newLISP.

For BSDs, Linux, Mac OS X, Solaris and Win32

Users Manual and Reference v.8.9.0 rev2

Copyright © 2006 Lutz Mueller. www.nuevatec.com. All rights reserved.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

The accompanying software is protected by the GNU General Public License V.2, June 1991.

newLlISP is a trademark of Lutz Mueller.

http://www.nuevatec.com/
file:///Users/lutz/newlisp/doc/newlisp_manual-8600.doc#GNUGPL
file:///Users/lutz/newlisp/doc/newlisp_manual-8600.doc#GNUFDL

newLISP Users Manual and Reference

newLISP Users Manual and Reference

Contents

COMEEIITS. . et eitiiiiiie ettt ettt et ettt e e e ettt eb e e s e e e teataa e s e e e et aaaasseeeseaetanasaaeeseeesnennsnannseeees 3
NEWLISP USEIS MANUAL......cceeiiieeiiiiieeeeeeiiieeeeeeeeiiieeeeeeestreeeeeeessseeeeesssssssseeeesessssssrsseessasssnnns 15
R 1 o6 L Lara o) o FE OO 15
MEWLISPTK 11eviiiiiieiiiieeee e ettt e e e eee ettt ee e e e e e e ttteeeeeeeeaabteeeeesesssssataeeaaesessanssnaneeeessennnsses 16
LICEIISITIE wevvvuieeeeee ettt e ettt e e e e e ettt ittt e e e e eeeettbeaa e s eeeeeetessnnassseeeeaessnnannsasaeees 16

2. Deprecated functions and future Changesooccvveevriiieeririiiieeiniiiee e e ereee e 16
3. Command-line options and dir€CLOTIESeeeereerreeeriiiiiiieeeeeeeeeeeeiirrreeeeeeeeeeeeesanennns 17
STACK SIZE 1eeiiiieiittee ettt ettt ettt e e e e ettt e e e e e e st e e e e e e e e e raeaeee s 17
MaXimuIm MEMOTY USAZE «eeeeeeerrrerererrererererermmeeeeeeeetereteeeeeseeereereeeseeesssenssensssnennmnssannnannnas 17
SUPPIeSSING the PIOIMIPE ceevvveuiiiiiieeieeieeeeiitteee e e e ettt e e e e e e s et eteeeeeee e e s s asnreaeeaeeas 18
NEWLISP @S @ TCP/IP SEIVET eevuvuuiiiiiiieiiiiiiiiiiiiceee e ettt et s e s e eeeeerenananaiee e eeaee 18
TCP/IP daemon MOMEcceeeuuiviiiieeiiiiiiieieee e ettt ee e e e ettt e eeeeeesssessbteteeeeesssesanreee 19
inetd daemon MOAE.......c..uuuiiiiiiiiiiiteeee ettt ettt e e e e e s et e teeeee e s seeaareee 19
Daemon mode with handler fUnCONccccveeiiriiieeieiiiiee et eeire e e eiiee e e 21
Direct eXECULION TMOMEceeeiiiiiriiiiiiitieeeeieeeitteeeee e e e e eeetteeeeeeeeeeseeeaabebeeeeeeeeessssssnanreee 22
LOZEING I/O eeiiiiiiiiiiiiiiiiieetttc ettt e e s 22
Command line help SUMMATYcocouviiiiiiiiiiiieee ettt e e e e eeeee e 22
The initialization file INTEISP ..eeovveiirriieeieiieee e e e esaree e e 23
Directories on Linux, BSD, and Mac OS Xciiiiiiieiiiiiiiieeeeiiieeeeeeiieeeeeeveeeevrieeeseeannees 23
Directories on Win32/NeWLISP-tKcccciiiiiiiiiiiiiiiiiiiiiriiiteeeee e eeeereteee e 23

4. Shared library module for Linux/BSD VETISIONScccverrerrrereerrnreeeennreeeeeenirreeeennneeeenanne 23
5. DLL module for Win32 VEISIONScveeeerveeeriireeirieeesaiiteeesireesnseeessssseesssseeessssseesssnees 25
6. Evaluating NeWLISP €XPIESSIONS ...ccceireeeurirreeeeeeeeiirreeeeeesessanrrreeeeesesssssssssesseeesesssssnssnnns 25
Integer data, floating point data, and OPETatOrScceeerrurreeerrrrireeeeeeiireeeernrrreeesnnnns 26
Evaluation rules and data tyPeSc.eeeueeeeeeeeiieiiiiiieeeeeeiiittee e et ee e s eerrreeeee e s e 27

7. Lambda expressions in NEWLISPc.ceiiiiiiiiiiiieieeiieeeeeeieeee e e eeirere e s snieee e e e 30
8. nil, true, CONS, ANA () civvueiiiiiiiiiiiiee et e e e e et e e e e b e raaaanas 31
D ATTAYS weveeetieiiitiitettettee ettt ettt ettt et e ettt bttt et e e et e et ee e e et eeeeeens 32
10. DIictionaries (RASH TADLES)euueeiieeeieee ettt ettt e et e eteseaeeeeeeeaessenesenneeennses 33
11. Indexing elements of strings, lists, aNd AITAYSccveerervvreeeeruieeerriieeeerieeeeerereeesseeeeens 34
Implicit indexing fOr Ntcc.eeiiiiiiiii e e e 34
Implicit indexing and the default funCtioncccoeevveeiiiiiiieiiieeee e 35
Implicit indexing for rest and SHCEcoiveeuiiiiiiiieiieee e 35
Implicit indexing for nth-set and SEt-Nth.........ccoveeiiiieiiireiiiiiieee et e e 36

Contents 3

newLISP Users Manual and Reference

12. Destructive versus nondestructive fUNCLIONSeeeeereevrrieeeeeieriiieeeeeeeeeieeeeeeevrieeeeens 36
13. Dynamic and 1eXical SCOPINGveeeervrererriiieeiiiiee ettt eitee et e e erere e erere s mreee s 37
14. Early return from functions, loops, and blockscccceeeeeiiiieeiieiiiiiieee e, 38
Using catch and thIOW ...c..euiiiiiiiiiiieee e e e s e e s s e 38
USING AN AN OF 1.uuiviiiiiiiiieiiiieee sttt e ettt e e e s et e e e e e s ssaabbraeeeeesesnrbeeaeeeessennasnes 39
BT 00} a1 7o)« v UON 40
SCOPING TUIES FOT COMEEXES ..uuuurrrrirreeereeeeeiitereeeeeeeeeeiitrtreeeeeeeeeeesnrsseeaeeseeseesssssnssseesenas 40
CRANGINE SCOPITIE ..ueeeeuueuunneeiiienunuaiaennetueaeaneaanearenanassnesssssensssasesssssssrssssssssrsressnrarsesseeenn 43
SYMDOL PIOLECTION ...ttt tataaaaataaataaeaaabtsabasssssssessssssesssneesnennssnnnnenns 43
Overwriting global symbols and BUilt-inseeeeeeeeiiiiiiiiiiiiiiiiiieccecieveeeeeeene 44
Variables CONtaiNiNg COMEEXES .vviiiiiiiiriiriiririeeiiieeeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseseseesseeee 44
Sequence of creating or 10ading CONLEXLSuuurrieeeeeeeeeeeieiiiiirirreeeeeeeeeeeeeeenenrrrrreeeeeeas 44
Symbol Creation iN COMEEXES ..iiiiiiiiiiiiirrierreiieiieriiirrrrrreeeeeeeeeeeeeeeeesessesssessssssssnnssssssssnnnns 46
16. Programming with CONTEXt ODJECES .evvuuuviiieiieiiiiiiiee ettt e e 46
Late binding of CONtEXt SYMDOLSuuviiiiiiieieieiiiiieeeeeeeeeeeririreeeeeeeeeeeenreereeeeeeesesnnnees 47
The context default fUNCHIOcvvuueeiiiieiiiieee e e et e e e er e eees 48
Passing Objects DY referenCeciiiiieeeiiiiiiiee et re e e e e e e s eanees 49
CONLEXLS AS PIOLOLYPES evvvuuuneeeerrirruuuaeeeeetereeuaaeeeeeterennaasseeereeressnnaeeeeseeemmmnsesseeseresnnnnns 50
Lexical and static ScOping in NEWLISPcccoiveeiiiiieeeireiiiiieeeeeeeeiirieeeeeeeeerreeeessesenens 50
Serializing CONTEXE ODJECES tiiiiiveuiiiiieiii it ee ettt e e e e e e ear e e e e e e e e nneaaeeeas 51
17. XML, S-XML, and XIVIL-RPCccooetiriiiieeieeeeeeeeeiiieieeeeeeeevaraneeeeeeseessnnneesesssssssnnaaeaaens 52
18. Customization, localization, and UTF-8cccccceeiiieieieiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeens 54
SWitching the I0CALEcvvviiiiiiiiiiiieiiieee e e e e e e e e e e e e e eeeeeeeeeeeees 55
Decimal point and decimal COMIMAuuuiiriiiiiiiieiiieiieeeiereeeeeeeeeeeeeeeeeeeeeeeseessesssssssssnes 55
Unicode and UTF-8 €NCOAINGceeveiiiiiierirereierereieeereeerereeereeererersermsemmeeneenn—.- 56
19. Commas in PAramMeter LSS ...cccuueerrrieeriiiieiiitee ettt e erteeeeiree e s e e snreeesameeeens 58
20. Linking newLISP source and eXeCutablecccceveieeiieiiiiiiiiiiiiiirieeeereee e 59
NEWLISP FUNCLION REEIEIICE.oevviiiiriieeeeee e ettt e e e et e e e e eeeeeeeesbbeeeeaaaees 61
1. Syntax of symbol variables and NUMDETS...........ccceerirrrriiiiiiiieeirieeriiieeee e 61
Symbols for variable NAMES..........ccueiiriiiiiiiieiiie et 61
INUITIDETS. ..ottt e ettt e e e e e e e e e et e et eeeeeeeeeseee s e s aasaeeeesesaeserssssssannnneesaeees 62

2. Data types and names in the referenCe.........cccccuiiiiiiieeeieieiiiieeee e e e eeeeirrree e e e e e e e eeeeeaens 63
[50T o) FETT OSSN UUPRPPRPROPON 63
110 SRRt 63
810 1 0 64
10T 10 0 0. CON U URRRRt 64

] o RN 64
)4 1.1 KR O O P U PP PP PPPPPPPPPPPPPPPRE 65
(0] 1o« Ut 65
SYTTI-COTIERXE . 1ttt teeeee ettt ettt et eeeeeeeeeeeeeaaaeaeaaesaesaasesassaannnnnnannnnnnnsnsnnsnnesseeneanenee 65
FUIIC. .ottt ettt e e e e e e e e e e ae b eeaeeeeeeseees st s raaaaeeeeaeererararraaeaaaees 66
LISt ettt et e ettt ettt eeeee e et ettt e e e eeeee e e e bbb ————aeeeaeteaera b —————aeeeeeerrbtrtaraaeaarrrrrrrraaaeaares 66

Contents 4

newLISP Users Manual and Reference

AITAY e eeeeetieteetettttttettet ettt ettt et ettt ettt et ettt tettetttetttteetteeeteeeteteteteeteeeeteeteeettterttetetetetetetttettteene 66
10045 OO P PO P PP PO P PP PP RO PP PP PPPPPPPPPPPPPPPPPPIRE 66
DOAY .ttt e ettt e st e e e e bt e e s bttt e e e bbeeesenraeeenn 66

3. FUNCLIOMNS N GIOUPS.cettuuuueiiiieiiiiiiiireeeeeetetiiiiieeseeeeetrttenassseseeermssassssseseeressssnnssseeessssnnnnss 66
List processing, flow control, and integer arithmeticC.........cccceeeeuuieeeeriiieeeernniieeeeennne 67
2T 001 = 1 (o) - JOU U U PP PP PP PP PPN 69
Floating point math and special fUNCHiONS............uteiiiiiieiriiiiiiieee e eeeerireeee e e e 69
MatTiX fUNCHOMNS. ¢ eveeeeiieeieeiteee ettt ettt ettt e ettt e eereeeesneteeesreeeesemreeeesnraeeenanne 70
ATTAY FUNCHIONS. ..eeeiitieeeitiee ettt ettt s et e e s e e e s mreeessabeeeesmreeesamneeeens 70
Financial math funCtions.........oceeeiriiiieiiiiiee e 70
Simulation and modeling math functions..........ccocceeeeriieieiiniieee e 71
Time and date fUNCHONS.eeiiutiiiiiiiee ettt e e e e s mreee s eeeesaane 71
String and conversion fUNCHONS.ccvuttirriieeeriiee e eeree e s 71
Input/output and file OPETatioNS........ceeervieeeeriiiieeeiiiee ettt ettt eeerree e esrreeeeeanee 73
Processes, pipes and threads..........ccceeiriieeiniiiiiiiiieeeeeee e 73
File and direCtory Management.......ccocoueeeerereeeeenrreeeriireeeenreeeessnraeeesareeeessreeeessmreeeesnnne 74
System functions and PrediCates.........cueeerrurerreeeiniiee et et e e e s 74
HTTP NetWorking APL......ccoooiieiiiieeeiiiee et eriteeeeiteeeeieeeeereeeeeareeeesmreeessmeeeesnaeeeenane 75
Socket TCP/IP and UDP netwWork APL.......cccccviiiiiiiieeiiiiiieeiiieeeeniieeeeeireeeeesireee e 76
IMPOTting LIDIATIES. . .vveeiiiieeeiiiee ettt ettt e st eesaree e ssreeessareeeenane 76
NEWLISP internals APL........uiiiiiiiiieiiiiee ettt eitee et e e et e e e s eareeeesemrneeessanraeeesanee 77
Functions in alphabetical OTder...........uiiiiiieciiiiieeieecciiecee ettt et e e e e e eerreeeeee e e seennenes 79
ettt ettt et e et sttt e et e et e e b b et e s b b et e e n b et e s bt et e s a b et e e s be e e s nba e e s nbeeeenreee s raeeesnraeeenane 79
ettt ettt e b e st e et e be e e bt et e s bt e e b et e nne e e naeenanee 79
s oy) ettt ettt ettt a et ettt et e et et et e e et ereeas 80
S T PP 81
U, > > ittt ettt e et ettt ettt ete ettt ean ettt taaeantteaaeat et ateateanaatneatneanaanerternaaanerraeanns 82
PP PPPPRTPPPPRRRRt 82
| ettt ettt e bt e a bt e h et e e bt e e bt e e bt e e ht e e be e e et e e e beeeabteeabeeesabeesabeeeas 83
L T PP PP P OO T PP ROPUPOPRPPPPRROt 83
P ettt e ettt e e ttee ettt eea—te e e et e e e bet e e e btt et e ba s e e e bt ae e e et e e e e e aa bt e e e seaae e e ba s e e s baee e e baeeeeanraeeeanraaeenn 83
ADS ettt ettt e st e s bt e s bt et e s be e e e bt e e e baeeesbtaeeesaraeeeenrees 83
=T U 84
AAG. ettt ettt et e ettt e et e e e bttt e e e bae e e ettt e e eabaeeeenbeeeeeabeaes 84
AAATESS. ..eeeeeeteeeiitee ettt et ettt e sttt e e sttt e e sttt e e st e e s bt e s bb et e e s bttt e s eanba e e e enreeeeenreees 84
AIMID . ettt s 85
AT ettt ettt ettt e e ettt e et e e ettt e e s ba e e e e ea bt e e e hbt e e e b bt e e e e bt e e e eabbteeeeabaeeeenbeeeeeabeaes 85
1] 111 ¢ PO OO U UPP P PPPPPRRRRIN 85
210 711 T B 1 (=T U U UUUU U PUPSPRRRRPNE 86

Contents 5

newLISP Users Manual and Reference

215 | /USRI 87
AT S e eeeetetttnu e e e e ettt tt e e et e ttat et e e et ettt b e a e e e e e ettt et bt e e eet et e b et e e e et aarenn e eeeenannaaaes 88
ATTAY ceuuneeeetnuneeeeetnuaeeeetnaeeeertnneeeeeenneeeenensssseeeensssseeesssssseenssssssetssnnssestsssnsertssnnnserennsssennsnnees 89
Va2 ot § £ SO PSPRPRRRIN 90
ATTAY? e eeettunnnieeeeeeeeeteeeeena e e eeeeeeteeesnaaaa e eeeeaeaaeernaaaeeeeererenrannaaeeeeetetaatrnnaeeeeeeeeesrnnaaens 91
L3 0 T OO O OO P PP PPPPPPPPPPPPPP 91
ASSOC e eeeetetrruuuuuaaeeeeeeeeetetentuaa e aeeeeeettatranaaaa_aaeeeetettatraaaaaa e eeeeettettnaaaaeeeeeteterannnaannns 91
ATATL. e eeeetitei e e e e ettt ettt e e e e e e e et taer et e e e e e ettt et e n et e e e et e et b e b b a e e e e e e et e eenn e e e eeeeennnnaaees 92
ATATIZ. .. eeiiiiiiiiee ettt ettt et ettt a e s e e e ettt bbb e e s e e ettt bbbt s e e et e e e anaraaees 92
21 10) 10 PP P P PPPPRTPPPRRPRt 93
DASEOA-AEC. ... eteeeieieeieieee ettt e ettt e e e e e s ettt e e e e e s e e bbbt et e e e e e e se e abttaaaaeeeeenan 93
DASEOA-EIIC. ... eteeeeeieeiete ettt ettt e ettt e e e e ettt e e e e e e e bbbttt e e e e e e se bt baaeeeeeeeeaan 93
DAY S -QUETY . ceeeeeeieiiiiieee et e ettt ee e e e eeetetteeeeeeeesenaaeaeeeeeeeeansnssbeeeaesasasnssssnaaesseassnnsssneaaesenans 94

R.A. Fisher Chi2 method..........cociuiiiiiiiiiiieiee et 95

Chain Bayesian Method..........cooeeiiiiiiiiiiiieeiciitttttaaitaaaeeveveaeesaseesesesreesseseesseseenns 96

Specifying probabilities instead Of COUNTS.......cccereeciuiiiieeeeeieiiiriee e e e e eevaeeeaas 97
[N u -Vl s OO PPOUUUPPPPON 97
07T 5o PP PPPPPPPRPPRE 99
{7 - F U UTUSPTN 99
{712 PO PP URUPPPN 99
DINOTIIAL ...ttt ettt e e e et e e e e e e et e e e e e e e e areeaeeas 100
(o7 1] PSP PR PPPPP 101
[or2 11l 1 VOO PO U PUTUURTRSPPRO 101
CEIL ettt et e e ettt e e e e e ettt et e e e e e ee bt baeeaeeeeeeaan 102
CRANGE-AT ..ttt ettt e e ettt e et e e s st e e e ettt e e e ebbeeeeeane 102
o3 OO PRUUSTUSTPO 103
[l 1 7o) o S PP U PP PR PP 103
Lol 1S T o FO RPN 104
L0 ettt ettt ettt ettt e e e ettt e e e e e e e e btteeaeeeea e abtttaaeeeeeaannraaeaaeeaaaan 105
COMMANIA-TITIE. ...eteeeiieiiiiieeee ettt ettt e e e ettt e e s ettt e e e ee s asbbeteeseessnssaeeeeesns 105
<) s L« FU PR STPR 105
L&) 1 1S OO OORPTPPPPP P OPPPPPPPPPPN 106
(03 1] : 1 | ST PO PP PP PPPPPPPPOTRPRO 107
(0) 11 (o) PP PPPPPR 108
COTIEEXE? e etttiiiieee e e e e e ettt ttnttea e e e e eeeeeetaaanean e e e eeeeeeeetesessanaaaae e eeeeeeenersnnaaaanssseeeeeeennsnnannnns 110
(o] 0 1T SPPTN 110
C0S ettt et et et ettt e et e e aa e e et ta et et ta e e tha e e et a s e et b e e et e na et et eeeenaa s e e taenaeeenenaes 110

Contents 6

newLISP Users Manual and Reference

COUTE. ettt tetittii e e e eeeetttttua e e e eeeetetesesaaaa e eeeeeeeeaessaaaaaseeeestesesnassnseeeesessnnnnnnsseeeeeeessnnnnnns 111
CPYITICIIL. e eeettttnenuiieeeeeeeeeerenenennnnaaaeaeeeeeeeenaannnaaaeeeeaeeeaenssnnnesseeeeeenessnnnnnenssseeeeeeennsnnnnnnns 111
CIC3 2. ittt ettt ettt et ettt e e ettt e b e e e ettt bt bbb e e s e ettt b aa s e e e e taaasaaa s 112
CIIE-CRI2. ettt e e et e e e e e eetteaeeeeees s aabaaeaeseaasnsssbaaeasesennnnsaneaaaeanans 113
CTIE=Z ettt e e e ettt e e e e e e et ttaat b e e e e e ettt taa e e e e e e e e et a e b b e e e e e e e e et ne b e b e e e e e et e enernnees 113
CUITEIIE-LITIC ¢ttt ettt e e s ettt e e s ettt e e e e e s aabbeteeseeeaassaeeeeeanns 113
L& LU 114
ALE-VALUE. ..ttt e ettt e e s ettt e e s e abbateeeesssasbbaaeeeeeeaabtaaaaeeaans 116
L4 1] 011 -SSP PPPPPPPP 117
4 =T PR SPPP 117
(4 =31 LTS PRU P USTPO 118
AEFINE-TIIACTO. ¢ et evtiieeieiiiee e ettt e ettt e ettt e ettt e e ettt e e e bbeessabteeeseasaaeesenssbeessnabsaeesessreesanans 119
4 <3 31 1 U RUSPTP 121
4 1] =1 OO P P UUUOTRPPP 121
e 21 1S = 1 (=T OO PURRUPPPPORRPPUPRRNE 122
QEVICE. . utteeeeeeeeeitte et et e ee ettt e e e e e atareeeeeeesantaaeeeesaaanssaaeeesesaansssaeaesssasssssseaasesensnsssnneaesanans 122
QI ETEIICE ¢ eie ittt ettt e ettt e e e s e sttt e e e e s e s s bbb bteeeeeeeannbbaaaaaeeeeanan 123
a0) o /U PPPPPPPPPP 123
L4 T U0} 2 PRSP 124
IVttt ettt e e s ettt e e s e e e bt tee e e e e e ettt eeaee e e e e abtttaaeeeeeaannnbaaeaaeeaaaan 124
4 (o] 1] SO OO PO PO PPPUROPPTTPSPPOP 125
o LoY a3 3 1SRRI 126
4 (o) u (=T P UUPPTUUTSPPTON 126
AO-UNEL ..ttt ettt e e e ettt e e e e ettt e e e s ssabbeeee e s e abbaeeeeeaan 127
QO-WHILE...eeiiieeeeiiiteee ettt e ettt e e e e e e tar et e e e e e eesstbaaeeeaeeesansrsaaeaaeesesnsnraeaaaassennan 127
L4 LR E v o OO PRSP PTUURTUSPPRO 128
(4 101 J U PPPPPPPPPP 128
1S3 101 0] 02 OO SO PSP PUPPOPPPPRR 129
1<) 016 5% 5 FRR PPN PPRPPPRRTRR 129
ENUAS-WItR..eeeiiie et e e e et eeeeeeas 130
1S5 0 1SR PRP PR PPPPP 130
<3 o OO PR OPTPUUPOSPPPRO 131
EITOT-EVEI . tettttiiuiiietteetiitiii et ettt tttttt et eeettaaaaa s e et etttaaaae s eeeeatasaaaeeeseeetansnsaessseeessnsnnnnss 131
L0 B 11 E 8001 073 U PURR SRR 132
(<) § 0] o (o) H OSSP POR O PPPUPPPPRRRR 132
BVAL ¢ttt ettt e e e e ettt e e e e e ettt e e e e e e e ee bt baeeeeeseeeaan 133

Contents 7

newLISP Users Manual and Reference

EVAL-STTITI ettt eeeiiieeeeeeeetieeeeeeeetteeeeeeesabaeeeeseaaaraseeeseassssseeaesessnsssneeessasssssneaesensnsssneaaesenns 133
10 (S R PP PPPPP 134
[« L PP PP O TP PPPPPPPROP 135
XD+ eeeetuuunuuaaeeeeeetatuuua._eeeetttataa et ee et taaa__aee et ettt baaaeeeettttan et ee et tbtnaaaeeeeeeeaernaaannns 135
12 4 0Y: 11 L« F U PP U RSR O TUPPP 135
125 4 5] (o6 [T PPPPPPPPPP 137
72T (o) SR PUPPRR 137
1 SO TP UUPUPURP 138
5 (11 (o T PSPPSRI 138
I 2 ettt e ettt ettt e e e et e e e e e e ettt e e e e e e e e e bt aaaeeeeeaaababataaaeeaaaanrraataaeeeeannnnrraaas 139
|13 OO UPPTU ORI 139
51« FO USRS UUTUR R UPRURRTI 140
1) SO UPRRP 141
12 SO PUPPPRURP 142
1 DO OO TRUUTURRTSPRURTP 142
(0 L USSP 143
(0T [OO PP UUPUPUURR 144
11 (o7) S U ST USRI 144
Bl ettt ettt et e e ettt e e bttt e e e bbbt e e e bt e e e e s aba e e e s e bttt e e e aabaeeesebeaeeean 144
(0) SO PSS PPRU ORI 145
(01 0 RPN U PPRPTRRRPRP 146
(0] 5 11T | SO UR 147
BVttt e ettt et e e e ettt e e e e e e e bbb tae e e e e e bbaaeaee e e e bbaeaaeeeeenannraaeas 149
GAITIIMIAT. 1o et vevvvtiieeseeeeeetuueiiaeeseeeeeeesaeuaeeeeeeeeeaessnnasssseeeessssssnnnssseeenssssssnssseesnessssnnssseeensssnnnnes 149
otz Vual 00T 11 DU SPPPN 149
o< el - 1 P PRSPPI 150
oS (o | SO UTR PR 150
o 10| SO U PPPPPPPPPPR 151
BT-STTITIG ¢ttt ettt ettt e ettt e e e et et e et e et e e et e e e e e e e e e e aeeaaaaaaaaaaaaaaaaaaaaaans 152
o 1 o PSR PPPPPP 152
o3 10 oYY ISR STPPN 154
11 ST OO PPTUUTUSPPTO 154
11§ | SO OSSO PPPPORRUPUPRRNt 155
11001070) 4 F PSPPI UOPPTPRPPPN 156
IT1Cu ettt et ettt e e ettt e et ettt e e e e ettt e e e e e ettt a e s e et e e et e reran e e e e e e aesnnnaaees 158
11376 [PP OO PP PP PPPUOPPRTTPPPTON 159

Contents 8

newLISP Users Manual and Reference

IT1E. ettt e e e e e e ettt ettt e e e e e e e e ettt ettt e e e e e e e et ettt et b a e e e e e e e e et e ban e e e e e e et e aenennannes 159
T LI 24 < o P U P PP PP PP PP PP PPPPPPPPPPPP 160
T LIS 5] AR O PR PP PP PPPPPPPPPPPPP 160
11017 o SOUOTU TR U PPPPPPPPPPR 161
110 SOUT T PP PP PP PP PP UPPPPPPPPPPP 161
031 PSP PP PUPTPPRRRRRRRPPPPPPRY 162
20015 T b FO U PUP R 163
I B2 1o b2 T - Lot (o OO PP PURPU PRI 163
LAIMIDAA? ...ttt e et e e e et e e e e et e e e e e e neraaees 163
T SRR UR 163
LEZAL? ..ttt ettt e sttt e st e s rae e e s b et e e s arateenrneee s 164
1S5 4 L1 o PP PPPPPPPPPPPPRR 164
< TSP 165
X ettt ettt e ettt e et e e e ettt e e et e e e e bt btaeeeeeeaatbbaaaaeeeeeanabrrraaaeeas 165
LT o FE OO U OO ST ST OO PP PUPPPRUOPPI 166
] TSR PUP 167
ISt 2 ettt ettt e et e e e ettt et e e e e e e e bbbttt e e eeee e e ntbbaaaeeeeeeaeabrrraaaaeas 167
LOAQ. ..ttt ettt et e e ettt e e e e e ettt e e e e e e e araaaeeas 168
O ettt ettt e et e e s bt e e e e e bttt e ettt e e bbeeeenbeteeebbaeeeeaabaeeenn 168
1oTo) L o OO TP UUPUP SRR 169
LOWWET-CASE. ¢ttt ettt ettt e e e ettt e e e s ettt e e e e e e e st bbteaeeeeeeeeanabaeaaee s 169
TIMACTO? e eettttnuueeeeeeeettunnuuaaaeeeeeteatenanaaeeeeeeetesesnaaanneeeenesennnanseeeeeessssnnsnseeeseesnnnnnseseeesesssnnnnns 170
TNLAITL-ATES e uuevvrreeeeeeeennrrrerteeseseannrreateeeeeeseaanrrbaereeeeeeaeannnranareeeesesannnnnraneeeeseennannnnaneeeeas 170
TNAKE AT .etteeeeeeeete ettt ettt e ettt e e e ettt e e e e s e bbbt e e e e e e ettt eeeeeeennnareaeeas 171
TIEAD e eettttutnuuneaeeeeeeeeeeueneunaaaeeeeeeeeteaessanaenssaeeeeseeesessnnnaneeeeeesaesssnnnsnnseeeeeesssnnnsnseeeeeseeesnnnnnnns 171
1T ({6l 1 DO O UPPUPURURP 172
10 E2 D G PP PP P PSR PPPPPPPPRRT 174
00 TS1 1010 ST PR 174
10110 PO PPPRTP R PPPPPRRN 174
TIIO@. ¢ teeeeeeiitttte e e e ettt e e ettt e e e e e bbb et e e e es e bbb e e e e e e e e bbbt e e e e e e e bbtee e e e e e bbbeteeeeeennneraaeas 175
10101 OO TSP 175
TIULEIDLY . ettt et et e s e st e st e s eanene e s nrane e s 175
4 E=1 00 LSRR PP P PO P PP PP PPPPPPPPPPPPPPPPPPRE 176
IN AN 2 ettt ettt e ettt e e e ettt e e ettt s eetat e eeetaa e e aeaa e eeaataeaetan e eetba e aaataneaataraaeeeraaeetarrnaas 176
0Lt L4l PP 177
TEEE-CLOS .ttt e ettt et e e ettt e e e e e ettt e e e e e e et btbe e e e e e e e araeaeeas 177

Contents 9

newLISP Users Manual and Reference

TEEE-COTITICCE . e eeeeeeettututnnuieeeeeeeeeeeeteeeannaaaaeeeeeeeeeeeaeessenaanessssseeeeeseenesannnnssseeeeeeesenssnnnnnnns 177
UDP COMMUNICALIONS. ...ttt 178
UDP multi-cast COMMUNICAtIONS. ...eeuuvireeeeereeiiiiitteeeeeeriiieeeteeseserirerreeeeeseesanrreeeeesaens 179
UDP broadcast COMMUNICATIONS. ..eceiieeuueriirteeereeeriiiiiiteteeeeeesesiierereeeeesesessnrerreeeeesessnns 179

TECE-CI O .. ueeeeetetetenenneeeeeeeeeeranennanaaaeeeeeeeeereaesnaaaeesseeeeeaesesnnnanessaeeeeeeeeessmnnnnnsaseeeenenesnnnnnnns 180

TIEE-EVAL et tie ittt ettt e e e e ettt e e e e e e ettt e e e e e e e e s e nabaaaaee s 181
RAW TNOME. ..ceiiiiiiiiiitiee ettt ettt e e e ettt e e e e e sttt eeeeesesssasbebaaaeeesesnnnsraaaaaeesnnns 183

01 O 1<) 1 RSP UR I 183
UDP COMMUNICALIONS. ...ttt 184
UDP multi-cast COMMUNICAtIONS. ...eeuuerreeeeereeiiiirteeeeeeeeiiereeeeesesesireereeeeeseesanrreeeeesaeans 185

0L o) | OO PO UPPRU TP 185

0[S (Y0 1 o PP PRPPPPPPPPPPRRE 185

TEEE-PEEK. ..ttt ettt ettt ettt ettt e ettt e e et e e e bbb e e e et e e e s bt e e e s bttt e e e aabeeeeeebaaeeean 186

(S i 0T T P U PR RUORRORROPOPRPPPPPRIRE 186

TEE-PITIE . oottt eeeettttuitieeeeseeeeeettrtaeaeaeeeeeeeeeeernaasassaeseseesesssssnssnsssseesessssssssnsnnnsseeeesenesssnnnnns 187

TEEE-TRCEIVE. ¢etetttuuuieeeeeeeeeeetttttauta i aaeeeeeeeetereneaaeaaeeeeeetetsssnaaaessaeeeeeseeeessnnnnsssseeeeeeesesssnnnnnnns 188

(S G (1 AT) 11 PR PPPOU RPN 189

NEE-TECEIVE-TUAD. 1t tttetiiiiiiiieiitiieieeeeeeeectiirr e e et e eeeeeeeeeesessessasssssssssnssssssssssssnsssssssnnssnnnns 190

(S <) (<] o F O UUPUP 191

11 (I CE <) 1 L« DU TSP UPPPRRP 192

TIEE-SEIIAT0. 1t eeteteeiitiettee et e ettt et e e ettt e e e e e ettt et e e e e e s s anabbttee e e e e bbbt aaeee e e e nnnbaaaaee s 192

0TS <) 0 e 1 e o SO SR UU 193

0[S 11 7 (oSO USSP OSSOSO PRSP PP P PPPPPPPPPPPPPPPPRPRE 194

TIEE-SESSIONIS. ¢eeetreeeeiereertieeteetteeeeeteeteteeteeeteeteeeeeeeeteereeeteeetereeeeeeeeeeeeeeeeeereeeeeeeeeeemeeemeereeereeene 194

TEEW . tttttteeeeeeeeeetunnuua e eeeeretaeaaaaaaeeeeeeaeaesnaaeenaeeeeeaasssnansssseeeeeesssnnnsssseeeeeeeesnnnnnneeeesenessnnnnnns 194

011 O PP UUPUP R 195

110 SR ROORRORROPRPPPPRPPPPR 196

10 0) 500 -1 SO USRI 196

TEOW ettt eetttetetne e e e e e eeeeteaanaaa s e e e et e teananaaa e e eeeeataaesana e eeeeenansnnaaeeeeeeeernnnnaaeeeeerenennnnaaens 197

TIDCT et eettuueeeeettuueseetueneeseetaeneeseetaenesseetesnasseenasnnsseenesnnseeresnsnseessnsnssenesnnsseresnnnnsresnneseernsnnsee 198

TIDV e eeeettttttt e e e eeeeettetteua e aeeeeeteaaseasaaa e eeeeeeeetanaaa e eeeetatran e aeeeeetetbana e e eeeeteaesnaaaanes 198

11 o SO OO USRS 198

0L 0 <1 A OO PO OO O PP UUPPPOPPR 200

011 0010)<) oSS PUP 202

(0] 1<) s FER PSSP OO PPPPPPPRRRR 202

[0 P PSP PRSP PPPPPPPT 203

0L Ul S USRI 204

Contents 10

newLISP Users Manual and Reference

S22 S 205
PEEK ettt et e e ettt et e e e e bttt e e e e e e e e a bt btaaaeeeeeenenbrrraaaeeas 206
031 0TSSP PPUP PP 207
2] 80 LSS PP OPPPRRTPPPPRRRRt 207
216 0 TP RO UOPPRPPPPRTR 208
POSTUTL ettt e e e ettt e e e e e ettt e e e e e e s bbe e e e e e e e e naneraeeas 209
Additional PATAMIETETS. . .ceiiiieeiiiiieeeeeeeiiitee et e e esieiitteeeeeeessatrtrteeeesssssnrreeaeeessssssnnnreaees 210
POW ettt ettt ettt e e e et bbb e e e et bbb e e e e s e bbb s e e et e s s b s 210
|2 AU o) 81 | U T T T U TR OO PP POPOPPPPPPPPPPPPRRE 210
PIAIIIITIVE? e tttteee e et eeettttttieeeee e e e e e e ettbtata e e eeeeatabasasasssseeeaesssssnsnnnssseeesesssnnnnnssseeesesesnsnnnnns 211
2] 01 | SRS P PP PP PPPPPPPPPPPPPPRt 211
1218111 1 DTS UPPO ORI 212
[0 o] 5 el 1§ U PPPPPPPPPPPRR 212
2 (0] 0 2SRRI 212
PTOCESS. ceetttieeeeeeeetettti e e e e e ettt tenaa e e e e eeteteeena e e eeeeetaessaaseeeeeeasraaaeeeeeeannnnaaeeeeerenennnnnns 213
010] + U PPPPRPPPPPRN 214
PUL-UTL ettt ettt ettt e ettt e e st e e e sttt e e eaabeeessabbeeesnbaeeesabbeeeesanbaeeens 216
Additional PATAMIETETS. ..ceeiieieeiiiiieeteeeeiiiitee e e e ettt et e e e ssiabreteeeesesssarbetaeesesessannreeaeeas 218
DVttt ettt et ettt ettt tee e e ettt t e e e e ee e bt ttaaee e e e ha bttt eeeea e hatataeeeeea e athbaaaeeeeeaaahbbaaaaeeeeennnarraaaeas 218
QUOEE. ettt e eetee e ettt e e eetuaeeeetaana e eeetaaaaeetasaesseetaseseensnnessanennessenesnsseenennnseennnnnsenesnnseenennns 218
QUOTE? e eeeeeeee e e et ettt e e e e e e ttttba e e e e eeeetareaua e eeeeeeaeeanaaaeaeeeeetasensaaassseeeeeensnsnnnnnseeeeesesnnnnns 219
121 1 [« OO TP PUPPPURP 219
21 016 (0311 T OO SO PP SO PP PUPPPRURPPP 219
=1 016 (0110 1/ <SP PRI 220
TEAA-DULTET ..ottt e e e e s s st e e e e e e e s s bbeaeeee s 220
TEAA-CRIAT . ..eeeii ettt e e e s e ettt e e e e e e e araeeeeas 221
Y=L 1 (<SSP 221
TEAA-KEY et eteie ittt e e e e ettt e e e e e sttt et e e e e e e e et btaaaeeeeeeenabrrraaaeeas 222
TEAATIIE. ..eeeeiiee ettt e ettt e e e e e ettt e e e e s e st et e e e e e e e abaeaeeas 222
=] o -1 s DTSR 223
1<) SO TSP PPPPRRR 223
TEEOX e ettuureeuuueeeetnunreetuneseetnneeetennnssetssnsseessssnseensnnsserssnsseetssnnssesssnsseesnnsserssnnssenennessensnnanes 224
1S 100} e 11 PSPPSR 226
TENATNE-FILE.....etiiiiee ettt e e e e s s ettt e e e e e s s sbbtebeeeeesensnnnnreaaeas 226
5] 0] F- T PP URRUPRPRPPRRPRR 227
LISt TEPIACEIIENIL. .. .eeviteeeeeiittee e e ettt e e e e ettt e e e e e e ettt e e e e s ssabbteeeeesssnreeeaaeessnnssnnaens 227
String replacement without regular eXpression.........ccccoeveeeeeniieeienniiereenesieeeeeene 227

Contents 11

newLISP Users Manual and Reference

Regular eXpression rePlaCemeENnt..........uiiiieeecurreeeereeeiirreeeeeeseereeeeeeeessssereeeeesssssssseens 227

LASE TEMOVAL ...uvtiiiieieieeiiiiieee e e eeeciiee e e e e e e eeettreeee e e e e abraeeeeeeesessenssnseesaessesssnsnnssnaeees 228
15 0] FoTW o 11 o] P PPRPPPPPRN 229
| (S]] OO PPP PR PPTPRRPPPPRRRRt 230
() PR OT R PPPRPPPPRRR 230
TEVETSCceuuiuiieieeeeeeeetttteaat et e et et eetttttaaa s e s eeeeetettaasbasasaesseeeeeeetaasssssasesssseeetenesnssnnnnnss 231
TOTALL. .. eeeeeeeeeeeettttuttu e e eeeeeeeeetateeeneaaaa e aeeeeeeeaeaeseensaasassseeeeeessenesssnanannsssesseeeeeeerenssnnnnnnns 231
SV, ettt eeettetetn e e ettt ettt e e e e e ettt b ettt et ettt e b e e e e e et te b e s et ee et e rernn e e eeeeaesrnaaaees 232
SEATCHL 1.ttt ettt ettt e e ettt e e ettt e e e ettt e e e e e e ettt e e e e e eeaabbaeeeeeaeas 233
1<« PRSP 233
SEEK ettt ettt ettt e e e e ettt e e e e e e bttt e e e e e e et btteeteeeea et bataaaeeeeeaanbaaaaaeeeaaan 234
SELECT. ¢ttt ettt e e ettt e e e e e bbbttt e e s e e e bbbttt e et e e s nbaaeeeeeeean 234
S 0T 0] 1 To) o <RSP 235
R0 LT Lol PP 237
]SS 3 (TP P PP PP PP PP PP PP PPPPPPPPPPPP 237
1] PP PP P PPPPR 238
SEEQ e eeeeuennnnnueeeeeeeeeetttenenna e e eeeeeeetaaebana e e eeee ettt tan et na e e e e e e ettt et e ne e e e e e e e e et e enernnees 239
SEELOCALE. .ttt e e ettt e e e e e sttt e e e e e et baeeaeeeeeeaan 239
<] 0 111 1 OO STPRN 240
] 4 o PP 240
] oL Uy OO OO PP OO ROPPTOPPPPP 241
o4 1 = | OO URRSPPT 243
313 1 ST UROPUPPP 245
] o PP OO PP PO PPPPPPPT 245
L] 1<) J TSP SPP 246
] 116U P PPU RSP 246
o) o PP PP PSP PPPPPPPROTRPRO 247
SOUTCR. .. eeeeeeeittununuuaaaeeeeeeeeteatnenaaaseesseeeeeeseteennaasessseseeetesesssnnnssseseeeeenessnnnnnsnssseeeeeeenssnnnnnnns 248
] | T 248
SEATES-WWITH. ¢ttt ettt e e ettt e e e e e st b ettt e e e e e se bt btaeeeeeeeeaan 248
SETITLE . ¢t e eeetttiuueeeeeeeeetttttuau e e e eeeeeeettneaaaaaea e eeeeeteaesanananssseeeeeteresnananssseeeeesessnnnnnnsseeeeeeesnnnnnnns 249
SELITIZ? ettt ettt ettt ettt et ettt et te et e ettt e e et e e e e et et e e et et e e e et e e e et eaaeaaeeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaans 250
SUD L.ttt ettt ettt et e e ettt et e e e e e e bbbttt e e e e e e e e bbbttt eeeeeeee bt baaaaeeeeeaaan 250
531)0 250
)20 DRSO UPUPPPRPPPRORRR 251
534081070 SRR PP UP PP PPPPPPPP 252

Contents 12

newLISP Users Manual and Reference

321151) 3R SPPP 253
SYS-CITOT e eeeuuueeeeeettuntnueeeeeeeetanenna e eeeeerarennaaaaeeeerennrsaaaeeseeeeerensnnnaaeeeeeenensnnanseeeeanennnnnns 253
R 01 {0 PR STPR 254
221 s FO O O PUT R PPPR PP 254
1011401 OO PRSPPI 255
BT OW-BITO ettt ettt e e ettt e e e e e bte e e s e e aabbt e e e e e e e abbeeeeeeseennnneraaeas 255
EITTLC. e e et e e et tetttt e e e e e et e ettt ittt e e e e e eeeeettttaa e e e e eeeeetetbbana e e e e e e et et et ba e e e e e e et e benennannes 256
18100 (S o) e - 2O UPPUPURRRP 256
18100 1) RO O O O P P OO PP PP PP PPPPPPPPPPPPPPPPPPRE 256
1 1 L 1 SR PUPRR 258
ELAICE ettt eeeetttteee et e et e et ettt e e e e e e et tetteesbaa e e e e e e e et e ae s et e et e tet b e b e e e e e et e ere e e e e e et enesnnnaaees 258
trace-highlight. ..ottt e et araeasrarearaaaaaee 259
L0 1 0L] 010 OSSP OO PP PPPPPPPPPPPPPPPPPPPPPRE 260
L5120 DO OSSO P PO PP P PP PPPPPPPPPPPPPPPPRPRt 260
L5 91 L SR ROORRORROPRPRPPPPPPIR 261
10 T¢lo 6 LT SR UTU PP 261
100011 2SRRI 261
ULIQUE. .ot et eetetitiieee e et eeeeetebaaa e e seeeeeaaeseaaansaeeeeeaeanssasssssseeeeessssssnnnnsssseesssssnsnnnssseeesennsnnnnnnns 264
LTSS, 1ttt teiiiieeeeeee ettt e eeeeeee bttt eeeeeeesaaaaaseeeeseessnsasaaaaeesesssssssesaaaeessnassssnaeaeeesenssnsseaees 265
UTNIPACK. 1+ttt ettt et e ettt e e s e s bbbt e e e e sttt aee e e s sbbetaeeeeaabbeeaaeeeeennnrraaeas 265
100 L | SO OO PO PO PP P PP PUPPPRRURPPP 266
110 0] 1<) ol o= T USSP PP P PP PPPPPPPPPPPPPPPRPRt 267
10 L ¢ TP U PPRU PRI 267
IWATE-PI ettt e et e eeeeeeeeeeeeeeaeeeeeeeeseesaaseasseesssssssasssssnnssssnsssnsnssssnnnsnnnnnn 268
A 011 LTSRS 268
WITEE-DUITET ...ttt ettt e e e e s s st a e e e e s e s s aaseeeeaeeas 269
WITEE-CHATttt ettt ettt e e e e ettt e e e e e s s bt e et e e e e s sbbeeeeeeessnnesaaeas 270
A L | 1P PUPPP 270
A S LT 11 TSP PPPRP 270
b:630] 1<) § o) SUURT OO T PSSP UUPPPORPP 271
b 4001 oY <R UPRRRP 272
I EYPOEAZS ¢ uvveeerureeeeeniteeeeeitte e ettt e sttt e sttt e e sabeeeeenb et e s ambeeeesbeeee s raeeesabaeeesnranesnrnaeenn 275
22 4o X S PP P TP PPP PP 276
NEWLISP APPENDIX ... ittt ettt et e et eetie e et eetueeetnnsanneesnseaenssesnssesnssesnsssnneenns 277

Contents 13

newLISP Users Manual and Reference

D (o) g oY [T STPR 277
TCP/IP and UDP EITOT COUES....cuutiiiiiiiiiiiiiiieeeeeeeeiiiiititeteeeesessssiiireeaeeeeaessesssnnssseneesees 278
EXample tCD/IP CHEIME. c.ciieeiiiiiiieieee ettt e ettt e e e e e s e aeeeeeeeeeeaas 278
EXAMPLE TCD/IP SETVET .. .uttiieieeiiiiieeeeeeiiitteeeeesettteeeeeesserteeeesassssssreeseesssssssseeessessssssseesessans 279
EXQMPIE UDP CHENL.....uviiiiiiiieeiiiiiteeeeeeiiitt e e seeiit e e e s e e seitteeeeesssssnbettaeeeessssnnnseaeeaessnsns 280
EXQMPIE UDDP SEIVET.....cuvvvvrriiierireeeierierrreeeertereereeeeeeeteeereteeesteeeeseeseeseeessaeesesaasesseeseessssseeens 281
Example threads - cONSUMET, PrOAUCET.........teiiriiitiiiiieeeeieeeeeieeeeiite e et e e sireeesireeee e 281
125 c:1 01 0] (< 5T0) 03 8 1 o OO PURRUOPUPPPR 282
EXAMPIE SINTP.ISP.cuiiiiiiiiiiiiiiiiiiiiiiiiiiii s s e s e e e s sasnsanesanssesaas 288
|0 €21 01 0) (<IN 110 PRSP 289
Example httpd WeD SEIVET.....cciiveuiiiiiiiieiieee et e e e e e e e e 292
Example infixX €XPreSSiON PATSET......ccuuurreiereeeeeiieiirirreeeeeeeesaesirrrrrreeeeeseeessasssssssssseseesaesanns 296
GNU Free DoCUMENTAtION LICEIISE. .. .uuuuuuuuiiiiiie e s eee e ee e e e s e ee e e eneeeaeeas 299
GNU GENERAL PUBLIC LICENSE.......titttiiiriitiierettiee s eetieee et s eereieeeesaeeesennesaessnsessennes 305

Contents 14

newLISP Users Manual and Reference

newLISP Users Manual

1. Introduction

newLISP focuses on the core components of LISP: lists, symbols, and lambda expressions. To
these, newLISP adds arrays, implicit indexing on lists and arrays, and dynamic and lexical
scoping. Lexical scoping is implemented using separate namespaces called contexts.

The result is an easier-to-learn LISP that is even smaller than most Scheme implementations,
but which still has about 300 built-in functions. Approximately 160k in size, newLISP is built
for high portability using only the most common UNIX system C-libraries. It loads quickly and
has a small memory footprint. newLISP is as fast or faster than other popular scripting
languages and uses very few resources.

newLISP is dynamically scoped inside lexically separated contexts (namespaces). Contexts can
be used to create isolated protected expansion packages and to write prototype-based object-
oriented programs.

Both built-in and user-defined functions, along with variables, share the same namespace and
are manipulated by the same functions. Lambda expressions and user-defined functions can
be handled like any other list expression. Like Scheme, newLISP evaluates the operator
element of a list expression. Symbols can be protected from accidental change.

Contexts in newLISP facilitate the development of larger applications comprising
independently developed modules with their own separate namespaces. They can be copied,
dynamically assigned to variables, and passed by reference to functions as arguments. In this
way, contexts can serve as dynamically created objects packaging symbols and methods.
Lexical separation of namespaces also enables the definition of statically scoped functions.

newLISP's efficient red-black tree implementation can handle millions of symbols without
degrading performance. Contexts can hold symbol-value pairs, allowing them to be used as
hash-tables. Functions are also available to iteratively access symbols inside contexts.

newLISP allocates and reclaims memory automatically, without using traditional
asynchronous garbage collection (except under error conditions). All objects — except for
contexts, built-in primitives, and symbols — are passed by value and are referenced only
once. When objects are no longer referenced, their memory is automatically deallocated. This
results in predictable processing times, without the pauses found in traditional garbage
collection. newLISP's unique automatic memory management makes it the fastest interactive
LISP available.

Many of newLISP's built-in functions are polymorphic and accept a variety of data types. This
greatly reduces the number of functions and syntactic forms it is necessary to learn and
implement. High-level functions are available for distributed computing, financial math,
statistics, and Al.

1. Introduction 15

newLISP Users Manual and Reference

newLISP has functions to modify, insert, or delete elements inside complex nested lists or
multidimensional array structures.

Since strings can contain null characters in newLISP, they can be used to process binary data.

newLISP can also be extended with a shared library interface to import functions that access
data in foreign binary data structures. The distribution contains a module for importing
MySQL and ODBC database APIs.

newLISP's HTTP, TCP/IP, and UDP socket interfaces make it easy to write distributed
networked applications. Its built-in XML interface, along with its text-processing features —
Perl Compatible Regular Expressions (PCRE) and text-parsing functions — make newLISP a
useful tool for CGI processing. The source distribution includes an example of HTML forms
processing, along with a simple web server written in newLISP.

The source distribution can be compiled for Linux, BSDs, Mac OS X/Darwin, Solaris, and
Win32.

newLISP-tk

newLISP-tk is a graphical user interface (GUI) front-end for newLISP written in Tcl/Tk. With
newLISP-tk, applications can be built based on the host operating system's native GUI. Third-
party interfaces to the GTK libraries and OpenGL graphics library are also available.

Because newLISP and Tcl/Tk are available for most operating systems, newLISP-tk is a
platform-independent solution for writing GUI applications in LISP.

For more information on newLISP-tk, see newlisp-tk.html.

Licensing

newLISP and newLISP-tk are licensed under version 2 of the GPL (General Public License).
Both the newLISP and the newLISP-tk manuals are licensed under the GNU Free
Documentation License. If this license is unsuitable for your application, please contact

http://nuevatec.com for special arrangements.

2. Deprecated functions and future changes

old function new function
get-integer Use the shorter get-int. The longer get - i nt eger will be eliminated.

2. Deprecated functions and future changes 16

http://nuevatec.com/
http://newlisp.org/download/newlisp-tk.html

newLISP Users Manual and Reference

integer Use the shorter int. The longer i nt eger will be eliminated.
symbol Use the shorter sym. The longer synbol will be eliminated.

3. Command-line options and directories

When starting newLISP from the command line, it looks for the initialization filei ni t. | sp
and loads it if present. In this way, one or more options and newLISP source files can be
specified at startup. The options and source files are executed in the order listed in

i nit.!| sp.For options such as - p and - d, it makes sense to load source files first; other
options, like - mand - s, should be specified before the source files. The - e switch is used to
evaluate the program text and then exit; otherwise, evaluation continues interactively (unless
an exit occurs while the files are loading).

Stack size

newl i sp -s 4000
newl i sp -s 100000 aprog bprog
new i sp -s 6000 myprog

The above examples show starting newLISP with different stack sizes using the - s option, as

well as loading one or more newLISP source files. When no stack size is specified, the stack
defaults to 2048.

Maximum memory usage

new i sp -m 128
This example limits LISP cell memory to 128 megabytes. In newLISP, each LISP cell consumes
16 bytes, so the argument 128 would represent a maximum of 8,388,608 LISP cells. This

information is returned by sys-info as the list's second element. Although LISP cell memory is
not the only memory consumed by newLISP, it is a good estimate of overall memory usage.

Maximum memory usage 17

newLISP Users Manual and Reference

Suppressing the prompt

The command-line prompt and initial copyright banner can be suppressed:

newisp -c

Listen and connection messages in - p and - d modes are suppressed if logging is disabled.
The - ¢ option is useful when controlling newLISP from other programs and mandatory when
setting it up as a net-eval server.

To suppress return values from evaluations, use silent.

newLISP as a TCP/IP server
new i sp sone.lsp -p 9090

This example shows how newLISP can listen for commands on a TCP/IP socket connection. In
this case, standard I/0 is redirected to the port specified with the - p option. sone. | sp is an
optional file loaded during startup, before listening for a connection begins.

The - p option is also used to control newLISP from another application, such as a newLISP
GUI front-end or a program written in another language.
A telnet application can be used to test running newLISP as a server. First enter:

newisp -p 4711 &

The & indicates to a UNIX shell to run the process in the background. Now connect with a
telnet application:

tel net | ocal host 4711

If connected, the newLISP sign-on banner and prompt appear. Instead of 4711, any other
port number could be used.

When the client application closes the connection, newLISP will exit, too. To avoid this, use
the - d option. In this mode, newLISP will stay loaded and wait for a new connection.

newisp -d 4711 &

When controlling newLISP from other applications in - p or - d mode, communications can be
simplified using the silent function. This suppresses return values, which are normally printed
to the console.

When running in - p or - d mode, the opening and closing tags [cmd] and [/ cnd] can be
used to enclose multi-line statements. They must each appear on separate lines. This makes it
possible to transfer larger portions of code from controlling applications. This technique is

newLISP as a TCP/IP server 18

newLISP Users Manual and Reference

used in newLISP-tk, a Tcl/Tk front-end to newLISP. It can also be used in the newLISP shell
console.

TCP/IP daemon mode

When the connection to the client is closed in - p mode, newLISP exits. To avoid this, use the
- d option instead of the - p option:

newisp -d 4711 &

This works like the - p option, but newLISP does not exit after a connection closes. Instead, it
stays in memory, listening for a new connection and preserving its state. An exit issued from a
client application closes the network connection, and the newLISP daemon remains resident,
waiting for a new connection. Any port number could be used in place of 4711.

Note that the daemon mode only works correctly on Linux and BSD systems. On Win32-based
systems, newLISP may not be able to reconnect at all times.

The tags [cnd] and [/ cd] can be used to enclose multi-line statements, with the opening
and closing tags each appearing on separate lines.

The following variant of the - d mode is frequently used in a distributed computing
environment, together with net-eval on the client side:
newisp -c -d 4711 &

The - ¢ spec suppresses prompts, making this mode suitable for receiving requests from the
net-eval function.

inetd daemon mode

The i net d server running on virtually all Linux/UNIX OSes can function as a proxy for
newLISP. The server accepts TCP/IP or UDP connections and passes on requests via standard
1/0 to newLISP. i net d starts a newLISP process for each client connection. When a client
disconnects, the connection is closed and the newLISP process exits.

i net d and newLISP together can handle multiple connections efficiently because of
newLISP's small memory footprint, fast executable, and short program load times. When
working with net-eval, this mode is preferred for efficiently handling multiple requests in a
distributed computing environment.

Two files must be configured: ser vi ces and i net d. conf . Both are ASCII-editable and can
usually be found at / et ¢/ servi ces and/ et c/ i netd. conf.

Put one of the following lines into i net d. conf:

inetd daemon mode 19

newLISP Users Manual and Reference

net-eval stream tcp nowait root /usr/bin/newisp -c
as an alternative, a programcan al so be prel oaded

net-eval stream tcp nowait root /usr/bin/newisp -c
myprog. | sp

Instead of r oot , another user and optional group can be specified. For details, see the UNIX
man page for i net d.

The following line is put into the ser vi ces file:

net - eval 4711/ tcp # newlLl SP net -eval requests

On Mac OS X and some UNIX systems, Xi net d can be used instead of i net d. Save the
following to a file named net - eval inthe/ et c/ xi netd. d/ directory:

servi ce net-eval

{

socket _type = stream
wait = no

user = root

server = /usr/bin/newisp
port = 4711

server_args = -¢
only_from = | ocal host

For security reasons, r oot should be changed to a different user. The onl y_f r omspec can
be left out to permit remote access.

See the man pages for xi net d and xi net d. conf for other configuration options.

After configuring the daemon, i net d or xi net d must be restarted to allow the new or
changed configuration files to be read:

kKill -HUP <pid>

Replace <pi d> with the process ID of the running xi net d process.
A number or network protocol other than 4711 or TCP can be specified.

newLISP handles everything as if the input were being entered on a newLISP command line
without a prompt. To test the i net d setup, the t el net program can be used:

tel net | ocal host 4711

newLISP expressions can now be entered, and i net d will automatically handle the startup
and communications of a newLISP process. Multi-line expressions can be entered by
bracketing them with [cnd] and [/ cnd] tags, each on separate lines.

inetd daemon mode 20

newLISP Users Manual and Reference

Daemon mode with handler function

This is similar to - d mode, but instead of executing the input as a newLISP command line,
daemon mode passes it to a handler function named x- event with the request line as
argument. The function x- event must be defined by the user and loaded on startup:

newl i sp -x 8080 ny-httpd

In this example, ny- ht t pd — the file containing the definition of x- event — is loaded
before newLISP begins listening for requests on port 8080. This file could contain the
following definition:

7, my-httpd - sinple web server for static text/htm pages

(define (x-event request)
(find "GET /(.*) HTTP" request 0)

(while (1= "" (read-line))) ; skip header
(set 'page (or (read-file $1) "Error 404: Page not found"))
(print

"HTTP/ 1.0 200 OK\r\n"
"content-length: " (length page) "\r\n"
"Content-type: text/htm\r\n\r\n"

page))

In a web browser, type htt p: / /| ocal host : 8080/ mypage. ht M , where mypage. ht m
is a file in the current directory.

With the - x server option, it is possible to write handlers for any protocol. Using only pri nt,
println,read-lineorwite-I|ine, handlers can be defined in the x- event function to
communicate through the TCP/IP port with the connected client. After returning from x-
event , newLISP awaits further incoming requests. The client is responsible for closing the
connection after a client/server exchange. In - x server mode, newLISP automatically listens
for a new connection on the specified port.

Whenever HTTP requests contain Cont ent - | engt h: parameters or line-oriented reading of
input does not apply, net-receive can be used with the current connection socket obtained
from net-sessions. The following code was snipped from xml r pc- ser ver, one of the
example files shipped with the source distribution:

;; get header info

(while (!'="" (read-line))

(if (find "Content-length:(.*)" (current-line) 0)
(set 'contentLength (int $1))))

i read XM
(net-receive (first (net-sessions)) 'XM contentLength)

The (net - sessi ons) statement retrieves an internal list whose first element is always the
last opened connection or listen-socket.

Daemon mode with handler function 21

newLISP Users Manual and Reference

Direct execution mode

Small pieces of newLISP code can be executed directly from the command line:
newisp -e "(+ 3 4)"=>7

The expression enclosed in quotation marks is evaluated, and the result is printed to standard
out (STDOUT). In most UNIX system shells, apostrophes can also be used as command-line
delimiters. Note that there is a space between - e and the quoted command string.

Logging I/0

When in - p, - d or console mode, input from the command line and output from newLISP can
be written to a log file. The two logging modes work differently, depending on whether
newLISP is in console or server mode:

mode result

new isp -1 log only user input

new isp -L log user input and newLISP output (w/o prompt)
W i -1 -p 4711

ng : gg - E 4711 log client IP and connection time
Wi -L -p 4711 . . .

:gw : zg L - E 4711 log client IP, connection time and user input

All logging output is written to the file newl i sp- | og. t xt within newLISP's startup
directory. Instead of 4711, any other port number can be supplied.

Command line help summary

The - h command-line switch prints a copyright notice and summary of options:

new isp -h

On Linux and other UNIX systems, a new i sp man page can be found:

man new i sp

This will display a man page in the Linux/UNIX shell.

Command line help summary 22

newLISP Users Manual and Reference

The initialization file init.lsp

On Linux, BSDs, Mac OS X, and Cygwin, the initialization file is installed and expected in
/usr/share/ new isp/init.|sp.newLISP compiled with MinGW or Borland BCC looks
forinit.| sp in the same directory where newl i sp. exe is installed. Along with any files
specified on the command line, i ni t. | sp is loaded before the banner and prompt are
shown. When newLISP is executed or launched by a program or process other than a shell,
the banner and prompt are not shown, and newLISP communicates by standard /0.

i nit.l|sp, however, is still loaded and evaluated if present.

While newLISP does not require i ni t. | sp to run, it is convenient for defining functions and
systemwide variables. i ni t . | sp is not included in the newLISP-tk distribution, but it can be
found in the source distribution.

The last part of i ni t. | sp contains OS-specific code, which loads a second . i nit. | sp
(starting with a dot). On Linux/UNIX, this file is expected in the directory specified by the
HOME environment variable. On Win32, this file is expected in the directory specified by the
USERPROCFI LE or DOCUMENT _ROOT environment variable.

Directories on Linux, BSD, and Mac OS X

The directory / usr/ shar e/ new i sp/ contains modules with useful functions for a variety
of tasks, such as database management with MySQL, procedures for statistics, POP3 mail, etc.
The directory / usr/ shar e/ new i sp/ doc contains documentation in HTML format.

Directories on Win32/newLISP-tk

On Win32 systems, all files are installed in the default directory $PROGRAMFI LES\ newl i sp.
$PROGRAMFI LES is a Win32 environment variable that resolves to C: \ Pr ogr am
files\new isp\ in English language installations. If an i ni t . | sp file is required, it
should be in the same directory where newl i sp. exe resides.

4. Shared library module for Linux/BSD versions

newLISP can be compiled as a UNIX shared library called newl i sp. dyl i b on Mac OS X and
as new i sp. so on Linux and BSDs. A newLISP shared library can be used like any other
UNIX shared library.

4. Shared library module for Linux/BSD versions 23

newLISP Users Manual and Reference

To use newl i sp. so or new i sp. dyl i b, import the function newl i spEval St r. Like eval-
string, this function takes a string containing a newLISP expression and stores the result in a
string address. The result can be converted using get-string. The returned string is formatted
like output from a command-line session. It contains terminating line-feed characters, but
without the prompt strings.

The first example shows how newl i sp. so is imported from newLISP itself.

(import "“/usr/lib/newisp.so" "newispEval Str")
(get-string (newispEval Str "(+ 3 4)"))= "7\n"

The second example shows how to import new i sp. so into a program written in C:

/* libdenp.c - denp for inmporting newisp.so

*

* conpi |l e using:

* gcc -1dl libdemo.c -o |ibdeno
*

* use:

*

* ./libdemo ' (+ 3 4)°

* ./1ibdeno ' (synbols)’

*

*/

#i ncl ude <stdio. h>
#i ncl ude <dl fcn. h>

int main(int argc, char * argv[])

void * hLibrary;

char * result;

char * (*func)(char *);
char * error;

i f((hLibrary = dl open("/usr/lib/newisp.so",
RTLD GLOBAL | RTLD LAZY)) == 0)
{

printf("cannot inport library\n");
exit(-1);

func = dl sym(hLi brary, "new ispEval Str");
if((error = dlerror()) != NULL)

{

printf("error: %\n", error);
exit(-1);
printf("%\n", (*func)(argv[1]));

return(0);

}

/* eof */

4. Shared library module for Linux/BSD versions 24

newLISP Users Manual and Reference

This program will accept quoted newLISP expressions and print the evaluated results.

When calling newl i sp. so's function newl i spEval St r, output normally directed to the
console (e.g., return values or print statements) is returned in the form of an integer string
pointer. The output can be accessed by passing this pointer to the get - st ri ng function. To
silence the output from return values, use the silent function.

5. DLL module for Win32 versions

On the Win32 platforms, newLISP can be compiled as a DLL (Dynamic Link Library). In this
way, newLISP functions can be made available to other programs (e.g., MS Excel, Visual
Basic, Borland Delphi, or even newLISP itself).

When the DLL is loaded, it looks for the file i ni t . | sp in the current directory of the calling
process.

To access the functionality of the DLL, use newl i spEval St r, which takes a string
containing a valid newLISP expression and returns a string of the result:

(inmport "newlisp.dll" "newispEval Str")
(get-string (newispEval Str "(+ 3 4)")) = "7"

The above example shows the loading of a DLL using newLISP. The get-string function is
necessary to access the string being returned. Other applications running on Win32 allow the
returned data type to be declared when importing the function.

When using newl i sp. so, output normally directed to the console — like print statements or
return values — will be returned in a string pointed to by the call to newl i spEval St r. To
silence the output from return values, use the silent directive.

6. Evaluating newLISP expressions

The following is a short introduction to LISP statement evaluation and the role of integer and
floating point arithmetic in newLISP.

Top-level expressions are evaluated when using the load function or when entering
expressions in console mode on the command line. As shown in the following snippet from an
interactive session, multi-line expressions can be entered by enclosing them between [cnd]
and [/ cnd] tags:

> [cmd]

(define (foo x vy)
(+xy))

[/cmd]

(lanbda (x y) (+ xy))
> (foo 3 4)

6. Evaluating newLISP expressions 25

newLISP Users Manual and Reference

Each [cnd] and [/ cnd] tag is entered on a separate line. This mode is useful for pasting
multi-line code into the interactive console.

Integer data, floating point data, and operators

newLISP functions and operators accept integer and floating point numbers, converting them
into the needed format. For example, a bit-manipulating operator converts a floating point
number into an integer by omitting the fractional part. In the same fashion, a trigonometric
function will internally convert an integer into a floating point number before performing its
calculation.

The symbol operators (+ - * /| %$ ~| " << >>) return values of type integer. Functions and
operators named with a word instead of a symbol (e.g., add rather than +) return floating
point numbers. Integer operators truncate floating point numbers to integers, discarding the
fractional parts.

newLISP has two types of basic arithmetic operators: integer (+ - * /) and floating point
(add sub nmul di v). The arithmetic functions convert their arguments into types compatible
with the function's own type: integer function arguments into integers, floating point function
arguments into floating points. To make newLISP behave more like other scripting languages,
the integer operators +, -, *, and / can be redefined to perform the floating point operators
add, sub, mul , and di v:

(constant '+ add)
(constant '- sub)
(constant '* nul)
(constant '/ div)

;; or all 4 operators at once

(constant '+ add '- sub '* mul '/ div)

Now the common arithmetic operators +, - , *, and / accept both integer and floating point
numbers and return floating point results.

Note that the looping variables in dotimes and for, as well as the result of sequence, use
floating point numbers for their values.

Care must be taken when importing from libraries that use functions expecting integers. After
redefining +, -, *,and/, a double floating point number may be unintentionally passed to
an imported function instead of an integer. In this case, floating point numbers can be
converted into integers by using the function int. Likewise, integers can be transformed into
floating point numbers using the float function:

(import "mylib.dll" "foo") ; inporting int foo(int x) fromC
(foo (int x)) ; passed argunent as integer
(import "mylib.dll" "bar") ; inmporting Cint bar(double y)

Integer data, floating point data, and operators 26

newLISP Users Manual and Reference
(bar (float y)) ; force double float

Some of the modules shipping with newLISP are written assuming the default
implementations of +, - , *, and / . This gives imported library functions maximum speed
when performing address calculations.

The newLISP preference is to leave +, - , *, and / defined as integer operators and use add,
sub, mul , and di v when explicitly required.

Evaluation rules and data types

Evaluate expressions by entering and editing them on the command line. More complicated
programs can be entered using editors like Emacs and VI, which have modes to show
matching parentheses while typing. Load a saved file back into a console session by using the
load function.

A line comment begins with a ; (semicolon) or a # (number sign) and extends to the end of
the line. newLISP ignores this line during evaluation. The # is useful when using newLISP as a
scripting language in Linux/UNIX environments, where the # is commonly used as a line
comment in scripts and shells.

When evaluation occurs from the command line, the result is printed to the console window.

The following examples can be entered on the command line by typing the code to the left of
the = symbol. The result that appears on the next line should match the code to the right of
the = symbol.

nil and true are boolean data types that evaluate to themselves:
nil = nil
true = true

Integers and floating point numbers evaluate to themselves:
123 = 123

OxE8 = 232 ; hexadeci mal prefixed by 0x
055 = 45 ; octal prefixed by 0 (zero)
1.23 = 1.23

123e-3 =0.123 ; scientific notation

Integers are 32-bit numbers (including the sign bit). Valid integers are numbers between
-2,147,483,648 and +2,147,483,647. Larger numbers are truncated to one of the two limits.
Floating point numbers are IEEE 754 64-bit doubles.

Strings may contain null characters and can have different delimiters. They evaluate to
themselves.

"hel | o" ="hel | 0"
"\ 032\ 032\ 056\ 032" =" A"
"\t\r\n" =>"\t\r\n"

Evaluation rules and data types 27

newLISP Users Manual and Reference

;; null characters are legal in strings:
"\ 000\ 001\ 002" = "\ 000\ 001\ 002"
{this "is" a string} = "this \"is\" a string"

;; use [text] tags for text |longer than 2048 bytes:
[text]this is a string, too[/text] = "this is a string, too"

Strings delimited by " (double quotes) will also process the following characters escaped with
a\ (backslash):

ecaped

character description

\" for a double quote inside a quoted string

\n for a line-feed character (ASCII 10)

\r for a return character (ASCII 13)

\'t for a TAB character (ASCII 9)

\ nnn for a three-digit ASCII number (nnn format between 000 and 255)

Quoted strings cannot exceed 2,048 characters. Longer strings should use the [t ext] and
[/ text] tag delimiters. newLISP automatically uses these tags for string output longer than
2,048 characters.

The { (left curly bracket), } (right curly bracket), and [t ext], [/text] delimiters do not
perform escape character processing.
Lambda expressions evaluate to themselves:

(lanmbda (x) (* x x)) = (lanmbda (x) (* x X))
(fn (x) (* x X)) = (lanbda (x) (* x x)) ; an alternative
synt ax

Symbols evaluate to their contents:

(set 'sonething 123) = 123
somet hi ng = 123

Contexts evaluate to themselves:

(context 'CTX) = CTX
CTX = CTX

Built-in functions also evaluate to themselves:

add = add <B845770D>
(eval (eval add)) = add <B845770D>
(constant '+ add) = add <B845770D>
+ = add <B845770D>

Evaluation rules and data types 28

newLISP Users Manual and Reference

In the above example, the number between the < > (angle brackets) is the hexadecimal
memory address (machine-dependent) of the add function. It is displayed when printing a
built-in primitive.

Quoted expressions lose one ' (single quote) when evaluated:

'somet hi ng =sonet hi ng
"t'tany = ''"any
'(abcd = (abcd

A single quote is often used to protect an expression from evaluation (e.g., when referring to
the symbol itself instead of its contents or to a list representing data instead of a function).

In newLlISP, a list's first element is evaluated before the rest of the expression (as in Scheme).
The result of the evaluation is applied to the remaining elements in the list and must be one
of the following: a lambda expression, lambda-macro expression, or primitive (built-in)
function.

(+1 2 3 4) = 10
(define (double x) (+ x x)) = (lambda (x) (+ X X))

or

(set 'double (lanmbda (x) (+ x x)))
(doubl e 20) = 40
((lanbda (x) (* x x)) 5 = 25

For a user-defined lambda expression, newLISP evaluates the arguments from left to right and
binds the results to the parameters (also from left to right), before using the results in the
body of the expression.

Like Scheme, newLISP evaluates the functor (function object) part of an expression before
applying the result to its arguments. For example:

((if (>X10) * +) XY

Depending on the value of X, this expression applies the * (product) or + (sum) function to X
and Y.

Because their arguments are not evaluated, lambda-macro expressions are useful for
extending the syntax of the language. Most built-in functions evaluate their arguments from
left to right (as needed) when executed. Some exceptions to this rule are indicated in the
reference section of this manual. LISP functions that do not evaluate all or some of their
arguments are called special forms.

Shell commands: If an! (exclamation mark) is entered as the first character on the
command line followed by a shell command, the command will be executed. For example, !

| s on Unix or ! di r on Win32 will display a listing of the present working directory. No
spaces are permitted between the ! and the shell command. Symbols beginning with an ! are
still allowed inside expressions or on the command line when preceded by a space. Note: This
mode only works when running in the shell and does not work when controlling newLISP
from another application.

Evaluation rules and data types 29

newLISP Users Manual and Reference

To exit the newLISP shell on Linux/UNIX, press Ct r | - D; on Win32, type (exit) or Ctrl - C,
then the x key.

Use the exec function to access shell commands from other applications or to pass results back
to newLISP.

7. Lambda expressions in newLISP

Lambda expressions in newLISP evaluate to themselves and can be treated just like regular
lists:

(set 'double (lambda (x) (+ x X))

(set '"double (fn (x) (+ x x)) ; alternative syntax

(last doubl e) = (+ X X) ; treat lanbda as a list

Note: No ' is necessary before the lambda expression since lambda expressions evaluate to
themselves in newLISP.

The second line uses the keyword f n, an alternative syntax first suggested by Paul Graham for
his Arc language project.

A lambda expression is a lambda list, a subtype of list, and its arguments can associate from
left to right or right to left. When using append, for example, the arguments associate from
left to right:

(append (lambda (x)) '((+ x x))) = (lanbda (x) (+ x X))

cons, on the other hand, associates the arguments from right to left:
(cons '(x) (lambda (+ x x))) = (lanbda (x) (+ x x))

Note that the | anbda keyword is not a symbol in a list, but a designator of a special type of
list: the lambda list.

(length (lambda (x) (+ x x))) = 2
(first (lambda (x) (+ x Xx))) = (Xx)

Lambda expressions can be mapped or applied onto arguments to work as user-defined,
anonymous functions:

((lambda (x) (+ x x)) 123) = 246
(apply (lanmbda (x) (+ x x)) '(123)) = 246
(map (lanmbda (x) (+ x x)) "(1 2 3)) = (2 4 6)

A lambda expression can be assigned to a symbol, which in turn can be used as a function:

(set 'double (lanmbda (x) (+ x x))) = 246
(doubl e 123) = (lanbda (x) (+ x X))

7. Lambda expressions in newLISP 30

newLISP Users Manual and Reference

The define function is just a shorter way of assigning a lambda expression to a symbol:

(define (double x) (+ x x))) = (lanmbda (x) (+ X x))
(doubl e 123) = 246

In the above example, the expressions inside the lambda list are still accessible within
doubl e:

(set 'double (lambda (x) (+ x x))) = (lanmbda (x) (+ X x))
(last doubl e) = (+ X x)

A lambda list can be manipulated as a first-class object using any function that operates on
lists:
(set-nth 1 double "(mul 2 x)) = (lanbda (x) (mul 2 x))

doubl e = (lanmbda (x) (mul 2 x))
(doubl e 123) = 246

All arguments are optional when applying lambda expressions and default to ni | when not
supplied by the user. This makes it possible to write functions with multiple parameter
signatures.

8. nil, true, cons, and ()

In newLISP, ni | and t r ue represent both the symbols and the boolean values true and false.
Depending on their context, ni | and t r ue are treated differently. The following examples
use ni |, but they can be applied to t r ue by simply reversing the logic.

Evaluation of ni | yields a boolean false and is treated as such inside control flow expressions,
such asi f,unl ess,whil e, unti |, and not . Likewise, evaluating t r ue yields true.

(set "Ist "(nil nil nil)) = (nil nil nil)

(map synbol ? | st) = (true true true)

In the above example, ni | represents a symbol. In the following example, ni | and t r ue are
evaluated and represent boolean values:

(if nil "no" "yes") = "yes"
(if true "yes" "no") = "yes"
(map not |st) = (true true true)

In newLISP, ni | and the empty list () are not the same as in some other LISPs. Only in
conditional expressions are they treated as a boolean false, as in and, or, i f, whi | e,
unl ess, until,and cond.

The expression (|1 i st? ' ()) istrue, but (1ist? nil) isnot. This is because in newLISP,
ni | results in a boolean false when evaluated.

8. nil, true, cons, and () 31

newLISP Users Manual and Reference

Evaluation of (cons x ' ()) yields (x), but(cons x nil) yields (x nil) because ni |
is treated as a boolean value when evaluated instead of as an empty list. The cons of two
atoms in newLISP does not yield a dotted pair, but rather a two-element list. The predicate

at onf is true for ni | , but false for the empty list () . The empty list () in newLISP is only an
empty list and not equal to ni | .

A list in newLISP is a LISP cell of type list. It acts like a container for the linked list of
elements making up the list cell's contents. There is no dotted pair in newLISP because the cdr
(tail) part of a LISP cell always points to another LISP cell and never to a basic data type, such
as a number or a symbol. Only the car (head) part may contain a basic data type. Early LISP
implementations used car and cdr for the names head and tail.

9. Arrays

newLISP's arrays enable fast element access within large lists. New arrays can be constructed
and initialized with the contents of an existing list using the function array. Lists can be
converted into arrays, and vice versa. Some of the same functions used for modifying and
accessing lists can be applied to arrays, as well. Arrays can hold any type of data or
combination thereof.

In particular, the following functions can be used for creating, accessing, and modifying
arrays:

function description

array creates and initializes an array with up to 16 dimensions

array-list converts an array into a list

array? checks if expression is an array

nth-set changes the element, returning the old; significantly faster than set - nt h
set-nth changes the element and returns the changed array

newLISP represents multidimensional arrays with an array of arrays (i.e., the elements of the
array are themselves arrays).

When used interactively or with the newLISP-tk front-end, newLISP prints and displays arrays
as lists, with no way of distinguishing between them.

Use the source or save functions to serialize arrays (or the variables containing them). The
array statement is included as part of the definition when serializing arrays.

Like lists, negative indices can be used to enumerate the elements of an array, starting from
the last element.

An out-of-bounds index will cause an error message on an array. In contrast, lists pick the last
or first element when an out-of-bounds occurs.

9. Arrays 32

newLISP Users Manual and Reference

Arrays can be non-rectangular, but they are made rectangular during serialization when using
source or save. The array function always constructs arrays in rectangular form.

The matrix functions transpose, multiply, and invert should only be used on a matrix built
from lists. These three functions use matrices internally for faster processing.

For more details, see array, array?, and array-list in the reference section of this manual.

10. Dictionaries (hash tables)

newLISP has no built-in hash table data type. Instead, it uses symbols for associative memory
access. Symbols in newLISP are implemented using an efficient red-black tree algorithm. This
algorithm balances the binary symbol tree for faster symbol access. In newLISP, symbol trees
are represented as namespaces called contexts, which are themselves part of the MAI N
namespace.

For a more detailed introduction to namespaces, see the chapter on Contexts.

The context function can be used to make associations. It can also be used to create and
switch contexts.
;; create a synbol and store data into it

(context 'MyHash "John Doe" 123) = 123
(context 'MyHash "@$%" "hello world") = "hello world"

;; retrieve contents fromthe synbol
(context 'MyHash "John Doe") = 123
(context 'MyHash " @$%") = "hello world"

The first two statements create the symbols " John Doe" and " @$"", storing the values
123 and "hel |l o worl d" into them. The hash context named MyHash is created in the first
statement, while the second merely adds the new association to the existing one.

Note that hash symbols can contain spaces or other special characters not typically allowed in
variable names.

Internally, context is just a shorter and faster form of:

;; create a synbol and store the data in it
(set (sym "John Doe" 'MHash) 123) = 123

;; retrieve contents fromthe synbol
(eval (sym "John Doe" MyHash)) = 123

10. Dictionaries (hash tables) 33

newLISP Users Manual and Reference

11. Indexing elements of strings, lists, and arrays

Some functions take array, list, or string elements (characters) specified by one or more int-
index (integer index). The positive indicesrun 0, 1, .., N-2, N1, where Nis the number
of elements in the list. If int-index is negative, the sequence is - N, -N+1, .., -2, -1.
Adding N to the negative index of an element yields the positive index. Unless a function does
otherwise, an index greater than N- 1 returns the last element in a list; it returns the first
element for indices less than - N. An error message is produced for any indexing occuring
outside an array's boundaries.

Implicit indexing for nth

In versions 8.5 and later, implicit indexing can be used instead of nth to retrieve the
characters of a string or the elements of a list or array:

(set '"Ist "(abc (de) (f g))

(I'st 0) = a ; same as (nth 0 |st)
(I'st 3) = (d e)

(I'st 3 1) = e ; same as (nth 3 1 Ist)
(I'st -1) = (f 9

(set 'nyarray (array 3 2 (sequence 1 6)))

(myarray 1) = (3 4)
(myarray 1 0) = 3
(rmyarray 0 -1) = 2
("newLl SP" 3) = "L"

Indices may also be supplied from a list. In this way, implicit indexing works together with
functions that take or produce index vectors, such as push, pop, and ref.

(I'st "(3 1)) = e
(set 'vec (ref 'elst)) = (3 1)
(Ist vec) = e

Implicit indexing is both slightly faster than nth and capable of taking an unlimited number of
indices.

Note that in the UTF-8—enabled version of newLISP, implicit indexing of strings using the nth
function works on character rather than byte boundaries.

Implicit indexing for nth 34

newLISP Users Manual and Reference

Implicit indexing and the default function

The default function is a function inside a context with the same name as the context itself.
See The context default function chapter. A default function can be used together with
implicit indexing to serve as a mechanism for referencing lists:

(set '"MyList:MList '"(abcdef g))

(MyLi st 0) = a
(MyList 3) =d
(MyList -1) = g

(set 'aList MyList)

(aLi st 3) = d

In this example, aLi st references MyLi st: MyLi st, not a copy of it. For more information
about contexts, see Programming with context objects.

Implicit indexing for rest and slice

Implicit forms of rest and slice can be created by prepending a list with one or two numbers
for offset and length:

implicit rest

(1'(abcdef g) ~(bcdef g
(2'(abcdef @) = (c def Q)
(10 "(abcdef Q@) = ()
(-3'(abcdef g)) = (e f Q)
(1 "abcdefg") = "bcdefg

(2 "abcdefg") = "cdefg

(10 "abcdefg") = ""

(-3 "abcdefg") = "efg'

;; inplicit slice

(03 '(abcdef g)) = (a b c)
(-42'(abcdefg) = (de)

(0 3 "abcdefg") = "abc"

(-4 2 "abcdefg") = "de"

Implicit indexing for rest works on character rather than byte boundaries when using the
UTF-8-enabled version of newLISP, whereas implicit indexing for slice will always work on
byte boundaries and can be used for binary content.

Implicit indexing for rest and slice 35

newLISP Users Manual and Reference

Implicit indexing for nt h- set and set - nth

(set 'aList '"(abc(de (f g hi)j k)
(nth-set (aList 0) 1) = a

(nth-set (aList 3 2) '(12 3 4)) = (f g)
(set 'i 3'j 2 'k 2)

(nth-set (aList i j k) 99) = 3

alist > (1 bc(de(120994) hi)j k)

(set-nth (alist -3 -3 2) 999) = (1 bc (de (12999 4) hi)]j k)

12. Destructive versus nondestructive functions

Most of the primitives in newLISP are nondestructive (no side effects) and leave existing
objects untouched, although they may create new ones. There are a few destructive functions,
however, that do change the contents of a list, string, or variable:

function description

constant sets the contents of a variable and protects it
dec decrements the value in a variable

inc increments the value in a variable
net-receive reads into a buffer variable

push pushes a new element onto a list or string
pop pops an element from a list or string
read-buffer reads into a buffer variable

replace replaces elements in a list or string
replace-assoc replaces elements inside a list or string
reverse reverses a list or string

rotate rotates the elements of a list or characters of a string
set, setq changes an element inside a list or string
set-nth, nth-set changes an element in a list or string

sort sorts the elements of a list

swa swaps two elements inside a list or string
write-buffer writes to a string buffer

write-line writes to a string buffer

12. Destructive versus nondestructive functions 36

newLISP Users Manual and Reference

Note that the last two functions, write-buffer and write-line, are only destructive in one of
their syntactic forms: when taking a string buffer instead of a file handle.

13. Dynamic and lexical scoping

newLISP uses dynamic scoping inside contexts and lexical scoping outside of them. In this
way, newLISP programs can take advantage of both scoping mechanisms at once.

When the parameter symbols of a lambda expression are bound to its arguments, the old
bindings are pushed on a stack. newLISP automatically restores the original variable bindings
when leaving the lambda function.

The following example illustrates the dynamic scoping mechanism. The text in bold is the
output from newLISP:
> (define (add-three-nums x y z) (print-vars) (+ x y z))
(lambda (x y z) (print-vars) (+ x vy z))
> (define (print-vars) (print "X=" x " Y="y " Z=" z "\n"))
(lanbda () (print "X=" x " Y="y " Z=" z "\n"))
(set 'x 4)

(set 'y 5)

(set 'z 6)

VoVvVoayVvhyv

(print-vars)

X=4 Y=5 Z=6

6

> (add-three-nunms 70 80 90)
X=70 Y=80 Z=90

240

> (print-vars)
X= 4 Y=5 Z=6
6

> —

The example shows add- t hr ee- nuns, which returns the sum of its arguments using
print-vars to display the contents of the symbols X, y, and z. Before add- t hr ee- nuns is
called, the symbols X, y, and z are bound to the values 4, 5, and 6.

Note: Different values will be printed for x, y, and z depending on where pri nt - vars is
called from. While in the scope of add- t hr ee- nuns, the symbols x, y, and z have local
bindings. The old bindings are restored after returning from add- t hr ee- nuns. This is
different from the lexical scoping mechanisms found in languages like C, Java, and most
current LISPs, where the binding of local parameters occurs inside the function only. In
lexically scoped languages like C, pri nt - var s would always print the global bindings of the
symbols X, y, and z (4, 5, and 6).

13. Dynamic and lexical scoping 37

newLISP Users Manual and Reference

Be aware that passing quoted symbols to a user-defined function causes a name clash if the
same variable name is used as a function parameter:

(define (inc-symbol x y) (inc x vy))

(set 'y 200)
(inc-synbol 'y 123) = 246
y = 200 ; y is still 200

Since ' y shares the same name as the function's second parameter, i nc- synbol returns 246
(123 + 123), leaving ' y unaffected. Dynamic scoping's variable capture can be a disadvantage
when passing symbol references to user-defined functions.

The problem is avoided entirely by grouping related user-defined functions into a context. A
symbol name clash cannot occur when accessing symbols and calling functions from outside of
the defining context.

Contexts should be used to group related functions when creating interfaces or function
libraries. This surrounds the functions with a lexical "fence," thus avoiding variable name
clashes with the calling functions.

newLISP uses contexts for different forms of lexical scoping. See the chapters Contexts and

Programming with context objects, as well as the sections Lexical, static scoping in newLISP
and default functions for more information.

14. Early return from functions, loops, and blocks

What follows are methods of interrupting the control flow inside both loops and the begin
expression.

The looping functions dolist and dotimes can take optional conditional expressions to leave
the loop early. catch and throw are a more general form to break out of a loop body and are
also applicable to other forms or statement blocks.

Using catch and throw

Because newLISP is a functional language, it uses no br eak or r et ur n statements to exit
functions or iterations. Instead, a block or function can be exited at any point using the
functions catch and throw:

(define (foo x)
()
(if condition (throw 123))
()
456)

if condition is true

[

Using catch and throw 38

newLISP Users Manual and Reference

(catch (foo p)) = 123
;o if condition is not true

(catch (foo p)) = 456

Breaking out of loops works in a similar way:

(catch
(dotimes (i
(if (= (foo i) 100) (throwi)))) = value of i when
foo(i) equals 100

The example shows how an iteration can be exited before executing N times.

Multiple points of return can be coded using throw:

(catch (begin
(fool)
(foo02)
(if condition-A (throw 'x))
(fo03)
(if condition-B (throw 'y))
(foo4)
(fo05)))

If condi ti on- Ais true, X will be returned from the cat ch expression; if condi ti on- Bis
true, the value returned is y. Otherwise, the result from f 005 will be used as the return
value.

As an alternative to catch, the throw-error function can be used to catch errors caused by
faulty code or user-initiated exceptions.

Using and and or

Using the logical functions and and or, blocks of statements can be built that are exited
depending on the boolean result of the enclosed functions:

(and
(func-a)
(func-b)
(func-c)
(func-d))

The and expression will return as soon as one of the block's functions returns ni | or an ()
(empty list). If none of the preceding functions causes an exit from the block, the result of the
last function is returned.

r can be used in a similar fashion:

Using and and or 39

newLISP Users Manual and Reference

(func-a)
(func-b)
(func-c)
(func-d))

The result of the or expression will be the first function that returns a value which is not ni |

or().

15. Contexts

In newLISP, symbols can be separated into namespaces called contexts. Each context has a
private symbol table lexically separate from all other contexts. Symbols known in one context
are unknown in others, so the same name may be used in different contexts without conflict.

Contexts are used to build modules of isolated variable and function definitions. They can
also be copied and dynamically assigned to variables or passed as arguments. Because
contexts in newLISP have lexically separated namespaces, they allow programming with
lexical scoping and software object styles of programming.

Contexts are identified by symbols that are part of the root or MAlI N context. While context
symbols are uppercased in this chapter, lowercase symbols may also be used.

In addition to context names, MAI N contains the symbols for built-in functions and special
symbols such as t rue and ni | . The MAI N context is created automatically each time
newLISP is run. To see all the symbols in MAI N, enter the following expression after starting
newLISP:

(synbol s)

Scoping rules for contexts

Special symbols like ni | and t r ue, as well as context and built-in function symbols, are
global (visible to all contexts). Any symbol can be made global by using the global function.

The following simulates a command-line session in newLISP:

> (context 'FOO
FOO
FOO> _

If the FOO context already exists, newLISP switches to it. Otherwise, the context is created
before the switch occurs. All symbols now read from the command line are created and
known only within the context FOO. Note that the symbol used for the context name must be
quoted (" FOOin this example) the first time a context is created. Subsequent uses of

Scoping rules for contexts 40

newLISP Users Manual and Reference

cont ext do not require the quote. After the switch, the command-line prompt changes to
FOO> :

FOO> (set 'x 123)
123

FOO> (set 'y 456)
456

FOO> (synbol s)
(xy)

FOO> _

To switch back to the MAI N context, use:

FOO> (context MAIN)
MAI N
>

A symbol can be referenced from outside its defining context by prepending a context name
and a colon to it:

> FOO x
123
>

The same symbol may also be used in another context:

> (context ' FOO B)
FOO B

FOO B> (set 'x 777)
777

FOO- B> FOO x

123

>

When quoting a fully qualified symbol (cont ext : synbol), the quote precedes the context
name:

> (set ' FOO B: x 555)
555
>

A context is implicitly created when referring to one that does not yet exist. Unlike the
cont ext function, the context is not switched. The following statements are all executed
inside the MAI N context:

> (set 'ACTX:var "hello")

"hel | o"
> ACTX: var
"hel | 0"

>

The same symbol (x in this case) used in a context can also be used in MAIN. Now we have
three versions of X, all in a different context:

Scoping rules for contexts 41

newLISP Users Manual and Reference

> (set 'x "I belong to MAIN')
"l belong to MAIN'

> FOO x

123

> FOO B: x

555

> X

"I belong to MAIN'

>

Symbols owned by a context (or MAI N) are not accessible unless prefixed by the context
name:

FOO> MAI N: x

"I belong to MAIN'

FOO> FOO B: x

555

FOO> x

123
>

When loading source files on the command line with load, or when executing the functions
eval-string or sym, the cont ext function tells newLISP where to put all of the symbols and
definitions:

vy, file MY_PROG LSP

;; everything fromhere on goes into GRAPH

(context ' GRAPH)

(define (drawtriangle x y z)

(define (draw-circle)

(.))

;7 show the runtinme context, which is GRAPH
(define (foo)
(context))

7, switch back to MAIN
(context 'MAIN)

;o end of file

The dr aw- t ri angl e and dr aw ci r cl e functions — along with their x, y, and z
parameters — are now part of the GRAPH context. These symbols are known only to GRAPH.
To call these functions from another context, prefix them with GRAPH:

(GRAPH:. drawtriangle 1 2 3)
(GRAPH: f 00) = GRAPH

Scoping rules for contexts

42

newLISP Users Manual and Reference

The last statement shows how the runtime context has changed to GRAPH (f 00's context).
This feature was introduced in version 8.7.8. In older versions, the runtime context would still
be MAI N.

A symbol's name and context are used when comparing symbols from different contexts. The
name function can be used to extract the name part from a fully qualified symbol.

sane synbol nane, but different context name
"Aval 'B:val) = nil
(name 'Arval) (nane 'B:val)) = true

(
(

Note: The symbols are quoted with a' (single quote) because we are interested in the symbol
itself, not in the contents of the symbol.

Changing scoping

By default, only built-in functions and symbols like ni | and t r ue are visible inside contexts
other than MAI N. To make a symbol visible to every context, use the global function:

(set 'aVar 123) = 123
(gl obal 'avar) = aVar

(context 'FOO = FOO

aVar = 123

Without the gl obal statement, the second aVar would have returned ni | instead of 123. If
FOOhad a previously defined symbol (aVar in this example) that symbol's value — and not
the global's — would be returned instead. Note that only symbols from the MAI N context can
be made global.

Once it is made visible to contexts through the global function, a symbol cannot be hidden
from them again.

Symbol protection

By using the constant function, symbols can be both set and protected from change at the
same time:

(constant 'aVar 123) = 123
(set '"aVar 999) ; causes error: synbol is protected
A symbol needing to be both a constant and a global can be defined simultaneously:

(constant (gl obal '"aVar) 123)

Symbol protection 43

newLISP Users Manual and Reference

In the current context, symbols protected by const ant can be overwritten by using the
const ant function again. This protects the symbols from being overwritten by code in other
contexts.

Overwriting global symbols and built-ins

Global and built-in function symbols can be overwritten inside a context by prefixing them
with their own context symbol:

(context 'Account)
(define (Account:new ..)

(.))
(context 'MAIN)

In this example, the built-in function new is overwritten by Account : new, a different
function that is private to the Account context.

Variables containing contexts
Variables can be used to refer to contexts:
(set 'FOO x 123)
(set 'ctx FOO = FOO
ctx:x = 123
(set 'ctx:x 999) = 999

FOO: x = 999

Context variables are used when creating contexts with the new function (objects), as well as
when writing functions for uninstantiated contexts.

They also allow for pass-by-reference of large data objects when contained inside contexts and
passed to functions as context variables.

Sequence of creating or loading contexts

The sequence in which contexts are created or loaded can lead to unexpected results. Enter
the following code into a file called deno:

Sequence of creating or loading contexts 44

newLISP Users Manual and Reference

;; demp - file for |oading contexts
(context 'FOO

(set ' ABC 123)
(context NAIN)

(context ' ABC)
(set ' FOO 456)
(context 'MAIN)

Now load the file into the newlisp shell:

> (1 oad "deno")
synbol is protected in function set : FQOO
>

Loading the file causes an error message for FOO, but not for ABC. When the first context FOO
is loaded, the context ABC does not exist yet, so a local variable FOO: ABC gets created. When
ABC loads, FOO already exists as a global protected symbol and will be correctly flagged as
protected.

FOOcould still be used as a local variable in the ABC context by explicitly prefixing it, as in
ABC: FOO.

The following pattern can be applied to avoid unexpected behavior when loading contexts
being used as modules to build larger applications:

begin of file - MyMddule.lsp
(load "This.|sp")
(load "That.|sp")
(load "Qther.|sp")

(context ' MyModul e)

(define (func x y z) (.))

(context 'MAIN)
(MyModul e: func 1 2 3)
(exit)
;o end of file
Always load the modules required by a context before the module's cont ext statement.

Always finish by switching back to the MAI N context, where the module's functions and values
can be safely accessed.

Sequence of creating or loading contexts 45

newLISP Users Manual and Reference

Symbol creation in contexts

The following rules should simplify the process of understanding contexts by identifying
which ones the created symbols are being assigned to.

1. newLlISP first parses and translates the expression, then evaluates it if on the top
level. The symbols are created during the parsing and translation phase.

2. A symbol is created when newLISP first sees it, when calling the load, sym, or eval-
string functions. When newLISP reads a source file, symbols are created before
evaluation occurs.

3. Once a symbol is created and assigned to a specific context, it will belong to that
context permanently.

4. When an unknown symbol is encountered during code translation, a search for its
definition begins inside the current context. Failing that, the search continues inside
MAI N for a built-in function, context, or global symbol. If no definition is found, the
symbol is created locally inside the current context.

5. Expressions and user-defined functions are evaluated in the context they are defined
in.

16. Programming with context objects

Because contexts hold variables and functions and are lexically separated from each other,
they can be used for prototype-based programming.
(cont ext ' ACCOUNT)
(set "full-name "")

(set 'bal ance 0.0)
(set 'phone "")

(define (deposit anopunt)
(inc 'balance anount))

(define (wthdraw anmount)
(dec 'bal ance anount))
(context MAIN)

The ACCOUNT context serves as a prototype for account objects:

(new ACCOUNT ' John) ; this creates a new context copy of
: ACCOUNT call ed ' John'

(set 'John:full-name "John Doe")
(set 'John: phone "555-123-456")

(John: deposit 100. 00)
(John: wi t hdraw 60)

16. Programming with context objects 46

newLISP Users Manual and Reference

(new ACCOUNT ' Anne)
(set 'Anne:full-name "Anne Somebody")
(set ' Anne: phone "555-456-123")

(Anne: deposit 120.00)
(Anne: wi t hdraw 50)

The previous example uses the function new to create a pair of contexts cloned from the
ACCQUNT prototype. Object-oriented—programming (OOP) purists would use getter and setter
functions to access the object's variables. This is unnecessary in newLISP because prefixing
context variables with a context/object name makes them public. Mixins are possible using
new, which allows for various contexts to be combined into one. See new's description for
details.

Late binding of context symbols

Once a context is assigned to a variable, it can be referenced through the variable name. In
the following example, the r epor t function contains a parameter named accnt , which
refers to the passed context:

(define (report accnt)

(println
(format "% 20s 8. 2f" accnt:full-nane accnt: bal ance)))

(report John)
John Doe 40. 00

(report Anne)
Anne Sonebody 70. 00

eval synbols to contexts first. John and Anne are synbols
inalist, with the contexts inside.

(map report (nap eval ' (John Anne)))
John Doe 40. 00
Anne Sonebody 70. 00

Here, map applies the function r eport to the context objects, John and Anne. The inner
map evaluates the context symbols, producing the actual contexts, which are referenced
inside r eport through the accnt parameter.

The r epor t function can be defined before any contexts passed to it. The accnt context,
along with the variables accnt : f ul | - nane and accnt : bal ance, are not resolved until
the function is evaluated. This late binding of variable symbols facilitates using contexts as

dynamic referent software objects, which are available at runtime.

Late binding of context symbols 47

newLISP Users Manual and Reference

The context default function

A default function is a user-defined function or macro with the same name as its context.
When the context is used as the name of a function, newLISP executes the default function.

(define (foo:foo abc) (+abc))
(foo 123 =6

This allows a function defined inside a context to be called whenever the context is applied as
a function. A default function can update the lexically isolated static variables contained inside
its context:

(define (gen:gen Xx)
(if gen:acc
(inc 'gen:acc x)
(set 'gen:acc x)))

(gen 1) =1
(gen 1) = 2
(gen 2) =4
(gen 3) =7
gen:acc =7

The first time the gen function is called, its accumulator is set to the value of the argument.
Each successive call increments gen's accumulator by the argument's value.

If a default function is called from a context other than MAI N, the context must already exist
or be declared with a forward declaration, which creates the context and the function symbol:

forward declaration of default function
(define fubar: fubar)

(context 'foo)
(define (foo:foo a b c)

(f“lljbar a b) ; forward reference
(.)) ; to default function

(context NAIN)
;; definition of previously declared default function

(context 'fubar)
(define (fubar:fubar x y)

(.))

(context MAIN)

Default functions work like global functions, but they are lexically separate from the context
in which they are called. When a default function is called with an argument that has the
same name as any of its parameters, the argument is safe from variable capture.

The context default function 48

newLISP Users Manual and Reference

Like a lambda or lambda-macro function, default functions can be used with map or apply. It
is only when accessing a default function as a data object that it must be fully qualified
(prefixed with a context).

Passing objects by reference

In newLISP, all parameters are passed by value. This poses a potential problem when passing
large lists or strings to user-defined functions or macros. Symbols and context objects can also
be passed by reference. This allows memory-intensive objects to be passed without the
overhead of copying the entire list or string:

;; pass an object by reference
(set 'nydb:data (sequence 1 100000))

(define (change-db obj idx val ue)
(nth-set (obj:data idx) value))

(change-db mydb 1234 "abcdefg")

(nth 1234 nydb:data) = "abcdefg"

This example shows how objects can be passed by reference to a user-defined function using
context variables, without the overhead of passing them by value. String buffers or data
objects enclosed in a context can also be passed using this technique.

As shown in the following variation, using default functions can further simplify the syntax:

;; pass a context containing a default function
(set 'nydb: mydb (sequence 1 100000))

(define (change-db obj idx val ue)
(nth-set (obj idx) value))

(change-db mydb 1234 "abcdefg")

(nmydb 1234) = "abcdefg"

This shows that the function change- db does not need to know the name of the variable
inside the context. This technique works for arrays and strings, as well.

Passing objects by reference 49

newLISP Users Manual and Reference

Contexts as prototypes

To create object prototypes, use dynamic context variables defined inside a context. As with
make- newin the example below, a method can be defined that initializes variables inside
instantiated objects.

(context 'Account)
(define (make-new ctx nme bal ph)
(new Account ctx)
(set 'ctx (eval ctx)) ; get context out of symnbol
(set 'ctx:full-nane nne) ; initialize new object
(set 'ctx:balance bal)
(set 'ctx:phone ph))

(define (Account:deposit anount)
(i nc 'bal ance anount))

(define (Account:withdraw amount)
(dec 'bal ance anount))

(context MAIN)

(Account : make- new ' JD- 001 "John Doe" 123.45 "555-555-1212")

;; or when creating an account frominside a different context
(Account : make-new ' MAI N: JD- 001 "John Doe" 123.45 "555-555-1212")

JD-001: bal ance = 123.45

Note: Before initialization can occur, the symbol passed as the context name and bound to the
parameter ct X must be extracted using eval .

Lexical and static scoping in newLISP

A default function looks and behaves like statically scoped functions found in other
programming languages. Several functions can share one lexical closure.

Using def-new, a function or macro can be defined to define other statically scoped functions:

;; define static functions (use only in context MAIN)
;; Exanpl e:
7, (def-static (foo x) (+ x x))

foo: foo = (lanmbda (foo:x) (+ foo:x foo:x))

Lexical and static scoping in newLISP 50

newLISP Users Manual and Reference

(foo 10) = 20

,(aefine-rracro (def -static)
(let (tenmp (append (lanbda) (list (1 (args 0)) (args 1))))
(def-new "tenp (sym(args 0 0) (args 0 0)))))

When execution is complete, a lambda function's parameters are set to ni | . The contents of a
variable are kept inside its own defining context (lexical environment):

(def-static (acc x)
(if sum
(inc 'sum x)
(set 'sumx)))

(acc 5) =5
(acc 5) = 10
(acc 2) = 12

acc:sum = 12
acc: x = nil

The example shows acc: x and acc: sumacting like an automatic local and a local static
variable.

When forward referencing a statically defined function inside another statically defined
function, the forwarded function must have been declared beforehand:

(define foo:foo) ; declare so it can be
;. referenced before definition

:; foo is forward referenced
(def-static 'forward (fn (x) (foo x)))
(def-static '"foo (fn (x) (+ x x)))

(forward 10) = 20
Without having pre-declared f 0o: f 00, it would not be possible to reference it in another
statically defined function.
Use the def - st at i ¢ function inside the MAI N context only.

Note that the keywords f n and | anbda have the same effect and are interchangeable.

Serializing context objects

Serialization makes a software object persistent by converting it into a character stream, which
is then saved to a file or string in memory. In newLISP, any object can be serialized to a file by
using the save function. Like other symbols, contexts are saved just by using their names:

(save "nycontext.|lsp" ' MWCX) ; save MyCtx to
mycontext. | sp

Serializing context objects 51

newLISP Users Manual and Reference

(load "mycontext.|sp") ; loads MyCtx into
nmenory
(save "nycontexts.lsp” 'Cx1l 'Ctx2 'Ctx3) ; save nultiple

contexts at once

For details, see the functions save (mentioned above) and source (for serializing to a newLISP
string).

17. XML, S-XML, and XML-RPC

newLISP's built-in support for XML-encoded data or documents comprises three functions:
xml-parse, xml-type-tags, and xml-error.

Use the xml-parse function to parse XML-encoded strings. When xni - par se encounters an
error, ni | is returned. To diagnose syntax errors caused by incorrectly formatted XML, use
the function xml-error. The xml-type-tags function can be used to control or suppress the
appearance of XML type tags. These tags classify XML into one of four categories: text, raw
string data, comments, and element data.

XML source:

<?xm version="1.0"7?>
<DATABASE nane="exanpl e. xm ">
<!--This is a database of fruits-->
<FRUI T>
<NAME>appl e</ NAME>
<COLOR>r ed</ COLOR>
<PRI CE>0. 80</ PRI CE>
</ FRU T>
</ DATABASE>

Parsing without options:

(xm -parse (read-file "exanple.xm"))

= (("ELEMENT" "DATABASE" (("name" "exanple.xm ")) (("TEXT"
"\r\n")
("COMMENT" "This is a database of fruits")
("TEXT" "\r\n ")
("ELEMENT" "FRU T" () (
("TEXT" "\r\n\t)
("ELEMENT" "NAME" () (("TEXT" "apple")))
("TEXT" "\r\n\t\t")
("ELEMENT" "COLOR' () (("TEXT" "red")))
("TEXT" "\r\n\t\t")
("ELEMENT" "PRICE" () (("TEXT" "0.80")))
("TEXT" "\r\n\t")))

17. XML, S-XML, and XML-RPC 52

newLISP Users Manual and Reference
("TEXT" "\r\n"))))

S-XML can be generated directly from XML using xml-type-tags and the special option
parameters of the xml-parse function:

S-XML generation using all options:

(xm -type-tags nil nil nil nil)
(xm -parse (read-file "example.xm ") (+ 1 2 4 8 16))

= ((DATABASE (@ (nane "exanple.xm "))
(FRU T (NAME "appl e")
(COLOR "red")
(PRICE "0.80"))))

S-XML is XML reformatted as LISP S-expressions. The @(at symbol) denotes an XML attribute
specification.

See xml-parse in the reference section of the manual for details on parsing and option
numbers, as well as for a longer example.

XML-RPC

The remote procedure calling protocol XML-RPC uses HTTP post requests as a transport and
XML for the encoding of method names, parameters, and parameter types. XML-RPC client
libraries and servers have been implemented for most popular compiled and scripting
languages.

For more information about XML, visit www.xmlrpc.com.

XML-RPC clients and servers are easy to write using newLISP's built-in support for XML and
HTTP request functions. Version 8.4.0 of newLISP introduced a working newLISP XML-RPC
server. This stand-alone server is part of the source distribution and does not require any
other web server to run. It is located in exanpl es/ xm r pc- ser ver and is started on all
platforms using the following shell command:

new i sp -x 8080 xm rpc-server

This command assumes the newLISP executable is located on the shell path and that the file
xm r pc-server is in the current directory. A port other than 8080 could have been chosen
instead. The server maintains state between function calls. If a stateless XML-RPC server is
required, the file exanpl es/ xm r pc. cgi can be used together with any web server,
including Apache. Both XML-RPC service scripts implement the following methods:

method description
system | i st Met hods Returns a list of all method names
system nmet hodHel p Returns help for a specific method
Returns a list of return/calling signatures for a specific

hodsi
syst em net hodSi gnat ur e method

17. XML, S-XML, and XML-RPC 53

http://www.xmlrpc.com/

newLISP Users Manual and Reference

newL| SP. eval String Evaluates a Base64 newLISP expression string

The first three methods are discovery methods implemented by most XML-RPC servers. The
last one is specific to the newLISP XML-RPC server and implements remote evaluation of a
Base64-encoded string of newLISP source code. newLISP's base64-enc and base64-dec
functions can be used to encode and decode Base64-encoded information.

In the nodul es directory of the source distribution, the file xm r pc-client. | sp

implements a specific client interface for all of the above methods. In a future version, a
generic XMLRPC: cal | function could be used to call any function in a remote XML-RPC
server. After starting the server, the following code would be used to access it remotely:

(load "xm rpc-client.|sp") ; load XM_.-RPC client routines

(XMLRPC: newLI SP. eval String
"http://1ocal host: 8080"
(+34)") -7
In a similar fashion, standard syst em xxx calls can be issued.

All functions return either a result if successful, or ni | if a request fails. In case of failure,
XMLRPC: err or can be evaluated to return an error message.

For more information, please consult the header of the file nodul es/ xm rpc-client. | sp.

18. Customization, localization, and UTF-8

All built-in primitives in newLISP can be easily renamed:

(constant 'plus +)

Now, pl us is functionally equivalent to + and runs at the same speed. As with many scripting
languages, this allows for double precision floating point arithmetic to be used throughout
newLISP.

The constant function, rather than the set function, must be used to rename built-in
primitive symbols. By default, all built-in function symbols are protected against accidental
overwriting.

(constant '+ add)
(constant '- sub)
(constant '* nul)
(constant '/ div)

All operations using +, - , *, and / are now performed as floating point operations.

Using the same mechanism, the names of built-in functions can be translated into languages
other than English:

18. Customization, localization, and UTF-8 54

newLISP Users Manual and Reference

(constant 'wurzel sqrt) ; German for 'square-root’
(constant '"inmprime print) ; Spanish for 'print'

Switching the locale

newLISP can switch locales based on the platform and operating system. On startup, newLISP
attempts to set the ISO C standard default POSIX locale, available for most platforms and
locales. Use the set-locale function to switch to the default locale:

(set-locale "")

This switches to the default locale used on your platform/operating system and ensures
character handling (e.g., upper-case) work correctly.

Many Unix systems have a variety of locales available. To find out which ones are available on
a particular Linux/UNIX/BSD system, execute the following command in a system shell:

| ocale -a

This command prints a list of all the locales available on your system. Any of these may be
used as arguments to set-locale:

(set-locale "en_US")
This would switch to a U.S. Spanish locale. Accents or other characters used in a U.S. Spanish
environment would be correctly converted.

See the manual description for more details on the usage of set-locale.

Decimal point and decimal comma

Many countries use a comma instead of a period as a decimal separator in numbers. newLISP
correctly parses numbers depending on the locale set:

switch to German | ocale on a Linux system
(set-locale "de_DE")

;; newLl SP source and output use a deci nal comma
(div1,23) = 10,4

The default POSIX C locale, which is set when newLISP starts up, uses a period as a decimal
separator.

The following countries use a period as a decimal separator:

Decimal point and decimal comma 55

newLISP Users Manual and Reference

Australia, Botswana, Canada (English-speaking), China, Costa Rica, Dominican
Republic, El Salvador, Guatemala, Honduras, Hong Kong, India, Ireland, Israel,
Japan, Korea (both North and South), Malaysia, Mexico, Nicaragua, New
Zealand, Panama, Philippines, Puerto Rico, Saudi Arabia, Singapore, Thailand,
United Kingdom, and United States

The following countries use a comma as a decimal separator:

Albania, Andorra, Argentina, Austria, Belarus, Belgium, Bolivia, Brazil, Bulgaria,
Canada (French-speaking), Croatia, Cuba, Chile, Colombia, Czech Republic,
Denmark, Ecuador, Estonia, Faroes, Finland, France, Germany, Greece,
Greenland, Hungary, Indonesia, Iceland, Italy, Latvia, Lithuania, Luxembourg,
Macedonia, Moldova, Netherlands, Norway, Paraguay, Peru, Poland, Portugal,
Romania, Russia, Serbia, Slovakia, Slovenia, Spain, South Africa, Sweden,
Switzerland, Ukraine, Uruguay, Venezuela, and Zimbabwe

Unicode and UTF-8 encoding

Note that for many European languages, the set-locale mechanism is sufficient to display non-
ASCII character sets, as long as each character is presented as one byte internally. UTF-8
encoding is only necessary for multi-byte character sets as described in this chapter.

newLISP can be compiled as a UTF-8—enabled application. UTF-8 is a multi-byte encoding of
the international Unicode character set. A UTF-8—enabled newLISP running on an operating
system with UTF-8 enabled can handle any character of the installed locale.

The following steps make UTF-8 work with newLISP on a specific operating system and
platform:

(1) Use one of the makefiles ending in ut f 8 to compile newLISP as a UTF-8 application. If
no UTF-8 makefile is available for your platform, the normal makefile for your operating
system contains instructions on how to change it for UTF-8.

The Mac OS X binary installer contains a UTF-8—enabled version by default.

(2) Enable the UTF-8 locale on your operating system. Check and set a UTF-8 locale on Unix
and Unix-like OSes by using the | ocal e command or the set - | ocal e function within
newLISP. On Linux, the locale can be changed by setting the appropriate environment
variable. The following example uses bash to set the U.S. locale:

export LC _CTYPE=en_US. UTF-8

(3) The UTF-8-enabled newLISP automatically switches to the locale found on the operating
system. Make sure the command shell is UTF-8-enabled. When using the Tcl/Tk front-end on
Linux/UNIX, Tcl/Tk will automatically switch to UTF-8 display as long as the UNIX
environment variable is set correctly. The U.S. version of WinXP's not epad. exe can display

Unicode and UTF-8 encoding 56

newLISP Users Manual and Reference

Unicode UTF-8-encoded characters, but the command shell and the Tcl/Tk front-end cannot.
On Linux and other UNIXes, the Xterm shell can be used when started as follows:

LC_CTYPE=en_US. UTF-8 xterm

The following procedure can now be used to check for UTF-8 support. After starting newLISP,
type:

(println (char 937)) ; displays Greek uppercase
onmega
(println (lower-case (char 937))) ; displays |owercase onega

While the uppercase omega (Q) looks like a big O on two tiny legs, the lowercase omega (w)
has a shape similar to a small win the Latin alphabet.

Note: Only the output of pri nt | n will be displayed as a character; pri nt | n's return value
will appear on the console as a multibyte ASCII character.

When UTF-8-enabled newLISP is used on a non-UTF-8-enabled display, both the output and
the return value will be two characters. These are the two bytes necessary to encode the
omega character.

When UTF-8-enabled newLISP is used, the following string functions work on character
rather than byte boundaries:

function description

char translates between characters and ASCII/Unicode
chop chops characters from the end of a string

date converts date number to string (when used with the third argument)/td>
explode transforms a string into a list of characters

first gets first element in a list (car, head) or string

last returns the last element of a list or string

lower-case converts a string to lowercase characters

nth gets the nt h element of a list or string

nth-set changes the nth element of a list or string

pop deletes an element from a list or string

push inserts a new element in a list or string

rest gets all but the first element of a list (cdr, tail) or string
select selects and permutes elements from a list or string
set-nth changes an element in a list or string

title-case converts the first character of a string to uppercase
trim trims a string from both sides
upper-case converts a string to uppercase characters

All other string functions work on bytes. When positions are returned, as in find or regex,
they are byte positions rather than character positions. The slice function takes not character

Unicode and UTF-8 encoding 57

newLISP Users Manual and Reference

offset, but byte offsets. The reverse function reverses a byte vector, not a character vector.
The last two functions can still be used to manipulate binary non-textual data in the UTF-8-
enabled version of newLISP.

To enable UTF-8 in Perl Compatible Regular Expressions (PCRE) — used by directory, find,
parse, regex, and replace — set the option number accordingly (2048). See the regex
documentation for details.

Use explode to obtain an array of UTF-8 characters and to manipulate characters rather than
bytes when a UTF-8—enabled function is unavailable:

(join (reverse (explode str))) ; reverse UTF-8 characters

The above string functions (often used to manipulate non-textual binary data) now work on
character, rather than byte, boundaries, so care must be exercised when using the UTF-8-
enabled version. The size of the first 127 ASCII characters — along with the characters in
popular code pages such as ISO 8859 — is one byte long. When working exclusively within
these code pages, UTF-8-enabled newLISP is not required. The set-locale function alone is
sufficient for localized behavior.

Two new functions are available for converting between four-byte Unicode (UCS-4) and
multi-byte UTF-8 code. The UTF-8 function converts UCS-4 to UTF-8, and the unicode
function converts UTF-8 or ASCII strings into USC-4 Unicode.

These functions are rarely used in practice, as most Unicode text files are already UTF-8—
encoded (rather than UCS-4, which uses four-byte integer characters). Unicode can be
displayed directly when using the " 9% s" format specifier.

For further details on UTF-8 and Unicode, consult UTF-8 and Unicode FAQ for Unix/Linux by
Markus Kuhn.

19. Commas in parameter lists

Some of the example programs contain functions that use a comma to separate the
parameters into two groups. This is not a special syntax of newLISP, but rather a visual trick.
The comma is a symbol just like any other symbol. The parameters after the comma are not
required when calling the function; they simply declare local variables in a convenient way.
This is possible in newLISP because parameter variables in lambda expressions are local and
arguments are optional:
(define (ny-func abc, xvy z)
(set "x .)

()

When calling this function, only a, b, and ¢ are used as parameters. The others (x, y, and
z) are initialized to nil and are local to the function. After execution, the function's contents
are forgotten and the environment's symbols are restored to their previous values.

For other ways of declaring and initializing local variables, see let, letex, and letn.

19. Commas in parameter lists 58

http://www.cl.cam.ac.uk/~mgk25/unicode.html

newLISP Users Manual and Reference

20. Linking newLISP source and executable

Source code and the newLISP executable can be linked together to build a self-contained
application by using | i nk. | sp. This program is located in the exanpl es directory of the
source distribution. As an example, the following code is linked to the newLISP executable to
form a simple, self-contained application:

;; uppercase.lsp - Link exanple

(println (upper-case (nth 1 (main-args))))

(exit)

This program, which resides in the file upper case. | sp, takes the first word on the
command line and converts it to uppercase.

To build this program as a self-contained executable, follow these four steps:

(1) Put the following files into the same directory: (a) a copy of the newLISP executable; (b)
new i sp (or newl i sp. exe on Win32); (c) | i nk. | sp; and (d) the program to link with
(upper case. | sp in this example).

(2) In a shell, go to the directory referred to in step 1 and load | i nk. | sp:
new isp link.Ilsp

(3) In the newLlISP shell, type one of the following:

(l'ink "newisp. exe
(l'ink "new isp" "uppercase

upper case. exe upper case. lsp") ; Wn32
" "uppercase. | sp") ; Li nux/ BSD

(4) Exit the newLISP shell and type:

uppercase "convert me to uppercase"

The console should print:
CONVERT ME TO UPPERCASE

Note: On Linux/BSD, the new file must be marked executable for the operating system to
recognize it:

chnod 755 uppercase

This gives the file executable permission (this step is unnecessary on Win32).

20. Linking newLISP source and executable 59

newLISP Users Manual and Reference

20. Linking newLISP source and executable

60

newLISP Users Manual and Reference

newLISP Function Reference

1. Syntax of symbol variables and numbers

Source code in newLISP is parsed according the rules outlined here. When in doubt, verify the
behavior of newLISP's internal parser by calling parse without optional arguments.

Symbols for variable names

The following rules apply to the naming of symbols used as variables or functions:

1. Variable symbols may not start with any of the following characters:
#; """ (){}. ., 0123456789

2. Variable symbols starting with a + or - cannot have a number as the
second character.

3. Any character is allowed inside a variable name, except for:
"' () : , and the space character. These mark the end of a
variable symbol.

4. A symbol name starting with [(left square bracket) and ending with]
(right square bracket) may contain any character except the right square
bracket.

All of the following symbols are legal variable names in newLISP:
example:

myvar

A-nane

X34-zz

[* 75 01}]
111

Sometimes it is useful to create hash-like lookup dictionaries with keys containing characters
that are illegal in newLISP variables. The functions sym and context can be used to create
symbols containing these characters:

(set (sym*"(#:L*") 456) = 456

(eval (sym"(#: L*")) = 456

Symbols for variable names 61

newLISP Users Manual and Reference

(set (sym 1) 123) = 123

(eval (sym1)) = 123
1 =1
(+12) = 3

The last example creates the symbol 1 containing the value 123. Also note that creating such
a symbol does not alter newLISP's normal operations, since 1 is still parsed as the number
one.

Numbers

newLISP recognizes the following number formats:

Integers are one or more digits long, optionally preceded by a + or - sign. Any other
character marks the end of the integer or may be part of the sequence if parsed as a float (see
float syntax below).

example:

123
+4567
-999

Hexadecimals start with a Ox (or 0X) followed by any combination of the hexadecimal digits:
0123456789abcdef ABCDEF. Any other character ends the hexadecimal number.

example:
OxFF = 255
0x10ab = 4267
oXx1occ = 4300

Octals start with an optional + (plus) or - (minus) sign and a O (zero), followed by any
combination of the octal digits: 01234567. Any other character ends the octal number.

example:
012 = 10
010 = 8
077 = 63
-077 = -63

Floating point numbers can start with an optional + (plus) or - (minus) sign, but they cannot
be followed by a O (zero) if they are. This would make them octal numbers instead of floating
points. A single . (decimal point) can appear anywhere within a floating point number,
including at the beginning.

example:

Numbers 62

newLISP Users Manual and Reference

1.23 = 1.23
-1.23 = -1.23
+2. 3456 = 2.3456
. 506 = 0.506

As described above, scientific notation starts with a floating point number called the
significand (or mantissa), followed by the letter e or E and an integer exponent.

example:
1.23e3 = 1230
-1. 23E3 = -1230
+2. 34e-2 = 0. 0234
. 506E3 = 506

2. Data types and names in the reference

To describe the types and names of a function's parameters, the following naming convention
is used throughout the reference section:

syntax: (format str-format exp-data-1 [exp-data-i ...])

Arguments are represented by symbols formed by the argument's type and name, separated
by a - (hyphen). Here, str-format (a string) and exp-data-1 (an expression) are named
"format" and "data-1", respectively.

bool

true, ni |, or an expression evaluating to one of these two.
true, nil, (<= X 10)

int
An integer or an expression evaluating to an integer. Generally, if a floating point number is

used when an int is expected, the value is truncated to an integer.
123, 5, (* X 5)

int 63

newLISP Users Manual and Reference

num
An integer, a floating point number, or an expression evaluating to one of these two. If an

integer is passed, it is converted to a floating point number.
1.234, (div 10 3), (sin 1)

matrix

A list in which each element is itself a list. All element lists (rows) are of the same length.
When using multiply or invert, all numbers must be floats or integers.

The dimensions of a matrix are defined by indicating the number of rows and the number of
elements per row. Functions working on matrices ignore superfluous row elements. For
missing elements, 0. 0 is assumed by the functions multiply and invert, and ni | by the
function transpose.

((1 2 3 4

(5 6 7 8)
(9 10 11 12)) ; 3 rows 4 colums
((1 2)(3 4)(5 6)) ; 3 rows 2 columms

str

A string or an expression that evaluates to a string.

"Hell 0", (append first-name " Mller")

Special characters can be included in quoted strings by placing a\ (backslash) before the
character or digits to escape them:

escaped

character description

\n the line feed character (ASCII 10)

\r the carriage return character (ASCII 13)

\t the tab character (ASCII 9)

\nnn a decimal ASCII code where nnn is between 000 and 255

"\ 065\ 066\ 067" = "ABC

Instead of a" (double quote), a { (left curly bracket) and } (right curly bracket) can be used
to delimit strings. This is useful when quotation marks need to occur inside strings. Quoting
with the curly brackets suppresses the backslash escape effect for special characters. Balanced

str 64

newLISP Users Manual and Reference

nested curly brackets may be used within a string. This aids in writing regular expressions or
short sections of HTML.

(print "") ; the cryptic way
(print {}) ; the readabl e way

;; also possible because the inner brackets are bal anced
(regex {abc{1,2}} line)

(print [text]
this could be
a very long (> 2048 characters) text,
i.e. HTML

[/text])

The tags [t ext] and [/t ext] can be used to delimit long strings and suppress escape
character translation. This is useful for delimiting long HTML passages in CGI files written in
newLISP or for situations where character translation should be completely suppressed.
Always use the [t ext] tags for strings longer than 2048 characters.

sym
A symbol or expression evaluating to a symbol.

'xyz, (first "(+-1/)), "*, '- , 'someSynbol,
context

An expression evaluating to a context (namespace) or a variable symbol holding a context.
MyCont ext, aCtx, TheCTX

Most of the context symbols in this manual start with an uppercase letter to distinguish them
from other symbols.

sym-context

A symbol, an existing context, or an expression evaluating to a symbol from which a context
will be created. If a context does not already exist, many functions implicitly create them
(e.g., bayes-train, context, eval-string, load, sym, and xml-parse). The context must be
specified when these functions are used on an existing context. Even if a context already
exists, some functions may continue to take symbols (e.g., context). For other functions, such
as context?, the distinction is critical.

sym-context 65

newLISP Users Manual and Reference

func

A symbol or an expression evaluating to an operator symbol or lambda expression.

+, add, (first '(add sub)), (lanbda (x) (+ x X))

list
A list of elements (any type) or an expression evaluating to a list.

(abc "hello" (+ 3 4))
array
An array (constructed with the array function).

exp

Any of the above.

body

One or more expressions that can be evaluated. The expressions are evaluated sequentially if

there is more than one.
17.8
nil
(+ 3 4)
"H" (+ a b)(print result)
(do-this)(do-that) 123

3. Functions in groups

Some functions appear in more than one group.

3. Functions in groups

66

List processing, flow control, and integer arithmetic

+,-, % /,% integer arithmetic

<, >, = compares any data type: less, greater, equal

<=, >=,!= compares any data type: less-equal, greater-equal, not-equal
and logical and

append appends lists or strings to form a new list or string
apply applies a function or primitive to a list of arguments
args retrieves the argument list of a macro expression
assoc searches for keyword associations in a list

begin begins a block of functions

case branches depending on contents of control variable
catch evaluates an expression, possibly catching errors
chop chops elements from the end of a list

clean cleans elements from a list

cond branches conditionally to expressions

cons prepends an element to a list, making a new list
constant defines a constant symbol

count counts elements of one list that occur in another list
define defines a new function or lambda expression

define-macro

newLISP Users Manual and Reference

defines a macro or lambda-macro expression

def-new copies a symbol to a different context (namespace)

difference returns the difference between two lists

dolist evaluates once for each element in a list

dotimes evaluates once for each number in a range

dotree iterates through the symbols of a context

do-until repeats evaluation of an expression until the condition is met
do-while repeats evaluation of an expression while the condition is true
dup duplicates a list or string a specified number of times
ends-with checks the end of a string or list against a key of the same type
eval evaluates an expression

expand replaces a symbol in a nested list

first gets the first element of a list or string

filter filters a list

find searches for an element in a list or string

flat returns the flattened list

fn defines a new function or lambda expression

for evaluates once for each number in a range

List processing, flow control, and integer arithmetic
67

newLISP Users Manual and Reference

if evaluates an expression conditionally

index filters elements from a list and returns their indices

intersect returns the intersection of two lists

lambda defines a new function or lambda expression

last returns the last element of a list or string

length calculates the length of a list or string

let declares and initializes local variables

letex expands local variables into an expression, then evaluates

letn initializes local variables incrementally, like nested lets

list makes a list

lookup looks up members in an association list

map maps a function over members of a list, collecting the results

match matches patterns against lists; for matching against strings, see find and
regex

member finds a member of a list or string

name returns the name of a symbol or its context as a string

not logical not

nth gets the nth element of a list or string

nth-set changes the nth element of a list or string

or logical or

pop deletes and returns an element from a list or string

push inserts a new element into a list or string

quote quotes an expression

ref returns the position of an element inside a nested list

rest returns all but the first element of a list or string

replace replaces elements inside a list or string

replace-assoc replaces an association within a list

reverse reverses a list or string

rotate rotates a list or string

select selects and permutes elements from a list or string

set sets the binding or contents of a symbol

setq sets the binding or contents of an unquoted symbol

set-nth changes the nth element of a list or string

silent works like begin but suppresses console output of the return value

slice extracts a sublist or substring

sort sorts the members of a list

starts-with checks the beginning of a string or list against a key of the same type
swa swaps two elements inside a list or string

List processing, flow control, and integer arithmetic
68

uni
unique
unless
until
while

newLISP Users Manual and Reference

unifies two expressions

returns a list without duplicates

evaluates an expression conditionally

repeats evaluation of an expression until the condition is met
repeats evaluation of an expression while the condition is true

Bit operators

bit shift left, bit shift right
bitwise and

bitwise inclusive or
bitwise exclusive or
bitwise not

Floating point math and special functions

array
array-list

binomial
ceil

calculates the absolute value of a number
calculates the arccosine of a number

adds floating point or integer numbers

creates an array

returns a list conversion from an array
calculates the arcsine of a number

calculates the arctangent of a number
computes the principal value of the arctangent of Y / X in radians
calculates the beta function

calculates the incomplete beta function
calculates the binomial function

rounds up to the next integer

calculates the cosine of a number

calculates a 32-bit CRC for a data buffer
calculates the Chi square for a given probability
calculates the normal distributed Z for a given probability
decrements a number

divides floating point or integer numbers
calculates the error function of a number
calculates the exponential e of a number
factors a number into primes

performs a fast Fourier transform (FFT)

Floating point math and special functions

69

%)

equence
series

. o
-

»nn |»n»
EE |

—
fab}
=

newLISP Users Manual and Reference

rounds down to the next integer

converts a number to a 32-bit integer representing a float
calculates the incomplete gamma function

calculates the log gamma function

performs an inverse fast Fourier transform (IFFT)
increments a number

calculates the natural or other logarithm of a number
finds the smallest value in a series of values

finds the largest value in a series of values

calculates the modulo of two numbers

multiplies floating point or integer numbers
calculates x to the power of y

generates a list sequence of numbers

creates a geometric sequence of numbers

calculates the signum function of a number
calculates the sine of a number

calculates the square root of a number

subtracts floating point or integer numbers

calculates the tangent of a number

Matrix functions

invert
multiply

franspose

return the inversion of a matrix
multiplies two matrices
returns the transposition of a matrix

Array functions

array
array-list
array?
nth-set
set-nth

creates and initializes an array

returns a list conversion from an array

checks if expression is an array

changes the element and returns the old element
changes the element and returns the changed array

Financial math functions

==K

returns the future value of an investment
calculates the internal rate of return

Financial math functions

70

newLISP Users Manual and Reference

nper calculates the number of periods for an investment
npv calculates the net present value of an investment
pv calculates the present value of an investment

pmt calculates the payment for a loan

Simulation and modeling math functions

amb randomly picks an argument and evaluates it
bayes-query calculates Bayesian probabilities for a data set
bayes-train counts items in lists for Bayesian or frequency analysis

normal makes a list of normal distributed floating point numbers
prob-chi2 calculates the cumulated probability of a Chi square
prob-z calculates the cumulated probability of a Z-value

rand generates random numbers in a range

random generates a list of evenly distributed floats

randomize shuffles all of the elements in a list
seed seeds the internal random number generator

Time and date functions

date converts a date-time value to a string

date-value calculates the time in seconds since January 1, 1970 for a date and time
now returns a list of current date-time information

time calculates the time it takes to evaluate an expression in milliseconds

time-of-day calculates the number of milliseconds elapsed since the day started

String and conversion functions

address gets the memory address of a number or string

append appends lists or strings to form a new list or string

char translates between characters and ASCII codes

chop chops off characters from the end of a string

dup duplicates a list or string a specified number of times
ends-with checks the end of a string or list against a key of the same type
encrypt does a one-time-pad encryption and decryption of a string
eval-string ~ compiles, then evaluates a string

explode transforms a string into a list of characters

find searches for an element in a list or string

String and conversion functions

first
float
format

get-char
get-float
get-int
get-string
int

join

last
lower-case
member
name

nth

rotate
select
set-nth
slice
source

starts-with
string

sym
title-case
trim
unicode
utf8
unpack
upper-case

newLISP Users Manual and Reference

gets the first element in a list or string

translates a string or integer into a floating point number
formats numbers and strings as in the C language
gets a character from a memory address

gets a double float from a memory address

gets an integer from a memory address

gets a string from a memory address

translates a string or float into an integer

joins a list of strings

returns the last element of a list or string

converts a string to lowercase characters

finds a list or string member

returns the name of a symbol or its context as a string
gets the nth element in a list or string

changes the nth element of a list or string

packs LISP expressions into a binary structure

breaks a string into tokens

pops from a string

pushes onto a string

performs a Perl-compatible regular expression search
replaces elements in a list or string

gets all but the first element of a list or string
reverses a list or string

rotates a list or string

selects and permutes elements from a list or string
changes the element in a list or string

extracts a substring or sublist

returns the source required to bind a symbol to a string
checks the start of the string or list against a key string or list
transforms anything into a string

translates a string into a symbol

converts the first character of a string to uppercase
trims a string of one or both sides

converts ASCII or UTF-8 to UCS-4 Unicode

converts UCS-4 Unicode to UTF-8

unpacks a binary structure into LISP expressions
converts a string to uppercase characters

String and conversion functions

72

newLISP Users Manual and Reference

Input/output and file operations

append-file
close
command-
line
current-line
device

exec

—_
[a W

oa

=]

e

=]

. F
D
=

rin
println
read-buffer
read-char
read-file
read-key
read-line

save

write-buffer
write-char
write-file
write-line

appends data to a file
closes a file

enables or disables interactive command line

retrieves contents of last read-line buffer

sets or inquires about current print device

launches another program, then reads from or writes to it
loads and evaluates a file of LISP code

opens a file for reading or writing

checks file descriptor for number of bytes ready for reading
prints to the console or a device

prints to the console or a device with a line feed

reads binary data from a file

reads an 8-bit character from a file

reads a whole file in one operation

reads a keyboard key

reads a line from the console or file

saves a workspace, context, or symbol to a file

searches a file for a string

sets or reads a file position

writes binary data to a file or string

writes a character to a file

writes a file in one operation

writes a line to the console or a file

Processes, pipes and threads

D
<
(D
(o]

¥
=t

I

1

process
semaphore

(D

shells out to the operating system

runs a process, then reads from or writes to it

launches a newLISP child process thread

creates a pipe for interprocess communication

launches a child process, remapping standard I/0 and standard error
creates and controls semaphores

shares memory with other processes and threads

waits for a child process to end

Processes, pipes and threads 73

newLISP Users Manual and Reference

File and directory management

change-dir
copy-file
delete-file
directory
file-info
make-dir
real-path
remove-dir
rename-file

changes to a different drive and directory
copies a file

deletes a file

returns a list of directory entries

gets file size, date, time, and attributes
makes a new directory

returns the full path of the relative file path
removes an empty directory

renames a file or directory

System functions and predicates

$

atom?
array?
catch
context
context?
debug
delete
directory?
empty?
env
error-event
error-number
error-text
exit

file?
float?
global
import
integer?
lambda?
legal?
list?

macro?

accesses system variables $0 -> $15

checks if an expression is an atom

checks if an expression is an array

evaluates an expression, catching errors and early returns
creates or switches to a different namespace
checks if an expression is a context

debugs a user-defined function

deletes symbols from the symbol table

checks if a disk node is a directory

checks if a list or string is empty

gets or sets the operating system's environment
defines an error handler

gets the last error number

gets the error text for an error number

exits newLISP, setting the exit value

checks for the existence of a file

checks if an expression is a float

makes a symbol accessible outside MAIN
imports a function from a shared library
checks if an expression is an integer

checks if an expression is a lambda expression
checks if a string contains a legal symbol
checks if an expression is a list

checks if an expression is a lambda-macro expression

System functions and predicates 74

main-args
NaN?
new

nil?
number?
pretty-print
primitive?
quote?
reset
set-locale
signal
sleep
string?
symbol?
symbols
Sys-error
sys-info
throw
throw-error
timer
trace
trace-
highlight
true?
zero?

newLISP Users Manual and Reference

gets command-line arguments

checks if a float is NaN (not a number)
creates a copy of a context

checks if an expression is ni |

checks if an expression is a float or an integer
changes the pretty-printing characteristics
checks if an expression is a primitive
checks if an expression is quoted

goes to the top level

switches to a different locale

sets a signal handler

suspends processing for specified milliseconds
checks if an expression is a string

checks if an expression is a symbol
returns a list of all symbols in the system
reports OS system error numbers

gives information about system resources
causes a previous catch to return

throws a user-defined error

starts a one-shot timer, firing an event
sets or inquires about trace mode

sets highlighting strings in trace mode

checks if an expression is not ni |
checks if an expression is 0 or 0. 0

HTTP networking API

base64-enc
base64-dec
get-url
post-url
put-url
xml-error

xml-parse

encodes a string into BASE64 format
decodes a string from BASE64 format
reads a file or page from the web
posts info to a URL address

uploads a page to a URL address
returns last XML parse error

parses an XML document

xml-type-tags shows or modifies XML type tags

HTTP networking API

75

newLISP Users Manual and Reference

Socket TCP/IP and UDP network API

net-accept
net-close

net-connect
net-error
net-eval
net-listen
net-local

net-lookup
net-peer
net-peek
net-ping
net-receive

net-receive-
from

net-receive-
udp
net-select
net-send
net-send-to
net-send-udp
net-service
net-sessions

accepts a new incoming connection

closes a socket connection

connects to a remote host

returns the last error

evaluates expressions on multiple remote newLISP servers
listens for connections to a local socket

returns the local IP and port number for a connection
returns the name for an I[P number

returns the remote IP and port for a net connect

returns the number of characters ready to be read

sends a ping packet (ICMP echo request) to one or more addresses

reads data on a socket connection

reads a UDP on an open connection

reads a UDP and closes the connection

checks a socket or list of sockets for status
sends data on a socket connection

sends a UDP on an open connection

sends a UDP and closes the connection
translates a service name into a port number
returns a list of currently open connections

Importing libraries

address
flt
float

get-char
get-float
get-int
get-string
import
int

pack
unpack

gets the memory address of a number or string

converts a number to a 32-bit integer representing a float
translates a string or integer into a floating point number
gets a character from a memory address

gets a double float from a memory address

gets an integer from a memory address

gets a string from a memory address

imports a function from a shared library

translates a string or float into an integer

packs LISP expressions into a binary structure

unpacks a binary structure into LISP expressions

Importing libraries

76

newLISP Users Manual and Reference

newLISP internals API

cpymem copies memory between addresses
dump shows memory address and contents of newLISP cells

newLISP internals API

77

newLISP internals API

newLISP Users Manual and Reference

78

newLISP Users Manual and Reference

Functions in alphabetical order

o—m

syntax: (! str-command)

Executes the command in str-command by shelling out to the operating system and executing.
This function returns a different value depending on the host operating system.

example:

(P "vi")
(v "Is -1tr™)

Use the exec function to execute a shell command and capture the standard output or to feed
standard input. The process function may be used to launch a non-blocking child process and
redirect std I/0 and std error to pipes.

Note that ! (exclamation mark) can be also be used as a command-line shell operator by
omitting the parenthesis and space after the ! :

example:
> 1ls -ltr : executed in the newLl SP shell w ndow

Used in this way, the ! operator is not a newLISP function at all, but rather a special feature
of the newLISP command shell. The ! must be entered as the first character on the command
line.

$

syntax: ($ int-idx)

The functions that use regular expressions (directory, find, parse, regex, search, and replace)
all bind their results to the predefined system variables $0, $1, $2-$15 after or during the
function's execution. Both nth-set and set-nth store the replaced expression in $0. System
variables can be treated the same as any other symbol. As an alternative, the contents of these
variables may also be accessed by using ($ 0),($ 1),($ 2), etc. This method allows
indexed access (i.e., ($ i), wherei is an integer).

example:

(set '"str "http://newisp.org:80")
(find "http://(.*):(.*)" str 0) =0

newLISP Users Manual and Reference

$0 = "http://newisp. org: 80"
$1 = "new i sp.org"

$2 - " 80"

($0) = "http://new isp. org: 80"
($ 1) = "new isp.org"

($2) = "80"

(set-nth 2 '(abcdef g 'x) =>(abxdef g)

$0 C
($ 0 = C

U

For using captures within substitutions, the $ system variables can be accessed from within
the functions nth-set, set-nth, and replace:
(set "Ist '"(1 2 3 4))

(nth-set (Ist 3) (* $0 3)) = 4
| st = (12312

+9) *9 / :%

syntax: (+ int-1 [int-2 ...])
Returns the sum of all numbers in int-1 —.
syntax: (- int-1 [int-2 ...])

Subtracts int-2 from int-1, then the next int-i from the previous result. If only one argument is
given, its sign is reversed.

syntax: (* int-1 [int-2 ...])
The product is calculated for int-1 to int-i.
syntax: (/ int-1 [int-2 ...])

Each result is divided successively until the end of the list is reached. Division by zero causes
an error.

syntax: (% int-1 [int-2 ...])

Each result is divided successively by the next int, then the rest (modulo operation) is
returned. Division by zero causes an error. For floating point numbers, use the mod function.

example:
(+12345) = 15
(+12 (- 52) 8) = 14
(- 10 3 2 1) = 4
(- (* 34) 612 = 3
(- 123) = -123
(map - ' (10 20 30)) = (-10 -20 -30)

+7) *7 / 50/0 80

newLISP Users Manual and Reference

(* 12 3)

(* 10 (- 8 2))
(I 12 3)

(/ 120 3 20 2)
(% 10 3)
(%-10 3)

(+ 1.2 3.9)

A'RPRDOO

L A

Floating point values in arguments to +, - , *, / , and %are truncated to their floor value.

Floating point values larger or smaller than the maximum (2147483647) or minimum
(- 2147483648) integer values are truncated to those values.

Calculations resulting in values larger than 2, 147, 483, 647 or smaller than
-2, 147, 483, 648 wrap around from positive to negative or negative to positive.

For floating point values that evaluate to NaN (Not a Number), both +I NF and - | NF are
treated as O (zero).

<’ >’ =’ <=J >=7 !=

syntax: (< exp-1 exp-2 [exp-3 ... 1)
syntax: (> exp-1 exp-2 [exp-3 ...])
syntax: (= exp-1 exp-2 [exp-3 ... 1)
syntax: (<= exp-1 exp-2 [exp-3 ...])
syntax: (>= exp-1 exp-2 [exp-3 ...])
syntax: (!= exp-1 exp-2 [exp-3 ... 1)

Expressions are evaluated and the results are compared successively. As long as the
comparisons conform to the comparison operators, evaluation and comparison will continue
until all arguments are tested and the result is t r ue. As soon as one comparison fails, ni | is
returned.

All types of expressions can be compared: atoms, numbers, symbols, and strings. List
expressions can also be compared (list elements are compared recursively).

When comparing lists, elements at the beginning of the list are considered more significant
than the elements following (similar to characters in a string). When comparing lists of
different lengths but equal elements, the longer list is considered greater (see examples).

In mixed-type expressions, the types are compared from lowest to highest. Floats and integers
are compared by first converting them to the needed type, then comparing them as numbers.

Atons: nil, true, integer or float, string, synbol, primtive
Li sts: quoted |ist/expression, |ist/expression, |anbda, |anbda-nmacro
example:
(<3589 = true

<, >, =,<=,>=,I1= 81

> > >

newLISP Users Manual and Reference

(>4 2 3 6) = nil
(< ™a" "c" "d") = true
(>= duba aba) = true
(<'"(34) "(15)) = nil
(>'(123) '"(12) = true
(='(578) "(578)) = true
('=143723) = true
(< 1.2 6 "Hello" "any '"(1 2 3)) = true
(< nil true) = true
(<" (((ab))) "(((bc)))) = true
(<'((a(bc)) "(a(bd) "(a(b(d)))) = true
<<, >>

syntax: (<< int-1 int-2 [int-3 ...])

syntax: (>> int-1 int-2 [int-3 ...])

The number int-1 is arithmetically shifted to the left or right by the number of bits given as
int-2, then shifted by int-3 and so on. For example, 32-bit integers may be shifted up to 31
positions. When shifting right, the most significant bit is duplicated (arithmetic shift):

(>> 0x80000000 1) = 0xC0000000 ; not 0x04000000!

example:

(<< 1 3)
(<< 12 1)

(>> 1024 10)
(>> 160 2 2)

O 00

Uu U

&

syntax: (& int-1 int-2 [int-3 ...])

A bitwise and operation is performed on the number in int-1 with the number in int-2, then
successively with int-3, etc.

example:
(& OxAABB 0x000F) = 11 ; which is OxB

newLISP Users Manual and Reference

syntax: (| int-1 int-2 [int-3 ...])

A bitwise or operation is performed on the number in int-1 with the number in int-2, then
successively with int-3, etc.

example:
(| 0x10 0x80 2 1) = 147

syntax: ("~ int-1 int-2 [int-3 ...])

A bitwise xor operation is performed on the number in int-1 with the number in int-2, then
successively with int-3, etc.

example:
(A OXAA 0x55) = 255

syntax: (~ int)

A bitwise not operation is performed on the number in int, reversing all of the bits.

example:
(format "OX" (~ OXFFFFFFAA)) = "55"
(~ OXFFFFFFFF) -0
abs

syntax: (abs num)
Returns the absolute value of the number in num.

example:
(abs -3.5) = 3.5

abs

83

newLISP Users Manual and Reference

daCos

syntax: (acos num)
The arccosine function is calculated from the number in num.

example:

(acos 1) =0

add

syntax: (add num-1 [num-2 ...])

All of the numbers in num-1, num-2, and on are summed. add accepts float or integer
operands, but it always returns a floating point number. Any floating point calculation with
NaN also returns NaN.

example:

(add 2 3.25 9) = 14.25
(add 1 2 3 45) = 15

address

syntax: (address int)
syntax: (address float)
syntax: (address str)

Returns the memory address of the integer in int, the double floating point number in float, or
the string in str. This function is used for passing parameters to library functions that have
been imported using the import function.

example:
(set 's "\ 001\ 002\ 003\ 004")

(get-char (+ (address s) 3)) =4
(get-int (address 1234)) = 1234

(get-float (address 1.234)) = 1.234

address 84

newLISP Users Manual and Reference

When a string is passed, the address of the string is automatically used. As the example
shows, addr ess can be used to do pointer arithmetic on the string's address.

See also the get-char, get-int, and get-float functions.

amb

syntax: (amb exp-1 exp-2 [exp-3...]1)
One of the expressions exp-1 ... n is selected at random, and the evaluation result is returned.

example:

(amb "a 'b 'c 'd 'e) = one of: a, b, ¢, d, or e at random

(dotimes (x 10) (print (amb 3 5 7))) = 35777535755

Internally, newLISP uses the same function as rand to pick a random number. To generate
random floating point numbers, use random, randomize, or normal. To initialize the pseudo
random number generating process at a specific starting point, use the seed function.

and

syntax: (and exp-1 exp-2 [exp-3...])

The expressions exp-1, exp-2, etc. are evaluated in order, returning the result of the last
expression. If any of the expressions yield ni | , evaluation is terminated and ni | is returned.

example:
(set 'x 10) = 10
(and (< x 100) (> x 2)) = true
(and (< x 100) (> x 2) "passed") = "passed"
(and ' ()) = nil
(and true) = true
(and) = nil

append

syntax: (append list-1 list-2 [list-3 ...])
syntax: (append str-1 [str-2 ...])

append 85

newLISP Users Manual and Reference

In the first form, append works with lists, appending list-1 through list-n to form a new list.
The original lists are left unchanged.

example:
(append '(1 2 3) '(456) "(ab)) =(123456 ahb)

(set '"aList '("hello" "world")) = ("hello" "world")
(append aList '("here" "I ani)) = ("hello" "world" "here" "I
am')

In the second form, append works on strings. The strings in str-n are concatenated into a
new string and returned.

example:
(set 'nore " how are you") = " how are you"
(append "Hello " "world," nmore) = "Hello world, how are you"

append is also suitable for processing binary strings containing zeroes.

Linkage characters or strings can be specified using the join function. Use the string function
to convert arguments to strings and append in one step.

Use the functions push or write-buffer (with its special syntax) to append to an existing string
in place.

append-file

syntax: (append-file str-filename str-content)

Works similarly to write-file, but the content in str-content is appended if the file in str-
filename exists. If the file does not exist, it is created (in this case, append- f i | e works
identically to write-file). This function returns the number of bytes written.

example:

(wite-file "nyfile.txt" "ABC')
(append-file "nyfile.txt" "DEF")

(read-file "nyfile.txt") = "ABCDEF"

See also read-file.

append-file 86

newLISP Users Manual and Reference

apply

syntax: (apply func list [int-reduce])

Applies the contents of func (primitive, user-defined function, or lambda expression) to the
arguments in list.

example:
(apply + '(1 2 3 4)) = 10
(set '"alList '(3 405)) = (3 4 5)
(apply * aList) = 60
(apply sqgrt '(25)) =5
(apply (lambda (x y) (* xy)) '(3 4)) =12

The int-reduce parameter can optionally contain the number of arguments taken by the
function in func. In this case, func will be repeatedly applied using the previous result as the
first argument and taking the other arguments required successively from list (in left-
associative order). For example, if op takes two arguments, then:

(apply op '(1 2 3 45) 2)
;; 1s equivalent to

(op (op (op (op 1 2) 3) 4) 5)

find the greatest conmon divisor
of two or nore integers

(define (gcd_ a b)
(let (r (%b a))
(if (=r 0) a (gcd_r a))))

(define-macro (gcd)

(apply gcd_ (args) 2))
(gcd 12 18 6) = 6
(gcd 12 18 6 4) = 2

The last example shows how appl y's reduce functionality can be used to convert a two-
argument function into one that takes multiple arguments.

appl y should only be used on functions and operators that evaluate all of their arguments,

not on special forms like setq or case, which evaluate only some of their arguments. Doing so

will cause the function to fail.

apply

87

newLISP Users Manual and Reference

args

syntax: (args)

syntax: (args int-idx-1 [int-idx-2 ...])

Accesses a list of all unbound arguments passed to the currently evaluating define, define-
macro lambda, or lambda-macro expression. Only the arguments of the current function or

macro that remain after local variable binding has occurred are available. The ar gs function
is useful for defining functions or macros with a variable number of parameters.

ar gs can be used to define hygienic macros that avoid the danger of variable capture. See
define-macro.

example:

(define-macro (print-Iline)
(dolist (x (args))
(print x "\n")))

(print-line "hello" "Wrld")

This example prints a line feed after each argument. The macro mimics the effect of the built-
in function println.

In the second syntax, ar gs can take one or more indices (int-idx-n).

example:

(define-macro (foo)
(print (args 2) (args 1) (args 0)))

(foo x vy 2)
zyXx

(define (bar)
(args 0 2 -1))

(bar '(1 2 (3 4))) =4

The function f 0o prints out the arguments in reverse order. The bar function shows ar gs
being used with multiple indices to access nested lists.

Remember that (ar gs) only contains the arguments not already bound to local variables of
the current function or macro:

example:

(define (foo a b) (args))
(foo 1 2) = ()

(foo12345) = (3405)

args 88

newLISP Users Manual and Reference

In the first example, an empty list is returned because the arguments are bound to the two
local symbols, a and b. The second example demonstrates that, after the first two arguments
are bound (as in the first example), three arguments remain and are then returned by ar gs.

(args) can be used as an argument to a built-in or user-defined function call, but it should
not be used as an argument to another macro, in which case (ar gs) would not be evaluated
and would therefore have the wrong contents in the new macro environment.

array

syntax: (array int-n [int-n2 ... int-n16] [list-init])

Creates an array with int-n elements, optionally initializing it with the contents of list-init. Up
to sixteen dimensions may be specified for multidimensional arrays.

Internally, newLISP builds multidimensional arrays by using arrays as the elements of an
array. newLISP arrays should be used whenever random indexing into a large list becomes too
slow. Only a subset of the list functions may be used on arrays. For a more detailed
discussion, see the chapter on arrays.

example:

(array 5) = (nil nil nil nil nil)
(array 5 (sequence 1 5)) = (1 2 3 4 5)

(array 10 ' (1 2)) >(1212121212)

Arrays can be initialized with objects of any type. If fewer initializers than elements are
provided, the list is repeated until all elements of the array are initialized.

(set 'nyarray (array 3 4 (sequence 1 12)))

= ((1234) (56 78) (910 11 12))

Arrays are modified and accessed using the same list functions:

(set-nth 2 3 nyarray 99) ; old syntax
(set-nth (nyarray 2 3) 99) ; new preferred syntax

= ((1234) (567 8) (9 10 11 99))

(nth-set (nyarray 1 1) "hello") = 6

nyarray = ((1 2 3 4) (5 "hello" 7 8) (9 10 11 99))
(set-nth (nyarray 1) (array 4 '(a b c d)))

= ((1234) (abcd (910 11 99))

array 89

newLISP Users Manual and Reference

(nth 1 nyarray) = (abcd) ; access a whole row
(nth 0 -1 nyarray) = 4

;; use inplicit indexing on arrays

(myarray 1) = (abcd

(rmyarray 0 -1) = 4

Care must be taken to use an array when replacing a whole row.

array-list can be used to convert arrays back into lists:
(array-list nmyarray) = ((1 23 4) (abcd (12 3299)

To convert a list back into an array, apply flat to the list:
(set 'aList '((12) (3 4))) = ((12) (3 4))
(set "aArray (array 2 2 (flat aList))) = ((1 2) (3 4))
The array? function can be used to check if an expression is an array:
(array? nyarray) = true
(array? (array-list nyarray)) = nil
When serializing arrays using the function source or save, the code includes the ar r ay

statement necessary to create them. This way, variables containing arrays are correctly
serialized when saving with save or creating source strings using source.

(set 'nyarray (array 3 4 (sequence 1 12)))

(save "array.|lsp" 'nyarray)

;; contents of file arraylsp ;;

(set 'nyarray (array 3 4 (flat '(
(1234

(56 7 8)
(9 10 11 12)))))

array-list

syntax: (array-list array)
Returns a list conversion from array, leaving the original array unchanged:

example:

array-list

newLISP Users Manual and Reference

(set 'nyarray (array 3 4 (sequence 1 12)))
> ((1234) (5678) (910 11 12))

(set '"nylist (array-list myarray))

= ((1234) (5678) (910 11 12))
(list (array? nyarray) (list? nmylist))

= (true true)

array?

syntax: (array? expr)
Checks if expr is an array:

example:

(set "M (array 3 4 (sequence 1 4)))

=((1234) (1234) (1234)))

(array? M = true

(array? (array-list M) = nil

asin

syntax: (asin num-radians)
The arcsine function is calculated from the number in num-radians, and the result is returned.

example:
(asin 1) = 1.570796327

dassocC

syntax: (assoc exp-key list-alist)

assoc 91

newLISP Users Manual and Reference

The value of exp-key is used to search list-alist for a member-list whose first element matches
the key value. If found, the member-list is returned; otherwise, the result will be ni | .

example:
(assoc 1 '"((34) (12))) =(12
(set 'data '((apples 123) (bananas 123 45) (pears 7)))

(assoc 'bananas data) = (bananas 123 45)
(assoc 'oranges data) = nil

For making replacements in association lists, use the replace-assoc function. The lookup
function is used to perform association lookup and element extraction in one step.

atan

syntax: (atan num-radians)
The arctangent of num-radians is calculated and returned.

example:
(atan 1) = 0.7853981634

atan2

syntax: (atan2 num-Y-radians num-X-radians)

The at an2 function computes the principal value of the arctangent of Y / X in radians. It uses
the signs of both arguments to determine the quadrant of the return value. at an2 is useful
for converting Cartesian coordinates into polar coordinates.

example:
(atan2 1 1) = 0.7853981634
(div (acos 0) (atan2 1 1)) = 2
(atan2 0 -1) = 3.141592654
(= (atan2 1 2) (atan (div 1 2))) = true

atan2 92

newLISP Users Manual and Reference

atom?

syntax: (atom? exp)

Returns t r ue if the value of exp is an atom, otherwise ni | . An expression is an atom, if it
evaluates to nil, true, an integer, a float, a string, a symbol or a primitive. Lists, lambda or
lambda-macro expressions, and quoted expressions are not atoms.

example:

(aton? '(1 2 3)) = nil
(and (atonf 123)

(aton? "hell 0o")

(aton®? 'fo0)) = true
(aton®? ''fo0) = nil

base64-dec

syntax: (base64-dec str)

The BASE64 string in str is decoded. Note that str is not verified to be a valid BASE64 string.
The decoded string is returned.

example:
(baseb4-dec "SGVsb@EBgV29ybGQ=") = "Hello World"

For encoding, use the base64-enc function.
newLISP's BASE64 handling is derived from routines found in the UNIX curl utility.

base64-enc

syntax: (base64-enc str)

The string in str is encoded into BASE64 format. This format encodes groups of 3 * 8 = 24
input bits into 4 * 8 = 32 output bits, where each 8-bit output group represents 6 bits from
the input string. The 6 bits are encoded into 64 possibilities from the letters A-Z and a-z; the
numbers 0-9; and the characters + (plus sign) and / (slash). The = (equals sign) is used as a
filler in unused 3- to 4-byte translations. This function is helpful for converting binary content
into printable characters.

The encoded string is returned.

BASE64 encoding is used with many Internet protocols to encode binary data for inclusion in
text-based messages (e.g., XML-RPC).

base64-enc 93

http://curl.haxx.se/

newLISP Users Manual and Reference

example:
(baseb4-enc "Hello Wrld") = "SGVsbhGBgV29ybGx"

Note that base64- enc does not insert carriage-return/line-feed pairs in longer BASE64
sequences but instead returns a pure BASE64-encoded string.

For decoding, use the base64-dec function.
newLISP's BASE64 handling is derived from routines found in the UNIX curl utility.

bayes-query

syntax: (bayes-query list-L context-D [bool-chain] [bool-probs])

Takes a list of tokens (list-L) and a trained dictionary (context-D) and returns a list of the
combined probabilities of the tokens in one category (A or Mc) versus a category (B) against
all other categories (Mi). All tokens in list-L should occur in context-D. When using the default
R.A. Fisher Chi2 mode, non-existing tokens will skew results toward equal probability in all
categories.

Non-existing tokens will not have any influence on the result when using the true Chain
Bayesian mode with bool-chain set to t r ue. The optional last flag, bool-probs, indicates
whether frequencies or probability values are used in the data set. The bayes-train function is
typically used to generate a data set's frequencies.

Tokens can be strings or symbols. If strings are used, they are prepended with an underscore
before being looked up in context-D. If bayes-train was used to generate context-D's
frequencies, the underscore was automatically prepended during the learning process.

Depending on the flag specified in bool-probs, bayes-query employs either the R. A. Fisher
Chi2 method of compounding probabilities or the Chain Bayesian method. By default, when
no flag or ni | is specified in bool-probs, the Chi2 method of compounding probabilities is
used. When specifying t r ue in bool-probs, the Chain Bayesian method is used.

If the R.A. Fisher Chi2 method is used, the total number of tokens in the different training set's
categories should be equal or similar. Uneven frequencies in categories will skew the results.

For two categories A and B, bayes- quer y uses the following formula:

p(A|tkn) = p(tkn|A) * p(A) / p(tkn|A) * p(A) + p(tkn|B) * p(B)

For N categories, this formula is used:

p(Mc|tkn) = p(tkn|Mc) * p(Mc) / sum-i-N(p(tkn|Mi) * p(Mi))

The probabilities (p(Mi) or p(A), along with p(B)) represent the Bayesian prior probabilities.
p(Mx|tkn) and p(A|tkn) are the posterior Bayesian probabilities of a category or model.

bayes-query 94

http://curl.haxx.se/

newLISP Users Manual and Reference

Priors are handled differently, depending on whether the R.A. Fisher Chi2 or the Chain
Bayesian method is used. While in Chain Bayesian mode, posteriors from one token
calculation get the priors in the next calculation. In the default R.A. Fisher method, priors are
not passed on via chaining, but probabilities are compounded using the Chi2 method.

In Chain Bayes mode, tokens with zero frequency in one category will effectively put the
probability of that category to 0 (zero). This also causes all posterior priors to be set to 0 and
the category to be completely suppressed in the result. Queries resulting in zero probabilities
for all categories yield NaN values.

The default R.A. Fisher Chi2 method is less sensitive about zero frequencies and still maintains
a low probability for that token. This may be an important feature in natural language
processing when using Bayesian statistics. Imagine that five different language corpus
categories have been trained, but some words occurring in one category are not present in
another. When the pure Chain Bayesian method is used, a sentence could never be classified
into its correct category because the zero-count of just one word token could effectively
exclude it from the category to which it belongs.

On the other hand, the Chain Bayesian method offers exact results for specific proportions in
the data. When using Chain Bayesian mode for natural language data, all zero frequencies
should be removed from the trained dictionary first.

The return value of bayes- query is a list of probability values, one for each category.
Following are two examples: the first for the default R.A. Fisher mode, the second for a data
set processed with the Chain Bayesian method.

R.A. Fisher Chi2 method

In the following example, the two data sets are books from Project Gutenberg. We assume that
different authors use certain words with different frequencies and want to determine if a
sentence is more likely to occur in one or the other author's writing. A similar method is
frequently used to differentiate between spam and legitimate email.

;; from Project Gutenberg: http://ww. gutenberg. org/catal og/
;; The Adventures of Sherlock Holnes - Sir Arthur Conan Doyl e

(bayes-train (parse (lower-case (read-file "Doyle.txt"))
"[Ma-z]+" 0) '() ' Doyl eDowson)

;7 A Conedy of Masks - Ernest Dowson and Arthur Moore

(bayes-train '() (parse (lower-case (read-file "Dowson.txt"))
"["~a-z]+" 0) ' Doyl eDowson)

(save "Doyl eDowson. | sp" ' Doyl eDowson)

R.A. Fisher Chi2 method 95

newLISP Users Manual and Reference

The two training sets are loaded, split into tokens, and processed by the bayes-train function.
In the end, the Doyl eDowson dictionary is saved to a file, which will be used later with the
bayes- query function.

The following code illustrates how bayes- query is used to classify a sentence as Doyle or
Dowson:

(1 oad " Doyl eDowson. | sp")
(bayes-query (parse "he was putting the |last touches to a
pi cture")
' Doyl eDowson)
= (0.03801673331 0.9619832667)

(bayes-query (parse "imense faculties and extraordi nary powers
of observation")

' Doyl eDowson)
= (0.9851075608 0.01489243923)

The queries correctly identify the first sentence as a Dowson sentence, and the second one as a
Doyle sentence.

Chain Bayesian method

The second example is frequently found in introductory literature on Bayesian statistics. It
shows the Chain Bayesian method of using bayes- quer y on the data of a previously
processed data set:

example:

(set 'Data:test-positive '(8 18))
(set 'Data:test-negative '(2 72))
(set 'Data:total '(10 90))

A disease occurs in 10 percent of the population. A blood test developed to detect this disease
produces a false positive rate of 20 percent in the healthy population and a false negative rate
of 20 percent in the sick. What is the probability of a person carrying the disease after testing
positive?

example:

(bayes-query '(test-positive) Data true)
= (0.3076923077 0.6923076923)

(bayes-query '(test-positive test-positive) Data true)
= (0.64 0.36)

(bayes-query '(test-positive test-positive test-positive) Data

true)
= (0.8767123288 0.1232876712)

Chain Bayesian method 96

newLISP Users Manual and Reference

Note that the Bayesian formulas used assume statistical independence of events for the
bayes- query to work correctly.

The example shows that a person must test positive several times before they can be
confidently classified as sick.

Calculating the same example using the R.A. Fisher Chi2 method will give less-distinguished
results.

Specifying probabilities instead of counts

Often, data is already available as probability values and would require additional work to
reverse them into frequencies. In the last example, the data were originally defined as
percentages. The additional optional bool-probs flag allows probabilities to be entered directly
and should be used together with the Chain Bayesian mode for maximum performance:

example:

(set 'Data:test-positive '(0.8 0.2))
(set 'Data:test-negative '(0.2 0.8))
(set 'Data:total '(0.1 0.9))

(bayes-query '(test-positive) Data true true)
= (0.3076923077 0.6923076923)

(bayes-query '(test-positive test-positive) Data true true)
= (0.64 0.36)

(bayes-query '(test-positive test-positive test-positive) Data
true true)
= (0.8767123288 0.1232876712)

As expected, the results are the same for probabilities as they are for frequencies.

bayes-train

syntax: (bayes-train list-M1 list-M2 [list-M3 ...] sym-context-D)

Takes two or more lists of tokens (M1, M2—) from a joint set of tokens. In newLISP, tokens
can be symbols or strings (other data types are ignored). Tokens are placed in a common
dictionary in sym-context-D, and the frequency is counted for each token in each category Mi.
If the context does not yet exist, it must be quoted.

The M categories represent data models for which sequences of tokens can be classified (see
bayes-query). Each token in D is a content-addressable symbol containing a list of the
frequencies for this token within each category. String tokens are prepended with an _
(underscore) before being converted into symbols. A symbol called t ot al is created

bayes-train 97

newLISP Users Manual and Reference

containing the total of each category. The t ot al symbol cannot be part of the symbols
passed as an Mi category.

The function returns a list of token frequencies found in the different categories or models.

example:
(bayes-train '(AABCC "(ABBCCOQC 'L) = (56)

L: A = (2 1)
L:B = (1 2)
L:C = (2 3)
L:total = (5 6)

(bayes-train '("one" "two" "two" "three")
"("three" "one" "three")

"("one" "two" "three") 'S) = (3 2 3)
S: _one =>(111)
S _two = (201
S: _three = (1 2 1)
S:total = (323

The first example shows training with two lists of symbols. The second example illustrates
how an _ is prepended when training with strings.

Note that these examples are just for demonstration purposes. In reality, training sets may
contain thousands or millions of words, especially when training natural language models.
But small data sets may be used when then the frequency of symbols just describe already-
known proportions. In this case, it may be better to describe the model data set explicitly,
without the bayes- t r ai n function:

(set 'Data:tested-positive '(8 18))
(set 'Data:tested-negative '(2 72))
(set 'Data:total '(10 90))

The last data are from a popular example used to describe the bayes-query function in
introductory papers and books about bayesian networks.

Training can be done in different stages by using bayes-t r ai n on an existing trained
context with the same number of categories. The new symbols will be added, then counts and
totals will be correctly updated.

Training in multiple batches may be necessary on big text corpora or documents that must be
tokenized first. These corpora can be tokenized in small portions, then fed into bayes-

t rai n in multiple stages. Categories can also be singularly trained by specifying an empty list
for the absent corpus:

(bayes-train shakespearel '() 'data)

(bayes-train shakespeare2 '() 'data)

(bayes-train ' () hemi ngwayl 'data)

(bayes-train ' () hemi ngway2 'data)

(bayes-train shakepeare-rest hem ngway-rest 'data)

—~

bayes-train 98

newLISP Users Manual and Reference

bayes- t rai n will correctly update word counts and totals.

Using bayes-tr ai n inside a context other than MAI N requires the training contexts to have
been created previously within the MAI N context via the context function.

bayes- trai n is not only useful with the bayes-query function, but also as a function for
counting in general. For instance, the resulting frequencies could be analyzed using prob-chi2
against a null hypothesis of proportional distribution of items across categories.

begin

syntax: (begin body)

The begi n function is used to group a block of expressions. The expressions in body are
evaluated in sequence, and the value of the last expression in body is returned.

example:
(begin
(print "This is a block of 2 expressions\n")
(pr int "==========—==—=—=—=——=—————-o—-——————o))

Some built-in functions like cond, define, dolist, dotimes, and while already allow multiple
expressions in their bodies, but begi n is often used in an if expression.

The silent function works like begi n, but suppresses console output on return.

beta

syntax: (beta cum-a, num-b)
The Beta function, bet a, is derived from the log Gamma ganmal n function as follows:

beta = exp(gammaln(a) + gammaln(b) - gammaln(a + b))

example:
(beta 1 2) = 0.5

betai

syntax: (betai num-x, num-a, num-b)

betai 99

newLISP Users Manual and Reference

The Incomplete Beta function, bet ai , equals the cumulative probability of the Beta
distribution, bet ai , at x in num-x. The cumulative binomial distribution is defined as the
probability of an event, pev, with probability p to occur k or more times in N trials:

pev = Betai(p, k, N-k + 1)

example:
(betai 0.5 3 8) = 0.9453125

probability of Fratio for dfl/df2

(define (f-prob f df1l df2)
(let (prob (mul 2 (betai (div df2 (add df2 (mul dfl f)))
(mul 0.5 df2)
(mul 0.5 df1))))
(div (if (> prob 1) (sub 2 prob) prob) 2)))

The first example calculates the probability for an event, with a probability of 0.5 to occur 3
or more times in 10 trials (8 = 10 - 3 + 1). The incomplete Beta distribution can be used to
derive a variety of other functions in mathematics and statistics. The second example
calculates the one-tailed probability of a variance, F ratio. In similar fashion, students t could
be calculated using bet ai . See also the binomial function.

binomial

syntax: (binomial int-n int-k float-p)

The binomial distribution function is defined as the probability for an event to occur int-k
times in int-n trials if that event has a probability of float-p and all trials are independent of
one another:

binomial = n! / (k! * (n - k)!) * pow(p, k) * pow(1.0 - p, n - k)

where x! is the factorial of x and pow(x, y) is x raised to the power of y.

example:
(binomal 10 3 0.5) = 0.1171875

The example calculates the probability for an event with a probability of 0.5 to occur 3 times
in 10 trials. For a cumulated distribution, see the betai function.

binomial 100

newLISP Users Manual and Reference

case

syntax: (case exp-switch (exp-1 body-1) [(exp-2 body-2) ...]1)

The result of evaluating exp-switch is compared to each of the unevaluated expressions exp-1,
exp-2, If a match is found, the corresponding expressions in body are evaluated. The result
of the last match is returned as the result for the whole case expression.

example:
(define (translate n)
(case n

(1 "one")
(2 "two")
(3 "three")
(4 "four")
(true "Can't translate this")))

(translate 3) = "three"

(transl ate 10) = "Can't translate this"

The last body in this example is evaluated if no match can be found.

catch

syntax: (catch exp)
syntax: (catch exp symbol)

In the first syntax cat ch will return the result of the evaluation of exp or the evaluated
argument of a throw executed during the evaluation of exp:

example:

(catch (dotinmes (x 1000)
(if (= x 500) (throw x)))) = 500

This form is useful for breaking out of iteration loops or to force an early return from a
function or expression block:

(define (foo x)
(|f condition (throw 123))
456)

; if condition is true

(catch (foo p)) = 123

: if condition is not true

catch 101

newLISP Users Manual and Reference
(catch (foo p)) = 456

In the second syntax cat ch evaluates the expression exp, stores the result in symbol, and
returns t r ue. If an error occurs during evaluation, cat ch returns ni | and stores the error
message in symbol. This form is useful when errors can be expected as a normal potential
outcome of a function and are dealt with during program execution.

example:
(catch (func 3 4) 'result) = nil
result = "Invalid function in function catch"
(constant 'func +) = add <4068A6>
(catch (func 3 4) 'result) = true
result > 7

When a throw is executed during the evaluation of expr cat ch will return t r ue and the
t hr ow argument will be stored in symbol:

(catch (dotinmes (x 100)
(if (= x 50) (throw"fin")) 'result) = true

result = "fin"

Like the first syntax of cat ch, the second can be used for early return from functions or for
breaking out of iteration loops, but additionally errors can be caught. See also throw-error for
throwing user defined errors.

ceil

syntax: (ceil number)
Returns the next higher integer to number as a floating point number.

example:

(ceil -1.5) = -1
(ceil 3.4) = 4

See also the function floor.

change-dir

syntax: (change-dir str-path)

change-dir 102

newLISP Users Manual and Reference

Makes the current directory the one given in str-path. Returns t r ue on success and ni |
otherwise.

example:

(change-dir "/etc")

Makes / et ¢ the current directory.

char

syntax: (char str [int-index])
syntax: (char int)

Given a string argument, extracts from str the character at index int-index and returns the
ASCII value of that character. If int-index is omitted, O (zero) is assumed.

See also Indexing elements of strings and lists.
Given an integer argument, char returns a string containing the ASCII character with value
int.

On UTE-8 enabled versions of newLISP the value in int is taken as unicode and a UTF-8
character is returned.

example:

(char "ABC") = 65 ; ASCI| code for "A"

(char "ABC' 1) = 66 ; ASCI| code for "B"

(char "ABC' -1) = 67 ; ASCIl code for "C

(char "B") = 66 ; ASCI| code for "B"

(char 65) = "A"

(char 66) = "B"

(char (char 65)) = 65 ; two inverse applications

(map char (sequence 1 255)) ; current character set

chop

syntax: (chop str [int-chars])
syntax: (chop list [int-elements])

If the first argument evaluates to a string, chop returns a copy of str with the last int-char
characters omitted. If the int-char argument is absent, one character is omitted. chop does
not alter str.

chop 103

newLISP Users Manual and Reference

If the first argument evaluates to a list, a copy of the list is returned with int-elements omitted
in like manner as for strings.

example:
(set 'str "newll SP") = "newL| SP"

(chop str) = "newLl S'
(chop str 2) = "newL|"
str = "newL| SP"

(set '"Ist "(a b (c d) e))

(chop Ist) = (a b (c d))
(chop Ist 2) = (a b)
| st = (a b (c d) e)
clean

syntax: (clean exp-predicate list)

The predicate exp-predicate is applied to each element of the list list. In the list returned all
elements for which exp-predicate is t r ue are eliminated.

cl ean works like filter with a negated predicate.

example:
(clean symbol? '(1 2d 4f g5h)) = (12 45)
(filter synmbol? '(12d 4f g5h)) = (df gh)
(define (big? x) (> x 5)) = (lanbda (x) (> x 5))
(clean big? '(1 10 3 6 4 5 11)) = (13 4 5)

(clean (fn (x) (> x 5)) '(1 10 3 6 4 5 11)) = (13 4 5)

The predicate may be a built-in predicate or a user-defined function or lambda expression.

For cleaning a list of numbers with numbers from another list see difference and intersect
with the list option.

See also the related function index which returns the indexes of the remaining elements and
filter which returns all elements of a list for which a predicate is true.

clean 104

newLISP Users Manual and Reference

close

syntax: (close int-file)

Closes a file specified by a file handle in int-file. The file handle was obtained in a previous
open operation. ¢l 0ose returns t r ue on success and ni | otherwise.

example:
(cl ose (device)) = true
(close 7) = true
(cl ose aHandl e) = true

Note that using cl ose on device automatically resets it to O (zero, the screen device).

command-line

syntax: (command-line [bool])

Enables or disables the interactive command-line mode in the console window. When bool
evaluates to ni | the command line is switched off. When bool evaluates to anything other
than ni | , command-line mode is switched on. Reset or any error condition also switches
command-line mode on.

example:

(command-1line nil)

On Linux/UNIX this will also disable the Ctrl-C handler.

cond

syntax: (cond (exp-condition-1 body-1) [(exp-condition-2 body-2) ...]

Similar to i f is the conditional evaluation of a body expression using cond. The exp-
condition expressions are evaluated in turn until some exp-condition-i is found that evaluates
to anything other than ni | or the empty list () . Then the result of evaluating body-i is
returned as the result of the whole cond-expression. If all conditions evaluate to ni | or an
empty list (), cond returns the value of the last cond-expression.

example:

(define (classify x)
(cond

cond 105

newLISP Users Manual and Reference

(< x 0) "negative")
(< x 10) "small™")

(< x 20) "nediunt)
(>= x 30) "big")))

~ N~

(classify 15) = "medi unt
(classify 22) = "nil"
(classify 100) = "big"
(classify -10) = "negative"

When a body_n is missing, the value of the last cond-expression evaluated is returned. If no
condition evaluates to t r ue the value of the last conditional expression is returned, that is,
ni | or the empty list ().

(cond ((+ 3 4))) =7

See also if with multiple arguments, which behaves like a cond but without the parenthesis
enclosing the condition-body pair of expressions.

cons

syntax: (cons exp-1 exp-2)

If exp-2 evaluates to a list, then a list is returned with the result of evaluating exp-1 inserted as
the first element. If exp-2 evaluates to anything else than a list, a list is returned, containing
two elements from evaluating exp-1 and exp-2. Note that there is no dotted pair in newLISP:
consing two atoms constructs a list not a dotted pair.

example:
(cons "a 'b) = (a b)
(cons "a '(b c)) = (a b c)
(cons (+ 34) (* 55)) = (7 25
(cons '(1 2) '(3 4)) = ((12) 34
(cons nil 1) = (nil 1)
(cons 1 nil) = (1 nil)
(cons 1) = (1)
(cons) = ()

In newLISP (cons 's nil) resultsin (s nil),not(s) asin other LISPs. newLISP treats
ni | as a Boolean value, not as an equivalent to the empty list () and a LISP cell in newLISP
only holds one value.

cons behaves like the inverse operation to first and rest, or like the inverse operation of first
and last if the list is a pair:

(cons (first "(abc)) (rest "(abc))) = (abc)

(cons (first "(x y)) (last '"(x vy))) = (X Yy)

cons 106

newLISP Users Manual and Reference

constant

syntax: (constant sym-1 exp-1 [sym-2 exp-2 ... 1)

Works exactly like set but protects the symbol from subsequent modification. A symbol set
with const ant can only be modified again using const ant . When trying to modify the
contents of a symbol set with const ant an error message is generated by newLISP. Only
symbols from the current context can be used with const ant . This prevents const ant from
overwriting symbols, which have been protected in their home context.

Symbols can also be protected using const ant after being initialized with set, define or
define-macro:

(constant 'aVar 123) = 123
(set 'avVar 999)
= error: synbol is protected in function set: aVar

(define (double x) (+ x x))
(constant ' doubl e)
; equivalent to

(constant 'double (fn (x) (+ x x)))

The first example defines a constant aVar , which can only be changed by another const ant
statement. The second example protects doubl e from being changed, except by another
const ant statement. Because a function definition in newLISP is equivalent to an
assignment of a lambda function, both steps can be collapsed as shown in the last statement
line. This could be an important technique to avoid protection errors when a file is loaded
multiple times.

The last value to be assigned can be omitted. const ant returns the contents of the last
symbol set and protected.

Built-in functions can be assigned to symbols or to the names of other built-in functions,
effectively redefining them as different functions. There is no performance loss when
renaming functions.

(constant 'squareroot sqrt) = sqrt <406C2E>
(constant '+ add) = add <4068A6>

squar er oot will behave like sqrt. + is redefined to use the mixed type floating point
mode of add. The hexadecimal number displayed in the result is the binary address of the
built-in function and is different on different platforms and OSs.

constant 107

newLISP Users Manual and Reference

context

syntax: (context [sym-context])

syntax: (context sym-context str exp-value)
syntax: (context sym-context str)

In the first syntax cont ext is used to switch to a different context namespace. Subsequent
load of newLISP source or functions like eval-string will put newly created symbols and
function definitions in the new context.

If the context still needs to be created the symbol for the new context should be specified.
When no parameter is specified in context, then the symbol for the current context is
returned.

Contexts evaluate to themselves, because of this a quote is not necessary to switch to a
different context if that context already exists.

example:
(context ' GRAPH) ; create / switch context GRAPH
(define (foo-draw x y 2z) ; function resides in GRAPH

(....))

(set 'var 12345)

(synbol s) = (foo-draw var) ; GRAPH has now 2 synbol s
(context MNAIN) ; switch back to MAIN (quote notr
required)

(print GRAPH var) = 12345 ; contents of synbol in GRAPH

(GRAPH: f oo-draw 10 20 30) ; executes function in GRAPH
(set ' GRAPH:. var 6789) ; assign to a synbol in GRAPH

If a context symbol is referred to before the context exists, the context will be created
implicitly.

(set 'person:age 0) ; no need to create context first
(set 'person:address "") ; useful for quickly defining
; data structures

Contexts can be copied:
(new person ' JohnDoe) = JohnDoe
(set 'JohnDoe: age 99)
Contexts can be referred to by a variable:
(set ' human JohnDoe)
human: age = 99

context 108

newLISP Users Manual and Reference

(set 'human:address "1 Main Street")

JohnDoe: addr ess = "1 Main Street"

An evaluated context (no quote) can be given as an argument:

(set 'old MAIN
(context FQOO) ; Wil switch to FOO (note unquoted FOO
(context ol d) ; Wil switch back to MAIN

If an identifier with the same symbol already exists, it is redefined to be a context.

Symbols within the current context are referred to simply by their names as are built-in
functions and special symbols like ni | and t r ue. Symbols outside the current context are
referenced by prefixing the symbol name with the context name and a colon : . To quote a
symbol in a different context, put the quote mark before the context name.

Within a given context, symbols may be created with the same name as built-in functions or
context symbols in MAIN, thereby overwriting the symbols in MAIN when prefixing them with
a context:

(context 'CTX)
(define (CTX new var)

(context 'MAIN)

CTX:new will overwrite new in MAIN.

In the second syntax cont ext is used to create dictionaries for hash like associative memory
access:

;; create a synbol and store data in it
(context 'MyHash "John Doe" 123) = 123
(context 'MyHash " @$%" "hello world") = "hello world"

;; retrieve contents from synbol
(context 'MyHash "john Doe") = 123
(context ' MyHash " @$%") = "hello world"

The first two statements create a symbol and store a value of any data type in it. The first
statement also creates the hash context named MyHash.

Hash symbols can contain spaces or any other special characters normally not allowed in
newLISP symbols working as names of variables. This second syntax of cont ext will not
switch to the new namespace, only create the new symbol and return the value contained in
it.

context 109

newLISP Users Manual and Reference

context?

syntax: (context? exp)
syntax: (context? exp str-sym)

In the first syntax context? is a predicate which returns t r ue only if exp evaluates to a context
and returns ni | otherwise.

example:
(context? MAIN) = true
(set 'x 123)
(context? x) = nil

(set 'FOO q "hola") = "hola"
(set 'ctx FOQO
(context? ctx) = true ; ctx contains context foo

The second syntax checks for the existence of a symbol in a context. The symbol is specified
by its name string in str-sym.

(context? FOO "q") = true

(context? FOO "p") = nil

See also context for changing and creating name spaces and creating hash symbols in
contexts.

copy-file

syntax: (copy-file str-from-name str-to-name)

Copies a file from a path-file-name given in str-from-name to a path-file-name given in str-to-
name. Returns t r ue or ni | depending on a successful copy.

example:

(copy-file "/home/ me/ new isp/data.lsp" "/tnp/data.lsp")

CcoS

syntax: (cos num-radians)
The cosine function is calculated from num and the result is returned.

example:

Cos 110

newLISP Users Manual and Reference

(cos 1) = 0. 5403023059
(set '"pi (mul 2 (acos 0))) = 3.141592654
(cos pi) = -1

count

syntax: (count list-1 list-2)

Counts elements of list-1 in list-2 and returns a list of those counts.

example:
(count "(123) '(3214231122) = (342
(count '(z a) '(zdzbazya)) = (3 2)

(set 'Ist (explode (read-file "nyFile.txt")
(set 'letter-counts (count (unique Ist) Ist

))
))
The second example counts all occurrences of different letters in myFi | e. t xt .

The first list in count , which specifies the items to be counted in the second list, should be
unique. For items which are not unique only the first instance will carry a count and all other
instances will display O (zero).

cpymem

syntax: (cpymem int-from-address int-to-address int-bytes)

Copies int-bytes of memory from memory address int-from-address to memory address int-to-
address. The function can be used for direct memory writing/reading or for hacking newLISP
internals, i.e. type bits in LISP cells, or building functions with binary executable code on the
fly.

Note that this function should only be used when familiar with newLISP internals. cpynem
can crash the system or make it unstable if not used correctly.

example:

(cpymem (pack "c c¢c" 0 32) (last (dunp 'sym) 2)
(set 's "0123456789")
(cpymem "xxx" (+ (address s) 5) 3)

s = "01234xxx89")

cpymem 111

newLISP Users Manual and Reference

The first example would remove the protection bit in symbol sym The second example copies
a string directly into a string variable.

The following example creates a new function from scratch running a piece of binary code
adding up two numbers. The following assembly language piece shows the x86 code to add
up two numbers and return the result:

55 push epb

8B EC nmov ebp, esp

8B 45 08 nobv eax, [ebp+08]
03 45 0C add eax, [ebp+0c]
5D pop ebp

(6] ret

The binary representation is attached to a new function created in newLISP:

;. set code
(set 'bindata (pack "cccccceccccec”
0x55 0x8B OXxEC 0x8B 0x45 0x08 0x03 0x45 0x0C 0x5D 0xC3))

get function tenplate
(set 'foo print)

; change type to library inport and OGS calling conventions
; (cpymem (pack "1d" 265) (first (dump foo)) 4) ; Wn32 stdcall
(cpymem (pack "1d" 264) (first (dunp foo)) 4) ; Linux cdecl

; set code pointer
(cpymem (pack "1d" (address bindata)) (+ (first (dump foo)) 12)
4)

execut e
(foo 3 4) =7

See also dump for retrieving binary address and contents from newLISP cells.

cre32

syntax: (crc32 str-data)

Calculates a running 32-bit CRC (Circular Redundancy Check) sum from the buffer in str-data
starting with a CRC of Oxf f f f f f f f for the first byte. cr ¢32 uses an algorithm published by

WWW.W3.0rg.
example:
(crc32 "abcdef ghij kl mopqr st uvwyz") = 1277644989

cr c32 is often used to verify data integrity in unsafe data transmissions.

crc32 112

http://www.w3.org/

newLISP Users Manual and Reference

crit-chi2

syntax: (crit-chi2 num-probability num-df)

Calculates the critical minimum Chi-square for a given confidence probability num-probability
and degrees of freedom num-df for testing the significance of a statistical null hypothesis.

example:
(crit-chi2 0.99 4) = 13.27670443

See also the inverse function prob-chi2.

Crit-z

syntax: (crit-z num-probability)

Calculates the critical normal distributed Z value for a given cumulated probability num-
probability for testing of statistical significance and confidence intervals.

example:
(crit-z 0.999) = 3.090232372

See also the inverse function prob-z.

current-line

syntax: (current-line)

Retrieves the contents of the last read-line operation. The contents of current -1 i ne is also
implicitly used when using write-line without a string parameter.

The following source shows the typical code pattern for UNIX command line filter:
example:

#!/usr/bin/newisp

(set "inFile (open (main-args 2) "read"))
(while (read-line inFile)
(if (starts-with (current-line) ";;")
(wite-line)))
(exit)

The program is invoked:

current-line 113

newLISP Users Manual and Reference
Afilter nyfile.lsp

This displays all comment lines starting with ; ; from a file given as argument on the
command line when invoking the script called fil ter.

date

syntax: (date)
syntax: (date int-secs [int-offset])
syntax: (date int-secs int-offset str-format)

The first syntax returns the date and time string representation for the local time zone of the
current time.

In the second syntax dat e translates the number of seconds in int-secs into its date/time
string representation for the local time zone. The number in int-secs is usually retrieved from
the system using date-value. Optionally a time-zone offset can be specified in int-offset in
minutes, which is added or subtracted before conversion of int-sec to a string.

example:
(date) = "Fri Cct 29 09:56:58 2004"
(date (date-value)) = "Sat May 20 11:37:15 2006"
(date (date-val ue) 300) = "Sat May 20 16:37:19 2006" ;5
hours of fset
(date 0) = "Wed Dec 31 16:00: 00 1969"

Note that on some Win32 compiled versions values, which result in dates earlier than 1970
January, 1st 00:00:00 return ni | . But the MinGW compiled version will also work with

values resulting in dates up to 24 hours previous than 1970-1-1 and return a date time string
for 1969-12-31.

The way the date and time are presented in a string depends on the underlying operating
system. The second example would show 1-1-1970 0:0 when in the Greenwich time zone, but
shows a time lag of 8 hours when in California with a PST time zone. dat e assumes the int-
secs given in Universal Coordinated Time UCT (formerly GMT) and converts adjusting to the
local time-zone.

The third syntax allows the date string to be fully customized with translation of day and
month names to the current locale using a format specified in str-format:

example:

(set-locale "german") = "de_DE"

(date (date-value) 0 "%A %d. 9B %)
= "Montag 7. Marz 2005"
; on Linux - suppresses the leading O

date 114

newLISP Users Manual and Reference

(set-locale "C') ; default POSIX

(date (date-value) 0 "%A 9B %d %)
= "Monday March 07 2005" ;

(date (date-value) 0 "% %td % %)
= "Mon 7 Mar 2005"
suppressing |l eading O on Wn32 using #

(set-locale "german")

(date (date-value) 0 "%")
= "07.03.2005" ; day nmonth year

(set-locale "C")
(date (date-value) 0 "9%")

= "03/07/05" ; nonth day year

The following table summarizes all format specifiers available on both, Win32 and
Linux/UNIX platforms. More format options are available on Linux/UNIX. For details consult
the documentation of the 'C' function st rf ti me() in the individual platform's C-library.

for

mat description
%a abbreviated weekday name according to the current locale

%A full weekday name according to the current locale

%b abbreviated month name according to the current locale

%B full month name according to the current locale

%c preferred date and time representation for the current locale

%d day of the month as a decimal number (range 01 to 31)

%H hour as a decimal number using a 24-hour clock (range 00 to 23)
%I hour as a decimal number using a 12-hour clock (range 01 to 12)
%j day of the year as a decimal number (range 001 to 366)

%m month as a decimal number (range 01 to 12)

%M minute as a decimal number

either 'am' or 'pm' according to the given time value, or the corresponding

%p .
strings for the current locale

%S second as a decimal number 0 to 61 (60 and 61 to account for occasional leap
seconds)

%U week number of the current year as a decimal number, starting with the first

Sunday as ;the first day of the first week
%w day of the week as a decimal, Sunday being 0
%W week number of the current year as a decimal number, starting with the first

date 115

newLISP Users Manual and Reference

Monday as the first day of the first week
%x preferred date representation for the current locale without the time
%X preferred time representation for the current locale without the date
%y year as a decimal number without a century (range 00 to 99)
%Y year as a decimal number including the century
time zone or name or abbreviation, same as %Z on Win32, different on

0,

A% | inux/UNIX

%7 time zone or name or abbreviation, same as %z on Win32, different on
% Linux/UNIX

%% a literal '%' character

Leading zeros in the display of decimal numbers can be suppressed using - (minus) on
Linux/UNIX and using # on Win32.

See also date-value, time-of-day, time and now.

date-value

syntax: (date-value int-year int-month int-day [int-hour int-min int-sec])
syntax: (date-value)

In the first syntax dat e- val ue returns the time in seconds since 1970-1-1 00:00:00 for a
given date and time. The parameters for the hour, minutes and seconds are optional. The
time is assumed to be Universal Coordinated Time (UCT), not adjusted for the current time
zZone.

In the second syntax dat e- val ue returns the time value in seconds for the current time.

example:
(dat e-val ue 2002 2 28) = 1014854400
(date-value 1970 1 1 0 0 0) =0
(date (apply date-value (now))) = "Wed May 24 10:02: 47 2006"
(date (date-val ue)) = "Wed May 24 10:02: 47 2006"
(date) = "Wed May 24 10:02:47 2006"

the following function can be used to to transform a dat e- val ue back to a list:

(define (val ue-date val)
(append
(slice (now (+ (/ (date-value) -60) (/ val 60))) 0 5)
(list (%val 60))))

(val ue-date 1014854400) = (2002 2 28 0 0 0)

date-value 116

newLISP Users Manual and Reference

See also date, time-of-day, time and now.

debug

syntax: (debug func)

Does trace and starts evaluating the user defined function in func. debug is a shortcut for
executing (t race true) and then entering the function to be debugged.

example:

;; instead of doing
(trace true)
(my-func a b c)
(trace nil)

use debug as a shortcut
(debug (my-func a b c))

See also trace.

dec

syntax: (dec sym [num])

The number in sym is decremented by 1 or by the optional number num and returned. dec
performs mixed int and float arithmetic according to the following rules:

If num is absent i nc always returns an integer in sym. If the input arguments are floats and
numis absent, the input arguments are truncated to integers.

Integer calculations (without num) which result in numbers greater than 2147483647 wrap
around to negative numbers. Results smaller than -2147483648 wrap around to positive
numbers.

If num is supplied, dec always returns the result as floating point even for integer input
arguments.

example:
(set 'x 10) = 10
(dec 'x) = 9
X =9
(dec 'x 0.25) = 8.75
X = 8.75

See also inc for incrementing numbers.

dec 117

newLISP Users Manual and Reference

define

syntax: (define (sym-name [sym-param-1 ...]1) [body-1 ...])
syntax: (define sym-name exp)

Defines a new function sym-name with optional parameters sym-param-1 def i ne is
equivalent to assigning a lambda expression to sym-name. When calling a defined function, all
arguments are evaluated and assigned to the variables in sym-param-1 ..., then the body-1 ...
expression(s) are evaluated. When defining a function, the result lambda expression,
contained in sym-name, is returned.

All parameters defined are optional. When calling a defined function without supplying
parameters, those parameters assume the value ni | .

The return value of def i ne is the assigned lambda expression. When calling a user defined
function, the return value is the last expression evaluated in the function body.

example:
(define (area x y) (* x vy)) = (lanbda (x y) (* x vy))
(area 2 3) =6

As an alternative, ar ea could be defined as a function without using def i ne.

(set '"area (lanbda (x y) (* x vy))

lambda or fn expressions may be used by themselves as anonymous functions without being
defined as a symbol:

((lambda (x y) (* xy)) 2 3) = 6
((fn (xy) (* xy)) 23 = 6

f n is just a shorter form of writing | anbda.

The second version of def i ne works similar to a set.

example:

(define x 123) = 123
; Is equivalent to
(set 'x 123) = 123

(define area (lanbda (x y) (* X Vy)))
; Is equivalent to

(set 'area (lanmbda (x y) (* x vy)))

; Is equivalent to

(define (area x y) (* x vy))

Trying to redefine a protected symbol will cause an error message.

define 118

newLISP Users Manual and Reference

define-macro

syntax: (define-macro (sym-name [sym-param-1 ...]1) body)

Defines a new macro sym-name with optional arguments sym-param-1 def i ne- macr o is
equivalent to assigning a lambda-macro expression to a symbol. When calling a macro defined
function, arguments are assigned to the variables in sym-param-1 ... without evaluating the
arguments first. Then the body expression(s) are evaluated. When evaluating the def i ne-
macr o function, the lambda-macro expression is returned.

example:
;; use underscores on synbols
(define-macro (ny-setq _x _y) (set _x (eval _y)))
= (lanbda-macro (_x _y) (set _x (eval _y)))

(my-setqg x 123) = 123

Macros in newLISP are similar to def i ne functions, but do not evaluate their arguments.
New functions can be created that behave like built-in functions, which delay evaluation of
certain arguments. Since macros can access the arguments inside a parameter list, they can be
used to create flow-control functions, like those already built into newLISP.

Note that in macros the danger exists to pass a parameter using the same variable name as
used in the macro definition and the macro internal variable would end up receiving ni | ,
instead of the value intended:

;; not a good definition!
(define-macro (my-setq x y) (set x (eval y)))
;; symbol name clash for x

(my-setq x 123) = 123
X = nil

There are several methods to avoid this problem known as variable capture and write hygienic
macros:

« Precede all macro variable names by an underscore character. Using this or a similar
convention, the danger of symbol name clashes can be avoided.

+ Put the macro in its own lexically closed name space context. If the function has the
same name as the context, it can be called by using the context name alone. A
function with this characteristic is called the default function.

« Use args to access arguments passed by the function.

example:

define-macro 119

newLISP Users Manual and Reference

;; amcro as a lexically isolated function
;; avoiding variable capture in passed paraneters

(context 'ny-setq)
(define-macro (ny-setq:ny-setq x y) (set x (eval y)))
(context MAIN)

(my-setq x 123) = 123 ; no synbol clash

The macro in the example is lexically isolated and no variable capture can occur. Instead of
calling the macro using (my- set g: my-setq ...) it can be called just with (ny-set q

. .) because it is the default function.
A third possibility is to refer to passed parameters using args:
example:

avoi d variable capture in nmacros using the args function

(define-macro (my-setq) (set (args 0) (eval (args 1))))

The last example shows how letex can be combined with def i ne- macr o to do variable
expansion of macro variables into an expression to be evaluated:

example:

(define-macro (dolist-while)

(letex (var (args 0 0)
Ist (args 0 1)
cnd (args 0 2)
body (cons 'begin (1 (args))))

(let (res)
(catch (dolist (var |st)
(if (set "res cnd) body (throwres)))))))

> (dolist-while (x "(abcdef) (!=x"'d)) (println x))

dol i st - whi | e loops through a list while the condition is true. Note that a similar feature is
already built-in to dolist as a break condition optional parameter.

Also, the expand function does variable expansion explicitly, without evaluation of the
expanded expression.

define-macro 120

newLISP Users Manual and Reference

def-new

syntax: (def-new sym-source [sym-target])

This function works similar to new but only creates a copy of one symbol and its contents
from the symbol in sym-source. When sym-target is not given, a symbol with the same name is
created in the current context. All symbols referenced in the contents of sym-source will be
translated to symbol references into the current context. If an argument is present in sym-
target, the copy will be made into a symbol and context as referenced by the symbol in sym-
target. This allows renaming of the function during copy and allows placing the copy in a
different context. All symbol references will be translated into symbol references of the target
context

def - newreturns the symbol created:

example:

(set 'foo:var '(foo:x foo:y))

(def -new ' foo: var) = var

var = (xvy)

(def-new ' foo:var 'nyvar) = nyvar
nyvar = (xy)

(def-new 'foo:var 'ct:myvar) = ct:nmyvar

ct:myvar = (ct:x ct:y)

The function def - new can be used to configure contexts or context objects in a more
granular fashion than possible with new, which copies a whole context.

delete

syntax: (delete symbol [bool])
syntax: (delete sym-context [bool])

Deletes a symbol symbol or a context in sym-context with all contained symbols from
newLISP's symbol table. References to the symbol will be changed to ni | When the
expression in bool evaluates to t r ue or anything other than ni | , symbols are only deleted
when they are not referenced.

Protected symbols of built-in functions and special symbols like ni | or t r ue cannot be
deleted.

del et e returns t r ue if the symbol was deleted, else it returns ni | .

delete 121

newLISP Users Manual and Reference

example:
(set '"Ist '(a b avar c d))

(del ete "aVvar) ; aVar del eted, references marked nil
| st = (abmnl c d

(set '"Ist '(a b avar c d))

(del ete "avar true)

= nil ; protect aVar if referenced

| st = (a b aVar c d)

(set 'foo:x 123)
(set 'foo:y "hello")

(del ete foo0) = in contexts the quote may be omtted
foo:x, foo:y and foo will be del eted

Note that deleting a symbol, which is part of a function currently executing, can crash the
system or have other unforeseen effects.

delete-file

syntax: (delete-file str-file-name)

Deletes a file given in str-file-name. Returns t r ue or ni | depending on a successful outcome
of the delete operation.

example:

(delete-file "junk")

This deletes the file j unk in the current directory.

device

syntax: (device [int])

int is a I/0 device number, which is O (zero) for the default STD I/O console window. int may
also be a file handle previously obtained from using open. When no argument is supplied, the
current I/0 device number is returned. The I/O channel specified by devi ce is internally

used by the functions print and read-line. When the current I/0 device is O print sends output

device 122

newLISP Users Manual and Reference

to the console window and read-line accepts input from the keyboard. If the current I/0
device has been set opening a file, then print and read-line work on that file.

example:
(device (open "myfile" "wite")) =5
(print "This goes in nyfile") = "This goes in nyfile"
(cl ose (device)) = true

Note that using close on devi ce automatically resets devi ce to 0 (zero).

difference

syntax: (difference list-A list-B)
syntax: (difference list-A list-B bool)

In the first syntax di f f er ence returns the set difference of list-A - list-B. The resulting list
only has elements occurring in list-A but not in list-B. All elements in the resulting list are
unique, but list-A and list-B need not to be unique. Elements in the lists can be of any type of
LISP expression.

example:
(difference '(256 03502 '(123321)) = (56 0)

In the second syntax di f f er ence works in list mode. bool specifies t r ue or an expression
not evaluating to ni | . In the resulting list all elements of list-B are eliminated in list-A but
duplicates of other elements in list-A are left.

example:
(difference '(2 56 03502) '"(123321)true) = (56050)

See also the set functions intersect and unique.

directory

syntax: (directory [str-path])
syntax: (directory str-path str-pattern [int-option])

A list of directory entry names is returned for the directory path given in str-path. On failure
ni | is returned. When omitting str-path, the list of entries in the current directory is
returned.

example:

(directory "/hbin")
directory 123

newLISP Users Manual and Reference

(directory "c:/")

The first example returns the directory of / bi n, the second line returns a list of directory
entries in the root directory of drive C:. Note that on Win32 systems a forward slash / can be
used in path names. When using a backslash, it has to be preceded by a second backslash.

On Win32 systems there should be no trailing slash character after the directory name, but
the drive letter has to be followed by a : / . On Linux/UNIX systems a trailing slash after the
directory name will cause no problems.

In the second syntax di r ect or y can take a regular expression pattern in str-pattern. Only
filenames matching the pattern will be returned in the list of directory entries. In int-options
special regular expression options can be specified, see regex for details.

example:
(directory "." "\\.c") = ("foo.c" "bar.c")
or using braces as string pattern delimters
(directory "." {\.c}) = ("foo.c" "bar.c")

The regular expression forces di r ect ory to only return file names containing the string

.C .

For other functions using regular expressions see find, parse, regex, replace and search..

directory?

syntax: (directory? str-path)
Checks if a disk node is a directory. Returns t r ue or ni | depending on outcome.

(directory? "/etc") = true
(directory? "/usr/bin/emacs") = nil

On Win32 systems there should be no trailing slash character after the directory name, but
the drive letter has to be followed by a : / . On Linux/UNIX systems a trailing slash after the
directory name will cause no problems.

div
syntax: (div num-1 num-2 [num-3 ...])

num-1 is successively divided by the number in num-2 di v can perform mixed type
arithmetic, but always returns floating point numbers. Any floating point calculation with NaN
also returns NaN.

div 124

newLISP Users Manual and Reference

example:
(div 10 3) = 3.333333333
(div 120 (sub 9.0 6) 100) = 0.4

dolist

syntax: (dolist (sym list [exp-break]) body)

The expressions in body are evaluated for each element in list. The variable in sym is set to
each of the elements before evaluation of the body expressions. The variable used as loop
index is local and behaves according to the rules of dynamic scoping.

Optionally, a condition for early loop exit may be defined in exp-break. If the break expression
evaluates to any non ni | value, the dol i st loop returns with the value of exp-break. The
break condition is tested before evaluating body.

example:
(set 'x 123)
(dolist (x "(abcdef @) ; prints: abcdefg

(print x)) => g return value

(dolist (x '"(abcdef g (=x"'e)) ; prints: abcd

(print x))
;; X is local in dolist
;7 X has still its old value outside the |oop
X = 123 ; x has still its old value

This prints abcdef g in the console window. The value for x is unchanged after execution of
dol i st because of x's local scope. The return value of dol i st is the result of last evaluated
expression.

The internal system variable $i dx, keeps track of the current offset into the list, and can be
accessed during the execution of dol i st :

(dolist (x '(abdef g))
(printin $idx ":" x)) =g

agRrwbdRO
@ roooTw

The console output is shown in bold face. $i dx is protected and cannot be changed by the

user.

dolist

125

newLISP Users Manual and Reference

dotimes

syntax: (dotimes (sym int [exp-break]) body)

The expressions in body are evaluated int times. The variable in sym is set from 0 to (int - 1)
each time before evaluating the body expression(s). The variable used as loop index is local to
the dot i mes expression and behaves according the rules of dynamic scoping. The loop index
is of floating point type. dot i mes returns the result of the last expression evaluated in body.

Optionally a condition for early loop exit may be defined in exp-break. If the break expression
evaluates to any non ni | value, the dot i nes loop returns with the value of exp-break. The
break condition is tested before evaluating body.

example:
(dotimes (x 10) ; prints: 0123456789
(print x)) =9 ; return val ue

This prints 0123456789 in the console window.

dotree

syntax: (dotree (sym-context) body)

The expressions in body are evaluated for all symbols in sym-context. The variable in sym is set
to a different symbol in sym-context each time before evaluating the body expression(s). The
variable used as loop index is local to the dot r ee expression and behaves according the rules
of dynamic scoping. The symbols are accessed in their context in a sorted manner.

example:

faster and | ess nenory over head
(dotree (s 'SoneCTX) (print s " "))

;; the quote can be omitted
(dotree (s SoneCTX) (print s " "))

;; slower and nore nmenory usage
(dolist (s (synbols 'SomeCTX)) (print s " "))

This prints the names of all symbols of SomeCTX in the console window.

dotree 126

newLISP Users Manual and Reference

do-until

syntax: (do-until exp-condition body)

The expressions in body are evaluated then exp-condition is evaluated. If the evaluation of exp-
condition is not ni | , then the do- unt i | expression is finished, else the the expressions in
body get evaluated again. Note that do- unt i | evaluates the conditional expression after
evaluating the body expressions, while until checks the condition before evaluating the body.
The return value of the do- unt i | expression is the last evaluation of the body expression.

example:

(set 'x 1)
(do-until (= x 1) (inc 'x))
X = 2

(set 'x 1)
(until (= x 1) (inc 'x))
X =1

While do- unt i | goes through the loop at least once, until will never enter the loop.

See also while and do-while.

do-while

syntax: (do-while exp-condition body)

The expressions in body are evaluated then exp-condition is evaluated. If the evaluation of exp-
condition is ni | , then the do- whi | e expression is finished, else the expressions in body get
evaluated again. Note that do- whi | e evaluates the conditional expression after evaluating
the body expressions, while while checks the condition before evaluating the body. The return
value of the do- whi | e expression is the last evaluation of the body expression.

example:
(set 'x 10)
(do-while (< x 10) (inc 'x))
X = 11
(set 'x 10)
(while (< x 10) (inc 'x))
X = 10

While do- whi | e goes through the loop at least once, while will never enter the loop.

See also until and do-until.

do-while 127

newLISP Users Manual and Reference

dump

syntax: (dump [exp])

Shows the binary contents of a newLISP cell. Without an argument this functions outputs a
listing of all LISP cells to the console. When exp is given, it is evaluated and the contents of a
LISP cell is returned in a list.

example:
(dunp ' a) = (9586996 5 9578692 9578692 9759280)
(dunp 999) = (9586996 130 9578692 9578692 999)

The list contains the following memory addresses and information:

(0) menory address of the LISP cell
(1) cell->type, mayor/m nor type, see newisp.h for details
(2) cell->next, linked list ptr
(3) cell->aux, string length+l or |ow word of | EEE 754 doubl e fl oat
(4) cell->contents, string/synbol address, 32-bit integer or
hi gh word of | EEE 754 doubl e fl oat

This function is valuable for changing type bits in cells or hacking other parts of newLISP
internals. See the function cpymem for a comprehensive example.

dup

syntax: (dup exp int-n [bool])

If the expression in exp evaluates to a string, it will be replicated int-n times in a string and
returned. When specifying an expression evaluating to anything else than ni | in bool the
string will not get concatenated but replicated in a list like any other data type.

For any data type other than string in exp a list of int-n of the evaluation of exp is returned.

example:
(dup "A" 6) = " AAAAAA"
(dup "A" 6 true) = ("A" "A" "A" "A" "A" "A")
(dup "A" 0) = ""
(dup "AB" 5) = " ABABABABAB"
(dup 9 7) (99999909
(dup 9 0) = ()
(dup 'x 8) = (X X X X X X X X)
(dup ' (1 2) 3) = ((12) (12) (12)
(dup "\ 000" 4) = "\ 000\ 000\ 000\ 000"

The last example shows handling of binary information creating a string filled with 4 binary
Zeros.

dup 128

newLISP Users Manual and Reference

See also sequence and series.

empty?

syntax: (empty? exp)
syntax: (empty? str)

exp is tested, if an empty list or string. Depending on the result t r ue or ni | is returned.

example:
(set 'var '())
(enpty? var) = true
(enpty? '(1 2 3 4)) = nil
(enpty? "hello") = nil
(enpty? "") = true

The first example checks a list the second two examples check a string.

encrypt

syntax: (encrypt str-source str-pad)

Does a one-time-pad encryption of str-source using the encryption pad in str-pad. The longer
str-pad and the more random the bytes in it, the safer the encryption. If the pad is as long as
the source text and fully random and used only once, then one-time-pad encryption is
virtually impossible to break, as the encryption seems to contain only random data. To
retrieve the original, the same function and pad is applied again on the encrypted text:

example:

(set 'secret
(encrypt "A secret nessage" "my secret key"))

= ",YS\ 022\ 006\ 017\ 023\ 017TM 014\ 022\ n\ 012\ 030E"
(encrypt secret "ny secret key") = "A secret nessage”

The second example encrypts a whole file:

(wite-file "nyfile.enc"
(encrypt (read-file "nyfile") "29kH67*"))

encrypt 129

newLISP Users Manual and Reference

ends-with

syntax: (ends-with str-data str-key [bool])
syntax: (ends-with list exp)

In the first version ends- wi t h tests if a string in str-data ends with the string specified in str-
key and returns t r ue or ni | depending on the outcome. When specifying ni | or any
expression evaluating to nil as a third parameter in bool the comparison is case insensitive.

example:
(ends-with "newLl SP" "LISP") = true
(ends-with "newLl SP" "lisp") = nil
(ends-with "newLlI SP" "lisp" nil) = true

In the second version ends- wi t h checks if a list ends with the list element in exp. t r ue or
ni | is returned depending on outcome.

example:
(ends-with '(1 2 3 45) 5) = true
(ends-with "(a b c de) 'b) = nil
(ends-with "(abc (+34)) "(+34)) = true

The last example shows that exp could be a list by itself.

See also starts-with.

env

syntax: (env)
syntax: (env var-str)
syntax: (env var-str value-str)

In the first syntax without parameters the operating system's environment is retrieved as a list
with a string for each entry.

example:
(env) = (" PATH=/ bi n: /usr/bin:/sbin" "USER=LUTZ")

In the second syntax the name of an environment variable is given in var-str and env will
return the value of the variable or ni | if the variable does not exist in the environment.

example:
(env "PATH') = "/bin:/usr/bin:/usr/local/bin"

env 130

newLISP Users Manual and Reference

In the third syntax a variable name and value pair is given in var-str and value-str from which
an environment variable is set or created.

example:
(env "NEWLI SPDIR" "/usr/bin/") = true
(env "NEWL.I SPDI R") = "Jusr/bin/"

env replaces the deprecated envi r on, get env and put env.

erf

syntax: (erf num)
er f calculates the error function of a number in num. The error function is defined as:

erf (x) = 2/sqrt(pi) * integral from 0 to x of exp(-t "~ 2) dt

example:

(map erf (sequence 0.0 6.0 0.5))
=

(0 0.5204998778 0.8427007929 0.9661051465 0. 995322265 0.999593048
0. 9999779095 0. 9999992569 0.9999999846 0.9999999998 1 1 1)

error-event

syntax: (error-event sym)
syntax: (error-event func)

sym contains a user-defined function for error handling. Whenever an error occurs, the system
performs a reset and executes the user-defined error handler. The error handler can use the
built-in function error-number to inquire the number of the error.

example:

(define (nmy-handler)
(print "error # " (error-nunber)
(restart-program)

has occurred\n")

(error-event 'ny-handler) = ny- handl er
; specify a function directly

(error-event ny-handler) = $error-event

error-event 131

newLISP Users Manual and Reference

(error-event
(fn () (print "error # " (error-nunber)
occurred\n")))

has

(error-event exit) = S$error-event

See also the function catch for a different possibility to handle errors and the function throw-
error to throw user defined errors.

error-number

syntax: (error-number)
Returns the number of the last error.

example:

(define (my-handler)
(print "error # " (error-nunber)
(restart-program)

has occurred\n")

(error-event 'ny-handl er)

See also sys-error, throw-error, error-event and error codes in the appendix.

error-text

syntax: (error-text [int-error])
Returns a descriptive text for an error number in int-error:

example:

(error-text 5) = "Not an expression"

If no int-error is given, then the last error is assumed.

See also the error codes in the appendix and the functions error-event, catch, sys-error and
throw-error.

error-text 132

newLISP Users Manual and Reference

eval

syntax: (eval exp)

exp is evaluated then the result is evaluated.

example:
(set "expr '(+ 3 4)) = (+ 3 4)
(eval expr) =7
(eval (list + 3 4)) =7
(eval ''Xx) = X
(set 'y 123)
(set "x 'vy)
X >y
(eval x) = 123

newLISP passes all parameters by value. Using a quoted symbol, expressions can be passed by
reference through the symbol and eval can be used to access the original contents of the
symbol:

(define (change-list aList) (push 999 (eval aList)))
(set 'data '(1 2 3 4 5))

(change-list 'data) = (999 1 2 3 4 5)

Because the parameter ' dat a is passed quoted, push can work on the original list.

newLISP also offers the possibility of passing parameters by reference enclosing the data into
context objects. See the chapter Programming with context objects and the sub chapter
Passing objects by reference.

eval-string

syntax: (eval-string str [expr] [sym-context])

The result of str is compiled into newLISP's internal format and is then evaluated. The
evaluation result is returned. If the string contains more than one expression, the result of the
last evaluation is returned.

Optionally a second expr argument can be passed which is evaluated and returned in case of
an error. This permits maintaining programmatic control, if the evaluation of str finishes with
errors. An optional third argument can specify the context in which the string should be
parsed and evaluated. When specifying sym-context the failure expression in expr must be
specified too.

example:
(eval -string "(+ 3 4)") =7

eval-string 133

newLISP Users Manual and Reference

(set 'X 123) = 123
(eval -string "X") = 123

(define (lisp)
(while true
(print "\n=" (eval-string (read-line) "syntax error"))))

(set '"a 10)
(set 'b 20)
(set 'foo:a 11)
(set 'foo:b 22)

(eval -string "(+ a b)") = 30
(eval -string "(+ a b)" nil 'foo) = 33
The second example shows a simple LISP interpreter eval loop.
See also catch, which can be used to catch errors evaluating expressions not in strings.

The last example shows evaluation specifying a target context. The symbols a and b now refer
to their versions in context f 00 instead of MAI N.

€xec

syntax: (exec str-process)
syntax: (exec str-process [str-stdin])

In the first form exec launches a process described in str-process and returns all standard
output in an array of strings, one each for each line in the stdout device. If the process could
not be launched, exec returns ni | .

example:

(exec "Is *.c") = ("newisp.c" "nl-nath.c" "nl-string.c")
A process is started performing a shell list-files | s command and the output is captured in an
array of strings.

In the second form exec creates a process pipe, starting process in str-process and receiving
standard input for this process from str-stdin. The return value is t r ue if the process was
successfully launched, else ni | .

example:

(exec "cgi Proc" query)

In this example, cgiProc could be a cgi processor like Perl or newLISP, receiving and
processing standard input supplied by a string contained in the variable query.

exec 134

newLISP Users Manual and Reference

exit

syntax: (exit [int])

Exits newLISP. Optionally an exit code int may be supplied, which can be tested by the host
operating system. When newLISP is run in daemon server mode using - d as a command line
parameter, then exi t only closes the network connection and newLISP stays resident
listening for a new connection.

example:
(exit 5)

exp

syntax: (exp num)

The expression in num is evaluated and the exponential function is calculated on the result.
exp is the inverse function to | og.

example:

(exp 1) = 2.718281828
(exp (log 1)) =1

expand

syntax: (expand list sym [sym_2 ... sym_n])
syntax: (expand list list-assoc)
syntax: (expand list)

In the first syntax one or more symbols in sym are looked up in a simple or nested list and
expanded to the current binding of the symbol. The expanded list is returned. The original list
remains unchanged.

example:
(set 'x 2 '"a '(d e))
(expand '(a x b) 'x) = (a2b)
(expand '(a x (b c x)) '"x) = (a2 (bc 2))
(expand '(a x (b c x)) 'x '"a) = ((de) 2 (bc 2))

expand is useful when composing lambda expressions or doing variable expansion inside
macros.

expand 135

newLISP Users Manual and Reference

(define (raise-to power)
(expand (fn (base) (pow base power)) 'power))

(define square (raise-to 2))
(define cube (raise-to 3))

(square 5) = 25
(cube 5) = 125

If more than one symbols are present then expand will work in an incremental fashion:

(set "a '(b c))
(set 'b 1)

(expand '(a b c) '"a'b) = ((1c) 1c)

expand reduces its parameter list, similar to apply.

syntax: (expand list list-assoc)

The second syntax of expand allows to specify expansion bindings on the fly without actually
doing a set on the participating variables:

example:

(expand "(a bc) "((al) (b2)) =(12c)
(expand "(a b c) "((a 1) (b2) (c(xy?2z))) =(12(xyz)

Note that the contents of the variables in the association list will not change. This is different
to the letex function where variables are set evaluating and assigning their association parts.

This form of expand is frequently used in logic programming, together with unify.

syntax: (expand list)

A third syntax is used to expand the contents of only variables which start with an uppercase
character. This PROLOG mode may also be used in the context of logic programming. As in
the first syntax of expand symbols have to be preset. Only uppercase variables and bound to
anything not ni | will be expanded:

example:

(set "A1 'Bvar 2 'Cnil 'd5 'e 6)
(expand '(A (Bvar) Cdef)) = (1 (2 Cdef)

Only the symbols A and Bvar are expanded because they have names starting with uppercase
and have non ni | contents.

The currying function shown in the example for the first syntax of expand can now be
written even simpler using an uppercase variable:

(define (raise-to Power)
(expand (fn (base) (pow base Power))))

expand 136

newLISP Users Manual and Reference

> (define cube (raise-to 3))
(1 anbda (base) (pow base 3))

> (cube 4)
64

>

See the function letex which also provides and expansion mechanism and the function unify
which frequently is used together with expand.

explode

syntax: (explode str)
Transforms a string in str into a list of single character strings:

example:
(expl ode "newL| SP")
= ("n" "e" "w "L" "I"™ "S" "P")
(join (explode "keep it together™"))
= "keep it together”
join and append are inverse operations of explode.
expl ode works also on binary content:
(expl ode "\ 000\ 001\ 002\ 003")

= ("\ 000" "\001" "\002" "\003")

But expl ode will work on character boundaries rather than byte boundaries on UTF-8
enabled versions of newLISP. In UTF-8 encoded strings characters may contain more than one

byte.

factor

syntax: (factor num)

Factors a number in num into its prime components. For numbers bigger than the maximum
integer of 2147483647 the number should be given as a float. The maximum float to be
processed is 999,999,999,999,999.0 (15 digits).

example:

factor 137

fact or returns ni | for numbers smaller than 2 or larger than the maximum allowed.

fft

newLISP Users Manual and Reference

(factor 123456789012345.0) = (3 5 283 3851 7552031)

(= (apply mul (factor 123456789012345.0)) 123456789012345. 0)
true

prinmes.lsp - return all prines up tonin alist

(define (primes n, p)
(set "p ' ())
(dotimes (e n)
(if (= (length (factor e)) 1)
(push e p -1))) p)

(primes 20) = (2 3 57 11 13 17 19)

syntax: (fft list-num)

=

Calculates the discrete Fourier transform on a list of complex numbers in list-num using the

FFT method (Fast Fourier Transform). Each complex number is specified by its real part

followed by its imaginary part. In case only real numbers are used the imaginary part is set to
zero 0. 0. When the number of elements in list-num is not an integer power of 2, f f t
increases the number of elements padding the list with zeroes. When complex numbers are 0
in the imaginary part, simple numbers can be used.

example:

(ifft (fft '((10) (2 0) (3 0) (4 0))))
= ((10) (20) (30) (40))

when inmaginary part is 0, plain nunbers work too
conpl ex nunbers can be interm xed

3 4)) = ((10 0) (-2 -2) (-2 0) (-2 2))
(30) 4) = ((100) (-2-2) (-20) (-2 2))

The inverse operation of f f t is ifft.

file-info

syntax: (file-info str_name)

file-info

138

newLISP Users Manual and Reference

Returns a list of information about the file or directory in str_name. newLISP uses the POSIX
system call st at () to get the following information:

offset contents

0 size

1 mode

2 device mode

3 user id

4 group id

5 access time

6 modification time

7 status change time
example:

(file-info ".bashrc")
= (124 33188 0 500 0 920951022 920951022 920953074)

(date (last (file-info "/etc")))
= "Mon Mar 8 18:23:17 1999"

In the second example the last status change date for the directory /etc is retrieved.

file?

syntax: (file? str-name)

Checks for the existence of a file in str-name. Returns t r ue if the file exists else returns ni | .
This function will also return t r ue on directory entries. The existence of a file does not imply
anything about its read or write permissions. A file may exists but may not have the
permissions to read from or write to it by the current user.

example:
(if (file? "afile") (set '"fileNo (open "afile" "read")))

filter

syntax: (filter exp-predicate exp-list)

The predicate exp-predicate is applied to each element of the list exp-list. A list containing the
elements for which exp-predicate is true is returned. f i | t er works like clean with a negated
predicate.

filter 139

newLISP Users Manual and Reference

example:
(filter synbol? "(1 2 d 4f g5h)) = (df gh)

(define (big? x) (> x 5)) = (lanmbda (x) (> x 5))

(filter big? ' (110 3 6 4 5 11)) = (10 6 11)

The predicate may be a built-in predicate or a user-defined function or lambda expression.

For filtering a list of elements with elements from another list see difference and intersect
with the list option.

See also the related function index which returns the indexes of the filtered elements and
clean which returns all elements of a list for which a predicate is false.

find

syntax: (find exp-key list)
syntax: (find str-key str-data)

syntax: (find str-pattern str-data int-option)
syntax: (find str-pattern list int-option)

If the second argument evaluates to a list, then find returns the index position (offset) of the
element derived from evaluating exp-key.

If the second argument str-data evaluates to a string then the offset position of the string str-
key found in the first argument str-data is returned. In this case f i nd works also on binary
str-data.

The presence of a third parameter specifies a search with the regular-expression pattern
specified in str-pattern and an option number specified in int-option, i.e. 1 (one) for case
insensitive search or 0 (zero) no special options.

Regular expressions in newLISP are standard Perl Compatible Regular Expression (PCRE)
searches. Expressions or subexpressions found are returned in the system variables $0, $1,
$2 ... etc., which can be used just like any other symbol. As an alternative the contents of
these variables can also be accessed by using ($ 0), ($ 1), ($ 2) ... etc. This method
allows indexed access, i.e: ($ i), wherei is an integer.

See regex for the meaning of the option numbers and more references about regular
expression search.

example:
(find "world" '"("hello" "world")) =1
(find "hi"™ '"("hello" "world")) = nil

(find "(12) '((34) 56 (12) (89)) =3

find 140

newLISP Users Manual and Reference

(find "world" "Hello world") = 6
(find "WORLD" "Hell o woRLd") = nil

; case insensitive regex

(find "WorI D' "Hell o woRLd" 1) = 6
(find "hi" "hello world") = nil
(find "Hello" "Hello world") =0

; regex with default options

(find "cat|dog" "I have a cat" 0) =9

$0 = "cat"
(find "cat|dog" "ny dog" 0) = 3

$0 = "dog"
(find "cat|dog" "My DOG' 1) = 3

$0 = " DOG'

regex finds string at index 2 of a list

(find "a" '(1 2 "nnnanmmi" '(a b)) 0)

2
$0 '

=
= "g"

a

;5 find with sub-expressions in regular expression
;; and access with system vari abl es

(set '"str "http://nuevatec.com 80")

(find "http://(.*):(.*)" str 0) =0

$0 = "http://nuevatec. com 80"
$1 = "nuevat ec. cont

$2 = n 80!!

;; systemvariables as an i ndexed expression (since 8.0.5)
($ 0 = "http://nuevatec. com 80"
($ 1) = "nuevat ec. cont

($2) = "80"

For other functions using regular expressions see directory, parse, regex, replace and search.

For finding expressions in nested or multidimensional lists see ref.

first

syntax: (first list)
syntax: (first str)

Returns the first element or a list or the first character of a string. The operand is not

changed. This function is equivalent to car or head in other LISP dialects.

first

141

newLISP Users Manual and Reference

example:
(first '(1 2 3 4 5)) =1
(first "((a b) c d)) = (ab)
(set '"aList "(a b c de)) = (abcde)
(first aList) = a
alLi st = (abcde)

In the second version the first character is returned from a string in str and returned in a
string.

example:

(first "newLI SP") - "
(first (rest "newllISP')) = "e"

See also last and rest.

flat

syntax: (flat list)

Returns the flattened form of a list:

example:
(set '"Ist "(a (b (c d))))
(flat Ist) = (a b c d)

(map (fn (x) (ref x Ist)) (flat Ist))

= ((0) (10) (110 (111))

fl at can be used to iterate through nested lists.

fn

syntax: (fn (list-parameters) exp-body)

f n is used to define anonymous functions frequently used in map, sort and any other places
where functions can be used as a parameter.

Using an anonymous function saves defining a new function with define. Instead a function is
defined on the fly:

example:
(map (fn (x) (+ x x)) '(12345)) = (246 8 10)

fn 142

newLISP Users Manual and Reference

(sort ‘" ("..™ "..o.momotm oMo, "y (fn (xy) (> (length x) (length

The example defines a function fn(x) which takes an integer x and doubles it. The function is
mapped onto a list of arguments using map. The second example shows sorting strings by
length.

See also lambda which is the longer, traditional writing of the shorter f n.

float

syntax: (float exp [exp-default])

If the expression in exp evaluates to a number or a string a conversion to a float is returned. If
exp cannot be converted to a float then ni | or if specified the evaluation of exp-default will be
returned. This function is mostly used to convert strings from user input or from reading and
parsing text. The string must start with a number digit or the +, - or . sign. If str is invalid,

f1 oat returnsni | as a default value.

Floats bigger than 1e308 or smaller than -1e308 in their exponents are converted to +INF or
-INF respectively. The writing of +INF and -INF differs on different platforms and compilers

example:
(float "1.23") = 1.23
(float " 1.23") = 1.23
(float ".5") = 0.50
(float "-1.23") = -1.23
(float "-.5") = nil
(float "#1.23") = nil
(float "#1.23" 0.0) =0
(float? 123) = nil
(float? (float 123)) = true
(float "(a b c)) = nil
(float '"(a b c) 0) =0
(float nil 0) =0
(float "abc" "not a nunber") = "not a nunber"
(float "1e500") = inf
(float "-1e500") = -inf

(print "Enter a float num")
(set 'f-num (float (read-line)))

See also int for parsing integer numbers.

float 143

newLISP Users Manual and Reference

float?

syntax: (float? exp)

t r ue is returned only if exp evaluates to a floating point number; otherwise ni | is returned.

example:

(set 'num 1.23)

(float? num = true
floor

syntax: (floor number)

Returns the next lower integer to number as a floating point number.

example:
(floor -1.5) = -2
(floor 3.4) = 3

See also the function ceil.

flt

syntax: (flt number)

Converts a number to a 32-bit float represented by an integer. This function is used when
passing 32-bit floats to library routines. newLISP floating point number are 64-bit and get
passed as 64-bit floats when calling imported 'C' library routines.

example:
(flt 1.23) = 1067282596
pass 32-bit float to Cfunction: foo(float val ue)
(inmport "mylib.so" "foo")
(foo (flt 1.23))
(get-int (pack "f" 1.23)) = 1067282596

(unpack "f" (pack "Id" (flt 1.2345))) = (1.234500051)

flt

144

newLISP Users Manual and Reference

The last two statements illustrate the inner workings of f | t .

See also import for importing libraries.

for

syntax: (for (sym num-from num-to [num-step] [exp-break]) body)

Repeatedly evaluates the expressions in body for a range of values specified in num-from and
num-to inclusive. A step-size may be specified with num-step. If no step size is specified, 1. 0
is assumed.

Optionally a condition for early loop exit may be defined in exp-break. If the break expression
evaluates to any non ni | value, the f or loop returns with the value of exp-break. The break
condition is tested before evaluating body.

The symbol sym, which is local in dynamic scope to the f or expression, takes on successively
each value in the specified range as a floating point value.

example:

> (for (x 1 10 2) (println x))
1
3
5
7
9
(for (x 8 6 0.5) (println x))

5

5

OO ~N~N®V

(for (x 1 100 2 (> (* x x) 30)) (println x))

VT WELV

The second example uses a range from a higher to a lower number. Note that the step size is
always a positive number. In the third example a break condition is tested.

See also sequence for making a sequence of numbers.

for 145

newLISP Users Manual and Reference

fork

syntax: (fork exp)

The expression in exp is launched as a newLISP child process thread of the platforms OS. The
new process inherits the entire address space but will run independently, so symbol or
variable contents changed in the child thread will not affect the parent process and vice versa.
The child process ends when the evaluation of exp finishes.

On success f or k returns with the child process ID, on failure ni | is returned. See also wait-
pid which waits for a child process to finish.

This function is only available on Linux/UNIX versions of newLISP and is based on the
f or k() implementation of the underlying OS.

example:

> (set '"x 0)

0

> (fork (while (< x 20) (println (inc 'x)) (sleep 1000)))
176

1

OO WN YV

The example illustrates how the child process thread inherits the symbol space and how it is
independent from the parent process. The f or k statement returns right away with the
process ID of 176. The child process increments the variable x by one each second and prints
it to standard out (bold face). In the parent process commands can still be entered. Enter x to
see that in the parent process the symbols x still has the value O (zero). Although statements
entered will mix with the display of the child process output, they will be correctly input to
the parent process.

The second example illustrates how pipe can be used to communicate between threads.

example:

(define (count-down-thread x channel)
(while (!'=x 0)
(begin
(wite-line (string x) channel)
(sl eep 100)
(dec "x))))

(define (observer-thread channel)
(setg i "")
(while ('=1i "0")
(println "thread " (setq i (read-line channel)))))
(map set '(in out) (pipe))

fork 146

newLISP Users Manual and Reference

(fork (observer-thread in))
(fork (count-down-thread 5 out))

;; the followi ng output is generated by observer-thread

thread 5
thread 4
thread 3
thread 2
thread 1

The count - down- t hr ead writes numbers to the communication pipe, where they are
picked up by the obser ver -t hr ead and displayed.

See also the functions semaphore for synchronizing threads and share for sharing memory
between threads.

format

syntax: (format str-format exp-data-1 [exp-data-i ...])

Constructs a formatted string from exp-data-1 using the format specified in the evaluation of
str-format. The format is specified identical to the format used for the pri nt f () function in
the ANSI 'C' language. More than one exp-data can be specified for more than one format
specifier in str-format.

f or mat checks for a valid format string and matching data type and number of arguments.
Error messages are given for wrong formats or data types. int, float or string can be used to
insure correct data types and avoid error messages.
The format string has the following general format:

" Ow. pf "

The percent %sign starts a format specification. To display a percent sign %inside a format
string double it: %86

w

Width of field. Data is right aligned, else when preceded by a minus sign left aligned. When
preceded by a zero then unused space is filled with leading zeros. The width field is optional
and serves all data types.

p

Precision number of decimals (floating point only) or strings separated by a period from the
width field. Precision is optional. If preceded by a plus sign +, numbers are displayed with a +
in front if positive. When using the precision field on strings, the number of characters
displayed is limited to the number in p.

format 147

newLISP Users Manual and Reference

Type flag is essential and can not be omitted.

Typesinf :

Q"X XCcCcaown

text string

character (value 1 -
deci mal (32-bit)
unsi gned deci mal
hexadeci mal | ower case
hexadeci mal uppercase
floating point

general floating point

255)

(32-bit)

Other text may be filled between, before and after the format specs.

example:

(format
(format
(format
(format
(format

(f ormat
(format

(f ormat
(format
(format
(format
(format

(format

(f ormat

">>>06. 2f <<<" 1. 2345)
">>>06 6. 2f <<<" 1. 2345)
">>>00-6. 2f <<<" 1. 2345)

">>>06-6. 2f <<<" -1.2345)
" >>>06 +6. 2f <<<" - 1. 2345)

"940g" 1.23)
"940g" 1.234)
"Result = 995d" 2)

"6 15s" "hel | 0")
"045s %" "hel | 0"
"9%.2s" "hel | 0")
"0 5.2s" "hello")

123)

" X' -1 -1)

"o%" 65)

LU u U

(}

Uu U)

U

">>>], 23<<<”
">>>1.23 <<<"
">>> 41, 23<<<"
">>> -1, 23<<<"
">>>-1,23 <<<"

" 1.23"

" 1.234"

"Result = 00002"

"hel |l o "

" hello 123"
n hell

n he n

"fEEfffff FFFFFFFF"

" pn

In newLISP, f or mat will automatically convert from integer to floating point numbers or
from floating point to integers, if the format string requires it:

(format

(f ormat

format

"5 123)

"oel" 123. 456) = 123

= 123. 000000

148

newLISP Users Manual and Reference

fv

syntax: (fv num-rate num-nper num-pmt num-pv [int-type])

Calculates the future value of a loan with constant payment num-pmt and constant interest
rate num-rate after num-nper periods and a beginning principal value of num-pv. If payment is
at the end of the period int-type is O for payment at the end of each period int-type is 1. If
num-type is omitted payment at the end of each period is assumed.

example:
(fv (div 0.07 12) 240 775.30 -100000) = -0.5544645052

The example illustrates how a loan of $100,000 is paid down to a residual of $0.55 after 240
monthly payments and a yearly interest rate of 7%.

See also irr, nper, npv, pmt and pv.

gammai

syntax: (gammai num-a num-b)
Calculates the Incomplete Gamma function of value a and b in num-a and num-b.

example:
(ganmai 4 5) = 0.7349740847

The Incomplete Gamma function is used to derive the probability of Chi2 to exceed a given
value for a degrees of freedom df as follows:

Q(Chi2|df) = Q(df/2, Chi2/2) = gammai(df/2, Chi2/2)

See also prob-chi2.

gammaln

syntax: (gammaln num-x)
Calculates the Log Gamma function of a value x in num-x.

example:

(exp (ganmal n 6)) = 120

The example uses the equality of n! = gamma(n + 1) to calculate the factorial value of 5.

gammaln 149

newLISP Users Manual and Reference

The Log Gamma function is also related to the Beta function which can be derived from it:

Beta(z,w) = Exp(Gammaln(z) + Gammaln(w) - Gammaln(z+w))

get-char

syntax: (get-char int-address)

Gets a character from an address specified in int-address. The function is useful when using
imported shared library functions with import.

example:

char * foo(void)

{

char * result;
result = "ABCDEFG';
return(result);

}

Consider the previous 'C' function in a shared library returning a character pointer (address to
a string).

(inmport "nylib.so" "foo")
(print (get-char (foo))) = 65
(print (get-char (+ (foo) 1))) = 66

Note that get - char is an unsafe function when used with a wrong address in int-address.
When a wrong address is specified the system might crash or get unstable.

See also address, get-int, get-float, get-string and pack, unpack.

get-float

syntax: (get-float int-address)

Gets a double float (64-bit) from an address specified in int-address. The function is useful
when using imported shared library functions with i npor t, and a function returns an
address pointer to a double float or a pointer to a structure containing double floats.

example:

doubl e float * foo(void)
doubl e float * result;

*result = 123.456;

get-float 150

newLISP Users Manual and Reference

return(result);

}

The previous C-function is compiled into a shared library.

(import "nmylib.so" "foo")
(get-float (foo)) = 123.456

f 0o is imported and returns a pointer to a double float when called. Note that get - f | oat is
an unsafe function when used with a wrong address in int-address. When a wrong address is
specified the system might crash or get unstable.

See also address, get-int, get-char, get-string and pack, unpack.

get-int

syntax: (get-int int-address)

Gets an integer (32-bit) from an address specified in int-address. The function is useful when
using imported shared library functions with i nport, and a function returns an address
pointer to integers or a pointer to a structure containing integers.

example:

int * foo(void)
{
int * result;
*result = 123;
return(result);

}

int foo-b(void)
int result;
lrélsult = 456;

return(result);

}

Consider the first 'C' function foo in a shared library returning a integer pointer (address of an
integer).

(import "mylib.so" "foo")
(get-int (foo)) = 123
(foo-hb) = 456

Note that get - i nt is an unsafe function when used with a wrong address in int-address.
When a wrong address is specified the system might crash or get unstable.

get-int 151

newLISP Users Manual and Reference

See also address, get-char, get-float, get-string and pack, unpack.

get-string

syntax: (get-string int-address)

Gets a character string from an address specified in int-address. The function is useful when
using imported shared library functions with import.
example:

char * foo(void)

{

char * result;
result = "ABCDEFG';
return(result);

}

Consider the previous 'C' function in a shared library returning a character pointer (address to
a string).

(import "mylib.so" "foo")
(print (get-string (foo))) = " ABCDEFG'

When giving a string as an argument, get - st r i ng will take its address as the argument.
Because get - st ri ng always breaks off at the first first \ 000 (null character) it encounters,
it can be used to get a string out of a buffer:

example:
(set 'buff "ABC 000\000\000") = "ABC\ 000\ 000\ 000"

(l'ength buff) = 6
(get-string buff) = "ABC

3

)

(length (get-string buff))
See also get-char, get-int, get-float and pack, unpack

Note that get - st ri ng can crash the system or make it unstable if the wrong address is
specified.

get-url

syntax: (get-url str-url [str-option] [int-timeout [str-header]])

get-url 152

newLISP Users Manual and Reference

Reads a web page or file specified by the URL in str-url using the HTTP GET protocol. As an
option " header " can be specified to retrieve only the header. A list option "1 i st " causes
header and page information to be returned has separate strings in a list. The old " debug"
option printing header information to the console has been eliminated.

As another parameter an optional int-timeout value in milliseconds can be specified. If no data
is available from the host after the timeout specified get - ur| returns the string ERR:

t i meout . On other error conditions get - ur | returns a string starting with ERR: and the
description of the error.

example:

(get-url "http://ww. nuevatec. cont')

(get-url "http://ww. nuevat ec. conl’ 3000)

(get-url "http://ww. nuevat ec. coni’ "header")
(get-url "http://ww. nuevat ec. conl' "header" 5000)
(get-url "http://ww. nuevatec.coni’ "list")

(env "HTTP_PROXY" "http://ourproxy: 8080")
(get-url "http://ww. nuevat ec. coni new i sp/")

The index page from the site ww. nuevat ec. comspecified in str-url is returned as a string.
In the third line only the HTTP header is returned in a string. Line 2 and 4 show the usage of
a timeout value.

The second example shows the use of a proxy server. The URL of the proxy server must be in
the operating system's environment. This can be added using the env function in newLISP as
shown in the example.

Custom header

The int-timeout can be followed by an optional custom header in str-header. The custom
header may contain options for browser cookies or other directives to the server. When no
str-header is specified newLISP sends certain header information by default. After the
following request:

(get-url "http://somehost.cont 5000)

newLISP will configure and send the following request and header:

GET / HITP/ 1.1

Host: sonehost.com

User - Agent: newlL| SP v8800
Connection: close

As an alternative the str-header option could be used:

(get-url "http://somehost.cont 5000
"User-Agent: Mzillal/4.0\r\nCookie: nane=fred\r\n")

newLISP will now send the following request and header:

GET / HITP/ 1.1
Host: somnehost.com

get-url 153

newLISP Users Manual and Reference

User - Agent: Modzillal/4.o0
Cooki e: name=fred
Connection: close

Note, that when using a custom header, newLISP will only supply the GET request line and
the Host : and Connecti on: header entries. All other entries supplied in the custom header
are put in between the Host : and Connecti on: entries by newLISP. Each entry must end
with a carriage-return line-feed pair \ r\ n.

See a HTTP-transactions reference for valid header entries.

Custom headers can also be used in put-url and post-url.

global

syntax: (global sym-1 [sym-2 ...])

One or more symbols in sym-1 [sym-2 ...] can be made globally accessible from other contexts
than MAIN. The statement has to be executed in the MAIN context and only symbols
belonging to the context MAIN can be made global. gl obal returns the last symbol made
global.

example:

(global '"avar 'x 'y 'z) =z

(define (foo x)

(...))

(constant (gl obal 'foo0))

The second example shows, how constant and gl obal can be combined in one statement;
protecting and making global a previous function definition.

if
syntax: (if exp-condition exp-1 [exp-2])
syntax: (if exp-cond-1 exp-1 exp-cond-2 exp-2 [...])

If the value of exp-condition is not nil or the empty list, the result of evaluating exp-1 is
returned. Otherwise the value of exp-2 is returned; and if exp-2 is absent, the value of exp-
condition is returned.

example:
(set 'x 50) = 50

if 154

newLISP Users Manual and Reference

(if (< x 100) "small" "big") = "smal | "
(set 'x 1000) = 1000
(if (< x 100) "small" "big") = "big"
(if (> x 2000) "big") = nil

The second form of i f works similarly to cond but does not take parentheses around the
condition-body pair of expressions. In this form i f can have an unlimited number of
arguments.

example:
(define (classify x)
(i f

(< x 0) "negative"
(< x 10) "snaull"
(< x 20) "nedunf
(>= x 30) "big"
"n/a"))

(classify 15) = "medi unt
(classify 100) = "big"
(classify 22) = "n/a"
(classify -10) = "negative"

The last expression " n/ a" is optional, without it the evaluation of (>= x 30) would be
returned, behaving exactly like a traditional cond but without requiring parenthesis around
the condition-expression pairs.

In any case the whole i f expression always returns the last expression or condition
evaluated.

See also unless.

ifft

syntax: (ifft list-num)

Calculates the inverse discrete Fourier transform on a list of complex numbers in list-num
using the FFT method (Fast Fourier Transform). Each complex number is specified by its real
part followed by its imaginary part. In case only real numbers are used the imaginary part is
set to zero (0. 0). When the number of elements in list-num is not an integer power of 2,

i fft increases the number of elements padding the list with zeroes. When complex numbers
are 0 in the imaginary part, simple numbers can be used.

example:

(ifft (fft '((10) (2 0) (3 0) (40))))
= ((10) (20) (30) (40)

when inmaginary part is 0, plain nunbers work too

ifft 155

newLISP Users Manual and Reference

(ifft (fft ' (1 2 3 4)))
= ((10) (20) (30) (40))

The inverse operation of i f ft is fft.

import

syntax: (import str-lib-name str-function-name ["cdecl"])

Imports a function str-function-name from a shared library named in str-lib-name. The
functions address, get-char, get-int, get-float, get-string and pack, unpack can be used to
retrieve return-values or unpack data from returned structure addresses. If the library is not
found in the normal library search path, str-lib-name must contain the full path name.

To transform newLISP data types into the data types needed by the imported function use the
functions float for 64bit double floats, flt for 32bit floats and int for 32bit integers. By default
newLISP passes floating point numbers as 64bit double floats, integers as 32bit integers and
strings as 32bit integers for string addresses.

example:
;; inmport in Linux
(inmport "libc.so.6" "printf") = printf <400862A0>
;; inport in Mac OS X
(import "libc.dylib" "printf") = printf <90022080>
;; inport in CYGN N
(import "cygwinl.dll" "printf") = printf <6106B108>

(printf "% % % %\n" 1.23 "hello" 999 65)
= 1.23 hello 999 A
= 17 ; return val ue

;; inport Wn32 DLLs in Wn32 or CYGA N version

(import "kernel 32.dl 1" "GetTickCount") = GetTickCount
(inmport "user32.dl 1" "MessageBoxA") = MessageBoxA
(Get Ti ckCount) = 3328896

In the first example a string "1.23 hello 999 A" is printed as a side effect and the expressions
returns the value 17 (characters printed). Any 'C' function in any shared library can be
imported this way.

import 156

newLISP Users Manual and Reference

The message box example pops up a Windows message box which may be hidden behind the
console window, and the console prompt does not return until the 'OK' button is pressed in
the message box.

;;this pops up nessage box
(MessageBoxA O "This is the body" "Caption" 1)
The other examples show several imports of Win32 DLL functions and the details of passing

values by value or by reference. Whenever strings or numbers are passed by reference, space
has to be reserved first.

;; allocating space for a string return val ue

(import "kernel 32.dl 1" "Get WndowsDirectoryA")
(set "str (dup "\000" 64) ;; reserve space and initialize

(Get WndowsDi rectoryA str (length str))
str = "C \\ W NDOWS\ 000 "
(slice str 0 (find "\000" str)) = "C \\W NDOAS"
;; or use trim
(trimstr) = "C\\WNDONS"

passing an i nteger paraneter by reference
(import "kernel 32.dl 1" "Get Conput er NaneA")

(set '"str (dup "\ 000" 64) ;; reserve space, initialize

7, get size in a buffer | pNum
(set 'l pNum (pack "lu" (length str)))

;; call the function
(Get Conput er NaneA str | pNum

str = "LUTZ- PC\ 000
(slice str 0 (find "\000" str)) = "LUTZ-PC

; or use trim
(trimstr) = "LUTZ-PC

i mport returns the address of the function, which can be used to assign to a different name
for the imported function.

(set "inprime (import "libc.so.6" "printf"))
= printf <400862A0>

(inmprine "% %" "hola" 123)
= "hol a 123"

import 157

newLISP Users Manual and Reference

Note that the preceding examples are not displayed in the newLISP-tk GUI front-end, as the
output of 'printf is directed to standard out (STDIO) and is not visible in the newLISP-tk
console. This only affects function imports with output to standard out.

Note that the Win32 version of newLISP uses standard call stdcall conventions to call DLL
library routines. This is necessary to call DLLs belonging to the Win32 operating system like
odbc32.d1l. Most third party DLLs are compiled for 'C' declaration cdecl calling conventions
and may need to specify the string " cdecl " as an additional last parameter when importing
functions. newLISP compiled for Linux and other UNIX uses the cdecl calling conventions by
default and does ignore any additional string.
force cdecl calling conventions on Wn32
(inmport "sqglite.dll" "sqglite_open" "cdecl") = sqlite_open
<673D4888>

Imported functions may take up to 14 parameters, floats count double, i.e. passing 5 floating
point numbers takes up 10 of the 14 parameter spaces.

inc

syntax: (inc sym [num])

The number in sym is incremented by 1 or by the optional number num and the result is
returned. i nc performs mixed int and float arithmetic according to the following rules:

If num is absent i nc always returns an integer in sym. If the input arguments are floats and
numis absent, the input arguments are truncated to integers.

Integer calculations (without num) which result in numbers greater than 2,147,483,647 wrap
around to negative numbers. Results smaller than -2,147,483,648 wrap around to positive
numbers.

If num is supplied, i nc always returns the result as floating point even for integer input
arguments.

example:
(set 'x 0) =0
(inc 'x) =1
X =1
(inc "x 0.25) = 1.25
X = 1.25
(inc '"x) = 2 get truncated

See also dec for decrementing.

inc 158

newLISP Users Manual and Reference

index

syntax: (index exp-predicate exp-list)

The predicate exp-predicate is applied to each element of the list exp-list. A list containing the
indexes of the elements for which exp-predicate is true is returned.

example:
(index symbol? '(1 2d4f g5h)) = (2457)
(define (big? x) (> x 5)) = (lanmbda (x) (> x 5))

(index big? '(1 10 3 6 4 5 11)) = (1 3 6)

The predicate may be a built-in predicate or a user-defined function or lambda expression.

See also filter which returns the elements themselves.

int
syntax: (int exp [exp-default] [int-base])

If the expression in exp evaluates to a number or a string a conversion to an integer is
returned. If exp cannot be converted to an integer then ni | or the evaluation of a exp-default
will be returned. This function is mostly used when translating strings from user input or from
parsing text. If exp evaluates to a string then the string must start with a number digit or
space(s) or the + or - sign or '0x' for hexadecimal strings or a '0' (zero) for octal strings. If str
isinvalid, i nt eger returns ni | as a default value if not specified otherwise.

A second optional parameter can be used to force the number base of conversion to a specific
value.

Integers bigger than 2,147,483,647 are truncated to 2,147,483,647. Integers smaller than
-2,147,483,648 are truncated to -2,147,483,648.

When converting from a float as in the second form of i nt eger, floating point numbers
bigger or smaller than the integer max / min values are truncated, too. A floating point
expression evaluating to NaN is converted to O (zero).

example:
(int "123") = 123
(int " 123") = 123
(int "al23" 0) =0
(int (trim" 123")) = 123
(int "OXFF") = 255
(int "055") = 45
(int "1.567") =1
(int 1.567) > 1

int 159

newLISP Users Manual and Reference

(integer? 1.00) = nil

(integer? (int 1.00)) = true

(int "1111" 0 2) = 15 ; base 2 conversion
(int "OFF" 0 16) = 255 ; base 16 conversion
(int 'xyz) = nil

(int 'xyz 0) =0

(int nil 123) = 123

(int "abc" "not a nunber") = "not a nunber"

(print "Enter a num")
(set '"num (int (read-line)))

See also float for converting to floating point numbers.

integer?

syntax: (integer? exp)
i nt eger ? returns t r ue only if the value of exp is an integer; otherwise it returns ni | .

example:

(set 'num 123) = 123
(integer? num = true

intersect

syntax: (intersect list-A list-B)
syntax: (intersect list-A list-B bool)

In the first syntax i nt er sect returns a list containing one copy of each element found both
in list-A and list-B.

example:
(intersect '(3 01323421 '(1425)) =(241)

In the second syntax i nt er sect returns a list of all elements in list-A which are also in list-B
without eliminating duplicates in list-A. bool is an expression evaluating to t r ue or any other
value not ni | .

example:

intersect 160

newLISP Users Manual and Reference
(intersect '(301323421) '(1425) true) > (12421)

See also the set functions difference and unique.

invert

syntax: (invert matrix)

Returns the inversion of a two dimensional matrix in matrix. The matrix must be square with
the same number of rows and columns and non-singular (invertible). Matrix inversion can be
used to solve systems of linear equations, for example, multiple regression in statistics.
newLISP uses LU-decomposition of the matrix to find the inverse.

The dimensions of a matrix are defined by the numbers of rows and number of elements in
the first row. For missing elements in non-rectangular matrices, 0. O is assumed.

The function will throw an error if the matrix cannot be inverted.

example:

(set "A'((-111) (14-5 (1-20)))
(i nvert A) > ((1029) (514) (615))

See also the matrix functions transpose and multiply.

irr
syntax: (irr list-amounts [list-times [num-guess]])

Calculate the internal rate of return of a cash flow per time period. The internal rate of return
is the interest rate that makes the present value of a cash flow equal to 0.0 (zero). In-flowing
(negative values) and out-flowing (positive values) amounts are specified in list-amounts. If
no time periods are specified in list-times, then amounts in list-amounts correspond to
consecutive time periods increasing by 1 (1 2 3 ...). The algorithm used is iterative with an
initial guess of 0.5 (50%). Optionally a different initial guess can be specified. The algorithm
returns when a precision of 0.000001 (0.0001 %) is reached. ni | is returned if the algorithm
cannot converge after 50 iterations.

irr is often used to decide between different types of investments.

example:
(irr '(-1000 500 400 300 200 100))

= 0. 2027

irr 161

newLISP Users Manual and Reference

(npv 0.2027 ' (500 400 300 200 100))

= 1000. 033848 ; ~ 1000

(irr ' (-1000 500 400 300 200 100) '(0 3 4 5 6 7))

= 0.0998

(irr ' (-5000 -2000 5000 6000) '(0 3 12 18))

= 0.0321

If an initial investment of 1000 yields 500 after the first year, 400 after 2 years, and so on,
finally reaching 0.0 (zero) after 5 years, then that corresponds to a yearly return of about
20.2%. The next line demonstrates the relation between i rr and npv. Only 9.9% return are
necessary when making the first withdrawal after 3 years.

In the last example, securities where initially purchased for 5000, then for another 2000 three
months later. After a year, securities for 5000 are sold. Selling the remaining securities after
18 months renders 6000. The internal rate of return is 3.2% per month, or about 57% in 18
months.

See also fv, nper, npv, pmt and pv.

join
syntax: (join list-of-strings [separator-string])

Given a list of strings in list-of-strings join concatenates the strings. If separator-string is
present, it is inserted between each string in the join.

example:
(set '"Ist '"("this" "is" "a" "sentence"))
(joinlst " ") = "this is a sentence"

(join (map string (slice (now 0 3)) "-") = "2003-11-26"

(join (explode "keep it together")) = "keep it together"

See also append, string, and explode, the inverse operation to j oi n.

join 162

newLISP Users Manual and Reference

lambda

See the description of fn which is a shorter form of writing | anbda.

lambda-macro

See the description of define-macro.

lambda?

syntax: (lambda? exp)
Returns t r ue only if the value of exp is a lambda expression and otherwise ni | .

example:

(define (square x) (* x x))
(1 anbda? square) = true

See define and define-macro for more information about lambda expressions.

last

syntax: (last list)
syntax: (last str)

Returns the last element of a list or a string.

example:
(last '(1 2 3 45)) =5
(last "(a b (c d))) = (c d)

In the second version the last character in the string str is returned as a string.

example:
(last "newLl SP") ="p"

See also first, rest and nth.

last 163

newLISP Users Manual and Reference

legal?

syntax: (legal? str)

The token in str is verified as a legal newLISP symbol. Non legal symbols can be created using
the sym function (e.g. symbols containing spaces, quotes, or other characters not normally
allowed). Non legal symbols are created frequently when using them for associative data
access:

example:
(synbol ? (sym "one two")) = true
(legal ? "one two") = nil ; contains a space
(set (sym"one two") 123) = 123

(eval (sym "one two")) = 123

The example shows that the string " one two" does not contain a legal symbol although a
symbol can be created from this string and treated like a variable.

length

syntax: (length expr)
Returns the number of elements in a list, the number of rows in an array or the number of

characters in a string.

| engt h applied to a symbol returns the length of the symbol name. Applied to a number,
| engt h returns the number of bytes needed in memory to store that number: 4 for integers
and 8 for floating point numbers.

example:
(length '(a b (c d) e))
(length " ())

(set 'soneList '"(qwer ty))
(I ength soneLi st)

gwerty)

U NN
o—~o A

(set "ary (array 2 4 '(0)))
(length ary)

U

((1234) (5678))
2

U

(length "Hello World") = 11
(length "") =0
(length 'sonmeVar) =7
(length 123) = 4
(length 1.23) = 8

length 164

newLISP Users Manual and Reference

let

syntax: (let ((sym1 exp-initl) [(sym2 exp-init2) ...]) body)
syntax: (let (sym1 exp-initl [sym2 exp-init2 ... 1) body)

One or more variables sym1, sym2, ... are declared locally and initialized with expressions in
exp-initl, exp-init2, etc. When the local variables are initialized the initializer expressions
evaluate using symbol bindings as before the | et statement. To incrementally use symbol
bindings as evaluated during the initialization of locals in | et, use letn. One or more
expressions in exp-body are evaluated using the local definitions of sym1, sym2 etc. | et is
useful for breaking up complex expressions by defining local variables close to the place
where they are used. The second form omits the parenthesis around the variable expression
pairs but functions identical.

example:

(define (sumsq a b)
(let ((x (* aa)) (y (¥ bb)))
(+xy)))

(sumsq 3 4) = 25

(define (sumsq a b) ; alternative syntax
(let (x (* aa) y (* bb))
(+xy)))

The variables x and y are initialized, then the expression (+ X Yy) is evaluated. The let form
is just an optimized version and syntactic convenience for writing:

((lambda (synml [syn2 ...]) exp-body) exp-initl [exp-init2])

See also letn for an incremental or nested form of | et .

letex

syntax: (letex ((sym1 exp-initl) [(sym2 exp-init2) ...]) body)
syntax: (letex (sym1 exp-initl [sym2 exp-init2 ...]) body)

This functions combines let and expand to expand local variables into an expression before
evaluating it.

Both forms provide the same functionality, but in the second form the parentheses around the
initializers can be omitted.

example:

letex 165

newLISP Users Manual and Reference
(letex "(x 1y 2z 3) "(xvy 2)) = (12 3)

Before the expression' (x y z) gets evaluated, X, Yy and z are literally replaced with the
initializers from the | et ex initializer list. The final expression which gets evaluated is' (1 2
3).

The following is a more complex realistic example. | et ex and define-macro are used
together to define a dol i st - whi | e, which loops through a list while certain condition is
true:

example:

(define-macro (dolist-while)

(letex (var (args 0 0)
Ist (args 0 1)
cnd (args 0 2)
body (cons 'begin (1 (args))))

(let (res)
(catch (dolist (var Ist)
(if (set 'res cnd) body (throwres)))))))

> (dolist-while (x "(abcdef) (!=x"'d)) (println x))
a

b

c

ni |

>

The args function is used to access the unevaluated argument list from define-macro.

letn

syntax: (letn ((sym1 exp-initl) [(sym2 exp-init2) ...]) body)
syntax: (letn (sym1 exp-initl [sym2 exp-init2 ...]) body)

| et n is like a nested let and works similar to let, but will incrementally use the new symbol
bindings when evaluating the initializer expressions as if several let were nested. The
following comparison of let and | et n show the difference:

example:
(set 'x 10)
(Fet ((x 1) (y (+ x 1)))

(st xy)) = (1 11)

(letn ((x 1) (y (+ x 1)))
(list xvy)) = (1 2)

letn 166

newLISP Users Manual and Reference

While in the first example using let the variable y is calculated using the binding of x before
the let expression, in the second example using | et n the variable y is calculated using the
new local binding of x.

(letn (x 1y x)
(+ xy)) = 2

;; sanme as nested let's

(let (x 1)
(et (y x)
(+xy))) = 2

| et n works like several nested let. The parenthesis around the initializer expressions can be
omitted.

list

syntax: (list exp-1 [exp-2 ...])
The exp are evaluated and the values used to construct a new list.

example:

(list 1 23 4 5) = (123 45)
(list "a'(bc) (+34) '()"*) =(a(bc) 7 () ™)

See also cons and push for other forms of building lists.

list?

syntax: (list? exp)

Returns t r ue only if the value of exp is a list; otherwise returns ni | . Note that lambda and
lambda-macro expressions are also recognized as special instances of a list expression.

example:
(set 'var '(1 2 3 4)) = (12 3 4)
(list? var) = true

(define (double x) (+ x x))

(l'ist? doubl e) = true

list? 167

newLISP Users Manual and Reference

load

syntax: (load str-file-name [str-file-name-2 ...] [sym-context])

Loads and translates newLISP from a source file specified in one or more str-file-name and
evaluates the expressions contained in the file(s). When loading is successful | oad returns
the result of the last expression in the last file evaluated. If a file cannot be loaded | oad
throws an error.

An optional sym-context can be specified, which becomes the context of evaluation, unless
such a context switch is already present in the file being loaded. By default, files which do not
contain context switches will be loaded into the MAI N context.

The str-file-name specs can contain URLs. Both htt p:// andfi |l e: // URLs are supported.

example:

(load "nyfile.lsp")

(load "a-file.lsp"” "b-file.lsp")

(load "file.lsp” "http://mysite.org/ mypro")
(load "a-file.lsp" "b-file.lsp" ' MyCTX)
(load "file://lusr/share/newisp/mysql5.1sp")

In case expressions evaluated during the | oad are changing the context, this will not
influence the programming module doing the | oad. The current context after the | oad
statement will always be the same as before in the | oad (starting v. 8.7.9).

Normal file specs and URLs can be mixed in the same load command.

The second to last line causes the files to be loaded in to the context MyCTX. The quote forces
the context to be created if it did not exist.

The fil e:// URL is followed by a third / for the directory spec.

log

syntax: (log num)
syntax: (log num num-base)

In the first syntax the expression in num is evaluated and the natural logarithmic function is
calculated from the result.

example:
(log 1) =0
(log (exp 1)) =1
In the second syntax an arbitrary base can be specified in num-base.

example:

log 168

newLISP Users Manual and Reference

(log 1024 2) = 10
(log (exp 1) (exp 1)) = 1

See also exp, which is the inverse function to | og with base e.

lookup

syntax: (lookup exp assoc-list [int-index])

Finds in assoc-list an association the key element of which has the same value as exp and
returns the int-index element of association (or the last element if int-index is absent). See also

Indexing elements of strings and lists.

| ookup is similar to assoc but goes one step further by extracting specific element found in
the list.

example:

(set 'parans ' (
(nane "John Doe")
(age 35)
(gender "M')
(bal ance 12.34)))

(1 ookup ' age parans) = 35
(set 'persons ' (

("John Doe" 35 "M 12.34)
("M ckey Mbuse" 65 "N' 12345678)))

(1 ookup "M ckey Mouse" persons 2) = "N'
(1 ookup "M ckey Mbuse" persons -3) = 65
(1 ookup "John Doe" persons 1) = 35
(1 ookup "John Doe" persons -2) ="M

See also assoc

lower-case

syntax: (lower-case str)

All characters of string in str are converted to lowercase characters. A new string is created,
the original is untouched.

example:
(I oner-case "HELLO WORLD') = "hello world"

lower-case 169

newLISP Users Manual and Reference

(set "Str "ABC')
(l ower-case Str) = "abc"
Str = "ABC"

See also upper-case and title-case.

macro?

syntax: (macro? exp)

t r ue is returned only if exp evaluates to a lambda-macro expression, otherwise ni | is
returned.

example:
(define-macro (nysetq Iv rv) (set lv (eval rv)))
(macro? nysetq) = true

main-args

syntax: (main-args)
syntax: (main-args int-index)

mai n- ar gs returns a list with several string members, one for program invocation and each
of the command line arguments.

example:

newisp 12 3

> (main-args) = ("/usr/bin/newisp" "1" "2" "3")

After executing: newl i sp 1 2 3 at the command prompt. mai n- ar gs returns the list of
the invoking program and 3 command line arguments:

Optionally mai n- ar gs can take an int-index indexing into the list:
newisp abc
> (mai n-args 0) = "/usr/bin/newisp"

> (main-args -1) = "c"
> (main-args 2) = "p"

Note that when newLISP is executed from a script, mai n- ar gs also returns the name of the
script as the second argument:

#!/usr/bin/newisp

main-args 170

newLISP Users Manual and Reference

#
script to show the effect of 'main-args' in script file

(print (main-args) "\n")
(exit)

end of script file
execute script in the OS shell:
script 1 23

= ("/usr/bin/newisp" "./script" "1" "2" "3")

Execute this script with different command line parameters.

make-dir

syntax: (make-dir str-dir-name [int-mode])

Creates a directory as specified in str-dir-name with the optional access mode int-mode.
Returns t r ue or ni | depending on a successful outcome. If no access mode is specified
'drwxr-xr-x' results on most UNIX systems.

On UNIX system the access mode specified will also be masked by the OS's user-mask set from
the system administrator. The user-mask can be retrieved on UNIX system using the command
umask and is usually 0022 (octal) masking write (and creation) permission for others than
the owner of the file.

example:

;0 (zero) in front of 750 makes it an octal nunber

(make-dir "adir" 0750)

The example creates a directory named adi r in the current directory with an access mode
0750 (octal 750 = drwxr-x---).

map

syntax: (map exp-functor list-args-1 [list-args-2 ...])

Applies the primitive, defined function or lambda expression exp-functor successively to the
arguments specified in list-args-1, list-args-2, ... and returns all results in a list.

example:

map 171

newLISP Users Manual and Reference

(map + ' (1 2 3) ' (50 60 70)) = (51 62 73)

(map if "(true nil true nil true) '(1 23 45) '(67 89 10))
='(17395)

(map (fn (xy) (* xy)) "(34) "(20 10)) = (60 40)

The second example shows creating a function for map dynamically:

(define (foo op p)
(append (lambda (x)) (list (list opp "x))))

We can also write shorter:

(define (foo op p)
(append (fn (x)) (list (list opp "'X))))

f 0o works now like a function maker:
(foo 'add 2) = (lanmbda (x) (add 2 x))
(map (foo add 2) '(1 2 3 45)) = (34567 8)

(map (foo MUL 3) '(1 23 45)) = (369 12 15)
Note that the quote before the operand can be omitted, as primitives in newLISP evaluate to
themselves.

By incorporating the map into the function definition we could do:

(define (list-map op p Ist)
(map (lanbda (x) (op p x)) Ist))

(list-map + 2 ' (1 2 3 4)) > (3 45 6)
(list-map mul 1.5 '"(1 2 3 4)) = (1.5 3 4.5 6)
The number of arguments used is defined by the length of the first argument list. Missing

arguments in other argument lists cause an error message. If an argument list has more
members than necessary those will be ignored.

Note that only functions with applicative order of evaluation can be mapped. Functions with
conditional or delayed evaluation of their arguments like if or case cannot be mapped.

match

syntax: (match list-pattern list-match [bool])

A pattern in list-pattern is matched against a list in list-match and the matching expressions
are returned in a list. The three wild card characters ?, + and * can be used in list-pattern.

match 172

newLISP Users Manual and Reference

Wild card characters may occur in a nested fashion. mat ch returns a list of matched
expressions. For each ? a matching expression element is returned. For each plus + or star * a
list containing the matched elements is returned. If the pattern cannot be matched against the
list in list-match mat ch returns ni | .

Optionally the Boolean value t r ue or any other expression evaluating not to ni | can be
supplied as a third parameter to make mat ch working as in versions previous to 8.2.3
showing all list elements in the returned result.

example:
(match "(a ? ¢c) "(a b c)) = (b)
(match "(a ? ?) '"(a b c)) = (b ¢)
(match "(a ? c) "(a(xyz)c)) = ((xy2z)
(match "(a ?2 c) "(axy zc)) = nil
(match "(a * ¢) '"(axy z c)) = ((xy 2))

(match '(a(bc?) xyz) '(a(bcd xvyz) = (d

(match *(a (*) x ? z) "(a(bcd) xy 2)) = ((bc d)y)
(match " (+) " ()) = nil

(match ' (+) ' (a)) = ((a))

(match ' (+) ' (a b)) = ((a b))
manggesny twy

Note that the star * tries to grab the least number of elements possible, but match back-tracks
and grabs more elements if a match cannot be found otherwise.

The plus + operator works similar to the star * operator, but must take at least one list
element.

The following example shows how the matched expressions can be bound to variables.
(map set '(x y) (match "(a (? c) d *) "(a(bc) def)))
X = b

y = (e f)

Note that mat ch for strings has been eliminated. For more powerful string matching use
regex, find or parse.

match 173

newLISP Users Manual and Reference

max

syntax: (max num-1 [num-2 ...])
The expressions num-1 ... are evaluated and the largest result is returned.

example:
(max 4 6 2 3.54 7.1) > 7.1

See also min.

member

syntax: (member exp list)
syntax: (member str str-key [bool])

In the first syntax nenber searches for the element exp in the list list. If the element is a
member of the list, a new list starting with the element found and the rest of the original list
is constructed and returned. If nothing is found ni | is returned. By default menber is case-
sensitive. Specify ni | in bool to make the search case-insensitive. The bool option is not
available on Win32.

example:
(set 'aList '"(abcdef gh) = (abcdef gh)
(menber 'd aLi st) = (def gh)
(rmenber 55 ali st) = nil

In the second syntax nenber searches for str-key in str. If str-key is found all of str starting
with str-key is returned. If nothing is found ni | is returned.

example:
(menmber "LISP" "newLlI SP") = "LISP"
(menmber "LI" "newlLl SP") = "L| SP"
(menmber "" "newll SP") = "newL| SP"
(rmenber "xyz" "newlLl SP') = nil

See also the related slice and find.

min
syntax: (min num-1 [num-2 ...])

The expressions num-1 ... are evaluated, and the smallest resulting number is returned.

min 174

newLISP Users Manual and Reference

example:
(nin 462 3.54 7.1) > 2

See also max.

mod

syntax: (mod num-1 num-2 [num-3 ...])

Calculates the modular value of the numbers in num-1 and num-2. nod computes the
remainder from the division of numerator num-i by denominator num-i+ 1. Specifically, the
return value is numerator - n * denominator, where n is the quotient of numerator divided by
denominator, rounded towards zero to an integer. The result has the same sign as the
numerator and has magnitude less than the magnitude of the denominator.

example:

(mod 10.5 3. 3) =
(mod -10.5 3.3) = -

See also %, which works on integers only.

mul

syntax: (mul num-1 num-2 [num-3 ...])

All expressions num-1 ... are evaluated and the product is calculated and returned. nmul can
perform mixed type arithmetic, but always returns floating point numbers. Any floating point
calculation with NaN also returns NaN.

example:
(mul 1 23451.1) = 132
(mul 0.5 0.5) = 0.25

multiply

syntax: (multiply matrix-A matrix-B)

Returns the matrix multiplication of matrices in matrix-A and matrix-B. If matrix A has the
dimensions n by m and B the dimensions k by [the m and k must be equal and the result

multiply 175

newLISP Users Manual and Reference

returned is an n by [matrix. mul ti pl y can perform mixed type arithmetic but the result is
always in double precision floating point, even if all input values are integers.

The dimensions of a matrix are defined by the numbers of rows and number of elements in
the first row. For missing elements in non-rectangular matrices, 0. 0 is assumed.

example:

(set "A'((123) (4586))
(set "B " ((1 2)(1 2)(1 2)))
(multiply AB) = ((6 12) (15 30))

See also matrix operations transpose and invert.

name

syntax: (name symbol [bool])

Returns as a string, the name of a symbol without the context prefix. If the expression in bool
evaluates to anything other than ni | , the name of the symbol's context is returned instead.

example:

(set 'ACTX: var 123)
(set 'sym ' ACTX var)

(string sym = "ACTX var"
(nane sym = "var"
(nane symtrue) = "ACTX"

NaN?

syntax: (NaN? number)

Tests if the result of floating point math operation is a NaN. Certain floating point operations
return a special IEEE 754 number format called a NaN for 'Not a Number'.

example:

(set '"x (sqrt -1)) = NaN
(add x 123) = NaN
(mul x 123) = NaN
(+ x 123) = 123
(* x 123) =0
(> x 0) = nil
(<= x 0) = nil
(= x x) = true

NaN? 176

newLISP Users Manual and Reference
(NaN? x) = true

Note that all floating point arithmetic operations with a NaN yield a NaN. All comparisons
with NaNreturn ni | , but t r ue when comparing to itself. On the contrary comparison with
itself would result not t r ue when using ANSI 'C".

Integer operations treat NaN as zero O values.

net-accept

syntax: (net-accept int-socket)

Accepts a connection on a socket previously put into listening mode. Returns a newly created
socket handle for receiving and sending data on this connection.

example:

(set 'socket (net-listen 1234))
(net-accept socket)

Note that for ports less than 1024 newLISP must be started in superuser mode on UNIX like
operating systems.

See also the examples server and client in the appendix.

net-close

syntax: (net-close int-socket)

Closes a network socket in int-socket. The socket was previously created by a net-connect or
net-accept function. Returns t r ue on success ni | on failure.

example:

(net-cl ose aSock)

net-connect

syntax: (net-connect str-remote-host int-port [str-mode [int-ttl] 1)

Connects to a remote host computer specified in str-remote-host and a specific port int-port.
Returns a socket handle after having connected successful else returns ni | .

net-connect 177

newLISP Users Manual and Reference

example:

(define (finger nanmeSite , socket buffer user site)
(set 'user (nth O (parse naneSite "@)))
(set 'site (nth 1 (parse naneSite "@)))
(set 'socket (net-connect site 79))
(if socket
(net-send socket (append user "\r\n"))
"no connection")
(net-receive socket 'str 512)
(print "\n" str "\n"))

The above program uses the finger service on a remote computer. This service returns
information about an account holder on this computer. Some ISP and UNIX installations
provide this service.

When executing:
(finger "johnDoe@oneSite.conl)

The program tries to connect to a server named "someSite.com" and sends the string
"johnDoe". If "someSite.com" is running a finger service it sends back information about the
account "johnDoe" on this server. In case a connection cannot be made the function returns
the string "no connection".

nameSi t e is split up into the account name and host name parts. net - connect is used to
connect to soneSi t e. comand returns the socket handle which handles incoming data.

UDP communications

As a third parameter an option string str-mode containing the string " udp" or the string " u"
can be specified to create a socket suited for UDP (User Datagram Protocol) communications.
In UDP mode net - connect does not try to connect to the remote host, but only binds the
socket to the remote address. A subsequent net-send will send a UDP packet containing that
target address. If using net-send-to that address would be overwritten.

The functions net-receive and net-receive-from can also be used and will perform UDP
communications. net-select and net-peek can be used to check for received data in a non-
blocking fashion.

If data never gets through opening a client connection with net - connect then net-listen
with the " udp" option may be the better choice to start the client side of the connection. net-
listen binds a specific local address and port to the socket. When using net - connect the
local address and port will be picket by the socket-stack functions of the host OS.

UDP communications 178

newLISP Users Manual and Reference

UDP multi-cast communications

When specifying "rmul ti " or " ' as a third parameter for str-mode, a socket for UDP multi-
cast communications will be created. Optionally a fourth parameter i nt-ttl| can be
specified as a TTL (time to live) value. If no int-ttl value is specified a value of 3 is assumed.

Note that specifying UDP multi-cast mode in net - connect not actually establishes a
connection to the target multi-cast address, but only put the socket into UDP multi-casting
mode. On the receiving side use net-listen together with the UDP multi-cast option.

example:

;; exanple client

(net-connect "226.0.0.1" 4096 "multi") = 3
(net-send-to "226.0.0.1" 4096 "hel |l 0" 3)

;; exanpl e server

(net-listen 4096 "226.0.0.1" "multi") =5
(net-receive-fromb5 20)

= ("hello" "192.168.1.94" 32769)

On the server side net-peek or net-select can be used for non-blocking communications. In the
example the server would block until a datagram is received.

The address 226. 0. 0. 1 is just one multi-cast address in the Class D range of multi-cast
addresses from 224. 0. 0. 0 to 239. 255. 255. 255.

net-send and net-receive can be used instead of net-send-to and net-receive-from.

UDP broadcast communications

If the third parameter in str-mode contains the string " br oadcast " or " b", UDP broadcast
communications is set up. In this case the broadcast address ending in 255 is used.

example:

exanpl e client
(net-connect "192.168. 2. 255" 3000 "broadcast") = 3
(net-send 3 "hello")
;; exanpl e server
(net-listen 3000 "" "udp") =5

(net-receive 5 'buff 10)

UDP broadcast communications 179

newLISP Users Manual and Reference

buff = "hello"
vaoor
(net-receive-from5 10)

= ("hello" "192.168.2.1" 46620)

Note that on the receiving side net-listen should be used with the default address specified by
an empty string " " . Broadcasts will not be received when specifying a specific address. As
with all UDP communications net-listen does not actually put the receiving side in listen
mode, but rather sets up the sockets for the specific UDP mode.

net-select or net-peek can be used to check for incoming communications in a non-blocking
fashion.

net-error

syntax: (net-error)

Retrieves the last error occurred when calling a net-* function. When any of the following
functions returns ni | , then net - err or can be called for more information: net-accept, net-
connect, net-eval, net-listen, net-lookup, net-receive, net-receive-udp, net-select, net-send,
net-send-udp and net-service. Functions communicating using sockets close the socket
automatically and remove it from the net-sessions - list, this makes for a very robust API in
situations of unreliable net connections. Calling any of these functions successfully clears the
last error.

The following messages are returned:

1: Cannot open socket

2: Host nanme not known
3: Not a valid service
4: Connection failed

5: Accept failed

6: Connection cl osed

7. Connection broken

8: Socket send() failed
9: Socket recv() failed
10: Cannot bi nd socket
11: Too nuch sockets in net-select
12: Listen failed
13: Badly forned IP
14: Select failed
15: Peek failed
16: Not a valid socket

example:

net-error 180

newLISP Users Manual and Reference

(net-connect "jhghj gkj hg" 80) = nil

(net-error) = (2 "ERR Host name not
known")

net-eval

syntax: (net-eval '((str-host int-port str-expr) [(...) ...]) int-timeout)
syntax: (net-eval '((str-host int-port str-expr) ...) int-timeout func-handler)

net - eval can be used to evaluate source remotely on multiple newLISP servers. The
function handles all communications necessary to connect to the remote servers, send source
for evaluation and wait and collect responses.

Note that all specifications in str-host, int-port and str-expr must be given as constants. net -
eval will not evaluate these parameters.

The remote TCP/IP servers are started in the following way:

newisp -c -d 4711 &
; or with | ogging connections
newisp -1 -c -d 4711 &

Instead of 4711 any other port number can be used. Multiple nodes can be started on
different hosts and with the same or different port numbers. The - | or - L logging options
can be specified to log connections and remote commands.

The - d daemon mode lets newLISP keep state between connections. When keeping state
between connections is not desired, the inetd daemon mode offers more advantages. The
Internet i net d or xi net d services daemon will start a new newLISP process for each client
connection. This makes for much faster servicing of connections. In - d daemon mode each
new client request would have to wait for the previous to be finished. See the chapter inetd
daemon mode on how to configure this mode correctly.

In the first syntax net - eval will return a list of results after all responses are collected or
after timeout occurred. When timeout occurred those responses which timed out will return
ni | . Connection errors or errors when sending information to nodes are returned as a list of
error number and descriptive error string. See the function net-error for a list of potential
error messages.

example:

(net-eval '(
("192.168.1.94" 4711 "(+ 3 4)")
("192.168.1.95" 4711 "(+ 5 6)")
) 5000)

= (7 11)

net-eval 181

newLISP Users Manual and Reference

(net-eval '(
("l ocal host" 8081 {(foo "abc")})
("l ocal host" 8082 "(nyfunc 123)")
) 3000)

The first example shows two expressions evaluated on two different remote nodes. In the
second example both nodes run on the local computer. This may be useful for debugging
purposes or to take advantage of multiple CPUs on the same computer.

The source send for evaluation can consist of entire multi line programs. This way remote
nodes can be loaded with programs first, then specific functions can be called.

In the second syntax a handler function can be specified. The handler function will be called
repeatedly while waiting and will be called once for every completion of a remote evaluation.

example:

(define (myhandl er param
(if param
(println paranm)
)

(set ' Nodes ' (
("192.168.1.94" 4711)
("192.168.1.95" 4711)

))

(set 'Progs '(

{(+34)}
{(+56)}
))

(net-eval (map (fn (n p) (list (n 0) (n 1) p)) Nodes Progs)
5000 nyhandl er)

=

("192.168.1.94" 4711 7)
("192.168.1.95" 4711 11)

The example shows how the list of node specs can be assembled from a list of nodes and
sources to evaluate. This may be useful when connecting to a bigger number of remote nodes.

While waiting for input from remote hosts nyhandl er will be called with ni | in the function
argument par am When a remote node result is completely received myhandl er will be
called with par amset to a list containing the remote host name or IP number the port and
the result expression. When net - eval finishes it will return t r ue if finished before timeout
or ni | if the timeout was reached or exeeded. All remote hosts which exceeded the timeout
limit will contain a ni | in their result list.

net-eval 182

newLISP Users Manual and Reference

Raw mode

An additional parameter in each node specification can control if the returned result is
evaluated, which is the default or returned as a string as it comes over the communications
channel. The following example illustrates the difference between the default evaluated and
raw mode of net - eval :

(net-eval '(("local host" 4711 {(+ 3 4)})) 1000) = (7)
(net-eval '(("local host" 4711 {(+ 3 4)} true)) 1000) = ("7\n")

(net-eval '(("local host" 4711 {(+ 3 4) (+ 5 6)})) 1000) =
(11)

(net-eval ' (("local host" 4711 {(+ 3 4) (+ 5 6)} true)) 1000) =
("7\nl1\n")

While the evaluated mode always returns an evaluated expression, raw mode returns a string
terminated by a line-feed. The last two statements reveal that in the default evaluated mode

only the result of the last expresssion evaluation is returned, while in raw mode both results

are visible, each terminated by a line-feed.

Raw mode returns an exact string as would be observed when entering expressions on the
command-line, while the evaluated mode returns LISP expressions ready for further newLISP
processing.

Note that raw mode was always part of net - eval but not documented previous to version
8.7.5.

net-listen

syntax: (net-listen int-port [str-ip-addr] [str-mode])

The function listens on a port specified in int-port. A call to net - | i st en returns immediately
with a socket number, which is then used by the blocking net-accept function to wait for a
connection. As soon as a connection is accepted net-accept returns a socket number which can
be used to communicate with the connecting client.

example:
(set 'port 1234)
(set '"listen (net-listen port))
(unless listen (begin
(print "listening failed\n")
(exit)))

(print "Waiting for connection on:
(set 'connection (net-accept |isten))
(i f connection

(while (net-receive connection 'buff 1024 "\n")

port "\n")

net-listen 183

newLISP Users Manual and Reference

(print buff)
(if (= buff "\r\n") (exit)))
(print "Could not connect\n"))

The example waits for a connection on port 1234, then reads incoming lines until an empty
line is received. Note that listening on ports less then 1024 may require superuser access on
UNIX systems.

On computers with more than one interface card, an optional interface IP address or name (in
str-ip-addr), directs net - | i st en to listen on the specified address.

;; listen on a specific address
(net-listen port "192.168.1.54")

UDP communications

As a third parameter an option string str-mode containing the string " udp" or " u" can be
specified to create a socket suited for UDP (User Datagram Protocol) communications. A
socket created this way can be used directly with net-receive-from to wait for incoming UDP
data without using net - accept which is only used in TCP communications. The net-receive-
from call will block until a UDP data packet is received, or net-select or net-peek can be used
to check for ready data in a non-blocking fashion. To send data back to the address and port
received with net-receive-from use net-send-to.

Note that net-peer will not work, as UDP communications do not maintain a connected socket
with address information.

(net-listen 1002 "192.168.1. 120" "udp")
(net-1isten 1002 "" "udp")
The first example listens on a specific network adapter. The second example listens on the

default adapter. Both calls return a socket number which can be used in subsequent net-
receive, net-receive-from, net-send-to, net-select or net-peek function calls.

Both a UDP server and a UDP client can be set up using net - | i st en with the " udp" option.
In this mode net - | i st en does not really listen as in TCP/IP communications, but just binds
the socket to the local interface address and port.

For a working example, see: UDP client and UDP server in the appendix of this manual.

Instead of using net - | i st en and the " udp" option the functions net-receive-udp and net-
send-udp alone can be used for short transactions consisting only of one data packet.

The difference between both approaches is, that using net - | i st en net-select and net-peek
can be used to facilitate non-blocking reading and the listening / reading socket is not closed
but used again for subsequent reads. When using the net-receive-udp and net-send-udp pair

both sides close sockets after send and receive.

UDP communications 184

newLISP Users Manual and Reference

UDP multi-cast communications

If the option string str-mode is specified as " mul ti " or " ni' net-1i st en returns a socket
suitable for multi-casting. In this case str-ip-addr contains one of the multi-cast addresses in
the range 224. 0. 0. 0 to 239. 255. 255. 255. net - | i st en will register str-ip-addr as an
address on which to receive multi-cast transmissions. This address should not be confused
with the IP address of the server host.

example:

;; exanple client
(net-connect "226.0.0.1" 4096 "nulti") = 3

(net-send-to "226.0.0.1" 4096 "hello" 3)

;; exanpl e server
(net-listen 4096 "226.0.0.1" "nmulti") =5
(net-receive-from5 20)

= ("hello" "192.168.1.94" 32769)

On the server side net-peek or net-select can be used for non-blocking communications. In the
example the server would block until a datagram is received.

net-send and net-receive can be used instead of net-send-to and net-receive-from.

net-local

syntax: (net-local int-socket)
Returns the IP number and port of the local computer for a connection on a specific int-socket.

example:
(net-local 16) = ("204.179.131.73" 1689)

See also net-peer for the IP number and port of the remote computer.

net-lookup

syntax: (net-lookup str-ip-number)
syntax: (net-lookup str-hostname [bool])

net-lookup 185

newLISP Users Manual and Reference

Returns a hostname string from str-ip-number in IP dot format or returns the IP number in dot
format from str-hostname:

example:

(net -1 ookup "209. 24. 120. 224") = "www. nuevat ec. cont
(net -1 ookup "www. nuevatec.conl') = "209.24.120.224"

(net-1ookup "216. 16. 84. 66. shl - xbl . sparmhaus. org" true)

= "127.0.0.2"

Optionally a bool flag can be specified in the second syntax. If the expression in bool evaluates
to anything else than ni | , host-by-name lookup will be forced even if the name string starts
with an IP number.

net-peek

syntax: (net-peek int-socket)

Returns the number of bytes ready for reading on the network socket int-socket. net - peek
returns ni | , if an error occurred or the connection is closed.

example:

(set 'aSock (net-connect "aserver.conl 123))
(while (= (net-peek aSock) 0) (do-sonething-else))
(net-receive aSock 'buff 1024)

After connecting the program waits in a while loop until aSock can be read.

See also peek for checking file descriptors and st di n.

net-peer

syntax: (net-peer int-socket)
Returns the IP number and port of the remote computer for a connection on int-socket.

example:
(net-peer 16) = ("192.100.81.100" 13)

See also net-local for the IP number and port of the local computer.

net-peer 186

newLISP Users Manual and Reference

net-ping

syntax: (net-ping str-address [int-timeout [int-response]])
syntax: (net-ping list-addresses [int-timeout [int-response]])

In the first syntax net - pi ng sends a ping ICMP 64 byte echo request to an address specified
in str-address. If the address specified is a broadcast address, the ICMP packet will be received
by all addresses on the subnet. Note that for security reasons many computers do not answer
ICMP broadcast ping (ICMP_ECHO) requests. An optional timeout parameter to wait for an
answer can can be specified in int-timeout in milliseconds. If no timeout is specified a waiting
time of 1000 milliseconds (one second) is assumed.

net - pi ng returns a list of IP strings for which a response was received or an empty list when
no response was received.

A return value of ni | indicates a failure. Use the net-error function to retrieve the error
message. If the message reads Cannot open socket it is probably because newLISP is
running without root permissions. newLISP can be started using:

sudo new i sp

or newLISP can be installed with the set-user-ID bit set to run in super-user mode.

example:

(net-ping "newisp.org") = ("66.235.209.72")
(net-ping "127.0.0.1") = ("127.0.0.1")
(net-ping "yahoo.cont 3000) =

In the second syntax, net - pi ng is run in batch-mode. In this mode only one socket is opened
but multiple ICMP packets are sent out, one each to multiple addresses. In this case multiple
answers can be received.

To limit the number of responses to wait for in broadcast or batch-mode an additional
parameter can be specified in int-response indicating the maximum number of responses to
receive. Usage of this parameter can speed up return from the function before the timeout
specified. When a given number of responses have been received before the timeout limit has
been reached the function returns.
example:

(net-ping '("newisp.org" "yahoo.cont "192.168.1.255") 5000)

(net-ping "192.168.1.*" 500)
= ("192.168.1.1" "192.168.1.2" "192.168.2.3" "192.168.2.254")

(net-ping "192.168.1.*" 500 2)
= ("192.168.1.3" "192.168.1.1")

=

net-ping 187

newLISP Users Manual and Reference

Broadcast-, batch- and normal addresses and IP numbers or hostnames can be mixed in one
net - pi ng statement putting all IP specs into a list.

The second and third line show how the batch-mode of net - pi ng can be initiated by
specifying the * (asterisk) as a wildcard character for the last subnet octet in the IP number.
net - pi ng will iterate through all numbers from 1 to 254 and send an ICMP packet to each
address. Note that this is different from the broadcast mode specified with an IP octet of 255.
While in broadcast mode, net - pi ng sends out only one packet, which is received by multiple
addresses. Batch mode explicitly generates multiple packets, one for each target address.

When sending bigger lists of IPs in batch mode over one socket a longer timeout may be
necessary to give time to send out all the packets over one socket. If the timeout is too small
the function net - pi ng may return ni | with a message of socket send fail ed returned
by net-error. In any case net - pi ng will send out packages as fast as possible.

This function is only available on UNIX based systems and must be run in super user mode.

net-receive

syntax: (net-receive int-socket sym-buffer int-max-bytes [wait-string])

Receives data on the socket int-socket into a string contained in sym-buffer. A maximum of int-
max-bytes are received. net - r ecei ve returns the number of bytes read. If the connection
broke down ni | is returned. The space reserved in sym-buffer is exactly the size of bytes read.

Note that net - r ecei ve is a blocking call and does not return until data arrived at int-socket.
Use net-peek or net-select to find out if a socket is ready for reading.

Optionally a wait-string can be specified as a fourth parameter. net - r ecei ve then returns
after a character or string of characters is received matching wait-string. The wait-string will
be part of the data contained in sym-buffer.

example:

(define (gettine)
(net-connect "netcom com' 13)
(net-recei ve socket 'buf 256)
(print buf "\n")
(net-cl ose socket))

When calling get t i ne, the program connects to port 13 of the server netcom.com. Port 13 is
a date time service on most server installations. Upon connection the server sends a string
containing date and time of day.

(define (net-receive-line socket sBuff)
(net-receive socket sBuff 256 "\n"))

(set 'bytesReceived (net-receive-line socket 'sym)

net-receive 188

newLISP Users Manual and Reference

The second example defines a new function net - r ecei ve- | i ne which returns after a
newline character (a string containing one character in this example) or 256 characters are
received. The "\n" string is part of the contents of sBuff.

Note that net - r ecei ve with the fourth parameter specified is slower than the normal
version because information is read character by character. In most situations the speed
difference can be neglected.

net-receive-from

syntax: (net-receive-from int-socket int-max-size)

With net - r ecei ve- f r omnon-blocking UDP communications can be setup. A socket in int-
socket is previously opened with net-listen and " udp" option or previously opened with net-
connect and " udp" option. int-max-size specifies the maximum byte which will be received.
On Linux/BSD if more bytes are received those will be discarded. On Win32 net - r ecei ve-
f romwill return ni | and close the socket.

example:

;; listen on port 1001 on the default address
(net-listen 1001 "" "udp") = 1980

;; optionally poll for arriving data with 100nms tineout
(while (not (net-select 1980 "r" 100000)) (do-something ...))

(net-receive-from 1980 20) = ("hello" "192.168.0.5" 3240)

;; send answer back to sender
(net-send-to "192.168.0.5" 3240 "hello to you" 1980)

(net-close 1980) ;; close socket

The second line in the example is optional. Without it the net - r ecei ve- f r omcall would
block until data arrives. A UDP server could be set up by listening and polling several ports
and serving them as they receive data.

Note that net - r ecei ve could not be used in this case, because it does not return the
address and port information of the sender, which is required to talk back. In UDP
communications the data packed itself contains the address of the sender, not the socket over
which communications takes place.

See also net-connect with " udp" option and net-send-to for sending UDP data packets over
open connections.

For blocking short UDP transactions see net-send-udp and net-receive-udp.

net-receive-from 189

newLISP Users Manual and Reference

net-receive-udp

syntax: (net-receive-udp int-port int-maxsize [int-microsec][str-addr-if])

Receives a User Datagram Protocol (UDP) packet on port int-port, reading int-maxsize bytes.
If more than int-maxsize bytes are received, on Linux, bytes over int-maxsize are discarded,
and on Win32, net - r ecei ve- udp returns ni | . net - r ecei ve- udp blocks until a
datagram arrives or the optional timeout value in int-microsec expires. When setting up
communications between datagram sender and receiver, the net - r ecei ve- udp statement
must be set up first.

No previous setup using net - | i st en or net - connect is necessary.

net - r ecei ve- udp returns a list containing the UDP packet in a string followed by the IP
number string of the sender and the port used.

example:
;; wait for datagramwith maxi num 20 bytes
(net-receive-udp 1001 20)

vy or
(net-receive-udp 1001 20 5000000) ;; wait for max 5 seconds

;; executed on renmote computer
(net-send-udp "nuevatec.cont 1001 "Hello") = 4

;; returned fromthe net-receive-udp statenment
= ("Hello" "128.121.96.1" 3312)

;; sending binary information
(net-send-udp "ahost.conm' 2222 (pack "c c cc" 01 2 3))
= 4

;; extracting the received info
(set 'buff (first (net-receive-udp 2222 10)))

(print (unpack "c c¢c ¢ c¢" buff)) = (012 3)

See also net-send-udp for sending datagrams and pack and unpack for packing and unpacking
binary information.

Optionally an interface IP address or name can be specified in str-addr-if to listen on a
specified address on computers with more then one interface card. When specifying str-addr-
if a timeout in int-wait- must also be specified.

As an alternative UDP communication can be set up using net-listen, or net-connect together
with the " udp" option to make non-blocking data exchange possible with net-receive-from
and net-send-to.

net-receive-udp 190

newLISP Users Manual and Reference

net-select

syntax: (net-select int-socket str-mode int-micro-seconds)
syntax: (net-select list-sockets str-mode int-micro-seconds)

In the first form net - sel ect finds out about the status of one socket specified in int-socket.
Depending on str-mode the socket can be checked if it is ready or for reading writing or if the
socket has an error-condition. A timeout value is given in int-micro-seconds.

In the second syntax net - sel ect can check for a list of sockets in list-sockets.
The following value can be given for str-mode:

"read" or"r" to check if ready for reading or accepting.
"write" or"w' to check if ready for writing.
"exception" or"e" to check if for an error condition.

Using net - sel ect read, send or accept operations can be handled without blocking. net -
sel ect waits for a socket to be ready for the value given in int-micro-seconds and then
returns t r ue or ni | depending on the readiness of the socket. During the select loop other
portions of the program can run. On error net-error is set.

example:

(set 'listen-socket (net-listen 1001))

; wait for connection

(while (not (net-select |isten-socket "read" 1000))
(if (net-error) (print (net-error))))

(set 'connection (net-accept |isten-socket))

(net-send connection "hello")

; wait for incom ng nessage

(while (not (net-select connection "read" 1000))
(do-sonet hing))

(net-receive connection 'buff 1024)

Using net - sel ect several listen and connection sockets can be watched and multiple
connections can be handled. When using net - sel ect with a list of sockets net - sel ect
will return a list of sockets which are ready. The following example would listen on two
sockets and continue accepting and servicing connections:

example:

(set '"listen-list '(1001 1002))

(while (not (net-error))
(dolist (conn (net-select listen-list "r" 1000))
(accept-connection conn)) ; build and accept-list

(dolist (conn (net-select accept-list "r" 1000))
(read-connection conn)) ; read on conn socket

net-select 191

newLISP Users Manual and Reference

(dolist (conn (net-select accept-list "w' 1000))
(write-connection conn))) ; wite on conn socket

In the second syntax a list is returned with all sockets, which passed the test or the empty list
if the timeout occurred. On error net-error is set.

Note that supplying a non-existing socket to net - sel ect will cause an error set in net-error.

net-send

syntax: (net-send int-socket sym-buffer [int-num-bytes])
syntax: (net-send int-socket str-buffer [int-num-bytes])

Sends the contents of sym-buffer on the connection specified by int-socket. If int-num-bytes is
specified up to int-num-bytes are sent. If int-num-bytes is not specified all contents in sym-
buffer is sent. net - send returns the number of bytes sent or ni | on failure.

net - send can use a string buffer directly without quoting a symbol.

example:

(set 'buf "hello there")
(net-send sock ' buf)
(net-send sock 'buf 5)

;; a string buffer can be used unquoted
(net-send sock buf)
(net-send sock "bye bye")

The first net - send sends the string "hel | o t her e" the second net-send sends only the
string " hel | 0".

net-send-to

syntax: (net-send-to str-remotehost int-remoteport str-buffer int-socket

This function is used to send UDP data packets on open connections. The socket in int-socket
is previously opened with a net-connect or net-listen function. Both opening functions must
be used with their " udp" option. The host in str-remotehost can be specified either as a
hostname or an IP-number string.

example:

(net-connect "asite.cont 1010 "udp")

= 2058 7, get a UDP socket

net-send-to 192

newLISP Users Manual and Reference

(net-send-to "asite.cont 1010 "hell 0" 2058)

;; optionally poll for answer
(while (not (net-select 2058 "r" 100000))
(do-sonething))

;; receive answering data from UDP server
(net-receive-from 2058 20)

= ("hello to you" "10.20.30.40" 1010)

(net-cl ose 2058)

The second line in the example is optional. Without it the net-receive-from call would block
until data arrives. With polling a client could maintain conversations with several UDP servers
at the same time.

See also net-receive-from and net-listen with " udp" option.

For blocking short UDP transactions see net-send-udp" and net-receive-udp.

net-send-udp

syntax: (net-send-udp str-remotehost int-remoteport str-buffer [booll)

Sends a User Datagram Protocol (UDP) to a host specified in str-remotehost and to a port in
int-remoteport. The data sent is in str-buffer.

No previous setup using net - connect or net - | i st en is necessary. net - send- udp
returns immediately with the number of bytes sent and closes the socket used. If no net -
recei ve- udp statement is waiting at the receiving side, then the datagram sent is lost.
When using datagram communications over insecure connections it is recommended to setup
a simple protocol between sender and receiver to insure delivery. UDP communications by it
self does not guarantee reliable delivery as TCP/IP does.

example:
(net -send-udp "sonehost.cont 3333 "Hello") = 5

net - send- udp is also suitable for sending binary information, i.e. the zero character or
other non-visible bytes. For a more comprehensive example see net-receive-udp.

Optionally the sending socket can be put in broadcast mode by specifying t r ue or any
expression not evaluating in ni | in bool:

(net-send-udp "192.168. 1. 255" 2000 "Hello" true) = 5

net-send-udp 193

newLISP Users Manual and Reference

The UDP will be sent to all nodes on the 192. 168. 1 network. Note that on some operating
systems the network mask 255 alone without the bool t r ue option will enable broadcast
mode.

As an alternative net-connect and the " udp" option together with net-send-to can be used to
talk to a UDP listener in a non-blocking fashion.

net-service

syntax: (net-service str-service str-protocol)

Makes a lookup in the services database and returns the standard port number for this service.
On failure returns ni | .

example:

(net-service "ftp" "tcp") = 21

(net-service "finger" "tcp") = 79

(net-service "net-eval" "tcp") = 4711 ; if configured
net-sessions

syntax: (net-sessions)

Returns a list of active listening and connection sockets.

new

syntax: (new context-source sym-context-targer [bool])
syntax: (new context-source)

In the first syntax context-source is the name of an existing context and sym-context-target is
the name of a new context to be created just like the original, with the same names of
variables and user-defined functions. If the context in sym-context-target already exists, then
new symbols and definitions are added. Existing symbols are overwritten when the expression
in bool evaluates to anything else than ni | , else the content of existing symbols will remain if
not ni | . This makes mixins of context objects possible. new returns the target context.

In the second syntax the existing context in context-source gets copied into the current context
as target context.

new 194

newLISP Users Manual and Reference

All references to symbols in the originating context will be translated to references in the
target context. This way all functions and data structures referring to symbols in the original
context will now refer to symbols in the target context.

example:

(new CTX ' CTX- 2) = CTX-2

; force overwite of existing synbols
(new CTX MYCTX true) = M/CTX

(set 'CTX: x 123)

(new CTX) = MAIN; copies x into MAIN
X = 123
(map new'(Ct-a Ct-b Ct-c)) ; merge into current context

The first line in the example creates a new context CTX- 2 having the exact structure as the
original one. Note that CTX is not quoted because contexts evaluate to themselves but CTX-2
has to be quoted because it does not exist yet.

The second line merges the context CTX into MyCTX, any existing symbols of same name in
My CTX will be overwritten. Because My CTX already exists, the quote before the context
symbol can be omitted.

The last lines show how a foreign context does get merged into the current one and how map
can be used to merge a list of contexts.

Context symbols need not to be mentioned explicitly but can be contained in variables:

example:

(set 'foo:x 123)
(set 'bar:y 999)

(set 'ctxa foo)
(set 'ctxb bar)

(new ctxa ctxb) ; fromfoo to bar

bar:x = 123 ; x has been added to bar
bar:y = 999)

The example refers to contexts in variables and merges context f 00 into bar .

See also the function def-new for moving and merging single functions instead of entire
contexts. See the function context for a more comprehensive example of new.

nil?

syntax: (nil? expr)

nil? 195

newLISP Users Manual and Reference

If the expression in expr evaluates to ni | then ni | ? returns t r ue else it returns ni | .

example:

(map nil? "(x nil 12 nil "hi" ())) = (nil true nil true nil nil)
(nil? nil) = true
(nil? ")) = nil

The ni | ? predicate is useful to distinguish between ni | and the empty list () .

not

syntax: (not exp)

If exp evaluates to ni | thentr ue is returned else ni | .

example:
(not true) = nil
(not nil) = true
(not '()) = true
(not (< 1 10)) = nil
(not (not (< 1 10))) = true

normal

syntax: (normal float-mean float-stdey int-n)
syntax: (normal float-mean float-stdev)

In the first form, nor mal returns a list of length int-n of random, continuously distributed
floating point numbers with a mean of float-mean and a standard deviation of float-stdev. The
random generator used internally can be seeded using seed.

example:

(normal 10 3 10) =
(7 6.563476562 11.93945312 6. 153320312 9. 98828125
7.984375 10.17871094 6.58984375 9. 42578125 12.11230469)

In the second form nor mal returns a single normal distributed floating point number:

(normal 0 1) = 0.6630859375

See also random and rand for evenly distributed numbers, amb for randomizing evaluation in
a list of expressions and seed for setting a different start point for pseudo random number
generation.

normal 196

newLISP Users Manual and Reference

now

syntax: (now [int-offset])

Returns information about the current date and time in a list of integer numbers. Optionally a
time zone offset can be specified in int-offset in minutes, which is added or subtracted to the
time before splitting it into its date values.

example:
(now)
= (2002 2 27 18 21 30 140000 57 3 300 0)

(apply date-value (now)) = 1014834090

The numbers give information about the following date time fields:

format description

year Gregorian calendar

month 1-12)

day (1-31)

hour (0-23) UCT

minute (0-59)

second (0-59)

microsecond (0 - 999999) OS-specific, millisecond resolution
day of current year Jan Istis 1

day of current week (1 - 7) starting Sunday

time zone offset in minutes west of GMT
daylight savings time flag (0 - 1) on Linux/UNIX bias in minutes on Win32
The second example returns the UCT time value of seconds after 1970-1-1.

Note that hours are given in Universal Coordinated Time (UCT) from O to 23 and not
adjusted for the local time zone. The resolution of the microsecond field depends on the
operating system and platforms. On some platforms the last 3 digits of the m cr oseconds
field are always O (zero).

See also date, date-value, time and time-of-day.

Note that on Solaris the returned time offset value is not working correctly in some
versions/platforms and may contain garbage values.

Note than on many platforms the daylight savings flag is not active and 0 even during
daylight savings time.

now 197

newLISP Users Manual and Reference

nper

syntax: (nper num-interest num-pmt num-pv [num-fv int-typel)

Calculates the number of payments required to pay a loan of num-pv with a constant interest
rate of num-interest and payment num-pmt. The future value of the loan is assumed to be 0.0,
if num-fv is omitted. If payment is at the end of the period int-type is O else 1. If int-type is
omitted 0 is assumed.

example:
(nper (div 0.07 12) 775.30 -100000) = 239.9992828

The examples calculates the number of monthly payments required to pay a loan of $100,000
and a yearly interest rate of 7% with payments of $775.30.

See also fv, irr, npv, pmt and pv.

npv

syntax: (npv num-interest list-values)

Calculates the net present value of an investment with a fixed interest rate num-interest and a
series of future payments and income in list-values. Payments are represented by negative
values in list-values while income is represented by positive values in list-values

example:

(npv 0.1 ' (1000 1000 1000))
= 2486. 851991

(npv 0.1 '(-2486.851991 1000 1000 1000))
= -1.434386832e-08 ; ~ 0.0 (zero)

In the example an initial investment of $2481.85 would allow to draw income of $1000 after
the end of the 1st, 2nd and 3rd year.

See also fv, irr, nper, pmt and pv.

nth

syntax: (nth int-index-1 [int-index-2 ...] list)
syntax: (nth int-index-1 [int-index-2 ...] array)
syntax: (nth int-offset str)

nth 198

newLISP Users Manual and Reference

In the first version nt h evaluates int-index to an index into list and returns the element found
at the index. See also Indexing elements of strings and lists. Multiple indexes may be specified
to recursively access elements in nested lists. If there are more indexes than nesting levels
found, these indexes are ignored. Up to 16 indexes can be specified.

example:
(nth 0 "(a b c)) = a

(set 'nanmes '(john martha robert alex))
= (john martha robert al ex)

(nth 2 names) = robert

(nth -1 nanes) = al ex

(set 'persons '((john 30) (martha 120) ((john doe) 17)))
(nth 1 1 persons) = 120

(nth 2 0 1 persons) = doe

(nth -2 0 persons) = mart ha
(nth 10 persons) = ((john doe) 17)) ;; out of bounds
(nth -5 person) = (john 30) ;; out of bounds

In the second version nt h works on arrays just like on lists, but indexes which are out of
bounds will cause an error message.

example:

(set 'aArray (array 2 3 '(abcdef)))
= ((abc) (def))

(nth 1 aArray) = (def)
(nth 1 0 aArray) = d
(nth -5 -3 aArray) = out of bounds error

(nth 10 10) aArray) = out of bounds error

In the third version nt h returns the character found at the position int-index in str and returns
it as a string.

example:
(nth O "newLl SP") = "n"

(nth 3 "newLl SP") = "Lt

(nth -1 "newLl SP") = "pP"

nth 199

newLISP Users Manual and Reference

See also set-nth for other functions suitable for accessing multidimensional nested lists and
arrays. See push and pop for other functions accessing multidimensional lists.

Note that since version 8.5 implicit indexing can be used as shorter form of nth. Implicit
indexing is slightly faster than conventional indexing and can take an unlimited number of
indexes.

Note that nth works on character boundaries rather than byte boundaries when using the
UTF-8 enabled version of newLISP.

nth-set

syntax: (nth-set int-nth-1 [int-nth-2 ...] list| array exp-replacement)
syntax: (nth-set int-nth-1 str str-replacement)

syntax: (nth-set (list|array int-nth-1 [int-nth-2 ...]) exp-replacement)
syntax: (nth-set (str int-nth-1) str str-replacement)

Sets the int-nth element of a list or array with the evaluation of exp-replacement, and returns
the old element. Implicit indexing syntax can be used for specifying indices, as shown in the
last two syntax lines. Because it is more readable, implicit indexing is the preferred form
(since version 8.8.8) in nt h- set and set-nth, but both forms remain valid.

nt h- set performs a destructive operation, changing the original list or array. More than one
index can be specified to recursively traverse nested list structures or multi-dimensional
arrays. An out-of-bounds index always returns the last or first element when indexing a list,
but causes an out of bound error when indexing an array. Up to 16 indices can be specified.

When replacing in lists the old element is also contained in the system variable $0 and can be
used in the replacement expression itself.

In the second form the int-nth character in str is replaced with the string in str-replacement.
Indexes out of bounds will pick the first or last character for replacement and the system
variable $0 is set to the replaced character.

example:

(set '"aList '"(abcdef g))
(nth-set 2 alList "I amthe repl acenent") = c ; old syntax

;; or using inplicit indexing

(nth-set (aList 2) "I amthe replacenent") = c ; new syntax
aList = (a b "l amthe replacenent"” d e f Q)
$0 = C

nth-set 200

newLISP Users Manual and Reference

(set '"aList "(a b (cd(ef g) h)i)))
(nth-set (aList 2 2 0) 'x) = e

aList = (ab (cd(xf g) h) i)
$0 = e

(set-nth (aList -2 2 -1) 99) = ¢
aList = (a b (cd (x f 99) h) i)

;; usage on default functors
(set 'db:db '"(abcdef g))
(nth-set (db 3) 99) = d

db:db = (a b c 99 e f Q)

The following examples use nt h- set to change the contents of arrays.
example:

saaaaaaasss USAQE ON arrays i,

(set 'nyarray (array 3 4 (sequence 1 12)))
= ((1234) (5678) (910 11 12))

(nth-set 2 3 nyarray 99) = 12
or with inplicit indexing
(nth-set (nyarray 2 3) 99) = 12
nyarray = ((1 2 3 4) (56 7 8) (9 10 11 99))

(nth-set (myarray -2 1) "hello") = 6
nyarray = ((1 2 3 4) (5 "hello" 7 8) (9 10 11 99))

(nth-set (nyarray 1) (array 4 "(a b c d))) = (5 "hello" 7 8)
nmyarray = ((1 2 3 4) (abcd (9 10 11 99))

;; usage on default functors
(set 'nyarray:nyarray (array 7 ‘(abcdef g)))

(nth-set (nyarray 3) 99) = d
nyarray:nyarrarry = (a b c 99 e f g)

When replacing whole rows like in the last example, care must be taken to replace it as an
array. See also the array functions array, array? and array-list.

In second form the int-nth character in str is replaced with the string in str-replacement.
example:

Sisiiassaisousage on strings i
(set 's "abcd")

(nth-set (s 0) "xyz") = "a"
s = "xyzbcd"
$o = n a||

nth-set 201

newLISP Users Manual and Reference

nt h- set uses the system variable $0 for the element found in lists and strings. This can be
used in the replacement expression:

(set '"Ist "(1 2 3 4))
(nth-set (Ist 1) (+ $0 1)) = 2
Ist = ' (1334
See set-nth, which works like nt h- set , but returns the whole changed expression instead of

the replaced element. set - nt h is also slower when doing replacements in larger lists or
string buffers.

See also nth and push and pop for other functions suitable for accessing multidimensional
nested lists or arrays (only nth).

Works exactly like set-nth but returns the replaced element instead of the whole changed list
expression. nt h- set is much faster when replacing elements in larger lists or arrays.

number?

syntax: (number? exp)

t r ue is returned only if exp evaluates to a floating point number or an integer; otherwise ni |
is returned.

example:
(set 'x 1.23)
(set 'y 456)
(nunber? x) = true
(nunber? vy) = true
(nunmber? "678") = nil

See the functions float? and integer? to test for a specific number type.

open

syntax: (open str-path-file str-access-mode [str-option])

The str-path-file is a file name, str-access-mode a string specifying the file access mode. open
returns an integer, which is a file handle to be used on subsequent read or write operations
on the file. On failure open returns ni | . The access mode "wri t e" creates the file if it
doesn't exist, or it truncates an existing file to 0 bytes length.

The following strings are legal access modes:

open 202

newLISP Users Manual and Reference

"read" or"r" for read only access

"write" or"w' for write only access

"updat e" or " u" for read/write access
"append" or"a" for append read/write access

example:
(device (open "newfile.data" "wite")) =5
(print "hello world\n") = "hello world"
(cl ose (device)) =5

(set '"aFile (open "newfile.data" "read"))
(seek aFile 6)

(set 'inChar (read-char aFile))

(print inChar "\n")

(close aFile)

The first example uses open to set the device for print and writes the word "hel | o wor | d"
into the file newf i | e. dat a. The second example reads a byte value at offset 6 in the same
file (ASCII value of ' W : 119). Note that using close on (device) automatically resets device
to 0 (zero).

As an additional str-option " non- bl ock" or " n" can be specified after the " r ead" or
"write" option. The non-blocking mode is only available on UNIX systems and can be useful
when opening named pipes but is not required to do I/O on named pipes.

To create a named pipe in newLISP the exec or import function can be used:
example:

(exec "nkfifo nyfifo")

;; or alternatively

(import "/lib/libc.so.6" "nkfifo")
(nkfifo "/tnp/nyfifo" 0777)

The named pipe can now be used like a file with open, read-buffer and write-buffer.

or

syntax: (or exp-1 [exp-2 exp-3 ...])

Expressions exp-x are evaluated from left to right, until finding a result which does not
evaluate to ni | , or the empty list (), The result is the return value of the or expression.

example:

(set 'x 10)
(or (> x 100) (= x 10)) = true

or 203

newLISP Users Manual and Reference

(or "hello" (> x 100) (= x 10)) = "hell 0"

(or "()) = nil
(or true) = true
(or) = nil

pack

syntax: (pack str-format exp-1 [exp-2 ... exp-n])

Pack one or more expressions exp-1 to exp-n into a binary format specified in the format string
str-format and returns the binary structure in a string buffer. A symmetrical unpack function is
used to unpack. pack and unpack are useful when reading and writing binary files (see
read-buffer and write-buffer) or when unpacking binary structures from return values of
imported 'C' functions with i nport.

The following characters are used int str-format:

format description

c a signed 8-bit number

b an unsigned 8-bit number

d a signed 16-bit short number

u an unsigned 16-bit short number

Id a signed 32-bit long number

lu an unsigned 32-bit long number

f a float in 32-bit representation

| f a double float in 64-bit representation
sn a string of n null padded ASCII characters
nn n null characters

> switch to big endian byte order

< switch to little endian byte order

Note that newLISP only supports 32-bit signed integers and treats | u and | d the same way
internally.

pack will convert all floats to integer types when passed to b, ¢, d, | d or | u formats. pack
will also convert from integer to float type when passing integers to f and | f formats.

example:
(pack "c c c" 65 66 67) = "ABC'
(unpack "c c c" "ABC') = (65 66 67)
(pack "c cc" 01 2 = "\ 000\ 001\ 002"
(unpack "c c¢ c¢" "\000\001\002") = (0 1 2)

pack 204

newLISP Users Manual and Reference

(set 's (pack "c d u" 10 12345 56789))

(unpack "c d u" s) = (10 12345 56789)

(set 's (pack "s10 f" "result" 1.23))

(unpack "s10 f" s) = ("resul t\ 000\ 000\ 000\ 000" 1.230000019)
(set 's (pack "s3 If" "result" 1.23))

(unpack "s3 f" s) = ("res" 1.23)

(set 's (pack "c n7 c¢" 11 22))

(unpack "c n7 c" s) = (11 22))

(unpack "b" (pack "b" -1.0)) = (255)
(unpack "f" (pack "f" 123)) = (123)

The last two statement shows how floating point numbers are converted to integers when
required by the format spec.

The > and < specifiers can be used to switch between little endian and big endian byte order
when packing or unpacking:

(pack "d" 1) = "\ 001\ 000"

(pack ">d" 1) = "\ 000\001"

(pack "Id" 1)
(pack "<l d" 1)

"\ 001\ 000\ OO0\ 000"
"\ 000\ 000\ OO0\ 001"

/)

Switching the byte order will affect all number formats with 16, 32 or 64 bit sizes.

The pack and unpack format need not to be the same; as in the following example:

(set 's (pack "s3" "ABC"))
(unpack "c c c" s) = (65 66 67)

The examples show spaces between the format specifiers. These are not required but can be
used to improve readability.

See also address, get-int, get-char, get-string and unpack.

parse

syntax: (parse str-data [str-break int-option])

The string which results from evaluating str-data is broken up into string tokens which are
returned in a list. When no str-break is given, par se tokenizes according newLISP's internal
parse rules. A string may be specified in str-break for tokenizing only at the occurrence of
string. If an int-option number is specified, a regular expression pattern may be specified in
str-break.

parse 205

newLISP Users Manual and Reference

When str-break is not specified, the maximum token size is 2048 for quoted strings and 256
for identifiers. In this case newLISP uses the same faster tokenizer it uses for parsing LISP
source. If str-data is specified, there is no limitation on the length of tokens. A different
algorithm is used splitting the source string str-data at the string in str-break.

example:
(parse "hello how are you") = ("hello" "how' "are" "you")
(parse "one:two:three" ":") = ("one" "two" "three")
(parse "one--two--three" "--") = ("one" "two" "three")
(parse "one-two--three---four" "-+" 0)

= ("one" "two" "three" "four")
(parse "hello regul ar expression 1, 2, 3" {,\s*|\s+} 0)
= ("hello" "regular" "expression" "1" "2" "3")
The last two examples show a regular expression as the break string with the default option 0
(zero). Instead of curly brackets {, } quotes could have been used to limit the pattern, but in

that case double backslashes would have to be used inside the pattern. The last pattern could
be used for parsing CVS files. For option numbers for regular expressions see regex.

par se will return empty fields around separators as empty strings:

(parse "1,2,3," ",") = ("1" mom wge uu)
(pafse "1,,,4" ",") = ("]_" wwoomwn "4")
(parse "," ", ") = ("""

(parse "") = ()

(parse "" " ") = ()

This behavior is needed when parsing records with empty fields.
Parsing an empty string will always result in an empty list.

See also regex for breaking up strings and directory, find, regex, replace and search for other
functions using regular expressions.

peek

syntax: (peek int-handle)

Returns the number of bytes ready to read on a file descriptor or returns ni | if the file
descriptor is invalid. peek can also be used to check st di n. This function is only available on
UNIX like operating systems.

example:

peek 206

newLISP Users Manual and Reference
(peek 0) ; check # of bytes ready on stdin

See also net-peek for checking bytes available on network sockets. peek can also be used to
check network sockets and on UNIX net-peek can also be used to check file descriptors. The
difference is that net-peek also sets net-error.

pipe

syntax: (pipe)

pi pe creates an inter-process communications pipe and returns the r ead and wr i t e handles
to it in a list.

example:

(pi pe) = (3 4) ; 3 for read, 4 for witing

The pipe handles can be passed on to a child process or thread launched via process or fork
for inter process communications.

Note that the pipe does not block on writing into it, but does block reading until bytes are
available. A read-line blocks until a newline character is received. A read-buffer blocks when
fewer characters than specified are available from a pipe that has not had the writing end
closed by all processes.

More than one pipe can be opened if required.

newLISP can also use named pipes. See the description of open for further information.

pmt

syntax: (parse num-interest num-periods num-principal [num-future-value int-type])

Calculates the payment for a loan based on a constant interest num-interest and constant
payments over num-periods time periods. num-future-value is the value of the loan at the end
(typically 0.0). When paying at the end of each period num-type is O else 1. If omitted int-type
is assumed to be O for payment at the end of a period.

example:
(pnt (div 0.07 12) 240 100000) = - 775. 2989356

The example calculates the payment of $775.30 for a loan of $100,000 and yearly interest
rate of 7% calculated monthly and paid in 20 years or 20 * 12 = 240 monthly periods. The
example illustrates the typical way payment is calculated for mortgages.

pmt 207

newLISP Users Manual and Reference

See also fv, irr, nper, npv, and pv.

pop

syntax: (pop list [int-index-1 [int-index-2 ...]1]1)
syntax: (pop list [list-indexes])
syntax: (pop str [int-index] [int-length])

An element is extracted from the list found evaluating list. If a second parameter is present,
the element at the index in int-index is extracted and returned. See also Indexing elements of

strings and lists.

In the second version indexes are specified in a list list-indexes. This way pop works easily
together with ref, which returns a list of indexes.

pop changes the contents of the target list. The popped element is returned.

example:
(set '"pList "((f g a b c "hello" d e 10))
(pop pList) = (f 9
(pop pList) = a
pli st = (b c "hello" d e 10)
(pop pList 3) = d
(pop pList 100) = 10
pLi st = (b ¢c "hello" e)
(pop pList -1) = e
pLi st = (b ¢c "hello")
(pop pList -2) = C
pLi st = (b "hello")

(set "pList "(a 2 (xy (pa) 2)))
(pop pList -1 20) = p

; use indexes in a list
(set '"pList "(ab (cd () e)))

(push "x pList '(2 2 0)) = X

pLi st = (ab (cd(x) e))
(ref 'x pList) = (2 2 0)
(pop pList '(2 2 0)) = X

use pop on strings

pop 208

newLISP Users Manual and Reference

(set 'str "newLl SP")
(pop str -4 4) = "LISP"
str = "new'

(pop str 1) S nen
str = "nw'

See also push, which is the inverse operation to pop, and set-nth and nth, which can take
multiple dimension indexes into lists.

post-url

syntax: (post-url str-url str-content [str-content-type] [str-option] [int-timeout [str-
header]])

A HTTP POST request is sent to the URL in str-url. POST requests are used to post
information collected from web entry forms to a website. Most of the time the function
post - ur | mimics what an Internet Web browser would do when sending information
collected in an HTML form to a server, but it can also be used to upload files (see a HTTP
reference). The function returns the page returned from the server in a string.

When post - ur | encounters an error, it returns a description of the error as a string,
beginning with ERR: .

The last parameter, int-timeout, is for an optional timeout value, which is specified in

milliseconds. When no response from the host is received before the timeout has expired, the

string ERR: ti meout is returned. example:

(post-url "http://sonmesite.conllogin.pl”
"user =j ohnDoe&pass=12345"
"application/ x-ww formurl encoded")

(post-url "http://sonesite.conllogin.pl"
"user =j ohnDoe&pass=12345"
"appl i cati on/ x- ww* f or m ur| encoded" 8000)

;; assunes default content type
(post-url "http://sonesite.com|ogin.pl"
"user =j ohnDoe&pass=12345")

(post-url "http://sonmesite.conllogin.pl”
"user =j ohnDoe&pass=12345" 10000)

The above example uploads a user name and password using a special format called

appl i cation/ x- ww«+ f or m ur | encoded. Other content-types are possible using post -

post-url

209

newLISP Users Manual and Reference

url to post other types of information, for example, files or binary data. See an HTTP
reference for other content-type specifications and data encoding formats. When omitting the
content type parameter, post - ur | assumes appl i cati on/ x- ww« f or m ur | encoded as
the default content type.

Additional parameters

When str-content-type is specified, then the str-option " header" or "l i st" can be specified
for the returned page. If the int-timeout option is specified the custom header option str-
header can be specified too. See the function get-url for details on both of these options.

See also get-url and put-url.

pow

syntax: (pow num-1 num-2 [num-3...])
Calculates num-1 to the power of num-2 and so forth.

example:

(pow 100 2) = 10000
(pow 100 0.5) = 10
(pow 100 0.5 3) = 1000

pretty-print

syntax: (pretty-print [int-length [str-tab]])

pretty-print reformats expressions for print, save or source. The first parameter int-length
specifies the maximum line length, str-tab specifies the string used to indent lines. All
parameters are optional. pr et t y- pri nt returns the current settings or the new settings
when one or both parameters are specified.

example:

(pretty-print) = (64 " ") ;; default setting
(pretty-print 90 "\t") = (90 "\t")

(pretty-print 100) = (100 "\t")

The first example reports the default settings of 64 for the maximum line length and a TAB
character for indenting. The third example changes the line length only.

pretty-print 210

newLISP Users Manual and Reference

Note that pretty-pri nt cannot be used to prevent line breaks from being printed. To
completely suppress pretty printing use the function string to convert the expression to a raw
unformatted string i.e.:

example:

;; print without formatting

(print (string my-expression))

primitive?

syntax: (primitive? exp)

exp is evaluated and tested if a primitive symbol. t r ue or ni | is returned, depending on the
result.

example:

(set 'var define)

(primtive? var) = true
print

syntax: (print exp-1 [exp-2 ... 1)

All exp-1 ... are evaluated and printed to the current I/0 device, which is the console window
by default. See the built-in function device on how to specify a different I/0 device.

List expressions are indented by the nesting levels of their opening parentheses.

Several special characters may be included in strings encoded with the escape character \ :

escaped

character description

\n the line feed character (ASCII 10)

\r the carriage return character (ASCII 13)

\ 't the tab character (ASCII 9)

\ nnn where nnn is a decimal ASCII code between 000 and 255
example:

(print (set 'res (+ 12 3)))
(print "the result is" res "\n")

print 211

newLISP Users Manual and Reference
"\ 065\ 066\ 067" = "ABC'

To finish printing with a line feed use println.

println

syntax: (println exp-1 [exp-2 ... 1)

All exp-1 ... are evaluated and printed to the current I/0 device, which is the console window
by default. At the end a line feed is printed. See the built-in function device on how to specify
a different I/O device. println works just like print but emits a line feed character at the end.

See also write-line print.

prob-chi2

syntax: (prob-chi2 num-chi2 num-df)

Returns the probability Q of an observed Chi-2 statistic in num-chi2 with num-df degrees of
freedom to be equal or greater. pr ob- chi 2 is derived from the Incomplete Gamma function

gammai.
example:
(prob-chi 2 10 6) = 0.1246520195

See also the inverse function crit-chi2.

prob-z

syntax: (prob-z num-z)

Returns the probability of num-z not to exceed the observed value where num-z is a normal
distributed value with a mean of 0.0 and a standard deviation of 1.0.

example:
(prob-z 0.0) = 0.5

See also the inverse function crit-z.

prob-z 212

newLISP Users Manual and Reference

process

syntax: (process str-command)
syntax: (process str-command int-pipe-in int-pipe-out [int-win32-option])
syntax: (process str-command int-pipe-in int-pipe-out [int-pipe-error])

Using the first syntax pr ocess works similar to ! but in a non-blocking fashion, launching a
child-process specified in str-command and then returning immediately with the child process
id or ni | if a child process could not be created.

example:

(process "notepad") = 1894

In the second syntax standard input and output of the created process can be redirected to
pipe handles. When remapping standard 1/0 of the launched application to a pipe, it is
possible to communicate with the other application via write-line and read-line or write-
buffer and read-buffer statements:

example:

;» Li nux/ UNI X

;; Create pipes

(map set ' (mnyin bcout) (pipe))
(map set ' (bcin nmyout) (pipe))

;7 launch UNI X ' bc' cal cul ator application
(process "bc" bcin bcout)

(wite-buffer nyout "3 + 4\n") ; bc expects a |linefeed

(read-line nmyin) = "7"

;5 bc can use bignums with arbitrary precision
(wite-buffer nyout "123456789012345 * 123456789012345\ n")
(read-line nmyin) = "15241578753238669120562399025"

W n32
(map set ' (nyin cndout) (pipe))
(map set '(cndin nyout) (pipe))
(process "cnmd" cndi n cndout) ; Wn32 comuand shel |
(wite-line "dir c:*. bat" nyout)
(read-buffer nyin 'buff 2000)

(println buff) ; directory listing

process 213

newLISP Users Manual and Reference

On Win32 versions of newLISP a fourth optional parameter can be specified to control the
display status of the application with int-win32-option. By default this is 1 for showing the
applications windows, 0 for hiding it and 2 for showing it minimized on the Windows launch
bar.

On both OS Win32 and Linux/UNIX standard error will be redirected to standard out by
default. On Linux/UNIX an optional pipe handle for standard error output can be defined. In
this case peek can be used to check for information on the pipe handles:

create pipes
(map set ' (myin bcout) (pipe))
(map set ' (bcin myout) (pipe))
(map set '(errin errout) (pipe))

;7 launch UNI X 'bc' cal cul ator application
(process "bc" bcin bcout errout)

(write-buffer nmyout conmmand)

;7 wait for bc sending result or error info
(while (and (= (peek nyin) 0)
(= (peek errin) 0)) (sleep 10))

(if (> (peek errin) 0)
(println (read-line errin)))

(if (> (peek nyin) 0)
(println (read-line nyin)))

Not all interactive console applications can have their standard 1/0 channels remapped.
Sometimes only one channel, in or out, can be remapped. In this case, specify O (zero) for the
unused channel. The following statement uses only the launched application's output:

(process "app" 0 nyout)

Normally two pipes are used: one for communications to the child process and the other one
for communications from the child process.

See also pipe and share for inter-process communications and semaphore for synchronization
of several processes. See fork for starting separate newLISP threads on Linux/UNIX.

push

syntax: (push exp list [int-index-1 [int-index-2 ...]1])
syntax: (push exp list [list-indexes])

syntax: (push str-1 str-2 [int-index])

push 214

newLISP Users Manual and Reference

The value of exp is inserted into the list list. If int-index is present, the element is inserted at
that index. If the index is absent, the element is inserted at index 0, the first element. push is
a destructive operation, which changes the contents of the target list. The element inserted is

returned. See also Indexing elements of strings and lists.

If more than one int-index is present, the indexes are used to access a nested list structure.
Improper indexes - those not matching list elements - are discarded.

The second version takes a list of list-indexes but is otherwise identical to the first. In this way

push works easily together with ref which returns a list of indexes.

If list does not contain a list, list must contain a ni | and will be initialized to the empty list

0.

Using repeatedly push to the end of a list using one int-index of - 1 is optimized and as fast as

pushing in front of a list with no index at all. This can be used to efficiently grow a list.

example:

; inserting in front
(set '"pList '"(b c))
(push "a pList)
pLi st

insert at index
(push "hello" pList 2)
pLi st

L/

=
=

(b
a
(a

c)
b ¢)

"hel | o"

(a

b "hello" c)

; optimzed appending at the end

(push 'z pList -1)
pLi st

; inserting lists in lists

(push ' (f g) pList)
pLi st

inserting at negative index

(push 'x pList -3)
pLi st

; using nultiple indexes
(push "h pList 0 -1)
pLi st

; use indexes in a list

=

z

= (a b "hello" ¢ z)

= (f 9)

= ((f g ab "hello" c z)

=

= ((f g ab "hello" x ¢c z)

=

= ((f gh) ab "hello" x ¢ z)

X

h

(set 'pList '(ab (cd() e)))

(push '"x pList '(2 2 0))
pLi st

(ref 'x pList)
(pop pList '(2 2 0))

;; push on strings

push

=
=

X
(a b (cd(x)e))

(2 2 0)

X

215

newLISP Users Manual and Reference

(set 'str "abcdefg")

(push "hijk" str -1) = "hijk"
str = "abcdefghij k"

(push "123" str) = "123"
str = "123abcdef ghij k"

(push "4" str 3) = "4"
ste = "1234abcdef ghij k"

; push on uninitialized synbol

aVar = nil
(push 999 aVar) = 999
aVar = (999)

See also pop, which is the inverse operation to push, and set-nth, nth-set and nth, which all
can take multiple dimension indexes into lists.

put-url

syntax: (put-url str-url str-content [str-option] [int-timeout [str-header]])

The HTTP PUT protocol is used to transfer information in str-content to a file specified in str-
url. The lesser known HTTP PUT mode is frequently used for transferring web pages from
HTML editors to Web servers. In order to use PUT mode the web server's software must be
configured correctly. On the Apache web server use the ' Scri pt PUT' directive in the
section where directory access rights are configured.

Optionally a int-timeout value in milliseconds can be specified as the last parameter. put - ur |
will return ERR: ti meout when the host gives no response and the timeout expired. On
other error conditions put - ur | returns a string starting with ERR: and the description of the
error.

example:

(put-url "http://asite.comnyFile.txt" "H there")
(put-url "http://asite.comnyFile.txt" "H there" 2000)

(put-url "http://asite.com webpage. htm "
(read-file "webpage. htm "))

put-url 216

newLISP Users Manual and Reference

The first example creates a file myFi | e. t xt on the target server and store the text string
"H there' init. In the second example a local file webpage. ht m is transferred to
asite.com

On an Apache web server the following could be configured in ht t pd. conf.

example:
<directory /ww/ htdocs>
Options Al

Script PUT /cgi-bin/put.cgi
</directory>

The script put . cgi would contain code to receive content via STDIN from the web server.

The following is a working put . cgi written in newLISP for the Apache web server:

example:

#!/ usr/ hone/ j ohndoe/ bi n/ new i sp

#

#

get PUT nethod data from Cd STDI N
and wite data to a file specified
int the PUT request

#

#

(print "Content-type: text/htm\n\n")

(set 'cnt 0)
(set 'result "")

(if (= "PUT" (env "REQUEST_METHCD'))
(begin
(set 'len (integer (env "CONTENT_LENGTH')))

(while (< cnt len)
(set 'n (read-buffer (device) 'buffer len))
(if (not n)
(set 'cnt len)
(begin
(inc 'cnt n)
(wite-buffer result buffer))))
(set 'path (append
"/ usr/ home/j ohndoe"
(env "PATH TRANSLATED')))

(wite-file path result)

(exit)

put-url

217

newLISP Users Manual and Reference

Note that the script appends ".txt" to the path to avoid the CGI execution of uploaded
malicious scripts. Note also, that the 2 lines where the file path is composed may work
differently in your web server environment. Check environment variables passed by your web
server for composition of the right file path.

put - ur | returns content returned by the put . cgi script.

Additional parameters

When str-content-type is specified, then the str-option " header" or "l i st" can be specified
for the returned page. If the int-timeout option is specified the custom header option str-
header can be specified too. See the function get-url for details on both of these options.

See also the functions get-url and post-url, which also can be used to upload files when
formatting form data as mul ti part/for m dat a.

pv

syntax: (pv num-int num-nper num-pmt [num-fv int-type])

Calculates the present value of a loan with constant interest rate num-interest and constant
payment num-pmt after num-nper number of payments. The future value num-pmt is assumed
0.0 if omitted. If payment is at the end of each period 0 is assumed for int-type else 1.

example:
(pv (div 0.07 12) 240 775.30) = -100000. 1373

In the example a loan, which would be paid off (future value = 0.0) in 240 payments of
$775.30 and a constant interest rate of 7% per year, would start out at $1000,000.14.

See also fv, irr, nper, npv, and pmt.

quote

syntax: (quote exp)

exp is returned without being evaluated, as if quoted.

example:
(quote x) = X
(quote 123) = 123
(quote (a b c)) = (a b c)
(= (quote x) 'Xx) = true

quote 218

newLISP Users Manual and Reference

quote?

syntax: (quote? exp)

exp is evaluated and tested if quoted. t r ue or ni | is returned depending on the result.

example:
(set 'var ''Xx) = 'X
(quot e? var) = true

Note that in the set statement
evaluation of the set assignment.

X is quoted twice because its first quote is lost during the

rand

syntax: (rand int-range [int-N])

The expression in int-range is evaluated and a random number in the range O - (int-range - 1)
is generated. When passing 0 (zero) the internal random generator is initialized using the
current value of the t i ne function. Optionally a second parameter can be specified to return
a list of length int-N of random numbers.

example:
(dotimes (x 100) (print (rand 2))

(rand 3 100) = (201120)

This first line in the example prints equally distributed 0's and 1's. The second line produces a
list of 100 integers: 0,1 and 2 equally distributed. See also random and normal for the
generation of floating point random numbers. See seed for varying the initial seed for random
number generation.

random

syntax: (random float-offset float-scale int-n)
syntax: (random float-offset float-scale)

In the first form r andomreturns a list of int-n evenly distributed floating point numbers
scaled (multiplied) by float-scale and added offset of float-offset. The starting point of the
internal random generator can be seeded using seed.

random 219

newLISP Users Manual and Reference

example:

(random0 1 10) =
(0.10898973 0.69823783 0.56434872 0.041507289 0.16516733
0. 81540917 0. 68553784 0.76471068 0.82314585 0. 95924564)

When used in the second form, r andomreturns a single evenly distributed number:
(random 10 5) = 11. 0971

See also normal and rand.

randomize

syntax: (randomize list [bool])

Rearranges the order of elements in list in a random order.

example:
(randomize '"(abcdef g)) =>(bacgdef)
(random ze (sequence 1 5)) = (35412

random ze will always return a sequence different from the previous one without the
optional bool flag. This may require the function to calculate several sets of reordered
elements, which in turn may lead to different processing times on different invocations of the
function on the same list length of the input. To allow for the output to be equal to the input
t r ue or any expression evaluating to not ni I must be specified in bool.

random ze uses an internal pseudo random sequence generator that returns the same series
of results each time newLISP is started. Use the seed function to change this sequence.

read-buffer

syntax: (read-buffer int-file sym-buffer int-size [str-wait])

Reads from a file specified in int-file a maximum of int-size bytes into a buffer in sym-buffer.
Any data referenced by the symbol sym-buffer previous to reading is deleted. The handle in
int-file was previously returned from an open statement. The symbol sym-buffer contains data
of type string after the read operation.

Optionally a string to wait for can be specified in str-wait. r ead- buf f er will read a
maximum amount of bytes specified in int-size or return earlier if str-wait was found in the
data. The wait-string is part of the returned data.

read-buffer 220

newLISP Users Manual and Reference

Returns the number of bytes read or ni | when the wait-string was not found. In any case the
bytes read are put into the buffer pointed to by sym-buffer, and the file pointer of the file read
is moved forward. If no new bytes have been read, sym-buffer will contain ni | .

example:

(set 'handle (open "aFile.ext" "read"))
(read-buffer handl e 'buff 200)

Reads 200 bytes in to a symbol buf f from the file aFi | e. ext .
(read-buffer handle 'buff 1000 "password:")

Reads 1000 bytes or until the string passwor d: is encountered. The string passwor d: will
be part of the data returned.

See also write-buffer.

read-char

syntax: (read-char int-file)

Reads a byte from a file specified by the file handle in int-file. The file handle is obtained from
a previous open operation. Each r ead- char advances the file pointer by one byte. On end of
file ni | is returned.

example:

(define (slowfile-copy fromfile to-file)
(set '"in-file (open fromfile "read"))
(set '"out-file (open to-file "wite"))
(while (set 'chr (read-char in-file))

(wite-char out-file chr))

(close in-file)

(close out-file)

"finished")

See read-line and device for reading whole text lines at a time. Note that newLISP supplies a
fast built-in function copy-file for copying files.

See also write-char.

read-file

syntax: (read-file str-file-name)

Reads a file in str-file-name in one swoop and returns a string buffer containing the data.

read-file 221

newLISP Users Manual and Reference

example:
(wite-file "nyfile.enc"
(encrypt (read-file "/hone/lisp/nyFile") "secret"))

The file nyfi | e is read, then encrypted using the password " secr et " and written back into
anew file "nmyfil e. enc" in the current directory.

See also write-file.

read-key

syntax: (read-key)

Reads a key from the keyboard and returns an integer value. For navigation keys more than
one r ead- key calls have to be made. For keys representing ASCII characters the return value
is the same on all OSs but for navigation keys and other control sequences like function keys,
the return values may differ on different OSs and configurations.

example:
(read- key) = 97 ; after hitting the A key
(read- key) = 65 ; after hitting the shifted A key
(read- key) = 10 ; after hitting [enter] on Linux
(read- key) = 13 ; after hitting [enter] on Wn32

(while (!= (set 'c (read-key)) 1) (println c))

The last example can be used to check return sequences from navigation and function keys.
To break out of the loop, press Ctrl - A.

Note that r ead- key will not work from the newLISP-tk front-end or any other application
running newLISP over a TCP/IP port connection.

read-line

syntax: (read-line [int-file])

Reads a string from the current I/0 device delimited by a line feed character (ASCII 10).
There is no limitation to the length of the string which can be read. The line-feed character is
not part of the returned string. The line always breaks on a line-feed and swallows the line
feed. A line breaks on carriage-return (ASCII 13) only if followed by line feed and both
characters are discarded. An ASCII 13 alone only breaks and is swallowed if it is last character
in the stream.

read-line 222

newLISP Users Manual and Reference

By default the current device is the keyboard (device 0). See the built-in function device for
specifying a different I/0 device (for example, a file). Optionally a file handle can be specified
in int-file obtained from a previous open statement.

The last buffer contents from a read-line operation can be retrieved using current-line.

example:
(print "Enter a num")
(set 'num (integer (read-line)))

(set '"in-file (open "afile.dat" "read"))

(while (read-line in-file)
(wite-line))

(close in-file)

The first example reads input from the keyboard and converts it to a number. In the second
example a file is read, line by line and displayed on the screen. The write-line statement takes
advantage of the fact that the result from the last r ead- | i ne operation is stored in a system
internal buffer. When using write-line without argument, it writes the contents of the last

r ead- | i ne buffer to the screen.

See also current-line for retrieving this buffer.

real-path

syntax: (real-path [str-path])

Returns the full path from a relative file path given in str-path. If path is not given, ". " (for
the current directory) is assumed.

example:

(real-path) = "/usr/honme/fred" ; current directory
(real-path "./somefile.txt") = "/usr/home/fred/ somefile.txt"

The output length is limited by the OS's maximum allowed path length. If r eal - pat h fails,
e.g., because of a nonexistent path, ni | is returned.

ref

syntax: (ref exp list)

r ef searches for expression exp in list and returns a list of integer indexes or an empty list if
the exp cannot be found. r ef can work together with push and pop, which also can take lists
of indexes.

ref 223

file:///Users/lutz/newlisp/doc/pop

newLISP Users Manual and Reference

example:
(set 'pList '(ab (cd () e)))

(push "x pList '(2 2 0)) = X

pLi st = (ab(cd(x) e))
(ref 'x pList) = (2 2 0)

(ref '"(x) pList) = (2 2)

(ref "(c d (x) e) pList) = (2)
(ref 'foo pList) = ()

(pop pList '(2 2 0)) = X

Using just push, pop and ref any list can be constructed or modified at any place using just
one statement.

regex

syntax: (regex str-pattern str-text [int-option])

Performs a Perl Compatible Regular Expression (PCRE) search on str-text with the pattern
specified in str-pattern. The same regular expression pattern matching is also supported in the
functions directory, find, parse, replace and search when using these functions on strings.

regex returns ni | if no match was found. It returns a list with the matched strings and
substrings and the start and length of each string inside the text. The offset numbers can be
used for subsequent processing.

r egex also sets the variables $0, $1, $2 ... etc. to the expression and sub-expressions
found. These variables or their equivalent expressions ($ 0) ($ 1) ($ 2) ... canbe
used in other LISP expressions just like any other symbol in newLISP for further processing.
example:

(regex "b+" "aaaabbbaaaa") = ("bbb" 4 3)

; case-insensitive search option 1

(regex "b+" "AAAABBBAAAA" 1) = ("BBB" 4 3)

(regex "[bB]+" "AAAABDBAAAA") = ("BbB" 4 3)

(regex "http://(.*):(.*)" "http://nuevatec.com 80")

=

("http://nuevatec.com 80" 0 22 "nuevatec.conm 7 12 "80" 20 2)

regex 224

newLISP Users Manual and Reference

$0 = "http://nuevatec. com 80"
$1 = "nuevat ec. cont
$2 = " 80"

(dotimes (i 3) (println ($1i)))
=

http://nuevat ec. com 80

nuevat ec. com

80

The second example shows the usage of extra options. The following example is more
complex parsing out two sub expressions, which where marked by parenthesis in the search
pattern. In the last example the expression and sub-expressions are retrieved using the system
variables $0 to $2 or their equivalent expression ($ 0) to ($ 2).

When using quotes " " for delimiting strings and backslashes are required in the regular
expression pattern, then the backslash must be doubled. As an alternative brackets{ ... }
ortexttags[text] ... [/text] can be used to delimit text strings. In this case no extra

backslashes are required.

Characters escaped by a backslash in newLISP like the quote \ " or \ n need not to be doubled
in a regular expression pattern which itself is delimited by quotes.

;; doubl e backsl ash for parenthesis (special char in regex)

(regex "\\(abc\\)" "xyz(abc)xyz") = ("(abc)" 3 5)

;; one backslash for quote (special char in new.lSP

(regex "\"" "abc\"def") = ("\"" 3 1)

;; brackets as delimters

(regex {\(abc\)} "xyz(abc)xyz") = ("(abc)" 3 5)

;; brackets as delimters and quote in pattern

(regex {"} "abc\"def") = ("\"" 3 1)

;; text tags as delimters, good for multi-line text in Cd

(regex [text]\(abc\)[/text] "xyz(abc)xyz") = ("(abc)" 3 5)

(regex [text]"[/text] "abc\"def") = ("\"" 3 1)
When using {, } curly brackets or text tags [t ext], [/text] instead of quotes" " for

delimiting the pattern string, a simple backslash is enough and the pattern and string are
passed in raw form to the regular expression routines. When using curly brackets inside a
pattern itself delimited by curly brackets, then the inner brackets must be balanced:

;; brackets inside brackets are bal anced
(regex {\d{1,3}} "querty567asdfg") = ("567" 6 3)

The following constants can be used for int-option. Several options can be combined using a
binary or '|'. The uppercase names are the names as used in the PCRE regex documentation
and could be predefined in i ni t . | sp. The last option is a newLISP custom option only to be
used in replace, it can be combined with PCRE options.

PCRE_CASELESS 1 ; treat uppercase |like | owercase

regex 225

newLISP Users Manual and Reference

PCRE_MULTI LI NE 2 ; limt search at a newline like Perl's /m
PCRE_DOTALL 4 ; . (dot) also matches newine

PCRE_EXTENDED 8 ; ignore whitespace except inside char class
PCRE_ANCHORED 16 ; anchor at the start

PCRE_DOLLAR ENDONLY 32 ; $ mamtches at end of string, not before newine
PCRE_EXTRA 64 ; additional functionality currently not used
PCRE_NOTBCL 128 ; first char not start of line, ~ shouldn't match
PCRE_NOTECL 256 ; last char not end of line, $ shouldn't match
PCRE_UNGREEDY 512 ; invert greediness of quantifiers

PCRE_NOTEMPTY 1024 ; enpty string considered invalid

PCRE_UTF8 2048 ; pattern and strings as UTF-8 characters

REPLACE_ONCE 0x8000 ; replace only one occurrence
; only for use in replace

Note that regular expression syntax is very complex and feature rich with many special
characters and forms. Please consult a book or the PCRE manual pages at for more detail.
Most PERL books or introductions to Linux or UNIX also contain chapters about regular
expressions. See also http://www.pcre.org for further references and manual pages.

remove-dir

syntax: (remove-dir str-path)

Removes the directory, whose path-name is specified in str-path. The directory must be empty
for remove-di r to succeed. On failure ni | is returned.

example:

(renove-dir "temp")

Removes the directory t enp in the current directory.

rename-file

syntax: (rename-file str-path-old str-path-new)

Renames a file or directory entry given in a path-name in str-path-old to the name given in
str-path-new. Returns ni | or t r ue depending on a successful operation.

example:

(rename-file "data.lisp" "data. backup")

rename-file 226

http://www.pcre.org/

newLISP Users Manual and Reference

replace

syntax: (replace exp-key list exp-replacement)

syntax: (replace str-key str-data exp-replacement)

syntax: (replace str-pattern str-data exp-replacement int-option)
syntax: (replace exp list)

List replacement

If the second argument is a list then r epl ace replaces all elements in a list list equal to the
expression in exp-key. The element is replaced with exp-replacement. r epl ace is destructive,
changing the list which is passed to it. r epl ace returns the changed list. The number of
replacements made is contained in the system variable $0.

String replacement without regular expression

If all arguments are strings, r epl ace replaces all occurrences of str-key in str-data with the
evaluated exp-replacement and returns the changed string. The expression in exp-replacement
is evaluated for every replacement. The number of replacements made is contained in the
system variable $0.

Regular expression replacement

The presence of a fourth parameter indicates that an regular expression search should be
performed with a regular expression pattern specified in str-pattern and an option number
specified in int-option, i.e. 1 (one) for case insensitive search or 0 (zero) for a standard Perl
compatible regular expression search (PCRE). See regex for details. The changed string is
returned. By default r epl ace replaces all occurrences of a search string even if a beginning
of line specification is in the search pattern, because after each replace a new search is started
at a new position in str-data. Setting the option bit 0x8000 in int-option will force r epl ace
to replace only the first occurrence.

r epl ace with regular expressions also sets the internal variables $0 $1 $2 ... etc. with
the contents of the expressions and sub-expressions found. These can be used to do
replacements depending on the content found during replacement. The symbols $0 $1 $2

. can be used in expressions just like any other symbols. If the replacement expression
evaluates to something else than a string, no replacement is made. As an alternative the
contents of these variables can also be accessed by using ($ 0) ($ 1) ($ 2) ... etc.
This method allows indexed access, i.e: ($ i), wherei is an integer.

replace 227

newLISP Users Manual and Reference

List removal

The last form of r epl ace has only two arguments, the expression expr and list. This form
removes all exprs found in list.

example:
(set '"aList "(abcdeabcd))
(replace 'b aList 'B) => (aBcdeaBcd
aList = (aBcdeaBcd
$0 = 2 ; nunber of replacenents

(set '"str "this isa sentence")
(replace "isa" str "is a") = "this is a sentence"

;; using the option paranmeter to enploy regul ar expressions

(set 'str "ZZZZZxZZZZyy") = "Z77777X7Z7Z7ZZyy"
(replace "[x|y]" str "PP" 0) = " Z77Z777PPZ7ZZPPPP"
str = "Z77777PP777ZPPPP"

;; using systemvariables for dynanic repl acenent

(set 'str "---axb---ayb---")

(replace "(a)(.)(b)" str (append $3 $2 $1) 0)
= "---bxa---bya---"

str = "---bxa---bya---"

;; using the 'replace once' option bit 0x8000
(replace "a" "aaa" "X' 0) = "XXX"
(replace "a" "aaa" "X' 0x8000) = "Xaa"
;7 URL translation of hex codes with dynam c repl acenment
(set 'str "xxx%1lxxx%2")
(replace "% [0-9A-F][0-9A-F])" str
(char (integer (append "O0x" $1))) 1)
str = "xXXXAxxxB"

;; removing elenents froma |ist

(set 'Ist "(abaacdaf g))

(replace "a Ist) = (bcdf g)
| st = (bcdf g
$0 = 4

See also set-nth and replace-assoc for other functions changing an element in a list.

See directory, find, parse, regex and search for other functions using regular expressions.

replace 228

newLISP Users Manual and Reference

replace-assoc

syntax: (replace-assoc exp-key list-assoc exp-replacement)
syntax: (replace-assoc exp-key list-assoc)

In the first syntax replaces an association element with exp-key in an association list-assoc with
exp-replacement. An association list is a list whose elements are in turn lists, whose first
element serves as a key.

example:

(set '"aList '"((a 12 3)(b456)(c7829)))

(replace-assoc 'b aList '(g "I amthe repl acenent"))
= ((al1l23(q"l amthe replacenment”)(c 7 8 9))

aList = ((a 1l 2 3)(g"l amthe replacenment")(c 7 8 9))

repl ace- assoc uses the system variable $0 for the association found. This can be used in
the replacement expression:

(set "Ist "((a 1)(b 2)(c 3)))

(replace-assoc '"b Ist (list "b (+ 1 (last $0))))

Ist = ((a 1)(b 3)(c 3))
r epl ace- assoc returns the changed list and is a destructive operation changing the
contents of the list. If no association is found, r epl ace- assoc returns ni | .

In the second syntax r epl ace- assoc removes an association from the list and returns the
association found:

example:
(set "Ist "((a 1) (b 2) (c 3)))

(replace-assoc 'c |st)

Ist = ((a 1) (b 3))
$0 = (c 3)

See also assoc for accessing association lists.

replace-assoc 229

newLISP Users Manual and Reference

reset

syntax: (reset)
syntax: (reset true)

In the first syntax r eset returns to the top level of evaluation, switches the trace mode off,
turns the command-line mode on and switches to the MAIN context / namespace. Reset
restores the top level variable environment using the saved variable environments on the
stack. r eset also fires an error "user reset - no error". This behavior can be used when
writing error handlers.

r eset may return memory, which was claimed by newLISP, to the operating system. r eset
walks through the entire cell space (which may take a few seconds in a heavily loaded
system).

reset occurs automatically after an error condition.

In the second syntax r eset will stop the current process and a new newLISP process with the
same command-line parameters will start. This mode is not available on Win32.

rest

syntax: (rest list)
syntax: (rest str)

Returns all the items of a list or a string except the first. r est is equivalent to cdr or tail in
other LISP dialects.

example:
(rest '(1 2 3 4)) = (2 3 4)
(rest '"((a b) c d)) = (c d)
(set '"alList "(abcde)) = (abcde
(rest aList) = (b cde
(first (rest aList)) = b
(rest (rest aList)) = (d e)
(rest (first '((a b) c d))) = (b)

In the second version r est returns all but the first character of a string str in a string.

example:
(rest "newLl SP") = "ewL| SP"
(first (rest "newLl SP")) = "e"

See also first and last.

Note that an implicit rest is available for lists. See chapter Implicit rest and slice.

rest 230

newLISP Users Manual and Reference

Note that rest works on character boundaries rather than byte boundaries when using the
UTF-8 enabled version of newLISP.

reverse

syntax: (reverse list)
syntax: (reverse string)

In the first form the list is reversed and returned. r ever se is destructive changing the original
list.

example:
(set 'I '(12345672809))
(reverse l) = (987654 1)
| >(987654 1)

In the second form r ever se is used to reverse the order of characters in a string.
example:
(set 'str "newll SP")

(reverse str) = "PSILwen"
str = "PS| Lwen"

See also sort.

rotate

syntax: (rotate list [int-count])
syntax: (rotate str [int-count])

The list or string in str is rotated and returned. Optionally a count can be specified in int-
count to rotate more than one position. If int-count is positive the rotation is to the right, if
int-count is negative the rotation is to the left. If no int-count is specified r ot at e rotates 1 to
the right. r ot at e is a destructive function which changes the contents of the original list or
string.

example:
(set 'l "(1234567829))
(rotate |) (912345 6 8)
(rotate | 2) = (78912345 6)

rotate 231

newLISP Users Manual and Reference

I = (78912345 6)
(rotate I -3) = (1234567829
(set 'str "newLl SP")

(rotate str) = "PnewlL| S")
(rotate str 3) = "LI SPnew")
(rotate str -4) = "newL|ISP")

When working on a string r ot at e works on byte boundaries rather than character
boundaries.

save

syntax: (save str-file)
syntax: (save str-file sym-1 [sym-2 ...])

In the first syntax save saves the contents of the newLISP workspace to a file str-file in
textual form. save is the inverse function to | oad such, that using | oad on files created with
save results in the same state of newLISP. System symbols starting with the $ character like
$0 from regular expressions, $mai n- ar gs from the command line etc., are not saved.

In the second syntax symbols can be supplied as arguments. If sym-n is supplied only the
definition of that symbol is saved. If sym-n evaluates to a context, all symbols in that context
are saved. More than one symbol can be specified, and symbols and context symbols can be
mixed. When saving contexts, system variables and symbols that start with the $ character are
not saved. Specifying system symbols explicitly causes them to be saved.

Each symbol is saved by means of a set - statement or, if the symbol contains a lambda or
lambda-macro function by means of define or define-macro statements.

Symbols containing ni | will not be saved.
save returns t r ue on completion.

example:

(save "save.lsp")
(save "/ hone/ nysel f/ nyfunc. LSP" ' nmy-func)
(save "nycontext.lsp" 'nycontext)

; multiple args
(save "stuff.lsp" '"aContext 'myFunc '$nain-args ' Acontext)

Saving the context MAI N saves all contexts, as all context symbols are part of the context
MAI N.

save 232

newLISP Users Manual and Reference

Note that symbols made using sym and which are not compatible with the normal syntax
rules for symbols, are serialized using a sym statement instead of a set statement.

save serializes contexts and symbols as if the current context is MAI N. Regardless from the
current context set, save will always generated the same output.

See also load, which is the inverse operation to save and source, which saves symbols and
contexts to a string instead of a file.

search

syntax: (search int-file str-search [int-options])

Searches a file specified by its handle in int-file for a string in str-search. int-file can be
obtained from a previous open file. After the search the file pointer is positioned at the
beginning of the searched string or at the end of the file if nothing is found. The options flags
can be specified in int-options to perform a PCRE regular expressions search. See the function
regex for details. Search returns the position of the found string or ni | if nothing is found.

When using the regular expressions options flag, patterns found are stored in the system
variables $0 to $15.

example:
(set 'file (open "init.lsp" "read"))
(search file "define")
(print (read-line file) "\n")
(close file)
The file i ni t. | sp is opened and searched for the string def i ne.

For other functions using regular expressions see directory, find, parse, regex and replace.

seed

syntax: (seed int-seed)

Seeds the internal random generator generating numbers for amb, normal, rand and random
with the number specified in int-seed. Note that the random generator used in newLISP is the
C-library function rand(). All randomizing functions in newLISP are based on this function.

example:
(seed 12345)

(seed (date-value))

seed 233

newLISP Users Manual and Reference

After using seed with the same number, the random generator starts the same sequence of
numbers. This facilitates debugging when randomized data are involved. Using seed the
same random sequences can be generated over and over again.

The second example is useful to guarantee a different seed any time the program starts.

seek

syntax: (seek int-file [float-position])

Sets the file pointer to a new position in the file specified by float-file to float-position. The
new position is expressed as an offset from the beginning of the file, 0 (zero) meaning the
beginning of the file. If no float-position is specified then seek returns the current position in
the file. If int-file is O (zero) than on BSD seek will return the number of characters printed
to STDQOUT on Linux and Win32 it will return - 1. On failure seek returns ni | . When float-
position is set to - 1, then seek sets the file pointer to the end of the file.

example:
(set '"file (open "nyfile" "read")) =5
(seek file 100) = 100
(seek file) = 100
(open "new i sp_manual . htm " "read")
(seek file -1) ; seek to ECF = 593816
(set '"fle (open "larg-file" "read")
(seek file 3000000000. 0) = 3000000000

In the last example the file position is forced to a floating point number by appending . O to
the number. Without . O the number would be taken as the maximum integer value of
2147483647.

select

syntax: (select list list-selection)
syntax: (select list [int-index i ...])

syntax: (select string list-selection)
syntax: (select string [int-index i ...])

In the first two forms sel ect picks one or more elements from a list using one or more
indexes specified in list-selection or the int-index i.

example:

select 234

newLISP Users Manual and Reference

(set '"Ist "(abcdef g))
(select Ist "(03253) = (adcf d
(select Ist "(-2 -1 0)) = (f g a)

(select Ist -2 -1 0) = (f g a)

In the second two forms sel ect picks one or more characters from a string using one or
more indexes specified in list-selection or the int-index i.

example:

(set 'str "abcdefg")
(select str '(0 325 3)) = "adcfd"
(select str '(-2 -1 0)) = "fga"

(select str -2 -1 0) = "fga"

Selected elements can be repeated and do not have to appear in order, although this speeds
up processing. Changing the order in list-selection or int-index i can be used to rearrange
elements.

semaphore

syntax: (semaphore)

syntax: (semaphore int-id)

syntax: (semaphore int-id int-wait)
syntax: (semaphore int-id int-signal)
syntax: (semaphore int-id 0)

A semaphore is an interprocess synchronization object that maintains a count between zero
and some maximum value. A semaphore is useful in controlling the access to a shared
resource. A semaphore is set to signaled when its count is greater then zero and non-signaled
when its count is zero.

A semaphore is created using the first syntax and returns an integer which is the semaphore
id used subsequently as int-id when calling the semaphore function. Initially the semaphore
has a value of zero, which is the non-signaled state.

When calling semaphore with a negative value in int-wait would cause it to be decremented
below zero, the function call will block until another process or thread signals the semaphore
with a positive value in int-signal. Calls to the semaphore with int-wait or int-signal,
effectively try to increment or decrement the semaphore value by a positive or negative value
specified in int-signal or int-wait. As the value of a semaphore must never fall below zero, the

semaphore 235

newLISP Users Manual and Reference

function call will block when trying to. (i.e. a semaphore with a value of zero will block until
another process or thread increases the value with a positive int-signal).

To inquire the value of a semaphore the second syntax is used calling semaphor e with only
the int-id. This form is not available on Win32.

Supplying a 0 zero as the last argument will release system resources for the semaphore,
which then is no longer available. Any pending waits on this semaphore in other child threads
or processes will be released.

On Win32 only parent and child processes can share a semaphore. On Linux/UNIX
independent processes can share a semaphore.

example:

;; counter thread output in bold

(define (counter n)
(println "counter started")
(dotimes (x n)
(semaphore sid -1)
(println x)))

;; hit extra <enter> to nake the pronpt cone back
after output to the console fromcounter thread

> (set 'sid (semaphore))
> (senmaphore sid) = 0
> (fork (counter 100))

counter started
> (semaphore sid 1)

o

(semaphore sid 3)

(senmaphore sid 2)

AV WNELYV

Vv o1

after acquiring the semaphore in si d it has a value of 0, the non-signaled state. When
starting the thread count er it will block after the initial start message and wait in the
semaphore call. The - 1 is trying to decrement the semaphore, which is not possible because
its value is already zero. Now in the interactive main parent process the semaphore is signaled
by raising its value by 1. This de-blocks the semaphore call in the count er thread, which
now can decrement the semaphore from 1 to O and execute the pri nt statement. When
arriving at the semaphore call again, it will block because the semaphore is already in the
wait O state.

semaphore 236

newLISP Users Manual and Reference

Subsequent calls to semaphor e with numbers greater than 1 give the count er thread the
opportunity to decrement the semaphore several times before blocking.

More than one thread could participate in controlling the semaphore and more than one
semaphore can be created. The maximum number of semaphores is controlled by a system
wide kernel setting on UNIX like operating systems.

See also the functions fork for starting a new thread and share for sharing information
between threads. For a more comprehensive example using semaphor e to synchronize
threads, see the example prodcons.Isp in the Appendix or exanpl es/ directory in the source
distribution or examples and modules package of newLISP.

sequence

syntax: (sequence num-start num-end [num-step])

Generates a sequence of numbers from num-start to num-end with an optional step size of
num-step. When num-step is omitted the value 1 (one) is assumed. The generated numbers
are always floating point numbers.

example:

(sequence 0 1 0.2)
(sequence 2 0 0.3)

= (
= (

Note that the step size must be set positive, even if sequencing from a higher to a lower
number.

See also series for generating geometric sequences.

series

syntax: (series num-start num-factor num-count)

Creates a geometric sequence with num-count elements starting with the element in num-
start. Each subsequent element is multiplied by num-factor. The generated numbers are
always floating point numbers.

example:

(series 2 2 5)
(series 1 1.2 6)
(series 10 0.9 4)
(series 0 0 10)
(series 99 1 5)

(2 4 8 16 32)

(1 1.2 1.44 1.728 2.0736 2.48832)
(10 9 8.1 7.29)
(000000000 O0)

(99 99 99 99 99)

U A)

series 237

newLISP Users Manual and Reference

See also sequence for generating arithmetic sequences.

set

syntax: (set sym-1 exp-1 [sym-2 exp-2 ...]1)

Evaluates both arguments, then assigns the result of exp to the symbol found in sym. The set
expression returns the result of the assignment. The assignment is done by copying the
contents of the right side in to the symbol. The old contents of the symbol is deleted. Trying
to change the contents of the symbols ni | , t r ue or a context symbol results in an error
message. set can take multiple argument pairs.

example:
(set 'x 123) = 123
(set "x 'vy) =
(set 'x "hello") = "hell 0"
y = "hell 0"

(set '"alist "(1 2 3)) = (12 3)

(set "x 1 'y "hello") = "hell 0" ;; multiple argunments
X =1
y = "hel | o"

The symbol for assignment could be the result from another newLISP expression:
(set "Ist "(x vy z)) = (XY 2)
(set (first Ist) 123) = 123
X = 123

Symbols can be set to lambda or lambda-macro expressions. This operation is equivalent to
using define or define-macro.

(set 'double (lanbda (x) (+ x x))) = (lambda (x) (+ x x))

is equivalent to:
(define (double x) (+ x x)) = (lanmbda (x) (+ X X))

is equivalent to:
(define double (lanmbda (x) (+ x x))) = (lanbda (x) (+ x x))

set 238

newLISP Users Manual and Reference

See also constant, which works like set , but protects the symbol from subsequent alteration.
See setq which does not need the variable symbol to be quoted.

setq

syntax: (setq sym-1 exp-1 [sym-2 exp-2 ...]1)

Works just like set, but the symbol in sym does not have to be quoted. Like set set q can take
multiple arguments.

example:
(setqg x 123) = 123

; multiple args

(setgx 1y 2z3 =3

N < X
LU A
WN R

set-locale

syntax: (set-locale [str-locale] [int-category])

Reports or switches to a different locale on your operating system or platform. When used
without arguments the current used locale is reported. When specifying str-locale that locale is
switched to with all category options turned on (LC_ALL). An empty string in str-locale is
used to switch to the default locale used on the current platform. set - | ocal e returns the
current settings or ni | if the requested change could not be performed.

example:
(set-1ocal e) ; report current |ocale
(set-locale "") ; set default locale of your platform

By default newLISP starts up with the POSIX 'C' default locale. This guarantees an identical
behavior of newLISP on any platform locale:

; after newLl SP start up

(set-1ocale) = "C'

set-locale 239

newLISP Users Manual and Reference

In int-category integer numbers may be specified as category options for fine tuning certain
aspects of the locale, like number display, date display etc. The numbers used vary from
system to system. The options valid on your platform can be found in a 'C' include file

[ocal e. h. This file defines constants like LC_ALL, LC NUMERI C, LC_MONETARY etc.
When using set - | ocal e without the option number, then LC_ALL is assumed, which turns
on all options for that locale.

Note that the locale also controls the decimal separator in numbers. The default 'C' locale uses
the decimal dot, but most other locales use a decimal comma. Since version 8.4.4 newLISP
will parse decimal comma numbers correctly.

Note that using set - | ocal e does not change the behavior of regular expressions in
newLISP. To localize the behavior of PCRE (Perl Compatible Regular Expressions) in
newLISP, it has to be compiled with different character tables. See the file LOCALIZATION in
the newLISP source distribution for details.

See also the manual chapter Switching the locale.

set-nth

syntax: (set-nth int-nth-1 [int-nth-2 ...] list| array exp-replacement)
syntax: (set-nth int-nth-1 str str-replacement)

syntax: (set-nth (list|array int-nth-1 [int-nth-2 ...]) exp-replacement)
syntax: (set-nth (str int-nth-1) str str-replacement)

set - nt h works like nth-set but instead of returning the replaced element is returns the
whole changed expression. set - nt h is slower on bigger data objects for this reason.

sgn

syntax: (sgn num)
syntax: (sgn num expr-1 [expr-2] [expr-3])
In the first syntax the sgn function is a logical function which extracts the sign of a real
number according to the following rules:
x> 0:sgn(x) =1
x <0:sgn(x) =-1
x=0:sgn(x) =0

example:
(sgn -3.5) = -1
(sgn 0) =0

sgn 240

newLISP Users Manual and Reference
(sgn 123) =1

In the second syntax instead of returning - 1, O or 1, the result of evaluating one of the
optional expressions expr-1, expr-2 or expr-3 is return. In absence of expression expr-2 or expr-
3 ni | will be returned.

example:
(sgn x -1 0 1) ; works like (sgn x)
(sgn x -1 1 1) ; return -1 for negative x all others 1
(sgn x nil true true) ; return nil for negative else true
(sgn x (abs x) 0) ; return (abs x) for negative x, 0 for x =
0, else nil

Any expression or constant can appear for expr-1/2/3.

share

syntax: (share)
syntax: (share int-address-or-handle)
syntax: (share int-address-or-handle exp-value)

For communicating between several newLISP processes or threads, newLISP can access
shared memory. Using shar e without any parameters requests a page of shared memory
from the operating system services. On Win32 this page is 4k but may be different on
Linux/UNIX. shar e without any parameters returns a memory address on Linux/UNIX and
a handle on Win32. The memory address or handle can be assigned to a variable for later
reference.

To set the contents of shared memory use the third syntax of shar e supplying a shared
memory address on Linux/UNIX or a handle in Win32 in int-address-or-handle and an integer,
float or string expression in exp-value. Using this syntax the value supplied in exp-value is also
the return value;

To access the contents of shared memory use the second syntax of shar e supplying only the
shared memory address or handle. The return value will be an integer or floating point
number, a string or ni | ort r ue. If the memory has not been set to a value before ni | will
be returned.

Memory can only be shared between parent and child processes or threads, but not between
independent processes.

example:

(set 'num (share))
(set 'str (share))

(share num 123) = 123

share 241

newLISP Users Manual and Reference

(share str "hello world") = "hello world"
(share str) = "hello world"

(share nvar 123) = 123
(share nvar) = 123

(share nVar true) = true
(chare nVvar) = true

For a more comprehensive example of using shared memory in a multi-threaded Linux/UNIX
application see the example prodcons.Isp in the Appendix or in the exanpl es/ directory of
the source distribution

Note that shared memory access between different threads or processes should be
synchronized using a semaphore. Simultaneous access to shared memory can crash the
process/thread running.

To find out the maximum length of a string buffer which could be stored in a shared memory
address do the following:
(length (share (share) (dup " " 1000000))) = 4087

The statement tries to initialize a shared memory address to 100,000 bytes, but only 4087
will be initialized as a string buffer. The page size of this platform is 4096 byt es, which is
4087 plus 8 byt es of header information for type and size plus one terminating byte for
displayable strings.

More than one numbers or string can be stored in one memory page using offsets added to
the main segment address when working on Linux/UNIX:

example:
Li nux/ UNI X only
(set "num 1l (share))
(set "num2 (+ num1l 12))

(set "'num3 (+ num2 12))
(set 'str-1 (+ num3 12))

(share num1 123)
(share num 2 123. 456)

(share num1l) = 123
(share num3) = 123. 456

;. oetc

For numbers reserve 12 byt es for strings reserve 12 byt es plus the length of the string
plus 1 for a terminating zero-byte. For the boolean values ni | and t r ue 4 bytes should be
reserved.

share 242

newLISP Users Manual and Reference

Note that a shorter string could accidentally be overwritten with a longer one. Therefore,
shared strings should be stored after other shared number fields or reside on their own shared
memory page.

Note that the functions get-int, get-float get-string and get-char as well as pack and unpack
could also be used to access contents from a shared memory page. This low-level address
requires precise knowledge of the type of information stored, but allows a very compact
storage of information without type/header information in a string buffer.

example:
;; Linux/UNI X and W n32

(set 'nmem (share))

(mem share (pack "s5 Id I f" "hello" 123 123. 456))
(unpack "s10 Is If" (nmemshare)) = ("hello" 123 123. 456)

On Linux/UNIX supplying a wrong share address can cause newLISP to crash.

signal

syntax: (signal int-signal sym-handler)

syntax: (signal int-signal func-handler)

syntax: (signal int-signal 'nil)

syntax: (signal int-signal)

Sets a user defined handler in sym-handler for a signal specified in int-signal. If ' ni | is
specified the signal will default to the initialized behavior in newLISP.

Different signals are available on different OS platforms and Linux/UNIX flavors. The
numbers to specify in int-signal also differ from platform to platform. Valid values can be
extracted normally from a file found in / usr /i ncl ude/ sys/ si gnal . h or
/usr/include/signal.h.

Some signals make newLISP exit even after a user-defined handler has been specified and
executed (i.e. signal SIGKILL). This behavior too may be different on a different platform.

example:

(constant ' SI A NT 2)
(define (ctrlGhandler) (println "ctrl-C has been pressed"))

(signal SIANT 'ctrl C handl er)

now press ctrl-C
; the following line will appear

ctrl-C has been pressed

signal 243

newLISP Users Manual and Reference

On Win32 the above example would exit newLISP but the handler would be executed first.
On most Linux/UNIX newLISP would stay loaded and the prompt would appear after hitting

the [enter] key.

Instead of specifying a symbol containing the signal handler, a function can be specified
directly. The signal number is passed as a parameter:

(signal SIGNT exit) = $signal-2
(sginal SIA@NT (fn (s) (println "signal " s " occurred")))
Note that the signal SIGKILL (9 on most platforms) will always terminate the application

regardless of an existing signal handler.

The signal could have been sent from another shell on the same computer:
kill -s SIA NT 2035

In this example 2035 is the process id of the running newLISP.

The signal could have been sent from another newLISP application:

(constant ' SI A NT 2)
(import "libc.so" "kill™")

(kill 2035 SI G NT)

When importing Ki | | , make sure it always receives an integer for the signal number. If
needed, use the int function to convert the number first.

When newLISP receives the signal while evaluating another function, it will still receive the

signal and the handler function will be executed:

(constant ' SI A NT 2)
(define (ctrlCGhandler) (println "ctrl-C has been pressed"))

(signal SIANT 'ctrl C handl er)
vaoor
(signal SIANT ctrl C handl er)

(while true (sleep 300) (println "busy"))

; generates follow ng out put
busy

busy

busy

ctrl-C has been pressed
busy

busy

Specifying only a signal number will return the name of the current defined handler function

or return ni | .

signal

244

newLISP Users Manual and Reference

The user defined signal handler can pass the the signal number as a parameter.

(define (signal-handler sig)
(println "received signal: " sig))

; set all signals from1l to 8 to the sane handl er
(for (s 1 8)
(signal s 'signal-handler))

In this example all signals from 1 to 8 are set to the same handler.

silent

syntax: (silent [expr-1] [expr-2...]1)

Evaluates one or more expressions in expr-1 ... similar to begin, but suppresses console output
of the return value and the following prompt. si | ent is often used when communicating
from a remote application with newLISP, i.e.: GUI front-ends or other applications controlling
newLISP, and the return value is not of interest.

Silent mode is reset when returning to a prompt, this way it can also be used without
arguments in a batch of expressions. When in interactive mode hit [enter] twice after a
statement with si | ent to get the prompt back.

example:

(silent (my-func)) ; sane as next

(silent) (ny-func) ; same effect as previous
sin

syntax: (sin num-radians)
The sine function is calculated from num-radians and the result is returned.

example:

(sin 1) = 0.8414709838
(set "pi (mul 2 (acos 0))) = 3.141592654
(sin (div pi 2)) =1

sin 245

newLISP Users Manual and Reference

sleep

syntax: (sleep int-milli-seconds)

sl eep gives up CPU time to other processes for the amount of milliseconds specified in int-
milli-seconds.

example:

(sl eep 1000) ; sleeps 1 second

On some platforms sl eep is only available with full seconds resolution. In this case the
parameter int-milli-seconds will be rounded to the nearest full second.

slice

syntax: (slice list int-index [int-length])
syntax: (slice str int-index [int-length])

In the first form sl i ce copies a sublist from a list. The original list is left unchanged. The
sublist extracted starts at index int-index and has a length of int-length. If int-length is -1, or if
the parameter is omitted then all elements to the end of the list are copied.

See also Indexing elements of strings and lists.

example:
(slice "(abcdef) 32 = (d e)
(slice "(abcdef) 2-1) = (c def)
(slice "(abcdef) -423) = (c de)

In the second form a part of the string in str is extracted. int-index contains the start index,
int-length contains the length of the substring. If no int-length is specified, everything to the
end is extracted. sl i ce works also on string buffers containing binary data like O's (zeros)
and works on byte boundaries rather than character boundaries. See also Indexing elements

of strings and lists.

example:

(slice "Hello Wrld" 6 2) = "W
(slice "Hello Wrld" 0 5) = "Hell 0"
(slice "Hello World" 6) = "Worl d"
(slice "newLl SP" -4 2) = "LI"

Note that an implicit slice is available for lists. See chapter Implicit rest and slice.

Note that rest always works on byte boundaries rather than character boundaries when using
the UTF-8 enabled version of newLISP. This way slice can be used to manipulate binary
content.

slice 246

newLISP Users Manual and Reference

sort

syntax: (sort list)
syntax: (sort list func-compare)

In the first syntax all members in list are sorted in ascending order. Anything may be sorted
regardless of the type of members of the list. When members are lists then each list element is
recursively compared. If two expressions of different type are compared, then the lower type
is sorted before the higher type in the following order:

Atons: nil, true, integer or float, string, synbol, primtive

Li sts: quoted expression, list, |anbda , |anbda-macro

The sort is destructive, changing the order of the elements in the original list. The return
value of sort is a copy of the sorted list.

In the second syntax a comparison operator or user defined function or anonymous function
can be supplied. The functor or operator can be given with or without a preceding quote.

example:

U

(sort "(vfifrthnmj)) (f hj mnr t v)
(sort "((34) (2 1) (1 10))) ((1 10) (2 1) (3 4))
(sort "((3 4) "hi" 2.8 8 b)) = (2.8 8 "hi" b (3 4))

)

(set 's '"(kal s))

(sort s) => (akl s)

(sort "(vfrthnmj)'> = (vtrnmjhf)
;; the quote can be onmitted since version 8.4.5
(sort "(vfrthnmj)> = (vtrnmjhf)
(sort s <) = (akl s)

(sort s >) = (s | k a)

S = (s | k a)

define a conparison function
(define (comp x vy)

(> (last x) (last y)))
(set "db "((a 3) (g 2) (c 5)))
(sort db comp) = ((c 5) (a 3) (g 2))

;; use an anonynous function
(sort db (fn (x y) (> (last x) (last y))))

sort 247

newLISP Users Manual and Reference

source

syntax: (source)
syntax: (source sym-1 [sym-2 ...])

sour ce works almost identical to save but symbols and contexts get serialized to a string
instead of being written to a file. Multiple symbols of variables, definitions and contexts can
be specified. If no argument is given sour ce serializes the entire newLISP work space. When
context symbols are serialized any symbols contained in that context will be serialized too.
Symbols containing ni | are not serialized. System symbols beginning with the $ character
are only serialized when mentioned explicitly

Symbols are written out with their context prefix if not belonging to the current context.

example:
(define (double x) (+ x x))

(source 'double) = "(define (double x)\n (+ x x))\n\n"

Similar to save the formatting of line breaks and leading spaces or tabs can be controlled
using the pretty-print function.

sqrt

syntax: (sqrt num)

The square root is calculated from the expression in num and the result is returned.

example:
(sqrt 10) = 3.16227766
(sqgrt 25) =5
starts-with

syntax: (starts-with str str-key [bool])
syntax: (starts-with list [expr])

In the first version st art s- wi t h checks if a string str starts with a key string in str-key.
true or ni | is returned depending on outcome. Optionally ni | or any expression evaluating
to ni | can be specified in bool for case insensitive string comparisons.

example:

starts-with 248

newLISP Users Manual and Reference

(starts-with "this is useful" "this") = true
(starts-with "this is useful" "TH S") = nil
(starts-with "this is useful™ "TH S" nil) = true

In the second version st ar t s- wi t h checks if a list starts with the list element in expr. t r ue
or ni | is returned depending on outcome.

example:
(starts-with '(1 2 3 4 5) 1) = true
(starts-with '(a b c de) 'b) = nil
“((

(starts-with + 34 bcd '"(+34) = true

See also ends-with.

string

syntax: (string exp-1 [exp-2 ... exp-n])

Translates anything which results from evaluating exp-1 ... into a string. If more than one
expressions are specified the resulting strings are concatenated.

example:
(string '"hello) = "hell 0"
(string 1234) = "1234"
(string '"(+ 3 4)) = "(+ 3 4)"
(string (+ 3 4) 8) = "78"
(string "hello " " 123) = "hello 123"

If a buffer passed to st ri ng contains \ 000 (zeros), only the string up to the first terminating
zero will be copied:

(set 'buff "ABC 000\000\000") = "ABC\ 000\ 000\ 000"
(l'ength buff) = 6
(string buff) = " ABC

3

)

(length (string buff))

See also append for concatenating strings and join for concatenating strings and specifying
the joining strings in between. See source for converting a lambda expression in its newLISP
source string representation.

string 249

newLISP Users Manual and Reference

string?

syntax: (string? exp)

exp is evaluated and tested if a string. t r ue or ni | is returned, depending on the result.

example:

(set 'var "hello")

(string? var) = true
sub

syntax: (sub num-1 [num-2 ...])

The expressions in num-1, num-2... are successively subtracted. sub performs mixed type
arithmetic and handles integers and/or floating point numbers, but always returns floating
point numbers. If only 1 argument is supplied, its sign is reversed. Any floating point
calculation with NaN also returns NaN.

example:
(sub 10 8 0. 25) = 1.75
(sub 123) = -123
swap

syntax: (swap num-1 num-2 list)
syntax: (swap num-1 num-2 str)

In the first form the elements at indexes num-1 and num-2 in list are swapped and the
changed list is returned.

In the second form the characters at indexes num-1 and num-2 in str are swapped and the
changed string is returned.

swap is a destructive operation changing the contents of the list or string.

example:
(set '"Ist "(abcdef))

(swap 0 5 Ist) = '(f bcdea)
| st = '(f bcdea)
(swap 0 -1 Ist) = '(abcdef)

swap 250

newLISP Users Manual and Reference

| st = '(abcdef)

(swap 3 4 "abcdef") = "abcedf"

sym

syntax: (sym string [sym-ontext nil-flag])
syntax: (sym number [sym-context nil-flag])
syntax: (sym symbol [sym-context nil-flag])

Translates the first argument in string, number or symbol into a symbol and returns the
symbol. Optionally a context can be specified in sym-context or the current context is used
when doing symbol lookup or creation. If the symbol does not exist it gets created. If the
context is specified by a quoted symbol and the context does not exist, it also gets created. If
the context specification is unquoted then the context is the name specified or the context
specification is a variable containing the context.

symcan create symbols in the symbol table, which are not legal symbols in newLISP source
code, like numbers or names containing special characters, like parenthesis, colons etc.. This
makes symusable as a function for associative memory access similar to hash table access in
other scripting languages.

As a third optional parameter ni | can be specified to suppress symbol creation if the symbol
is not found. In this case symor symreturns ni | if the symbol looked up does not exist.
Using this last form symcan be used to check for the existence of a symbol.

example:
(sym "sonme") = sone
(set (sym"var") 345) = 345
var = 345
(sym "aSym' ' MyCTX) = MYCTX: aSym
(sym "aSym' M/CTX) = MyCTX: aSym ; unquoted context

(sym"foo" MyCTX nil) = nil ; 'foo does not exist
(sym "foo" M/CTX) = foo ; 'foo is created
(sym "foo" MYCTX nil) = foo ; foo now exists

Because the function symreturns the symbol looked up or created, expressions with symcan
be embedded directly in other expressions which use symbols as arguments. The following
example show the usage of symas a hash-like function for associative memory access and
using symbol configurations which are not legal newLISP symbols:

example:

;; using symfor sinulating hash tables

(set (sym "John Doe" 'M/DB') 1.234)
(set (sym" (" 'MyDB) "parenthesis open")

sym 251

newLISP Users Manual and Reference

(set (sym 12 'WDB) "twel ve")

(eval (sym "John Doe" ' MyDB)) = 1.234
(eval (sym"(" 'WyDB)) = "parenthesis open”
(eval (sym 12 ' MyDB)) = "twel ve"

del ete a synbol froma synbol table or hash
(delete (sym "John Doe" 'MyDB)) = true
The last statement shows how a symbol is eliminated using delete.

The third syntax allows using symbols instead of strings for the symbol name in the target
context. In this case symwill extract the name from the symbol and use it as the name string
for the symbol in the target context:

example:

(sym'nyVar ' FOO = FOQO nyVar

(define-macro (def-context)
(dolist (s (rest (args)))
(syms (first (args)))))
(def-context foo x y z)
(synbols foo) = (foo:x foo:y foo:z)

The macro def - cont ext shows how this could be used to create a macro which creates
contexts and their variables in a dynamic fashion.

See also a syntax of the context function, which can be used to create, set and evaluate
symbols in a shorter and faster way since version 8.7.4.

symbol?

syntax: (symbol? exp)

The expression exp is evaluated and synbol ? returns t r ue only if the value is a symbol,
otherwise returns ni | .

example:
(set "x 'vy) =Yy
(synbol ? x) = true
(synmbol ? 123) = nil

(symbol ? (first '(var x y z))) = true

symbol? 252

newLISP Users Manual and Reference

The first statement sets the contents of x to the symbol y. The second statement than checks
the contents of x. The last example checks the first element of a list.

symbols

syntax: (symbols [context])

Returns a sorted list of all symbols in the current context when given without parameter. If a
context symbol is specified symbols defined in that context are returned.

example:
(synbol s) ; list of all synbols in current context
(synmbols "CTX) ; list of synbols in context CTX
(synmbol s CTX) ; the quote can be onmitted
(set 'ct CTX) ; assign context to a variable
(synbol s ct) ; list of symbols in context CTX

The quote can be omitted because contexts evaluate to themselves.

Sys-error

syntax: (sys-error)

Reports error numbers generated by the underlying OS newLISP is running on. The error
numbers reported may differ on the platforms newLISP has been compiled for. Consult the
platforms 'C' library information, i.e. the GNU libc reference. Most errors reported refer to
system resources like, files, semaphores etc..

Whenever a function in newLISP in the system resources area returns ni | sys-error can be
checked for the underlying reason. For file operations sys- er r or may be set for non-
existing files or wrong permissions when accessing the resource. Another cause of error may
be the exhaustion of certain system resources like file handles or semaphores.

example:

;; trying to open a non-existing file
(open "blahbla" "r") = nil

(sys-error) = 2

(sys-error 0) = 0 ; clear errno
The error number can be cleared giving a O as optional argument.

Sys-error 253

newLISP Users Manual and Reference

sys-info

syntax: (sys-info [int-idx])

sys- i nf o without int-idx returns a list of internal resource statistics. 8 integers report the
following status:

0 - Nunber of LISP cells

- Maxi num nunber of LISP cells constant

- Number of synbols

- Eval uation/recursion |evel

Envi ronnent stack | evel

- Maxi num cal | stack constant

- Version nunber as an integer constant

- Operating System constant:
l'i nux=1, bsd=2, o0sx=3, solaris=4, cygw n=5, w n32=6
the highest bit 7 will be set for UTF-8 versions (add 128)
bit 6 will be added for library versions (add 64)

~NOoO O~ WNPE
'

The numbers from 0 to 7 indicate the option offset in the returned list.
When using int-idx one element of the list will be returned.

example:

(sys-info) = (348 268435456 269 1 0 1024 8404 6)
(sys-info 3) =1
(sys-info -2) = 8404

The number for the maximum of LISP cells can be changed via the - mcommand-line switch.
For each 1 megabyte of LISP cell memory 64k memory cells can be allocated. The maximum
call stack depth can be changed using the - s command-line switch.

tan

syntax: (tan num-radians)

The tangent function is calculated from num-radians and the result is returned.

example:
(tan 1) = 1.557407725
(set "pi (mul 2 (asin 1))) = 3.141592654
(tan (div pi 4)) =1

tan 254

newLISP Users Manual and Reference

throw

syntax: (throw exp)

This functions works together with catch. t hr ow forces the return of a previous cat ch
statement and puts the exp into the result symbol of cat ch.

example:
(define (throwtest)
(dotinmes (x 1000)
(if (= x 500) (throw "interrupted"))))
(catch (throwtest) 'result) = true
result = "interrupted"

(catch (throwtext)) = "interrupted"

The last example shows a shorter form of catch, which returns the t hr owresult directly.

t hr owis useful to break out of a loop or for early return from user defined functions or
expression blocks. In the following example the begi n block will return X if (f 0o X) is
t rue else Y will be returned:

(catch (begin
(if (foo X) (throw X) Y)
)y

t hr owwill not cause an error exception. For throwing user error exceptions use throw-error.

throw-error

syntax: (error expr)
Causes a user defined error exception with text provided evaluating expr:

example:

(define (foo x vy)
(if (=x 0) (throwerror "first paraneter cannot be 0"))

(+xy))
(foo 1 2) = 3

(foo 0 2) ; causes a user error exception

user error : first parameter cannot be 0

throw-error 255

newLISP Users Manual and Reference
called fromuser defined function foo

The user error can be handled like any other error exception using user defined error
handlers and error-event or a form of catch which can capture error exceptions.

time

syntax: (time exp [int-count)
Evaluates the expression in exp and returns the time spent on evaluation in milliseconds.
example:

(tinme (nyprog x y z)) = 450

(time (nyprog x y z) 10) = 4420
In first the example, 450 milliseconds elapsed evaluating (myprog x y z). The second
example returns the time for 10 evaluations of (myprog x y z).

See also date, date-value, time-of-day and now.

time-of-day

syntax: (time-of-day)
Returns the time in milliseconds since start of current day.

See also date, date-value, time and now.

timer

syntax: (timer sym-event-handler num-seconds [int-option])
syntax: (timer func-event-handler num-seconds [int-option])
syntax: (timer sym-event-handler)

syntax: (timer func-event-handler)

syntax: (timer)

Starts a one-shot timer firing off the Unix signal S| GALRM SI GYTALRMor SI GPROF after the
time in seconds specified in num-seconds has passed. When the timer fires it calls the user
defined function in sym-event-handler.

timer 256

newLISP Users Manual and Reference

On Linux/UNIX optionally a 0, 1 or 2 can be specified to control how the timer counts. With
default option 0, real time is measured. Option 1 measures the time the CPU spends
processing in the process or thread owning the timer. Option 3 is a combination of both,
called profiling time. See the UNIX man page, seti ti mer (), for details.

The event handler can start the timer again to achieve a continuos flow of events. Since
version 8.5.9 seconds can be defined as floating point numbers with a fractional part, i.e.
0. 25 for 250 milliseconds.

Defining O (zero) as time shuts the running timer down and prevents it from firing.

t i mer with only sym-event-handler will return the elapsed time of the timer in progress. This
can be used to program timelines or schedules.

t i mer without any arguments returns the symbol of the current event handler.

example:

(define (ticker)
(println (date)) (tiner 'ticker 1.0))

> (ticker)

Tue Apr 12 20:44:48 2005 ;. first execution of ticker
ticker ; return value fromticker
> Tue Apr 12 20:44:49 2005 ; first tiner event

Tue Apr 12 20:44:50 2005 ; second tiner event

Tue Apr 12 20:44:51 2005
Tue Apr 12 20:44:52 2005
Tue Apr 12 20:44:53 2005
Tue Apr 12 20:44:54 2005
Tue Apr 12 20:44:55 2005

The example shows an event handler t i cker defined, which starts the timer again after each
event.

Note that a timer cannot interrupt one on-going built-in function. The timer interrupt gets
registered by newLISP, but a timer handler cannot run until one expression is evaluated and
the next one starts. To use t i mer to interrupt an ongoing I/0 operation, follow pattern
below using net-select to test if a socket is ready for reading:

example:

define (interrupt)
(set 'timeout true))

(set 'listen (net-listen 30001))
(set 'socket (net-accept listen))

(tinmer "interrupt 10)
; or specifying the function directly
(timer (fn () (set '"timeout true)) 10)

(until (or timeout done)

(if (net-select socket "read" 100000)
(begin

timer 257

newLISP Users Manual and Reference

(read-buffer socket 'buffer 1024)
(set 'done true)))

)

(if tineout
(println "timeout")
(println buffer))

(exit)

In this example the (until ...) loop will run until something could be read from socket
or until 10 seconds have passed and the t i meout variable is set.

title-case

syntax: (title-case str)
syntax: (title-case str bool)

Returns a copy of the string in str with the first character converted to uppercase. When the
optional bool parameter evaluates to any other value than ni | the rest of the string is
converted to lowercase.

example:
(title-case "hello") = "Hell 0"
(title-case "hELLO' true) = "Hell o"

See also lower-case and upper-case.

trace

syntax: (trace [exp])

Tracing is switched on when exp evaluates to anything but ni | or an empty list () . When no
argument is supplied t r ace evaluates tot r ue or ni | depending on the current trace mode.

When trace mode is switched on, newLISP goes into a debugging mode, displaying the
function currently executed and highlighting the current expression upon entry and exit. The
highlighting is done by bracketing the expression between two '#' characters. This can be
changed to different characters using trace-highlight Upon exit from the expression the result
of its evaluation is also reported.

If an expression occurs more then once in a function, the first occurrence of the executing
function will always be highlighted (bracketed).

At each entry and exit of an expression newLISP execution stops with a prompt line:

trace 258

newLISP Users Manual and Reference
[->2] (s)tep (n)ext (q)uit >

At the prompt s, n or q can be entered to step into or just execute the next expression. Any
other expression can also be entered at this point for evaluation; for example, entering the
name of a variable would evaluate to its contents. In this way the contents of variables can be
checked during debugging, or the value of variables can be set to different values.

example:
;; switches newlLl SP i nto debuggi ng node
(trace true) = true
;; the debugger will show each step

(my-func a b c)

;; Sswitched newlLl SP out of debuggi ng node
(trace nil) = nil

To set break points where newLISP should interrupt normal execution and go into debugging
mode, put (trace true) statements into the LISP code where execution should switch on
the debugger.

See also debug, which is a shortcut for the above example.

trace-highlight

syntax: (trace-highlight str-pre str-post [str-header str-footer 1)

Sets the characters or strings of characters used to enclose expressions during trace. By
default "#" is used to enclose the expression highlighted in trace mode. This can be changed
to different characters or strings of up to 7 characters. If the console window accepts terminal
control characters, this can be used to display the expression in a different color, bold or
reverse etc.:

Two more strings can optionally be specified for str-header and str-footer, which control the
separator and prompt. The maximum number of characters allowed are 15 for the header and
31 for the footer.

example:

;; active expressions are enclosed in >>and <<
(trace-highlight ">>" "<<")
;; '"bright' color on a VT100 or simlar term nal w ndow

(trace-highlight "\027[1nt "\ 027[Ont)

trace-highlight 259

newLISP Users Manual and Reference

The first example replaces the default "#" with a ">>"and "< <". The second example works
on most Linux shells, but may not work in console windows under Win32 or CYGWIN. This
depends on the configuration of the terminal.

transpose

syntax: (transpose matrix])

Transposes a matrix by reversing the rows and columns and converts all cells to floating point
numbers. Any kind of list-matrix can be transposed. Matrices are made rectangular by filling
inni | and omitting elements were appropriate. Matrix dimensions are calculated using the
number of rows in the original matrix for columns and the number of elements in the first
row as number of rows in the transposed matrix.

The dimensions of a matrix are defined by the numbers of rows and number of elements in
the first row. For missing elements in non-rectangular matrices, ni | is assumed.

example:
(set "A'((123) (45 6)))
(transpose A) = ((14) (25) (36)

(transpose (list (sequence 1 5))) = ((1) (2) (3) (4) (5))

(transpose '((a b) (c d) (ef))) = ((ace (bdf))

See also the matrix operations invert and multiply.

trim

syntax: (trim str [str-char])
syntax: (trim str [str-left-char} [str-right-char 1)

The first syntax trims a string str from both sides stripping the leading and trailing characters
as given in str-char. If no character is given in str-char the space character is assumed. t ri m
returns the new string.

The second syntax can trim different characters from both sides or trim only one side if an
empty string is specified for the other side.

example:
(trim?" hello ") = "hell 0"
(trim"----hello----- ") = "hel |l o"
(trim"00012340" "0" "") = "12340"
(trim™"1234000" "" "0") = "1234"
(trim"----hell o=====" "-" "=") = "hello"

trim 260

newLISP Users Manual and Reference

true?

syntax: (true? expr)
If the expression in expr evaluates to not ni | true? returns t r ue else returns ni | .

example:

(map true? "(x nil 1 nil "hi" ())) = (true nil true nil true
true)

(true? nil) = nil

(true? '()) = true

The t r ue? predicate is useful to distinguish between ni | and the empty list () .

unicode

syntax: (unicode str)

Converts ASCII/UTE-8 character strings in str to UCS-4 encoded Unicode of 4 byte integers
per character. The function is only available on UTF-8 enabled versions of newLISP.

example:

(uni code "new')

= "n\ 000\ 000\ 000e\ OO0\ OO0\ OOOWA OO0\ 000\ 000\ 000\ 000\ 000\ 000"
(utf8 (unicode "new')) = "new'
On big endian CPU architectures the byte order will be reversed from high to low. Both

uni code and the utf8 functions are the inverse of each other. These functions are only
necessary if UCS-4 Unicode is in use. Most systems use UTF-8 encoding only.

unify

syntax: (unify expr-1 expr-2 [list-env])

uni f y evaluates and matches expr-1 and expr-2. Expressions match if they are equal or if one
of the expressions is an unbound variable (which would be bound to the other expression). If
expressions are lists, they are matched comparing sub expressions. Unbound variables start

unify 261

newLISP Users Manual and Reference

with an uppercase character to distinguish them from symbols. uni f y returns ni | when the

unification process fails, returns a list of variable associations on success, or an empty list

when no variables where bound, but the match was still successful.
example:

(unify "A'A) = () ; tautol ogy

(unify "A 123) = ((A 123)) ; A bound to 123

(unify "(AB) "(xvy)) = ((Ax) (By)) ; Abound to x, B bound to

y

(unify '(A B) '(B abc)) = ((A abc) (B abc)) ; Bis alias for A

(unify "abc 'xyz) = nil ; fails because synbols are different

(unify "(A A '(123 456)) = nil ; fails because A cannot be bound

to different val ues

(unify "(f A '(f B)) = ((AB)) ; Aand B are alias

(unify "(f A) "(g B)) = nil ; fails because heads of terms are
di fferent
(unify "(f A "(f AB) = nil ; fails because terns are of

different arty

(unify "(f (g A)) "(f B)) = ((B (g A)) ; Bbound to (g A)

(unify "(f (g A A "(f Bxyz)) = ((B (g xyz)) (A xyz)) ; B bound

to (g xyz) Ato xyz

(unify "(f A) "A) = nil ; fails because of infinite unification

(f (f(F

(unify "(Axyz A) '"(abc X X)) = indirect alias Ato X doesn't
mat ch bound terns

(unify "(p XYa "(pYXX) ='((Ya) (Xa))) ; Xalias Y and

binding to

(unify "(g (p XY) (pY X)) '"(dZ22) =YX (Z(p XX)) ;
indirect alias

a

; sone exanpl es copied from
http://en.w ki pedia.org/wi ki/Unification

uni f y can take an optional binding or association list in list-env. This is useful when chaining

unify expressions and results of previous unify bindings must be included:

example:
(unify ' (f X) ' (f 123)) = ((X 123))

unify

262

http://en.wikipedia.org/wiki/Unification
http://en.wikipedia.org/wiki/Unification

newLISP Users Manual and Reference
(unify "(AB) "(X A '((X 123))) = ((X 123) (A 123) (B 123))

In the previous example X was bound to 123 earlier and is included in the second statement
to pre-bind X.

Note that variables are not actually bound as a newLISP assignment, only an association list is
returned showing the logical binding. A special syntax of expand can be used to actually
replace bound variables with their terms:

(set 'bindings (unify '(f (g A A '(f Bxyz))) = ((B (g xyz)) (A
Xyz))

(expand '(f (g A) A bindings) = (f (g xyz) xyz)

; or in one statenent
(expand "(f (g A) A) (unify "(f (g A A '(f Bxyz))) = (f (g
Xyz) Xyz)

The following example shows how propositional logic can be modeled using uni f y and
expand:

if sonmebody is human he is nmortal -> (X human) :- (X nortal)
socrates is human -> (socrates hunman)
; is socrates nortal? -> ? (socrates nortal)

(expand ' (X nortal)
(unify " (X human) ' (socrates human)))

= (socrates nortal)

The following more complex example shows a working small PROLOG (Programming in
Logic) implementation.

;; a small PROLOG i npl ement ati on

(set 'facts '(
(socrates phil osopher)
(socrates greek)
(socrates human)
(ei nstein gernman)
(einstein (studied physics))
(ei nstein human)

(set 'rules '(
((X mortal) <- (X human))
((X (knows physics)) <- (X physicist))
((X physicist) <- (X (studied physics)))
))

(define (query term
(or (if (find termfacts) true) (catch (prove-rule term)))

unify 263

newLISP Users Manual and Reference

(define (prove-rule term
(dolist (r rules)
(if (list? (set '"e (unify term(first r))))
(if (query (expand (last r) e))
(throw true))))

ni |

)

try it
> (query ' (socrates human))
true
> (query '(socrates (knows physics)))
nil
> (query ' (einstein (knows physics)))
true

The program handles a database of f act s and a database of simple A is a fact if B is a fact
rul es. A fact is proven true if it either can be found in the f act s database or if it can be
proven using a rule. Rules can be nested, for example to prove that somebody (knows
physi cs) it has to be proven than somebody is a physi ci st , but somebody is only a
physicist if that person st udi ed physi cs. The <- symbol separating the left and right
terms of the rules is not required and only added to make the rules database more readable.

This implementation does not handle multiple terms in the right premise part of the rules, but
it handles backtracking the r ul es database to try out different matches. It does not handle
backtracking in multiple premises of the rule. For example, when in the following rule A i f

B and C and D the premises B and C succeed and D fails, a backtracking mechanism might
have to go back and re-unify the B or A terms with a different fact or rule to make D succeed.

The above algorithm could be written differently by omitting expand from the definition of
prove-rul e, and passing the environment, e, as an argument to the uni fy and query
functions.

A learning of proven facts can be implemented by appending them to the f act s database
once they are proven. This would speed up subsequent queries.

Bigger PROLOG implementations also allow the evaluation of terms in rules to implement the
side effects doing other work while processing rule terms. pr ove- r ul e could accomplish this
testing for the symbol eval in each rule term.

unique

syntax: (unique list)
Returns a unique version of list with all duplicates removed.
example:

(unique '(23446787) = (23467 8)

unique 264

newLISP Users Manual and Reference

Note that the list does not need to be sorted, but a sorted list makes uni que perform faster.

See also set functions difference and intersect.

unless

syntax: (unless exp-condition exp-1 [exp-2])

unl ess is equivalent to (if (not exp-condition exp-1 [exp-2])). If the value of exp-condition is
ni | or the empty list (), exp-1 is evaluated; otherwise exp-2 is evaluated. example:

(set 'x 50) = 50
(unless (< x 100) "big" "small") = "smal | "
(set 'x 1000) = 1000
(unless (< x 100) "big" "small") = "big"

unpack

syntax: (unpack str-format str-addr-packed)

Unpacks a binary structure in str-addr-packed into LISP variables using the format in str-
format. unpack is the reverse operation to pack. Note that str-addr-packed may also be an
integer number representing a memory address. This facilitates unpacking structures returned
from imported shared library functions.

The following characters may define a format:

format description

c a signed 8-bit number

b an unsigned 8-bit number

d a signed 16-bit short number

u an unsigned 16-bit short number

Id a signed 32-bit long number

lu an unsigned 32-bit long number

f a float in 32-bit representation

I f a double float in 64-bit representation

sn a string of n null padded ASCII characters
nn n null characters

switches to big endian byte order
switches to little endian byte order

unpack 265

newLISP Users Manual and Reference

example:

(pack "c ¢ c" 65 66 67) = "ABC'
(unpack "c ¢ c" "ABC') = (65 66 67)

(set 's (pack "c d u" 10 12345 56789))
(unpack "c d u" s) = (10 12345 56789)

(set 's (pack "s10 f" "result" 1.23))
(unpack "s10 f" s) = ("resul t\ 000\ 000\ 000\ 000" 1.230000019)

(set 's (pack "s3 If" "result" 1.23))
(unpack "s3 f" s) = ("res" 1.23)

(set 's (pack "c n7 c" 11 22))
(unpack "c n7 c" s) = (11 22))

The > and < specifiers can be used to switch between little endian and big endian byte order
when packing or unpacking:

;; on alittle endian system (i.e. Intel CPUs)
(set 'buff (pack "d" 1)) = "\001\000"

(unpack "d" buff) = (1)
(unpack ">d" buff) = (256)
Switching the byte order will affect all number formats with 16, 32 or 64 bit sizes.

The pack and unpack format need not to be the same; as in the following example:
(set 's (pack "s3" "ABC'))
(unpack "c c c" s) = (65 66 67)

The examples show spaces between the format specifiers. These are not required but can
improve readability.

See also address, get-int, get-char, get-string and pack.

until

syntax: (until exp-condition body)

The condition in exp-condition body is evaluated. If the result is ni | or the empty list () the
expressions in body is evaluated. Evaluation is repeated until an exp-condition results in a
value other than ni | or the empty list () . The result of the last expression evaluated is the
return value of the unt i | expression. unti | works like (while (not ...)).

example:

(device (open "somefile.txt" "read"))

until 266

newLISP Users Manual and Reference

(set 'line-count 0)

(until (not (read-line)) (inc 'line-count))
(cl ose (device))

(print "the file has " line-count " lines\n")

See also do-until which will test the condition after evaluation of the body expressions.

upper-case

syntax: (upper-case str)

Returns a copy of the string in str converted to uppercase. International characters are
converted correctly.

example:
(upper-case "hello world") = "HELLO WORLD'

See also lower-case and title-case.

utf8

syntax: (unicode str)

Converts a UCS-4, 4-byte, Unicode-encoded string (str), into UTF-8. The function is only
available on UTF-8-enabled versions of newLISP.

example:

(uni code "new')
= "n\ 000\ 000\ 000e\ 000\ 000\ 000w\ 000\ 000\ 000\ 000\ 000\ 000\ 000"
(utf8 (unicode "new')) = "new'

The ut f 8 function can also be used to test for the presence of UTF-8 enabled newLISP:

(if utf8 (do-utf8-version-of-code) (do-ascii-version-of-code))

On big endian CPU architectures the byte order will be reversed from high to low. Both ut f 8
and the unicode functions are the inverse of each other. These functions are only necessary if
UCS-4 Unicode is in use. Most systems use UTF-8 Unicode encoding only.

utf8 267

newLISP Users Manual and Reference
wait-pid

syntax: (wait-pid int-pid [int-options])

Waits for a child process specified in int-pid to end. The child process was previously started
with process or fork. When the child process specified in int-pid ends, a status value
describing the termination reason for the child process or thread is returned. The
interpretation of the returned status value is different in Linux and different in other flavors
of UNIX. Consult the Linux/UNIX man pages for the wai t pi d command (without the hyphen
used in newLISP) for further information.

When specifying - 1 for int-pid then status information of any child process started is
returned. When specifying O only child processes in the same process group as the calling
process are watched. Any other negative value for int-pid reports child processes in the same
process group as specified with a negative sign in int-pid.

This function is only available on Linux and other UNIX like operating systems or on a
CYGWIN compiled version of newLISP on Win32. Optionally an option can be specified in int-
option. See Linux/UNIX documentation for details on options.

example:
(set '"pid (fork (ny-thread)))
(set 'status (wait-pid pid)) ; wait until ny-thread ends
(println "thread: " pid " has finished with status: " status)

The process ny- t hr ead is started and the main program blocks in the wai t - pi d call until
ny- t hr ead has finished.

while

syntax: (while exp-condition body)

The condition in exp-condition is evaluated. If the result is not ni | or the empty list () the
expressions in body is evaluated. Evaluation is repeated until an exp-condition results in ni |
or the empty list () . The result of the last body expression evaluated is the return value of the
whi | e expression.

example:
(device (open "sonefile.txt" "read"))
(set 'line-count 0)
(while (read-line) (inc 'line-count))
(cl ose (device))
(print "the file has " line-count " lines\n")

while 268

newLISP Users Manual and Reference

See also do-while, which evaluates the condition after evaluating the body expressions.

write-buffer

syntax: (write-buffer int-file sym-buffer [int-size])
syntax: (write-buffer int-file str-buffer [int-size])

syntax: (write-buffer str-device sym-buffer [int-size])
syntax: (write-buffer str-device str-buffer [int-size])

Using the first syntax wr i t e- buf f er writes int-size bytes from a buffer in sym-buffer or str-
buffer to a file specified in int-file. int-file was obtained previously from a file open operation.
If int-size is not specified, all data in sym-buffer or str-buffer is written. wri t e- buf f er
returns the number of bytes written or ni | on failure.

The string buffer symbol can be used with or without quoting a symbol.

example:

(set '"handle (open "nyfile.ext" "wite"))
(write-buffer handle 'data 100)

;; string buffer w o quote
(write-buffer handl e data 100)
(write-buffer handle "a quick nessage\n")

The code in the example writes 100 bytes to the file myfi | e. ext from the contents in dat a.

Using the second syntax wri t e- buf f er appends contents from a string specified in sym-
buffer or str-buffer to the string specified in str-device, which acts like a stream device.

example:

;; fast in-place string appending
(set 'str "")
(dotimes (x 5) (wite-buffer str "hello"))

str = "Hel | oHel | oHel | oHel | oHel | 0")

;; much sl ower nethod of string concatenation
(dotimes (x 5) (set 'str (append str "hello")))

The example appends a string to st r five times. This method is much faster than using
append when concatenating to a string in place.

See also read-buffer.

write-buffer 269

newLISP Users Manual and Reference

write-char

syntax: (write-char int-file int-byte)

Writes a byte specified in int-byte to a file specified by the file handle in int-file. The file
handle is obtained from a previous open operation. Each wr i t e- char advances the file
pointer by one byte.

example:

(define (slowfile-copy fromfile to-file)
(set '"in-file (open fromfile "read"))
(set '"out-file (open to-file "wite"))
(while (set 'chr (read-file in-file))

(write-char out-file chr))
(close in-file)
(close out-file)
"finished")

See print and device for writing bigger portions of data at a time. Note that newLISP already

supplies a faster built-in function copy-file.

See also read-char.

write-file

syntax: (write-file str-file-name str-buffer)

Writes a file in str-file-name with contents in str-buffer in one swoop and returns the number
of bytes written.

example:

(wite-file "nyfile.enc"
(encrypt (read-file "/hone/lisp/nyFile") "secret"))

The file nyfi | e is read, then encrypted using the password secr et and written back into a
new file myfi | e. enc in the current directory.

See also read-file.

write-line

syntax: (write-line [str] [int-file])
syntax: (write-line [str] [str-device])

write-line 270

newLISP Users Manual and Reference

The string in str and the line termination character(s) are written to the console or a file. If no
file handle is specified using int-file, wr i t e- | i ne writes to the current device which is
normally the console screen. When omitting all parameters, wri t e- | i ne writes the contents
of the last read-line to the screen.

example:

(wite-line "hello there")

(set 'out-file (open "nyfile" "wite"))
(wite-line "hello there" out-file)
(close out-file)

(set 'nyFile (open "init.|lsp" "read")
(while (read-line nyFile) (wite-line))

;; using a string device:

(set '"str "")
(dotinmes (x 4) (wite-line "hello" str))

str = "hello\r\nhello\r\nhello\r\nhello\r\n" ;. on Wn32

str = "hell o\ nhel | o\ nhel | o\ nhel | o\ n" ;on Li nux/ UNI X

The first example puts a string out on the current device, which is probably the console
window (devi ce 0). The second example opens / creates a file, writes a line to it and
closes the file. The third example shows the usage of wri t e- | i ne without arguments. The
contents of i ni t. | sp is written to the console screen.

In the second syntax a string can be specified as a device in str-device, similar as used in write-
buffer. When writing to a string device the string in str-device gets appended by str and the
line termination character(s).

xml-error

syntax: (xml-error)

Returns a list of error information from the last xml-parse operation or ni | , if no error
occurred. The first element contains text describing the error, the second element is a number
indicating the last scan position in the source XML text starting at O (zero).

example:

(xm - parse "<atag>hel |l o</atag><fin") = nil

(xm -error) = ("expected closing tag: >" 18)

xml-error 271

newLISP Users Manual and Reference

xml-parse

syntax: (xml-parse string-xml [int-options sym-ontext])

Parses a string containing XML 1.0 compliant well formed XML. No DTD validation is
performed. DTDs (Document Type Declarations) and processing instructions are skipped.
Nodes of type ELEMENT, TEXT, CDATA and COMMENT are parsed. A newLISP list structure
is returned. When an element node does not have attributes or child nodes, empty lists are
contained instead. Attributes are returned as association lists which can be accessed using
assoc. When xnl - par se fails caused by malformed XML, ni | is returned and xml-error can
be used to access error information.

example:

(set 'xn
"<person nane='John Doe' tel="555-1212" >ni ce guy</person>")

(xm - parse xm)

(("ELEMENT" "person"
(("name" "John Doe")
("tel"™ "555-1212"))
(("TEXT" "nice guy"))))

Modifying the translation process.

Optionally int-options can be supplied for suppressing whitespace, empty attribute lists and
comments and for transforming tags from strings into symbols. Another function: xml-type-
tags serves for translating the XML tags. The following options numbers can be used:

option description

1 suppress whitespace text tags

2 suppress empty attribute lists

4 suppress comment tags

8 translate string tags into symbols

16 add SXML (S-expression XML) attribute tags

Options can be combined by adding the numbers, i.e. 3 would combine the options for
suppressing whitespace text tags/info and empty attribute lists.

The following sequence of examples shows how the different options can be used:

XML source:

<?xm version="1.0" ?>

<DATABASE nane="exanpl e. xm ">

<I--This is a data base of fruits-->
<FRUI T>

xml-parse 272

newLISP Users Manual and Reference

<NAME>appl e</ NAVE>

<COLOR>r ed</ COLOR>
<PRI CE>0. 80</ PRI CE>
</ FRU T>

<FRU T>

<NAME>0r ange</ NAME>

<COLOR>or ange</ COLOR>

<PRI CE>1. 00</ PRI CE>
</ FRUl T>

<FRUl T>
<NAME>banana</ NAVE>
<COLCR>yel | ow</ COLOR>
<PRI CE>0. 60</ PRI CE>

</ FRU T>
</ DATABASE>

Parsing without any options:

(xm -parse (read-file "exanple.xm"))

=

(("ELEMENT" " DATABASE" (("nanme" "exanple.xm ")) (("TEXT" "\r\in\t")

("COWENT" "This is a data base of fruits")
("TEXT" "\r\n\t")
("ELEMENT" "FRUIT* () (("TEXT" "\r\n\t\t") ("ELEMENT" " NAME"
(("TEXT" "apple")))
("TEXT" "\r\n\t\t")
("ELEMENT" "COLOR' () (("TEXT" "red")))
("TEXT" "\r\n\t\t")
("ELEMENT" "PRICE" () (("TEXT" "0.80")))
("TEXT" "\r\n\t")))
("TEXT" "\r\n\r\n\t")
("ELEMENT" "FRUIT" () (("TEXT" "\r\n\t\t") ("ELEMENT" "NAME"
(("TEXT" "orange")))
("TEXT" "\r\n\t\t")
(" ELEMENT" "COLOR" () (("TEXT" "orange")))
("TEXT" "\r\n\t\t")
("ELEMENT" "PRICE" () (("TEXT" "1.00")))
("TEXT" "\r\n\t")))
("TEXT" "\r\np\r\n\t")
("ELEMENT" "FRUIT" () (("TEXT" "\r\n\t\t") ("ELEMENT" "NAME"
(("TEXT" "banana")))
("TEXT" "\r\n\t\t")
("ELEMENT" "COLOR' () (("TEXT" "yellow")))
("TEXT" "\r\n\t\t")
("ELEMENT" "PRICE" () (("TEXT" "0.60")))
("TEXT" "\r\n\t")))
("TEXT" "\r\n"))))

xml-parse

0

0

0

273

newLISP Users Manual and Reference

The TEXT elements containing only white space make the output very confusing. As the
database in exanpl e. xm only contains data, we can suppress white space and comments
with option (+ 1 3):

Filtering white space TEXT, COMMENT tags and empty attribute lists:
(xm -parse (read-file "exanple.xm") (+ 1 2 4))

=

(("ELEMENT" "DATABASE" (("name" "exanple.xm ")) (
("ELEMENT" "FRUT" () (
("ELEMENT" "NAME' (("TEXT" "apple")))
("ELEMENT" "COLOR' (("TEXT" "red")))
("ELEMENT" "PRICE" (("TEXT" "0.80")))))
("ELEMENT" "FRU T" (
("ELEMENT" "NAME' (("TEXT" "orange")))
("ELEMENT" "COLOR' (("TEXT" "orange")))
("ELEMENT" "PRICE" (("TEXT" "1.00")))))
("ELEMENT" "FRUIT" (
("ELEMENT" "NAME" (("TEXT" "banana")))
("ELEMENT" "COLOR' (("TEXT" "yellow')))
))

("ELEMENT" "PRICE" (("TEXT" "0.60"))))))))

The resulting output looks much more readable, but still can be improved by using symbols
instead of strings for the tags "FRUIT", "NAME", "COLOR" and "PRICE", and by suppressing the
XML type tags "ELEMENT" and "TEXT" completely using the xml-type-tags directive:

Suppressing XML type tags with xml-type-tags and translating string tags into symbol
tags:

7, suppress all XM type tags for TEXT and ELEMENT
i instead of "CDATA" use cdata instead of "COMVENT" use !--

(xm -type-tags nil 'cdata '!-- nil)

;; turn on all options for suppressing white space and enpty
attributes, translate tags to synbols

(xm -parse (read-file "exanple.xm") (+ 1 2 8))

=

((DATABASE (("nane" "exanple.xm "))
(!'-- "This is a data base of fruits")
(FRUT (NAME "apple") (COLOR "red") (PRICE "0.80"))
(FRUT (NAME "orange") (COLOR "orange") (PRICE "1.00"))
(FRU T (NAME "banana") (COLOR "yellow') (PRICE "0.60"))))

When tags are translated into symbols using option 8, a context can be specified in sym-
context. If no context is specified, all symbols will be created inside the current context.

xml-parse 274

newLISP Users Manual and Reference

(xm -type-tags nil nil nil nil)
(xm - parse "<nsg>Hel o World</nmsg>" (+ 1 2 4 8 16) 'CTX)

=

((CTX: msg "Hel o World"))

Specifying ni | for the TEXT and ELEMENT XML type tags makes them disappear. At the
same time parenthesis of the child node list are removed so that child nodes now appear as
members of the list starting with the tag symbol translated from the string tags "FRUIT",
"NAME" etc.

Parsing into SXML (S-expressions XML) format:

Using xml-type-tags to suppress all XML-type tags and using the option numbers 1, 4, 8, and
16, SXML formatted output can be generated:

(xm -type-tags nil nil nil nil)
(xm -parse (read-file "example.xm") (+ 1 4 8 16))

=

((DATABASE (@ (nanme "exanple.xm "))
(FRUT (NAME "apple") (COLOR "red") (PRICE "0.80"))
(FRU T (NAME "orange") (COLOR "orange") (PRICE "1.00"))
(FRU T (NAME "banana") (COLOR "yellow') (PRICE "0.60"))))

Note that using option number 16 causes an @symbol to be added to attribute lists.

See also xml-type-tags for further information on XML parsing.

xml-type-tags

syntax: (xml-type-tags [expr-text-tag expr-cdata-tag expr-comment-tag expr-element-
tags])

The XML type tags "TEXT" "CDATA" "COMMENT" and "ELEMENT" can be replaced with
something else specified in the parameters or suppressed completely.

Note that xml -t ype-t ags only suppresses or translates the tags themselves but not
suppress or modify the tagged information. The latter would be done using option numbers in

xml-parse.

Using xm - t ype- t ags with out any parameters returns the current type tags:

example:
(xm -type-tags) = ("TEXT" " CDATA" "COMMVENT" "ELEMENT")

(xm -type-tags nil 'cdata '!-- nil)

xml-type-tags 275

newLISP Users Manual and Reference

The first example just shows the current used type tags. The second example specifies
suppression of the "TEXT" and "ELEMENT" tags and shows cdat a and ! - - instead of
"CDATA" and "COMMENT".

zZero?

syntax: (zero? expr)
The evaluation of expr is checked if equal to O (zero).

example:

(set 'value 1.2)

(set 'var 0)

(zero? value) = nil
(zero? var) = true

(map zero? '(0 0.0 3.4 4)) = (true true nil nil)

zer 0? will throw an error on data types other than numbers.

zero?

276

newLISP Users Manual and Reference

newLISP APPENDIX

Error codes

not enough nenory 1
envi ronment stack overfl ow 2
call stack overflow 3
probl em accessing file 4
not an expression 5
nm ssi ng parenthesis 6
string token too | ong 7
nm ssi ng argunent 8
nunber or string expected 9
val ue expected 10
string expected 11
synbol expected 12
cont ext expected 13
symbol or context expected 14
list expected 15
list or synbol expected 16
list or string expected 17
list or nunber expected 18
array expected 19
array, list or string expected 20
| anbda expected 21
| anbda- macro expect ed 22
invalid function 23
invalid | anmbda expression 24
invalid macro expression 25
invalid | et parameter |ist 26
probl em saving file 27
di vi sion by zero 28
matri x expected 29
wrong di mensi ons 30
matrix is singular 31
syntax in regul ar expression 32
throw wi t hout catch 33
problemloading library 34
i mport function not found 35
synbol is protected 36
error nunber too high 37
regul ar expression 38
m ssing end of text [/text] 39
m smat ch in nunber of arguments 40
problemin format string 41
data type and format don't match 42
invalid paranmeter: 0.0 43
invalid paraneter: NaN 44
illegal paraneter type 45
synbol not in MAIN context 46

Error codes 277

newLISP Users Manual and Reference

synbol not in current context 47
array index out of bounds 48
user error 49
user reset - 50

TCP/IP and UDP Error Codes

0: No error

1: Cannot open socket

2: Host nanme not known
3: Not a valid service
4. Connection failed

5: Accept failed

6: Connection cl osed

7: Connection broken

8: Socket send() failed
9: Socket recv() failed
10: Cannot bi nd socket
11: Too nuch sockets in net-select
12: Listen failed
13: Badly forned IP
14: Select failed
15: Peek failed
16: Not a valid socket

Example tcp/ip client

#!/usr/bin/ newisp

client for client/server deno
USAGE: client host Nane

"host Nane' contains a string with the name or | P nunber
of the conputer running the server application

The client pronpts for input and sends it to the
server which sends it back converted to uppercase

The server has to be started first in a different
termnal wi ndow or on a different conputer.

v 1.3

Example tcp/ip client 278

newLISP Users Manual and Reference

(define (net-client-receive socket , buf)
(net-receive socket 'buf 256)
(print "\'n" buf "\ninput:")
(if (= buf "bye bye!") (exit))
(net-send socket (read-line)))

(define (client host-conputer)
(set 'socket (net-connect host-conputer 1111))
(if (not socket)
(print "could not connect, is the server started?\n")
(while true (net-client-receive socket))))

(if (not (main-args 2))

(begin
(print "USAGE: client hostNane\n")
(exit)))
(client (main-args 2))
(exit)

Example tcp/ip server

#!/usr/bin/ newisp
server for client/server deno
USAGE: server

;; Start the client programmin a different
;; term nal window or on a different conputer
:; See the 'client' file for nore info

v 1.1

(define (net-server-accept |istenSocket)
(while online (begin
(set 'connect (net-accept |istenSocket))
(net-send connect "Connected!\n")
(while (net-server-receive connect)))))

(define (net-server-receive socket , str)
(net-receive socket 'str 256)
(print "received:" str "\n")
(if (= str "quit")
(begin

Example tcp/ip server 279

newLISP Users Manual and Reference

(net-send socket "bye bye!")
(net-cl ose socket) nil)
(net-send socket (upper-case str))))

(define (server)

(if (not (set 'socket (net-listen 1111)))
(print "Listen failed:\n" (net-error))
(begin

(set 'online true)
(print "\'nServer started\n")
(net-server-accept socket)

)))

(server)

. eof ;

Example UDP client

#!/usr/bin/ newisp
denmo client for non-bl ocking UDP comuni cations
start the server program udp-server.|lsp first

note, that net-listen in UDP nobde only binds the socket

to the local address, it does not 'listen' as in TCP/IP
v.1.0
(set 'socket (net-listen 10002 "" "udp"))

(if (not socket) (println (net-error)))
(while (not (net-error))
(print "->")
(net-send-to "127.0.0.1" 10001 (read-line) socket)
(net-receive socket 'buff 255)
(println "=" buff))

eof

Example UDP client 280

newLISP Users Manual and Reference

Example UDP server

#1/usr/bin/ newisp
denmo server for non-bl ocking UDP comuni cations
start this programthen start the client udp-client.|sp

note, that net-listen in UDP nobde only binds the socket
to the local address, it does not 'listen' as in TCP/IP
cv.1.0
(set 'socket (net-listen 10001 "I ocal host" "udp"))
(if socket (println "server listening on port " 10001)
(println (net-error)))

(while (not (net-error))

(set 'nBg (net-receive-fromsocket 255))

(println "->" nsQ)

(net-send-to (nth 1 nsg) (nth 2 nsg) (upper-case (first nsg))
socket))

(exit)

eof

Example threads - consumer, producer

#!/usr/bin/ newisp

prodcons.|sp - Producer/consuner

#

this programonly runs on Linux/UN X

#

usage of 'fork', "wait-pid , 'semaphore' and 'share

(if (> (& (last (sys-info)) OxF) 4)
(begin
(println "this will not run on Wn32")

(exit)))

(constant 'wait -1 '"signal 1 'release 0)
(define (consumer n)

(set i 0)
(while (<i n)

Example threads - consumer, producer 281

newLISP Users Manual and Reference

(semaphore cons-sem wai t)

(println (set "i (share data)) " <-")
(semaphore prod-sem signal))
(exit))
(define (producer n)
(for (i 1 n)

(semaphore prod-sem wait)

(println "-> " (share data i))

(semaphore cons-sem signal))
(exit))

(define (run n)
(set 'data (share))
(share data 0)

(set 'prod-sem (semaphore)) ; get semaphores
(set 'cons-sem (senmaphore))

(set 'prod-pid (fork (producer n))) ; start threads
(set 'cons-pid (fork (consuner n)))

(semaphore prod-sem signal) ; get producer started
(wait-pid prod-pid) ; wait for threads to finish
(wai t-pid cons-pid)

(semaphore cons-semrel ease) ; rel ease semaphores
(semaphore prod-semrel ease))

(run 10)
(exit)

Example pop3.lsp

pop3.lsp - subroutines for nmail retrieva

v 1.1 - replaced int for integer

USAGE

:: ;5 include the pop3 nodul e
7, (load "/usr/share/ newisp/pop3.1sp")

(POP3: get-all-mail "user" "password" "pop.ny-isp.conm "nmessages/")

| oads down all nessages and puts themin a directory "nessages/"

Example pop3.lsp

newLISP Users Manual and Reference

7 (POP3:get-newmail "user" "password" "pop.ny-isp.con "nmessages/")

7 loads down only new nessages

;. (POP3:delete-old-nmil "user" "password" "pop.ny-isp.coni)

;; del etes nessages, which have not been read

7, (POP3:delete-all-nail "user" "password" "pop.ny-isp.coni)

;; deletes all nessages

;5 (POP3:get-nmil-status "user” "password" "pop.ny-isp.cont)

7, gets a list of status nunbers (total Messages, total Bytes, |astRead)

i, (POP3:get-error-text)

i, gets error message for failed all/new status function

<
i
A WON

(cont ext

replaced all 'concat' with 'append , 'debug" renaned to
' debug-fl ag’
replaces # with ;; for coments

better error reporting when (set 'debug-flag true)

Modi fi ed nessage file name generation to assure uni queness in
get-al | -nmessages (CaveQuy).

Fixed 'nmail-dir reference in (get-all-nmail) and (get-new nail)
functions

(get-nessages now attenpts to nmakes 'nmail-dir, if not found.
al so changed the nessage file type to ".pop3" to reflect the
context it was created by. (CaveCuy).

fixed bug in get-messages: directory? doesn't take trailing
slash in arg

will also work on POP3 servers, which do not support LAST,
but then wll
only support (POP3:get-all-nessages ...)

added (PP3:delete-all-mail ...), which also works on servers not
supporting the LAST conmand

' POP3)

(set 'debug-flag nil)

(define (get-all-mail userNane password pop3server mail-dir)

Example pop3.1sp 283

newLISP Users Manual and Reference

(and

(connect pop3server)

(1 ogon user Nane password)

(set 'status (get-status))

(set 'no-nsgs (nth 2 status))

(if (> no-nsgs 0)
(get-nessages 1 no-nsgs nmail-dir)
true)

(log-off)))

(define (get-new nail userNane password pop3server mail-dir)
(and
(connect pop3server)
(1 ogon user Nane password)
(set 'status (get-status true))
(if (<= (first status) (nth 2 status))
(get-nessages (first status) (nth 2 status) mail-dir)

true)
(log-off)))
(define (get-nail-status user Nane password pop3server)

(and
(connect pop3server)
(1 ogon user Nane password)
(set 'status (get-status true))
(1 og-of f)
status))

(define (del ete-old-mail userNane password pop3server)
(and

(connect pop3server)

(1 ogon user Nane passwor d)

(set 'status (get-status true))

(if (> (first status) 1)
(for (meg 1 (- (first status) 1)) (del ete-nessage mnsQ))
true)

(1 og-off)

(first status)))

(define (delete-all-mail userNane password pop3server)
(and

(connect pop3server)

(1 ogon user Nane passwor d)

(set 'status (get-status))

(if (> (last status) 0)
(for (nmeg 1 (last status)) (del ete-nessage nsg))
true)

(1 og-off)

(last status)))

;, receive request answer and verify
(define (net-confirmrequest)

(if (net-receive socket 'rcvbuff 512 "+0OK")
(begin

Example pop3.1sp 284

(define

conne

(define
(set
(if
(if

kaefine
(and

;1 get s

kaefine
(and

newLISP Users Manual and Reference

(if debug-flag (println rcvbuff))
(if (find "-ERR" rcvbuff)
(finish rcvbuff)

true))
nil))
(net-flush)
(i f socket
(while (> (net-peek socket) 0)
(net-receive socket 'junk 256)
(if debug-flag (println junk))))
true)
ct to server

(connect server)

' socket (net-connect pop3server 110))

(and debug-flag socket) (println "connected on
(and socket (net-confirmrequest))

(net-flush)

(finish "could not connect")))

(1 ogon user Nane password)

(set 'sndbuff (append "USER " userName "\r\n"))
(net-send socket 'sndbuff)

(if debug-flag (println "sent: " sndbuff) true)
(net-confirmrequest)

(net-flush)

(set 'sndbuff (append "PASS " password "\r\n"))
(net-send socket 'sndbuff)

(if debug-flag (println "sent: " sndbuff) true)
(net-confirmrequest)

(net-flush)

" socket))

(if debug-flag (println "logon successful") true)))

tatus and | ast read
(get-status last-flag)

(set 'sndbuff "STAT\r\n")
(net-send socket 'sndbuff)
(if debug-flag (println "sent: " sndbuff) true)
(net-confirmrequest)
(net-receive socket 'status 256)
(if debug-flag (println "status: " status) true)
(net-flush)
(if last-flag
(begin
(set 'sndbuff "LAST\r\n")
(net-send socket 'sndbuff)

(if debug-flag (println "sent: " sndbuff) true)

(net-confirmrequest)

Example pop3.lsp

285

newLISP Users Manual and Reference

(net-receive socket 'last-read 256)
(if debug-flag (println "last read: " last-read) true)
(net-flush))
(set 'last-read "0"))
(set 'result (list (int (first (parse status)))))
(if debug-flag (println "parsed status: " result) true)
(push (int (nth 1 (parse status))) result)
(push (int (first (parse last-read))) result)
result))

., get a nessage

(define (retrieve-nmessage , nessage)
(set 'finished nil)
(set 'nessage "")
(while (not finished)
(net-receive socket 'rcvbuff 16384)
(set 'nessage (append nessage rcvbuff))
(if (find "\r\n.\r\n" nessage) (set 'finished true)))
(if debug-flag (println "received nessage") true)
nmessage)

get all nessages

v 1.4: nodified file name generation to inprove uni queness. (CaveCuy)
file name now created using |ast SMIP or ESMIP I D from header.
v 1.5: changed file type to ".pop3" to reflect the context that
created it.
(get-nessages now forces the directory, if it does not exsist

v 1.6: make sure directory? doesn't have trailing slash in arg

(define (get-nessages fromto mail-dir)
(if (ends-with mail-dir "/") (set 'mail-dir (chop mail-dir)))
(if (if (not (directory? mail-dir)) (make-dir mail-dir) true)
(begin
(set '"mail-dir (append mail-dir "/"))
(for (nmsg fromto)
(if debug-flag (println "getting nmessage " msg) true)
(set 'sndbuff (append "RETR " (string nsg) "\r\n"))
(net-send socket 'sndbuff)
(if debug-flag (println "sent: " sndbuff) true)
(set 'nessage (retrieve-nessage))
(if debug-flag (println (slice nessage 1 200)) true)
(set '"istr (get-message-id nessage))
(set '"istr (append mail-dir "Me-" istr))
(if debug-flag (println "saving " istr) true)
(wite-file istr nessage)
(if (not (rename-file istr (append istr ".pop3")))
(delete-file istr)))))
true) ; other parts of pop3 rely on 'true' return

del et e nessages

Example pop3.1sp 286

newLISP Users Manual and Reference

(define (del ete-nmessage nsgQ)
(and
(set 'sndbuff (append "DELE " (string nsg) "\r\n"))
(net-send socket 'sndbuff)
(if debug-flag (println "sent: " sndbuff) true)
(net-confirmrequest)))

get - nessage- date was
changed to get-nessage-id
v 1.4: CaveCuy

(define (get-nessage-id nessage)
(set "ipos (+ (find "id <] id |\tid " message 1) 5)
"iend (find "@;|\n|\r| |\t" (slice message ipos) 1))
(if debug-flag
(print "Message ID: " (slice message ipos iend) "\n"))
(set "istr (slice nessage ipos iend)))

| og of f

(define (log-off)
(set 'sndbuff "QUI T\r\n")
(net-send socket 'sndbuff)
(if debug-flag (println "sent: " sndbuff) true)
(net-receive socket 'rcvbuff 256)
(if debug-flag (println rcvbuff) true)
true)

report error and finish

(define (finish nessage)
(if (ends-with nmessage "+OK")
(set 'nessage (chop nessage 3)))
;(print "<h3>" nessage "</ h3>")
(set 'nmail-error-text nmessage)
(if debug-flag (println "ERROR " nessage) true)
(if socket (net-flush))
(if socket (log-off))
nil)

(define (get-error-text) mmil-error-text)
(context ' MAIN)

;o (i f (not(POP3:get-all-mail "user" "password" "ny-isp.com "nmail"))
- (print (POP3:get-error-text)) true)

;3 (POP3: get-newnail "user"™ "password" "ny-isp.conmt "nail")
;s (print (POP3:get-mail-status ""user” "password" "ny-isp.confi))
;o (exit)

Example pop3.1sp 287

eof

newLISP Users Manual and Reference

Example smtp.lsp

snt p.

==<£s=
ol ol
DN R

=<
e
o ol

(cont ext

(set 'deb

1

this i

Isp - routines for sending nail

cl eanup and conments

better error reporting when (set 'debug-flag true)

inserted enpty |ine before body

forgot to check for "\r\n" in confirmrequest

rearranged function calls for shorter code

USACGE was i nconpl ete

changes sys-info version ref

added RFC821 envel ope characters "<...>" to enmil|l addresses

' SMTP)
ug-flag nil)

s the main function to use

USAGE:

;N
(1 oad

(SMT

Wil |

clude the sntp nodul e
"/usr/share/ newisp/sntp.lsp")
P:send-nmai|l "jdoe@site.con "sonebody@sp.conmt "" "Greetings"
"How are you today? - john doe -" "sntp.asite.cont)
send nmail from address: jdoe@site.com

to address: sonebody@ sp.com
subj ect line: Geetings
nmessage body: Hoe are you today? - john doe-
sntp host: sntp.asite.com

(define (send-mail mail-fromnmail-to mail-subject mail-body SMIP-server)

(and
(
(
(
(
(
(
(
(
(

set 'fromhostnane (nth 1 (parse mail-from"@)))

set 'socket (net-connect SMIP-server 25))

confirmrequest "2")

net-send-get-result (append "HELO " from hostnane) "2")

net - send-get-result (append "MAIL FROM <" mail-from">") "2")
net - send-get-result (append "RCPT TO <" mail-to ">") "2")

net - send- get -result "DATA" "3")

mai | - send- header)

mai | - send- body)

Example smtp.lsp

288

newLISP Users Manual and Reference

(confirmrequest "2")
(net-send-get-result "QU T" "2")
(or (net-close socket) true)))

(define (confirmrequest conf)
(and
(net-receive socket 'recvbuff 256 "\r\n")
(if debug-flag (println recvbuff) true)
(starts-with recvbuff conf)))

(define (net-send-get-result str conf)
(set 'send-str (append str "\r\n"))
(if debug-flag (println "sent: " send-str))
(net-send socket 'send-str)
(if conf (confirmrequest conf) true))

(define (muil-send-header)
(net-send-get-result (append "TO " mail-to))
(net-send-get-result (append "FROM " nail-from)
(net-send-get-result (append "SUBJECT: " mail-subject))
(net-send-get-result (append "X-Miler: newlLlSP v." (string (nth -2
(sys-info))))))

(define (nail-send-body)
(net-send-get-result "")
(dolist (Ine (parse nail-body "\r\n"))

(if (=1ne".™)
(net-send-get-result "..")
(net-send-get-result Ine)))

(net-send-get-result "."))

(define (get-error-text)
recvbuf f)

(context ' MAIN)

. eof

Example ftp

; ftp.lsp - nmodule for newll SP for FTP transfers
cv. 1.0

v.1.1 will not hang on wong file pernissions
changed position of STAT

Example ftp 289

newLISP Users Manual and Reference

v.1l.2 accept "" instead of "." for sub directory

v 1.3 - replaced in for integer

exanpl e:

(FTP: put "sonebody" "secret" "host.con "subdir" "file") ;; upload
(FTP: get "sonebody" "secret" "host.con "subdir" "file") ;; download
returns '"true' on sucess else '"nil' and check the variable FTP:result

for the last result nmessage fromthe ftp host
to set debug node, which shows all dialog woth the server

(set ' FTP: debug-flag true)

(context ' FTP)

debuggi ng node

(set 'debug-nmode nil)

node of transfer

(define CGET 1)
(define PUT 2)

(define (get user-id password host subdir file-nane)

(transfer user-id password host subdir file-nanme GET))

(define (put user-id password host subdir file-nane)

(transfer user-id password host subdir file-nanme PUT))

(define (transfer user-id password host subdir file-name node)

(if (= subdir "") (set 'subdir "."))
(and

(connect-to host 21)

(send-get-result (append "USER " user-id "\r\n") "3")
(send-get-result (append "PASS " password "\r\n") "2")
(send-get-result (append "CAD " subdir "\r\n") "2")
(send-get-result "TYPE [\r\n" "2")

(set '"buff (send-get-result "PASWr\n" "2"))

(regex {(\d+), (\d+), (\d+), (\d+), (\d+), (\d+)} buff)
(set 'port (+ (* 256 (int $5)) (int $6)))

(set "ip (string $1 "." $2 "." $3 "." $4))

(set 'socket2 (net-connect ip port))

(if (= nmode PUT)
(and
(check-file file-nane)
(net-send socket (append "STOR " file-nane "\r\n"))

Example ftp

290

newLISP Users Manual and Reference

(send-get-result "STAT\r\n" "1")

(set 'fle (open file-nane "r"))

(while (> (read-buffer fle 'buffer 512) 0)
(if debug-node (print "."))
(net-send socket2 buffer 512))

(close fle)) true)

(if (= node GET)
(and
(net-send socket (append "RETR " file-nanme "\r\n"))
(send-get-result "STAT\r\n" "1")
(set 'fle (open file-nane "wW'))
(while (net-receive socket2 'buffer 512)
(i f debug-node (print "."))
(wite-buffer fle buffer))
(close fle)) true)

(or (net-close socket2) true)
(net-send socket "QUIT\r\n")
(or (net-close socket) true)))

(define (send-get-result str code)
(net-send socket str)
(i f debug-nmode (println "sent:" str))
(net-receive socket 'result 256 "\r\n")
(if debug-node (println result))
(if (starts-with result code) result))

(define (connect-to host port)
(set "FTP:result nil)
(set 'socket (net-connect host port))

(i f socket
(net-receive socket 'result 256 "\r\n")
(begin
(set 'result "could not connect")
nil)))

(define (check-file file-nane)
(if (file? file-nane)
true
(begin
(set 'result (append file-name " does not exist"))
nil)))
(context ' MAIN)
;; test
;(set ' FTP: debug- node true)
;(FTP:put "userid" "password" "site.conm "tnp" "testfile")

; (FTP: get "userid" "password" "site.com "tnp" "testfile")

Example ftp 291

newLISP Users Manual and Reference
(exit)

eof

Example httpd web server

#!'/usr/ bin/ new i sp

httpd - web server v.4.1

v 4.1 - change 'integer' to 'int'

handl es cgi but no cookies

does GET and POST requests

USAGE: httpd portNo rootDir

EXAVPLE Li nux: httpd 80 /hone/ httpd/ htm/

EXAMPLE W n32: new isp.exe httpd 80 /hone/httpd/ htm/

(context ' HTTPD)

(define version "4.1")

(define debug-flag nil)

(set 'os (& OxF (last (sys-info))))

(set 'exe-extensions '(

"egi "
"Isp"))
(set '"default-files '("index.htm" "index.cgi"))

(set 'mme-types ' (
("txt" "text/plain")
("htm" "text/htm")
("shtm ™ "text/htm")
("htnt "text/htm")
("gif" "image/gif")
("jpg" "imagel/jpeg")
("] peg” "imge/|peg")
("png" "inage/ png")

Example httpd web server

292

newLISP Users Manual and Reference

("jar" "application/java-archive")
("class" "application/java")
("pdf" "application/pdf")))

(set 'cgi-header (append
"HTTP/ 1.0 200 OK\r\n"
"Server: newLI SP v." (string (nth -2 (sys-info)))
HTTPD v." version "\r\n"))

(define (startServer port dir)
(if (not (set 'socket (net-listen (int port))))
(print "Listen failed: " (net-error) "\n")
(begin
(set 'online true)
(set 'root-dir dir)
(print "Server started listening on port: " port "\n")
(print "Root directory: " root-dir "\n")
(if (not (change-dir root-dir))
(begin
(println "Could not change to: " root-dir)
(exit)))

(net-server-accept socket))))

(define (net-server-accept |istenSocket)

(while online
(if (set 'connection (net-accept |istenSocket))
(begin
(if (net-receive connection 'buff 2024 "\r\n\r\n")

(begin

(process-http-request buff)

(net-close connection)))))))

(define (process-http-request request)
(set 'request-type (first (parse request)))
(if debug-flag (print request))
(1 og-request request)
(case request-type
("CGET" (process-CGET-request request))
(" POST" (process-POST-request request))
("HEAD" (process-HEAD-request request))
(true (htm-error 400 "Cannot handle request”))))

(define (process-GET-request request)
(set 'query (nth 1 (parse (first (parse request "\r\n")) " ")))

(if (starts-with query "http://" nil)
(begin
(set 'query (slice query 7))
(set 'query (slice query (find "/" query)))))

(set 'query (slice query 1))

(if (= query "")
(begin

Example httpd web server 293

newLISP Users Manual and Reference

(set 'query (first default-files))
(dolist (fle default-files)
(if (file? fle) (set 'query fle)))))

(if (set 'pos (find "?" query))
(begin
(set 'queryData (slice query (+ pos 1)))
(env "QUERY_STRI NG' queryDat a)
(set 'query (first (parse query "?")))
(execute-file query (append querybData "\r\n")))
(begin
(env "QUERY_STRING' "")
(if (find {.*\.\..*} query 0)
(htm -error 405 "Access not allowed")
(i f (has-exe-extension query)
(execute-file query "")
(send-file query))))))

(define (process-PCOST-request request)
(if (find ".*content-length:(.*)" request 1)
(begin
(set 'contentLength (int (trim$1)))
(set 'postData (receive-POST-data contentLength)))
(set 'postData (net-receive connection 'data 1024)))
(if debug-flag (print postData "\n"))
(set 'query (nth 1 (parse (first (parse request "\r\n")))))
(if (find {.*\.\..*} query 0)
(htm -error 405 "Access not all owed")
(execute-file query postData)))

(define (receive-POST-data | en)
(set 'page '(""))
(set 'receivedBytes 0)
(set 'bytes 0)
(while (and bytes (< receivedBytes |en))
(if (set 'bytes (net-receive connection 'data |en))
(inc 'receivedBytes bytes))
(push data page))
drai n socket
(while (net-select connection "read" 500)
(net-receive connection 'data 1024))
(join (reverse page)))

(define (process-HEAD request request)
(htm -error 400 "Cannot handl e request"))

(define (has-exe-extension fil eNane)
(find (extension fileName) exe-extensions))

(define (extension fname)
(if (find ".*\\.(.*)" fnane 0)
(trim$1) ""))

(define (send-file fil eNanme)

Example httpd web server 294

newLISP Users Manual and Reference

(set '"ext (extension fileNane))
(if (not (set 'mnme-type (assoc ext mine-types)))
(htm -error 405 "Filetype not all owed")
(begin
(set '"buffer (read-file fileNane))
(if (not buffer)
(htm -error 404 (append "File not found: " fileNane))
(begin
(set 'header (make-header mne-type fil eNane))
(net-send connecti on header)
(net-send connection buffer))))))

(define (nmake-header ninmeType fil eNane)
(append "HTTP/ 1.0 200 OK\r\n"
"Server: newLl SP HTTPD v." version "\r\n"
"Content-type: " (nth 1 m meType) "\r\n"
"Content-length: "
(string (first (file-info fileNane)))
"\r\n\r\n"))

(define (execute-file fil eNane data)
(if (starts-with fileNane "/") (set 'fileName (slice fileNane 1)))
(if (not (file? (append "./" fileNane)))
(htm-error 404 (append "File not found: ./" fileName))
(begin
(if (or (= 0s 5) (= o0s 6))
(set 'procStr (append "newlisp ./" fileName " > /tnp/pcgi"™)) ;;
for wi n32
(set 'procStr (append "./" fileName " > /tnp/pcgi”)))
for UNI X
(if debug-flag (println procStr))
(exec procStr data)
(set '"buffer (read-file "/tnp/pcgi"))
(replace "\r\r\n" buffer "\r\n")
(set 'header "HTTP/ 1.0 200 OK\r\n")
(if (not buffer)
(htm-error 400 "Cannot handl e request")
(begin
(net-send connection cgi-header)
(net-send connection buffer))))))

(define (log-request request)
(print (date (apply date-value (now)))
(first (net-peer connection)) " "
(first (parse request "\r\n")) "\n"))

(define (htnml-error error-no error-txt)
(set 'header "HTTP/ 1.0 200 OK\r\nContent-type: text/htm\r\n\r\n")
(set 'nessage (append
"<HTML><Hl>newL| SP v." (string (nth -2 (sys-info))) " HITPD v."
version "
"
"Error: " (string error-no) " " error-txt "
</Hl></HTM.>"))
(set 'buffer (append header nmessage))
(net-send connection buffer))

Example httpd web server 295

newLISP Users Manual and Reference

(context ' MAIN)

MAI N ENTRY PO NT
(set 'parans (main-args))
(if (< (length parans) 3)

(begin
(print "USAGE: httpd portNunber rootDirectory\n")
(exit)))
(print (HTTPD:startServer (nth 2 params) (nth 3 parans)))
(exit)
eof

Example infix expression parser

7, infix.lsp - parses an infix, prefix and postfix expressions in a string
;; and returns a newlLl SP expression, which can be eval uated, captures
;; syntax errors

version 2.0

USAGE: (I NFI X: xl ate expression-str)

when "nil is returned then the error nessage is in 'result
el se when "true is returned the newlLl SP expression is in result

.. EXAMPLES:

7 (INFIX:xlate "3 + 4") = (add 3 4) ;; parses infix
(INFI X: xlate "+ 3 4") = (add 3 4) ;; parses prefix s-expressions
(INFI X: xlate "3 4 +") = (add 2 4) ;; parses postfix
(INFI X: xlate "3 + * 4") = "ERR missing argunent for +"

(eval (INFIX xlate "3

+

4) =7

(INFI X:xlate "(3 +4) * (5- 2)") = (mul (add 3 4) (sub 5 2))

(INFIX:xlate "(a + b) » 2+ (a- b)) ~2") =
¥ (add (pow (add a b) 2) (pow (sub a b) 2))

(INFI X:xlate "x = (3 + sin(20)) * (5 - 2)") =
(setg x (mul (add 3 (sin 20)) (sub 5 2)))

Example infix expression parser 296

newLISP Users Manual and Reference

L (INFIX: xlate "x = (3 +sin(10 - 2)) * (5 - 2)")
- = (setq x (rmul (add 3 (sin (sub 10 2))) (sub 5 2)))

As a third paranmetere a target context can be passed, if not used
MAIN i s assuned

note that the parser requires operators, variables and constants
sur rounded
by spaces except where parenthesis are used

operator priority table
(token operator arg-count priority)

(context ' I NFIX)

(set 'operators ' (

("=" setq 2 2)
("+" add 2 3)
("-" sub 2 3)
("*" mul 2 4)
("/" div 2 4)
("~" pow 2 5)
("sin" sin 1 9)
("cos" cos 1 9)
))

(set 'targetContext MAIN)

(define (xlate str ctx)
(if ctx (set 'targetContext ctx))
(if (catch (infix-xlate str) 'result)
result ;; if starts with ERR is error else result
(append "ERR: " result))) ;; newLISP error has ocurred

(define (infix-xlate str)
(set 'tokens (parse str))
(set 'varstack '())
(set 'opstack '())
(dolist (tkn tokens)
(case tkn
("(" (push tkn opstack))
(")" (cl ose-parenthesis))
(true (if (assoc tkn operators)
(process-op tkn)
(push tkn varstack)))))
(while (not (enmpty? opstack))
(make- expression))

(set 'result (first varstack))

(if (or (> (length varstack) 1) (not (list? result)))
(throw "ERR wrong syntax")

Example infix expression parser 297

newLISP Users Manual and Reference

result))

7, pop all operators and nmake expressions

until an open parenthesis is found

kaefine (cl ose-parent hesi s)

(while (not (= (first opstack) "("))

(make- expression))
(pop opstack))

pop all operator, which have higher/equal priority

;; and make expressions
kaefine (process-op tkn)
(if (not (enpty? opstack))

(while (<= (lookup tkn operators 3)
(l ookup (first opstack) operators 3))

(make- expression)))
(push tkn opstack))

pops an operator fromthe opstack and nakes/returns an

newL| SP expressi on

kaefine (make- expr essi on)
(set 'expression '())
(if (enpty? opstack)

(throw "ERR m ssing parenthesis"))

(set 'ops (pop opstack))

(set 'op (lookup ops operators 1))
(set 'nops (lookup ops operators 2))

(dotines (n nops)
(if (enpty? varstack)

(throw (append "ERR: m ssing argunment for " ops)))

(set 'vars (pop varstack))
(if (aton®? vars)

(if (not (or (set 'var (float vars))

(and (legal ? vars) (set
(throw (append vars "ERR

(push var expression))
(push vars expression)))
(push op expression)
(push expression varstack))

(context ' MAIN)

Example infix expression parser

is not a variable"))

"var (symvars targetContext)))))

298

newLISP Users Manual and Reference

GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of
this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document "free" in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as "you". You accept the
license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document's overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

GNU Free Documentation License 299

newLISP Users Manual and Reference

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising the
document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not "Transparent” is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Title Page" means the text near
the most prominent appearance of the work's title, preceding the beginning of the body of the
text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another
language. (Here XYZ stands for a specific section name mentioned below, such as
"Acknowledgements", "Dedications”, "Endorsements", or "History".) To "Preserve the Title" of
such a section when you modify the Document means that it remains a section "Entitled XYZ"
according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice

GNU Free Documentation License 300

newLISP Users Manual and Reference

saying this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures to
obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible. You
may add other material on the covers in addition. Copying with changes limited to the covers,
as long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

« A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

GNU Free Documentation License 301

newLISP Users Manual and Reference

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section Entitled "History" in the Document,
create one stating the title, year, authors, and publisher of the Document as given on
its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of
the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice. These titles must be distinct
from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but
endorsements of your Modified Version by various parties--for example, statements of peer

GNU Free Documentation License 302

newLISP Users Manual and Reference

review or that the text has been approved by an organization as the authoritative definition of
a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to the section titles in
the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and
follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
"aggregate" if the copyright resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit. When the Document is
included in an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

GNU Free Documentation License 303

newLISP Users Manual and Reference

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document's Cover Texts may
be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations of
some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version" applies to it,
you have the option of following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the Free Software Foundation.
If the Document does not specify a version number of this License, you may choose any
version ever published (not as a draft) by the Free Software Foundation.

GNU Free Documentation License 304

newLISP Users Manual and Reference

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA
02139, USA. Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

PREAMBLE

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom to
share and change free software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation's software and to any
other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish), that you receive source code or can get it if
you want it, that you can change the software or use pieces of it in new free programs; and
that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors'
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE 305

newLISP Users Manual and Reference

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License.
The "Program", below, refers to any such program or work, and a "work based on the
Program" means either the Program or any derivative work under copyright law: that is to
say, a work containing the Program or a portion of it, either verbatim or with modifications
and/or translated into another language. (Hereinafter, translation is included without
limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends on
what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of the
Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in
part contains or is derived from the Program or any part thereof, to be licensed
as a whole at no charge to all third parties under the terms of this License.

¢) If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most
ordinary way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this License. (Exception: if
the Program itself is interactive but does not normally print such an
announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections

GNU GENERAL PUBLIC LICENSE 306

newLISP Users Manual and Reference

when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of
derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium does
not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided that you
also do one of the following:

a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing source
distribution, a complete machine-readable copy of the corresponding source
code, to be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

¢) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable
form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to
it. For an executable work, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the executable. However, as a special exception, the source
code distributed need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, kernel, and so on) of the operating
system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same place
counts as distribution of the source code, even though third parties are not compelled to copy
the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License.

GNU GENERAL PUBLIC LICENSE 307

newLISP Users Manual and Reference

However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Program (or any work based on the Program), you indicate your acceptance
of this License to do so, and all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients' exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then
as a consequence you may not distribute the Program at all. For example, if a patent license
would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License
would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a whole is
intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent application of that system;
it is up to the author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

GNU GENERAL PUBLIC LICENSE 308

newLISP Users Manual and Reference

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published by
the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting the
sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU GENERAL PUBLIC LICENSE 309

newLISP Users Manual and Reference

GNU GENERAL PUBLIC LICENSE 310

newLISP Users Manual and Reference

GNU GENERAL PUBLIC LICENSE 311

	Contents
	newLISP Users Manual
	1. Introduction
	newLISP-tk
	Licensing

	2. Deprecated functions and future changes
	3. Command-line options and directories
	Stack size
	Maximum memory usage
	Suppressing the prompt
	newLISP as a TCP/IP server
	TCP/IP daemon mode
	inetd daemon mode
	Daemon mode with handler function
	Direct execution mode
	Logging I/O
	Command line help summary
	The initialization file init.lsp
	Directories on Linux, BSD, and Mac OS X
	Directories on Win32/newLISP-tk

	4. Shared library module for Linux/BSD versions
	5. DLL module for Win32 versions
	6. Evaluating newLISP expressions
	Integer data, floating point data, and operators
	Evaluation rules and data types

	7. Lambda expressions in newLISP
	8. nil, true, cons, and ()
	9. Arrays
	10. Dictionaries (hash tables)
	11. Indexing elements of strings, lists, and arrays
	Implicit indexing for nth
	Implicit indexing and the default function
	Implicit indexing for rest and slice
	Implicit indexing for nth-set and set-nth

	12. Destructive versus nondestructive functions
	13. Dynamic and lexical scoping
	14. Early return from functions, loops, and blocks
	Using catch and throw
	Using and and or

	15. Contexts
	Scoping rules for contexts
	Changing scoping
	Symbol protection
	Overwriting global symbols and built-ins
	Variables containing contexts
	Sequence of creating or loading contexts
	Symbol creation in contexts

	16. Programming with context objects
	Late binding of context symbols
	The context default function
	Passing objects by reference
	Contexts as prototypes
	Lexical and static scoping in newLISP
	Serializing context objects

	17. XML, S-XML, and XML-RPC
	18. Customization, localization, and UTF-8
	Switching the locale
	Decimal point and decimal comma
	Unicode and UTF-8 encoding

	19. Commas in parameter lists
	20. Linking newLISP source and executable

	newLISP Function Reference
	1. Syntax of symbol variables and numbers
	Symbols for variable names
	Numbers

	2. Data types and names in the reference
	bool
	int
	num
	matrix
	str
	sym
	context
	sym-context
	func
	list
	array
	exp
	body

	3. Functions in groups
	List processing, flow control, and integer arithmetic
	Bit operators
	Floating point math and special functions
	Matrix functions
	Array functions
	Financial math functions
	Simulation and modeling math functions
	Time and date functions
	String and conversion functions
	Input/output and file operations
	Processes, pipes and threads
	File and directory management
	System functions and predicates
	HTTP networking API
	Socket TCP/IP and UDP network API
	Importing libraries
	newLISP internals API

	Functions in alphabetical order
	!
	$
	+, -, *, / ,%
	<, >, =, <=, >=, !=
	<<, >>
	&
	|
	^
	~
	abs
	acos
	add
	address
	amb
	and
	append
	append-file
	apply
	args
	array
	array-list
	array?
	asin
	assoc
	atan
	atan2
	atom?
	base64-dec
	base64-enc
	bayes-query
	R.A. Fisher Chi2 method
	Chain Bayesian method
	Specifying probabilities instead of counts

	bayes-train
	begin
	beta
	betai
	binomial
	case
	catch
	ceil
	change-dir
	char
	chop
	clean
	close
	command-line
	cond
	cons
	constant
	context
	context?
	copy-file
	cos
	count
	cpymem
	crc32
	crit-chi2
	crit-z
	current-line
	date
	date-value
	debug
	dec
	define
	define-macro
	def-new
	delete
	delete-file
	device
	difference
	directory
	directory?
	div
	dolist
	dotimes
	dotree
	do-until
	do-while
	dump
	dup
	empty?
	encrypt
	ends-with
	env
	erf
	error-event
	error-number
	error-text
	eval
	eval-string
	exec
	exit
	exp
	expand
	explode
	factor
	fft
	file-info
	file?
	filter
	find
	first
	flat
	fn
	float
	float?
	floor
	flt
	for
	fork
	format
	fv
	gammai
	gammaln
	get-char
	get-float
	get-int
	get-string
	get-url
	global
	if
	ifft
	import
	inc
	index
	int
	integer?
	intersect
	invert
	irr
	join
	lambda
	lambda-macro
	lambda?
	last
	legal?
	length
	let
	letex
	letn
	list
	list?
	load
	log
	lookup
	lower-case
	macro?
	main-args
	make-dir
	map
	match
	max
	member
	min
	mod
	mul
	multiply
	name
	NaN?
	net-accept
	net-close
	net-connect
	UDP communications
	UDP multi-cast communications
	UDP broadcast communications

	net-error
	net-eval
	Raw mode

	net-listen
	UDP communications
	UDP multi-cast communications

	net-local
	net-lookup
	net-peek
	net-peer
	net-ping
	net-receive
	net-receive-from
	net-receive-udp
	net-select
	net-send
	net-send-to
	net-send-udp
	net-service
	net-sessions
	new
	nil?
	not
	normal
	now
	nper
	npv
	nth
	nth-set
	number?
	open
	or
	pack
	parse
	peek
	pipe
	pmt
	pop
	post-url
	Additional parameters

	pow
	pretty-print
	primitive?
	print
	println
	prob-chi2
	prob-z
	process
	push
	put-url
	Additional parameters

	pv
	quote
	quote?
	rand
	random
	randomize
	read-buffer
	read-char
	read-file
	read-key
	read-line
	real-path
	ref
	regex
	remove-dir
	rename-file
	replace
	List replacement
	String replacement without regular expression
	Regular expression replacement
	List removal

	replace-assoc
	reset
	rest
	reverse
	rotate
	save
	search
	seed
	seek
	select
	semaphore
	sequence
	series
	set
	setq
	set-locale
	set-nth
	sgn
	share
	signal
	silent
	sin
	sleep
	slice
	sort
	source
	sqrt
	starts-with
	string
	string?
	sub
	swap
	sym
	symbol?
	symbols
	sys-error
	sys-info
	tan
	throw
	throw-error
	time
	time-of-day
	timer
	title-case
	trace
	trace-highlight
	transpose
	trim
	true?
	unicode
	unify
	unique
	unless
	unpack
	until
	upper-case
	utf8
	wait-pid
	while
	write-buffer
	write-char
	write-file
	write-line
	xml-error
	xml-parse
	xml-type-tags
	zero?

	newLISP APPENDIX
	Error codes
	TCP/IP and UDP Error Codes
	Example tcp/ip client
	Example tcp/ip server
	Example UDP client
	Example UDP server
	Example threads - consumer, producer
	Example pop3.lsp
	Example smtp.lsp
	Example ftp
	Example httpd web server
	Example infix expression parser
	GNU Free Documentation License
	GNU GENERAL PUBLIC LICENSE

