
OS/2 Awarene . ~ 1 ss Series
o ume II

One UP Corporation

.. -<

Introduction to
OS/2

Programming

OS/2 Awareness Series, Volume 2
One Up Corporation

Printed in U.S.A.
on recycled paper, can be recycled.

Introduction to
OS/2

Programming

©Copyright One Up Corporation 1993

ISBN 1-884988-01-6

Ylc/(now[eagements

The authors of this document are:

Feite Kraay
One Up Computer Services Ltd., Toronto, Canada

Larrry Pollis
One Up Corporation, Dallas, Texas

Craig Chambers
One Up Corporation, Dallas, Texas

Technical validation was done by:

Dan Kardell
One Up Corporation, Dallas, Texas

Richard Dews
One Up Corporation, Dallas, Texas

Page Design was done by:

Jon Morey
One Up Corporation

Cover design was done by:

Larry Pollis
One Up Corporation, Dallas, Texas

The project leader and editor for this project was:

Craig Chambers
One Up Corporation, Dallas, Texas

Special thanks go to Libby Boyd, of Dove Oaks Publishing.

We are in the midst of a major revolution. The 90s will be known as the start of the

digital age. It is almost impossible today to pick up a magazine or newspaper

without seeing at least one story about the digital revolution as it gains momen

tum. If a modern day Rip Van Winkle had fallen asleep when the Apollo 11 crew

returned from the moon and were to awaken today, he would not recognize the

world.

When he went to sleep, a desktop "computer" was a mechanical calculating

machine. He used a slide rule in his engineering classes. He had an 8-track tape

player in his car and listened to LP records for entertainment at home. He made

his home movies on 8mm film. Today, he would have to look hard to find any of

these items in the stores. At home and in our cars, we listen to our music on digital

CD players. We record music on Digital Compact Cassettes or digital Mini-Disks.

Our desktop calculator is now a high speed workstation with 8-16 MB RAM. Vir

tual Reality is becoming a reality.

The computer industry is bringing all of these technologies together on your desk

top. They call it Multimedia. You can now listen to digital CD quality music,

watch full motion TV, calculate a spreadsheet, and maintain active communica

tions with several remote systems, all while typing a letter with a word processing

program.

The keystone of this technology is the operating system. For desktop systems, this

key component is called OS/2. The current version, 2.1, is the most advanced

operating environment available today for integrating these technologies. A truly

revolutionary system, OS/2 is the first system designed for the new digital world.

There is a second revolution sweeping the computer industry. When Rip went to

sleep, most interactive data was entered from keyboards. Today, most applications

are designed with a graphical user interface or GUI. Introduced in 1984 with

Apple's Lisa system, the GUI concept has put a new face on the computer user

interface. OS/2 is the most advanced expression of this concept. Its Workplace

Shell makes the system look and behave like the user's familiar desktop.

The purpose of the OS/2 Awareness series is to help you understand how OS/2

enables you to participate in the digital and GUI revolutions. This volume, the

second in the series, provides an introduction to OS/2 programming. It shows you

how to create programs that take advantage of the powerful multitasking capabili

ties built into OS/2. It also shows you how to use the Presentation Manager to give

your program a graphical user interface.

Volume 1 in this series provides an overview of the OS/2 system itself. It

describes how you can move from the older, limited function PC-DOS and Win

dows environment to a fully capable OS/2 environment. Other volumes in this

series cover topics such as how to enable OS/2 to communicate effectively with

remote systems, and how to integrate database capabilities into OS/2.

This book is a collaboration between IBM Corporation's Southwestern Area staff

and One Up Corporation's staff. The authors have been working with OS/2 since

its earliest design phases in the mid-1980s. In this book they use their perspective

and experience to explain how to begin writing programs for OS/2 version 2.1 that

fully exploit its powerful new capabilities.

I hope that you find this book both informative and enjoyable.

Craig Chambers

Introduction . 1

Welcome
Overview
About This Book
Summary
Directions
Copyright Information

'Tfie OS /2 Programming. 7

The IBM OS/2 Developer's Toolkit 2.1
The IBM CIC++ Tools 2.0
The Application Build Procedure

OS/2 'Base MI Programming 17

Overview
Multi-threading
Memory Management
OS/2 File Functions

·p:Jvf Coaing. 3 7

Introduction and Concepts
PM Basics and Message Flow
Function of main() in a PM Application
PM Window Classes and Window Creation
PM Window Procedure and Messaging
PM Output and Window Painting
Window Data Encapsulation
Menu Resource Management

Summary. 89

Where To Go Next
OS/2 Awareness Series
About the Authors

52lppenai7(52l . 9 3

52lppenai7('B . 9 7

Inae7(................................... 111

• Welcome

• Overview

• About This Book

• Summary

• Directions

• Copyright Information

Welcome to the One Up OS/2 Awareness Series. This series is a set of books
that are designed to help you become familiar with the capabilities of IBM's
OS/2 2.1 operating system. It is assumed that you have a basic familiarity with
IBM compatible computers and PC-DOS.

This volume, the second in the series, will increase your understanding of the
OS/2 development environment. Hopefully, after reading this book, you will
appreciate why OS/2 is considered the best workstation-based development
platform available today.

Whether you are developing applications for DOS-based systems, Windows
based systems, or native OS/2 applications, the "crash protection" that is built
into the OS/2 system makes OS/2 the development platform of choice. OS/2 is
a powerful 32-bit preemptive multitasking operating system. That means that
everything happens faster than with other systems because OS/2 takes full
advantage of the capabilities of the 32-bit system processor.

Its multitasking capabilities allow you to run multiple programs simulta
neously, each in its own protected area of memory. This allows you to have
your editor, debugger, and program being tested all active at the same time in
separate sessions. You can quickly and easily move between them as you
develop your application.

OS/2 programs can be written more efficiently than for DOS or Windows
because the complications of extended, expanded, and segmented memory are
eliminated by OS/2's flat memory system. With its High Performance File Sys
tem (HPFS), OS/2 also eliminates the restriction of file names to just eleven
characters.

In the first chapter, we describe the OS/2 programming environment. The IBM
OS/2 Developer's Toolkit 2.1 is introduced and each component is described
briefly. This is followed by a description of the IBM CIC++ Tools 2.0 compiler
and SourceLink, a very powerful editing tool from One Up Corporation. The
chapter ends with a brief discussion of the application build procedure.

We then get down to the business of actually writing an OS/2 program. The
base OS/2 API is introduced, including discussions about multi-threading,
memory management, and the OS/2 file management functions. You will write
a program that uses all of these system functions.

Then a Presentation Manager, or GUI, interface is added to the program devel

oped earlier. This interface includes a menu bar and scroll bars. The chapter

opens with a discussion about the concept of object oriented programming and

what that means is real life applications. The fundamentals of Presentation

Manager architecture are then covered, which introduces the PM APL By the

end of the chapter, these concepts have been incorporated into a working PM

program that also includes multi-threading and memory management concepts.

This book introduces OS/2 and Presentation Manager programming concepts

and describes the OS/2 development environment. Hopefully, you will be able

to take the sample programs and use them as the basis for your own OS/2

programs.

This is just an introduction however. It will be necessary to get a deeper knowl

edge of the system if you are to develop professional quality applications.

There are several excellent books available that go into great detail about how

to write OS/2 programs. Also, there are excellent OS/2 and Presentation Man

ager Programming classes available from One Up Corporation.

There are other volumes in the One Up OS/2 Awareness Series. Volume 1 is an

overview of the OS/2 2.1 system. It includes a description of the features and

capabilities of OS/2. It also includes an overview of the installation process

and offers some troubleshooting guidance.

Volume 3 discusses OS/2 communications support. It includes discussions of

the of the OS/2 LAN Server system, Communications Manager/2, and LAN

Adapter Protocol Support (LAPS). These books include installation and con

figuration information, as well as product descriptions and usage hints and tips.

Copyrigfit Information
The following trademarks may appear in this book:

Adaptec is a registered trademark of Adaptec, Inc.

Ethernet is a registered trademark of Xerox Corporation

IBM is a registered trademark of International Business Machines Corporation

Microvolts is a registered trademark of Microsoft Corporation

NetWare is a registered trademark of Novell, Inc.

PostScript is a registered trademark of Adobe Systems, Inc.

UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

VAX is a registered trademark of Digital Equipment Corporation

Windows is a registered trademark of Microsoft Corporation

Lotus and 1-2-3 are trademarks of Lotus Development Corporation

COMPUSERVE is a registered trademark of Compuserve

PRODIGY is a registered trademark of PRODIGY ·

PCMCIA is a registered trademark of Personal Computer Memory Card Inter
national Association

Tseng is a registered trademark of Tseng Laboratories, Inc.

Softerm is a registered trademark of Softronics, Inc.

Aldus and PageMaker are registered trademarks of Aldus Corporation

SourceLink is a registered trademark of One Up Corporation

Sound Blaster is a registered trademark of Creative Labs, Inc.

NEC is a registered trademark of NEC Corporation

Panasonic is a registered trademark of Matshushita Electronic Industrial Co.,
Ltd.

Pioneer is a registered trademark of Pioneer Electronic Corporation

Sony is a registered trademark of Sony Corporation

Future Domain is a registered trademark of Future Domain Corporation

Toshiba is a registered trademark of Toshiba Corporation

The following are registered trademarks of International Business Machines
Corporation and may appear in this book:

IBM Operating System/2 (OS/2),

IBM Personal System/2 (PS/2),

IBM LAN Server,

Presentation Manager (PM),

System Application Architecture (SAA),

Thinkpad.

One UpCorporation

'Ifie OS /2 Progra
'Enviro

• The IBM OS/2 Developer's Toolkit 2.1

• The IBM CIC++ Tools 2.0

• The Application Build Procedure

'I'he.OS/2.Programming

Development in OS/2, like most environments, requires at least two things: a
language compiler supported by the environment, and libraries of API (Appli
cation Programming Interface) functions that allow the programmer to take
full advantage of the features of that environment. This publication will focus
on the use of the IBM CIC++ Tools 2.0 and the IBM OS/2 Developer's Toolkit
2.1, for building 32-bit OS/2 2.0 or OS/2 2.1 applications. Also available is the
IBM Developer's WorkFrame/2; a customizable, graphical workbench envi
ronment to facilitate maintenance of development projects.

The toolkit supplies several components of the development process. When
installed, these can be accessed through folders on the desktop.

READ.ME PM Developmenl T cols Toolkit Information bcih&!!ill&i

The Toolkit Information folder provides on-line reference manuals for OS/2
development. Primary among these are the PM Reference and CP Reference,
which list function syntax and data type definitions for all of the Presentation
Manager and base OS/2 API functions, respectively. It is very worthwhile to
become familiar with the table of contents, index, and search capabilities of
these manuals, as they are the first line of assistance in coding OS/2 AP Is. The
API functions are classified by their use, and this is indicated by the function
names. For example, all calls beginning with the prefix Dos ... are calls to OS/2
base function, and can be found in the CP Reference under subheadings such
as Memory Management, Execution Control, etc. All functions beginning with
Win ... call the PM Window Manager, and all functions beginning with Gpi ...
call the Graphics Programming Interface. These, and many other categories,
are documented in the PM Reference. Index files are installed along with these

One Up Corporation

. reference manuals, which are accessible to the OS/2 enhanced editor. When
editing a source file, a keystroke combination enables the user to immediately
find the on line reference for a specific API function or C library function.

ll ll ll ll
CP Guide ,yid Reference PM Reference T oo!s Reference SOM Reference

ll ll ll II
!PF Re!eience RE»< Reference Debug Kerne! Reference -

Among the development tools installed are the icon editor and the dialog edi
tor. These are especially useful in defining additional resources to be added to a
PM application. Also, a large set of sample programs is provided with the tool
kit, each of which illustrates one or two techniques, points of style, or general
areas of interest in Presentation Manager or OS/2 functions.

~" =
lf4ilijMW Dialog Editor Font Editor Icon Editor

Not visible on the desktop, but equally important, are the directories into which
the toolkit installs. The subdirectory TOOLKT21 \OS2LIB contains the link
libraries necessary for use of the OS/2 API functions. Object files must be
linked to OS2386.LIB to resolve API calls made in the application code. This
library actually contains references to Dynamic Link Library files installed on
every OS/2 user's machine. Libraries such as PMWIN.DLL or PMGPI.DLL
contain the actual function definitions for the APis, shared by all programs at
run-time.

Directory Of O:\TOOLKT21

<DIR>
(DIR>

C <DIR>
SC <DIR>
REXX <DIR>
ASH <DIR>
CPLUS <DIR>
ICON <DIR>
BOOK <DIR>
OS2HELP <DIR>
!PFC <DIR>
READ HE 37851
Dll <DIR>
OS2BIH <DIR>
OS2LIB <DIR>
BOOKCAT ASC 49973

16 file(s)

9-07-93 11: 36p
9-07-93 11:36p
9-07-93 11:36p
9-07-93 11:37p
9-07-93 11:37p
9-07-93 11:37p
9-07-93 11:37p
9-07-93 11:37p
9-07-93 11 :37p
9-07-93 11:38p
9-07-93 11:38p
5-06-93 9:47p
9-07-93 11:40p
9-07-93 11:40p
9-07-93 11:55p
5-06-93 9:47P
87624 bytes used

4562944 bytes free

The subdirectory TOOLKT21\C\OS2H contains header files with the function
prototypes for all API calls, as well as all necessary data structure and data type
definitions required. Selections from these header files must be included in all
source files. This is accomplished by pre-processor definitions indicating
wbich API functions are used, followed by a #include statement referencing
the file OS2.H. Pre-processor tests within the header files then result in includ
ing only the sections necessary for the application.

For example, the lines

#define INCL_ WIN

#include <os2.h>

would direct the pre-processor to include only those sections of the header files
necessary to support PM Window Management API calls. This will improve

compile speed as only a minimal set of header information is read. For every
API function, the on-line reference manual shows the necessary #define state

ment for support of that call.

'Tfie 1'13% C/C++
The IBM CIC++ Tools 2.0 installs into a separate folder on the desktop. This

full C and C++ compiler also provides several additional utilities to assist in
developing and debugging OS/2 applications. Many of the utilities apply to the

C++ environment and are beyond the scope of this document. For C develop

ment, the important utilities are the CIC++ Language Reference, the C Library

Reference, and the PM Debugger. The two reference manuals provide a syntax
guide for the C language and library functions. The debugger, known as

IPMD.EXE, or the Interactive PM Debugger, is a source-level debugger that
runs in a Presentation Manager window. This provides a view of source code,

by thread, as the application executes. The programmer may set break points,

view register contents, and view or alter variable contents during execution.

CIC++ Tools 2.0 installs into several subdirectories on the drive. The subdirec

tory IBMCPP\BIN contains the compiler/linker, ICC.EXE. IBM
CPP\INCLUDE contains all the C standard header files. IBMCPP\LIB

contains the C language libraries, automatically picked up by the linker. There
are libraries for multi-threaded and single-threaded application support, as well

as static and dynamic linking to the C library functions.

Directoru Of D:\ibMCPP

HELP
DLL
am
tJKFRAHE
TUTORIAL
LOCALE
INCLUDE
LIB
SAMPLES
IBHCLASS
SYS
THP

<DIR>
<DIR>
<DIR>
<DIR>
<DIR>
<DIR>
<DIR>
<DIR>
<DIR>
<DIR>
<DIR>
<DIR>
<DIR>
<DIR>

7-02-93 2 15p
7-02-93 2 15p
7-02-93 2 15p
7-02-93 2 15p
7-02-93 2 15p
7-02-93 2 l 7p
7-02-93 2 17p
7-02-93 2 20p
7 -02-93 2 20p
7-02-93 2 23p
7-02-93 2 23p
7-02-93 2 29p
7-02-93 2 32p
7-02-93 2 43p

14 fite(s) O bytes used
4560896 bytes free

The compiler is invoked simply by calling ICC.EXE. Printed and on-line refer

ence manuals document all the compile switches and their meanings. Five are

used in the example programs provided with this document, as follows:

ice /c /Ss /Ti+ /Kb /Gm browsel.c

le instructs the compiler to compile only. /Ss enables support for II comments

in C. /Ti+ embeds trace information into the object file to enable use of the

IPMD debugger. /Kb enables additional diagnostic messages to be displayed

by the compiler. /Gm compiles for the multi-threaded C libraries, which can

provide better performance for many standard C functions.

Either ICC.EXE or LINK386.EXE (supplied in the TOOLKT21\0S2BIN sub

directory) may be used to link the object files. For example,

link386 /NOI /PM:VIO /DEBUG browsel.obj;

links the object file produced by the previous compile step. /NOI instructs the

linker not to ignore case sensitivity in function names. /PM: ... indicates the

application type desired. /PM:PM would request a Presentation Manager

graphical program, while /PM:VIO requests a textual command prompt appli

cation. /DEBUG again embeds support for the IPMD debugger in the execut

able code.

In order to use these tools, some modifications need to be made to the environ

ment. These changes can be done automatically in the CONFIG.SYS file as

the tools install. The path environment variable must refer to the BIN subdirec

tories in both the toolkit and the C Set, and the include environment variable

must refer to the appropriate header subdirectories. The statements setting vari

ables for help, bookshelf, progref, pmref, and helpndx are all necessary to

enable the on-line help and documentation for the toolkit and C Set.
LI BPATH=D': \I BM\:/f\DLL; D: \TOOLKT21 \DLL; D: \ IBMCPP\DLL; ...
SET PATH=D:\IBM\:/F\BIN;D:\TOOLKT21\0S2BIN;D:\IBMCPP\BIN; ...
SET LIB=D:\TOOLKT21\0S2LIB:D:\JBMCPP\LIB;
SET INCLUDE=D:\TOOLKT21\C\OS2H;D:\IBMCPP\INCLUDE;D:\IBMCPP\IBMCLASS;
SET DPATH=D:\IBMCPP\LOCALE;D:\IBMCPP\HELP;D:\IBMCPP\SVS;D:\TOOLKT21\BOOK;
SET HELP=D:\IBHWF\HELP:D:\TOOLKT21\0S2HELP;D:\IBMCPP\HELP; ...
SET BOOKSHELF=D:\IBMWF\HELP;D:\TOOLKT21\BOOK;D:\IBMCPP\HELP;
SET PMREF=PMFU~L INF+PMGPI. JNF+PMHOK. INF+PMMSG. INF+PMREL. !Nf+PM\:/IN. INF+PMWKP. JNF
SET HELPNDX=EPMKWHLP.NDX
SET IPFC=D:\TOOLKT21\IPFC;
SET TMP=D:\IBMCPP\TMP
SET PROGREF21=CPGREF1. INf-t-CPGREf2. ltJF-t-CPGREF3. INF

IBM WorkFrame/2 is·a separate product that may be installed to assist in the

development process. This is a graphical, windowed environment that orga

nizes development activity by project. A project simply refers to a subdirectory

containing the code and make file for a particular program or DLL. Each

project may be configured with a different set of compile and link options,

which are set via dialog boxes with on-line help describing the switches. When

all options are set, WorkFrame/2 can optionally build a make file based on the

files specified, commands requested, and options set. WorkFrame/2 also per

mits the creation of composite projects, built from several base projects to

facilitate management of more complex applications.

PMLINES.C
PMLINES.DEP
PMLINES.DLG
PMLINES.EXE
PMLINES.H
PMLINES. ICO
PMLINES.MAK
PMLINES.OBJ
PMLINES.PRJ
PMLINES.RC
PMLINES.RES

Demo Application
IBM CIC++ project - GREP
IBM CIC++ project - MAHJONGG
IBM CIC++ project - PMLINES
IBM CIC++ project - TOUCH
IBM CIC++ project - UILINES

WorkFrame/2 is a modular product, and may be configured to support a variety

of compilers, editors, and tools necessary to your environment. One editor tool

that integrates into the WorkFrame/2 environment is SourceLink from One Up

Corporation. SourceLink is a hypertext editor that greatly facilitates the man

agement of large applications with multiple source and header files. In addition

to its full editor capability, SourceLink provides a hypertext connection

between source files. A call tree is constructed for all functions in the applica

tion, and via mouse clicks the user may navigate through the code, viewing and

changing all instances of function calls, variables, or defined constants through

all source files. SourceLink also connects to the on-line reference manuals

through index files, so that help for any API function can be accessed via a sin

gle keystroke

//#
D:,SLINK2,SAMPLE,LillK.ASM
D:,SLINK2,SAMPLE,LINK.C
D:,SLINK2,SAMPLE,LINK.H
D:,SLINK2,SAMPLE,LINKASM.C
D:,SLINK2,SAMPLE,LINKFILE.C
D:,SLINK2,SAMPLE,LINKXR.C

ei
(4)
(5)
(6)
(7)
(8)

OpenFile - "LINK.C"(91:10) *"LINKFILE.C"

r i

(9)
(10)
(11)
(12)
(13)
(14)
(15)

''41~,;'PCication '13ui{c{ Procedure

OpenFileProc - "LINKFILE.C"(42:21)
FillDirlistBox - "LINKFILE. C" (118:
FillFilelistBox - "LINKFILE.C"(ll9:
FillDirlistBox - "LINKFILE .C" (149:
FillFileListBox - "LINKFILE.C"(l50:
ParseFileName - "LINKFILE.c''(l65:25)
ParseFileName - "LINKFILE.C"(181:23)
FillDirlistBox - "LINKFILE.C"(185:
FillFilelistBox - "LINKFILE.C"(186:
FillDirlistBox - "LINKFILE.c''(191:
FillFileListBox - "LINKFILE.C"(192:

A number of steps are involved in building an OS/2 Presentation Manager
application. First, the compile step is fairly straightforward. The compiler,
ICC.EXE is invoked against one or more C source files. These may include
standard C library header files, application private header files, and OS/2 tool
kit header files. The result is one or more object files. The linker,
LINK386.EXE links those object files together with the C run-time library as
well as OS2386.LIB. This provides references to the API functions defined in
the OS/2 DLLs. If the application will be referencing code in other user
defined DLLs, then usually the linker must be supplied a library file for those
functions as well.

Optionally, a module definition file (.DEF) may be provided to the linker. This
file can be used instead of command-line switches to indicate stack size, appli
cation type, and other features of the final executable program. It is also com
monly used in the construction of DLLs, to indicate which functions are to be
exported (made externally available from the DLL).

The linker, especially in the Presentation Manager environment, only produces
an intermediate executable. Missing are the resources, which in PM may be
thought of as the language-specific components of the application. Menus, title
and message strings, dialogs, and icons are all examples of resources defined
through the resource source file (.RC). The resource compiler, RC.EXE, is

invoked against the resource source file to produce an intermediate compiled

version of the resource (.RES). RC.EXE is invoked again to embed the .RES

file into the .EXE, in order to make the resources available to the application.

.RC
RC.Exl"'I

.RES

RC.EXE

.EXE

~ ICC.EXE .OBJ

~ .DLL
LINK386.EXE

I
.DEF IEXE .LIB

'Base MI

• Overview

• Multi-threading

• Memory Management

• OS/2 File Functions

One.Up Cclrporation

Several things must come together to ensure the success of an OS/2 applica
tion. Naturally, its use of the Presentation Manager interface will greatly
enhance the application's usability. This will be covered in a later section.
Equally important, however, is the application's intelligent use of base operat
ing system features to improve performance and throughput. For an OS/2
application to achieve its full potential, it should be multi-threaded and use the
32-bit linear memory model.

The intelligent use of threads is probably the single largest boost in perfor
mance and throughput in the OS/2 environment. A thread in an OS/2 applica
tion can be thought of as simply an asynchronous function call. In other words,
instead of executing sequentially through one function call after another, an
OS/2 application can invoke a thread function and return immediately to the
caller, so that both functions execute simultaneously. Thus, while saving the
current contents of a document to disk in a secondary thread, an editor may
continue to receive and process further keystrokes from the user. Or, a spread
sheet application might do a recalculation in a secondary thread, allowing the
user to continue to manipulate other cells or load and use another sheet at the
same time.

The 32-bit linear memory scheme in OS/2 2.x removes the difficulty of dealing
with memory segments as in earlier versions of the operating system. Instead
of allocating memory as a collection of variable-sized segments, with a maxi
mum segment size of 64 K, memory objects are allocated from a flat address
space with a theoretical maximum size of 4 gigabytes. Each object, no matter
how big, can be treated as contiguous. Pointer manipulation becomes much
easier since there is no need for concern about crossing segment boundaries.
The objects are divided by the operating system into pages of 4K in size, which
form the basic unit for virtual memory management. OS/2 will swap individual
pages (rather than entire segments) to disk and back as necessary improving
the performance of the memory manager.

The example program BROWSEl.EXE illustrates these concepts as well as the
file system APis. Source code is provided in the files BROWSELH and
BROWSEl.C. This program reads a text file from the disk (the file name can
be supplied as a command line argument) and prints the contents of the file to
stdout. Reading the file is be done in a secondary thread, so that the main()
function is free to perform other work, if necessary. The file is read into a
dynamically allocated memory buffer. When the thread finishes, main() prints
the contents of the file.

OS/2 enables multitasking at three levels. First, and most obvious to the end

user, is the fact that multiple sessions can be executed on the desktop. A ses

sion may be thought of as a collection of logical devices - logical screen, key

board and mouse, which are mapped to the physical devices if the session is in

the foreground. OS/2 devotes a different session to each type of application

that can be run - DOS, Windows, OS/2 Full Screen, and Presentation Man

ager. In other words, when a program starts up, OS/2 determines and builds the

appropriate session in which to execute that program. This information is

determined from the .EXE file itself, and may have been embedded by the

linker.

Session #l

Scssion 113

Process#!

Session 112

Proc.

#2

A process, in OS/2, is an instance of an executable file loaded into memory. If

a program spawns a child process (loads and executes another executable file,

using the DosExecPgm() API function) then both processes are sharing the

same session. That is, they are sharing the same logical (and possibly physical)

devices. If two full-screen processes were to run in the same session, and write

to stdout at the same time, then the output from both would appear, probably

mixed, on the screen. This is the second level of multitasking available in

OS/2. Normally, only one of the processes would handle screen and keyboard

1/0, while other processes manage secondary tasks. A spreadsheet, for exam

ple, might start up a child process to do communication work on its behalf,

downloading information from a host database to be provided to the spread

sheet via shared memory.

The Presentation Manager is known as an extended session, for it is able to

share the keyboard, mouse and screen among all PM applications running.

Input and output are handled on a per-window basis among all Presentation

Manager programs, thus, there is no conflict or contention among PM applica

tions for the physical devices as could happen in the full-screen environment.

Finally, the third level.of multitasking is the creation of separate threads within
a process. A thread is simply a function that is called asynchronously so that it
executes simultaneously with its caller. All potentially long tasks (disk I/O,
calculations, database search) should be executed in threads, enabling the
application to continue to service user input. In fact, the rule of thumb for Pre
sentation Manager applications is that any task taking longer than 1110 of a
second should be threaded. This avoids the annoyance of the user being
"locked out," watching the clock pointer until the application responds. (Some
manuals are more generous, and allow a 1/2 second rule.)

Process

512M Thread

0 Files

Several resources are allocated and maintained by the system for an applica
tion, some at the process level and some at the thread level. A process can be
thought of as consisting of one or more threads, all sharing the same address
space (theoretically 4 gigabytes, but initially limited to 512 megabytes for the
sake of 16-bit compatibility) and other resources such as file handles or sema
phores. These resources are allocated and protected at the level of the process,
so it is the programmer's responsibility to ensure that no "collisions" might
occur among several threads trying to write to the same memory location at the
same time. A protection violation will only occur if a thread tries to use a
resource that is not allocated to the process, for example, referencing a pointer
that does not point to a valid location within the process address space. If that
happens, OS/2 will terminate the process causing the violation, so that all other
processes may continue to run unharmed.

The thread has its own register set and execution stack allocated to it by the
operating system. When the thread is created, the stack size may be specified.
It should be a minimum of 8K, and could easily be much larger with no impact
on performance, since OS/2 will dynamically commit pages of real memory to
the stack as required.

Every thread also has an execution priority that will determine how often it
will get serviced by the CPU. Priority is assigned on a class and level basis.
The four classes - Idle, Regular, Fixed High and Time Critical - are each subdi
vided into 32 discrete levels. A thread's priority may easily be changed using

One Up.Corporation

the DosSetPriority() API call. It should seldom be necessary, however, as OS/2

will manage each thread's execution with high efficiency. A thread performing

intensive work, such as print formatting, or file I/O, may be lowered to the Idle

class. A thread doing communication work might need to be raised to Time

Critical, to ensure that it is able to read all incoming data without interruption.

t
0

IDLE

§
Diskl/O
or Print

!
0

REGULAR FIXED
HIGH

Normal App.
Work

TIME
CRITICAL

.s
Comms.

The basic principle of the scheduler is that the highest priority ready thread

(i.e. a thread that could be doing work, if only it had CPU time) is allocated the

CPU. Time Critical threads will preempt any other threads running. Idle class

threads will only get time if the CPU is idle, when all higher priority threads

are either blocked or finished. Most threads in a process will default to the

Regular priority class unless they are explicitly changed. If there are more than

one thread of equal, highest priority in the system, OS/2 will allocate CPU time

to each as fairly as possible.

OS/2 will schedule all threads, and adjust their priorities, based on parameters

set in the CONFIG.SYS file. THREADS=512 limits the system to a total of

512 threads across all processes, although this limit can be increased to a max

imum of 4095. PRIORITY=DYNAMIC permits the operating system to adjust

thread priorities to improve overall throughput. One boost involves use of the

Fixed High priority class. When an application is brought to the foreground,

the regular class threads of that foreground process are moved to the Fixed

High class. The thread performing I/O (Reading the keyboard, or handling a

Presentation Manager message queue) will receive a further I/O boost. The

threads move back to Regular when the application is switched to the back

ground. MAXWAIT=3 configures the starvation boost that OS/2 may apply to

threads. If a thread in the Regular or Fixed High class is ready to run, and has

not had access to the CPU for 3 seconds, it is boosted in priority to a level just

below Time Critical, to try to ensure that it will receive the next time slice. (Of

course, if a Time Critical thread is running, the Regular thread will still be pre

empted.) When the boosted thread's time slice is up, OS/2 moves the thread

back to its original class and level. The line TIMESLICE=x,y is not normally

entered into CONFIG.SYS. This forces minimum and maximum lengths for

the time slices allocated to threads, but OS/2 can generally achieve better per
formance by dynamically setting time slice lengths based on current system
load.

CONFIG.SYS

THREADS=512
PRIORITY=DYNAMIC
MAXWAIT=3
REM TIMESLICE=32,248

Every OS/2 process has at least one thread, known as the primary thread and
identified as Thread One. The function main(), which is the entry point of a C
program, also represents this primary thread. Other threads, known as second
ary threads, are created using the DosCreateThread() API function. Each of
these threads is also identified with a numeric thread ID value that is returned
from DosCreateThread().

When main() terminates, the primary thread is ended. When the primary thread
ends, the process is ended, regardless of the execution status of any secondary
threads. A secondary thread should be notified (perhaps by a semaphore, or a
message in Presentation Manager) when the process is about to terminate. The
primary thread could then use the Dos WaitThread() API function to ensure that
the secondary thread has performed any cleanup work necessary before the
process ends. DosWaitThread() allows any thread to pause or block until any
other thread in the same process terminates. The API function DosExit() with
the flag EXIT_PROCESS is normally used to terminate main().

int main (void)
(

DosCreateThread (...);

DosCreateThread (...);

DosExit (EXIT_FROCESS, O)·
}

VOID fnCalc (...)
(

VOID fnPrint (...)
(

DosCreateThread() is the OS/2 API function used to create a secondary thread.
A zero return code from this function indicates successful completion; non
zero return codes indicate errors that are documented in the CP Reference. The
first parameter to DosCreateThread() is the address of a variable of data type
TID, or Thread ID. The thread ID is just an integer that uniquely identifies the
thread being created within the process. Other API functions, such as
DosKillThread() or DosWaitThread(), require the thread ID as a parameter.

·The second parameter to DosCreateThread() is the name of the function which

is to become the thread. This parameter is of data type PFNTHREAD, which

simply means a function that uses the _System calling convention. The thread
function must be prototyped and defined using _System. This is a calling con

vention unique to the CIC++ compiler, which identifies functions that will be

called by the operating system. Threads and Window Procedures in Presenta

tion Manager must be defined as _System, since in each case OS/2 will actu
ally call the function on behalf of the program.

Third, DosCreateThread() accepts an unsigned long integer which will be

passed as an argument to the thread function. A function that is to be a thread

must therefore be prototyped and defined to accept only a single four-byte

parameter. Normally, the calling function will allocate and initialize a data

structure to contain all the information the thread function will need. A pointer

to the data structure is then passed as a parameter to the thread, and either the

caller or the thread may free the structure when the thread terminates.

BROWSEI.H

typedef ntruct / / Thread argument atructure
{

CHAR !lZFileNmne [255};
HEV hevLoad;
PCH pcbFile;
ULONG ulSize;

} OPENINFO, *POPENHIFO;

I I Thread function prototype

// File name
I/ Semaphore handle
// Pointer to buffer
I I Size of file

VOID _System fnOpenThread (POPENINFO pOpeninfo);

BROWSEI.C

POPENINFO pOpeninfo;
TID tidOpen;

pOpeninfo = (POPENINFO) malloc (sizeof (OPENINFO));

otrcpy {pOpeninfo -> azFileNwne, argv[l));
pOpeninfo -> hevLcad = hevLoad;
DooCrenteThread {&:tidOpen, (PFNTHREAD) fnOpenThread,

{ULONG) pOpeninfo, O, 8192);

In its fourth parameter, DosCreateThread() accepts a flag that may be used to

indicate the initial execution status of the thread. If bit one of the flag is 0, the

thread starts executing immediately upon creation. If bit one of the flag is l,

the thread is created in the suspended state. The DosResumeThread() API

would be used, later, to start the thread executing. This way, the overhead of

thread creation (allocation of the stack and control block) can be dealt with at

an earlier point in the code, so that when the thread is needed it can be executed

with a minimum delay. Bit two of the flag affects the management of the

thread's stack.

The last parameter to DosCreateThread() is used to request the size of the

thread's execution stack. This size is expressed in bytes, and should be a multi

ple of 4096. All memory objects are rounded up in size to the nearest page. A

minimum stack size of 8K is recommended, and it may often be worthwhile to

request a much larger stack. As long as bit two of the flag in the fourth param
eter is 0, the operating system will dynamically commit pages of real memory

OS/2 Base API Programming

to the thread's stack as.needed, so that the initial overhead of a very large stack
is no greater than that of a smaller stack, with the benefit that the extra space is
available, if necessary, as the thread executes. If bit two of the flag is set to 1,
then all the memory for the stack is committed when the thread is created.

After creating the thread, DosCreateThread() returns immediately to the call
ing function. Now both the caller and the thread may continue to execute, and
OS/2 will assign CPU time slices to each thread in turn.

int fnAnimate { ...);
{

DoaEnterCritsec();
II Other threadn nun
pended

DonExitCritSec(J;
II Other threads resumed

VOID fnCalc (...)
{

VOID fnPrint
(, ..)
{

Several other API functions are available to assist in thread management. Of
these, DosEnterCritSec() and DosExitCritSec() deserve particular mention. In
many cases, a thread in a process will need to complete a particular set of
instructions without interruption. A typical example is a thread that is dynami
cally updating a window's appearance in Presentation Manager, perhaps to do
some simple animation work. If this thread were preempted while drawing to
the window, the animation may pause or appear incomplete. Such a job is
called a critical section, and the thread should call the DosEnterCritSec() API
before beginning the work. This will cause all other threads in the same pro
cess to suspend, so that the animation thread is less likely to be preempted.
When the critical work is complete, the thread must call DosExitCritSec() to
re-enable execution of the other threads in the same process. These calls have
no effect on other processes, so a thread may still be preempted by a higher pri
ority process becoming unblocked.

DosKillThread() may be used to cause immediate termination of another
thread, but it is usually safer to allow the thread to terminate itself using the
DosExit() API, with the flag EXIT_THREAD. The DosExitList() API is used
to register exit list functions to OS/2 on behalf of the current process. Then,
when the process terminates, OS/2 keeps one thread of the process alive long
enough to execute all the exit list functions. These functions could be used for
process-wide clean up of resources such as memory or file handles.

By using multiple threads, an OS/2 application can significantly enhance its
throughput. For example, the sample program browse! uses the
DosCreateThread() API to create a secondary thread, which will open a file
and read it into memory. While the thread is busy, main() is free to do other
work. In this case, it simply prints messages to the screen.

One Up Corporation

·To know when the thread has finished, browsel uses an OS/2-provided flag

known as an Event Semaphore. The semaphore is created using the

DosCreateEventSem() API function, and identified by a handle which is

passed as part of the argument data structure to the thread. A semaphore, in

general, is simply a four-byte flag in memory that has two states (on or off).

The meaning of the semaphore state depends on the application context. Two

base types of semaphores are provided with OS/2. Mutex (mutual exclusion)

semaphores are used to serialize the execution of threads if they are all making

use of the same protected resource. Event semaphores are used for synchroniz

ing one or more threads on the occurrence of a specific event, in other words,

signalling other threads that an event has occurred.

BROWSEl.C - Main Thread

Do11CreateEventSem(NULL, // No Name
&hevLoad, // Handle
O, // NO Flags
FALSE // Initially Set

I I Do other work ... then WD.it for
/I file to be loaded
DoaWaitEventSem(hevLoad, // Handle

-1); JI Indefinite wait

BROWSEl.C - Secondary Thread

II Notify when finished
DonPontEventSem(hevLcad);

The two states of the event semaphore are referred to as Set and Posted. The

event semaphore behaves very much like a traffic light, with the Set state cor

responding to a red light and the Posted state corresponding to green. If one or

more drivers encounter a red light, they all stop. If one or more threads call

Dos WaitEventSem() and specify a semaphore that is in the Set state, then all

those threads are blocked from further execution. When the traffic light turns

to green, all waiting cars may proceed. When another thread posts the event

semaphore using DosPostEventSem(), all waiting threads are unblocked and

dispatched again for execution.

In the sample program browse 1, main() creates an event semaphore that is

already in the set (red light) state. The semaphore handle is passed to the sec

ondary thread, along with the file name entered by the user, in the argument

data structure. When main() has finished doing its other work it calls Dos Wait

EventSem() to block until the file has been completely loaded by the secondary

thread. The thread calls DosPostEventSem() when it is finished. Then main()

continues execution, and displays the contents of the file on the screen. Thus

the event semaphore is used by the secondary thread to signal to main() that the

file load operation has completed.

With the introduction of the 32-bit flat memory model in version 2.0, OS/2

gained a significant increase in performance. Prior versions of OS/2, based on

the 16-bit Intel 80286 architecture, managed memory in segments. Each seg

ment was variable in size, up to a maximum of 64K (the maximum that can be

addressed in 16 bits). OS/2 implemented its virtual memory scheme by swap

ping individual segments to the SWAPPER.DAT file on disk as necessary to

make room for new memory requests being made by applications. As segments

were moved from RAM to disk and back, fragmentation would occur in RAM

due to the variable sizes of the segments. OS/2 would then dynamically move

segments in RAM to try to maximize the amount of free space available. This

segment motion went on continuously, and degraded performance. Also, the

fact that memory could only be allocated in units of 64K caused some pro

gramming difficulty. A file to be read into memory, for example, would have to

be divided across multiple segments. Any manipulation of that file in memory,

or pointer arithmetic, had to take into account the segment boundaries.

These issues all disappear with OS/2 2.0 based on the Intel 80386 architecture.

This 32-bit processor still uses a segmented scheme, but segments may be up

to 4 gigabytes in size. This is large enough that the operating system and all

application code and data can coexist in a single segment. Memory within this

segment is now divided into pages of 4K in size, which is the basis of the vir

tual memory implementation, almost exactly as is done in the mainframe S/370

environment. Since individual pages are swapped back and forth between

RAM and SWAPPER.DAT on disk, there is no problem of fragmentation and

no overhead of segment motion. Also, each process can allocate memory

objects of any size. The size of an object is automatically rounded up to the

nearest multiple of 4K, so that it will occupy a whole number of pages. This

greatly eases the manipulation and management of large memory objects, and

also improves overall operating system performance.

Although the 32-bit addressing scheme allows a theoretical virtual memory

limit of 4 gigabytes, OS/2 today restricts each process to an address space of

512 megabytes in size.This provides compatibility with older 16-bit code. In

the 80286 arcliitecture, a process would access its memory segments via

entries in a local descriptor table, containing 8192 entries, mapping a total of

512 megabytes. A 16-bit process running on OS/2 2.1 can still share memory

with a 32-bit process on the same system. Or, a 32-bit process can call a func

tion in a 16-bit DLL installed on the same system and share pointers with the

DLL function.

<I)
u

"' °' <Zl

"' "' 1l
"Cl
"Cl ..:
"' ' .
"' <l)
u
8 ' .
°"'

4GB

512M

Shared

Pr

0

iv ate

, '
' J

Swap
V" '
'- . J

As a process executes in OS/2, any private memory that it allocates (the .EXE

itself, stack, or other allocations) grows up from the bottom of the address

space. Any shared memory allocated or used (.DLL code, or memory allocated

for the clipboard or a DDE conversation) grows down from the top of the pro

cess address space. OS/2 guarantees a 64 megabyte minimum size for both the

private and shared memory regions.

Multiple processes run simultaneously on OS/2, each with its own 512 mega

byte address space. Each of these must fit into limited system memory (RAM

plus swap space on disk) with full protection. This is accomplished by using

virtual pointers, which reference pages of memory by means of a page direc

tory and page tables allocated to the process. Each process has exactly one

page directory, which is simply a list of I024 entries. The high-order IO bits of

a pointer (bits 31 through 22) are treated as an index into the page directory.

Each page directory entry points to a page table, which is another list of I024

entries. The middle IO bits of the pointer (21 through 12) index into the spe

cific page table. The page table entry points to the physical page, either in

memory or swapped to disk. Finally, the lowest 12 bits of the pointer (11

through 0) provide the page offset, or the location of this pointer within the 4 K

of the page itself.

512M
~Application Virtual Pointer

I I I I -
<l.l
u

"'
3 22 21 12 11 10 ,__

°'" U'.l .
U)
U)

I .
il re
""' ""' <

" . :::E
<
~

U)
U)

<l.l
u
0

P::
J ,__

Page
~ -

Tables

0
Swa Page

Directory

A

Since each process has a separate page directory, all pointers are therefore dis
tinct per process and memory is protected. Since there are 1024 entries in the
page directory, and 1024 entries in each page table, and each page is 4096
bytes in size, this scheme does indeed allow a 4 gigabyte address space per
process, although it is currently artificially limited to 512 megabytes. As far as
the process is concerned, it can be allocating and accessing memory objects
that are treated as contiguous within its address space, since the page table
entries pointing to the pages that comprise any object are sequential. However,
those pages may be scattered in real memory as OS/2 swaps pages to disk and
back. This is transparent to the application; pointer arithmetic on a memory
object will simply change the page table index as a page boundary is crossed,
and references are then made to the new page wherever it may exist in real
memory. This scheme maximizes flexibility and performance for the operating
system while also maximizing ease of use for the programmer.

The first API function for memory management is DosAllocMem(). This API
is used to allocate a memory object of any size, and returns a pointer in the first
parameter. The size is specified in the second parameter, and is rounded up to
the nearest multiple of 4096. The last parameter to DosAllocMem() is a flag
indicating attributes to be set on the memory object. DosAllocMem() returns
zero to indicate successful allocation, and non-zero values indicating possible
error conditions (out of memory, or invalid attributes).

The attribute flags specify the access permission to the memory as well as
other characteristics of the object. These flags can be combined using the C bit
wise OR (I) operator. The attributes may be changed in some cases with the
DosSetMem() API call. Access permission can be one of PAG_ WRITE,
PAG_READ, or PAG_EXECUTE. Every object should be allocated initially
with PAG_ WRITE. Specifying a lower permission will deny even the process

allocating the object write access to the pages, and the permission may not be
increased with the DosSetMem() API function. PAG_READ or
PAG_EXECUTE would really only be used in giving shared memory access to
another process, to ensure that only one process may write to the memory.

ulFlaga = PAG_WRITE;
ulSi:i:e "' Ox4000;

re = DosAllocMem(&p, I I Pointer returned
ulSize, // 16K of Memory
ulFlags);// Writable, uncommitted

One other important attribute flag is PAG_COMMIT. If PAG_COMMIT is
specified when allocating a memory object, OS/2 finds physical pages of RAM
to back the number of page table entries reserved for the object. In other words,
the object actually occupies real memory, and is immediately usable. If, how
ever, PAG_COMMIT is not specified, then only the page table ent1ies are
reserved, and no real memory is occupied. Such an object is called a sparse
memory object. Of course, the pages must be committed (using DosSetMem()
and specifying PAG_COMMIT) before they may be used. This is useful when
allocating very large memory objects. If a large object is allocated sparsely,
there is no initial overhead incurred by the operating system to find all the
pages. As the application's use of the object grows over time, individual pages
or sets of pages may be committed when needed. This way, the overhead is
only incurred when absolutely necessary, and overall performance may be
improved.

Other attribute flags are also available for memory objects. OBJ_GIVEABLE
and OBJ_GETTABLE, for example, would be used with the allocation of
shared memory. PAG_GUARD is used by the operating system in stack man
agement, and may also be used to make sparse memory management a little
easier and more flexible. PAO_ WRITE, PAG_READ, and PAG_COMMIT,
however are the most commonly specified with DosAllocMem() and DosSet
Mem().

The DosSetMem() API allows an application to change the attribute flags of
any range of pages in a memory object. If the access permission is to be
changed, the page must be de-committed first. (Either the object was initially

,1,~,~;~;*.~(:~; ;\, ';(,,'N>!f:·.·

allocated as sparse memory, or a range of pages could be explicitly de-commit
ted using DosSetMem() with the PAG_DECOMMIT flag.) DosSetMem()
accepts a pointer to the base of any page as its first parameter, and the size of a
range of pages (expressed in bytes) as the second parameter. The flags to be set
to the range of pages are passed in the third parameter. In the example above,
DosSetMem() is used to commit the first two pages of a memory object, with
the PAG_ WRITE access permission.

PVOID pTemp;

pTemp = p + 4096;
ulFlago = O;
ulSize = Ox3000;

rc=DOoQueryMem(pTemp, // Pointer in Object
&ulSize, // Initially 12K, returned SK
ulFlags); //Returned writable, committed

Using DosQueryMem(), an application may query the attribute flags set for
any range of pages in a memory object. A pointer to the beginning of the range
is passed in the first parameter, and the size of the range (in bytes) is passed in
the second parameter. The flags are retrieved in the third parameter. Both the
second and third parameters to this function are addresses of integers, indicat
ing a call-by-reference. The value of the third parameter (flags) must be zero
when Dos Query Mem() is called, and it is set to be the current state of the flags
upon return of the call. The size initially specifies the range to be queried.
Upon return, it provides the size of the contiguous block of pages within the
range queried that has identical flags set for all pages. For example, assume
that a pointer, pTemp, points to the first of three pages within some memory
object. The first two pages are writable and committed, but the third page is
writable and sparse. The integer ulSize is initialized to be the size 12K, and the
integer ulFlags is initialized to 0. Calling DosQueryMem(pTemp, &ulSize,
&ulFlags) would return a value of SK in ulSize, and PAG_ WRITE I
PAG_COMMIT in ulF!ags.

/* Releaoe the Memory */

re = DonFreeMem (pl;

/* Error to reference p */

Finally, DosFreeMem() is used to release an area of memory previously allo
cated with DosAllocMem(). DosFreeMem() accepts a single parameter, a
pointer to the base of the memory object being released. When this call com
pletes, the page table entries for the memory object (as well as the pages of real
memory) are marked as free, and may be re-used by subsequent allocations. At
this point it would be an error to reference the pointer again.

',,',',,',' '

One Up Corporation

ulFlaga = DOSSUB_INIT;
ulSi::e = 4096;

re = DoaSubSetMem(p, // Pointer to committed 12K
ulFlaga, // Initialize a new pool
ulSize); //Initial pool aize 4K

Allocating memory with DosAllocMem() is good for medium to large sized
memory objects that would span multiple pages. Very large objects should be
allocated as sparse, with pages committed as necessary to reduce overhead.
However, DosAllocMem() is not good for small allocations that are less than
one page in size. Since the size of each object allocated with DosAllocMem()
is rounded up to the nearest multiple of pages, using this call for small objects
can waste a great deal of memory.

In these cases, OS/2 provides a flexible memory suballocation capability. A
larger memory object can be used as a heap, with smaller allocations taken
from free space in the larger object. The memory must be prepared using the
DosSubSetMem() API function. DosSubSetMem() accepts in its first parame
ter a pointer to the object which will be used for suballocation. The second
parameter to DosSubSetMem() is an option flag which indicates how the
object is to be prepared. A flag value of DOSSUB_INIT initializes the object,
and reserves 64 bytes from the base of the object for OS/2 to control the subal
location work. This area would be used, for example, to maintain a list of free
areas within the memory pool. Finally, the third parameter to DosSubSet
Mem() is the initial size of the pool, in bytes. This size should be smaller than
the total size of the memory object. Then, the pool can later be increased in
size by calling DosSubSetMem() again with the flag DOSSUB_GROW.

ulSize = 80;

re = DoaSubAllocMem(p, // Pointer to base of heap
&pTemp, // aub pointer returned
ulsi:z:e);// 80 byte object

Once the memory pool has been initialized with DosSubSetMem(), DosSubAl
locMem() may be used to carve out a small area of memory. A pointer to the
base of the pool is passed in the first parameter to DosSubAllocMem(), and a
pointer to the beginning of the suballocation is returned as a call by reference
in the second parameter. The size of the suballocation is passed in the third
parameter to DosSubAllocMem(). DosSubFreeMem() is used to release the
suballocated memory. This API call also accepts three parameters: a pointer to
the base of the pool, a pointer to the area being released, and the size of the
area being released.

One. Up Corporati~h

OS/2 Base APT Programming

As calls to DosSubAllocMem() and DosSubFreeMem() are made to the same
pool, it is possible for the memory in the pool to be fragmented since each sub
allocation must be contiguous in the pool. OS/2 provides no cleanup capability
for this. DosSubAllocMem() simply allocates memory on a first-fit basis from
the beginning of the pool, and this scheme works well for sub-allocation of
similar size, as in the case for linked list or B-tree structures. The first-fit algo
rithm also allows the pool to be allocated as sparse memory, so that pages may
be committed as necessary to handle sub-allocation when they occur. It is inter
esting to note that the C Set++ run-time library performs suballocation in order
to satisfy memory requests made using the malloc() function.

ulSize = 80;

re "'DoaSubFreeMem(p, // Pointer to baae of heap
pTemp, // sub pointer to free
ulSize); I I 80 byte object to free

In the sample program browse!, DosAllocMem() is used by the secondary
thread to allocate enough memory to hold the file selected by the user. In this
example, the memory is allocated as committed and writable, so that it is
immediately available for the DosRead() API function to read the file. When
the function main() has finished displaying the file, it calls DosFreeMem() to
release the memory. The C library function malloc() is used to allocate storage
for the small data structure used to share the pointer, file size, and semaphore
handle between main() and the secondary thread. This data structure is released
using the library function free().

OS/2 ~i{e ·rnru.c

OS/2 provides API functions to access files on disk, isolating the programmer
from the details of the underlying file system. FAT or HPFS files may be
accessed in identical fashion.

DosOpen() is used to create or open a file. The file name is specified in the first
parameter. It can be just a file name in the current directory of the process, or a
path and file name. This parameter is a string of up to 255 characters (the max
imum file or path name length in FAT or HPFS). In the second parameter, OS/2
returns a handle to be used for all future references to the file. In the third
parameter, OS/2 returns an integer indicating the action taken as the file was
opened (for example, whether a new file was created or an existing file
opened.) The fourth parameter specifies an initial size for a new file being cre
ated; this parameter is ignored if an existing file is being opened. File attribute
flags may be specified in the fifth parameter, again, these only apply to a new
file being created. The sixth parameter indicates a combination of actions
requested. This could request either creation or failure if the file does not exist,

One Up Corporation

or, if it does, either open or failure. The open mode is specified in the seventh

parameter. This could indicate the access permission (read/write, for example)

requested by the process, as well as sharing permission (deny other processes

write, but allow read). The last parameter to DosOpen() may be used to specify

a buffer of extended attributes for the file.

HFILE hFile;
CHAR DzNrune[J = "c:\\config.syn";
ULONG ulAction, re;

/* Open an existing file to read */

re = Do110pen(azName, // File Name
&hFile, // File handle returned
&ulAction //Action performed
0, // No initial size
0, // No initial attributes
OPEN_ACTION_FAIL_IF_NEW l
OPEN_ACTION_OPEN_IF _EXISTS,
OPEN_SHARE_DENYWRlTE 1
OPEN_ACCESS_ll.EADONLY,
0); II No EA'S

DosQueryFileinfo() may be used to determine more information about the file.

This function accepts four parameters, beginning with the file handle to be

queried. The second parameter is a flag indicating how much information is

needed. FIL_STANDARD, for example, would request level 1 information

which contains only the file's creation and last access time stamps, and the file

size. Information levels 2 and 3 provide more information about the file's

extended attributes. A pointer to a memory buffer, and the size of the memory

buffer, are specified last. The buffer is filled with a data structure containing

the information requested by level.

FILESTATUS fDtllFile;

rc=Do11QueryFileinfo(hFile, //Query file information
FIL_STANDARD;
&f11t0File, // File statuo structure
oizeof (FILESTATUS));

All or part of a file may be read into memory using DosRead(). The file handle

to be read is passed in the first parameter, and a pointer to a memory area is

passed in the second parameter. The number of bytes requested to be read is

specified third, and the number of bytes actually read is returned as a call by

reference in the fourth parameter.

PVOID p;
ULONG ulByten;

rc=Do11AllocMem(&p, fstsFile.cbFile,
PAG_WRITE I PAG_COMMIT);

rc,.DosRead(hFile,
p,
fstsFile.cbFile,
&ulBytes);

11 File handle to read
11 Pointer to memory buffer
II n of bytes to rend to buffer
II ff of bytes nuccessfully read

rc"DoBCloae (hFile); 11 Done rending - clone file

Dos Write() works the same way as DosRead(), writing the contents of a mem
ory buffer pointed to by the second parameter, to the file handle specified in the

first parameter. The number of bytes requested to write is in the third parame-

ter, and Dos Write() returns the number of bytes successfully written in the
fourth parameter.

DosClose() closes a file. The only parameter to this function is the file handle
to be closed. After this call is complete, the file may no longer be used unless it
is re-opened.

In the sample program browse 1, all file management is done by the secondary
thread. The thread opens the file for read only, and will fail if the file does not
already exist. DosQueryFilelnfo() is used to determine the file size, from level
1 information requested. This size is passed to DosAllocMem() to allocate suf
ficient memory to hold the file. DosRead() is used to read the entire contents of
the file into the memory buffer, so that it may be displayed as a whole later.
Finally, the file is closed with DosClose(). If any of these calls should fail (a
non-zero return code indicates failure) the thread notifies the function main()
of this failure by indicating a zero file size in the shared data structure. If none
of the calls fails, the pointer to the memory buffer and the size of the file are
passed back to main() via the shared data structure, so that main() can display
the file contents.

• Programming for the OS/2 Presentation Manager is very

different than standard C programming. The complexity of

OS/2 itself adds to the already steep learning curve. The

following pages explain the basics and concepts of PM

programming and should help new PM programmers get

started.

• Introduction and Concepts

• PM Basics and Message Flow

• Function of main() in a PM Application

• PM Window Classes and Window Creation

• PM Window Procedure and Messaging

• PM Output and Window Painting

• Window Data Encapsulation

• Menu Resource Management

Introduction and
Programming for the OS/2 Presentation Manager can, initially, appear to be a
very complex, involved procedure. The vast number of API functions alone is
daunting, and the potential for error appears great. These perceived difficulties
need not be the case. Presentation Manager is no more difficult than any other
environment, only substantially different due to its use of an Object Oriented
programming model. Although it is not a pure Object Oriented environment
(according to most standard definitions) Presentation Manager does make use
of many terms and concepts from Object Oriented theory. Keeping these con
cepts in mind, and adhering to a few basic principles, will make Presentation
Manager programming a much easier and more productive task.

First, it is worthwhile to define several terms as they apply to the PM environ
ment. Object Oriented terminology begins, naturally, with the object. A useful
definition of an object is an entity which encapsulates both data and function.
This contrasts with traditional, structured programming models in which a
sharp distinction is drawn between code (function) and data (structures, vari
ables, files, etc.) In theory, any function could act upon any data. This lies at
the root of "side effect" errors in a typical program. In the object oriented
model, data is kept absolutely private to a specific, well-defined set of func
tions that define an object's interface. These functions are often called the
method of the object. The only access to an object's data is through invocation
of a function defined in the method of the object.

For example, think of a car as an object. Every car encapsulates certain pieces
of information - speed, mileage, direction, fuel level, engine temperature, etc.
This data may only be modified through specific functions defined to the car
object - start the engine, engage the transmission, accelerate, turn, etc. There is
no way to alter a car's mileage without driving it.

To continue the car analogy, one does not need to be a mechanic to know how
to drive. A function defined in an object is invoked through some very simple
message or event. The message or event just notifies the object that the func
tion must be invoked, and possibly passes some information to the object. A
driver need know nothing of ignition systems, wiring, fuel injection, or spark
plugs to know that a turn of the key will start the engine. Simple events like
turning the key, turning the steering wheel, or pressing the pedals invoke much
more complex functions that cause the car object to change state. One benefit
of this architecture is that the messages form a consistent interface across mul
tiple objects. All cars respond to essentially the same messages, so learning
one car enables the driver to drive many other cars as well.

In PM, the window is the fundamental object. The window may encapsulate
state information such as visibility, size, and position. The most important data
for a window is likely its application-specific information that affects what it
displays to the user or how it behaves in the context of a larger process. For

example, a text editor window would encapsulate perhaps the file name that it

was working on, the foreground and background colors, and fonts, among

other information. This data is accessed through a function known as the win

dow procedure, which is invoked by PM itself in response to messages in the

system, most of which result from user activity. For example, a simple message

known as WM_PAINT invokes a window's window procedure, causing it to

refresh its contents on the screen. This can involve very complex graphics rou

tines working with encapsulated state information about the window. Most of

this complexity is isolated from the user, and often even from the programmer

as well. Of course, all windows need to be able to draw their contents to the

screen, and this is invoked by the same message no matter what the window.

In true object oriented theory, every object belongs to a class. A class is defined

as an abstraction, a description of common function (behavior) and possibly

common information across a set of objects. This set may be empty; normally

the programmer begins by defining a class and then creating individual objects

as instances of the class when necessary.

Cars, for example, are often classified by size as sub-compact, compact, mid

size, and luxury. A specific car may be an instance of the class subcompact,

which is defined by wheelbase, engine size, and other features. But sub-com

pacts and luxury cars still belong to the more general class of car, which may

be defined as a four-wheeled self-propelled vehicle. Then sub-compact is said

to be a subclass of the class car. This class hierarchy can be extended almost

indefinitely; the class car might be a subclass of vehicle (boats, airplanes, etc.)

which is a subclass of machine. Each level of the hierarchy is more abstract

than the one below.

An important side effect combining messages and classes is polymorphism.

This only means that objects of different classes may respond to the same mes

sage, but in different ways. A subcompact and a Formula 1 sports car both

respond to the accelerate message, but performance is vastly different in each

class.

In PM, every window belongs to a class. There is no defined class hierarchy;

just one level of abstract class definitions and then windows created as

instances of particular classes. The window class defines the window proce

dure, so that in fact all the functionality for a window is drawn from its class.

This, as we shall see, will have important repercussions regarding data encap

sulation to individual windows. A window class in PM is defined by a class

name which is associated to a specified window procedure, as well as some

default style flags that determine rudimentary behavior of the windows. Most

of the components of a standard PM window are in fact individual windows of

PM-defined classes. For example, the title bar and the system menu are sepa

rate windows; both belong to PM-defined classes with their window proce

dures in DLLs provided with PM. Window classes enable polymorphism in

PM as well. For example, a double-click action on mouse button 1 is a message

that is received by whatever window the mouse is on at the time. If the user

PM Coding

double-clicks on the title bar, this has the effect of maximizing the entire aggre
gate window (or restoring it from maximized). If the user double-clicks on the
system menu, this causes the aggregate window to be destroyed. The same
message has different effects on different windows.

It will be important to keep these object oriented definitions in mind through
out the following discussion of the PM architecture and application model. A
thorough knowledge of how messages are generated, how they cause invoca
tion of the window procedure, and how they are dealt with from there, forms
the key to understanding Presentation Manager programming.

PM <J3asics ana Message
To understand the structure of a PM application, it is important first to under-
stand the architecture of the PM messaging system. Since this is a multitask-
ing, multi-process environment, no application may be permitted to "own" the
keyboard or mouse to retrieve input. (The display must also be shared for out-
put, this will be discussed later.) Therefore PM operates in an event-driven
manner. Interrupts generated by the hardware subsystems or device drivers are
picked up by PM and translated into data structures representing messages.
These are then queued for delivery to the applications, on a per-window basis.
Other messages are generated directly by PM or by individual windows, and
these are delivered directly to the application's queue. When a window receives
a message, it invokes the associated window procedure which analyzes the
message and takes whatever action is necessary in response.

Keyboard &
Mouse Events

System
Queue

Input
Router

Focus?
Mouse Position?

Application
Message
Queues

Message
Loop

Window
Procedure

If an application generates a message, it always identifies the target window to
receive the message. However, PM must determine the window receiving the
mouse and keyboard messages. This is fairly straightforward, with a few minor
exceptions. First, exactly one window on the desktop is always identified as
having input focus. The user may identify the focus window by clicking on it
with the mouse; the window may then show a cursor or display a selection
rectangle to indicate that it has focus. If an application client area has focus, the
title bar and frame are colored. Keyboard messages, in general, are destined for
the focus window. Some keystrokes, however, have system-defined meanings.

One Up Corporation

. Ctrl+Esc, or Alt+Esc, for example, cause the operating system to change focus
between applications. These keystrokes are trapped by PM and not delivered to
application windows. Mouse messages are always delivered to the window the
mouse pointer is on, with the exception that any application may temporarily
capture mouse messages by calling the WinSetCapture() API function.

The input router delivers messages to applications one at a time; that is, it will
not retrieve another message from the system queue until the last message has
been dealt with. This is to ensure that focus changes between windows are han
dled correctly. This will have important consequences for multi-tasking in a
PM application, since an application could lock out the entire system by not
responding to its message queue.

The input router delivers the mouse and keyboard messages to an application
defined message queue. Other inter-application messages (DDE conversations,
for example) or system-generated messages (to repaint the screen) are also
placed in the application message queue. The application must create the mes
sage queue for itself; the existence of a message queue defines a PM applica
tion. The application will retrieve messages one at a time from this queue, and
they will then be processed by the window procedure associated with the desti
nation window. Without a message queue, most PM API functions are unavail
able. In a PM application, the primary thread must have a message queue to
deal with user input. Secondary threads, however, may also create their own
message queues if necessary.

Throughout the process so far, every message is represented as a data structure.
This structure is defined in the header file pmwin.h, as data type QMSG. The
structure has six members, of which the first four are most important. The des
tination window handle of every message is the first member of the structure,
and is of data type HWND. A handle uniquely identifies some object to the
system, and is really defined as an unsigned long integer. Thus the window
handle is nothing more than a 32-bit system-wide unique value identifying a
particular window. The handle is assigned at the time the window is created.
The second member of the QMSG structure is of data type ULONG, an
unsigned long integer again. This member is normally a system-defined or
application-defined constant that identifies the message. WM_ CHAR, for
example, defines keyboard messages and WM_BUTTONIDOWN is the mes
sage that occurs when button one of the mouse is pressed.

typedef atruct _QMSG
{

mmn hwnd;
ULONG

"'"""" "'"""" OLONG
PO INTL

} QMSG,

m11g;
mpl;
mp2;
time;
Ptl;

'*PQMSG;

while (WinGetMag(...))
WinDiapAtchMsg(.•• J;

PM Dispatcher

Window Procedure

The next two members of the QMSG data structure are message parameters, of
data type MPARAM. Although the actual data type for MPARAM is pointer to
void, the contents of the message parameters vary depending on the message.
Characters, long or short integers, window handles, pointers, all may be
packed into or retrieved from the parameter. In a mouse message, for example,
the first message parameter, mp 1, will contain two short integers representing
the mouse position. In a character message, the second parameter, mp2, con
tains the ASCII value of the keystroke that was hit. These parameters will be
dealt with in more detail later. Finally, the QMSG data structure contains the
time and mouse location when the message occurred.

The application must retrieve message structures from its queue, and deliver
them for processing by window procedures. This is the job of the message
loop, which consists of the two API functions WinGetMsg() and WinDis
patchMsg(). WinGetMsg() retrieves a single message from the queue, or
blocks if the queue is empty. When a message is received, WinDispatchMsg()
passes it on to PM for processing by the window procedure. WinDis
patchMsg() will not return until the message has been processed by the win
dow procedure.

PM determines, from the window handle in the QMSG structure, what window
procedure ought to be invoked. This is a fairly simple procedure. When a win
dow is created, it is always created as an instance of a class. In true object ori
ented style, every object must belong to a class. When a class is defined or
registered to PM, its associated window procedure is identified. Thus when a
window is created, PM records in an internal window table the window proce
dure that will service the window. When a message is dispatched, the window
procedure is determined by a look up in this window table. WinDispatchMsg()
is an indirect invocation of the window procedure by the application.

Finally, the window procedure is invoked to deal with the message. This may
be an application-defined window procedure, but in many cases will actually
be a PM-defined window procedure. Every window the user deals with is actu
ally assembled from many component windows -- the frame, title bar, menu,
scroll bars, and others. Each of these windows, known as controls, is of a PM-

.defined window class that is registered at system initialization and has a win
dow procedure built into the DLL file PMWP.DLL. Messages destined for
these windows flow through the queues and message loop as described above,
but are then passed to the control's window procedure in the DLL. The client
area within the frame is usually application-defined, of a window class and
window procedure private to the application. PM then invokes the application's
client window procedure, calling back into the application's .EXE if necessary.

Control Windows
(Public Classes)

/************************
/*
I* BROWSE2 - a simple ASCII f
f* thread and illustrates scroll

Client Window 1*
(Private Class) ____ /* Feite l<raay, 08/93 One Up

f*

The window procedure must identify the message received, and take whatever
action is necessary. A Title Bar window procedure, for example, will respond
to the message identified as WM_BUTTONlDBLCLK by causing its associ
ated frame to be maximized. The client area of a text editor will respond to
WM_ CHAR by displaying the character entered by the user. A much more
detailed description of the window procedure will be the subject of a later
section.

It is important to note that at several steps along this message flow, processing
is synchronous. Beginning at the bottom, the WinDispatchMsg() API function
is really a synchronous call to a window procedure, albeit indirectly through
PM. This function will not return until the window procedure returns from
identifying and dealing with the message. WinDispatchMsg() is in a loop with
WinGetMsg(), so another message will not be retrieved from the queue until
the current message has been completed. Also, PM will not retrieve another
mouse or keyboard message from the system queue until the application
returns to call WinGetMsg(), in other words, when the application has finished
dealing with its cmTent message. This means that if an application takes a long
time dealing with a message in its window procedure, there is a real risk that
the user is locked out from the entire system. To avoid this risk, a rule of thumb
that PM applications should adhere to is that the window procedure must deal
with each message it retrieves in under 1110 of a second, although some docu
ments are more lenient and allow 1/2 of a second.

Can a database search, file load, or spreadsheet recalculation be guaranteed to
complete in so short a time? Of course they cannot, but the window procedure
may certainly still return within 1/10 of a second as long as the programmer is
careful to make judicious use of threads. For every message received in the

window procedure, the programmer must decide if the processing for the mes

sage may be too long. If it is, then a thread function should be invoked to per

form the long job. As soon as the thread is started, control is returned back to

the window procedure -- which can return it back to the message loop, which is

now free to retrieve another message from the queue. In this way the applica

tion's interface is free to deal with further user interaction. Although there may

or may not be much other application function available while the thread is

busy, at least the user is also able to switch focus away from the application

and work with another set of windows entirely. Meanwhile, when the thread

finishes, it must notify the application. Although a semaphore could be used, it

is much better style for the thread simply to place a message on the applica

tion's queue: When the client window procedure is invoked for this message, it

will know that the thread has finished. This message would normally be a user

defined message set up in the application's header file. Multi-threading is,

therefore, essential to a good PM application, to ensure its own responsiveness

as well as that of the entire operating system, to user requests.

:Function of main() in a
A PM application may be divided into two distinct components. The function

main() does all the initialization and termination work, as well as the message

retrieval from the application's queue as described above. The second compo

nent consists of one or more window procedures, which provide specific func

tionality for application-defined windows. The function provided by main() is

almost the same across all applications. This section will examine in detail the

standard API functions executed here.

int main(...)
{

/* Initialize & Create
Queue & Window11 * /

/* Meeeage Loop */

/* Terminute */

Window
Procedure 1

Window
Procedure 2

First, main() must perform its initialization work. This includes variable decla

rations and header file include statements, as well as the creation of window

objects and registry of window classes, if necessary. Normally, an application

will need additional function above and beyond that provided by standard PM

defined window classes. This is accomplished by registering a new window

class (that identifies a new window procedure) and then creating windows

from the new class.

#define INCL_WIN II Include PM header info.

#include <OB2.h> II Include OSl2 benders
#include <etdlib.h> II c language headern
#include "browse2.h" II App. private headeru

int main (int argc, cha:e "argv(J)
{

HAB hab;
HMO hmq;
HWND hwndFra.me;
HWND hwndClient;
QMSG qmsg;

11 Anchor Block handle
11 Message queue handle
11 Frame window handle
11 Client window handle
11 Queue message structure

A PM application must include standard header file information from OS/2. As

was discussed previously, the statements #define INCL_ WIN & #include

<os2. h> direct the pre-processor to include only the OS/2 header files neces

sary to provide prototypes and definitions for the PM window management

API functions. The necessary #define statement for each API function is docu

mented in the PM on-line reference. Other global header files may also be

included, such as C library headers. Naturally, private header files to the appli

cation are included as well. Function prototypes for the window procedure and

other functions, private data type definitions for encapsulated data, and con

stant definitions for user-defined messages would all be specified in private

header files.

Next, main() must declare some standard variables. The data types HWND and

QMSG have already been discussed. Two window handle variables are

declared. A standard interface window created by a PM application is com

posed of a frame (whose visible attribute is the size border, and who creates in

turn the other controls such as the title bar, menu, etc.) and a client window,

which provides application-defined function. Each window is created individu

ally, and identified with its own handle. The QMSG data structure is used to

hold each message retrieved from the queue as it is dispatched for processing.

RAB is a data type representing a handle to an anchor block. The anchor block

can be thought of as defining the application's environment in PM, and will be

discussed in more detail later. HMQ is the handle to the message queue. The

application must create its own queue, and it is identified by a handle just as

most other objects are identified by handles.

Winlnitialize() is the first API function that a PM application must call. There

is one parameter to this function; a flag that currently must simply be set to 0.

This flag is documented to represent initial message-processing states for win

dows created in the application, but is not presently used in PM. Winlnitialize()

returns the anchor block handle, which must in turn be passed to other API

functions that require it. The anchor block is used to identify the thread to PM

for definition of private resources such as the message queue, and private win

dow classes.

II Create anchor block
hab = Wininitialize (0);

II Create memsage queue of default aize
bmq = WinCreateMsgQueue Chab, 0);

WinRegiaterClaaa (...);

hwndFrame = WinCreateWindow (...) ;
hwndClient = WinCreateWindow (•••);

Next, the application must call WinCreateMsgQueue(). This API creates a
message queue for the main thread, returning the queue handle. The handle
will be used in the termination processing, to destroy the queue. The anchor
block handle is passed to this function, identifying the queue as being private
to this thread. The second parameter to WinCreateMsgQueue() is the size of
the queue, with a value of 0 indicating that a default size should be used. The
default size is 10 messages, and this is sufficient for almost all threads.

Then, the application must create its windows. The frame and the client are
created individually, with calls to WinCreateWindow(). Optionally, they can be
created in one step using WinCreateStdWindow(). In all likelihood, of course,
the class for the client window must be registered first, using WinRegister
Class(). These calls will be discussed in more detail shortly.

The anchor block ties together the various objects created by a PM application.
The primary thread, or main(), will create an anchor block. Other threads, if
they need to have window management capability, must also create their own
anchor blocks using Winlnitialize(). Exactly one message queue must be cre
ated per anchor block, and it is private to the thread. Also, each window cre
ated by the thread is entered in the PM window table along with the anchor
block handle (and message queue handle) where it was created. This way, PM
is able to determine how to deliver messages. When a message is retrieved
from the system queue, and PM has determined the destination window han
dle, the message must be placed on the application's queue. The queue handle
can easily be found from the window table.

I* PM Thre('ld */

int main (...)
(

Queue

Windows

Anchor
Block

After the windows have been created and made visible, they will receive mes
sages that originated with some user interaction. At this point the application
must begin retrieving messages from its queue, using the function WinGet
Msg(). WinGetMsg() will block if the queue is empty, and otherwise retrieve

One Up .Corporation

. the first available message into a structure of data type QMSG. The anchor
block handle and the address of a QMSG structure are the first two parameters
to this API function. The next three parameters define what is known as mes
sage filtering. If filtering is performed, then only messages that match a spe
cific window handle and range of values are retrieved from the queue.
Normally, in the main thread, filtering is not done so these three parameters
may all be left as zero. WinGetMsg() returns the boolean TRUE whenever a
message is retrieved, with one exception. The particular message identified as
WM_ QUIT indicates that the application must terminate, and if WinGetMsg()
retrieves this message the function returns FALSE. Therefore, WinGetMsg() is
embedded in a while() loop with WinDispatchMsg(); when the loop ends the
termination work is performed.

while (WinGetMug (hab, // Get mag for thiu
11 thread

&qrnng, II To the QMSG structure
0, 0, OJ) //No filtering

WinDinpatchMng {hab, // Dispatch mag to PM
&qnmg); I I QMSG structure

PM Dispatcher

Window
Procedure

Window
Procedure

WinDispatchMsg() accepts two parameters, the anchor block handle and the
address of the QMSG structure retrieved by WinGetMsg(). WinDispatchMsg()
passes the message on to PM for processing by a window procedure. When a
window is created, it is identified as belonging to a class. The class in turn
identifies the window procedure. A window table entry is made at the time the
window is created, identifying its associated window procedure. This entry is
retrieved by WinDispatchMsg(), and the window procedure is called. WinDis
patchMsg() is synchronous; it will not return until the window procedure has
completed processing the message. So, the message loop continually reads
messages from the application's queue and deals with each one at a time
through the window procedures. When WM_ QUIT is retrieved, the loop ends
and the application terminates.

All resources created or allocated by the application must be released. First, all
windows that were created must be destroyed. This is done with the WinDe
stroyWindow() API function. WinDestroyWindow() takes one parameter, the
window handle to be destroyed. As will be discussed shortly, all windows are
created in a hierarchy defined by a parent-child relationship. In other words,

PM Coding

every window must have a parent. The frame window is the parent of the client
as well as all controls such as title bar or menu. When a window is destroyed,
all its descendant windows are destroyed as well. Thus, one call to WinDe
stroyWindow() specifying the frame window handle will often suffice to
destroy all application windows.

WinneatroyWindow(hwndFrame); // Deatroy frame etc.
WinDestroyMngQueue(hmqJ; /I Destroy queue
WinTerminate(ha.b); I I Destroy anchor block

DonExit(EX:IT_PR.OCESS, 0); II End program

WinDestroyMsgQueue() accepts the message queue handle as its only parame
ter, and frees the memory for the queue. Then, Win Terminate() is passed the
anchor block handle and releases all other resources allocated on behalf of the
application by PM. At this point, there is little left for the application to do.
Most PM API functions are unavailable without the existence of a message
queue or anchor block. Usually, the application will just call DosExit() to
terminate.

pl)v['Window C[asses and 'Window
The window class, as has been mentioned before, identifies the behavior of a
set of windows. In PM, the window class is defined by a set of style flags and a
window procedure. The style flags identify basic characteristics of the win
dows, such as how re-sizing is handled or how re-painting interacts with child
windows. The window procedure provides the message handling capability,
and therefore the functionality, of the class. The class is named in PM with a
character string. Every window belongs to exactly one class, and multiple win
dows might belong to the same class. This will have important implications for
the window procedure, since it may have to service messages for multiple win
dows at the same time.

"My Window Class"
_.Window • -

- Style flags Procedure ,, ~

..
Window classes are of two types. Public Window classes are registered by PM
at system initialization. These classes provide standard window capabilities to
an application, such as title bars, menus, buttons, list boxes, etc. The class
names for these public window classes are already defined in the header file
pmwin.h. PM will already have created the window procedures for these

One"Up Corporation

.classes; the window procedures reside in the file PMWIN.DLL. For a standard

application frame, windows of the public classes WC_MENU,

WC_SCROLLBAR, WC_TITLEBAR, and WC_FRAME are normally

created.

Public Classes

WC_MENU
WC_TITLEBAR---+-'-"'---'
WC_SCROLLBAR I* BROWSE2- a simple ASCII I
WC_FRAME I* thread, and illustrates scroll

Private Class
h Feite l<raay, 8/93 One Up

"My Window Class"

Public window classes provide standard function to a PM application. All title

bars, menus, and scroll bars behave the same way, since they all share the same

window procedure provided by PM. Although a public window's behavior may

be modified by a process known as sub-classing the window, still, public win

dow classes will normally not suffice for all activity in an application. The cli

ent area of a window must provide the application-specific functions and will

therefore normally belong to a window class that is private to the application or

thread.

A private window class has to be registered by the application when it initial

izes. This is done with the WinRegisterClass() APL WinRegisterClass()

accepts five parameters. First is the anchor block handle, which indicates that

the class is private to the thread where it was registered. Thus another applica

tion or another thread may register a class of the same name, without conflict.

The classes will still be managed separately by PM. The class name is a char

acter string defined within the application. It is used again in the WinCre-

ate Window() API to identify the class that is being instantiated there. Most

important to WinRegisterClass() is the third parameter, the window procedure

entry point. This associates the window procedure to the class, so that all mes

sages for any window of the class will be dispatched to this window procedure.

The sty le flags provide optional simple functionality for all windows of the

class. CS_SIZEREDRAW, for example, ensures that a window will be fully

redrawn every time it is resized. The last parameter to WinRegisterCiass()

specifies a number of bytes of additional storage to be allocated per window

that is created from this class. This storage will be used to encapsulate applica

tion-specific instance data to the window, and will be discussed in more detail

later.

BROWSE2.H

#define CLIENT_CLASS_NAME "WC_CLIENT"

MRESULT _system wpClientWndProo(...);

BROWSE2.C

WinRegiaterClaaa{hab, // Regiater private class
CLIENT_CLASS_NAME, I/ Name conat11.nt
wpClientWndProc, // Window procedure

II entry
CS_SIZEREDRAW, // Style flag
4); //Four bytes of window words data

MRESULT _system wpClientWndProc{ ..• J
{

One window procedure is identified when the window class is registered. Since
multiple windows may belong to the same class, this function must be reen

trant in order to handle all messages for any window of the class. This means

that the window procedure should avoid the use of static variables, since any
updates to a static variable would be reflected across all windows and would

probably have harmful side effects in the application. The use of instance data
by means of the storage requested with WinRegisterClass() is the preferred

way to retain information for a window, and will be discussed in more detail

later. Normally the window procedure is not invoked directly, but rather it is
called indirectly through another PM API function such as WinDispatchMsg()

or WinSendMsg(), both of which deliver a message to a window synchro

nously.

The window procedure is defined by PM for standard control windows, but

must be defined by the application for private windows. This is normally the
case for the client area. The window procedure is always defined to accept

exactly four parameters, corresponding to the first four members of the QMSG

data structure. When the application calls WinDispatchMsg() and passes PM a
QMSG structure, PM then extracts the window handle, message ID, and mes

sage parameters as arguments to the window procedure that it calls. The win
dow procedure is also defined to return a value of type MRESULT, which is

itself just a pointer to void. MRESULT works the same way as MPARAM

does; it is treated as a generic 32-bit value into which the application may place
any information that should be returned to the caller. A normal default is to

return 0 if the current message has been handled successfully and no additional
information is required by the caller. The keyword _System identifies the win

dow procedure to be using the system linkage convention in C Set/2. This con
vention, as for threads discussed earlier, is used for functions that will actually

be called by the operating system rather than by application code.

Oneup·corporatfori

MRESULT _System wpClientWndPrcc(HmID hwnd, ULONG mog,
MPARAM mpl, MPARAM mp2)

HRESULT mr "' 0;

switch(mog)
(

ca11e WM_CREATE:

break;

cane WM_PAINT!

break;

JI Test value of mennage

JI Do initialization work

J / Do window drawing work

default< // Unwanted messages passed to
11 default window procedure

l
return mr;

mr "' WinDefWindowProc (hwnd, mag, mpl, mp2);
break;

The body of the window procedure is simply a switch ... case construction. The

procedure tests the value of the message ID, and includes cases for those mes

sages that are significant for application processing. WM_ CREATE, for exam

ple, is a good message case for handling window initialization work since this

message is passed to the window procedure at the time that a window is being

created. WM_PAINT must be handled to ensure that the window's appearance

on the screen is correctly maintained. All messages are documented in the PM

Reference included in the Toolkit folders on the desktop.

Many messages passed to a window need not be explicitly handled by the

application, but no message should be lost. PM provides an API function, Win

DefWindowProc(), which is intended to handle all messages that the applica

tion does not. Thus a call to WinDefWindow Proc() is the default case for the

window procedure's switch statement. It is important to save the return value

from WinDefWindow Proc() since it may contain significant information that

should be passed back to the originator of the message. The window procedure

is normally built incrementally, writing and testing a few message cases at a

time before continuing on to more messages.

A window, essentially, is an instance of a window class in an object-oriented

sense. The window class provides basic styles and the window procedure,

which are shared by all instances. The window object is the fundamental build

ing block of a PM application. Windows are created for display purposes and

also to provide "behind-the-scenes" function such as communication (DDE

conversations, for example) or data storage (a window to manage database

interaction). Not all windows will have visibility.

WinCreate Window() is one of several API functions used to create a window.

This call accepts 13 parameters, and is the most general window-creation func
tion. A general example of this call is given first, to create an ordinary push

button within a client window. Then, parameters will be discussed in detail to
create a normal frame and client window combination.

PM Coding

.
HWND hwndButton;
OLONG x = 30, y • 10, ox • BO, cy = 20; I I ...
hwndButton=WinCreateWin~ow II Create Button I I (hwndClient, II Parent window

WC_BOTTON, 11 Public cla1111

I I "Enter", I I Window text
WS_VISIBLE, II Style flag
x, y, ox, oy, II Po!l'n, Size I I hwndClient, II OWner window
HWND_TOP, II z-Ordering
IDPB_OK, II Window ID
NULL, II No ctrl. data
NULL); II No Prea. Parma I. • E~~~'-> I .•

First, Win Create Window() returns the window handle of the window being
created. The value of the window handle is unique for each window in PM, and
is used to retrieve class and queue information as has been discussed. In the
11th parameter of this call, the programmer may optionally also specify a win
dow ID for the window being created. The window ID value is defined by the
programmer, and must only be unique among all sibling windows. It is used by
the application for internal message processing among its windows. For exam
ple, a push button will need to be distinguished from all other controls within
the same client or dialog box. The ID would be used, for example, to determine
which button generated a particular message. Thus, the window handle and
window ID have very different uses in PM.

Whenever a window is created, the programmer must specify a window handle
that represents the window's parent. This is the first parameter to the
WinCreateWindow() API function. The parent-child relationship is used to
define visible attributes of the window. For example, a child window is posi
tioned relative to the bottom left corner of its parent, and is clipped within the
boundaries of its parent. Thus a child window cannot be visible outside of its
parent. Also, anything that affects the visibility of the parent (moving, destruc
tion, etc.) also affects the child.

The window must be created as an instance of a specific class. The class name
is specified as the second parameter to WinCreateWindow(). This may be a
public window class (title bar, menu, or list box) or a private window class reg
istered by the application. Constants are defined in the PM header files to rep
resent the public window classes (WC_BUTTON, WC_LISTBOX, etc.) These
constant names are documented in the PM on-line reference. An application
may specify one of these constants and create a window of the corresponding
public class, ready-made with the window procedure in a DLL provided by
PM. To create the client, the application would specify the same class name
used in the WinRegisterClass() API function.

Window text in the third parameter ofWinCreateWindow() is optional, and not
always used. A button window would display its window text, as would title
bars and entry fields. Other windows will not display text. The text can be que
ried and modified with WinQueryWindowText() and WinSetWindowText().

One Up Cmporation

Window sty le flags may optionally be specified in the fourth parameter of

WinCreateWindow(), and are similar to the class style flags in WinRegister

Class(). Most of these affect basic painting behavior of the window. Most com

monly, WS_ VISIBLE may be used to make the window visible immediately

upon creation.

The window's position and size are specified, in pixels, relative to the bottom

left comer of the parent. These are the next four parameters of WinCreateWin

dow(). The tenth parameter is Z-ordering, which identifies how the window

overlaps with its siblings. Various constants are possible in this parameter, but

HWND_TOP is normally used to indicate that the newly-created window

should be displayed on top of any sibling windows that intersect with the same

position. If HWND _TOP is not used, there is the danger that the window might

be created but completely obscured by other windows, and therefore not actu

ally visible.

Often, the size and position are left at zero initially, and the window positioned

later using the WinSetWindowPos() API function. A button, for example,

might be created by the client window during the WM_ CREATE message case

(when the client itself has no size or position yet) and positioned during the

WM_SIZE message case (when the client itself is being resized.) Or, the frame

and client are created initially with no size and position until other initializa

tion work is complete; then they can be positioned relative to the size of the

desktop.

A window may optionally have an owner. If it does, the owner window is spec

ified in the ninth parameter ofWinCreateWindow(). Ownership is only impor

tant in the context of control windows, and is used for notification messages. A

list box, for example, will send a message to its owner window to indicate

when the user has selected a line of text. A title bar will notify its owner (the

frame) when the user is trying to move the window. Often an application's

frame and client windows will have no owner.

The last two parameters to Win Create Window() specify control data and pre

sentation parameters, and these have different significance depending on the

window class. These parameters are addresses of data structures. In the case of

a frame window, for example, the Control Data structure identifies flags

describing which additional controls should be created, and the handle to a

DLL where other resource definitions such as the menu or icon may be found.

For other controls, the Presentation Parameters structure defines the fore

ground and background colors, as well as the font to be used when displaying

the window. For a general application client window, neither of these parame

ters is defined. They may then be used in an object-oriented way to provide

application-specific initialization data to a window. This will be discussed in

more detail in the Window Data Encapsulation section.

All windows are created within a strict parent-child hierarchy.
HWND_DESKTOP is a constant defined in the PM header files to represent
the window handle of the desktop, or screen background. An application frame
window would be created as a child of the desktop, so that it could be fully vis
ible on the screen. The frame will create several controls as children of itself,
such as the title bar, system menu, minimize/maximize buttons, and the action
bar. The client will also be created as children of the frame, and the program
mer may wish in turn to create additional controls such as list boxes, buttons,
or entry fields as children of the client in order to provide additional function
ality. Remember, again, that every window must have a parent in order to be
positioned and made visible.

Window Parentage
...

Desktop

...
Frame

I
v M. Mv Menu m ax ,,
Button

Window Ownership

Client
I

Desktop

Frame
I t . ,,

Menu MmMax ,,
Button

The ownership hierarchy need not be complete. The frame will own other con
trols like the title bar, menu, system menu and min-max, while the client may
own controls that it has created such as the list box and buttons. The frame con
trols send messages to the frame when significant user events occur, and the
client's controls send it messages as well. Both the frame and client, however,
may have no owner.

A PM standard window provides the basis for an application's interface. It is
composed of a frame window and a client window. The frame window is the
parent of the client, as well as a number of other controls such as the title bar,
system menu, min-max, action bar, and scroll bars if necessary. The frame and
client may each be created with WinCreateWindow() in separate steps, or Win
CreateStdWindow() may be used to create both at once,

hwndClient =
WinCreateWin ow ••• ;

/* OR */

I* BROWSE2- a simple ASCII f
I* thread, and illustrates scroll

'* :;:::~k,,,---WJ-.!.'!..*'...Feite Kraay, 08/93 One Up

..

J}Zlg~}?2

The frame window may be created by itself with WinCreateWindow(), as

described above. The parent of the frame window is the desktop (represented

by HWND_DESKTOP.) The class name for the frame is the constant

WC_FRAME, defined in the PM header files. This represents a public window

class that is standard for all frame windows. If the window text for the frame is

not specified, then the title bar text defaults to be the name of the program.

Otherwise, window text specified for the frame is displayed in the title bar.

ffdefine ID_FRAME 100

HWND hwndFrame;

hwndFrame ~ WinCreateWindow // Create Frwne
(HWND_DESKTOP, // Parent in desktop
WC_FRAME, I I Public cla11s
NULL, // No window te:ic:t
WS_VISIBLE, // Style flag
O, O, O, O, // No Poo•n, Si:;::e
O, /I No Owner window
HWND_TOP, I/ Z-Ordering
ID_FRAME, / / Window ID
&fcnata, // Fz-ame ctrl. data
NULL); II No Pres. Parma

Often, the frame will be created with size and position set to 0. This is for ease

of working with the client window. If the frame has a size, then the client,

when it is created, must be positioned relative to the bottom left corner of the

frame. The client window's position and size must be calculated to take into

account the existence, and size, of the size border, scroll bars, menu, and title

bar. Whenever the frame window is resized or repositioned, it automatically

resizes and repositions all of its children including the client. Thus, it is much

easier to create the frame and client with size and position set to 0. Then, one

call to WinSetWindowPos() to position the frame window relative to the desk

top will also position the client correctly.

The frame window need have no owner, and its window ID should be some

arbitrary constant defined by the programmer. The second-last parameter, con

trol data, is very important. This must be the address of a data structure initial

ized by the programmer to provide additional information to the frame window

upon creation.

The control data supplied to the frame window is defined in a structure of type

FRAMECDATA, which must be declared and initialized. The first member of

the structure is just a count of bytes, the size of the structure itself. All PM

defined data structures begin this way. The second member of

FRAMECDATA is a DLL module handle that identifies where resources may

be located. When the action bar and icon are defined by the programmer in a

separate resource file, this file may be compiled and embedded either into the

PROGRAM .EXE file or into a separate .DLL file, to facilitate sharing among

other programs. If the resources were built into a DLL, then the DLL must

have been loaded with DosLoadModule() and the DLL handle passed to the

frame window. Specifying 0 for the DLL handle indicates that the resources

PM Coding

were built into the .EXE file. Each of the frame's resonrces (menu, accelerator
table, and icon) must be identified with the same ID number in the resource
file, and that number specified in the third member of the FRAMECDATA
structure. It is often convenient to use the same ID number as the frame win
dow itself.

FRAMECDATA fcData;
fcData.cb = oizeof {FRAMECDATA); 11 Size of structure
fcData.hmodResourceo = O; // Resources in exe, not in dll
fcData.idResourceo = ID_FRAME; II ID to find reaourceafc
fcData. flCreateFl11.ga = FCF_SIZEBORDER I FCF_TITLEBAR I

FCF_MENU I FCF_MINMAX I
FCF_SYSMENU I FCF_VERTSCROLL I
FCF_HORZSCROLL I FCF_TASKLIST;

hwndFrame = WinCreateWindow (..• , &fcData);

Finally, a set of Frame Creation Flags are combined with the bit-wise or opera
tor and placed in the fourth member of the FRAMECDATA structure. These
flags define the basic appearance and set of controls that the frame should
have. These flags are documented in the on-line PM reference manual. One
flag is set for each frame control window - title bar, system menu, etc.
Another set of flags defines what kind of border the frame should have - size
border, solid dialog border, no border, etc. Also, the flag FCF _TASKLIST
should be specified to indicate that the frame should automatically add itself to
the switch list maintained by PM. This means that when the user hits Ctrl+Esc,
the application appears in the windows list. The address of the Frame Control
Data structure is passed in the second-last parameter of WinCreateWindow().

Creating the client window requires another call to WinCreateWindow(). The
frame window handle is specified as the parent of the client. The client window
class is normally an application-defined class that was set up with WinRegis
terClass(). If WinSetWindowPos() was used as described above, then the cli
ent's size and position are also all set to 0. A pointer to control data may
optionally be passed to the client window in the second-last parameter.

#define CLlEN'r_CLASS_NAME "WC_CLIENT"

HWND hwndClient;

hwndClient = WinCreuteWindow
{hwndF:rame,
CLIEllT_CLASS_NAME,
NULL,
WS_VISIBLE,
0, 0, 0, 0,
o.
HWND_TOP,
FID_CLIEN'l',
NULL,
NULL);

/I Create Client
I I Parent in frame
11 Private claaa
I I No window text
I I Style flag
II No Poo'n, Size
! I No Owner window
11 Z-Ordering
II Window ID
I I Uo frame ctrl. dutu
II Uo Pren. Parms

The window ID for the client window is extremely important. This must be
specified to be the constant FID_CLIENT defined in the PM header files. The
frame window uses ID numbers to distinguish its various child windows, and
these IDs are documented. FID _MENU represents the menu or action bar,
FID_TITLEBAR the title bar, etc. When the frame needs to move or size its

One Up Corporation

. children, or to pass messages on to its children, then the window ID is used to
find the window handle of the appropriate child window. The frame always
uses FID _CLIENT to represent the client window; if the client is created with
a different ID number then the frame will not be able to determine its window
handle and will not re-position or re-size the client, nor will it pass any signifi
cant messages (such as action bar activity) on to the client.

The window handle of any child can be determined from the parent window
handle using Win WindowFromID(); this is what the frame does for each of its
children. This is also useful for the client window to determine the window
handles of its siblings in order to pass messages. The client may need to rear
range its scroll bars, or disable an action bar choice. These functions are
accomplished by sending messages to the appropriate sibling window, and the
window handle to which to send the message can be determined with
WinWindowFrornID().

To create a frame and client in one step, the application may call
WinCreateStdWindow() instead of WinCreateWindow(). This function really
just calls WinCreateWindow twice, to build the frame and the client, but it uses
many default values. For example, size, position, ownership and Z-ordering
cannot be specified with this function, nor may any initialization data be
passed to the client.

BROWSE2.C

HWND hwndFrame, hwndClient;
ULONG flCrea.teFlago "' FCF_ ..• ;

hwndFrame ~ WinCreateStdWindow
(HWND_DESKTOP,
WS_VISIBLE,
&flCredteFlagn,
CLIENT_CLASS_NAME,
NULL,
0,
ID_Fiu.ME,
&hwndClient};

// Parent i11 de11ktop
11 Frame styleo
II FCF_* valuen
// Private cla.1111
I I No title bar text
I I Resources in exe
// ID to find re11ource11

The frame window handle is returned from WinCreateStdWindow(), and the
address of the client window handle is specified in the last parameter so that
PM can return this value as well. The parent window specified in this call
should be HWND_DESKTOP, since it is the parent of the frame.
WinCreateStdWindow() assumes that the frame will be the parent of the client.
Then, frame window style flags (WS_* values) are specified if necessary (cli
ent window style flags are specified in the sixth parameter.) The third parame
ter is the address of a long integer that contains the frame creation flags as
defined above. Next, the client window's class is provided (the frame window
class is always WC_FRAME). Title bar text may be specified in the fifth
parameter, but this text is appended to the name of the program first. The sev
enth and eighth parameters to WinCreateStdWindow() are the DLL module
handle and ID number for resources, exactly as defined in the FRAMECDATA
structure above. The ID number for resources is also used as the frame win-

RM Coding

dow's ID in WinCreateStdWindow(). This function provides no additional
capability over WinCreateWindow() except that, having only nine parameters,
it is a little easier to code.

In the example program, BROWSE2, the application's main() routine follows
exactly the structure as outlined above. The anchor block handle and message
queue are created with Wininitialize() and WinCreateMsgQueue(). Then, Win
RegisterClass() is used to define a new window class private to the application.
The class name is defined as a constant string in the header file browse2.h, and
the window procedure is defined below in browse2.c. The class style flag
CS_SIZEREDRAW is used to ensure that the window re-paints whenever it is
re-sized. This is handy when, as in this case, the window has no icon or if the
window's contents are dependent on size. Four bytes of data will be reserved
per window created of this class, and these will be used to encapsulate infor
mation specific to the window, such as character and line sizes to manage the
scroll bars.

The program uses WinCreateStdWindow() for the sake of simplicity, to create
the frame and client window. The flag FCF _SHELLPOSITION asks PM to
find a default size and position for the window. If this was not specified, the
program would have to use WinSetWindowPos() to position the window
explicitly. If a file name is passed as input to the program browse2, it will
immediately start a thread to open and read the file. If not, it will wait for an
action bar command to load a file.

The standard message loop construction is used to retrieve messages from the
application queue (WinGetMsg) and dispatch them to window procedures for
processing (WinDispatchMsg).WM_QUIT, again, will cause WinGetMsg() to
return the boolean FALSE, or 0, and the message loop will then terminate.

When the message loop terminates, WinDestroyWindow() is used to destroy
the frame window. When a parent is destroyed, so are all of its children. The
client and other frame controls are all destroyed too. Then WinDestroyMsg
Queue() and WinTerminate() clean up any other resources still allocated to the
application, before DosExit() is used to end the program.

p:Jv[Window Procedure
Message handling in a window procedure represents the majority of work in a
PM application. The main() function is similar across most applications. It is
how messages are handled in a window procedure that distinguishes one appli
cation from another. The programmer must decide which messages to handle,
and write the logic for each within a case statement in the window procedure.
Hundreds of messages are already defined in PM, and it will often be necessary
to define other application-specific messages beyond these. It is therefore
important to understand which messages are significant in the window proce
dure, and what the purpose of each is.

Orie Up Corporation

Page60

.Remember, again, that a message is represented in PM as a data structure of
type QMSG. The first four members of this structure are passed as parameters
to the window procedure, which tests the message ID value and determines
what processing is necessary. This is a synchronous process; the next message
is not read from the application's queue until the current message has been
dealt with. Each message is identified by an ID number, which is defined either
in the toolkit header file PMWIN.H or by the programmer in the application
header file. Each message also includes two parameters of type MPARAM,
which provide additional information relevant to the specific message. Before
specific messages are examined in detail, it is worth noting the message flow
through the application's message queue.

QMSG
Structure

High Priority

Low Priority

WinGetMsg() I PM
WinDispatchMsg()

WM_SEMI
Posted Messages
Input Messages
WM_SEM2
WM_PAINT
WM_SEM3
WM_ TIMER
WM_SEM4

When messages are passed through the application's queue, they are not in a
strict first-in first-out order. Rather, the messages are prioritized to improve
performance. WM_SEMl is defined to have the highest queue priority of all
messages, and WM_SEM4 the lowest queue priority. They have no other
meaning than that; but could therefore be used by the application to synchro
nize tasks. For example, an application may want to perform some task that
requires use of the window's display area, perhaps to take a snapshot or screen
capture. Anything else that affects the window's appearance should be allowed
to complete first. Thus the snapshot could be taken when a WM_SEM4 mes
sage is dispatched to the window procedure. Since this is the lowest priority
message, the programmer knows that when it is handled the queue must be
empty. If the queue is empty, all other messages must have been dealt with.

Directly below WM_SEMl in priority are messages posted to the application's
queue by other threads or applications. (Some messages may be sent directly to
the window procedure, this will be dealt with later.) These may be for a
Dynamic Data Exchange conversation, or to indicate when a thread has fin
ished processing. Command messages from the action bar, and other selected
system messages, would also all appear at this priority. Below these messages
are input messages, the mouse and keyboard messages that are retrieved by PM
through the system queue.

PM Coding

WM_PAINT is a very low priority in the queue. This message indicates that a
window's appearance must be refreshed (or painted in PM terminology.) PM
considers window painting to be a high-overhead task, and so it is deferred for
as long as possible. Placing WM_PAINT low in the queue ensures that other
messages that may affect the window's appearance are handled first, and only
the cumulative effect of all changes is drawn once under a WM.:..PAINT mes
sage. For example, if a window is partially in the background, yet exposed
enough so that the user is able to double click on the system menu, it is
expected that the window be destroyed. However, the mouse double click will
cause the whole window to come to the foreground so that parts of it need to be
repainted. Thus the WM_PAINT message as uell as WM_CLOSE (generated
by the system menu in response to the double click) are placed on the queue.
Since WM_ CLOSE is of a higher priority, it is probably handled first (unless
the queue is empty and WM_PAINT has already been retrieved.) If
WM_ CLOSE is handled first, then the window may be destroyed without the
final, redundant paint work taking place.

WM_TIMER is also a very low priority message. An application may use the
WinStartTimer() API function to start timer messages, which will be placed on
the queue at the interval requested. However, since the messages are of low
priority, they may not be handled by the window procedure until some time
later. These messages are good for tasks which do not require a high degree of
accuracy, such as flashing the cursor in an edit window. The highest accuracy
timer services can be obtained from OS/2 using the DosStartTimer() API
function.

WinDispatchMsg() is one way of invoking a window procedure and passing it
a message to process. This function, as has already been discussed, is synchro
nous and waits for the window procedure to return from handling the message.
The only place this function is used is within the message loop in an applica
tion's main() routine, or in a thread's message loop if it has one.

WinDispatchMsg(hab,
&qmogJ;

re = WinPostMsg I I Asynchronous
(hwnd, // Destination
mag, II Me1111age ID
mpl, // Parameter
mp2); II Parameter

re = WinSendMsg I I Synchronoua
(hwnd, I I Destination
mag, 11 Mensage ID
mpl, // Parameter
mp2) : 11 Parameter

Window
Procedure

Outside of the message loop, a message may be passed to a window procedure
either synchronously or asynchronously. In PM, if a message is synchronous it
is said to be sent to a window; if a message is asynchronous it is posted to the
window. WinSendMsg() is the API function that sends a message to a window.

One.Up Corporation

This call invokes the window procedure directly, and waits for it to return. The
four parameters to WinSendMsg() are exactly the four parameters to any win
dow procedure - the window handle that received the message, the message
ID, and the two message parameters. The return value of the window proce
dure is the return value of WinSenclMsg().

There are two reasons why a message may need to be sent instead of posted.
First, the message may need to be handled immediately. For example, an appli
cation may want to disable a particular action bar choice while a thread is busy,
perhaps because it would not make sense to have two copies of the same thread
running simultaneously. Disabling a menu item requires sending a message to
the action bar to change the item's attribute. This must be synchronous, to
ensure that the user cannot start another copy of the thread. The message is
sent, not posted. Also, in many cases an application may need to determine the
state of some control. Whether a check box is on or off, or which line is
selected in a list box, may influence other activity in the application. To deter
mine the state of a control window, the application would send a message to
the control. The control would set the return value (data type MRESULT) from
its window procedure as an answer to the query - TRUE or FALSE for the
state of a check box, or the number of a list box selected line, for example.
Only when a message is sent to a window can the return value of the window
procedure be retrieved, as the return value of the WinSendMsg() API function.

WinPostMsg() is used to pass a message asynchronously to a window. This is
very similar to placing a letter in the mail. As long as the letter is in the mail
box, the sender may assume that it will be delivered to its destination, but it is
not guaranteed to arrive in any specific period of time. When a message is
posted to a window, it is simply placed on the queue for the thread servicing
that window. Eventually, the thread will retrieve the message and dispatch it to
the window procedure. Inter-application messages are usually posted (DDE
conversations, for example). Also, in the above example for user-defined mes
sages, the thread would post its message to the client window. Message posting
is recommended whenever possible, since it avoids synchronous waiting and
provides a more object-oriented feeling to the application; there are no time
dependencies between the window objects. The four parameters to WinPost
Msg() are the same as WinSendMsg(), the four arguments to the window pro
cedure itself. WinPostMsg() returns a boolean flag indicating if the message
was successfully posted.

PMC()ding

31

WM_SIZE

cy
ex

mpl: old ex, cy
mp2: new ex, cy

cy ex

16 15

USHORT ex, cy;

case WM_SIZE: // Window bas been resized

ex= SHORTlFROMMP (mp2); //Extract new width
cy = SHORT2FROMMP (mp2); //Extract new height

break;

0

Each message is accompanied by two parameters which are of data type

MPARAM. These 32-bit values are normally received as the formal arguments

mp 1 and mp2 in a window procedure, and may contain additional information

relevant to the specific message WM_SIZE, for example, is sent to a window

to notify it when its size has changed, and the new width and height are pro

vided in mp2 as two short (16-bit) values. Thus the application must perform

some type casting and bit-wise shift operations to extract these values from the

message parameter.

For any message, each parameter will contain different data types, and there

fore different operations will be required depending on the message. There are

macros defined in the PM header files to assist with this; SHORTlFROMMP,

for example, extracts a short integer from bits 0 to 15 of a message parameter.

SHORT2FROMMP extracts a short integer from bits 16 to 31 of a message

parameter. For each data type there is an appropriate macro. The parameter

contents are documented along with the messages in the PM Reference man

ual. Other macros, such ar CHARnFROMMP (n ranges from 1to4), LONG

FROMMP, PVOIDFROMMP, and HWNDFROMMP are also available to

extract other data types from message parameters. Use of these macros isolates

the program from relying on the actual underlying data types and thus makes

the code more easily portable.

There are many standard messages defined in PM that must be handled by a

PM application's window procedure. It is important to understand what these

messages mean, the contents of the message parameters, and how they should

be handled. All PM messages are documented in the on-line PM reference

manual.

One Up Corporation

Rage64

Message mpl mp2

WM_ CREATE Control Data Pres. Parms.
WM_PAINT 0 - Reserved 0 - Reserved
WM_ SIZE Old ex, cy New ex, cy
WM_BUTTONlDOWN Mouse x, y Hittest flags
WM_ CHAR Scan code & state ASCII code
WM_ TIMER Timer ID 0 - Reserved
WM_ COMMAND Command ID Source of c1nd.
WM_ CONTROL Control Id, Code Ctr!. Specific
WM_ CLOSE 0 - Reserved 0 - Reserved
WM_ QUIT 0 - Reserved 0 - Reserved
WM_DESTROY 0 - Reserved 0 - Reserved
WM_SEMI Semaphore value 0 - Reserved
WM_ USER App. Defined App. Defined

WM_ CREATE is sent to the window procedure whenever WinCreateWin
dow() creates a window of the corresponding class. This message is sent before
the window has been made visible. The two message parameters contain
pointers to control data and presentation parameters; these are the same point
ers that were the last two parameters to the Win Create Window() call itself. In
the case of a client window, either of these parameters may contain a pointer to
application-specific initialization data for the window - for a text editor, per
haps, the name of the initial file to display.

WM_ CREATE is normally used to perform initialization work for a new win
dow, since it is sent once only to any window upon creation. A text window
may wish to initialize font and color information here. A graphics window
might do some initial drawing work upon window creation, and apply transfor
mations later to display the work when the window needs to be repainted. How
this data, and data received via the pointers, is stored is the subject of a later
section.

WM_PAINT is either sent or posted to a window, by PM, whenever the win
dow's appearance needs updating. If the window's class was registered with the
class style flag CS_SYNCPAINT (synchronous painting) then this message is
sent, otherwise it is posted. The application must handle this message for its
client window. It must also notify PM that the window's appearance is again
valid. Painting, and window output in general, will be discussed in the next
section, "PM Output and Window Painting"

WM_SIZE is sent to a window every time its size is modified by the Win
SetWindowPos() API function. When the frame is resized by the user, it resizes
the client window and WM_SIZE is generated. When this message is
retrieved, the new width and height may be extracted from the second message
parameter, mp2, using SHORTlFROMMP and SHORT2FROMMP respec-

PM Coding

tively. The client window may need to use this message case to adjust the posi
tion of other child control windows. The new size must also be used to adjust
the size of the thumb mark in the scroll bars, if they exist.

Button and keyboard messages may be retrieved by a client window to handle
direct user activity. Obviously, a text editor would need to handle WM_ CHAR.
A graphics editor would perhaps want to handle mouse messages to accommo
date freehand drawing. The ASCII character value struck is provided in mp2 of
WM_ CHAR, and the pointer location relative to the bottom left of the window
is provided in mpl ofWM_BUTTONlDOWN. These messages are posted to
the application queue by the system input router. Other mouse messages of
interest are WM_BUTTONlUP, WM_BUTTONlCLICK (down followed by
up), and WM_BUTTONIDBLCLK. There are also, of course, the same mes
sages for mouse button two as WM_BUTTON2*.

The WM_ TIMER message is posted to the application's queue by PM, if any
window has started a timer service using the WinStartTimer() API function.
Timer messages, in fact, go through the system queue first just as the other
hardware-based messages (mouse and keyboard) do. The first message param
eter contains the timer's ID number, which is assigned using WinStartTimer()
and must be below the constant TID_USERMAX defined in the PM header
files. This way a window may start, and distinguish, more than one timer.
Remember that timer messages are low priority in the queue, and so may not
be handled by the window until some time after they are delivered to the
queue.

WM_ COMMAND and WM_ CONTROL appear to be quite similar, but there
are significant differences in how they are managed. WM_ COMMAND is
posted to the owner of an action bar (menu) window, or to the owner of a push
button window. WM_ COMMAND may also be generated by the accelerator
table resource. The owner of the action bar is the frame window, and the frame
sends the WM_ COMMAND message on to the client window. The first mes
sage parameter of WM_ COMMAND contains the ID of the action bar choice,
or the ID of the button window, so that the recipient may distinguish the source
of the message. Every menu or action bar option must have a distinct ID num
ber, as will be discussed shortly.

WM_ CONTROL, by contrast, is always sent from any control window (radio
button, list box, etc.) to its owner window in order to notify the owner of sig
nificant user activity. The check box, for example, would notify via
WM_ CONTROL whenever it is clicked with the mouse, and the list box would
notify if it is scrolled, or if a selection is made. The first message parameter of
WM_ CONTROL contains two short integers. The first (SHORTIFROMMP)
is the window ID number of the control - all control windows must have dis
tinct ID numbers, with respect to their parent window. The second integer
(SHORT2FROMMP) is a notification code identifying specifically what hap
pened to the control. BN_CLICKED, for example, would mean that a button
was clicked with the mouse, or LN_SELECT would indicate that a list box line

One Up Corporation

.was selected. Other information may appear in the second parameter of

WM_ CONTROL, but this would depend on the individual control window. In

the on-line PM Reference manual, all control windows are documented along

with each of their notification codes under WM_ CONTROL.

WM_ CLOSE, WM_DESTROY, and WM_ QUIT are often confused, and it is

important to distinguish their uses. First, WM_ CLOSE is posted to a client

window when the user selects close from the associated system menu window.

This therefore signals the user's intention to close a particular window only. If
the window in question is the application's main window, the application

should normally ensure that any user changes have been saved. An editor, for
example, should prompt the user if the latest modifications to a file have not

been saved. Other applications simply prompt for confirmation with a message

box, "Are you sure you want to end the program?"

If the client window procedure does not handle the WM_ CLOSE message,

WinDefWindowProc() will automatically post a WM_ QUIT message to the

same queue. This can be a problem if the user wishes to close a child window
in the application. Since WM_ QUIT will terminate the message loop, then

closing a child window could close the whole thread or process. In this case,
the child window procedure must handle WM_ CLOSE itself, and call WinDe

stroyWindow() to destroy just the child's frame (and therefore all its
descendants).

WM_ QUIT is posted to the application whenever PM determines that the

application should terminate. This could be due to the default message process

ing of WM_ CLOSE as discussed above, or due to the user shutting down

OS/2, or due to the user closing the application from the window list. A win

dow would also post WM_ QUIT itself after having confirmed via a prompt in

the WM_ CLOSE message processing. WM_ QUIT causes WinGetMsg() to

return the boolean FALSE, thus terminating the message loop. Then, the appli

cation's main windows and queue are destroyed, and the application is ended.

WM_DESTROY is sent to the window procedure whenever a window is

destroyed with WinDestroyWindow(). This message, then, performs the oppo

site duty of WM_ CREATE. An application should use the WM_DESTROY

message case to do any clean-up work necessary on resources that were allo

cated for the window under WM_ CREATE. Memory to hold instance data, for
example, should be released here.

A rough sequence of messages for a typical window would begin with
WM_ CREATE, sent upon window creation so that the window procedure may

do any initialization work necessary. Then, the window would handle any
number of WM_ CONTROL, WM_ COMMAND, user-defined, mouse, and

keyboard messages. Among these would also be WM_PAINT, to refresh the

contents of the window on the screen, and WM_SIZE, to manage scroll bar

and sizing of child windows. Finally, the user double-clicks on the system

PM Coding

menu, causing WM_ CLOSE. The application in turn posts WM_ QUIT, and
when the window is destroyed WM_DESTROY allows the application to do
final clean-up work for the window.

The PM-defined messages are not sufficient for all application communication.
If a window procedure has, correctly, used a thread to perform a database
search or file load, there is no message defined in PM that is designed specifi
cally for the thread to notify the window procedure when it has finished. (In the
meantime, the window procedure could be handling other messages. When it
receives a message from the thread, it would then display the report to the
user.) In situations like this, the programmer may define new messages, only
talcing care that the new messages do not conflict in value with any messages
already defined in PM.

BROWSE2.H

#define UM_FILEREAD WM_USER + l // Success in thread
#define UM_FILEERROR WM_USER + 2 II Error in thread

VOID _System fnOpenThread(POPENINFO pOpeninfo);

BROWSE2.C - thread

WinPostMsg{hwndClient, // Notify client of completion
UM_FILEREAD, // Succesaful read
MPFROMP {pBuff), 0); II File buffer in mpl

DosExit (EXIT_THREAD, 0);

BROWSE2.C - window rocedure

case UM_FILEREAD:
break;

II Display new file

WM_ USER is defined to have the highest possible value of all PM messages.
Any message number higher than WM_ USER, but shorter than the maximum
size of a long integer, can be defined in the application. Thus messages provid
ing data to a client window, or notifying the window of thread termination,
may be defined as WM_USER +I, WM_USER + 2, etc. One convention is to
use the prefix UM_ for these user messages, to distinguish them from regular
PM window messages that begin with WM_. Of course, the parameters on the
user messages are also application-defined, and should be documented in the
header file where the messages are defined.

When an application generates a message of its own for another window, it
may have to construct message parameters to go along with the message. Just
as there are macros to assist in the bit-wise operations necessary to extract
from a message parameter, so there are macros like MPFROM2SHORT to
make the message parameter, in this case from two integers. The first argument
to MPFROM2SHORT becomes the low 16 bits (0 - 15) of the parameter, and
the second argument becomes the high 16 bits (16 - 31) of the parameter.
MPFROMP, MPFROMLONG, and MPFROMHWND are other parameter
building macros provided in the toolkit header files.

OneUp Corporation ·

#define UM_DATA WM_USER + 5

PVOID pBuff;
USHORT usNuml, usNum2;

WinPostMsg(hwndClient,
UM_DATA, / / Post user mes11age
MPFROM2SHORT (ui.Numl, usNum2),
MPFROMP (pBuff));

usNum2 usNuml mpl

31 16 15 0

~I ____ PB_u_ff ___ ~I mp2

In the sample program browse2, the client window procedure uses
WM_ CREATE to do initialization work for the scroll bars. The window must
know what units to scroll by horizontally and vertically (character width and
line height) and these are calculated from the cmTent font. The window handles
of the scroll bars are also retained.

In the WM_SIZE message case, a single function call to the application func
tion fnFixScrollSize() ensures that the scroll bar thumb-marks are correctly
sized. Management of the scroll bars will be discussed in detail later, along
with the window painting done in the WM_PAINT message case.

The user's action bar selections are presented to the application under the
WM_COMMAND message. Here the application determines which choice
was selected, and takes the appropriate action: opening a file, clearing the win
dow, or ending the program.

Two user messages are handled to receive communication from the thread.
One message indicates that an error occurred handling the file requested, and
the other indicates that the file has been loaded and is ready to be displayed.

In the WM_ CLOSE message case, the application simply prompts for confir
mation from the user via the WinMessageBox() function. This API displays a
message in a small dialog window, with a selection of push buttons and icons.
If the user selects the yes button, then the application posts WM_ QUIT toter
minate. When the client window is destroyed, the WM_DESTROY message is
then received by the window procedure. Here, the instance data memory is
released, and if a file was displayed, the memory buffer containing the file is
also released.

PM Output and Window Painting
By means of the message queue model, PM automatically shares all input
devices - mouse, keyboard, and timer - among all applications. However,
the screen must also be shared for output in PM. This implies some strict rules
that must be followed for a PM application to draw to its window - drawing
directly to the video buffer is, of course, disallowed. Although an application

PM Coding

may draw to a window. at any time, as much drawing work as possible should
be restricted to the WM_PAINT message case in the window procedure. Other
wise, care must be taken to avoid inconsistencies in the window's appearance if
drawing work is done outside ofWM_PAINT. An exception to this rule would
be an application such as a graphics editor, which would draw shapes on the
window as it tracks the mouse. These must then be retained and redrawn in
WM_PAINT.

Four steps must be followed in order for any output to be possible in a PM
environment. First, the application must open up a device context for the par
ticular physical device to be used. The device context can be thought of as rep
resenting the device driver to the application. Device contexts can be opened
for memory, metafiles, printers and other queued devices, and screen windows.
The device context contains device-specific information - page size, font and
color capabilities, and resolution, for example.

Presentation
Space

Display DC

Printer DC

Second, the application must create a presentation space. The presentation
space can be thought of as a scratch pad; a device-independent area to hold the
application's drawing work. As far as the application is concerned, the presen
tation space is simply a set of cartesian coordinate axes with a particular reso
lution. The application may draw in any quadrant of these axes, but normally
the origin (0,0) is mapped to the bottom left corner of the window or device.
Thus in most cases, drawing is restricted to the upper left (positive x, positive
y) quadrant, or transformed to fit in that quadrant.

The device context and presentation space must be associated. This can be
done with an API call such as GpiAssociate(), or done with the GpiCreatePS()
function directly as the presentation space is created. In fact, some API calls
(WinGetPS(), for example) return a presentation space that is already automat
ically associated to a device context for the window, so these first three steps
are often combined. Finally, the fourth step is for the application to draw to the
presentation space. The drawing is then represented on the device. This allows
a large degree of device independence in the application, since the drawing to
the presentation space is done the same way no matter what device context is
associated.

One Up Cqrporation

Three types of presentation spaces are generally available in PM. The fourth,

AVIO (Advanced Video I/O), is only available asl6-bit code. This presentation

space provides only character mode output, and is not recommended for new

PM applications. Three API functions are commonly used to create the graphi

cal presentation spaces, and each has specific uses.

The cache-micro presentation space is normally allocated by an application

using WinBeginPaint() or WinGetPS(). These presentation spaces are kept in

memory by PM, and are already associated to window device contexts. Thus

they are very fast to set up and use, but are restricted to screen output only.

General window painting work would use the cache-micro presentation space.

This presentation space must be released using WinEndPaint() or WinRe

leasePS(), since it is a limited PM resource. If an application does not release

its cache-micro presentation space, then eventually all other windows in the

system will be unable to repaint themselves.

PS Type API to Build Notes

Cache Micro WinBeginPaint() Kept in memory by PM, low
WinGetPS() overhead, no retained graphics

Micro GpiCreatePS() Low overhead,
no retained graphics

Normal GpiCreatePS() Higher overhead, full graphics
capability

AVIO VioCreatePS() 16-bit character mode only,
no graphics

The micro presentation space is similar to the cache-micro in that both provide

only restricted graphics functions. In particular, no retained graphics are possi

ble with this presentation space. Retained graphics allow an application to hold

graphical objects such as lines, arcs, and text in segments, which can later be

transformed and drawn as a single unit. This can cause a significant overhead

in system memory. In general, the micro presentation space is very fast to use.

The micro presentation space may be associated to any device context. A

graphics application would commonly use a micro presentation space with a

device context for memory, to hold and process a bitmap before displaying it.

The micro presentation space is created using GpiCreatePS().

The normal presentation space provides the greatest functionality along with

the greatest overhead. This presentation space is also created with GpiCre

atePS(), and may be associated to any device context. Full graphics functions

are available, including retained graphics and transformations.

",'

PM Coding.·

A device context for the screen window is created easily using WinOpen Win
dow DC(). WinBeginPaint() and WinGetPS() return micro presentation spaces
already associated to window device contexts, so in these cases Win Open Win
dow DC() is not necessary. For all other device types, an application would use
DevOpenDC() to open up a device context, passing it a flag to indicate what
kind of device context is needed. The flag OD_MEMORY would open up a
device context of memory, allowing the application to prepare a bitmap (com
bine colors and images) before displaying it to the user. OD_QUEUED would
represent any queued device set up in PM, normally a printer or plotter. Other
flags are also available for the DevOpenDC() API call. OD _DIRECT allows
the application to write directly to a printer or plotter and bypass the PM spool
queue. This is not usually recommended since it may interfere with queued
printing. OD _INFO is used to query a printer or plotter's page size, resolution,
and other capabilities. OD _METAFILE creates a device context for a metafile,
which contains the graphics drawings according to specific DCA (Document
Content Architecture) standards.

HDC hdc;
HPS hpo;

hdc = WinOpenWindowDC(hwnd);
hpa = WinBeginPaint(...); J
hdc = DeVOpenDC(...• OD_QUEUED, •••) i

hdc = DevOpenDC (... , OD_MEMORY, •.•) ;

Display DC

Printer DC

In most cases, all the window's drawing work can be restricted to within the
WM_PAINT message case. PM will generate and post a WM_PAINT message
to the window whenever the window's appearance is invalid. This could hap
pen if the window is in the background, and is being brought to the foreground
or otherwise uncovered by other overlapping windows, or if the window is
being resized. WM_PAINT may be sent instead of posted, if the window class
was registered with the class style flag CS_SYNCPAINT, for synchronous
painting. Preferably, however, WM_PAINT should be handled asynchronously.
Then painting will only happen if absolutely necessary, since WM_PAINT is a
low priority message in the queue.

·Page72

_PAINT ----WM

I •

HPS hpa;
RECTL rclinv11lid;

case WM_PAINT• // Window invalid -
II needs repainting

hpn "'WinBeginPaint{hwnd, // Get PS for window
0, II No PS already
&rclinvalid); /I Invalid rectangle

I I Do painting work

winEndPaint(hpe);
break;

/ / Return PS to system

What if an application needed to refresh the appearance of a client window?
Possibly, as a result of some user-initiated action the state of the window has
changed, and it needs to be redrawn. The user may have selected a new file
from the action bar, and this file must be displayed. Would the application just
call WinPostMsg(), posting a WM_PAINT message to its own client window?
The answer is no, since PM expects to control exactly how window painting is
initiated. If an application simply posts or sends WM_PAINT, the message will
not be handled correctly since it did not originate from PM in the first place.
The reason is that PM only expects a window to be repainted if its condition is
in fact invalid. PM maintains, for each window, a flag representing its visible
state. If the window is resized, or uncovered, then PM invalidates the window
and automatically generates a WM_PAINT message. If the application needs
to force a repaint on any window, it must cause the window to be invalidated
with the WininvalidateRect() API function. This function accepts two parame
ters, a window handle and the address of a rectangle structure (data type
RECTL) that describes the invalid area of the window. If the rectangle address
is NULL, the entire window is invalidated.

WinBeginPaint() returns a handle to a cache-micro presentation space. The
window handle to be repainted is passed in the first parameter, and the third
parameter of this API is an address of a rectangle data structure. When the call
returns, this call by reference has set up a rectangle that delimits exactly what
portion of the window is invalid. This could bound a region that was previ
ously covered by other windows, or it could be the rectangle that was specified
in WininvalidateRect(). The second parameter of WinBeginPaint() is a presen
tation space handle. Some applications may create and customize a presenta
tion space upon window creation; then WinBeginPaint() will set it up to repaint
the invalid area of the window and not return a new presentation space.

PM Coding

It is important to note that WinBeginPaint() can distinguish what is known as
the invalid region of the window - that is, the collection of smaller rectangles
within the window boundary that really need updating. The rectangle returned
in the third parameter is also known as the bounding rectangle, since it is the
smallest possible rectangle that encloses the entire invalid region. When the
application draws using this presentation space, the drawing is only really per
formed if it intersects with the invalid region, the rest of the window being con
sidered still valid from the last time it was drawn.

When the painting is complete, the cache-micro presentation space must be
returned to PM. This is done with WinEndPaint(). If the presentation space is
not returned, then eventually PM will run out of presentation spaces and other
windows will be unable to paint themselves.

WinBeginPaint() is essential to correct painting in a PM application even if the
cache-micro presentation space is not used. When the application paints, it
could use a micro or normal presentation space, created with GpiCreatePS()
instead. However, the application must still call WinBeginPaint(). The reason
for this is that when WM_PAINT is received in the window procedure, the
window is still considered invalid by PM. If after the window procedure fin
ishes handling WM_PAINT the window is still invalid, PM will simply gener
ate another WM_PAINT message and the application is stuck in a painting
loop. WinBeginPaint() is the only API function that will validate the window
to PM. Since WinBeginPaint() must be called, and a presentation space handle
is therefore returned, WinEndPaint() must also be called. This, in fact, is the
default window procedure handling ofWM_PAINT. It just calls WinBegin
Paint() to validate the window, and WinEndPaint() to return the presentation
space, and does no drawing work in between.

All API functions that draw to a window require as their first parameter a pre
sentation space handle. The simplest function is just WinFillRect(), which
allows the application to fill a rectangle with a specified color value. WinFill
Rect() requires three parameters: the presentation space, the color, and the
address of a rectangle data structure which is to be filled. Each color is repre
sented in PM as a long integer, and constants are defined in the header files to
represent the 16 colors present in the default color table, as well as some sys
tem-defined colors. Although it is possible for an application to color its win
dow background with a specific value such as CLR_BLUE, it is better for the
application to allow the user to configure colors. If the application paints with
the system-defined color constant SYSCLR_ WINDOW, this will represent the
window background color according to the user's configurations from the sys
tem setup folder. If the application always paints with a specific color value,
then that is much less easy to change according to user preferences.

One UpCorporation

HPS hps;
RECTL rclWindow;
POINTL ptlText "' {10, 10);
CHAR ll:tTextl[] "' "Feite";
CliAR si:.Text2[J "'"ltraay";

hpa "'winBeginPaint{,,,J; II Get PS for painting
11 Query window dimenaion

WinQueryWindowRect{hwnd, &rclWindow);
11 Fill background color
11 in rectangle

WinFillRect (hps, &rclWindow,
SYSCLR_WINDOW) ;

II Draw text centred in
11 rectangle

WinDr11wText(hpa, -1, s:i;Textl, &rclWindow,
SYSCLR_WINDOW,
SYSCLR_w:nmOWTEXT,
DT_CENTER ! DT_ VCENTER !
DT_ERASERECT);

11 Move gr11phica cursor
GpiMove(hpa, &ptlText);

11 Draw single line of
11 cbaractera

GpiCharString(hps, strlen(nzText2), azText2);

Feite

Kraay

GpiCharString() may be used to draw a single character string anywhere in a
presentation space. This array need not be zero-terminated, since its length is
passed in the second parameter of the function. GpiCharString() draws at what
is called the current location of the presentation space, which is the location of
the graphics cursor. Initially, the current location is the origin of the axes that
define the presentation space, but it is then moved to be the end point of the last
object drawn. The function GpiMove() accepts two parameters, the presenta
tion space handle and the address of a point data structure (PO INTL, with
members x and y) to update the current location to the point specified. Gpi
Move() should be called before GpiCharString() to ensure that the string is
drawn at the right location. In fact, this is so common that the function Gpi
CharStringAt() is provided as well, with the point specified in the second
parameter, followed by the length and the string. GpiCharStringAt() moves to
the point requested, whether it needs to or not, before drawing the string.

WinDrawText() can be useful for drawing single lines of text. The text, again,
need not be zero-terminated since its length may be passed in the second
parameter. If the length parameter is set to -1, this indicates that the text is
zero-terminated. WinDrawText() allows the programmer to select the fore
ground and background color to be used in drawing the text within a rectangle.
GpiCharString() draws only in the foreground color as it was last set with
GpiSetColor(). The last parameter to WinDrawText() is a set of flags defining
how the text is to be drawn - centered in the rectangle, or aligned to the left,
right, bottom or top. The flag DT_ERASERECT indicates that the rectangle
background ought to be filled first with the background color specified. Win
DrawText() really just performs WinFillRect() followed by GpiCharStringAt(),
having calculated the beginning point according to the alignment flags
specified.

When large quantities of text are drawn, spacing between lines and characters
becomes an issue. Line spacing must take into account the maximum height

and depth of any character above and below the baseline. Horizontal character
spacing is often handled automatically by GpiCharStringAt() or WinDraw
Text(), but character width must be considered for indenting or aligning col
umns of text, especially when a proportional font is used. If scroll bars are to
be supported, then character width and height are used to define the scrolling
units as well. PM provides a data structure of type FONTMETRICS, provides
all necessary measurements about the font in use. If the font changes, the font
metrics must be queried again to ensure the correct appearance of the
application.

FONTMETRICS is a very large data structure, but for the purposes of simple
text drawing and line spacing, only a few of its members are significant. Every
character is drawn inside a box known as a character cell, and for fixed-width
fonts the character cells are all equal in size. For proportional fonts, the cells
vary in width. The FONTMETRICS member lAveCharWidth gives the aver
age width of any cell in the font. This value could be used to calculate how far
to indent the first line of a paragraph, if necessary. Be careful using it to calcu
late column spacing in a proportional font. Since this is the average character
width, a column of many wide characters may exceed the allowed spacing. In
these situations, the value !Eminc would be safer since it defines the width of
the cell for the upper-case letter M, which is the widest character in a font.

typedef otruct
{

LONG lEminc;

LONG lAveCharWidth;

LONG lMaxBaoelineExt;

LONG lMaxA!lcender;

LONG lMuc:Descender;

Long linternalLeading;

LONG lExternalLeading;

} P'ONTMETRICS;

The FONTMETRICS members lMaxAscender and lMaxDescender define,
respectively, the maximum height and depth of a character cell above and
below the baseline. The sum of these is known as lMaxBaselineExt, the maxi
mum baseline extent. The ascender and descender include a small spacing fac
tor known as !InternalLeading. This is the difference between the maximum
ascender and the actual height of the highest character above the baseline.
Another spacing factor provided is !ExternalLeading, which defines the
amount of space allowed between the bottom of one character cell and the top

. of the character cell on the line below. For many fonts, lExeternalLeading is
zero because internal leading provides enough vertical spacing between
characters.

Good general-purpose spacing can be achieved as follows. The position of the
baseline for the first line of text is be calculated by subtracting lMaxAscender
from the height of the client window. Then, the vertical spacing is the sum of
lMaxBaselineExt and lExternalLeading; this value is subtracted from the posi
tion of the previous baseline. If text must be indented, lEmlnc may be multi
plied by some number of characters to determine the indentation. If text must
be scrolled, the horizontal scroll increment should also be lEmlnc, and the ver
tical scroll increment should be the same as the vertical line spacing. Other,
more complex algorithms are documented in the on-line PM reference with the
FONTMETRICS data structure, but these will suffice for simple text.

Scroll bar support is not difficult for a PM application, but it does require some
involved message management. The scroll bar windows do nothing but notify
the client window of user scrolling activity; it is up to the client to actually
scroll the contents of the window, as well as to send messages back to the scroll
bars to update their appearance when scrolling happens. The scroll bars are
created by the frame window if the application specifies the flags
FCF _ VERTSCROLL and FCF _HORZSCROLL among its frame creation
flags.

And if I do, I'm asking that you
won't refuse my last request."

Well, he seemed so low that I couldn't say no;
then he says with a sort of moan

" It's the cursed cold, and its got right hold
till I'm chilled clean through to the bone

Yet 'tain't being dead - it's my awful dread
of the icy grave that pains;

So I want you to swear that, foul or fair
you'll cremate my last remains."

WM_VSCROLL

SB_LINEUP

SB_PAGEUP

SB_SLIDERTRACK

SB_pAGEDOWN

SB_LINEDOWN

SB_LINELEFT
SB_PAGELEFT

SB_SLIDERTRACK

SB_LINERIGHT
SB_pAGERIGHT

WM_HSCROLL

The message WM_ VSCROLL is sent to the client window whenever the user
scrolls the vertical scroll bar. The second message parameter contains notifica
tion codes, extracted with SHORT2FROMMP(mp2). If the user touches the
arrows at either end of the scroll bar, this results in the notification
SB_LINEUP or SB_LINEDOWN. Touching the space above or below the

PM.Coding

thumb mark results in SB_PAGEUP or SB_PAGEDOWN. Dragging the thumb
mark results in SB_SLIDERTRACK. WM_HSCROLL has similar codes for
horizontal scrolling. The following discussion will use as an example scrolling
lines of text; the scrolling functions provided in the example code browse2.c
can be used for general scrolling activity.

Clearly, scrolling is only necessary when the number of lines to be displayed
exceeds the height of the window divided by the height of a single line. Define
an integer to represent the number of lines that are considered to be above the
top of the window. If the first line is displayed, this vertical offset is 0. Another
integer is the vertical scrolling increment which is equivalent to the line height.
Since the window's height is defined in pixels, dividing the window's height by
the vertical increment gives the number of lines that the window can display.
When the window paints, it uses the vertical offset to calculate which line is at
the top of the window, and draws text from there to the bottom of the window.
All vertical scrolling, then, needs to do is adjust the value of the vertical offset.

Horizontal Offset

J Vertical
Offset

::::J
Vertical
Increment

lJ Horizontal Increment

The original offset can be retrieved from the scroll bar by sending it the
SBM_QUERYPOS message. The vertical offset can also be thought of as the
distance of the thumb mark from the top of the scroll bar. The offset is returned
from the scroll bar window procedure, and returned to the client by Win
SendMsg(). If the user scrolls up (SB_LINEUP or SB_PAGEUP) then the ver
tical offset is reduced, but it cannot be less than zero. For SB_LINEUP,
subtract one from the current vertical offset. For SB_PAGEUP, subtract the
height of the window divided by the height of a line. If the result is negative,
reset it to zero. If the user scrolls down (SB_LINEDOWN or
SB_PAGEDOWN) then the vertical offset is increased. For SB_LINEDOWN,
add one to the vertical offset. For SB_PAGEDOWN, add the height of the win
dow divided by the height of the line. The vertical offset, however, cannot be
greater than the total number of lines less the number of lines in the window. If
it was, there would be white space showing at the bottom of the window. If the
vertical offset as calculated above exceeds this maximum, reset it to the maxi-

011.,cUp Gorporatiori

mum. If the user drags the scroll bar slider or thumb mark, the
SB_SLIDERTRACK notification is received. In this case,
SHORT1FROMMP(mp2) retrieves the new value of the vertical offset.

When the user scrolls, the scroll bar does not reposition the thumb mark. This
way, the original offset can be retrieved from the scroll bar first. However,
once the new offset has been calculated, the thumb mark must be moved. The
application does this by sending the message SBM_SETPOS to the scroll bar,
specifying in the first message parameter the new value of the vertical offset.
Also, the application must invalidate the client window by calling Winlnvali
dateRect(), in order to repaint using the new vertical offset value. However, by
sending SBM_SETPOS and moving the thumb mark, the application causes
the scroll bar to send out another WM_ VSCROLL message, this time with the
notification SB_SLIDERTRACK. The vertical offset, of course, does not
change in this new message. The problem is that if the application invalidates
the client window for every WM_ VSCROLL message it receives, there may
be some unwanted flicker effect as the window gets repainted even when the
same lines are displayed. Therefore, the application should only invalidate the
window, and only send SBM_SETPOS to the scroll bar, if the vertical offset
value has in fact changed.

switch {SHORT2FROMMP (mp2))
{
case SB_LINEIJP:

sVOffuet = max(O, (SVOffoet - 1) J;
brenk;

cane SB_LINEDOWN:
oVOffset = min((aVOff11et + 1), (cyData - rclClient.yTop I u11VIncr));
break;

cane SB_PAGEUP:
sVOffaet = max(O, (sVOffuet - rclClient.yTop I usVIncr));
break;

case SB_PAGEDOWN:
nVOffset = min((nVOffset + rclClient.yTop I uaVIncr),

{cyData - rclClient.yTop I uDVIncr));
break;

cane SB_SLIDERTRACK:
BVOffaet = SHORTlFROMMP (mp2);
break;

default:
bre!l.k;

if (sVOffaet l= SHORTlFROMMR (WinSendMsg(hwndVScroll, SBM_QUERYPOS, 0, 0)))
{

)

WinSendMsg{hwndVScroll, SBM_SETPOS, MPFROMSHORT (sVOffset), 0);
WininvalidateRect(hwndClient, NULL, FALSE);

Horizontal scrolling is similar to vertical scrolling. The horizontal offset is
defined to be the number of characters to the left of the left boundary of the
window. The horizontal scrolling increment, or column width, is the member
!Emlnc from the FONTMETRICS data structure. This guarantees that any line,
no matter how wide the characters, can be fully displayed and scrolled. The
total number of columns to be scrolled is the length in characters of the longest
line to be displayed. Exactly the same calculations are performed on the hori
zontal offset as were done for the vertical offset.

For scrolling to work correctly, however, the scroll bar must be initialized. The
scrolling range (number of lines or columns) must be set, and the size of the
thumb mark must be proportional to the amount of data displayed. The size and
position of the thumb mark, as well as the values of the horizontal and vertical
offsets, may change from time to time. This will happen when the window is
resized, when new text data must be displayed, or if the font changes. In all
these cases, the client window sends two messages to each scroll bar -
SBM_SETSCROLLBAR and SBM_SETTHUMBSIZE. In
SBM_SETSCROLLBAR, the first message parameter should contain the hori
zontal or vertical offset so that the scroll bar can position the thumb mark cor
rectly. The second message parameter will contain two short integers that
define the scrolling range. Vertical scrolling, for example, would range from
zero to the total number of lines, less the number of lines displayed in the win
dow. That way the first line would be displayed at the top of the window, and
the last line would be displayed at the bottom of the window with no white
space. In SBM_SETTHUMBSIZE, the first message parameter contains two
short integers representing the total number of lines and the number of lines the
window may display, for vertical scrolling. The scroll bar divides these two to
calculate the size of the thumb mark. If, say, only half the total number of lines
can currently be displayed in the window, then the thumb mark occupies half
of the scroll bar.

uaHeight = cyWindow I unVIncr;
unWidth = cxWindow / usHincr;

if {UDHeight >= (CyData - *paVOffnet) && *paVOffoet I= 0)
*paVOffaet = ll\llX (0, (cyData - uaHeight));

if (uaWidth >= Ccxoatn - *psHOffnet) && *pnHOffaet != 0)
*poHOffaet = ll\llX (0, (cxData - usWidth));

WinSendMsg(hwndVScroll, SBM_SE'l'TRUMBSIZE,
MPFROM2SHORT (usHeight, cyData), 0);

WinSendMag(hwndHScroll, SBM_SETTHUMBSIZE,
MPFROM2SHORT (unWidth, cxData), 0);

WinSendMag(hwndVScroll, SBM_SETSCROLLBAR,
MPFROMSHORT {*paVOffaet),
MPPROM2SHORT (0, (cyData - uoHeight)));

WinSendMog (hwndHScroll, SBM_SETSCROLLBAR,
MPFROMSHORT (*poHOffnet),
MPFROM2SHORT (0, (cxData - u1.1Widtb)));

The sample program browse2 handles window painting, font management, and
scrolling as described above. Painting is restricted to the WM_PAINT message
case, and the cache-micro presentation space returned from WinBeginPaint() is
used to draw the lines of text. First, WinFillRect() is used to fill the background
with the default color. For the sake of simplicity in drawing the text, the entire
window rectangle is used for drawing, not just the invalid rectangle. The first
line to draw is calculated based on the vertical offset used for scrolling. The
horizontal offset is used to calculate the position of the beginning of each line.
The vertical position of the first line is calculated by subtracting the maximum
ascender of the font from the height of the window. Subsequent lines are drawn
by subtracting the sum of the baseline extent and the external leading from the
previous vertical position. Finally, only as many lines are drawn as fit in the

Pag~so·

. current size of the window; any lines above the top or below the bottom are not
drawn. The font metrics are queried when the window is created, under the
WM_ CREATE message case. The necessary values are saved for use in the
WM_PAINT message case.

When the window is resized, the scroll bars are reset by one call to the applica
tion function fnFixScrollSize(). The scroll bar window handles, height and
width of the data (number of lines and maximum line length), height and width
of the window, and the scroll increments are passed by value. The current ver
tical and horizontal offsets are passed by reference, since this function may
update them. In the function fnFixScrollSize(), the new number of lines and
columns supported by the new window size are calculated as usHeight and
us Width. Then new values of the vertical and horizontal offsets are calculated.
When a window is resized, as much as possible of the same data should be dis
played starting from the top left corner. Thus, only if the window has been
scrolled all the way to the bottom or all the way to the right are new offsets cal
culated, for then more data can be displayed at the top or left if the window is
made bigger. Finally, the messages SBM_SETTHUMBSIZE and
SBM_SETSCROLLBAR are sent to each scroll bar to set the new proportional
values.

When scrolling occurs, the message cases WM_ VSCROLL and
WM_HSCROLL are invoked in the client window procedure. The functions
fn VScroll() and fnHScroll() are invoked to perform the scroll bar management.
These functions use a switch ... case construction to determine which notifica
tion code was sent, and calculate .the new offsets accordingly. Only if the
thumb mark has actually moved, is the scroll bar updated and the client win
dow repainted.

The message WM_ CHAR is handled by the client window only for scrolling
purposes. This invokes the application function fnCharScroll() which deter
mines if the arrow keys, page up, or page down were struck. If so, the
WM_ CHAR message is simply passed on to the appropriate scroll bar, since
the scroll bars can handle character messages automatically and send out the
appropriate WM_ VSCROLL or WM_HSCROLL messages.

The message UM_FILEREAD is received from the secondary thread when the
file has been successfully loaded from disk. Then, the client window procedure
extracts the number of lines, and the length of the longest line, from the mes
sage parameters and stores these as the new height and width of data. A call to
the function fnFixScrollSize() will ensure that new scrolling proportions are
calculated for the new file.

The message WM_PRESPARAMCHANGED is received from PM when the
user changes font for the window. This can be done by dragging a new font
from the font palette in the system setup folder. In this message case, new font
metrics must be queried. Here, as in WM_ CREATE, a temporary cache-micro
presentation space is obtained with the WinGetPS() API function. Then,

GpiQueryFontMetrics() retrieves the FONTMETRICS data structures, and
new spacing values are calculated. WinReleasePS() returns the presentation
space. A call to fnFixScrollSize() updates the scrolling proportions to corre
spond to the new font size (the horizontal and vertical scroll increments are dif
ferent, as are the number of lines and columns supported by the window.)
Finally, WininvalidateRect() forces the window to be repainted with the new
font.

'Winaow 'Data
Every message in PM ultimately results in a function call being made to a win
dow procedure. In the window procedure, exactly one case statement is entered
and the message is processed. Then, the next message results in a new invoca
tion of the window procedure. This raises a question of how data might be
retained by the window procedure for use across multiple message cases. In the
example program browse2, the offset and increment values for scrolling and
line spacing are used in the WM_PAINT, WM_ VSCROLL, and
WM_HSCROLL message cases and updated in the WM_SIZE,
WM_PRESPARAMCHANGED, and UM_FILEREAD message cases.

In normal C language functions, variables of the static storage class are often
used to retain information. Static variables are not stack-allocated, and retain
their value through subsequent invocations of the same function. Static vari
ables are very dangerous in PM window procedures. Remember that the win
dow procedure is registered with the window class. This means that the same
window procedure will be used to service messages for all windows created of
a given class. Static variables will then retain their value, not just across differ
ent message cases for the same window, but in fact across multiple windows,
causing unwanted side effects to occur. Consider what would happen if the
sample program browse2 were to create multiple text-viewing windows. The
user could change font or change file for each window separately. If the offset
and increment values were kept as static variables, then a font or file change in
one window would change scrolling parameters across all windows, which
would be unacceptable.

static variable
changed

static USHORT uaVIncr;
utatic PVOID pFileBuff;
static ULOUG ulColor;

Window
inadvertently
affected

Instead, PM provides a way to encapsulate such data on a per-window basis

specifically to retain information that must be persistent through the life of the

window. The technique for this data encapsulation begins with the WinRegis

terClass() API function. When a class is registered, the last parameter of Win

RegisterClass() defines a number of bytes of storage. This is an amount of

memory that will be allocated by PM whenever a window of this class is cre

ated. Any amount of storage may be requested, but it is easiest to use just four

bytes, or the size of a pointer. This storage is known as window words, and can

later be accessed using several PM API functions, most commonly Win

SetWindowPtr() and WinQueryWindowPtr().

typedef atruct
{

USHORT u11VIncr;
PVOID pFileBuff;
ULONG ulColor;

} WINDOWINFO;

typedef WINDOWINFO
*PWINDOWINFO;

WinRegiotei:Claaa
(h11b, "My Claaa", wpMyWndProc,

CS_SIZEREDRAW,
eii::eof {PWINDOWINFO));

hwndl = WincreateWindow{ ...);
hwnd2 = WinCreateWindow{ ... J;

Four bytes of
"Window Words"
Per Window

When the window is created, PM allocates the four bytes of window words

storage. In the WM_ CREATE message case, the window procedure would

then dynamically allocate and initialize a user-defined data structure that holds

all the instance data that the window needs to retain. Since the structure is

dynamically allocated, a new one is set up for each window created. The

pointer to the data structure can be stored in the window words by calling Win

SetWindowPtr(). This function accepts as its first parameter the window han

dle. The third parameter is the pointer, and the second parameter is an offset

defining where the pointer should start in the window words. Since exactly

four bytes, the size of a pointer, had been requested, the offset is normally set

to zero.

In other message cases, where the instance data must be retrieved to be modi

fied or used, the WinQueryWindowPtr() API function returns the pointer from

the window words. The two parameters to WinQueryWindowPtr() are the win

dow handle and the offset, again usually zero. In this way, each of multiple

windows could retain its own scrolling information. When the data structure is

allocated, modified, or read, it is always distinguished by the window handle.

A different data structure is maintained for each window. There are no side

effects propagated if one window changes font, or another window changes

file. With this method of data encapsulation available, it is good style to avoid

static variables entirely in the window procedure, and store any persistent
information in an instance data structure.

MRESULT _Sy11tem wpClient (•••)
{

MI\ESULT m.r = 0;
PWINDOWINFO pwi;

switch (msg)
{

case WM_CREATE:
pwi = (PWINDOWINFO)

malloc(sizeof (WINDOWINFO));
pwi -> UBVIncr = O;

WinSetWindowPtr(hwnd, 0, pwi);
break;

cam!! WM_PAINT:
pwi = WinQueeyWindowPtr(hwnd, OJ;

break;

Cl.I.Be WM_DESTRQY:
pwi = WinQueryWindowPtr(hwnd, OJ;
free(pwi);
break; Data Structure

Encapsulated

The instance data technique can be combined with WinCreate Window() to pro
vide a powerful method of window initialization. The main routine that is cre
ating instance windows of a class may want to create each window a little
differently - a different color in one, or a different initial file to display in
another. In this case, the main routine could allocate and initialize a separate
data structure for each window being created. The last two parameters of Win
Create Window() are defined as pointers to control data and presentation
parameter structures for control windows. These pointers become the message
parameters mp! and mp2, respectively, in WM_ CREATE. For an application
defined client window of a private window class, control data and presentation
parameters are undefined. These pointer parameters could then be used by the
application to pass a structure of instance data to any window, upon creation.

pwi = (PWINDOWINFO) malloc(sizeof(WINDOWINFO));

pwi -> ulColor = ••• ;
bwndClient = Wincreatewindow(... ,

pwi, // Initialize window
NULL) I I/ No Preo. Parme.

PWINDOWINFO pwi;

case WM_CREATE:
pwi = PVOIDFROMMP (mpl);

WinSetWindowPtr(hwnd, O, pwil;

The sample program browse2 uses instance data in order to avoid static vari
ables. In the header file browse2.h, there is a typedef statement defining a data
structure that will hold all the instance data. This user-defined structure is
named TEXTINFO. In the source file browse2.c, WinRegisterClass() asks for
four bytes of window words to be allocated per window. In the WM_ CREATE

.message case, the window procedure uses malloc() to allocate storage for the
TEXTINFO instance data structure, which is then initialized with scrolling val
ues based on the default font for the window. All other message cases call Win
QueryWindowPtr() first to retrieve the pointer to the data structure, and then
use or modify the contents of the structure. Finally, in the WM_DESTROY
message case, when the window is being destroyed, the window procedure
calls free() to release the memory occupied by the instance data structure.

1vfe;tiu !R.fsource :Management
The menu, or action bar, provides the basis for most of the user interaction with
a PM application. The Common User Access Advanced Inte1face Design Guide
supplies recommendations regarding the appearance of the menu, and the
options supplied. The concern here is how the menu is defined and used by the
application - what API functions and what messages are important. The menu
is not difficult to deal with. Some of its actions have already been described in
previous sections.

The menu is one instance of a resource in Presentation Manager, and it is
defined in a separate resource file. Other examples of resources are icons,
pointers, accelerator keys and dialog boxes. Resources in general are all lan
guage-specific or interface-specific objects in a PM application. These are all
defined in a separate resource source file which is compiled and added to the
application with the resource compiler, RC.EXE. This way, the resources may
be maintained independently of the application's source code.

BROWSE2.C

FRAMECDATA fcData;

fcData. flCreateFlaga = • • • I FCF _MENU;
fcData.idReaourcee = ID_FRAME;

MENU ID_FRAME
(

'************************
I*
1* BROWSE2- a simple ASCII f
I* thread, and illustrates scroll
I*
1* Feite Kraay, OB/93 One Up
1*

'************************

Although the menu could be created dynamically by means of API functions, it
is normally created statically in the resource file. Then, turning on the flag
FCF _MENU in the frame creation flags for WinCreateStdWindow() or Win
Create Window() will direct the frame window to locate the menu resource and
create the menu control. The menu may be modified later by sending it mes
sages from the client window. This would be used to enable or disable menu
items, or to add or remove menu items.

PM Coding

The menu template is defined in the resource file using the keyword MENU. A
pair of braces { ... } delimits the menu; the keywords BEGIN and END will also
do. Within the menu, the keyword SUB MENU defines each choice that will be
displayed across the top of the menu. Typical submenus are File, Edit, or Help.
Braces or BEGIN and END delimit the submenu. Within each submenu, the
keyword MENUITEM defines each individual selectable choice such as Open,
Save, Cut, or Copy.

BROWSE2.RC

#include <os2 .h>
#include "browae2.h"

MENU ID_FRAME
(

SUBMENU "-File", IDM_FILE
(

MENUITEM "-Open •.. ", IDM_OPEN
MENUITEH "-Clear", IDM_CLEAR
MENUITEM SEPARATOR
MENUITEM "E-xit .. . ", IDM_EXIT

)

BROWSE2.H

#define ID_FRAME 100

#define IDM_FILE 300
#define IDM_OPEN 301
#define IDM_CLEAR 302
#define IDM_EXIT 303

For each submenu and menu item, the text must be specified in double quota
tion marks. This text is drawn in the appropriate location within the menu. The
tilde character (-) identifies which letter is used as a mnemonic for each sub
menu or menu item. When the user has assigned focus to the action bar (by
pressing PIO, for example), then pressing the mnemonic key opens the associ
ated submenu or selects the menu item. The mnemonic characters must be
unique across all submenus, and unique across all menu items within any sub
menu. One tab character (\t) may be inserted in the text; this is useful for align
ing any accelerator key values to the right of the menu text. The " ... "(called an
ellipsis) following certain menu items is a CU A convention indicating that
selection of the menu will result in a dialog or message box being displayed.
The keyword SEPARATOR on a menu.item causes a horizontal line to be
drawn between items. This is useful for grouping related choices, or isolating a
choice such as Exit... by itself.

The menu, and all submenus and menu items, must have numeric ID values.
These should all be constants defined in the application's header file. The menu
ID must also be passed to the frame window by means of the idResources
member of the FRAMECDATA structure (for WinCreateWindow()) or the
frame window ID in the second-last parameter of WinCreateStdWindow(). If
the same menu ID value is not used in the resource file and WinCreateWin
dow() or WinCreateStdWindow(), then the frame window creation will fail
since the menu cannot be found. The ID values for the submenus and menu
items should be defined as distinct constants in the header file. Then, the appli
cation will always be able to distinguish one menu command from another.

Style flags may optionally be specified for submenus and menu items. Most
common is the flag MIS_ TEXT, indicating that the submenu or menu item is to
be drawn as text, although MIS_BITMAP could be used to add graphics to a
menu. MIS_ TEXT is the default, and need not be specified explicitly.

One Up Corporation

MENU ID_FRAME
{

SUBMENU "-File", IDM_FILE
{

MENUITEM "Item -1", IDM_ONE, MIS_TEXT
MENUITEM "Item -2", IDM_TWO, , MIA_CHECKED
HENUITEM "Item -3", IDM_THREE, , MIA_DISABLED

/* Client window procedure *I

HWND hwndFra.me, hwndMenu;

hwndFrame = WinQueryWindow(hwnd, OW_PARENT);
hwndMenu = WinWindowFromID(hwndFrame, FID_MENU);

WinEnableMenuitem(hwndMenu, IDM_THREE, TRUE); //Enable Item 3
WinEnableMenuitem(hwndMenu, IDM_TWO, FALSE); //Disable Item 2

Menu item attributes can be specified following the style flags. The styles and
attributes are delimited by commas, so if no styles are specified then a comma
must still be left before the attributes are specified. The attribute
MIA_DISABLED can be used to disable a menu item or submenu so that it
cannot be selected by the user. Menu items may be enabled and disabled later
using the macro API WinEnableMenuitem(). The attribute MIA_ CHECKED
is used to draw a check mark next to a menu item. Checked menu items are
normally used to toggle options that can be set for a window. An editor, for
example, could use checked menu items for user configurations such as auto
save or word wrap. Menu items may be checked or unchecked later using the
macro API WinCheckMenultem().

WinEnableMenultem() and WinCheckMenuitem() really send the message
MM_SETITEMATTR to the menu window, to change the respective attributes.
Each of these macros accepts three parameters, beginning with the menu win
dow handle. This handle can be found in a two-step process. The menu is a
child of the frame, so Win WindowFrornID() using the value FID _MENU
returns the menu window handle if the frame window handle is known. The
frame is the parent of the client, and its handle can be determined using Win
Query Window(), specifying the relationship flag QW _PARENT. The second
parameter to WinEnableMenultem() or WinCheckMenuitem() is the ID value
of the item to be affected, as defined in the header file. The third parameter to
these macros is a boolean flag, TRUE to check or enable, FALSE to remove
the check or disable.

As long as the menu has been defined, and the resource compiler has success
fully compiled and embedded the resources, the user may now select options
from the application's menu. Whenever the user makes a selection, the
WM_ COMMAND message is posted from the menu window to the frame, and
sent from the frame to the client window. The client window procedure exam
ines the low end of the first message parameter using SHORTlFROMMP
(mpl). This contains the ID number of the selected menu item. Usually, a

nested switch ... case construction is used to take action in response to the differ
ent possible menu item selections. The second parameter of
WM_ COMMAND contains additional information such as whether the selec
tion was made with mouse or keyboard, and whether the message was gener
ated from the menu, the accelerator table, or a push button.

MRESULT _system wpClient (HWND hwnd, ULONG mag,
MPARAM mpl, MPARAM mp2)

lilwitch (mag)
{

case WM_COMMAND:

awitch (SHORTll"ROMMP (mpl)
{

}
break;

caae IDM_OPEN: // Do file open
bt"eak;

case IDM_CLEAR: // Clear window
break;

case IDM_EXIT: // Do exit processing
break;

default:
break;

The sample program browse2 contains a menu defined in the resource file
browse2.rc. The make file browse2.mak contains the commands re -r
browse2.rc to generate the compiled resource in the file browse2.res. This file
is then embedded into the program by the command RC BROWSE2.RES
BROWSE2.EXE. The resource file browse2.rc includes the header file os2.h
so that the keywords are recognized.

It also includes the application header browse2.h so that the menu, submenu,
and menu item IDs can be set up as constants. Then the menu is built as
described above, with only one submenu and three menu items. The keywords
MENUITEM SEPARATOR draw a horizontal line to separate two unrelated
menu items.

In the source file browse2.c, the WM_ COMMAND message case handles all
the menu interaction. IDM_OPEN represents the choice Open under File, and
here the user is asking to select a new file. The API function WinFileDlg() is
used to display a standard file selection dialog box, customized by the data
structure of type FILEDLG. This API returns the selected file name in the
member szFullFile of the FILED LG structure. The file name and client win
dow handle are copied into a data structure of type OPENINFO, which is
defined in the header file browse2.h. The address of this structure is passed as a
parameter to the thread function fnOpenThread, which is started using DosCre
ateThread(). When the thread finishes, it posts the user-defined message
UM_FILEREAD to the client window and the file is then displayed.

IDM_CLEAR represents the option Clear under File on the menu, and is used
to indicate that the current file should no longer be displayed. The file buffer is
released, scrolling parameters are reset to zero, and the window is invalidated
so that it repaints itself with just the background color.

IDM_EXIT represents the option Exit under File, and is selected when the user
wishes to terminate the application. In this case, the client window just posts
WM_ CLOSE to itself, in order to invoke the message box prompt for confir
mation to end. If the user answers yes to the message box, the window proce
dure posts WM_ QUIT to terminate.

• Where To Go Next

• OS/2 Awareness Series

• About the Authors

You should now have a better understanding of, and appreciation for, the capa
bility and. power of OS/2 version 2.1 as a development system. If you want to
learn more, there are several things to do.

If you are interested in communications, a good place to start is the next vol
ume in the One Up OS/2 Awareness Series which is described in more detail
below. If you just want to get a more detailed understanding of how to use the
OS/2 system, visit any good bookstore. You will find several excellent books
there covering topics ranging from how to set up your system to deep technical
discussions on how the various components of OS/2 were designed.

Volume 1 increases your understanding of how OS/2 can make your computing
time more productive and pleasant. It includes descriptions of the base system
and the productivity applets that are included with the system. This book also
includes hints on how to maximize the performance of the DOS emulation
capabilities of OS/2 and how to install and use the multimedia support.

This volume, Volume 2, was designed to increase your understanding of how
to write programs for OS/2. You should have a clear idea of the programming
concepts in OS/2 version 2.1 and be able to use the sample programs as the
basis for programs of your own design.

If you want more detailed programming instruction, you should contact One
Up for a class schedule. There are several programming courses available that
cover all aspects of OS/2 programming.

Volume 3 in the One Up OS/2 Awareness Series looks at OS/2 as a communica
tions platform. It includes an introduction to LAN Server version 3 and Com
munications Manager/2. Installation instructions are included as well as
descriptions of the administrative tasks necessary to build or connect to a LAN .

.91.Gout tfie
Feite Kraay spent three years at IBM Canada Education developing and teach
ing courses on OS/2 and Presentation Manager programming, from version 1.1
through 2.0. In early 1992 he joined One Up Corporation, continuing his OS/2
education and consulting activities. He is now the general manager of One Up
Computer Services Ltd., the Canadian subsidiary of One Up Corporation. Feite
Kraay holds a Bachelor of Mathematics degree from the University of
Waterloo

Larry Pollis spent 10 years with Rolm. From there, he joined IBM working in
the OS/2 technical support group. He wrote several technical bulletins and pre
sented several topics on the IBM Field Television Network about OS/2.

Craig Chambers is a graduate of Purdue University with BS and MS degrees.
He worked for IBM for 23 years in various positions including; large account
System Engineer, 3270 and 3270-PC technical support, and PC-DOS and OS/2
technical support. During this time, he wrote several articles for various techni
cal journals, made presentations at COMMON, and participated in several
IBM Field Television Network broadcasts.

Ylppendi~YL

/***/
/* */
/* BROWSEl- a simple ASCII file browser - loads the file in a secondary */
/* thread, and prints the file to stdout. */
/* */
/* Feite Kraay, 08/93 One Up Corporation. */
/* */
/***/

/***/
/* */
/* Header file includes: *I
I* *I
/***/

#define INCL_DOSSEMAPHORES II OS/2 Semaphores
#define INCL_DOSPROCESS II OS/2 Tasking
#define INCL_DOSMEMMGR II OS/2 Memory Handling
#define INCL_DOSFILEMGR II OS/2 File Functions

#include <OS2.h> II Include OS/2 Headers
#include <Stdio.h> II Include C I/0 library
#include <string.h> II Include C string function library
#include <Stdlib.h> II Include C standard library
#include "browsel.h" II Application header

/***/
/* *I
/* Functon main - primary thread entry point. Start the thread to load the */
I* file, and display message. Then print the file to stdout when the */
/* thread finishes. */
/* */
/***/

int main(int argc, char *argv[])
{

HEV
POPENINFO
TID
PCH

hevLoad;
pOpeninfo;
tidOpen;
pWork;

/**/
/* */
/* As long as there is one argument, accept it as a file name and kick */
/* off the thread to load that file. Use an event semaphore to know when */
/* the thread has finished. */
/* *I
/**/

}

if (argc == 2)
{
pOpeninfo = {POPENINFO} malloc (sizeof (OPENINFO}};

DosCreateEventSem (NULL, &hevLoad, O, FALSE};

strcpy (pOpeninfo -> szFileName, argv[l]};
pOpeninfo -> hevLoad = hevLoad;

DosCreateThread (&tidOpen, (PFNTHREAD) fnOpenThread,
(ULONG) pOpeninfo, OL, 8192);

else
{

}

printf ("Usage is ==> browsel <filename>\n");
DosExit (EXIT_PROCESS, 0);

/**/
I* */
/* After the thread has started, main could be doing other work. Just */
/* print a couple of messages to the user, and wait on the semaphore to */
/* know when to start printing the file. */
I* *I
/**/

printf ("The thread is now loading the file •.• \n");
print£ ("The main function could be doing other useful work •.• \n");
printf ("We'll just wait on the thread to finish.\n\n");

DosWaitEventSem (hevLoad, -1);

/**/
/* */
/* The thread notifies main of an error by specifying a 0 file size - */
/* then just print an error message. Otherwise, just use putc to print */
/* the file contents to stdout. Free the memory when the file has been */
/* printed. *I
/* */
/**/

if (pOpeninfo -> ulSize == O)
{
printf ("An error occurred loading the file\n");
DosCloseEventSem (hevLoad);
free (pOpeninfo);
DosExit (EXIT_PROCESS, O);

}
else

{
print£ ("File successfully loaded ••. \n\n");
for (pWork = pOpeninfo -> pchFile;

pWork < pOpeninfo -> pchFile + pOpeninfo -> ulSize;
pWork ++)

putc (*pWork, stdout);
}

DosFreeMem (pOpeninfo -> pchFile);
}

/**/
I* */
/* Clean up and terminate - free the data structure used to pass info */
/* between main and the thread, and close the semaphore. */
/* */
/**/

free (pOpeninfo);
DoaCloseEventSem (hevLoad);
DosExit (EXIT_PROCESS, 0);

/***/
/* */
/* Thread function fnOpenThread - open the file, allocate memory, read it, */
/* and post a semaphore to indicate completion. */
/* */
/***/

VOID _System fnOpenThread (POPENINFO pOpeninfo)
{

HF ILE
ULONG
FILESTATUS
ULONG

hFile;
uiAction;
fstsFile;
ulBytes;
boolError; BOOL

boolError FALSE;

do
/**/
I* */
/*Open the file, privately to this process. Open for read only, and */
/* fail if the file does not exist. */
I* *I

/**/

if (DosOpen (pOpeninfo -> szFileName, &hFile, &ulAction, O, O,
OPEN_ACTION_FAIL_IF_NEW I
OPEN_ACTION_OPEN_IF_EXISTS,

)

OPEN_SHARE_DENYWRITE I
OPEN_ACCESS_READONLY,
O))

boolError = TRUE;
break;

/**/
/* */
I* Determine the size of the file, from a FILESTATUS data structure. */
I* *I

/**/

if (DosQueryFileinfo (hFile, FIL_STANDARD, &fstsFile,
sizeof (FILESTATUS)))

)

boolError
break;

TRUE;

/**/
I* . */
/* Allocate sufficient memory to hold the contents of the file. */
/* */

/**/

if (DosAllocMem ((PPVOID) &(pOpeninfo -> pchFile), fstsFile.cbFileAlloc,
PAG_WRITE I PAG_COMMIT))

{
boolError
break;

)

TRUE;

/**/
/* *I
I* Read the file into the memory buffer just allocated. */
I* */

/**/

if (DosRead (hFile, (PVOID) pOpeninfo -> pchFile, fstsFile.cbFile,
&ulBytes))

{

)

boolError = TRUE;
DosFreeMem (pOpeninfo -> pchFile);
break;

while (FALSE);

/**/
/* */
/* Close the file when finished. If an error occurred at any step, set a */
/* value of 0 in the shared data structure to indicate failure. Otherwise */
/* return the file pointer and size in the data structure, to indicate */
/* success and allow main to print the file. */
/* */
/**/

Dosclose (hFile);

if (boolError)

pOpeninfo -> pchFile = NULL;
pOpeninfo -> ulSize = O;

)
else

{
pOpeninfo -> ulSize

)
fstsFile.cbFile;

DosPostEventSem {pOpeninfo -> hevLoad);

DosExit (EXIT_THREAD, 0);
)

%e foffowing is the 'JvUZL~ ji[e for Growsel.c:
BROWSEl.MAK

browsel.exe: browsel.obj
link386 /NOI /PM:VIO /DEBUG browsel.obj;

browsel.obj: browsel.c browsel.h
ice /c /Ss /Ti+ /Kb /Gm browsel.c

%e foffowing is the header ji[e, Growse1.h, for Growsel:
BROWSEl.H

/***/
/* */
/* Text browser demo - application header. */
/* */
/***/

typedef struct
{

CHAR BZFileNarne [255];
HEV hevLoad;
PCH pchFile;
ULONG ulSize;

} OPENINFO, *POPENINFO;

JI Function prototype

II Thread argument data structure

II File name
II Semaphore handle
JI Pointer to file buffer
II Size of file

VOID _System fnOpenThread (POPENINFO pOpeninfo);

/***/
/* */
/* BROWSE2- a simple ASCII file browser - loads the file in a secondary */
/* thread, and illustrates scroll bar support. */
/* */
/* Feite Kraay, 08/93 One Up Corporation. */
/* */
/***/

/***!
/* */
/* Header file includes: *I
/* */
/***/

#define INCL_WIN II PM Win APis
#define INCL_GPI II PM Graphics APis
#define INCL_DOSPROCESS II OS/2 Tasking
#define INCL_DOSMEMMGR II OS/2 Memory Handling
#define INCL_DOSFILEMGR II OS/2 File Functions

#include <OS2.h> II Include OS/2 Headers
#include <string.h> II Include C string functions
#include <stdlib.h> II Include C standard library
#include "browse2.h" II Application header

/***/
/* */
/* Function main - primary thread entry point. Window creation, message */
/* loop and termination. */
/* */
/***/

int main(int argc, char *argv[])
{
HAB
HMQ
QMSG
HWND
ULONG
POPENINFO
TID

hab;
hmq;
qmsg;
hwndClient, hwndFrame;
flCreateFlags;
pOpeninfo;
tidOpen;

/**!
/* */
/* create anchor block and initialize this thread to PM. */
/* Create message queue on the anchor block - use default size */
/* Register the class for the client window - the window procedure is */
/* defined below, and 4 bytes of additional storage will be allocated by */

/* PM upon creation of any window of this class.
I*

*I
*I

/**/

hab Wininitialize (0);

hmq WinCreateMsgQueue (hab, 0);

WinRegisterClass (hab, CLIENT_CLASS_NAME, wpClientWndProc,
CS_SIZEREDRAW, 4);

/**/
I* *I
/* Initialize the frame creation flags that will customize the appearance */
/* and behaviour of the frame window assembly. Then create the frame and */
/* client windows in one step, using WinCreateStdWindow. The identifier */

I* ID_FRAME is used to locate the menu resource requested. */

I* *I
/**/

flCreateFlags = FCF_TITLEBAR
FCF_SYSMENU
FCF_SIZEBORDER
FCF_MINMAX
FCF_MENU
FCF_VERTSCROLL
FCF_HORZSCROLL
FCF_SHELLPOSITION
FCF_TASKLIST;

II Title Bar
II System Menu Icon
II Normal Sizeable Border
II Minimize/Maximize
II Action Bar
II Vertical Scroll Bar
II Horizontal Scroll Bar
II PM Default size/Position
II Windows List Entry

hwndFrame WinCreateStdWindow (HWND_DESKTOP, WS_VISIBLE, &flCreateFlags,
CLIENT_CLASS_NAME, NULL, O, 0, ID_FRAME,
&hwndClient);

/**/
I* *I
/* As long as there is one argument, accept it as a file name and kick */
/* off the thread to load that file. */

I* *I
/**/

if (argc == 2)
{

)

pOpeninfo = (POPENINFO) malloc (sizeof (OPENINFO));

strcpy {pOpeninfo -> szFileName, argv[l]);

pOpeninfo -> hwnd = hwndClient;

DosCreateThread (&tidOpen, {PFNTHREAD) fnOpenThread,
(ULONG) pOpeninfo, OL, 8192);

/**/
/* *I
/* Enter the message loop - retrieve one message at a time from the input */
/* queue, and dispatch it synchronously to whatever window procedure */

/* ought to deal with it. */
/* *I
/**/

while (WinGetMsg (hab, &qmsg, 0, 0, O))
WinDispatchMsg (hab, &qmsg);

/**/
I* *I
/* WM_QUIT causes WinGetMsg to return FALSE, terminating the message loop */

/* and therefore the application. Destroy the frame window (and therefore */

/*all its descendants), destroy the message queue and the anchor block. */

I* *I
/**/

WinDestroyWindow (hwndFrame);

WinDestroyMsgQueue (hmq);

WinTerminate (hab);

DosExit (EXIT_PROCESS, 0);
)

l*******************~***I
I* *I
I* Client window procedure wpClientWndProc - handle all messages on behalf *I
I* of this application-'s main window. *I
I* *I
l***I

MRESULT wpClientWndProc (HWND hwnd, ULONG msg, MPARAM mpl, MPARAM fup2)
{
MRESULT mr = (MRESULT) O;
PTEXTINFO pti;

switch (msg)
{
case WM_CREATE~

l**I
I* *I
I* Window creation - allocate and initialize a window instance data *I
I* structure, whose pointer will be stored at offset O in the 4 bytes *I
I* of window words data asked for by WinRegisterClass. *I
I* *I

l**I
{
HPS hps;
FONTMETRICS fm;

pti = (PTEXTINFO) malloc (sizeof (TEXTINFO));
WinSetWindowPtr (hwnd, O, pti);

II Scroll bar window handles

pti -> hwndVS WinWindowFromID (WinQueryWindow (hwnd, QW_PARENT),
FID_VERTSCROLL);

pti -> hwndHS WinWindowFromID (WinQueryWindow (hwnd, QW_PARENT),
FID_HORZSCROLL);

hps: WinGetPS (hwnd);
GpiQueryFontMetrics {hps, sizeof (FONTMETRICS), &fm);
pti -> usVIncr fm.lMaxBaselineExt II Height of a line of text

+ fm.lExternalLeading;
pti -> usHincr fm.lEminc; II Maximum character width
pti -> usTopincr = fm.lMaxAscender; II Offset to draw from top
pti -> sVOffset = O; 11 Positioning of text
pti -> sHOffset = O;
WinReleasePS (bps);

pti -> ulHeight = O;
pti -> ulWidth = O;

II Number of lines of text
II Max. characters per line

pti -> boolText = FALSE;
}

II No text initially drawn

break;

case WM_SIZE:

l**I
I* *I
I* When the window is re-sized, we need to adjust the proportional *I
I* size of the scroll bar thumb mark; this is done by the function *I
I* fnFixScrollSize below. *I
I* *I

l**I

pti = WinQueryWindowPtr (hwnd, 0);

fnFixscrollSize (pti -> hwndVS, pti -> hwnd.HS,

break;

pti -> ulWidth, pti -> ulHeight,
SHORTlFROMMP (mp2), SHORT2FROMMP (mp2),
pti -> usVIncr, pti -> usHincr,
&(pti -> sVOffset), &(pti -> sHOffset));

case WM_PRESPARAMCHANGED:

l**I
I* *I
I* User has dragged a new font to this window, from the font palette. *I
I* We need to record the new line height, character width, and offset *I
I* for drawing. This also affects the proportional size of the scroll *I
I* bar thumb mark, so call fnFixScrollSize again. Then repaint in the *I

/* new font.
/*

*/
*/

/**/

HPS hps;
FONTMETRICS fm;
RECTL rel;

pti WinQueryWindowPtr {hwnd, 0);

hps WinGetPS {hwnd);
GpiQueryFontMetrics {hps, sizeof {FONTMETRICS), &fm);
pti -> usVIncr = fm.lMaxBaselineExt + fm.lExternalLeading;
pti -> usHincr = fm.lEminc;
pti -> usTopincr = fm.lMaxAscender;
WinReleasePS (bps);

WinQueryWindowRect (hwnd, &rel);

fnFixScrollSize (pti -> hwndVS, pti -> hwndHS,
pti -> ulWidth, pti -> ulHeight,
rcl.xRight, rcl.yTop,
pti -> usVIncr, pti -> usHincr,
&(pti -> sVOffset), &(pti -> sHOffset));

WininvalidateRect (hwnd, NULL, 0);
)
break;

case WM_PAINT:

/**/

/* */
/* Window repainting. If there is no text to draw, just fill with */
/* background colour. If there is text, the file has been prepared */
/* as a sequence of zero-terminated strings. Step through the file */
/* until we get to the string that should be at the top of the */
/* window, then draw only the strings from there to the bottom of the */
/* window. */

/* */
/**/

HPS
RECTL
PO INTL
ULONG
PCH
ULONG
UL ONG

hps;
rectlClient;
ptlText;
i;
pWork;
ulLength;
ulBegin, ulEnd;

pti = WinQueryWindowPtr (hwnd, O);

/***/

!* */
/* Determine the dimension of the client window, then get a */
/* presentation space and paint the background of the window. */
/* */

!***/

WinQueryWindowRect (hwnd, &rectlClient);
bps = WinBeginPaint (hwnd, 0, NULL);
WinFillRect (bps, &rectlClient, SYSCLR_WINDOW);

/***/
/* */
/* If there is text, get the pointer to the buffer. Drawing begins */
/* in the top-left corner of the window. The variable ulBegin, or */
/* the vertical offset, is equivalent to the number of the first */
/*line in the window (or the 'height' above the top of the window*/
/*where the text would begin.) Step through the file until that */
/* line, and then draw from there to the bottom of the window */
/* only. */
/* */

!***/

if (pti -> boolText)
{
pWork = (PCH) pti -> pFile;
ptlText.x pti -> usHincr - pti -> usHincr * pti -> sHOffset;
ptlText.y = rectlClient.yTop - pti -> usTopincr;

ulBegin ~ pti -> sVOffset;
ulEnd = ulBegin + rectlClient.yTop I pti -> usVIncr-;

for {i = O; i < ulBegin; i++)
{
ulLength = strlen (pWork);
pWork += ulLength;
pWork += 2;

}

for (i = u!Begin; i < ulEnd; i++)
{
ulLength = strlen (pWork);
GpiCharStringAt (hps, &pt!Text, u!Length, pWork);
pWork += ulLength;
pWork += 2;
ptlText.y -= pti -> usVIncr;

}

WinEndPaint (hps);
}
break;

case WM_VSCROLL:

/**/
/* */
/* Vertical scrolling support is provided by the function fnVScroll. */
/* */

/**/

pti = WinQueryWindowPtr (hwnd, 0);

pti -> svoffset = fnvscroll (pti -> hwndVS, hwnd,
pti -> usVIncr, pti -> ulHeight, mp2);

break;

case WM_HSCROLL:

/**/
/* *I
/* Horiz. scrolling support is provided by the function fnHScroll. */
/* *I
/**/

pti = WinQueryWindowPtr (hwnd, 0);

pti -> sHOffset = fnHScroll (pti -> hwndHS, hwnd,
pti -> usHincr, pti -> ulWidth, mp2);

break;

case WM_CHAR:

/**/
/* *I
/* Keyboard messages are passed on to the horizontal or vertical */
/* scroll bars if necessary, by the function fnCharScroll. */
/* */

/**/

pti = WinQueryWindowPtr (hwnd, 0);

fnCharScroll (pti -> hwndVS, pti -> hwndHS, msg, mpl, mp2);
break;

case WM_COMMAND:

/**/
/* *I
/* Action bar commands. Determine the command and handle it. */
/* *I

/**/

pti = WinQueryWindowPtr (hwnd, 0);

switch {SHORTlFROMMP (mpl))
{
case IDM_OPEN:

/***/

/* */
/* Open a new file. Show the file open dialog, and if the */
/* user selects a file and hits OK, then kick off a thread to */
/* do the loading. The thread takes as argument a pointer to */
/* a data structure that contains the file name and the client */
/* window handle, for message posting back. */
I* *I

/***/

PFILEDLG pfd;
POPENINFO poi;
TID tidOpen;

pfd (PFILEDLG) malloc (sizeof (FILEDLG));
memset (pfd, o, sizeof (FILEDLG));
pfd -> cbSize = sizeof(FILEDLG);
pfd -> fl = FDS_CENTER I FDS_OPEN_DIALOG;
pfd -> pszTitle = "PM Text Demo";
strcpy (pfd -> szFullFile, "*·*");

WinFileDlg (HWND_DESKTOP, hwnd, pfd);

if (pfd -> !Return == DID_OK)
{
poi= (POPENINFO) malloc (sizeof (OPENINFO));

strcpy (poi -> szFileName,
pfd -> szFullFile);

poi -> hwnd = hwnd;

DoscreateThread {&tidOpen, (PFNTHREAD) fnOpenThread,
(ULONG) poi, 0, 8192);

free (pfd);
}

break;

case IDM_CLEAR:

/***/
!* */
/* Get rid of the file currently being displayed, if any. */
/* */

/***/

if (pti -> boolText)
{

}

RECTL rel;

pti -> boolText = FALSE;
DosFreeMem (pti -> pFile);

WinQueryWindowRect (hwnd, &rel);

pti -> ulWidth = O;
pti -> ulHeight = O;

fnFixScrollSize (pti -> hwndVS, pti -> hwndHS,
pti -> ulWidth, pti -> ulHeight,
rcl.xRight, rcl.yTop,
pti -> usVIncr, pti -> usHincr,
&(pti -> sVOffset), &(pti -> sHOffset));

WininvalidateRect (hwnd, NULL, 0);

break;

case IDM_EXIT:

/***/
I* *I
/* User wants to end the application; post a WM_CLOSE to get */
/* the message box confirmation first. */
/* */

/***/

WinPostMsg (hwnd, WM_CLOSE, O, 0);
break;

default:
break;

)
break;

case UM_FILEERROR:

/**/
/* *I
/* An error occurred loading the file - just notify the user with a */
/* message box, and take no further action. */
/* *I

/**/

WinMessageBox (HWND_DESKTOP, hwnd, "Error loading file",
"Text Browser", 1, MB_OK MB_MOVEABLE I MB_WARNING);

break;

case UM_FILEREAD:

/**/
I* *I
/* The file has been successfully loaded. Free the data buffer from */
/* the previous file, then reset the scroll bars according to the */
/* number of lines and maximum line width provided in mp2. The new */
I* file buffer is pointed to from mpl. Repaint the window with this */
/* file. */
I* *I

/**/
{

RECTL rel;

pti = WinQueryWindowPtr (hwnd, O);
WinQueryWindowRect (hwnd, &rel);

if (pti -> boolText)
DosFreeMem (pti -> pFile);

pti -> boolText = TRUE;
pti -> pFile = PVOIDFROMMP (mpl);
pti -> ulWidth = (LONG) SHORTlFROMMP (mp2);
pti -> ulHeight = (LONG) SHORT2FROMMP (mp2);

fnFixScrollSize (pti -> hwndVS, pti -> hwndHS,
pti -> ulWidth, pti -> ulHeight,
rcl.xRight, rcl.yTop,
pti -> usVIncr, pti -> uaHincr,
&(pti -> sVOffset), &(pti -> sHOffset));

WininvalidateRect (hwnd, 0, FALSE);
)
break;

case WM_CLOSE:

/**/
/* *I
/* Close from the system menu - prompt for confinnation, then post a */
/* WM_QUIT message to end the application. */
/* *I

/**/

if (WinMessageBox (HWND_DESKTOP, hwnd,
"Are you sure you want to quit?",
"Text Browser",
1, MB_YESNO I MB_ICONQUESTION I MB_MOVEABLE)

MBID_YES)
WinPostMsg (hwnd, WM_QUIT, O, 0);
break;

case WM_DESTROY:

/**/
/* */
/* Upon window destruction, free up the instance data structure and */
/* the file buffer if it exists. *I
I* *I

/**/

pti = WinQueryWindowPtr (hwnd, 0);
if (pti -> boolText)

DosFreeMem (pti -> pFile);
free (pti);

}

break;

default:

mr = WinDefWindowProc (hwnd, msg, mpl, mp2);
break;

return mr;

/***/
/* */
/* Vertical scrolling function: Scroll by 1 char if line scrolling; else */
/* page scrolling. Set the scroll bar to the new location, and return the */

/* new scroll offset value to the client window procedure to re-draw the */
/* text at the newly scrolled position. */
/* */
/***/

SHORT fnVScroll (HWND hwndVScroll, HWND hwndClient, USHORT usVIncr,
USHORT cyData, MPARAM mp2)

{

SHORT sVOffset;
RECTL rclClient;

SVOffset = SHORTlFROMMR (WinsendMsg (hwndVScroll, SBM_QUERYPOS, O, O));
WinQueryWindowRect (hwndClient, &r_clClient);

switch (SHORT2FROMMP (mp2))
{
case SB_LINEUP:

sVOffset = max (0, (sVOffset - 1));
break;

case SB_LINEDOWN:
sVOffset =min ((sVOffset + 1),

(cyData - rclClient.yTop I usVIncr));
break;

case SB_PAGEUP:
sVOffset =max (0, (sVOffset - rclClient.yTop / usVIncr));
break;

case SB_PAGEDOWN:
sVOffset =min ((sVOffset + rclClient.yTop I usVIncr),

(cyData rclClient.yTop I usVIncr));
break;

case SB_SLIDERTRACK:
sVOffset = SHORTlFROMMP (mp2);
break;

default:
break;

if (sVOffset l= SHORTlFROMMR (WinsendMsg (hwndVScroll, SBM_QUERYPOS,
O, 0)))

{

}

WinSendMsg (hwndVScroll, SBM_SETPOS, MPFROMSHORT (sVOffset), 0);
WininvalidateRect (hwndClient, NULL, FALSE);

return (sVOffset);
)

/***/
/* */
/* Horizontal scrolling - much like vertical, only sideways. */
I* *I
/***/

SHORT fnHScroll (HWND hwndHScroll, HWND hwndClient, USHORT usHincr,
USHORT cxData, MPARAM mp2)

SHORT sHOffset;
RECTL rclClient;

sHOffset = (USHORT) WinSendMsg (hwndHScroll, SBM_QUERYPOS, 0, O);
WinQueryWindowRect (hwndClient, &rclClient);

switch (SHORT2FROMMP (mp2))
{
case SB_LINELEFT:

sHOffset = max (0, (sHOffset - 1));

break; .
case SB_LINERIGHT:

sHOffset =min ((sHOffset + 1),
(cxData - rclClient.xRight I usHincr));

break;
case SB_PAGELEFT:

s_HOffset = max (0, (sHOffset - rclClient.xRight I usHincr));
break;

case SB_PAGERIGHT:
sHOffset =min ((sHOffset + rclClient.xRight I usHincr),

(cxData - rclClient.xRight I usHincr));
break;

case SB_SLIDERTRACK:
sHOffset = SHORTlFROMMP (mp2);
break;

default:
break;

if (sHOffset != SHORTlFROMMR (WinSendMsg (hwndHScroll, SBM_QUERYPOS,
0, 0)))

(

}

WinSendMsg (hwndHScroll, SBM_SETPOS, MPFROMSHORT (sHOffset), 0);
WininvalidateRect (hwndClient, NULL, FALSE);

return (sHOffset);
}

/************************************~**************************************/

I* */
/* Character scrolling: only if the keystrokes are arrow or page keys, */
/* pass the messages to the scroll bar to handle automatically. */
/* */
/***/

VOID fnCharScroll (HWND hwndVScroll, HWND hwndHScroll,
USHORT msg, MPARAM mpl, MPARAM mp2)

switch (SHORT2FROMMP (mp2))
(
case VK_LEFT:
case VK_RIGHT:

WinSendMsg (hwndHScroll, mag, mpl, mp2);
break;

case VK_UP:
case VK_DOWN:
case VK_PAGEUP:
case VK_PAGEDOWN:

WinSendMsg (hwndVScroll, mag, mpl, mp2);
break;

default:
break;

/***/
/* */
I* Fix scroll bar proportions if the window size or font changes: send the */
/* scroll bars a message with the new proportion to figure out. */
/* */
/***/

VOID fnFixScrollSize (HWND hwndVScroll, HWND hwndHScroll,
USHORT cxData, USHORT cyData,
USHORT cxWindow, USHORT cyWindow,
USHORT usVIncr, USHORT usHincr,
PSHORT psVOffset, PSHORT psHOffset)

USHORT
USHORT

usHeight;
usWidth;

usHeight cyWindow I usVIncr;
usWidth = cxWindow I usHincr;

if (usHeight >= (cyData - *psVOffset) && *psVOffset != 0)
*psVOffset =max (0, (cyData - usHeight));

if (usWidth >= (cxData - *psHOffset) && *psHOffset != 0)
*psHOffset =max (O, (cxData - usWidth));

WinSendMsg (hwndVScroll, SBM_SETTHUMBSIZE,
MPFROM2SHORT (usHeight, cyData), O);

WinsendMsg (hwndHScroll, SBM_SETTHUMBSIZE,
MPFROM2SHORT (usWidth, cxData), 0);

WinSendMsg (hwn.dVScroll, SBM_SETSCROLLBAR,
MPFROMSHORT (*psVOffset),
MPFROM2SHORT (O, (cyData - usHeight)));

WinSendMsg (hwndHScroll, SBM_SETSCROLLBAR,
MPFROMSHORT (*psHOffset),
MPFROM2SHORT {0, (cxData - usWidth)));

/***/
I* */
!* File open thread function - Open the file, allocate memory, read it in, */
!* parse to zero-terminated strings, and post a message back to the client */
I* window. */
/* *I
/***/

VOID fnOpenThread
{

(POPENINFO pQpeninfo)

HFILE hFile;
PCH pFile;
UL ONG ulAction;

fstsFile;
ulBytes;
szFileName[255];
hwnd;

FILE STATUS
UL ONG
CHAR
HWND
BOOL boolError;

pWork; PCH
USHORT i, uswidth, usHeight;

strcpy (szFileName, pOpeninfo -> szFileName);
hwnd = pOpeninfo -> hwnd;
free (pOpeninfo);
boolError = FALSE;

do
/**/
I* *I
/* Open the file, privately to this process. Open for read only, and */
/* fail if the file does not exist. */
I* *I

/**/
if (DosOpen (szFileName, &hFile, &ulAction, O, O,

)

OPEN__ACTION_FAIL_IF_NEW I
OPEN_ACTION_OPEN_IF_EXISTS,
OPEN_SHARE_DENYWRITE I
OPEN__ACCESS_READONLY,
0))

boolError = TRUE;
break;

/**/
I* *I
/* Determine the size of the file, from a FILESTATUS data structure. */
I* *I

/**/

if (DosQueryFileinfo (hFile, FIL_STANDARD, &fstsFile,
sizeof {FILESTATUS)))

)

boolError
break;

TRUE;

/**/
/* *I
/* Allocate sufficient memory to hold the contents of the file. */
/* */

/**/

if {DosAllocMem ((PPVOID) &pFile, fstaFile.cbFileAlloc,
PAG_WRITE I PAG_COMMIT})

}

boolError
break;

.TRUE;

/************************************'~********************************/

I* */
/* Read the file into the memory bufier just allocated. */
/* */

I***********************************•********************************** I

if (DosRead (hFile, (PVOID) pFile, fstsFile.cbFile, &ulBytes))
(
boolError = TRUE;
DosFreeMem (pFile);
break;

}

/**/
/* *I
/* The file could be handled any way you want - for ease of drawing */
/* the text, just change the carriage returns to O's so that the file */
/* can be looked at as a sequence of zero-terminated strings. Also, */
/* this lets me calculate the height and width of the file, namely, */
/* the number of lines and the maximum line width, in order to set */
/* the scroll bars correctly. */
I* *I

/**/

pWork = pFile;

uswidth = usHeight i = O;

while (pWork < pFile + fstsFile.cbFile)
(
if {*pWork == '\r')

(

}

*pWork = '\0';
pWork++;
usHeight++;
if (i > uswidth)

usWidth = i;
i = O;

pWork++;
i++;

}

while (FALSE);

/**/
/* */
/* Close the file when finished. If an error occurred at any step, post */
/* the user defined message UM_FILEERROR to the main window procedure to */
/* indicate failure. Otherwise, post the user defined message UM_FILEREAD */
/* to indicate success and allow the main window to display the file. */
/* */
/**/

DosClose (hFile);

if {boolError)
WinPostMsg {hwnd, UM_FILEERROR, 0, O);

else
WinPostMsg (hwnd, UM_FILEREAD, MPFROMP (pFile),

MPFROM2SH0RT (usWidth, usHeight));

DosExit (EXIT_THREAD, 0);
}

'The foffowing is tfie '.!vl9L'J<:;E fife for Growse2:
BROWSE2.MAK

browse2.exe: browse2.obj browse2.def browse2.res
link386 /NOI /DEBUG browse2.obj,,,,browse2.def;
re browse2.res browse2.exe

browse2.res: browse2.rc browse2.h
re -r browse2.rc

.browse2.obj: browse2.c browse2.h
ice /c /Ss /Ti+ /Kb /Gm browse2.c

'Ifie fo[fowing is tfie resource file for Erowse2:
BROWSE2.RC

#include <os2.h>
#include "browse2.h"

MENU ID_FRAME
{

SUBMENU "-File", IDM_FILE
{
MENUITEM "-Open .•. ",
MENUITEM "-Clear",
MENUITEM SEPARATOR
MENUITEM "E-xit ••. ",

)

IDM_OPEN
IDM_CLEAR

IDM_EXIT

'Ifie foffowing is tfie modu[e definition fife for Erowse2:

BROWSE2.DEF

;-------------------------------------
; BROWSE2.DEF module definition file

;-------------------------------------
NAME BROWSE2 WINDOWAPI

DESCRIPTION
STACKSIZE

'Text File browser - FAK 08/93'
8192

'Ifie foffowing is Erowse2.fi, tfie fieader fife for Erowse2:
BROWSE2.H

/***/
/* *I
/* Text browser demo - application header. */

/* *I
/***/

#define CLIENT_CLASS_NAME

#define ID_FRAME

#define IDM_FILE
#define IDM_OPEN
#define IDM_CLEAR
#define IDM_EXIT

typedef struct
{

HWND hwndVS;
HWND hwndHS;
USHORT usVIncr;
USHORT uaHincr;
USHORT usTopincr;
SHORT sVOffset;
SHORT sHOffset;
ULONG ulHeight;
ULONG ulWidth;
BOOL boolText;
PVOID pFile;

100

200
201
202
203

} TEXTINFO, *PTEXTINFO;

typedef struct
{

HWND hwnd;

"WC_CLIENT" // Registered client class name

II Frame window (resource) ID

II Menu IDs

II Client Window instance data structure

fl vertical scroll bar window handle
II Horizontal scroll bar window handle
fl vertical spacing (line height)
II Horizontal spacing {max character width)
II Spacing from top of window
II Offset of lines above top
II Offset of characters beside left
II Total number of lines
II Maximum characters per line
II Is text being drawn?
II Pointer to text

II Thread argument data structure

II Client window handle

CHAR azFileName J255]; II File name
} OPENINFO, *POPENINFO;

II User-defined meaaages

#define UM_FILEREAD WM_USER + 1 II File aucceaafully loaded
#define UM_FILEERROR WM_USER + 2 II File load error occurred

II Function prototypes

MRESULT wpClientWndProc(HWND hwnd, ULONG mag, MPARAM mpl, MPARAM mp2);

#pragma linkage (wpClientWndProc, system)

SHORT fnVScroll (HWND hwndVScroll, HWND hwndClient, USHORT uaVIncr,
USHORT cyData, MPARAM mp2);

SHORT fnHScroll (HWND hwndHScroll, HWND hwndClient, USHORT uaHincr,
USHORT cxData, MPARAM mp2);

VOID fnCharScroll (HWND hwndVScroll, HWND hwndHScroll,
USHORT mag, MPARAM mpl, MPARAM mp2);

VOID fnFixScrollSize (HWND hwndVScroll, HWND hwndHScroll,
USHORT cxData, USHORT cyData,
USHORT cxWindow, USHORT cyWindow,
USHORT usVIncr, USHORT usHincr,
PSHORT psVOffset, PSHORT psHOffset);

VOID fnOpenThread (POPENINFO pOpeninfo);

#pragma linkage (fnOpenThread, system)

Symbols
#define 11
#include 11, 46
_System 24, 51

Numerics
16-bit compatibility 21
4096 29
80286 27
80386 27

A
accelerator key 84
access 31, 34
action bar 55
address space 21, 28, 29
allocate 24
Alt+Esc 42
anchor block 47, 49

anchor block handle 46, 49, 59

AP! 9, 10, 13, 39, 42
Application Programming Interface(API) 9, 10, 13, 39,

42
architecture 39, 41
ASCII 43
asynchronous 19, 61
attribute 29, 31
attributes
extended 34
A VIO (Advanced Video I/0) 70

B
background 79
background color 74

behavior40

BIN 12
BN_CLICKED 65
B-tree 33
buffer 34

c
Cl!
CIC++
CIC++ Tools 2.0 11
compiler 24
Language Reference 11

cache-micro 70
cache-micro presentation space 70, 79

character cell 75
CHARnFROMMP 63

CharStringAt() 74
child window 53
class 40, 49
class name 40
client area 41
client window 54, 72
CLR_BLUE73
color 64, 69
command-line switches 14

committed 31
Common User Access(CUA) 84

compatibility 21
compiler 11
CONFIG.SYS 22
control data structure 54

CP Reference 9
CPU22, 25
CS_SIZEREDRA W 50, 59

CS_SYNCPAINT 64, 71

Ctrl+Esc 42

database 20
DCA (Document Content Architecture) 71
DDE42,62
DEF 14
default color 79
desktop l 0, 20, 41
Developer's Toolkit 2.1 9
Developer's WorkFrame/2 9, 13
device context 69, 70, 71
DevOpenDC() 71
dialog box 84
dialog editor IO
directory 33
DLL IO, 13, 40, 53
DOS20
DosAllocMem() 29, 30, 31, 32, 33, 35
DosClose() 35
DosCreateThread() 23, 24, 25, 87
DosEnterCritSec{) 25
DosExecPgm() 20
DosExit() 23, 25, 49, 59
DosExitCritSec() 25
DosExitList() 25
DosFreeMem() 31, 33
DosKillThread() 23, 25
DosLoadModule() 56
DosOpen() 33
DosPostEventSem() 26
DosQueryFilelnfo() 34, 35
DosQueryMem 31
DosQueryMem() 31
DosRead() 33, 34, 35
DosResumeThread() 24
DosSetMem() 29, 30, 31
DosSetPriority() 22
DosStartTimer() 61
DOSSUB_GROW 32
DOSSUB_INIT 32
DosSubAllocMem() 32, 33
DosSubFreeMem() 32, 33
DosSubSetMem() 32
DosWaitEventSem() 26
DosWaitThread() 23
DosWrite() 34, 35
DT_ERASERECT 74
DYNAMIC22
dynamic 11
Dynamic Data Exchange (DDE) 52, 60
Dynamic Link Library (DLL) IO, 28

E
encapsulate 50
environment 39
path 12
event semaphore 26
Execution Control 9
EXIT _PROCESS 23
EXIT_THREAD 25
extended attributes 34

FAT33
FCF _HORZSCROLL 76
FCF_MENU84
FCF _SHELLPOSITION 59
FCF_TASKLIST 57
FCF _ VERTSCROLL 76
FID_CLIENT 57, 58
FID_MENU 57, 86
FID_TITLEBAR 57
FIL_STANDARD 34
File Allocation Table (FAT) 33
FILEDLG 87
fixed high 22
flag 24
flags 29
fnCharScroll() 80
fnFixScrollSize() 68, 80, 81
fnHScroll() 80
fn VScroll() 80
focus 41
font 64, 68, 69
FONTMETRIC 76
FONTMETRICS 75, 78, 81
foreground 20
frame 41, 55
frame creation tlags(FCF) 57
frame window handle 49, 58
FRAMECDAT 57
FRAMECDATA 56, 57, 58, 85
free() 84
fulJ screen 20
function 24, 33, 34, 35, 39

G
GP! 9
GpiAssociate() 69
GpiCharString() 74
GpiCharStringAt() 74, 75
GpiCreatePS() 70, 73
GpiMove() 74
Graphics Programming Interface 9

H
HAB46
handle 26, 33, 42, 54
anchor block 46, 49
frame window 49
header file 42, 46
header files 10, 11
High Performance File System (HPFS) 33
HMQ46
horizontal scrolJ increment 76
HPFS 33
HWND42,46
HWND_DESKTOP 55, 56, 58
HWND_TOP54
HWNDFROMMP 63
hypertext 13

I
IBMCPPBIN II
IBMCPPLIB II
ICC.EXE I2, I4
icon 59, 84
icon editor 10
idle22
IDM_CLEAR 87
IDM_EXIT88
IDM_OPEN87
INCL_ WIN I I, 46
initialization 45
initialize 24
input router 42

instance 40, 53
instance data 50, 83
Interactive PM Debugger (IPMD) 11
interrupt 41
invalid region 73
IPMD.EXE II

K
keyboard 20

L
IAveCharWidth 75
IEmlnc 75, 76, 78
lExtemalLeading 75
Library Reference 11
LINK386.EXE I2, I4
linked list 33
linker 11
lMaxAscender 75, 76
IMaxBaselineExt 76
IMaxDescender 75
LN_SELECT 65
LONGFROMMP 63

M
macro 63
main() I9, 23, 25, 26, 33, 35, 45, 46, 47, 59
malloc() 33, 84
maximize button 55
MAXWAIT22
memory 9
attribute 29
DosAllocMem() 29, 30, 3I, 33, 35
DosFreeMem() 31, 33
DosQueryMem() 31
DosSetMem() 29, 30
DosSubAUocMem() 32
DosSubFreeMem() 32
DosSubSetMem() 32
manager 19
model 19
PAG_COMMIT 30
PAG_DECOMMIT 3I
PAG_EXECUTE 29, 30
PAG_GUARD 30
PAG_READ 29, 30

PAG_WRITE 29, 30
page 24, 27
page directory 28, 29
page offset 28
page table 28, 29, 31
sparse 30
virtual 27
virtual memory management 19
Memory Management 9
memory model 19
menu 50, 84, 85
menu item85
menu item attributes 86
MENUITEM SEPARATOR 87
message 39, 41
message ID 60
message queue 22, 42, 46, 59
method 39
MIA_CHECKED 86
MIA_DISABLED 86
micro presentation space 70
minimize button 55
MIS_BITMAP 85
MIS_TEXT85
MM_SETITEMA TTR 86
mnemonic 85
module definition file (.DEF) 14
mouse 20
mpl 43
mp2 43, 63
MPARAM 43, 5I, 60, 63
MPFROM2SHORT 67
MPFROMHWND 67
MPFROMLONG 67
MPFROMP67
MRESULT 5I, 62
multi-process 41
multitasking 20, 21, 41
multi-threaded 19
mutex 26

N
normal presentation space 70
NULL 72

0
OBJ_GETABLE 30
OBJ_GIVEABLE 30
object 39
Object Oriented 39
OD_DIRECT 7I
OD_INFO 71
OD_MEMORY 7I
OD_METAFILE 7I
OD_QUEUED 7I
open mode 34
OPENINFO 87
OS2.H 10, I I, 46
OS2386.LIB 10, I4

p

PAG_COMMIT 30
PAG_DECOMMIT 31
PAG_EXECUTE 29, 30
PAG_GUARD 30
PAG_READ30
PAG_WRITE30,31
PAG_WRITE, PAG_READ 29
page 24, 27
page directory 28, 29
page offset 28
page table 28, 29, 31
parameter 35
parent window 53
path 12
performance 19, 27, 40
pennission 29, 31, 34
PFNTHREAD, 24
PM Debugger 11
PM Reference 9
PM Window Manager 9
PMGPl,DLL 10
PMWIN.DLL 10
PMWIN.H42
PMWP.DLL44
pointer 29, 31
POINTL 74
polymorphism 40
post 26
pre-processor 10, 46
Presentation Manager 20
presentation paraffieters structure 54
presentation space 69
presentation space handle 72
PRIORITY22
priority 21, 22
fixed high 22
idle22
regular22
time critical 22
procedure
window 40, 41, 42
process 20, 21, 23, 25, 28, 29, 30, 34
public window class 49
PVOIDFROMMP 63

Q
QMSG 42, 43, 46, 48, 51, 60
queue priority 60
QW _PARENT 86

R
RC.EXE 14
rectangle address 72
rectangle data structure 72
RECTL 72
regular22
resolution 69
resource source file (.RC) 14
resources 14, 21
return 51

s
SB_LINEDOWN 76, 77
SB _LINEUP 76, 77
SB_PAGEDOWN 77
SB _PAGEUP 77
SB_SLIDERTRACK 77, 78
SBM_QUERYPOS 77
SBM_SETPOS 78
SBM_SETSCROLLBAR 79, 80
SBM_SETTHUMBSIZE 79, 80
scroll bar 50, 68
scroll bars 65, 75
segment 27
semaphore 26, 45
DosPostEventSem() 26
DosWaitEventSem() 26
event 26
mutex 26
post 26
set 26
SEPARATOR 85
session 20
full screen 20
set
semaphore 26
SHORTIFROMMP 63, 64, 65, 86
SHORT2FROMMP 63, 64
side effect 40
SourceLink 13
sparse 30, 31
spreadsheet 20
stack 21, 24, 25
stack size- 14
static 11
static storage class 81
status 24
structure 26, 34, 39, 41, 42
style flags 54
subclass 40, 50
submenu 85
swap 19, 29
SWAPPER.DAT 27
switch ... case 52
switches 12, 14
synchronou 61
synchronous 48
SYSCLR_ WINDOW 73
system menu 40, 55
system queue 42

T
termination 45
TEXTINF084
thread 11, 19, 21, 23, 25, 35, 42, 45
thread id (TID) 23
THREADS=22
throughput 19
thumb mark 65, 78, 79
thumb-mark 68
TID_USERMAX 65
time critical 22
time slice 23, 25

TIMESLICE= 22
title bar 40, 41, 50, 54, 55
toolkit 9

u
ULONG42
UM_FILEREAD 80, 87
unblock 26

v
vertical line spacing 76
vertical scroll increment 76
virtual memory 27
virtual memory management 19

w
WC_BUTTON 53
WC_FRAME 50, 56, 58
WC_LISTBOX 53
WC_MENU50
WC_SCROLLBAR 50
WC_TITLEBAR 50
WinBeginPaint() 70, 71, 72, 73
WinCheckMenultem() 86
WinCreateMsgQueue() 47, 59
WinCreateStdWindow() 47, 55, 58, 59, 84, 85
WinCreateWindow() 47, 50, 52, 53, 54, 55, 57, 58, 64,

83, 84,85
WinDetwindowProc() 52, 66
WinDestroyMsgQueue() 49, 59
WinDestroyWindow() 48, 59, 66
WinDispatchMsg() 43, 44, 48, 51, 59, 61
window
client 54
position 54
size 54
window class 40, 50
window handle 53, 72
window ID 53, 56, 57
Window Manager 9
window procedure 40, 41, 42, 49
WinDrawText() 74, 75
WinEnableMenultem() 86
WinEndPaint() 70, 73
WinFillRect() 73, 79
WinGetMsg() 43, 44, 47, 48, 59
WinGetPS() 69, 70, 71, 80
Winlnitialize() 46, 47, 59
WinlnvalidateRect() 72, 81
WinMessageBox() 68
WinOpen WindowDC() 71
WinPostMsg() 72
WinQueryWindow() 86
WinQueryWindowPtr() 82
WinQueryWindowText() 53
WinRegisterClass() 47, 50, 51, 53, 54, 57, 59, 82, 83
WinReleasePS() 70, 81
WinSendMsg() 51, 61, 62, 77
WinSetCapture() 42
WinSetWindowPos() 54, 56, 59, 64
WinSetWindowPtr() 82

WinSetWindowText() 53
WinStartTimer() 61, 65
WinTenninate() 49, 59
Win WindowFromID() 58, 86
WM_BUTTONIDBLCLK 44
WM_BUTTON!DOWN 42
WM_CHAR 42, 44, 80
WM_CLOSE 61, 66, 67, 68, 88
WM_COMMAND 65, 66, 68, 86, 87
WM_CONTROL 65
WM_CREATE 52, 54, 64, 66, 68, 80, 82
WM_DESTROY 66, 67, 68, 84
WM_HSCROLL 77, 80
WM_PAINT 40, 52, 61, 64, 66, 68, 69, 71, 72, 73, 79, 80
WM_PRESPARAMCHANGED 80
WM_QUIT 48, 59, 66, 68, 88
WM_SEMl 60
WM_SEM460
WM_SIZE 54, 63, 64, 66, 68
WM_TIMER 61, 65
WM_USER67
WM_ VSCROLL 76, 78, 80
writeable 31
ws_ VISIBLE 54

z
Z-order 58

There are two revolutions sweeping the country today. The 90s will be known as the start of the

digital age. Digital technology is no longer limited to computing. It is now the basis for music in

the form of CD players for our homes and cars, video in the new high definition television, and

photography in the form of filmless cameras.

At the same time, the face of computing is also changing with the increasing popularity of the

graphical user interface or GUI. The windows concept, first made popular on the Apple Lisa com

puter, is now available for all systems.

OS/2 Version 2, is the most advanced operating environment available today for integrating

these technologies. A truly revolutionary system, OS /2 Version 2 is the first system designed for

the new digital world.

The purpose of the OS/2 Awareness series is to help you understand how OS/2 enables you to

participate in the digital and GUI revolutions. This book is a collaboration between IBM

Corporation's Southwestern Area staff and One Up Corporation's staff. This volume, the second

in the series, provides an introduction to OS/2 programming. It shows you how to create pro

grams that take advantage of the powerful multitasking capabilities built into OS /2. It also

shows you how to use the Presentation Manager to give your program a graphical user interface.

Volume 1 in this series provides an overview of the OS/2 system itself. It describes how you can

move from the older, limited function PC-DOS and Windows environment to a fully capable OS/2

environment. Other volumes in this series tell you how to enable OS /2 to communicate effective

ly with remote systems, how to integrate database capabilities into OS/2, and so on.

Jlbout tfie Jlutfiors

Craig Chambers is a graduate of Purdue University with BS and MS degrees. He worked for IBM

for 23 years in various positions including; large account System Engineer, 3270 and 3270-PC

technical support, and PC-DOS and OS/2 technical support. During this time, he wrote several

articles for various technical journals, made presentations at COMMON, and participated in

several IBM Field Television Network broadcasts.

Feite Kraay spent three years at IBM Canada Education developing and teaching courses on

OS/2 and Presentation Manager programming, from version 1.1 through 2.0. In early 1992 he

joined One Up Corporation, continuing his 08/2 education and consulting activities. He is now

the general manager of One Up Computer Services Ltd., the Canadian subsidiary of One Up

Corporation. Feite Kraay holds a Bachelor of Mathematics degree from University of Waterloo.

Larry Pollls spent 10 years with Rolm. From there, he joined IBM, working i

08/2 technical support group. He wrote several technical bulletins and pres

several topics on the IBM Field Television Nehvork about 08/2.

Printed In U.S.A. Price

8246-0106-00

	Cover
	Introduction to OS/2 Programming
	Foreword
	Table of Contents
	Introduction
	Welcome
	Overview
	About this Book
	Summary
	Directions
	Copyright Information

	The OS/2 Programming Enviroment
	The IBM OS/2 Developer's Toolkit 2.1
	The IBM C/C++ Tools 2.0
	The Application Build Procedure

	OS/2 Base API Programming
	Overview
	Multi-threading
	Memory Management
	OS/2 File Functions

	PM Coding
	Introduction and Concepts
	PM Basics and Message Flow
	Function of main() in a PM Application
	PM Window Classes and Window Creation
	PM Window Procedure and Messaging
	PM Output and Window Painting
	Window Data Encapsulation
	Menu Resource Management

	Summary
	Where to go Next
	OS/2 Awareness Series
	About the Authors

	Appendix A - Browse 1
	Appendix B - Browse2
	Make file for Browse2
	Resource File for Browse2
	Module Definition for Browse2
	Header file for Browse2

	Index
	Back Cover

