
 1

Release Notes Gardens Point Component Pascal
Version 0.96 for .NET (November 2000, Beta-1)

1. Introduction

Gardens Point Component Pascal (gpcp) is an implementation of the Component
Pascal Language, as defined in the Component Pascal Report from Oberon
Microsystems. It is intended that this be a faithful implementation of the report, except
for those changes that are explicitly detailed here. Any other differences in detail
should be reported as potential bugs.

The distribution consists of three programs, and a number of libraries. The programs
are the compiler gpcp, the make utility CPMake, and a symbol file unparser
ShowSyms. There will be other utilities added later.

The compiler produces either Microsoft.NET intermediate language (MSIL) or Java
byte-codes as output. The compiler can be bootstrapped on either platform. These
release notes refer to the Microsoft.NET platform.

There are a number of syntactic extensions to the Component Pascal language
accepted by the compiler which are introduced to allow interworking with the native
libraries of the underlying platform. The guiding philosophy in such cases is to not
significantly extend the semantics of the constructs which form part of Component
Pascal, but rather to provide syntax for accessing features of other languages, which
have no direct counterpart in Component Pascal.

2. Overall Structure
2.1 Input and Output files

In normal usage the compiler creates either three or four output files for every source
file. If the file Hello.cp contains the module “Hello”, and is compiled, then the
output files will be Hello.cps, Hello.il, and either Hello.dll or
Hello.exe. The “*.cps” file is the symbol file which contains the meta-information
that describes the facilities exported from the module. The “*.il” file contains the
MSIL intermediate language representation of the program. The program executable
will be “*.exe” if the program contains an entry point (i.e. if the module imports
CPmain), otherwise the compilation will create a dynamic link library “*.dll”. All of
these files are created in the current directory. If a listing file is created it will have
extension “.lst”.

Be aware that the stem name of the output files comes from the module name, not from
the source-file name. Thus if module “Foo” is in source file “Hello.cp” then all of the
output files will have stem name “Foo”.

It is possible to invoke the compiler so as to produce just the intermediate language
file, and then invoke the intermediate language assembler manually. The assembler
ilasm may then be used to produce any of its possible output formats.

 2

2.2 Invoking the compiler

The compiler is invoked from the command line using the command

$> gpcp [options] files
where options include
 /copyright display the copyright notice
 /help emit this usage prompt
 /list create an output listing if there are errors (default)
 /list+ always create an output listing
 /list- never create an output listing
 /dostats emit timing and other statistics
 /hsize=NNN set hashtable size ≥ NNN (0 .. 65000)
 /nocode create il output, but do not assemble
 /noasm produce a symbol file, but no il
 /nosym produce no output files, not even a symbol file
 /nocheck produce code without arithmetic overflow checks
 /verbose chatter on about progress during compilation
 /version emit version information
 /warn- suppress warning messages from the console
 /nowarn same as /warn-
 /target=xxx emit assembler output for platform “xxx”
 /special used for creating symbol files for foreign interfaces

Any number of files may be added in a white-space separated list. The compiler also
accepts Unix-style comments starting with ‘-‘. In the JVM version the ‘-‘ form is the
expected default.

2.3 Target choice

The compiler may choose its output language at runtime. The default output when
running on the .NET platform is .NET assembler (.il) for the .NET virtual object
system. The recognized options are –
 /target=net this is the default .NET virtual object system format
 /target=jvm this causes Java byte codes to be emitted
 /target=dcf this chooses the Gardens Point “d-code” form

The Java output option produces either jvm class files directly, or produces assembly
language files for the “Jasmin” byte code assembler.

The dcf format is not yet available, but is intended to access the Gardens Point native
code generators on all the platforms for which Gardens Point Modula-2 is
implemented.

Output files

Running the compiler with the /nosym flag causes the input files to be parsed and
type-checked, but no output files are created except possibly a listing file.

 3

If the compiler is run with the /noasm flag, the input files are parsed and type-checked,
and a symbol file is produced for each input file. No assembly language or program
executable file output is produced however.

If the compiler is run with the /nocode flag, the input files are parsed and type-
checked, and a symbol file and one MSIL assembly language file is produced for each
input file. No executable files are produced in this case.

If the compiler is run without any flags, the input files are parsed and type-checked,
and a symbol file, an MSIL file and a program executable file (either .DLL or .EXE) is
produced for each input file.

Output files with /target=jvm

If the compiler is run with the /target=jvm flag, the input files are parsed and type-
checked, and a symbol file and one or more class files will be produced. These class
files are written directly, and do not require the installation of Jasmin.

If, in addition, the /nocode flag is used, then Jasmin assembly language (*.j) files will
be produced, but the assembler will not be invoked.

If, instead of /nocode the /jasmin flag is added, Jasmin assembly language files are
produced for each input file. Following this, the Jasmin assembler will be
automatically invoked to create the corresponding class files. Because a separate
process needs to be created for each invocation of Jasmin, this is quite slow.

2.4 Overflow checking

Ordinarily the compiler produces code that performs arithmetic overflow checks on all
operations. Narrowing assignments (such as assigning a long value to an integer
variable) are also range checked. Compiling with the /nocheck option removes these
checks. There is a very small speed gain if checks are turned off. Checks may also be
turned off on a per-procedure basis, as described below.

2.5 Listing output

The compiler, by default produces a listing file only if there are compile-time errors or
warnings. It is possible to force the compiler to produce a listing, using the /list+
option. Equally, it is possible to prevent the creation of a listing file even if there are
errors, by using the /list- option.

The listing file contains the complete listing of the program, with four digit line
numbers prepended. Errors are reported in the following format –

 1 MODULE BarMod;
 2 IMPORT
 3 FooMod;
 4 TYPE
 5 Bar* = POINTER TO ABSTRACT RECORD (FooMod.Foo) END;
**** ^ Only ABSTRACT basetypes can have abstract extensions

 4

6 i,j,k : INTEGER
7 END;
8 END BarMod.

2.6 Statistics output

If the compiler is invoked with option /dostats then compile time statistics are
produced. Here is an example for the program ShowSyms.

C:\CPtree\CPgnws> gpcp /dostats ShowSyms.cp
#gpcp: <ShowSyms> No errors
#gpcp: vos version 0.7 of 18 June 2000
#gpcp: 683 source lines
#gpcp: import recursion depth 3
#gpcp: 824 entries in hashtable of size 4099
#gpcp: import time 251mSec
#gpcp: source time 10mSec
#gpcp: parse time 250mSec
#gpcp: analysis time 20mSec
#gpcp: symWrite time 0mSec
#gpcp: asmWrite time 180mSec
#gpcp: assemble time 591mSec
#gpcp: total time 1302mSec
C:\CPtree\CPgnws>

The meaning of the values written to the console are as follows.

• The compiler imports symbol files in dependency order, if necessary. The
maximum recursion depth for this example turned out to be 3.

• The compiler will in future allow command line choice of hashtable size. The
number of entries used is shown

• Import time is the time to read and process metainformation for all imports. In
the example ShowSyms imports most of the compiler meta-information for
gpcp.

• Source time is the time to read the source file into the internal buffer.
• Parse time is the time to parse the buffer, create the syntax tree and resolve all

identifiers.
• Analysis time is the time to do type checking, and dataflow analysis.
• SymWrite time is the time to write out metatdata to the symbol file.
• AsmWrite time is the time to write out the assembly language (il) output.
• Assemble time is the time taken to spawn a new process and run ilasm. (or

jasmin if /target=jvm has been set)

2.7 Setting the hash table size

The compiler uses closed hashing internally, with a default number of identifiers of
4099 in the current version. It is possible to increase the number of entries by means
of the /hsize=NUMBER option. Numbers up to 66000 are meaningful to the program.

If the hash table overflows, the compiler gives an error message, with a hint to increase
the size. There is a example program with the distribution that creates a program that
will break the compiler, so that users may test this feature. The compilation fails with
the default table, but succeeds with /hsize=5000.

 5

2.8 The Make utility

The compilation process with Component Pascal guarantees type safety across
separately compiled module boundaries. Since interface meta-information resides in
the symbol files which gpcp creates, modules must be compiled in an order which
respects the partial order induced by the global importation graph. For complex
programs, this may be difficult to determine manually.

The utility CPMake reads symbol files, and if necessary source files, in order to
determine a valid order of compilation. The syntax for invocation is –

$> CPMake [options] moduleName
The module name may be given with or without a file-extension, but must be the name
of a module which imports CPMain, that is, it must be a base module.

When source files of a program have been modified in general only a subset of the
modules have to be recompiled. CPMake is able to work out which modules must be
recompiled by checking the date stamps on the files, and also checking the module
hash-keys (“magic numbers”) in the symbol files. If a module has been edited, but the
public interface of the module has not changed a recompilation should compute a new
magic number that is the same as that expected by any previously compiled, dependent
modules. In this case CPMake detects that the dependent modules are still consistent
and do not require recompilation. This “domino-stopping” feature of the program
ensures that a conservative minimum of modules are recompiled.

The options accepted by the program are exactly the options accepted by gpcp, except
that the option /all forces compilation of all modules in the local directory
irrespective of date stamps and magic numbers.

2.9 Symbol file reader

The program ShowSyms reads the symbol file of a module and displays the
information in a human readable form. At this stage the program sends its output to
the console, but later versions will produce hyperlinked, html text. The program is
invoked by the command –

$> ShowSyms moduleName
any filename extension given to moduleName will be ignored.

Release 1.0 of gpcp will have a much more fully-functional class interface browser tool.

3. Lexical Issues
3.1 Non-standard Keywords

In order to provide facilities for the foreign language interface there are a total of six
new keywords defined. These are all upper case names and cannot be used as program
identifiers.

DIV0 - an additional arithmetic operator (C integer division)
ENUM - used in dummy foreign modules in the .NET system

 6

INTERFACE - used in dummy foreign modules for defining interfaces
REM0 - an additional arithmetic operator (C integer remainder)
RESCUE - used to mark a procedure-level exception catch block
STATIC - used to declare static features in dummy foreign modules.

Only DIV0, REM0 and RESCUE may be used in normal programs.

The following new predefined identifiers have been added. These can be redefined,
but not at the outer lexical level. Definitions for these procedures are given below.

MKSTR - function to convert a CP “string” to the native string type
THROW - procedure that (re)throws a native exception object

There are some other predefined identifiers used in the extended syntax, but these are
“context sensitive markers” and do not prevent the same names being used for program
identifiers.

Remember, if you use any of these non-standard keywords or procedures, your
program source will not be portable to other implementations of Component
Pascal.

3.2 Common Language Specification names

Fully qualified names in the Common Language Specification of .NET (CLS) comprise
four parts.

Assembly name - this specifies the dll in which the class will be found
Namespace name - his specifies the namespace of the class
Class name - the class name
Feature name - the field or method name.

An example might be
 [mscorlib]System.Exception::ToString

where mscorlib is the assembly name, System is the namespace, Exception is the
class name, and ToString is a method name.

In this version of gpcp, the compiler produces one assembly per module, and one
namespace per module. Both the assembly and the namespace names are the same as
the module name. Thus a type-bound procedure called isString() bound to the
type UnaryX in module ExprDesc would have the CLS name
 [ExprDesc]ExprDesc.UnaryX::isString

Procedures and variables at the module level are declared in the CLS as belonging to a
synthetic “class” that contains only static data and code. This “implicit static class”
has the same name as the module. Thus variable “x” in module Foo will have the
somewhat boring CLS name
 [Foo]Foo.Foo::x
Users of the compiler should almost never have to deal with explicit CLS names.

 7

If you do browse the assembler output of the compiler, you will notice that almost all
names are escaped with single quotes like ‘this’. This is done to avoid clashes with the
many names that are reserved in the assembler.

3.3 Identifier syntax

The identifier syntax for Component Pascal allows arbitrary use of the underscore
(low-line) character. There is a further extension that is specific to the foreign
language interface of gpcp.

Occasionally, names that are imported from foreign modules will happen to clash with
CP reserved words. In this case, we may escape the reserve word detection by starting
the identifier with the “back-quote” character `. Thus, if an imported module has (say)
a class with a field named “IF”, then the field may be referenced as `IF in the source
of your program.

You may not define identifiers using this escape mechanism, except in foreign
definition modules. You may however refer to imported identifiers using this
mechanism.

It may be important to know that the back-quote is stripped at the time that the
program is scanned. The presence of the escape simply suppresses the usual check for
reserved identifiers that normally follows identifier scanning. Thus the back-quote is
not used during any name matching of identifiers. A curious result of this strategy is
that if a program escapes an identifier that does not need it, the escaped and non-
escaped identifiers will refer to the same name.

4. Semantic Issues
4.1 DLLs and EXEs

The compiler can produce either stand-alone executables (.exe files) or dynamic
link libraries (.dll files). Executable files must have an entry point known to the
runtime as Main(), optionally taking an array of strings as parameters.

If the source file contains the import of the special name CPmain, then an executable
file is produced as output. In this case the module body becomes Main(), and begins
with a hidden call which saves any command line arguments so that they may be
accessed by calls to the ProgArgs library.

If the source file does not import CPmain, then the module body becomes the “class
constructor” which is executed at the time that the dynamic link library is loaded on
demand.

If the compiler is run with the /nocode option, then only the assembler (.il) file is
created. In this case the assembler ilasm may be invoked so as to create either a .dll
or an .exe file using the command ilasm/DLL or ilasm/EXE. Of course, it is an
error to try to create an executable file if the source does not contain an entry point.

 8

4.2 Unimplemented constructs

There are a small number of constructs that are unimplemented in this release of the
compiler. These are –

• Procedure variables
• Non-local variable access

Both of these features were implemented in a prototype version of the compiler, but
have been removed from this release. Each is somewhat inefficient, particularly on the
jvm platform, and both are being considered for alternative implementation strategies.

Procedure variables are deprecated in the CP report, so that the lack of the feature may
simply anticipate complete removal from the language.

4.3 Additional Arithmetic Operators

The usual arithmetic operators DIV and MOD in Pascal-family languages have well
defined semantics which are different to the division and remainder operators of
implementations of C-family languages. In Component Pascal the operators DIV and
MOD are defined as follows –

(i DIV j) x j + (i MOD j) = i
i DIV j =  i/j ; where i,j are integers, and i/j denotes real division.

Notice that DIV always rounds toward negative infinity unlike most C-language
implementations (which normally round towards zero). The Pascal operators are
mathematically preferred, but in case the alternative semantics are required for
compatibility reasons, gpcp introduces alternatives. DIV0 denotes integer division
with rounding toward zero, while REM0 denotes the corresponding remainder
operation.

Remember, if you use these non-standard operators, your program source will
not be portable to other implementations of Component Pascal.

4.4 Semantics of the WITH statement

The semantics of the WITH statement have been slightly modified so as to strengthen
the guarantees on the properties of the selected variable. In the code –

WITH x : TypeTi DO
 … <guarded region>
| x : TypeTj DO
 … <guarded region>
END;

the variable x is asserted to have the specified type throughout the so-called guarded
region. The base language guarantees that the type of the selected variable cannot be
widened in the guarded region, but might possibly be narrowed. In gpcp the selected
variable is treated as a constant, and neither the type nor the value can be modified
either directly or indirectly. Any attempt to do so attracts a compile-time error
message.

 9

4.5 Implementing foreign interfaces

Component Pascal types may extend classes from the .NET CLS. Types which extend
CLS classes may also declare that they implement interfaces from the CLS. The syntax
extension to access this feature is –
 RecordDecl ::- RECORD [BaseType] [Fields] END;
 BaseType ::- “[“ QualifiedIdent { “+” QualifiedIdent } “]”

The first qualified identifier, as in the Report, is the class that is extended by the type
being defined. Any additional qualified identifiers are the names of interfaces that the
type promises to implement. The compiler checks that this contract is honored.

The semantics of type casts are also relaxed whenever a reference is cast to an
imported interface type. For non-interface types many erroneous casts can be detected
at compile time, but for interfaces no cast of an object of a foreign type can be rejected
at compile time.

It is not possible to define interface types in Component Pascal.

4.6 Additional built-in functions

There are two additional built-in functions added to the language. One allows
convenient access to the underlying native string object type. The signature is –

PROCEDURE MKSTR(IN s : ARRAY OF CHAR) : RTS.NativeString;

Note that it is never necessary to use MKSTR when passing a literal string to a
formal parameter of native string type. In the literal case the compiler does the
conversion for the programmer automatically.

The other new built-in function allows programs to throw exceptions, and is described
below.

4.7 Deprecated features and warnings

The use of procedure variables or of super-calls are deprecated. Both attract compile-
time warning messages. Warnings are also issued in the case of procedures that are
not exported, and are not called within their defining module. This situation is usually
an error arising from failure to mark the procedure for export.

4.8 Program executable verification

Component Pascal is a type-safe language. Every correct program is type-safe in the
same sense that is guaranteed by the .NET virtual object system’s verifier. In principle
therefore, all output of gpcp should be verifiable.

You may test-verify the output of compilation by running the stand-alone program
executable verifier peverify over the file. Here is an example –

 10

C:\CPtree\CPngws> peverify /IL ShowSyms.exe

Microsoft ® COM+ PE Verifier. Version 2000.14.1812.10
Copyright © Microsoft Corp. 1998-2000

All Classes and Methods in ShowSyms.exe verified

C:\CPtree\CPngws>

Output might fail to verify if a manually constructed interface to a library does not
correspond to the internal metainformation of the imported assembly. This potential
problem will go away when the tool for automatic construction of interfaces is
available.

4.9 Unchecked arithmetic

By default, all arithmetic is overflow-checked, and all narrowing assignments are
range checked. Sometimes it is necessary to turn off this behaviour. There are two
means to do this. One of these is a custom attribute that is applied on a per-procedure
basis. Checks may also be turned off from the command line for all compilations in
that invocation.

The syntax of the custom attribute is a context sensitive marker that appears
immediately after the keyword BEGIN in a procedure or module body. The syntax is –
 Body → BEGIN [“[“ “UNCHECKED_ARITHMETIC” “]”]
 StatementSequence END identifier .

An example of the use of this construct, from the source of the compiler itself, is the
identifier hash function –

 PROCEDURE hashStr(IN str : ARRAY OF CHAR) : INTEGER;
 VAR tot : INTEGER;
 idx : INTEGER;
 len : INTEGER;
 BEGIN [UNCHECKED_ARITHMETIC]
 len := LEN(str$);
 tot := 0;
 FOR idx := 0 TO len-1 DO
 INC(tot, tot);
 IF tot < 0 THEN INC(tot) END;
 INC(tot, ORD(str[idx]));
 END;
 RETURN tot MOD size;
 END hashStr;

This function performs a rotate-and-add computation, in which bits are carried out of
the sign bit back into the least significant bit of the variable tot. Overflow checking
must be turned off, in order to prevent very long identifiers from crashing the
compiler.

Important note on parameter passing semantics if you use /target=jvm.

 11

The semantics of parameter passing on the .NET version are precise. They are
also precise in the D-Code version.

The JVM version of gpcp takes liberties with the precise semantics of parameter
passing. Actual parameters of unboxed value type that are passed to reference
formals are passed by copying. (Unboxed value types are the built-in standard
types such as CHAR and INTEGER, together with the pointer types. Structures
and arrays are always boxed at runtime in the JVM, and are not affected by this
semantic modification.) In the case of formal parameters of VAR mode, actual
values of unboxed value type are copied in and copied out. In the case of formal
parameters of OUT mode the value is copied out. This change is necessary in
order to obtain reasonable performance on the JVM. This change will not affect
the results of your program unless you access the actual of an a reference formal
along two paths (either by having two reference formals sharing the same actual,
or accessing a static variable directly and through a parameter. You should not
write programs that do this! You might also care to know that with this change,
the performance of code is good if you have only one such copied parameter, but
becomes poor if you have more than one in any frequently called procedure.

5. Exception Handling

Component Pascal does not define exception handling, but it is necessary to deal with
foreign libraries that may throw exceptions. There is one new keyword and one new
builtin procedure introduced to facilitate this.

5.1 The RESCUE clause

Procedures, but not modules may include exactly one RESCUE clause, at the end of
the procedure body. This has syntax –

 ProcBody→ BEGIN Statements [RESCUE ‘(‘ ident ‘)’ Statements] END ident.

The identifier introduced in the parentheses is of type RTS.NativeException, and
must have a name that is distinct from every other identifier in the local scope.

If any exception is thrown in the body of the procedure, or if any exception is
unhandled in a procedure called from this procedure, then the rescue clause is entered
with the exception object in the named local variable. This variable is read-only
within the rescue clause, and is not known in the rest of the procedure body.

If the program has imported or defined any extensions of the native exception type,
filtering may be performed by using the usual type-test syntaxes. The compiler will
check that the rescue clause fulfills any contracts implied by the procedure signature.
For example, in the case of function procedures the rescue clause must explicitly
return a type-correct value, or explicitly throw another exception.

5.2 The THROW statement

Code may throw an exception by using the built-in procedure THROW. This
procedure has two signatures –

 12

 PROCEDURE THROW(x : RTS.NativeException);
 PROCEDURE THROW(x : RTS.NativeString);

This may be used anywhere in the program, but is most useful for rethrowing an
exception from within a rescue clause.

Remember, if you use these non-standard facilities for exception handling
your program source will not be portable to other implementations of
Component Pascal. Of course it will still be portable between different
implementations of Gardens Point Component Pascal.

If you want to create an exception object to abort program execution with a meaningful
string, the library function RTS.Throw(msg : ARRAY OF CHAR) may be used.
Exceptions thrown by this library function can be caught by a RESCUE clause.

6. Facilities of the CP Runtime System
6.1 Supplied libraries

This release has a small number of libraries supplied. These are –

• Console this library writes strings and numbers to the console
• Error this library writes strings and number to the error stream
• ProgArgs this library provides access to the command line arguments, if any
• GPText a basic library for handling text formatting
• GPFiles defines the supertype of GPBinfFiles.FILE and GPTextFiles.FILE
• GPBinFiles reading and writing binary files
• GPTextFiles reading and writing text files
• RTS access to the facilities of the runtime system

For the most part these libraries are the ones that were required to bootstrap the
compiler. More will come later …

6.2 The runtime system RTS.cp

The runtime system provides a variety of low-level access facilities. The source file
for this module, RTS.cp, is not really the source. This file is a dummy, as is denoted
by the context-sensitive mark “SYSTEM” appearing before the keyword MODULE.
All such “modules” are actually implemented in the C# file named RTS.cs, and at
runtime are found in the assembly RTS.dll.

ProgArgs, Console, and Error are also system modules, and have their real source in
the same C# file.

Here is the “source” of RTS.

(** These are the user accessible static methods of the CP runtime system.
 * These are the environment-independent ones. Others are in CP*.cp
 * Note: the bodies of these procedures are dummies, this module is
 * compiled with /special. The real code is in RTS.cs or other. *)

 13

SYSTEM MODULE RTS;
 VAR defaultTarget- : ARRAY 4 OF CHAR;

 TYPE

CharOpen* = POINTER TO ARRAY OF CHAR;

 TYPE

NativeObject* = POINTER TO RECORD END;
 NativeString* = POINTER TO RECORD END;
 NativeException* = POINTER TO RECORD END;

 PROCEDURE getStr(x : NativeException) : CharOpen;
 (** Get error message from Exception *)

 PROCEDURE StrToReal*(IN s : ARRAY OF CHAR;

OUT r : REAL;
OUT ok : BOOLEAN);

 (** Parse array into an ieee double REAL *)

 PROCEDURE StrToInt*(IN s : ARRAY OF CHAR;

OUT i : INTEGER;
OUT ok : BOOLEAN);

 (** Parse an array into a CP INTEGER *)

 PROCEDURE StrToLong*(IN s : ARRAY OF CHAR;

 OUT i : LONGINT;
 OUT ok : BOOLEAN);

 (** Parse an array into a CP LONGINT *)

 PROCEDURE RealToStr*(r : REAL;

 OUT s : ARRAY OF CHAR);
 (** Decode a CP REAL into an array *)

 PROCEDURE IntToStr*(i : INTEGER;

OUT s : ARRAY OF CHAR);
 (** Decode a CP INTEGER into an array *)

 PROCEDURE LongToStr*(i : LONGINT;

 OUT s : ARRAY OF CHAR);
 (** Decode a CP INTEGER into an array *)

 PROCEDURE realToLongBits*(r : REAL) : LONGINT;
 (** Convert ieee double to longint with same bit pattern *)

 PROCEDURE longBitsToReal*(l : LONGINT) : REAL;
 (** Convert ieee double to a longint with same bit pattern *)

 PROCEDURE hiInt*(l : LONGINT) : INTEGER;
 (** Get hi-significant word of long integer *)

 PROCEDURE loInt*(l : LONGINT) : INTEGER;
 (** Get lo-significant word of long integer *)

 PROCEDURE Throw*(IN s : ARRAY OF CHAR);

 14

 (** Abort execution with an error *)

 PROCEDURE GetMillis*() : LONGINT;
 (** Get time in milliseconds *)

 PROCEDURE GetDateString*(OUT str : ARRAY OF CHAR);
 (** Get a date string in some native format *)

 PROCEDURE ClassMarker*(o : ANYPTR); (* write class name *)
END RTS.

The four character defaultTarget string will hold “net” when running on the .NET
platform, and “jvm” when running under the Java Runtime Environment.

The word SYSTEM in the first line of the definition is a context sensitive mark, rather
than a reserved word. This means that the word may be used as an identifier elsewhere
in the program. The mark simply indicates that the resources of this module are
actually found in the assembly RTS.dll. Console, Error and ProgArgs are also
SYSTEM modules.

7. Foreign Language Interface
7.1 Accessing the basic underlying types

The underlying types are accessible without any other import other than RTS. At
runtime the compiler queries the target flag, or takes the default value if there is no
target command option.

If the target is “net” then NativeObject, NativeString and NativeException will be the
CLS types System.Object, System.String and System.Exception
respectively.

If the target is “jvm” then NativeObject, NativeString and NativeException will be the
Java types java.lang.Object, java.lang.String and java.lang.Exception
respectively.

In any case, literal strings may be implicitly coerced to either the native string type, or
to the native object type. This saves a lot of clutter in code which interfaces to foreign
libraries. However, if a CP-style, non-literal string, i.e. a nul-terminated array of char
needs to be transformed to a native string, the non-standard built-in function –

PROCEDURE MKSTR(IN s : ARRAY OF CHAR) : RTS.NativeString;
may be used.

7.2 Compiling dummy definition modules

As an interim measure, the compiler has been enhanced so as to allow the construction
of metainformation files for foreign language libraries. Such modules must be
compiled with the /special option.

Foreign language interfaces are denoted by the context sensitive marks FOREIGN or
SYSTEM preceding the keyword MODULE at the start of the file. Such “dummy”
modules do not contain the code of the foreign language facilities, but simply define

 15

the interface to those facilities. Such modules must be compiled with the –special
option. The system marker has special meaning in the .NET platform, but has the same
semantics as foreign in the JVM platform.

When a dummy definition module is compiled there are a small number of syntactic
extensions and changes.

• Modules can be given an explicit external name
• Procedures can be given an explicit external name
• Features with protected scope may be defined
• Static features of classes may be defined
• Escaped identifiers may be defined
• Interface types may be defined
• Overloaded names may be given aliases
• Constructors may be given an alias

The syntax - MODULE Foo[“[blah]space”]; declares that this module will be
found in assembly “blah” in namespace “space”. It is not necessary to use this
mechanism if you write the foreign module so that it has the default name as described
in Section 3, subsection “Common Language Specification Names”.

The syntax - PROCEDURE (x : T)BarII*[“Bar”](i,j : INTEGER); declares
that this procedure has the external name “Bar” and the internal (CP) name “BarII”.
This mechanism allows overloaded names in the CLS to be given non-overloaded
aliases in CP.

The mark “!” is used to declare that a foreign name has protected scope.

If a name clashes with a CP keyword, it should be defined using the back-quote
escape.

Here is an example of the syntax that is required to define a foreign interface type.
 TYPE Foo* = POINTER TO INTERFACE RECORD END;

The keyword INTERFACE is reserved, and such a type cannot declare any fields in the
record, nor can it define type-bound procedure which are not declared ABSTRACT.

Finally, constructors must be declared with the special name “.ctor”. Declaring a
constructor is not necessary if only the no-arg constructor is required, since NEW(obj)
works in this case as for other types in CP (see section 8.4 for more detail). If access
to constructors with arguments is required, then these are given a CP alias, and are
marked as constructors by using the magic explicit name. For the target=jvm version,
the magic name is “<init>”.

7.3 Accessing Static Features of Foreign Classes

If a class has been imported from a foreign definition, and the class has static
members, these may be accessed by means of a semantic extension to the designator
grammar.

 16

Normally, the syntactic construct –
 QualifiedIdent {Selector}
is in error if the qualified identifier resolves to a type-identifier. However there are
two exceptional cases where this is legal in gpcp. If a designator begins –
 TypeIdentifier “.” Identifier
where

the type identifier resolves to an imported, foreign type, and
the identifier is a static field or constant of the type, or
the identifier is a static method of the type

then this is a legal reference to the static feature of the type.

In order to define such constructs in the syntax of dummy definitions the following
syntax is added to the record syntax. Note that these extensions are only valid if the
module is compiled with the /special command line option.

Record → RECORD [“(“ TypeId “)”] { FieldList} [STATIC {StatFeature}] END.
StatFeature → ProcHeading | StatConst | StatField .
StatConst → identifier “=” ConstExpression .
StatField → identifier “:” TypeId .

Procedure headings have the same syntax as elsewhere in the language.

8.0 Creating Foreign Definition Modules

This Section is only of relevance if you plan to write your own foreign definition
modules. For most users the information in the previous section on the usage of these
facilities will be sufficient.

8.1 Syntax of Foreign Definitions

The syntax of foreign definition is as follows. Unless otherwise defined here, the
meanings of non-terminal symbols is the same as in the Component Pascal Report.

GPModule → Module | ForeignMod .
ForeignMod → (FOREIGN | SYSTEM) MODULE ident [string] “;”
 ImportList DeclSeq END ident “.” .
DeclSeq → {CONST {ConstDecl “;”} | TYPE {TypeDecl “:”} | VAR {VarDecl “;”}}
 {ProcHeading “;” | MethodHeading “;”}
ProcHeading → PROCEDURE IdentDef [“[“ string “]”] [FormalPars] .
MethodHeading → PROCEDURE Receiver IdentDef [“[“ string “]”] [FormalPars]
 [“,” NEW] [“,” ABSTRACT | EMPTY | EXTENSIBLE] .
TypeDecl → IdentDef “=” Type .
Type → [POINTER TO] [Attributes] RECORD [“(“ Qualident “)”]

FieldList {“;” FieldList }
[STATIC StaticDecl { “;” StaticDecl}] END

 | Other types as in the Report .
StaticDecl → IdentList “;” Type | IdentDef “=” ConstExpr | ProcHeading .
Attributes → ABSTRACT | EXTENSIBLE | INTERFACE .

 17

The syntax begins with the context sensitive mark “foreign” or “system”. On the .NET
platform the system marker indicates that the code will be found in the runtime system
assembly. In the JVM, where each class file contains a single class, the marker has the
same semantic effect as “foreign”.

8.2 Explicit package or namespace names

The way in which runtime names are generated from module names was described in
Section 3.2. In the case of the JVM we have the following correspondence.

Component Pascal Name JVM Name
MODULE ModNm; CP.ModNm // package name
 TYPE Cls = RECORD … END; CP.ModNm.Cls // class name
 VAR varNm : Cls; CP.ModNm.ModNm.varNm
 PROCEDURE ProcNm(); CP.ModNm.ModNm.ProcNm()
 PROCEDURE (t : Cls)MthNm(); CP.ModNm.Cls.MthNm()
END ModNm.

Notice that in the JVM there are no features that are defined outside of classes, so that
the static entities varNm and ProcNm are considered at runtime to belong to an implicit
static class with the same name as the module name. However, so far as an importing
Component Pascal program is concerned, these features will be accessed by the
familiar ModuleName.memberName syntax.

Component Pascal Name .NET CLS Name
MODULE ModNm; [ModNm]ModNm // namespace
 TYPE Cls = RECORD … END; [ModNm]ModNm.Cls // class name
 VAR varNm : Cls; [ModNm]ModNm.ModNm::varNm
 PROCEDURE ProcNm(); [ModNm]ModNm.ModNm::ProcNm()
 PROCEDURE (t : Cls)MthNm(); [ModNm]ModNm.Cls::MthNm()
END ModNm.

In the virtual object system of .NET the situation is similar, with an implicit static class
being defined with the same name as the module.

If, as a user, you are writing a foreign definition and plan to implement the library
yourself in either Java or in C# (say), then you may define the foreign module in this
way and write the foreign code so as to match the default “name mangling” scheme. In
this case you may even use the same foreign definition for both versions of gpcp, and
implement a foreign module on each underlying platform. If on the other hand you are
planning to match a foreign definition to an existing library written in Java or C#, then
you must override this default naming scheme.

The syntax “FOREIGN MODULE ident [string];” allows an arbitrary package or
namespace name to be defined. For example, in order to access the facilities of the
package java.lang.Reflect a foreign module might begin –
 FOREIGN MODULE java_lang_Reflect[“java.lang.Reflect”];
Similarly, in order to access the facilities of the namespace System.Reflect in the
assembly mscorlib a foreign module might begin
 FOREIGN MODULE mscorlib_Reflect[“[mscorlib]System.Reflect”];

 18

Note that the form of the literal string is different on the two platforms, and thus any
such foreign modules will be specific to a particular platform. Notice also that there is
no mechanism to explicitly give a name to an implicit static class.

8.3 Dealing with overloaded names

Each of the underlying platforms allows name overloading for methods. This feature
is deliberately not permitted in Component Pascal. Nevertheless, it is necessary to
gain access to library methods that have overloaded names. The option of using
explicit external method names facilitates this. Suppose we have two methods, both of
which are named Add(), one with a single integer parameter, and another with two.
We might define these as follows in a foreign definition.

 PROCEDURE (this : Cls)AddI*[“Add”](I : INTEGER),NEW;

PROCEDURE (this : Cls)AddII*[“Add”](I,J : INTEGER),NEW;

Within the importing CP program the two names are distinct, but the program
executable will correctly refer to the underlying overloaded methods.

8.4 Interfacing to constructors

If a foreign class has a “no-arg” constructor, then this will be implicitly called
whenever an object is created by the use of the standard procedure NEW. However if it
is necessary to access constructors with arguments, then it is possible to define an alias
for the constructor in a foreign module. In every case the constructor will be accessed
by means of a static, value returning function that returns an object of the constructed
class. The fact that this is a constructor must be made known to gpcp since the way in
which these methods are called differs from other methods. On each underlying
platform there is a “magic” name which is used for calling a constructor. On JVM the
name is “<init>”, while on .NET the name is “.ctor”. These two strings are used as
the explicit string which defines such a procedure in the foreign definition. An
example of an interface to a constructor with arguments might be –

PROCEDURE NewRectangle*[“.ctor”](width,height : INTEGER) : Rect;
PROCEDURE NewRectangle*[“<init>”](width,height : INTEGER) : Rect;

Note that this declaration would normally be declared in the static part of the record
defining the class “Rect”. Calls to this procedure in a Component Pascal program,
such as –

 rec1 := F.Rect.NewRectangle(25,17);

would translate into a call to the appropriate one of –

 namespaceName.Rect::.ctor(int32,int32)

packageName.Rect.<init>(II)

8.5 Declaring static features of classes

Classes in foreign modules may be declared either as records or as pointers to records.
However, it is recommended that on the JVM platform the pointer form be always

 19

used, as a helpful reminder to the user that at runtime the objects will be dynamically
allocated. On the .NET platform value classes should be declared as plain records,
with no explicit base type. On both platforms array types should be declared as
pointers to arrays, again reminding the user that all arrays are dynamically (and
explicitly) allocated.

In order to access static features of foreign classes, the syntax extension of records
given in Section 8.1 must be used. In the optional static section of a record
declaration we may define constants, static fields and static (i.e. non type-bound)
procedures.

We may consider the following example –

 Component Pascal Foreign Definition Component Pascal Usage
 FOREIGN MODULE ModNm;
 TYPE Cls = ModNm.Cls // class name

POINTER TO RECORD
STATIC

 statVar* : CHAR; ModNm.Cls.statVar
 PROCEDURE StatProc(); ModNm.Cls.StatProc()

END;
END ModNm.

In this example we select the static member by qualifying the designator by the type-
name of the class.

Type-bound methods will be defined lexically outside of the record declaration in the
normal CP way, remembering that only the heading is required. On the .NET platform
the distinction between virtual and instance methods is made automatically. Instance
methods are NEW but not EXTENSIBLE. On the JVM platform the possibility of
optimizing the calls to such methods are left to the JIT to determine.

Note that the foreign modules which arise from C# on the .NET platform or
are written in Java can never have static features outside of classes. If you are
writing the foreign module yourself you may use the default class naming
scheme described in Section 3. However if you are matching an existing
package, you will need to use the explicit name override described earlier in
this Section. This allows you to control the package name, but does not allow
you to name an implicit static class for static features. Therefore you will need
to use the mechanisms of this sub-section if the package contains any static
features.

8. Installing and Trying the Compiler
8.1 Installation

The compiler is packaged in a single zip file which is usually unzipped into a directory
with a name such as \gpcp. There are six sub-directories. These are –

• bin the binary files of the compiler
• docs the documentation, including this file

 20

• examples some example programs
• libs contains the simple library files
• source the source files (will have compiler source later)
• work a working directory to play around with

The bin directory needs to be on your PATH, and the environment variable CPSYM
must point to the libs directory. Typical commands are –

 set CPSYM=.;C:\gpcp\libs
 set PATH=%PATH%;C:\gpcp\bin

9. Future Releases

Release 0.96 has a very limited range of libraries packaged with it, essentially only
those needed to bootstrap the compiler. There are also limitations caused by the
absence of a tool for generating foreign language interfaces directly from the
metatdata.

The distribution is sufficient to try out the compiler, and is being updated on a frequent
basis. We expect new releases to include –

• A tool for producing foreign interfaces automatically
• A “make” tool for compiling modules in dependency order
• More libraries

Updates are announced and available from www.plasrc.qut.edu.au/ComponentPascal

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

