
 The NESCafe Guide to Creating Overrides

Page 1 of 13

NESCafe Guide

Creating Overrides for NESCafe

Author David de Niese
Release 0.701 (June 2006)
Email nescafe@davieboy.net
Web-site http://www.davieboy.net

This document covers how to create Overrides for NESCafe using the Profiler. Readers should
have a good understanding of 6502 Assembler and have version 0.701 or higher of NESCafe.

Introduction
NESCafe is distributed under the GNU General Public License. A copy of this license
agreement has been included with this distribution of NESCafe. If you have a question or
wish to give me any feedback on the NESCafe Nintendo emulator then please do not
hesitate to contact me via email (my address is above) as your comments and
suggestions are always welcome. More information on NESCafe can also be found on the
NESCafe website (address also shown above).

Requirements
Please ensure that you can meet the following requirements before following this guide:

- You must have a good understanding of 6502 Assembler
- You must have downloaded NESCafe 0.701 Standalone
- You must know how to use NESCafe for opening and playing games

Information on downloading and using NESCafe can be found in the NESCafe Release
note, which is available from the website. The Code Profiler is only available in version
0.701 onwards of the Standalone version of NESCafe, so please check your version first.

Scope of Document
The purpose of this document is to introduce you to NESCafe Overrides and the NESCafe
Code Profiler, and then to show you how to create your own NESCafe Override using the
Profiler to assist you. I recommend that readers met the requirements outlined above
before continuing, especially the requirement to understand 6502 assembly language.

 The NESCafe Guide to Creating Overrides

Page 2 of 13

Background: The NESCafe Override Engine

What are Overrides?

This feature is unique to NESCafe. Overrides are scriptable commands that tell NESCafe
how to respond as a game runs. For example, Overrides can be used to implement very
powerful game logic. In the example below for Mike Tyson’s Punch-Out, the following
Override tells NESCafe to not let Little Mac’s (the boxer) energy go too high (limits it).

NESCafe Override Example for Mike Tyson’s Punch-Out:

 // Keep Low Energy for Little Mac

 on read 0x0393 if VALUEOF 0x0393 > 5 then VALUEOF 0x0391 = 5;

How do NESCafe Overrides Work?

Before continuing with the description of what this is doing, you will need to know a little
about how computers operate. If you don’t fully understand the following description,
don’t worry, you can download pre-made Override Scripts from the NESCafe website.

on read 0x0393 This tells NESCafe to wait for a memory read to

address 0x0393, which is Little Mac’s current
energy level in the game. We were able to
determine which memory address was used to
store this by dissembling the game, but you
don’t need to worry if you don’t know how this
is done – that’s why most of these NESCafe
Override scripts will be pre-made!

if VALUEOF 0x0393 > 5 then When the above memory read occurs, NESCafe
is then told to check if the current VALUEOF
the memory address is greater than 5 (which is
a nominal about of energy for poor Little Mac)

0x0391 = 5 If the above check is satisfied then NESCafe is
told to set the value of register 0x0391 to 5.
This register is used to hold the target energy
for Little Mac after he gets hit. The game then
compares this value in 0x0391 against his
current recorded energy (before the hit) in
0x0393 and if different slowly reduces the
energy until 0x0393 is equal to 0x0391.
Therefore, by setting 0x0391 to 5, we are
ensuring that his energy can never go above 5
– in order words he is an easy knockout!

 The NESCafe Guide to Creating Overrides

Page 3 of 13

The above example could equally be achieved with a Game Genie code, but here are
some additional examples that prove how powerful NESCafe Overrides can actually be.
The following example will wait for Little Mac to win a fight and will then display a
message on the NESCafe screen that he has won, as well as broadcast the number of the
round that he won in, and the number of times Little Mac hit the mat during the fight! A
similar approach to this is used on the NESCafe Online website at www.davieboy.net/play

NESCafe Override Example for Mike Tyson’s Punch-Out (more advanced):

 // Wait for Little Mac to Win and then Broadcast the Round Number

 on write 0x0170
 if VALUE != VALUEOF 0x0170 and VALUE != 0 Then
 trigger win;

 on write 0x0171
 if VALUE != VALUEOF 0x0171 and VALUE != 0 Then
 trigger win;

 // Declare the Trigger to Broadcast the Round Number and Number of Times Down

 declare trigger
 win say "You won!" broadcast 0x0006 0x03D0;

NOTE: Please note that you should only use the above NESCafe Override with a Saved
State file that starts at the beginning of a fight, otherwise the check that is made
sometimes fires too early (during the initial menu system for Mike Tyson’s Punch-Out).

on write 0x0170

 if VALUE != VALUEOF 0x0170

 and

 VALUE != 0 Then

 trigger win;

Just like with the previous example, this tells
NESCafe to wait for a write instruction against
memory address 0x0170, it checks if the
VALUE that is being written doesn’t equal what
is currently stored in that address and if that
the value is not equal to 0. If this is all true
then it will call a Trigger called WIN.

Please don’t worry about the memory
addresses. You don’t need to understand the
significance of this instruction and the memory
address that is being referenced. You should
just know that when Mac wins a fight the
address 0x0170 is changed to a non-zero
value, which is what is being tested for here.

 The NESCafe Guide to Creating Overrides

Page 4 of 13

on write 0x0171

 if VALUE != VALUEOF 0x0171

 and

 VALUE != 0 Then

 trigger win;

This is the same instruction as above, but with
a different memory address. This needs to be
checked too because under certain
circumstances within the game when Mac wins
a match it will write to address 0x0171 instead
of 0x0170 (see above). By added a clause for
this address as well, we are saying we want to
catch either of the write instructions.

declare trigger win

 say "You won!"

 broadcast 0x0006 0x03D0;

This introduces the topic of Triggers. Triggers
are methods by which NESCafe is told to do
something. In this example, when the Trigger
called WIN is called (by either of the above
instructions being satisfied) it will display the
message “You Won!” on the screen and then
broadcast the data in memory locations 0x0006
and 0x03D0 to the nescafesave.php script
(using the nescafe/trigger content-type).

The memory addresses 0x0006 and 0x03D0
are used to store the Round Number and the
number of times Little Mac has hit the ground
during the match. This data is written to a file
within the trigger directory on your web-server
(from where your nescafesave.php is located).
The first byte in the recorded trigger file will be
the value from 0x0006 and the second byte will
be the value from 0x03D0.

Hopefully now you will see the power that NESCafe Overrides provided. However, it will
require enthusiastic 6502 developers to start getting into the games and working on
interesting Overrides. As Overrides becomes more popular you will be able to download
them from the NESCafe website (and hopefully other websites that decide to host them).

Here is one final example, which can be useful if you want to simply broadcast a value
when the user hits the T key on their keyboard. For example, if you are using the below
Override then whilst playing Mike Tyson’s Punch-Out can press the T key to broadcast
your score. See if you can work out how this is achieved without a walkthrough:

 The NESCafe Guide to Creating Overrides

Page 5 of 13

NESCafe Override Example for Mike Tyson’s Punch-Out (using key-triggered broadcasts):

 // Declare the Trigger to Broadcast the Score

 declare trigger
 win say "You won!" broadcast 0x03E8 0x03E9 0x03EA
 0x03EB 0x03EC 0x03ED;

 // Tell NESCafe to call Trigger WIN when user hits the T key

 on keypress trigger win;

How Do I Use a NESCafe Override?

If you want to use Overrides, you can specify them in both Applet and Standalone mode
by placing an OVERRILEFILE tag in your NESCafe Settings file and then the actual
Overrides in the file that the tag points to. For example, you could do the following:

Example Entry in the NESCafe Settings File:

OverRideFile=override.settings

Example override.settings File:

 // Little Mac can Keep Getting Up

 on read 0x03C1 VALUEOF 0x03C1 = 0;

 // Little Mac can not get any Star Uppercuts

 on read 0x0341 VALUEOF 0x0341 = 0;

How Do I Create Override Files?

There is currently no automatic tool available that can work out what these memory
addresses are and create these Overrides files for you, just like there is no tool available
that can automatically work out a Game Genie Code for a particular game you want to
play. It is up to programmers with 6502 Assembler experience to disassemble these
games and work out which memory locations provide what functionality. However,
NESCafe does include a Code Profiler which will assist the decompiling of the game. This
guide aims to walk you through an example Code Profiling in order to create an Override.

 The NESCafe Guide to Creating Overrides

Page 6 of 13

Background: The NESCafe Code Profiler

The NESCafe Code Profiler is available only in version 0.701 onwards of the Standalone
version. Please ensure that you have the correct version before proceeding.

Background

The Code Profiler is intended for the use of assisting with the creation of NESCafe
Overrides or disassembling Nintendo games. NESCafe has a Code Profiler, which is built
into the Standard distribution (not available for the Applet version). Pressing F6 (when
the DISABLEDEBUG tag is not set in the nescafe.settings file) will cause NESCafe to
dump memory to disk and to start recording the disassembly of the ROM. A detailed
description of how to use the Code Profiler is out of the scope of this user guide, and can
be found in the Guide to Creating NESCafe Overrides document on the NESCafe website.

In summary, pressing F6 whilst in NESCafe will produce an excel spreadsheet called
profile.csv (it can be found in the profiling sub-directory of the NESCafe application
directory). The file has the following format, where the memory address is displayed
against the value stored within that memory address at the time you pressed F6.

P1 stands for Profile 1. If you now close down the spreadsheet, return to your game and
press the F6 key again and then once more (so that you have pressed F6 a total of 3
times in all), the profile.csv file will have automatically been updated as shown below:

Address P1 P2 P3 Reads Writes

0x0000 0x00 0x02 0x02 25,310 20,757

0x0001 0x03 0x03 0x03 4,210 3,501

0x0002 0x01 0x01 0x01 469 4

…

0x07FF 0xA5 0xA5 0xA5 0 0

This time, each of the three profiles that you requested are displayed side-by-side, with
some additional details (such as the number of reads and writes that the game
performed against that memory location between the profiles that you took. This can be
useful in finding particular registers, for example, if you know that your character in the

Address P1

0x0000 0x00

0x0001 0x03

0x0002 0xD0

… …

0x07FF 0xA5

 The NESCafe Guide to Creating Overrides

Page 7 of 13

game was hit 4 times across the profiles then you could look for registers (memory
addresses) that received 4 write operations as a way of identifying potential candidates
because the game would have had to re-write your health value after each of the 4 hits.

You should also notice a second file call decompiled.txt. This contains a 6502
disassembly of all code executed between profile snapshots. This will be useful only if
you understand 6502 assembler, and therefore it’s outside of the scope of this document.

Next close down the Spreadsheet again and return to your game. Press the F6 key a
further 2 times (so that you have pressed F6 a total of 5 times in all). The profile.csv file
will have been automatically updated again, as shown below and will include some
additional profiling columns, which help you identify trends in the data being written to
particular registers (and therefore help you determine what type of data is stored there).

Address P1… Writes
Increm

ent

D
ecrem

ent

Constant

U
nique

All Zero

Flag

U
nique Values

0x0000 0x00 20,757 0 0 0 0 0 0 2

0x0001 0x03 3,501 0 0 1 0 0 0 1

0x0002 0x01 4 0 0 1 0 0 0 1

…

0x07FF 0xA5 0 0 0 1 0 0 0 1

The table above shows the trend columns that have been added (in green). When
NESCafe has recorded enough profiles, it will run trend analysis on each memory address
to help you determine what it is potentially being used for. Each of the metrics above has
been described in detail below, together with what it could potentially be used for.

 The NESCafe Guide to Creating Overrides

Page 8 of 13

Trend Metric Description Usage

READS The total number of read
operations that the game has
made against this memory
address, between when you
took the first and last profiles.

This is useful in detecting
heavily access registers, which
could be internal counters or
health and status bars, which
would be being read on every
screen re-draw (60 times/sec).

WRITES The total number of write
operations that the game has
made against this memory
address, between when you
took the first and last profiles.

This is useful in detecting
health bars or timers. If you
know that your health was
adjusted in the game 4 times
between the profiles (as a
result of hits you took), then
you may be able to identify
the health bar by looking for a
value of 4 here in this field.

INC Whether the profile of this
memory address showed an
incrementing trend (the first
profile had a smaller value
than the last profile value, and
all other values were
incrementing within the range
of the first and last).

This is useful in detecting an
increasing value, for example,
it could be used to detect
registers that may store the
level of the game (which you
would expect to increment as
you progress in the game).

DEC Whether the profile of this
memory address showed a
decreasing trend (the first
profile had a greater value
than the last profile value, and
all other values were
consistently decreasing within
the range of the first and last).

This is useful in detecting a
decreasing value, for example,
your health register or life-
count if you know that you
lost health or lives during this
profiling exercise.

CONSTANT Whether the profile of this
memory address showed a
constant trend (all values
profiled here were the same).

This is useful in detecting a
constant value throughout the
profiling exercise. For
example, if you ensured that
you kept the same count of
lives throughout the game.

UNIQUE Whether all values profiled
were unique with respect to
each other during the exercise

This is useful in detecting
changing values. For example,
if you ensured that each of the
profiles taken were when you
had different numbers of lives
or different amounts of health.

ALLZERO Whether all values profiled
were consistently zero during
the profiling exercise.

This is useful in detecting
consistently zero values.

 The NESCafe Guide to Creating Overrides

Page 9 of 13

Trend Metric Description Usage

FLAG Whether all values profiled
were consistently zero or one
during the profiling exercise.

This is useful in detecting flag
registers, such as “has sword”
or “doesn’t have sword”.

UNIQUEVALS The total number of unique
values that were profiled.

This is useful for finding
values that you expect to be
unique on each profile. For
example, if you took 50
profiles, but know that the
register you are looking for
can only be one of two values.

 The NESCafe Guide to Creating Overrides

Page 10 of 13

Example: Worked Example

This section of the document will walk you through how to use the Code Profiler with
Legend of Zelda to produce an Override to prevent Link (the character you play within
the game) from picking up a sword. You could use this Override to see if any of the
visitors on your website can complete the game with this extra limitation in place.

 General Approach

We want to identify the memory location that stores the status of whether or not Link
has picked up the sword. We will run the game and profile the memory usage. After
taking a couple of snapshots we will pick up the sword and then continue profiling for a
few more snapshots. We will then analyse the results and see if NESCafe can determine
which memory location stores the status of whether Link has the sword or not.

 In summary:

 1. Run the Profiling
 2. Pick up the Sword
 3. Analyse the Profiling Statistics
 4. Analyse the Code
 5. Write the NESCafe Override

 Step 1: Run the Profiling

Start the Standalone version of NESCafe and
run the Legend of Zelda game. When you first
start the game, wander around the map
without picking up the sword from the cave
that is immediately above the start position. As
you wander around, go through different areas
of the map, perhaps lose and gain some
health, and remember to take around 10
different profile snapshots by pressing F6.

The aim of this step is to get all the memory
addresses moving, which will happen the more
you wander around. Enemies will use their
memory addresses, your health and status
registers will change. One of the only registers
that won’t change is the one that says whether
you have picked up the sword yet or not.

 The NESCafe Guide to Creating Overrides

Page 11 of 13

Step 2: Pick up the Sword

Next go back to the cave at the start point and
pick up the sword. Continue to walk around
and take around 10 more profile snapshots as
you go. Most importantly, make sure that you
use the Sword several times (to ensure that
the code for checking for the sword executes).

Try and go back through the same rooms that
you went through before, maybe losing and
gaining some health at the same time. Finally,
close Zelda and close down NESCafe.

 Step 3: Analyse the Profiling Statistics

Look in the profiling subdirectory of the NESCafe application directory and open up the
profile.csv file with Excel (or a Spreadsheet package of your choosing). Enable the Auto
Filter option from the Data menu in Excel. The screen should look something like below:

Each of the profiles against each of the memory locations is shown. Since we are looking
for a status register, based upon ones knowledge of how these games are typically
written, we will assume that the status values that are stored to memory to indicate
whether Link has the sword or not will either be 0 or 1 (where 0 represents the Sword is
not picked up and 1 represents that it is picked up). This is only a guess at this stage.

 The NESCafe Guide to Creating Overrides

Page 12 of 13

Go to the far right and then filter the Flag column on the value 1 (this column is set to 1
if the values written to the corresponding memory location were only 0 or 1). Next filter
the Increment column on the value 1 on the assumption that Link went from not having
a Sword (0) to having a sword (1). This will leave you with only two memory locations.

At this stage it is also worth doing some additional due-diligence and confirming that the
value in the registers changed from 0 to 1 at the Profile where you actually picked up the
sword. In my example I picked up the sword after Profile 16, so I would want to confirm
that the value changes from 0 to 1 immediately after Profile 16, which it did.

 We have the following candidates as potential addresses for holding the sword status:

 0x0052
 0x0657

Step 4: Analyse the Code

The next step is to take a look at the disassembled code. A file called decompiled.txt can
be found in the same directory as the profile.csv file and contains a complete listed of all
the 6502 instructions that were executed between the profiles. Once you have opened
this file in a text editor, the next stage is to search for references to these addresses.

You can search for references to 0x0657 using the search string $0657, but remember
that the 6502 processor has a zero-page address mode, so you need to search for
0x0052 using both $0052 and $52 (you also need to check for other addressing modes
that may have been used, such as indexed and indirect based upon the X or Y register).

From analysing the code you should be able to tell that the register that stores the status
of whether Link has the sword or not is actually 0x0657 (a description of how to analyse
6502 assembler is outside of the scope of this document, this knowledge is assumed).
Therefore we are now ready to construct a NESCafe Override to prevent this register
from ever being set to 1 (in order to prevent Link from picking up the sword).

 The NESCafe Guide to Creating Overrides

Page 13 of 13

 Step 5: Write the NESCafe Override

The following Override will activate whenever the game attempts to read from the
0x0657 memory address. The result is that NESCafe will keep the value stored in that
address register at 0 and therefore never let Link pick up the sword. You can test the
Override with NESCafe in the usual way (as documented in the NESCafe Release Note).

NESCafe Override Example for Legend of Zelda to prevent Sword Pickup:

 // Zelda Prevent Sword Pickup

 on read 0x0657 valueof 0x0657 = 0;

Please also consider sending me any Overrides that you produce (via the Contact Me
section on the NESCafe website) and I will list them on my website, with a reference to
yourself. See how creative you can get with your Nintendo games.

