats a string and inserts line separators as necessary so that no line exceeds
maxLineLength in length.

• public static String spacesToTabs (String in , int tabSize);

• public static String tabsToSpaces (String in , int tabSize);

Makes the indicated change based upon a tab size oftabSize .

G.10. Class MiscUtilities
This class is another collection of static utility methods.

These methods extract various elements from a path name:

• public static String getFileName (String path);

• public static String getFileExtension (String name);

• public static String getParentOfFile (String path);

Returns the directory containing the specified file.

The following method creates a string of whitespace characters that uses as many tabs as
possible:

• public static String createWhiteSpace (int len , int tabSize);

If tabSize is set to zero, the string will consist entirely of space characters. To get
a whitespace string tuned to the current buffer’s editing mode, call this method as
follows:

myWhitespace = MiscUtilities.createWhiteSpace(myLength,
buffer.getMode().getProperty(tabSize).intValue());

122

Appendix G. jEdit API Quick Reference

Here,getProperty() returns an encapsulatingInteger object. It yields its
“primitive” int value with a call tointValue() .

Here are two sorting methods, one for simple arrays and one for JavaVector objects:

• public static void quicksort (Object[] obj , Compare compare);

• public static void quicksort (Vector vector , Compare compare);

The type of the second parameter in both methods is a Javainterfacedefined inside the
MiscUtilities class. Any Java class implementing an interface must implement each
of the methods set forth in the interface’s abstract specification. TheCompare interface
consists of a single method:

• public int compare (Object obj1 , Object obj2);

To work correctly with thequicksort algorithm, this method should return a negative
value ifobj1 is ordered prior toobj2 , a positive value ifobj2 is prior, and zero if the
two objects are equivalent for ordering purposes.

Except under JDK 1.3, BeanShell cannot implement arbitrary interfaces such as
Compare (although, as we have noted earlier, a BeanShell method can implement a
number of specific listener interfaces). Fortunately for macro writers, jEdit provides a
number of classes implementingCompare for sorting purposes. Among them are
StringCompare andStringICaseCompare . Both classes compareString object; the
latter class compares two strings on a case-insentive basis.

Calling quicksort on aVector of String objects could therefore take the following
form:

MiscUtilities.quicksort(myVectorOfStrings,
new StringICaseCompare());

There is no return value, but theVector provided as the first parameter will be now be
sorted on a case-insensitive basis.

G.11. Class BeanShell
This class integrates the BeanShell interpreter into jEdit. One method is worth

123

Appendix G. jEdit API Quick Reference

mentioning here because it can be used in a macro to chain together execution of several
macros:

• public static void runScript (View view , String path , boolean

ownNamespace, boolean rethrowBshErrors);

This method runs the script file identified bypath . Within that script, references to
buffer , textArea andeditPane are determined with reference to theview
parameter. IfrethrowBshErrors is set to true, any runtime exception thrown by the
child script will be rethrown to the parent script and become visible to the user.

The parameterownNamespace determines whether a separate namespace will be
established for the BeanShell interpreter. If set tofalse , methods and variables defined
in the script will be available to all future uses of BeanShell; if set totrue , they will be
lost as soon as the script finishes executing. jEdit uses a value offalse when running the
startup macro, and a value oftrue when running all other macros.

124

Appendix H. Macros Included With
jEdit
jEdit comes with a large number of sample macros that perform a variety of tasks. The
following index provides short descriptions of each macro, in some cases accompanied
by usage notes.

H.1. File Management Macros
These macros automate the opening and closing of files.

• Browse_Directory.bsh

Opens a directory supplied by the user in the file system browser.

• Close_Except_Active.bsh

Closes all files except the current buffer.

Prompts the user to save any buffer containing unsaved changes.

• Open_Path.bsh

Opens the file supplied by the user in an input dialog.

• Open_Selection.bsh

Opens the file named by the current buffer’s selected text.

H.2. Text Macros
These macros generate various forms of formatted text.

• Add_Prefix_and_Suffix.bsh

Adds user-supplied “prefix” and “suffix” text to each line in a group of selected
lines.

125

Appendix H. Macros Included With jEdit

Text is added after leading whitespace and before trailing whitespace. A dialog
window receives input and “remembers” past entries.

• Delete_Marker_at_Caret.bsh

Deletes any existing marker placed in a buffer at the caret line.

Alerts user if no marker exists.

• Insert_Date.bsh

Inserts the current date and time in the current buffer.

The inserted text includes a representation of the time in the “Internet Time” format.

• Insert_Tag.bsh

Inserts a balanced pair of markup tags as supplied in a input dialog.

• Make_Double_Box_Comments.bsh

Makes a individual wing style comment of equal width for each selected line in the
current buffer.

/* This is an example of the kind */
/* of comment (for Java or C/C++) produced */
/* by this macro. It has uniform width */
/* regardless of the width of the several lines. */

<!- HTML or SGML code ->
<!- will look like this when the macro is run ->

• Reverse.bsh

Reverses the selected text in the current buffer.

• Rot13.bsh

Replaces the selected text with the text encoded by the Rot13 protocol.

Rot13 is a simple encoding scheme involving fixed character substitution. A second
application of the protocol restores the original text.

• Write_File_Header.bsh

126

Appendix H. Macros Included With jEdit

Writes a formatted file header in the current buffer based upon user input.

This macro asks for the name of the file, the author and a brief description of its
contents. It also asks whether the file should be saved immediately after the header
is inserted. The header will be set off with block comments based upon the editing
mode of the buffer; if the user has not set an editing mode, the macro will select one
based upon the file extension.

Note: The notes accompanying the macro source code describe how the
macro can be modified to produce a file header conforming to to personal
taste or institutional requirements.

H.3. Java Code Macros
These macros handle text formatting and generation tasks that are particularly useful in
writing Java code.

• Get_Class_Name.bsh

Inserts a Java class name based upon the buffer’s file name.

• Get_Package_Name.bsh

Inserts a plauisble Java package name for the current buffer.

The macro compares the buffer’s path name with the elements of the classpath
being used by the jEdit session. An error message will be displayed if no suitable
package name is found. This macro will not work if jEdit is being run as a jar file
without specifying a classpath. In that case the classpath seen by the macro consists
solely of the jar file.

• Make_Get_and_Set_Methods.bsh

CreatesgetXXX() or setXXX() methods that can be pasted into the buffer text.

This macro presents a dialog that will “grab” the names of instance variables from
the caret line of the current buffer and paste a correspondinggetXXX() or
setXXX() method to one of two text areas in the dialog. The text can be edited in
the dialog and then pasted into the current buffer using theInsert... buttons. If the

127

Appendix H. Macros Included With jEdit

caret is set to a line containing something other than an instance variable, the text
grabbing routine is likely to generate nonsense.

As explained in the notes accompanying the source code, the macro uses a global
variable which can be set to configure the macro to work with either Java or C++
code. When set for use with C++ code, the macro will also write (in commented
text) definitions ofgetXXX() or setXXX() suitable for inclusion in a header file.

• Tidy_Block_Comments.bsh

Formats all end-of-line “block” comments to begin at a fixed column.

This macro uses jEdit’s syntax parsing routines to identify block comments and
place them in a column specified by the user. If uncommented text extends beyond
the specified column, the block comment will be placed two columns after the end
of the uncommented text with an intervening whitespace.

An input dialog allows the user to specify the display column for block comments
or to accept a default value. The user can also select whether tabs will be substituted
for spaces and whether comments at the beginning of a line will be ignored. The
macro will complain if the current buffer’s editing mode does not support block
comments.

H.4. Search Macros
These macros provide various shortcuts to search methods. A group of macros in this
category allow the user to search of other occurrences of the word that appear on or next
to the editing caret.

• Find_Matching_File.bsh

Switches between C++ header (.h) and source (.cpp) files with the same name in
the same directory.

Note: This macro is easily adapted to work with any pair of file extensions.

• Next_Char.bsh

Finds next occurence of character on current line.

128

Appendix H. Macros Included With jEdit

The macro takes the next character typed after macro execution as the character
being searched. That character is not displayed. If the character does not appear in
the balance of the current line, no action occurs.

This macro illustrates the use ofInputHandler.readNextChar() as a means of
obtaining user input.

• Search_Buffer.bsh

Presets search settings for current buffer and displays search and replace dialog.

• Search_Directory_Tree.bsh

Presets search settings for “HyperSearch” in current directory and subdirectories,
then displays search and replace dialog.

• Write_HyperSearch_Results.bsh

This macro writes the contents of the “HyperSearch Results” window to a new text
buffer.

The macro employs a simple text report format. Since the HyperSearch window’s
object does not maintain the search settings that produced the displayed results, the
macro examines the current settings in theSearchAndReplace object. It confirms
that the HyperSearch option is selected before writing the report. However, the only
way to be sure that the report’s contents are completely accurate is to run the macro
immediately after a HyperSearch.

H.4.1. The Find_Occurrence Macro Group
This is a group of macros that enable searches in a text buffer for another occurrence of
the word situated at or immediately to the left of the editing caret. When these macros
are linked to keyboard shortcuts, they give the user the ability to search for occurrences
of a word without leaving the text buffer or interrupting use of the keyboard.

Because the searching routine for each procedure has common code, the set of macros
consists of four macros that set a temporary jEdit property and then call the main search
macro,Find_Occurrence.bsh . That macro reads the temporary property, executes the
corresponding search procedure, and erases the property. If the property cannot be found,
the search routine looks for the next succeeding occurrence of the search term.

129

Appendix H. Macros Included With jEdit

The final macro retrieves the marker left by the searching macro for the file and caret
position applicable just prior to the search.

• Find_Occurrence.bsh

This macro runs the search routine corresponding to the property set by one of its
companion macros.

If the macro is called directly or if the search type property cannot be found, it will
find the next occurrence of the word on or to the left of the editing caret. If the
search succeeds, the macro sets a bookmark by creating temporary jEdit properties
for the buffer name and caret location.

• Find_First_Occurrence.bsh

CallsFind_Occurrence to find the first occurrence of the word on or to the left of
the editing caret.

• Find_Previous_Occurrence.bsh

CallsFind_Occurrence to find the immediately preceding occurrence of the word
on or to the left of the editing caret.

• Find_Next_Occurrence.bsh

CallsFind_Occurrence to find the next occurrence of the word on or to the left of
the editing caret.

• Find_Last_Occurrence.bsh

CallsFind_Occurrence to find the last occurrence of the word on or to the left of
the editing caret.

• Return_From_Find.bsh

Returns the user to the buffer and location specified in the bookmark created by
Find_Occurrence , reopening a file if necessary.

The file is reopened if necessary; an error message is displayed if the file no longer
exists. If the file exists but the caret position index exceeds the size of the file
(because of intervening deletions, for example), the file is displayed and an error
message alerts the user that the bookmarked caret position is invalid. The bookmark
is deleted immediately after it is used.

130

Appendix H. Macros Included With jEdit

H.5. Console Plugin Macros
The Console plugin allows the user to run commands in various available shells and view
output in a dedicated text window. The following macros automate the use of Console
and the output of commands that it processes.

More information about the Console plugin is found in its separate help file.

• Display_Console_Output.bsh

Copies contents of Console’s output window to a new text buffer.

• Go_to_Console.bsh

Sets the input focus to the “Console” shell.

The plugin is opened if necessary. Binding this macro to a shortcut provides
immediate access to the Console plugin from the keyboard.

• Run_java.bsh

Runs java on the current buffer in the Console plugin.

If the JCompiler plugin is installed, the full classname will be passed to java;
otherwise the current directory name will be passed as the value of ’-classpath’.

• Run_javac.bsh

Runs javac on the current buffer in the Console plugin.

The classpath for javac is set as the current buffer’s directory.

• Run_jikes.bsh

Runs jikes on the current buffer in the Console plugin.

The jikes program is a popular, free alternative Java compiler. This macro executes
jikes on the current buffer using its directory as the classpath.

• Run_jmk.bsh

Runs jmk in the Console plugin on a target supplied by the user in an input dialog.

The jmk program is a make utility written in Java.

• Run_make.bsh

131

Appendix H. Macros Included With jEdit

Runs make in the Console plugin on a target supplied by the user in an input dialog.

• Run_Last_Console_Command.bsh

Reruns the last command run in the Console shell.

• Run_Perl_Script.bsh

Runs the current buffer in a Perl interpreter and displays output in the Console
plugin.

The Perl interpreter must be supplied by the user. The macro will display an error
mesage if the buffer’s filename does not have a.pl extension. The macro also
prompts for any command line parameters to be passed to the Perl interpreter.

H.6. Macros for Other Plugins
These macros work with other plugins written for jEdit.

• Go_to_Clipper.bsh

Sets the input focus to the Clipper plugin.

• Go_to_File_System_Browser.bsh

Sets the input focus to the file system browser.

• List_Plugin_Internal_Names.bsh

Writes a sorted list of installed plugins to the current buffer.

The form of each name is that used byjEdit.getPlugin() .

Note: The name can be used in a macro to test for the presence of a
particular plugin.

• Show_Dual_Diff.bsh

Runs the JDiff plugin on two files supplied to a dialog.

132

Appendix H. Macros Included With jEdit

H.7. Macros for Listing Properties
These macros produce lists or tables containing properties used by the Java platform or
jEdit itself.

• jEdit_Properties.bsh

Writes an unsorted list of jEdit properties in a new buffer.

• System_Properties.bsh

Writes an unsorted list of all Java system properties in a new buffer.

• Look_and_Feel_Properties.bsh

Writes an unsorted list of the names of Java Look and Feel properties in a new
buffer.

H.8. Miscellaneous Macros
While these macros do not fit easily into the other categories, they all provide interesting
and useful functions.

• Cascade_jEdit_Windows.bsh

Rearranges view and floating plugin windows.

The windows are arranged in an overlapping “cascade” pattern beginning near the
upper left corner of the display.

• Copy_Mode_Abbrevs.bsh

Copies all abbreviations from one editing mode to another, overwriting any
duplicate entries.

A number of jEdit editing modes target languages that share keywords, tags or other
features. Examples include “java” and “beanshell”, and “c” and “c++”. This macro
saves the trouble of manually editing abbreviations sets to share abbreviations
between editing modes. The macro will also permit copying of a mode’s

133

Appendix H. Macros Included With jEdit

abbreviations to the “global” abbreviation set that is available in all buffers
regardless of editing mode.

The macro will overwrite any existing abbreviations in the target editing mode
using the same abbreviation as a member of the source set. Use caution in copying
from one set to another, as any attempt to undo the copying must be done manually.

• Display_Abbreviations.bsh

Displays the abbreviations registered for each of jEdit’s editing modes.

The macro provides a read-only view of the abbreviations contained in the
“Abbreviations” option pane. Pressing a letter key will scroll the table to the first
entry beginning with that letter. A further option is provided to write a selected
mode’s abbreviations or all abbreviations in a text buffer for printing as a reference.
Notes in the source code listing point out some display options that are configured
by modifying global variables.

• Display_Shortcuts.bsh

Displays a sorted list of the keyboard shortcuts currently in effect.

The macro provides a read-only view of the combined contents of “Command
Shortcuts”, “Macro Shortcuts” and “Plugin Shortcuts” option panes. Pressing a
letter key will scroll the table to the first entry beginning with that letter. A further
option is provided to write the shortcut assignments in a text buffer for printing as a
reference. Notes in the source code listing point out some display options that are
configured by modifying global variables.

• Evaluate_Buffer_in_BeanShell.bsh

Evaluates contents of current buffer as BeanShell script. Opens new buffer to
receive any text output.

This is a quick way to test a macro script even before its text is saved to a file.
Opening a new buffer for output is a precaution to prevent the macro from
inadvertently erasing or overwriting itself. BeanShell scripts that operate on the
contents of the current buffer will not work meaningfully when tested using this
macro.

• Go_to_Text_Area.bsh

Sets the input focus to the text editing area.

134

Appendix H. Macros Included With jEdit

Linked to a keyboard shortcut, this macro can quickly return input focus to the text
area after executing macros likeGo_to_Console.bsh or Go_to_Clipper.bsh .

• Notepad.bsh

Displays a tabbed set of text windows in a floating frame.

• Run_Macro_at_Caret.bsh

Executes the macro whose name appears at the editing caret.

When used with abbreviations for macro name, this macro allows the user to
execute any macro script from the keyboard by typing its name, without the.bsh

extension. It will search for the requested script in both the system and user macro
directories, in each case using the caret text as a relative path.

The full utility of this macro can be acheived when it is combined with
abbreviations for commonly used macros. To try it out, follow these steps:

1. In the “Macro Shortcuts” option pane, AssociateRun_Macro_at_Caret with
the shortcutControl -Space.

2. In the “global” abbreviation group, associate the abbreviation “dtt” with the
text “/Text/Insert_Date”. The leading forward slash character is necessary
and should be used regardless of one’s operating system. Make sure that the
abbreviation option pane has the checkboxSpace bar expands abbrevs
selected.

3. To activate the macro from the keyboard, typedtt in a text buffer.

4. Press the space bar to expandddt to /Text/Insert_Date

5. PressControl -Spaceto run the macro. The text/Text/Insert_Date
will be replaced by the output of theInsert_Date macro.

Repeating this procedure allows the user to execute macros from the keyboard using
shortcut names instead of keystrokes.

• Show_Free_Memory.bsh

Runs the Java garbage collection routine to free unneeded memory.

After running garbage collection, the macro displays a message box with text and
graphic displays of jEdit’s memory usage after garbage collection.

135

	Table of Contents
	Chapter 1. Basic Concepts
	1.1. Conventions
	1.2. Starting jEdit
	1.3. Buffers
	1.4. Views
	1.5. The Text Area
	1.6. Command Repetition

	Chapter 2. Working With Files
	2.1. Creating New Files
	2.2. Opening Files
	2.3. Saving Files
	2.3.1. Autosave and Backups
	2.3.2. Line Separators

	2.4. The File System Browser
	2.5. Reloading Files
	2.6. Multi-Threaded I/O
	2.7. Printing Files
	2.8. Closing Files and Exiting jEdit

	Chapter 3. Editing Text
	3.1. Moving The Caret
	3.2. Selecting Text
	3.3. Inserting and Deleting Text
	3.4. Undo and Redo
	3.5. Working With Words
	3.6. Working With Lines
	3.7. Working With Paragraphs
	3.8. The Clipboard
	3.9. Scrolling
	3.10. Markers
	3.11. Registers
	3.11.1. Text Registers
	3.11.2. Position Registers

	3.12. Search and Replace
	3.12.1. Searching For Text
	3.12.2. Replacing Text
	3.12.3. HyperSearch
	3.12.4. Multiple File Search
	3.12.5. The Search Bar

	Chapter 4. Edit Modes
	4.1. Mode Selection
	4.2. Syntax Highlighting
	4.3. Writing Edit Modes
	4.3.1. An XML Primer
	4.3.2. The Preamble
	4.3.3. The MODE Tag
	4.3.4. The PROPS Tag
	4.3.5. The RULES Tag
	4.3.5.1. The TERMINATE Rule
	4.3.5.2. The WHITESPACE Rule
	4.3.5.3. The SPAN Rule
	4.3.5.4. The EOL_SPAN Rule
	4.3.5.5. The MARK_PREVIOUS Rule
	4.3.5.6. The MARK_FOLLOWING Rule
	4.3.5.7. The SEQ Rule
	4.3.5.8. The KEYWORDS Rule
	4.3.5.9. Token Types

	4.4. Installing Edit Modes

	Chapter 5. Editing Source Code
	5.1. Abbreviations
	5.2. Bracket Matching
	5.3. Tabbing and Indentation
	5.3.1. Soft Tabs
	5.3.2. Automatic Indent

	5.4. Commenting Out Code
	5.5. Folding
	5.5.1. Narrowing

	Chapter 6. Customizing jEdit
	6.1. The Buffer Options Dialog Box
	6.2. Buffer-Local Properties
	6.3. The Global Options Dialog Box
	6.4. The jEdit Settings Directory

	Chapter 7. Installing and Using Plugins
	7.1. The Plugin Manager
	7.2. Installing Plugins
	7.3. Updating Plugins

	Appendix A. Keyboard Shortcuts
	Appendix B. History Text Fields
	Appendix C. Glob Patterns
	Appendix D. Regular Expressions
	Appendix E. The Activity Log
	Appendix F. Command Line Usage
	Chapter 8. Macro Basics
	8.1. What is BeanShell?
	8.2. Recording Macros
	8.3. How jEdit Organizes Macros
	8.4. Single Execution Macros

	Chapter 9. A Few Simple Macros
	9.1. The Mandatory First Example
	9.2. Helpful Methods in the Macros Class
	9.3. Now For Something Useful

	Chapter 10. A Dialog-Based Macro
	10.1. Use of the Macro
	10.2. Listing of the Macro
	10.3. Analysis of the Macro
	10.3.1. Import Statements
	10.3.2. Create the Dialog
	10.3.3. Create the Text Fields
	10.3.4. Create the Buttons
	10.3.5. Register the Action Listeners
	10.3.6. Make the Dialog Visible
	10.3.7. The Action Listener
	10.3.8. Get the User's Input
	10.3.9. Call jEdit Methods to Manipulate Text
	10.3.10. The Main Routine

	Chapter 11. Macro Tips and Techniques
	11.1. Getting Input for a Macro
	11.1.1. Getting a Single Line of Text
	11.1.2. Getting Multiple Data Items
	11.1.3. Selecting Input From a List
	11.1.4. Using a Single Keypress as Input

	11.2. Using a Startup Macro
	11.3. Debugging Macros
	11.3.1. Identifying Exceptions
	11.3.2. Using a Message Box As a Tracing Tool
	11.3.3. Writing Trace Messages to the Activity Log

	Appendix G. jEdit API Quick Reference
	G.1. Class jEdit
	G.2. Class View
	G.3. Class DockableWindowManager
	G.4. Class JEditTextArea
	G.5. Class Buffer
	G.6. Class Macros
	G.7. Class SearchAndReplace
	G.8. Class GUIUtilities
	G.9. Class TextUtilities
	G.10. Class MiscUtilities
	G.11. Class BeanShell

	Appendix H. Macros Included With jEdit
	H.1. File Management Macros
	H.2. Text Macros
	H.3. Java Code Macros
	H.4. Search Macros
	H.4.1. The Find_Occurrence Macro Group

	H.5. Console Plugin Macros
	H.6. Macros for Other Plugins
	H.7. Macros for Listing Properties
	H.8. Miscellaneous Macros

