#

The PL/1 Connection

Issue 1 IBM, Santa Teresa Laboratory December 1994

Welcome!

Welcome to the first edition of "The PL/I Connection”, a newsletter for the PL/I development
community. This newsletter is produced by IBM PL/I Development, but we don't want to be the only
contributors! If you have a tool you developed, a favorite language feature, a performance tip, a tricky
problem you solved, or anything you think other PL/I folks would like to hear about, pass it on! This
is a place to share experiences and information. We also want you to know that you're not alone - there
are lots of other folks out there who love and use PL/I. Hopefully we can help each other do our jobs
better. We plan to publish the newsletter quarterly, but that may vary depending on how many articles
accumulate. If you have any questions, comments or ideas, please let us know using the addresses on
the last page. We hope you enjoy what we've come up with this time!

Travel Reports

GUIDE
by Karen Bamey, IBM PL/I Development

The Fall GUIDE meeting was held in Atlanta, Georgia, from November 5 to November 11, 1994. The
keynote address, "The Information Highway: Moving Data to the Fast Lane" was given by IBM Senior
Vice President, Ellen Hancock. She presented possibilities becoming reality and pointed out that this
is more than a vision - it is understanding technology and taking advantage of what it can do for you.
The key to unlocking the power of the information highway is software: operating system, network
connection, system management, data base, application development, desktop software - the right
software. A demo of WARP included the ease with which one can find the on-ramp.

Jim Archer, IBM Division Director of Object Strategy and Implementation, presented IBM's OO
Strategy. He discussed objects being shared across language environments (using SOM) and the
building of parts catalogues which are used by professional specialists, the end users, to build
applications meaningful to their business, using OpenDoc. If you're interested in OO PL/I, please let us
know! '

There were two presentations specifically for PL/I. The first addressed the removal of several inhibitors
of migrating to LE. These changes will be available in the next releases of PL/I for MVS & VM and
Language Environment for MVS & VM. Note the name changes from the xxx/370 form. (Editor's
Note: See the article, "PL/I Migration to LE - Compatibility Support", for more details.) There was also
an update on vendor enablement for LE. The advice for those of you who have a migration problem
due to packages which are not yet enabled for LE is to let us know and also contact the vendor. IBM
is there to help them out, but you have more leverage in getting them to do the enablement.

"The second PL/I presentation was a demo of the new Visual PL/I for OS/2, which allows you to "paint"

PM windows and controls rather than coding those tedious calls; and the code generated is all PL/I!




Neat stuff. You can easily and quickly develop graphical front ends for existing mainframe applications,
get started with Client/Server, or use it to develop OS/2 applications. Visual PL/I comes with quite an
assortment of code blocks, all ready to use, and allows you to add your own code blocks to its libraries.
If you are interested in seeing some demo's of Visual PL/I for OS/2, we have a video tape that we can
send you. For more information, send in the Response Form at the end of the newsletter with a
comment to that effect. : '

COMDEX
by Christie Nieuwsma, IBM PL/I Development

The COMDEX PC trade show was in Las Vegas, Nevada again this year. It ran for 5 days from
November 14th to the 18th. An estimated 200,000 people attended! We noticed that it had a very
international feeling. I was there demo'ing Visual PL/I for OS/2. All IBM products were being demo'ed
in the same area (supposedly the biggest one there). There were two other products being demo'ed at
the same booth as PL/I - Visual COBOL and Visual RPG. As you may have guessed, we were focusing
on Visual programming languages, particularly ones with which people moving from mainframes to the
Client/Server world might already be familiar. We were right next to the OS/2 WARP theater
presentation, so we had quite a bit of traffic. It seems that people are starting to think about porting
their products to OS/2 and are interested in what tools exist to help them. We had several people come
by and say: "What! PL/I is still alive?! I studied that back in college. Wow - look at it!" Hopefully,
“some of the people we talked to will remember PL/I when they think about future development!

Peter's Performance Tips

by Peter Elderon, IBM PL/I Development -
(This will be a regular column).

One theme in this series of performance tips will be that the more information you tell the compiler, the
better your program will perform. By following this maxim, as illustrated in the discussion below, I
reduced one application's running time from over 30 minutes to under 15 seconds.

This application, and several others that I have recently seen, have been suffering from woefully poor
performance - and because of a statement that you might think could only help performance. This
statement is a GOTO statement, as in the following example:

dcl next fixed bin;
dcl states(4) label init( first, add, delete,. last );

loop:
goto states (next);
first:
/* o, *x/
goto loop;
add:
VA */
goto loop:;
delete:




. goto loop;
exit:;

The branch in this loop could have been coded as a SELECT statement, but I don't want to discuss here
which is the better choice. I want to discuss the consequences of the code in the preceding example.

As it appears in the example, this code performs terribly in the versions of OS/2 PL/I that have been
offered to date. The GOTO statement becomes a call to a library routine. That library routine deserves
the largest share of the blame for how poorly this code performs, but a simple change allows you to
avoid the library call altogether. '

To understand this change, it helps to understand why there is a library call at all. The target of the
GOTO is an element of a label array. This label array, stares, is a variable that is initialized upon entry
into the block containing the GOTO. However, since the array may be assigned other labels, including
labels in other blocks, the compiler pessimistically assumes that the GOTO may be an out-of-block
GOTO and hence makes a library call.

You can help the compiler make the simple jump you expect (and also avoid the cost of initializing the
array upon every entry to the block) by adding the attribute static to the declaration of the label array:

dcl states(4) label static init( first, add, delete, last );:

The compiler assumes that any static label array has a constant set of values and that any GOTO to an
element of the array must be a simple, in-block GOTO.

IBM PL/I..AND THE BEAT GOES ON!

by Bob Thimsen, IBM PL/I Planning

IBM PL/I has been rumored to be on the skids...you hear things like "IBM isn't investing in PL/I
anymore" or "PL/I can't compete with COBOL or C". We're here to say that IBM does believe in PL/I
and is continuing to make significant investments in this major enterprise product! Here are a few
examples of what has happened recently and some of what you can expect in the future as a PL/I
customer:

- March 1993: IBM announced PL/I support for the Language Environment/370 (LE/370). First
delivery of the LE/370 PL/I product named PL/I for MVS and VM was in April 1993. This product
allows the customer that has both PL/I and COBOL to use a common development and runtime
environment with the added feature of having IBM supported interlanguage communication between
PL/I, COBOL, and C. In addition, a common debugger is available for the LE/370. languages
(COBOL and C today and PL/I in December 1994),

- May 1994: 1BM announced a Visual PL/I for OS/2 product set with a Professional, Personal, and
Toolkit version that became available in June/July 1994. This product set introduced a full PL/I on
OS/2 with visual capabilities, SQL preprocessor, CICS preprocessor, VSAM support, IMS Client
Server/2 support, macro facility, and source level debugging. The Professional and Personal products
come with IBM's Workframe/2 Version 2 product as a basis for a complete development environment.
The Toolkit provides a state of the art visual programming environment for the PL/I programmer.
The drag and drop interface lets you develop Presentation Manager (PM) applications using objects
in a format that is expandable as well as being easy to use.




-'September 1994: IBM announced PL/I for VSE/ESA with product delivery scheduled for Febru;ary
1995. The long awaited update to the DOS PL/I product has been announced and promises to extend
- the life of PL/I applications running in the VSE environment.

- October 1994: IBM announced PL/I for AIX. The product delivery date will be announced in first
quarter 1995. This promises to be an important delivery for the PL/I customer because it provides a
product on the only major IBM platform that does not have a PL/I product from IBM. This PL/I for
AIX product will be compatible with the other IBM PL/I products on the host and OS/2 as well as
provide some important features for the RS/6000 customer. :

IBM also announced enhancements to the host PL/I product in October. These enhancements include
PLICALLA/PLICALLB support to be delivered in first quarter 1995 along with the follow on release
of Language Environment/370 which will contain the PL/] multi-tasking feature for LE/370 customers.
In addition, CODE/370 support for PL/I will be delivered in December 1994 with multi-tasking
debugging support available in first quarter 1995.

- December 1994: IBM is announcing a host PL/I feature that allows the host PL/I customer to buy,
at a monthly charge, PL/l for OS/2-Professional and PL/I for OS/2-Toolkit. This announcement
includes the capability to purchase the distributed workstation feature in 10 or 50 User Packs. The
workstation product will be shipped on the host product delivery medium.

In addition, starting December 1994, you can get a PL/I Solutions CD from IBM. This CD contains
actual copies of the following products:

m PL/I for OS/2 - Professional, Personal, Toolkit

s IMS Client Server/2

= DB2/2

= CICS 0S/2

w Data Access Services for 0S/2

s Workstation Interactive Test Tool

n WITT/PM

u [BM Softcopy Receiver Tool
You can browse or try out the products, read about the products, go through a multimedia presentation,
or order the products using an electronic key! -

IBM is investing millions of dollars in the PL/I language and development environment technology. We
firmly believe that customers can reap the benefits of new technology, optimize their skills base, and,
at the same time, protect their business assets through the power of native PL/I and the ease of
maintainability that PL/I offers.

PL/I Migration to LE - Compatibility Support

by Irene Liu, IBM PL/I Development

More OS PL/I compatibility support will soon become available in PL/I for MVS & VM and Language
Environment (LE) for MVS & VM. The following lists some major items of the support:

CODE/370 support
CODE/370 R2 in conjunction with PL/I for MVS & VM RI and LE for MVS & VM R3 with a PTF

provides a debugging capability superior to that found in INSPECT for C and PL/I, and equivalent to




that found in PL/I PLITEST. The support includes interactive CICS debugging and ILC debugging with
C and COBOL. It also provides cooperative edit/ compile/debug with a language sensitive editor,
compiler invocation from workstation, a windowed debug interface, language specific help on 0S/2, and
compilation and execution on the host. :

PL/I Multitasking facility (MTF r
The next release of PL/I for MVS & VM and LE for MVS & VM will support OS PL/I MTF by using
the POSIX-defined multi-threaded environment. A PL/I task will be built on the top of a POSIX Heavy
Weight Thread (HWT). Each POSIX HWT has a MVS TCB undemeath it. Therefore, a PL/I task is
- still an MVS TCB based task. When a PL/I task terminates, the underlying POSIX HWT and MVS TCB
go away as well. The hierarchical relationship among PL/I tasks is maintained to ensure OS PL/I MTF
semantics.

This support requires MVS/ESA SP V5R1 with OpenEdition R2. The OS PL/I MTF syntax and
semantics remain the same but each task in an application may experience a timing difference on task
initialization and termination. If such a difference occurs, it is imposed by the underlying POSIX
multi-threading services and the different priority algorithm used by MVS/ESA SP V5R1. Instead of
relying on the underlying system services and PL/I default tasking hierarchy, it is always true that the
application must use the EVENT option or variable and the WAIT statement to control the desired
execution sequence among tasks.

OS PL/T PLICALLA entrv point support

The next release of LE for MVS & VM will support an OS PL/I PLICALLA main procedure recompiled
with PL/1 for MVS & VM. A separate dataset or txtlib, SIBMCALL, must be placed before SCEELKED
at link time for the recompiled procedure.

OS PL/1 PLICALLB e¢ntry point support
The next release of LE for MVS & VM will support the OS PL/I PLICALLB application as follows,
subject to the general rule of the version/release support for the OS PL/I applications:
= OS PL/I load module
= OS PL/I object module
® OS PL/I main procedure recompiled with PL/I for MVS & VM. A separate dataset or txtlib,
SIBMCALL, must be placed before SCEELKED at link time for the recompiled procedure.

>1/1 obiect and load modul r
The next release of LE for MVS & VM will extend the OS PL/I object and load module support to the
following:

= Object module - OS PL/I VIR3.0
CICS macro language is not supported
s Load module - OS PL/I VIRS.1
Non-shared library, non-CICS, and non-tasking load module must first be ZAPed by IBMRZAPM
or IBMRZAPYV.
The language support is at the OS PL/I V2R3 level. Other migration tools are extended accordingly. OS
PL/I IBMBEER is ignored.

OS PL/I PLISRTx support

The next release of LE for MVS & VM will no longer require the OS PL/I PLISRTx appli¢ation to
relink. All known problems will be fixed. However, it is still recommended to relink those load modules
to: :
® Avoid any potential problem that hasn't been uncovered




= Allow the next release of DFSORT to be installed with a LOCALE value other than NONE

= Allow the library routine to replace the 24-bit parameter list with the extended parameter list when
it invokes DFSORT

PL/I heap storage location support

The next release of LE for MVS & VM will use the same rules that OS PL/I used to allocate the heap
storage. The following rules control the heap storage allocated above the 16M line:

= The requestor is in AMODE(31)

= HEAP(,,ANYWHERE) is in effect

® The main procedure is in AMODE(31)
This support allows HEAP(,ANYWHERE) as an installation default, yet the location of the allocated
storage is sensitive to the AMODE of both the requestor and the main procedure.

Team PL/I

Are you tired of hearing that PL/I is dead? You're not alone! We think it's time for people who love
and use PL/I to get together and start letting other folks know what a great language it is! You may
already have tried to do that, but we at IBM PL/I Development would like to give you some help. We
don't care where you work or what PL/I products you use. If you love the language, you're invited to
join

- Team PL/I.
What can a member of Team PL/I do?

- Talk it up and answer questions about it on bulletin boards
- Give demos at user groups or trade shows

- Teach classes at community colleges or universities

- Write articles for magazines (or our newsletter!)

- Be available as a reference for potential customers or users
- Share tools and code samples

- and so on, and so on...

What will IBM's Team PL/I support do for you?

- Publish a PL/I newsletter (you're reading it right now!)
- Provide demo material for IBM's PL/I products

- Provide information on user groups and trade shows

- Distribute information on PL/I bulletin boards

- Provide information about PL/I tool vendors

- and so on, and so on...

It's easy (and free) to join Team PL/I! Just send us the following information:
1. Your name ,
2. Your company name
3. Your mailing address
4. Your electronic mail address(es)
5. Your phone and FAX numbers




6. What PL/I product(s) you use

We'd also love to hear your ideas and plans for what you can do to promote PL/I and how we can help.
It would also be helpful to know what bulletin boards you know of where PL/I people congregate.

You can send the above information, and any other comments or questions to any of the following:

Intemet: TEAMPLI(@ VNET.IBM.COM
IBMMAIL: USIBSRLG at IBMMAIL
IBM intemnal network: TEAMPLI at STLVM20
FAX: (408) 4634820
Mailing Address: Team PL/I
IBM - Santa Teresa Lab.
555 Bailey Avenue, J84/D345
P.O. Box 49023 :
San Jose, CA 95161-9023
U.S.A. '

Wouldn't it be great to hear people saying: "PL/L.. that's a language I need to learn!”
Let's make it happen!

The REXX PARSE Statement as a PL/I Preprocessor

Macro
by Dave Jones, Team PL/l Member

parse (par's, par~z), (v.t., Gram). (1) to describe (a word or series of words) grammatically, telling the
part of speech, syntactic relations, etc. (2) To break apart into constituent components.

For the last several years, the programming language REXX has been gaining popularity in both the
mainframe environment (where it was first developed in the early '80s under VM/SP as a replacement
for CMS's EXEC and EXEC2 command languages) and in the PC environment. REXX (short for
REstructured eXtended eXecutor) is particularly suitable for writing command procedures and user
defined macros for applications like text editors because it has some very powerful string and text
handling capabilities. Like PL/I, which inspired many of its features, REXX is a general purpose
programming language with the usual structured programming constructs - IF, SELECT, DO WHILE,
LEAVE, etc. - but it-also contains a number of other constructs not found in most other languages. One
of these powerful statements is the PARSE instruction.

In a REXX program the data to be parsed is called the source string. The PARSE instruction splits up
the data in the source string and assigns pieces of it to variables named in a "template". The "template”
is a model that tells PARSE how to split up the source string and to what variables it should assign the
split-up pieces. Here's a simple example:

name='Williams, Scott'®
parse var name last_name ',' first_name

The character string "Williams" is assigned to the REXX variable last_name and the string "Scott" to
the variable first_name, based on the position of the comma in the input REXX variable "name". The
template in this example is "last_name ',' first_name".




Templates can contain "string patterns" (like the one above), "positional patterns” or both. A string
pattern matches characters in the source string to indicate where to split it; the string pattern can be
either a "literal string pattern” (one or more characters within quotation marks), or a "variable string
pattern” (a REXX variable name within parentheses). In the variable pattern case, the content of the
REXX variable determines where PARSE will break the source string. Here's another example:

comma = ‘',°'

type = 'guru' .

name = 'Shaw, Mary -- PL/I guru extraordinaire' .

parse var name last_name (comma) first_name . (type) level
yields

last_name = ‘Shaw!'

first_name = ' Mary'

level = ' extraordinaire'

The period toward the end of the PARSE statement acts as a placeholder or "dummy variable" to hold
unwanted parts of the parsed string - in this case the string ' - PL/I'. It helps avoid the overhead of
creating unneeded variables. Note that all blanks between words are not discarded.

Positional patterns are whole numbers that identify the character positions where the source string is to
be split. They can be either "absolute” or "relative"; an absolute positional pattern specifies a number
that is the absolute character position at which to split the source string, while a relative positional
pattern is a signed number that specifies the relative character position at which to split the source. The
sign of the number (plus or minus) indicates the direction of movement from the start of the source
string (for the first pattern) or from the position of the last match; right for positive, left for negative.
For example, an absolute positional template might look like this:

parse var input var_1 11 var_2 21 wvar_3

This parse statement would: 1) place characters 1 through 10 (including blank characters) from the
source variable "input" into var_1, 2) place characters 11 through 20 into var_2, and 3) put characters
21 through the end of the string into var_3. Relative positional patterns can be used to accomplish the
same thing:

parse var input var_1 +10 var_2 +10 var_3

Here the plus or minus sign indicates movement, to the right or left, respectively, from the start of the
string (for the first pattern) or from the position of the last match. The position of the last match is the
position of the first character of the last match; so the last two examples have exactly the same effect.
It's important to note that only by using positional parameters can the matching operation "back up" to
an earlier point in the source string.

If you wish to parse the value of an expression, REXX provides the PARSE VALUE (...) WITH ... form
of the PARSE instruction. The expression, contained within the parentheses of the VALUE keyword,

is evaluated and the result is parsed using the template following the WITH keyword. In this format
our first example would look like this:

parse value('Williams, Scott') with last_name ',' first_name

A more complete explanation of the rules and usage of the REXX PARSE instruction can be found in

- 8




the REXX reference documents for VM/ESA or in most textbooks oﬁ the REXX programming
language.

If you've read this far, you might be wondering "What does this have to do with PL/I?" or maybe "Hey,
this PARSE instruction is really powerful. I wish I could use it in my PL/I applications.” What this has
to do with PL/I is that a fellow named Eberhard Sturm at the University of Muenster's Computing Center
in Germany (sturm@uni-muenster.de) wanted to be able to use this powerful programming construct in
his PL/I applications, so he wrote a PL/I macro preprocessor procedure that implements all of the REXX
PARSE instruction features we've discussed above. The PL/I macro can be found on the OS2BBS PL/I
forum, or you can request a copy of it directly from me IBMMAIL(USQVHWVH), or, for those of you
who are on the InterNet: usqvhwvh@ibmmail.com).

In only 320 lines of preprocessor source code, including comments, Eberhard was able to construct a
full implementation of the PARSE statement, as far as it is applicable to the PL/I environment. The only
difference to the REXX PARSE statement is that items in the templates are separated by commas instead
of blanks. For example, the REXX statements:

fileid='PROFILE EXEC Al‘
parse value (fileid) with file_name . file_type

would become in PL/I:

fileid = 'PROFILE EXEC Al';
parse value (fileid) with (file_name, . , file_type);

All of the expected REXX PARSE statement options are supported including:
1) Comments (balanced /*...*/ pairs like in PL/I) inside the WITH template
2) Literal patterns, e.g., '(’ '
3) Placeholders, that is, the period "'
4) Positional pattemns, e.g., 11, +5, -10
5) Variable patterns, e.g., (var_name)
6) The UPPER keyword to uppercase the source string before parsing begins

A typical use for this macro is in parsing command arguments and options when writing VM command
processors in PL/I. A VM program to plot an HP-GL plot file on a pen plotter might be invoked by an
end-user as
PLTHPGL fn <ft <fm>> <( WIDTH www HEIGHT hhh>,

where fn is the (required) file name of the plot file, ft is the (optional) file type (default is HPGL) and
fm is the (optional) file mode (default A). WIDTH and DEPTH are options indicating the desired plot
size; if not specified, they default to WIDTH 8.5 and HEIGHT 11.0. The beginning of this PL/I
application might look something like this:

PLTHPGL:

Proc(Arguments) Options(Main);
Dcl Arguments Char(100) Varying;

Dcl Fn Char(8) Initial(' '); /* File name */
Dcl Ft Char(8) Initial(' '); /* File type */
Dcl Fm Char(2) Initial(* '); /* File mode */
Dcl Options Char (100) Varying; .
Dcl Width Char(4) Initial(' '); /* Plot width */
Dcl Height Char(4) Initial(* '); /* Plot height */

/* Break apart the user-specified arguments */




/* get the file id first, substituting defaults */
/* where necessary. Uppercase everything first. */

PARSE UPPER VALUE (Arguments) With(Fn, Ft, Fm, '(', Options);
If Fn = '' Then
Put List ('ERROR, File name must be given'); -
If Ft = '' Then /* Use default */
Ft = '"HPGL';
If Fm = '' Then /* Use default */
Fm = ‘'Al‘;
/* Now see what options were given, if any */
Width = ' 8.5';
Height = '11.0"';
If Options -~= '' Then .
Parse UPPER VALUE (Options) With('WIDTH', width, . , 1,

*HEIGHT', height, . );

Using the PARSE macro makes this code easy to write and document for others to understand at a later
date.

The fact that a programming construct as sophisticated as the REXX PARSE instruction can be
implemented in only a few hundred lines of PL/I preprocessor code clearly demonstrates how powerful
that tool really is. It is doubtful that any of the other commonly used preprocessors for third generation
languages (e.g., the C preprocessor) could be used as a vehicle to build such a complex yet compact
macro. Eberhard used the standard preprocessor facilities of the OS PL/I Version 2 Release 3 compiler;
the "new and improved" preprocessor found in the OS/2 PL/I products offers even more usability and
functionality. Take a few minutes to study the PL/I macro concepts and facilities and increase your
- effectiveness when using either the host System/390 PL/I products or the newer OS/2 ones. PL/I --
Productivity Language / One.

Questions and Answers

Question

Answer

I'm trying to declare a structure of size :
unknown, based on a pointer, L_PTR, passed
to me. It points to the following:

amount fixed bin(15)
elementl char(8)
char(16)

element2

and so on, where amount tells me how many
(elementl,element2) pairs there are.

The REFER option should work:

DCL 1 struct based(L_PTR),
3 amount fixed bin(15),
3 array (max_amt REFER amount),
S element]  char(8),
5 element2  char(16);
DCL max_amt fixed bin(15) init(?);
/* Init with your maximum value */

You can then have:
Do i =1 to amount;
do something with element], element2
End;

10




Question

Answer

I'm creating a window with Visual PL/I for
0OS/2 that has several entry fields in it. How
do I set it up so that I can Tab from one entry
field to another?

This takes a few steps!
1. For each entryfield, click Mouse button 2
and select "Styles" from the popup menu. In
-the "Window Styles" dialog box, select
WS_TABSTOP from the "WS_ Styles"
listbox.
2. Pick the order in which you want to tab
between entry fields. Hold down the shift ...
key and click Mouse button 1 in each entry
field, in the reverse order that you want
tabbing to occur in. Release the shift key!
Go back to the first entry field you selected
and click Mouse button 2. Select "Layout"
and then "Order group".
3. Set up a link for the window by clicking
‘Mouse button 2 in the client area and
selecting "Links". Then, select the
WM_CHAR event and the "Tabbing
Functions" from the "Library” listbox. Add
the "Do group tabbing" code block.
That should be all you need!

Can PL/I 2.3 sub-tasks take advantage of
VSAM's multiple string reads by using the
STRNO sub-parameter in the VSAM AMP
parameter?

No. PL/I routines do not check the VSAM
control block for this information. Instead,
they check their own control blocks, which
only allow a single read. Read access would
have to be serialized by using either the PL/I
WAIT statement or an assembler routine.

I followed the tutorial in PL/I for OS/2 Toolkit
Reference V1R1 and created MyProj. When I
ran it, I noticed MyProj did not appear in the
TaskList. If I minimize MyProj, I have no
way of getting it back!

You can get your application into the TaskList
by using the FCF_TASKLIST style for your
window. This frame creation flag tells
Presentation Manager to put your application
name in the TaskList. To specify this flag,
single click mouse button 2 in the client area
for your main window. Select "Styles" from
the pop-up menu. A "Window Styles" dialog
box should appear. A listbox named "Item
Styles" is in the dialog, and from here you can
choose FCF_TASKLIST. This will cause the
Title bar text for your main window to appear
in the TaskList. '

11




I kngg they're around here ggmgwhgrg..g

Have you ever wondered if there was a place where folks hang out and talk about PL/I? Well, there
are quite a few places on-line where PL/I issues are discussed. Here's how to get to some of them:

.om ry
Enter: go os2dfl]
Then go to subsection 6: "Rexx and other languages".
. This bulletin board is used to discuss OS/2 languages, PL/I among them.

Internet
There is a LISTSERV hst that is devoted to discussion of the PL/ I language. To subscribe to it, send
a note to:
LISTSERV@UIUCVMD.BITNET (or LISTSERV@VMD CSO UIUC.EDU)
containing the line:
SUB PL1-L Your Name

IBM Customer Forum
There is an IBM customer forum devoted to OS/2 PL/I on IBMLink. Even though it is officially
dedicated to the OS/2 product, we are in the process of trying to open it up for discussion of all IBM
PL/I products. So, if you have a host question, please feel free to ask it on this forum. To access it,
do one of the following:

From the IBMLink Main Menu, select option 5, Martlink

From the Martlink menu, select option 2, New Talklink

From the NewTalklink menu, select option 6, OS2bbs]

From the OS2bbs] menu, select option 1, QAndabbs

From the QAndabbs menu, select option 10, TLpgcat

From the TLpgcat menu, select option 20, OS2PLI
OR

Enter the fastpath 0S2;0S2PLI from the IBMLink main menu!

IBM PL/1 developers monitor all of these. If you know of any other bulletin boards, we'd love to hear
about them!

Next?

If you'd like to continue receiving "The PL/I Connection" newsletter, please let us know. If we don't
hear from you, we'll assume you're not interested. You may either mail or Fax your response to one of
the following:

PL/I Newsletter ' Fax: (408) 463-4820
IBM - Santa Teresa Lab.

555 Bailey Avenue, J84/D345

P.O. Box 45023 _

San Jose, CA 95161-9023

U.S.A.

12




The PL/I Connection
Response Form

Yes, I would like to continue receiving the PL/I Newsletter.

Name:

Company:

Addfess:

Phone Number:

What PL/I Products do you use?

Comments:

13




