agena »>

A Programming Language

Primner and Reference
for Version 0.13

by Alexander Walz
February 23, 2009

AGENA Copyright 2006-2009 by Alexander Walz. All rights reserved.
Portions Copyright 2006 Lua.org, PUC-Rio. All rights reserved.

Agena is licensed under the terms of the MIT license reproduced below. This means
that Agena is free software and can be used for both academic and commercial
purposes at absolutely no cost.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furmnished to do so, subject to the
following conditions:

The above copyright notfices and this permission notice shall be included in all
copies or portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as frademarks. Where those designations appear in this
manual, and the author was aware of a trademark claim, the designations have
been printed in inifial caps or all caps.

Contact: In case you find bugs, erors in this manual, have proposals, or questions
regarding Agena, please contact the author af; agena.infoat-online. de

The latest release of Agena may be found af http://agena.sourceforge.net.

agena >> 3

Credits

case of statement
The original code was written by Andreas Falkenhahn and posted to the Lua
mailing list on 01 Sep 2004. In Agena, the functionality has been extended to
check multiple values in the of branches.

skip statement
The skip functionality for loops has been written by Wolfgang Oertl and posted to
the Lua Mailing List on 12 Septemiber 2005.

globals base library function
The original Lua and C code for globals has been written by David Manura for
Lua 5.1 in 2008 and published on www.lua.org. Because of crashes with library C

functions passed fo globals, the C source has been patched so that in Agena,
C functions are no longer checked.

Contents

agena >> 5

Table of Contents

T I OAUCH N o 11
T] FEOTUIES o 11
1.2 Features in DetQilo 11
T 3 HIS Oy ottt 13

2 Installing anNd RUNNING AQENA ..o i e 17
2 I T 17
2 11 17
2. 3 Wi OW S ottt e 18
2.4 AQena INHAlSAHON ... 18

B O I W it 21
3.1 INPUt CONVENTIONS Lt 21
3.2 Getting fAMIlIAr ..o 21
3.3 oMM NS o 23

4 DAt & O AN ONS vttt 27
4.1 Names, Keywords, ANA TOKENS ... ovviv it 27
L X (@]] T o 28
4, 3 ENUMIEIO ON oo 29
4. DIt ON L 30
4.5 PIECEABNCE i 30
4.6 ANTNNET C L 31
4,6, 1 NUMDEIS i i 31
4.6.2 ArithmetiC OPEIatONS vttt 32
4.6.3 Increment and DeCIEMENT ... i 33
4.6.4 Mathematical CoNSTANTS ... i e 34
4.6.5 Complex Math .o 34
11197 T 35
4.8 BOOIEAN EXOIESSIONS vttt 38
4.0 TADIES ottt 39
R Y £ (@ Y1 40
4.9, 2 DICHONANES ittt 43
4.9.3 Table, Set and Sequence OPEratOrSovvv it 44
4.9.4 TADIE FUNCHONS ..\t 47
4.9.5 TADIE RETEIENCES ..\ it i 47
T 48
A 1T SEOUENCES ottt 50
4.12 More on the create statement ... i i 53
A 8 PaIIS ottt 53
@1 T g 1Y/ @ T T 55

T 1 () 59
BT CONAI I ONS ottt 59
. i StatEmMENt L 59
ST I @ 01T (@ | (] R P 60
5.1.3 Case Statement .. 61
D2 LO0 S it 62
5.2, 1 WhilE-LOO S ittt 62

5.2, 2 fOI 0 00 v ittt 63

6 Contents

5.2.3 for/in LOOPS fOr TADIES ...\ttt e e 64
5.2.4 for/in LOOPS fOr SEQUENCES .\ vttt ittt ittt 65
5.2.5 for/in LOOPS fOr STHNGS .+ .ottt 66
5.2.6 fOr/iN LOOPS fOr SETS .\ttt 66
5.2.7 fOI/WhIlIE LOOIS vttt it 67
5.2.8 LOOPD INteImUD I ON ot 67
O PrOGIAMIMING vttt et e 71
6.1 PrOCEAUIES .. it 71
6.2 LOCAl VaNODIES . 72
6.3 GlobAl VaNADIES ... i 73
6.4 OptioNAl ATQUMIENTS Lt 74
6.5 PASSING OptiONS o\ttt 75
6.6 Type Checking & ErrorHaNdliNng ... 76
6.7 Shortcut Procedure Definitiono 77
6.8 User-Defined ProCedure TYES .. v vttt 78
6.9 SCOPING RUIES ..\ 78
6. 10 LOOPS IN PrOCEAUIES ..\ttt e e 80
.11 POCKOGES ittt 80
6.11.1 Wrting @ New PACKAQE .. v 80
6.1T.2The WIth FUNCHON .t e e 82
6. 12 RemMembEr taIES ... v i 83
6.13 Overloading Operators with Metamethods ... 85
O 1A FIle 1O i 89
6.14.1 Reading Text Files ... o 89
6.14. 2 WHHiNG TeXt Files ... 89
7 StANAAIA LIS oot Q3
7.1 BASIC FUNCHONS ot e @3
7.2 Coroutine ManipUIOTON ..t e 111
7.3 MOAUIES ot 112
7.4 StiNG MANiPUIGHON ..o 115
7.4.1 Kernel Operators and Basic Library Functionscocviviiinonn, 115
7.4.2The strings LiIorarny ..o 117
7.5 Table ManipUIOTON . 124
7.5, 1 Kernel OperOtOrS ottt 124
7.5, 2 1ADIES LIOrary i 126
7.6 SeT MANiDUIAHON 1t e 128
7.7 Sequence ManipUIOTON ... e 130
7.8 Mathematical FUNCHIONS ...t 133
7.8. 1 Kernel OperOtOrS ottt i 133
7.8, 2 MO LOrany o 134
7.9 Input and Output FACIIIHIES ... 140
7.10 binio - Binary File PACKAQE ... 145
7.11 Operating System FACIliies 148
7.12The Debug Liorary ... 153
7. 3 ULlS - eSS oo 157
7. T4 Stats - STOtSHCS © oo 159
7.15 compress - Text COmMPIESSION ...ttt e 160
7.16 calc - CAICUIUS PACKAQGE ...\ i e 163

7.17 linalg - Linear Algebra POCKAQEcooiii 165

agena >> 7

8 AQeNa DatabaSE SYStemM .. 175
@ C API FUNCHIONS ottt 187
A NI 4ottt 203
F B 7= (6 1 (@] - 205
A2 MeETAMEINOAS vt 205

A3 SYSTEM VANl ..t 206

Contents

agena >>

Chapter One

Introduction

10

1 Agena

agena >> 11

1 Infroduction

1.1 Features

Agena is an easy-fo-learn interpreted programming language suited for
sophisticated procedural programming.

It combines features of Lua 5, Algol 60, Algol 68, Maple, ABC, ANSI C, and Sinclair
ZX Spectrum BASIC.

While Agena's syntax looks a lof like Algol 68, its implementation is based on the
original Lua 5.1 sources created by Roberto lerusalimschy, Luiz Henrique de
Figueiredo, and Waldemar Celes.

Agena supports all of the common functionality found in imperative languages:

e Qassignments,

* |oops,

e conditions,

e procedures, and

* package handling.

Besides providing these basic operations, it has extended programming features
described later in this manual, such as

* high-performance processing of complex data structures,

» fast string and mathematical operators,

* extended conditionals,

* abridged and extended syntax for loops,

e special variable increment, decrement and deletion statements,
» efficient recursion tfechniques,

* eaqsy-to-use package initialisation functions,

* and much more.

Like Lua, Agena is untyped and includes the following basic data structures:
numibers, strings, Booleans, tables, and procedures. In addition to these types, it
also supports Cantor sets, sequences, paqirs, and complex values known from
mathematics. With all of these types, you can easily build fast applications.

1.2 Features in Detail

Agena offers various flow control facilities such as

* if/elif/else conditions,

* case of/else conditions similar to C's switch/case statements,

* s operator to return alternative values,

* numerical for/from/to/by loops where start, stop, and step values are optional,
e combined numerical for/while loops,

» for/in loops over strings and complex data structures,

12

1 Agena

while and do/as loops similar fo Modula's while and repeat/until not() iterators,
a skip statement to prematurely trigger the next iteration of a loop,

a break statement to prematurely leave a loop,

fry/else data type validation.

Data types provided are:

rational and complex numibers with extensions such as infinity and undefined,
strings,

Booleans such as true, false, and fail,

the null value meaning 'nothing’,

multipurpose tables implemented as associative arrays to hold any kind of data,
taken from Luq,

Cantor sets as collections of unique items,

seguences, i.e. vectors, to internally store items in strict sequential order,

pairs to hold two values or pass arguments in any order to procedures,

threads, userdata, and lightuserdata inherited from Lua.

For performance, most basic operations on these types were built info the Agena
kernel.

Procedures with full lexical scoping are supported, as well, and provide the following
extensions:

the << (args) -> expression >> syntax to easily define simple functions,
user-defined types for procedures to allow individual handling (the same feature
is available to the above mentioned tables, sets, sequences, and pairs),
remember tables for conducting recursion at high speed and at low memory
consumption,

the nargs system variable which holds the number of arguments actually
passed to a procedure,

metamethods to define operations for tables, sets, sequences, and pairs,
inherited from Lua.

Some other features are:

functions to support fast text processing (see in, replace, lower, and upper
operators, as well as the functions in the strings and utils packages),

easy configuration of your personal environment via the Agena initialisation file,
an easy-to-use package system also providing a means to load a library and
define short names for all package procedures at a stroke (with function),

the binio package to easily write and read files in binary mode,

facility to store any data to a file and read it back later (save and read
functions),

undergraduate Calculus, Linear Algebra, and Statistics packages,

enumeration and multiple assignment,

the external switch to a numeric for loop to pass the last iteration value to its
surrounding block.

agena >> 13

Agena is shipped with all Lua C packages that are part of Lua 5.1. Some of the very
basic Lua library functions have been transformed to Agena operators to speed up
execution of your programs; additional packages for basic statistical functions,
Linear Algebra, undergraduate Calculus, a library to create and read binary files
and a text-based database are available, as well. The Lua mathematical and string
handling packages have been tuned and extended with new funcftions.

Agena code is not compatible to Lua. lts C API, however, was left almost
unchanged and many new API functions have been added. As such, you can
intfegrate any C packages you have already written for Lua without modifying its
code in 99.9 % of all cases.

1.3 History

| have been dreaming of creating my own programming language for the last 25
years, my first rather unsuccessful atftempt made on a Sinclair ZX Spectrum in the
early 1980s.

Plans became more serious in 2005 when | learned Lua to write procedures for
phonetic analysis and also learned ANSI C to transfer them into a C package. In
autumn 2006 the first modifications of the Lua parser began with extensive
modifications and extensions of the lexer, parser and the Lua Virtual Machine in
summer 2007. Most of Agena's functionality had been completed in March 2008,
followed by the first new data structure, Cantor sets, one month later, some more
data structures, and a lot of fine-funing and testing thereafter.

Study of many books and websites on various programming languages such as
Algol 60, Algol 68, and ABC along with Maple and my various ideas on the
‘perfect” language helped to conceive a completely new Algol 68-syntax based
language with high-speed general functionality for arithmetic and text processing.

You may find that at least the goal of designing a perfect language has not yet
been met. For example, the syntax is not always consistent: you will find Algol
68-style elements in most cases, but also ABC/SQL-like syntax for basic operations
with structures. The primary reason for this is that sometimes natural language
statements are better to reminisce. | have stopped bothering on this inconsistency
issue.

Agena has been designed on Windows 2000 and NT 4 using the MinGW GCC
compiler. Further programming has been done on a Sun Sparc Uitra 6 and @
Sun Blade 150 running Solaris 10 and on openSuSE Linux 10.3 to make the
interpreter work in UNIX environments.

14

1 Agena

agena >>

Chapter Two

Installing & Running Agena

16

2 Installing and Running Agena

agena >> 17

2 Installing and Running Agena

2.1 Solaris

In Solaris, put the gzipped Agena package into any directory. Assuming you install
Agena on a Sparc, uncompress the package by entering:

> gzip -d agena-0.13.0-sparc-local.gz
Then install it with the Solaris package manager:
> pkgadd -d agena-0.13.0-sparc-local

This installs the executable into the /usr/local/bin folder and the rest of dll files intfo
lust/agena . The Jusr/agena directory is called the “main Agena folder .

Make sure you have the ncurses and readline libraries installed. From the
command line type agena and press RETURN.

= Terminal

window Edit Options ﬂelp‘

> agena
ACEMA »> 0.12.3 Language Demonstrator as of December 24, 2008

ACENA comes with no warranty, 15 subject to the MIT Ticence, and has been
developed on Lua S and other sources.

8257448 KBytes of physical RaM free.
>

Image 1: Startup message in Solaris

The procedure for Solaris for x86 CPUs is the same.

2.2 Linux
In Linux, put the Agena rom package into any directory and install it by typing:

> rpm -ivh agena-0.13.0-linux-i386.rpm

This installs the executable into the /fusr/local/bin folder and the rest of all files into
lust/agena . The /jusr/agena directory is called the “main Agena folder'. Note that
you must have the ncurses and readline libraries installed before.

From the command line type agena and press RETURN.

18 2 Installing and Running Agena

2.3 Windows

Just execute the Windows installer, and choose the components you want to instaill.

Make sure you either let the installer automatically set the environment variable
called AGENAPATH containing the path to the main Agena folder (the default) or set
it later manually in the Windows Control Panel, icon “System.

2.4 Agena Initiali sation

When you start Agena, the following actions are faken:

1. The package tables for the libraries shipped with the standard edition of Agena
(e.g. math, strings, etc.) are created so that those package procedures are
available to the user.

2. All global values are copied from the G table to ifs copy _origG, so that the
restart function can restore the original environment if invoked.

3. The Agena system variable EnvAgenaPath poinfing to the main Agena folder is
set by either querying the environment variable AGENAPATH or - if not set -
checking whether the current working directory contains the string /agena' and
building the path accordingly. In UNIX, if the path could not be determined as
described before, EnvAgenaPath is by default set fo /jusriagena , but in
Windows there is no such falllback. The variable is used extensively in the with
and readlib functions. If it could not be set these two functions do not work, but
all others do.

4. The standard Agena library library.agn in the /agena/lio folder is loaded and
run. The library.agn fle includes functfions written in the Agena language
which complement the C libraries. If the standard library does not exist, this step
is skipped without any errors.

5. An initialisation file - if present - called agena.ini residing in the /agenalib folder
is loaded and run. As with library.agn , this file contains code written in the
Agena language that you may customise with pre-set variables, auxiliary
procedures, etc. that shall be available in every Agena session. If the
initialisation file does not exist, no error is issued, and the Agena session begins.

agena >>

Chapter Three

Overview

20

3 Overview

agena >> 21

3 Overview

Let us start by just entering some commands which will be described Iater in this
manual so that you can get acquainted with Agena. In this chapter, you will also
learn about some of the basic data types available.

3.1 Input Conventions
Any valid Agena code can be enfered at the console with or without a frailing
colon or semicolon:

* |f an expression is finished with a colon, it is evaluated and the value is printed at
the console.

* |f the expression ends with a semicolon or neither with a colon nor a semicolon,
it is evaluated, but nothing is printed.

You may optionally insert white spaces between operands in your statements.

3.2 Getting familiar

Assume you would like to add the numbers T and 2 and show the result. Then type:

> 1+2:
3

If you want to store a value to a variable, type:

>c:=25;

Now the value 25 is stored to the name ¢, and you can refer to this number by the
name ¢ in subsequent calculations.

Assume that ¢ is 25° Celsius. If you want to convert it to Fahrenheit, enter:

> 1.8*c + 32:

77

If you would like to compute the sum of 1 to 10, and hold the result in a variable
called r, input:

>r:=0;
> for i from 1 to 10 do

> ri=r+i
> od;

>
55

22 3 Overview

There are many functions available in various libraries. To compute the arc sine, use
the arcsin function in the math package;

> math.arcsin(1):
1.5707963267949

You can easily write your own functions, for example one called deg that converts
radians to degrees.

> deg = << (x) -> x * 180/ Pi >>;

To compute the value of the function at Pi/4, just input:
> deg(Pi/4):
45

Try one of the built-in standard operators. lower converts all letters from upper case

to lower case.

> lower(AGENA"):
agena

One of the types to hold structured values is the table, which can hold any kind of
data. Assume you would like to store the birthdays of your friends, enter:

> birthdays := ['Neo' ~ '1970/01/01', 'Trinity' ~' 1970/12/247;

Determine Neo's birthday:

> birthdays['Neo':
1970/01/01

You can add new entries into your table.
> birthdays['Morpheus'] := '1952/04/01"

Now print the current contents:

> birthdays:
Morpheus ~ 1952/04/01
Trinity ~ 1970/12/24

Neo ~ 1970/01/01

To delete entries, just type:

> birthdates['Morpheus'] := null

> birthdates:
Trinity ~ 1970/12/24
Neo ~ 1970/01/01

agena >> 23

The global variable ans holds the result of the last computation you completed with
a colon.

> ans:
agena

The console screen can be cleared in both the Win32 and UNIX versions by just
entering the keyword cls:

>cls

The restart statement resets Agena to its inifial state, i.e. clears all variables you
defined in a session.

> restart;

If you prefer another Agena prompt instead of the predefined one, assign:

> PROMPT :='Agena$"
Agena$

You may put this statement into the agena.ini file in the Agena lio folder, if you do
not want to manually change the prompt every fime you start Agena.

3.3 Comments

You should always document the code you have written so that others or even
yourself will understand its meaning later.

A single line comment starts with a single hash. Agena ignores all characters
following the hash up to the end of the current line.

> # this is a single-line comment

> a = 1; # a contains a number

A mulfi-line comment, also called ‘long comment™ is starfed with the token
sequence #/ and ends with the closing /# tokens'.

> #/ this is a long comment,
> split over two lines /#

Now let us learn more about Agena.

' Multi-ine comments cannot begin in the very first line of a program file. Use a single comment
instead.

24

3 Overview

agena >>

25

Chapter Four

Data & Operations

26

4 Data

agena >> 27

4 Data & Operations

Agena features a set of data types and operations on them that are suited for both
general and specialised needs. While providing all the general types inherited from
Lua - numbers, strings, booleans, nulls, tables, and procedures - it also has four
additional data types that allow very fast operations: sets, sequences, pairs, and
complex numbers.

Type Description

number any integral or rational numiber, plus undefined and infinity

string any fext

boolean Booleans (e.qg. true, false, and fail)

null a value representing “nothing”

table a multipurpose structure storing numbers, strings, booleans, tables,

and any other data type

procedure | a predefined collection of one or more Agena statements

set the classical Cantor set storing numbers, strings, booleans, and all
other data types available

sequence | a vector storing numbers, strings, booleans, and all other data types
except null in sequential order

pair a pair of two values of any type

complex a complex number consisting of a real and an imaginary number

Table 1. Types

Tables, sets, sequences, and pairs are also called sfructures in this manual.

4.1 Names, Keywords, and Tokens

In Chapter 3, we have already assigned data - such as numbers and procedures -
to names, also called "variables . These names refer to the respective values and
can be used conveniently as a reference to the actual data.

A name always begins with an upper-case or lower-case lefter or an underscore,
followed by one or more upper-case or lower-case letters, underscores or numbers
in any order.

Since Agena is a dynamically typed language, so no declarations of variable
names are needed.

Valid names Invalid names
var lvar

_var 1
varl

_varln

1
ValueOne

valueTwo

Table 2: Names

28 4 Data

The following keywords are reserved and cannot be used as names:

abs add and arctan as assigned break by bye case char clear cls copy cos
dec delete dict do elif else end entier enum esa C even exp external

fail false fi filled finite for from gammaln glo bal if imag in

inc insert int intersect into is isnull join key s left In local lower
minus nargs not null od of or proc qadd real rep lace restart return

right seq shift si sign sin size skip split sqrt subset tan then to

trim true try type union unique upper utype whil e xsubset

boolean complex lightuserdata number pair proced ure sequence set

string table thread userdata

The following symbols denote other tokens:

+-FFN\NYHAFHE=<S<=>=<>=(){}[] pin, L ?0

4.2 Assignment

Values can be assigned to names in the following fashions:

name = value
name,;, name,, ..., namey .= value,, value,, ..., valuey
name;, hame,, ..., name; -> value

In the first form, one value is stored in one variable, whereas in the second form,
called "multiple assignment statement™, name; is set to value;, name; is assigned
value,, efc. In the third form, called “short-cut multiple assignment statement”, a
single value is set to each name to the left of the -> operator.

First steps:
>a:=1,

> a.

1

An assignment statement can be finished with a colon to both conduct the
assignment and print the right-hand side value.

> a = exp(a):
2.718281828459

Multiple assignments:

>a,bi=1,2

agena >>

29

If the left-hand side contains more names than the number of values on the

right-hand side, then the excess names are set fo null.

>c,d=1

>c:
1

>d:
null

A short-cut multiple assignment statement:

> X, y -> exp(l)r

> X
2.718281828459

>y
2.718281828459

4.3 Enumeration

Enumeration with step size 1 is supported with the enum statement:

enum name; [, nhame, ... |
enum name; [, name,, ...] from value

In the first form, name,, name,, etc. are enumerated starting with the numeric

value 1.

> enum ONE, TWO;

> ONE:
1

> TWO:
2

In the second form, enumeration starts with the numeric value passed right after the

from keyword.
> enum THREE, FOUR from 3

> THREE:
3

> FOUR:
4

30 4 Data

4.4 Deletion

You may delete the contenfs of one or more variables with one of the following
methods: Either use the clear command:

clear name; [, name,, ..., namex]

>a.=1,;
> clear a;
>a:

null

which also performs a garbage collection useful if large structures shall be removed
frorn memory, or set the variable to be deleted to null:

>b:=1;

> b= null:
null

The null value represents the absence of a value. All names that are unassigned
evaluate to null. Assigning names to null quickly clears their values, but does not
garbage collect them.

4.5 Precedence

Operator precedence in Agena follows the table below, from lower to higher
priority:

or

and

<><=>==<>

in subset xsubset union minus intersect

+ - split
* | % \ shift

not -(unary)
N k%

As usual, you can use parentheses to change the precedence of an expression.
The concatenation (..), exponentiation (», *) and pair (:) operators are right
associative. All other binary operators are left associative.

> 1+3*%4:
13

> (1+3)*4:
16

agena >> 31

4.6 Arithmetic

4.6.1 Numbers

In the ‘real” domain, Agena internally only knows floating point numbers which can
represent integral or rational numeric values. All numbers are of type number.

An integral value consists of one or more numbers, with an optional sign in front of .

e 1

. 20
e 0
. +4

A rational value consists of one or more numbers, an obligatory decimal point at
any position and an optional sign in front of it:

e -1.12
0.1
e .1

Negative integral or rational values must always be entered with a minus sign, but
positive numbers do not need to have a plus sign.

You may optionally include one or more single quotes within a number 1o group
digifs:

>10'000'000:
10000000

You can alternatively enter numbers in scientific notation using the “e” symbol.

> 1el0:
10000000000

> -le-4:
-0.0001

If o number ends with the letter 'K, "M, or "d ", then the number is multiplied with
1,024, 1,048,576 (1,0242), or 12, respectively. If a number ends with the letter "k ™ or
‘m, then the number is multiplied with 1,000 or 1,000,000, respectively.

> 2k:
2000

> 1M:
1048576

> 12d:
144

32

4 Data

4.6.2 Arithmetic Operations

Agena has the following arithmetical operators:

Operator | Operation Details / Example

+ Addition 1+2»3

- Subftraction 3-2»1

* Multiplication 2*3»6

/ Division 4/2»2

A Exponentiation with rational power | 2723 » 8

*x Exponentiation with integer power | fasterthan ~,2*3» 8
% Modulus 5%2»1

\ Integer division 5\2»2

shift Bitwise shift If the right-hand side is positive,

the bits are shiffed to the left
(multiplication with 2), else they
are shifted to the right (division
by 2).

Table 3: Arithmetic

Agena has a lot of mathematical functions both built into the kernel and available
in the math, stats, linalg, and calc libraries. Table 3 shows some of the most

common.

The mathematical procedures that reside in packages must always be entered by
passing the name of the package followed by a dot and the name of the

procedure?.

Unary operators like In, exp, etc. can be entered with or without simple brackets.

Procedure Operation Library | Example and result
sin(x) Sine (x in radians) Kemel |sin(0) »0
cos(X) Cosine (x in radians) Kemel |cos(0) »1
tan(x) Tangent (x in radians) Kemel |tan(l) » 1.557407..
arcsin(x) Arc sine (x in radians) math | math.arcsin(0) » 0
arccos(x) Arc cosine (x in radians) math | math.arccos(0) »
1.570796....
arctan(x) Arc tangent (x in radians) | Kernel | arctan(Pi) » 1.262627..
sinh(x) Hyperbolic sine math | math.sinh(0) » 0
cosh(x) Hyperbolic cosine math | math.cosh(0) » 1
tanh(x) Hyperbolic tangent math | math.tanh(0) » 0
abs(x) Absolute value of x Kemel |abs(-1) »1
entier(x) Rounds x downwards to Kernel | entier(2.9) » 2
the nearest integer entier(-2.9) » -3
even(x) Checks whether x is even | Kemel | even(2) » true
exp(x) Exponentiation & Kemel | exp(0) »1

2 Check the with

procedures.

function which provides an easy way to define short names for package

agena >> 33
Procedure Operation Library | Example and result
gammaln(x) | In T X Kernel | exp(gammaln(3+1)) » 6
int(x) Rounds x to the nearest Kernel | int(2.9) » 2

infeger towards zero int(-2.9) » -2
In(x) Natural logarithm Kemnel | In(1) »0
log(x, b) Logarithm of x to the math | math.log(8, 2) » 3

base b
roundf(x, d) | Rounds the real value xto | math | math.roundf(

the d-th digit sgrt(2), 2) » 1.41
sign(x) Sign of x Kemel |sign(-1) »-1
sart(x) Square root of x Kemel |sart(2) » 1.414213.
add([...]) Sum Kemel | add([1,2, 3]) » 6
mean([...]) Arithmetic mean stats stats.mean([1, 2, 3]) » 2
median([...]) | Median stats | stats.median(

[1,2,3,4] » 25

Table 4: Common mathematical functions

4.6.3 Increment and Decrement

Instead of incrementing or decrementing a value, say

>a:=1;
by entering a statement like

>a.=a+1:
2

you can use the inc and dec commands® which are also faster:

inc name [, value]
dec name [, value]

If value is omitted, name is increased or decreased by 1.

> inc a;

>inc a, 2;

>a;
4

® Finishing an inc or dec statement with a colon instead of a semicolon does not work,

34 4 Data

>dec a, 3;

4.6.4 Mathematical Constants
Agena features the following arithmetic constants:

Constant Meaning
degrees Factor 1/Pi* 180 fo convert radians to degrees
EnvEps Equals 1.4901161193847656e-08
Exp Constant e = exp(1) = 2.71828182845904523536
I Imaginary unit
infinity Infinity
Pi Constant pi = 3.1415926535897932384¢
radians Factor Pi/180 1o convert degrees to radians
undefined | An expression stating that it is undefined, e.g. a singularity.

Table 5: Arithmetic constants

4.6.5 Complex Math

Complex numibers can be defined in two ways: by using the | constructor or the
imaginary unit represented by the letter I. Most of Agenad's mathematical operators
and functions know how to handle complex numbers.

>a:=111;
> b= 2+3%;

> a+b:
3+47%|

> a*b:
-1+5%

The following operators work on rational numbers as well as complex values: +, -, *,
[, ~, * ,= <> abs, arctan , cos, exp, In, sign, sin,sgrt ,tan , and unary minus. With
these operators, you can also mix numbers and complex numbers in expressions.
You will find that most functions of the math package are also applicable to
complex values.

Complex values are of type complex.

agena >> 35

4.7 Stings
Any text can be represented by including it in single quoftes:

> 'This is a string":
This is a string

Strings - like numibers - can be assigned to variables.

> str :='l am a string.";
> str:
| am a string.

Strings can be of almost unlimited length. Strings can be concatenated, characters
or seguences of characters can be replaced by other ones, and there are various
other functions to work on strings.

A string may contain no fext at all - called an empty string -, represented by two
consecutive single quotes with no spaces or characters between them:

S

You may obtain a specific character by passing a dollar sign and its position in
simple brackets right behind the string name. If you use a negative index n, then
the n-th character from the right end of the string is returned.

> str$(1);
I

In general, parts of a string consisting of one or more consecutive characters can
e obtained with the substring notation.

stringname$(start [, end])

You must at least pass the starting position of the substring. If only starf is given then
the single character at position start is retuned. If end is given too, then the
substring starting af position sfart up to and including position end is returned.

> str := 'string’

> str$(3):
r

> str$(3, 5):
rin

> str$(3, 3):
r

36 4 Data

You may also pass negative values for start and/or end. In these cases, the
positions are determined with respect to the right end of the string.

> str$(3, -1):
ring

> str$(3, -2):
rin

> str$(-3):
i

In Agena, a text can include any escape sequences known from ANSI C, e.Q.:

* \n :inserts a new line,
e \t :inserts a tabulator
* \b : puts the cursor one position 10 the left but does not delete any characters.

> 'l am a string.\nMe too.";
| am a string.
Me too.

> 'These are numbers: 1\t2\t3":
These are numbers: 1 2 3

> 'Example with backspaces:\b but without the colon
Example with backspaces but without the colon.

If you want to put a single quote into the string, put a backslash right in front of it:

>'A quote: \'":
A quote: '

Likewise, a backslash is inserted by typing it twice.

Two or more strings can be concatenated with the .. operator:

> 'First string, ' .. 'second string, ' .. 'third s tring":
First string, second string, third string

Instead of putting single quotes around a text, you may also use a back quote in
front of the text, but not af its end. The string then automatically ends with one of the
following tokens*:

<space>",~[]{}();:#'=2&% $8§\! A@<>|\rint

This also allows UNIX-style filenames 1o bbe entered using this shor-cut method.

> “text:
text

4 For the current settings of your Agena version see bottom of the luaconf.h file in the src directory of
the distribution.

agena >>

37

> */proglang/agena/utils/utils.agn:

/proglang/agena/utils

/utils.agn

Agena has basic operators useful for text processing:

Operator

Return

Function

sint

number or null

Checks whether a substring s is included in
sting 1. If true, the position of the first
occurrence of s in t is returned; otherwise null
is returned.

replace(s, p. 1)

string

Replaces all pafterns p in string s with string r. If
p is not in s, then s is returned unchanged.

s split d table of strings | Splits a string into items with d as the delimiting
character. The items are retuned in @
sequence of strings.

size(s) number Retumns the length of string s. If s is the empty
string, O is returned.

abs(s) number Returns the numeric ASCII code of character
S.

char(n) string Refuns the character corresponding to the
given numeric ASCII code n.

lower(s) string Converts a string to lowercase. Western
European diacritics are recognised.

upper(s) string Converts a sting to uppercase. Western
European diacritics are recognised.

trim(s) string Deletes leading and frailing spaces as well as

excess embedded spaces.

Some examples:

> str :='a string’;

Table 6: String operators

The character s is at the third position:

>'s'in str:
3

Let us split a string into its components which are separated by white spaces:

> str split " "
seq(a, string)

str is eight characters long:

> size(str):
8

38 4 Data

The ASCII code of the first character in str, a, is:
> abs(str$(1)):
97

franslated back to

> char(ans):
a

Put all characters in str to uppercase:

> upper(str):
A STRING

And now the reverse:

> lower(ans):
a string

The replace functionality easily replaces all occurrences of a substring with another
one:

> replace(str, 'string’, 'text’):
a text

A string always is of type string.

> type(str):
string

4.8 Boolean Expressions

Agena supports the logical values true and false, also called "Booleans . Any
condition, e.g. a < b, results to one of these logical values. They are often used to
tell a program which statements fo execute and thus which statements not fo
execute.

Boolean expressions always result 1o the Boolean values frue or false. Boolean
expressions are created by:

* relational operators (>, <, =, <=, >=, <>, in, subset),
* logical operators (and, or, not),
* logical names: true, false, fail, and null.

agena >>

39

Agena supports the following relational operators:

Operator | Description Example
< less than 1<2
> greater than 2>1
<= less than or equals 1<=2
>= greafer than orequals | 2>=1
= equals 1=1
<> not equals 1<>2
Table 7: Relational operators
Logical operators are:
Operator | Description Examples
and Both operands must evaluate to true so | frue and true » true
. false and false » false
that the Boolean expression results to true and false » false
frue. Otherwise the result is false. false and true » false
or At least one of the operands must true or true » true
true or false » true
evaluate to true so that the Boolean false or true » true
expression results to true. If neither of the | false or false » false
operands is frue, the expression is false.
not not true » false

Tumns a true expression 1o false and vice
versa.,

not false » true

Table 8. Logical operators

As expected, you can assign Boolean expressions 1o names

>cond:=1<2:

true

>cond:=1<2orl>2and1=1:

true

or use them in if statements.

In many situations, the null value can be used synonymously for false.

The Boolean constant fail can be used to denote an error. With Boolean operators
(and, or, not), fail behaves like the false constant, but remember that fail is always
unlike false, i.e. fail <> false results to true.

true, false, and fail are of type boolean. null, however, has its own type null.

4.9 Tables

Tables are used to represent any complex data structure. Tables consist of zero,
one or more key-value pairs, the key referencing to the position of the value in the
table and the value the data itself.

40 4 Data

Keys and values can be numbers, strings, and any other data type except null.

Here is a first example: Suppose you want to create a table with the following
meteorological data from Viking Lander 1 which landed on Mars in 1976:

Sol Pressure in mb | Temperature in °C
1.02 | 7.71 -78.28
1.06 |7.70 -81.10
1.10 |7.70 -82.96

>VLL:=[

> 1.02~[7.71, -78.28],
> 1.06 ~ [7.70, -81.10],
> 1.10 ~ [7.70, -82.96]
>];

To get the data of Sol 1.02 input:

> VL1[1.02]:
1~7.71
2 ~-78.28

Tables may be empty, or include other tables - even nested ones.

Stripped down versions of tables are sets and sequences which are described later.
You will find that most operations on tables infroduced in this chapter are also
applicable to sets and sequences.

4.9.1 Arrays

Agena features two types of tables, the simplest one being the array. Arrays are
created by putting their values in square brackets:

[[value, [, value,, ...]1]

The numbers 1, 2, and 3 are the keys or indices of table A. The corresponding fable
values are 4, 5, and 6. With arrays, the indices always start with 1 and count
upwards sequentially. The keys are always integral, so A in this example is an array
whereas VL in the last chapter is not.

To refer to a table value, enter the name of the table followed by the respective
index in square brackets:

agena >> 41

fablenamelkey]

> A[1]:
4

If a table contains other tables, you may get their values by passing the respective
keys in consecutive order:

tfablenamelkey llkey:][...]

>A =3, 4]
1~[1~3, 2~4]

The following call refers o the complete inner table which is af index 1 of the outer
table:

The next call returns the second element of the inner table.

> A[L][2]:
4

Tables may be nested:

> A:=[4, [5, [6]]]:

1~4

2~ 1[5, [6]]

To get element 6, enter the position of the first inner table [5, [6]] as the first index,

the position of the second inner table [6] as the second index, and the position of
the desired entry as the third index:

> Al2][2][1]:
6

Tables can contain no values at all. In this case they are called empty tables with
values 1o be inserted later in a session. There are two forms to create empty tables.

create table name;, [, table name, ...]

name; =[]

> create table B;

creates the empty table B,

42 4 Data

>B =
does exactly the same.

You may add a value to a table by assigning the value to an indexed table name:
> B[1] :="'a’;
> B:

l1~a

Alternatively, the insert statement always appends values to the end of a table:

insert value, [, value,, ...] into name

> insert 'b' into B;
> B:

1~a
2~b

To delete a specific key~value pair, assign null o the indexed table name:

> B[1] := null;
> B:
2~b

The delete statement works a little bit differently and removes all occurrences of a
value from a table.

delete value, |, value,, ...] from name

> insert 'b' into B;
> delete 'b' from B;

> B:
empty table

In both cases, deletion of values leaves holes” in a table, which are null values
between other non-null values:

>B:=[1,2,2,3]
> delete 2 from B

> B:
1~1
4~3

agena >> 43

There exists a special size option with the create table statement which besides
creating an empty table also sets the default numiber of entries. Thus you may gain
some speed if you perform a large number of subsequent table insertions, since
with each insertion, Agena checks whether the maximum numlber of entries has
been reached. If so, each time it automatically enlarges the table which creates
some overnead. The size option reserves memory for the given number of elements
in advance, so there is no need for Agena to sulbsequently enlarge the table until
the default size will be exceeded.

Arrays with a predefined number of entries are created according to the following
syntax:

create table name(size,) [, table name;(size,), ...]

When assigning entries to the table, you will save af least 1/3 of computation time if
you know the size of the table in advance and initialise the table with it. If you want
fo insert more values later, then this will be no problem. Agena automatically
enlarges the table beyond its initial size if needed.

> table a(5);

> table a, b(5);

4.9.2 Dictionaries
Another form of a table is the dicfionary with any kind of data - not only positive
infegers - as indices:

Dictionaries are created by explicitly passing key-value pairs with the respective keys
and values separated by tildes, which is the difference to arrays:

[[keys ~ value, [, key, ~ valuey, ...]]]

>A:=[1~4,2~5,3~6]:
1..._
2.._
3.._

[&) NN

> B := [abs(p") ~ 'th:
231 ~ th

Here is another example with strings as keys:
> dic ;= ['donald’ ~ 'duck’, 'mickey' ~ 'mouse';
> dic:

mickey ~ mouse
donald ~ duck

44 4 Data

As you see in this example, Agena internally stores the key-value pairs of a
dictionary in an arbitrary order.

As with arrays, indexed names are used to access the corresponding values stored
fo dictionaries.

> dic['donald:
duck

If you use strings as keys, a short form is:

> dic.donald:
duck

Further entries can be added with assignments such as:
> dic['minney'] := 'mouse’;

which is the same as typing

> dic.minney := 'mouse’;

Dictionaries with an initial number of entries are declared like this:

create dict name(size,) [, dict names(size,), ...]

You may mix declarations for arrays and dictionaries, so the general syntax is:

create {table | dict} name[(sizes)] [, {table | dict} name,(sizes)]. ...]

4.9.3 Table, Set and Sequence Operators

Agena features some built-in table, set and sequence operators which are shown in
Table 6. A “structure” in this context is a table, set, or sequence.

Operator Return Function

cinA Boolean | Checks whether the structure A contains the given
value c.

filled A Boolean | Determines whether a structure contains at least one
value. If so, it returns true, else false.

A=B Boolean | Checks whether two tables A, B, or two sets A, B, or two
seguences A, B contain the same values regardless of
the number of their occurence; if B is a reference 1o A,
then the result is also true.

agena >> 45
Operator Return Function
A<>8B Boolean | Checks whether two sets/tables/sequences A, B do not
contain the same values regardless of the number of
their occurence; if B is a reference to A, then the result
is false.
A subset B Boolean | Checks whether the values in structure A are also
values in B regardless of the number of their
occurence. The operator also returns frue if A = B.
A xsubset B Boolean | Checks whether the values in structure A are also
values in B. Contrary to subset, the operator returns
false if A = B.
A union B table, Concatenates two tables, or two sets, or two
set, seq | sequences A, B simply by copying all its elements -
even if they occur multiple times - to a new structure.
With sefts, all items in the resulting set will be unique, i.e.
they will not appear multiple times.
Aintersect B | table, Returns all values in two tables, two sets, or two
set, seq | sequences A, B that are included both in A and in B as
a new structure.
A minus B table, Returns all the values in A that are not in B as a new
set, seq | structure.
copy A table, Creates a deep copy of the structure A, ie. if A
set, seq | includes other tables, sets, or sequences, copies of
these structures are built, too.
join A string Concatenates all strings in the table or sequence A.
size A number | Returns the size of a table A, i.e. the actual number of
key~value pairs in A. With sefs and sequences, the
numiber of items is returned.
sort A table, Sorts table or sequence A in ascending order. It
seq directly operates on A, so it is destructive. With tables,
the function has no effect on values that have
non-integer keys.
unique A table, Removes multiple occurrences of the same value and
seq returns the result in a new structure. With tables, also
removes all holes (‘missing keys') by reshuffling its
elements. This operator is not applicable to sets, since
they are already unique.
add A number | Sums up all numeric table or sequence values. If the
tfable or sequence is empty or contains N0 numMeric
values, null is returned. Sets are not supported.
qadd A number | Raises each value in a table or sequence tfo the

power of 2 and sums up these powers. If the table or
sequence is empty or contains no numeric values, null
is returned. Sets are not supported.

Table 9: Table, set, or sequence and set operators

46 4 Data

Here are some examples - try them with sets as well:

The union operator concatenates two tables simply by copying all its elements -
even if they occur multiple times.

[a', b, 'c, 'a’, 'd]

intersect returns all values that are included in both tables as a new table.

[a]

If a value appears multiple times in the set at the left hand side of the operator, it is
written the same number of times to the resulting table.

minus returns all the elements that appear in the table on the left hand side of this
operator that are not members in the right side table.

(b’ c]

If a value appears multiple times in the set at the left hand side of the operator, it is
written the same number of times to the resulting table.

The unique operator

« removes all holes (" missing keys ') in a table,
e removes multiple occurrences of the same value.

and returns the result in a new table. The original table is not overwritten. In the
following example, there is a hole at index 2 and the value 'a' appears twice.

>unique [1~'a',3~'a,4~"'b]
returns [1 ~'a’, 2 ~ D.

You can search a table for a specific value with the in operator. It returns if the
value has been found, or false, if the element is not part of the set. Examples:

returns true.
>1in[a,'b, 'c

retuns false. Remember that in checks the values of a table, not its keys.

agena >>

47

4.9.4 Table Functions

Agena has a numiber of functions to work on tables only. The most basic are:

Function

Description

Further detail

tables.put(f, key, value)

Inserts index key with value
value to table 1.

It shiffs up the original
element at position key
and all other elements to
the right.

tables.remove (1, key)

Removes index key and
its corresponding value
from f.

All elements to the right
are shiffed down, so that
Nno holes are created.

4.9.5 Table References

Table 10: Basic table procedures

If you assign a table to a variable, only a reference to the table is stored in the
variable. This means that if we have a table

>A:=1[1, 2]
assigning
>B = A;

does not copy the contents of A to B, but only the address of the same memory
area which holds table [1, 2]; hence:

> insert 3 into A;

W NER YV
1>
W N

l

also yields:

[N N v v

WN RV
WN PR

Use copy to create a copy of the contents of a table. If the table contains tables,
copies of these tables are also made (so-called "deep copies).

> B := copy(A);

> insert 4 into A;

[N N v v

WN RV
WN PR

48 4 Data

Thus with structures such as tables, sets, pairs, or sequences, all names at the left of
an -> operator will point to the very same structure at the right. This behaviour may
e changed in future versions of Agena.

>A,B->[|
>A1]:=1

> B:
1~1

4,10 Sets

Sets are collections of unique items: numbers, strings, and other data. Their syntax is:

{[item; [, itemz, .11}

Thus, they are equivalent to Cantor sets: An item is stored only once:

>A:={1,1,22}:

1

2

Besides being commonly used in mathematical applications, they are also useful
to hold word list where it only matters 1o see whether an element is part of a list or
not:

> colours := {'red’, 'green’, 'blue'};

If you want 1o check whether the colour red is part of the set colours, just index it as
follows:

setnamelkey]

If an item is stored to a setf, Agena returns true:

> colours['redT:
true

If an item is not in the given seft, the return is false.

> colours['yellow']:
false

If you want to add or delete items to or from a set, use the insert and delete
statements. The standard assignment statement setnamelkey] := value is not

agena >> 49

supported with sets.

insert item, [, item,, ...] into name

delete ifem; [, itemy, ...] fromm name

> insert 'yellow' into colours;

The in operator checks whether an item is part of a set - it is an alternative 1o the
indexing method explained above, and returns true or false, too.

> 'yellow' in colours:
true

The data type of a set is set.

> type(colours):
set

You may predefine sets with a given number of entries according fo the following
syntax:

create set name;(sizes) [, set names(size,), ...]

When assigning items later, you will save at least 90 % of computation time if you
know the size of the set in advance and initialise it with the numiber of entries as
explained above. More items than stated at initialisation can be entered anytime,
since Agena automatically enlarges the respective set accordingly.

Sets are useful in situations where the number of occurrences of a specific item
does not matter. Compared to tables, sets consume around 40 % less memory,
and operations with them are 10 % to 33 % faster than the corresponding table
operations.

Specifically, the more items you want to store, the faster operations wil be
compared to tables.

Note that if you assign a set to a variable, only a reference to the set is stored in the
variable. Thus in a statement like A :={}; B := A , A and B point o the same set.

As with tables, sets support metamethods which you can define to extend the
functionality of Agena operators. Metamethods will be explained later in Chapter 6.

50 4 Data

4.11 Sequences

Besides storing values in fables or sets, Agena also features the sequence, an
object which can hold any number of items except null. You may sequentially add
items and delete items from it.

Sequences store items in sequential order. Like in tables, an item may be included
multiple times. Sequences are indexed with positive integers in the same fashion as
table arrays are, starting at index 1.

Metamethods for operator overloading that allows to extend the functionality of the
built-in Agena operators o sequences are supported, too (see Chapter 6.9 for
more details). A sequence may hold no, one or more items.

The structure was originally infroduced tfo efficiently support objects like complex
numibers or numeric ranges including a flexible way to pretty print them at the
console.

Suppose we want to define a pair of two values. You may enter these values into
the sequence using the seq operator.

seq([itemy [, itemy, ...] 1)

>a:=seq(0, 1);
> a:
seq(0, 1)

You may access the items the usual way:

seqgnamelnumeric_key]

> a[1]:
0

> a[2]:
1

If the index is larger than the current size of the sequence, an error is returned®.

> a[3]:
Error, line 1: index out of range

® The eror message can be avoided by defining an appropriate metamethod

agena >> 51

The way Agena outputs sequences can be changed by using the seftype function.

> settype(a, 'pair');

> a.

pair(0, 1)

The gettype function retumns the new type you defined above as a string:

> gettype(a):
pair

If no user-defined type has been set, gettype returns null.

Once the type of a sequence has been set, the utype function also returns this
user-defined sequence type instead of 'sequence’

> utype(a):
pair

This allows you to program special operations only applicable to certain types of
sequences.

A user-defined type can be deleted by passing null as a second argument to

seftype.

> settype(a, null);

> utype(a):
sequence

The create seq statement allows to create an empty sequence and define an
empty sequence with enough memory allocated to hold the given number of
elements which can be inserted later in a session. Agena automatically extends the
sequence, if the predetermined numiber of items is exceeded.

create seq name; [, seq hames, ...]
create seq name;(sizes) [, seq name,(sizez), ...]

ltems can be added only sequentially. You may use the insert statement for this or
the conventional indexing method.

> seq a(4);
> insert 1 into a;
> a[2] :=2;

>a:
seq(l, 2)

52 4 Data

Nofe that if the index is larger than the number of items stored to it plus 1, Agena
returns an error, since "holes” in a sequence are not allowed. The next free position
in ais at index 3, however a larger index will be chosen in the next example.

>a[4] =4
Error, line 1: index out of range

>a[3]:=3

ltems can be deleted by sefting their index position to null, or applying delete, i.e.
stating which items - not index positions - shall be removed. Note that all items to
the right of the value deleted are shifted to the left, thus their indices will change.

> a[1] := null
> delete 2, 3 from a
>a:

empty sequence

If you assign a sequence to a variable, only a reference to the sequence is stored
in the variable. Thus sequences behave the same like tables and sets, i.e. in A
statement like A :=seq(); B := A , A and B point to the same sequence.

> A :=seq()
>B:=A
> A[1l]:=10

> B:
seq(10)

The following operators, functions, and statements work on sequences:

Function | Description Example

= Equality check a=b

<> Inequality check a<>b

insert Inserts one or more elements insert 1 into a

delete Deletes one or more elements delete 0, 1 from a

copy Creates an exact copy of a sequence; deep | P =copy a
copying is supported so that sequences inside
seguences are properly treated.

filed Checks whether a sequence has at least one | filled a
item

in Checks whether an element is stored in the | 0in seq(l, 0)
sequence, returns frue or false.

join Concatenates all strings in a sequence in | 1oin(a)
sequential order.

size Retumns the current number of items size a

sort Sorts a sequence in place. sort(a)

agena >> 53

Function | Description Example

type Returns the general type of a sequence, i.e. | Ypea
seguence.

utype Returns the user-defined type of a sequence, | Utype a
or the basic type if no special type has been
defined.

unique Reduces multiple occurrences of an ifem in a | unique a
sequence to just one.
unpack | Unpacks a sequence. See unpack in Chapter | unpack(a)

7.1.
seftype | Sets a user-defined type for a sequence settype(a, 'duo)
gettype | Retumns a user-defined type for a sequence gettype(a)
setmeta | Assigns a metatable to a sequence. setmeta(a, mtbl)

getmeta | Retumns the metatable stored to a sequence. | 9etmeta(a)

Table 11: Basic sequence procedures

4,12 More on the crea te statement

With the create statement, you cannot only initialise any numlber of tables, but also
dictionaries, sets, and sequences with only one call and in random order, so the
following statement is valid;

> create table a, dict b(10), set ¢, seq d(100), ta ble e(10);

>a,b,cd:

0 0 { seal [

4.13 Pairs

The structure which holds exactly two values of any type (including null) is the pair. A
pair cannot hold less or more values, but its values can be changed. Conceived
originally to allow passing options as function arguments in a more flexible way, it is
defined with the colon operator:

itemy : item,

The left and right operators provide the only read access to its left and right
operands; the standard indexing method using indexed names is not supported:

left [(] pair)]
right [(] pair)]

54 4 Data

> left(p):
1

> right(p):
2

An operand of an already existing pair can be changed by assigning a new value
to an indexed name, where the left operand is indexed with number 1, and the
right operand with number 2:

>p[1] :=2;
> p[2] :=3;

As with sequences, you may define user-defined types for pairs with the settype
function which also changes the way pairs are output.

> utype(p):
pair

> settype(p, 'duo’);

> p:
duo(2, 3)

> utype(p):
duo

> gettype(p):
duo

The only other operators besides left and right that work on pairs are equality,
inequality (= and <>), type, utype, and in.

>p=32
false

With pairs consisting of numbers, the in operator checks whether a left-argument
numiber is part of a closed numeric interval given by the given right-argument pair.

>2in 0:10:
true

>'s"in 0:10:
fail

As with all other structures, if you assign a pair to a variable, only a reference to the
pair is stored in the variable. Thus in a statement like A := a:b; B := A ,Aand B
point to the same pair.

agena >> 55
Summary:
Function | Description Example
= Equality check a=b
<> Inequality check a<>b
in If the left operand x is a number and if the left | 1-2in 1:2
and right hand side of the pair a:lbo are numbers,
then the operator checks whether x lies in the
closed interval [a, b] and returns true or false. If at
least one value x, a, b is not a number, the
operator returns fail.
left Retums the left operand of a pair. left(a)
right Retums the right operand of a pair. right(a)
type With pairs, always returns ‘pair type(a)
utype Returns either the user-defined type of the pair, or | utype(@)
the basic type (pair) if no special type was
defined for the pair.
seftype | Sefs a user-defined type for a pair. settype(a, ~ 'duo)
gettype | Retums the user-defined type of a pair. gettype(a)
setmeta | Sets a metatable to a pair. setmeta(p, ~ mtbl)
getmeta | Retums the metatable stored to a pair. getmeta(p)

Table 12: Operators and functions applicable to pairs

4.14 Other types

For threads, userdata, and lightuserdata please refer to the Lua 5.1 documentation.

56

4 Data

agena >>

57

Chapter Five

Control

58

5 Control

agena >> 59

5 Control

5.1 Conditions

Depending on a given condition, Agena can alternatively execute certain
statements with either the if or case statement.

5.1.1 if Statement

The if statement checks a condition and selects one statement frorn many listed. Its
syntax is as follows:

if condition, then
statements;,

[elif condition, then
statements;]

[else
statements;]

fi

The condition must always evaluate 1o one of the Boolean values true, false, or fail,
to null, a number, or a string.

The elif and else clauses are optional. While more than one elif clause can be
given, only one else clause is accepted. An if stfatfement may include one or more
elif clauses and no else clause.

If a condition results to frue, a number (including 0), or a string, its corresponding
then-clause is executed. If none of the above mentioned conditions is true, the
else clause is executed if present, otherwise Agena proceeds with the next
statement following the if statement.

This also means that if a condition is or results to null or fail, the then-clause is never
run.

Examples:

The condition frue is always frue, so the string 'yes' is printed.

> if true then
> print('yes")
> fi;

yes

In the following statement, the condition false is not frue, so nothing is printed:

> if 1 <> 1then
> print(‘this will never be printed")
> fi;

60 5 Control

An if statement with an else clause:

> if false then

> print(‘this will never be printed")
> else

> print('this will always be printed')
> fi;

this will always be printed

An if statement with an elif clause:

> if 1 = 2 then

> print(‘this will never be printed")
> elif 1 < 2 then

> print('this will always be printed')
> fi;

this will always be printed

An if sfatement with elif and else clauses:

> if 1 =2 then

> print(‘this will never be printed")
> elif 1 < 2 then

> print('this will always be printed')
> else

> print('neither will this be printed")
> fi;

this will always be printed

5.1.2 is-Operator
The is operator checks a condition and returns the respective expression.

is condifion then
expression,
else
expression;
Si

This means that the result is expression, if conditfion is true, a number (including 0), or
a string, and expression, otherwise.

Example:

> x :=is 1=1 then true else false si:
true

agena >> 61

which is the same as:

> if 1=1 then
> X :=true
> else

> x:=false
> fi;

The is operator only evaluates the expression that it will retun. Thus the other
expression which will not be retuned will never be checked for semantic
correctness, e.g. out-of-range string indices, etc. You may nest is operators.

5.1.3 case Statement

The case statement facilitates comparing values and executing corresponding
statements.

case name
of value, [, values,] then statements,
[of value, [, value,,] then stafements,]

[of ...]
[else statements,]
esac

>a: ="'k
> case a
> of'a','e', "', '0, 'u, 'y then result := ‘vowel'
> else result := 'consonant’
> esac;
> result:
consonant

You can add as many of .. then statements as you like. Fall through is not
supported. This means that if one then clause is executed, Agena will not evaluate
the following of clauses and will proceed with the statement right after the closing
esac keyword.

62 5 Control

5.2 Loops

Agena has two basic forms of control-flow statements that perform looping: while
and for, each with different variations.

5.2.1 while-Loops

A while loop first checks a condition and if this condition is true, it iterates the loop
body again and again as long as the condition remains true. If the condition is
false, no further iteratfion is done and control returns fo the statement following right
after the loop body.

If the condition is false from the start, the loop is not executed at all.

while condition do
statements
od

The following statements calculate the largest Filbonacci numiber less than 1000.

>a:=0;b:=1;

> while b < 1000 do
> c:=b;

> b:=a+b;

> a:=c

> od;

>C:

987

The following loop will never be executed since the condition is false:

> while false do
> print(‘this will never be printed")
> od;

A variation of while is the do .. as loop which checks a condition at the end of the
iteration and thus will always be executed at least once.

do
statements
as condition

>c:=0;
>do
> incc

>as c<10;

agena >> 63

>c:
10

for loops are used if the number of iterations is known in advance. There are for/to
loops for numeric progressions, and for/in loops for fable and string iterations.

5.2.2 for/to loops

Let us first consider numeric for/to loops which use numeric values for control:

for [external] name [from start] [to sfop] [by step] do
statements
od

name, start, stop, and sfep are all numeric values or must evaluate to numeric
values. The statement at first sets the variable name to the numeric value of start.
name is called the control or loop variable. If start is not given, the start value is +1.
If stop is not given, the last iteration value is infinity®.

It then checks whether sfart <= sfop. If so, it executes stafements and returns to the
top of the loop, increments name by sfep and then checks whether the new value
is less or equal stop. If so, stafements are executed again. If sfep is not given, the
control variable is always incremented by +1.

> forifrom 1to 3 by1do
> print(i, i*2, i*3)

> od;

1 1 1
2 4 8
3 9 27

> forito 3 do
> print(i, i*2, i"3)

> od;

1 1 1
2 4 8
3 9 27

The loop control variable is local to the loop body, so it cannot be used after
looping completed. However, if you put the external keyword in front of the control
variable, you will have access to the control variable after looping completed and
may use its value in subsequent statements. This rule applies only 1o
for/from/to-loops with or without a while extension. Note that if you use the external
opftion within procedures, you usually want to declare the loop control variable as
local, otherwise it will be treated as a global variable.

> for external i to infinity while math.fact(i) < 1 k do od

¢ These loops do not run infinitely, but stop at the numeric value of the C constant HUGE VAL which
varies among systems.

64 5 Control

>
7

When using the external switch the following rules apply to the value of the control
variable after leaving the loop:

1. If the loop terminates normally, i.e. if it iterates until its stop value, then the value
of the control variable is its stop value plus the step size.

2. If the loop is left prematurely by executing a break statement’” within the loop, or
if a for/while loop is terminated because the while condition evaluated to false,
then the control variable is set to the loop's last iteration value before quitting the
loop. There will be no increment with the loop's step size.

Loops can also count backwards if the step size is negative:

> forifrom2to1by-1do
> print(i)

> od

2

1

A special form is the to .. do loop which does not feature a control variable and
iterates exactly n times.

>to 2 do

> print(iterating')
> od

iterating

iterating

5.2.3 for/in Loops for Tables

are used to fraverse tables®, strings, sets, and sequences. Let us first concentrate on
table iteration.

for key, value in bl do
statrements
od

The loop iterates over all key~value pairs in table bl and with each iteration assigns
the respective key to key, and its value to value.

>a:=[4,5, 6]

7 See chapter 5.2.7 for more information in the break statement.
®To be more general, foriin loops iterate over functions called iterators. Check out the Lua
documentation for more information.

agena >> 65

>fori,jinado
> print(, j)

> od

1 4

2 5

3 6

There are two variations: When putting the keyword keys in front of the control
variable, the loop iterates only on the keys of a table:

for keys key in bl do
statements
od

Example:

> for keysiin ado
> print(i)

> od

1

2

3

The other variation iterates on the values of a table only:

for value in tbl do
statements
od

> foriin ado
> print(i)

> od

4

5

6

The control variables in for/in loops are always local to the body of the loop, the
external switch is not supported. You may assign their values to other variables if you
need them later.

You should never change the value of the conftrol variables in the body of a loop -
the result would be undefined. Use the copy operator to safely fraverse any table if
you want to change, add, or delete its entries.

5.2.4 for/in Loops for Sequences

All of the features explained in the last subchapter are applicable to sequences, as
well.

66 5 Control

5.2.5 for/in Loops for Strings

If you want to iterate over a string character by character from its left to its right, you
may use a for/in loop as well. All of the variations except the external opftion
mentioned in the previous subchapter are supported.

for key, value in str do sfatements od
for value in str do sfatements od

for keys value in sfr do statements od

The following code converts a word 1o a sequence of abstract vowel, ligafure, and
consonant placeholders and also counts their respective occurrence:

> str ;= 'sefter’;
>result :=";
>c,v,|->0;

> foriin str do

> casei

> of 'a', 'e', 'i', 'o', 'u' then

> result ;= result .. 'V';

> inc v

> of '&", ‘&', 'g', '0' then

> result ;= result .. 'L";

> inc |

> else

> result := result .. 'C'

> inc c

> esac

> od;

> print(result, v .. ' vowels', | .. ' ligatures', c .. ' consonants’);
LCCvC 1 vowels 1 ligatures 3 consonan ts

5.2.6 for/in Loops for Sets

All for loop variations are supported with sets, as well. The only useful one, however,
is the following:

> sister ;= {'swistar', 'sweastor’, 'svasar', 'sist er'}

> for i in sister do print(i) od;
svasar

swistar

sweastor

sister

You may fry the other loop alternatives to see what happens.

agena >> 67

5.2.7 for/while Loop s

All flavours of for loops can be combined with a while condition. As long as this
condition is satisfied, i.e. true, the for loop iterates. To be more precise, before
Agena starts the first iteration of a loop or continues with the next iteration, it checks
the while condition to be frue.

for [external] i [from Q] to b [by step] while condition do statements od
for [key,] value in sfruct while condifion do statements od
for keys key in sfruct while condition do statements od
for [key,] value in str while condition do statements od
for keys key in str while condition do statements od

An example:

> for x to 10 while In(x) <=1 do print(x, In(x)) o d
1 0
2 0.69314718055995

Regardless of the value of the while condition, the loop control variables are always
initiated with the start values: with for/to loops, @ is assigned to i (or 1 if the from
clause is not given); key and/or value are assigned with the first item in the table,
set, or sequence struct or the first character in string sfr.

5.2.8 Loop Interruption

Agena features two statements to manipulate loop execution. Both are applicable
to all loop types.

The skip statement causes another iteration of the loop to begin at once, thus
skipping all of the loop statements following it.

The break statement quits the execution of the loop entirely and proceeds with the
next statement right after the end of the loop.

>forito5 do

> if i = 3 then skip fi;
> print(i)

> ifi = 4 then break fi;
> od;

1

2

4

This is equivalent to the following statement:

> forito 5 whilei<5do
> if i = 3 then skip fi;

> print(i)

> od;

1

2

68

5 Control

4
>a:=0;

> while true do

> inca

> if a > 5 then break fi
> ifa<3thenskipfi

> print(a)
> od

3

4

5

agena >>

69

Chapter Six

Programming

70

6 Programming

agena >> 71

6 Programming

Writing effective code in a minimum amount of time is one of the key features of
Agena. Programs are usually represented as procedures. The words " procedure’
and “function” are used synonymously.

6.1 Procedures

In general, procedures cluster a sequence of statements into abstract units which
then can be repeatedly invoked.

Wiriting procedures in Agena is quite simple:

procname := proc([par, [, pars, ...]]) is
[local name; [, namey, ...]];
statements

end

All the values that a procedure shall process are given as parameters par,, etc. A
function may have no, one, or more parameters.

A procedure usually uses local variables which are private to the procedure and
cannot be used by other procedures or in the Agena interactive level.

Global variables are supported in Agena, as well. All values assigned in the
inferactive level are global, and you can creafe global variables within @
procedure. The values of global variables can be accessed on the interactive level
and within any procedure.

A procedure may call other functions or itself. A procedure may even include
definitions of further local or global procedures.

The result of a procedure is returned using the return token which may be put
anywhere in the procedure body.

retun value [, value?2, ...]

The following procedure computes the factorial of an integer®:

> fact := proc(n) is
computes the factorial of an integer n
if n < 0 then return fall
elif n = 0 then return 1
else return fact(n-1)*n
fi
end;

VVVYVYVYV

? The library function math.fact is much faster,

72 6 Programming

It is called using the following syntax:

funcname(jargs [, args. ...]))

> fact(4):
24

where the first parameter is replaced by the first argument arg,, the second
parameter is substituted with arg,, etc.

6.2 Local Variables

The function above does not need local variables as it calls itself recursively.
However, with large values for n, the large number of unevaluated recursive
function calls will ultimately lead to stack overflows. So we should use an iterative
algorithm fo compute the factorial and store infermediate results in a local variable.

A local variable is known only to the respective procedure and the block where it
has lbeen declared, it cannot be used in other procedures, the interactive Agena
level, or outside the block where it has been declared.

A local variable can be declared explicitly anywhere in the procedure body, but at
least before its first usage. If you do not declare a variable and assign values later
fo this variable, then it is global. Note that control variables in for loops are always
implicitly declared local if the external switch is not used, so we do not need to
explicitly declare them.

Local declarations come in different flavours:

local name; [, names, ...]
local name; [, name,, ...] := value, [, value,, ...]
local name; [, name,, ...] -> value, [, value,, ...]
local table name;, [, table name, ...]
local table name(size4) [, table name;(size,), ...]
local set name;, [, set name,, ...]
local set name;(size4) [, set names(size,), ...]
local seq name; [, seq name, ...]
local seq name;(sizes) [, seq hames(sizey), ...]
local enum name; [, name,, ...] [from value]

In the first form, name,, etc. are declared local.

In the second and third form, name,, etc. are declared local followed by initial
assignments of values to these names.

In the fourth to ninth form, one or more local empty table(s), set(s), or sequence(s)
called name;, etc. are created.

agena >> 73

In the last form, name,, etc. are declared local with a sulbbsequent enumeration of
those names.

It is possible to mix declarations of names and on the same stroke create empty
structures such like empty tables, sets, and sequences. For example, the statement

local a, table b, c, seq d, set e, seq f, table g(10)

declares the names a through g and also creates the empty tables b and g, the
empty sequences d and f, and the empty set e.

Let us write a procedure to compute the factorial using a for loop. To avoid
unnecessary loop iterations when the intermediate result has become so large that
it cannot be represented as a finite numiber, we also add a clause to quit loop
iteration in such cases.

> fact := proc(n) is
if n < 0 then return fail fi;
local result := 1;
for i from 1 to n do
result ;= result * i
if result = infinity then break fi
od;
return result
end;

VVVVVYVVYV

> fact(10):
3628800

result has been declared local so it has no value at the interactive level.

> result:
null

6.3 Global Variables

Global variables are visible to all procedures and the interactive level, such that
their values can be queried and altered within all procedures.

Using global variables is not recommended. However, they are quite useful in order
to have more control on the behaviour of procedures. For example, you may want
to define a global variable EnvMorelnfo that is checked in your procedures in
order to print or not to print information to the user.

Global variables can be indicated with the global keyword. This is optiondl,
however, and only for documentary purposes.

> fact := proc(n) is

> global _EnvMorelnfo;

> if n <0 then return fail fi;
> |ocal result ;= 1;

> forifrom 1tondo

> result ;= result * i

> if result = infinity then

74 6 Programming

if _EnvMorelnfo then print('Overflow !') fi;
break
fi
od;
return result
end;

VVVVYVYV

We must assign EnvMorelnfo a value in order to get a warning message af
runfime.

> EnvMorelnfo ;= true;

> fact(10000):
Overflow !
infinity

6.4 Optional Arguments

A function does not have to be called with exactly the number of parameters given
at procedure definition. You may optionally pass less or more values. If no value is
passed for a parameter, then it is automatically set 1o null at function invocation. If
you pass more arguments than there are actual parameters, excess arguments are
ignored.

For example, we can avoid using a global variable to get a warning message by
pAssing an optional argument instead.

> fact := proc(n, warning) is
if n < 0 then return fail fi;
local result := 1;
for i from 1 to n do
result ;= result * i
if result = infinity then
if warning then print(‘Overflow !') fi;
break
fi
od;
return result
end;

VVVVVVVVVVYV

> fact(10000):
infinity

The option should be any value other than null to get the effect.

> fact(10000, true):
Overflow !

infinity

A variable numiber of arguments can be passed by indicating them with a question
mark in the parameter list and then querying them with the varargs system table in
the procedure body.

agena >> 75

> varadd := proc(?) is
> Jocal result:=0

> forito size varargs do
> inc result, varargsi]
> od,

> return result

> end;

> varadd(l, 2, 3, 4, 5):

15

You may determine the number of non-null arguments actually passed in a
procedure call by querying the system variable nargs inside the respective
procedure.

Let us build an extended square root function that either computes in the real or
complex domain. By default, i.e. if only one argument is given, the real domain is
faken, otherwise you may explicitly set the domain using a pair as a second
argument.

> xsqgrt := proc(x, mode) is
> if nargs = 1 or mode = 'domain":"real' then
> return sqrt(x)

> elif mode = 'domain".'complex’ then
> return sqrt(x + 0*l)
> else
> return fail
>

>

> xsqrt(-2):
undefined

> xsqrt(-2, 'domain’:'real’):
undefined

If the left-hand value of the pair in a function call shall denote a string, you can
spare the single quotes around the string by using the ~ token which converts the
left-nand name to a string.

> xsqrt(-2, domain~'complex’):
1.4142135623731%

6.5 Passing Options

We can combine the varargs facility with the usage of pairs in order to pass one or
more optional arguments in any order.

> f:=proc(?) is

od;
print(‘bailout ="' .. bailout, 'iterations =" .. iterations)

> |ocal bailout, iterations := 2, 128; # default values

> forito size varargs do

> case left(varargsli])

> of 'bailout' then bailout := right(varar gs[i]);

> of 'iterations' then iterations := right (varargsli]);
> else print 'unknown option’

> esac

>

>

76 6 Programming

> end;

> 1();
bailout =2 iterations = 128

> f('bailout:10);

bailout =10 iterations = 128
> f('iterations':32, 'bailout':10);
bailout =10 iterations = 32

Again, the single quotes around the name of the option (left-hnand side of the pair)
can be spared by using the ~ token which converts the given name to a string.

> f(bailout~10, iterations~32);
bailout =10 iterations = 32

6.6 Type Checking & Error Handling

Although Agena is untyped, in many situations you may want to check the type of a
certain value passed to a function. Agena features facilities for this: the type
operator and the try statement. It also provides the error handling function that
interrupts the execution of a procedure and prints an error message if given.

The following types are available in Agena:

boolean, complex, lightuserdata, null, number, p air, procedure,
sequence, set, string, table, thread, userdata

These names are reserved keywords, but evaluate to strings so that they can be
compared with the result of the type operator that returns the type of a value as a
string.

> type(1):
number

> fact := proc(n) is

if type(n) <> number then
error('number expected’)

fi;
if n < 0 then return null
elif n = 0 then return 1
else return fact(n-1)*n
fi

end;

VVVVVYVVYV

> fact('10":
Error: number expected
in function fact, line 3

Another, more efficient way of type checking is provided by the try statement that is
around twice as fast as the if/type/error combination.

agena >> 77

fry name, [, name,, ...] as fypename
ty name; [, name, ...] as fypename else errorstring

In the first form, a standard error message is displayed and further computation
stops. In the second form, which is a little bit slower, a user defined error text is
printed and execution of the function is interrupted.

> fact := proc(n) is

> try n as number;

> if n <0 then return null

> elif n=0thenreturn 1

> else return fact(n-1)*n

> fi

> end;

> fact('10"):

Error, line 2: expected number, got string for argu ment #1.
in function fact, line 2

> fact := proc(n) is

> try n as number else 'bad value for argument’;

> if n <0 then return null

> elif n=0thenreturn 1

> else return fact(n-1)*n

> fi

> end;

> fact('10"):

Error, line 2: for argument #1: bad value for argum ent
in function fact, line 2

Note that opposed to the type operator, the try statement only checks for basic
types, i.e. user-defined types for procedures, tables, sequences, and pairs are not
recognised.

6.7 Shortcut Procedure D efinition

If your procedure consists of exactly of one expression, then you may use an
abridged syntax if the procedure does not include statements such as if .. then, for,
insert, etfc.

<< ([pars[. pars, ...]]) -> expr >>

Let us define a simple factorial function.

> fact := << (x) -> exp(gammaln(x+1)) >>

> fact(4):
24

Brackets around the arguments are optional.

78 6 Programming

> isInteger = << x -> int(x) = x >>

> isinteger(1):
true

> isinteger(1.5):
false

Passing optional arguments using the ? notation is supported. In this case, use the
varargs table as described above.

6.8 User-Defined Procedure Types

The settype function allows to group procedures pl, p2, ..., by giving them a
specific type (passed as a string) just as it does with sequences, tables, and pairs.

settype(proc, [, proc,, ...}, 'your proctype')

The utype operator returns the user-defined type of an object as a string. If no
special type has been defined, the basic type is returned. The latter also applies to
data types where settype cannot set user-defined types.

utype(procs)

The type operator does not return the user-defined type even if it is seft, it will always
return the basic type of an object.

>fi=<<x->1>>
> settype(f, '‘constant’)

> utype(f):
constant

> type(f):
procedure

6.9 Scoping Rules

In Agena, variables live in blocks or “scopes’. A block may contain one or more
other blocks. A variable is visible only to the block in which it has been declared
and to all blocks that are part of this block. Thus, variables declared in inner blocks
are not accessible to the outer blocks.

Procedures, if- and case-statements, while-, do- and for-loops create blocks.

Variables declared local within procedures are only visible in these procedures.

agena >> 79

Variables declared local in the then clause of an if-statement live only in this then
part. The same applies to variables declared local in elif or else clauses.

> f:=proc(x) is

> ifx>0then

> local i := 1; print('inner, i)
> else

> local i := 0; print('inner', i)
> Ai;

> print(outer’, i) #iis not visible
> end;

> f(1);

inner 1

outer null

Variables declared local in for- or while-loops are only accessible in the bodies of
these loops. The loop control variables of for/to- and for/in-loops are implicitly
declared local to the respective loop bodies, with the exception of the external
facility of for/to loops which is described in the next subchapter.

f:=proc(x) is
while x <2 do
local i :=x
inc x
print(inner’, i)
od;
print('outer', i) #iis not visible
end;

VVVVVYVVYV

> f(1);
inner 1
outer null

A special scope can be declared with the scope and epocs statements:

scope
declarations & statements
epocs

The following example demonstrates how this works:

> f:=proc() is

> locala:=1;

> scope

> local a :=2;

> writeline('inner a: ', a);
> epocs;

> writeline('outer a: ', a);
> end;

>1()

inner a: 2

outer a: 1

80 6 Programming

6.10 Loops in Procedures

As already noted, the control variable of a for/to loop is only local to the loop itself -
but if you use the external keyword in the loop declaration, you will have access 1o
it after execution of the loop completed. Make sure that in this case, you define the
control variable local.

> mandelbrot := proc(x, v, iter, radius) is

> locali,c, z;

> z:=xly;

> c:=z

> for external i from O to iter-1 while abs(z) < radius do
> z:=72"2+¢cC

> od;

> returni # return the last iteration value

> end;

The procedure counts the number of iterations a complex value z takes to escape
a given radius by applying it to the formula z = z” 2+c. Since the loop control
variable i has been declared external, it can be used in the return statement.

The following example demonstrates that local variables are bound to the block in
which they have been declared.

f:=proc() is
local i;
for external i to 3 do
local j;
for external j to 3 do od;
print(i, j)
od;
print(i, j)
end;

VVVVVVVVYV

\Y

—h

(-
e R

WWN R
=

6.11 Packages

6.11.1 Wriiting a New Package

Let us write a small utilities package called helpers including only one main and
one auxiliary function. The main function shall return the number of digits of an
infeger.

Package procedures are usuadlly stored to a table, so we first create a table called
helpers . After that, we assign the procedure ndigits and the auxiliary isinteger
function to this table.

> create table helpers;

> helpers.isinteger := << x -> int(x) = x >>; # au x function

agena >> 81

> helpers.ndigits := proc(n) is
try n as number;
if not helpers.isinteger(n) then
error(‘argument is not an integer’)
fi;
if n =0 then
return 1
else
return entier(In(abs(n))/In(10) + 1);
fi;
end;

VVVVVVYVYVYVYV

Now we can use our new package.

> helpers.ndigits(0):
1

> helpers.ndigits(-10):
2

> helpers.ndigits(.1):

Error: argument is not an integer
in function ndigits, line 4

To save us a lot of typing, we can assign a short name to this table procedure.

> ndigits := helpers.ndigits;
> ndigits(999):
3

Save the code listed above to a file called helpers.agn in a subfolder called
helpers Of the Agena main directory. In order to use the package again after you
have restarted Agena, use the run function.

> restart;

> run “d:/agena/helpers/helpers.agn
> helpers.ndigits(10):

2

You may print the contents of the package table at any fime:

> helpers:
isInteger ~ procedure: 0044A6EQ
ndigits ~ procedure: 0044A850

82 6 Programming

6.11.2 The with Function

The with function besides loading the package in a convenient way, automatically
assigns short names to all or a user-defined set of package procedures so that you
may use the shortcuts instead of the fully written function names.

> restart;

> with “helpers
isInteger, ndigits

> isinteger(1); # same as helpers.isinteger(1)

You may also want with to print a start-up notice at every package invocation if you
assign a string o the table field packagename .initstring. Put the following code into
the helpers.agn file, save the file and restart Agena:

> helpers.initstring := 'helpers v1.0 as of Decembe r 24, 2007\n’;

> restart;

> use "helpers
helpers v1.0 as of December 24, 2007

isInteger, ndigits

Since you may not want that short names are set for auxiliary functions, you can put
the names of all procedures for which short names shall be assigned as strings into
the packagename .loaded table using the register function. Insert the following line to
your helpers.agn file at any position:

> register(helpers, “ndigits);

The contents of the helpers.agn file should finally ook like this:

create table helpers;
helpers.initstring := 'helpers v1.0 as of December 24, 2007\n";
helpers.isinteger := << x -> int(x) = x >>; # aux function

helpers.ndigits := proc(n) is
try n as number;
if not helpers.isinteger(n) then
error(‘'argument is not an integer’)
fi;
if n =0 then
return 1
else
return entier(In(abs(n))/In(10) + 1);
fi;
end;

register(helpers, 'ndigits");

Save the file again and restart Agena.

agena >> 83

> restart;

> with “helpers
helpers v1.0 as of December 24, 2007

ndigits

6.12 Remember tables

Agena features remember tables which if present hold the results of previous calls
to Agena procedures. If an Agena function is called again with the same argument
or the same arguments, then the corresponding result is retfurned from the table,
and the procedure body is not executed. Remember tables are called rtables for
short. Note that C API functions are not supported, only functions written in the
Agena language are.

The feature is suited especially for recursively defined functions. It may slow down
functions, however, if they have rememiber tables but do not rely much on
previously computed results.

By default, no procedure contains a remember table, they must explicitly be
created with the rinit function and opfionally filled with default values with the rset
function. Since those functions are very basic, a more convenient facility is the
rememiber function which will exclusively be used in this chapfter.

Two examples: We want to define a function f(x) = x with f(0) = undefined.

First the function is defined:
>fi=<<x->x>>;

Only after the function has been created, the rable (short for remnemlber table) can
be set up. The remember function can be used to initialise rtables, explicitly set
predefined values to them, and add further values later in a session.

> remember(f, [0~undefined]);

The rtable has now been created and a default entry included in it so that calling f
with argument O returns undefined and not O.

> f(1):
1

> £(0):

undefined

If the function is redefined, the rtable is destroyed, so you may have to initialise it
again.

Fibonacci numbers can be implemented recursively and run with astonishing
speed using rtables.

84 6 Programming

> fib := proc(n) is

> assume(n >=0);

> return fib(n-2) + fib(n-1)
> end;

The call to assume assures that n is always non negative and serves as an
"emergency brake" in case the remember table has not been set up properly.

The rtable is being created with two default values:
> remember(fib, [0~1, 1~1]);

If we now call the function,

> fib(50):
20365011074

the contents of the rtable will be:

1~[1~1]
2 ~[1~1]
3 ~[1~2]
4 ~[1~3]
5 ~ [1~5]
6 ~ [1~8]
7 ~[1~13]
8 ~ [1~21]

9 ~ [1~34]

If a function has more than one parameter or has more than one return, remember
requires a different syntax: The arguments and the returns are still passed as
key~value pairs. However, the arguments are passed in a table, and the retumns are
passed in a separate table.

> f:=proc(x, y) is

> returnx,y

> end,;

> remember(f, [[1, 2] ~ [0, 0]]);

>a, b:=1(1, 2);

For completeness, all basic functions which work on rtables are the following:

agena >> 85

Procedure Details

rinit(f) Initialises an rtable for function f .

hasrtable (f) Checks whether procedure f possesses an rtable.

rget(f) Returns the rtable of function f .

rset(f, argument, return) Adds function argument(s) and the corresponding

rset(f, [arguments], [returns] return(s) to the rtable of procedure f .

rdelete(f) Deletes the rtable of function f entirely. If you want
to use a new one, you have to initialise it with rinit
again.,

Table 13: Functions for remmember tables

Please check Chapter 7.1 for more details on their use.

6.13 Overloading Operators with Metamethods

One of the many useful functions inherited from Lua 5.1 are metamethods which
provide a means 1o apply existing operators to tables, setfs, sequences, and pairs.

For example, complex arithmetic could be entirely implemented with
metamethods so that you can use already existing symbols and keywords such as
+ Or abs With complex values and do not have fo learn names of new functions'®.

This method of defining new functionality 1o existing operators is also known as
“overloading .

Adding such functionality to existing operators is very easy. As an example, we will
define a consfructor to produce complex values and three metamethods for
adding complex values with the plus token, determining their absolute value, and
pretty printing them at the console.

At first, lets store a complex value z = x + yi to a sequence of size 2. The real part is
saved as the first value, the imaginary part af the second.

> cmplx := proc(a, b) is
try a, b as number;
create local seq r(2);
insertainto r;
insert b into r;
return r

end;

VVVYVYVYV

To define a complex value, say z = 0 + |, just call the constructor:

> cmplx(0, 1):
seq(0, 1)

The output is not that nice, so we would like Agena to print cmplx(0, 1) instead of
seq(0,1) . This can be easily done with the settype function:

'%For performance reasons, complex arithmetic has been built directly into the Agena kemnel.

86 6 Programming

> cmplx := proc(a, b) is

> try a, b as number;
> create local seq r(2);
> insertaintor;
> insertbintor;
> settype(r, 'cmplx’);
> returnr
> end;

> cmplx(0, 1):
cmplx(0, 1)

Adding two complex values does not work yet, for we have not yet defined a
proper metamethod.

> cmplx(0, 1) + cmplx(1, 0):
Error, line 1: attempt to perform arithmeticon a s equence value

Metamethods are defined with dictionaries, so called "metatables™. Their keys,
which are always strings, denote the operators to be overloaded, the
corresponding values are the procedures to be called when the operators are
applied to a table, set, sequence, or pair. See Appendix for a list of all available
method names. To overload the plus operator use the ' _add” name.

Assign this metamethod to any name.

>cmplx_mt =
> ' add'~ proc(a, b) is

> return cmplx(a[1]+b[1], a[2]+b[2])
> end
>]

Next, we must assign this metatable to the cmplx structure with the setmetatable
function. We have to extend the constructor by one line, the call to setmetatable

> cmplx := proc(a, b) is
try a, b as number;
create local seq r(2);
insertainto r;
insert b into r;
settype(r, '‘cmplx’);
setmetatable(r, cmplx_mt);
return r

end;

VVVVVYVVYV

Try it:

> cmplx(0, 1) + cmplx(0, 1):
cmplx(0, 2)

Add a new method to calculate the absolute value of complex numbers.
> cmplx_mt.__abs := << (a) -> math.hypot(a[1], a[2]) >>;

The metatable now contains two methods.

agena >> 87

> cmplx_mt:
__add ~ procedure(003FE3ES)
__abs ~ procedure(0046CE80)

>z := cmplx(1, 1)

> abs(z):
1.4142135623731

It would be quite fine if complex values would be output the usual way using the
standard x + yi notation. This can be done with the ' tostring' method which
must return a string.

> cmplx_mt.__tostring := proc(z) is

> return is z[2]<0 then z[1]..z[2].."I' else z[1].'+'..z[2].."T' si;
> end;

>z

1+1i

To avoid using the cmplx constructor in calculations, we want to define the
imaginary unit | = O+i and use it in subsequent operations. Before assigning the |
unit, we have to add a metamethod for multiplying a number with a complex
number.

> cmplx_mt.__mul := proc(a, b) is

> if utype(a) = 'cmplx' and utype(b) = ‘cmplx' t hen

> return cmplx(a[1]*b[1]-a[2]*b[2], a[1]*b[2] +a[2]*b[1])
> elif type(a) = number and utype(b) = 'cmplx' t hen

> return cmplx(a*b[1], a*b[2])

> fi

> end;

and also extend the metamethod for complex addition.

>cmplx_mt.__add := proc(a, b) is

> if utype(a) = 'cmplx' and utype(b) = ‘cmplx' t hen
> return cmplx(a[1]+b[1], a[2]+b[2])

> elif type(a) = number and utype(b) = 'cmplx' t hen
> return cmplx(a+b[1], b[2])

> i

> end;

> i:= cmplx(0, 1);

> a = 1+2*:
1+2i

Until now, the real and imaginary pars can only be accessed using indexed
names, say z[1] for the real part and z[2] for the imaginary part. A more
convenient - albeit very slow - way to use a notation like zre and z.im in both read
and write operations for variables is provided by the ' _index’ and ' newindex'
metamethods, respectively.

88 6 Programming

The index metamethod for reading values from a structure works as follows:

* If the object is a table, then the metamethod is called if the call to an indexed
name results to null.

* If the object is a set, then the metamethod is called if the call to an indexed
name results to false.

* If the object is a sequence, then the metamethod is called if the call to an
indexed name would result to an index-out-of-range error.

The newindex metamethod to write values to a structure works as follows:

* If the object is a table, then the metamethod is called if the key to which a
value shall be assigned is not already present in the structure.
* If the object is a set, sequence or pair, then the metamethod is always called.

The respective procedures assigned fo the index and _ newindex keys of a
metatable should not include calls to indexed names, for in some cases this would
lead to stack overflows due to recursion (the respective metamethod is called
again and again). Instead, use the rawget function to directly read values from a
structure, and the rawset function to enter values into a structure.

Let us first define a global mapping table for symbolic names to intfeger keys:
> cmplx_indexing := [re'~1, 'im'~2];

Now define the metamethods. Both will be capable to accept expressions like a.re
and a[1] .

> cmplx_mt.__index := proc(x, y) is # read operati on

> if type(y) = string then # for calls like "a. re’ or "a.im’
> return rawget(x, cmplx_indexing[y])

> else

> return rawget(x, y) # for calls like "a[1] or "a[2]
> fi

> end;

> cmplx_mt.__newindex := proc(x, Y, z) is # write operation
> if type(y) = string then

> rawset(x, cmplx_indexing[y], z)

> else

> rawset(x, y, z)

> fi

> end;

You can now use them.

>a:
1+2i

> a.re:
1

>a.im:=3

> a.

agena >> 89

1+3i

6.14 File I/O

Agena features various functions to deal with files, to read lines and write values to
them. Most of the functions come from Lua. All the functions processing files are
included in the io package.

6.14.1 Reading Text Files

One of the most useful functions to read in a text file line by line is the io.lines
procedure which accepts the name of the file to be read as a sting. They are
usually used in for loops. The line read is stored to the loop key, the loop value is
always null.

> for i, j inio.lines('d:/agena/lib/agena.ini') do

> print(, j)

> od

execute := os.execute; null
getmeta ;= getmetatable; null
setmeta := setmetatable; null

6.14.2 Writing Text Files

To write numbers or strings into a file, we must first create it with the io.open function.
The second argument tells Agena o open the file in “write” mode.

> file := io.open('d:/file.text', 'w");

i0.open returns an infeger, a so-called file handle. File handles are used in many 10
functions, e.g. the write procedure.

> jo.write(file, 'l am a text.");
After all values have been written, the file must be closed with io.close.
> jo.close(file);

Tables, sets, or sequences cannot be written directly to files, they must be iterated
using loops so that their keys and values - which must be numibers or strings - can
e accessed and stored to the file thereafter.

The following statements write all keys and values to the file. The keys and values are
separated by a pipe ' , and a newline is inserted after each key~value pair has
been added. Notfe that you can mix numiers and strings.

>a :=[10, 20, 30];

> file ;= io.open('d:/table.text’, 'w');
>fori,jinado

> io.write(file, i, [, j, '\n")

> od;

o 6 Programming

> jo.close(file);

agena >>

91

Chapter Seven

Standard Libraries

92

7 Standard Libraries

agena >> 93

7 Standard Libraries

The standard libraries taken from the Lua 5. 1distribution provide useful functions that
are implemented directly through the C APl. Some of these functions provide
essential services fo the language (e.g., next and getmetatable; others provide
access to "outside" services (e.g., I/O); and others could be implemented in Agena
itself, but are quite useful or have ciritical performance requirements that deserve
an implementation in C (e.Q., sort) .

The following text is based on Chapter 5 of the Lua 5.1 manual and includes all the
new operators, functions, and packages provided by Agena.

Lua functions which were deleted from the code are not described. References to
Lua were not deleted from the original text. If an explanation mentions Lua, then the
description also applies to Agena.

All libraries are implemented through the official C APl and are provided as
separate C modules. Currently, Lua/Agena has the following standard libraries:

e basic library;

* package library;

» string manipulation;

e tfable manipulation;

* mathematical functions;

e input and output;

» operating system facilities;
e database operations;

» debug facilities.

Except for the basic and package libraries, each library provides all its functions as
fields of a global table or as methods of its objects. Agena operators have directly
built info the kernel (the Virtual Machine), so they are part of any library.

7.1 Basic Functions

The basic library provides some core functions to Lua. If you do not include this
library in your application, you should check carefully whether you need to provide
implementations for some of its facilities.

abs (x)

If X is a number, the abs operator returns the absolute value of x. Complex numbers
are supported.

If X is a Boolean, it returns 1 for true, O for false, and -1 for fail.

If x is null, abs returns -2.

94 7 Standard Libraries

If X is a string of only one character, abs returns the ASCIl value of the character as
a number. If x is the empty string or longer than length 1, the function returns fail.

anames (v)

Returns all global names that are assigned values in the environment.

The function is written in the Agena language and included in the library.agn file.

approx (a, b [, eps])

compares the two numbers a and b and checks whether they are approximately
equal using a simplified relative approximation algorithm developed by Donald H.
Knuth. If eps is omitted, EnvEps is used. (The algorithm checks whether the relative
error is bound to a given tolerance eps.)

The function returns true if a and b are considered equal or false otherwise.

assigned (v)

This Boolean operator checks whether any value different from null is assigned to
the expression v. If v is a constant, i.e. a number or a string, the operator always
retuns false. If v evaluafes to a constant, the operator returns true.

See also: null.

assume (v [, message])

Issues an error when the value of its argument v is false (i.e., null or false); otherwise,
returns all its arguments. message i An error message; when absent, it defaults to
"assumption failed".

attrib (0)
With the table o returns a new table with

e the cumrent maximum number of key~value pairs allocable to the array and
hash parts of o; in the resulting table, these values are indexed with keys
‘array_allocated' and 'hash_allocated' , respectively.

* the number of key~value pairs actually assigned to the respective array and
hash sections of o; in the resulting table, these values are indexed with keys
‘array_assigned' and 'hash_assigned'

With the set o returns a new table with

* the current maximum number of items allocable to the sef; in the resulting
table, this value is indexed with the key 'hash_allocated'

* the number of items actually assigned to o; in the resulting table, this value is
indexed with the key 'hash_assigned'

agena >> 95

With the sequence o returmns a new table with

* the maximum number of items assignable; in the resulting table, this value is
indexed with the key 'maxsize’ . If the number of entries is not restricted,
'maxsize’ s infinity.

* the curent number of items actually assigned o o; in the resulting table, this
value is indexed with the key 'size'

bye
Quits the Agena session. No argument or brackets are needed.

clearvli[, v2,..]

deletes the values in variables vi, v2, ..., and performs a garbage collection
thereafter in order to clear the memory occupied by the values, 100.

concat (obj [, sep [, i [, jlll)

Returns obij[i]..sep..objfi+1] --- sep..obj[j] , where obj is either a table or
sequence of strings. The default value for sep is the empty string, the default for i is
1, and the default for j is the length of the table. If i is greater than j, returns the
empty string. The empty string is also returmned, if obj consists entirely of non-strings.

Use the toString function if you want to concat other values than strings, e.9.:

> concat(map(toString, [1, 2, 3])):
123

error (message [, level])

Terminates the last protected function called and returns message as the error
message. Function error never returns.

Usually, error adds some information about the error position af the beginning of the
message. The level argument specifies how to get the error position. With level 1 (the
default), the error position is where the enor function was called. Level 2 points the
error to where the function that called error was called; and so on. Passing a level O
avoids the addition of error position information to the message.

G

A global variable (not a function) that holds the global environment (thatis, _G._G =
_G). Lua itself does not use this variable; changing its value does not affect any
environment, nor vice-versa. (Use setfenv to change environments.)

96 7 Standard Libraries

filled (obj)

This Boolean operator checks whether a table, set, or sequence obj contains at
least one item and returns true if so; otherwise it returns false.

gc ([opt [, arg]])

This function is a generic interface to the garbage collector. It performs different
functions according to its first argument, opt :

» 'stop': stops the garbage collector.

* 'restart: restarts the garbage collector.

» 'collect: performs a full garbage-collection cycle (if no option is given, this is
the default action).

» 'count': returns the total memory in use by Lua (in Kobytes).

» 'step". performs a garbage-collection step. The step 'size' is controlled by arg
(larger values mean more steps) in a non-specified way. If you want to
control the step size you must experimentally tune the value of arg. Returns
frue if the step finished a collection cycle.

» 'setpause’: sets arg/100 as the new value for the pause of the collector.

» ‘'setstepmul: sefs arg/100 as the new value for the step multiplier of the
collector.

(The original Lua function collectgarbage has been renamed gc in Agena.)

getfenv (f)

Returns the current environment in use by the function. f can e a Lua function or a
numiber that specifies the function at that stack level: Level 1 is the function calling
getfenv. If the given function is not a Lua function, or if f is O, getfenv returns the global
environment. The default for fis 1.

globals (f)

defermines whether function f includes global variables (names which have not
been defined local).

getmeta (object)
getmetatable (object)
If object does not have a metatable, returns null. Otherwise, if the object's

metatable has a ' _metatable' field, retumns the associated value. Otherwise, returns
the metatable of the given object.

agena >> 97

gettype (0)

returns the type - set with settype - of a function, sequence, or pair o as a string. If
no user-defined type has been set, or any other data type has been passed, null is
returned.

See also: seftype.

has (s, X)

checks whether the structure s (a table, set, sequence, or pair) contains element x.
With tables, both indices (keys) and entries are scanned (if the index is a set, table,
pair, or sequence, the index is not scanned, however). With sequences, only the
entries (not the keys) are scanned. With pairs, both the left and the right item is
scanned. The function performs a deep scan so that it can find elements in deeply
nested structures.

The function is written in the Agena language and included in the library.agn file.

hasrtable (f)

checks whether function f has a remember table. It retuns true if it has got one,
and false otherwise.

isnull (v)

This Boolean operator checks whether an expression v is unassigned, i.e. is null. If v is
a constant, i.e. a number or a string, the operator always returns false.

See also: assigned.

left (p)
returns the left operand of a pair.

See also: right.

load (func [, chunkname])

Loads a chunk using function func to get its pieces. Each call to func must return a
string that concatenates with previous results. A return of null (or no value) signals the
end of the chunk.

If there are no errors, retumns the compiled chunk as a function; otherwise, returns
null plus the error message. The environment of the returned function is the global
environment.,

chunkname is used as the chunk name for error messages and debug information.

98 7 Standard Libraries

loadClib (packagename, path)

Loads the C library packagename (with extension .so in UNIX or .dil in Windows)
residing in the folder denoted by path . path must be the name of the folder where
the C library is stored, and not the absolute path name of the file. The function
returns true in case of success and false otherwise.

loadfile ([filename])

Similar to load, but gets the chunk from file filename or from the standard input, if
no file name is given.

loadstring (string [, chunkname])

Similar to load, but gets the chunk from the given string. To load and run a given
string, use the idiom

assert(loadstring(s))()

map (f,o [, ...])

This operator maps a function f or anonymous function to all the values in table, set,
sequence, or pair o. The function must return only one value. The type of retumn is
the same as of o. If o has metamethods, the return also has them. If o is a
sequence or pair, its special type if present is copied, as well.

If function f has only one argument, then only the function and the structure o are
passed to map. If the function has more than one argument, then all arguments
except the first are passed right after the name of the table or set.

Examples:

> map(<< x ->x"2 >>,[1, 2, 3]):
1~1
2~4
3~9

>map(<< (X,y) ->x>y>>[-1,0,1],0): #0f ory
1 ~ false
2 ~ false

3 ~true

See also: zip.

maptoset (function, obj [, ...])

maps a function or anonymous function to all the values in table or sequence obj
and returns a set. Metamethods if existing are not copied. See map for further
information.

agena >> 99

max (t [, 'sorted")

Returns the maximum of all numeric values in table or sequence t. If the opftion
'sorted’ is passed than the function assumes that all values in t are sorted in
ascending order and returns the last entry.

See also: min.

min (t [, 'sorted)

Returns the minimum of all numeric values in table or sequence t. If the option
'sorted' is passed than the function assumes that all values in t are sorted in
ascending order and returns the first entry.

See also: max.

next (o [, index])

Allows a program to traverse all fields of a table or all items of a set or sequence.
With strings, it iterates all its characters. Its first argument is a table, set, string, or
seguence and its second argument is an index in the structure.

With tables or sequences, next returns the next index of the structure and its
associated value. When called with null as its second argument, next returns an
initial index and its associated value. When called with the last index, or with null in
an empty structure, next returns null.

With setfs, next returns the next item of the set twice. When called with null as its
second argument, next returns the initial item twice. When called with the last index,
or with null in an empty set, next returns null.

With strings, next returns the position of the respective character (a positive integer)
and the character. When called with null as its second argument, next returns the
first character. When called with the last index, next returns null.

If the second argument is absent, then it is interpreted as null. In particular, you can
use nexi(t) 1o check whether a table or set is empty. However, it is recommended 1o
use the filled operator for this purpose.

The order in which the indices are enumerated is not specified, even for numeric
indices. The same applies to set items.

The behaviour of next is undefined if, during the traversal, you assign any value to a
non-existent field in the structure. With tables, you may however modify existing
fields. In particular, you may clear existing table fields.

100 7 Standard Libraries

op (index, ---)

If index is @ number, returns all arguments after argument number index . Otherwise,
index mMust be the string '# , and op returns the total number of extra arguments it
received. The function is useful for accessing multiple retuns (e.g. op(n, ?)).

pcall (f, argl, ---)

Calls function f with the given arguments in profected mode. This means that any
error inside f is not propagated; instead, pcall catches the error and returns a status
code. lts first result is the status code (a boolean), which is true if the call succeeds
without errors. In such case, pcall also returns all results from the call, after this first
result. In case of any error, pcall returns false plus the error message.

print (---)
Receives any number of arguments, and prints their values to stdout , using the
toString function to convert them to strings. print is not intended for formatted

output, but only as a quick way to show a value, typically for debugging. For
formatted output, use strings.format.

In Agena, print also prints the contents of tables and nested tables to stdout if No
__tostring metamethods are assigned to them. The same applies to sets and
sequences. After _EnvMore number of lines, print halts for the user to press any key
for further output. Press 'q’, 'Q', or the Escape key to quit. The default for _EnvMore is
40 lines, but you may change this value in the Agena session or via the agena.ini
file.

rawequal (v1, v2)

Checks whether v1 is equal to v2, without invoking any metamethod. Returns a
boolean.

rawget (obj, index)

Gefts the real value of objlindex] , without invoking any metamethod. obj must be
a table, set, sequence, or pair; index MaAy be any value.

rawset (obj, index, value)

rawset (set, value)

In the first form, sets the real value of objfindex] fo value , without invoking any
metamethod. obj must be a table, sequence, or pair, index any value different
from null, and value any value.

In the second form, the function inserts value into the given set .

This function returns obj or set .

agena >> 101

rdelete (func)

deletes the remember table of procedure func entirely. The function returns null.

read (fn)
reads an object stored in the binary file denoted by file name fn and returns it.

The function is writfen in the Agena language and included in the library.agn file.

See also: save, debug.doubleendiantest .

readlib (packagename)

Loads and runs packages stored to agn text files (with flename packagename .agn) or
binary C libraries (packagename .0 in UNIX, packagename .dll in Windows).

The function first fries 1o find the binary C library wich must reside in the /lib folder of
the Agena directory. If it finds it, it loads and runs the library and proceeds with the
next step.

Next, the function tries to locate an Agena text file library in the folder /packagename
of the Agena directory and loads, runs it when found and quits thereafter. Otherwise
it tries to find the library in the /ib folder in the Agena directory, loads and runs it
when found.

Make sure that in your operating system, you have set the environment variable
AGENAPATH to the main folder where Agena resides and that the path does not
end with a slash. In Win32, you my set the variable with the following statement:

SET AGENAPATH=d:/agena

The function returns true if the package has been successfully loaded and
executed, or false if an error occurred.

You may also pass a complete file name (with or without path) to the function. In
this case the given file is loaded and executed.

See also: run, with.

register (pkgname, namel [, name2, ...])

enfers the stings namel (and name2, efc. if given) into the table
pkgname.loaded, so that if you initialise a package with the with function, those
names name can be used as short names for package functions instead of the
fully written function names.

S0, instead of later calling a function by "pkgname.name(arguments)' you may use
the shortcut "name(arguments)”. See with for more deftails.

102 7 Standard Libraries

This is short for insert namel [, name2, ...] info pkgname.loaded. If a name is
already included in the table, register does not add it.

_RELEASE

A global variable (not a function) that holds a string containing the current
interpreter version. The current contents of this variable is 'AGENA 0.12'

remember (func)
remember (func, tab)

remember (func, null)

administrates remember tables.

In the first form, the remember table stored to procedure func is returned. See rget
for more information.

In the second form, remember adds arguments and returns to the remember table
of funcftion func . If the remember table of func has not been initialised before,
remember creates it. If there are already values in the remember table, they are
kept and not deleted.

If func has only one argument and one retumn, the function arguments and returns
are passed as key~value pairs in table tab .

If func has more than one argument, the arguments are passed in a table. If func
has more than one return, the returns are passed in a table, as well.

Valid calls are:

remember(f, [0 ~ 1]); # one argument 0 & one return 1
remember(f, [[1, 2] ~ [3, 4]); # two arguments 1, 2 & two returns 3, 4
remember(f, [1 ~ [3, 4]]); #one argument 1 & two returns 3, 4
remember(f, [[1, 2] ~ 3]]); # two arguments 1, 2 & one return 3

In the third form, by explicitly passing null as the second argument, the rememlber
table of func is destroyed and a garbage collection run to free up space occupied
by the former rtable.

remember always refurns null. It is written in the Agena language and included in
the library.agn file.

See chapter 6.8 for examples.

agena >> 103

remove (f, o[, ...])

retuns all values in table, set, or sequence o that do not satisfy a condition
determined by function f, as a new table, set, or sequence. The type of return is
determined by the type of second argument.

If the funcfion has only one argument, then only the function and the
table/set/sequence are passed to remove.

>remove(<< x ->x>1>>[1, 2, 3]):
1~-1

If the function has more than one argument, then all arguments except the first are
passed right after the name of the table or set.

>remove(<< X,y ->x>y>>1[1,2,3],1): #1 fory
1~1

restart

Restarts an Agena session. No argument is needed.

During start-up, Agena stores all initial values, e.qg. package tables assigned, in a
global variable called _origG. Tables are copied, too, so their contents cannot be
altered in a session.

If the Agena session is restarted with restart, all values in the Agena environment are
unassigned including the environment variable G, but except of origG and
_EnvAgenaPath. Then all entiies in _orgG are read and assigned to the new
environment. After this, the library base file agena.lib and thereafter the initialization
fle agena.ini - if present - are read and executed. Finally, restart runs a garbage
collection.

The refurn of the function is false if evaluation of origG failed lbecause it is no
longer a table (which should never happen). Otherwise, the return is true.

rget (func)
returns the contents of the current rememioer table of procedure func . The function
actually returns the rtfable as a reference so you can manipulate it from the outside:

> fib := proc(n) is

> assume(n >= 0);

> return fib(n-2) + fib(n-1)
> end;

> remember(fib, [0~0, 1~1]);
> f := rget(fib)

> f:
1~[1~1]

104 7 Standard Libraries

0~ [1~0]
> f[2] :=[1]
> f:
1~[1~1]
2 ~[1~1]
0 ~[1~0]
> rget(fib):
1~[1~1]
2 ~[1~1]
0~ [1~0]

right (p)
returns the right operand of a pair.

See also: left.

rinit (func)

creafes a remember table (an empty table) for procedure func . The procedure
must have been written in the Agena language; reminisce that rtables for C AP
functions are not supported and that in these cases the function quits with an error,

If there is already a rememibber function for func , it is overwritten. rinit returns null.

rset (func, arguments, returns)

The function adds one (and only one) function-argument-and-retumns “pair’ to the
already existing remember table of procedure func . arguments mMust be a table
array, returns - Must also e a table array.

Given a function f:= << x -> x >> for example, valid calls are:
rset(f, [1], [2]) , rset(f, [1, 2], [2 D). rset(f, [1], [1, 2])

See chapter 6.8 for examples.

run (filename)

Opens the named file and executes its contents as a Lua chunk. When called
without arguments, run executes the contents of the standard input (stdin). Returns
all values retumed by the chunk. In case of errors, run propagates the error to its
caller (that is, run does not run in protected mode). The original name of this
function in Lua is dofile.

See also: readlib, with.

agena >> 105

save (o, fn)

saves an object of any type o into a binary file denoted by file name fn .
The function is writfen in the Agena language and included in the library.agn file.

See also: read, debug.doubleendiantest .

select (f, o[, ...])

returns all values in table, set, or sequence o that satisfy a condition determined by
function f. The type of return is determined by the type of second argument.

If the function has only one argument, then only the function and the object are
passed to select.

> select(<< x->x>1>>[1, 2, 3)):
2~2
3~3

If the function has more than one argument, then all arguments except the first are
passed right after the name of the object.

>select(<< x,y->x>y>>{1,2,3}, 1) #1 fory
3
2

If present, the function also copies the metatable of o to the new structure.

setfenv (f, table)

Sets the environment to be used by the given function. f can be a Lua function or
a number that specifies the function at that stack level: Level 1 is the function
calling setffenv. setfenv returns the given function.

As a special case, when f is O setfenv changes the environment of the running
thread. In this case, setfenv returns no values.

setmeta (table, metatable)
setmetatable (table, metatable)
Sets the metatable for the given table. (You cannot change the metatable of other

types from Lua, only from C.) If metatable is null, removes the metatable of the
given table. If the original metatable has a' metatable' field, raises an error.

This function returns table. Contrary to tables, sets do not have metatables.

106 7 Standard Libraries

settype (o[, ...], str)
settype (o [, ...], null)

In the first form the function sets the type of one or more procedures, sequences,
fables, or pairs o to the name denoted by string str. gettype and utype will then
return this string when called with o.

In the second form, by passing the null constant, the user-defined type is deleted,
and gettype thus will return null whereas utype will return the basic type of o.

If o has no _ tostring ~ mMetamethod, then Agena's pretty printer outputs the object
in the form str..'("..<elements>..")' instead of the standard 'seq('..<elements>
) Or '<element>:<element>' string.

Note that the fry statement does not handle user-defined types.

See also: gettype.

size (v)

With tables, the operator returns the numlber of key~value pairs in table v.
With sets and sequences, the operator returns the numiber of items in v.

With strings, the operator refurns the number of characters in string v, i.e. the length
of v.

sort (o [, comp])

Sorts table or sequence elements in a given order, in-place, from o[1] to o[n], where
n is the length of the sfructure. If comp is given, then it must be a function that
receives two structure elements, and returns true when the first is less than the
second (so that not comp(a[i+ 1].q[i]) will be true after the sort). If comp is not given,
then the standard operator < is used instead.

The sort algorithm is not stable; that is, elements considered equal by the given
order may have their relative positions changed by the sort.

time ()

returns the time Hill start-up in seconds as a number.

toTable (s)

If s is a string, the function splits it into its characters, and returns them in a table with
each character in s as a table value in the same order as the characters in s.

If s is a sequence or set, the function converts it intfo a table.

agena >> 107

type (v)

This operator returns the basic type of its only argument, coded as a string. The
possible results of this function are 'nul’ (a string, not the value null), ‘number' ,
'string’ , '‘boolean’ 'table’ , ‘'set , ‘'sequence' , ‘'pair' , 'complex’,
'‘procedure’ , 'thread' , and 'userdata’

If v is a sequence, pair, or procedure with a user-defined type, then type always
retuns the basic type, i.e. 'sequence’ Or 'pair' , Of 'procedure’ , respectively.

See also: utype.

unpack (list [, i [, jID
Returns the elements from the given table or sequence. This function is equivalent
fo

return list[i], list[i+1], ---, list[j]

except that the above code can be written only for a fixed number of elements. By
default, iis 1 and jis the length of the list, as defined by the length operator.

used ()

returns the total memory in use by Agena in Kbytes. It is a shortcut for ge('count')
The function is written in the Agena language and included in the library.agn file.

utype (v)

This operator returns the user-defined type - if it exists - of its only argument, coded
as a string.

A special type can be defined for procedures, pairs, and sequences with the
seftype function. If there is no user-defined type for v, then the basic type is

returned, i.e. 'null (a string, not the value null), 'number' , 'string’ , ‘boolean’ ,
‘table’ , 'set’ , 'sequence’ , ‘pair , 'complex' , 'procedure’ , 'thread’ , and
‘'userdata’

See also: type.

whereis (tbl, x)

retuns the indices for a given value x in tfable t as a table. The function is written in
the Agena language and included in the library.agn file.

108

7 Standard Libraries

with (packagename, [keyl, key2, ...])

Assigns short names to package procedures such that:

name = packagename.name

The function works as follows:

In both forms, with first fries fo load and run the respective Agena package.
The package may reside in a text file with file suffix .agn , or in a C dynamic
link library with file suffix .so in UNIX and .dil in Windows, or both in a text file
and in a dynamic link library. In a first step, the function looks into the lib
folder of the main Agena library 1o find the package files. If it did not find it in
the lib folder, it switches t0 the packagename folder in the main Agena
directory and fries to load it from there. Note that the package files must
reside either in the lib or in the packagename folder.

If either the Agena library or the C library could not be found, with proceeds
without errors. If both are missing, an error is returned.

In the first form, if only the string packagename is given, short names to all
functions residing in the global table packagename are created.

You may opfionally assign short names to either all or only specific
procedures. If you only want define short names to some of the functions,
define a table <packagename>.loaded and include the respective
function names as strings. If the table <packagename>.loaded is not
present, with assigns short names to all keys in <packagename>.

Note that if packagename.name is not of type procedure, a short name is not
created for this object.

If there is a table <packagename>.loaded, then with prints only those
values included in this table. If <packagename>.loaded does not exist, all
keys in <packagename> are prinfed.

An example: If your package is called "agenapackage’, then the short
names to be printed are included in:

agenapackage.loaded := ['run’, 'dosomething;

If you would like to display a welcome message, put it info the string
<packagename>.initstring. It is displayed with an empty line before and
after the text. An example:

agenapackage.initstring := ‘agenapackage v0.1 for A gena as of \
December 24, 2008\n’;

agena >> 109

In the second form, you may specify which short names are to be assigned
by passing them as further arguments in the form of strings. Contrary o the
first form, short names are also created for tables stored to table
<packagename>.

As opposed to the first version, with does not print any short names or
welcome messages on screen.

Further information applying to both forms:
The function refurns a table of all short names assigned .

If the global enviionment variable EnvWithVerbose is set to false, no
messages are displayed on screen except in case of errors. If it is set to any
other value or null, a list of all the short names loaded and a welcome
message is printed.

If a short name has already been assigned, a waming message is printed. If
a short name is protected (see table EnvProtected), it cannot be overwritten
by with and a proper message is displayed on screen. You can control
which names are protected by modifying the contents of _EnvProtected.

In Windows, make sure that you have set the environment variable
AGENAPATH fo the main folder where Agena resides and that the path does
not end with a slash. You my set the variable with the following statement,

e.g.

SET AGENAPATH=d:/agena

if Agena is installed in the d\agena folder. In UNIX, Agena by default
searches in the /usriagena folder if AGENAPATH has not been set.

Note that with executes any statements (and thus also any assignment)
included in the file <packagename>.agn.

The function is written in the Agena language and included in the library.agn file.

See also: readlib, run.

write ([fh,] v1 [, v2 ...][, delim ~ <str>])

This function prints a sequence of values v to the file denoted by the handle fh, or
to stdout (i.e. the console) if fh is not given. By default, no character is inserted
between neighbouring values. This may be changed by passing the opfion
'delim":<str> (i.e. a pair, e.qg. 'delim"'|') as the last argument to the function
with <str> being a string of any length. Remember that in the function call, a
shortcut 1o 'delim":<str> is delim ~ <str> . The function is an interface to io.write.

110 7 Standard Libraries

writeline ([fh,] v1[, v2 ...][, delim ~ <str>])

This function prints a sequence of values Vv, followed by a newline to the file
denoted by the handle fh, or to stdout (i.e. the console) if fh is not given. By default,
no character is inserted between neighbouring values. This may be changed by

passing the option ‘delim"<str> (le. a pair, e.g. 'delim"|) as the last
argument to the function with <str> being a string of any length. Remember that in
the function call, a shortcut to ‘delim":<str> is delim ~ <str> . The function is an

inferface to io.writeline.

xpcall (f, err)

This function is similar 1o pcall , except that you can set a new error handler.

xpcall calls function f in protected mode, using err as the eror handler. Any error
inside f is not propagated; instead, xpcall catches the error, calls the err function with
the original error object, and returns a status code. lts first result is the status code (a
boolean), which is true if the call succeeds without errors. In this case, xpcall Also
returns all results from the call, after this first result. In case of any error, xpcall returns
false plus the result from err.

zip (f, s1, s2)

This function zips together either two sequences or two tables by applying the
function f to each of its respective elements. The result is a new sequence or table
s where each element s[k] is determined by s[k] : = f(s1[K], s2[K]).

sl and s2 must have the same numiber of elements. If you pass tables, they must
be table arrays, and not dictionaries.

If seql Or seq2 have user-defined types or metatables, they are copied 1o the
resulting structure, as well.

See also: map.

agena >> 111

7.2 Coroutine Manipulation

The operations related to coroutines comprise a sub-library of the basic library and
come inside the table coroutine

coroutine.create (f)

Creates a new coroutine, with body f. f must be a Lua function. Returns this new
coroutine, an object with type 'thread'.

coroutine.resume (co [, vall, ---])

Starts or continues the execution of coroutine co. The first fime you resume a
coroufine, it starfs running its body. The values vall, --- are passed as the arguments
to the body function. If the coroutine has yielded, resume restarts it; the values vall,
-+ are passed as the results from the yield.

If the coroutine runs without any errors, resume returns true plus any values passed
fo yield (if the coroutine yields) or any values returned by the body function (if the
coroutine terminates). If there is any eror, resume returns false plus the eror
message.

coroutine.running ()

Returns the running coroutine, or null when called by the main thread.

coroutine.status (co)

Returns the status of coroutine co, as a sting: 'running', if the coroutine is running
(that is, it called status); 'suspended!, if the coroutine is suspended in a call to yield,
or if it has not started running yet; 'normal' if the coroutine is active but not running
(that is, it has resumed another coroutine); and 'dead' if the coroutine has finished
its body function, or if it has stopped with an error.

coroutine.wrap (f)

Creates a new coroutine, with body f. f must be a Lua function. Returns a function
that resumes the coroutine each time it is called. Any arguments passed fo the
function behave as the extra arguments fo resume. Returns the same values
returned by resume, except the first boolean. In case of error, propagates the error.

coroutine.yield (---)

Suspends the execution of the calling coroutine. The coroutine cannot be running a
C function, a metamethod, or an iterator. Any arguments 1o yield are passed as
extra results to resume.

112 7 Standard Libraries

7.3 Modules

The package library provides basic facilities for loading and building modules in
Lua. It exports two of its functions directly in the global environment: require and
module. Everything else is exported in a table package .

module (name [, ---])

Creates a module. If there is a table in package.loadediname] , this fable is the
module. Otherwise, if there is a global table t with the given name, this table is the
module. Otherwise creates a new table t and sets it as the value of the global
name and the value of package.loadediname]. This function also initialises
t. NAME with the given name, 1. M with the module (t itself), and t. PACKAGE with
the package name (the full module name minus last component; see below).
Finally, module sets t as the new environment of the current function and the new
value of package.loaded[name], so that require returns 1.

If name is a compound name (that is, one with components separated by dots),
module creates (or reuses, if they adlready exist) tables for each component. For
instance, if name is a.b.c, then module stores the module table in field ¢ of field b
of global a.

This function may receive optional options after the module name, where each
option is a function to be applied over the module.

require (modname)

Loads the given module. The function starts by looking into the table
package.loaded to determine whether modname is already loaded. If it is, then
require returns the value stored at package.loaded[modname]. Otherwise, it fries to
find a loader for the module.

To find a loader, first require queries package.preload[modname]. If it has a value,
this value (which should be a function) is the loader. Otherwise require searches for
a Lua loader using the path stored in package.path. If that also fails, it searches for
a C loader using the path stored in package.cpath. If that also fails, it fries an
all-in-one loader (see below).

When loading a C library, require first uses a dynamic link facility to link the
application with the library. Then it tries to find a C function inside this library 1o be
used as the loader. The name of this C functfion is the string ‘'luaopen '
concatenated with a copy of the module name where each dot is replaced by an
underscore. Moreover, if the module name has a hyphen, its prefix up to (and
including) the first hyphen is removed. For instance, if the module name is a.vl-b.c,
the function name will be luaopen b c.

If require finds neither a Lua library nor a C library for a module, it calls the all-in-one
loader. This loader searches the C path for a library for the root name of the given

agena >> 113

module. For instance, when requiring a.b.c, it will search for a C library for a. If
found, it looks into it for an open function for the submodule; in our example, that
would be luocopen a b c. With this facility, a package can pack several C
suomodules info one single library, with each submodule keeping its original open
function.

Once a loader is found, require calls the loader with a single argument, modname.
If the loader returns any value, require assigns it to package.loaded[modname]. If
the loader retuns no value and has not assigned any value to
package.loaded[modname], then require assigns true to this entry. In any case,
require returns the final value of package.loaded[modname].

If there is any error loading or running the module, or if it cannot find any loader for
the module, then require signals an error.

package.cpath
The path used by require to search for a C loader.

Lua initialises the C path package.cpath in the same way it initialises the Lua path
package.path, using the environment variable LUA_CPATH (plus another default
path defined in luaconf.h).

package.loaded

A table used by require to control which modules are already loaded. When you
require a module modname and package.loaded[modname] is not false, require simply
returns the value stored there.

package.loadlib (libname, funcname)

Dynamically links the host program with the C library libname . Inside this library,
looks for a function funcname and returns this function as a C function. (So,
funcname must follow the protocol (see lua_CFunction)).

This is a low-level function. It completely bypasses the package and module
system. Unlike require, it does not perform any path searching and does not
automatically adds extensions. lioname must be the complete file name of the C
library, including if necessary a path and extension. funcname must be the exact
name exported by the C library (which may depend on the C compiler and linker
used).

This function is not supported by ANSI C. As such, it is only available on some
platforms (Windows, Linux, Mac OS X, Solaris, BSD, plus other Unix systems that
support the difcn standard).

114 7 Standard Libraries

package.path
The path used by require to search for a Lua loader.

At start-up, Lua initialises this variable with the value of the environment variable
LUA_PATHor with a default path defined in luaconf.h , if the environment variable is
not defined. Any ';;' in the value of the environment variable is replaced by the
default path,

A path is a sequence of templates separated by semicolons. For each template,
require will change each interrogatfion mark in the femplate by filename, which is
modname with each dot replaced by a "directory separator' (such as "/" in Unix);
then it will try fo load the resulting file name. So, for instance, if the Lua path is

"./?.agn;./?.Ic;/usr/local/?/init.agn’

the search for a Lua loader for module foo will try fo load the files ./foo.agn, ./foo.lc,
and /usr/local/foo/init.agn, in that order.

package.preload

A table to store loaders for specific modules (see require).

package.seeall (module)

Setfs a metatable for module with its __index field refering to the global environment,
so that this module inherits values from the global environment. To be used as an
option to function module.

agena >> 115

7.4 String Manipulation

A nofe in advance: All operators and strings package functions know how to handle
many diacritics properly. Thus, the lower and upper operators know how to convert
these diacritics, and various is* functions recognise diacritics as alphabetic
characters.

Diacritics in this context are the letters:

aAaAaAaAalRae EEaA
BEEGEEEE
irititiiyyy
00600080 6006O0
auouauuau
cCANODpPPR

7.4.1 Kerel Operators and B asic Library Functions

replace (sl, s2, s3)
replace (sl, struct)

In the first form, the operator replaces all occurrences of string s2 in string s1 by
string s3.

In the second form, the operator receives a string s1 and a table or sequence of
one or more string pairs of the form s2:s3 and replaces all occurrences of s2 in
string s1 with the corresponding string s3. Thus you can replace multiple patterns
with only one call to replace.

The return is a new string.

s1 split s2

splits the string s1 into words. The delimiter is given by string s2, which may consist of
one or more characters. The return is a table.

abs (s)

with strings, returns the numeric ASCIl value of the given character s (a string of
length 1).

slin_s2

This binary operator checks whether the string s2 includes s1 and retums its position
as a number.

116 7 Standard Libraries

lower (s)

Receives a string and returns a copy of this string with all uppercase letters (‘A' to 'Z'
plus the above mentioned diacritics) changed to lowercase ('a' to 'z' and the above
mentioned diacritics). All other characters are left unchanged.

size (s)

with a string s returns its length, i.e. the number of characters in s.

toNumber (e [, base])

Tries to convert its argument to a number. If the argument is already a number or a
string convertible to a number, then toNumber retuns this number; otherwise, it
returns e if e is a string, and fail otherwise. The function recognises the strings
'undefined’ and infinity' properly, i.e. it converts them to the corresponding
numeric values undefined and infinity, respectively.

An optional argument specifies the base to interpret the numeral. The base may be
any integer between 2 and 36, inclusive. In bases above 10, the letter 'A' (in either
upper or lower case) represents 10, 'B' represents 11, and so forth, with 7
representing 35. In base 10 (the default), the number may have a decimal part, as
well as an optional exponent part (see 2.1). In other bases, only unsigned integers
are accepted. If an opftion is passed, 'undefined' and infinity’ are not
converted 1o numbers; and if e could not be converted, fail is returned.

toString (e)

Receives an argument of any fype and converts it to a sfring in a reasonable
format. For complete control of how numbers are converted, use strings.format.

If the metatable of e has a ' fostring' field, then toSting calls the corresponding
value with e as argument, and uses the result of the call as ifs result. In Lua, the
original name of this function is tostring.

trim (s)

returns a new string with all leading, trailing and excess embedded white spaces
removed.

upper (s)
Receives a string and returns a copy of this string with all lowercase letters (‘' to ‘2

plus the above mentioned diacritics) changed to uppercase (A' to 'Z' and the
above mentioned diacritics). All other characters are leff unchanged.

agena >> 117

7.4.2 The strings Library

The strings liorary provides generic functions for string manipulation, such as finding
and extracting substrings, and pattern matching. When indexing a string in Lua, the
first character is at position 1 (not at 0, as in C). Indices are allowed to be negative
and are interpreted as indexing backwards, from the end of the string. Thus, the last
character is at position -1, and so on.

The strings library provides all its functions inside the table strings . It Also sets a
metatable for strings where the __index field pointfs to the strings table. Therefore,
you can use the string functions in object-oriented style. For instance,
strings.repeat(s, i) can be written as s:repeat(i).

strings.diamap (s)

the function corrects problems in the Solaris, Windows and Linux consoles with
diacritics and ligatures read in from a text file (even .agn program files) by mapping
them tfo their correct character codes. It takes a strings s, applies the mapping, and
returns a new string. All other characters are returned unchanged.

Example:

> strings.diamap('AEIOU-I_&+1"):
AEIOUAOUEAD

If you do not run Agena on Solaris, Windows or Linux, the function simply returns s
without any modification.

Note that the function does not convert all existing special fokens.

strings.dump (function)

Returns a string containing a binary representation of the given function, so that a
later loadstring on this string returns a copy of the function. function ~ must be a Lua
function without upvalues.

strings.find (s, pattern [, init [, plain]])

Looks for the first match of pattern in the string s. If it finds a match, then find returns
the indices of s where this occurrence starfs and ends; otherwise, it returns null. A
third, optional numerical argument init specifies where to start the search; its default
value is 1 and may be negative. A value of true as a fourth, optional argument
plain turns off the pattern matching facilities, so the function does a plain "find
substring" operation, with no characters in patten being considered "magic". Note
that if plain is given, then init must be given as well.

If the pattern has captures, then in a successful match the captured values are also
returned, after the two indices.

118 7 Standard Libraries

strings.format (formatstring, --+)

Returns a formatted version of its variable number of arguments following the
descripfion given in its first argument (which must be a string). The format string
follows the same rules as the printf family of standard C functions. The only
differences are that the options/modifiers *, I, L, n, p, and h are not supported and
that there is an extra option, . The g option formats a string in a form suitable to be
safely read back by the Lua interpreter: the string is written between double quotes,
and all double guotes, newlines, embedded zeros, and backslashes in the string
are correctly escaped when written. For instance, the call

strings.format('%q', ‘a string with "quotes" and \ n new line")

will produce the string:

"a string with \"quotes\" and \
new line"

The options ¢, d, E, e, f, g, G, i, 0, u, X, and x all expect a number as argument,
whereas g and s expect a string.

This function does not accepf string values containing emibedded zeros.

strings.gmatch (s, pattern)

Returns an iterator function that, each time it is called, returns the next captures
from pattern over string s.

If pattern specifies no captures, then the whole match is produced in each call.
As an example, the following loop

s :='hello world from Lua'

for w in strings.gmatch(s, '%a+") do
print(w)

od

will iterate over all the words from string s, printing one per line. The next example
collects all pairs key~value from the given string into a table:

table t;

s := 'from=world, to=Lua’

for k, v in strings.gmatch(s, '(%w+)=(%w+)") do
tk] :=v

od

strings.gsub (s, pattern, repl [, n])

Returns a copy of s in which all occurrences of the pattern have been replaced by
a replacement string specified by repl, which may be a string, a table, or a
function. gsub also returns, as its second value, the total numiber of subbstitutions
made.

agena >> 119

If repl is a string, then its value is used for replacement. The character % works as an
escape character. any sequence in repl of the form %n, with n between 1 and 9,
stands for the value of the n-th captured substring (see below). The sequence %0
stands for the whole match. The sequence %% stands for a single %.

If repl is a table, then the table is queried for every match, using the first capture as
the key; if the pattern specifies no captures, then the whole match is used as the
key.

If repl is a function, then this function is called every time a match occurs, with all
captured substrings passed as arguments, in order; if the patftern specifies no
captures, then the whole match is passed as a sole argument.

If the value retumned by the table query or by the function call is a sting or a
numiber, then it is used as the replacement string; otherwise, if it is false or null, then
there is no replacement (that is, the original match is kept in the string).

The optional last parameter n limits the maximum number of substitutions to occur.
For instance, when nis 1 only the first occurrence of pattemn is replaced.
Here are some examples:

X := strings.gsub(‘hello world', '(%w+)', '%1 %1")
--> x = 'hello hello world world'

X := strings.gsub(‘hello world', "%w+'", '%0 %0', 1)

-->x = 'hello hello world'

X := strings.gsub(‘hello world from Lua’, '(%w+)%s *(%w+)', '%2 %1")
--> x ='world hello Lua from'

X := strings.gsub(‘home = $HOME, user = $USER’, ‘% $(%w+)', 0s.getenv)
--> x = 'home = /home/roberto, user = roberto’

X := strings.gsub('4+5 = $return 4+5$', '%$(.-)%$' , proc (s)

return loadstring(s)()

end)

—>X='4+5=9

local t := [name~'lua’, version~'5.1"]
X = strings.gsub(‘$name%-$version.tar.gz', '%$(Yow+), t)
-->x = 'lua-5.1.tar.gz'

strings.hits (s, pattern)

returns the numiber of occurrences of substring pattemn in string s. The function does
not support regular expressions.

strings.isAlpha (s)

checks whether the string s consists entirely of alphabetic letters and return true or
false.

120 7 Standard Libraries

strings.isAlphaNumeric (s)

checks whether the string s consists entirely of numbers or alphabetic lefters and
return true or false.

string.isAlphaSpace (s)

checks whether the string s consists entirely of alphabetic letters and/or a space
and return frue or false.

strings.isLatin (s)

checks whether the string s entirely consists of the characters 'a' to 'z, and A'to 'Z'. It
returns true or false. If s is the empty string, the result is always false.

strings.isLowerAlpha (s)

checks whether the string s consists entirely of the characters a o z and lower-case
diacritics, and retumns true or false. If s is the empty string, the result is always false.

strings.isLowerLatin (s)

checks whether the string s consists entirely of the characters a to z, and returns tfrue
or false. If s is the empty string, the result is always false.

strings.isMagic (s)

checks whether the string s contains one or more magic characters and returns
true or false. In this function, magic characters are anything unlike the letters A fo Z,
a to z, and the diacritics listed at the top of this chapter.

strings.isMagic2 (s)

checks whether the string s contains one or more magic characters and returns
true or false. In this function, magic characters are anything unlike the letters A fo Z,
a to z, the diacritics listed at the top of this chapter, and @.

strings.isNumber(s)

checks whether the string s consists entirely of the numbers O to 9 and returns true or
false.

strings.isNumberSpace (s)

checks whether the string s consists entirely of the numibers 0 o 9 or white spaces
and returns true or false.

agena >> 121

strings.Itrim (s)

returns a new string with all leading white spaces removed.

strings.match (s, pattern [, init])

Looks for the first mafch of pattern in the string s. If it finds one, then match returns
the captures from the pattemn; otherwise it returns null. If pattern specifies no
captures, then the whole match is returned. A third, optional numerical argument
init specifies where fo start the search; its default value is T and may be negative.

strings.repeat (s, n)

Returns a string that is the concatenation of n copies of the string s.

Note that in Lua, the original function name was string.rep.

strings.reverse (s)

Returns a string that is the string s reversed.

strings.rtrim (s)

returns a new string with all frailing white spaces removed.

strings.seek (s, pattern [, init])

Looks for the first match of pattern in the string s. If it finds a match, then find returns
the indices of s where this occurrence starts and ends; otherwise, it retumns null. A
third, optional numerical argument init specifies where to start the search; its default
value is 1 and may be negative. Confrary to strings.find, the function does not
support paftern matching facilities. If you have to search a string from its beginning,
use the faster in operator.

strings.toChars (--+)

Receives zero or more integers and returns a string with length equal to the numlber
of arguments, in which each character has the internal numerical code equal 1o ifs
corresponding argument.

Note that numerical codes are not necessarily portable across platforms. The
function was named string.char in Lua and was renamed to avoid keyword collision
with the char operator.

7.4.3 Patterns

Character Class:

A character class is used to represent a set of characters. The following
combinations are allowed in describing a character class:

122

7 Standard Libraries

X: (Where x is not one of the magic characters ~$()%.[1*+-?) represents the
character x itself.

.. (0 dot) represents all characters.

%a: represents all letters.

%c: represents all control characters.

%d: represents all digifs.

%l: represents all lowercase letters.

%p: represents all punctuation characters.

%s. represents all space characters.

%u: represents all uppercase letters.

%w: represents all alphanumeric characters.

%x: represents all hexadecimal digits.

%z represents the character with representation 0.

%x: (where x is any non-alphanumeric character) represents the character x.
This is the standard way fo escape the magic characters. Any punctuation
character (even the non magic) can be preceded by a '%' when used to
represent itself in a pattern.

[set]: represents the class which is the union of all characters in setf. A range
of characters may be specified by separating the end characters of the
range with a -'. All classes %x described above may also be used as
components in set. All other characters in set represent themselves. For
example, [%w] (or [%w]) represents all alphanumeric characters plus the
underscore, [0-7] represents the octal digits, and [0-7%l%-] represents the
ocftal digits plus the lowercase lefters plus the -' character.

The interaction between ranges and classes is not defined. Therefore,
patterns like [%a-z] or [0-%%] have no meaning.

[* set] : represents the complement of set, where set is interpreted as above.

For all classes represented by single lefters (%a, %c, etc.), the corresponding
uppercase letter represents the complement of the class. For instance, %S
represents all non-space characters.

The definitions of letter, space, and other character groups depend on the current
locale. In particular, the class [a-z] may not be equivalent tO %l

Paftern ltem:

A pattern item may be

a single character class, which matches any single character in the class;

a single character class followed by *', which matches 0 or more repetitions
of characters in the class. These repetition items will always match the
longest possible sequence;

a single character class followed by '+', which matches 1 or more repetitions
of characters in the class. These repetition items will always match the
longest possible sequence;

agena >> 123

a single character class followed by ', which also matches 0O or more

repetitions of characters in the class. Unlike '+, these repetition iterms will

always match the shortest possible sequence;

* @ single character class followed by ', which matches O or 1 occurrence of
a character in the class;

* %n, for n between 1 and 9; such item matches a substring equal fo the n-th
captured string (see below);

* %bxy, where x and y are two distinct characters; such item matches strings

that start with x, end with y, and where the x and y are balanced. This means

that, if one reads the string from left to right, counting +1 for an x and -1 for a

y. the ending vy is the first y where the count reaches 0. For instance, the item

%b() Matches expressions with balanced parentheses.

Pattern:

A pattern is a sequence of patten items. A »' at the beginning of a pattern
anchors the match at the beginning of the subject sting. A 'S' at the end of a
patftern anchors the match at the end of the subject string. At other positions, ' ™'
and '$' have no special meaning and represent themselves.

Captures:

A pattern may contain sub-patterns enclosed in parentheses;, they describe
captures. When a match succeeds, the substrings of the subject string that match
captures are stored (captured) for future use. Captures are numibered according to
their left parentheses. For instance, in the pattern '(a*(.)%w(%s*)), the part of the
sting matching 'a*(.)%w(%s*)' is stored as the first capture (and therefore has
number 1); the character matching "' is captured with number 2, and the part
matching '%s*' has number 3.

As a special case, the empty capture () captures the current string position (a
numiber). For instance, if we apply the pattern '(Jaa()' on the string 'flaaap’, there will
be two captures: 3 and 5.

A pattern cannot contain embedded zeros. Use %z instead.

124 7 Standard Libraries

/.5 Table Manipulation

7.5.1 Kermnel O perators

The following functions have been built intfo the kernel as unary operators.

add (obj)

sums up all numeric values in table or sequence obj. The return is a number. If obj is
empty or consists entirely of non-numbers, null is returned. If the object contains
numibbers and other objects, only the numbers are added. Entries with non-numeric
keys are ignored.

copy (table)

The operator copies the entire contents of a table into a new table. If the table
contains tables itself, those tables are also copied properly (by a "deep copying
method). Metatables are copied, too.

filled (table)

checks whether table contains at least one element. The return is true or false. The
function works on dictionaries, as well.

join (table)
concatenated all string values in the table in sequential order and returns a string.

map (f, table [, ...])

maps the function f on all elements of a table. See map in chapter 7.1 for more
information.

gadd (obj)

raises all numeric values in table or sequence obj 1o the power of 2 and sums up
these powers. The retun is a numiber. If obj is empty or consists entirely of
non-numbers, null is returned. If the table or sequence contains numbers and other
objects, only the powers of the numbers are added. Entries with non-numeric keys
are ignored.

unique (table)

The unique operator removes all holes ("missing keys') in a table and removes
multiple occurrences of the same value, if present. The retumn is a new table with
the original table unchanged.

agena >> 125

The following functions have been built info the kernel as binary operators.

Please note that the operators retumning a Boolean work in a Cantor way, i.e. {1, 1}
={1} - true, {1, 2} xsubset{1,1,2,2,3,3 } - true.

tablel = _ table2

This equality check of two tables tablel , table2 first tests whether tablel and table2
point 10 the same table reference in memory. If so, it returns frue and quits.

If not, the operator then checks whether tablel and table2 contain the same
values without regard to their keys, and returns true or false. In this case, the search
is quadratic.

tablel <>__ table2

This inequality check of two tables tablel , table2 first tests whether tablel and
table2 do not point to the same table reference in memory. If so, it returns frue and
quits.

If not, the operator then checks whether tablel and table2 do not contain the
same values, and retumns true or false. In this case, the search is quadratic.

cin_table

checks whether table contains the value ¢ and refurns true or false. The search is
linear.

tablel intersect table2

searches all values in tablel that are also values in table2 and returns them in a
table. The search is quadratic, so you may use tables.bintersect instead if you want
to compare large tables since bintersect performs a binary search.

tablel minus table2

searches all values in tablel that are not values in table2 and returns them as a
table. The search is quadratic, so you may use tables.bminus instead if you want to
compare large tables since bminus performs a binary search,

tablel subset table2

checks whether all values in tablel are included in table2 and returns true or false.
The operator also returns true if tablel = table2 . The search is quadratic.

tablel union table2

concatenates two tables tablel and table2 simply by copying all its elements -
even if they occur multiple times - to a new table.

126 7 Standard Libraries

tablel x _subset table2

checks whether all values in tablel are included in table2 and whether table2
contains at least one further element, so that the result is always false if tablel =
table2 . The search is quadratic.

7.5.2 tables Library

This library provides generic functions for table manipulation. It provides all its
functions inside the table tables .

Most functions in the table library assume that the table represents an array or a list.
For these functions, when we talk about the 'length' of a table we mean the result of
the length operator.

tables.bintersect (tablel, table2 [, option])

returns all values of tablel that are also values in table2 . The functions performs a
binary search in table2 for each value in tablel . If NO option is given, table2 is
sorted before starting the search. If you pass an option of any value then table2
should already have been sorted, for no corect results would be returned
otherwise.

The function is written in the Agena language and included in the library.agn file.

tables.bisEqual (s1, s2 [, option])

Determines whether the table or sequence s1 contains the same values as the
sequence or table s2. The functions performs a binary search in s2 for each value in
s1. If no option is given (any value), s2 is sorted before starting the search. If you
pass an option of any type then s2 should already have been sorted, for no correct
results would be returned otherwise.

The function is written in the Agena language and included in the library.agn file.

tables.bminus (tablel, table2 [, option])

returns all values of tablel that are not values in table2 . The functions performs a
binary search in table2 for each value in tablel . If NO opfion is given, table2 s
sorted before starting the search. If you pass the option then table2 should already
have been sorted, for no correct results would be returned otherwise.

The function is writfen in the Agena language and included in the library.agn file.

tables.duplicates (table, option)

returns all the values that are stored more than once to the given table, and returns
them in a table. Each duplicate is retfurned only once. If option is not given, the

agena >> 127

table is sorted before evaluation since this is needed 1o evaluate all duplicates. The
original table is left untfouched, however. If an option of any type is given, the
function assumes that the table has been already sorted.

The function is writfen in the Agena language and included in the library.agn file.

tables.indices (tbl)

retuns all keys in a table as a table. See also: tables.getvalues .

tables.maxn (table)

Returns the largest positive numerical index of the given table, or zero if the table
has no positive numerical indices. (To do its job this function does a linear traversal
of the whole table.)

tables.put (table, [pos,] value)

Inserts element value at position pos in table, shiffing up other elements to open
space, if necessary. The default value for pos is n+1, where n is the length of the
table, so that a call tables.put(t,x) inserts x at the end of table t.

Use the insert element into table statement if you want to add an element at the
current end of a table.

tables.remove (table [, pos])

Removes from table the element at position pos, shiffing down other elements to
close the space, if necessary. Returns the value of the removed element. The
default value for pos is n, where n is the length of the table, so that a call
tables.remove(t) removes the last element of table 1.

Use the delete element from tfable statement if you want to remove any
occurence of the table value element from a table.

tables.writeTable (table, filename [, delim])

writes all values of table table to a text file with the given file name with one value in
each line. If you pass a delimiter (a string) as the third argument, then the function
writes all key~value pairs where the keys and values are separated by the given
delimiter.

The function is written in the Agena language and included in the library.agn file.

128 7 Standard Libraries

7.6 Set Manipulation
The following functions have been built intfo the kernel as unary operators.

copy (set)

The operator copies the entire contents of a set into a new set. If the set contains
other setfs - even nested ones-, those setfs are also copied properly (by a "deep
copying method). Metamethods if present, are also copied.

filled (set)
checks whether a set contains at least one element. The return is true or false.

The following functions have been built info the kernel as binary operators.

Please note that the operators retumning a Boolean work in a Cantor way, i.e. {1, 1}
={1} - true, {1, 2} xsubset{1,1,2,2,3,3 } - true.

setl = _ set2

This equality check of two sefs setl , set2 first tests whether setl and set2 point to
the same set reference in memory. If so, it returns true and quits.

If not, the operator then checks whether setl and set2 contain the same items,
and returns true or false. In this case, the search is linear.

tablel <>__ table2

This inequality check of two tables set1 , set2 first fests whether set1 and set2 do not
point to the same set reference in memory. If so, it returns true and quits.

If not, the operator then checks whether setl and set2 do not contain the same
items, and returns true or false. In this case, the search is linear.

cin__ set

checks whether set contains the item ¢ and returns true or false. The search is
constant.

setl intersect set2

searches all items in setl that are also items in set2 and returns them in a set. The
search is linear.

agena >> 129

setl minus__ set2

searches all items in set1 that are not items in set2 and returns them as a set. The
search is linear.

setl subset set2

checks whether all items in setl are included in set2 and returns tfrue or false. The
operator also returns tfrue if setl = set2 . The search is linear.

setl union set2

concatenates two sefs setl and set2 simply by copying all its items to a new set.

setl x _subset set2

checks whether all items in setl are included in set2 and whether set2 contains atf
least one further item, so that the result is always false if setl1 = set2 . The search is
linear.

130 7 Standard Libraries

7.7 Segquence Manipulation

With the exception of map, the following functions have been built into the kernel
as unary operators.

add (seq)

sums up all numeric values in sequence seq. The return is a number. If seq is empty
or consists entirely of non-numbers, null is returned. If seq contains numibbers and
other values, only the numbers are added.

copy (seq)

The operator copies the entire contents of a sequence into a new table. If the
seqguence contains sequence itself, those sequence are also copied properly (by a
"deep copying’ method). Metatables are copied, too.

filled (seq)
checks whether sequence contains at least one element. The retumn is true or false.

join (seq)

concatenated all string values in the sequence in sequential order and returns a
string.

gadd (seq)

raises all numeric values in sequence seq to the power of 2 and sums up these
powers. The return is a number. If seq is empty or consists entirely of non-numbers,
null is retumned. If the sequence contains numbers and other values, only the
powers of the numbers are added.

unique (seq)

With sequences, the unique operator removes multiple occurrences of the same
item, if present. The refurn is a new sequence with the original sequence
unchanged.

agena >> 131

The following functions have been built info the kernel as binary operators.

Please note that the operators returning a Boolean work in a Cantor way, i.e. seq(l,
1) =seq(1) — true, seq(l, 2) xsubset seq(1, 1, 2, 2, 3, 3) - true.

seql = seq2

This equality check of two sequences seql, seq2 first tests whether seql and seq2
point to the same sequence reference in memory. If so, it returns true and quits.

If not, the operator then checks whether seqi and seq2 contain the same values
without regard to their keys, and retumns true or false. In this case, the search is
quadratic.

seql <> seq2

This inequality check of two sequences seql, seq2 first tests whether seql and seq2
do not point to the same sequence reference in memory. If so, it returns true and
quits.

If not, the operator then checks whether seqi and seq2 do not contain the same
values, and returns true or false. In this case, the search is quadratic.

cin__seq

checks whether seq contains the value ¢ and returns true or false. The search is
linear.

seql intersect seq2

searches all values in seql that are also values in seq2 and returns them in a
seguence. The search is quadratic.

seql minus _seq2

searches all values in seql that are not values in seq2 and retuns them as a
seguence. The search is quadratic.

seql subset seq2

checks whether all values in seql are included in seq2 and retumns true or false. The
operator also returns true if seql = seq2 . The search is quadratic.

seql union _ seq2

concatenates two sequences seql and seq2 simply by copying all its elements -
even if they occur multiple times - t0 a new sequence.

132 7 Standard Libraries

seql x_subset seq2

checks whether all values in seql are included in seq2 and whether seq2 contains at
least one further element, so that the result is always false if seql = seq2. The search
is quadratic.

agena >> 133

7.8 Mathematical Functions

7.8.1 Kermnel O perators
The following functions have been built into the kemel as operators.

abs (x)

If x is a number, abs returns the absolute value of x. Complex numbers are
supported.

arctan (x)

Arc tangent (x in radians). Complex numbers are supported.

cos (x)

Cosine (x in radians). Complex numbers are supported.

entier (x)

Rounds x downwards to the nearest integer.

even (X)

Checks whether x is even. Returns true if x is even, and false otherwise.

exp (X)
returns the value . Complex numbers are supported.

finite (x)

Checks whether x is not plus or minus infinity, and is not NaN. Returns true if x is a
"number' and false otherwise.

gammaln (x)

computes In I" x. If x is nonpositive, the function returns undefined.

int (x)
rounds x to the nearest integer towards zero.

In (x)

Natural logarithm of x. If x is nonpositive, the function returns undefined. Complex
numbers are supported.

134 7 Standard Libraries

sign (x)

determines the sign of the number or complex value x. If x is a complex value, the
result is determined as follows:

 1,ifredl(x) > 0 orreadl(x) = 0 and imag(x) > O
e -1, ifreal(x) < 0 orreadl(x) = 0 and imag(x) < O
* 0 otherwise.

sin (x)

Sine (x in radians). Complex numbers are supported.

sqrt (X)
Square rooft of x.

If x is a number and negative, the function returns undefined.

With complex numbers, the operator returns the complex square roof, in the range
of the right halfplane including the imaginary axis.

tan (x)

Tangent (x in radians). Complex numbers are supported.

7.8.2 math Library

This library is an interface to the standard C math library. It provides all its functions
inside the table math.

math.arccos (x)

Retuns the arc cosine of x (in radians). The function works on both numbers and
complex values.

math.arccosh (x)

Returns the inverse hyperbolic cosine of x (in radians). The function is implemented
in the Agena language and included in the library.agn file. The function works on
both numbers and complex values.

math.arccoth (x)

Returns the inverse hyperbolic cotangent of x (in radians). The function works on
both numbers and complex values.

agena >> 135

math.arcsin (x)

Returns the arc sine of x (in radians). The function works on both numbers and
complex values.

math.arcsinh (x)

Returns the inverse hyperbolic sine of x (in radians). The function is implemented in
the Agena language and included in the library.agn fle. The function works on
both numbers and complex values.

math.arctanh (x)

Retuns the inverse hyperbolic tangent of x (in radians). The function is
implemented in the Agena language and included in the library.agn fle. The
function works on both numbers and complex values.

math.arctan2 (x, y)

Returns the arc tangent of xiy (in radians), but uses the signs of both parameters to
find the quadrant of the result. (It also handles correctly the case of y being zero.) x
and y must be numbers. Complex values are nor supported.

math.argument (z)

Returns the argument (the phase angle) of the complex value z in radians as a
number; if z is a number, the function returns O.

math.binomial (n, k)

Returns the binomial coefficient as a number. The function returns undefined, if n or
k are negative.

math.ceil (x)

Rounds upwards to the nearest infeger larger than or equal to x. See the entier
operator for a function that rounds downwards to the nearest integer. The function is
implemented in the Agena language and included in the library.agn file.

math.conj (z)

The conjugate x-I*y of the complex value z=x+I*y. If z is of type number, it is simply
returned.

math.cosh (x)

Returns the hyperbolic cosine of x. The function works on both numbers and
complex values.

136 7 Standard Libraries

math.cot (x)

Returns the cotangent -tan(Pi/2+x) as a number. The function is implemented in the
Agena language and included in the library.agn file. The function works on both
numers and complex values.

math.coth (x)

Retuns the hyperbolic cotangent 1/tanh(x) as a number. The function is
implemented in the Agena language and included in the library.agn file. The
function works on both numbers and complex values.

math.csc(x)

Returns the cosecant 1/sin(x) as a number. The function is implemented in the
Agena language and included in the library.agn file. The function works on both
numbers and complex values.

math.diff (f, x [, eps])

Differentatiates a function in one variable at the point x and returns a number. If eps
is not passed, the function uses an accuracy of the value stored to _EnvEps. You
may pass another numeric value for eps if necessary.

The function is implemented in the Agena language and included in the
library.agn file.

math.fact (n)

Returns the factorial of n, i.e. the product of the values from 1 to n. If n is not an
infeger or if n is negative, the function returns undefined. Note that the Agena
expression exp(gammaln(n+1)) is around 25 % faster than this function.

math.flip (z)

swaps the real and imaginary parts of the complex value z = x + I*y and returns the
new complex number z' =y + x*I.

math.fmod (X, y)
Returns the remainder of the division of x by y.

math.frexp (x)

Returns m and e such that x = m2° e is an integer and the absolute value of m is
in the range [0.5, 1) (or zero when x is zero).

agena >> 137

math.gcd (a, b)

Returns the greatest common divisor of fo numbers a and b as a number. The
function is implemented in the Agena language and included in the library.agn
file.

math.gtrap (f, a, b [, eps])

Integrates the function f on the interval [a, D] using a bisection method based on
the frapezoid rule and returns a number. By default the function quits after an
accurarcy of eps = _EnvEps has been reached. You may pass another numeric
value for eps if necessary.

The function is implemented in the Agena language and included in the
library.agn file.

math.heaviside (x)

the Heaviside function. Returns O if x < 0, undefined if x = 0, and 1 if x > 0. The
function is implemented in the Agena language and included in the library.agn
file.

math.hypot (x)

retuns sari(x*x + y*y) with x, y numbers. This is the length of the hypotenuse of a
right triangle with sides of length x and y, or the distance of the point (x, y) from the
origin. The function is slower but more precise than using sqrt. The refumn is a
number.

math.irem (X, y)

Evaluates the remainder of an integer division x/y (two Agena numbers). Return is a
number. The remainder has the same sign as the numerator.

math.isfloat (x)

Returns true, if the number x is a float, i.e. not an integral value, and false otherwise.

math.isinteger (x)

Returns true, if the number x is an integer, or false if it is Nof.

math.isprime (x)

Returns true, if the integral number x is a prime number, and false otherwise.

138 7 Standard Libraries

math.lcm(a, b)

Returns the least common multiple of 10 numibers a and b as a number. The
function is implemented in the Agena language and included in the library.agn
file.

math.ldexp (m, e)

Returns m2° (e should be an infeger).

math.log (x, b)

Returns the logarithm of x to the base b. The function is implemented in the Agena
language and included in the library.agn file.

math.log10 (x)

Returns the base-10 logarithm of x. The function is implemented in the Agena
language and included in the library.agn file.

math.max (x, ---)

Returns the maximum value among its arguments.

math.min (x, ---)

Retfurns the minimum value among its arguments.

math.modf (x)

Returns two numbers, the infegral part of x and the fractional part of x.

math.Phi
The golden number, Phi = (1+sart(5))/2.

math.random ([m [, n]])

This function is an interface to the simple pseudo-random generator function rand
provided by ANSI C. (No guarantees can be given for its statistical properties.)

When called without arguments, returns a pseudo-random real number in the
range [0,1). When called with a number m math.random refuns a
pseudo-random integer in the range [1, m]. When called with two numbers m and
n, math.random returns a pseudo-random infeger in the range [m, n].

agena >> 139

math.randomseed (x)

Sets x as the "seed" for the pseudo-random generator: equal seeds produce equal
sequences of numbers.

math.root (x, n)
Returns the non-principal n-th root of the numibber or complex value x. N must be an
integer.

math.roundf (x [, d])

Rounds the number x to the d-th digit. Return is a number. If d is omitted, the
number is rounded to the nearest integer. The following Agena code explains the

algorithm used:
roundf := proc(x, digs) is
local d;
if digs = null then d := 0 else d := digs fi;
return int((10~d)*x + sign(x)*0.5) * (10/(-d))
end;

math.sec(x)

Returns the secant 1/cos(x) as a number. The function is implemented in the Agena
language and included in the library.agn file. The function works on both numibers
and complex values.

math.sinh (x)

Returns the hyperbolic sine of x. The function works on both numbers and complex
values.

math.sum (f, a, b)

Returns the sum of f(a) + fla+1) + ... + f(b), where f is a function, as a number.

math.tanh (x)

Returns the hyperbolic tangent of x. The function works on both numbers and
complex values.

math.toRadians (d [, m [, s]])

Returns the angle given in degrees d, minutes m and seconds s, in radians. The
optional arguments m and s default to O.

140 7 Standard Libraries

7.9 Input and Output Facilities

The /O library provides two ways for file manipulation. The first one uses implicit file
descriptors; that is, there are operations to set a default input file and a default
output file, and all input/output operations are over these default files. The second
style uses explicit file descriptors.

The table io provides three predefined file descriptors with their usual meanings
from C: io.stdin , io.stdout , And io.stderr

Unless otherwise stated, all I/O functions return null on failure (plus an error message
as a second result) and some value different from null on success.

io.close ([file])

Closes file . Note that files are automatically closed when their handles are
garbage collected, but that takes an unpredictable amount of time to happen.
Without a file, closes the default output file.

io.flush (file)
io.flush ()

In the first form, saves any written data 1o file . In the second form, the function
flushes default output.

io.getkey ()

reads a key from the keyboard and return its ASCII number. The function works on
UNIX and Windows based platforms only. The function is not available on other
platforms.

io.input ([file])

When called with a file name, it opens the named file (in text mode), and sets its
handle as the default input file. When called with a file handle, it simply sets this file
handle as the default input file. When called without parameters, it retumns the
current default input file.

In case of errors this function raises the error, instead of retuning an error code.

io.isfdesc (obj)

Checks whether obj is a valid file handle. Returns true if obj is an open file handle, or
false if obj is not a file handle.

agena >> 141

io.lines ([filename])
io.lines ([file])

In the first form, the function opens the given file name in read mode and returns
an iterator function that, each time it is called, returns a new line from the file.

In the second form, the function opens the given file in read mode and returns an
iterator function that, each time it is called, returns a new line from the file.

Therefore, the construction

for keys line in io.lines(f) do body od

will iterate over all lines of the file denoted by f. When the iterator function detects
the end of file, it returns null (to finish the loop) and automatically closes the file if a
flename is given. In case of a file handle, the file is not closed.

The call io.lines() (without a file name) is equivalent to io.input()::lines(); that is, it
iterates over the lines of the default input file. In this case it does not close the file
when the loop ends.

io.open (filename [, mode])

This function opens a file, in the mode specified in the string mode. It returns a new
file handle, or, in case of errors, null plus an error message.

The mode string can be any of the following:

* 't read mode (the default);

* 'W' write mode;

e 'a" append mode;

* 'r+" update mode, all previous data is preserved,;

* 'w+' update mode, all previous data is erased;

* 'a+" append update mode, previous data is preserved, writing is only
dllowed atf the end of file.

The mode string may also have a o' at the end, which is needed in some systems o
open the file in binary mode. This string is exactly what is used in the standard C
function fopen.

io.output ([file])
Similar to io.input but operates over the default output file.

142 7 Standard Libraries

io.popen ([prog [, mode]])

Starts program prog in a separated process and returns a file handle that you can
use fo read data from this program (if mode is ', the default) or to write data to this
program (if mode is ‘w).

This function is system dependent and is not available on all platforms.

io.read(file)
io.read ()

In the first form, reads the file file , according to the given formats, which specify
what to read. For each format, the function returns a string (or a numiber) with the
characters read, or null if it cannot read data with the specified format., When
called without formats, it uses a default format that reads the entire next line (see
below).

The available formats are

e "*n" reads a number; this is the only format that returns a number instead of a
string.

* *a" reads the whole file, staring at the current position. On end of file, it
retuns the empty string.

* " reads the next line (skipping the end of line), returning null on end of file.
This is the default format.

* number: reads a string with up to this number of characters, returning null on
end of file. If number is zero, it reads nothing and returns an empty string, or
null on end of file.

In the second form, the function reads from the default input stream and returns a
string or number.

io.readlines (filename [, options])

reads the entire file with name filename and returns all lines in a table. If a string
consisting of one or more characters is given as a further argument, then all lines
beginning with this string are ignored. If the option true is passed, then on Windows
system, diacritics in the file are properly converted 10 the NT console character set.

Make sure that the lines in the file have no more than 2048 characters, otherwise
lines are not correctly spilit.

If the global system variable _EnvVerbose is set to a value other than null, an error
message is printed at the console if the file could not be found.

agena >> 143

io.seek (file, [whence] [, offset])

Sefs and gets the file position, measured from the beginning of the file, to the
position given by offset plus a base specified by the string whence, as follows:

« ‘'set’ base is position O (beginning of the file);
» 'cur: base is current position;
* ‘'end' base is end of file;

In case of success, function seek returns the final file position, Mmeasured in bytes
from the beginning of the file. If this function fails, it retumns null, plus a string
describing the error.

The default value for whence is 'cur, and for offset is 0. Therefore, the call file::seek()
returns the current file position, without changing it; the call file::seek(set) sets the
position 1o the beginning of the file (and retumns 0); and the call file::seek(end) sets the
position to the end of the file, and returns its size.

io.setvbuf (file, mode [, size])

Sets the buffering mode for an output file. There are three available modes:

* 'no": no buffering; the result of any output operation appears immediately.

o full's full buffering; output operation is performed only when the buffer is full
(or when you explicitly flush the file (see io.flush).

* lline": line buffering; output is buffered until a newline is output or there is any
input from some specidal files (such as a terminal device).

For the last two cases, sizes specifies the size of the buffer, in bytes. The default is an
appropriate size.

io.tmpfile ()

Returns a handle for a temporary file. This file is opened in update mode and it is
automatically removed when the program ends.

io.write (---)
io.writeline (---)

Wirite the value of each of its arguments to standard output if the first argument is
not a file handle, or to the file denoted by the first argument (a file handle). Except
for the file handle, all arguments must be strings or numbers. To write other values,
use toString or strings.format before write. writeline adds a new line character af the
end of the data written, whereas write does not.

By default, no character is inserted between neighbouring values. This may be
changed by passing the option 'delim':<str> (i.e. a pair, e.q. 'delim"'|') as the

144 7 Standard Libraries

last argument to the function with <str> being a string of any length. Remember
that in the function call, a shortcut 1o 'delim':<str> is delim ~ <str>

agena >> 145

7.10 binio - Binary File Package

This package contains functions fo read data from and write data to binary files.

In this chapter, filehandle as the file ID (or file handle) always is a positive integer
greater than 2.

binio.close (filehandle [, filehandle2, ...])

closes the files identified by the given file handle(s) and returns frue if successful,
and fail otherwise. fail will be retumned if at least one file could not be closed. The
function also deletes the file handles and the corresponding filenames from the
binio.openfiles table if the file could be properly closed.

See also: binio.open.

binio.filepos (filehandle)

retuns the current file position relative to the beginning of the file as a number. In
case of an error, fail is refurned.

binio.length (filehandle)

The function returns the size of the file denoted by filehandle in bytes. In case of an
error, fail is returned.

binio.make (filename)

Creates a file with the given filename (a string) in read/write mode and returns a file
handle (a numiber) for subsequent read or write operations. Note that the file is left
open. In case of errors, fail is returned.

binio.open (filename [, anything])

Opens the given file denoted by filename and returns a file handle (@ number). If it
cannot find the file, the function returns fail. The file is opened in both read and write
modes.

If an optional second argument is given (any valid Agena value), the file is opened
in read mode only.

The function also enters the newly opened file into the binio.openfiles table.

See also: binio.close.

binio.readchar (filehandle)
binio.readchar (filehandle, position)

In the first form, the function reads a byte from the file denoted by filename from
the current file position and increments the file position thereafter so that the next
byte in the file can e read with a new call to the binio.read function.

146 7 Standard Libraries

In the second form, at first the file position is changed by position bytes (a positive
or negative number or zero) relative to the current file position. After that the byte af
the new file position is read. Next, the file position is being incremented thereafter so
that the next byte in the file can be read with a new function call.

If the byte is successfully read, it is returned as a number. If the end of the file has
been reached, null is returned. In case of an error, the return is fail.

binio.readnumber (filehandle)

The function reads an Agena number from the file denoted by filename from the
current file position and retuns it. If there is an eror or nothing to read, fail is
returned.

binio.readstring (filehandle)

The function reads a string from the file denoted by filename from the current file
position and returns it. If there is an error or nothing to read, fail is returned.

binio.rewind (filehandle)

sets the file position fo the beginning of the file denoted by filehandle . The function
retuns the new file position as a numiber in case of success, and fail otherwise.

See also: binio.toend.

binio.seek (filehandle, position)

The function changes the file position of the file denoted by filehandle position
bytes relative 1o the current position. positon ~ May be negative, zero, or positive.

The retumn is true if the file position could be changed successfully, or fail otherwise.

binio.toend (filehandle)

sets the file position 1o the end of the file denoted by filehandle so that data can
be appended to the file without overwriting data. The function returns the file
position as a number in case of success, and fail otherwise.

See also: binio.rewind.

binio.writechar (filehandle, number)

The function writes the given Agena number fo the file denoted by filehandle af its
current position. The function returns true in case of success and fail otherwise.

The number should be an integer with 0 <= number < 256, otherwise number % 256
will be stored to the file.

agena >> 147

binio.writelong (filehandle, number)

The function writes the given Agena number fo the file denoted by filehandle af its
current position. The number should lbe an infeger with EnvMinLong < number <
_EnvMaxLong, otherwise the operations is not defined.

The function returns true in case of success and fail otherwise.

binio.writenumber (filehandle, number)

The function writes the given Agena number to the file denoted by filehandle aft ifs
current position. The function retumns frue in case of success and fail otherwise. The
number is always stored in Big Endian notatfion. The binio.readnumber function
makes proper conversion to Little Endian if Agena runs on a Little Endian machine.

binio.writestring (filehandle, string)

The function writes the given string to the file denoted by filehandle at its current
position.

The function returns true in case of success and fail otherwise. Internally, writestring
first writes the length of the string as a C long int and then the string without a null
character to the file. This information is then read by the binio.readstring function to
efficiently retun the string.

See also: binio.readstring .

148 7 Standard Libraries

7.11 Operating System Facilities

This library is implemented through table os.

os.beep (freq, dur)

sounds the loudspeaker with frequency freq (a positive integer) for dur seconds (a
positive float). Returns null if a sound could be created successfully, or fail if wrong
arguments were passed.

This function works in Windows only. On UNIX system, there may be a short "beep .

os.computername ()

(Windows only.) Retuns the name of the Windows computer. The refurn is a string.
On other architectures, the function returns fail.

os.cd (str)

Changes into the directory given by string str on the file system. Returns true on
success, and fail, the error message from the operating system, and the C eror
code ofherwise.

os.date ([format [, time]])

Returns a string or a table containing date and time, formatted according to the
given string format .

If the time argument is present, this is the time fo be formatted (see the os.time
function for a description of this value). Otherwise, date formats the current time.

If format starts with ', then the date is formatted in Coordinated Universal Time. After
this optional character, if format is *t, then date returns a table with the following fields:
year (four digits), month (1--12), day (1--31), hour (0--23), min (0--59), sec (0--61), wday
(weekday, Sunday is 1), yday (day of the year), and isdst (daylight saving flag, a
boolean).

If format is Not *t, then date returns the date as a string, formatted according to the
same rules as the C function strftime.

When called without arguments, date returns a reasonable date and fime
representation that depends on the host system and on the current locale (that is,
os.date() is equivalent to os.date(%c).

agena >> 149

os.difftime (t2, t1)

Returns the number of seconds from time t1 fo fime t2. In POSIX, Windows, and
some other systems, this value is exactly t2-11.

os.endian ()

determines the endianness of your system. Returns O for Little Endian, 1 for Big
Endian, and fail if the endianness could not be determined.

os.execute (Jcommand])

This function is equivalent 1o the C function system . It passes command 10 be
executed by an operating system shell. It retfuns a status code, which is
system-dependent. If command is albsent, then it returns nonzero if a shell is available
and zero otherwise.

os.exit ([code])

Calls the C function exit , with an optional code, to terminate the host program. The
default value for code is the success code.

os.fexists (filename)

checks whether the given file (filename is of type string) exists. It retumns true or false.

os.freemem ([unit])

Returns the amount of free physical RAM available on Windows and UNIX machines.

If no argument is given, the return is in bytes. If unit is the string 'kbytes', the return is in
kBytes; if unit is 'mbytes', the retun is in Mbytes; if unit is 'gbytes', the retumn is in
GBytes. On other architectures, the function returns fail.

os.fstat (fn)

Returns information on the file, link (UNIX only), or directory given by the string fn in a
table of the form [filetype, size in bytes, [last modification date i n the
form yyyy, mm, dd, hh, mm, ss]] . filetype may be 'FILE' if fn is a regular file,
'LINK' if fn is a symbolic link, 'DIR" if fn is a directory, 'CHARSPECFILE' if fn iS O
character special file (a device like a terminal), 'BLOCKSPECFILE' if fn is a block
special file (a device like a disk), or 'OTHER' otherwise.

0s.getenv (varname)

Returns the value of the process environment variable varname , or null if the variable
is not defined.

150 7 Standard Libraries

os.login ()

(Windows and UNIX only.) Returns the login name of the current user as a string. The
return is a string. On other architectures, the function returns fail.

os.Is (d [, options])

lists the contents of a directory as a table. If d is void, the current working directory is
evaluated.

If no opfion is given, files, links, and directories are returned. If the optional argument
files' is given, only files are returned. If the optional argument 'dirs' i given,
only directories are returned. If the optional argument 'links' is given, only links are
returned (UNIX only).

os.Iscore (d)

Returns a table with all the files, links and directories in the given path d. If d is void,
the current working directory is evaluated.

0s.md (str)

Creates a directory given by string str on the file system. Retumns true on success,
and fail, the error message from the operating system, and the C emror code
otherwise.

os.memstate ([unit])

(Windows only.) Retuns a table with information on current memory usage on
Windows platforms. With no arguments, the retum is the respective number of bytes
(infegers). If unit is the string 'kobytes', the return is in kBytes, if unit is 'mbytes’, the return
is in MBytes.

The table contains the keys:

Key Description
freephysical free physical RAM
‘totalphysical’ installed physical RAM
'freevirtual’ free virtual memory
'totalvirtual' total virtual memory

On other architectures, the function returns fail.

os.pwd ()

Returns the current working directory on the file system as a string or fail if the path
could not be determined.

agena >> 151

0s.rd (str)

Deletes a directory given by string str on the file system. Returns true on success,
and fail, the error message from the operating system, and the C eror code
otherwise.

os.rename (oldname, newname)

Renames file or directory named oldname to newname. The function returns true on
success. If this function fails, it retumns fail, the error message from the operating
system, and the C error code otherwise.

os.rm (filename)

Deletes the file or directory with the given name. Directories must be empty to be
removed. Returns true on success, and fail, the error message from the operating
system, and the C error code otherwise.

os.setlocale (locale [, category])

Setfs the current locale of the program. locale is A string specifying a locale;
category is an optional string describing which category to change: ‘all', 'coliate’, 'ctype!,
'monetary’, 'numeric', Or 'time'; the default category is ‘all. The function returns the name
of the new locale, or null if the request cannot be honoured.

When called with null as the first argument, this function only returns the name of the
current locale for the given category.

os.system ()

returns information on the platform Agena is running.

Under Windows, it returns a table containing the string 'Windows', the major version
(e.g. 'NT', '2000, etc.) as a string, the Build Number as a number, and the platform
ID as a number, in this order.

In UNIX, it retfurns a table of strings with the name of the operating system (e.g.
'SunOS'), the release, the version, and the machine, in this order.

If the function could not determine the platform properly, it returns fail.

os.time ([table])

Returns the current fime when called without arguments, or a fime representing the
date and time specified by the given table. This table must have fields year ,
month, and day, and may have fields hour, min, sec, and isdst (for a description of
these fields, see the os.date function).

152 7 Standard Libraries

The returned value is a number, whose meaning depends on your system. In POSIX,
Windows, and some other systems, this number counts the number of seconds
since some given start time (the "epoch'). In other systems, the meaning is not
specified, and the number returned by time can be used only as an argument to
date and difftime.

os.tmpname ()

Returns a string with a file name that can be used for a temporary file. The file must
be explicitly opened before its use and explicitly removed when no longer needed.

agena >> 153

7.12 The Debug Library

This library provides the functionality of the debug interface to Lua programs. You
should exert care when using this library. The functions provided here should be
used exclusively for debugging and similar tasks, such as profiling. Please resist the
femptation to use them as a usual programming tool: they can be very slow.
Moreover, several of its functions violate some assumptions about Lua code (e.g.,
that variables local to a function cannot be accessed from outside or that userdata
metatables cannot be changed by Lua code) and therefore can compromise
otherwise secure code.

All functions in this liorary are provided inside the debug table. All functions that
operate over a thread have an optional first argument which is the thread to
operate over. The default is always the current thread.

debug.debug ()

Enters an interactive mode with the user, running each string that the user enters.
Using simple commands and other debug facilities, the user can inspect global
and local variables, change their values, evaluate expressions, and so on. A line
containing only the word cont finishes this function, so that the caller continues its
execution.

Note that commands for debug.debug are not lexically nested within any function,
and so have no direct access to local variables.

debug.doubleendiantest (n)

converts a number n (i.e. a C double) twice and retumns the converted number, the
orginal number, and the difference between the original and the converted values,
in this order.

The functions checks the intermnal function DoubleToBigEndian in the C source file
chelpers.c used by the binio package on Little Endian platforms to write and read
Agena numbers to/from file. If you should encounter trouble with Agena compiled
with GCC on Little Endian hardware, then you might try the -DGCC_WROUNDOFF_BUG
compilation option. The switch assumes, that on your platform, doubles consist of
eight bytes.

debug.getfenv (0)
Returns the environment of object o.

debug.gethook ([thread])

Returns the current hook settings of the thread, as three values: the current hook
function, the current hook mask, and the current hook count (as set by the
debug.sethook function).

154 7 Standard Libraries

debug.getinfo (Jthread,] function [, what])

Returns a table with information about a function. You can give the function
directly, or you can give a number as the value of function , which means the
function running at level function of the call stack of the given thread: level O is the
current function (getinfo itself); level 1 is the function that called getinfo; and so on. If
function iS @ number larger than the number of active functions, then getinfo returmns
null.

The returned table may contain all the fields retfurned by lua_getinfo, with the string
what describing which fields to fill in. The default for what is to get all information
available, except the table of valid lines. If present, the option 'f adds a field
named func with the function itself. If present, the option L' adds a field named
activelines with the table of valid lines.

For instance, the expression debug.getinfo(1,n).name returns a name of the current
function, if a reasonable name can be found, and debug.getinfo(print) returns a table
with all available information about the print function.

debug.getlocal ([thread,] level, local)

This function retumns the name and the value of the local variable with index local
of the function at level level of the stack . (The first parameter or
local variable has index 1, and so on, until the last active local variable.) The
function returns null if there is no local variable with the given index, and raises an
ernor when called with a level out of range. (You can call debug.getinfo to check
whether the level is valid.)

Variable names starting with '(" (open parentheses) represent internal variables
(loop control variables, temporaries, and C function locals).

debug.getmetatable (object)
Returns the metatable of the given object or null if it does not have a metatable.

debug.getregistry ()
Returns the registry table.

debug.getupvalue (func, up)

This function returns the name and the value of the upvalue with index up of the
function func. The function returns null if there is no upvalue with the given index.

debug.setfenv (object, table)
Sets the environment of the given object to the given table . Returns object.

agena >> 155

debug.sethook ([thread,] hook, mask [, count])

Setfs the given function as a hook. The string mask and the number count describe
when the hook will be called. The string mask may have the following characters,
with the given meaning:

« ¢ The hook is called every time Lua calls a function;
* i The hook is called every time Lua returns from a function;
e 1 The hook is called every time Lua enters a new line of code.

With a count different from zero, the hook is called after every count instructions.
When called without arguments, debug.sethook tumns off the hook.

When the hook is called, its first parameter is a string describing the event that has
friggered its call: ‘call, retum' (Or 'tail retum’), 'ine’, and 'count'. For line events, the hook
also gefts the new line number as its second parameter. Inside a hook, you can call
getinfo with level 2 to get more information about the running function (level O is the
getinfo function, and level 1 is the hook function), unless the event is *ail retum'. In this
case, Lua is only simulatfing the refurn, and a call to getinfo will return invalid data.

debug.setlocal ([thread,] level, local, value)

This function assigns the value value to the local variable with index local of the
function af level level of the stack. The function returns null if there is no local variable
with the given index, and raises an error when called with a level out of range. (You
can call getinfo to check whether the level is valid.) Otherwise, it returns the name of
the local variable.

debug.setmetatable (object, table)

Sets the metatable for the given object to the given table (which can be null).

debug.setupvalue (func, up, value)

This function assigns the value value to the upvalue with index up of the function
func. The function returns null if there is no upvalue with the given index. Otherwise, it
returns the name of the upvalue.

debug.system (n)

returns a table with the following system information: The size of various C types
(char, int, long, float, double), the endianness of your platform, the hardware and
the operating system for which the Agena executable has been compiled.

156 7 Standard Libraries

debug.traceback ([thread,] [message])

Returns a string with a traceback of the call stack. An optional message string is
appended at the beginning of the fraceback. This function is typically used with
xpcall to produce better error messages.

agena >> 157

7.13 utils - Utilities
The utils package provides miscellaneous functions.

utils.arraysize (strarr)

refurns the maximum number of elements allocable to the “stringarray” userdata
denoted by strarr.

See also: utils.newarray .

utils.getarray (strarr, n)

returns the (n+1)-th string from the “stringarray™ userdata denoted by strarr. Note
that n starts from O.

See also: utils.newarray .

utils.getwholearray (strarr)

retfurns a table including all strings that are stored in the stringarray” userdata
denoted by strarr, with the first string atf table index 1 (and not 0).

See also: utils.newarray .

utils.newarray (n)

creates a “stingarray” userdata of exactly n strings, n > 0. The userdata stores (C
pointers to) strings of any size, including empty strings. The strings can be set into the
userdata by the utfils.setarray function and accessed through the utils.getarray
function.

utils.setarray (strarr, n, str)

sets the string str info the “stringarray” userdata denoted by strarr at position n. Note
that n starts from O, so your first string must e stored to index 0 of the userdata.

See also: utils.newarray .

utils.singlesubs (str, strarr)

substitutes individual characters in str by corresponding replacements in the
“stringarray” userdata denoted by strarr. The retumn is a new string. Note that the
function tries fo find a replacement for a single character in str by determining its
infeger ASCIl value n and then accessing index n in the userdata. If an entry is
found for index n, then the character is replaced, otherwise the character remains
unchanged.

See also: utils.newarray .

158 7 Standard Libraries

Other functions in the utils library are:

utils.calendar (x)

converts x seconds (an integer) elapsed since the beginning of an epoch to a
table representing the respective calendar date in your local time. The table
contains the following keys with the corresponding values:

'year' (integer)

'month' (integer)

'day' (integer)

'hour' (integer)

'min' (integer)

'sec' (infeger)

‘wday' (integer, day of the week)
'yday' (integer, day of the year)

'DST' (Boolean, is Daylight Saving Time)

If X is null or not specified, then the current system time is returned.

utils.wait (x)

waits for x seconds. x may be an integer or a float. This function does not strain the
CPU, but execution cannot be interrupted. The function is available on UNIX and
Windows based systems only. On other architectures, the function returns fail.

agena >> 159

7.14 stats - Statistics

This package contains procedures for statistical calculations and operates
completely on tables. As a plus package, it is not part of the standard distribution
and must be activated with the readlib or with functions.

stats.median (t)

Returns the median of all numeric values in table t as a number.

stats.mean (t)

Returns the mean of all numeric values in table t as a number. The function is
implemented in Agena and included in the library.agn file.

stats.minmax (t [, 'sorted")

Returns a table with the minimum of all numeric values in table t as the first value,
and the maximum as the second value. If the option 'sorted' is passed than the
function assumes that all values in t are sorted in ascending order so that execution
is much faster.

stats.gmean (1)

Returns the quadratic mean of all numeric values in table t as a number. The
function is implemented in Agena and included in the library.agn file.

stats.sd (t)

Returns the standard deviation of all numeric values in table t as a number. The
function is implemented in Agena and included in the library.agn file.

stats.toVals (t)

converts all string values in table t o Agena numbers. The function is implemented
in Agena and included in the library.agn file.

stats.var (t)

Returns the variance of all numeric values in t as a number. The function is
implemented in Agena and included in the library.agn file.

160 7 Standard Libraries

7.15 compiress - Text Compression

This package contains functionality for compressing and decompressing texts. ACF
means '‘Agena Compressed File'. As a plus package, it is not part of the standard
distribution and must e activated with the readlib or with functions.

Please note that this package is still experimental.

compress.attrib (filehandle)

retuns information on an ACF denoted by its numeric filehandle as a table with its
keys denoting the following information as their values:

Key Description Type

'‘commentpos' The position of a comment in the base. Its value is\number
always 0.

'creation’ The date of creation of the base. The retun is a|string
formatted string including date and fime.

'description' The description of the ACF file (a string). If no|string
description is given, a sting with 75 spaces is
returned.

'method' The method used: 'nuffman' or '1z77'. string

'size_compressed' The numiber of bytes of the compressed data. numiber

'size_uncompressed' |The number of bytes of the original uncompressed | number
data.

'stamp' The stamp at the beginning of the file. string

‘version' The ACF version. number

compress.create (filename, str [, method [, descrip tion]])

creates an ACF with the given filename . The function takes the uncompressed data
in string str , compresses it and wrtes the compressed data along with some
administrative information fo the file.

The following compression methods are available:

* Huffman compression (the default). You may also pass the string 'huffman’ Qs @
third argument.

e |Z77 compression developed by Abraham Lempel and Jakob Ziv in 1977. Pass
1z77 explicitly as a third argument o the function to use this method.

A description with a text of up to 75 characters can also be included in the ACF.
Pass the text as a string as the optional fourth argument. The method must be given
if you want to add a description to the file.

agena >> 161

If the data could be compressed and written successfully to the file, frue is returned.
Ofherwise fail will indicate an error which may occur generdlly if not enough
memory has been available.

compress.close (filehandle [, filehandle2, ...])

closes one or more ACFs given by their fle handles. If all files could e closed
successfully, frue is retumned, else false. The function also deletes the files
successfully closed from the compress.openfiles table.

See also: compress.close .

compress.desc (filehandle)
compress.desc (filehandle, description)

In the first form, returns the description of an ACF stored in the file header.

In the second form, compress.desc sefs or overwrites the description section of an
ACF. Pass the description as a string. If the string is longer than 75 characters, fail is
returned and there are no changes to the base file. If the file is not open, fail is
returned, as well. If it was successful, the return is true.

See also: compress. attrib.

compress.inflate (str, method)

compresses the data in the string str with the given method (0 number). The
method can be either O (zero) for Huffman compression or 1 for LZ77 compression.

This function - although correctly working - is for experimental use only and may be
changed or deprecated in the future.

compress.lines (filehandle)

decompresses the data in the ACF file denoted by its filehandle and refurns an
iterator function that every time it is called, retuns a new line with a decompress
string.

If no more lines can be returned (EOF has been reached), the function will always
return null.

See also: compress.read.

162 7 Standard Libraries

compress.open (filename)

opens an ACF given by its filename and returns the file handle as a number. If the
fle cannot be found, fail is returned. The function also adds the name of the
opened ACF to the compress.openfiles table.

The method with which the data in the file has been compressed is automatically
detected. The file is opened in read-only mode, since no data ca be added or
deleted to a once created file.

See also: compress.close .

compress.openfiles

A global table containing all ACFs currently open. Its keys are the file handles
(infegers), the values the file names (strings). If there are no open files,
compress.openfiles is an empty table.

compress.ratio (filehandle)

retuns the compression rate as a numiber. The compression ratio is the
compressed size divided by the uncompressed size of the data in the file denoted
by its filehandle

See also: compress.attrib .

compress.read (filehandle)

reads and decompresses all the data in the ACF denoted by its filehandle . It
returns the data as a string if everything went right, and fail otherwise.

See also: compress.lines.

compress.stringtoset (str)

takes a string and returns all lines in the string (denoted by the newline character '\n)
as separate items in a set.

agena >> 163

7.16 calc - Calculus Package

This package contains mathematical routines to perform basic calculus. As a plus
package, it is not part of the standard distribution and must be activated with the
readlib or with functions.

calc.diff (f, x [, eps])

computes the value of the first differentiation of a function f at a point x. If eps is not
passed, the function uses an accuracy of the value stored 10 _EnvEps. YOu may
pass another numeric value for eps if necessary.

The function is implemented in Agena and included in the lib/calc.agn file.

calc.fseq (f, a [, b])

creates a sequence seq(1~f(a), 2~f(a+1), ..., (b-a+1)~f (b)), with f a funcftion, a
and b numibers. Thus, the function f is applied to all numbers between and
including a and b. The step size is 1.

calc.fsum (f, a, b)

computes the sum of f (a), ..., f (b), with f a function, a and b numbers. If a > b, then
the result is O.

calc.gtrap (f, a, b [, eps])

Integrates the function f on the interval [a, b] using a bisection method based on
the frapezoid rule and returns a number. By default the function quits after an
accurarcy of eps = _EnvEps has been reached. You may pass another numeric
value for eps if necessary.

The function is implemented in Agena and included in the lib/calc.agn file.

calc.interp (tp)

computes a Newton interpolating polynomial as a function. The interpolation points
are passed in a table tp, with each point being represented as a pair x.:y «.

The function is implemented in Agena and included in the lib/calc.agn file.

calc.zero (f, a, b, [step [, eps]])

returns all roots of a function f in one variable on the interval [a, b].

The function divides the interval [a, b] info smaller intervals [a, a+step |, [a+step ,
a+2*step |, ..., [a+p*step , b], with step =0.1 if step is not given. It then looks for
changes in sign in these smaller intervals and if it finds them, determines the roots
using a modified regula falsi method.

164 7 Standard Libraries

The accuracy of the regula falsi method is determined by eps, with eps =_EnvEps as
a default. f must be differentiable on [a, b].

The function is implemented in Agena and included in the lib/calc.agn file.

agena >> 165

/.17 linalg - Linear Algebra P ackage

This package provides basic functions for Linear Algebra. As a plus package, it is
not part of the standard distrioution and must be activated with the readlib or with
functions.

There are two constructors available to define vectors and matrices, linalg.vector
and linalg.matrix. Except of these two procedures, the package functions assume
that the geometric objects passed have been constructed with the above
mentioned constructors.

The package includes a metatable linalg.vmt with metamethods for vector
addition, vector subtraction, and scalar vector multiplication. Further functions are
provided to compute the length of a vector with the abs operator and to apply
unary minus to a vector.

The tfable linalg.mmt defines metamethods for matrix addition, subtraction and
multiplication with a scalar.

The vector function allows to define sparse vectors, i.e. if the component n of a
vector v has not bbeen physically set, and if v[n] is called, the return is 0 and not null.

The dimension of the vector and the dimensions of the matrix are indexed with the
'dim' key of the respective object. You should not change this setting to avoid
errors. Existing vector and matrix values can be overwritten but you should take care
to save the correct new values.

abs (A)

determines the length of vector A. This operation is done by applying a
metamethod to A.

linalg.backsubs (A, B)

solves the set of linear equations A*x = b, where A is a matrix, and b the right-hand
side vector. The return is the solution vector x.

linalg.coldim (A [, ...])
determines the column dimension of the matrix A. The return is a number.

If you pass more than one argument, then the fime-consuming check whether A is
a matrix is skipped.

166 7 Standard Libraries

linalg.checkmatrix (A [, B, ...] [, true])

issues an error if at least one of its arguments is not a matrix. If the last argument is
frue, then the matrix dimensions are returned as a pair, else the function returns
nothing.

Contrary to linalg.checkvector, the dimensions are not checked, if you pass more
than one matrix. See linalg.ismaitrix for information on how this check is being done.

linalg.checksquare (A)

issues an error if A is not a square matrix. It returns nothing. See linalg.issquare for
information on how this check is being done.

linalg.checkvector (v [, w, ...])

issues an error if af least one of its arguments is not a vector. In case of two or more
vectors it also checks their dimensions and returns an error if they are different.

If everything went fine, the function retumns the dimensions of all vectors passed.

See linalg.isvector for information on how this check is being done.

linalg.coldim (A [, ...])
determines the column dimension of the matrix A. The return is a number.

If you pass more than one argument, then the fime-consuming check whether A is
a matrix, is skipped.

A more direct way of determining the column dimension is right(A.dim)
See also: linalg.rowdim.

linalg.column (A)

returns the n-th column of the matrix or row vector A as a new vector.

linalg.crossprod (A)
computes the cross-product of two vectors of dimension 3. The return is a vector.

linalg.det (A)
computes the determinant of the square matrix A. The return is a number.

agena >> 167

linalg.diagonal (v)

creates a square matrix A with all vector components put on the main diagonal.
The first element in v is assigned A[1][1], the second element in v is assigned A[2][2].
etc. Thus the result is a dim(v) x dim(v)-matrix.

linalg.dim (A)

determines the dimension of a matrix or a vector A. If A is a matrix, the result is a
pair with the left-hand side the number of rows and the right-hand side the number
of columns. If A'is a vector, the size of the vector is determined.

linalg.dotprod (v1, v2)

computes the vector dot product of two vectors v1, v2 of same dimension. The
vectors must consist of Agena numbers. The return is a number.

linalg.hilbert (n [, X])

creates a generalized n x n Hiloert matrix H, with HIi][j] := 1/(i+j-X). If x is not specified,
then xis 1.

linalg.identity (n)

creates an identity matrix of dimension n with all components on the main diagonal
set to 1 and all other components set to 0.

linalg.inverse (A)

returns the inverse of the square matrix A.

linalg.isantisymmetric (A)

checks whether the matrix A is an antisymmetric matrix. If so, it returns frue and false
otherwise.

linalg.isdiagonal (A)

checks whether the matrix A is a diagonal matrix. If so, it returns true and false
ofherwise.

linalg.isidentity (A)

checks whether the matrix A is an identity matrix. If so, it returns true and false
otherwise.

168 7 Standard Libraries

linalg.issymmetric (A)

checks whether the matrix A is a symmetric matrix. If so, it returns true and false
otherwise.

linalg.isvector (A)

retuns frue if A is a vector, and false otherwise. To avoid costly checks of the
passed object, the function only checks whether A is a sequence with the
user-defined type ‘vector’,

linalg.ismatrix (A)

retuns true if A is a matrix, and false otherwise. To avoid costly checks of the passed
object, the function only checks whether A is a sequence with the user-defined type
‘matrix’.

linalg.issquare (A)

retuns frue if A is a square matrix, i.e. a matrix with equal column and row
dimensions, and false otherwise.

linalg.LUdecomp (A, n)

computes the LU decomposition of the square matrix A of dimension n. The return is
the resulting matrix, the permutation vector as a sequence, and a number where
this number is either 1 for an even number of row interchanges done during the
computation, or -1 if the number of row inferchanges was odd.

linalg.matrix (01, 02, ..., on)

creates a matrix of the structures o[k] given. Valid structures are vectors created with
linalg.vector, tables, or sequences.

The return is a table with the user-defined type 'matrix’ and a metamethod defined
by linalg.mmt.

linalg.mmap (f, A [, ...])

This function mayps a function f or anonymous function to all the components in the
matrix A and returns a new matrix. The function must return only one value. See
linalg.vmap for further information.

agena >> 169

linalg.mmul (A, B)
conducts a multiplication of a m x n- and a n x p-matrix and returns a m x p Matrix.

linalg.rowdim (A [, ...])
determines the row dimension of the matrix A. The return is a number.

If you pass more than one argument, then the fime-consuming check whether A is
a maitrix, is skipped.

A more direct way of determining the column dimension is left(A.dim)

See also: linalg.coldim.

linalg.scalarmul (A, n)

performs a scalar multiplication by multiplying each element in vector A with the
numiber n. The result is a vector.

linalg.transpose (A)

computes the transpose of a m x n-maitrix A and thus returns an n x m-mattrix.

linalg.vadd (A, B)
determines the vector sum of vector A and vector B. The return is a vector.

See also: linalg.vsub.

linalg.vector (a1, a2, ...)
linalg.vector ([al, a2, ...])
linalg.vector (seq(al, a2, ...))
linalg.vector (n, [al, a2, ...])
linalg.vector (n, [])

creates a vector with numeric components al, a2, etc. The function also accepts
a table or sequence of elements al, a2, etc. (second and third form).

In the fourth form, n denotes the dimension of the vector. ay might be single values
or key~value pairs. By a metamethod, vector components not explicitly set
automatically default to 0. This allows you to create memory-efficient sparse vectors
and thus matrices.

In the fifth form, a sparse zero vector of dimension n is returned.

170 7 Standard Libraries

The result is a table with the user-defined type ‘vector and a metatable assigned to
allow basic vector operations with the operators +, -, *, unary minus and abs. The
table key 'dim' contains the dimension of the vector created.

linalg.vmap (f, v [, ...])

This operator maps a function f to all the components in vector v and retumns a new
vector. The function f must return only one value.

If function f has only one argument, then only the function and the vector are
passed to map. If the function has more than one argument, then all arguments
except the first are passed right after the name of the vector.

Examples:

> vmap(<< x -> x"2 >>, vector(l, 2, 3)):
[1,4,9]

> vmap(<< (x, y) -> x >y >>, vector(1, 0, 1), 0): #0 fory
[true, false, true]

See also: linalg.vzip.
linalg.vsub (A, B)
subtracts vector B from vector A. The result is a vector.

See also: linalg.vadd.

linalg.vzip (f, v1, v2)

This function zips together two vectors by applying the function f to each of ifs
respective components. The result is a new vector v where each element VK] is
determined by s[k] := f(va1[k], v2[K]).

vl and v2 must have the same dimension.
See also: linalg.vmap .
linalg.zero (n)

creates a zero vector of length n with all ist components physically set to 0. If you
want to create a sparse zero vector of dimension n, enter: linalg.vector(n, [])

agena >> 171

172 7 Standard Libraries

agena >> 173

Chapter Eight

Agena Database System

174 8 Agena Database System

agena >> 175

8 Agena Database System

As a plus package, this simple database is not part of the standard distribution and
must be activated with the readlib or with functions.

Agena is a database for storing and accessing strings and currently supports three
‘base” types:

1. Sorted "databases” with a key and one or more values,
2. sorted "lists™ which store keys only,
3. unsorted "sequences’ to hold any value (but no keys).

With databases and lists, each record is indexed, so that access to it is very fast. If
you store data with the same key multiple times in a database, the index points
fo the last record stored, so you always get a valid record.

Sequences do not have indexes, so searching in sequences is rather slow.
However, all values can be read info the Agena environment very fast and stored
to a set (using ads.getall).

The Agena Database System (ADS) pays attention to both file size and fast /O
operation. To reduce file size, the keys (and values) are stored with their actual
lengths (of C type long infeger, so keys and values can e of almost unlimited size)
and they are not extended to a fixed standard length. To fasten /O operations, the
length of each key (and value) is also stored within the base file.

'Section Description

gheoder various informatfion on the data file, including the maximum
: number of possible records, the actual number of records, and
the type of the base (database, list, or sequence).

gindex only with databases and lists: area containing all file positions of
: the actual records. The index section is always sorted. Sequences
do not contain an index section.

records key-value pairs with databases, and keys with lists or sequences.

Note that by setting the global system variable EnwWerbose to null, some
non-critical warning messages are suppressed.

A sample session:
First activate the package:

> with 'ads’;

176 8 Agena Database System

Creafte a new database (file ctestagb) including all administration data like
number of records, etc.:

> createbase('c:/test.agb’);

Open the database for processing. The variable fth is the file handle which
references 1o the database file (c:test.agh) and is used in all ads functions.

> fh := openbase('c:/test.agb’);
Put an entry info the database with key "Duck”™ and value "Donald .

> writebase(fh, 'Duck’, 'Donald");

Check what is stored for "Duck .

> readbase(fh, 'Duck’):
Donald

Show information on the database:

> attrib(fh):

keylength ~ 31 # Maximum length fo r key

type ~0 # database type, 0 for relational database

stamp ~ AGENA DATA SYSTEM # name of database

indexstart ~ 256 # begin of index se ction in file

commentpos ~ 0 # position of a des cription, O because none
was given.

version ~ 300 # base version, her e 3.00

maxsize ~ 20000 # maximum number of possible records. Agena

automatically ext

ends the database, if

this number is ex ceeded.
indexend ~ 80255 # end of index sect ion
creation ~ 2008/01/18-19:00:50 # number of creatio n
columns ~ 2 # number of columns
size ~1 # number of actual entries

Close the database. After that you cannot read or enter any entries. Use the open
function if you want to have access again.

> closebase(fh);
On all types, you may use the following procedures:

ads.attrib (filehandle)

Returns a table with all attributes of the "base” file. The table includes the following
keys:

Key Description Type
'‘columns' The number of columns in the base. number

'‘commentpos’ |The position of a comment in the base. If no number
comment is present, its value is 0.

agena >> 177

Key Description Type
'creation' The date of creation of the base. The return is a|string
formatted string including date and fime.
indexstart’ the first byte in the base file of the index section. number
indexend' the last byte in the base file of the index section. number
'keysize' the maximum length of the record key. number
'maxsize’ fotal number of data sets allowed. number
'size' the actual number of valid data setfs (see add.size as|number
a shortcut).
'stamp’ The base stamp at the beginning of the file. string
Ttype' Indicator for database (0), list (1), or sequence (2). number
'version' The base version. number

If the file is not open, attrib returns false.

See also: ads.free, ads.size.

ads.clean (filehandle)

physically deletes all enfries that have become invalid (i.e. replaced by new values)
from the database or list. The file index section is adjusted accordingly and the file
shrinked to the new reduced size.

If there are no invalid records, false is returned. If all records could be deleted
successfully, true is returned. If the file is not open, the result is fail. or If a file
fruncation error occurred, clean returns undefined.

ads.closebase (filehandle [, filehandle2, ...])

closes the base(s) identified by the given file handle(s) and returns true if successful,
and false otherwise. false will be returned if at least one base could not e closed.
The function also deletes the file handles and the corresponding filenames from the
ads.openfiles table.

ads.comment (filehandle)
ads.comment (filehandle, comment)

ads.comment (filehandle, ")

In the first form, the function returns the comment stored to the database or list if
present. The return is a string or null if there is no comment.

In the second form, ads.comment writes or updates the given comment to the
database or list and if successful, retuns frue. The comment is always written o the

178 8 Agena Database System

end of the file. If it could not successfully add or update a comment, undefined is
returned.

In the third form, by passing an empty string, the existing comment is entirely
deleted from the database or list.

If filehandle ~ points to a sequence, fail is returned, and no comment is written. fail
is also returned, if the file is not open.

Internally, the position of the comment is stored in the file header. See ads.attrib
[commentpos!].

ads.createbase (filename
[, number_of _records [, type [, number_of colum ns

[, length_of key [, description]]]]])

creates and inifialises the index section of the new base with the given number of
columns. It returns the file handle as a number, and closes the created file.

Arguments / Options:

flename The path and full name of the base file.

number of records |The maximum number of records in the base. Default is
20000. If you pass O, fail is returned and the base is not
created.

type By default, the type is 'database’. If you pass the string 'list',
then a list is created. The string 'seq’ creates a sequence. If
the type passed is not known, fail is returned and no base
is created.

number_of columns [The number of columns in a database. Default: 2 (key
and value). If the base is not a database, this option is
ignored. If the number of columns is nonpositive, fail is
returned and no base is created.

length_of key The maximum length of the base key. Note that internally,
the length is incremented by 1 for the terminating \0
character. Default: 31 including the terminating \O
character.

description A string with a description of the contents of the base. A
maximum of 75 characters are allowed (including the \0
character). If the string is too long, it is fruncated. Default:
75 spaces.

ads.createseq (filename)

creates a sequence with the given filename (a string). The function is written in the
Agena language and can be used after running readlib 'ads'.

agena >> 179

ads.desc (filehandle)
ads.desc (filehandle, description)

In the first form, returns the description of a base stored in the file header.

In the second form, ads.desc sets or overwrites the description section of a
dafabase or list. Pass the description as a string. If the string is longer than 75
characters, fail is returned and there are no changes to the base file. If the file is
not open, fail is returned, as well. If it was successful, the return is true.

ads.expand (filehandle [, n])

increases the maximum numiber of datasets by n records (n an integer). By default,
n is 10. Internally, all data sets are shifted, so that the index section in the data file
can be extended - so the greater n, the faster shifting will be, which is significant for
large files.

The function retumns fail if the file is not open or not a database or list, and true
otherwise.

ads.free (filehandle)

defermines the number of free data sets and retuns them as an integer. If
the base has not open, it returns fail. See also: ads.attrib.

ads.getall (filehandle)

Converts a sequence to a set and returns this set. The function automatically
initialises the set with the number of entries in the sequence. If the file is not open,
fail is returned.

See also: ads.getkeys, ads.getvalues.

ads.getkeys (filehandle)

gets all valid keys in a database or list and refurns them in a fable. Argument: file
handle (integer). If the file is not open or if the base is a sequence, fail is retuned. If
the base is empty, null is returned. See also: ads.get, ads.getvalues.

ads.getvalues (filehandle [, column])

by default gets all valid entries in the second column in a database and returns
them in a table. If the opfional argument column is given, the entries in this column
are returned. Argument: file handle (infeger). If the file is not open or if the column
does not exist, fail is returned. If the base is empty, null is returned. With lists, the
return is always null. See also: ads.get, ads.getkeys.

180 8 Agena Database System

ads.index (filehandle, key)

searches for the given key (a string) in the base pointed to by filehandle and returns
its file position as a number. If their are no entries in the set, the function returns null.
If the file is not open, fail is returned.

ads.indices (filehandle)

returns the file positions of all valid detests as a table.

If the file is not open, indices returns fail. If there are no entries in the base, the retun
is an empty table, otherwise a table with the indices is returned. See also
ads.refrieve, ads.invalids, ads.peek, ads.index.

ads.invalids (filehandle)

retuns the file positions of all invalid records in a database as a table.

If the file is not open, invalids returns fail. If no invalid entries are found, the retum is
an empty table. See also ads.retrieve. Note that the function also works with lists.
However, since lists never contain invalid records, an empty table will always be
returned with lists.

ads.iterate (filehandle)

iterates sequentially and in ascending order over all keys in the database or list. With
databases, both the next key and its corresponding value are refurned. With lists,
only the next key is returned.

The very first key can be accessed with an empty string. If there are no more keys
left, the function returns null. If the database is empty, null is returned as well. If the
file is not open, the function returns fail.

Example:

> s, t := ads.iterate(fh, ");

> s, t := ads.iterate(fh, s);

ads.openbase (filename [, anything])

Opens the base with name filename and returns a file handle (@ number). If it
cannot find the file, or the base has not the correct version number, the function
retuns fail. The base is opened in both read and write mode.

If an optional second argument is given (any valid Agena value), the base is
opened in read mode only.

agena >> 181

The function also enters the newly opened file into the ads.openfiles table.

ads.openfiles

A global table containing all files currently open. Its keys are the file handles
(infegers), the values the file names (strings). If there are no open files, ads.openfiles
is an empty table.

ads.peek (filehandle, position)

returns both the length of an entry (including the terminating \O character) and the
entry itself at the given file position as two values (an integer and a string). The
function is save, so if you fry to access an invalid file position, the function will exit
returning fail.

See also ads.index, ads.retrieve.

ads.rawsearch (filehandle, key [, column])

With databases, the function searches all entries in the given column for the
substring key and returns all respective keys and the matching entries in a table. If
column is omitted, the second column is searched. The value for column must be
greater than 0, so you can also search for keys.

With lists and sequences, the function always returns null. If the base is empty, null is
returned.

If the file is not open, read returns fail. See also ads.read, ads.getvalues.

ads.readbase (filehandle, key)

With databases, the function retumns the entry (a string) to the given key (also a
string). With lists and sequences, the function retumns true if it finds the key, and false
otherwise.

If the file is not open, read retumns fail. If the base is empty, null is returned. The
function uses binary search. See also ads.rawsearch.

ads.remove (filehandle, key)

With databases, the function deletes a key-value pair from the database; with lists,
the key is deleted. Physically, only the key to the record is deleted, the key or
key-value pair still resides in the record section but cannot be found any longer.

The function returns true if it could delete the data set, and false if the set to be

182 8 Agena Database System

deleted was not found. If the file is not open, delete returns fail. fail is also returned
of the base is not a database or a list.

If you want to physically delete all invalid records, use ads.clean.

ads.retrieve (filehandle, position)

gets a key and its value from a database or list (indicated by its fle handle, first
argument) at the given file position (an integer, second argument). Two values are
returned: the respective key and its value. With lists, only the key is returned.

The function is save, so if you try 1o access an invalid file position, the function will
exit returning fail.

If the file is not open, retrieve returns fail, as well If the database or list is empty, null
is returned. See also ads.indices, ads.invalids.

ads.sizeof (filehandle)

Retuns the number of valid records (an integer) in the base pointed to be
flehandle. If the base pointed to by the numeric filehandle is not open, the
function returns fail.

ads.sync (filehandle)

flushes all unwritten content to the base file. The function retumns true if successful,
and fail otherwise (e.Q. if the file was not opened before or an error during flushing
occurred).

ads.writebase (filehandle, key [, valuel, value2, .)

With databases, the function writes the key (a string) and the values (strings) to the
database file pointed to by filehandle (an integer). If value is omitted, an empty
string is writfen as the value.

With lists, the function writes only the key (a string) fo the database file. If you pass
values, they are ignored. If the key already exists, nothing is written or done and true
is returned. Thus, lists never contain invalid records.

In both cases, the index section is updated. If a key already exists, its position in the
index section is deleted and the new index position is inserted instead (in this case
there is no reshifting). This does not remove the actual key-value pair in the record
section. The function always writes the new key-value pair to the end of the file. (The
file position after the write operation has completed is always 0.)

If the maximum numlber of possible records is exceeded, the base is automatically

agena >> 183

expanded by 10 records. You do not need to do this manually.

write returns the true if successful. If the file is not open, write returns fail.

184 8 Agena Database System

agena >> 185

Chapter Nine
C API Functions

186 Q@ C API Functions

agena >> 187

9 C API Functions

As already noted in Chapter 1, Agena features amost the same C APl as Lua 5.1 so
you are able 1o easily integrate your C packages and functions written for Lua 5.1 in
Agena.

The following C APl functions have been changed to remove automatic
string-to-numibber conversion:

API function Lua source file
lua_isnumloer lapi.c
lua_isstring lapi.c

lual _checknumber lauxlib.c

lual checkinteger lauxlib.c

Table 14: Modified Lua C API functions

Except for the above mentioned functions, no other modifications have been
made to Lua C API functions that have been shipped with Lua 5.1.

For a description of the API functions taken from Luag, see its Lua 5.1 manual.
Agena features a macro agn_Complex which is a shortcut for complex double.

The following API functions have been added (see files lapi.c and lua.h):

agn_ccall

agn_Complex agn_ccall (lua_State *L, int nargs, int nresults);
Exactly like lua_call, but returns a complex value as ifs result, so a subsequent
conversion to a complex number via stack operation is avoided. If the result of the

function call is not a complex value, 0 is returned. agn_ccall pops the function and
its arguments from the stack.

agn_checkcomplex

LUALIB_API agn_Complex agn_checkcomplex (lua_State *L, int idx)

Checks whether the value at index idx is a complex value and returns it. An error is
raised if the value at idx is not of type complex.

188 Q@ C API Functions

agn_checklstring

const char *agn_checklstring (lua_State *L, int idx , Size_t *len);

Works exactly like lual_checkistring but does not perform a conversion of numlbers
fo strings.

agn_checknumber

lua_Number agn_checknumber (lua_State *L, int idx);

Checks whether the value atf index idx is a number and retumns this number. An error
is raised if the value at idx is not a number. This procedure is an alternative 1o
lual_checknumiber for it is around 14 % faster in execution while providing the same
functionality by avoiding different calls o internal Auxiliary Library functions.

agn_checkstring

const char *agn_checkstring (lua_State *L, int idx) ;
Works exactly like lual_checkstring but does not perform a conversion of numbers

fo strings. An error is raised if idx is not a string.

agn_complexgetimag

LUA_API void agn_complexgetimag (lua_State *L, int idx)

pushes the imaginary part of the complex value at position idx onto the stack.

agn_complexgetreal

LUA_API void agn_complexgetreal (lua_State *L, int idx)

pushes the real part of the complex value at position idx onto the stack.

agn_createcomplex
LUA_API void agn_createcomplex (lua_State *L, agn_C omplex c)

pushes a value of type complex onto the stack with its complex value given by c.

agena >> 189

agn_createpair

void agn_createpair (lua_State *L, int idxleft, int idxright);

pushes a pair onto the stack with the left operand determined by the value at index
idxleft , and the right operand by the value at index idxright . The leftf and right
values are not popped from the stack.

agn_creatertable

LUA_API void agn_creatertable (lua_State *L, int id X)

creates an empty rememiber table for the function at stack index idx . It does not
change the stack.

agn_createseq

void agn_createseq (lua_State *L, int nrec);

Pushes a sequence onto the top of the stack with nrec preallocated places (nrec
may be zero).

agn_createset

void agn_createset (lua_State *L, int nrec);

Pushes an empty set onto the top of the stack. The new set has space

pre-allocated for nrec items.

agn_deletertable

LUA_API void agn_deletertable (lua_State *L, int ob jindex)

Deletes the remember table of the procedure at stack index idx . If the procedure
has no remember table, nothing happens. The function leaves the stack
unchanged.

agn_fnext

int agn_fnext (lua_State *L, int indextable, indexf unction);

Pops a key from the stack, and pushes four values in the following order: the key of
a table given by indextable, its corresponding value, the function at stack numiber

190 Q@ C API Functions

indexfunction, and the value from the table at the given indextable. If there are no
more elements in the table, then agn_fnext returns O (and pushes nothing).

The function is useful to avoid duplicating values on the stack for lua_call and the
iterator to work correctly.

A typical traversal looks like this:

/* table is in the stack at index 't', function is at stack index 'f' */
lua_pushnil(L); /* first key */
while (lua_fnext(L, t, f) 1= 0) {

/*'key' is at index -4, 'value' at -3, function at -2, and 'value'
at-1*
lua_call(L, 1, 1); /* call the function with on e arg & one result */
lua_pop(L, 1); /* removes result of lua_cal l;
keeps 'key' for next iter ation */
}

While fraversing a table, do not call lua_tolstring directly on a key, unless you know
that the key is actually a string. Recall that lua_tolstring changes the value at the
given index; this confuses the next call to lua_next.

agn_getrtable

LUA_API int agn_getrtable (lua_State *L, int idx)

pushes the remember table if the function at stack index idx onto the stack and
returns 1. If the function does not have a remember table, it pushes nothing and
retuns 0.

agn_getseqistring

const char *agn_getseqlstring (lua_State *L, int id X, int n, size_t *);

gefs the string atf index n in the sequence at stack index idx . The length of the string

is stored 1O I.

agn_getinumber

lua_Number agn_getinumber (lua_State *L, int idx, i nt n);

Returns the value f[n] as a lua_ Number, where t is a table at the given valid index
idx. If f{n] is not a number, the retun is 0. The access is raw; that is, it does not invoke
metamethods.

agena >> 191

agn_gettstring

const char *agn_gettstring (lua_State *L, int idx, int n);
Returns the value t[n] as a const char, where tis a table at the given valid index idx.

If t{n] is not a string, the retun is null. The access is raw; that is, it does not invoke
metamethods.

agn_getutype

int agn_getutype (lua_State *L, int idx);

returns the user-defined type of a procedure, sequence or pair at stack position idx
as a string and pushes it onto the top of the stack. If no user-defined type has been

defined, the function returns O and pushes nothing onto the stack.

See also: agn_setutype.

agn_isfail
int agn_isfail (lua_State *L, int idx);

Retuns 1 if the Boolean value at the given acceptable index results to fail, O
otherwise (frue and false).

agn_isfalse

int agn_isfalse (lua_State *L, int idx);

Retuns 1 if the Boolean value at the given acceptable index results to false, O
ofherwise (tfrue and fail).

agn_isutype

int *agn_isutype (lua_State *L, int idx, const char *str);

Checks whether the type at stack index idx is the user-defined type denoted by
str . It returns 1 if the given user-defined type has been found, and O otherwise.

192 Q@ C API Functions

agn_isutypeset

int *agn_isutypeset (lua_State *L, int idx, const ¢ har *str);

Checks whether a user-defined type has been set for the given object at stack
position idx. It returns 1 if a user-defined type has been set, and 0 otherwise. The
function accepts any Agena types. By default, if the object is not a sequence, a
pair, or procedure, it returns 0.

agn_issequtype

int *agn_issequtype (lua_State *L, int idx, const ¢ har *str);

Checks whether the type at stack index idx is a sequence and whether the
sequence has the user-defined type denoted by str . It retuns 1 if the above
condition is frue, and O otherwise.

agn_istableutype

int *agn_istableutype (lua_State *L, int idx, const char *str);
Checks whether the type at stack index idx is a table and whether the table has the

user-defined type denoted by str . It returns 1 if the above condition is true, and O
otherwise.

agn_istrue

int agn_istrue (lua_State *L, int idx);

Retuns 1 if the Boolean value atf the given acceptable index results to true, O
otherwise (false and fail).

agn_isverbose

LUA_API int agn_isverbose (lua_State *L);

Checks whether the global system variable EnvVerbose is set to anything but null

or false. If EnvVerbose is setf, the function returns 1, otherwise (_EnvVerbose is
unassigned or false) it returns O.

agena >> 193

agn_ncall

lua_Number agn_ncall (lua_State *L, int nargs, int nresults);

Exactly like lua_call, but refurns a numeric result as an Agena number, so a
subsequent conversion to a numiber via stack operations is avoided. If the result of
the function call is not numeric, O is returned. agn_ncall pops the function and its
arguments from the stack.

agn_nops

size_t agn_nops (lua_State *L, int idx);

Determines the number of actual table, set, or sequence entries atf f[idx]. If the
value at idx is not a table, set, or sequence, it returns 0. With tables, this procedure is
an alfemnative to lua_objlen if you want to get the size of a table since lua_objlen
does not return correct results if there are holes in the table or if the table is a
dictionary.

agn_optcomplex

agn_Complex agn_optcomplex (lua_State *L, int narg, agn_Complex z);
If the value at index narg is a complex number, it retuns this number. If this

argument is absent or is null, the function returns complex z. Otherwise, raises an
eror.

agn_pairgeti
void agn_pairgeti (lua_State *L, int idx, int n);
returns the left operand of a pair af stack index idx if nis 1, and the right operand if

n is 2, and puts it onto the top of the stack. You have 1o make sure that n is either 1
or 2.

agn_pairawget
void agn_pairrawget (lua_State *L, int index);

Pushes onto the stack the left or the right hand value of a pairt, where t is the value
at the given valid index index and the number k (k=1 for the left hand side, k=2 for
the right hand side) is the value at the top of the stack. It does not invoke any
metamethods.

194 Q@ C API Functions

agn_pairawset
void agn_pairrawset (lua_State *L, int index);

Does the equivalent to plk] := v, where s is a pair af the given valid index index , V is
the value at the top of the stack, and k is the value just below the top.

This function pops both the key and the value from the stack. It does not invoke any
metamethods.

agn_poptop

void agn_poptop (lua_State *L);
Pops the top element from the stack. The function is more efficient than lua_popl(L,
1).

agn_poptoptwo

void agn_poptoptwo (lua_State *L);

Pops the top element and the value just below the top from the stack. The function
is more efficient than lua_pop(L, 2).

agn_seqsize
int agn_seqsize (lua_State *L, int idx);

Returns the numiber of items currently stored 1o the sequence at stack index idx .

agn_segstate

void agn_segstate (lua_State *L, int idx, size_t a[)

Returns the actual number of items and the maximum numiber of items assignable
to the sequence at index idx in a, a C array with two entries. The actual number of
items is stored to q[0], the maximum number of entries to a[1]. If a[1] is O, then the
numiber of possible entries is infinite.

agena >> 195

agn_setrtable

LUA_API void agn_setrtable (lua_State *L, int find, int kind, int vind)

sets argument~return values to the function at stack index find . The argument list
reside at a table array at stack index kind , the return list are in another table at stack
index vind . See the description for the rset function for more information.
agn_setutype

void agn_setutype (lua_State *L, int idxobj, int id xtype);

sets a user-defined type of a procedure, sequence, or pair. The object is at stack
index idxobj , the type (a string) is at position idxtype . The function leaves the stack
unchanged.

If null is at idxtype , the function deletes the user-defined type.

Setting the type of a sequence or pair also causes the pretty printer to display the
string passed to the function instead of the usual oufput at the console. This does

not apply to procedures.

See also: agn_getutype.

agn_setutypestring

void agn_setutypestring (lua_State *L, int idxobj, const char *str);

Sets the string str - as the user-defined type of the procedure, sequence, or pair af
stack position idxobj

agn_size

int agn_size (lua_State *L, int idx);

Returns the numiber of items currently stored to the array and the hash part of the
table af stack index idx .

agn_ssize

int agn_ssize (lua_State *L, int idx);

Returns the numiber of items currently stored 1o the set at stack index idx .

196 Q@ C API Functions

agn_sstate

void agn_sstate (lua_State *L, int idx, size_t a[])

Returns the actual number of items and the current maximum number of items
allocable to the set at index idx in a, a C array with two entries. The actual number
of items is stored to q[0], the current allocable size to q[1].

agn_tablestate

void agn_tablestate (lua_State *L, int idx, size t al])

Returns the number of key~value pairs allocable and actually assigned to the
respective array and hash sections of the table atf index idx by storing the result in a,
a C array with four entries.

The number of key~value pairs currently stored in the array part is stored to q[0], the
number of pairs currently stored in the hash part to q[1]. The number of allocable
key~value pairs to the array part is stored to q[2], and the numiber of allocable
key~value pairs to the hash part is stored to q[3].

agn_tocomplex

agn_Complex agn_tocomplex (lua_State *L, int idx)

assumes that the value at stack index idx is a complex value and returns it as a
lua_Number. It does not check whether the value is a complex number.

agn_tonumber

lua_Number agn_tonumber (lua_State *L, int idx)

assumes that the value at stack index idx is a number and retuns it as a
lua_Number. It does not check whether the value is a number. The strings or names
'undefined' and infinity' are recognised properly.

agn_tonumberx

lua_Number agn_tonumberx (lua_State *L, int idx, in t *exception)

If the value at stack index idx is a number or a string containing a number, it returns
it as a lua Number. The strings or names ‘'undefined' and infinity’ are
recognised properly. If successful, exception is assigned to 0.

agena >> 197

If the value could not be converted to a number, O is returned, and exception is
assigned to 1.

lua_pushfail

void lua_pushfail (lua_State *L);

This macro pushes the boolean value fail onto the stack.

lua_pushfalse

void lua_pushfalse (lua_State *L);

This macro pushes the boolean value false onto the stack.

lua_pushundefined

void lua_pushundefined (lua_State *L);

Pushes the value undefined onto the stack.

lua_pushtrue

void lua_pushtrue (lua_State *L);

This macro pushes the boolean value true onto the stack.

lua_rawset2

void lua_rawset2 (lua_State *L, int idx);
Similar to lua_settable, but does a raw assignment (i.e., without metamethods).

Conftrary to lua_rawset, only the value is deleted from the stack, the key is kepft, thus
you save one call fo lua_pop. This makes it useful with lua_next which needs a key
in order to iterate successfully.

lua_rawsetilstring

void lua_rawsetilstring (lua_State *L, int idx, int n, const char *str,
int len);

Does the equivalent of t[n] = string, where 1 is the table atf the given valid index idx,
n is an infeger, string the string to be inserted and len the length of then string.

198 Q@ C API Functions

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetikey

void lua_rawsetikey (lua_State *L, int idx, int n);

Does the equivalent of t[n] = k, where 1t is the value at the given valid index idx and
k is the value just below the top of the stack.

This function pops the topmost value from the stack and leaves everything else
untouched. The assignment is raw; that is, it does not invoke metamethods.

lua_rawsetinumber

void lua_rawsetinumber (lua_State *L, int idx, int n, lua_Number num);

Does the equivalent of fin] = num, where 1 is the value at the given valid index idx,
nis an integer, and num an Agena number (a C double).

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetistring

void lua_rawsetistring (lua_State *L, int idx, int n, const char *str);

Does the equivalent of t[n] = str, where t is the value at the given valid index idx, n is
an integer, and str a string.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawseftstringlint

void lua_rawsetstringlint (lua_State *L, int idx, ¢ onst char *str,
int len, int n);

Does the equivalent of t[str] = n, where 1 is the value at the given valid index idx, str
a string, len the length of str, and n an infeger.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

agena >> 199

lua_rawsetstring number

void lua_rawsetstringnumber
(lua_State *L, int idx, const char *str, lua_Num ber n);

Does the equivalent of t[str] = n, where t is the value at the given valid index idx, str
a string, and n a Lua number.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_sdelete

void lua_sdelete (lua_State *L, int idx);

deletes the element residing at the top of the stack from the table at stack position
idx. The element at the stack top is popped thereafter.

lua_seqgeti

void lua_seqgeti (lua_State *L, int idx, int n);

gefs the n-th item from the sequence at stack index idx and pushes it onto the
stack.

lua_seqggetinumber

lua_Number lua_seqgetinumber (lua_State *L, int idx , int n);
Returns the value 1[n] as a lua Number, where t is a sequence at the given valid

index idx. If t[n] is not a number, the retumn is HUGE_VAL The access is raw; that is, it
does not invoke metamethods.

lua_seqinsert
void lua_seqinsert (lua_State *L, int idx);
inserts the element on top of the Lua stack into the sequence at stack index idx .

The element is inserted at the end of the sequence. The value added is popped
from the stack.

200 Q@ C API Functions

lua_segnext

int lua_seqgnext (lua_State *L, int index);

Pops a key from the stack, and pushes the next key~value pair from the sequence
at the given index. If there are no more elements in the sequence, then
lua_segnext returns O (and pushes nothing). To access the very first item in a
sequence, put null on the stack before (with lua_pushnil).

While traversing a sequence, do not call lua_folstring directly on the key. Recall that
lua_tolstring changes the value at the given index; this confuses the next call to
lua_seqgnext.

lua_seqgrawget
void lua_seqrawget (lua_State *L, int index);

Pushes onto the stack the sequence value tk], where t is the sequence at the given
valid index index and k is the value at the top of the stack.

This function pops the key from the stack (putting the resulting value in its place). The
function does not invoke any metamethods.

lua_seqrawset
void lua_seqgrawset (lua_State *L, int index);

Does the equivalent to s[k] := v, where s is a sequence atf the given valid index
index , Vv is the value at the top of the stack, and k is the value just below the top.

This function pops both the key and the value from the stack. It does not invoke any
metamethods.

lua_seqrawsetilstring

void lua_seqrawsetilstring (lua_State *L, int idx, int n, const char *str,
int len);

Does the equivalent of s[n] = string , where s is the sequence at the given valid
index idx , n is an integer, string the string to be inserfed and len the length of then
string.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

agena >> 201

lua_seqseti

void lua_seqseti (lua_State *L, int idx, int n);

Sets the value at the top of the stack to index n of the sequence at stack index idx .
If the value added is null, the entry at sequence index n is deleted and all elements
to the right of the value deleted are shifted fo the left, so that their index positions
get changed, as well.

The function pops the value at the top of the stack.

If there is already an item at position n in the sequence, it is overwritten.

If you want to extend a current sequence, the function allows to add a new item
only at the next free index position. Larger index positions are ignored, but the value
to be added is popped from the stack, as well.

lua_seqgsetinumber

void lua_seqgsetinumber (lua_State *L, int idx, int n, lua_Number num);

Sets the given Agena number numto index n of the sequence at stack index idx .

lua_seqsetistring
void lua_seqsetistring (lua_State *L, int idx, int n, const char *str);

Sets the given string str to index n of the sequence at stack index idx .

lua_sget

void lua_sget (lua_State *L, int idx);

Checks whether the set at index idx contains the item at the top of the stack. The
function pops the key from the stack putting the Boolean value true or false in its
place.

lua_sinsert

void lua_sinsert (lua_State *L, int idx);

Inserts an item into a set. The set is at the given index idx, and the item is at the fop
of the stack.

This function pops the item from the stack.

202 Q@ C API Functions

lua_sinsertistring

void lua_sinsertlstring (lua_State *L, int idx, con st char *str, size tl);

Sefts the first | characters of the string denoted by str info the set af the given index
idXx.

lua_sinsertnumber

void lua_sinsertnumber (lua_State *L, int idx, lua_ Number n);

Sets the number denoted by n info the set af the given index idx.

lua_sinsertstring
void lua_sinsertstring (lua_State *L, int idx, cons t char *str);

Sefts the string denoted by str into the set at the given index idx.

lua_srawset

void lua_srawset (lua_State *L, int index);

Does the equivalent to insert v into s, where s is the value atf the given valid index
index, v is the value at the top of the stack.

This function pops the value from the stack. It does not invoke any metamethods.

lua_srawget
void lua_srawget (lua_State *L, int index);

Pushes onto the stack the set value 1[k], where t is the fable at the given valid index
index and k is the value at the top of the stack.

This function pops the key from the stack (putting the resulting value in its place). The
function does not invoke any metamethods.

agena >> 203

lua_usnext
int lua_usnext (lua_State *L, int index);

Pops a key from the stack, and pushes the next item twice (!) from the set at the
given index. If there are no more elements in the set, then lua_usnext returns O (and
pushes nothing). To access the very first item in a set, put null on the stack before
(with lua_pushnil).

While fraversing a setf, do not call lua_tolstring directly on an item, unless you know
that the item is actually a string. Recall that lua_tolstring changes the value at the
given index; this confuses the next call to lua_usnext.

lual_getudata

void *luaL_checkudata (lua_State *L, int narg, cons t char *tname,
int *result);

Checks whether the function argument narg is a userdata of the type tname.
Contrary to lual_checkudatq, it does not issue an error if the argument is not a
userdata, and also stores 1 to result if the check was successful, and O otherwise.

204 Q@ C API Functions

agena >> 205

Appendix

206 Appendix

agena >> 207

A1l Operators

Unary operators are:

abs, add, arctan , assigned , char, copy, cos, entier , even, exp, filled , finite ,
gammaln, imag, int , isnull , join , left , In, lower , nargs , not, gqadd , real , replace ,
right , sign , sin , size ,sqrt , tan, trim , type , unique , upper , utype , - (UNAry MiNus).

Binary operators are:

, minus, shift , split , subset , union , xsubset , + (addition), -
(multiplication), / (division), % (modulus), ~ (exponentiation), **
(concatenation), = (equality), < (less than), <= (less or
(pair constructor), !

in , intersect
(subtraction), *
(integer exponentiation), ..

equal), > (greater than) , >= (greater or equal), $ (substring), :

(complex constructor), \ (infeger division).

A2 Metamethods

The following metamethods were inherited from Lua 5.1:

Index to metatable Meaning

' index Method for keys (for tables and sets only) in read
operations in tables or sets.

' _newindex Procedure invoked when a value shall to be written to
a table or set.

' _gcC' Garbage collection (for userdata only).

' mode' Sets weakness of a table.

' add' Addition of two values.

' osub! Subtraction of two values.

" mul Multiplication of two values.

e\ Division of two values.

' mod' Modulus.

' pow Exponentiation.

"ounm' Unary minus.

' eq Equality operation.

L Less-than operation.

'ole! Less-than or equals operation.

' concat Concatenation.

'ocall See Lua 5.1 manual.

' tostring' Method for pretty printing values at stdout.

Table 15; Metamethods taken from Lua

The' len' metamethod in Lua 5.1 to determine the size of an object was replaced
with the ' size' metamethod.

208

Appendix

The following methods are new in Agena:

Index 1o metatable

Meaning

" abs'

abs operator

' arctan' arctan operator
' Cos' COs operator
' entier entier operator
' even' even operator
'oexp' exp operator
' finite' finite operator
' _gammaln' gammaln operator
'in' in binary operator (for tables and sequences only)
' int’ int operator
' intdiv! integer division
' ipow! exponentiation with an integer power
"on' In operator
' _gsadd' qadd operator for table or sequence based
user-defined types
' sadd' add operator for table or sequence based
user-defined types
' shift shift operator
' sign' sign operafor
' size' size operator
'osin' sin operator
'osqgrt! sqrt operator
' tan'’ tan operator
Table 16: Metamethods infroduced with Agena
A3 System Variables

Agena lefs you configure the following seftings:

System variable

Meaning

EnvAgenaPath path to the main Agena directory
_EnvMaxLong The maximum integral value of the C type long on
your platform; do not change this value.
_EnvMinLong The minimum integral value of the C type long on
your platform; do not change this value.
_EnvMore number of entries in tables and sets printed by print

and the end-colon functionality before issuing the
“press any key' prompt.

_EnvPrintNewLineAfterinput

If set to true, a newline is printed at the console after
enfering a statement. Default: unassigned, i.e. no
newline.

agena >> 209

System variable Meaning

_EnvPrintZeroedCmpixVals | When set fo frue, real and imaginary parts of
complex values close to zero are rounded to zero
on output. (Note that internally, complex values are
not rounded.)

_EnvWithProtected table of names (passed as strings) that cannot by
overwritten by the with function.

_EnvWithVerbose If set to false, the with function wil not display
warmings, the init sting, and the short names
assigned.

PROMPT Defines the prompt Agena displays at the console

_RELEASE the Release of Agena returned as a string, e.Q.
'Agena 0.12'

Table 17: System variables

