‘The PL/I Connection

Issue 5 IBM Santa Teresa Laboratory December, 1995

Editor: Shauntel Christensen

Season's Greetings

As this year comes to a close, IBM and especially
our PL/I Development team wants to wish you an en-
joyable holiday season and a prosperous new year. We
value our association with you and look to the future
with anticipation as we work together to make PL/I the
language of choice.

PL/I for OS/2 CSD's...Hot Off
the Press

The PL/I for OS/2 Corrective Service Diskettes
(CSD's) are created to provide two things:

« Fixes to customer problems
+ Product enhancements between releases.

Currently, the Personal and Professional Editions of
PL/I for OS/2 are at CSD level 6 and the PL/I for OS/2
Toolkit is at CSD level 2.

Since CSD's for PL/I products are cumulative, you
can get all of the fixes and updates provided in early
CSD's by applying the most recent one. An overview
on how to locate CSD's online is at the end of this
article.

A README file provides a detailed description of
what is included on each CSD. If you have missed CSD
announcements in the past or have wondered about the
value of applying CSD's, read on. Although this is just
a summary of CSD enhancements, you should have a
good idea what a difference applying these CSD's can
make.

To start, a number of enhancements have been made to
improve host compatibility. Justa few examples are:

+ Array expressions can now be used as arguments to
user functions or as the source in a multiple
‘assignment.

+ New suboptions of the DEFAULT compiler option
are now supported.

+ The restrictions on the STRING built-in function and
on multiple REFERs now match the host compiler.

New compiler options are now supported:

+ The INCAFTER compiler option lets you can specify
the file to be included after all PROCESS statements
have been read.

+ The CURRENCY compiler option has been added so
you can specify what character should be recognized
as the 'dollar sign' in picture strings.

New built-in functions are available for your use:

+ FILEID returns a file's handle

+ RANK gives the decimal value for a character

+ SYSTEM passes a command string to the operating
system

+ VALIDDATE indicates if a string holds a valid date

+ FILEREAD reads a specified number of storage units
from a file to a buffer

+ FILEWRITE writes a specified number of storage
units from a buffer to a file

+ PLIASCII converts storage units from EBCDIC to
ASCII

+ PLIEBCDIC converts storage units from ASCII to
EBCDIC.

We have made a number of improvements to I/0,
including support for BTRIEVE files.

‘We have added function to PLITEST and included a
new PL/I actions profile for those of you who use
Workframe Version 2.1.

LY L0 ¥ O

1

The SQL preprocessor and DCLGEN utility now work
with DB2/2 Version 2.1.

If you purchased the PL/I for OS/2 Toolkit, CSD#2
contains support for the following:

+ LPEX editor (including an online user's guide)

+ JLINK linker (including online help)

+JLIB

+ New C2PLI options and other updates from CSD#1

(As you would expect, the extra function requires some
additional space on your hard drive, about 11.5 MB.)

These are just a few examples of what you can add
to your compiler or toolkit by applying CSD's. And...to
find out what's coming up...stayed tuned to The PL/
Connection!

Where can I get CSD's?

There are separate CSD's for the Professional Edi-
tion and Personal Edition of PL/I for OS/2. You should
look for CSD#6 for these two products. The latest CSD
for the PL/T for OS/2 Toolkit, however, is CSD#2 (the
one that contains LPEX and ILINK).

Anonymous FTP

The CSD's are available on fip.software.ibm.com in
the /ps/products/pli/fixes directory. Use the loaddskf
utility to make diskettes from the diskette images. The
loaddskf utility should be in /pub/os2/os2fixes. The files
should be named as follows:

Table of Contents

Season's Greetings 1
PL/I CSD’s — Hot off of the Press 1
To 'C' or Notto 'C' 2
Let's Recode Our C Programs in PL/1! 3
PCR - An Interface between PL/I, CMS 4
and REXX
Peter's Performance Tips
IBM's Technical Client/Server 6
Solutions...Featuring PL/I
Don’t Forget 7
A Tip from the Trenches ' 8
Questions and Answers

[=)%

'+ PLPCS6 - Professional Edition
+ PLWCS6 - Personal Edition
+PLTCS2 - Toolkit

IBM Talklink

The CSD's are on TalkLink on the OS/2 Bulletin
Board System (OS2BBS) in the Software Library. You
should be able to find them in the OS2 CSD section.

CompuServe

You can access the CSD's on CompuServe by
typing GO OS2DF1 to get into the OS/2 Developers
Forum. Then access library 6 and browse the entries to
find the CSD you need.

OS2CSD (for IBM internal customers)
Use the TOOLCAT OS2CSD command and search
on PLI.

To 'C' or Not to 'C'
Is Recoding a LLesacy PL/I
Application to C The Right
Thing to Do?

by Richard Perkinson, Liant Software Corporation
dickp@]lpi.liant.com

This is the last of four articles. The series began in
the March, 1995 issue of "The PL/I Connection”,

Part 4 - Recompiling vs. Recoding: The
Bottom Line

It is true that C or C++, not PL/, is the language of
much new development on open system platforms.
More new programmers are being trained in C and C++
rather than PL/I. However, the reality is also that there
is a lot of existing PL/I that can be rehosted simply and
safely with recompilation rather than translation.

The following example shows the difference in
costs to recompile versus recode. There may be some
alteration of legacy code required due to language im-
plementation differences when recompiling. These
types of modifications top out at less than 2% of the
total code and are usually done internally. Therefore, if
you had an application of some 250,000 lines of legacy
PL/I code (typical PL/I applications range from 250,000
to 6,000,000 line of code) it would cost you at most
$2,500 to recompile versus as much as $250,000 to
recode.

Lines of Lines Cost/ Total
Code Changed Line Cost
Recompile 250,000 2% $.50 $2,500
Recode 250,000 100% $1 $250,000
Translator 250,000 30% $1 $75,000%
Translation 250,000 100% $.50 $125.000
Service
*Does not include price of transiator

member the shortcomings addressed earlier), assume
they can convert anywhere from 50-70% of the code to
C successfully. If we take the most optimistic predic-
tion of 70%, that would still leave 30% or 75,000 lines
to do by hand, that's $75,000!

Keep in mind that some of that code will cost you
$1.50 per line because both internal people and external
consultants must work together. Also, remember that
there will most likely be a major data conversion effort
if you use a translator and don't forget the cost of the
translator itself. The Translation Service row (in the ex-
ample) illustrates an offer by one of the code converter
companies to give you a cleanly compiled C program
from PL/I source for $.50 a line. Keep in mind that
"clean compile” doesn't mean the program actually
works with your data. '

The economic advantage of recompilation speaks
for itself.

Summary

PL/ is a language that has many productive and
useful years ahead of it. It is a language admirably
suited to many problems found in the new open systems
environments. Rehosting provides the opportunity to
migrate legacy PL/I applications to this new world with
controlled risk, controlled cost, protected investment,
portability across platforms, and the ability to modem-
ize gradually.

Don't be in a hurry to abandon the old just because
it is old. Don't rush to new technology simply because
it is new. Don't forget the risk involved in meeting a
deadline with new untried technology. Engineering a
new solution to an old problem with new technology
and with high pressure deadlines can be a recipe for dis-
aster. Get the old system working in the new

environment first, then make the switch to new technol-
ogy where appropriate.

To receive this paper in its entirety, please call 1-800-
818-4PLI ext. 221 or (508) 872-8700 ext. 221, or send
email to openpll@Ipi.liant,.com.

| Let's Recode Our C Programs

in PL/I!
by Conrad Weisert, Information Disciplines, Inc.

I'm getting tired of all the discussions over whether
or not we should rewrite our PL/I programs in C/C++,
and I'm puzzled by the continuing impression that the
whole purpose of having PL/I for OS/2 or AIX is so that
we can salvage old legacy systems from the mainframe.
Why the defensive tone? Why aren't we vigorously pro-
moting PL/I as a modern development tool for develop-
ing new applications?

C (without C++) was a major step back from PL/.
C's virtues were its widespread availability and its small
size. It was easy to learn and easy to implement on
small computers of the 1970's. Since the desktop plat-
forms of the 1990's are far from small, those virtues no
longer carry any weight. With today's wealth of devel-
opment tools and languages, I see no justification for
choosing C for any nontrivial new application.

With C++, the picture is quite different. From C's
origin as a small language, C++ (with its essential stan-
dard libraries) has evolved into the largest and most
complicated language in the history of programming.
By comparison, PL/I, once condemned as the ultimate
"large language," is a paragon of elegance and simplic-
ity. C++ does, however, have one strong virtue: support
of the full object-oriented programming paradigm
(OOP).

There is, therefore, justification for choosing C++
over PL/I for an application in which we plan to exploit
OOP. In doing so, however, we give up a lot, and not
just the lists of detailed PL/I features cited in recent arti-
cles as "requiring special attention." What we lose is
the whole approach to program organization and struc-
ture that makes well-designed PL/I programs so easy to
maintain.

Three areas in particular give PL/I a strong edge
over C++ in the fundamental approach to program or-
ganization: nested procedures, exception handling, and
the powerful macro preprocessor. Any program that ex-
ploits those areas will be impossible to convert to

3

another language in any direct way, and any attempt to
restructure such a program to fit the constraints of an-
other language will yield a maintenance nightmare.

Let's stop trying to stem the tide away from PL/I
and take a positive attitude. If IBM and other vendors
continue to support it, PL/T is well suited to the new
generation of application systems, even for organiza-
tions that have no mainframe investment.

How about an article on how to convert your legacy
C programs to PL/I?

If any of you have suggestions for promoting the use of
PL/L, please submit them to TEAMPLI,

PCR - An Interface between
PL/I, CMS, and REXX

by Dave Jones
djones@starbase.neosoft.com

Due fo the size of this paper, it will be presented in
three parts. This first part covers introductory material
and the syntax of the PCR command. Look for Part 2 in
the next issue (March 1996) of "The PL/I Connection”.,

Part 1 - Introduction to PL/I-CMS-REXX
PCR

This document describes the PCR utility which
allows routines written in PL/I to be nucxloaded as:

+ CMS commands
+ REXX functions or subroutines
<+ Immediate commands and subcommands

Multiple PL/I routines can be loaded and managed
at once, all sharing common data structures.

PCR is similar to NUCXLOAD/NUCXDROP, but
is designed to load PL/I modules, and allows them to
share data structures and retain allocated data structures
between invocations. Modules are given a logical
name, with which they are invoked, in addition to a
nucxname with which they are loaded. The logical
name can be either a REXX function or subroutine, a
CMS command, immediate command, or subcommand.

REXX Function Library Support

The PCRRXFN assembler program is a REXX
function library which can manage PL/I and Assembler
functions. The PCR command is issued to load PL/I
programs, and the CMS NUCXLOAD command is used
to load Assembler programs. This module (PCRRXFN)
must be either renamed to one of the three supported
names (RXUSERFN, RXLOCEN, or RXSYSFN), or
specified as an extension to one of those names. The
PCRRXFN module distributed with PCR supports
extensions.

There are four tables within PCRRXFEN that can be
modified to indicate the supported modules:

PACKTAB -- Each entry in PACKTARBR is another
function package module that will be loaded and called
to see if it has the function that is being requested by
REXX. Any number of function packages can thus be
listed and supported, much more than just RXUSERFN,
RXLOCEFEN and RXSYSFEN that REXX supports. Each
entry in PACKTAB is a character 8 and the last entry
must be an 8X'FF".

XFUNTAB -- Each entry in XFUNCTAB repre-
sents a REXX function and its corresponding MOD-
ULE which can be NUCXLOADed (generally written
in Assembler). The entries are character 16, the first
eight bytes is the name of the REXX function (must
begin with RX), and the last 8 bytes is the name of the
Module to be NUCXLOADed. The last entry must be
an 8X'FF'.

XPLITAB - Each entry in XPLITAB represents a
REXX function and its corresponding MODULE which
is loaded using PCR, thus the module should be from a
PL/T program. The entries are character 24, the first
eight bytes is the name of the REXX function (must
begin with RX), and the second eight bytes is the nucx-
name of which the module (last 8 bytes) is loaded. The
last entry must be an 8X'FF'.

LFUNTAB -- Each entry in LFUNTAB represents
a REXX function and its corresponding address. The
code for the function is internally linked into
PCRRXEFN. The entries are character 16, the first eight
bytes is the name of the REXX function (must begin
with RX), and the next four bytes is the relocatable ad-
dress of the internally linked routine, and the last four
bytes is a flag which should be set to CL4'N'. The last
entry must be an 8X'FF'".

Immediate Commands

When the PCR program is used, three immediate

commands are defined. They each modify a bit within a -

byte which each PL/I program has access to. They can
be used, or ignored, depending on the PL/I program
logic.

+ PTS -- Trace start. PL/I programs can check this
flag to see if tracing messages are produced.

+ PTE -- Trace end. This will turn off the PTS bit.

+ PHX -- Halt execution. PL/I programs can test
this bit at critical locations within the program's
logic, and can thus support a controlled shut down
at the user's control. This bit is reset to false when
a PL/I program is first entered.

CMS may not invoke immediate commands during
tight CPU loops. Some I/O or SVC must be issued
before CMS will look for immediate command. This
author does not know all the details as to when CMS
will actually notice and respond to an immediate
command.

Loading PL/I Runtime Modules

Upon first invocation of PCR, zero of more mod-
ules from PLILIB/IBMLIB Loadlib are nucxloaded.
The PCR code can be modified to list each module to
load from each of the two system loadlibs. Modify the
tables LPLITAB and LIBMTAB within the PCR As-
semble file. An 'FF'x entry must mark the end of the
tables.

PCR Syntax

Here is the syntax for the PCR command:

PCR LOAD definition <{ <options...> >

definition =
logname | REXX |nucxname<modname<loadlib>>
| cMsc
| sUBC|
| TMMC |

options = |NOLOAD|
| ENDCMD |

PCR DROP |logname|
[* l

PCR RESET

PCR TERM

LOAD
Specifies to load/define a logical name to a PL/I
module.

Logname
The logical name of the subcommand, CMS
command, immediate command, or REXX
function/subroutine being defined, indicated by
the type (SUBC, CMSC, IMMC, or REXX). The
logname cannot be the same as the nucxname. If
a nucxleus extension of this name already exists,
an error OCCurs.

Nucxname
The nucxleus extension of which the PL/I module
is loaded. This cannot be the same as the logical
name. [fanucxleus extension of this name
already exists, a new copy will not be loaded,
although the definition of the logical name
continues.

Modname
The name of the PL/I module. If omitted, an
equal sign is assumed which will indicate to use
the nucxname as the modname.

Loadlib
The optional load library from which the PL/I
module is loaded.

DROP
Specifies to delete the logical name's definition.
The PL/I program associated with the logical
name is nucxdropped, only if it was actually
loaded when the logical name was defined. If an
asterisk is specified as the logical name, all
logical names will be dropped.

RESET
Deletes all logical names, and any PL/I program
loaded. Since this type of call is made by CMS
when a NUCXDROP PCR is issued, the three
immediate commands (PTS, PTE, PHX) are also
removed.

TERM

Calls the PLISTART that is linked into the PCR
module to terminate the PL/I environment. This
is also done when CMS returns to "ready”, via
ENDCMD processing. However, currently, if
TERM is done via ENDCMD, an abend occurs.
Thus all execs invoking PCR PL/T modules that
are compiled with the SYSTEM(MYVS) option
should have a PCR TERM as the last command
so the environment does not get TERMed during

ENDCMD processing. No special provisions
need be taken with PL/I modules compiled with
the default SYSTEM(CMS) option.

NOLOAD
Specifies that no PL/I module is to be
nucxloaded.

ENDCMD
Specifies that the PL/I program is to be called
when CMS returns to the "ready" state. Not valid
for types IMMC and SUBC.

To be continued in the next issue...

Peter's Performance Tips

by Peter Elderon, IBM PL/I Development
elderon@vnet.ibm.com

Unlike previous issues which discussed new PL/I
features, this column describes how some existing PL/I
features can help improve your performance.

The following program returns the largest element
in a one-dimensional array of fixed bin(15) values.

maxl _xbl5:
proc(a)
returns(fixed bin (15))

r

decl a(#*) fixed bin(15);
dcl m fixed bin(15);
dcl jx fixed bin(31);
m = a(lbound(a,1));
do jx = lbound(a,l) upthru
hbound (a, 1) ;
if a(jx) <= m then;

else
m = a(jix);
end;
return(m);

end;

This program works for a one-dimensional array
with any lower bound. However, if you know that this
routine is-always invoked with an array that has a lower
bound of 1, you can improve the performance of the
routine by changing the declare for a as follows:

dcl a(l:*) fixed bin(15);

Additionally, if you know that this routine is always
invoked with an array that is connected, you can im-
prove the performance of the routine by changing the
declare for a as follows:

dcl a(l:*) connected fixed bin(15);

If you know that all the arrays passed as arguments
in your application are connected, you do not have to
edit your program to make the change in the second
declare statement. You would just compile the program
with the option DEFAULT(CONNECTED).

This routine works only for arrays of FIXED
BIN(15) values. You could write similar routines that
performed the same task for arrays of FIXED BIN(31)
and FLOAT BIN(53) values. If these routines were
called max1_xb31 and max1 £1td, for example, then
you could also declare the following generic function:

dcl maxl generic
(maxl_xbl5 when((*) fixed bin (15))
;maxl_xb31 when((*) fixed bin(31))
,maxl_fltd when((*¥) float bin (53))
);

The result is a function, maxZ1, that returns the maxi-
mum value of any one-dimensional array having one of
the three types specified. In addition, a compiler error
message would be produced if the routine were invoked
with a scalar or any other kind of array. You have effec-
tively created your own built-in function.

While this generic function might not help the per-
formance of your executed code, it-—-or examples like
it--can help you code faster. It can also serve as a useful
reminder of some of the less frequently mentioned, but
still very powerful features of PL/I

IBM's Technical Client/Server
Solutions...Featuring PL/I

by Harry Stewart, IBM PL/I Technical Marketing
hstewart@vnet.ibm.com

IBM sponsored a technical conference and exposi-
tion at the San Jose Convention Center October 9
through October 13, 1995. On the agenda were more
than 80 technical sessions, including a special CIO con-
ference. Over 200 vendors participated in the
exposition.

IBM TechCon was designed specifically to demon-
strate how to integrate legacy systems with client/server
solutions in a heterogeneous environment. The confer-
ence featured in-depth coverage of technical subjects
including application development, data management,
interoperability, transaction processing, systems man-
agement, and workgroup solutions (including, of course,
Lotus Notes). There were eight conference tracks de-

signed to serve the divergent needs of CIOs, data proc-
essing professionals, and end users.

I presented The PL/I Family Overview which in-
cluded what we have in PL/I today and IBM's strategic
direction for language products. The session included
an overview of how the PL/I family of products pro-
vides access to DB2, VSAM, IMS, and CICS for appli-
cation development on mainframes and workstations. I
discussed the PL/I suite of products that addresses re-
quirements for rapid application development, mainte-
nance, reuse, downsizing, and tools support and
indicated that all of these products are available for pur-
chase today. I explained how new functions and tools
provide flexibility and increase programmer productiv-
ity and stability while protecting the PL/I investment by
offering an opportunity to develop a better competitive
advantage for the customer.

Several key PL/I developers attended the exposition
to demonstrate our workstation products. If you
stopped by the booth, thanks for coming by. If not, see
you at the next exposition presented in your local area.

Don't Forget!!

If you know someone who uses PL/I and might be
interested in receiving this newsletter, tell them about
us! Have them send their name, address, phone and fax
numbers, and electronic mail address to one of the fol-
lowing addresses:

PL/I Newsletter

IBM - Santa Teresa Lab

555 Bailey Avenue, B3T/D284
P.O. Box 49023

San Jose, CA 95161-9023
U.S.A.

Fax (408) 463-4820
teampli@vnet.ibm.com
USIB5RLG at IBMMAIL

A Tip from the Trenches...

by Don Yazurlo, ISSC Public Sector Services
yazurlo@vnet.ibm.com

...Or, get a good night's sleep without letting table boundaries wake you up

SCENARIO: It's 3:00 a.m. "Hi, Jack. This is Paul from the data center. Job AA6040 just stopped with the fol-
lowing error message:

Program AA60 has stopped, the internal territory table
is not large enough to handle the current territory file.
Please contact development.®

How many times have problems with hard coded table boundaries provoked a phone call in the middle of the
night? How many times have developers had to change a program because an external file that is being read into an
internal table is increasing in size?

There is more than one way to solve this problem, but the following routine uses controlled storage as the
solution.

/***/
/* The following routine will build an internal table without=*/

/* hard coding the boundaries. This is accomplished by */
/* using PL/I controlled storage, allocate and free %/
/* instructions. */

/***/
dyntabl: proc options (main) reorder;

dcl inaad file record input:

dcl sysprint file stream output;

decl 1 aaaxr based (p),

3 aaoffno char (3),
3 aadporg char (1),
3 aamka char (2),
3 aadiv char (2),
3 left_over char (72);
dcl time builtin;
dcl p pointers;
dcl i fixed bin (15) init (0);
dcl rec_cnt fixed bin (15) init (0);
dcl d5_eof bit (1) aligned init ('0'b):;

/***/

/* The following controlled storage area will be allocated */

/* for each record read. */
/***/
dcl 1 aa_temp controlled,

3 b char (3),

3 org char (1),

3 area char (2),

3 div char (2);

/**/

/* The following table is allocated once and is based on the =*/

/* number of records read. */
/**/

decl 1 aa_temp table (rec_cnt) controlled,

3 b char (3),
3 org char (1),
3 area char (2),
3 div char (2);
on endfile (inaad)
begin;
d5_eof = '1'b;

end;

/**/

/* The following routine utilizes PL/I controlled storage to */
/* build an internal table from a flat file. */
/* */
/* For each record read, allocate a storage area to hold the */

/* fields that will make up the internal table. Keep a count */
/* of the number of records read, this will be used to allocate */
/* the table. Each of these allocates is analogous to putting a */

/* entry on a push down stack. One important note, although */
/* this appears to be a 1lifo stack, controlled storage is */
/* allocated in the non-1lifo section of the isa. */

/**/

put skip list ('dynamic array processing start time ', time) ;
read file (inaad) set (p);
do while (d5_eof = '0'b);

rec_cnt = rec_cnt + 15

allocate aa_temp;

aa_temp.b = aaoffno;

aa_temp.org = aadporg;

aa_ temp.area = aamkas;

aa_temp.div = aadiv;

read file (inaad) set (p);
end;
/***/
/* Allocate the table and build it from the last occurrence */
/* to the first. This is important because the free */
/* instruction will release the last storage area acquired */
/* by the allocate instruction when a specific allocation %/
/* is not specified. */
/* */
/* In other words, the free instruction will take items off */

* the top of the referenced push down stack. */

/***/

allocate aa temp_table (rec_cnt):;

do i = rec_cnt to 1 by -1;
aa temp_table.b (1) = aa_temp.b;
aa_temp_table.org (i) = aa_temp.org;
aa temp_table.area (i) aa temp.area;
aa_temp_table.div (i) aa_temp.div;
free aa_temp;

end;

put skip list ('dynamic array processing end time ', time);

put skip list ('records read ', rec_cnt) ;

end dyntabl;

il

The following timings were taken on a 75 Mhz Pentium prbcessor with 32 M of memory which was running
0S/2 WARP connect. A file containing 5000 records was used.

For a program with a fixed table boundary of 5 000 occurrences, these were the timings:
Start time 16:24:02:090
End time 16:24:02:500
Elapsed 00:00:00:410

For a program using controlled storage to allocate the table, these were the timings:

Starttime 16:24:04:940
End time 16:24:05:500
Elapsed ~ 00:00:00:560

Deltaof 00:00:00:150

Questions and Answers

Question

Answer

Can I compile PL/T application programs as
reentrant?

With option REENTRANT in the PROCEDURE
statement, PL/I generates code that is reentrant.
However, you must make sure that your PL/I code
will not store anything into STATIC storage. This
will violate the reentrant rule and goes undetected
(by PL/I). Also, a PL/I program that calls or is called
by a FORTRAN or COBOL program is not
reenterable.

Does PL/I on AIX interface with DB2 for AIX?

Yes! PL/Iprovides an integrated SQL preprocessor
so you can embed SQL statements (dynamic and
static) in your PL/I programs on either the AIX or
0S/2 platforms.

Can anybody tell me if V1.5 programs can run using
the V2.3 runtime library?

Yes, V1.5 load modules will run under V2.3

Does anyone have PL/I code fragment that returns
the day of the week for a given date? For example,
given a date of 1995/11/07 would return 'Tuesday'.

The solution given here would be useful if using
mainframe PL/I, but PL/I for OS/2 and PL/I Set for
ALX support a built-in function that provides the same
outcome.

R R Y
/*DayOfWeek routine */
/*Converts Gregorian date to day of week */
/***/
/* -->>>>No error checking is performed! */
/* 19891101 Walter Pachl */
/* REXXified algorithm published in CACM */
/* (Fliegel & van Flandern, CACM Vol. 11 =*/
/* No.10 October 1968) */
/* Valid from 10/15/1582 to 2/28/3200 */
/* Day of week returns 0 to 6 for Monday */
/* to Sunday. */
/***/

DayOfWeek: proc(yyyy mm dd)
returns (fixed bin (15));

dcl yyy mm_dd char(i0) nonasgn;
dcl 1 greg def yyyy mm 44,

3 v pic '9999",

3 sl char(l),

3 m pic '99°',

3 s2 char(l),

3 d pic '99°';

dcl (ma,va,xx,yy,zz,day) fixed bin (31);

if bin(m) < 3 then ma = -1; else ma = 0;
va = bin(y) + 4800 + ma;

xx = floor((1461 * vya) /4);

vy = floor((367 * (bin(m)-2-(ma*1l2))) /12);
zzZ = 3 * floor(floor ((ya+100) /100) /4);

day = bin{(d) - 32075 + xxX + vy - zz;

return (mod{day,7));

end DayOfWeek;

10

Oops!

In the Questions and Answers section of the last issue of THE PL/I CONNECTION (Issue 4, September 1995),
we referred to an HTML-format document, Migration to Version 2 of the PL/I Compiler. Unfortunately, we failed to
notice that the URL for accessing it is behind a firewall, and cannot be reached from outside the IBM internal net-
work. However, due to the interest in this document, the author has been kind enough to create a flat text version of
the article which he can send by electronic mail. If you would like a copy, please contact
MartinF_James@uk.ibm.com.

Please accept our apologies for any confusion or inconvenience this oversight may have caused.

11

COPYRIGHT NOTICE

{c) Copyright IBM Corp. 1995. All Rights Reserved.

U.S. Government Users Restricted Rights - Use, duplication
or disclosure of materials in this newsletter are restricted by
GSA ADP Schedule Contract with the IBM Corporation,

This'newsletter may contain other proprietary notices and
copyright information related to a particular article,

Nothing contained herein shall be construed as conferring by
implication, estoppel or otherwise any license or right under
any patent or trademark or patent of IBM or of any third
party. Nothing contained in this newsletter shall be construed
to imply a commitment to announce or deliver any particular
product, or an intent to do so, unless the language used
explicitly so states, Except as expressly provided above,
nothing contained herein shall be construed as conferring any
license or right under any IBM copyright,

Note that ady product, process, or technology in this
newsletter may be the subject of other intellectual property
rights reserved by IBM, and may not be licensed hereunder.

This publication is provided "AS IS" WITHOUT ANY
WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT. Some jurisdictions do not allow
the exclusion of implied warranties, so the above exclusion
may not apply to you.

This publication may include technical inaccuracies or
typographical errors, Future editions of this newsletter may
make changes or corrections to information in this edition of
the newsletter, or to information in any prior edition of this
newsletter, IBM may make improvements and/or changes to
the content of this newsletter, to IBM products described or
mentioned in this newsletter, or to any material distributed
with ZZe PLA Connectrion at any time without notice,

Should any viewer of this newsletter or of any other IBM
publication respond with information including feedback data,
inchuding questions, comments, suggestions or the like
regarding the content of this or of any other IBM document,
such information shall be deemed to be non-confidential, and
IBM shall have no obligation of any kind with respect to such
information, and shall be free to reproduce, use, disclose and
distribute the information to others without limitation,
Further, IBM shall be fiee to use any ideas, concepts,
know-how or techniques contained in such information for
-any purpose whatsoever including but not limited to
developing, manufacturing and marketing products
incorporating such information,

Trademarks

+ AIX, CICS, DB2, DB2/2, DB2/6000, IBM,
IBMLink, OS/2 are trademarks or registered trade-
marks of International Business Machines
Corporation.

¢ Liant is a trademark of the Liant Software
Corporation,

¢ All other products and company names are trade-
marks and/or registered trademarks of their respec-
tive holders,

The information in this document concerning non-IBM
products was obtained from the suppliers of those
products or from their published announcements, IBM
has not tested those products and cannot confirm the
accuracy of the performance, compatibility, or any other
claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to
the suppliers of those products

12

