agena »>

Crash Course

by Alexander Walz

What is Agena ?

Agena is an interpreted procedural programming language.
It can be used Iin scientific, scripting, and many other applications.

Its syntax looks like very simplified Algol 68 with elements taken
from Maple, Lua and SQL, and some other languages.

Binaries are available for Solaris, Mac OS X, Windows, Linux, DOS.
Agena is OpenSource, thus it is free.

The implementation is based on the ANSI C sources of Lua 5.1.
Sources and binaries are available at:

http://agena.sourceforge.net

agena »>

Contents, 1

= |nstalling Agena

= Running Agena

= First Steps

= Names & Assignment

= Data Types
« Integral & Rational Numbers
= Complex Numbers
= Arithmetic
= Strings

; agena »>

Contents, 2

= Data Types, cont.
= Boolean Expressions & Relations
= Tables
= Arrays
= Dictionaries
= Sets
= Sequences
= Pairs

= Control Statements
= If Statements & is Operator
= case Statements
= onsuccess Clause

4 agena »>

Contents, 3

= Loops
= for Loops
= while Loops
= do .. as, do..until, and do .. od Loops
« Combined for/while Loops
= for/as and for/until Loops
= Loop Control

= Procedures
= Short-cut Procedures
= Procedures
= Local Variables
= Variable Number of Arguments

: agena »>

Contents, 4

Procedures, cont.

Options

Type Checking
Error Traps
Predefined Results
Efficient Recursion

Did you know ?

Miscellaneous

Precedence
Mathematical Constants

agena »>

agena »>

Getting Started

Installing Agena

In Solaris, Linux, Windows, and Mac OS X, the respective installer
automatically installs and sets up Agena. You do not have to add
further settings yourself after installing the binaries.

Information on how to install the DOS version is included in the
manual.

Agena has been compiled successfully in OS/2 and Haiku in the past.

agena »>

Running Agena

= |n Windows, simply click the »> icon in the programme group to
start the interpreter.

= |n Solaris, Linux, Mac and DOS, type agena in a shell.

Tarminal

Window Edit Options ﬂelp|

ACEMA »» 1.0 Interpreter as of August 132, 2010
see http: Afagena, sourceforge. net for news and updates, Twpe “bwe™ to quit,
TEET160 KEBYtes of physical RAM free,

»osqrtC—-1+0°1);
I

x

= Statements can be entered right after the '> ' prompt.

; agena »>

AgenaEdit, 1

= AgenaEdit is an editor providing syntax-highlighting and a runtime
environment for Solaris, Mac, Linux, and Windows. It can be started
by entering agenaedit in a shell.

' (3) AGENA >> 0.24.1 (Done) o= = |
gdi package v0.3.2 as of June 20, 2010 ﬂ
B Agenakdit - Untitled (modified) arc, arcfilled, autoflush, background, circle, circlefilled, clearpalette,
close, dash, ellipse, ellipsefilled, flush, fontsize, initpalette, ink,
File Edit Search Run Help lastaccessed, line, mouse, open, optiomns, plot, plotfn, point, rectangle,
- — - - — rectanglefilled, reset, resetpalette, =zetarc, setarcfilled, seteirele,
with 'gdi' setcirclefilled, setinfo, setline, setoptions, setpoint, structure, system,
text, thickness, triangle, trianglefilled, useink
f 1= << & -> sin(exp(x)) >> -2 0.13492253604164
-1.75 0.17290067661258
for x from -2 to 3 by 0.25 do -1.5 0.221283264302
print(x, £{x)) -1.25 0.28260122826374 P -
-1 0.3596375654125 i agena >> plot | s
-0.75 0.45499495857531
plotfn(f, -2, 3, res=300:200) -0.5 0.57002038031004
-0.25 0.70242637415473
o] 0.8414709E4E079
0.25 0.95916224353754
0.5 0.99696538761347
0.75 0.854502656E87061 1 0 1 2 3
1 0.41078128050281 | I]
1.25 -0.34172360856042 ' ' '
1.5 -0.97350658277232
1.75 -0.50430991797801
2 0.89385405401281
2.25 -0.062916282B71071
2.5 -0.37451778437489
2.75 0.0e528401822128 -1
3 0.94447100892628 g
Ed
all [
Break Restart |

’ agena »>

11

AgenaEdit, 2

Type your programme in the editor window and press F5 to run it.

Mark consecutive lines in your programme with a mouse or the
keyboard and press F6 to execute only these lines.

During computation, press the "break button to interrupt the current
computation.

Press the restart button to clear all variables.

Save or open your programmes using the File' menu in the editor
window.

Just browse through the menu items for the other features.

agena »>

First Steps, 1

= Any valid Agena code can be entered at the console with or without
a trailing colon or semicolon:

= |f an expression is finished with a colon, it is evaluated and its
value is printed at the console. (This is not supported in
AgenakEdit, use the print function instead.)

= If the expression ends with a semicolon or neither with a colon
nor a semicolon, it is evaluated, but nothing is printed.

= You may optionally insert one or more white spaces between
operands in your statements.

= Assume you would like to add the numbers 1 and 2 and show the
result. Just type:

> 1 + 2:
3

’ agena »>

13

First Steps, 2

If you want to store a value into a variable, type:

> @ = 25¢

Now the value 25 is stored into the name ¢, and you can refer to this
number through the name c in subsequent calculations.

Suppose that c is 25° Celsius. If you want to convert it to Fahrenheit,
enter:

> 1.8*c + 32:
17

The c1s statement clears the screen, restart clears all values, and
bye quits the interpreter.

agena »>

Names & Assignment

= A name always begins with an upper-case or lower-case letter or an
underscore, followed by one or more upper-case or lower-case
letters, underscores or numbers in any order.

= Use the assignment operator : = to store a value to a name.

> varl := 'hello world';

= Delete a value by assigning it to null or use clear:

> a := null;

> clear varl;

y agena »>

agena »>

Data Types

Integral & Rational Numbers

= Numbers can be represented like in the following examples.

= Integers:

> —1:
-1

= More than one value can also be printed at one line:

0 1 1 1 1

= Rational numbers:

> 3.141592654, -1.0:
3.141592654 -1

= Scientific notation:

> 10e-3, -1e3, 2.3e3:
0.01 -1000 2300

i agena »>

Complex Numbers

There are two notations to represent complex numbers.

The ! operator:

> 112,
1+2*T

Sy 2,
-1.1-2*1

310:

The 1 operand:

> 1+42*71,
1+2*1

-1.1-2*T,
-1.1-2*T

3+0*TI:
3

Real part:

> real (1+2*1) :
1

Imaginary part:

> imag (1+2*1I) :
2

agena »>

17

Arithmetic, 1

= Agena allows to mix rational and complex numbers in calculations.

= Addition, subtraction, multiplication, division, and integer division:

rational complex/mixed
2 + 3 2+3*T + 112

2 = 3 2 = Sl

2 * 3 212 * 3-1I

2 /3 210 / 3!1

2 \ 3 2'0 \ 3!1

= Examples:

> 2+3, 2!0/3!'1, 2 + 3!1:
5 0.6-0.2*I 5+1

i agena »>

Arithmetic, 2

= Modulus (for rational numbers only):

> 2 % 3:
2

= Exponentation with rational or integer power:

> 2~ 3.1, 2~ 3:
8.5741877002903 8

= Exponentation with integer power only (faster):

> 2 ** 3:
38

y agena »>

Strings, 1

= Strings can be enclosed in single or double quotes. There is no
difference in meaning.

> 'this is a text':
this is a text

> "this is a text":
this is a text

= Concatenation of two or more strings:

> 'Hello '" & 'world':
Hello world

" agena »>

Strings, 2

= Substrings:

> str := 'abcd';

> str([2]:
b

> str[2 to 3]:
bc

> str[2 to -1]: # from 27 two last character
bcd

> str[-1]: # last character
d

> str[-2 to -1]: # last two characters
cd

” agena »>

22

Boolean Expressions & Relations, 1

Agena supports the logical values true and false, also called
‘booleans . A third Boolean constant named fail indicates an
error.

Any condition, e.g. a < b, results to one of these logical values.

Relational operators are:

Relation Operator
less than <
greater than >
less or equal <=
greater or equal >=
equality =
inequality <>

agena »>

Boolean Expressions & Relations, 2

= Logical operators are:

Relation Operator
Boolean and and
Boolean or or
Boolean complement not
Boolean exclusive-or XOor

> 1 < 2:

true

> 1 < 2 and 1 = 0:
false

> true xor false:
true

. agena »>

24

Tables, 1

Tables are used to represent more complex data structures. Tables
consist of zero, one or more key-value pairs: the key referencing to
the position of the value in the table, and the value the data itself.

Tables can contain other tables, as well.

> tbl :
> 1
> 2
>
>

[

['a', 7.71],
['b', 7.7017,
['c', 7.59]

M

3
1| 7

To get the data with key 1, input:

> tbl[1]:
[a, 7.71]

agena »>

Tables, 2

= To get the second entry in the subtable, enter:

> tbl[1l, 2]:
7.71

= There are two forms to create empty tables.

> tbl := [];

> create table tbl;

= Tables can even be nested:

> 1, [2, [3]]1]:
(1, [2, [3]]]

" agena »>

Arrays

= Tables with positive integral keys are called arrays.

> tbl := [10, 11, 12];

= Values can be inserted into arrays in two ways:

> tbl[4] := 'a'; tbl[5] := 'b';

> insert 'a', 'b' into tbl;

= Values can be deleted like this:

> tbl[1l] := null;

> delete 'a', 'b' from tbl;

. agena »>

27

Dictionaries

Another form of a table is the dictionary which indices can be any
kind of data - not only positive integers. Key-value pairs are entered
with tildes.

> dic := ['donald' ~ 'duck', 'mickey' ~ 'mouse'];

As with arrays, indexed names are used to access the
corresponding values stored to dictionaries.

> dic['donald']:
duck

If a table key is a string, you can also use the notation:

> dic.donald:
duck

agena »>

Sets, 1

= Sets are collections of unique items: numbers, strings, and any other
data except null. Any item is stored only once.

> s := {'donald', 'mickey', 'donald'}:
{donald, mickey}

= |f you want to check whether 'donald’ is part of the set s, just index
it as follows:

> s['donald']:
true

> s['daisy']:
false

" agena »>

Sets, 2

= |If you want to add or delete items to or from a set, use the insert
and delete Sstatements.

> insert 'daisy' into s;

> delete 'daisy' from s;

= The in operator also checks whether an item is part of a set.

> 'donald' in s:
true

> 'daisy' in s:
false

= Sets consume around 40 % less memory than tables.

" agena »>

Sequences, 1

= Sequences can hold any number of items except null.

> s := seq(l, 1, 'donald', true):
1, 1, donald, true

= You can access the items the usual way:

> s[2]:
donald

= Values can be added as with tables.

> s[(4] := {1, 2, 2};

> insert [1, 2, 2] into s;

0 agena »>

Sequences, 2

= |tems can be deleted by setting their index position to nul1l, or by
applying delete.

> s[4] := null;

> delete [1, 2, 2] from s;

= The in operator checks whether a sequence contains a given item.

> 'donald' in s:
donald

= Sequences are twice as fast when adding values than tables.

. agena »>

32

Pairs

Pairs hold exactly two values of any type (including nul1 and other
pairs).

> p := 10:11;

The 1eft and right operators provide read access to its left and
right operands; the standard indexing method using integers is
supported, as well:

> left(p), right(p), pll]l, pl2]:
10 11 10 11

The left and right operand of a pair can be changed as follows:

> pl[l] := -10;

agena »>

agena »>

Control Statements

If Statement & If Operator

= Conditions can be checked with the ir statement. The e1if and
else clauses are optional. The closing £i is obligatory.

if 1 < 2 then
print ('valid"')
elif 1 = 2 then
print ('invalid")
else
print ('invalid, too')
fi;
valid

V V V V V V V

= The if operator checks a condition, too:

> result := 1f 1 < 2 then 'valid' else 'invalid' fi;

> result:
valid

y agena »>

case Statements

= The case statement facilitates comparing values and executing
corresponding statements.

> c := 'agena';

> case C

> of 'agena' then

> print ('Agena !'")

> of '"lua' then

> print ('Lua !'")

> else

> print ('Another programming language !'")
> esac;

Agena !

" agena »>

onsuccess Clause

= Both if and case statements support an optional onsuccess clause.

If at least one of the conditions evaluated to true, then the
statements in the onsuccess clause are also executed.

> c := 'agena'; flag := false;
> case C

> of 'agena' then

> print ('Agena !'")

> of 'lua' then

> print ('Lua !"'")

> onsuccess

> flag := true

> else

> print ('Another programming language !')
> esac;

Agena !

> flag:

true

. agena »>

agena »>

for Loops, 1

= Afor Ioop iterates over one or more statements.

= A numeric for loop begins with an initial numeric value (from
clause), and proceeds up to and including a given numeric value (to
clause). The step size can also be given (step clause). The od
keyword indicates the end of the loop body.

= The current iteration value is stored to a control variable (i in this
example) which can be used in the loop body.

> for 1 from 1 to 3 by 1 do
> print (i, i”2, i~"3)

> od;

111

2 4 8

3 9 27

" agena »>

for Loops, 2

= The from and step clauses are optional.
= Ifthe £from clause is omitted, the loop starts with the initial value 1.

= |f the step clause is omitted, the step size is 1.

for i to 3 do
print(i, 172, 1i"3)
d;

w N -V V V
o D> PO
N o

" agena »>

for Loops, 3

= The value of the control variable can be accessed outside the loop.

= Since after the last iteration, the control variable is internally
Increased by the step size a very last time, its contents is:

> for 1 to 3 do
> result := i”"2
> od;

> i
4

o agena »>

for Loops, 4

= A for/in loop iterates over all values in a table, set, and sequence.
With strings, it iterates over each character from the left to the right.

> for 1 in ['Agena', 'programming', 'language'] do
> print (i)

> od

Agena

programming

language

for i in 'Agena' do print (i) od

>
A
g
e
n
a

u agena »>

for Loops, 5

= You can also iterate only over the keys of a table (or sequence) or
both keys and values:

> for keys i in ['donald' ~ 'duck', 'daisy' ~ 'duck'] do
> print (i)

> od;

daisy

donald

> for i, j in ['donald' ~ 'duck', 'daisy' ~ 'duck'] do

> print (i, 7j)

> od;

daisy duck

donald duck

2 agena »>

while Loops

= Awhile loop first checks a condition and if this condition is true or
any other value except false, fail, Or null, it iterates the loop
body again and again as long as the condition remains true.

= The following statements calculate the largest Fibonacci number
less than 1000.

> a = 0g o 3= 1g

> while b < 1000 do
> c :=b; b :=a + b; a := c
> od;

> c:
987

N agena »>

do .. as & do .. until Loops

= Variations of while are the do .. as and do .. until loops which
check a condition at the end of the iteration.

= Thus — contrary to while loops - the loop body will always be
executed at least once.

> @ 2= 0¢ c :=0

> do > do

> inc c > inc c

> as ¢ < 10; > until 1 = 10;
> C: > @8

10 10

¥ agena »>

do .. od Loops

= |nfinite loops are supported by do ..od loops, a syntactic sugar for
‘while true do .. od".

> @ = 0¢g

do

inc c;

if ¢ > 9 then break fi
od;

vV V V V

\Y%

Cs

10

= See the Loop Control” sheet on how to exit these loops.

B agena »>

Combined for/while Loops

All flavours of for loops can be combined with a while condition. As
long as the while condition is satisfied, I.e. IS true, the for loop

iterates.

for x to 10 while 1ln(x) <= 1 do
print (x, 1ln(x))

0
0.69314718055995

>
>
> od;
1
2

B agena »>

for/until and for/as Loops

= for loops can also be combined with a closing until or as condition.

> for x to 10 do
> print (x)
> as 1 < 3;

w N =

> for x to 10 do
> print (x)
> until 1 = 3;

w N

. agena »>

Loop Control, 1

= Agena features three statements to control loop execution. The
following two are applicable to all loop types.

= The skip statement causes another iteration of the loop to begin

at once, thus skipping all of the following loop statements after
the skip keyword for the current iteration.

The break statement quits the execution of the loop entirely and
proceeds with the next statement right after the end of the loop.

> for 1 to 5 do

if 1 = 3 then skip fi;
print (1)
if 1 = 4 then break fi

" agena »>

Loop Control, 2

= skip and break can also be combined with the when condition:

> for 1 to 5 do

> skip when i = 3;
> print (i),

> break when i = 4
> od;

1

2

4

. agena »>

Loop Control, 3

= The redo statement restarts the current iteration of a for/to or for/in
loop from its beginning, without incrementing the loop control
variable or processing the next item in a structure.

> flag := true;

for 1 to 3 do

print (1) ;

if flag and 1 = 2 then
flag := false;
redo

>

>

>

>

>

> fi
> od;
1

2

2

3

. agena »>

Loop Control, 4

= The relaunch statement, however, restarts a for/to or for/in loop
completely.

> flag := true;

for 1 to 3 do

print (i) ;

if flag and 1 = 2 then
flag := false;
relaunch

>

>

>

>

>

> fi
> od;
1

2

1

2

3

y agena »>

agena »>

Procedures

53

Short-cut Procedures

If your procedure consists of exactly one expression, then you may
use an abridged syntax if the procedure does not include statements

suchas if, for, insert, eftc.

Let us define a simple factorial function with one argument.

> factorial := << (x) -> exp(lngamma (x+1)) >>;

> factorial (4) :
24

A function with two arguments:

> sum := << (%X, y) —> X + vy >>;

> sum(l, 2):
3

agena »>

Procedures

= Let us write a procedure to compute the factorial of an integer.
= A procedure can call itself to generate the final result.

= The return statement passes the result of a computation.

> factorial := proc(n) 1is

> # computes the factorial of an integer n
> if n < 0 then return fail

> elif n = 0 then return 1

> else return factorial (n-1)*n

> fi
> end;

> factorial (4) :
24

. agena »>

Local Variables

= Alocal variable is known only to the respective procedure and the
block where it has been declared.

= |t cannot be used in other procedures, the interactive Agena level, or
outside the block where it has been declared.

> factorial := proc(n) 1is

> local result;

> result := 1;

> for 1 from 1 to n do result := result * i od;
> return result

> end;

> factorial (10) :
3628800

s agena »>

Variable Number of Arguments

= |If you want to pass a variable number of arguments, use the
keyword in the parameter list.

= The varargs system table contains all variable arguments passed
with the 2 facility. Values can be accessed like with any other table.

= The system variable nargs contains the number of arguments
passed (both with the 2 facility and without).

> f := proc(?) 1is

> return nargs, varargs, varargs/[l]
> end;

> f('Beowulf', 'Grendel'):

2 [Beowulf, Grendel] Beowulf

o agena »>

57

Options, 1

A function does not have to be called with exactly the number of
parameters given at procedure definition.

You may optionally pass less or more values at run-time. If no value

IS passed for a parameter, then this parameter is automatically set to
null at function call.

> f := proc(a, b, c) is
> return a, b, c
> end;

> £(1):
1 null null

If you pass more arguments than there are actual parameters,
excess arguments are ignored.

agena »>

Options, 2

= Let us build an extended square root function that either computes
In the real or complex domain. By default, i.e. if only one argument is
given, the real domain is taken, otherwise you may explicitly set the
domain using a pair as a second argument.

> xsgrt := proc(x, mode) is

> if nargs = 1 or mode = 'domain':'real' then
> return sqgrt (x)

> elif mode = 'domain':'complex' then
> return sqgrt(x + 0*I)

> else

> return fail

> fi

> end;

> xsqgrt (-2):

undefined

> xsqgrt (-2, 'domain':'real'):

undefined

” agena »>

Options, 3

= |f the left-hand value of the pair in a function call shall denote a
string, you can spare the single guotes put between the string by
using the = token which converts the left-hand name to a string.

> xsqrt (-2, domain = 'complex'):
1.4142135623731*1

5 agena »>

Type Checking, 1

= You can check the type of arguments passed in two ways:

= Query the type with the type operator:

> f := proc(x) 1is

> if type(x) <> number then error ('wrong type of argument') fi;
> return x

> end;

> f('men ne cunnon hwyder helrunan hwyrftum scripad.'):
wrong type of argument

= State the expected type in the parameter list:

> f := proc(x :: number) is
> return X
> end;

> f('men ne cunnon hwyder helrunan hwyrftum scripad.'):
Error in stdin:
invalid type for argument #1: expected number, got string.

. agena »>

Type Checking, 2

= Besides checking the arguments, the return can also be insured:

> f := proc(x :: number) :: number is
> return tostring(x)

> end

> f£(1)

Error in stdin, at line 2:
‘return’ value must be of type number, got string.

’ agena »>

Error Traps

= The try/catch statement catches errors:

> success, s := true, null;

> try

> print (s[l1l]) # provoke an error by indexing null
> catch msg then

> success := false

> yrt;

> success:

false

= Alternatively, the protect function also traps errors.

. agena »>

Predefined Results

= Predefined results can be set with the rtable.defaults function by
entering them into a remember table.

= Agena returns the given predefined result if it exists and does not
compute it by executing the procedure body, so there is also an
Increase in speed.

> rtable.defaults (fact, [# defaults for fact (0) .. fact(3)
> -l~undefined, 0~1, 1~1, 2~2, 3~6

> 1)

> fact (-1):

undefined

> rtable.defaults (fact) :
[zl ~ 21, i1 ~ 11, (o] ~ [11, [3] ~ [6], [-1] ~ [undefined]]

. agena »>

Efficient Recursion

= Agena remembers procedure results if the rtable.remember
function is invoked. An optional table of predefined results can also
be given.

> fib := proc(n) is

> assume (n >= 0);

> return fib(n-2) + fib(n-1)
> end;

> rtable.remember (fib, [0~1, 1~17);

> f£ib (50) :
20365011074

= This significantly speeds up recursively defined procedures.

» For the differences between defaults and remember check the
manual (Chapter 7.24).

o agena »>

agena »>

Did you know ?

66

Did you know, 1 ?

You can send and receive data on the TCP level across the Internet
and LANs with the net package.

You can load your own programmes into an Agena session by using
the run function (e.g. run 'progname.agn') or starting Agena from
the shell with agena -i progname.agn.

The map function applies a function to all elements of a table, set, or
sequence, e.g. map (<< x -> x"2 >>, [2, 3]) - [4, 9].You may
also try countitems, remove, select, subs, and zip.

If you want your self-written procedures, constants, etc. to be
available every time you invoke the interpreter, just put them into a
file called agena.ini file (Windows, OS/2, DOS) or .agenainit
(UNIX, Mac, Haiku) in your home directory.

agena »>

67

Did you know, 2 ?

Data you compute in a session can be stored to a file using the save
function to be read into another session later by read.

The way Agena outputs tables, sets, sequences, complex numbers,
and pairs can be changed by modifying the environ.aux.print*
procedures in the 1ibrary.agn file located in the 1ib directory of
your Agena installation.

Data stored in CSV and XML files can be imported with the xm1
package or the utils.readcsv and utils.readxml functions.

Errors issued by Agena, preventing programmes to finish
successfully, can be intercepted with protect.

If you do not like the default prompt, just enter something like:
_PROMPT := '%

agena »>

agena »>

Miscellaneous

Precedence

= Operator precedence follows the table below, from lowest to highest.

Prio Operators

10 Or XOr

and

< > <= >= = == <> :1: :-

in subset xsubset union minus intersect atendof
& : @ S

+ - split || *"

* /% \ shift && *% /% +% -% surd

not -

N kK

R N W b~ 01 O N 0O ©

! ~~ and all other unary operators

" agena »>

Packages, 1

= Agena features various packages that can be invoked with the
import Statement, €.g. import calc alias.

Package Function

ads Database specialised on storing and retrieving strings
bags Multisets, Cantor sets that count occurrences

astro Astronomical time and date functions

binio Functions for processing binary files

calc Undergraduate Calculus package

clock Functions to process hours, minutes, and seconds

cordic CORDIC numeric functions
div Fractions
environ Access to the Agena environment

0 agena »>

Packages, 2

Package

fractals
gdi
gzip
[o]
linalg
|list
mapm
math
net
0S
rtable

71

Function

Various fractals & plotting routines, some FRACTINT support
Graphics

Read and Write UNIX gzip compressed files

Input/output functions for console and files

Undergraduate Linear Algebra

Linked lists

Mathematical arbitrary precision library for the real domain
Additional mathematical functions

IPv4-based exchange of data over the Internet or LANS
Functions to operate with the underlying operating system
Administration of remember tables

agena »>

Packages, 3

Package Function
skycrane Various easy-to-use wrappers to Agena functions
stats Statistical functions
strings Various string handling functions
tables Functions specialised on table processing
utils Utility functions, e.g. CSV import and export
usb libusb binding
xbase xBase file support (i.e. dBASE (™ [l|+)
xml XML decoding (LuaExpat)

. agena »>

73

Mathematical Constants

Agena features the following numeric constants:

Constant
Eps
degrees
Exp

I
infinity
Pi
radians

undefined

Meaning

Equals 1.4901161193847656e-08

Factor 1/Pi*180 to convert radians to degrees

Constant e = exp(1) = 2.71828182845904523536
Imaginary unit

Infinity

Equals 3.14159265358979323846

Factor Pi/180 to convert degrees to radians

An expression stating that it is undefined, e.g. a singularity

agena »>

Any Questions ?

= For further information, please consult i sermsems HAT—— i

- the Primer and Reference, agena >>
a manual explaining Agena on 524 pages

= the Quick Reference,
an overview of all the functions available

A Piogramming Language

Primes and Refoenoe

= Both are available at

A
g
Ll
- _l;uuu Operatar Furcdon Fenctonaiy
. o |ats x 0 & nurber, ae refues B atsoute viloe, on o g, 8
p://agena.sourcetorge. u 1on. B B oo o). 60 | o
L Lanames * 1EAA T M DTS diskyed N 0 Sessi0n <
L& Jmaume x Haues mn errer, 4 83 condiion s lsho
| 1 lams
. Vb'g
==
[k
| [concat
1 lerrar
e
EH
M geteny
|3 gctuh x defrrrnes wiwter Lretcn
| % getmmtracie x s e matihil of a
1 genge * TERATH T2 USar-Cefrnd P 0F 3 STUCANE 4 [rocedrs
| 3¢ [Tus x chochs whilher @ shucire coslars an ekrrerd
W statie x checks whether & Linctor bas & rememter Lisie
LAY . Chachs whatar i JUACs0rs 1o b emember Lidie
[F et M 1t Do ek cpirand of & par
losd x ach 3 churk Laing A Ancton 5 pet 2 precey

e 2o 0 o G gy o
W oo bwns fisen ¢ (I Wil | S

o agena »>

