R

The PL/I Connection

Issue 3

IBM Santa Teresa Laboratory

June, 1995

Editor: Christie Nieuwsma

Does IBM Care About PL/1?

I have received many questions and comments re-
garding IBM's direction and commitment to the PL/I
language. Each of you is a valued IBM customer, and
we value your loyalty to IBM and PL/1.

IBM is committed to PL/I as a leading enterprise
application development environment. While it may
appear that other languages are getting more attention,
more new technology, and more features, I want to
assure you that PL/I is getting significant investment
from the IBM Corporation, and has delivered a signifi-
cant amount of new function over the last two years.
We are committed to bringing you the functions that are
needed to bring your enterprise into the next century.
We are delivering this function on the mainframe as
well as on the workstation, meeting your needs for both
a robust development environment and a powerful exe-
cution environment.

Many of you have asked IBM for new or signifi-
cantly enhanced PL/I products. The deliveries on MVS,
VM, VSE, and OS/2 in the last 12 months are in direct
response to your requests. The next product to be
shipped is a new PL/I Product for AIX. We are obvi-
ously watching the reaction of our customers to these
new offerings. The most effective way to ensure that
IBM's PL/I investment continues is for you to purchase
that which you have asked for.

As we look to the future, we intend to add object-
oriented functions to PL/I, as well as provide additional
tool, platform and subsystem support. We intend to do
this while preserving the fundamental character of PL/I
that customers have come to depend on. It is a

fundamental part of IBM's AD strategy to leverage our
investments across multiple languages, for example,
you should expect to see us re-use components from
COBOL and C/C++. IBM values your loyalty and
commitment to PL/I. We look forward to a continuing
partnership with you in the future.

Regards,
John Swainson
IBM Vice President, AD Solutions

Editor's note: John mentioned the products we've
delivered over the last 12'months. In case you're unsure
of what those are, here's a list. (Note: these are the
U.S.A. release dates). 4 :

*

June 1994 - PL/I for OS/2 Personal Edition
» 32-bit compiler and debugger
June 1994 - PL/T for OS/2 Professional Edition
32-bit compiler and debugger
+ Support to access DB2, CICS, IMS C/S,
VSAM
July 1994 - PL/I for OS/2 Toolkit
Visual PL/I! :
+ December 1994 - CODE/370 Support for PL/I
March 1995 - Language Environment (LE) for
MVS & VM Release 4
« PL/I Multitasking, PLICALLA, PLICALLB
April 1995 - PL/I for VSE
LE/VSE version of PL/I host compiler for
VSE

*

*

+

+

IS THIS YOUR

LAST ISSUE?

If you want to continue receiving "The
PL/I Connection”, we need to hear from
you! Please send us the response form at
the back of the newsletter. If you are a
member of Team PL/| or have previously
sent in a response form, you don't need to
respond again - you're on our list!

To 'C' or Not to 'C'
Is Recoding a Legacy PL/IL
Application to C The Right

Thing to Do?

by Richard Perkinson, Liant Software Corporation
dickp@lpi.liant.com

Editor's note: This is the second ar_ticle in a series
begun in the last (March 1995) issue of "The PL/I
Connection."

Part 2 - Recoding From PL/I to C: The
General Concerns

There are many things to consider when changing
languages, particularly from PL/I to C. What are the
costs? What are the risks? How long will it take? What
is to be gained or lost? We will consider two levels of
concerns for those who are thinking of recoding a PL/I
application to C. There are particular language transla-
tion issues, as well as more general issues, that stand
out from the language specifics.

Code Changes

First and foremost is the obvious fact that the more
you have to change, the more costly it will be. When

Table of Contents

Does IBM Care About PL/1?

To 'C' or Not to 'C’

What are they teaching them these
days?

Why Not Use PL/1?

Running CICS PL/I Legacy Programs
in 31-bit mode!

Peter's Performance Tips

News Flash!

How to Copy Mainframe PL/I
Programs to a PC

Upcoming Tradeshows

Fax Information Service

New PL/I for OS/2 Redbook

Syntax Highlighting for PL/I

PL/I Services Survey

What Next?

Questions and Answers

The PL/I Connection Response Form

recompiling you may very likely encounter some lan-
guage variations from one compiler to the next. This
could result in changing a few lines in the legacy appli-
cation to accommodate the new environment. Our ex-
perience has been that approximately 1% to 2% of the
total number of lines of code need to be changed. This
is much less drastic than changing every line of code, as
you must when recoding.

Automatic Code Translators

While it is true that translation tools have been de-
veloped to help in converting PL/I to C, the best PL/I to
C automatic code translators proclaim up to a 70% suc-
cessful conversion rate.

My preliminary testing of converters revealed that
they are not as satisfying as they might be. Data type
conversion and the poor quality of the resulting code
were the biggest problems encountered.

Data Type Conversion Problems

All fixed decimal values, regardless of length or
precision, were assigned as a Double Float by the trans-
lator. By defining all fixed decimals as doubles, all of
them occupied 8 bytes of storage rather than the 3, 5, 7,
or 9 bytes the files they are in expect them to occupy.
This means wholesale data structure conversion must
take place before the translated program will run. The
original record lengths just don't match the converted
structures. On top of this unexpected effort, the loss of
precision leads to incorrect results in the runtime rou-
tines.

Quality of Converted Code

Concern must also be given to the general quality
of the C code generated by a conversion tool. In most
cases, this code is not generated in a form that makes
for easy reading on the part of programmers doing
future maintenance. The program layout, the spacing,
indentation, and so forth, tends to get rearranged. If the
code is difficult to read and understand, it may hinder
later efforts to modernize or re-engineer the recoded
application.

Another quality concern of recoding is that because
so much of the PL/I logic must be emulated by function
calls in C, there is risk of performance deterioration.
For example, a series of runtime routines are provided
by the translator for a variety of data manipulations for
each unsupported data type.

»

Including the runtime tended to expand the original
source listing by a factor between 9 and 17. In addition
to performance degradation, the expanded code suc-
cessfully obscured any sense of the business logic
behind each algorithm.

Jf It Isn't Broken ...

An important fact to remember is that the applica-
tion is already written in PL/I, and the application
works. What new bugs will be introduced into this oth-
erwise working code by just the translation effort itself?
As you well know, each line of code that is changed has
the potential of introducing a bug that requires time to
track down and fix. Pieter Mimno, in the July 1994
issue of Application Development Trends, says:

"Tools are available to emulate host-based soft-
ware such as CICS, VSAM, IMS and DB2 on lower end
platforms, to allow legacy applications to run without
making a change on the new host processor. The oper-
ating environment on the new host processor may be
DOS, Windows, OS/2 or Unix. Porting of legacy code
to low-cost servers is a proven low-risk, low-cost ap-
proach to reducing costs. There are few hidden costs
because the ported code is not modified."

Note that Pieter states "because the ported code is
not modified". This is an extremely important point.
Translation at its essence is a complete modification of
the application code. The potential of any change to in-
advertently modify the functionality of an otherwise
properly functioning program is high.

So, it's not just the time required to make the
changes; there is also the time required to fix the prob-
lems they cause. The more lines that are changed, the
more bugs result. In addition, a certain number of the
bugs will surface only after the application goes back
into service.

Staff Issues

Converting to C causes other concerns if you have a
staff that is very strong in PL/I and not as strong in C.
First, if your PL/I staff does the conversion, their C
code may not have the quality of their PL/I code. Ex-
pect some problems here. Alternatively, if C specialists
do the conversion, they may not have a thorough under-
standing of the PL/I code, and as a result, problems may
occur in the translation.

Second, and more important, is the period of -
productivity loss you will experience. It takes time for a
programmer to become adept with a new language. C
is not as large a language as PL/I, but it has many ir-
regularities. Once the conversion is complete there will
be a period of time when productivity will be somewhat
reduced. It is estimated that this lapse in productivity
will vary from six to eighteen months. In general, ac-
cording to The Gartner Group in a recent 1994 survey,
training an experienced programmer in a new language
takes three projects. If the average project is four to six
months, this translates to 12 to 18 months to yield a
proficient worker.

According to The Gartner Group, "an internal pro-
grammer with multiple language skills", fluent in the
new language and familiar with the application being
converted, "can do the [recoding] job for around $.50
per line of code. Outside consultants work at a pre-
mium, which doubles the cost to $1.00 per line of
code".

This article discussed some of the larger, more gen-
eral issues surrounding the decision to recode from PL/I
to C. There are also PL/I specific concerns such as data
support, data operations, control structures, file /O, and
built-in functions.

To receive this paper in its entirety, please call 1-800-

818-4PLI ext. 221 or (508) 872-8700 ext. 221, or send
email to openpll @Ipi.liant.com.

What are they teaching them

these days?

Look what students at the University of Northern
Iowa can sign up to study:

Topics in Computer Science - Advanced
Multi-Threaded Programming.

Topics will include PL/I based OS/2 multi-threaded
programming environment, visual development and
graphical user interface.

This course will explore the new PL/I language en-
vironment for OS/2 especially as it relates to develop-
ment of graphical user interfaces and advanced

operating system facilities such as multi-threading.
PL/I is a language originally introduced in the mid-60's
as part of OS/360. It was the implementation language
for the Multics operating system and was a model for
the development of C, Pascal, and a number of other
languages. A dialect is available on VAX/VMS sys-
tems. PL/I is a comprehensive language with many fa-
cilities not found in C or Pascal. It includes a richer
variety of data types, 1/O functions, and storage man-
agement routines along with a more coherent and read-
able syntax. The newly implemented OS/2 version is a
superset of the mainframe language and contains many
facilities to take advantage of the multiprogramming/
multitasking OS/2 environment. It is widely used on
mainframe systems to this day, however, there have
been no micro-computer implementations until
recently.

Whv Not Use PL/I?

by Robin Vowels, Royal Melbourne Institute of
Technology, Australia
Robin_Vowels@rmit.edu.au

Why you should consider using PL/I:

+ It is an easy language to use, the syntax is clean,
and the rules are uniform. There are many built-in
functions to assist.

+ It is a good first language, and provides an excel-
lent growth path for the professional.

+ PL/I can be used for solving a wide range of nu-
merical problems in virtually every sphere of the
computing arena, be it mathematics, engineering,
science, medicine . . . etc.

1. The best part of PL/I is the input and output.
You can rely on it.

The input/output is achieved with statements that
are ready to use and easy to use. There's no setting up
to do. They are not procedures or functions dressed up
to look like statements.

In formatted output, you don't get silly numbers
displayed when you include the format specification,
but omit the name of the variable (e.g. C); nor when
you use the wrong format (e.g. 14 with a FORTRAN
REAL variable). PL/I converts to/from the type that

you specify, be it integer, fixed-point, or string. You
don't get silly things happening because you left off the
"&" from the "scanf" function in C. That's because the
input operation (GET) is a statement, not a function.

When you want formatted output, you have a va-
riety of formats that you can choose, such as PICTURE
format, with drifting signs and a drifting $ sign. You
can insert commas or spaces in very long numbers, to
make the output readable (e.g. 123,456,789.356,251 is
better than 123456789.356251). You can use either
PICTURE formats or the specific codes to get integer,
decimal fixed-point, and floating-point outputs. If you
don't want to be bothered with formats, you can use
simple free-formatted output, e.g. PUT (X);

2. For business applications, you can have decimal
data, whereby data is stored exactly (e.g. 5.14 is stored
EXACTLY, not as 5.13999), and arithmetic operations
give exact results (e.g. 3 x 5.14 gives you 15.42 pre-
cisely, not 15.41998).

3. Files are easy to use. If you can do output to the
screen, and input from the keyboard, you can do
input/output to files, simply by inserting the file name
into the GET or PUT statement thus:

GET FILE (MYDATA) etc.

Outstanding and helpful PL/I facilities

1. The debugging facilities are all part of the lan-
guage (for example, checking for subscript bound errors
and string reference errors with SUBSCRIPTRANGE
and STRINGRANGE etc. are most helpful, along with
appropriate ON statements to display the values of
variables).

The best part of this is that you can display every-
thing you need (statement number, values of variables,
a trace of procedure calls, etc.) instead of those cryptic
messages (from other languages) such as "floating-
point trap" at some unidentified location somewhere in
the program. (When you've had this message in a
20,000 line program, you'll know what I mean!)

2. If your program gets stuck in a loop, just hit
CTRL-BREAK, and your ATTENTION ON-unit will
tell you precisely which statement it's executing. Not
only that, it lets you do anything you want, including
printing the values of all (or preselected) variables, and
changing any or all of the values of variables.

You don't have to re-run your program (with new
output statements) to find out in which loop it's stuck!
(and then run it yet again to display the values of vari-
ables you think you need). And if your program was
running OK after all, you can resume execution again,
as if nothing had happened.

3. You have the ability to intercept errors (via ON
statements) and to continue execution.

4. You can use the simple, handy I/O statements
GET LIST, PUT LIST, along with the very handy PUT
DATA statement (for debugging mostly).

5. Everything is "ready to go" unlike some other
languages, such as Ada!

6. The "whole-array" operations simplify program-
ming and increase understanding, and increase execu-
tion speed into the bargain. If A and B are arrays, you
can write A = B; to copy an array. You can use PUT
(A); to print an array. (These are trivial examples --
more are available).

7. Dynamic arrays provide the means to write a
general program for any size of array. You aren't bound
by some artificial limit. You automatically obtain ex-
actly the amount of storage you need for an array.

8. The COMPLEX data type is provided, which
simplifies the preparation of programs because com-
mon sense complex arithmetic is available. A number
of essential functions are at hand for producing com-
plex square root, the conjugate, the absolute value, and
for extracting either the real or complex components,
and for fabricating a complex number from two real
numbers (SQRT, CONJG, ABS, REAL, IMAG,
CPLX). The ** operator is available for raising a com-
plex number to a given power. A range of (complex)
trigonometric functions is provided (including SIN,
COS, SINH, COSH, etc., and mathematical functions
such as LOG).

Even more importantly, debugging is simplified,
because the error messages are specific to complex
number operations. (If you have used complex arith-
metic without using the COMPLEX facilities, the best
that the error messages can tell you is in terms of real
(floating-point) operations, which don't necessarily
make sense).

Additionally, the COMPLEX type can be applied
to integer as well as floating-point data.

9. PL/I has excellent string-handling facilities. .
First, there are two types of strings -- the fixed-length
string and the varying-length string. These two data
types are supported by a range of functions that speed
up string processing compared to other languages. It
isn't necessary to write your own "string-search" rou-
tines like you need to in other languages such as C and
Pascal. The search functions are already there (IN-
DEX, SEARCH, SEARCHR). What's more, if the ma-
chine has a "search" instruction, it can use that, and
search faster than some hand code using a loop. (Hav-
ing to write your own search routine is like having to
turn out your own nuts and bolts on a machine lathe).
PL/I can search from either the right-hand end or from
the left-hand end of a string (SEARCH and
SEARCHR)

Joining strings is a simple operation (concatena-
tion); the length of a string can be discovered by using
the LENGTH function; strings containing blanks (or
any unwanted character) at the beginning or the end can
be removed using the TRIM function. Strings can be
centered using the CENTER- built-in functions (helps
with page headings etc.) and so on.

Other functions include TRANSLATE, for
changing ASCII <==> EBCDIC, and for converting
upper to lower case, or for replacing special codes such
as TAB to blank or for any other conversion, and VER-
IFY, for performing a search, validating data, etc.-

10. A macro pre-processor is available on IBM
mainframe PL/I (OS), IBM PL/I for OS/2, Liant OPEN
PL/1, and probably others.

11. And when you need to do something special
(rarely, but it's nice to know that you have something to
fall back on in an emergency) it's there -- With UN-
SPEC you can peek at the bits of a data item (be it a
character string, an integer, bit string, or floating-point
data).

Running CICS PL/I Legacy

Programs in 31-bit mode!

by Douglas P. Ewen

If you have legacy PL/I CICS command level pro-
grams that must run below the line in your CICS envi-
ronment, I have the answer fo; you!

A product that I have developed allows CICS PL/I
command level programs to reside and execute above
the 16MB line in CICS/MVS, CICS/ESA, and
CICS/VSE environments. The name of this product is
XAbove/CICS, and it is available now for MVS/XA,
MVS/ESA, and VSE/ESA users!

XAbove/CICS is easy to use and it does not require
source programs to be changed or recompiled. You
must tell XAbove/CICS which PL/I programs it is to

handle, and it will do the rest. XAbove/CICS is acti-.

vated during CICS startup and it insures that the se-
lected CICS PL/I programs are loaded above the 16MB
line and execute properly there.

XAbove/CICS is simple to install and implement.
You just load the product library onto your system, add
CICS entries for the product programs, transactions,
and dataset, and away you go! A VSAM dataset must
be built that contains the names of the CICS PL/I pro-
grams to be handled by XAbove/CICS. An
XAbove/CICS transaction allows you to modify this
VSAM dataset on-line, so you can add PL/I programs
to be loaded above the line dynamically!
XAbove/CICS contains a system inquiry transaction
that provides summary information on how many PL/I
programs are being handled by XAbove/CICS, as well
as detailed information on each PL/I program running
above the line.

XAbove/CICS optionally allows the PL/I working
storage and EXEC CICS GETMAIN storage to reside
above the line. You may implement this feature for
specific programs or for a set of programs.

XAbove/CICS may be the answer for you if you
have legacy PL/I programs that are running below the
line in your CICS world! If you would like information
on this product, please call Software Pursuits, Inc. at 1-
800-367-4823 or (510)769-4900, or fax them at
(510)769-4944.

Peter's Performance Tips

by Peter Elderon, IBM PL/I Development
elderon(@vnet.ibm.com

In the various releases of OS/2 PL/I, we have intro-
duced a lot of new features, and many of these have re-

ceived very little publicity. I'd like to discuss here a few
that can help improve the performance of your code.

In the June 1994 release, we introduced the com-
pound assignment operators: +=, -=, *=, etc. These can
save you typing (it's faster to type, and to read,

bills_received to date += 1;
than

bills_received to_date =

bills_received to_date + 1;).
Some of them will also improve the performance of
your code. Of particular note is the concatenate-and-
assign operator ||=.

There are many times when you need to construct a
string out of several smaller strings, as in the following
example:

full_name = path name || '\' |]
file name || *'.' || ext;

If the target in such an assignment is a varying (or
even a varyingz) character string, the compiler will gen-
erate much better code if the assignment is broken
down into several concatenate-and-assignments, as
follows: '

full name
full_name

T] N7
full_name ||

[

[

ath name;
1
file name;
1

o ne

The code generated for the series of assignments is
better because the compiler uses no temporaries when
performing concatenate-and-assigns; it simply assigns
the source to the end of the target and updates the
length prefix (or moves the null terminator if it is a
varyingz string).

It is also worth noting that not only will this code
perform faster, but it also requires much less stack
space.

Our first OS/2 release contained another new fea-
ture, the VALUE attribute, that can also improve the
performance of your code. The following code frag-
ment illustrates a situation where you can put it to very
profitable use.

dcl upper char (26)
init (' ABCDEFGHIJKLMNOPQRSTUVWXYZ!) ;
dcl lower

char (26)
init ('abcdefghijklmnopgrstuvwxyz ')
a = translate(b, upper, lower);

I

First, it should be noted that any variable that can
be initialized at compile-time, should be declared as
STATIC. The default is AUTOMATIC which means
that each time the block containing the above code is
entered, code will be executed to initialize the two
string variables.

However, even declaring these wvariables as
STATIC does not help avoid another problem. Since
the second and third arguments in the translate are
variables, before the translate can be done, code is exe-
cuted to build the translate table. This can be avoided
by changing the attribute INIT above to the attribute
VALUE as in the altered form below:

dcl upper char(26)
value (' ABCDEFGHIJKLMNOPQRSTUVWXYZ !)
dcl lower char(26)
value ('abedefghijklmnopgrstuvwxyz!)

a = translate(b, upper, lower);

r

s

The reason that the compiler can now generate
better code is that the VALUE attribute declares an
item as a named constant, rather than as a variable, and
hence the compiler can build the translate table during
the compilation.

The VALUE attribute can be used only with scalars
and you may not apply the ADDR built-in function to
these named constants (or any other kind of PL/I con-
stants). If you have a variable to which these restric-
tions do not apply, but which you know will not change
after it is initialized, it is beneficial to add another new
attribute to its declaration - the NONASSIGNABLE
attribute.

The NONASSIGNABLE attribute has several
advantages:

+ Tt makes your code more self-documenting

+ The compiler will flag any (mistaken) attempts to
assign to a variable declared as nonassignable

+ Nonassignable static variables are placed in the
same read-only data segment as all other constants

+ If NONASSIGNABLE is specified for a BY-
ADDR parameter in an entry declaration, the com-
piler will not create a temporary if a constant is
passed for that parameter

Finally, one of the many new built-in functions in-
troduced in OS/2 PL/I was the REVERSE built-in func-
tion. Because of a customer need, in the first CSD this
year, the code generated for REVERSE applied to
BIT(8) variables is a simple, inline table look-up.

However, if the BIT(8) variable is an element of an
array, this improved code is generated only if the vari-
able is declared as ALIGNED.

The general lesson here is that any time you declare
a BIT variable that is part of an array or structure, if you |
know the variable is aligned (for instance, when it is the
only bit variable in a structure or when all the bit vari-
ables in the structure have lengths that are a multiple of
8), you should declare it as ALIGNED.

And, of course, the general lesson from all of the
examples above is, once again, the more you can tell
the compiler, the better will be the code generated by
the compiler. Or, more simply: the nicer you are to the
compiler, the nicer it will be to you.

News Flash!

PL/T for OS/2 Professional Edition.and PL/A for
0OS8/2 Toolkit are now available at an Independent Soft-
ware Vendor discount to Commercial/Premier members
of the OS/2 Developer Assistance Program (DAP).
To find out more about the OS/2 DAP in the United
States, call (407) 982-6408 or fax (407) 998-7610.

How to Copy Mainframe PL/I

Programs to a PC

By Lewis Allen
71662.441@compuserve.com

One of the key features of the PL/I for OS/2 prod-
uct is that it can compile PL/I source code that was
originally written for the mainframe environment.
However, to implement a PL/I source program on the
PC there are many other things to consider as well as
compiling. These include copying the source code to
the PC, choosing compiler and linkage options, and set-
ting up the necessary supporting infrastructure such as
the user interface, databases, and files.

This article concentrates on the first steps - showing
you how to automate the copy of mainframe OS PL/I
application source code to the PC OS/2 environment

using a bulk transfer program written in the REXX
language.

This article contains examples of REXX code for
OS/2 and the mainframe. To run the examples you will

need access to an IBM mainframe environment running’

MVS TSO ISPF that can support the file transfer facil-
ity of IBM OS/2 Communications Manager/2. Before
continuing, it is probably wise to check that file transfer
works in your environment by following these steps:

1.Start OS/2 Communications Manager/2.

2.Logon to your mainframe TSO service using your
mainframe User-id and password.

3.Select option 6 from the mainframe TSO/ISPF main
menu to display the screen titled "TSO COMMAND
PROCESSOR'. This screen (or a native TSO
READY prompt) is required by the file transfer
program.

4.Click on the top left button to display the Communi-
cation Manager/2 drop down menu.

5.Click on the Receive file from Host' option to display
the Receive File dialog box.

6.Type in the target workstation file name, the source
host file name, and ensure the transfer options are set
to "ASCII' and 'CRLF".

7.Click on the Receive button to initiate the transfer.

If you encounter problems with file transfer, and
you may the first time you try, then these should be re-
solved before continuing. Communication Manager/2
- provides useful help text, you may also be able to get
assistance from your local computer support personnel.

Once you have proved that the file transfer works
on your PC, you can now start to automate the file
transfer. By automation, I mean that we will initiate
file transfer from a REXX procedure rather than from
the user interface. The sample OS/2 REXX procedure
named TESTI.CMD will initiate a file transfer as a
background task:

/* 08/2 REXX */

/* TEST1.CMD:to fetch PL/I source code*/
'CALL RECEIVE C:\TEMP\LOBSTER.PLI'®,
'LEWIS.LIB.SOURCE (LOBSTER)ASCII CRLF!

TEST1.CMD copies the source code of PL/T pro-
gram LOBSTER from the mainframe library named
lewis.lib.source’ to the OS/2 file named
\TEMP\LOBSTER.PLI' on the c: drive. The file trans-
fer is carried out by the RECEIVE command, which

can transfer either ordinary mainframe sequential files
or mainframe library members from a partitioned data-
set (PDS) to the PC. If your mainframe PL/I source
code is held in an alternative proprietary format (such
as Endevor or Librarian) then you will need to unload
the source code into a partitioned dataset before doing
the file transfer.

Try TEST1.CMD on your PC. Type the REXX
procedure into an OS/2 editor window, substitute your
own mainframe and PC filenames, and save as a file
named TEST1.CMD. Ensure that the ISPF 'TSO
COMMAND PROCESSOR' screen, or native TSO
READY prompt, is displayed in your terminal emula-
tion session (as shown in steps 1 to 3 above) and then
run TEST1.CMD from the OS/2 command window by
typing the name of the file - TEST1. Once you get this
working you can then add a compile step, so that the
REXX procedure can both copy and compile, as shown
in TEST2.CMD:

/* 0S/2 REXX */

/* TEST2.CMD :

and compile */
'CALI, RECEIVE C:\TEMP\LOBSTER.PLI',
'LEWIS.LIB.SOURCE (LOBSTER) ASCII CRLF!
'CALL PLI C:\TEMP\LOBSTER.TXT!

to fetch PL/I source code

Of course, in reality, it would be hardly worthwhile
writing a REXX procedure like TEST2.CMD to trans-
fer just one program. - But,- if we now modify
TEST2.CMD to make it more generic so that it will
accept any program name and then add a loop so that it
will repeat for a set of programs, it is transformed into a
useful bulk transfer tool. For example, if you have a
mainframe application of 1000 programs to copy to the
PC, you could start the bulk transfer going as a back-
ground task, and get on with some other work while
your entire mainframe application is transferred to
OS/2.

The changes to the REXX procedure to support a
bulk transfer are fairly straightforward. We need to add
the ability to drive the REXX from a PARTS file con-
taining the names of all the libraries and programs to be
transferred from the mainframe, and we need to add the
ability to LOG the return code from each compile, so
that when the task has finished, we can look in a log file
to see which compiles have worked and which have
failed. = The improved REXX procedure, named
XFEROS2.CMD will do this:

/* 0S8/2 REXX */
/* XFEROS2.CMD : to bulk fetch PL/I
source code and compile */

-

/* trace i */

parts = 'c:\temp\PARTS.TXT' /* name of

parts file */

/* mame of log
file */

/* default drive */

/* default path */

log = 'c:\temp\LOG.TXT'

I

pcdrive c
pcpath = '\temp'
do while lines (parts) > 0

source = linein(parts)

if source = ' ' then leave
parse var source type dsn member therest

hostfile = dsn' (‘member’)'
pcfile = pcdrive!:'pcpath’'\ 'member' .PLI'
ICALL, RECEIVE' pcfile hostfile 'ASCII
CRLF!
call 1lineout log, time () I TRANSFER'
pcfile copies('*',rc)
if type = 'PLI' then
do
'CALL PLI! pcfile ' (GONUMBER) '
call lineout log, time() !'COMPILE '

pcfile copies('*!',rc)
end
end
return

The parts file used by this procedure simply con-
tains a line for each library and program to be trans-
ferred from the mainframe. It might look like this:

LOBOO01T
LOBOO1E
LOBO02E
LOBnnnkE

INC lewilis.lib.source
PLI lewis.lib.source
PI.I lewis.lib.source
PLI lewis.lib.source

The parts file can either be created manually using
a PC editor, or if there are a large number of programs,
it can be created by a program on the mainframe and
then downloaded to the PC before running the bulk
transfer. The mainframe REXX procedure named
XFERMVS shows one way of producing a parts file on
the mainframe:

/* TSSO ISPF REXX */
/* XFERMVS To generate a mainframe
parts file */

number of_ libraries = 1
library.l = 'lewis.lib.source' /* main
frame source library */
tlewis.lib.parts' /* parts file
to be created */

parts =

call open
do i = 1 to number_of libraries
NTSPEXEC LMINIT DATAID (DATAID)
DATASET ('"library.it') "
1 TSPEXEC LMOPEN DATAID ("dataid")
OPTION (INPUT) "
do while rc = 0 /* process each
member */
B TSPEXEC LMMLIST DATAID ("dataid")",
HOPTION (LIST) MEMBER (MEMBER)

STATS (NO) ¢
if rec <> 0 then leave
call write 'PLI' library.i member
end
"TSPEXEC LMCLOSE DATAID ("dataid®) ™
end
call close
return

open:procedure expose parts
"FREE DD {PARTS)"

if sysdsn("'¥parts"'") = 'OK' then
do
"ALLOC DD (PARTS) DSN('"parts"') OLD®
end
else do
WALLOC DD (PARTS) DSN(''“partsh') ",

"NEW CATALOG RECFM(F B) LRECL(80)™,
"SPACE (10,10) TRACKS DSORG(PS)
RELEASE" *
end
return

write:procedure

arg output

oput.l = output _

nexecio 1 diskw PARTS (stem oput.)”
return

close:procedure
nexecio 0 diskw PARTS (finis)™
"FREE DD (PARTS) "

return

To get the REXX procedure XFERMVS to work,

you first need to copy it into a REXX library in the !
MVS TSO ISPF environment, then edit it to replace -

Newis.lib.source' with the name of your source library,
and replace 'lewis.lib.parts’ with the name of the parts
file you wish to create.
XFERMVS will overwrite any parts file dataset previ-
ously created. Run XFERMVS by typing TSO
XFERMVS' on any ISPF command line.

Be careful here since |

The XFERMVS procedure shown here is intention- |
ally minimal but provides a framework that you can |
tailor to your own mainframe environment. For exam-
ple, it could be made more flexible by adding a user in-]
terface so that a user could enter the required source |
library names, and range of member names, perhaps j
supporting wild cards. Another enhancement could add |
the function to transfer and process other objects such |

as DB2 definitions, data files, and so on.

To summarize, the method to bulk transfer pro-

grams from mainframe to PC is:

1.Put the source programs you want to download into a
mainframe library partitioned dataset (PDS).

2.Run the mainframe REXX procedure XFERMVS
against the PDS(s) to produce a parts file.

3.Copy the parts file down to the PC.

4.Run the OS/2 REXX procedure XFEROS2 to down-
load and compile each program in the parts file and
produce a log file of results.

If you need help with writing OS/2 REXX, try the
on-line OS/2 REXX INFORMATION help. I also rec-
ommend ‘4 Practical Approach to programming the
REXX Language' by M.F.Cowlishaw, Prentice Hall
ISBN 0-13-780651-5. For help with MVS REXX, try
'TSO Extensions Version 2 Procedures Language
MVS/REXX Reference', IBM publication number SC28-
1883, and 'TSO Extensions Version 2 Procedures Lan-
guage MVS/REXX User's Guide', SC28-1882. For help
with ISPF services try 'ISPF Dialog Management
Guide', SC34-4112, and 'ISPF Dialog Management
Services and Examples', SC34-4113. For help with the
ISPF Library Management services look at the exam-
ples at the back of 'ISPF MVS Services', SC34-4023.

Lewis Allen is an independent IT consultant based
in London, England specializing in IBM PL/, CICS
and DB2.

(C) Copyright, Lewis Allen, 1995.

Upcoming Tradeshows

There are several tradeshows over the next few
months at which we intend to talk about or demo PL/I.
We'd love to have you come by and see first hand what
we're up to these days.

GUIDE July 16 - 20 in Boston

0S/2 World July 18 - 21 in Boston
Enterprise Computing July 26 - 28 in Chicago
SHARE August 13 - 18 in Orlando
Networld/Interop September 25 - 29 in Atlanta

Fax Information Service

Did you know that IBM has a "Fax on Demand"
service that allows you to easily retrieve documents for
immediate delivery to any fax machine? There is infor-
mation available on all sorts of IBM and IBM Business
Partner products, including PL/I. The service is avail-
able in the USA 24 hours a day, 7 days a week. Voice
prompts navigate you through the document selection
process. To use the IBM Fax service, call:

1-800-IBM-4FAX (1-800-426-4329).

Probably the best way to start is to order the index,
and then pick out specific documents from there.

New PL/I for OS/2 Redbook

A new IBM Redbook, titled "PL/I for OS/2; PL/I
Jor OS/2 Toolkit: Visual PL/I; CODE/370 PL/I Sup-
port" is now available. It's publication number is:
GG24-2501-00. The abstract follows:

"This document is unique in its detailed coverage of
PL/I for OS/2 and Visual PL/I provided with the PL/I
for OS/2 Toolkit. It focuses on the use of these prod-
ucts for development of MVS host applications or OS/2
applications with a graphical user interface. It provides
information about interfacing PL/I for OS/2 with DB2
and CICS and using CODE/370 to develop and test
PL/I host applications on the workstation.

This document-is written for PL/I application de-
signers and programmers who are moving their devel-
opment environment from the MVS host to 0S/2
workstations. Knowledge of the PL/I language and
OS/2 workstations is assumed."

If you have any questions about Redbooks, you can
send a note to redbook@vnet.ibm.com.

10

Svntax Highlighting for PL/I

by David W. Noon, Australian-at-large

What? Why?

What is syntax highlighting? It is an approach to
editing program source code that allows the program-
mer to distinguish language keywords from program
variables and constants - at a glance.

Why use it? Syntax highlighting allows a program-
mer to see potential conflicts between usage of a name
as a program variable and a language keyword, to find
language keywords that can cause a reported problem
and, most simply, to provide a visual structure to each
statement in the source code.

The Early Dayvs

In years gone by, color screens were expensive and
most programmers were limited to using monochrome
displays. Since most programming languages are case
insensitive, a rudimentary form of syntax highlighting
arose. This was to use all capital letters for language
keywords and mixed case for program variables. Since
this newsletter is in black and white, a simple example
in PL/T will illustrate this nicely.

My prog:
PROC OPTIONS (MAIN REENTRANT) REORDER;
DCL Some string CHAR(30) VAR,

Max page_size BIN FIXED(31,0)
STATIC INIT(60),
STREAM INPUT,
PRINT;

SYSIN
SYSPRINT

OPEN FILE(SYSIN) ,FILE(SYSPRINT)
PAGESIZE (Max page size);
GET FILE (SYSIN) LIST(Some string);
PUT FILE (SYSPRINT) EDIT
(*The string read was: "!,Some string.!'"')
(a);
CLOSE FILE (SYSIN),
FILE (SYSPRINT) ;
END My_prog;

As you can see, the program variables are quite dis-
tinct in their appearance from the PL/I language key-
words. I have left the names of the standard files,
SYSIN and SYSPRINT, in all capital letters, since
these are more or less part of the language, even though
they can be redeclared.

Others take a reverse approach and use all lower
case letters for language keywords, but since the mixed
case variable names tend to be predominantly lower
case, this tends to be less distinct than all capitals for
keywords.

The main points are:
+ You can choose your own style
+ The program listing is much more easily read
than in the days when all the source code was
punched on IBM 029 keypunch machines.

In Living Color

These days, nearly all of us have color screens at-
tached to high-resolution video adapters. This does, of
course, add a new dimension to the display of program
source code. In addition to lexical distinction with letter |
cases, we can now use different colors to distinguish
elements of the source code. This allows us to classify
language keywords into different types, to distinguish
constants from variables, and to classify constants into
different types.

By choosing different colors for declarative key-
words and executable keywords, we can readily identify
the type of statement we are looking at, without having
to examine its syntax in detail. In particular, long runs
of executable statements, interrupted by declarative
statements such as those for a BEGIN block, can show
up the hierarchical ownership of PL/I s automatic stor-
age. This can be seen very readily by scrolling your
screen and looking for the change in color.

Similarly, mismatches between source and target
can often be seen when different types of constants are
highlighted using different colors. Such things as as-
signing a floating point number to a character string,
which PL/I permits but which can cause unexpected re-
sults, can be seen at a glance when floating point num-
bers have a different color from character strings. This |
is most effective when program variables have names
that reflect their type.'

At present, we can use version 6.0 of the OS/2 En-
hanced Editor (EPM.EXE) to recognize the language
elements and assign colors to them. This is done by
means of a text file that defines the colors - the editor
uses a palette of 16 - for each classification, and the lan-
guage keywords and punctuation that the editor can use
for its recognition of the language syntax. You can

! Charles Szimonyi of Microsoft has written at length on his ‘Hungarian' naming style, which would be effective in this
situation. However, this is somewhat tangential to the topic at hand.

11

obtain a copy of a PL/I keywords file, called
EPMKWDS.PLI, by downloading EPMPLI.ZIP from
CompuServe s OS2DF1 forum or from the OS/2 Share-
ware BBS at +1-703-385-4325. It might also be avail-
able from other FidoNet bulletin boards. To invoke
PL/I syntax highlighting, ensure that this file is some-
where in the EPMPATH directories, open the EPM
command dialogue and issue the command:

TOGGLE_PARSE 1 EPMKWDS.PLI
While this approach of recognizing keywords with-

out regard to context is very simple, it is not completely
satisfactory.

Qooh! Such Language!

The very flexibility of PL/I, while solving a multi-
tude of programming problems, presents a problem for
syntax highlighting. In particular, PL/I uses some of its
language keywords for slightly different purposes in
different contexts. For example, the word BINARY is
used to declare a variable that is to contain a number
(fixed or floating point) represented in binary, but it is
also the name of a built-in function that converts a
value from some other representation into binary. This
poses the editor with the problem of resolving this am-
biguity: does it highlight it as a declarative keyword or
as a built-in function reference?

The only real solution is to create a text editor that
can parse source code text against a definition of the
PL/T grammar. A number of compiler vendors, most
notably Borland, have done this for other language
compilers by incorporating the compiler into an Inte-
grated Development Environment, or IDE. This has
created a strong relationship between the text editor and
the compiler. Anybody who has used the Borland IDE
editor to edit files other than program source will be
aware that this approach has its limitations too. It keeps
coloring until the editor works out that the text is not
C/C++ or Pascal source, usually when you save the file.
In such a case, the syntax highlighting is usually a
distraction.

The ideal solution is an editor that has an extension
facility to read a grammar definition, including ways to
resolve context-sensitive ambiguity. With such a tool,
the compiler vendors need not create a custom editor
for each language, but merely a grammar definition for
the parsing editor.

Until such an editor exists - either associated with
the compiler or an abstract parsing editor - we PL/I lu-
minaries will have to be content with keyword recogni-

tion by EPM.

(Editor's note: IBM has recently supplied PL/I Lan-
guage Sensitive Editing as part of the CODE/370 prod-
uct. We have also announced our intention to provide
Language Sensitive Editing support for the PL/ for
OS/2 products based on the well-received LPEX editor.
If you are interested in participating in a limited mini-
beta for this LPEX support, please contact Karen Bar-
ney, krbamey@vnet.ibm.com. You can also contact us
using the addresses given in the "What Next?" section
at the end of the newsletter).

PL/I Services Survey

To enable IBM's new, expanded PL/I capabilities
quickly and with a minimum of effort, we are consider-
ing offering services focused on important subject areas
like client/server that can extend your ability to use PL/I
effectively in every part of your enterprise. Please note
that these services are currently NOT AVAILABLE and
references here do not imply that IBM will make these
available in the future.

The following are possible services that we are
considering:

1.Quickstart- Getting you up and running quickly.

Designed to-quickly install and configure the devel-
opment environment for IBM PL/I for OS/2, demon-
strating the functional capability and integration of
IBM PL/T into your workstation environment.

2.Proof of Concept - Showing you how it works in
your environment.

Based on special requirements, IBM consultants dem-
onstrate the value of IBM PL/T's technology through a
customer selected application. This is a powerful
way to get specific information about how the new
IBM PL/I technology applies to vyour current
environment.

With this service, you eliminate the need to learn how
to use new technology before you fully evaluate the

12

technology and take advantage of it.

3. Migration - Moving your applications to take
advantage of new technology.

Ensures a smooth migration from an IBM legacy PL/I
environment to one taking advantage of features
found in the new technology found in the new IBM
PL/T family of products. This service may also assess
applications migrating from a mainframe to a work-
station environment.

4. AD Environment Assessment - Gaining insight
into your options.

If you are uncertain about where to start implement-
ing the new IBM PL/I technology in your environ-
ment, this service provides insights into your
company's current and emerging environment and ap-
plication portfolio. The consultants evaluate your IT
infra-structure and note critical success factors, as
well as identify pilot applications for development.
The consultants' final report includes advice on the
skills you need to develop, the best runtime configu-
ration fo target, a viable technology road map to
follow, and activities to prioritize.

We would appreciate your input on the value of
these services and suggestions on services we should be
developing. Please send your comments and sugges-
tions to Wilbert Kho via one of the following:

1. PLI Forum on IBM TalkLink
2. IBM Mail: USIB5DWS at IBMMAIL
3. Internet: wilbert@vnet.ibm.com
4. Mail: Wilbert Kho
IBM Santa Teresa Lab
LO5/H252
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

What Next?

To continue receiving "The PL/I Connection"
newsletter, send your response to one of the following
addresses. If you're a member of Team PL/I or have al-
ready responded, you don't need to do so again.

PL/I Newsletter

IBM - Santa Teresa Lab.

555 Bailey Avenue, J84/D245
P.O. Box 49023

San Jose, CA 95161-9023
U.S.A.

Fax (408) 463-4820

teampli@vnet.ibm.com
USIBSRLG at IBMMAIL

13

Questions and Answers

Question

Answer

1 have lost my desktop completely and, what's worse,
I do not have a backup copy of the .INI or .RC files to
MAKEINI! I would really like to have my PL/I for
0S/2 and PLA Toolkit folders back...

If your folders and icons are gone, you should be able
to get them back by using Diskette #1 of the original
product and typing INSTALL. Choose "Update the
currently installed product” and "Continue". You will
then be told that your product is at the most recent
level and asked if you wish to continue. Reply "YES"
and the Install will buzz through looking for anything
that was not up to date, which in your case will be the
folder and the icons. :

I would like to call a non-PL/I (C) routine that
produces a 32 bit return value. PLIRETV only gives
me the lower 16 bits. Is there a way to obtain the full
32 bit return value?

PLIRETV was extended to 32 bit in PL/I for MVS‘ &
VM. You need to compile your PL/I routine with
PLA for MVS & VM in order to take advantage of it.

With the PL/I for OS/2 Toolkit, how does one back up
a project so that it can be completely restored for
subsequent changes or moved to another machine?
‘Which files are vital and how is the desktop restored?

To back up a Visual PL/I project, save the .PMG file
for the project. Also, if you have created any "My
Code Blocks" which are used by the project, you
should back up PMGMYCB.PLF too. (Don't worry
about "Any Code" blocks - they go into the . PMG
file). To restore the project on a new system, right
click in the main Visual PL/I window and select the
"Load Project" menu item. You will then be asked to
specify the .PMG file you want loaded. The project
will then appear in the main Visual PL/I window.

-| Tam trying to call a C/370 subroutine from PL/I. C
expects the actual value of an argument, but PL/I
passes a pointer to a field containing the value. How
can I get PL/I to pass the actual value?

The BYVALUE atiribute in the PL/I for MVS & VM
product will solve your problem.
Note: BYVALUE is also available in PL/I for OS/2.

I am trying to install the CSD for PL/I for OS/2. T get
a message saying I don't have the compiler installed.
Any ideas what's happening?

Software Installer (the installation program used by
PL/ for OS/2) saves install history information in
\OS2\SYSTEM\EPFIS.INI on your boot drive. If
you've deleted this file, if it's been corrupted, or if
you're booting from a different drive than when you
installed PL/I for OS/2, Software Installer will think
that PL/T has not been installed, and will refuse to
install the CSD. You'll probably need to reinstall PL/I
from the original diskettes, and then install the CSD.

I'm starting to prepare for the year 2000 change. Does
PL/I support dates in the year 2000 and beyond? Ifit
does, how is this achieved?

PL/ 2.3 and PL/I for OS/2 have the Built-In Function,
DATETIME, which returns a four digit year in the
format: '

yyyymmddhhmmssttt
There are also several date/time callable services in
LE/370 that you can take advantage of with PL/I for
MVS & VM that can help you with this.

14

COPYRIGHT NOTICE

(c) Copyright IBM Corp. 1995. All Rights Reserved.

U.S. Government Users Restricted Rights - Use, duplication
or disclosure of materials in this newsletter are restricted by
GSA ADP Schedule Contract with the IBM Corporation.

This newsletter may contain other proprietary notices and
copyright information related to a particular article.

Nothing contained herein shall be construed as conferring by
implication, estoppel or otherwise any license or right under
any patent or trademark or patent of IBM or of any third
party. Nothing contained in this newsletter shall be
construed to imply a commitment to announce or deliver any
particular product, or an intent to do so, unless the language
used explicitly so states. Except as expressly provided
above, nothing contained herein shall be construed as
conferring any license or right under any IBM copyright.

Note that any product, process, or technology in this
newsletter may be the subject of other intellectual property
rights reserved by IBM, and may not be licensed hereunder.

This publication is provided "AS IS" WITHOUT ANY
WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT. Some jurisdictions do not allow
the exclusion of implied warranties, so the above exclusion
may not apply to you.

This publication may include technical inaccuracies or
typographical errors. Future editions of this newsletter may
make changes or corrections to information in this edition of
the newsletter, or to information in any prior edition of this
newsletter, IBM may make improvements and/or changes to
the content of this newsletter, to IBM products described or
mentioned in this newsletter, or to any material distributed
with 7%e PL/A Connectionat any time without notice.

Should any viewer of this newsletter or of any other IBM
publication respond with information including feedback
data, including questions, comments, suggestions or the like
regarding the content of this or of any other IBM document,
such information shall be deemed to be non-confidential, and
IBM shall have no obligation of any kind with respect to
such information, and shall be free to reproduce, use, disclose
and distribute the information to others without limitation.
Further, IBM shall be free to use any ideas, concepts,
know-how or techniques contained in such information for
any purpose whatsoever including but not limited to
developing, manufacturing and marketing products
incorporating such information.

Trademarks

+ IBM, OS/2, CICS/VSE, DB2, CICS/MVS,
CICS/ESA are registered trademarks of Interna-
tional Business Machines Corporation. |

* VSE/ESA, C/370, CICS, MVS/XA, MVS/ESA are
trademarks of International Business Machines
Corporation.

¢ Liant is a trademark of the Liant Software |
Corporation.

+ All other products and company names are trade-
marks and/or registered trademarks of their respec- |
tive holders. '

The information in this document concerning non-IBM
products was obtained from the suppliers of those
products or from their published announcements. IBM
has not tested those products and cannot confirm the
accuracy of the performance, compatibility, or any other
claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to
the suppliers of those products

15

€

yonse K

s
O 5 4

[s b, e [

= rmay marsadt :
i
e H
e A T B
R e
ST S, BTy fmw"é‘v
5 e er)
. pEN
Comments:
£ A BT
BRIty ¢11
:
i
; {
R I
T s T e g
2 i 75 T g
sy

1
i
t
3 i
. N 5 Al TS § !
- TR T T LRI FLRXT YPREIRRSE i

; . RS R IR SO

-

;

16

e

