
agenaagenaagenaagena >>>> > > > >

A Programming LanguageA Programming LanguageA Programming LanguageA Programming Language

Primer and ReferencePrimer and ReferencePrimer and ReferencePrimer and Reference
for Version 0.for Version 0.for Version 0.for Version 0. 24242424

by Alexander Walz
June 27, 2009



AGENA Copyright 2006-2009 by Alexander Walz. All rights reserved.
Portions Copyright 2006 Lua.org, PUC-Rio. All rights reserved. 

Agena is licensed under the terms of the MIT license reproduced below. This means
that Agena is free software and can be used for both academic and commercial
purposes at absolutely no cost.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the  Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notices and this permission notice shall be included in all
copies or portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS' WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE  
USE OR OTHER DEALINGS IN THE SOFTWARE.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
manual, and the author was aware of a trademark claim, the designations have
been printed in initial caps or all caps.

ContactContactContactContact: In case you find bugs, errors in this manual, have proposals, or questions

regarding Agena, please contact the author at:

The latest release of Agena may be found at http://agena.sourceforge.net.



CreditsCreditsCreditsCredits

Chapter 7: Standard Library documentationChapter 7: Standard Library documentationChapter 7: Standard Library documentationChapter 7: Standard Library documentation

Large portions of Chapter 7 have been taken from the Lua 5.1 Reference
Manual written by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar
Celes. Used by kind permission.

case ofcase ofcase ofcase of statement

The original code was written by Andreas Falkenhahn and posted to the Lua
mailing list on 01 Sep 2004. In Agena, the functionality has been extended to
check multiple values in the ofofofof branches.

skipskipskipskip statement

The skipskipskipskip functionality for loops has been written by Wolfgang Oertl and posted to
the Lua Mailing List on 12 September 2005.

globalsglobalsglobalsglobals base library function

The original Lua and C code for globalsglobalsglobalsglobals has been written by David Manura for
Lua 5.1 in 2008 and published on www.lua.org. Because of crashes with library C
functions passed to globalsglobalsglobalsglobals, the C source has been patched so that in Agena,
C functions are no longer checked.

mdmdmdmd, cdcdcdcd, and rdrdrdrd functions in the osososos library

These functions are based on code taken from the `lposix.c` file of the POSIX
library written by Luiz Henrique de Figueiredo for Lua 5.0. These functions are
themselves based on the original ones written by Claudio Terra for Lua 3.x.

No automatic auto-conversion of strings to numbers

was inspired by Thomas Reuben's no_auto_conversion.patch available at
lua.org.

Kilobyte/Megabyte Number Suffix ('k', 'm')

taken from Eric Tetz's k-m-number-suffix.patch available at lua.org.

agenaagenaagenaagena    >> 3



Integer division

taken from Thierry Grellier's newluaoperators.patch available at lua.org.

bitsbitsbitsbits package

Taken from a lua-users posting by Roberto Ierusalimschy for Lua 4.0.

4 Contents



Table of ContentsTable of ContentsTable of ContentsTable of Contents

655.2.1 while-Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
655.2 Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
655.1.3 case Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
645.1.2 is Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
635.1.1 if Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
635.1 Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
635 Control5 Control5 Control5 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

594.14 Other types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
574.13 Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
574.12 More on the create statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
534.11 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
514.10 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
504.9.5 Table References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
504.9.4 Table Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
474.9.3 Table, Set and Sequence Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
464.9.2 Dictionaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
434.9.1 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
424.9 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
414.8 Boolean Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
374.7 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
364.6.5 Complex Math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
364.6.4 Mathematical Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
354.6.3 Increment and Decrement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
344.6.2 Arithmetic Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
334.6.1 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
334.6 Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
324.5 Precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
324.4 Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
314.3 Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
304.2 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
294.1 Names, Keywords, and Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
294 Data & Operations4 Data & Operations4 Data & Operations4 Data & Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

253.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
233.2 Getting familiar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
233.1 Input Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
233 Overview3 Overview3 Overview3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

182.5 Agena Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
182.4 OS/2 Warp 4 and eComStation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
182.3 Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
172.2 Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
172.1 Solaris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
172 Installing and Running Agena2 Installing and Running Agena2 Installing and Running Agena2 Installing and Running Agena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

131.3 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
111.2 Features in Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
111.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
111 Introduction1 Introduction1 Introduction1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

agenaagenaagenaagena    >> 5



1487.8.2 math Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1477.8.1 Kernel Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1477.8 Mathematical Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1447.7 Sequence Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1427.6 Set Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1407.5.2 tables Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1387.5.1 Kernel Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1387.5 Table Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1297.4.2 The strings Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1277.4.1 Kernel Operators and Basic Library Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1277.4 String Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1247.3 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1237.2 Coroutine Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1037.1 Basic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1037 Standard Libraries7 Standard Libraries7 Standard Libraries7 Standard Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

986.18.2 Writing Text Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
986.18.1 Reading Text Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
986.18 File I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
976.17 Closures: Procedures that Remember their State . . . . . . . . . . . . . . . . . . . . . . . . .
966.16 Extending built-in Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
926.15 Overloading Operators with Metamethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
916.14.3 Functions for Remember Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
906.14.2 Read-Only Remember Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
896.14.1 Standard Remember Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
886.14 Remember tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
876.13.2 The with Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
866.13.1 Writing a New Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
866.13 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
856.12 Loops in Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
846.11 Scoping Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
836.10 User-Defined Procedure Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
836.9 Shortcut Procedure Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
826.8 Multiple Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
806.7 Type Checking & Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
806.6 Passing Options in any Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
786.5 Optional Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
786.4 Changing Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
776.3 Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
766.2 Local Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
756.1 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
756 Programming6 Programming6 Programming6 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

715.2.8 Loop Interruption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
705.2.7 for/while Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
705.2.6 for/in Loops for Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
695.2.5 for/in Loops for Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
695.2.4 for/in Loops for Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
685.2.3 for/in Loops for Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
665.2.2 for/to loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Contents



226A5 Define your own Printing Rules for Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
225A4.5 Command Line Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
225A4.4 Running Scripts in UNIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
225A4.3 Running a Script and then entering interactive Mode . . . . . . . . . . . . . . . . . . .
224A4.2 Using the internal args Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
223A4.1 Using the -e  Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
223A4 Command Line Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
222A3 System Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
221A2 Metamethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
221A1 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
221AppendixAppendixAppendixAppendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2019 C API Functions9 C API Functions9 C API Functions9 C API Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1898 Agena Database System8 Agena Database System8 Agena Database System8 Agena Database System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1857.18 bits - Bitwise Operators Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1837.17 clock - Clock Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1777.16 linalg - Linear Algebra Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1757.15 calc - Calculus Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1747.14 stats - Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1727.13 utils - Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1687.12 The Debug Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1627.11 Operating System Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1597.10 binio - Binary File Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

agenaagenaagenaagena    >> 7



8 Contents



Chapter OneChapter OneChapter OneChapter One

IntroductionIntroductionIntroductionIntroduction             

agenaagenaagenaagena    >> 9



10 1 Agena



1 Introduction1 Introduction1 Introduction1 Introduction

1.1 Features1.1 Features1.1 Features1.1 Features

Agena is an easy-to-learn procedural programming language suited for everyday
usage. It has been implemented as an interpreter and can be used in scientific,
educational, linguistic, and many other applications.

It combines features of Lua 5, Algol 60, Algol 68, Maple, ABC, SQL, ANSI C, and
Sinclair ZX Spectrum BASIC.

While Agena's syntax looks like Algol 68, its implementation is based on the original
Lua 5.1 sources created by Roberto Ierusalimschy, Luiz Henrique de Figueiredo,
and Waldemar Celes.

Agena supports all of the common functionality found in imperative languages:

� assignments,
� loops,
� conditions, 
� procedures.

Besides providing these basic operations, it has extended programming features
described later in this manual, such as 

� high-speed processing of complex data structures,
� fast string and mathematical operators,
� extended conditionals,
� abridged and extended syntax for loops,
� special variable increment, decrement and deletion statements,
� efficient recursion techniques,
� easy-to-use package initialisation functions,
� and much more.

Like Lua, Agena is untyped and includes the following basic data structures:
numbers, strings, booleans, tables, and procedures. In addition to these types, it
also supports Cantor sets, sequences, pairs, and complex values known from
mathematics. With all of these types, you can easily build fast applications.

1.2 Features in Detail1.2 Features in Detail1.2 Features in Detail1.2 Features in Detail

Agena offers various flow control facilities such as

� ifififif/elifelifelifelif/elseelseelseelse conditions,
� case ofcase ofcase ofcase of/elseelseelseelse conditions similar to C's switch/case statements,
� isisisis operator to return alternative values,
� numerical forforforfor/fromfromfromfrom/totototo/bybybyby loops with optional start, stop, and step values,
� combined numerical forforforfor/whilewhilewhilewhile loops,
� forforforfor/inininin loops over strings and complex data structures,

agenaagenaagenaagena    >> 11



� whilewhilewhilewhile and dodododo/asasasas loops similar to Modula's while and repeat/until not() iterators,
� a skipskipskipskip statement to prematurely trigger the next iteration of a loop,
� a breakbreakbreakbreak statement to prematurely leave a loop,
� fast and easy data type validation with the trytrytrytry/elseelseelseelse statement and the optional

double colon facility in parameter lists.

Data types provided are:

� rational and complex numbers with extensions such as infinityinfinityinfinityinfinity and undefinedundefinedundefinedundefined,
� strings,
� booleans such as truetruetruetrue, falsefalsefalsefalse, and failfailfailfail,
� the nullnullnullnull value meaning 'nothing',
� multipurpose tables implemented as associative arrays to hold any kind of data,

taken from Lua,
� Cantor sets as collections of unique items,
� sequences, i.e. vectors, to internally store items in strict sequential order,
� pairs to hold two values or pass arguments in any order to procedures,
� threads, userdata, and lightuserdata inherited from Lua.

For performance, most basic operations on these types were built into the Agena
kernel.

Procedures with full lexical scoping are supported, as well, and provide the following
extensions:

� the << (args) -> expression >> syntax to easily define simple functions,
� user-defined types for procedures to allow individual handling (the same feature

is available to the above mentioned tables, sets, sequences, and pairs),
� a facility to return predefined results,
� remember tables for conducting recursion at high speed and at low memory

consumption,
� closures, a features to let functions remember their state, taken from Lua,
� the nargsnargsnargsnargs system variable which holds the number of arguments actually

passed to a procedure,
� metamethods to define operations for tables, sets, sequences, and pairs,

inherited from Lua.

Some other features are:

� functions to support fast text processing (see inininin, replacereplacereplacereplace, lowerlowerlowerlower, and upperupperupperupper
operators, as well as the functions in the stringsstringsstringsstrings and utilsutilsutilsutils packages),

� easy configuration of your personal environment via the Agena initialisation file,
� an easy-to-use package system also providing a means to load a library and

define short names for all package procedures at a stroke (withwithwithwith function),
� the biniobiniobiniobinio package to easily write and read files in binary mode,
� facility to store any data to a file and read it back later (savesavesavesave and readreadreadread

functions),
� undergraduate Calculus, Linear Algebra, and Statistics packages,
� enumeration and multiple assignment,

12 1 Agena



� the externalexternalexternalexternal switch to a numeric for loop to pass the last iteration value to its
surrounding block,

� scope control via the scopescopescopescope/epocsepocsepocsepocs keywords.

Agena is shipped with the packages mentioned above and all Lua C packages
that are part of Lua 5.1. Some of the very basic Lua library functions have been
transformed to Agena operators to speed up execution of programs and thus have
been removed from the Lua packages. The Lua mathematical and string handling
packages have been tuned and extended with new functions.

Agena code is not compatible to Lua. Its C API, however, was left almost
unchanged and many new API functions have been added. As such, you can
integrate any C package you have already written for Lua without modifying its
code in 99.9 % of all cases.

1.1.1.1.3333 History History History History

I have been dreaming of creating my own programming language for the last 25
years, my first rather unsuccessful attempt made on a Sinclair ZX Spectrum in the
early 1980s.

Plans became more serious in 2005 when I learned Lua to write procedures for
phonetic analysis and also learned ANSI C to transfer them into a C package. In
autumn 2006 the first modifications of the Lua parser began with extensive
modifications and extensions of the lexer, parser and the Lua Virtual Machine in
summer 2007. Most of Agena's functionality had been completed in March 2008,
followed by the first new data structure, Cantor sets, one month later, some more
data structures, and a lot of fine-tuning and testing thereafter. Finally, in January
2009, the first release of Agena was published at Sourceforge.

Study of many books and websites on various programming languages such as
Algol 60, Algol 68, and ABC along with Maple and my various ideas on the
`perfect` language helped to conceive a completely new Algol 68-syntax based
language with high-speed functionality for arithmetic and text processing.

You may find that at least the goal of designing a perfect language has not yet
been met. For example, the syntax is not always consistent: you will find Algol
68-style elements in most cases, but also ABC/SQL-like syntax for basic operations
with structures. The primary reason for this is that sometimes natural language
statements are better to reminisce. I have stopped bothering on this inconsistency
issue.

Agena has been designed on Windows 2000 and NT 4.0 using the MinGW GCC
compiler. Further programming has been done on a Sun Sparc Ultra 5 and a Sun
Blade 150 running Solaris 10 and on openSuSE Linux 10.3 to make the interpreter
work in UNIX environments.

agenaagenaagenaagena    >> 13



14 1 Agena



Chapter TwoChapter TwoChapter TwoChapter Two

Installing & Running AgenaInstalling & Running AgenaInstalling & Running AgenaInstalling & Running Agena             

agenaagenaagenaagena    >> 15



16 2 Installing and Running Agena



2 Installing and Running Agena2 Installing and Running Agena2 Installing and Running Agena2 Installing and Running Agena

2.2.2.2.1111 Solaris Solaris Solaris Solaris

In Solaris, put the gzipped Agena package into any directory. Assuming you want to
install the Sparc version, uncompress the package by entering:

> gzip -d agena-0.24.0-sol10-sparc-local.gz

Then install it with the Solaris package manager:

> pkgadd -d agena-0.24.0-sol10-sparc-local

This installs the executable into the /usr/local/bin  folder and the rest of all files into
/usr/agena . The /usr/agena  directory is called the `main Agena folder`.

Make sure you have the ncurses and readline libraries installed. From the
command line type agena  and press RETURN.

Image 1: Startup message in Solaris

The procedure for Solaris for x86 CPUs is the same. In Solaris, the package always
installs as SMCagenaSMCagenaSMCagenaSMCagena.

2.2 Linux2.2 Linux2.2 Linux2.2 Linux

In Linux, put the Agena rpm package into any directory and install it by typing:

> rpm -ihv agena-0.24.0-linux-i386.rpm

This installs the executable into the /usr/local/bin  folder and the rest of all files into
/usr/agena . The /usr/agena  directory is called the `main Agena folder`. Note that
you must have the ncurses and readline libraries installed before.

From the command line, type agena  and press RETURN.

agenaagenaagenaagena    >> 17



2.3 Windows2.3 Windows2.3 Windows2.3 Windows

Just execute the Windows installer, and choose the components you want to install.

Make sure you either let the installer automatically set the environment variable
called AGENAPATH containing the path to the main Agena folder (the default) or set
it later manually in the Windows Control Panel, via the `System` icon.

You may start Agena either via the Explorer menu, or by typing agena  in a shell.

2.4 OS/2 Warp 4 and eComStation2.4 OS/2 Warp 4 and eComStation2.4 OS/2 Warp 4 and eComStation2.4 OS/2 Warp 4 and eComStation

In OS/2, create a folder called agena  anywhere on your drive, change into this
directory and decompress the agena-0.24.0-os2.zip  file. Be careful to preserve its
subdirectory structure.

Now set the environment variable AGENAPATH in the config.sys  file with a text editor.
For example, if you installed Agena into the folder c:\agena , enter the following line
into the config.sys  file:

set AGENAPATH=c:/agena

Note the forward slash in the path and the environment variable name in capital
letters.

Also in config.sys , append the path to the agena  folder to the PATH system variable,
so that the entry looks something like this:

PATH=C:\OS2;C:\OS2\MDOS;C:\;< other paths ... >;c:\ agena;

Just enter agena  in an OS/2 shell to run the interpreter.

2.2.2.2.5555 Agena Initiali Agena Initiali Agena Initiali Agena Initiali ssssationationationation

When you start Agena, the following actions are taken:

1. The package tables for the C libraries shipped with the standard edition of
Agena (e.g. math, strings, etc.) are created so that these package procedures
become available to the user.

2. All global values are copied from the _G_G_G_G table to its copy _origG_origG_origG_origG, so that the
restartrestartrestartrestart function can restore the original environment if invoked.

3. The system variable _EnvAgenaPath_EnvAgenaPath_EnvAgenaPath_EnvAgenaPath pointing to the main Agena folder and
optionally to other folders is set by either querying the environment variable
AGENAPATH or - if not set - checking whether the current working directory
contains the string /agena , building the path accordingly. In UNIX and Windows, if
the path could not be determined as described before, _EnvAgenaPath is by

18 2 Installing and Running Agena



default set to /usr/agena/lib  in UNIX, and %ProgramFiles%\agena\lib  in
Windows, if these directories exist and if the user has at least read permissions for
the respective folder. The _EnvAgenaPath_EnvAgenaPath_EnvAgenaPath_EnvAgenaPath variable is used extensively in the withwithwithwith
and readlibreadlibreadlibreadlib functions. If it could not be set, many functions will not be available.

4. Searching all paths in _EnvAgenaPath_EnvAgenaPath_EnvAgenaPath_EnvAgenaPath from left to right, Agena tries to find the
standard Agena library library.agn  and if successful, loads and runs it. The
library.agn  file includes functions written in the Agena language that
complement the C libraries. If the standard Agena library could not be found, a
warning message, but no error, is issued. If there are multiple library.agn  files in
your path, only the first one found is initialised.

5. An initialisation file - if present - called agena.ini  is searched by traversing all
paths in _EnvAgenaPath_EnvAgenaPath_EnvAgenaPath_EnvAgenaPath from left to right. As with library.agn , this file contains
code written in the Agena language that you may customise with pre-set
variables, auxiliary procedures, etc. that shall be available in every Agena
session. If the initialisation file does not exist, a warning, but no error is issued, and
the Agena session begins. If there are multiple agena.ini  files in your path, only
the first one found is initialised.

agenaagenaagenaagena    >> 19



20 2 Installing and Running Agena



Chapter ThreeChapter ThreeChapter ThreeChapter Three

OverviewOverviewOverviewOverview             

agenaagenaagenaagena    >> 21



22 3 Overview



3 3 3 3 OverviewOverviewOverviewOverview

Let us start by just entering some commands that will be described later in this
manual so that you can become acquainted with Agena as fast as possible. In this
chapter, you will also learn about some of the basic data types available.

3.1 Input C3.1 Input C3.1 Input C3.1 Input Conventionsonventionsonventionsonventions

Any valid Agena code can be entered at the console with or without a trailing
colon or semicolon:

� If an expression is finished with a colon, it is evaluated and its value is printed at
the console.

� If the expression ends with a semicolon or neither with a colon nor a semicolon,
it is evaluated, but nothing is printed.

You may optionally insert one or more white spaces between operands in your
statements.

3.2 Getting familiar3.2 Getting familiar3.2 Getting familiar3.2 Getting familiar

Assume you would like to add the numbers 1 and 2 and show the result. Then type:

> 1+2:
3

If you want to store a value to a variable, type:

> c := 25; 

Now the value 25 is stored to the name c , and you can refer to this number by the
name c  in subsequent calculations. 

Assume that c  is 25° Celsius. If you want to convert it to Fahrenheit, enter:

> 1.8*c + 32:
77

If you would like to compute the sum of 1 to 10, and assign the result to a variable
called r , input:

> r := 0;

> for i from 1 to 10 do
>    r := r + i
> od;

> r:
55

agenaagenaagenaagena    >> 23



There are many functions available in various libraries. To compute the arc sine, use
the arcsinarcsinarcsinarcsin function in the mathmathmathmath package;

> math.arcsin(1):
1.5707963267949

You can easily write your own functions, for example one called deg  that converts
radians to degrees.

> deg := << (x) -> x * 180 / Pi >>;

To compute the value of the function at Pi/4, just input:

> deg(Pi/4):
45

Try one of the built-in standard operators. lowerlowerlowerlower converts all letters from upper case
to lower case. 

> lower('AGENA'):

agena

One of the types to hold structured values is the table, which can hold any kind of
data. Assume you would like to store the birthdays of your friends, enter:

> birthdays := ['Neo' ~ '1970/01/01', 'Trinity' ~ ' 1970/12/24'];

Determine Neo's birthday:

> birthdays['Neo']:

1970/01/01

You can add new entries into your table.

> birthdays['Morpheus'] := '1952/04/01'

Now print its current content:

> birthdays:
Morpheus ~ 1952/04/01
Trinity ~ 1970/12/24
Neo ~ 1970/01/01

To delete entries, just type:

> birthdays['Morpheus'] := null

> birthdays:
Trinity ~ 1970/12/24
Neo ~ 1970/01/01

The global variable ansansansans always holds the result of the last statement you completed
with a colon.

24 3 Overview



> ans:
Trinity ~ 1970/12/24
Neo ~ 1970/01/01

The console screen can be cleared in both the Win32 and UNIX versions by just
entering the keyword clsclsclscls:

> cls

The restartrestartrestartrestart statement resets Agena to its initial state, i.e. clears all variables you
defined in a session.

> restart;

If you prefer another Agena prompt instead of the predefined one, assign:

> _PROMPT := 'Agena$ '

Agena$  _

You may put this statement into the agena.ini  file in the Agena lib  folder, if you do
not want to change the prompt manually every time you start Agena.

3.3.3.3.3 Comments3 Comments3 Comments3 Comments

You should always document the code you have written so that you and others will
understand its meaning if reviewed later.

A single line comment starts with a single hash. Agena ignores all characters
following the hash up to the end of the current line.

> # this is a single-line comment

> a := 1; # a contains a number

A multi-line comment, also called the `long comment` is started with the token
sequence #/  and ends with the closing /#  token1.

> #/ this is a long comment,
>    split over two lines /#

Now let us learn more about Agena.

agenaagenaagenaagena    >> 25

1 Multi-line comments cannot begin in the very first line of a program file. Use a single comment
instead.



26 3 Overview



Chapter FourChapter FourChapter FourChapter Four

Data & OperationsData & OperationsData & OperationsData & Operations             

agenaagenaagenaagena    >> 27



28 4 Data



4 4 4 4 Data & OperationsData & OperationsData & OperationsData & Operations

Agena features a set of data types and operations on them that are suited for both
general and specialised needs. While providing all the general types inherited from
Lua - numbers, strings, booleans, nulls, tables, and procedures - it also has four
additional data types that allow very fast operations: sets, sequences, pairs, and
complex numbers.

a complex number consisting of a real and an imaginary numbercomplex
a pair of two values of any typepair

a vector storing numbers, strings, booleans, and all other data types
except nullnullnullnull in sequential order

sequence

the classical Cantor set storing numbers, strings, booleans, and all
other data types available

set
a predefined collection of one or more Agena statementsprocedure

a multipurpose structure storing numbers, strings, booleans, tables,
and any other data type

table
a value representing `nothing`null
booleans (e.g. truetruetruetrue, falsefalsefalsefalse, and failfailfailfail)boolean
any textstring
any integral or rational number, plus undefinedundefinedundefinedundefined and infinityinfinityinfinityinfinitynumber
DescriptionDescriptionDescriptionDescriptionTypeTypeTypeType

Table 1: Types

Tables, sets, sequences, and pairs are also called structures in this manual.

4.1 Names,4.1 Names,4.1 Names,4.1 Names,  K K K Keywords, and Tokenseywords, and Tokenseywords, and Tokenseywords, and Tokens

In Chapter 3, we have already assigned data - such as numbers and procedures -
to names, also called `variables`. These names refer to the respective values and
can be used conveniently as a reference to the actual data.

A name always begins with an upper-case or lower-case letter or an underscore,
followed by one or more upper-case or lower-case letters, underscores or numbers
in any order.

Since Agena is a dynamically typed language, so no declarations of variable
names are needed.

valueTwo
ValueOne
_1
_var1n
var1

1__var
1varvar
Invalid namesInvalid namesInvalid namesInvalid namesValid namesValid namesValid namesValid names

Table 2: Examples for valid and invalid names

agenaagenaagenaagena    >> 29



The following keywords are reserved and cannot be used as names:

   abs and arctan as assigned bottom break by bye c ase char clear cls copy
   cos cosh dec delete dict do elif else end entier  enum esac even exp
   external fail false fi filled finite for from ga mmaln getbottom gettop 
   global if imag in inc insert int intersect into is isfloat join keys 
   left ln local lower minus nargs not null od of o r pop proc qsadd real
   replace restart return right sadd seq shift si s ign sin sinh size skip
   split sqrt subset tan tanh then to top trim true  try type typeof
   unassigned union unique upper while xsubset

   boolean complex lightuserdata number pair proced ure sequence set 
   string table thread userdata

The following symbols denote other tokens:

 + - * ** / \ % ^ $ # = <> <= >= < > = == ( ) { } [  ] ; : :: @ , . .. ? `

4.2 Assignment4.2 Assignment4.2 Assignment4.2 Assignment

Values can be assigned to names in the following fashions:

name := value
name1, name2, ..., namek := value1, value2, ..., valuek

name1, name2, ..., namek -> value

In the first form, one value is stored in one variable, whereas in the second form,
called `multiple assignment statement`, name1 is set to value1, name2 is assigned
value2, etc. In the third form, called the `short-cut multiple assignment statement`,
a single value is set to each name to the left of the ->  operator.

First steps:

> a := 1;

> a:
1

An assignment statement can be finished with a colon to both conduct the
assignment and print the right-hand side value.

> a := 1:
1

> a := exp(a):
2.718281828459

30 4 Data



Multiple assignments:

> a, b := 1, 2

> a:
1

> b:
2

If the left-hand side contains more names than the number of values on the
right-hand side, then the excess names are set to nullnullnullnull.

> c, d := 1

> c:
1

> d:
null

A short-cut multiple assignment statement:

> x, y -> exp(1);

> x:
2.718281828459

> y:
2.718281828459

4.3 Enumeration4.3 Enumeration4.3 Enumeration4.3 Enumeration

Enumeration with step size 1 is supported with the enumenumenumenum statement:

enumenumenumenum name1 [, name2, ... ]
enumenumenumenum name1 [, name2, ... ] fromfromfromfrom value

In the first form, name1, name2, etc. are enumerated starting with the numeric
value 1.

> enum ONE, TWO;

> ONE:
1

> TWO:
2

In the second form, enumeration starts with the numeric value passed right after the
fromfromfromfrom keyword.

> enum THREE, FOUR from 3

agenaagenaagenaagena    >> 31



> THREE:
3

> FOUR:
4

4.4 Deletion4.4 Deletion4.4 Deletion4.4 Deletion

You may delete the contents of one or more variables with one of the following
methods: Either use the clearclearclearclear command:

clearclearclearclear name1 [, name2, ..., namek ]

> a := 1;

> clear a;

> a:
null

which also performs a garbage collection useful if large structures shall be removed
from memory, or set the variable to be deleted to nullnullnullnull:

> b := 1;

> b := null:
null

The nullnullnullnull value represents the absence of a value. All names that are unassigned
evaluate to nullnullnullnull. Assigning names to nullnullnullnull quickly clears their values, but does not
garbage collect them.

4.5 Precedence4.5 Precedence4.5 Precedence4.5 Precedence

Operator precedence in Agena follows the table below, from lower to higher
priority:

   or
   and
   < > <= >= = <>
   in subset xsubset union minus intersect
   .. :
   + - split
   * / % \ shift
   not -(unary) !
   ^ **

As usual, you can use parentheses to change the precedence of an expression.
The concatenation (.. ), exponentiation (^ , ** ) and pair (: ) operators are right
associative, e.g. x^y^z = x^(y^z). All other binary operators are left associative.

32 4 Data



> 1+3*4:
13

> (1+3)*4:
16

4.6 Arithmetic4.6 Arithmetic4.6 Arithmetic4.6 Arithmetic

4.6.1 Num4.6.1 Num4.6.1 Num4.6.1 Numbersbersbersbers

In the `real` domain, Agena internally only knows floating point numbers which can
represent integral or rational numeric values. All numbers are of type number.

An integral value consists of one or more numbers, with an optional sign in front of it.

� 1
� -20
� 0
� +4

A rational value consists of one or more numbers, an obligatory decimal point at
any position and an optional sign in front of it:

� -1.12
� 0.1
� .1

Negative integral or rational values must always be entered with a minus sign, but
positive numbers do not need to have a plus sign.

You may optionally include one or more single quotes within a number to group
digits:

> 10'000'000:
10000000

You can alternatively enter numbers in scientific notation using the `e` symbol.

> 1e10:
10000000000

> -1e-4:
-0.0001

If a number ends with the letter `K`,`M`, `G`, or `D`, then the number is multiplied
with 1,024, 1,048,576 (= 1,0242), 1,073,741,824 (= 1,0243), or 12, respectively. If a
number ends with the letter `k` or `m̀ , then the number is multiplied with 1,000 or
1,000,000, respectively.

> 2k:
2000

agenaagenaagenaagena    >> 33



> 1M:

1048576

> 12D:

144

If you use only real numbers in your programs, then Agena will calculate only in the
real domain. If you use at least one complex value  (see Chapter 4.6.5), then
Agena will calculate in the complex domain.

4.6.2 Arithmetic Operations4.6.2 Arithmetic Operations4.6.2 Arithmetic Operations4.6.2 Arithmetic Operations

Agena has the following arithmetical operators:

If the right-hand side is positive,
the bits are shifted to the left
(multiplication with 2), else they
are shifted to the right (division
by 2).

Bitwise shiftshift
5 \ 2 » 2Integer division\
5 % 2 » 1Modulus%
faster than ^, 2 ** 3 » 8Exponentiation with integer power**
2 ^ 3 » 8Exponentiation with rational power^
4 / 2 » 2Division/
2 * 3 » 6Multiplication*
3 - 2 » 1Subtraction-
1 + 2 » 3Addition+
Details / ExampleDetails / ExampleDetails / ExampleDetails / ExampleOperationOperationOperationOperationOperatorOperatorOperatorOperator

Table 3: Arithmetic operators

Agena has a lot of mathematical functions both built into the kernel and also
available in the mathmathmathmath, statsstatsstatsstats, linalglinalglinalglinalg, and calccalccalccalc libraries. Table 4 shows some of the
most common. 

The mathematical procedures that reside in packages must always be entered by
passing the name of the package followed by a dot and the name of the
procedure2.

Unary operators3 like lnlnlnln, expexpexpexp, etc. can be entered with or without simple brackets.

math.arcsin(0) » 0mathArc sine (x in radians)arcsinarcsinarcsinarcsin(x)

tan(1) » 1.557407..KernelTangent (x in radians)tantantantan(x)

cos(0) » 1KernelCosine (x in radians)coscoscoscos(x)

sin(0) » 0KernelSine (x in radians)sinsinsinsin(x)
Example and resultExample and resultExample and resultExample and resultLibraryLibraryLibraryLibraryOperationOperationOperationOperationProcedureProcedureProcedureProcedure

34 4 Data

3 See Appendix A1 for a list of all unary operators.

2 Check the withwithwithwith function which provides an easy way to define short names for package
procedures.



stats.median(
  [1, 2, 3, 4]) » 2.5

statsMedianmedianmedianmedianmedian([[[[...]]]])

stats.mean([1, 2, 3]) » 2statsArithmetic meanmeanmeanmeanmean([[[[...]]]])

sadd([1, 2, 3]) » 6KernelSumssssaddaddaddadd([[[[...]]]])

sqrt(2) » 1.414213..KernelSquare root of xsqrtsqrtsqrtsqrt(x)

sign(-1) » -1KernelSign of xsignsignsignsign(x)

math.roundf(
  sqrt(2), 2) » 1.41

mathRounds the real value x to
the d-th digit

roundfroundfroundfroundf(x, d)

math.log(8, 2) » 3mathLogarithm of x to the
base b

loglogloglog(x, b)

ln(1) » 0KernelNatural logarithmlnlnlnln(x)

int(2.9) » 2
int(-2.9) » -2

KernelRounds x to the nearest
integer towards zero

intintintint(x)

exp(gammaln(3+1))  »  6Kernelln � xgammalngammalngammalngammaln(x)

exp(0) » 1KernelExponentiation exexpexpexpexp(x)

even(2) » trueKernelChecks whether x is eveneveneveneveneven(x)

entier(2.9) » 2
entier(-2.9) » -3

KernelRounds x downwards to
the nearest integer

entierentierentierentier(x)

abs(-1) » 1KernelAbsolute value of xabsabsabsabs(x)

tanh(0) » 0KernelHyperbolic tangenttanhtanhtanhtanh(x)

cosh(0) » 1KernelHyperbolic cosinecoshcoshcoshcosh(x)

sinh(0) » 0KernelHyperbolic sinesinhsinhsinhsinh(x)

arctan(Pi) » 1.262627..KernelArc tangent (x in radians)arctanarctanarctanarctan(x)

math.arccos(0) »
1.570796....

mathArc cosine (x in radians)arccosarccosarccosarccos(x)
Example and resultExample and resultExample and resultExample and resultLibraryLibraryLibraryLibraryOperationOperationOperationOperationProcedureProcedureProcedureProcedure

Table 4: Common mathematical functions

4.6.3 4.6.3 4.6.3 4.6.3 IncrementIncrementIncrementIncrement  and  and  and  and DecrementDecrementDecrementDecrement

Instead of incrementing or decrementing a value, say

> a := 1;

by entering a statement like

> a := a + 1:

2

you can use the incincincinc and decdecdecdec commands4 which are also around 10% faster:

incincincinc name [, value]
decdecdecdec name [, value]

If value is omitted, name is increased or decreased by 1.

agenaagenaagenaagena    >> 35

4 Finishing an incincincinc or decdecdecdec statement with a colon instead of a semicolon does not work.



> inc a;

> a:
3

> dec a;

> a:
2

> inc a, 2;

> a;
4

> dec a, 3;

> a:
1

4.6.4 Mathematical Constants4.6.4 Mathematical Constants4.6.4 Mathematical Constants4.6.4 Mathematical Constants

Agena features the following arithmetic constants:

An expression stating that it is undefined, e.g. a singularityundefinedundefinedundefinedundefined
Factor Pi/180 to convert degrees to radiansradiansradiansradiansradians
Constant pi = 3.14159265358979323846PiPiPiPi
Infinityinfinityinfinityinfinityinfinity
Imaginary unitI
Constant e = exp(1) = 2.71828182845904523536ExpExpExpExp
Equals 1.4901161193847656e-08_EnvEps_EnvEps_EnvEps_EnvEps
Factor 1/Pi*180 to convert radians to degreesdegreesdegreesdegreesdegrees
MeaningMeaningMeaningMeaningConstantConstantConstantConstant

Table 5: Arithmetic constants

4.6.5 Complex Math4.6.5 Complex Math4.6.5 Complex Math4.6.5 Complex Math

Complex numbers can be defined in two ways: by using the !  constructor or the
imaginary unit represented by the capital letter I . Most of Agena's mathematical
operators and functions know how to handle complex numbers and will always
return a result that is in the complex domain.

> a := 1!1;

> b := 2+3*I;

> a+b:
3+4*I

> a*b:
-1+5*I

The following operators work on rational numbers as well as complex values: +, - , * ,
/ , ^ , ** , =,  <>,  abs , arctan , cos , entier , exp , ln , sign,  sin , sqrt , tan , and unary
minus. With these operators, you can also mix numbers and complex numbers in

36 4 Data



expressions. You will find that most functions of the mathmathmathmath package are also
applicable to complex values.

Note that the !  operator has the same precedence as unary operators like - , sin ,
cos , etc. This means that -1!2  = 1-I , but also sin 1!2  = (sin 1)!2 . It is advised
that you use brackets when applying unary operators on complex values.

Complex values are of type complexcomplexcomplexcomplex.

4.7 Strings4.7 Strings4.7 Strings4.7 Strings

Any text can be represented by including it in single or double quotes:

> 'This is a string':
This is a string

Of course, strings - like numbers - can be assigned to variables.

> str := "I am a string.";

> str:
I am a string.

Strings can be of almost unlimited length. Strings can be concatenated, characters
or sequences of characters can be replaced by other ones, and there are various
other functions to work on strings.

Multiline-strings can be entered in two fashions: If you use single quotes, put a
backslash at the end of each line except the last one:

> str := 'Two\
lines';

When using double quotes, backslashes are not needed:

> str := "Two

lines";

A string may contain no text at all - called an empty string -, represented by two
consecutive single quotes with no spaces or characters between them:

> '':

You may obtain a specific character by passing a dollar sign and its position in
simple brackets right behind the string name. If you use a negative index n, then
the n-th character from the right end of the string is returned.

> str := 'I am a string.';

> str$(1);
I

agenaagenaagenaagena    >> 37



In general, parts of a string consisting of one or more consecutive characters can
be obtained with the substring notation.

stringname$($($($( start [,,,, end] ))))

You must at least pass the starting position of the substring. If only start is given then
the single character at position start is returned. If end is given too, then the
substring starting at position start up to and including position end is returned.

> str := 'string'

> str$(3):
r

> str$(3, 5):
rin

> str$(3, 3):
r

You may also pass negative values for start and/or end. In these cases, the
positions are determined with respect to the right end of the string.

> str$(3, -1):
ring

> str$(3, -2):
rin

> str$(-3):
i

If you want to retrieve only one single character from a string, you may also use the
faster indexing method:

stringname[[[[pos]]]]

This returns the character in stringname that is at position pos. If you pass a negative
for pos, then the |pos|-th character from the right end of the string is returned.

> str := 'string'

> str[2]:
t

> str[-1]:
g

In Agena, a text can include any escape sequences known from ANSI C, e.g.:

38 4 Data



� \n : inserts a new line,
� \t : inserts a tabulator
� \b : puts the cursor one position to the left but does not delete any characters.

> 'I am a string.\nMe too.':
I am a string.
Me too.

> 'These are numbers: 1\t2\t3':
These are numbers: 1    2       3

> 'Example with backspaces:\b but without the colon .':
Example with backspaces but without the colon.

If you want to put a single or double quote into the string, put a backslash right in
front of it:

> 'A quote: \'':
A quote: '

> "A quote: \"":
A quote: "

Likewise, a backslash is inserted by typing it twice.

Two or more strings can be concatenated with the ..  operator:

> 'First string, ' .. 'second string, ' .. 'third s tring':
First string, second string, third string

Instead of putting single or double quotes around a text, you may also use a back
quote in front of the text, but not at its end. The string then automatically ends with
one of the following tokens5:

  <space> " , ~ [ ] { } ( ) ; : # ' = ? & % $ § \ !  ^ @ < > | \r \n \t

This also allows UNIX-style filenames to be entered using this short-cut method.

> `text:
text

> `/proglang/agena/utils/utils.agn:
/proglang/agena/utils  /utils.agn

Agena has basic operators useful for text processing:

agenaagenaagenaagena    >> 39

5 For the current settings of your Agena version see bottom of the agnconf.h  file in the src  directory of
the distribution.



Deletes leading and trailing spaces as well as
excess embedded spaces.

stringtrimtrimtrimtrim(s)

Converts a string to uppercase. Western
European diacritics are recognised.

stringupperupperupperupper(s)

Converts a string to lowercase. Western
European diacritics are recognised.

stringlowerlowerlowerlower(s)

Returns the character corresponding to the
given numeric ASCII code n.

stringcharcharcharchar(n)

Returns the numeric ASCII code of character
s.

numberabsabsabsabs(s)

Returns the length of string s. If s is the empty
string, 0 is returned.

numbersizesizesizesize(s)

Splits a string into its words with d as the
delimiting character. The items are returned as
a sequence of strings.

table of stringss splitsplitsplitsplit d

Replaces all patterns p in string s with substring
r. If p is not in s, then s is returned unchanged.

stringrrrreplaceeplaceeplaceeplace(s, p, r)

Checks whether a substring s is included in
string t. If true, the position of the first
occurrence of s in t is returned; otherwise nullnullnullnull
is returned.

number or nullnullnullnulls inininin t
FunctionFunctionFunctionFunctionReturnReturnReturnReturnOperatorOperatorOperatorOperator

Table 6: String operators

Some examples:

> str := 'a string';

The character `s` is at the third position:

> 's' in str:
3

Let us split a string into its components that are separated by white spaces:

> str split ' ':
seq(a, string)

str is eight characters long:

> size(str):
8

The ASCII code of the first character in str, a, is:

> abs(str[1]):
97

translated back to

> char(ans):
a

40 4 Data



Put all characters in str to uppercase:

> upper(str):
A STRING

And now the reverse:

> lower(ans):
a string

The replacereplacereplacereplace functionality easily replaces all occurrences of a substring with another
one:

> replace(str, 'string', 'text'):
a text

A string always is of type stringstringstringstring.

> type(str):
string

4.8 Boolean E4.8 Boolean E4.8 Boolean E4.8 Boolean E xpressionsxpressionsxpressionsxpressions

Agena supports the logical values truetruetruetrue and falsefalsefalsefalse, also called `booleans`. Any
condition, e.g. a < b, results to one of these logical values. They are often used to
tell a program which statements to execute and thus which statements not to
execute.

Boolean expressions always result to the boolean values truetruetruetrue or falsefalsefalsefalse. Boolean
expressions are created by:

� relational operators (>, <, =, ==, <=, >=, <>), 
� logical operators (andandandand, orororor, notnotnotnot),
� logical names: truetruetruetrue, falsefalsefalsefalse, failfailfailfail, and nullnullnullnull,
� inininin, subsetsubsetsubsetsubset, xsubsetxsubsetxsubsetxsubset, and various functions.

Agena supports the following relational operators:

1 <> 2not equals<>

[1] == [1]
1 == 1strict equals for structures==

1 = 1equals=
2 >= 1greater than or equals>=
1 <= 2less than or equals<=
2 > 1greater than>
1 < 2less than<
ExampleExampleExampleExampleDescriptionDescriptionDescriptionDescriptionOperatorOperatorOperatorOperator

Table 7: Relational operators

agenaagenaagenaagena    >> 41



Logical operators are:

not true » false
not false » true

Turns a true expression to false false false false and vice
versa.

not

true or true » true
true or false » true
false or true » true
false or false » false

At least one of the operands must
evaluate to truetruetruetrue so that the boolean
expression results to truetruetruetrue. If neither of the
operands is true, the expression is falsefalsefalsefalse.

or

true and true » true
false and false » false
true and false » false
false and true » false

Both operands must evaluate to truetruetruetrue so
that the boolean expression results to
truetruetruetrue. Otherwise the result is falsefalsefalsefalse.

and
ExampleExampleExampleExamplessssDescriptionDescriptionDescriptionDescriptionOOOOperatorperatorperatorperator

Table 8: Logical operators

As expected, you can assign boolean expressions to names 

> cond := 1 < 2:
true

> cond := 1 < 2 or 1 > 2 and 1 = 1:
true

or use them in ifififif statements.

In many situations, the nullnullnullnull value can be used synonymously for falsefalsefalsefalse.

The Boolean constant failfailfailfail can be used to denote an error. With boolean operators
(andandandand, orororor, notnotnotnot), failfailfailfail behaves like the falsefalsefalsefalse constant, but remember that failfailfailfail is always
unlike falsefalsefalsefalse, i.e. failfailfailfail = falsefalsefalsefalse    results to false false false false.

truetruetruetrue, falsefalsefalsefalse, and failfailfailfail are of type booleanbooleanbooleanboolean. nullnullnullnull, however, has its own type nullnullnullnull.

4.9 Tables4.9 Tables4.9 Tables4.9 Tables

Tables are used to represent any more complex data structure. Tables consist of
zero, one or more key-value pairs: the key referencing to the position of the value in
the table, and the value the data itself.

Keys and values can be numbers, strings, and any other data type except nullnullnullnull.

Here is a first example: Suppose you want to create a table with the following
meteorological data from Viking Lander 1 which landed on Mars in 1976:

-82.967.701.10
-81.107.701.06
-78.287.711.02
Temperature in °CPressure in mbSol

42 4 Data



> VL1 := [
>    1.02 ~ [7.71, -78.28],
>    1.06 ~ [7.70, -81.10],
>    1.10 ~ [7.70, -82.96]
> ];

To get the data of Sol 1.02 (the Marsian day #1.2) input:

> VL1[1.02]:
[7.71, -78.28]

Tables may be empty, or include other tables - even nested ones. 

You can control how tables are printed at the console in two ways: If the global
environment variable _EnvLongTable is set to true, then each key~value pair is
printed at a separate line, like in the example above. If _EnvLongTable is set to
false, or is unassigned, key~value pairs will be printed in one line. Also, you can
define your own printing function that tells the interpreter how to print a table (or
other structures). In this case, the setting of _EnvLongTable will be ignored. See the
Appendix for further information on how to do this.

Stripped down versions of tables are sets and sequences which are described later.
Most operations on tables introduced in this chapter are also applicable to sets and
sequences.

4.9.1 Arrays4.9.1 Arrays4.9.1 Arrays4.9.1 Arrays

Agena features two types of tables, the simplest one being the array. Arrays are
created by putting their values in square brackets:

[[[[ [ value1 [, value2, ...] ] ]]]]

> A := [4, 5, 6]:
[4, 5, 6]

The numbers 1, 2, and 3 are the keys or indices of table A. The corresponding table
values are 4, 5, and 6. With arrays, the indices always start with 1 and count
upwards sequentially. The keys are always integral, so A in this example is an array
whereas VL in the last chapter is not.

To refer to a table value, enter the name of the table followed by the respective
index in square brackets:

tablename[[[[key]]]]

> A[1]:
4

agenaagenaagenaagena    >> 43



If a table contains other tables, you may get their values by passing the respective
keys in consecutive order:

tablename[[[[key1][][][][key2][][][][...]]]]

> A := [[3, 4]]:
[[3, 4]]

The following call refers to the complete inner table which is at index 1 of the outer
table:

> A[1]:
[3, 4]

The next call returns the second element of the inner table.

> A[1][2]:
4

Tables may be nested:

> A := [4, [5, [6]]]:
[4, [5, [6]]]

To get the number 6, enter the position of the inner table [5, [6]]  as the first index,
the position of the inner table [6]  as the second index, and the position of the
desired entry as the third index:

> A[2][2][1]:
6

Tables can contain no values at all. In this case they are called empty tables with
values to be inserted later in a session. There are two forms to create empty tables.

create table table table table name1 [, tabletabletabletable name2, ...]

name1    :=    [[[[ ]]]]

> create table B;

creates the empty table B,

> B := [];

does exactly the same.

You may add a value to a table by assigning the value to an indexed table name:

> B[1] := 'a';

44 4 Data



> B:
1 ~ a

Alternatively, the insertinsertinsertinsert statement always appends values to the end of a table:

insert insert insert insert value1 [, value2, ...] into  into  into  into name

> insert 'b' into B;

> B:
[a, b]

To delete a specific key~value pair, assign nullnullnullnull to the indexed table name:

> B[1] := null;

> B:
[2 ~ b]

The deletedeletedeletedelete statement works a little bit differently and removes all occurrences of a
value from a table.

delete delete delete delete value1 [, value2, ...] from from from from name

 
> insert 'b' into B;

> delete 'b' from B;

> B:
[]

In both cases, deletion of values leaves `holes` in a table, which are nullnullnullnull values
between other non-nullnullnullnull values:

> B := [1, 2, 2, 3]

> delete 2 from B

> B:
[1 ~ 1, 4 ~ 3]

There exists a special sizing option with the createcreatecreatecreate    tabletabletabletable statement which besides
creating an empty table also sets the default number of entries. Thus you may gain
some speed if you perform a large number of subsequent table insertions, since
with each insertion, Agena checks whether the maximum number of entries has
been reached. If so, each time it automatically enlarges the table which creates
some overhead. The sizing option reserves memory for the given number of
elements in advance, so there is no need for Agena to subsequently enlarge the
table until the default size will be exceeded. 

agenaagenaagenaagena    >> 45



Arrays with a predefined number of entries are created according to the following
syntax:

create tablecreate tablecreate tablecreate table  name1((((size1)))) [, tabletabletabletable name2((((size2)))), ...]

When assigning entries to the table, you will save at least 1/3 of computation time if
you know the size of the table in advance and initialise the table with it. If you want
to insert more values later, then this will be no problem. Agena automatically
enlarges the table beyond its initial size if needed.

> create table a(5);

> create table a, table b(5);

4.9.2 Dictionaries4.9.2 Dictionaries4.9.2 Dictionaries4.9.2 Dictionaries

Another form of a table is the dictionary with any kind of data - not only positive
integers - as indices:

Dictionaries are created by explicitly passing key-value pairs with the respective keys
and values separated by tildes, which is the difference to arrays:

[[[[ [key1 ~ value1 [, key2 ~ value2, ...]] ]]]]

> A := [1 ~ 4, 2 ~ 5, 3 ~ 6]:
[1 ~ 4, 2 ~ 5, 3 ~ 6]

> B := [abs('þ') ~ 'th']:
[231 ~ th]

Here is another example with strings as keys:

> dic := ['donald' ~ 'duck', 'mickey' ~ 'mouse'];

> dic:
[mickey ~ mouse, donald ~ duck]

As you see in this example, Agena internally stores the key-value pairs of a
dictionary in an arbitrary order.

As with arrays, indexed names are used to access the corresponding values stored
to dictionaries.

> dic['donald']:
duck

If you use strings as keys, a short form is:

46 4 Data



> dic.donald:
duck

Further entries can be added with assignments such as:

> dic['minney'] := 'mouse'; 

which is the equivalent to

> dic.minney := 'mouse';

Dictionaries with an initial number of entries are declared like this:

create create create create dictdictdictdict name1((((size1)))) [, dictdictdictdict name2((((size2)))), ...]

You may mix declarations for arrays and dictionaries, so the general syntax is:

create create create create {tabletabletabletable | dictdictdictdict} name1[((((size1))))] [, {tabletabletabletable | dictdictdictdict} name2[((((size2))))], ...]

4.9.3 Table, Set and Sequence Operators4.9.3 Table, Set and Sequence Operators4.9.3 Table, Set and Sequence Operators4.9.3 Table, Set and Sequence Operators

Agena features some built-in table, set and sequence operators which are shown in
Table 6. A `structure` in this context is a table, set, or sequence. 

Checks whether the values in structure A are also
values in B regardless of the number of their
occurrence. The operator also returns truetruetruetrue if A = B.

BooleanA subsetsubsetsubsetsubset B

Checks whether two sets/tables/sequences A, B do not
contain the same values regardless of the number of
their occurrence; if B is a reference to A, then the result
is falsefalsefalsefalse.

BooleanA <> B

Checks whether two tables A, B, or two sets A, B, or two
sequences A, B contain the same number of elements
and whether all key~value pairs in the tables or entries
in the sets or sequences are the same; if B is a
reference to A, then the result is also truetruetruetrue.

BooleanA == B

Checks whether two tables A, B, or two sets A, B, or two
sequences A, B contain the same values regardless of
the number of their occurrence; if B is a reference to
A, then the result is also truetruetruetrue.

BooleanA = B

Determines whether a structure contains at least one
value. If so, it returns truetruetruetrue, else falsefalsefalsefalse.

Booleanfilledfilledfilledfilled A

Checks whether the structure A contains the given
value c.

Booleanc inininin A
FunctionFunctionFunctionFunctionReturnReturnReturnReturnOperatorOperatorOperatorOperator

agenaagenaagenaagena    >> 47



Raises each value in a table or sequence to the
power of 2 and sums up these powers. If the table or
sequence is empty or contains no numeric values, nullnullnullnull
is returned. Sets are not supported.

numberqqqqssssaddaddaddadd A

Sums up all numeric table or sequence values. If the
table or sequence is empty or contains no numeric
values, nullnullnullnull is returned. Sets are not supported.

numberssssaddaddaddadd A

Removes multiple occurrences of the same value and
returns the result in a new structure. With tables, also
removes all holes (`missing keys`) by reshuffling its
elements. This operator is not applicable to sets, since
they are already unique.

table,
seq

uniqueuniqueuniqueunique A

Sorts table or sequence A in ascending order. It
directly operates on A, so it is destructive. With tables,
the function has no effect on values that have
non-integer keys.

table,
seq

sortsortsortsort A

Returns the size of a table A, i.e. the actual number of
key~value pairs in A. With sets and sequences, the
number of items is returned.

numbersizesizesizesize A
Concatenates all strings in the table or sequence A.stringjoinjoinjoinjoin A

Creates a deep copy of the structure A, i.e. if A
includes other tables, sets, or sequences, copies of
these structures are built, too.

table,
set, seq

copycopycopycopy A

Returns all the values in A that are not in B as a new
structure.

table,
set, seq

A minusminusminusminus B

Returns all values in two tables, two sets, or two
sequences A, B that are included both in A and in B as
a new structure.

table,
set, seq

A intersectintersectintersectintersect B

Concatenates two tables, or two sets, or two
sequences A, B simply by copying all its elements -
even if they occur multiple times - to a new structure.
With sets, all items in the resulting set will be unique, i.e.
they will not appear multiple times.

table,
set, seq

A unionunionunionunion B

Checks whether the values in structure A are also
values in B. Contrary to subsetsubsetsubsetsubset, the operator returns
falsefalsefalsefalse if A = B.

BooleanA xsubsetxsubsetxsubsetxsubset B
FunctionFunctionFunctionFunctionReturnReturnReturnReturnOperatorOperatorOperatorOperator

Table 9: Table, set, or sequence and set operators

Here are some examples - try them with sets and sequences as well: 

The unionunionunionunion operator concatenates two tables simply by copying all its elements -
even if they occur multiple times.

> ['a', 'b', 'c'] union ['a', 'd']:
[a, b, c, a, d]

intersectintersectintersectintersect returns all values that are part of both tables as a new table. 

48 4 Data



> ['a', 'b', 'c'] intersect ['a', 'd']:
[a]

If a value appears multiple times in the set at the left hand side of the operator, it is
written the same number of times to the resulting table.

minusminusminusminus returns all the elements that appear in the table on the left hand side of this
operator that are not members in the right side table.

> ['a', 'b', 'c'] minus ['a', 'd']:
[b, c]

If a value appears multiple times in the set at the left hand side of the operator, it is
written the same number of times to the resulting table. 

The uniqueuniqueuniqueunique operator

• removes all holes (`missing keys`) in a table, 
• removes multiple occurrences of the same value. 

and returns the result in a new table. The original table is not overwritten. In the
following example, there is a hole at index 2 and the value 'a' appears twice.

> unique [1 ~ 'a', 3 ~ 'a', 4 ~ 'b']

returns [b, a].

You can search a table for a specific value with the inininin operator. It returns truetruetruetrue if the
value has been found, or falsefalsefalsefalse, if the element is not part of the set. Examples:

> 'a' in ['a', 'b', 'c']

returns truetruetruetrue.

> 1 in ['a', 'b', 'c']

returns falsefalsefalsefalse. Remember that inininin checks the values of a table, not its keys.

agenaagenaagenaagena    >> 49



4.9.4 Table Functions4.9.4 Table Functions4.9.4 Table Functions4.9.4 Table Functions

Agena has a number of functions to work on tables only. The most basic are:

All elements to the right
are shifted down, so that
no holes are created.

Removes index key and
its corresponding value
from t.

tables.removetables.removetables.removetables.remove (t, key)

It shifts up the original
element at position key
and all other elements to
the right.

Inserts index key with value
value to table t.

tables.puttables.puttables.puttables.put (t, key, value)
Further detailFurther detailFurther detailFurther detailDescriptionDescriptionDescriptionDescriptionFunctionFunctionFunctionFunction

Table 10: Basic table procedures

4.9.5 Table References4.9.5 Table References4.9.5 Table References4.9.5 Table References

If you assign a table to a variable, only a reference to the table is stored in the
variable. This means that if we have a table

> A := [1, 2];

assigning

> B := A;

does not copy the contents of A to B, but only the address of the same memory
area which holds table [1, 2] ; hence:

> insert 3 into A;

> A:
[1, 2, 3]

also yields:

> B:
[1, 2, 3]

Use copycopycopycopy to create a true copy of the contents of a table. If the table contains
other tables, sets, sequences, or pairs, copies of these structures are also made
(so-called `deep copies`). Thus copycopycopycopy returns a new table without any reference to
the original one.

> B := copy(A);

> insert 4 into A;

> B:
[1, 2, 3]

With structures such as tables, sets, pairs, or sequences, all names to the left of an

50 4 Data



->  operator will point to the very same structure to its right. This behaviour may be
changed in a future version of Agena.

> A, B -> []

> A[1] := 1

> B:
1 ~ 1

4444....10101010 Sets Sets Sets Sets

Sets are collections of unique items: numbers, strings, and other data. Their syntax is:

{{{{ [ item1 [, item2, ...] ] }}}}

Thus, they are equivalent to Cantor sets: An item is stored only once:

> A := {1, 1, 2, 2}:
{1, 2}

Besides being commonly used in mathematical applications, they are also useful
to hold word lists where it only matters to see whether an element is part of a list or
not:

> colours := {'red', 'green', 'blue'};

If you want to check whether the colour red is part of the set colours, just index it as
follows:

setname[[[[element]]]]

If an element is stored to a set, Agena returns truetruetruetrue:

> colours['red']:
true

If an item is not in the given set, the return is falsefalsefalsefalse.

> colours['yellow']:
false

If you want to add or delete items to or from a set, use the insertinsertinsertinsert and deletedeletedeletedelete
statements. The standard assignment statement setname[key] := value  is not
supported with sets.

agenaagenaagenaagena    >> 51



insert insert insert insert item1 [, item2, ...] into  into  into  into name

delete delete delete delete item1 [, item2, ...] from from from from name

> insert 'yellow' into colours;

The inininin operator checks whether an item is part of a set - it is an alternative to the
indexing method explained above, and returns truetruetruetrue or falsefalsefalsefalse, too.

> 'yellow' in colours:
true

The data type of a set is setsetsetset.

> type(colours):
set

You may predefine sets with a given number of entries according to the following
syntax:

create create create create setsetsetset name1 [ (size1) ] [, setsetsetset name2  [ (size2) ], ...]

When assigning items later, you will save at least 90 % of computation time if you
know the size of the set in advance and initialise it with the maximum number of
future entries as explained above. More items than stated at initialisation can be
entered anytime, since Agena automatically enlarges the respective set
accordingly and will also reserves space for further entries.

Sets are useful in situations where the number of occurrences of a specific item or
its position does not matter. Compared to tables, sets consume around 40 % less
memory, and operations with them are 10 % to 33 % faster than the corresponding
table operations.

Specifically, the more items you want to store, the faster operations will be
compared to tables.

Note that if you assign a set to a variable, only a reference to the set is stored in the
variable. Thus in a statement like A := {}; B := A , A and B point to the same set.

As with tables, sets support metamethods which you can be defined to extend the
functionality of Agena operators. Metamethods will be explained later in Chapter
6.15.

52 4 Data



4.11 Sequences4.11 Sequences4.11 Sequences4.11 Sequences

Besides storing values in tables or sets, Agena also features the sequence, an
object which can hold any number of items except nullnullnullnull. You may sequentially add
items and delete items from it6.

Sequences store items in sequential order. Like in tables, an item may be included
multiple times. Sequences are indexed with positive integers in the same fashion as
table arrays are, starting at index 1. 

Metamethods for operator overloading that allow to extend the functionality of the
built-in Agena operators to sequences are supported, too (see Chapter 6.15 for
more details). A sequence may hold no, one or more items.

Suppose we want to define a sequence of two values. You may enter these values
into the sequence using the seqseqseqseq operator.

seq(seq(seq(seq( [ item1 [, item2, ...] ] ))))

> a := seq(0, 1);

> a:
seq(0, 1)

You may access the items the usual way:

seqname[[[[numeric_key]]]]

> a[1]:
0

> a[2]:
1

If the index is larger than the current size of the sequence, an error is returned7.

> a[3]:
Error, line 1: index out of range

The way Agena outputs sequences can be changed by using the settypesettypesettypesettype function.

> settype(a, 'duo');

> a:
duo(0, 1)

agenaagenaagenaagena    >> 53

7 The error message can be avoided by defining an appropriate metamethod.

6 The structure was originally introduced to efficiently support objects like complex numbers or
numeric ranges including a flexible way to pretty print them at the console.



The gettypegettypegettypegettype function returns the new type you defined above as a string:

> gettype(a):
duo

If no user-defined type has been set, gettypegettypegettypegettype returns nullnullnullnull.

Once the type of a sequence has been set, the typeoftypeoftypeoftypeof function also returns this
user-defined sequence type and will not return 'sequence' .

> typeof(a):
duo

This allows you to program special operations only applicable to certain types of
sequences.

A user-defined type can be deleted by passing nullnullnullnull as a second argument to
settypesettypesettypesettype.

> settype(a, null);

> typeof(a):
sequence

The create create create create seqseqseqseq statement creates an empty sequence and optionally allows to
allocate enough memory in advance to hold a given number of elements (which
can be inserted later). Agena automatically will extend the sequence, if the
predetermined number of items is exceeded. 

create create create create seqseqseqseq name1 [, seqseqseqseq name2, ...]
create create create create seqseqseqseq name1((((size1)))) [, seqseqseqseq name2((((size2)))), ...]

Items can be added only sequentially. You may use the insertinsertinsertinsert statement for this or
the conventional indexing method.

> seq a(4);

> insert 1 into a;

> a[2] := 2;

> a:
seq(1, 2)

Note that if the index is larger than the number of items stored to it plus 1, Agena
returns an error, since `holes` in a sequence are not allowed. The next free position
in a is at index 3, however a larger index is chosen in the next example.

> a[4] := 4
Error, line 1: index out of range

54 4 Data



> a[3] := 3

Items can be deleted by setting their index position to nullnullnullnull, or by applying deletedeletedeletedelete,
i.e. stating which items - not index positions - shall be removed. Note that all items
to the right of the value deleted are shifted to the left, thus their indices will change.

> a[1] := null

> delete 2, 3 from a

> a:
seq()

Thus concerning the insertinsertinsertinsert and deletedeletedeletedelete statements, we have the following familiar
syntax:

insert insert insert insert item1 [, item2, ...] into  into  into  into name

delete delete delete delete item1 [, item2, ...] from from from from name

If you assign a sequence to a variable, only a reference to the sequence is stored
in the variable. Thus sequences behave the same way as tables and sets do, i.e. in
a statement like A := seq(); B := A , A and B point to the same sequence in
memory.

> A := seq()

> B := A

> A[1] := 10

> B:
seq(10)

Sequences can be used to implement stacks, and besides insertinsertinsertinsert, two efficient
statements are available to remove an item from the bottom of the stack (i.e. the
element at index 1 of the sequence) or from the top of the stack (i.e. the element
at the largest index of the sequence):

pop bottom from pop bottom from pop bottom from pop bottom from name

pop top from pop top from pop top from pop top from name

The getbottomgetbottomgetbottomgetbottom and gettopgettopgettopgettop operators return the element at the bottom of the stack
(at index 1) and the top of the stack (at the largest index), respectively.

agenaagenaagenaagena    >> 55



> insert 10, 11, 12 into stack;

> getbottom(stack):
10

> gettop(stack):
12

> pop bottom from stack;

> pop top from stack;

> stack:
seq(11)

The following operators, functions, and statements work on sequences:

gettype(a)Returns a user-defined type for a sequence.gettypegettypegettypegettype

settype(a,  'duo')Sets a user-defined type for a sequence.settypesettypesettypesettype

unpack(a)Unpacks a sequence. See unpackunpackunpackunpack in Chapter
7.1.

unpackunpackunpackunpack

unique aReduces multiple occurrences of an item in a
sequence to just one.

uniqueuniqueuniqueunique

typeof aReturns the user-defined type of a sequence,
or the basic type if no special type has been
defined.

typeoftypeoftypeoftypeof

type aReturns the general type of a sequence, i.e.
sequencesequencesequencesequence.

typetypetypetype

sort(a)Sorts a sequence in place.sortsortsortsort

size aReturns the current number of items.sizesizesizesize

pop top from apops elements from the bottom or top of a
sequence

poppoppoppop

join(a)Concatenates all strings in a sequence in
sequential order.

joinjoinjoinjoin

0 in seq(1,  0)Checks whether an element is stored in the
sequence, returns truetruetruetrue or falsefalsefalsefalse.

inininin

get top  aReturns the item with the largest key gettopgettopgettopgettop

getbottom  aReturns the item at key 1 getbottomgetbottomgetbottomgetbottom

filled aChecks whether a sequence has at least one
item.

filledfilledfilledfilled

b := copy aCreates an exact copy of a sequence; deep
copying is supported so that sequences inside
sequences are properly treated.

copycopycopycopy

delete 0, 1 
   from a

Deletes one or more elements.deletedeletedeletedelete

insert 1 into aInserts one or more elements.insertinsertinsertinsert

a <> bInequality check<>

a == bstrict equality check==

a = bEquality check the Cantor way=
ExampleExampleExampleExampleDescriptionDescriptionDescriptionDescriptionFunctionFunctionFunctionFunction

56 4 Data



getmeta(a)Returns the metatable stored to a sequence.getmetagetmetagetmetagetmeta

setmeta(a, mtbl)Assigns a metatable to a sequence.setmetasetmetasetmetasetmeta
ExampleExampleExampleExampleDescriptionDescriptionDescriptionDescriptionFunctionFunctionFunctionFunction

Table 11: Basic sequence procedures

4.12 More on the crea4.12 More on the crea4.12 More on the crea4.12 More on the crea te statementte statementte statementte statement

You cannot only initialise any number of tables with the createcreatecreatecreate statement, but also
dictionaries, sets, and sequences with only one call and in random order, so the
following statement is valid;

> create table a, dict b(10), set c, seq d(100), ta ble e(10);

> a, b, c, d, e:
[]      []      {}      seq()   []

4.13 Pairs4.13 Pairs4.13 Pairs4.13 Pairs

The structure which holds exactly two values of any type (including nullnullnullnull and other
pairs) is the pair. A pair cannot hold less or more values, but its values can be
changed. Conceived originally to allow passing options in a more flexible way to
functions, it is defined with the colon operator:

item1 :::: item2

> p := 1:2

> p:
1:2

The leftleftleftleft and rightrightrightright operators provide the only read access to its left and right
operands; the standard indexing method using indexed names is not supported:

left left left left [((((] pair [))))]
right right right right [((((] pair [))))]

> left(p):
1

> right p:
2

An operand of an already existing pair can be changed by assigning a new value
to an indexed name, where the left operand is indexed with number 1, and the
right operand with number 2:

> p[1] := 2;

> p[2] := 3;

agenaagenaagenaagena    >> 57



As with sequences, you may define user-defined types for pairs with the settypesettypesettypesettype
function which also changes the way pairs are output. 

> typeof(p):

pair

> settype(p, 'duo');

> p:
duo(2, 3)

> typeof(p):
duo

> gettype(p):
duo

The only other operators besides leftleftleftleft and rightrightrightright that work on pairs are equality,
inequality (= and <>), typetypetypetype, typeoftypeoftypeoftypeof, and inininin.

> p = 3:2:
false

With pairs consisting of numbers, the inininin operator checks whether a left-hand
argument number is part of a closed numeric interval given by the given right-hand
argument pair.

> 2 in 0:10:
true

> 's' in 0:10:
fail

As with all other structures, if you assign a pair to a variable, only a reference to the
pair is stored in the variable. Thus in a statement like A := a:b; B := A , A and B
point to the same pair.

Summary: 

type(a)With pairs, always returns 'pair' .typetypetypetype

right(a)Returns the right operand of a pair.rightrightrightright

left(a)Returns the left operand of a pair.leftleftleftleft

1.5 in 1:2If the left operand x is a number and if the left
and right hand side of the pair a:b are numbers,
then the operator checks whether x lies in the
closed interval [a, b] and returns truetruetruetrue or falsefalsefalsefalse. If at
least one value x, a, b is not a number, the
operator returns failfailfailfail.

inininin

a <> bInequality check<>

a = bEquality check=
ExampleExampleExampleExampleDescriptionDescriptionDescriptionDescriptionFunctionFunctionFunctionFunction

58 4 Data



getmeta(p)Returns the metatable stored to a pair.getmetagetmetagetmetagetmeta

setmeta(p, mtbl)Sets a metatable to a pair.setmetasetmetasetmetasetmeta

gettype(a)Returns the user-defined type of a pair.gettypegettypegettypegettype

settype(a, 'duo')Sets a user-defined type for a pair.settypesettypesettypesettype

typeof(a)Returns either the user-defined type of the pair, or
the basic type ('pair' ) if no special type was
defined for the pair.

typeoftypeoftypeoftypeof
ExampleExampleExampleExampleDescriptionDescriptionDescriptionDescriptionFunctionFunctionFunctionFunction

Table 12: Operators and functions applicable to pairs

4.14.14.14.14444 Other types Other types Other types Other types

For threads, userdata, and lightuserdata please refer to the Lua 5.1 documentation.

agenaagenaagenaagena    >> 59



60 4 Data



Chapter FiveChapter FiveChapter FiveChapter Five

ControlControlControlControl             

agenaagenaagenaagena    >> 61



62 5 Control



5555 Control Control Control Control

5.1 Conditions5.1 Conditions5.1 Conditions5.1 Conditions

Depending on a given condition, Agena can alternatively execute certain
statements with either the ifififif or casecasecasecase statement.

5555.1.1.1.1.1.1.1.1 if S if S if S if Statementtatementtatementtatement

The ifififif statement checks a condition and selects one statement from many listed. Its
syntax is as follows:

ifififif condition1 thenthenthenthen
   statements1

[elifelifelifelif condition2 thenthenthenthen
   statements2]
[elseelseelseelse 
   statements3]
fifififi

The condition may always evaluate to one of the Boolean values truetruetruetrue, falsefalsefalsefalse, or failfailfailfail,
or to any otheror to any otheror to any otheror to any other  value.

The elifelifelifelif and elseelseelseelse clauses are optional. While more than one elifelifelifelif clause can be
given, only one elseelseelseelse clause is accepted. An if statement may include one or more
elifelifelifelif clauses and no elseelseelseelse clause.

If an ifififif or elifelifelifelif condition results to truetruetruetrue or any other value except falsefalsefalsefalse, failfailfailfail, or nullnullnullnull, its
corresponding thenthenthenthen-clause is executed. If any condition results to falsefalsefalsefalse, failfailfailfail, or nullnullnullnull,
the elseelseelseelse clause is executed if present, otherwise Agena proceeds with the next
statement following the ifififif statement. 

Examples:

The condition truetruetruetrue is always true, so the string 'yes' is printed.

> if true then
>    print('yes')
> fi;
yes

In the following statement, the condition evaluates to falsefalsefalsefalse, so nothing is printed:

> if 1 <> 1 then
>    print('this will never be printed')
> fi;

An ifififif statement with an elseelseelseelse clause:

agenaagenaagenaagena    >> 63



> if false then
>    print('this will never be printed')
> else
>    print('this will always be printed')
> fi;
this will always be printed

An ifififif statement with an elifelifelifelif clause:

> if 1 = 2 then
>    print('this will never be printed')
> elif 1 < 2 then
>    print('this will always be printed')
> fi;
this will always be printed

An ifififif statement with elifelifelifelif and elseelseelseelse clauses:

> if 1 = 2 then
>    print('this will never be printed')
> elif 1 < 2 then
>    print('this will always be printed')
> else
>    print('neither will this be printed')
> fi;

this will always be printed

5555.1.2.1.2.1.2.1.2 is is is is    OperatorOperatorOperatorOperator

The isisisis operator checks a condition and returns the respective expression.

isisisis condition then
   expression1

elseelseelseelse 
   expression2

sisisisi
iiii

This means that the result is expression1 if condition is truetruetruetrue or any other value except
falsefalsefalsefalse, failfailfailfail, or nullnullnullnull; and expression2 otherwise.

Example:

> x := is 1=1 then true else false si:

true

which is the same as:

> if 1=1 then 
>    x := true 
> else 
>    x := false 
> fi;

64 5 Control



The isisisis operator only evaluates the expression that it will return. Thus the other
expression which will not be returned will never be checked for semantic
correctness, e.g. out-of-range string indices, etc. You may nest isisisis operators.

5555.1..1..1..1.3 3 3 3 ccccase Statementase Statementase Statementase Statement

The casecasecasecase statement facilitates comparing values and executing corresponding
statements.

 

casecasecasecase name 
  ofofofof value11 [, value12] thenthenthenthen statements1 
  [ofofofof value21 [, value22] thenthenthenthen statements2]
  [ofofofof ...]
  [elseelseelseelse statementsk]
esacesacesacesac

> a := 'k';

> case a
>    of 'a', 'e', 'i', 'o', 'u', 'y' then result :=  'vowel'
>    else result := 'consonant'
> esac;

> result:
consonant

You can add as many ofofofof .. thenthenthenthen statements as you like. Fall through is not
supported. This means that if one thenthenthenthen clause is executed, Agena will not evaluate
the following ofofofof clauses and will proceed with the statement right after the closing
esacesacesacesac keyword.

5555.2.2.2.2 Loops Loops Loops Loops

Agena has two basic forms of control-flow statements that perform looping: whilewhilewhilewhile
and forforforfor, each with different variations.

5555.2.1.2.1.2.1.2.1 while-Loops while-Loops while-Loops while-Loops

A whilewhilewhilewhile loop first checks a condition and if this condition is truetruetruetrue or any other value
except falsefalsefalsefalse, failfailfailfail, or nullnullnullnull, it iterates the loop body again and again as long as the
condition remains true. If the condition is falsefalsefalsefalse, failfailfailfail or nullnullnullnull, no further iteration is done
and control returns to the statement following right after the loop body.

If the condition is falsefalsefalsefalse, failfailfailfail, or nullnullnullnull from the start, the loop is not executed at all.

whilewhilewhilewhile condition dodododo
   statements
odododod

agenaagenaagenaagena    >> 65



The following statements calculate the largest Fibonacci number less than 1000.

> a := 0; b := 1;

> while b < 1000 do
>    c := b;
>    b := a + b;
>    a := c
> od;

> c:

987

The following loop will never be executed since the condition is falsefalsefalsefalse:

> while false do
>    print('this will never be printed')
> od;

A variation of whilewhilewhilewhile is the dodododo .. asasasas loop which checks a condition at the end of the
iteration and thus will always be executed at least once.

dodododo
   statements
asasasas condition

> c := 0;

> do
>    inc c
> as c < 10;

> c:
10

forforforfor loops are used if the number of iterations is known in advance. There are for/to
loops for numeric progressions, and for/in loops for table and string iterations.

5555.2..2..2..2.2 for/to loops2 for/to loops2 for/to loops2 for/to loops

Let us first consider numeric for/to loops which use numeric values for control:

forforforfor [externalexternalexternalexternal] name [fromfromfromfrom start] [totototo stop] [bybybyby step] dodododo
   statements
odododod

name, start, stop, and step are all numeric values or must evaluate to numeric
values. 

66 5 Control



The statement at first sets the variable name to the numeric value of start. name is
called the control or loop variable. If start is not given, the start value is +1. If stop is
not given, the last iteration value is infinityinfinityinfinityinfinity8.

It then checks whether start <= stop. If so, it executes statements and returns to the
top of the loop, increments name by step and then checks whether the new value
is less or equal stop. If so, statements are executed again. If step is not given, the
control variable is always incremented by +1.

> for i from 1 to 3 by 1 do
>    print(i, i^2, i^3)
> od;
1       1       1
2       4       8
3       9       27

> for i to 3 do
>    print(i, i^2, i^3)
> od;
1       1       1
2       4       8
3       9       27

The loop control variable is local to the loop body, so it cannot be used after
looping completed. However, if you put the external external external external keyword in front of the control
variable, you will have access to the control variable after looping completed and
may use its value in subsequent statements. This rule applies only to
for/from/to-loops with or without a while while while while extension. Note that if you use the externalexternalexternalexternal
option within procedures, you usually want to declare the loop control variable as
local, otherwise it will be treated as a global variable.

> for external i to infinity while math.fact(i) < 1 k do od

> i:

7

When using the externalexternalexternalexternal switch the following rules apply to the value of the control
variable after leaving the loop:

1. If the loop terminates normally, i.e. if it iterates until its stop value, then the value
of the control variable is its stop value plus the step size.

2. If the loop is left prematurely by executing a breakbreakbreakbreak statement9 within the loop, or
if a for/while loop is terminated because the whilewhilewhilewhile condition evaluated to falsefalsefalsefalse,
then the control variable is set to the loop's last iteration value before quitting the
loop. There will be no increment with the loop's step size.

agenaagenaagenaagena    >> 67

9 See chapter 5.2.8 for more information in the breakbreakbreakbreak statement.

8 These loops do not run infinitely, but stop at the numeric value of the C constant HUGE_VAL which
varies among systems.



Loops can also count backwards if the step size is negative:

> for i from 2 to 1 by -1 do
>    print(i)
> od
2
1

A special form is the totototo .. dodododo loop which does not feature a control variable and
iterates exactly n times.

> to 2 do
>    print('iterating')
> od
iterating
iterating

5555.2.3.2.3.2.3.2.3 for/in  for/in  for/in  for/in LLLLoopsoopsoopsoops for Tables for Tables for Tables for Tables

are used to traverse tables10, strings, sets, and sequences. Let us first concentrate
on table iteration.

forforforfor key, value inininin tbl dodododo
   statements
odododod

The loop iterates over all key~value pairs in table tbl and with each iteration assigns
the respective key to key, and its value to value.

> a := [4, 5, 6]

> for i, j in a do
>    print(i, j)
> od
1       4
2       5
3       6

There are two variations: When putting the keyword keyskeyskeyskeys in front of the control
variable, the loop iterates only on the keys of a table:

 

forforforfor keyskeyskeyskeys key inininin tbl dodododo
   statements
odododod

68 5 Control

10To be more general, for/in loops iterate over functions called iterators. Check out the Lua
documentation for more information.



Example:

> for keys i in a do
>    print(i)
> od
1
2
3

The other variation iterates on the values of a table only:

forforforfor value inininin tbl dodododo
   statements
odododod

> for i in a do
>    print(i)
> od
4
5
6

The control variables in forforforfor/inininin loops are always local to the body of the loop, the
externalexternalexternalexternal switch is not supported. You may assign their values to other variables if you
need them later.

You should never change the value of the control variables in the body of a loop -
the result would be undefined. Use the copycopycopycopy operator to safely traverse any
structure if you want to change, add, or delete its entries.

5.2.5.2.5.2.5.2.4 for/in L4 for/in L4 for/in L4 for/in Loops for Sequencesoops for Sequencesoops for Sequencesoops for Sequences

All of the features explained in the last subchapter are applicable to sequences, as
well.

5555.2.5.2.5.2.5.2.5 for/in  for/in  for/in  for/in LLLLoops for oops for oops for oops for SSSStringstringstringstrings

If you want to iterate over a string character by character from its left to its right, you
may use a for/in loop as well. All of the variations except the externalexternalexternalexternal option
mentioned in the previous subchapter are supported.

forforforfor key, value inininin string dodododo statements odododod

for for for for value in  in  in  in string do do do do statements odododod

forforforfor keyskeyskeyskeys value inininin string dodododo statements odododod

agenaagenaagenaagena    >> 69



The following code converts a word to a sequence of abstract vowel, ligature, and
consonant placeholders and also counts their respective occurrence:

> str := 'æfter';

> result := '';

> c, v, l -> 0;

> for i in str do  
>    case i
>       of 'a', 'e', 'i', 'o', 'u' then
>          result := result .. 'V';
>          inc v
>       of 'å', 'æ', 'ø', 'ö' then
>          result := result .. 'L';
>          inc l
>       else
>          result := result .. 'C'
>          inc c
>    esac
> od;

> print(result, v .. ' vowels', l .. ' ligatures', c .. ' consonants');
LCCVC 1 vowels        1 ligatures         3 consonan ts

5555.2.6.2.6.2.6.2.6 for/in L for/in L for/in L for/in Loops for Setsoops for Setsoops for Setsoops for Sets

All forforforfor loop variations are supported with sets, as well. The only useful one, however,
is the following:

> sister := {'swistar', 'sweastor', 'svasar', 'sist er'}

> for i in sister do print(i) od;
svasar
swistar
sweastor
sister

You may try the other loop alternatives to see what happens.

5.2.5.2.5.2.5.2.7777 for/while Loop for/while Loop for/while Loop for/while Loop ssss

All flavours of for loops can be combined with a whilewhilewhilewhile condition. As long as the
whilewhilewhilewhile condition is satisfied, the forforforfor loop iterates. To be more precise, before Agena
starts the first iteration of a loop or continues with the next iteration, it checks the
while condition to be true or any other value except falsefalsefalsefalse, failfailfailfail, or nullnullnullnull.

forforforfor    [externalexternalexternalexternal]    i [from from from from a] to  to  to  to b    [by by by by step] while  while  while  while condition do  do  do  do statements odododod
forforforfor [key,,,,] value inininin struct whilewhilewhilewhile condition dodododo statements odododod

forforforfor keyskeyskeyskeys key inininin struct whilewhilewhilewhile condition dodododo statements odododod
forforforfor [key,,,,] value inininin string whilewhilewhilewhile condition dodododo statements odododod

forforforfor keyskeyskeyskeys key inininin string whilewhilewhilewhile condition dodododo statements odododod

70 5 Control



An example:

> for x to 10 while ln(x) <= 1 do print(x, ln(x)) o d
1       0
2       0.69314718055995

Regardless of the value of the whilewhilewhilewhile condition, the loop control variables are always
initiated with the start values: with for/to loops, a is assigned to i (or 1 if the fromfromfromfrom
clause is not given); key and/or value are assigned with the first item in the table,
set, or sequence struct or the first character in string string.

5555.2.8.2.8.2.8.2.8 Loop Interruption Loop Interruption Loop Interruption Loop Interruption

Agena features two statements to manipulate loop execution. Both are applicable
to all loop types.

The skipskipskipskip statement causes another iteration of the loop to begin at once, thus
skipping all of the loop statements following it.

The breakbreakbreakbreak statement quits the execution of the loop entirely and proceeds with the
next statement right after the end of the loop.

> for i to 5 do
>    if i = 3 then skip fi;
>    print(i)
>    if i = 4 then break fi;
> od;
1
2
4

This is equivalent to the following statement:

> for i to 5 while i < 5 do
>    if i = 3 then skip fi;
>    print(i)
> od;
1
2
4

> a := 0;

> while true do
>    inc a
>    if a > 5 then break fi
>    if a < 3 then skip fi
>    print(a)
> od
3
4
5

agenaagenaagenaagena    >> 71



72 5 Control



Chapter SixChapter SixChapter SixChapter Six

ProgrammingProgrammingProgrammingProgramming
            

agenaagenaagenaagena    >> 73



74 6 Programming



6666    ProgrammingProgrammingProgrammingProgramming

Writing effective code in a minimum amount of time is one of the key features of
Agena. Programs are usually represented as procedures. The words `procedure`
and `function` are used synonymously in this text.

6666....1 Procedures 1 Procedures 1 Procedures 1 Procedures 

In general, procedures cluster a sequence of statements into abstract units which
then can be repeatedly invoked. 

Writing procedures in Agena is quite simple:

  procname := procprocprocproc([par1 [::::::::type1] [, par2 [::::::::type2],  ...] ]) [isisisis]
     [locallocallocallocal name1 [, name2, ...]];
     statements
  end  end  end  end

All the values that a procedure shall process are given as parameters par1, etc. A
function may have no, one, or more parameters. A parameter may be succeeded
by the name of a type (see Chapter 6.7). The isisisis keyword is optional.

A procedure usually uses local variables which are private to the procedure and
cannot be used by other procedures or on the Agena interactive level. 

Global variables are supported in Agena, as well. All values assigned on the
interactive level are global, and you can also create global variables within a
procedure. The values of global variables can be accessed on the interactive level
and within any procedure. 

A procedure may call other functions or itself. A procedure may even include
definitions of further local or global procedures. 

The result of a procedure is returned using the returnreturnreturnreturn keyword which may be put
anywhere in the procedure body.

return return return return value [, value2, ...]

As you can see, you may not only return a single result, but also multiple ones. 

Also, a procedure might not necessarily return anything - in this case do not use the
returnreturnreturnreturn statement at all. If no returnreturnreturnreturn statement is given, the procedure does not even
return the nullnullnullnull value. 

agenaagenaagenaagena    >> 75



The following procedure computes the factorial of an integer11:

> fact := proc(n) is
>    # computes the factorial of an integer n
>    if n < 0 then return fail
>    elif n = 0 then return 1
>    else return fact(n-1)*n
>    fi
> end;

It is called using the syntax:

funcname(((([arg1 [, arg2, ...]]))))

> fact(4):
24 

where the first parameter is replaced by the first argument arg1, the second
parameter is substituted with arg2, etc.

6666....2 Local Variables2 Local Variables2 Local Variables2 Local Variables

The function above does not need local variables as it calls itself recursively.
However, with large values for n, the large number of unevaluated recursive
function calls will ultimately lead to stack overflows. So we should use an iterative
algorithm to compute the factorial and store intermediate results in a local variable.

A local variable is known only to the respective procedure and the block where it
has been declared. It cannot be used in other procedures, the interactive Agena
level, or outside the block where it has been declared.

A local variable can be declared explicitly anywhere in the procedure body, but at
least before its first usage. If you do not declare a variable and assign values later
to this variable, then it is global. Note that control variables in forforforfor loops are always
implicitly declared local if the externalexternalexternalexternal switch is not used, so we do not need to
explicitly declare them.

Local declarations come in different flavours:

locallocallocallocal name1 [, name2, ...]
locallocallocallocal name1 [, name2, ...] :=:=:=:= value1 [, value2, ...]

locallocallocallocal name1 [, name2, ...] ->->->-> value
locallocallocallocal enumenumenumenum name1 [, name2, ...] [fromfromfromfrom value]

In the first form, name1, etc. are declared local.

76 6 Programming

11The library function math.factmath.factmath.factmath.fact is much faster.



In the second and third form, name1, etc. are declared local followed by initial
assignments of values to these names.

In the last form, name1, etc. are declared local with a subsequent enumeration of
those names.

Let us write a procedure to compute the factorial using a for loop. To avoid
unnecessary loop iterations when the intermediate result has become so large that
it cannot be represented as a finite number, we also add a clause to quit loop
iteration in such cases.

> fact := proc(n) is
>    if n < 0 then return fail fi;
>    local result := 1;
>    for i from 1 to n do
>       result := result * i
>       if result = infinity then break fi
>    od;
>    return result
> end;

> fact(10):
3628800

result has been declared local so it has no value at the interactive level.

> result:
null

6666....3 Global Variables3 Global Variables3 Global Variables3 Global Variables

Global variables are visible to all procedures and the interactive level, such that
their values can be queried and altered everywhere.

Using global variables is not recommended. However, they are quite useful in order
to have more control on the behaviour of procedures. For example, you may want
to define a global variable _EnvMoreInfo that is checked in your procedures in
order to print or not to print information to the user.

Global variables can be indicated with the globalglobalglobalglobal keyword. This is optional,
however, and only serves documentary purposes. 

> fact := proc(n) is
>    global _EnvMoreInfo;
>    if n < 0 then return fail fi;
>    local result := 1;
>    for i from 1 to n do
>       result := result * i
>       if result = infinity then
>          if _EnvMoreInfo then print('Overflow !')  fi;
>          break
>       fi
>    od;
>    return result
> end;

agenaagenaagenaagena    >> 77



We must assign _EnvMoreInfo a value in order to get a warning message at
runtime.

> _EnvMoreInfo := true;

> fact(10000):
Overflow !
infinity

6.4 Changing Parameter Values6.4 Changing Parameter Values6.4 Changing Parameter Values6.4 Changing Parameter Values

You can assign new values to procedure parameters within a procedure. Thus, an
alternative to the absabsabsabs operator might be:

> myAbs := proc(x) is
>    if x < 0 then
>       x := -x
>    fi;
>    return x
> end;

> myAbs(-1):
1

6666.5.5.5.5 Optional Arguments Optional Arguments Optional Arguments Optional Arguments

A function does not have to be called with exactly the number of parameters given
at procedure definition. You may optionally pass less or more values. If no value is
passed for a parameter, then it is automatically set to nullnullnullnull at function invocation. If
you pass more arguments than there are actual parameters, excess arguments are
ignored. 

For example, we can avoid using a global variable to get a warning message by
passing an optional argument instead.

> fact := proc(n, warning) is
>    if n < 0 then return fail fi;
>    local result := 1;
>    for i from 1 to n do
>       result := result * i
>       if result = infinity then
>          if warning then print('Overflow !') fi;
>          break
>       fi
>    od;
>    return result
> end;

> fact(10000):
infinity

The option should be any value other than nullnullnullnull, falsefalsefalsefalse, or failfailfailfail to get the effect.

> fact(10000, true):
Overflow !
infinity

78 6 Programming



A variable number of arguments can be passed by indicating them with a question
mark in the parameter list and then querying them with the varargsvarargsvarargsvarargs system table in
the procedure body.

> varadd := proc(?) is
>    local result := 0;
>    for i to size varargs do
>       inc result, varargs[i]
>    od;
>    return result
> end;

> varadd(1, 2, 3, 4, 5):
15

You may determine the number of arguments actually passed in a procedure call
by querying the system variable nargsnargsnargsnargs inside the respective procedure. A variant of
the above procedure might thus be: 

> varadd := proc(?) is
>    local result := 0;
>    for i to nargs do
>       inc result, varargs[i]
>    od;
>    return result
> end;

> varadd(1, 2, 3, 4, 5):
15

Let us build an extended square root function that either computes in the real or
complex domain. By default, i.e. if only one argument is given, the real domain is
taken, otherwise you may explicitly set the domain using a pair as a second
argument.

> xsqrt := proc(x, mode) is
>    if nargs = 1 or mode = 'domain':'real' then
>       return sqrt(x)
>    elif mode = 'domain':'complex' then
>       return sqrt(x + 0*I)
>    else
>       return fail
>    fi
> end;

> xsqrt(-2):
undefined

> xsqrt(-2, 'domain':'real'):
undefined

If the left-hand value of the pair in a function call shall denote a string, you can
spare the single quotes around the string by using the ~ token which converts the
left-hand name to a string.

> xsqrt(-2, domain ~ 'complex'):

1.4142135623731*I

agenaagenaagenaagena    >> 79



6666....6666 Passing Options Passing Options Passing Options Passing Options  in any Order in any Order in any Order in any Order

We can combine the varargs facility with the usage of pairs in order to pass one or
more optional arguments in any order.

> f := proc(?) is
>    local bailout, iterations := 2, 128; # default  values
>    for i to nargs do
>       case left(varargs[i])
>          of 'bailout' then
>             bailout := right(varargs[i]);
>          of 'iterations' then
>             iterations := right(varargs[i]);
>          else 
>             print 'unknown option'
>       esac
>    od;
>    print('bailout = ' .. bailout, 'iterations = '  .. iterations)
> end;

> f();
bailout = 2     iterations = 128

> f('bailout':10);
bailout = 10    iterations = 128

> f('iterations':32, 'bailout':10);

bailout = 10    iterations = 32

Again, the single quotes around the name of the option (left-hand side of the pair)
can be spared by using the ~ token which converts the given name to a string. 

> f(bailout ~ 10, iterations ~ 32);

bailout = 10    iterations = 32  

6666.7.7.7.7 Type Checking Type Checking Type Checking Type Checking  & Error Handling & Error Handling & Error Handling & Error Handling

Although Agena is untyped, in many situations you may want to check the type of a
certain value passed to a function. Agena has three facilities for this: 

1. The typetypetypetype operator determines the type of its argument.
2. A type can be optionally specified in the parameter list of a procedure by

means of the preceding ::  token so that it will be checked at procedure
invocation.

3. The trytrytrytry statement checks whether one or more values are of a specific type. 

The language also provides the errorerrorerrorerror handling function that interrupts the execution
of a procedure and prints an error message if given.

The following types are available in Agena:

   boolean, complex, lightuserdata, null, number, p air, procedure,
   sequence, set, string, table, thread, userdata.

80 6 Programming



These names are reserved keywords, but evaluate to strings so that they can be
compared with the result of the typetypetypetype operator that returns the type of a value as a
string.

> type(1):
number

> fact := proc(n) is
>    if type(n) <> number then
>       error('number expected')
>    fi;
>    if n < 0 then return null
>    elif n = 0 then return 1
>    else return fact(n-1)*n
>    fi
> end;

> fact('10'):
Error: number expected
   in function fact, line 3

You may also optionally specify types in the parameter list of a procedure by using
double colons:

> fact := proc(n::number) is
>    if n < 0 then return null
>    elif n = 0 then return 1
>    else return fact(n-1)*n
>    fi
> end;

> fact('10'):
Error: invalid type for argument #1: expected numbe r, got string.

This form of type checking is more than twice as fast as the if/type/error
combination. If the argument is of the correct type, Agena executes the
procedure, otherwise it issues an error. Agena will also return an error if the argument
is not given:

> fact()
missing argument #1 (type number expected).

Another efficient way of type checking is provided by the trytrytrytry statement.

trytrytrytry name1 [, name2, ...] asasasas typename1, [name3 [, name4, ...] asasasas typename2, ...]

trytrytrytry name1 [, name2, ...] asasasas typename1 elseelseelseelse errorstring1 
[, name3 [, name4, ...] asasasas typename2 elseelseelseelse errorstring2, ...]

In the first form, a standard error message is displayed and further computation
stops. In the second form, a user defined error text is printed and execution of the
function is interrupted.

agenaagenaagenaagena    >> 81



> fact := proc(n) is
>    try n as number;
>    if n < 0 then return null
>    elif n = 0 then return 1
>    else return fact(n-1)*n
>    fi
> end;

> fact('10'):
Error, line 2: expected number, got string for argu ment #1.
   in function fact, line 2

> fact := proc(n) is
>    try n as number else 'bad value for argument';
>    if n < 0 then return null
>    elif n = 0 then return 1
>    else return fact(n-1)*n
>    fi
> end;

> fact('10'):
Error, line 2: for argument #1: bad value for argum ent
   in function fact, line 2

Note that the typetypetypetype operator, the double colon functionality, and the trytrytrytry statement
only check for basic types. If you want to check user-defined types for procedures,
tables, sequences, sets, and pairs, you should use the typeoftypeoftypeoftypeof operator.

6.8 6.8 6.8 6.8 Multiple ReturnsMultiple ReturnsMultiple ReturnsMultiple Returns

As stated before, a procedure can return no, one, or more values. There are two
ways to use these multiple returns in subsequent statements.

Consider the strings.findstrings.findstrings.findstrings.find library function. It searches for a pattern in a string and
returns the first and the final position of the pattern as two numbers.

> strings.find('Wulfila', 'ila'):

5       7

If you assign the return to only one variable, e.g.

> m := strings.find('Wulfila', 'ila'):
5

the second return is lost, so enter:

> m, n := strings.find('Wulfila', 'ila');

> m:

5

> n:
7

82 6 Programming



A function may also return a variable number of values. To store any of these returns
for later access, just put the returns in a sequence or table:

> seq(strings.find('Wulfila', 'ila')):
seq(5, 7)

6.6.6.6.9999    SSSShortcut hortcut hortcut hortcut Procedure DProcedure DProcedure DProcedure D efinitionefinitionefinitionefinition

If your procedure consists of exactly one expression, then you may use an abridged
syntax if the procedure does not include statements such as ifififif .. thenthenthenthen, forforforfor, insertinsertinsertinsert,
etc.

<<<<<<<< [((((] [par1 [:::::::: type1] [, par2 [:::::::: type2], ...]] [))))] ->->->-> expr >>>>>>>>

As you see, optional types can be specified in the parameter section.

Let us define a simple factorial function.

> fact := << (x::number) -> exp(gammaln(x+1)) >>

> fact(4):
24

Brackets around the parameters are optional, even if you specify types.

> isInteger := << x -> int(x) = x >>

> isInteger(1):
true

> isInteger(1.5):
false

Passing optional arguments using the ? notation is supported. In this case, use the
varargsvarargsvarargsvarargs table as described above.

6.6.6.6.10101010 User-Defined Procedure Types User-Defined Procedure Types User-Defined Procedure Types User-Defined Procedure Types

The settypesettypesettypesettype function allows to group procedures proc1, proc2, ..., by giving them a
specific type (passed as a string) just as it does with sequences, tables, sets, and
pairs.

settype(settype(settype(settype(proc1 [, proc2, ...], ''''your_proctype')')')')

The ttttypeofypeofypeofypeof    operator returns the user-defined type of an object as a string. If no
special type has been defined, it returns its basic type. The latter also applies to
data types where settypesettypesettypesettype cannot set user-defined types. 

agenaagenaagenaagena    >> 83



ttttypeof(ypeof(ypeof(ypeof(proc1))))

The typetypetypetype operator does not return the user-defined type even if it is set, it will always
return the basic type of an object.

> f := << x -> 1 >>

> settype(f, 'constant')

> typeof(f):
constant

> type(f):
procedure

6666....11111111    ScopingScopingScopingScoping Rules Rules Rules Rules

In Agena, variables live in blocks or `scopes`. A block may contain one or more
other blocks. A local variable is visible only to the block in which it has been
declared and to all blocks that are part of this block. Thus, variables declared local
in inner blocks are not accessible to the outer blocks.

Procedures, ifififif- and casecasecasecase-statements, whilewhilewhilewhile-, dodododo- and forforforfor-loops create blocks.

Variables declared local within procedures are only visible in these procedures. 

Variables declared local in the thenthenthenthen clauses of an ifififif-statement live only in the
respective thenthenthenthen part. The same applies to variables declared local in elseelseelseelse clauses.

> f := proc(x) is
>    if x > 0 then
>       local i := 1; print('inner', i)
>    else
>       local i := 0; print('inner', i)
>    fi;
>    print('outer', i)  # i is not visible
> end;

> f(1);
inner   1
outer   null

Variables declared local in forforforfor- or whilewhilewhilewhile-loops are only accessible in the bodies of
these loops. The loop control variables of for/to- and for/in-loops are implicitly
declared local to the respective loop bodies, with the exception of the externalexternalexternalexternal
facility of for/to loops which is described in the next subchapter.

> f := proc(x) is
>    while x < 2 do
>       local i := x
>       inc x
>       print('inner', i)
>    od;
>    print('outer', i)  # i is not visible

84 6 Programming



> end;

> f(1);
inner   1
outer   null

A special scope can be declared with the scopescopescopescope and epocsepocsepocsepocs statements:

scopescopescopescope
    declarations & statements
epocsepocsepocsepocs

The next example demonstrates how it works:

> f := proc() is
>    local a := 1;
>    scope
>       local a := 2;
>       writeline('inner a: ', a);
>    epocs;
>    writeline('outer a: ', a);
> end;

> f()
inner a: 2
outer a: 1

6.16.16.16.12222 Loops in Procedures Loops in Procedures Loops in Procedures Loops in Procedures

As already noted, the control variable of a for/to loop is only local to the loop itself -
but if you use the externalexternalexternalexternal keyword in the loop declaration, you will have access to
it after execution of the loop completed. Make sure that in this case, you define the
control variable local.

> mandelbrot := proc(x, y, iter, radius) is
>    local i, c, z;
>    z := x!y;
>    c := z;
>    for external i from 0 to iter while abs(z) < r adius do
>       z := z^2 + c
>    od; 
>    return i  # return the last iteration value
> end;

The procedure counts the number of iterations a complex value z takes to escape
a given radius by applying it to the formula z = z^2+c. Since the loop control
variable i has been declared external, it can be used in the returnreturnreturnreturn statement.

The following example demonstrates that local variables are bound to the block in
which they have been declared.

> f := proc() is
>    local i;
>    for external i to 3 do
>       local j;

agenaagenaagenaagena    >> 85



>       for external j to 3 do od;
>       print(i, j)
>    od;
>    print(i, j)
> end;

> f()
1       4
2       4
3       4
3       null

6666....11113333 Packages Packages Packages Packages

6666....11113333.1 Writing a New Package.1 Writing a New Package.1 Writing a New Package.1 Writing a New Package

Let us write a small utilities package called helpers  including only one main and
one auxiliary function. The main function shall return the number of digits of an
integer.

Package procedures are usually stored to a table, so we first create a table called
helpers . After that, we assign the procedure ndigits  and the auxiliary isInteger

function to this table.

> create table helpers;

> helpers.isInteger := << x -> int(x) = x >>;  # au x function

> helpers.ndigits := proc(n::number) is
>    if not helpers.isInteger(n) then
>       error('argument is not an integer')
>    fi;
>    if n = 0 then
>       return 1
>    else
>       return entier(ln(abs(n))/ln(10) + 1);
>    fi;
> end;

Now we can use our new package.

> helpers.ndigits(0):
1

> helpers.ndigits(-10):
2

> helpers.ndigits(.1):
Error: argument is not an integer
   in function ndigits, line 4

To save us a lot of typing, we can assign a short name to this table procedure.

> ndigits := helpers.ndigits;

> ndigits(999):
3

86 6 Programming



Save the code listed above to a file called helpers.agn  in a subfolder called
helpers  in the Agena main directory. In order to use the package again after you
have restarted Agena, use the runrunrunrun function.

> restart;

> run `d:/agena/helpers/helpers.agn

> helpers.ndigits(10):
2

You may print the contents of the package table at any time:

> helpers:
[isInteger ~ procedure(0044A6E0), ndigits ~ procedu re(0044A850)]

6666....11113333.2 The .2 The .2 The .2 The withwithwithwith Function Function Function Function

The withwithwithwith function besides loading the package in a convenient way, automatically
assigns short names to all or a user-defined set of package procedures so that you
may use the shortcuts instead of the fully written function names. 

In order to do this, you must prepend or append the location of your new package
to _EnvAgenaPath_EnvAgenaPath_EnvAgenaPath_EnvAgenaPath. You may do this by adding the following line in the agena.ini

file located in the lib  folder of your Agena distribution, assuming that the
helpers.agn  file has been stored to d:/agena/helpers .

_EnvAgenaPath := _EnvAgenaPath .. ';d:/agena/helper s';

You may also save the helpers.agn file into the lib  folder of your Agena distribution
if you do not want to modify _EnvAgenaPath_EnvAgenaPath_EnvAgenaPath_EnvAgenaPath .

Now in the interactive level, type:

> restart;

> with `helpers
isInteger, ndigits

> isInteger(1); # same as helpers.isInteger(1)

You may also want withwithwithwith to print a start-up notice at every package invocation if you
assign a string to the table field packagename .initstringinitstringinitstringinitstring. Put the following code into
the helpers.agn  file, save the file and restart Agena:

> helpers.initstring := 'helpers v1.0 as of Decembe r 24, 2007\n';

> restart;

> with `helpers
helpers v1.0 as of December 24, 2007

isInteger, ndigits

agenaagenaagenaagena    >> 87



Since you may not want that short names are set for auxiliary functions, you can put
the names of all procedures for which short names shall be assigned as strings into
the packagename .loadedloadedloadedloaded table using the registerregisterregisterregister function. Insert the following line to
your helpers.agn  file at any position:

> register(helpers, `ndigits);

The contents of the helpers.agn  file should finally look like this:

create table helpers;

helpers.initstring := 'helpers v1.0 as of December 24, 2007\n';

helpers.isInteger := << x -> int(x) = x >>;  # aux function

helpers.ndigits := proc(n) is
   try n as number;
   if not helpers.isInteger(n) then
      error('argument is not an integer')
   fi; 
   if n = 0 then
      return 1
   else
      return entier(ln(abs(n))/ln(10) + 1);
   fi;
end;

register(helpers, 'ndigits');

Save the file again and restart Agena.

> restart;

> with `helpers
helpers v1.0 as of December 24, 2007

ndigits

If your package includes an initialisation routine, then it will be run after the package
has been found successfully. The name if the initialisation routine must be of the
form `packagename.initinitinitinit`, e.g.:

> helpers.init := proc() is
>    writeline('I am run')
> end;

6666....11114444 Remember tables Remember tables Remember tables Remember tables

Agena features remember tables which if present hold the results of previous calls
to Agena or API C procedures or contain a list of predefined results, or both. If a
function is called again with the same argument or the same arguments, then the
corresponding result is returned from the table, and the procedure body is not
executed. Remember tables are called rtables or rotables for short. 

There are two types of remember tables: 

88 6 Programming



� Standard Remember Tables, called `rtables`, that can be automatically
updated by a call to the respective function; they may be initialised with a list of
precomputed results (but do not need to).

� Read-Only Remember Tables, called `rotables`, that cannot be updated by a
call to the respective function. Rotables should be initialised with a list of
precomputed results.

6.14.1 Standard Remember Tables6.14.1 Standard Remember Tables6.14.1 Standard Remember Tables6.14.1 Standard Remember Tables

A standard remember table is suited especially for recursively defined functions. It
may slow down functions, however, if they have remember tables but do not rely
much on previously computed results.

By default, no procedure contains a remember table, they must explicitly be
created with the rinitrinitrinitrinit function and optionally filled with default values with the rsetrsetrsetrset
function. Since those functions are very basic, a more convenient facility is the
rememberrememberrememberremember function which will exclusively be used in this chapter.

In order for an rtable to be automatically updated, the respective function must
return its result with the return return return return statement (which may sound profane). If a function is
called with arguments that are not already known to the remember table, then the
returnreturnreturnreturn statement adds these arguments and the corresponding result or results to
the rtable.

Two examples: We want to define a function f(x) = x with f(0) = undefined.

First the function is defined:

> f := << x -> x >>;

Only after the function has been created, the rtable (short for remember table) can
be set up. The rememberrememberrememberremember function can be used to initialise rtables, explicitly set
predefined values to them, and add further values later in a session.

> remember(f, [0~undefined]);

The rtable has now been created and a default entry included in it so that calling f
with argument 0 returns undefinedundefinedundefinedundefined and not 0.

> f(1):
1

> f(0):
undefined

If the function is redefined, the rtable is destroyed, so you may have to initialise it
again.

Fibonacci numbers can be implemented recursively and run with astonishing
speed using rtables.

agenaagenaagenaagena    >> 89



> fib := proc(n) is
>    assume(n >= 0);
>    return fib(n-2) + fib(n-1)
> end;

The call to assumeassumeassumeassume assures that n is always non negative and serves as an
`emergency brake` in case the remember table has not been set up properly.

The rtable is being created with two default values:

> remember(fib, [0~1, 1~1]);

If we now call the function,

> fib(50):
20365011074

the contents of the rtable will be:

1 ~ [1~1]
2 ~ [1~1]
3 ~ [1~2]
4 ~ [1~3]
5 ~ [1~5]
6 ~ [1~8]
7 ~ [1~13]
8 ~ [1~21]
9 ~ [1~34]
...

If a function has more than one parameter or has more than one return, rememberrememberrememberremember
requires a different syntax: The arguments and the returns are still passed as
key~value pairs. However, the arguments are passed in one table, and the returns
are passed in another table.

> f := proc(x, y) is
>    return x, y
> end;

> remember(f, [[1, 2] ~ [0, 0]]);

> a, b := f(1, 2);

> a:
0

> b:
0

Please check Chapter 7.1 for more details on their use.

6.14.2 6.14.2 6.14.2 6.14.2 Read-OnlyRead-OnlyRead-OnlyRead-Only  Remember Tables Remember Tables Remember Tables Remember Tables

If you do not want that a function updates its remember table each time it is called
with new arguments and results, you may use a read-only remember table, called
`rotable` for short. Rotables are initialised with a list of precomputed results. 

90 6 Programming



The function itself cannot implicitly enter new entries to its remember table via the
returnreturnreturnreturn statement; it can only do so via a call to the rset function (or a utility that is
based on rsetrsetrsetrset). This gives you total control of the contents and the amount of data
stored in a remember table - and thus on the speed of your procedure.

Assume you want to define a procedure that computes factorials n!, and that does
not compute the results for n < 11, but retrieves the results from an rotable instead.

A function might look like this:

> fact := proc(x::number) is
>   if int(x) = x then  # is x an integer and nonne gative ?
>      return exp(gammaln(x+1))
>   else
>      return undefined
>   fi
> end;

The defaultsdefaultsdefaultsdefaults function can set up the rotable and enter precomputed values into it.

> # set precompiled results for 0! to 10! to fact

> defaults(fact, [
>    0~1.0000000000000000e+00, 1.0000000000000000e+ 00,
>    2.0000000000000000e+00, 6.0000000000000000e+00 , 
>    2.4000000000000000e+01, 1.2000000000000000e+02 ,
>    7.2000000000000000e+02, 5.0400000000000000e+03 , 
>    4.0320000000000000e+04, 3.6288000000000000e+05 ,
>    3.6288000000000000e+06]);

The factorial function is significantly faster when called with arguments that are in
the rotable than if there would be no such value cache, because it would have to
compute the results instead of just reading them.

Let us look into the remember table:

> defaults(fact):
[[2] ~ [2], [1] ~ [1], [8] ~ [40320], [9] ~ [362880 ], [10] ~ [3628800], 
[0] ~ [1], [4] ~ [24], [5] ~ [120], [6] ~ [720], [3 ] ~ [6], [7] ~ [5040]]

You can also easily add further argument ~ result pairs with the defaults function:

> defaults(fact, [11 ~ 39916800]); defaults(fact):
[[2] ~ [2], [1] ~ [1], [8] ~ [40320], [9] ~ [362880 ], [10] ~ [3628800], [0]
~ [1], [11] ~ [39916800], [4] ~ [24], [7] ~ [5040],  [6] ~ [720], [3] ~ [6],
[5] ~ [120]]

A read-only remember table can be deleted by passing nullnullnullnull as a second
argument to defaultsdefaultsdefaultsdefaults.

6.14.3 Functions for Remember Tables6.14.3 Functions for Remember Tables6.14.3 Functions for Remember Tables6.14.3 Functions for Remember Tables

For completeness, all basic functions which work on rtables are the following:

agenaagenaagenaagena    >> 91



Returns true if a function has a standard
remember table, false if it has a read-only
remember table, and fail if it has no remember
table at all.

rwritemoderwritemoderwritemoderwritemode(f)

Deletes the rtable of function f  entirely. If you want
to use a new rtable with the function, you have to
initialise it with rinit again.

rdeleterdeleterdeleterdelete(f)

Adds function argument(s) and the corresponding
return(s) to the rtable of procedure f .

rsetrsetrsetrset(f, argument, return)
rsetrsetrsetrset(f, [[[[arguments]]]], [[[[returns]]]]))))

Initialises a read-only remember table for the
function f .

rrrroinitoinitoinitoinit(f)
Returns the rtable of function f .rgetrgetrgetrget(f)
Checks whether procedure f  possesses an rtable.hasrtablehasrtablehasrtablehasrtable(f)

Initialises a standard remember table for the
function f .

rinitrinitrinitrinit(f)
DetailsDetailsDetailsDetailsProcedureProcedureProcedureProcedure

Table 13: Functions for remember tables

6666....11115555 Overloading Operators with  Overloading Operators with  Overloading Operators with  Overloading Operators with MetamethodsMetamethodsMetamethodsMetamethods

One of the many useful functions inherited from Lua 5.1 are metamethods which
provide a means to apply existing operators to tables, sets, sequences, and pairs.

For example, complex arithmetic could be entirely implemented with
metamethods so that you can use already existing symbols and keywords such as
+ or absabsabsabs with complex values and do not have to learn names of new functions12.

This method of defining additional functionality to existing operators is also known as
`overloading`.

Adding such functionality to existing operators is very easy. As an example, we will
define a constructor to produce complex values and three metamethods for
adding complex values with the + token, determining their absolute value with the
standard absabsabsabs operator, and pretty printing them at the console.

At first, lets store a complex value z = x + yi to a sequence of size 2. The real part is
saved as the first value, the imaginary part at the second.

> cmplx := proc(a::number, b::number) is
>    create local seq r(2);
>    insert a, b into r;
>    return r
> end;

To define a complex value, say z = 0 + i, just call the constructor:

> cmplx(0, 1):
seq(0, 1)

92 6 Programming

12For performance reasons, complex arithmetic has been built directly into the Agena kernel.



The output is not that nice, so we would like Agena to print cmplx(0, 1)  instead of
seq(0, 1) . This can be easily done with the settypesettypesettypesettype function:

> cmplx := proc(a::number, b::number) is
>    create local seq r(2);
>    insert a, b into r;
>    settype(r, 'cmplx');
>    return r
> end;

> cmplx(0, 1):
cmplx(0, 1)

Adding two complex values does not work yet, for we have not yet defined a
proper metamethod.

> cmplx(0, 1) + cmplx(1, 0):
Error, line 1: attempt to perform arithmetic on a s equence value

Metamethods are defined using dictionaries, called `metatables`. Their keys, which
are always strings, denote the operators to be overloaded, the corresponding
values are the procedures to be called when the operators are applied to tables,
sets, sequences (which are used in this example), or pairs. See the Appendix A2 for
a list of all available method names. To overload the plus operator use the '__add'

string.

Assign this metamethod to any name, cmplx_mt  in this example. 

> cmplx_mt := [
>    '__add' ~ proc(a, b) is
>                 return cmplx(a[1]+b[1], a[2]+b[2] )
>              end
> ]

Next, we must attach this metatable cmplx_mt  to the sequence storing the real and
imaginary parts with the setmetatablesetmetatablesetmetatablesetmetatable    function. We have to extend the constructor
by one line, the call to setmetatablesetmetatablesetmetatablesetmetatable :

> cmplx := proc(a::number, b::number) is
>    create local seq r(2);
>    insert a, b into r;
>    settype(r, 'cmplx');
>    setmetatable(r, cmplx_mt);
>    return r
> end;

Try it:

> cmplx(0, 1) + cmplx(0, 1):
cmplx(0, 2)

Add a new method to calculate the absolute value of complex numbers by
overloading the absabsabsabs operator.

> cmplx_mt.__abs := << (a) -> math.hypot(a[1], a[2] ) >>;

agenaagenaagenaagena    >> 93



The metatable now contains two methods.

> cmplx_mt:
__add ~ procedure(003FE3E8)
__abs ~ procedure(0046CE80)

> z := cmplx(1, 1)

> abs(z):

1.4142135623731

It would be quite fine if complex values would be output the usual way using the
standard x + yi notation. This can be done with the '__tostring'  method which
must return a string.

> cmplx_mt.__tostring := proc(z) is
>    return is z[2]<0 then z[1]..z[2]..'i' else z[1 ]..'+'..z[2]..'i' si;
> end;

> z:
1+1i

To avoid using the cmplxcmplxcmplxcmplx constructor in calculations, we want to define the
imaginary unit I = 0+i and use it in subsequent operations. Before assigning the i
unit, we have to add a metamethod for multiplying a number with a complex
number.

> cmplx_mt.__mul := proc(a, b) is
>    if typeof(a) = 'cmplx' and typeof(b) = 'cmplx'  then
>       return cmplx(a[1]*b[1]-a[2]*b[2], a[1]*b[2] +a[2]*b[1])
>    elif type(a) = number and typeof(b) = 'cmplx' then
>       return cmplx(a*b[1], a*b[2])
>    fi
> end;

and also extend the metamethod for complex addition.

> cmplx_mt.__add := proc(a, b) is
>    if typeof(a) = 'cmplx' and typeof(b) = 'cmplx'  then
>       return cmplx(a[1]+b[1], a[2]+b[2])
>    elif type(a) = number and typeof(b) = 'cmplx' then
>       return cmplx(a+b[1], b[2])
>    fi;
> end;

> i := cmplx(0, 1);

> a := 1+2*i:
1+2i

Until now, the real and imaginary parts can only be accessed using indexed
names, say z[1]  for the real part and z[2]  for the imaginary part. A more
convenient - albeit not that performant - way to use a notation like z.re  and z.im  in
both read and write operations is provided by the '__index'  and '__writeindex'

metamethods, respectively.

94 6 Programming



The __index metamethod for reading values from a structure works as follows:

� If the structure is a table, then the metamethod is called if the call to an indexed
name results to nullnullnullnull.

� If the structure is a set, then the metamethod is called if the call to an indexed
name results to falsefalsefalsefalse.

� If the structure is a sequence, then the metamethod is called if the call to an
indexed name would result to an index-out-of-range error.

The __writeindex metamethod for writing values to a structure works as follows: 

� If the structure is a table, sequence or pair, then the metamethod is always
called. 

� The metamethod is also supported by the insertinsertinsertinsert statement.

The respective procedures assigned to the __index and __writeindex keys of a
metatable should not include calls to indexed names, for in some cases this would
lead to stack overflows due to recursion (the respective metamethod is called
again and again). Instead, use the rawgetrawgetrawgetrawget function to directly read values from a
structure, and the rawsetrawsetrawsetrawset function to enter values into a structure.

Let us first define a global mapping table for symbolic names to integer keys:

> cmplx_indexing := ['re'~1, 'im'~2];

Now let us define the two new metamethods. Both will be capable to accept
expressions like a.re  and a[1] . In the following read procedure the argument x

represents the complex value, and the argument y  is assigned either the string 're'

or 'im' . Thus, cmplx_indexing['re']  will evaluate to the index 1, and
cmplx_indexing['im']  to index 2.

> cmplx_mt.__index := proc(x, y) is  # read operati on
>    if type(y) = string then  # for calls like `a. re` or `a.im`
>       return rawget(x, cmplx_indexing[y])
>    else
>       return rawget(x, y)    # for calls like `a[ 1]` or `a[2]`
>    fi
> end;

In the write procedure, argument x  will hold the complex value, y  will be either 're'

or 'im' , and z  is assigned the component - a rational number -, i.e. x.re := z  or
x.im := z .

> cmplx_mt.__writeindex := proc(x, y, z) is  # writ e operation
>    if type(y) = string then
>       rawset(x, cmplx_indexing[y], z)
>    else
>       rawset(x, y, z)  # for assignments like `a[ 1] := value`
>    fi
> end;

You can now use the new methods.

agenaagenaagenaagena    >> 95



> a:
1+2i

> a.re:
1

> a.im := 3

> a:
1+3i

6.16 Extending built-in Functions6.16 Extending built-in Functions6.16 Extending built-in Functions6.16 Extending built-in Functions

You may redefine existing built-in functions if you want to change their behaviour or
extend its features. You can either write a completely new replacement from
scratch or use the original function in your modified version. Your new procedure
can then be called with the same name as the original one.

Note that only Agena functions written in C or in the language itself can be
redefined, and that operators cannot.

In Agena, each mathematical function f works as follows: if a number x, which by
definition represents a value in the real domain, is passed to them, then the result
f(x) will also be in the real domain. If x is a complex value, then the result will be in
the complex domain.

Suppose that you want to automatically switch to the complex domain if a function
value in the real domain could not be determined, i.e. if f(x) = undefinedundefinedundefinedundefined. An
example is:

> math.arcsin(-2):
undefined

On the interactive level enclose the new procedure definition with the scopescopescopescope and
epocsepocsepocsepocs keywords. This is necessary because on the interactive level, each statement
entered at the prompt has its own scope and thus local variables cannot be
accessed in the next statement.

The new function definition might be:

> scope
>
>    # save the original function in a `hidden` var iable
>    local oldarcsin := math.arcsin;  
>
>    math.arcsin := proc(x) is  # new definition
>       local result := oldarcsin(x);
>       if result = undefined then  # switch to com plex domain
>          result := oldarcsin(x+0*I)
>       fi;
>       return result
>    end;
>
> epocs;

96 6 Programming



The original function math.arcsinmath.arcsinmath.arcsinmath.arcsin is stored to the local oldarcsin variable so that the
user can no longer directly access it.

> math.arcsin(-2):

-1.5707963267949+1.3169578969248*I

If you wish to permanently use your redefined functions, just put them into the
agena.ini  file, located in the lib  folder of your Agena installation. Since files have
their own `scope`, the scopescopescopescope and epocs keywords are no longer needed (but can
be left in the file).

6.17 Closures: Procedures that Remember their State6.17 Closures: Procedures that Remember their State6.17 Closures: Procedures that Remember their State6.17 Closures: Procedures that Remember their State

A procedure can remember its state. This state is represented by the function's
internal variables which can survive and keep their values even after the call to the
procedure completed. 

So with a successive call to the same procedure, it can access these values and
use them in the current call again.

Let us define an iterator function that successively returns an element of a
sequence:

> traverse := proc(o::table) is
>    local count := 0;
>    return proc() is
>       inc count;
>       return o[count]
>    end
> end;

The traverse  procedure is called a factory for it returns the closure as a function
which we assign to the name iterator . The iterator  function remembers its state
and can be called like `normal` functions:

> iterator := traverse(['a', 'b', 'c']);

> iterator():
a

What happened ?  The call to traverse  with the table ['a', 'b', 'c']  as its only
argument initialised the variable count  and assigned it to 0. The table you passed is
also stored to the closure's internal state. With the first call to iterate , count was
incremented from 0 to 1, followed by the return of the first element in the table.

> iterator():
b

> iterator():
c

Since the table has no more elements left (count = 4), it now returns nullnullnullnull.

agenaagenaagenaagena    >> 97



> iterator():

null

You can define more than one closure with a factory at the same time, each being
completely independent from the others:

> iterator2 := traverse(['a', 'b', 'c']);

> iterator2():
a

> iterator2():
b

> iterator3 := traverse(['a', 'b', 'c']);

> iterator3():
a

6.16.16.16.18888 File I/O File I/O File I/O File I/O

Agena features various functions to deal with files, to read lines and write values to
them. Most of the functions come from Lua. All the functions processing files are
included in the ioioioio package.

6.16.16.16.18888.1 Reading Text Files.1 Reading Text Files.1 Reading Text Files.1 Reading Text Files

One of the most useful functions to read in a text file line by line is the io.linesio.linesio.linesio.lines
procedure which accepts the name of the file to be read as a string. They are
usually used in forforforfor loops. The line read is stored to the loop key, the loop value is
always nullnullnullnull.

> for i, j in io.lines('d:/agena/lib/agena.ini') do
>    print(i, j)
> od
execute := os.execute;    null
getmeta := getmetatable;        null
setmeta := setmetatable;        null

6.16.16.16.18888.2 Wr.2 Wr.2 Wr.2 Wriiiiting Text Filesting Text Filesting Text Filesting Text Files

To write numbers or strings into a file, we must first create it with the io.openio.openio.openio.open function.
The second argument tells Agena to open the file in `write` mode.

> file := io.open('d:/file.text', 'w');

io.openio.openio.openio.open returns an integer, a so-called file handle. File handles are used in many IO
functions, e.g. the writewritewritewrite procedure.

> io.write(file, 'I am a text.');

After all values have been written, the file must be closed with io.closeio.closeio.closeio.close.

98 6 Programming



> io.close(file);

Tables, sets, or sequences cannot be written directly to files, they must be iterated
using loops so that their keys and values - which must be numbers or strings - can
be accessed and stored to the file thereafter. The same applies to pairs: use the
leftleftleftleft and rightrightrightright operators to write their components.

The following statements write all keys and values to the file. The keys and values are
separated by a pipe '|' , and a newline is inserted after each key~value pair has
been added. Note that you can mix numbers and strings.

> a := [10, 20, 30];

> file := io.open('d:/table.text', 'w');
> for i, j in a do
>    io.write(file, i, '|', j, '\n')
> od;

> io.close(file);

agenaagenaagenaagena    >> 99



100 6 Programming



Chapter SevenChapter SevenChapter SevenChapter Seven

Standard LibrariesStandard LibrariesStandard LibrariesStandard Libraries             

agenaagenaagenaagena    >> 101



102 7 Standard Libraries



7777    Standard LibrariesStandard LibrariesStandard LibrariesStandard Libraries

The standard libraries taken from the Lua 5.1distribution provide useful functions that
are implemented directly through the C API. Some of these functions provide
essential services to the language (e.g., nextnextnextnext and getmetatablgetmetatablgetmetatablgetmetatableeee; others provide
access to "outside" services (e.g., I/O); and others could be implemented in Agena
itself, but are quite useful or have critical performance requirements that deserve
an implementation in C (e.g., sortsortsortsort) .

The following text is based on Chapter 5 of the Lua 5.1 manual and includes all the
new operators, functions, and packages provided by Agena.

Lua functions which were deleted from the code are not described. References to
Lua were not deleted from the original text. If an explanation mentions Lua, then the
description also applies to Agena.

All libraries are implemented through the official C API and are provided as
separate C modules. Currently, Agena has the following standard libraries: 

• the basic library,
• package library, 
• string library,
• table library, 
• mathematical library,
• two input and output libraries,
• operating system library,
• debug facilities.

Except for the basic and the package libraries, each library provides all its functions
as fields of a global table or as methods of its objects. Agena operators have
directly built into the kernel (the Virtual Machine), so they are not part of any library.

7777....1 1 1 1 Basic FunctionsBasic FunctionsBasic FunctionsBasic Functions

The basic library provides some core functions to Agena. If you do not include this
library in your application, you should check carefully whether you need to provide
implementations for some of its facilities.

abs (x)

If x is a number, the absabsabsabs operator will return the absolute value of x. Complex
numbers are supported.

If x is a Boolean, it will return 1 for truetruetruetrue, 0 for falsefalsefalsefalse, and -1 for failfailfailfail. 

If x is null, absabsabsabs will return -2. 

agenaagenaagenaagena    >> 103



If x is a string of only one character, absabsabsabs will return the ASCII value of the character
as a number. If x is the empty string or longer than length 1, the function returns fail.

anames ([option])

Returns all global names that are assigned values in the environment. If called
without arguments, all global names are returned. If option  is given and option  is a
string denoting a type (e.g. 'boolean' , 'table' , etc.), then all variables of that type
are returned.

The function is written in the Agena language and included in the library.agn  file.

assigned (v)

This Boolean operator checks whether any value different from nullnullnullnull is assigned to
the expression v . If v  is already a constant, i.e. a number or a string, the operator
always returns falsefalsefalsefalse. If v  evaluates to a constant, the operator returns truetruetruetrue.

See also: unassignedunassignedunassignedunassigned.

assume (v [, message])

Issues an error when the value of its argument v  is falsefalsefalsefalse (i.e., nullnullnullnull or falsefalsefalsefalse); otherwise,
returns all its arguments. message  is an error message; when absent, it defaults to
"assumption failed".

attrib (o)

With the table o, returns a new table with 

� the current maximum number of key~value pairs allocable to the array and
hash parts of o; in the resulting table, these values are indexed with keys
'array_allocated'  and 'hash_allocated' , respectively,

� the number of key~value pairs actually assigned to the respective array and
hash sections of o;  in the resulting table, these values are indexed with keys
'array_assigned'  and 'hash_assigned' ,

� an indicator 'array_hasholes'  stating whether the array part contains at least
one hole.

With the set o, returns a new table with 

� the current maximum number of items allocable to the set; in the resulting
table, this value is indexed with the key 'hash_allocated' .

� the number of items actually assigned to o;  in the resulting table, this value is
indexed with the key 'hash_assigned' .

With the sequence o, returns a new table with 

104 7 Standard Libraries



� the maximum number of items assignable; in the resulting table, this value is
indexed with the key 'maxsize' . If the number of entries is not restricted,
'maxsize'  is infinityinfinityinfinityinfinity. 

� the curent number of items actually assigned to o;  in the resulting table, this
value is indexed with the key 'size' .

With the function o returns a new table with

� the information whether the function is a C or an Agena function. In the resulting
table, this value is indexed with the key 'C' ;

� whether a function contains a remember table, indicated by the C
'rtableWritemode', where the entry truetruetruetrue indicates that it is an rtable (which is
updated by the returnreturnreturnreturn statement), where false false false false indicates that it is an rotable
(which cannot be updated by the returnreturnreturnreturn statement), and where failfailfailfail indicates
that the function has no remember table at all.

bye

Quits the Agena session. No argument or brackets are needed.

clear v1 [, v2, ...]

Deletes the values in variables v1 , v2 , ..., and performs a garbage collection
thereafter in order to clear the memory occupied by these values.

concat (obj [, sep [, i [, j]]])

Returns obj[i]..sep..obj[i+1] ··· sep..obj[j] , where obj  is either a table or
sequence of strings. The default value for sep  is the empty string, the default for i  is
1, and the default for j  is the length of the table. If i  is greater than j , returns the
empty string. The empty string is also returned, if obj  consists entirely of non-strings. 

Use the toStringtoStringtoStringtoString function if you want to concatenate other values than strings, e.g.:

> concat(map(toString, [1, 2, 3])):

123

defaults (func)
defaults (func, tab)

defaults (func, null)

Administrates read-only remember tables of functions. As it works exactly like the
rememberrememberrememberremember function, except that it creates remember tables that cannot be
updated by the returnreturnreturnreturn statement, please refer to the description of the rememberrememberrememberremember
function for further details.

agenaagenaagenaagena    >> 105



error (message [, level])

Terminates the last protected function called and returns message  as the error
message. Function errorerrorerrorerror never returns. 

Usually, error adds some information about the error position at the beginning of the
message. The level  argument specifies how to get the error position. With level 1
(the default), the error position is where the error function was called. Level 2 points
the error to where the function that called error was called; and so on. Passing a
level 0 avoids the addition of error position information to the message.

_G

A global variable (not a function) that holds the global environment (that is, _G._G =

_G).  Agena itself does not use this variable; changing its value does not affect any
environment, nor vice-versa. (Use setsetsetsetffffenvenvenvenv to change environments.)

filled (obj)

This Boolean operator checks whether a table, set, or sequence obj  contains at
least one item and returns truetruetruetrue if so; otherwise it returns falsefalsefalsefalse.

gc ([opt [, arg]])

This function is a generic interface to the garbage collector. It performs different
functions according to its first argument, opt : 

• 'stop':'stop':'stop':'stop': stops the garbage collector.
• 'restart':'restart':'restart':'restart':  restarts the garbage collector.
• 'collect':'collect':'collect':'collect': performs a full garbage-collection cycle (if no option is given, this is

the default action).
• 'count':'count':'count':'count':  returns the total memory in use by Agena (in Kbytes).
• 'step':'step':'step':'step': performs a garbage-collection step. The step 'size' is controlled by arg

(larger values mean more steps) in a non-specified way. If you want to
control the step size you must experimentally tune the value of arg. Returns
truetruetruetrue if the step finished a collection cycle.

• 'setpause':'setpause':'setpause':'setpause':  sets arg /100 as the new value for the pause of the collector.
• 'setstepmul':'setstepmul':'setstepmul':'setstepmul': sets arg /100 as the new value for the step multiplier of the

collector.

getbottom (s)

The operator returns the element at the bottom of the sequence s , i.e. the first one
inserted.

See also: gettopgettopgettopgettop.

106 7 Standard Libraries



getfenv (f)

Returns the current environment in use by the function. f  can be an Agena function
or a number that specifies the function at that stack level: Level 1 is the function
calling getfenvgetfenvgetfenvgetfenv. If the given function is not an Agena function, or if f  is 0, getfenvgetfenvgetfenvgetfenv
returns the global environment. The default for f  is 1.

getmeta (object)

getmetatable (object)

If object  does not have a metatable, returns nullnullnullnull. Otherwise, if the object 's
metatable has a '__metatable' field, returns the associated value. Otherwise, returns
the metatable of the given object . 

gettop (s)

The operator returns the element at the top of the sequence s , i.e. the last one
inserted.

See also: getbottomgetbottomgetbottomgetbottom.

gettype (o)

Returns the type - set with settypesettypesettypesettype - of a function, sequence, set, or  pair o as a
string. If no user-defined type has been set, or any other data type has been
passed, null is returned.

See also: ssssettypeettypeettypeettype.

globals (f)

Determines13 whether function f  includes global variables (names which have not
been defined local).

has (s, x)

Checks whether the structure s  (a table, set, sequence, or pair) contains element x .
With tables, both indices (keys) and entries are scanned (if the index is a set, table,
pair, or sequence, the index is not scanned, however). With sequences, only the
entries (not the keys) are scanned. With pairs, both the left and the right item is
scanned. The function performs a deep scan so that it can find elements in deeply
nested structures.

The function is written in the Agena language and included in the library.agn  file.

agenaagenaagenaagena    >> 107

13Note that the function not always returns all global names.



hasrtable (f)

Checks whether function f  has a remember table. It returns truetruetruetrue if it has got one,
and falsefalsefalsefalse otherwise.

left (p)

Returns the left operand of the pair p.

See also: rightrightrightright.

load (func [, chunkname])

Loads a chunk using function func  to get its pieces. Each call to func  must return a
string that concatenates with previous results. A return of nullnullnullnull (or no value) signals the
end of the chunk.

If there are no errors, returns the compiled chunk as a function; otherwise, returns
nullnullnullnull plus the error message. The environment of the returned function is the global
environment. 

chunkname  is used as the chunk name for error messages and debug information.

loadClib (packagename, path)

Loads the C library packagename  (with extension .so  in UNIX or .dll  in Windows)
residing in the folder denoted by path . path  must be the name of the folder where
the C library is stored, and not the absolute path name of the file. The function
returns truetruetruetrue in case of success and falsefalsefalsefalse otherwise.

loadfile ([filename])

Similar to loadloadloadload, but gets the chunk from file filename  or from the standard input, if
no file name is given.

loadstring (string [, chunkname])

Similar to loadloadloadload, but gets the chunk from the given string. To load and run a given
string, use the idiom 

   assume(loadstring(s))()

map (f, o [, ...])

This operator maps a function f  to all the values in table, set, sequence, or pair o.
The function must return only one value. The type of return is the same as of o. If o
has metamethods, the return will also have them. If o is a sequence or pair, its
special type if present is copied, as well.

108 7 Standard Libraries



If function f  has only one argument, then only the function and the structure o must
be passed to mapmapmapmap. If the function has more than one argument, then all
arguments except the first are passed right after the name of the table or set.

Examples:

> map( << x -> x^2 >>, [1, 2, 3] ):

1 ~ 1
2 ~ 4
3 ~ 9

> map( << (x, y) -> x > y >>, [-1, 0, 1], 0 ):  # 0  for y
1 ~ false
2 ~ false
3 ~ true

See also: zipzipzipzip, selectselectselectselect, removeremoveremoveremove.

maptoset (function, obj [, ...])

Maps a function  to all the values in table or sequence obj  and returns a set.
Metamethods if existing are not copied. See mapmapmapmap for further information.

max (t [, 'sorted'])

Returns the maximum of all numeric values in table or sequence t . If the option
'sorted'  is passed than the function assumes that all values in t  are sorted in
ascending order and returns the last entry.

See also: minminminmin.

min (t [, 'sorted'])

Returns the minimum of all numeric values in table or sequence t . If the option
'sorted'  is passed than the function assumes that all values in t  are sorted in
ascending order and returns the first entry.

See also: maxmaxmaxmax.

next (o [, index])

Allows a program to traverse all fields of a table or all items of a set or sequence o.
With strings, it iterates all its characters. Its first argument is a table, set, string, or
sequence and its second argument is an index in the structure.

With tables or sequences, nextnextnextnext returns the next index of the structure and its
associated value. When called with nullnullnullnull as its second argument, next returns an
initial index and its associated value. When called with the last index, or with nullnullnullnull in
an empty structure, next returns nullnullnullnull. 

agenaagenaagenaagena    >> 109



With sets, nextnextnextnext returns the next item of the set twice. When called with nullnullnullnull as its
second argument, next returns the initial item twice. When called with the last index,
or with nullnullnullnull in an empty set, next returns nullnullnullnull.

With strings, nextnextnextnext returns the position of the respective character (a positive integer)
and the character. When called with nullnullnullnull as its second argument, next returns the
first character. When called with the last index, next returns nullnullnullnull.

If the second argument is absent, then it is interpreted as nullnullnullnull. In particular, you can
use next(t) to check whether a table or set is empty. However, it is recommended to
use the filledfilledfilledfilled operator for this purpose.

The order in which the indices are enumerated is not specified, even for numeric
indices. The same applies to set items.

The behaviour of next is undefined if, during the traversal, you assign any value to a
non-existent field in the structure. With tables, you may however modify existing
fields. In particular, you may clear existing table fields.

ops (index, ···)

If index  is a number, returns all arguments after argument number index . Otherwise,
index  must be the string '#' , and opsopsopsops returns the total number of extra arguments it
received. The function is useful for accessing multiple returns (e.g. ops(n, ?) ).

pcall (f, arg1, ···)

Calls function f  with the given arguments in protected mode. This means that any
error inside f  is not propagated; instead, pcall catches the error and returns a status
code. Its first result is the status code (a boolean), which is true if the call succeeds
without errors. In such case, pcall also returns all results from the call, after this first
result. In case of any error, pcall returns falsefalsefalsefalse plus the error message. 

pointer (o)

Converts o to a generic C pointer (void*) and returns the result as a string. o may be
a userdata, table, set, sequence, pair, thread, function, or complex value;
otherwise, pointerpointerpointerpointer returns failfailfailfail. Different objects will give different pointers.

print (···)

Receives any number of arguments, and prints their values to the console,  using
the toStringtoStringtoStringtoString function to convert them to strings. printprintprintprint is not intended for formatted
output, but only as a quick way to show a value, typically for debugging. For
formatted output, use strings.formatstrings.formatstrings.formatstrings.format .

In Agena, printprintprintprint also prints the contents of tables and nested tables to stdout if no
__tostring  metamethods are assigned to them. The same applies to sets and
sequences. After _EnvMore_EnvMore_EnvMore_EnvMore number of lines, printprintprintprint halts for the user to press any key

110 7 Standard Libraries



for further output. Press 'q', 'Q', or the Escape key to quit. The default for _EnvMore_EnvMore_EnvMore_EnvMore is
40 lines, but you may change this value in the Agena session or in the agena.ini

file.

If the environment variable _EnvLongTable_EnvLongTable_EnvLongTable_EnvLongTable is set to truetruetruetrue, then the each key~value
pair is printed on a separate line.

You may change the way printprintprintprint formats objects by changing the respective
_EnvPrint_EnvPrint_EnvPrint_EnvPrint functions in the library.agn  file. See Appendix A5 for further details.

rawequal (v1, v2)

Checks whether v1  is equal to v2 , without invoking any metamethod. Returns a
boolean.

rawget (obj, index)

Gets the real value of obj[index] , without invoking any metamethod. obj  must be
a table, set, sequence, or pair; index  may be any value.

rawset (obj, index, value)

rawset (obj, value)

In the first form, sets the real value of obj[index]  to value , without invoking any
metamethod. obj  must be a table, sequence, or pair, index  any value different
from nullnullnullnull, and value  any value.

In the second form, the function inserts value  into the next free position in the given
structure obj . obj  can be a table, set, or sequence.

This function returns obj .

rdelete (func)

Deletes the remember table or read-only remember table of procedure func

entirely. The function returns nullnullnullnull.

read (fn)

Reads an object stored in the binary file denoted by file name fn  and returns it.

The function is written in the Agena language and included in the library.agn  file.

See also: savesavesavesave, debug.debug.debug.debug.doubleendiantestdoubleendiantestdoubleendiantestdoubleendiantest .

readlib (packagename)

Loads and runs packages stored to agn text files (with filename packagename .agn) or
binary C libraries (packagename .so in UNIX, packagename .dll in Windows), or to both. 

agenaagenaagenaagena    >> 111



The function tries to find the library by traversing all paths in _EnvAgenaPath until it
finds it. If it finds the library and the current user has at least read permissions for it, it
is initialised. 

Note that if a package consists both of a C DLL and an Agena text file, they should
both be located in the very same folder as readlibreadlibreadlibreadlib does not search for them across
multiple paths and may thus initialise a package only partially.

Make sure that on the operating system level the environment variable AGENAPATH
has been set and that the paths do not end with slashes. In Win32, you may
manually set the variable like in the following examples, assuming that the Agena
libraries are located in the d:\agena\lib  folder and optionally in the
d:\agena\mypackage  folder.

   SET AGENAPATH=d:/agena/lib
   SET AGENAPATH=d:/agena/lib;d:/agena/mypackage

In Linux, you may execute one of the following statements in your shell, assuming
that the Agena libraries are located in the /home/usr/agena/lib  folder and
optionally in the /home/usr/agena/mypackage  folder.

   SET AGENAPATH=/home/usr/agena/lib
   SET AGENAPATH=/home/usr/agena/lib;/home/usr/agen a/mypackage

Of course, packages may reside in other directories as well. Just enter further paths
to _EnvAgenaPath_EnvAgenaPath_EnvAgenaPath_EnvAgenaPath  as you need them.

The function returns truetruetruetrue if the package has been successfully loaded and
executed, or failfailfailfail if an error occurred.

See also: runrunrunrun, withwithwithwith.

register (pkgname, name1 [, name2, ...])

Defines short names for a package. It enters the strings name1 (and name2, etc. if
given) into the table pkgname.loadedpkgname.loadedpkgname.loadedpkgname.loaded, so that if you initialise a package withwithwithwith the
with function, those names namek can be used as short names for package
functions instead of the fully written function names. 

So, instead of later calling a function by "pkgname.name(arguments)" you may use
the shortcut "name(arguments)". See withwithwithwith for more details.

This is short for insert name1 [, name2, ...] into pkgname.loaded. If a name is already
included in the table, register does not add it.

112 7 Standard Libraries



_RELEASE

A global variable that holds a string containing the language name, the current
interpreter main version, the subversion, and the patch level. The format of this
variable is: 'AGENA >> <version>.<subversion>.<patchlevel>' .

See also: _EnvRelease_EnvRelease_EnvRelease_EnvRelease .

remember (func)

remember (func, tab)

remember (func, null)

Administrates remember tables. 

In the first form, the remember table stored to procedure func  is returned. See rgetrgetrgetrget
for more information.

In the second form, rememberrememberrememberremember adds the arguments and returns contained in table
tab  to the remember table of function func . If the remember table of func  has not
been initialised before, rememberrememberrememberremember creates it. If there are already values in the
remember table, they are kept and not deleted.

If func  has only one argument and one return, the function arguments and returns
are passed as key~value pairs in table tab .

If func  has more than one argument, the arguments are passed in a table. If  func

has more than one return, the returns are passed in a table, as well.

Valid calls are:

remember(f, [0 ~ 1]);           # one argument 0 & one return 1 
remember(f, [[1, 2] ~ [3, 4]);  # two arguments 1, 2 & two returns 3, 4 
remember(f, [1 ~ [3, 4]]);      # one argument 1 & two returns 3, 4
remember(f, [[1, 2] ~ 3]];      # two arguments 1, 2 & one return 3

In the third form, by explicitly passing nullnullnullnull as the second argument, the remember
table of func  is destroyed and a garbage collection run to free up space occupied
by the former rtable.

rememberrememberrememberremember always returns nullnullnullnull. It is written in the Agena language and included in
the library.agn  file.

See chapter 6.14 for examples. See also: defaultsdefaultsdefaultsdefaults.

remove (f, o [, ...])

Returns all values in table, set, or sequence o that do not satisfy a condition
determined by function f , as a new table, set, or sequence. The type of return is
determined by the type of second argument.

agenaagenaagenaagena    >> 113



If the function has only one argument, then only the function and the
table/set/sequence are passed to removeremoveremoveremove.

> remove(<< x -> x > 1 >>, [1, 2, 3]):
1 ~ 1

If the function has more than one argument, then all arguments except the first are
passed right after the name of the table or set.

> remove(<< x, y -> x > y >>, [1, 2, 3], 1):   # 1 for y
1 ~ 1

See also: selectselectselectselect, mapmapmapmap, zipzipzipzip.

restart

Restarts an Agena session. No argument is needed.

During start-up, Agena stores all initial values, e.g. package tables assigned, in a
global variable called _origG_origG_origG_origG. Tables are copied, too, so their contents cannot be
altered in a session.

If the Agena session is restarted with restartrestartrestartrestart, all values in the Agena environment are
unassigned including the environment variable _G_G_G_G, but except of _origG_origG_origG_origG and and and and
_EnvAgenaPath. Then all entries in _origG_origG_origG_origG are read and assigned to the new
environment. After this, the library base file agena.lib  and thereafter the initialization
file agena.ini  - if present - are read and executed. Finally, restart runs a garbage
collection.

The return of the function is falsefalsefalsefalse if evaluation of _origG_origG_origG_origG failed because it is no
longer a table (which should never happen). Otherwise, the return is truetruetruetrue.

rget (func [, option])

Returns the contents of the current remember table or read-only remember table of
procedure func . If any value for option  is given, the internal remember table
including all the hash values are returned.

> fib := proc(n) is
>    assume(n >= 0);
>    return fib(n-2) + fib(n-1)
> end;

> remember(fib, [0~0, 1~1]);

> rget(fib):
[[0] ~ [0], [1] ~ [1]]

You cannot destroy the internal remember table by changing the table returned by
rgetrgetrgetrget.

114 7 Standard Libraries



right (p)

Returns the right operand of the pair p.

See also: leftleftleftleft.

rinit (func)

Creates a remember table (an empty table) for procedure func . The procedure
must have been written in the Agena language; reminisce that rtables for C API
functions are not supported and that in these cases the function quits with an error.

If there is already a remember function for func , it is overwritten. rinitrinitrinitrinit returns nullnullnullnull.

roinit (func)

Creates a read-only remember table (an empty table) for procedure func , which
may be either a C function or an Agena procedure.

If there is already a remember function for func , it is overwritten. rorororoinitinitinitinit returns nullnullnullnull.

rset (func, arguments, returns)

The function adds one (and only one) function-argument-and-returns `pair` to the
already existing remember table or read-only remember table of procedure func .
arguments  must be a table array, returns  must also be a table array. If the
argument(s) already exist(s) in the remember table, then the corresponding result(s)
are replaced with returns .

Given a function f := << x -> x >>  for example, valid calls are:

   rset(f, [1], [2]) ; rset(f, [1, 2], [2 ]);  rset(f, [1], [1, 2]) .

run (filename)

Opens the named file and executes its contents as a chunk. When called without
arguments, runrunrunrun executes the contents of the standard input (stdin). Returns all
values returned by the chunk. In case of errors, runrunrunrun propagates the error to its caller
(that is, runrunrunrun does not run in protected mode). 

See also: readlibreadlibreadlibreadlib, withwithwithwith.

save (o, fn)

Saves an object o of any type into a binary file denoted by file name fn .

The function is written in the Agena language and included in the library.agn  file.

agenaagenaagenaagena    >> 115



See also: readreadreadread, debug.debug.debug.debug.doubleendiantestdoubleendiantestdoubleendiantestdoubleendiantest .

select (f, o [, ...])

Returns all values in table, set, or sequence o that satisfy a condition determined by
function f. The type of return is determined by the type of second argument.
If the function has only one argument, then only the function and the object are
passed to selectselectselectselect.

> select(<< x -> x > 1 >>, [1, 2, 3]):
2 ~ 2
3 ~ 3

If the function has more than one argument, then all arguments except the first are
passed right after the name of the object.

> select(<< x, y -> x > y >>, {1, 2, 3}, 1):   # 1 for y
3
2

If present, the function also copies the metatable of o to the new structure.

See also: removeremoveremoveremove, mapmapmapmap, zipzipzipzip.

setfenv (f, table)

Sets the environment to be used by the given function. f  can be an Agena function
or a number that specifies the function at that stack level: Level 1 is the function
calling setfenvsetfenvsetfenvsetfenv. setfenvsetfenvsetfenvsetfenv returns the given function. 

As a special case, when f  is 0 setfenvsetfenvsetfenvsetfenv changes the environment of the running
thread. In this case, setfenvsetfenvsetfenvsetfenv returns no values.

setmeta (s, metatable)

setmetatable (s, metatable)

Sets the metatable for the given table, set, sequence, or pair s . (You cannot
change the metatable of other types from Agena, only from C.) If metatable  is nullnullnullnull,
removes the metatable of the given table. If the original metatable has a
'__metatable' field, raises an error. 

This function returns s .

settype (o [, ...], str)

settype (o [, ...], null)

In the first form the function sets the type of one or more procedures, sequences,
tables, sets, or pairs o to the name denoted by string str . gettypegettypegettypegettype and typeoftypeoftypeoftypeof will
then return this string when called with o. 

116 7 Standard Libraries



In the second form, by passing the nullnullnullnull constant, the user-defined type is deleted,
and gettypegettypegettypegettype thus will return nullnullnullnull whereas typeoftypeoftypeoftypeof will return the basic type of o. 

If o has no __tostring  metamethod, then Agena's pretty printer outputs the object
in the form str..'('..<elements>..')'  instead of the standard 'seq('..<elements>

..')'  or '<element>:<element>'  string.
Note that the try statement does not handle user-defined types.

See also: gettypegettypegettypegettype.

size (v)

With tables, the operator returns the number of key~value pairs in table v .

With sets and sequences, the operator returns the number of items in v. With strings,
the operator returns the number of characters in string v , i.e. the length of v .

sort (o [, comp])

Sorts table or sequence elements in a given order, in-place, from o[1]  to o[n] ,
where n is the length of the structure. If comp is given, then it must be a function that
receives two structure elements, and returns truetruetruetrue when the first is less than the
second (so that not comp(a[i+1], a[i])  will be truetruetruetrue after the sort). If comp is not
given, then the standard operator < is used instead. 

The sort algorithm is not stable; that is, elements considered equal by the given
order may have their relative positions changed by the sort.

time ()

Returns the time till start-up in seconds as a number.

toSeq (s)

If s  is a string, the function will split it into its characters and return them in a
sequence with each character in s as a sequence value, and in the same order as
the characters in s.

If s  is a table, the function puts all its values - but not its keys - into a sequence.
If s  is a set, the function puts all its items into a sequence.

toTable (s)

If s  is a string, the function splits it into its characters, and returns them in a table with
each character in s as a table value in the same order as the characters in s.

If s  is a sequence or set, the function converts it into a table.

agenaagenaagenaagena    >> 117



type (v)

This operator returns the basic type of its only argument, coded as a string. The
possible results of this function are 'null'  (a string, not the value nullnullnullnull), 'number' ,
'string' , 'boolean' , 'table' , 'set' , 'sequence' , 'pair' , 'complex',

'procedure' , 'thread' , and 'userdata' . 

If v is a sequence, pair, or procedure with a user-defined type, then typetypetypetype always
returns the basic type, i.e. 'sequence'  or 'pair' , or 'procedure' , respectively.

See also: typeoftypeoftypeoftypeof.

typeof (v)

This operator returns the user-defined type - if it exists - of its only argument, coded
as a string. 

A special type can be defined for procedures, pairs, sets, and sequences with the
settypesettypesettypesettype function. If there is no user-defined type for v, then the basic type is
returned, i.e. 'null'  (a string, not the value nullnullnullnull), 'number' , 'string' , 'boolean' ,
'table' , 'set' , 'sequence' , 'pair' , 'complex' , 'procedure' , 'thread' , and
'userdata' . 

See also: typetypetypetype.

unassigned (v)

This Boolean operator checks whether an expression v  evaluates to nullnullnullnull. If v  is a
constant, i.e. a number or a string, the operator always returns falsefalsefalsefalse.

See also: assignedassignedassignedassigned.

unpack (list [, i [, j]])

Returns the elements from the given table or sequence. This function is equivalent
to 

   return list[i], list[i+1], ···, list[j]

except that the above code can be written only for a fixed number of elements. By
default, i is 1 and j is the length of the list, as defined by the length operator.

used ()

Returns the total memory in use by Agena in Kbytes. It is a shortcut for gc('count') .
The function is written in the Agena language and included in the library.agn  file.

118 7 Standard Libraries



userinfo (fn, level [, ...])

Writes information to the user of a procedure fn  depending on the given level , an
integer. The information to be printed is passed as the third, etc. arguments and
may be either numbers or strings.

At first the procedure should be registered in the global infolevelinfolevelinfolevelinfolevel table along with a
level  (an integer) indicating the infolevel setting at which information will be printed.
If you do not enter an entry for the function to the infolevelinfolevelinfolevelinfolevel table, then nothing is
printed.

> f := proc(x) is
>    userinfo(f, 1, 'this is a primary info to the user:     ', x);
>    userinfo(f, 2, 'this is an additional info to the user: ', x)
> end;

If the level  argument to userinfouserinfouserinfouserinfo is equal or less than the infolevelinfolevelinfolevelinfolevel table setting,
then the information is printed, otherwise nothing is printed.

> infolevel[f] := 2;

> f('hello !');
this is a primary info to the user:     hello !
this is an additional info to the user: hello !

Now the infolevel is decreased such that less information will be output.

> infolevel[f] := 1;

> f('hello !');
this is a primary info to the user:     hello !

whereis (o, x)

Returns the indices for a given value x  in table or sequence o as a new table or
sequence, respectively. The function is written in the Agena language and
included in the library.agn  file.

See also: tables.indicestables.indicestables.indicestables.indices .

with (packagename [, key1, key2, ...])

Assigns short names to package procedures such that:

   name := packagename.name

The function works as follows:

• In both forms, withwithwithwith first tries to load and run the respective Agena package.
The package may reside in a text file with file suffix .agn , or in a C dynamic
link library with file suffix .so  in UNIX and .dll  in Windows, or both in a text file
and in a dynamic link library. The function traverses all paths in

agenaagenaagenaagena    >> 119



_EnvAgenaPath_EnvAgenaPath_EnvAgenaPath_EnvAgenaPath from left to right until it finds at least the C DLL or the Agena
text file, or both. If a package consists of both the C DLL and an Agena text
file, then they both must reside in the same folder.

• If the function does not find the package, an error is returned.

• Next, withwithwithwith tries to find a package initialisation procedure. If a procedure
named `packagename .init` is present in your package then it is executed if the
package has been found successfully.

• In the first form, if only the string packagename  is given, short names to all
functions residing in the global table packagename  are created.

You may optionally assign short names to either all or only specific
procedures. If you only want define short names to some of the functions,
define a table packagename .loaded and include the respective function
names as strings. If the table packagename .loaded is not present, withwithwithwith assigns
short names to all keys in packagename .

Note that if packagename.name  is not of type procedure, a short name is not
created for this object. 

If there is a table packagename .loaded, then withwithwithwith prints only those values
included in this table. If packagename .loaded does not exist, all keys in
packagename  are printed.

An example: If your package is called `agenapackage`, then the short
names to be printed are included in:

agenapackage.loaded := ['run', 'dosomething'];

If you would like to display a welcome message, put it into the string
packagename .initstring. It is displayed with an empty line before and after the
text. An example:

agenapackage.initstring := 'agenapackage v0.1 for A gena as of \

December 24, 2008\n';

• In the second form, you may specify which short names are to be assigned
by passing them as further arguments in the form of strings. Contrary to the
first form, short names are also created for tables stored to table
packagename . 

As opposed to the first version, withwithwithwith does not print any short names or
welcome messages on screen.

• Further information regarding both forms: 

120 7 Standard Libraries



The function returns a table of all short names assigneda table of all short names assigneda table of all short names assigneda table of all short names assigned .

If the global environment variable _EnvWithVerbose is set to falsefalsefalsefalse, no
messages are displayed on screen except in case of errors. If it is set to any
other value or nullnullnullnull, a list of all the short names loaded and a welcome
message is printed.

If a short name has already been assigned, a warning message is printed. If
a short name is protected (see table _EnvProtected), it cannot be overwritten
by withwithwithwith and a proper message is displayed on screen. You can control
which names are protected by modifying the contents of _EnvProtected.

In Windows, make sure that you have set the environment variable
AGENAPATH at least to the folder where the main Agena library resides (file
library.agn ) and that the paths do not end with slashes. You may set the
variable with the following statement, e.g.:

SET AGENAPATH=d:/agena/lib

if Agena is installed in the d:\agena  folder. In UNIX, Agena by default
searches in the /usr/agena/lib  folder if AGENAPATH has not been set.
 
Note that withwithwithwith executes any statements (and thus also any assignment)
included in the file packagename .agn.

The function is written in the Agena language and included in the library.agn  file.

See also: readlibreadlibreadlibreadlib, runrunrunrun.

write ([fh,] v1 [, v2 ...] [, delim ~ <str>])

This function prints a sequence of numbers or strings vk to the file denoted by the
handle fh, or to stdout (i.e. the console) if fh is not given. By default, no character is
inserted between neighbouring values. This may be changed by passing the option
'delim':<str>  (e.g. 'delim':'|'  or delim~'|')  as the last argument to the function
with <str>  being a string of any length. The function is an interface to io.writeio.writeio.writeio.write.

writeline ([fh,] v1 [, v2 ...] [, delim ~ <str>])     

This function prints a sequence of numbers or strings vk followed by a newline to the
file denoted by the handle fh, or to stdout (i.e. the console) if fh is not given. By
default, no character is inserted between neighbouring values. This may be
changed by passing the option 'delim':<str>  (i.e. a pair, e.g. 'delim':'|' ) as the
last argument to the function with <str>  being a string of any length. Remember
that in the function call, a shortcut to 'delim':<str>  is delim ~ <str> . The function
is an interface to io.writelineio.writelineio.writelineio.writeline .

agenaagenaagenaagena    >> 121



xpcall (f, err)

This function is similar to pcall , except that you can set a new error handler. 

xpcallxpcallxpcallxpcall calls function f  in protected mode, using err  as the error handler. Any error
inside f  is not propagated; instead, xpcallxpcallxpcallxpcall catches the error, calls the err  function
with the original error object, and returns a status code. Its first result is the status
code (a boolean), which is true if the call succeeds without errors. In this case,
xpcallxpcallxpcallxpcall also returns all results from the call, after this first result. In case of any error,
xpcallxpcallxpcallxpcall returns falsefalsefalsefalse plus the result from err .

zip (f, s1, s2)

This function zips together either two sequences or two tables s1 , s2  by applying the
function f  to each of its respective elements. The result is a new sequence or table
s where each element s[k] is determined by s[k] := f(s1 [k], s2 [k]). 

s1  and s2  must have the same number of elements. If you pass tables, they must
be table arrays, and not dictionaries.

If s1  or s2  have user-defined types or metatables, they are copied to the resulting
structure, as well.

See also: mapmapmapmap, selectselectselectselect, removeremoveremoveremove.

122 7 Standard Libraries



7777....2 2 2 2 CoroutineCoroutineCoroutineCoroutine Manipulation Manipulation Manipulation Manipulation

The operations related to coroutines comprise a sub-library of the basic library and
come inside the table coroutine .

coroutine.create (f)

Creates a new coroutine, with body f. f must be a Agena function. Returns this new
coroutine, an object with type 'thread'.

coroutine.resume (co [, val1, ···])

Starts or continues the execution of coroutine co . The first time you resume a
coroutine, it starts running its body. The values val1, ··· are passed as the arguments
to the body function. If the coroutine has yielded, resume restarts it; the values val1,
··· are passed as the results from the yield. 

If the coroutine runs without any errors, resume returns truetruetruetrue plus any values passed
to yield (if the coroutine yields) or any values returned by the body function (if the
coroutine terminates). If there is any error, resume returns falsefalsefalsefalse plus the error
message.

coroutine.running ()

Returns the running coroutine, or nullnullnullnull when called by the main thread. 

coroutine.status (co)

Returns the status of coroutine co , as a string: 'running', if the coroutine is running
(that is, it called status); 'suspended', if the coroutine is suspended in a call to yield,
or if it has not started running yet; 'normal' if the coroutine is active but not running
(that is, it has resumed another coroutine); and 'dead' if the coroutine has finished
its body function, or if it has stopped with an error.

coroutine.wrap (f)

Creates a new coroutine, with body f . f must be a Agena function. Returns a
function that resumes the coroutine each time it is called. Any arguments passed to
the function behave as the extra arguments to resume. Returns the same values
returned by resumeresumeresumeresume, except the first boolean. In case of error, propagates the error.

coroutine.yield (···)

Suspends the execution of the calling coroutine. The coroutine cannot be running a
C function, a metamethod, or an iterator. Any arguments to yield  are passed as
extra results to resume. 

agenaagenaagenaagena    >> 123



7777....3 3 3 3 ModulesModulesModulesModules

The package library provides basic facilities for loading and building modules in
Agena. It exports two of its functions directly in the global environment: requirerequirerequirerequire and
modulemodulemodulemodule. Everything else is exported in a table package . 

module (name [, ···])

Creates a module. If there is a table in package.loaded[name] , this table is the
module. Otherwise, if there is a global table t with the given name, this table is the
module. Otherwise creates a new table t and sets it as the value of the global
name and the value of package.loaded[name]. This function also initialises
t._NAME with the given name, t._M with the module (t itself), and t._PACKAGE with
the package name (the full module name minus last component; see below).
Finally, module sets t as the new environment of the current function and the new
value of package.loaded[name], so that require returns t. 

If name is a compound name (that is, one with components separated by dots),
module creates (or reuses, if they already exist) tables for each component. For
instance, if name is a.b.c, then module stores the module table in field c of field b
of global a. 

This function may receive optional options after the module name, where each
option is a function to be applied over the module.

require (modname)

Loads the given module. The function starts by looking into the table
package.loadedpackage.loadedpackage.loadedpackage.loaded to determine whether modname is already loaded. If it is, then
require returns the value stored at package.loaded[modname]. Otherwise, it tries to
find a loader for the module. 

To find a loader, first require queries package.preload[modname]. If it has a value,
this value (which should be a function) is the loader. Otherwise require searches for
a Agena loader using the path stored in package.path. If that also fails, it searches
for a C loader using the path stored in package.cpath. If that also fails, it tries an
all-in-one loader (see below). 

When loading a C library, require first uses a dynamic link facility to link the
application with the library. Then it tries to find a C function inside this library to be
used as the loader. The name of this C function is the string 'luaopen_'
concatenated with a copy of the module name where each dot is replaced by an
underscore. Moreover, if the module name has a hyphen, its prefix up to (and
including) the first hyphen is removed. For instance, if the module name is a.v1-b.c,
the function name will be luaopen_b_c. 

If require finds neither an Agena library nor a C library for a module, it calls the
all-in-one loader. This loader searches the C path for a library for the root name of

124 7 Standard Libraries



the given module. For instance, when requiring a.b.c, it will search for a C library for
a. If found, it looks into it for an open function for the submodule; in our example,
that would be luaopen_a_b_c. With this facility, a package can pack several C
submodules into one single library, with each submodule keeping its original open
function. 

Once a loader is found, require calls the loader with a single argument, modname.
If the loader returns any value, require assigns it to package.loaded[modname]. If
the loader returns no value and has not assigned any value to
package.loaded[modname], then require assigns truetruetruetrue to this entry. In any case,
require returns the final value of package.loaded[modname]. 

If there is any error loading or running the module, or if it cannot find any loader for
the module, then require signals an error. 

package.cpath

The path used by requirerequirerequirerequire to search for a C loader. 

Agena initialises the C path package.package.package.package.cpathcpathcpathcpath in the same way it initialises the Agena
path path path path package.package.package.package.pathpathpathpath, using the environment variable LUA_CPATH (plus another
default path defined in agnconf.h ). 

package.loaded

A table used by requirerequirerequirerequire to control which modules are already loaded. When you
require a module modname and package.loaded[modname]  is not falsefalsefalsefalse, require simply
returns the value stored there. 

package.loadlib (libname, funcname)

Dynamically links the host program with the C library libname . Inside this library, looks
for a function funcname and returns this function as a C function. (So, funcname
must follow the protocol (see lua_CFunction)). 

This is a low-level function. It completely bypasses the package and module
system. Unlike require, it does not perform any path searching and does not
automatically adds extensions. libname must be the complete file name of the C
library, including if necessary a path and extension. funcname must be the exact
name exported by the C library (which may depend on the C compiler and linker
used). 

This function is not supported by ANSI C. As such, it is only available on some
platforms (Windows, Linux, Mac OS X, Solaris, BSD, plus other Unix systems that
support the dlfcn standard).

agenaagenaagenaagena    >> 125



package.path

The path used by requirerequirerequirerequire to search for an Agena loader. 

At start-up, Agena initialises this variable with the value of the environment variable
LUA_PATH or with a default path defined in agnconf.h , if the environment variable is
not defined. Any ';;' in the value of the environment variable is replaced by the
default path. 

A path is a sequence of templates separated by semicolons. For each template,
require will change each interrogation mark in the template by filename, which is
modname with each dot replaced by a "directory separator" (such as "/" in Unix);
then it will try to load the resulting file name. So, for instance, if the Agena path is 

 './?.agn;./?.lc;/usr/local/?/init.agn'

the search for an Agena loader for module foo will try to load the files ./foo.agn,
./foo.lc, and /usr/local/foo/init.agn, in that order.

package.preload

A table to store loaders for specific modules (see requirerequirerequirerequire). 

package.seeall (module)

Sets a metatable for module  with its __index field referring to the global environment,
so that this module inherits values from the global environment. To be used as an
option to function module. 

126 7 Standard Libraries



7777....4 4 4 4 String ManipulationString ManipulationString ManipulationString Manipulation

A note in advance: All operators and stringsstringsstringsstrings package functions know how to handle
many diacritics properly. Thus, the lowerlowerlowerlower and upperupperupperupper operators know how to convert
these diacritics, and various isisisis* functions recognise diacritics as alphabetic
characters.

Diacritics in this context are the letters:

â  Â  ä  Ä  à  À  á  Á  å  Å  æ  Æ  ã  Ã
ê  Ê  ë  è  È  é  É  Ë
ï  Ï  î  Î  ì  Ì  í  Í  ý  Ý  ÿ
ô  Ô  ö  Ö  ò  Ò  ø  Ø  ó  Ó  õ  Õ
û  Û  ù  Ù  ü  Ü  ú  Ú
ç  Ç  ñ  Ñ  ð  Ð  þ  Þ  ß

7777....4.1 Kernel Operators and B4.1 Kernel Operators and B4.1 Kernel Operators and B4.1 Kernel Operators and B asic Lasic Lasic Lasic Library Fibrary Fibrary Fibrary Functionsunctionsunctionsunctions

replace  (s1, s2, s3)

replace  (s1, struct)

In the first form, the operator replaces all occurrences of string s2  in string s1  by
string s3 . 

In the second form, the operator receives a string s1  and a table or sequence of
one or more  string pairs of the form s2 :s3  and replaces all occurrences of s2  in
string s1  with the corresponding string s3 . Thus you can replace multiple patterns
with only one call to replacereplacereplacereplace.

The return is a new string.

s1 split  s2

Splits the string s1  into words. The delimiter is given by string s2 , which may consist of
one or more characters. The return is a table.

abs (s)

With strings, returns the numeric ASCII value of the given character s (a string of
length 1).

s1 in  s2

This binary operator checks whether the string s2  includes s1  and returns its position
as a number.

agenaagenaagenaagena    >> 127



lower (s)

Receives a string and returns a copy of this string with all uppercase letters ('A' to 'Z'
plus the above mentioned diacritics) changed to lowercase ('a' to 'z' and the above
mentioned diacritics). All other characters are left unchanged.

size (s)

With a string s returns its length, i.e. the number of characters in s.

toNumber (e [, base])

Tries to convert its argument to a number. If the argument is already a number or a
string convertible to a number, then toNumbertoNumbertoNumbertoNumber returns this number; otherwise, it
returns e if e is a se if e is a se if e is a se if e is a string, and tring, and tring, and tring, and failfailfailfail otherwise. The function recognises the strings
'undefined'  and 'infinity'  properly, i.e. it converts them to the corresponding
numeric values undefinedundefinedundefinedundefined and infinityinfinityinfinityinfinity, respectively.

An optional argument specifies the base to interpret the numeral. The base may be
any integer between 2 and 36, inclusive. In bases above 10, the letter 'A' (in either
upper or lower case) represents 10, 'B' represents 11, and so forth, with 'Z'
representing 35. In base 10 (the default), the number may have a decimal part, as
well as an optional exponent part (see 2.1). In other bases, only unsigned integers
are accepted. If an option is passed, 'undefined'  and 'infinity'  are not
converted to numbers; and if e could not be converted, failfailfailfail is returned.

toString (e)

Receives an argument of any type and converts it to a string in a reasonable
format. For complete control of how numbers are converted, use strings.formatstrings.formatstrings.formatstrings.format .

If the metatable of e has a '__tostring' field, then toString calls the corresponding
value with e as argument, and uses the result of the call as its result.

trim (s)

Returns a new string with all leading, trailing and excess embedded white spaces
removed.

upper (s)

Receives a string and returns a copy of this string with all lowercase letters ('a' to 'z'
plus the above mentioned diacritics) changed to uppercase ('A' to 'Z' and the
above mentioned diacritics). All other characters are left unchanged.

128 7 Standard Libraries



7777....4.2 The strings L4.2 The strings L4.2 The strings L4.2 The strings L ibraryibraryibraryibrary

The stringsstringsstringsstrings library provides generic functions for string manipulation, such as finding
and extracting substrings, and pattern matching. When indexing a string in Agena,
the first character is at position 1 (not at 0, as in C). Indices are allowed to be
negative and are interpreted as indexing backwards, from the end of the string.
Thus, the last character is at position -1, and so on. 

The strings library provides all its functions inside the table strings . It also sets a
metatable for strings where the __index  field points to the strings table. Therefore,
you can use the string functions in object-oriented style. For instance,
strings.repeat(s, i) can be written as s:repeat(i). 

strings.diamap (s)

The function corrects problems in the Solaris, Linux, OS/2, Windows, and DOS
consoles with diacritics and ligatures read in from a text file (even .agn program
files) by mapping them to their correct character codes. It takes a strings s, applies
the mapping, and returns a new string. All other characters are returned
unchanged.

Example:

> strings.diamap('AEIOU-Í_ã+Ï'):

AEIOUÄÖÜÆÅØ

Note that the function does not convert all existing special tokens.

strings.dump (function)

Returns a string containing a binary representation of the given function, so that a
later loadstringloadstringloadstringloadstring on this string returns a copy of the function. function  must be an
Agena function without upvalues. 

strings.find (s, pattern [, init [, plain]])

Looks for the first match of pattern   in the string s. If it finds a match, then find returns
the indices of s where this occurrence starts and ends; otherwise, it returns nullnullnullnull. A
third, optional numerical argument init specifies where to start the search; its default
value is 1 and may be negative. A value of truetruetruetrue as a fourth, optional argument
plain turns off the pattern matching facilities, so the function does a plain "find
substring" operation, with no characters in pattern being considered "magic". Note
that if plain is given, then init must be given as well. 

If the pattern has captures, then in a successful match the captured values are also
returned, after the two indices.

See also: inininin operator, strings.seekstrings.seekstrings.seekstrings.seek .

agenaagenaagenaagena    >> 129



strings.format (formatstring, ···)

Returns a formatted version of its variable number of arguments following the
description given in its first argument (which must be a string). The format string
follows the same rules as the printf  family of standard C functions. The only
differences are that the options/modifiers *, l, L, n, p, and h are not supported and
that there is an extra option, q. The q option formats a string in a form suitable to be
safely read back by the Agena interpreter: the string is written between double
quotes, and all double quotes, newlines, embedded zeros, and backslashes in the
string are correctly escaped when written. For instance, the call 

 strings.format('%q', 'a string with "quotes" and \ n new line')

will produce the string: 

 "a string with \"quotes\" and \
 new line"

The options c, d, E, e, f, g, G, i, o, u, X, and x all expect a number as argument,
whereas q and s expect a string. 

This function does not accept string values containing embedded zeros. 

strings.gmatch (s, pattern)

Returns an iterator function that, each time it is called, returns the next captures
from pattern  over string s. 

If pattern specifies no captures, then the whole match is produced in each call. 
As an example, the following loop 
 
 s := 'hello world from Lua'
 for w in strings.gmatch(s, '%a+') do
    print(w)
 od

will iterate over all the words from string s, printing one per line. The next example
collects all pairs key~value from the given string into a table:

 create table t;
 s := 'from=world, to=Lua'
 for k, v in strings.gmatch(s, '(%w+)=(%w+)') do
    t[k] := v
 od

strings.gsub (s, pattern, repl [, n])

Returns a copy of s  in which all occurrences of the pattern have been replaced by
a replacement string specified by repl, which may be a string, a table, or a
function. gsub also returns, as its second value, the total number of substitutions
made. 

130 7 Standard Libraries



If repl is a string, then its value is used for replacement. The character % works as an
escape character: any sequence in repl of the form %n, with n between 1 and 9,
stands for the value of the n-th captured substring (see below). The sequence %0
stands for the whole match. The sequence %% stands for a single %. 

If repl is a table, then the table is queried for every match, using the first capture as
the key; if the pattern specifies no captures, then the whole match is used as the
key. 

If repl is a function, then this function is called every time a match occurs, with all
captured substrings passed as arguments, in order; if the pattern specifies no
captures, then the whole match is passed as a sole argument. 

If the value returned by the table query or by the function call is a string or a
number, then it is used as the replacement string; otherwise, if it is falsefalsefalsefalse or nullnullnullnull, then
there is no replacement (that is, the original match is kept in the string). 

The optional last parameter n limits the maximum number of substitutions to occur.
For instance, when n is 1 only the first occurrence of pattern is replaced. 
Here are some examples: 

 x := strings.gsub('hello world', '(%w+)', '%1 %1')
 --> x = 'hello hello world world'
 
 x := strings.gsub('hello world', '%w+', '%0 %0', 1 )
 --> x = 'hello hello world'
 
 x := strings.gsub('hello world from Lua', '(%w+)%s *(%w+)', '%2 %1')
 --> x = 'world hello Lua from'
 
 x := strings.gsub('home = $HOME, user = $USER', '% $(%w+)', os.getenv)
 --> x = 'home = /home/roberto, user = roberto'
 
 x := strings.gsub('4+5 = $return 4+5$', '%$(.-)%$' , proc (s)
 return loadstring(s)()
 end)
 --> x = '4+5 = 9'
 
 local t := [name~'lua', version~'5.1']
 x = strings.gsub('$name%-$version.tar.gz', '%$(%w+ )', t)
 --> x = 'lua-5.1.tar.gz'

strings.hits (s, pattern)

Returns the number of occurrences of substring pattern in string s . The function does
not support regular expressions.

agenaagenaagenaagena    >> 131



strings.isAbbrev (str, pattern)

Determines whether a string str  is abbreviated by the substring pattern , i.e. whether
pattern  fits entirely to the beginning of the string str . The function returns truetruetruetrue or
falsefalsefalsefalse. The length of pattern  must always be less than that of str .

If str  or pattern  are empty strings, the function returns falsefalsefalsefalse.

See also: strings.isEndingstrings.isEndingstrings.isEndingstrings.isEnding .

strings.isAlpha (s)

Checks whether the string s  consists entirely of alphabetic letters and returns truetruetruetrue or
falsefalsefalsefalse.

See also: strings.isstrings.isstrings.isstrings.is LatinLatinLatinLatin.

strings.isAlphaNumeric (s)

Checks whether the string s  consists entirely of numbers or alphabetic letters and
returns truetruetruetrue or falsefalsefalsefalse. 

See also: strings.isstrings.isstrings.isstrings.is LatinLatinLatinLatinNumericNumericNumericNumeric.

string.isAlphaSpace (s)

Checks whether the string s  consists entirely of alphabetic letters and/or a white
space and returns truetruetruetrue or falsefalsefalsefalse. 

strings.isEnding (str, pattern)

Determines whether a string str  is ending in the substring pattern , i.e. whether
pattern  fits entirely to the end of the string str . The function returns truetruetruetrue or falsefalsefalsefalse. The
length of pattern  must always be less than that of str . 

If str  or pattern  are empty strings, the function returns falsefalsefalsefalse.

she function can be useful in linguistics if you want to check whether a word has a
given inflectional ending.

See also: strings.strings.strings.strings. isAbbrevisAbbrevisAbbrevisAbbrev.

strings.isLatin (s)

Checks whether the string s  entirely consists of the characters 'a' to 'z', and A' to 'Z'. It
returns truetruetruetrue or falsefalsefalsefalse. If s  is the empty string, the result is always falsefalsefalsefalse.

See also: strings.isAlphastrings.isAlphastrings.isAlphastrings.isAlpha .

132 7 Standard Libraries



strings.isLatinNumeric (s)

Checks whether the string s  consists entirely of numbers or Latin letters and returns
truetruetruetrue or falsefalsefalsefalse. 

See also: strings.isstrings.isstrings.isstrings.isAlphaNumericAlphaNumericAlphaNumericAlphaNumeric .

strings.isLowerAlpha (s)

Checks whether the string s  consists entirely of the characters a to z and lower-case
diacritics, and returns truetruetruetrue or falsefalsefalsefalse. If s  is the empty string, the result is always falsefalsefalsefalse.

See also: strings.isstrings.isstrings.isstrings.isUpperUpperUpperUpperAlphaAlphaAlphaAlpha.

strings.isLowerLatin (s)

Checks whether the string s  consists entirely of the characters 'a' to 'z', and returns
truetruetruetrue or falsefalsefalsefalse. If s  is the empty string, the result is always falsefalsefalsefalse.

See also: strings.isUpperLatinstrings.isUpperLatinstrings.isUpperLatinstrings.isUpperLatin .

strings.isMagic (s)

Checks whether the string s  contains one or more magic characters and returns
truetruetruetrue or falsefalsefalsefalse. In this function, magic characters are anything unlike the letters 'A' to
'Z', 'a' to 'z', and the diacritics listed at the top of this chapter.

strings.isNumber(s)

Checks whether the string s  consists entirely of the digits 0 to 9 and returns truetruetruetrue or
falsefalsefalsefalse.

strings.isNumberSpace (s)

Checks whether the string s  consists entirely of the digits 0 to 9 or white spaces and
returns truetruetruetrue or falsefalsefalsefalse.

strings.isUpperAlpha (s)

Checks whether the string s  consists entirely of the capital letters 'A' to 'Z' and
upper-case diacritics, and returns truetruetruetrue or falsefalsefalsefalse. If s  is the empty string, the result is
always falsefalsefalsefalse.

See also: strings.isstrings.isstrings.isstrings.is LowerAlphaLowerAlphaLowerAlphaLowerAlpha.

strings.isUpperLatin (s)

Checks whether the string s  consists entirely of the capital letters 'A' to 'Z', and returns
truetruetruetrue or falsefalsefalsefalse. If s  is the empty string, the result is always falsefalsefalsefalse.

agenaagenaagenaagena    >> 133



See also: strings.isstrings.isstrings.isstrings.is LowerLowerLowerLowerLatinLatinLatinLatin.

strings.ltrim (s [, c])

Returns a new string with all leading white spaces removed from s . If a single
character is passed for c  as an optional second argument, then all leading
characters given by c  are removed.

See also: trimtrimtrimtrim operator, strings.strings.strings.strings. rrrrtrimtrimtrimtrim.

strings.match (s, pattern [, init])

Looks for the first match of pattern  in the string s . If it finds one, then match returns
the captures from the pattern; otherwise it returns nullnullnullnull. If pattern specifies no
captures, then the whole match is returned. A third, optional numerical argument
init  specifies where to start the search; its default value is 1 and may be negative.

strings.put (str1, n, str2)

Inserts a new string str2  into the string str1  at the given position n, substituting the
respective character in str1  with the new string str2  which may consist of zero, one
or more characters. The return is a new string. If str2  is the empty string, the
character in str1  is deleted.

This function is more convenient than using a mix of substring and concatenation
operators and is as fast as them.

See also: strings.strings.strings.strings. removeremoveremoveremove.

strings.remove (str, pos, len)

Starting from string position pos , the function removes len  charcters from string str .
The return is a new string. 

It is not an error if len  is greater than the actual length of str . In this case all
characters starting at position pos  are deleted.

See also: strings.putstrings.putstrings.putstrings.put .

strings.repeat (s, n)

Returns a string that is the concatenation of n copies of the string s .

strings.reverse (s)

Returns a string that is the string s  reversed.

134 7 Standard Libraries



strings.rseek (s, pattern [, init])

Starting from the right end and always running to its left beginning, the function looks
for the first match of pattern  in the string s . If it finds a match, then find returns the
index of s  where this occurrence starts with respect to its left beginning; otherwise, it
returns nullnullnullnull. 

A third, optional numerical argument init  specifies where to start the search; its
default value is size size size size pattern  and may be negative. If init  is positive, the search
begins from the init 's character from the left (and also runs to the left). If init  is
negative, the search begins from the |init |'s character from the right (and runs to
the left, also).

The function is useful for example in linguistic research to search for inflectional
endings. 

See also: inininin operator, string.findstring.findstring.findstring.find, strings.seekstrings.seekstrings.seekstrings.seek .

strings.rtrim (s)

Returns a new string with all trailing white spaces removed from s . If a single
character is passed for c  as an optional second argument, then all trailing
characters given by c  are removed.

See also: trimtrimtrimtrim operator, strings.ltrimstrings.ltrimstrings.ltrimstrings.ltrim.

strings.seek (s, pattern [, init])

Looks for the first match of pattern  in the string s . If it finds a match, then find returns
the index of s  where this occurrence starts; otherwise, it returns nullnullnullnull. A third, optional
numerical argument init  specifies where to start the search; its default value is 1
and may be negative. Contrary to strings.findstrings.findstrings.findstrings.find, the function does not support
pattern matching facilities but is around 8 % faster. If you have to search a string
from its beginning, use the faster inininin operator.

See also: inininin operator, string.findstring.findstring.findstring.find, strings.rseekstrings.rseekstrings.rseekstrings.rseek .

strings.toChars (···)

Receives zero or more integers and returns a string with length equal to the number
of arguments, in which each character has the internal numerical code equal to its
corresponding argument. 

Note that numerical codes are not necessarily portable across platforms.

strings.words (s [, delim])

Counts the number of words in a string s . A word is any sequence of characters
surrounded by white spaces or its left and right borders. However, the user can

agenaagenaagenaagena    >> 135



define any other delimitor by passing a character delim  (of type string) as a second
argument. The return is a number.

7777....4.3 4.3 4.3 4.3 PatternsPatternsPatternsPatterns

Character Class:Character Class:Character Class:Character Class:

A character class is used to represent a set of characters. The following
combinations are allowed in describing a character class:

� xxxx:::: (where x is not one of the magic characters ^$()%.[]*+-?) represents the
character x itself. 

• ....:::: (a dot) represents all characters. 
• %a%a%a%a:::: represents all letters. 
• %c%c%c%c:::: represents all control characters. 
• %d%d%d%d:::: represents all digits. 
• %l%l%l%l:::: represents all lowercase letters. 
• %p%p%p%p:::: represents all punctuation characters. 
• %s%s%s%s:::: represents all space characters. 
• %u%u%u%u:::: represents all uppercase letters. 
• %w%w%w%w:::: represents all alphanumeric characters. 
• %x%x%x%x:::: represents all hexadecimal digits. 
• %z%z%z%z:::: represents the character with representation 0. 
� %x: (where x is any non-alphanumeric character) represents the character x.

This is the standard way to escape the magic characters. Any punctuation
character (even the non magic) can be preceded by a '%' when used to
represent itself in a pattern.

• [[[[set]]]]:::: represents the class which is the union of all characters in set. A range
of characters may be specified by separating the end characters of the
range with a '-'. All classes %x described above may also be used as
components in set. All other characters in set represent themselves. For
example, [%w_] (or [_%w]) represents all alphanumeric characters plus the
underscore, [0-7] represents the octal digits, and [0-7%l%-] represents the
octal digits plus the lowercase letters plus the '-' character. 

� The interaction between ranges and classes is not defined. Therefore,
patterns like [%a-z] or [a-%%] have no meaning. 

• [^ set] :::: represents the complement of set, where set is interpreted as above.

For all classes represented by single letters (%a, %c, etc.), the corresponding
uppercase letter represents the complement of the class. For instance, %S

represents all non-space characters. 

The definitions of letter, space, and other character groups depend on the current
locale. In particular, the class [a-z] may not be equivalent to %l. 

Pattern Item:

A pattern item may be 

136 7 Standard Libraries



• a single character class, which matches any single character in the class; 
• a single character class followed by '*', which matches 0 or more repetitions

of characters in the class. These repetition items will always match the
longest possible sequence; 

• a single character class followed by '+', which matches 1 or more repetitions
of characters in the class. These repetition items will always match the
longest possible sequence; 

• a single character class followed by '-', which also matches 0 or more
repetitions of characters in the class. Unlike '*', these repetition items will
always match the shortest possible sequence; 

• a single character class followed by '?', which matches 0 or 1 occurrence of
a character in the class; 

• %n, for n between 1 and 9; such item matches a substring equal to the n-th
captured string (see below); 

• %bxy, where x and y are two distinct characters; such item matches strings
that start with x, end with y, and where the x and y are balanced. This means
that, if one reads the string from left to right, counting +1 for an x and -1 for a
y, the ending y is the first y where the count reaches 0. For instance, the item
%b() matches expressions with balanced parentheses.

Pattern:Pattern:Pattern:Pattern:

A pattern is a sequence of pattern items. A '^ '  at the beginning of a pattern
anchors the match at the beginning of the subject string. A '$' at the end of a
pattern anchors the match at the end of the subject string. At other positions, '^'
and '$' have no special meaning and represent themselves. 

Captures:Captures:Captures:Captures:

A pattern may contain sub-patterns enclosed in parentheses; they describe
captures. When a match succeeds, the substrings of the subject string that match
captures are stored (captured) for future use. Captures are numbered according to
their left parentheses. For instance, in the pattern '(a*(.)%w(%s*))', the part of the
string matching 'a*(.)%w(%s*)' is stored as the first capture (and therefore has
number 1); the character matching '.' is captured with number 2, and the part
matching '%s*' has number 3. 

As a special case, the empty capture () captures the current string position (a
number). For instance, if we apply the pattern '()aa()' on the string 'flaaap', there will
be two captures: 3 and 5. 

A pattern cannot contain embedded zeros. Use %z instead.

agenaagenaagenaagena    >> 137



7777....5 5 5 5 Table ManipulationTable ManipulationTable ManipulationTable Manipulation

7777....5.1 Kernel O5.1 Kernel O5.1 Kernel O5.1 Kernel O peratorsperatorsperatorsperators

The following functions have been built into the kernel as unary operators.

copy (table)

The operator copies the entire contents of a table into a new table. If the table
contains tables itself, those tables are also copied properly (by a `deep copying`
method). Metatables and user-defined types are copied, too.

filled (table)

Checks whether table contains at least one element. The return is truetruetruetrue or falsefalsefalsefalse. The
function works on dictionaries, as well.

join (table)

Concatenated all string values in the table in sequential order and returns a string.

map (f, table [, ...])

Maps the function f on all elements of a table. See map in chapter 7.1 for more
information.

qsadd (obj)

Raises all numeric values in table or sequence obj to the power of 2 and sums up
these powers. The return is a number. If obj is empty or consists entirely of
non-numbers, nullnullnullnull is returned. If the table or sequence contains numbers and other
objects, only the powers of the numbers are added. Entries with non-numeric keys
are ignored.

sadd (obj)

Sums up all numeric values in table or sequence obj. The return is a number. If obj is
empty or consists entirely of non-numbers, nullnullnullnull is returned. If the object contains
numbers and other objects, only the numbers are added. Entries with non-numeric
keys are ignored.

unique (table)

The uniqueuniqueuniqueunique operator removes all holes (`missing keys`) in a table and removes
multiple occurrences of the same value, if present. The return is a new table with
the original table unchanged.

138 7 Standard Libraries



The following functions have been built into the kernel as binary operators.

Please note that the operators returning a Boolean work in a Cantor way, i.e. {1, 1}

= {1}   true, {1, 2} xsubset {1, 1, 2, 2, 3, 3 }   true.d d

table1 =  table2

This equality check of two tables table1 , table2  first tests whether table1  and table2

point to the same table reference in memory. If so, it returns truetruetruetrue and quits. 

If not, the operator then checks whether table1  and table2  contain the same
values without regard to their keys, and returns truetruetruetrue or falsefalsefalsefalse. In this case, the search
is quadratic.

table1 <>  table2

This inequality check of two tables table1 , table2  first tests whether table1  and
table2  do not point to the same table reference in memory. If so, it returns truetruetruetrue and
quits. 

If not, the operator then checks whether table1  and table2  do not contain the
same values, and returns truetruetruetrue or falsefalsefalsefalse. In this case, the search is quadratic.

c in  table

Checks whether table  contains the value c  and returns truetruetruetrue or falsefalsefalsefalse. The search is
linear.

table1 intersect  table2

Searches all values in table1  that are also values in table2  and returns them in a
new table. The search is quadratic, so you may use tables.bintersecttables.bintersecttables.bintersecttables.bintersect instead if you
want to compare large tables since bintersectbintersectbintersectbintersect  performs a binary search.

table1 minus  table2

Searches all values in table1  that are not values in table2  and returns them as a
new table. The search is quadratic, so you may use tables.bminustables.bminustables.bminustables.bminus instead if you
want to compare large tables since bminusbminusbminusbminus performs a binary search.

table1 subset  table2

Checks whether all values in table1  are included in table2  and returns truetruetruetrue or falsefalsefalsefalse.
The operator also returns truetruetruetrue if table1  = table2 . The search is quadratic.

table1 union  table2

Concatenates two tables table1  and table2  simply by copying all its elements -
even if they occur multiple times - to a new table.

agenaagenaagenaagena    >> 139



table1 x subset  table2

Checks whether all values in table1  are included in table2  and whether table2

contains at least one further element, so that the result is always falsefalsefalsefalse if table1  =
table2 . The search is quadratic.

7777....5.2 tables L5.2 tables L5.2 tables L5.2 tables L ibraryibraryibraryibrary

This library provides generic functions for table manipulation. It provides all its
functions inside the table tables . 

Most functions in the table library assume that the table represents an array or a list.
For these functions, when we talk about the 'length' of a table we mean the result of
the length operator. 

tables.bintersect (table1, table2 [, option])

Returns all values of table1  that are also values in table2 . The functions performs a
binary search in table2  for each value in table1 . If no option is given, table2  is
sorted before starting the search. If you pass an option of any value then table2

should already have been sorted, for no correct results would be returned
otherwise. 

With larger tables, this function is much faster than the intersectintersectintersectintersect operator.

The function is written in the Agena language and included in the library.agn  file.

tables.bisEqual (s1, s2 [, option])

Determines whether the table or sequence s1  contains the same values as the
sequence or table s2 . The functions performs a binary search in s2  for each value in
s1 . If no option is given (any value), s2  is sorted before starting the search. If you
pass an option of any type then s2 should already have been sorted, for no correct
results would be returned otherwise. 

With larger tables, this function is much faster than the ==== operator.

The function is written in the Agena language and included in the library.agn  file.

tables.bminus (table1, table2 [, option])

Returns all values of table1  that are not values in  table2 . The functions performs a
binary search in  table2  for each value in  table1 . If no option is given, table2  is
sorted before starting the search. If you pass the option then table2 should already
have been sorted, for no correct results would be returned otherwise.

With larger tables, this function is much faster than the minusminusminusminus operator.

140 7 Standard Libraries



The function is written in the Agena language and included in the library.agn  file.

tables.duplicates (o, option)

Returns all the values that are stored more than once to the given table or
sequence o, and returns them in a table or sequence. Each duplicate is returned
only once. If option is not given, the structure is sorted before evaluation since this is
needed to determine all duplicates. The original structure is left untouched,
however. If an option of any type is given, the function assumes that the structure
has been already sorted. 

The function is written in the Agena language and included in the library.agn  file.

tables.indices (tbl)

Returns all keys of a table as a new table. See also: tables.getvaluestables.getvaluestables.getvaluestables.getvalues .

tables.maxn (table)

Returns the largest positive numerical index of the given table, or zero if the table
has no positive numerical indices. (To do its job this function does a linear traversal
of the whole table.)

tables.put (table, [pos,] value)

Inserts element value at position pos in table, shifting up other elements to open
space, if necessary. The default value for pos is n+1, where n is the length of the
table, so that a call tables.put(t,x) inserts x at the end of table t.

Use the insertinsertinsertinsert element intointointointo table statement if you want to add an element at the
current end of a table.

tables.remove (table [, pos])

Removes from table the element at position pos, shifting down other elements to
close the space, if necessary. Returns the value of the removed element. The
default value for pos is n, where n is the length of the table, so that a call
tables.remove(t) removes the last element of table t.

Use the deletedeletedeletedelete element fromfromfromfrom table statement if you want to remove any
occurence of the table value element from a table.

tables.writeTable (table, filename [, delim])

The function is obsolete. Please use the more flexible utils.writeCSVutils.writeCSVutils.writeCSVutils.writeCSV  function instead.

agenaagenaagenaagena    >> 141



7777....6 6 6 6 Set ManipulationSet ManipulationSet ManipulationSet Manipulation

The following functions have been built into the kernel as unary operators.

copy (set)

The operator copies the entire contents of a set into a new set. If the set contains
other sets - even nested ones-, those sets are also copied properly (by a `deep
copying` method). Metamethods if present, are also copied.

filled (set)

Checks whether a set contains at least one element. The return is truetruetruetrue or falsefalsefalsefalse.

The following functions have been built into the kernel as binary operators.

Please note that the operators returning a Boolean work in a Cantor way, i.e. {1, 1}

= {1}   true, {1, 2} xsubset {1, 1, 2, 2, 3, 3 }   true.d d

set1 =  set2

This equality check of two sets set1 , set2  first tests whether set1  and set2  point to
the same set reference in memory. If so, it returns truetruetruetrue and quits. 

If not, the operator then checks whether set1  and set2  contain the same items,
and returns truetruetruetrue or falsefalsefalsefalse. In this case, the search is linear.

table1 <>  table2

This inequality check of two tables set1 , set2  first tests whether set1  and set2  do not
point to the same set reference in memory. If so, it returns truetruetruetrue and quits. 

If not, the operator then checks whether set1  and set2  do not contain the same
items, and returns truetruetruetrue or falsefalsefalsefalse. In this case, the search is linear.

c in  set

Checks whether set  contains the item c  and returns truetruetruetrue or falsefalsefalsefalse. The search is
constant.

set1 intersect  set2

Searches all items in set1  that are also items in set2  and returns them in a set. The
search is linear.

142 7 Standard Libraries



set1 minus  set2

Searches all items in set1  that are not items in set2  and returns them as a set. The
search is linear.

set1 subset  set2

Checks whether all items in set1  are included in set2  and returns truetruetruetrue or falsefalsefalsefalse. The
operator also returns truetruetruetrue if set1  = set2 . The search is linear.

set1 union  set2

Concatenates two sets set1  and  set2  simply by copying all its items to a new set.

set1 x subset  set2

Checks whether all items in set1  are included in set2  and whether set2  contains at
least one further item, so that the result is always falsefalsefalsefalse if set1  = set2 . The search is
linear.

agenaagenaagenaagena    >> 143



7777.7 .7 .7 .7 Sequence ManipulationSequence ManipulationSequence ManipulationSequence Manipulation

With the exception of mapmapmapmap, the following functions have been built into the kernel
as unary operators.

copy (seq)

The operator copies the entire contents of a sequence into a new table. If the
sequence contains sequence itself, those sequence are also copied properly (by a
`deep copying` method). Metatables and user-defined types are copied, too.

filled (seq)

Checks whether sequence contains at least one element. The return is truetruetruetrue or falsefalsefalsefalse.

join (seq)

Concatenated all string values in the sequence in sequential order and returns a
string.

qsadd (seq)

Raises all numeric values in sequence seq to the power of 2 and sums up these
powers. The return is a number. If seq is empty or consists entirely of non-numbers,
nullnullnullnull is returned. If the sequence contains numbers and other values, only the
powers of the numbers are added. 

sadd (seq)

Sums up all numeric values in sequence seq. The return is a number. If seq is empty
or consists entirely of non-numbers, nullnullnullnull is returned. If seq contains numbers and
other values, only the numbers are added.

unique (seq)

With sequences, the uniqueuniqueuniqueunique operator removes multiple occurrences of the same
item, if present. The return is a new sequence with the original sequence
unchanged.

144 7 Standard Libraries



The following functions have been built into the kernel as binary operators.

Please note that the operators returning a Boolean work in a Cantor way, i.e. seq(1,

1) = seq(1)   true, seq(1, 2) xsubset seq(1, 1, 2, 2, 3, 3)   true.d d

seq1 =  seq2

This equality check of two sequences seq1 , seq2  first tests whether seq1  and seq2

point to the same sequence reference in memory. If so, it returns truetruetruetrue and quits. 

If not, the operator then checks whether seq1  and seq2  contain the same values
without regard to their keys, and returns truetruetruetrue or falsefalsefalsefalse. In this case, the search is
quadratic.

seq1 <>  seq2

This inequality check of two sequences seq1 , seq2  first tests whether seq1  and seq2

do not point to the same sequence reference in memory. If so, it returns truetruetruetrue and
quits. 

If not, the operator then checks whether seq1  and seq2  do not contain the same
values, and returns truetruetruetrue or falsefalsefalsefalse. In this case, the search is quadratic.

c in  seq

Checks whether seq  contains the value c  and returns truetruetruetrue or falsefalsefalsefalse. The search is
linear.

seq1 intersect  seq2

Searches all values in seq1  that are also values in seq2  and returns them in a
sequence. The search is quadratic.

seq1 minus  seq2

Searches all values in seq1  that are not values in seq2  and returns them as a
sequence. The search is quadratic.

seq1 subset  seq2

Checks whether all values in seq1  are included in seq2  and returns truetruetruetrue or falsefalsefalsefalse. The
operator also returns truetruetruetrue if seq1  = seq2 . The search is quadratic.

seq1 union  seq2

Concatenates two sequences seq1  and seq2  simply by copying all its elements -
even if they occur multiple times - to a new sequence.

agenaagenaagenaagena    >> 145



seq1 x subset  seq2

Checks whether all values in seq1  are included in seq2  and whether seq2  contains
at least one further element, so that the result is always falsefalsefalsefalse if seq1  = seq2 . The
search is quadratic.

146 7 Standard Libraries



7777....8 8 8 8 Mathematical FunctionsMathematical FunctionsMathematical FunctionsMathematical Functions

7777....8888.1 Kernel O.1 Kernel O.1 Kernel O.1 Kernel Operatorsperatorsperatorsperators

The following functions have been built into the kernel as operators.

abs (x)

If x  is a number, absabsabsabs returns the absolute value of x . Complex numbers are
supported.

arctan (x)

Arc tangent (x  in radians). Complex numbers are supported.

cos (x)

Cosine (x  in radians). Complex numbers are supported.

cosh (x)

Returns the hyperbolic cosine of x . Complex numbers are supported.

entier (x)

Rounds x  downwards to the nearest integer. Complex numbers are supported.

See also: math.ceilmath.ceilmath.ceilmath.ceil .

even (x)

Checks whether x  is even. Returns truetruetruetrue if x  is even, and falsefalsefalsefalse otherwise.

exp (x)

Exponential function, returns the value ex. Complex numbers are supported.

finite (x)

Checks whether x  is not plus or minus infinityinfinityinfinityinfinity, and is not undefinedundefinedundefinedundefined (NaN). Returns
truetruetruetrue if x  is a "number' and falsefalsefalsefalse otherwise.

float (x)

Checks whether the number x  is a float, i.e. not an integer, and returns truetruetruetrue or falsefalsefalsefalse.
If x is not a number, the operator returns failfailfailfail.

gammaln (x)

Computes ln � x . If x  is nonpositive, the function returns undefinedundefinedundefinedundefined.

int (x)

Rounds x  to the nearest integer towards zero.

agenaagenaagenaagena    >> 147



ln (x)

Natural logarithm of x . If x  is nonpositive, the function returns undefinedundefinedundefinedundefined. Complex
numbers are supported.

sign (x)

Determines the sign of the number or complex value x . If x  is a complex value, the
result is determined as follows: 

� 1, if real(x ) > 0 or real(x ) = 0 and imag(x ) > 0
� -1,  if real(x ) < 0 or real(x ) = 0 and imag(x ) < 0
� 0 otherwise.

sin (x)

Sine (x  in radians). Complex numbers are supported.

sinh (x)

Returns the hyperbolic sine of x . Complex numbers are supported.

sqrt (x)

Square root of x . 

If x  is a number and negative, the function returns undefinedundefinedundefinedundefined. 

With complex numbers, the operator returns the complex square root, in the range
of the right halfplane including the imaginary axis.

tan (x)

Tangent of x  (x  in radians). Complex numbers are supported.

tanh (x)

Hyperbolic tangent of x  (x  in radians). Complex numbers are supported.

7.8.2 math Library7.8.2 math Library7.8.2 math Library7.8.2 math Library

This library is an interface to the standard C math library. It provides all its functions
inside the table math .

math.approx (a, b [, eps])

Compares the two numbers a and b and checks whether they are approximately
equal using a simplified relative approximation algorithm developed by Donald H.
Knuth. If eps  is omitted,    _EnvEps_EnvEps_EnvEps_EnvEps is used. (The algorithm checks whether the relative
error is  bound to a given tolerance eps.)

148 7 Standard Libraries



The function returns truetruetruetrue if a and b are considered equal or falsefalsefalsefalse otherwise.

math.arccos (x)

Returns the arc cosine of x  (in radians). The function works on both numbers and
complex values. 

math.arccosh (x)

Returns the inverse hyperbolic cosine of x  (in radians). The function is implemented
in the Agena language and included in the library.agn  file. The function works on
both numbers and complex values.

math.arccoth (x)

Returns the inverse hyperbolic cotangent of x  (in radians). The function works on
both numbers and complex values.

math.arcsin (x)

Returns the arc sine of x  (in radians). The function works on both numbers and
complex values.

math.arcsinh (x)

Returns the inverse hyperbolic sine of x  (in radians). The function is implemented in
the Agena language and included in the library.agn  file. The function works on
both numbers and complex values.

math.arctanh (x)

Returns the inverse hyperbolic tangent of x  (in radians). The function is
implemented in the Agena language and included in the library.agn  file. The
function works on both numbers and complex values.

math.arctan2 (y, x)

Returns the arc tangent of y/x  (in radians), but uses the signs of both parameters to
find the quadrant of the result. (It also handles correctly the case of y being zero.) x
and y  must be numbers or complex numbers.

math.argument (z)

Returns the argument (the phase angle) of the complex value z  in radians as a
number; if z  is a number, the function returns 0.

agenaagenaagenaagena    >> 149



math.binomial (n, k)

Returns the binomial coefficient as a number. The function returns undefinedundefinedundefinedundefined, if n or
k  are negative.

math.convertbase (s, a, b)

Converts a number s  or a number represented as a string s  from base a to base b.
a and b must be integers in the range 1 to 36. The number in s  must be an integer
of any sign. Floats are not allowed. The return is a string. The function is
implemented in the Agena language and included in the library.agn  file.

math.ceil (x)

Rounds upwards to the nearest integer larger than or equal to the number or
complex number x . See the entierentierentierentier operator for a function that rounds downwards to
the nearest integer. The function is implemented in the Agena language and
included in the library.agn  file.

math.conj (z)

The conjugate x-I*y of the complex value z=x+I*y. If z  is of type number, it is simply
returned.

math.cot (x)

Returns the cotangent -tan(Pi/2+x ) as a number. The function is implemented in the
Agena language and included in the library.agn  file. The function works on both
numbers and complex values.

math.coth (x)

Returns the hyperbolic cotangent 1/tanh(x ) as a number. The function is
implemented in the Agena language and included in the library.agn  file. The
function works on both numbers and complex values.

math.csc(x)

Returns the cosecant 1/sin(x ) as a number. The function is implemented in the
Agena language and included in the library.agn  file. The function works on both
numbers and complex values.

math.diff (f, x [, eps])

Differentiates a function in one variable at the point x  and returns a number. If eps  is
not passed, the function uses an accuracy of the value stored to _EnvEps . You may
pass another numeric value for eps  if necessary.

The function is implemented in the Agena language and included in the
library.agn  file.

150 7 Standard Libraries



math.fact (n)

Returns the factorial of n, i.e. the product of the values from 1 to n. If n is not an
integer or if n is negative, the function returns undefinedundefinedundefinedundefined. The function is
implemented in the Agena language and included in the library.agn  file. It
features a defaults remember table which you may extend by editing the
library.agn  file.

math.fmod (x, y)

Returns the remainder of the division of x  by y , with x , y  numbers.

math.frac (x)

Returns the fractional part of the number x , i.e. x  - int(x ). The function is
implemented in the Agena language and included in the library.agn  file.

math.frexp (x)

Returns m and e such that x = m2e, e is an integer and the absolute value of m is in
the range [0.5, 1) (or zero when x  is zero). 

math.gcd (a, b)

Returns the greatest common divisor of the numbers a and b as a number. The
function is implemented in the Agena language and included in the library.agn

file.

math.gtrap (f, a, b [, eps])

Integrates the function f  on the interval [a, b] using a bisection method based on
the trapezoid rule and returns a number. By default the function quits after an
accurarcy of eps  = _EnvEps_EnvEps_EnvEps_EnvEps has been reached. You may pass another numeric
value for eps  if necessary.

The function is implemented in the Agena language and included in the
library.agn  file.

math.heaviside (x)

The Heaviside function. Returns 0 if x  < 0, undefinedundefinedundefinedundefined if x  = 0, and 1 if x  > 0. The
function is implemented in the Agena language and included in the library.agn

file.

math.hypot (x, y)

Returns sqrt(x*x  + y*y ) with x , y  numbers. This is the length of the hypotenuse of a
right triangle with sides of length x  and y , or the distance of the point (x , y ) from the

agenaagenaagenaagena    >> 151



origin. The function is slower but more precise than using sqrtsqrtsqrtsqrt. The return is a
number.

math.irem (x, y)

Evaluates the remainder of an integer division x /y  (with x , y  two Agena numbers).
The return is a number. The remainder r has the same sign as the numerator. If x

and y  are integers and q the integer quotient of x  and y , then the function returns
the remainder such that x  = y*q + r, |r| < |y| and x*r >= 0.

math.isPrime (x)

Returns truetruetruetrue, if the integral number x  is a prime number, and falsefalsefalsefalse otherwise.

math.lcm(a, b)

Returns the least common multiple of to numbers a and b as a number. The
function is implemented in the Agena language and included in the library.agn

file.

math.ldexp (m, e)

Returns m2e (e should be an integer).

math.log (x, b)

Returns the logarithm of the number or complex number x  to the base b, with b a
number or a complex number. The function is implemented in the Agena
language and included in the library.agn  file.

math.log10 (x)

Returns the base-10 logarithm of the number or complex number x . The function is
implemented in the Agena language and included in the library.agn  file.

math.max (x, ···)

Returns the maximum value among its arguments. 

math.min (x, ···)

Returns the minimum value among its arguments. 

math.modf (x)

Returns two numbers, the integral part of x  and the fractional part of x .

152 7 Standard Libraries



math.Phi

The golden number, Phi = (1+sqrt(5))/2. 

math.random ([m [, n]])

This function is an interface to the simple pseudo-random generator function rand

provided by ANSI C. (No guarantees can be given for its statistical properties.) 

When called without arguments, returns a pseudo-random real number in the
range [0,1). When called with a number m, math.random  returns a
pseudo-random integer in the range [1, m]. When called with two numbers m and
n, math.random  returns a pseudo-random integer in the range [m, n].

math.randomseed (x)

Sets x  as the "seed" for the pseudo-random generator: equal seeds produce equal
sequences of numbers.

math.root (x, n)

Returns the non-principal n-th root of the number or complex value x . n must be an
integer.

math.roundf (x [, d])

Rounds the number x  to the d-th digit. Return is a number. If d is omitted, the
number is rounded to the nearest integer. The following Agena code explains the
algorithm used:

roundf := proc(x, digs) is
   local d;
   if digs = null then d := 0 else d := digs fi;
   return int((10^d)*x + sign(x)*0.5) * (10^(-d))
end;

math.sec(x)

Returns the secant 1/cos(x ) as a number. The function is implemented in the Agena
language and included in the library.agn  file. The function works on both numbers
and complex values.

math.toDecimal (h [, m [, s]])

Converts a sexagesimal time value given in hours h, minutes m and seconds s  into
its decimal representation. The optional arguments m and s  default to 0. The
function is implemented in the Agena language and included in the library.agn

file.

agenaagenaagenaagena    >> 153



math.toRadians (d [, m [, s]])

Returns the angle given in degrees d, minutes m and seconds s , in radians. The
optional arguments m and s default to 0.

7777....9999 Input and Output FacilitiesInput and Output FacilitiesInput and Output FacilitiesInput and Output Facilities

The I/O library provides two ways for file manipulation. The first one uses implicit file
descriptors; that is, there are operations to set a default input file and a default
output file, and all input/output operations are over these default files. The second
style uses explicit file descriptors. 

The table io  provides three predefined file descriptors with their usual meanings
from C: io.stdin , io.stdout , and io.stderr . 

Unless otherwise stated, all I/O functions return nullnullnullnull on failure (plus an error message
as a second result) and some value different from nullnullnullnull on success. 

io.close ([file])

Closes file . Note that files are automatically closed when their handles are
garbage collected, but that takes an unpredictable amount of time to happen.
Without a file, closes the default output file.

io.flush (file)

io.flush ()

In the first form, saves any written data to file . In the second form, the function

flushes default output.    

io.getkey ()

Reads a key from the keyboard and returns its ASCII number. The function works on
UNIX and Windows based platforms only. The function is not available on other
platforms.

io.input ([file])

When called with a file name, it opens the named file (in text mode), and sets its
handle as the default input file. When called with a file handle, it simply sets this file
handle as the default input file. When called without parameters, it returns the
current default input file. 

In case of errors this function raises the error, instead of returning an error code. 

io.isfdesc (obj)

Checks whether obj  is a valid file handle. Returns true if obj is an open file handle, or
falsefalsefalsefalse if obj is not a file handle.

154 7 Standard Libraries



io.lines ([filename])

io.lines ([file])

In the first form, the function opens the given file name in read mode and returns
an iterator function that, each time it is called, returns a new line from the file.

In the second form, the function opens the given file in read mode and returns an
iterator function that, each time it is called, returns a new line from the file.

Therefore, the construction 

   for keys line in io.lines(f) do body od

will iterate over all lines of the file denoted by f . When the iterator function detects
the end of file, it returns nullnullnullnull (to finish the loop) and automatically closes the file if a
filename is given. In case of a  file handle, the file is not closed.

The call io.lines()  (without a file name) is equivalent to io.input()@lines(); that is, it
iterates over the lines of the default input file. In this case it does not close the file
when the loop ends. 

io.open (filename [, mode])

This function opens a file, in the mode specified in the string mode. It returns a new
file handle, or, in case of errors, nullnullnullnull plus an error message. 

The mode string can be any of the following: 

• 'r':'r':'r':'r': read mode (the default); 
• 'w':'w':'w':'w': write mode; 
• 'a':'a':'a':'a': append mode; 
• 'r+':'r+':'r+':'r+': update mode, all previous data is preserved; 
• 'w+':'w+':'w+':'w+': update mode, all previous data is erased; 
• 'a+':'a+':'a+':'a+': append update mode, previous data is preserved, writing is only

allowed at the end of file. 

The mode string may also have a 'b' at the end, which is needed in some systems to
open the file in binary mode. This string is exactly what is used in the standard C
function fopen. 

io.output ([file])

Similar to io.inputio.inputio.inputio.input but operates over the default output file. 

agenaagenaagenaagena    >> 155



io.popen ([prog [, mode]])

Starts program prog  in a separated process and returns a file handle that you can
use to read data from this program (if mode is 'r', the default) or to write data to this
program (if mode is 'w'). 

This function is system dependent and is not available on all platforms. 

io.read(file)

io.read ()

In the first form, reads the file file , according to the given formats, which specify
what to read. For each format, the function returns a string (or a number) with the
characters read, or nullnullnullnull if it cannot read data with the specified format. When
called without formats, it uses a default format that reads the entire next line (see
below). 

The available formats are 

• '*n':'*n':'*n':'*n': reads a number; this is the only format that returns a number instead of a
string. 

• '*a':'*a':'*a':'*a': reads the whole file, starting at the current position. On end of file, it
returns the empty string. 

• '*l':'*l':'*l':'*l': reads the next line (skipping the end of line), returning nullnullnullnull on end of file.
This is the default format. 

• numbernumbernumbernumber:::: reads a string with up to this number of characters, returning nullnullnullnull on
end of file. If number is zero, it reads nothing and returns an empty string, or
nullnullnullnull on end of file. 

In the second form, the function reads from the default input stream and returns a
string or number.

io.readlines (filename [, options])

Reads the entire file with name filename  and returns all lines in a table. If a string
consisting of one or more characters is given as a further argument, then all lines
beginning with this string are ignored. If the option truetruetruetrue is passed, then on Windows
system, diacritics in the file are properly converted to the NT console character set.

Make sure that the lines in the file have no more than 2048 characters, otherwise
lines are not correctly split.

If the global system variable _EnvVerbose_EnvVerbose_EnvVerbose_EnvVerbose is set to a value other than null, an error
message is printed at the console if the file could not be found.

156 7 Standard Libraries



io.seek (file, [whence] [, offset])

Sets and gets the file position, measured from the beginning of the file, to the
position given by offset  plus a base specified by the string whence, as follows: 

• 'set':'set':'set':'set': base is position 0 (beginning of the file); 
• 'cur':'cur':'cur':'cur': base is current position; 
• 'end':'end':'end':'end': base is end of file; 

In case of success, function seek  returns the final file position, measured in bytes
from the beginning of the file. If this function fails, it returns nullnullnullnull, plus a string
describing the error. 

The default value for whence is 'cur', and for offset is 0. Therefore, the call file@seek()

returns the current file position, without changing it; the call file@seek('set') sets the
position to the beginning of the file (and returns 0); and the call file@seek('end') sets
the position to the end of the file, and returns its size.

io.setvbuf (file, mode [, size])

Sets the buffering mode for an output file. There are three available modes: 

• 'no':'no':'no':'no': no buffering; the result of any output operation appears immediately. 
• 'full':'full':'full':'full': full buffering; output operation is performed only when the buffer is full

(or when you explicitly flush the file (see io.flushio.flushio.flushio.flush).
• 'line':'line':'line':'line': line buffering; output is buffered until a newline is output or there is any

input from some special files (such as a terminal device). 

For the last two cases, sizes specifies the size of the buffer, in bytes. The default is an
appropriate size.

io.tmpfile ()

Returns a handle for a temporary file. This file is opened in update mode and it is
automatically removed when the program ends.

io.write (···)

io.writeline (···)

Write the value of each of its arguments to standard output if the first argument is
not a file handle, or to the file denoted by the first argument (a file handle). Except
for the file handle, all arguments must be strings or numbers. To write other values,
use toStringtoStringtoStringtoString or strings.formatstrings.formatstrings.formatstrings.format before write. writelwritelwritelwriteliiiinnnneeee adds a new line character at the
end of the data written, whereas write does not.

By default, no character is inserted between neighbouring values. This may be
changed by passing the option 'delim':<str>  (i.e. a pair, e.g. 'delim':'|' ) as the

agenaagenaagenaagena    >> 157



last argument to the function with <str>  being a string of any length. Remember
that in the function call, a shortcut to 'delim':<str>  is delim ~ <str> .

158 7 Standard Libraries



7.10 7.10 7.10 7.10 biniobiniobiniobinio - Binary File P - Binary File P - Binary File P - Binary File P ackageackageackageackage

This package contains functions to read data from and write data to binary files.

In this chapter, filehandle  as the file ID (or file handle) always is a positive integer
greater than 2. This number is returned by the binio.openbinio.openbinio.openbinio.open function and must be
used in all package functions that require a file handle.

binio.close (filehandle [, filehandle2, ...])

Closes the files identified by the given file handle(s) and returns truetruetruetrue if successful,
and failfailfailfail otherwise. failfailfailfail will be returned if at least one file could not be closed. The
function also deletes the file handles and the corresponding filenames from the
binio.openfilesbinio.openfilesbinio.openfilesbinio.openfiles  table if the file could be properly closed.

See also: binio.binio.binio.binio.openopenopenopen.

binio.filepos (filehandle)

Returns the current file position relative to the beginning of the file as a number. In
case of an error, failfailfailfail is returned.

binio.length (filehandle)

The function returns the size of the file denoted by filehandle  in bytes. In case of an
error, failfailfailfail is returned.

binio.make (filename)

Creates a file with the given filename  (a string)  in read/write mode and returns a file
handle (a number) for subsequent read or write operations. Note that the file is left
open. In case of errors, failfailfailfail is returned.

The function also enters the newly opened file into the binio.openfiles table.

binio.makebinio.makebinio.makebinio.make will be deprecated in one of the coming Agena releases, use
binio.openbinio.openbinio.openbinio.open instead.

binio.open (filename [, anything])

Opens the�given file denoted by filename  and returns a file handle (a number). If it
cannot find the file, it creates it and leaves it open for further binio operations. The
file is always opened in both read and write modes.

If an optional second argument is given (any valid Agena value), the file is opened
in read mode only. Thus if the file does not yet exist, the function returns failfailfailfail.

The function also enters the newly opened file into the binio.openfiles table.

See also: binio.binio.binio.binio.closeclosecloseclose.

agenaagenaagenaagena    >> 159



binio.readchar (filehandle)

binio.readchar (filehandle, position)

In the first form, the function reads a byte from the file denoted by filename  from
the current file position and increments the file position thereafter so that the next
byte in the file can be read with a new call to the binio.binio.binio.binio.readreadreadread function.
In the second form, at first the file position is changed by position  bytes (a positive
or negative number or zero) relative to the current file position. After that the byte at
the new file position is read. Next, the file position is being incremented thereafter so
that the next byte in the file can be read with a new function call.

If the byte is successfully read, it is returned as a number. If the end of the file has
been reached, nullnullnullnull is returned. In case of an error, the return is failfailfailfail.

binio.readnumber (filehandle)

The function reads an Agena number from the file denoted by filename  from the
current file position and returns it. If there is an error or nothing to read, failfailfailfail is
returned.

binio.readstring (filehandle)

The function reads a string from the file denoted by filename  from the current file
position and returns it. If there is an error or nothing to read, failfailfailfail is returned.

binio.rewind (filehandle)

Sets the file position to the beginning of the file denoted by filehandle . The
function returns the new file position as a number in case of success, and failfailfailfail
otherwise.

See also: binio.binio.binio.binio.totototoendendendend.

binio.seek (filehandle, position)

The function changes the file position of the file denoted by filehandle position

bytes relative to the current position. position  may be negative, zero, or positive.

The return is truetruetruetrue if the file position could be changed successfully, or failfailfailfail otherwise.

binio.sync (filehandle)

Flushes all unwritten content to the�file denoted by the file handle. The function
returns truetruetruetrue if successful, and failfailfailfail otherwise (e.g. if the file was not opened before or
an error during flushing occurred).

binio.toend (filehandle)

Sets the file position to the end of the file denoted by filehandle  so that data can
be appended to the file without overwriting data. The function returns the file
position as a number in case of success, and failfailfailfail otherwise.

160 7 Standard Libraries



See also: binio.binio.binio.binio.rewindrewindrewindrewind.

binio.writechar (filehandle, number)

The function writes the given Agena number  to the file denoted by filehandle  at its
current position. The function returns truetruetruetrue in case of success and failfailfailfail otherwise. 

The number  should be an integer with 0 <= number  < 256, otherwise number  % 256
will be stored to the file.

binio.writelong (filehandle, number)

The function writes the given Agena number  to the file denoted by filehandle  at its
current position. The number  should be an integer with _EnvMinLong_EnvMinLong_EnvMinLong_EnvMinLong < number  <
_EnvMaxLong, otherwise the operations is not defined.

The function returns truetruetruetrue in case of success and failfailfailfail otherwise.

binio.writenumber (filehandle, number)

The function writes the given Agena number  to the file denoted by filehandle  at its
current position. The function returns truetruetruetrue in case of success and failfailfailfail otherwise. The
number is always stored in Big Endian notation. The binio.readnumberbinio.readnumberbinio.readnumberbinio.readnumber function
makes proper conversion to Little Endian if Agena runs on a Little Endian machine.

binio.writestring (filehandle, string)

The function writes the given string  to the file denoted by filehandle  at its current
position.

The function returns truetruetruetrue in case of success and failfailfailfail otherwise. Internally, writestringwritestringwritestringwritestring
first writes the length of the string as a C long int and then the string without a null
character to the file. This information is then read by the binio.readstring function to
efficiently return the string.

See also: binio.readstringbinio.readstringbinio.readstringbinio.readstring .

agenaagenaagenaagena    >> 161



7777.1.1.1.11111    Operating System FacilitiesOperating System FacilitiesOperating System FacilitiesOperating System Facilities

This library is implemented through table os . 

os.battery ()

On Windows 2000 and later, the function returns the current battery status of your
system (usually laptops) as a table with the following information:

the battery lifetime in seconds when at full charge, a number
(or undefinedundefinedundefinedundefined if it could not be determined)

'fulllifetime'

the remaining battery lifetime in seconds, a number (or
undefinedundefinedundefinedundefined if it could not be determined)

'lifetime'
the battery flag, a number'flag'
truetruetruetrue if battery is currently being charged, or falsefalsefalsefalse otherwise'charging'

either 'low' (capacity < 33%), 'medium' (capacity > 32% and
<67 %), 'high' (capacity > 66%), 'critical' (capacity < 5%),
'charging', 'no battery', 'unknown'

'status'
battery life in percent'life'
truetruetruetrue if a battery is present, and falsefalsefalsefalse otherwise'installed'
'on', 'off', or 'unknown''acline'
meaningkey

On OS/2 Warp 4 and higher, the functions returns the status of the battery as a table
with the following information:

truetruetruetrue if power management is switched on, or falsefalsefalsefalse if not.'power -
management'

OS/2 power flags'flags'
either 'high', 'low', 'critical', 'charging', 'unknown', or 'invalid''status'
battery life in percent, or 'undefined' if not available'life'
'on', 'off', 'unknown', or 'invalid''acline'
meaningkey

On other operating systems, the function returns failfailfailfail.

os.beep ()

os.beep (freq, dur)

The first form applies to Windows, UNIX, and OS/2. It sounds the loudspeaker with a
short `beep` and returns nullnullnullnull.

The second form applies to Windows and OS /2 only. It sounds the loudspeaker with
frequency freq  (a positive integer) for dur  seconds (a positive float). Returns nullnullnullnull if a
sound could be created successfully, or failfailfailfail if nonpositive arguments were passed.

162 7 Standard Libraries



os.computername ()

Returns the name of the computer in Windows and UNIX. The return is a string. On
other architectures, the function returns failfailfailfail.

os.cd (str)

Changes into the directory given by string str  on the file system. Returns truetruetruetrue on
success, and fail, the error message from the operating system, and the C error
code otherwise.

os.date ([format [, time]])

Returns a string or a table containing date and time, formatted according to the
given string format . 

If the time argument is present, this is the time to be formatted (see the os.timeos.timeos.timeos.time
function for a description of this value). Otherwise, date  formats the current time. 

If format starts with '!', then the date is formatted in Coordinated Universal Time. After
this optional character, if format is *t, then date returns a table with the following fields:
year (four digits), month (1--12), day (1--31), hour (0--23), min (0--59), sec (0--61), wday

(weekday, Sunday is 1), yday (day of the year), and isdst (daylight saving flag, a
boolean). 

If format is not *t, then date returns the date as a string, formatted according to the
same rules as the C function strftime. 

When called without arguments, date returns a reasonable date and time
representation that depends on the host system and on the current locale (that is,
os.date() is equivalent to os.date('%c')). 

os.difftime (t2, t1)

Returns the number of seconds from time t1 to time t2. In POSIX, Windows, and
some other systems, this value is exactly t2-t1. 

os.endian ()

Determines the endianness of your system. Returns 0 for Little Endian, 1 for Big
Endian, and failfailfailfail if the endianness could not be determined.

os.execute ([command])

This function is equivalent to the C function system . It passes command to be
executed by an operating system shell. It returns a status code, which is
system-dependent. If command is absent, then it returns nonzero if a shell is available
and zero otherwise.

agenaagenaagenaagena    >> 163



os.exit ([code])

Calls the C function exit , with an optional code, to terminate the host program. The
default value for code is the success code.

os.fexists (filename)

Checks whether the given file (filename is of type string) exists and the user has at
least read permissions for it. It returns truetruetruetrue or falsefalsefalsefalse.

os.freemem ([unit])

Returns the amount of free physical RAM available on Windows and UNIX machines.

If no argument is given, the return is in bytes. If unit is the string 'kbytes', the return is in
kBytes; if unit is 'mbytes', the return is in Mbytes; if unit is 'gbytes', the return is in
GBytes. On other architectures, the function returns failfailfailfail.

os.fstat (fn)

Returns information on the file, link (UNIX only), or directory given by the string fn  in a
table of the form [filetype, size in bytes, [last modification date i n the

form yyyy, mm, dd, hh, mm, ss]] . filetype may be 'FILE'  if fn  is a regular file,
'LINK'  if fn  is a symbolic link, 'DIR'  if fn  is a directory, 'CHARSPECFILE'  if fn  is a
character special file (a device like a terminal), 'BLOCKSPECFILE'  if fn  is a block
special file (a device like a disk), or 'OTHER'  otherwise. 

os.getenv (varname)

Returns the value of the process environment variable varname , or nullnullnullnull if the variable
is not defined.

os.isDOS ()

Returns truetruetruetrue if Agena is run in DOS, and falsefalsefalsefalse otherwise. It also returns falsefalsefalsefalse if run
from a Windows shell.

os.isLinux ()

Returns truetruetruetrue if Agena is run in Linux, and falsefalsefalsefalse otherwise.

os.isOS2 ()

Returns truetruetruetrue if Agena is run in OS/2, and falsefalsefalsefalse otherwise.

os.isSolaris ()

Returns truetruetruetrue if Agena is run in Solaris (including Nexenta), and falsefalsefalsefalse otherwise.

164 7 Standard Libraries



os.isUNIX ()

Returns truetruetruetrue if Agena is run in a UNIX environment (i.e. Solaris, Linux, and Nexenta),
and falsefalsefalsefalse otherwise.

os.isWin ()

Returns truetruetruetrue if Agena is run in Windows, and falsefalsefalsefalse otherwise.

os.login ()

(Windows, OS/2, and UNIX only.) Returns the login name of the current user as a
string. The return is a string. On other architectures, the function returns failfailfailfail.

os.ls (d [, options])

Lists the contents of a directory as a table. If d is void, the current working directory is
evaluated.

If no option is given, files, links, and directories are returned. If the optional argument
'files'  is given, only files are returned. If the optional argument 'dirs'  is given,
only directories are returned. If the optional argument 'links'  is given, only links are
returned (UNIX only).

os.lscore (d)

Returns a table with all the files, links and directories in the given path d. If d is void,
the current working directory is evaluated.

os.md (str)

Creates a directory given by string str on the file system. Returns truetruetruetrue on success,
and fail, the error message from the operating system, and the C error code
otherwise. The function is available on OS/2, DOS, Windows, and UNIX.

os.memstate ([unit])

(Windows, UNIX, and OS/2 only.) Returns a table with information on current memory
usage. With no arguments, the return is the respective number of bytes (integers). If
unit is the string 'kbytes', the return is in kBytes, if unit is 'mbytes', the return is in MBytes.

The resulting table will contain the following values, an 'x' indicates which values are
returned on your system.

agenaagenaagenaagena    >> 165



xoccupied resident pages'resident'
xxtotal virtual memory'totalvirtual'

xfree virtual memory'freevirtual'
xxxinstalled physical RAM'totalphysical'

xxfree physical RAM'freephysical'
OS/2UNIXWindowsDescriptionDescriptionDescriptionDescriptionKeyKeyKeyKey

On other architectures, the function returns failfailfailfail.

os.pwd ()

Returns the current working directory on the file system as a string or failfailfailfail if the path
could not be determined.

os.rd (str)

Deletes a directory given by string str  on the file system. Returns truetruetruetrue on success,
and fail, the error message from the operating system, and the C error code
otherwise.

os.rename (oldname, newname)

Renames file or directory named oldname  to newname. The function returns truetruetruetrue on
success. If this function fails, it returns fail, the error message from the operating
system, and the C error code otherwise.

os.rm (filename)

Deletes the file or directory with the given name. Directories must be empty to be
removed. Returns truetruetruetrue on success, and fail, the error message from the operating
system, and the C error code otherwise.

os.setlocale (locale [, category])

Sets the current locale of the program. locale  is a string specifying a locale;
category is an optional string describing which category to change: 'all', 'collate', 'ctype',
'monetary', 'numeric', or 'time'; the default category is 'all'. The function returns the name
of the new locale, or nullnullnullnull if the request cannot be honoured. 
When called with nullnullnullnull as the first argument, this function only returns the name of the
current locale for the given category.

os.system ()

Returns information on the platform on which Agena is running. 

Under Windows, it returns a table containing the string 'Windows', the major version
(e.g. 'NT 4.0', '2000', etc.) as a string, the Build Number (dwBuildNumber) as a
number, the platform ID (dwPlatformId) as a number, the major version

166 7 Standard Libraries



(dwMajorVersion), the minor version (dwMinorVersion), and the product type
(wProductType) in this order.

In UNIX, OS/2, and DOS, it returns a table of strings with the name of the operating
system (e.g. 'SunOS'), the release, the version, and the machine, in this order.

If the function could not determine the platform properly, it returns failfailfailfail.
 

os.time ([table])

Returns the current time when called without arguments, or a time representing the
date and time specified by the given table. This table must have fields year , month ,
and day , and may have fields hour, min, sec, and isdst (for a description of these
fields, see the os.dateos.dateos.dateos.date function). 

The returned value is a number, whose meaning depends on your system. In POSIX,
Windows, and some other systems, this number counts the number of seconds
since some given start time (the "epoch"). In other systems, the meaning is not
specified, and the number returned by time  can be used only as an argument to
date and difftime. 

os.tmpname ()

Returns a string with a file name that can be used for a temporary file. The file must
be explicitly opened before its use and explicitly removed when no longer needed.

os.wait (x)

Waits for x seconds and returns nullnullnullnull. x may be an integer or a float. This function
does not strain the CPU, but execution cannot be interrupted. The function is
available on OS/2, UNIX and Windows based systems only. On other architectures,
the function returns failfailfailfail.

agenaagenaagenaagena    >> 167



7777....11112222    The Debug LibraryThe Debug LibraryThe Debug LibraryThe Debug Library

This library provides the functionality of the debug interface to Agena programs. You
should exert care when using this library. The functions provided here should be
used exclusively for debugging and similar tasks, such as profiling. Please resist the
temptation to use them as a usual programming tool: they can be very slow.
Moreover, several of its functions violate some assumptions about Agena code
(e.g., that variables local to a function cannot be accessed from outside or that
userdata metatables cannot be changed by Agena code) and therefore can
compromise otherwise secure code. 

All functions in this library are provided inside the debug  table. All functions that
operate over a thread have an optional first argument which is the thread to
operate over. The default is always the current thread. 

debug.debug ()

Enters an interactive mode with the user, running each string that the user enters.
Using simple commands and other debug facilities, the user can inspect global
and local variables, change their values, evaluate expressions, and so on. A line
containing only the word cont  finishes this function, so that the caller continues its
execution. 

Note that commands for debug.debug are not lexically nested within any function,
and so have no direct access to local variables. 

debug.doubleendiantest (n)

converts a number n (i.e. a C double) twice and returns the converted number, the
orginal number, and the difference between the original and the converted values,
in this order.

The functions checks the internal function DoubleToBigEndian in the C source file
chelpers.c  used by the biniobiniobiniobinio package on Little Endian platforms to write and read
Agena numbers to/from file. If you should encounter trouble with Agena compiled
with GCC on Little Endian hardware, then you might try the -DGCC_WROUNDOFF_BUG

compilation option. The switch assumes, that on your platform, doubles consist of
eight bytes.

debug.getfenv (o)

Returns the environment of object o. 

debug.gethook ([thread])

Returns the current hook settings of the thread, as three values: the current hook
function, the current hook mask, and the current hook count (as set by the
debug.sethookdebug.sethookdebug.sethookdebug.sethook  function). 

168 7 Standard Libraries



debug.getinfo ([thread,] function [, what])

Returns a table with information about a function. You can give the function
directly, or you can give a number as the value of function , which means the
function running at level function of the call stack of the given thread: level 0 is the
current function (getinfo itself); level 1 is the function that called getinfo; and so on. If
function is a number larger than the number of active functions, then getinfo returns
nullnullnullnull. 

The returned table may contain all the fields returned by lua_getinfolua_getinfolua_getinfolua_getinfo, with the string
what describing which fields to fill in. The default for what is to get all information
available, except the table of valid lines. If present, the option 'f' adds a field
named func with the function itself. If present, the option 'L' adds a field named
activelines with the table of valid lines. 

For instance, the expression debug.getinfo(1,'n').name returns a name of the current
function, if a reasonable name can be found, and debug.getinfo(print) returns a table
with all available information about the printprintprintprint function. 

debug.getlocal ([thread,] level, local)

This function returns the name and the value of the local variable with index local

of the function at level level  of the stack . (The first parameter or
local variable has index 1, and so on, until the last active local variable.) The
function returns nullnullnullnull if there is no local variable with the given index, and raises an
error when called with a level out of range. (You can call debug.getinfodebug.getinfodebug.getinfodebug.getinfo to check
whether the level is valid.) 

Variable names starting with '( ' (open parentheses) represent internal variables
(loop control variables, temporaries, and C function locals). 

debug.getmetatable (object)

Returns the metatable of the given object  or nullnullnullnull if it does not have a metatable.

debug.getregistry ()

Returns the registry table. 

debug.getupvalue (func, up)

This function returns the name and the value of the upvalue with index up of the
function func. The function returns nullnullnullnull if there is no upvalue with the given index. 

debug.setfenv (object, table)

Sets the environment of the given object  to the given table . Returns object. 

agenaagenaagenaagena    >> 169



debug.sethook ([thread,] hook, mask [, count])

Sets the given function as a hook. The string mask and the number count describe
when the hook will be called. The string mask may have the following characters,
with the given meaning: 

• 'c''c''c''c':::: The hook is called every time Agena calls a function; 
• 'r''r''r''r':::: The hook is called every time Agena returns from a function; 
• 'l''l''l''l':::: The hook is called every time Agena enters a new line of code. 

With a count different from zero, the hook is called after every count instructions. 

When called without arguments, debug.sethookdebug.sethookdebug.sethookdebug.sethook  turns off the hook. 

When the hook is called, its first parameter is a string describing the event that has
triggered its call: 'call', 'return' (or 'tail return'), 'line', and 'count'. For line events, the hook
also gets the new line number as its second parameter. Inside a hook, you can call
getinfo with level 2 to get more information about the running function (level 0 is the
getinfo function, and level 1 is the hook function), unless the event is 'tail return'. In this
case, Agena is only simulating the return, and a call to getinfo will return invalid data.

debug.setlocal ([thread,] level, local, value)

This function assigns the value value  to the local variable with index local of the
function at level level of the stack. The function returns nullnullnullnull if there is no local variable
with the given index, and raises an error when called with a level out of range. (You
can call getinfo to check whether the level is valid.) Otherwise, it returns the name of
the local variable. 

debug.setmetatable (object, table)

Sets the metatable for the given object  to the given table  (which can be nullnullnullnull). 

debug.setupvalue (func, up, value)

This function assigns the value value  to the upvalue with index up of the function
func. The function returns nullnullnullnull if there is no upvalue with the given index. Otherwise, it
returns the name of the upvalue. 

debug.system (n)

Returns a table with the following system information: The size of various C types
(char, int, long, float, double), the endianness of your platform, the hardware and
the operating system for which the Agena executable has been compiled. 

170 7 Standard Libraries



debug.traceback ([thread,] [message])

Returns a string with a traceback of the call stack. An optional message  string is
appended at the beginning of the traceback. This function is typically used with
xpcallxpcallxpcallxpcall to produce better error messages.

agenaagenaagenaagena    >> 171



7777.13.13.13.13    utilsutilsutilsutils    - Utilities- Utilities- Utilities- Utilities

The utilsutilsutilsutils package provides miscellaneous functions.

utils.arraysize (strarr)

Returns the maximum number of elements allocable to the `stringarray` userdata
denoted by strarr .

See also: utils.newarrayutils.newarrayutils.newarrayutils.newarray .

utils.getarray (strarr, n)

Returns the (n+1)-th string from the `stringarray` userdata denoted by strarr . Note
that n starts from 0.

See also: utils.newarrayutils.newarrayutils.newarrayutils.newarray .

utils.getwholearray (strarr)

Returns a table including all strings that are stored in the `stringarray` userdata
denoted by strarr , with the first string at table index 1 (and not 0).

See also: utils.newarrayutils.newarrayutils.newarrayutils.newarray .

utils.newarray (n)

Creates a `stringarray` userdata of exactly n strings, n > 0. The userdata stores (C
pointers to) strings of any size, including empty strings. The strings can be set into the
userdata by the utils.setarrayutils.setarrayutils.setarrayutils.setarray function and accessed through the utils.getarrayutils.getarrayutils.getarrayutils.getarray
function.

utils.setarray (strarr, n, str)

Sets the string str  into the `stringarray` userdata denoted by strarr  at position n.
Note that n starts from 0, so your first string must be stored to index 0 of the userdata.

See also: utils.newarrayutils.newarrayutils.newarrayutils.newarray .

utils.singlesubs (str, strarr)

Substitutes individual characters in string str  by corresponding replacements in the
`stringarray` userdata denoted by strarr . The return is a new string. Note that the
function tries to find a replacement for a single character in str  by determining its
integer ASCII value n and then accessing index n in the userdata. If an entry is
found for index n, then the character is replaced, otherwise the character remains
unchanged.

See also: utils.newarrayutils.newarrayutils.newarrayutils.newarray .

172 7 Standard Libraries



Other functions in the utilsutilsutilsutils library are:

utils.calendar (x)

Converts x  seconds (an integer) elapsed since the beginning of an epoch to a
table representing the respective calendar date in your local time. The table
contains the following keys with the corresponding values:

'year' (integer)
'month' (integer)
'day' (integer)
'hour' (integer)
'min' (integer)
'sec' (integer)
'wday' (integer, day of the week)
'yday' (integer, day of the year)
'DST' (Boolean, is Daylight Saving Time)

If x  is nullnullnullnull or not specified, then the current system time is returned.

utils.isLeapYear (x)

Returns truetruetruetrue if the given year x  (a number) is a leap year, and falsefalsefalsefalse otherwise.

utils.writeCSV (o, filename [, delim [, keyoption]] )

Creates a CSV file. The function writes all values or keys and value(s) of a table, set,
or sequence o to a text file given by filename . Each (key ~) value pair is written on a
separate line.

By default only values are written, the keys are ignored. 

If the optional argument delim  (a string) is given and if the value is a structure itself,
then all entries in this substructure are separated by the given delimiter; default is a
semicolon.

If the optional argument keyoption  is given, then the key and the value(s) are also
separated by the given delimiter (third argument) which must be passed, as well.

The function is written in the Agena language and included in the lib/utils.agn

file.

agenaagenaagenaagena    >> 173



7777....11114444    statsstatsstatsstats - Statistics - Statistics - Statistics - Statistics

This package contains procedures for statistical calculations and operates
completely on tables. As a plus package, it is not part of the standard distribution
and must be activated with the readlibreadlibreadlibreadlib or withwithwithwith functions.

stats.median (t)

Returns the median of all numeric values in table t  as a number.

stats.mean (t)

Returns the mean of all numeric values in table t  as a number. The function is
implemented in Agena and included in the library.agn  file.

stats.minmax (t [, 'sorted'])

Returns a table with the minimum of all numeric values in table t  as the first value,
and the maximum as the second value. If the option 'sorted'  is passed than the
function assumes that all values in t  are sorted in ascending order so that execution
is much faster.

stats.qmean (t)

Returns the quadratic mean of all numeric values in table t  as a number. The
function is implemented in Agena and included in the library.agn  file.

stats.sd (t)

Returns the standard deviation of all numeric values in table t  as a number. The
function is implemented in Agena and included in the library.agn  file.

stats.toVals (t)

Converts all string values in table t  to Agena numbers. The function is implemented
in Agena and included in the library.agn  file.

stats.var (t)

Returns the variance of all numeric values in t  as a number. The function is
implemented in Agena and included in the library.agn  file.

174 7 Standard Libraries



7.17.17.17.15555    calccalccalccalc - Calculus Package - Calculus Package - Calculus Package - Calculus Package

This package contains mathematical routines to perform basic calculus. As a plus
package, it is not part of the standard distribution and must be activated with the
readlibreadlibreadlibreadlib or withwithwithwith functions.

calc.diff (f, x [, eps])

Computes the value of the first differentiation of a function f  at a point x . If eps  is
not passed, the function uses an accuracy of the value stored to _EnvEps . You may
pass another numeric value for eps  if necessary.

The function is implemented in Agena and included in the lib/calc.agn  file.

calc.fseq (f, a [, b])

Creates a sequence seq(seq(seq(seq(1~f (a), 2~f (a+1), ..., (b-a+1)~f (b))))), with f  a function, a

and b numbers. Thus, the function f  is applied to all numbers between and
including a and b. The step size is 1.

calc.fsum (f, a, b)

Computes the sum of f (a), ..., f (b), with f  a function, a and b numbers. If a > b, then
the result is 0.

calc.gtrap (f, a, b [, eps])

Integrates the function f on the interval [a, b] using a bisection method based on
the trapezoid rule and returns a number. By default the function quits after an
accurarcy of eps  = _EnvEps_EnvEps_EnvEps_EnvEps has been reached. You may pass another numeric
value for eps  if necessary.

The function is implemented in Agena and included in the lib/calc.agn  file.

calc.interp (tp)

Computes a Newton interpolating polynomial as a function. The interpolation points
are passed in a table tp, with each point being represented as a pair x k:y k. 

The function is implemented in Agena and included in the lib/calc.agn  file.

calc.zero (f, a, b, [step [, eps]])

Returns all roots of a function f  in one variable on the interval [a, b]. 

The function divides the interval [a, b] into smaller intervals [a, a+step ], [a+step ,
a+2*step ], ..., [a+p*step , b], with step =0.1 if step is not given. It then looks for
changes in sign in these smaller intervals and if it finds them, determines the roots
using a modified regula falsi method. 

agenaagenaagenaagena    >> 175



The accuracy of the regula falsi method is determined by eps , with eps =_EnvEps_EnvEps_EnvEps_EnvEps as
a default. f  must be differentiable on [a, b].

The function is implemented in Agena and included in the lib/calc.agn  file.

176 7 Standard Libraries



7.16 7.16 7.16 7.16 linalglinalglinalglinalg - Linear Algebra P - Linear Algebra P - Linear Algebra P - Linear Algebra P ackageackageackageackage

This package provides basic functions for Linear Algebra. As a plus package, it is
not part of the standard distribution and must be activated with the readlibreadlibreadlibreadlib or withwithwithwith
functions.

There are two constructors available to define vectors and matrices, linalg.vectorlinalg.vectorlinalg.vectorlinalg.vector
and linalg.matrixlinalg.matrixlinalg.matrixlinalg.matrix. Except of these two procedures, the package functions assume
that the geometric objects passed have been constructed with the above
mentioned constructors.

The package includes a metatable linalg.vmt defined in the lib/linalg.agn file with
metamethods for vector addition, vector subtraction, and scalar vector
multiplication. Further functions are provided to compute the length of a vector with
the absabsabsabs operator and to apply unary minus to a vector. 

The table linalg.mmtlinalg.mmtlinalg.mmtlinalg.mmt defines metamethods for matrix addition, subtraction and
multiplication with a scalar. It is assigned via the lib/linalg.agn file, as well. 

The vectorvectorvectorvector function allows to define sparse vectors, i.e. if the component n of a
vector v has not been physically set, and if v[n] is called, the return is 0 and not nullnullnullnull.

The dimension of the vector and the dimensions of the matrix are indexed with the
'dim'  key of the respective object. You should not change this setting to avoid
errors. Existing vector and matrix values can be overwritten but you should take care
to save the correct new values.

abs (v)

Determines the length of vector v. This operation is done by applying the __abs

metamethod to v.

linalg.add (v, w)

Determines the vector sum of vector v and vector w. The return is a vector.

See also: linalg.sublinalg.sublinalg.sublinalg.sub.

linalg.backsubs (A, b)

Solves the set of linear equations A*x = b, where A is a matrix, and b the right-hand
side vector. The return is the solution vector x.

linalg.coldim (A [, ...])

Determines the column dimension of the matrix A. The return is a number.

If you pass more than one argument, then a time-consuming check whether A is a
matrix is skipped.

agenaagenaagenaagena    >> 177



linalg.checkmatrix (A [, B, ...] [, true])

Issues an error if at least one of its arguments is not a matrix. If the last argument is
truetruetruetrue, then the matrix dimensions are returned as a pair, else the function returns
nothing.

Contrary to linalg.checkvectorlinalg.checkvectorlinalg.checkvectorlinalg.checkvector, the dimensions will not be checked if you pass
more than one matrix.

linalg.checksquare (A)

Issues an error if A is not a square matrix. It returns nothing. See linalg.issquarelinalg.issquarelinalg.issquarelinalg.issquare for
information on how this check is being done.

linalg.checkvector (v [, w, ...])

Issues an error if at least one of its arguments is not a vector. In case of two or more
vectors it also checks their dimensions and returns an error if they are different.

If everything goes fine, the function will return the dimensions of all vectors passed.

See linalg.islinalg.islinalg.islinalg.isvectorvectorvectorvector for information on how the check is being done.

linalg.coldim (A [, ...])

Determines the column dimension of the matrix A. The return is a number. 

If you pass more than one argument, then a time-consuming check whether A is a
matrix, is skipped.

A more direct way of determining the column dimension is right(A.dim) .

See also: linalg.linalg.linalg.linalg.rowdrowdrowdrowdimimimim.

linalg.column (A)

Returns the n-th column of the matrix or row vector A as a new vector.

linalg.crossprod (v, w)

Computes the cross-product of two vectors v, w of dimension 3. The return is a
vector.

linalg.det (A)

Computes the determinant of the square matrix A. The return is a number.

linalg.diagonal (v)

Creates a square matrix A with all vector components in v put on the main
diagonal. The first element in v is assigned A[1][1], the second element in v is
assigned A[2][2], etc. Thus the result is a dim(v) x dim(v)-matrix.

178 7 Standard Libraries



linalg.dim (A)

Determines the dimension of a matrix or a vector A. If A is a matrix, the result is a
pair with the left-hand side representing the number of rows and the right-hand side
representing the number of columns. If A is a vector, the size of the vector is
determined.

linalg.dotprod (v, w)

Computes the vector dot product of two vectors v, w of same dimension. The
vectors must consist of Agena numbers. The return is a number.

linalg.hilbert (n [, x])

Creates a generalized n x n Hilbert matrix H, with H[i][j] := 1/(i+j-x). If x is not
specified, then x is 1.

linalg.identity (n)

Creates an identity matrix of dimension n with all components on the main
diagonal set to 1 and all other components set to 0.

linalg.inverse (A)

Returns the inverse of the square matrix A.

linalg.isantisymmetric (A)

Checks whether the matrix A is an antisymmetric matrix. If so, it returns truetruetruetrue and falsefalsefalsefalse
otherwise.

linalg.isdiagonal (A)

Checks whether the matrix A is a diagonal matrix. If so, it returns truetruetruetrue and falsefalsefalsefalse
otherwise.

linalg.isidentity (A)

Checks whether the matrix A is an identity matrix. If so, it returns truetruetruetrue and falsefalsefalsefalse
otherwise.

linalg.ismatrix (A)

Returns truetruetruetrue if A is a matrix, and falsefalsefalsefalse otherwise. To avoid costly checks of the
passed object, the function only checks whether A is a sequence with the
user-defined type ‘matrix’.

linalg.issquare (A)

Returns truetruetruetrue if A is a square matrix, i.e. a matrix with equal column and row
dimensions, and falsefalsefalsefalse otherwise.

agenaagenaagenaagena    >> 179



linalg.issymmetric (A)

Checks whether the matrix A is a symmetric matrix. If so, it returns truetruetruetrue and falsefalsefalsefalse
otherwise.

linalg.isvector (A)

Returns truetruetruetrue if A is a vector, and falsefalsefalsefalse otherwise. To avoid costly checks of the
passed object, the function only checks whether A is a sequence with the
user-defined type ‘vector’.

linalg.LUdecomp (A, n)

Computes the LU decomposition of the square matrix A of dimension n. The return is
the resulting matrix, the permutation vector as a sequence, and a number where
this number is either 1 for an even number of row interchanges done during the
computation, or -1 if the number of row interchanges was odd.

linalg.matrix (o1, o2, ..., on)

Creates a matrix from the given structures o[k]. The structures are considered to be
row vectors. Valid structures are vectors created with linalg.vectorlinalg.vectorlinalg.vectorlinalg.vector, tables, or  
sequences.

The return is a table with the user-defined type 'matrix'  and a metatable linalg.mmtlinalg.mmtlinalg.mmtlinalg.mmt
assigned to the matrix.

linalg.mmap (f, A [, ...])

This function maps a function f to all the components in the matrix A and returns a
new matrix. The function must return only one value. See linalg.vmaplinalg.vmaplinalg.vmaplinalg.vmap for further
information.

linalg.mmul (A, B)

Conducts a multiplication of a m x n- and a n x p-matrix and returns a m x p matrix.

linalg.rowdim (A [, ...])

Determines the row dimension of the matrix A. The return is a number. 

If you pass more than one argument, then a time-consuming check whether A is a
matrix, is skipped.

A more direct way of determining the column dimension is left(A.dim) .

See also: linalg.coldimlinalg.coldimlinalg.coldimlinalg.coldim .

180 7 Standard Libraries



linalg.scalarmul (v, n)

Performs a scalar multiplication by multiplying each element in vector v with the
number n. The result is a new vector.

linalg.sub (v , w)

Subtracts vector w from vector v. The result is a vector.

See also: linalglinalglinalglinalg....addaddaddadd.

linalg.transpose (A)

Computes the transpose of a  m x n-matrix A and thus returns an n x m-matrix.

linalg.vector (a1, a2, ...)

linalg.vector ([a1, a2, ...])

linalg.vector (seq(a1, a2, ...))

linalg.vector (n, [a1, a2, ...])

linalg.vector (n, [ ])

Creates a vector with numeric components a1, a2, etc. The function also accepts
a table or sequence of elements a1, a2, etc. (second and third form).

In the fourth form, n denotes the dimension of the vector, and ak might be single
values or key~value pairs. By a metamethod, vector components not explicitly set
automatically default to 0. This allows you to create memory-efficient sparse vectors
and thus matrices.

In the fifth form, a sparse zero vector of dimension n is returned.

The result is a table with the user-defined type ‘vector’ and a metatable assigned to
allow basic vector operations with the operators ++++, ----, ****, unary minus and absabsabsabs. The
table key 'dim' contains the dimension of the vector created.

linalg.vmap (f, v [, ...])

This operator maps a function f to all the components in vector v and returns a new
vector. The function f must return only one value.

If function f has only one argument, then only the function and the vector are
passed to mapmapmapmap. If the function has more than one argument, then all arguments
except the first are passed right after the name of the vector.

agenaagenaagenaagena    >> 181



Examples:

> vmap(<< x -> x^2 >>, vector(1, 2, 3) ):
[ 1, 4, 9 ]

> vmap(<< (x, y) -> x > y >>, vector(1, 0, 1), 0):  # 0 for y
[ true, false, true ]

See also: linalg.linalg.linalg.linalg.vzipzipzipzip.

linalg.vzip (f, v1, v2)

This function zips together two vectors by applying the function f  to each of its
respective components. The result is a new vector v' where each element v'[k] is
determined by s[k] := f(v1 [k], v2 [k]). 

v1  and v2  must have the same dimension.

See also: linalg.vmaplinalg.vmaplinalg.vmaplinalg.vmap.

linalg.zero (n)

Creates a zero vector of length n with all its components physically set to 0. If you
want to create a sparse zero vector of dimension n, enter: linalg.vector(n, []) .

182 7 Standard Libraries



7.17 clock - Clock Package7.17 clock - Clock Package7.17 clock - Clock Package7.17 clock - Clock Package

This package contains mathematical routines to perform basic operations on time
values, i.e. hours, minutes, and seconds. 

As a plus package, it is not part of the standard distribution and must be activated
with the readlibreadlibreadlibreadlib or withwithwithwith functions.

A time value is always defined using the clock.clock.clock.clock.timetimetimetime constructor. You may apply the
ordinary +, - , and *  operators in order to add, subtract or multiply values.

All functions are implemented in Agena and included in the lib/clock.agn  file.
 

clock.add (s1, s2 [, ...])

The function adds two or more values of type time. The return is a value of type
time.

clock.adjust (s)

The function adjusts the representation of time values in a time object s by applying
the rules described in the description of clock.clock.clock.clock.timetimetimetime.

clock.mul (x1, x2)

multiplies the numeric value x1 with the time value x2 (of type time). mulmulmulmul converts x2
to seconds, and then multiplies x2 with x1. The arguments may be in reverse order.

The return is a value of type time.

clock.sub (s1, s2 [, ...])

The function subtracts two or more values of type time. The return is a value of type
time.

clock.time (min)

clock.time (min, sec)

clock.time (hrs, min, sec)

This function is used to define time values, where hrs , min , sec  are numbers.

In the first form, minutes are defined. The return is a value of type time of the form
time(0, min, 0).

In the second form, both minutes and seconds are defined. The return is a value of
type time of the form time(0, min, sec).

In the third form, both hours, minutes, and seconds are defined and returned as a
value of type time of the form time(hrs, min, sec). (hrs may be set to 0.)

agenaagenaagenaagena    >> 183



By default, if min > 59 and / or if sec > 59, proper adjustments are made before
the time value is returned. If min > 59 the call to timetimetimetime returns time(hrs + 1, min - 60,
sec). If sec > 59 the call to time returns time(hrs, min + 1, sec - 60). The default is
set by the global variable _clockAdjust  which is assigned truetruetruetrue at initialisation of the
package if it has not already been set falsefalsefalsefalse before the clock package has been
loaded. 

If _clockAdjust  is set false then no adjustments are made to the arguments. You
can use clock.clock.clock.clock.adjustadjustadjustadjust to apply the adjustments described above.

184 7 Standard Libraries



7.18 bits - 7.18 bits - 7.18 bits - 7.18 bits - BitwiseBitwiseBitwiseBitwise Operators Package Operators Package Operators Package Operators Package

This package contains four operators to conduct bitwise manipulations of integers. 

As a plus package, it is not part of the standard distribution and must be activated
with the readlibreadlibreadlibreadlib or withwithwithwith functions.

All functions are implemented in Agena and included in the lib/bits.agn  file.
 

bits.band (a, b)

Returns the bitwise andandandand of the two integers a, b, i.e. each bit in the result is set if and
only if each of the corresponding bits in the converted operands is set.

bits.bnot (a)

Inverts all bits in the integer a and returns the converted number.

bits.bor (a, b)

Returns the bitwise inclusive orororor of the two integers a, b, i.e. each bit in the result is set
if and only if at least one of the corresponding bits in the converted integers is set.

bits.xor (a, b)

Returns the bitwise exclusive orororor of the operands the two integers a, b, i.e. each bit in
the result is set if and only if exactly one of the corresponding bits in the converted
integers is set.

agenaagenaagenaagena    >> 185



186 7 Standard Libraries



Chapter EightChapter EightChapter EightChapter Eight

Agena Database SystemAgena Database SystemAgena Database SystemAgena Database System             

agenaagenaagenaagena    >> 187



188 8 Agena Database System



8888    Agena DataAgena DataAgena DataAgena Databasebasebasebase System System System System

As a plus package, this simple database is not part of the standard distribution and
must be activated with the readlibreadlibreadlibreadlib or withwithwithwith functions.

Agena is a database for storing and accessing strings and currently supports three
`base` types:

1. Sorted `databases` with a key and one or more values,

2. sorted `lists` which store keys only,

3. unsorted `sequences` to hold any value (but no keys). 

With databases and lists, each record is indexed, so that access to it is very fast. If
you store data with the same key multiple times in a database, the index points
to�the last�record stored, so you always get a valid record.

Sequences do not have indexes, so searching in sequences is rather slow.
However,�all values can be read into the Agena environment very fast and stored
to a set (using ads.getall).

The Agena Database System (ADS) pays attention to both file size and fast I/O
operation. To reduce file size,�the keys (and values) are stored with their actual
lengths (of C type long integer, so keys and values can be of almost unlimited size)
and they are not extended to a fixed standard length. To fasten I/O operations, the
length of each key (and value) is also stored within the base file.

key-value pairs with databases, and keys with lists or sequences.   records

only with databases and lists: area containing all file positions of
the actual records. The index section is always sorted. Sequences
do not contain an index section.  

index

various information on the data file, including the maximum
number of possible records, the actual number of records, and
the�type of the base (database,�list, or sequence).  

header

Description Description Description Description SectionSectionSectionSection

Note that by setting the global system variable _EnvVerbose_EnvVerbose_EnvVerbose_EnvVerbose to nullnullnullnull, some
non-critical warning messages are suppressed.

A sample session:

First activate the package:

> with 'ads';

agenaagenaagenaagena    >> 189



Create a new database (file c:\test.agb ) including all administration data like
number of records, etc.:

> createbase('c:/test.agb');

Open the database for processing. The variable fh  is the file handle which
references to the database file (c:\test.agb ) and is used in all ads functions.

> fh := openbase('c:/test.agb');

Put an entry into the database with key `Duck` and value `Donald`.

> writebase(fh, 'Duck', 'Donald');

Check what is stored for `Duck`.

> readbase(fh, 'Duck'):
Donald

Show information on the database:

> attrib(fh):
keylength ~ 31                  # Maximum length fo r key
type ~ 0                        # database type, 0 for relational database
stamp ~ AGENA DATA SYSTEM       # name of database
indexstart ~ 256                # begin of index se ction in file
commentpos ~ 0                  # position of a des cription, 0 because none
                                # was given.
version ~ 300                   # base version, her e 3.00
maxsize ~ 20000                 # maximum number of  possible records. Agena
                                # automatically ext ends the database, if
                                # this number is ex ceeded.
indexend ~ 80255                # end of index sect ion
creation ~ 2008/01/18-19:00:50  # number of creatio n
columns ~ 2                     # number of columns
size ~ 1                        # number of actual entries

Close the database. After that you cannot read or enter any entries. Use the openopenopenopen
function if you want to have access again.

> closebase(fh);

On all types, you may use the following procedures:

ads.attrib (filehandle)

Returns a table with all attributes of the `base` file. The table includes the following
keys:

numberThe position of a comment in the base. If no
comment is present, its value is 0. 

'commentpos'  

numberThe number of columns in the base. 'columns' 

TypeDescriptionKey

190 8 Agena Database System



numberThe base version.'version'

numberIndicator for database (0),� list (1), or sequence (2).'type'

stringThe�base stamp at the beginning of the file. 'stamp'

numberthe actual number of valid data sets (see ads.size as
a shortcut).

'size'

numbertotal number of data sets allowed.'maxsize'

numberthe maximum length of the record key.'keysize'

numberthe last byte in the�base file of the index section. 'indexend'  

numberthe first byte in the�base file of the index section. 'indexstart'  

stringThe date of creation of the base. The return is a
formatted string including date and time. 

'creation'  

TypeDescriptionKey

If the file is not open, attribattribattribattrib returns falsefalsefalsefalse.

See also: ads.freeads.freeads.freeads.free, ads.sizeads.sizeads.sizeads.size.

ads.clean (filehandle)

Physically deletes all entries that have become invalid (i.e. replaced by new values)
from the database or list. The file index section is adjusted accordingly and the file
shrinked to the new reduced size. 

If there are no invalid records, falsefalsefalsefalse is returned. If all records could be deleted
successfully, truetruetruetrue is returned. If the file is not open, the result is failfailfailfail. If a file truncation
error occurred, clean quits with an error. The function issues an error if the file
contains a sequence.

ads.closebase (filehandle [, filehandle2, ...])

Closes the base(s) identified by the given file handle(s) and returns truetruetruetrue if successful,
and falsefalsefalsefalse otherwise. falsefalsefalsefalse will be returned if at least one base could not be closed.
The function also deletes the file handles and the corresponding filenames from the
ads.openfiles table.

ads.comment (filehandle)
ads.comment (filehandle, comment)
ads.comment (filehandle, '')

In the first form, the function returns the comment stored to the database or list if
present. The return is a string or nullnullnullnull if there is no comment.

In the second form, ads.comment writes or updates the given comment to the
database or list and if successful, returns truetruetruetrue. The comment is always written to the

agenaagenaagenaagena    >> 191



end of the file. If it could not successfully add or update a comment, the function
quits with an error.

In the third form, by passing an empty string, the existing comment is entirely
deleted from the database or list.

If filehandle  points to a sequence, an error is an error is an error is an error is issued, and�no comment is written.
failfailfailfail is returned, if the file is not open.

Internally, the position of the comment is stored in the file header. See ads.attrib
['commentpos'].

ads.createbase (filename 
    [, number_of_records [, type [, number_of_colum ns 

    [, length_of_key [, description]]]]])

Creates and initialises the index section of the new�base with the given number of
columns. It returns the file handle as a number, and closes the created file.

Arguments / Options:

A string with a description of the contents of the�base. A
maximum of 75 characters are allowed (including the \0
character). If the string is too long, it is truncated. Default:
75 spaces.

description

The maximum length of the�base key. Note that internally,
the length is incremented by 1 for the terminating \0
character. Default: 31 including the terminating \0
character.

length_of_key

The number of columns in a database. Default: 2 (key
and value). If the base is not a database, this option is
ignored. If the number of columns is nonpositive, failfailfailfail is
returned and no base is created.

number_of_columns

By default, the type is 'database'. If you pass the string 'list',
then a list is created. The string 'seq' creates a sequence. If
the type passed is not known, failfailfailfail is returned and no base
is created.

type

The maximum number of records in the�base. Default is
20000. If you pass 0, fail is returned and the base is not
created.

number_of_records

The path and full name of the�base file.filename

ads.createseq (filename)

Creates a sequence with the given filename  (a string). The function is written in the
Agena language and can be used after running readlib 'ads'.

192 8 Agena Database System



ads.desc  (filehandle)

ads.desc (filehandle, description)

In the first form, returns the description of a base stored in the file header.

In the second form, adsadsadsads....descdescdescdesc sets or overwrites the description section of a
database or list. Pass the description as a string. If the string is longer than 75
characters, fafafafailililil is returned and there are no changes to the�base file. If the file is
not open, fafafafailililil is returned, as well. If it was successful, the return is truetruetruetrue.

ads.expand (filehandle [, n])

Increases the maximum number of datasets by n records (n an integer). By default,
n is 10. Internally, all data sets are shifted, so that the index section in the data file
can be extended - so the greater n, the faster shifting will be, which is significant for
large files.

The function returns failfailfailfail if the file is not open, and truetruetruetrue otherwise. It issues an error if
the file contains a sequence.

ads.free (filehandle)

Determines the number of free data sets and returns them as an integer. If
the�base has not open, it returns fafafafailililil. See also: ads.attrib.

ads.getall (filehandle)

Converts a sequence to a set and returns this set. The function automatically
initialises the set with the number of entries in the sequence. If the file is not open,
failfailfailfail is returned.

See also: ads.getkeys, ads.getvalues.

ads.getkeys (filehandle)

Gets all valid keys in a database or list and returns them in a table. Argument: file
handle (integer). If the file is not open, failfailfailfail is returned. If the�base is empty, nullnullnullnull is
returned. The function issues an error if the file contains a sequence.

See also: ads.get, ads.getvalues.

ads.getvalues (filehandle [, column])

By default gets all valid entries in the second column in a database and returns
them in a table. If the optional argument column is given, the entries in this column
are returned. Argument: file handle (integer). If the file is not open or if the column
does not exist, failfailfailfail is returned. If the�base is empty, nullnullnullnull is returned. With lists, the
return is always nullnullnullnull. 

agenaagenaagenaagena    >> 193



See also: ads.get, ads.getkeys.

ads.index (filehandle, key)

Searches for the given key (a string) in the base pointed to by filehandle and returns
its file position as a number. If their are no entries in the set, the function returns nullnullnullnull.
If the file is not open, failfailfailfail is returned.

ads.indices (filehandle)

Returns the file positions of all valid detests as a table.

If the file is not open, indices returns failfailfailfail. If there are no entries in the base, the return
is an empty table, otherwise a table with the indices is returned. The function issues
an error if the file contains a sequence.

See also ads.retrieve, ads.invalids, ads.peek, ads.index.

ads.invalids (filehandle)

Returns the file positions of all invalid records in a database as a table.

If the file is not open, invalids returns failfailfailfail. If no invalid entries are found, the return is
an empty table. See also ads.retrieve. Note that the function also works with lists.
However, since lists never contain invalid records, an empty table will always be
returned with lists.

With sequences, the function issues an error.

ads.iterate (filehandle)

Iterates sequentially and in ascending order over all keys in the database or list. With
databases, both the next key and its corresponding value are returned. With lists,
only the next key is returned. 

The very first key can be accessed with an empty string. If there are no more keys
left, the function returns nullnullnullnull. If the database is empty, nullnullnullnull is returned as well. If the
file is not open, the function returns failfailfailfail.

Example:

> s, t := ads.iterate(fh, '');

> s, t := ads.iterate(fh, s);

194 8 Agena Database System



ads.openbase (filename [, anything])

Opens the�base with name filename and returns a file handle (a number). If it
cannot find the file, or the�base has not the correct version number, the function
returns failfailfailfail. The base is opened in both read and write mode.

If an optional second argument is given (any valid Agena value), the base is
opened in read mode only.

The function also enters the newly opened file into the ads.openfiles table.

ads.openfiles

A global table�containing all files currently open. Its keys are the file handles
(integers), the values the file names (strings). If there are no open files, ads.openfiles
is an empty table.

ads.peek (filehandle, position)

Returns both the length of an entry (including the terminating \0 character) and the
entry itself at the given file position as two values (an integer and a string). The
function is save, so if you try to access an invalid file position, the function will exit
returning failfailfailfail. It issues an error if the file contains a sequence.

See also ads.index, ads.retrieve.

ads.rawsearch (filehandle, key [, column])

With databases, the function searches all entries in the given column for the
substring key and returns all respective keys and the matching entries in a table. If
column is omitted, the second column is searched. The value for column must be
greater than 0, so you can also search for keys.

With lists and sequences, the function always returns nullnullnullnull. If the base is empty, nullnullnullnull is
returned.

If the file is not open or the column does not exist, the function returns fafafafailililil. 

See also�ads.read, ads.getvalues.

ads.readbase (filehandle, key)

With databases, the function returns the entry (a string) to the given key (also a
string). With lists and sequences, the function returns truetruetruetrue if it finds the key, and falsefalsefalsefalse
otherwise. 

agenaagenaagenaagena    >> 195



If the file is not open, read returns fafafafailililil. If the�base is empty, nullnullnullnull is returned. The
function uses binary search. 

See also�ads.rawsearch.

ads.remove (filehandle, key)

With databases, the function deletes a key-value pair from the database; with lists,
the key is deleted. Physically, only the key to the record is deleted, the key or
key-value pair still resides in the record section but cannot be found any longer.
The function returns truetruetruetrue if it could delete the data set, and falsefalsefalsefalse if the set to be
deleted was not found. If the file is not open, delete returns fail. The function issues
an error if the file contains a sequence.

If you want to physically delete all invalid records, use ads.cleanads.cleanads.cleanads.clean.

ads.retrieve (filehandle, position)

Gets a key and its value from a database or list (indicated by its first argument, the
file handle) at the given file position (an integer, the second argument). Two values
are returned: the respective key and its value. With lists, only the key is returned.

The function is save, so if you try to access an invalid file position, the function will
exit and return failfailfailfail.

If the file is not open, retrieve returns failfailfailfail. . . . The function issues an error if the file
contains a sequence. 

See also ads.indices, ads.invalids. 

ads.sizeof (filehandle)

Returns the number of valid records (an integer) in the base pointed to be
filehandle. If the�base pointed to by the numeric filehandle is not open, the
function returns fafafafailililil.

ads.sync (filehandle)

Flushes all unwritten content to the�base file. The function returns truetruetruetrue if successful,
and failfailfailfail otherwise (e.g. if the file was not opened before or an error during flushing
occurred).

196 8 Agena Database System



ads.writebase (filehandle, key [, value1, value2, . ..])

With databases, the function writes the key (a string) and the values (strings) to the
database file pointed to by filehandle (an integer). If value is omitted, an empty
string is written as the value.

With lists, the function writes only the key (a string) to the database file. If you pass
values, they are ignored. If the key already exists, nothing is written or done and truetruetruetrue
is returned. Thus, lists never contain invalid records.
In both cases, the index section is updated. If a key already exists, its position in the
index section is deleted and the new index position is inserted instead (in this case
there is no reshifting). This does not remove the actual key-value pair in the record
section. The function always writes the new key-value pair to the end of the file. (The
file position after the write operation has completed is always 0.)

If the maximum number of possible records is exceeded, the�base is automatically
expanded by 10 records. You do not need to do this manually.

write returns the truetruetruetrue if successful. If the file is not open, write returns fafafafailililil.

agenaagenaagenaagena    >> 197



198 8 Agena Database System



Chapter NineChapter NineChapter NineChapter Nine

C API FC API FC API FC API Functionsunctionsunctionsunctions             

agenaagenaagenaagena    >> 199



200 9 C API Functions



9999    C API FC API FC API FC API Functionsunctionsunctionsunctions

As already noted in Chapter 1, Agena features almost the same C API as Lua 5.1 so
you are able to easily integrate your C packages and functions written for Lua 5.1 in
Agena.

The following C API functions have been changed to remove automatic
string-to-number conversion:

lauxlib.cluaL_checkinteger
lauxlib.cluaL_checknumber
lapi.clua_isstring
lapi.clua_isnumber
Lua source fileLua source fileLua source fileLua source fileAPI functionAPI functionAPI functionAPI function

Table 14: Modified Lua C API functions

Except for the above mentioned functions, no other modifications have been
made to C API functions that are part of Lua 5.1.

For a description of the API functions taken from Lua, see its Lua 5.1 manual. 

Agena features a macro agn_Complexagn_Complexagn_Complexagn_Complex  which is a shortcut for complex double.

The following API functions have been added (see files lapi.c  and lua.h ):

agnagnagnagn_ccall_ccall_ccall_ccall

agn_Complex agn_ccall (lua_State *L, int nargs, int  nresults);

Exactly like lua_call, but returns a complex value as its result, so a subsequent
conversion to a complex number via stack operation is avoided. If the result of the
function call is not a complex value, 0 is returned. agnagnagnagn____cccccallcallcallcall pops the function and
its arguments from the stack.

agn_checkcomplexagn_checkcomplexagn_checkcomplexagn_checkcomplex

LUALIB_API agn_Complex agn_checkcomplex (lua_State *L, int idx)

Checks whether the value at index idx  is a complex value and returns it. An error is
raised if the value at idx  is not of type complex.

agenaagenaagenaagena    >> 201



agn_checkagn_checkagn_checkagn_check lstringlstringlstringlstring

const char *agn_checklstring (lua_State *L, int idx , size_t *len);

Works exactly like luaL_checklstring but does not perform a conversion of numbers
to strings.

agn_checknumberagn_checknumberagn_checknumberagn_checknumber

lua_Number agn_checknumber (lua_State *L, int idx);

Checks whether the value at index idx  is a number and returns this number. An error
is raised if the value at idx  is not a number. This procedure is an alternative to
luaL_checknumber for it is around 14 % faster in execution while providing the same
functionality by avoiding different calls to  internal Auxiliary Library functions.

agn_checkagn_checkagn_checkagn_checkstringstringstringstring

const char *agn_checkstring (lua_State *L, int idx) ;

Works exactly like luaL_checkstring but does not perform a conversion of numbers
to strings. An error is raised if idx  is not a string.

aaaagngngngn_complexget_complexget_complexget_complexget imagimagimagimag

LUA_API void agn_complexgetimag (lua_State *L, int idx)

Pushes the imaginary part of the complex value at position idx  onto the stack.

agnagnagnagn_complexgetreal_complexgetreal_complexgetreal_complexgetreal

LUA_API void agn_complexgetreal (lua_State *L, int idx)

Pushes the real part of the complex value at position idx  onto the stack.

agn_copyagn_copyagn_copyagn_copy

LUA_API void agn_copy (lua_State *L, int idx)

Returns a true copy of the structure at stack index idx. The copy is put on top of the
stack, but the original structure is not removed.

202 9 C API Functions



agnagnagnagn_create_create_create_createcomplexcomplexcomplexcomplex

LUA_API void agn_createcomplex (lua_State *L, agn_C omplex c)

Pushes a value of type complex onto the stack with its complex value given by c .

agnagnagnagn_createpair_createpair_createpair_createpair

void agn_createpair (lua_State *L, int idxleft, int  idxright);

Pushes a pair onto the stack with the left operand determined by the value at index
idxleft , and the right operand by the value at index idxright . The left and right
values are not popped from the stack.

agn_creatertableagn_creatertableagn_creatertableagn_creatertable

LUA_API void agn_creatertable (lua_State *L, int id x)

Creates an empty remember table for the function at stack index idx . It does not
change the stack.

agnagnagnagn_createse_createse_createse_createseqqqq

void agn_createseq (lua_State *L, int nrec);

Pushes a sequence onto the top of the stack with nrec  preallocated places (nrec

may be zero).

agnagnagnagn_createset_createset_createset_createset

void agn_createset (lua_State *L, int nrec);

Pushes an empty set onto the top of the stack. The new set has space
pre-allocated for nrec  items.

agn_deletertableagn_deletertableagn_deletertableagn_deletertable

LUA_API void agn_deletertable (lua_State *L, int ob jindex)

Deletes the remember table of the procedure at stack index idx . If the procedure
has no remember table, nothing happens. The function leaves the stack
unchanged.

agenaagenaagenaagena    >> 203



agn_fnextagn_fnextagn_fnextagn_fnext

int agn_fnext (lua_State *L, int indextable, indexf unction);

Pops a key from the stack, and pushes four values in the following order: the key of
a table given by indextable, its corresponding value, the function at stack number
indexfunction, and the value from the table at the given indextable. If there are no
more elements in the table, then aaaagngngngn_fnext_fnext_fnext_fnext returns 0 (and pushes nothing). 
The function is useful to avoid duplicating values on the stack for lua_calllua_calllua_calllua_call and the
iterator to work correctly.

A typical traversal looks like this: 

 /* table is in the stack at index 't', function is  at stack index 'f' */ 
 lua_pushnil(L); /* first key */ 
 while (lua_fnext(L, t, f) != 0) {
   /* 'key' is at index -4, 'value' at -3, function  at -2, and 'value' 
      at -1 */ 
   lua_call(L, 1, 1);  /* call the function with on e arg & one result */
   lua_pop(L, 1);      /* removes result of lua_cal l; 
                          keeps 'key' for next iter ation */ 
 }

While traversing a table, do not call lua_tolstringlua_tolstringlua_tolstringlua_tolstring directly on a key, unless you know
that the key is actually a string. Recall that lua_tolstringlua_tolstringlua_tolstringlua_tolstring changes the value at the
given index; this confuses the next call to lua_nextlua_nextlua_nextlua_next. 

agn_getfuntiontypeagn_getfuntiontypeagn_getfuntiontypeagn_getfuntiontype

LUA_API int agn_getfunctiontype (lua_State *L, int idx)

Returns 1 if the function at stack index idx is a C function, 0 if the function at idx is an
Agena function, and -1 of the value at idx is no function at all.

agn_getrtableagn_getrtableagn_getrtableagn_getrtable

LUA_API int agn_getrtable (lua_State *L, int idx)

PPPPushes the remember table if the function at stack index ushes the remember table if the function at stack index ushes the remember table if the function at stack index ushes the remember table if the function at stack index idx  onto the stack and onto the stack and onto the stack and onto the stack and
returns 1returns 1returns 1returns 1. If the function does not have a remember table, it pushes nothing and. If the function does not have a remember table, it pushes nothing and. If the function does not have a remember table, it pushes nothing and. If the function does not have a remember table, it pushes nothing and
returns 0.returns 0.returns 0.returns 0.

agn_getrtablewritemodeagn_getrtablewritemodeagn_getrtablewritemodeagn_getrtablewritemode

int agn_getrtablewritemode (lua_State *L, int idx)

Returns Returns Returns Returns 0 if the remember table of the function at stack index idx cannot be
updated by the returnreturnreturnreturn statement (i.e. if it is an rotable), 1 if it can (i.e. if it is an

204 9 C API Functions



rtable), 2 if the function at idx has no remember table at all, and -1 if the value at
idx is not a function.

agn_getseqlstringagn_getseqlstringagn_getseqlstringagn_getseqlstring

const char *agn_getseqlstring (lua_State *L, int id x, int n, size_t *l);

Gets the string at index n in the sequence at stack index idx . The length of the string
is stored to l.

agn_getagn_getagn_getagn_get iiiinumbernumbernumbernumber

lua_Number agn_getinumber (lua_State *L, int idx, i nt n);

Returns the value t[n] as a lua_Number, where t is a table at the given valid index
idx. If t[n] is not a number, the return is 0. The access is raw; that is, it does not invoke
metamethods.

agnagnagnagn_get_get_get_getttttstringstringstringstring

const char *agn_gettstring (lua_State *L, int idx, int n);

Returns the value t[n] as a const char, where t is a table at the given valid index idx.
If t[n] is not a string, the return is nullnullnullnull. The access is raw; that is, it does not invoke
metamethods.

agnagnagnagn_get_get_get_getuuuutypetypetypetype

int agn_getutype (lua_State *L, int idx);

Returns the user-defined type of a procedure, sequence, set, or pair at stack
position idx  as a string and pushes it onto the top of the stack. If no user-defined
type has been defined, the function returns 0 and pushes nothing onto the stack.

See also: agnagnagnagn_set_set_set_setuuuutypetypetypetype.

agnagnagnagn_is_is_is_isfailfailfailfail

int agn_isfail (lua_State *L, int idx);

Returns 1 if the Boolean value at the given acceptable index results to fail, 0
otherwise (truetruetruetrue and falsefalsefalsefalse).

agenaagenaagenaagena    >> 205



agn_isagn_isagn_isagn_isfalsefalsefalsefalse

int agn_isfalse (lua_State *L, int idx);

Returns 1 if the Boolean value at the given acceptable index results to falsefalsefalsefalse, 0
otherwise (truetruetruetrue and failfailfailfail).

agn_agn_agn_agn_isisisisutypeutypeutypeutype

int *agn_isutype (lua_State *L, int idx, const char  *str);

Checks whether the type at stack index idx  is the user-defined type denoted by
str . It returns 1 if the given user-defined type has been found, and 0 otherwise.

agn_isutypeagn_isutypeagn_isutypeagn_isutypeset

int *agn_isutypeset (lua_State *L, int idx, const c har *str);

Checks whether a user-defined type has been set for the given object at stack
position idx. It returns 1 if a user-defined type has been set, and 0 otherwise. The
function accepts any Agena types. By default, if the object is not a sequence, a
pair, set, or procedure, it returns 0.

agn_agn_agn_agn_isisisisseqseqseqsequtypeutypeutypeutype

int *agn_issequtype (lua_State *L, int idx, const c har *str);

Checks whether the type at stack index idx  is a sequence and whether the
sequence has the user-defined type denoted by str . It returns 1 if the above
condition is true, and 0 otherwise.

agn_agn_agn_agn_isseisseisseissettttutypeutypeutypeutype

int *agn_issetutype (lua_State *L, int idx, const c har *str);

Checks whether the type at stack index idx  is a set and whether this set has the
user-defined type denoted by str . It returns 1 if the above condition is true, and 0
otherwise.

206 9 C API Functions



agn_isagn_isagn_isagn_istabletabletabletableutypeutypeutypeutype

int *agn_istableutype (lua_State *L, int idx, const  char *str);

Checks whether the type at stack index idx  is a table and whether the table has the
user-defined type denoted by str . It returns 1 if the above condition is true, and 0
otherwise.

agnagnagnagn_istrue_istrue_istrue_istrue

int agn_istrue (lua_State *L, int idx);

Returns 1 if the Boolean value at the given acceptable index results to truetruetruetrue, 0
otherwise (falsefalsefalsefalse and failfailfailfail).

agnagnagnagn____isverboseisverboseisverboseisverbose

LUA_API int agn_isverbose (lua_State *L);

Checks whether the global system variable _EnvVerbose_EnvVerbose_EnvVerbose_EnvVerbose is set to anything but nullnullnullnull
or falsefalsefalsefalse. If _EnvVerbose_EnvVerbose_EnvVerbose_EnvVerbose is set, the function returns 1, otherwise (_EnvVerbose_EnvVerbose_EnvVerbose_EnvVerbose is
unassigned or falsefalsefalsefalse) it returns 0.

agnagnagnagn_ncall_ncall_ncall_ncall

lua_Number agn_ncall (lua_State *L, int nargs, int nresults);

Exactly like lua_call, but returns a numeric result as an Agena number, so a
subsequent conversion to a number via stack operations is avoided. If the result of
the function call is not numeric, 0 is returned. agnagnagnagn_ncall_ncall_ncall_ncall pops the function and its
arguments from the stack.

agn_agn_agn_agn_nopsnopsnopsnops

size_t agn_nops (lua_State *L, int idx);

Determines the number of actual table, set, or sequence entries at t[idx]. If the
value at idx is not a table, set, or sequence, it returns 0. With tables, this procedure is
an alternative to lua_objlenlua_objlenlua_objlenlua_objlen if you want to get the size of a table since lua_objlenlua_objlenlua_objlenlua_objlen
does not return correct results if there are holes in the table or if the table is a
dictionary.

agenaagenaagenaagena    >> 207



agn_agn_agn_agn_optoptoptoptcomplexcomplexcomplexcomplex

agn_Complex agn_optcomplex (lua_State *L, int narg,  agn_Complex z);

If the value at index narg  is a complex number, it returns this number. If this
argument is absent or is nullnullnullnull, the function returns complex z . Otherwise, raises an
error.

agnagnagnagn_pairgeti_pairgeti_pairgeti_pairgeti

void agn_pairgeti (lua_State *L, int idx, int n);

Returns the left operand of a pair at stack index idx  if n is 1, and the right operand if
n is 2, and puts it onto the top of the stack. You have to make sure that n is either 1
or 2.

agnagnagnagn_pairraw_pairraw_pairraw_pairrawggggetetetet

void agn_pairrawget (lua_State *L, int index);

Pushes onto the stack the left or the right hand value of a pair t , where t  is the value
at the given valid index index  and the number k  (k=1 for the left hand side, k=2 for
the right hand side) is the value at the top of the stack. It does not invoke any
metamethods. This function pops both k  from the stack. It does not invoke any
metamethods.

agnagnagnagn_pairrawset_pairrawset_pairrawset_pairrawset

void agn_pairrawset (lua_State *L, int index);

Does the equivalent to p[k] := v, where s is a pair at the given valid index index , v is
the value at the top of the stack, and k is the value just below the top. 

This function pops both the key and the value from the stack. It does not invoke any
metamethods.

agnagnagnagn_poptop_poptop_poptop_poptop

void agn_poptop (lua_State *L);

Pops the top element from the stack. The function is more efficient than lua_pop(L,
1).

208 9 C API Functions



agn_poptoptwoagn_poptoptwoagn_poptoptwoagn_poptoptwo

void agn_poptoptwo (lua_State *L);

Pops the top element and the value just below the top from the stack. The function
is more efficient than lua_pop(L, 2).

agn_seqsizeagn_seqsizeagn_seqsizeagn_seqsize

int agn_seqsize (lua_State *L, int idx);

Returns the number of items currently stored to the sequence at stack index idx . 

agn_agn_agn_agn_sssseqeqeqeqstatestatestatestate

void agn_seqstate (lua_State *L, int idx, size_t a[ ])

Returns the actual number of items and the maximum number of items assignable
to the sequence at index idx  in a, a C array with two entries. The actual number of
items is stored to a[0], the maximum number of entries to a[1]. If a[1] is 0, then the
number of possible entries is infinite.

agn_setrtableagn_setrtableagn_setrtableagn_setrtable

LUA_API void agn_setrtable (lua_State *L, int find,  int kind, int vind)

Sets argument~return values to the function at stack index find . The argument list
reside at a table array at stack index kind , the return list are in another table at stack
index vind . See the description for the rsetrsetrsetrset function for more information.

agnagnagnagn_set_set_set_setuuuutypetypetypetype

void agn_setutype (lua_State *L, int idxobj, int id xtype);

Sets a user-defined type of a procedure, sequence, set, or pair. The object is at
stack index idxobj , the type (a string) is at position idxtype . The function leaves the
stack unchanged.

If nullnullnullnull is at idxtype , the function deletes the user-defined type.

Setting the type of a sequence or pair also causes the pretty printer to display the
string passed to the function instead of the usual output at the console. This does
not apply to procedures.

agenaagenaagenaagena    >> 209



See also: agnagnagnagn____ggggetetetetuuuutypetypetypetype.

agnagnagnagn_set_set_set_setuuuutypestringtypestringtypestringtypestring

void agn_setutypestring (lua_State *L, int idxobj, const char *str);

Sets the string str  as the user-defined type of the procedure, sequence, set, or pair
at stack position idxobj .

agn_sizeagn_sizeagn_sizeagn_size

int agn_size (lua_State *L, int idx);

Returns the number of items currently stored to the array and the hash part of the
table at stack index idx .

agn_ssizeagn_ssizeagn_ssizeagn_ssize

int agn_ssize (lua_State *L, int idx);

Returns the number of items currently stored to the set at stack index idx .

agn_agn_agn_agn_ssssstatestatestatestate

void agn_sstate (lua_State *L, int idx, size_t a[])

Returns the actual number of items and the current maximum number of items
allocable to the set at index idx  in a, a C array with two entries. The actual number
of items is stored to a[0], the current allocable size to a[1].

agn_agn_agn_agn_ttttaaaablestateblestateblestateblestate

void agn_tablestate (lua_State *L, int idx, size_t a[])

Returns the number of key~value pairs allocable and actually assigned to the
respective array and hash sections of the table at index idx  by storing the result in a,
a C array with four entries. 

The number of key~value pairs currently stored in the array part is stored to a[0], the
number of pairs currently stored in the hash part to a[1]. The number of allocable
key~value pairs to the array part is stored to a[2], and the number of allocable
key~value pairs to the hash part is stored to a[3].

210 9 C API Functions



agn_agn_agn_agn_ttttoooocomplexcomplexcomplexcomplex

agn_Complex agn_tocomplex (lua_State *L, int idx)

Assumes that the value at stack index idx  is a complex value and returns it as a
lua_Number. It does not check whether the value is a complex number.

agn_agn_agn_agn_ttttonumberonumberonumberonumber

lua_Number agn_tonumber (lua_State *L, int idx)

Assumes that the value at stack index idx  is a number and returns it as a
lua_Number. It does not check whether the value is a number. The strings or names
'undefined'  and 'infinity'  are recognised properly.

agn_agn_agn_agn_ttttonumberonumberonumberonumberxxxx

lua_Number agn_tonumberx (lua_State *L, int idx, in t *exception)

If the value at stack index idx  is a number or a string containing a number, it returns
it as a lua_Number. The strings or names 'undefined'  and 'infinity'  are
recognised properly. If successful, exception is assigned to 0.

If the value could not be converted to a number, 0 is returned, and exception is
assigned to 1.

agn_tagn_tagn_tagn_toooostringstringstringstring

const char *agn_tostring (lua_State *L, int idx)

Assumes that the value at stack index idx  is an Agena string and returns it as a C
string of type const char *. It does not check whether the value is a string. The strings

lua_pushfalua_pushfalua_pushfalua_pushfa ilililil

void lua_pushfail (lua_State *L);

This macro pushes the boolean value failfailfailfail onto the stack.

lua_pushfalselua_pushfalselua_pushfalselua_pushfalse

void lua_pushfalse (lua_State *L);

This macro pushes the boolean value falsefalsefalsefalse onto the stack.

agenaagenaagenaagena    >> 211



lua_pushundefinedlua_pushundefinedlua_pushundefinedlua_pushundefined

void lua_pushundefined (lua_State *L);

Pushes the value undefinedundefinedundefinedundefined onto the stack.

lua_pushtruelua_pushtruelua_pushtruelua_pushtrue

void lua_pushtrue (lua_State *L);

This macro pushes the boolean value truetruetruetrue onto the stack.

lua_rawset2lua_rawset2lua_rawset2lua_rawset2

void lua_rawset2 (lua_State *L, int idx);

Similar to lua_settable, but does a raw assignment (i.e., without metamethods). 

Contrary to lua_rawset, only the value is deleted from the stack, the key is kept, thus
you save one call to lua_pop. This makes it useful with lua_next which needs a key
in order to iterate successfully.

lua_rawsetilua_rawsetilua_rawsetilua_rawseti lstring

void lua_rawsetilstring (lua_State *L, int idx, int  n, const char *str,
   int len);

Does the equivalent of t[n] = string, where t is the table at the given valid index idx,
n is an integer, string the string to be inserted and len the length of then string.
This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetikeylua_rawsetikeylua_rawsetikeylua_rawsetikey

void lua_rawsetikey (lua_State *L, int idx, int n);

Does the equivalent of t[n] = k, where t is the value at the given valid index idx and
k is the value just below the top of the stack.

This function pops the topmost value from the stack and leaves everything else
untouched. The assignment is raw; that is, it does not invoke metamethods.

212 9 C API Functions



lua_rawsetinumberlua_rawsetinumberlua_rawsetinumberlua_rawsetinumber

void lua_rawsetinumber (lua_State *L, int idx, int n, lua_Number num);

Does the equivalent of t[n] = num, where t is the value at the given valid index idx,
n is an integer, and num an Agena number (a C double).

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetistringlua_rawsetistringlua_rawsetistringlua_rawsetistring

void lua_rawsetistring (lua_State *L, int idx, int n, const char *str);

Does the equivalent of t[n] = str, where t is the value at the given valid index idx, n is
an integer, and str a string.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetstringlintlua_rawsetstringlintlua_rawsetstringlintlua_rawsetstringlint

void lua_rawsetstringlint (lua_State *L, int idx, c onst char *str, 
   int len, int n);

Does the equivalent of t[str] = n, where t is the value at the given valid index idx, str
a string, len the length of str, and n an integer.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetstringlua_rawsetstringlua_rawsetstringlua_rawsetstring numbernumbernumbernumber

void lua_rawsetstringnumber 
   (lua_State *L, int idx, const char *str, lua_Num ber n);

Does the equivalent of t[str] = n, where t is the value at the given valid index idx, str

a string, and n a Lua number.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

agenaagenaagenaagena    >> 213



lua_slua_slua_slua_sdeletedeletedeletedelete

void lua_sdelete (lua_State *L, int idx);

Deletes the element residing at the top of the stack from the table at stack position
idx. The element at the stack top is popped thereafter.

lua_seqgetilua_seqgetilua_seqgetilua_seqgeti

void lua_seqgeti (lua_State *L, int idx, int n);

Gets the n-th item from the sequence at stack index idx  and pushes it onto the
stack.

lualualualua____seqseqseqseqgetgetgetgetiiiinumbernumbernumbernumber

lua_Number lua_seqgetinumber (lua_State *L, int idx , int n);

Returns the value t[n] as a lua_Number, where t is a sequence at the given valid
index idx. If t[n] is not a number, the return is HUGE_VAL. The access is raw; that is, it
does not invoke metamethods.

lua_seqinsertlua_seqinsertlua_seqinsertlua_seqinsert

void lua_seqinsert (lua_State *L, int idx);

Inserts the element on top of the Lua stack into the sequence at stack index idx .
The element is inserted at the end of the sequence. The value added is popped
from the stack.

lua_seqnextlua_seqnextlua_seqnextlua_seqnext

int lua_seqnext (lua_State *L, int index);

Pops a key from the stack, and pushes the next key~value pair from the sequence
at the given index. If there are no more elements in the sequence, then
lua_seqnextlua_seqnextlua_seqnextlua_seqnext returns 0 (and pushes nothing). To access the very first item in a
sequence, put nullnullnullnull on the stack before (with lua_pushnillua_pushnillua_pushnillua_pushnil ).

While traversing a sequence, do not call lua_tolstringlua_tolstringlua_tolstringlua_tolstring directly on the key. Recall that
lua_tolstringlua_tolstringlua_tolstringlua_tolstring changes the value at the given index; this confuses the next call to
lua_seqnextlua_seqnextlua_seqnextlua_seqnext . 

214 9 C API Functions



lua_slua_slua_slua_seqeqeqeqrawgetrawgetrawgetrawget

void lua_seqrawget (lua_State *L, int index);

Pushes onto the stack the sequence value t[k], where t is the sequence at the given
valid index index  and k is the value at the top of the stack.

This function pops the key from the stack (putting the resulting value in its place). The
function does not invoke any metamethods.

lua_seqrawsetlua_seqrawsetlua_seqrawsetlua_seqrawset

void lua_seqrawset (lua_State *L, int index);

Does the equivalent to s[k] := v, where s is a sequence at the given valid index
index , v is the value at the top of the stack, and k is the value just below the top. 

This function pops both the key and the value from the stack. It does not invoke any
metamethods.

lua_seqrawsetilstringlua_seqrawsetilstringlua_seqrawsetilstringlua_seqrawsetilstring

void lua_seqrawsetilstring (lua_State *L, int idx, int n, const char *str,
   int len);

Does the equivalent of s[n] = string , where s is the sequence at the given valid
index idx , n is an integer, string  the string to be inserted and len  the length of then
string.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_seqsetilua_seqsetilua_seqsetilua_seqseti

void lua_seqseti (lua_State *L, int idx, int n);

Sets the value at the top of the stack to index n of the sequence at stack index idx . 
If the value added is nullnullnullnull, the entry at sequence index n is deleted and all elements
to the right of the value deleted are shifted to the left, so that their index positions
get changed, as well.

The function pops the value at the top of the stack.

If there is already an item at position n in the sequence, it is overwritten.

agenaagenaagenaagena    >> 215



If you want to extend a current sequence, the function allows to add a new item
only at the next free index position. Larger index positions are ignored, but the value
to be added is popped from the stack, as well.

lua_seqsetinumberlua_seqsetinumberlua_seqsetinumberlua_seqsetinumber

void lua_seqsetinumber (lua_State *L, int idx, int n, lua_Number num);

Sets the given Agena number num to index n of the sequence at stack index idx .

lua_seqsetilua_seqsetilua_seqsetilua_seqseti stringstringstringstring

void lua_seqsetistring (lua_State *L, int idx, int n, const char *str);

Sets the given string str  to index n of the sequence at stack index idx .

lua_slua_slua_slua_sinsertinsertinsertinsert

void lua_sinsert (lua_State *L, int idx);

Inserts an item into a set. The set is at the given index idx, and the item is at the top
of the stack. 

This function pops the item from the stack.

lua_sinsertlstringlua_sinsertlstringlua_sinsertlstringlua_sinsertlstring

void lua_sinsertlstring (lua_State *L, int idx, con st char *str, size_t l);

Sets the first l characters of the string denoted by str into the set at the given index
idx.

lua_slua_slua_slua_sinsertinsertinsertinsertnumbernumbernumbernumber

void lua_sinsertnumber (lua_State *L, int idx, lua_ Number n);

Sets the number denoted by n into the set at the given index idx.

216 9 C API Functions



lua_slua_slua_slua_sinsertinsertinsertinsertstringstringstringstring

void lua_sinsertstring (lua_State *L, int idx, cons t char *str);

Sets the string denoted by str into the set at the given index idx.

lua_srawgetlua_srawgetlua_srawgetlua_srawget

void lua_srawget (lua_State *L, int index);

Checks whether the set at index idx contains the item at the top of the stack. The
function pops the key from the stack putting the Boolean value true or false in its
place.

The function does not invoke any metamethods.

lua_lua_lua_lua_ssssrawsetrawsetrawsetrawset

void lua_srawset (lua_State *L, int index);

Does the equivalent to insert v into s , where s  is the set at the given valid index
index , v  is the value at the top of the stack. 

This function pops the value from the stack. It does not invoke any metamethods.

lua_usnextlua_usnextlua_usnextlua_usnext

int lua_usnext (lua_State *L, int index);

Pops a key from the stack, and pushes the next item twice (!) from the set at the
given index . If there are no more elements in the set, then lua_usnextlua_usnextlua_usnextlua_usnext returns 0 (and
pushes nothing). To access the very first item in a set, put nullnullnullnull on the stack before
(with lua_pushnillua_pushnillua_pushnillua_pushnil ).

While traversing a set, do not call lua_tolstringlua_tolstringlua_tolstringlua_tolstring directly on an item, unless you know
that the item is actually a string. Recall that lua_tolstringlua_tolstringlua_tolstringlua_tolstring changes the value at the
given index; this confuses the next call to lua_usnextlua_usnextlua_usnextlua_usnext .

agenaagenaagenaagena    >> 217



luaL_getudataluaL_getudataluaL_getudataluaL_getudata

void *luaL_checkudata (lua_State *L, int narg, cons t char *tname, 

                       int *result);

Checks whether the function argument narg  is a userdata of the type tname .
Contrary to luaL_checkudataluaL_checkudataluaL_checkudataluaL_checkudata, it does not issue an error if the argument is not a
userdata, and also stores 1 to result  if the check was successful, and 0 otherwise.

218 9 C API Functions



AppendiAppendiAppendiAppendixxxx

            

agenaagenaagenaagena    >> 219



220 Appendix



AppendixAppendixAppendixAppendix

A1 OperatorsA1 OperatorsA1 OperatorsA1 Operators

Unary operators are:

abs , arctan , assigned , char , copy , cos , cosh , entier , even , exp , filled , finite ,
float , gammaln , getbottom , gettop , imag , int , join , left , ln , lower , nargs , not ,
qsadd , real , replace , right , sadd , sign , sin , sinh , size , sqrt , tan , tanh , trim , type ,
unassigned , unique , upper , typeof , -  (unary minus).

Binary operators are:

in , intersect , minus , shift , split , subset , union , xsubset , + (addition), -

(subtraction), * (multiplication), /  (division), \  (integer division), % (modulus), ^

(exponentiation), ** (integer exponentiation), .. (concatenation), = (equality), < (less
than), <= (less or equal), > (greater than) , >= (greater or equal), $ (substring), : (pair
constructor), !  (complex constructor).

A2A2A2A2    MetamethodsMetamethodsMetamethodsMetamethods

The following metamethods were inherited from Lua 5.1:

Method for pretty printing values at stdout.'__tostring'
See Lua 5.1 manual.'__call'
Concatenation.'__concat'
Less-than or equals operation.'__le'
Less-than operation.'__lt'
Equality operation.'__eq'
Unary minus.'__unm'
Exponentiation.'__pow'
Modulus.'__mod'
Division of two values.'__div'
Multiplication of two values.'__mul'
Subtraction of two values.'__sub'
Addition of two values.'__add'
Sets weakness of a table.'__mode'
Garbage collection (for userdata only).'__gc'

Procedure invoked when a value shall to be read from
a table, set, sequence, or pair.

'__index'
MeaningMeaningMeaningMeaningIndex to Index to Index to Index to metatablemetatablemetatablemetatable

Table 15: Metamethods taken from Lua

The '__len' metamethod in Lua 5.1 to determine the size of an object was replaced
with the '__size' metamethod.

agenaagenaagenaagena    >> 221



The following methods are new in Agena:

Procedure invoked when a value shall to be written to
a table, set, sequence, or pair.

'__writeindex'
tantantantan operator'__tan'
sqrtsqrtsqrtsqrt operator'__sqrt'
sinsinsinsin operator'__sin'
sizesizesizesize operator'__size'
signsignsignsign operator'__sign'

saddsaddsaddsadd operator for table or sequence based
user-defined types

'__sadd'

qqqqssssaddaddaddadd operator for table or sequence based
user-defined types

'__qsadd'
lnlnlnln operator'__ln'
exponentiation with an integer power'__ipow'
integer division'__intdiv'
intintintint operator'__int'
in binary operator (for tables and sequences only)'__in'
gammalngammalngammalngammaln operator'__gammaln'
finitefinitefinitefinite operator'__finite'
expexpexpexp operator'__exp'
eveneveneveneven operator'__even'
entierentierentierentier operator'__entier'
strict equality operator (==)'__eeq'
coscoscoscos operator'__cos'
arctanarctanarctanarctan operator'__arctan'
absabsabsabs operator'__abs'
MeaningMeaningMeaningMeaningIndex to Index to Index to Index to metatablemetatablemetatablemetatable

Table 16: Metamethods introduced with Agena

A3A3A3A3 System Variables System Variables System Variables System Variables

Agena lets you configure the following settings:

number of entries in tables and sets printed by printprintprintprint
and the end-colon functionality before issuing the
`press any key` prompt.

_EnvMore

The minimum integral value of the C type long on
your platform; do not change this value.

_EnvMinLong

The maximum integral value of the C type long on
your platform; do not change this value.

_EnvMaxLong

If set true, then each key~value pair in a table will
be printed at a separate line, otherwise a table will
be printed like sets or sequences.

_EnvLongTable
path to the main Agena directory_EnvAgenaPath
MeaningMeaningMeaningMeaningSystem variableSystem variableSystem variableSystem variable

222 Appendix



Release information on the installed Agena release,
returned as a string, e.g. 'AGENA >> 0.90.0'.

_RELEASE
Defines the prompt Agena displays at the console_PROMPT

If set to false, the withwithwithwith function will not display
warnings, the init string, and the short names
assigned.

_EnvWithVerbose

set of names (passed as strings) that cannot by
overwritten by the with    function.

_EnvWithProtected

A sequence containing the string `AGENA`, the
main interpreter version as a number, the subversion
as a number, and the patch level as a number, as
well.

_EnvRelease

When set to true, real and imaginary parts of
complex values close to zero are rounded to zero
on output. (Note that internally, complex values are
not rounded.)

_EnvPrintZeroedCmplxVals

If it is set truetruetruetrue, the printprintprintprint function does not print a
newline when it quits, otherwise a newline is printed.

_EnvPrintNoNewLine

If set to true, a newline is printed at the console after
entering a statement. Default: unassigned, i.e. no
newline.

_EnvPrintNewLineAfterInput
MeaningMeaningMeaningMeaningSystem variableSystem variableSystem variableSystem variable

Table 17: System variables

A4 Command Line UsageA4 Command Line UsageA4 Command Line UsageA4 Command Line Usage

Agena can be used in the command line as follows:

agena [options] [script [arguments]]

This means that any option, an Agena script, and the arguments are all optional. If
you just enter

shell> agena

Agena is started in interactive mode immediately.

There are two ways to run an Agena script with some arguments and then return to
the command line immediately without entering interactive mode:

A4.1 Using the A4.1 Using the A4.1 Using the A4.1 Using the -e  Option Option Option Option

We may write a script with a text editor, e.g. one to print the sine of a number. This
script may look like the following two lines:

agenaagenaagenaagena    >> 223



n := n or Pi;  # if n is not set from the shell, ju st assign Pi to n

writeline(sin(n));

This script prints the sine to a user-given numeric argument which is passed by using
the -e  option and a string containing a valid Agena statement. It uses a variable n
which you must assign via the -e  option:

shell> agena -e "n := Pi/2" sin.agn

1 

Note that you first have to enter the -e  option along with the Agena statement, and
then the name of the script.

A4.2 Using the internal A4.2 Using the internal A4.2 Using the internal A4.2 Using the internal argsargsargsargs Table Table Table Table

Everything you pass to the interpreter from the command line is stored in the argsargsargsargs
table. 

The name of the script is always stored at index 0, the arguments are stored at the
positive indices 1, 2, etc., in the order given by the user. Any options are accessible
via negative keys. The name of the interpreter is always at the smallest index.

Consider the following script called 'args.agn':

for i, j in args do
   writeline(i, j, delim~'\t')
od;

If it is run, the output is:

shell> agena args.agn 0
-1      agena
0       args.agn

1       0

Just play around with this a little bit.

Let us use our new knowledge: The script 'ln.agn' requires a string and a number
and calculates the natural logarithm of this number. The number entered at the
command line is entered into the argsargsargsargs table as a string, so you first must convert it
into a `real` number.

arg1 := args[1];
arg2 := toNumber(args[2]);

try arg1 as string;
try arg2 as number;

writeline(arg1, ln(arg2));

Use it:

224 Appendix



shell> agena ln.agn "The natural logarithm of 1 is:  " 1

The natural logarithm of 1 is: 0

A4.3 Running a Script and then entering interactiA4.3 Running a Script and then entering interactiA4.3 Running a Script and then entering interactiA4.3 Running a Script and then entering interacti ve Modeve Modeve Modeve Mode

The -i  option allows you to enter the interactive level after running a script or
passing other options to Agena. The position of the -i  option does not matter. The
following shell statement resets the Agena prompt and starts the interpreter:

shell> agena -i -e "_PROMPT := 'AGENA> '"

AGENA>

A4.4 Running Scripts in UNIXA4.4 Running Scripts in UNIXA4.4 Running Scripts in UNIXA4.4 Running Scripts in UNIX

If you use Agena in UNIX, then you can execute Agena scripts directly by just
entering the name of the script followed by any arguments (if needed). 

Just insert the following line at the head (i.e. line 1) of each script:

#!/usr/local/bin/agena

and set the appropriate rights for the script file (e.g. chmod a+x scriptname ).

An example:

bash> ./sin.agn 1

0.8414709848079

In all other operating systems, the first line is ignored by the interpreter, so you do not
have to delete the first line of the script in order to use scripts you have originally
written under UNIX.

A4.5 Command Line SwitchesA4.5 Command Line SwitchesA4.5 Command Line SwitchesA4.5 Command Line Switches

The available switches are:

show version information-v

readlib library <name>. The name of the library does not need to be
put in quotes.

-r name

sets path to main Agena folder <path>, overriding the standard
initialisation procedure for _EnvAgenaPath. The path does not need to
be put in quotes.

-p path
do not run initialisation file `agena.ini`-n
print licence information-l
enter interactive mode after executing `script` or other options-i
help information-h
execute string "stat" (double quotes needed)-e "stat"
print compilation time of Agena binary with startup message-b
FunctionFunctionFunctionFunctionOptionOptionOptionOption

agenaagenaagenaagena    >> 225



execute stdin and stop handling options-
stop handling options--
FunctionFunctionFunctionFunctionOptionOptionOptionOption

A5 Define your own Printing Rules for StructuresA5 Define your own Printing Rules for StructuresA5 Define your own Printing Rules for StructuresA5 Define your own Printing Rules for Structures

You can tell Agena how to output tables, sets, sequences, pairs, and complex
values at the console.

With each call to the internal printing routine, the interpreter uses the respective
_EnvPrint_EnvPrint_EnvPrint_EnvPrint function defined in the lib/library.agn  file. You may change these
functions according to your needs.

defines how to print a complex value, overriding the
built-in default

_EnvPrint.Complex
defines how to print a pair, overriding the built-in default_EnvPrint.Pair

defines how to print a sequence, overriding the built-in
default

_EnvPrint.Sequence
defines how to print a set, overriding the built-in default_EnvPrint.Set
defines how to print a table, overriding the built-in default_EnvPrint.Table
FunctionalityFunctionalityFunctionalityFunctionalityTable indexTable indexTable indexTable index

Alternative _EnvPrint_EnvPrint_EnvPrint_EnvPrint functions might look like the following:

> _EnvPrint.Set := proc(s) is
>   write('set(');
>   if size s > 0 then
>      for i in s do
>         write(i, ', ');
>      od;
>      write('\b\b');
>   fi;
>   write(')');
> end;

> _EnvPrint.Complex := proc(s) is
>    write('cmplx(', real(s), ', ', imag(s), ')');
> end;

> {1, 2}:
set(1, 2)

> 1*2*I:
cmplx(1, 2)

226 Appendix


