
Getting Started with
Gardens Point Component Pascal

Version 0.96 .NET (November 2000 Beta-1)

1. Introduction

Gardens Point Component Pascal (gpcp) is an implementation of the Component
Pascal Language, as defined in the Component Pascal Report from Oberon
Microsystems. It is intended that this be a faithful implementation of the report, except
for those changes that are explicitly detailed in the release notes. Any other
differences in detail should be reported as potential bugs.

The compiler produces either Microsoft.NET intermediate language or Java byte-codes
as output. The compiler can be bootstrapped on either platform. These notes refer to
the Microsoft.NET platform.

Details on the specifics of this implementation of Component Pascal are found in the
release notes which come with the distribution.

2. Installing and Testing the Compiler

gpcp

bin

docs

examples

agent

hello

ppdemo

libs

dll

src

source

work

Environment
The compiler requires the .NET runtime system, running on any Windows platform.
The released version of the compiler has been tested against the build 2204.21 of the
runtime, on Windows-2000. This is the “Beta-1” version of the .NET runtime.

The compiler is distributed as a single zip file,
which has the structure shown on the left.

The archive is typically expanded into a root
directory named \gpcp and has six or seven
subdirectories. These include the binary files of the
compiler, the documentation, the program
examples, the library symbol files, and the source
of the compiler.

This section describes the steps required to install
and try out the compiler.

 2

The distribution

The seven subdirectories of the distribution are –

• bin the binary files of the compiler
• CP the class file tree for jvm versions
• docs the documentation, including this file
• examples some example programs
• libs contains the simple library files
• source the source files (will have compiler source later)
• work a working directory to play around with

The bin directory needs to be on your PATH, and the environment variable CPSYM
must point to the libs directory. Typical commands to set these variables are –
 set CPSYM=.;C:\gpcp\libs
 set PATH=%PATH%;C:\gpcp\bin

There are two subdirectories under libs. The first of these contains the library dynamic
link libraries (dll). One or more of these will need to be copied into the working
directory of programs in order for them to run. The second sub-directory holds the C#
source of the libraries. Some of the libraries are not fully implemented yet.

Running your first program

Go to the work directory. With your favorite editor create the file (say) hello.cp.

 MODULE Hello;
 IMPORT CPmain, Console;
 BEGIN
 Console.WriteString(“Hello CP World”);
 Console.WriteLn;
 END Hello.

Make sure that the CPSYM environment variable includes the gpcp\libs directory,
and that gpcp\bin is on the executable path.

From the command line, type

> gpcp hello.cp the system should respond …
#gpcp: created Hello.exe
#gpcp: <Hello> no errors
>

The files Hello.il, Hello.cps and Hello.exe should have been created in the
working directory.

In order for this program to run, it must have access to the facilities of the CP runtime
system. These facilities are found in the file RTS.dll, which must be copied to the
working directory. It may be found in gpcp\libs\dll.

You may now run the program by the command “Hello”.

 3

The examples

The example programs are in three sub-directories under the examples directory. The
folder hello holds some simple command line programs. HelloWorld.cp is an
elaborate version of the “hello world” canonical program. Nqueens.cp is a recursive
backtracking version of the N-Queens problem solved for all board sizes from 8 to 13.
Hennessy.cp is a version of the Hennessy integer benchmarks.

A file README.txt gives instructions for compiling and running the programs.

The folder agent has two simple Microsoft agent demonstrations. You must have the
agent system installed on your machine to use these. The folder contains a README
file with further details.

3. Browsing Assemblies

The disassembler tool ildasm may be used to browse the class structure of compiled
assemblies. When started from the command line the program, by default opens a
window with an hierarchical view of the assembly.

The tool is started with the command ildasm file.exe or ildasm file.dll, as
the case may be.

The display window has the familiar structure where icons are clicked to expand their
structures. At the highest level the namespace is displayed. Under that are the classes,
and any nested namespaces (not used by gpcp). The icons for classes are visually
encoded to distinguish regular classes, value classes and interface types.

Under the classes are the fields and methods. The icons for these members are visually
encoded to show static and instance fields, and static, instance and virtual methods. In
gpcp, ordinary procedures correspond to static methods, type-bound procedures
correspond to virtual methods, and type-bound methods which are NEW but not
EXTENSIBLE become instance methods.

As an example, it is instructive to browse the structure of the runtime library RTS.dll.
This assembly has six classes, but no namespace. The classes implement the RTS,
Console, Error and ProgArgs libraries, and provide the CP_rts facilities known to the
code generator. There is also some library support for native strings, which is used by
other parts of the runtime system. Notice that ProgArgs::argList is a static field. This
is set once at program invocation time.

The intermediate language form of a method may be viewed by double-clicking the
method icon.

 4

4. Using the visual debugger

Program files

…

NGWSSDK

bin

GuiDebug

Docs

The .NET system comes with a very capable visual debugger. This debugger has
many of the facilities of the debugger in MS Visual Studio.

The debugger executable is in the GuiDebug directory in the .NET distribution,
typically under \Program files\NGWSSDK, as in the diagram above. The name of
the program is DbgUrt.exe. It may be useful to drag and drop the icon onto your
task bar, so that you can start it with a single mouse click.

The first time that you run the program you may simply specify the program that you
wish to debug. If you save the session as a “solution”, you will be able to restart the
session from the “open session” menu.

Start up the program, and go to the debug … program to debug pull-down menu. In the
dialog box enter the simple name of the program, “Hello.exe” say. In the other
boxes, fill in any arguments that you wish to send to your program, and the path name
of the working directory that you wish to execute the program from. Be aware that if
your program needs any environment variables you must set these outside of the
debugger. Dismiss the dialog box with “ok” and begin debugging.

Most debugging operations can be controlled from the icon bar. You may execute the
program stepwise using either the icons or the function keys.

If you want to save your session, go to the File menu and choose “Save solution”. You
will now be able to restart debugging the same program by using the File … open
solution pull-down menu.

It is the default of gpcp to assemble programs with debug information included, so that
the system should be able to display the source text of your program as you step
through it. If you have mixed language programs, provided the other files have been
compiled with debugging information included you should be able to automatically
step from language to language in the source window.

5. Reporting Bugs
If you find a bug

 5

If you find what you believe is a bug, please send a report to gpcp@fit.qut.edu.au with
the detail of the event. It would be particularly helpful if you can send the code of the
shortest program which can illustrate the error.

If the compiler crashes

The compiler has an outer-level exception rescue clause (you can see this in the body
of procedure CPascal.Compile()) which catches any exceptions raised during any
per-file compilation attempt. The rescue code displays a “<<compiler panic>>”
message on the console, and attempts to create a listing in the usual way. In most
cases the rescue clause will be able to build an error message from the exception call
chain, and will send this both to the screen and to the listing file.

In almost all cases, the compiler panic will be caused by failed error recovery in the
compiler, so that the other error messages in the listing will point to the means of
programming around the compiler bug. Nevertheless, it is important to us to remove
such bugs from the compiler, so we encourage users who turn up error of this kind to
send us a listing of a (hopefully minimal) program displaying the phenomenon.

In order to see how such a rescue clause works, here is an example of a program which
deliberately causes a runtime error. When the program is run, the error is caught at the
outer level and an error message is generated. After generating the error message,
there is still the option of aborting the program with the standard error diagnostics.
This is done by re-raising the same exception, and this time allowing the exception to
propagate outwards to the invoking command line processor.

MODULE Crash;
 IMPORT CPmain, Console, RTS;
 TYPE Ptr = POINTER TO ARRAY OF CHAR;
 VAR p : Ptr;
 PROCEDURE Catch;
 BEGIN
 P[0] := “a”;
 RESCUE (exc) (* exc is of type RTS.NativeException *)
 Console.WriteString(“Caught Exception: ”); Console.WriteLn;
 Console.WriteString(RTS.getStr(exc)); Console.WriteLn;
 (* THROW(exc) *)
 END Catch;
BEGIN
 Catch
END Crash.

When this program is compiled and run, the following is the result –
gpcp Crash.cp
#gpcp: CP/Crash/Crash.class
#gpcp: <Crash> No errors
cprun Crash

Caught Exception:
System.NullReferenceException
 at Crash.Crash.Catch()

 6

If the detailed stack trace is required, the exception is re-raised by calling the non-
standard built-in procedure THROW(ex). The comment in the source shows where
to place the call.

Posting to the Mail Group

The Gardens Point Modula-2 mail group can be used to discuss issues concerning the
evolution of gpcp. In order to join this mail group, send email to
majordomo@dstc.qut.edu.au with a blank subject line and the words subscribe gpm in
the body. The team will post notices regarding updates to that mail group.

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

