0S/2 Warp

Presentation Manager
for Power Programmers

0S/2 WARP PRESENTATION
MANAGER FOR POWER
PROGRAMMERS

Uri Joseph Stern
James Stan Morrow

John Wiley & Sons, Inc.
New York « Chichester « Brishane o Toronto - Singapore

Publisher: Katherine Schowalter

Editor: Theresa Hudson

Managing Editor: Micheline Frederick

Text Design & Composition: Integre Technical Publishing Co., Inc.

Designations used by companies to distinguish their products are often claimed as trademarks.
In all instances where John Wiley & Sons, Inc. is aware of a claim, the product names appear in
initial capital or all capital letters. Readers, however, should contact the appropriate companies
for more complete information regarding trademarks and registration.

This text is printed on acid-free paper.
Copyright © 1995 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professinal service. If legal advice or other expert assistance
is required, the services of a competent professional person should be sought.

Reproduction or translation of any part of this work beyond that permitted by section 107 or
108 of the 1976 United States Copyright Act without the permission of the copyright owner is
unlawful. Requests for permission or further information should be addressed to the Permissions
Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data:
ISBN 0-471-05839-4 (pbk)
Printed in the United States of America

10987654321

DEDICATION

This book is dedicated to all of our loved ones:

Uri Stern:

To Dori, for your love and understanding. You are the greatest.
And to my Mowm, Dad, and Brother Irv.

Stan Morrow:

To my loving family:
Linda, Chantell, Joey, Jesse, and Jared.

| CONTENTS

Chapler 1 Welcome to the Presentalion Manager
for Power Programmers 1

Goodbye Hello World 2
08/2 Compilers and Linkers 3
PM Initialization 3
Message-Based Architecture 4
Sending versus Posting Messages 4
Using the WinPostQueueMsg API 4
Obtaining Information about a Particular Message Queue 5
Using WinCancelShutdown 7
Communicating with Multiple Windows or Queues 8
Semaphore Handling 9
Understanding 0S/2 Memory 9
Resource Considerations 9
Memory-Related Errors 10
PMWIN Considerations 11
Windows Galore 11
Avoiding the Dreaded Bad-Application Dialog 11
The PM Input Mechanism 12
Debugging PM 13
Error Handling 14
Summary 16

Chapter 2 Gaining Control: Mastering the Standard
PM Control Windows 17

The Purpose of the Sample Program 19
Controls in Dialogs 20
Types of Controls 20

Contents

Creating the Control Window 21
Understanding the Owner and Parent Window Relationships

Control Window Communication Messages 24
Control Window Notification Messages 24
Using Control Data 24
The Button Window Class 25

The Button Control Messages 33

The Static Window Class 38

Adding Multiple ltems to a Listbox 40

Starting the Applications 42

Terminating A Started Application 46

The ES_UNREADABLE Entryfield Control Style 46
Using the Delete Key with the Entryfield Control 48
validating the Entryfield 49

Updating the Program Buttons 51

Changing the lcon Associated with an Executable 52

Displaying Messages 54

Removing the Standard Frame Controls 56

Using the Titlebar Control 56

Summary 58

Chapter 3 Mastering the Keyhoard interface
and Scrolling Functionality

Processing Keyboard Input 59
The WM_CHAR Message 60
Obtaining Keyboard Input 65
The Keyboard Input Cursor 65
Updating the Display 69
The Scroll Bar Control 72

Scroll Bar Styles 72

Scroll Bar Notification Messages 73

Managing the Scroll Bar 75
Processing the Directional Keys 81
Painting after Scrolling 87
Summary 89

23

59

Contents Vii

Chapter 4 Building A Better Mousetrap:

Taming the Mouse In PM 91

Understanding the Use of the Mouse 92
Querying and Setting the System Values for an Input Device 94
Changing the Visibility of the Mouse Pointer 96
Capturing the Mouse Pointer 97
Showing the Mouse Pointer 98
Obtaining Pointer Information 99
Where |s Mickey? 101
Using the WM_MOUSEMOVE Message 104
Determining the Pointer Position in Relation to a Rectangle 105
Drawing the Spirographs 105
Changing the Default Mouse Pointer 108
Loading the Pointer 109
Destroying the Pointer 110
Creating Pointers Dynamically 111
Processing the Tracking Rectangle 111
Using the Clipboard 116
Placing Bitmap Data in the Clipboard 117
Summary 120

Chapter 5 SOS for PM Developers: Help Management through

the information Presentation Facility 121
Designing Help Text 122
Organization of Panels 122

Constructing the IPF Source File 123
Mapping Application Elements to Help Panels 127
Defining Help Tables 128
Defining Help Subtables 129
Menu Support for On-Line Help 131
Adding Help to Your Source Code 131
Creating an Instance of IPF 132
Processing the Help Menu Commands 136
Multiple Frame Window Considerations 139
Multiple Thread Considerations 140
Summary 140

viii Contents

Chapter 6 Getting More Power for Your Program:
Using 0S/2’s Multithreading Capabllities 143

A Typical Single Threaded Application 144
Peeking at the Message Queue 147
Creating a New Thread 149

Using an Object Window 152

Summary 157

Chapter 7 She Sells Sea Shelis: Programming
the Workplace Shell 159

Direct Manipulation 160
Drag-and-Drop Data Structures 161
The DRAGINFO Structure 162
The DRAGITEM Structure 165
The DRAGIMAGE Structure 170
The DRAGTRANSFER Structure 172
String Handles 174
Direct Manipulation Coding 176
Starting the Drag and Drop Operation 177
Responding to the Drag Operation 180
Rendering Objects 188
Supporting Pickup and Drop 198
Post-Drop Naotification 203
Menu Support for Pickup and Drop 204
Direct Manipulation Summary 205
Initialization Files 206
Restoring the Window State 207
Accessing Initialization Files 209
SOM 217
SOMObject 218
SOMClass 218
SOMClassMgr 219
Distributed SOM 219
Workplace Classes 219
Summary 221

Contents X

Chapter 8 Mastering Dialogs, Menus, and Other PM Resources 223

The Purpose of the Sample Program 223
Application Menus 224
Menu Messages 225
Altering the System Menu 232
The Composition of the System Menu 232
Removing the System Menu Separators 235
Replacing the System Menu Entirely 235
The Action Bar Menu 238
Adding an Action Bar Menu to a Dialog Box 240

Using Presentation Parameters in Menu Templates 242

Popup Menus 242
Creating the Popup Menu 243

Keyboard Accelerators 246

Menu Mnemonics 246

Standard Dialogs 247
The Standard File Dialog 247

Dialog Boxes 253
Processing the WM_INITDLG Message 253
Understanding TabStops and Groups 254
Sizing a Dialog Window 255
Avoiding a Common Error 256

Summary 257

Chapter 9 Communication Between Applications Using
PM’s Dynamic Data Exchange Protocol

Implementing the DDE Communication Architecture 260
The Purpose of the Sampie Program 261
Understanding the Client and Server interaction 263
Understanding the Data Transfer Hierarchy 264
DDE Messages 265
Initiating a DDE Conversation Using WM_DDE_INITIATE
Using WinDdelnitiate to initiate the DDE Conversation
Using Unnamed Application and Topic Name Strings
Using the System Topics 268
The Reason for a Common DDE Protocol 269

259

265
266
267

X Contents

DDEINIT Structure 269
Using WinDdeRespond 271
WM_DDE_INITIATEACK 272
Using Window Words to Store Transaction-specific Data 273
The DDE Communication Process 273
Terminating the DDE Conversation 274
Building a DDE Message Spy Window 275
Providing for the Client/Server Data Exchange 275
The DDE Shared Memory Object 278
Using the Same Memory Object for a Response 280
The DDE Communication Messages 280
WM_DDE_REQUEST 281
WM_DDE_DATA 282
WM_DDE_POKE 282
WM_DDE_ADVISE 283
WM_DDE_UNADVISE 284
WM_DDE_ACK 287
The DDE Helper Macros 289
Exchanging the Sample Program Data 292
Charting the Data 295
Summary 296

Chapter 10 Getting to the Head of the Class:

Understanding Subclassing 297

Replacing a Window's Window Procedure 298
Creating a New Class 302
Summary 307

Chapter 11 Impraving Your Control: Using the

Advanced 0S/2 Controls 309

Notebooks 309
Selecting a Notebook Style 310
Creating the Notebook 312
Customizing the Notebook 313

Value Sets 335
Creating and Initializing the Vaiue Set 336
Processing Value Set input 342

Contents Xi

Direct Manipulation of Value Set ltems 345
Owner Draw and the Value Set 347
Sliders 348
The Linear Slider 348
Circular Sliders 362
Changing the Circular Slider Background Color 367
Summary 367

Chapter 12 Containing Your Excitement: Making Use of

the Container Control 369

Container Views 370
Container Data Structures 371
CNRINFO 371
RECORDCORE and MINIRECORDCORE 376
FIELDINFO 384
Creating Containers 389
Loading Container Data 381
Processing User input 391
Record Emphasis 3
Field Editing 394
Context Menus 396
TREE Mnde 398
Scrolling 398
Brag and Drop 399
Summary 400

Chapter13 What's New with 0S/2: Getting a Look

at the Multimedia Controls 401

Graphic Buttons 401
Registering the Graphic Button Class 402
Creating Graphic Buttons 403
Controlling the Graphic Button 408
Additional Graphic Button Messages 419
Secondary Windows 420
Using Secondary Windows 420
Secondary Message Boxes 423
Summary 426

xii Contents Contents Xiii

' Starting the Job 505

Chapter 14 PM, Your Kingdom Awalts: Creating Your Own Controis 429
Setting Characteristics 506

Desi'gning the Control Window Application Interface 429 Drawing the Output 507
Coding the Custom Contr?l 433 Ending the Job 507
A Few \{Vords of Caution 438 Using a New Thread for Printing 507
Packaging the Control 438 Printing Summary 507
Summary 439
Chapter 15 Win, Lose, or Draw: The Art of Drawing Bitmaps a4 Chapter 17 Captain Hook Lives: Mastering PM Hooks =
The PM Graphics Subsystem 441 el took - ar oo
The Purpose‘ c?f the Sanjtple Prc.ogram 442 Types of Hooks 515
The Composition of aBitmap File 443 The Message Filter Hook—HK_MSGFILTER 516
Examining the Contents of Bitmap Data 443 The Input Hook—HK_INPUT 518
The Bitmap File Format Structures 444 Capturing the Active Window 593
The BitmaplinfoHeader Structure 445 puring
The 32-bit BitmapFileHeader Structure 447 Tho Semd Massage Hook = DRSS o2
e Color Table ST e The Journal Record Hook—HK_JOURNALRECORD 526
. a _ The Journal Playback Hook—HK_JOURNALPLAYBACK 527
Drawing within a PM Window 449 The Help Hook—HK_HELP 528
Understanding Presentation Spaces 451 -
Using WinDrawBlimap 454 I:e Il_IIOCkup HTOKT:KJF-(O%KKU;SGIN?S
! ! _] e Message Input Hook—HIK_ urt 529
g:::gti:z 51-; ?;c;r;l;;rsr;::;unctw:;P'B'tB“ 456 The Find Word Hook—HK_FINDWORD 530
Obtaining the Screen Resolution 461 The Code Page Changed Hook—HK_CODEPAGECHANGED 531
] . . The Flush Buffer Hook—HK_FLUSHBUF 532
Displaying the Bitmap 462 Releasing the Hook 532
Summary 468 Summary 535
Chapter 16 Getting it in Print: Mastering Fonts and Printing 469 Appendix .
Fonts 469
Font Terminology 470 Index 939
Using Fonts 470 i

Win API 471
Determining the Currently Selected Font 471

Selecting a Different Font 473
Drawing Text 481

Gpi API 484
Font Summary 493
Printing 493

Preparing to Print 494
Associating the Presentation Space 504

PREFACE

For those of us who have been involved in OS/2 in one way or the other as
users, developers, or just curious computer geeks, it has been a long, tiresome
journey to get our beloved operating system to where it is today. The 0S/2
operating system has one of the most dedicated group of devotees espousing
the benefits of the operating system. Thanks to the effort of all the 0S/2 fa-
natics, the operating system has matured into the most stable 32-bit operating
system available for the personal computer today. This book will concentrate
on programming the 0S/2 Presentation Manager subsystem.

The first version of the OS/2 operating system resembled the command line
interface that was popularized by the DOS operating system. The graphical
user interface revolution that eventually conquered the computer industry
was just beginning to emerge through efforts like those of the group at the
Xerox Palo Alto Research Center (PARC). The Presentation Manager was a
cooperative effort of the development teams of IBM and Microsoft. The IBM
development originated from the programming labs in Boca Raton, Florida
and Hursley, England.

The Presentation Manager GUI interface was first introduced with version
1.1 of 08/2 in late October 1988, and, like the operating system itself, it has
grown and matured with each release. Versions 1.2 and 1.3 of the operating
system introduced the Help Manager and an enhanced controls library, includ-
ing items such as the combobox and the spin button. Version 2.0 introduced
a radical new graphical user interface on top of the Presentation Manager,
known as the Workplace Shell; and new advanced controls, including the
container, the notebook, the value set, and the linear slider.

The multimedia presentation manager (MMPM), which had been available
separately, began shipping as a part of 0S$/2 with the release of version 2.1.
This provided programmers with powerful new multimedia controls, such
as the graphical button and circular slider, as well as secondary windows
and message boxes. Version 3.0, or 0S/2 WARP is primarily a performance
release. The main body of the Presentation Manager has been converted to
32-bit code and a number of enhancements have been added to the existing
library set. New features include pickup-and-drop direct manipulation support
and distributed SOM technology.

XV

Preface

0S/2 itself is a complete, 32-bit multitasking operating system for per-
sonal computers. The system supports multiple threads of execution in each
application and provides preemptive multitasking on a thread basis. Various
forms of interprocess and interthread communication are available, including
shared memory, queues, and semaphores. Utilization of the memory manage-
ment features of the Intel 386/486 processor family prevents processes from
inadvertently corrupting the memory of other processes, and the operating sys-
tem's I/O architecture prevents corruption when multiple processes attempt
to communicate with the same device simultaneously.

0S/2 is gaining acceptance, and more software developers are realizing the
potential for writing 0S/2 PM-based applications. IBM is thoroughly commit-
ted to the 0S/2 platform, and the recent merger with the Lotus development
organization provides a wealth of possibility for 0S/2 applications.

The Presentation Manager Graphical User Interface, or PM, provides ad-
vanced mechanisms for user interaction and allows multiple processes to share
the video display, keyboard, and pointing device that comprise the system con-
sole. In addition to managing the user interface, PM provides facilities for
displaying and manipulating graphical information and supplies the program-
mer with a rich set of predefined controls for interacting with the user. But
PM is not a rigid system, it provides facilities that allow the programmer to
modify the function of the existing controls, create new controls, and extend
the functionality of the user interface.

While the basic concepts and programming techniques have remained the
same, many new features have been added with each new release of Presenta-
tion Manager. Applications that take advantage of these new features typically
provide an interface that is easier to understand and use than applications
that are programmed exclusively with the early features. This book, written
with the assumption that the reader is already familiar with the basics of Pre-
sentation Manager programming, provides an in-depth study of the features
available with the Warp release of 0S/2. This release provides a powerful, fast
user interface that is essential for good graphical programming; it is one of
the best in the industry. Quite simply, 0S/2 Warp is the “Elvis” of operating
systems.

This book and the source code on Wiley’s FTP site are designed to provide
the reader with a thorough understanding of the powerful features of the
Presentation Manager and, where necessary, expand upon these features to
help produce state-of-the-art power PM-based applications. The source code
is not provided in the book itself because of the size of the samples. A listing
of the sample programs from Chapters 2-17 found on the site can be found
in Appendix A. Fach source file contains well-documented code that explains
the practicality of the concepts taught in the corresponding chapter. The code
is meant to be used as a reference for the concepts discussed in the book. We
sincerely hope that you find this book useful. Application development is the
key to the success of OS/2 or any other operating system. Thanks for your
commitment, and let's begin the journey.

ACKNOWLEDGMENTS

We have always said that if we ever get this book finished, we would pay
homage to all those who have contributed to our efforts or offered their help
So here goes. ... '

We would like to express our thanks and appreciation to the greatest
development team on the planet, as well as, those who make 0S/2 development
and support possible.

e Glenn Brew Thanks for all your help debugging those funky memory
problems.

Scott Jones Thanks for all your help and patience!

Dave Proctor You are sorely missed at IBM. Thanks for realizing the
need to satisfy customers.

Joseph Correnti

Albert Kuhn

Lee Reiswig

Laura Sanders

The entire 0S/2 Project Office—it’s a tough job.

The entire IBM PSP SWAT team for travelling the globe to debug and

resolve 0S/2-related issues.

We also would like to thank those individuals who have forged a new
frontier for 0S/2 through their efforts in promoting 0S/2 through exceptional
computer publications:

e Will Zachmann
¢ John C. Dvorak
s Dick Conklin

o Charles Petzold

, We would also. like to thank our families and friends without whose pa-
tience, understanding, and assistance this book would not have been possible.

xvii

Acknowledgments

We would aiso like to extend special thanks to all of t}3e folks_ at J(l)hn
Wiley & Sons for helping to make this book a reality and offering their tireless
patience and cooperation:

e Terri Hudson
¢ Terry Canela
¢ Micheline Frederick

Finally to all those who preach the gospel of 0S/2, thanks.

“

INTRODUCTION

“

Chapter 1 is a review of the basics and provides an overview of the 0S/2 oper-
ating systern and the tools used to develop applications. The chapter goes on
to discuss the basic concepts of PM programming, including anchor blocks,
classes, message queues, and window concepts. The chapter also reviews sev-
eral common PM pitfalls and how to avoid them.

Chapter 2 provides a general discussion of window controls and an in-
depth study of the standard PM controls included with 0S/2, including the
pushbutton, listbox, combobox, spin button, entry field, and muitiline entry
field controls. The corresponding sample program uses most of the standard
controls and shows how to maximize their usage.

Chapters 3 and 4 focus on the Presentation Manager input mechanisms.
Chapter 3 deals primarily with keyboard input and describes the application
programming required to receive and process user input. The scroll bar con-
trol, and the mechanisms required for manipulating the display in response
to scrolling requests from the controls and the keyboard are also discussed.
Chapter 4 discusses application handling of input from the pointing device, or
mouse, and how to control the mouse pointer on the display. The chapter also
delves into other pointer concepts and shows how the mouse pointer can be
used to create a simple drawing utility. The clipboard and GPI concepts are
also discussed.

Chapter 5 describes the 0S/2 Information Presentation Facility (IPF).
Though primarily concerned with how on-line help is implemented in appli-
cation programs, the chapter also provides an outline for organizing the help
text in a manner that supports the needs of users with different capabilities.

Chapter 6 details the programming required to add power to a PM appli-
cation by taking advantage of 0S/2’s superior multithreading environment. As
programs become more complex, the multithreading considerations discussed
in this chapter become important. It describes how the use of threads can
overcome one of the most prevalent problems in PM programming: restriction
of the user’s ability to interact with the system during the execution of lengthy
procedures,

Chapter 7 delves into some of the features of the Workplace Shell inter-
face introduced with 0S/2 version 2.0. The direct manipulation interface and

Xix

Introduction

protocols that allow the user to manipulate files and other objects with the
pointing device are described in detail along with the initialization file APIs
that allow an application to restore itself to a previous operating state. The
chapter goes on to provide a brief introduction to Workplace Shell and SOM
programming.

Chapter 8 describes the use and customization of standard PM resources:
menus, keyboard accelerator tables, bitmaps, icons, and string tables. The
chapter also discusses the dialog template and the creation and use of dialog
and message boxes. The standard file dialog is also described.

Chapter 9 discusses the PM mechanisms for transferring data between
applications, including communication between PM and WINOS2-based ap-
plications. The clipboard provides a basically static transfer in which one
application saves data to the clipboard and another application then reads the
data. Dynamic Data Exchange, or DDE, allows dynamic transfer of data by
establishing “conversations” between applications.

Chapter 10 describes subclassing, a method for modifying and enhancing
the behavior of the system-defined control classes and other existing classes.
The chapter also describes how a new control may be created by building on
an existing class.

Chapter 11 discusses the advanced controls that were introduced with
0S/2 version 2.0. The notebook control, the value set control, and the slider
controls are examined.

Chapter 12 is devoted to the container control. This control, which is
the basis for the Workplace Shell folder object, is finding wide acceptance in
applications that perform operations on sets of data.

Chapter 13 describes the features that were once a part of the Multi-
media Presentation Manager but are now included as part of the Presentation
Manager family. These features include the graphic button control, secondary
windows, and secondary message boxes.

Chapter 14 provides the framework for creating powerful application con-
trols. When the controls provided with PM just do not meet an application’s
requirements, a new control can be created. Chapter 14 describes how this is
accomplished.

Chapter 15 describes the format, creation, and manipulation of bitmaps.
All graphics drawn by PM applications are ultimately converted into bitmaps
for display on the video monitor. A thorough understanding of bitmaps is thus
essential to efficient PM programming.

Chapter 16 describes the manipulation of fonts and explains how an ap-
plication sends output to a hard copy device. Both of these functions seem
relatively complex initially, but are manageable when viewed as a series of
small, simple tasks.

Chapter 17 describes hooks, a mechanism that allows applications to mod-
ify the internal processing of PM at selected points. Several of the less doc-

Introduction XXi

umented hooks are demonstrated in the chapter’s
sam i

screen capture utility called PMSCREEN, ’ e Gl

Appendix A provides an easy reference for th
o e sample source code located

Most of the chapters are accompanied b i

y a practical sample program th

demonstrates the concepts and techniques discussed in the cllfaplir. The:;
programs were written and compiled using the headers, libraries, and basic
tools provided in the IBM 0S/2 Developer’s Toolkit, now shipped as part of
Fhe IBM Developer Qonnection for 0S/2 CD-ROM. The programs are written
inC and were compiled with the IBM C Set++ Compiler. Minor changes ma
be required if another compiler is used. 4

iley’ FTP site are there
Reader please note: The sample files located on Wiley’s anonymous ;
to help you utilize the models described in this book. By downloading the code, you

are agreeing to be bound by the following agreement:

This software product is protected by copyright and all right_s are reserved b){ tl'ie
author and John Wiley & Sons, Inc. You are licensed to use this software on a sgngle
computer. Copying the software to another medium or format for use on a sutll% e
computer does not violate the U.S. Copyright Law. Copying the software for any other

purpose is a violation of the U.S. Copyright Law.

This software product is sold as is without warranty of any kind, either Z}f%).resseg
or implied, including but not limited to the impllec'l warranty of n}ert?hanta ility an

fitness for a particular purpose. Neither Wiley nor its dealers or distributors gsst{lil_es
any liability of any alleged or actual damages arising frqm the use _of or the inability
to use this software. (Some states do not allow the exclusion of implied warranties, so

the exclusion may not apply to you.)

CHAPTER ﬂ

Welcome to the
Presentation Manager for
Power Programmers

scientists and mathematicians who used the power of the computer to make

their jobs easier. Today, the benefits derived from the computer extend to
all professions and walks of life, making almost everyone’s job easier. Fortu-
nately, while today’s power-hungry processors get faster and more complex,
the overall usability of the computer has been made easier, thus extending the
benefits of the computer to all computer users.

The desire and need for personal computers to be more user friendly has
created a whole new genre of computer programs based on the graphical user
interface. These applications are designed to be intuitive, fast, and powerful
and provide the user with a method of navigating through the complexities of
the operating system without the pain of learning how to master the various
program interfaces.

Today, it is essential that the native operating system provide close integra-
tion to a graphical user interface. The early Apple Macintosh machines were
the first to combine the power of the operating system with an intuitive graph-
ical interface. Although the early Macs had some techincal shortcomings, the
success of the machines demonstrated that there was a market for an object-
driven operating system interface. The success of the Macintosh was due in
large part to the simplicity of the graphical user interface, when compared
with its DOS-based command line interface.

IBM, in conjunction with Microsoft, was in the forefront of the GUI vision,
when they jointly introduced the Presentation Manager with version 1.1 of

I n the beginning, computers were designed for the technical elite, computer

2 Welcome lo the Presentation Manager for Power Programmers

0S/2. Although this version of PM was really nothing more than a gr?phical
program starter, which seems quite lethargic and primitive by toc%ay s stan-
dards, it was an innovation for its time. It was one of the first fully 1ntegraFed
graphical programming interfaces inherent to an operating system. The. design
and feel of 0S/2's Presentation Manager would be greatly imprqved with S‘L'lb-
sequent versions of the operating system. Despite the shortcomings of earlier
versions of the operating system, the Presentation Manager component has
been a successful part of the strategy of 0S/2.

The current version of Microsoft Windows 3.1, unquestionably one of. the
most popular GUIs designed for the PC, is very similar in form and liunctmn-
ality to earlier versions of PM, and relies on much of the same design. The
popularity of Windows and other GUISs is due to the growing base of computer
users who demand the operating system functionality to be transparent, and
allow the user the ability to perform complex tasks with simplicity.

The earlier attempts to construct a common graphical user interface that
would provide simplicity and ease of use to the end user revolved around com-
mon utility programs to perform operating system tasks. For example, a lf‘lle
Manager was used to handle file manipulation and replace the command Ilpe
by allowing the user to invoke programs directly from the file manager while
working with groups of other files. A Print Manager provided the 1nterface. to
the print subsystem, and a Control Panel guided the user through configuring
system resources. Unfortunately, because of the multiple ways a user could
accomplish these tasks and the lack of uniformity among these programs, they
soon became inefficient and complex for the inexperienced GUI user.

The 0S/2 Presentation Manager has evolved into a complete graphical
programming environment; and with the addition of the Worl.cplace Shell,
an object-oriented environment that is based on the Presentation Manager
subsystem, the object paradigm has finally been realized for 0S/2. The a_‘.hell
now gives users the capability to think of operating system tasks as objects
that interact with one another. Object orientation is the future of computer
programming, and a wide array of computer programming languages based
on the object technology are beginning to come of age. IBM offers the System
Object Model, better known as SOM, which is the foundation for the Workplace

Shell.

GOODBYE HELLO WORLD

Since this book is designed for developers with prior PM experience, this
chapter will not insult your intelligence with a simplle Hello World sample
program. Many computer programming books use a simple ‘sample program
that usually does nothing but print a simple Hello World greeting to t!le user, to
introduce the programming environment and concepts. Instead, this chapter

PM Initialization 3

will review some basic PM programming techniques and focus on the elements
required to create sound Presentation Manager applications.

0S/2 COMPILERS AND LINKERS

There are several 32-bit C and C+ + language compilers designed for the 082
platform. IBM, Borland, and Watcom each offer a comparable compiler; and
believe it or not, even Microsoft has a 32-bit 0S/2 compiler and although it
has never been formally released, it is the compiler that was used to build
several of the 0S/2 components, including the 0S/2 kernel (OS2KRNL). The
IBM CSET/2 compiler was not available when the original development of
the 0S/2 2.x kernel began. Each compiler offers a wide array of features, The
choice of compilers is really up to the application developer. All of the source
code and sample programs written for this book are built using the IBM
CSET/2 compiler. If you are building the sample applications with a different
compiler and linker, please consult the programming references shipped with
the compiler and linker environment for specific options.

PM INITIALIZATION

As an experienced PM developer, you already know that the first thread of
any PM process is used to service the Presentation Manager. In order for any
individual thread to call Presentation Manager functions, it must first initialize
itself by calling the WinInitialize AP1. The WinlInitialize API must be the first
PM API called by any PM application or PM-based thread. The function returns
an anchor block handle, indicating that the initialization was successful. The
anchor block handle is used as a parameter to many other PM functions,
although functionally the anchor block has very little value, and in most cases,
a NULLHANDLE may be passed rather than a valid anchor block handle, and
the functions will still succeed.

The intent of the anchor block handle was to provide a unique numbering
scheme to identify the particular thread, thereby using this unique handle to
initialize an application thread to enable the thread to call the PM API. The
contents of the anchor block consist of the process identifier (PID) stored in the
high word and the thread identifier (TID) stored in the low word. Although this
handle currently serves no functional purpose, you should use caution when
specifying a NULLHANDLE for the anchor block handle, since future versions
of PM may actually use the anchor block handle for a purpose. For instance, if
multiple desktops were implemented, the anchor block handle could be used
to differentiate the desktop for a particular thread. Therefore, it is important to
always try to use a valid anchor block handle for the APIs that use the anchor
block handle as a parameter, rather than passing a NULLHANDLE.

4 Welcome to the Presentation Manager for Power Programmers

HAB APIENTRY WinQueryAnchorBlock (HWND hwnd);

Figure 1.1 The WinQueryAnchorBlock prototype.

If you know the window handle use the code shown in Figure 1.1. If you
do not know the window handle, you should specify HWND_DESKTOP as
the window handle to obtain the anchor block handle. The HWND_DESK-
TOP constant represents the desktop window handle, which may be used to
represent the thread of the current desktop in use.

MESSAGE-BASED ARCHITECTURE

The Presentation Manager is based on a message-driven I/O design. Each user
event is translated into a message and passed on to the application, through
its window procedure message processing. The user input mechanisms are
represented by the keyboard and mouse, and, in some cases, the pen. As‘a
result of the user interacting with the input device, messages are generated in
something called the system input queue based on the order of the occurrence.
The system input queue is essentially a routing mechanism that is used to
facilitate the delivery of both synchronous and asynchronous messages to the
appropriate application message queue.

Sending versus Posting Messages

There are two API’s used for getting a message delivered to a window. The
WinSendMsg API is used to directly send a message to the specified window
to be processed by the given window procedure. The code for WinSendMsg
does not return to its caller until the window procedure completes the pro-
cessing of the message. The WinPostMsg function is a little bit different since
it is essentially for asynchronous processing, and it is used to _place a mes-
sage into the appropriate application message queue for the specified wmd-?w.
Basically, WinPostMsg places the message in the queue and then returns im-
mediately. One of the most used metaphors to represent the process of sendm}g
versus posting says that sending the message is like sending your package via
overnight mail—you hope it gets there immediately, while posting your mes-
sage is more like sending your package for regular mail, it will get there, b!.lt
other packages will arrive before it and who knows what the post office will

do with it.

Using the WinPostQueueMsg API

There may be times that your application code may need to post a message to a
particular message queue, but the window handle that represents the window

Message-Based Architecture 5

to which the message is to be posted, is unavailable. PM provides a method of
placing the message on the appropriate message queue through the use of the
WinPostQueueMsg API. The prototype for the API is shown in Figure 1.2.

You will notice that the function prototype resembles WinPostMsg, with the
exception of the first parameter, which is a message queue handle rather than
a window handle. Functionally, the WinPostQueueMsg API works the same
way that WinPostMsg does. The WinPostQueueMsg API works by building
a QMSG structure on the fly and placing the structure on the appropriate
message queue, specified by the hmq parameter. The hwnd element of the
QMSG structure is set to NULL, while the time and ptl elements of the structure
are set to the current system time and pointer position at the time the function
is called. The remaining elements of the structure correspond to the passed
message and message parameters. The API will return TRUE if the message is
placed successfully on the message queue, or FALSE if an error occurred or
the specified message queue is full.

Obtaining Information about a Particular Message Queue

A particular function may occasionally need to know information about the
calling thread. For example, there may be times when you will have to write
a specific API that can be called by multiple application interfaces. If you
are writing a communications function that will be accessible by multiple
applications, it may become necessary to determine whether the calling thread
is actually a PM-based thread. A PM-based thread is any thread that calls
Winlnitialize and creates a message queue via WinCreateMsgQueue.

The API WinQueryQueuelnfo, can be used to obtain information about a
particular message queue and also determine whether the thread associated
with a particular message queue has access to calling the Presentation Man-
ager API. The message queue information obtained from the WinQueryQueue-
Info API is in the form of a message queue information structure (MQINFO).
The structure contains valuable information about the thread associated with
the message queue. The WinQueryQueuelnfo API will return TRUE if the call
is a success or FALSE if the thread does not have an associated message queue.

Figure 1.3 shows the prototype for the WinQueryQueuelnfo API.

* The hmq parameter is the handle of the message queue for which the infor-
mation structure is being requested for. The message queue handle corre-

BOOL APIENTRY WinPostQueueMsg |HMQ hmg,
ULONG msg,
MPARAM mpl,
MPARAM mp2) ;

Figure 1.2 The WinPostQueusMsg prototype.

6 walcome to the Presentation Manager for Power Programmers

BOOL APIENTRY WinQueryQueuelInfo (HMQ b,
PMQINFC pmqi,
ULONG cbCopy);

Figure 1.3 Obtaining current queue Information.

sponds to the handle obtained through the WinCreateMsgQueue function
or the HMQ_CURRENT constant can be used to obtain information about
the current message queue. _ ‘

¢ The pmgi parameter represents a pointer to a message queue information
structure. A valid MQINFO structure is returned if the API is successﬁ{l.

e The chCopy parameter is simply the size of the message queue information
structure in bytes. This value is used to determine the maximum number
of bytes that should be copied into the pmqi parameter. This parameter
should typically be set to the size of a MQINFO structure.

The message queue information structure contains valuable information
shown in Figure 1.4.

o The cb element represents the size of the structure. ,
e The pid element represents the process identifier that the message queue’s

thread is within. _ _
o The tid element is the thread identifier of the thread associated with the

particular message queue. -
o The cmsgs element represents the number of messages within the message

queue.

The routine in Figure 1.5 will obtain the process ID and thread ID of the
calling thread and display its contents within a message box.

typedef struct _MQINFO /! mginfo
{

ULONG cb;

PID pid;

TID tid;
ULONG cmsgs;
PVOID pReserved;
} MQINFO;

typedef MQINFO *PMQINFO;

Figure 1.4 The MOINFO structure.

Message-Based Architecturs 7

USHORT GetQueueInformation{VOID)
{
MQINFO mginfo;

PID pid;
TID tid;
BOOL re;

CHAR szBuffer(100];

rc = WinQueryQueueInfo (HMQ_CURRENT,

&mginfo,
sizeof (MQINFO)}) ;
if (rc = FALSE) // If WinQueryQueueInfo returns FALSE,
{ // then the calling thread is not a PM
return ERROR_NON_PM_THREAD; // based thread so return ERROR
}
else
{
pid = mginfo.pid;
tid = mginfo.tid;

sprintf {szBuffer, “PID = %d TID = %4*, pid, tid);
DisplayMessages (NULLHANDLE, szBuffer, MSG_INFOQ);
}
return FALSE;
}

Figure 1.5 Obfaining current queue information,

Using WinGancelShutdown

All PM-based applications that do not create additional threads of execution,
translate the input from the user by processing messages within the con-
text of the application message queue. However, additional PM-based threads
may have no need to process messages if there is no interaction from the
user handled within the thread. The additional PM-based threads that do not
communicate with the user via message processing should use the API Win-
CancelShutdown to prevent the application message queue from receiving a
WM_QUIT message. The application can call the API with the fCancelAlways
flag set to TRUE, right after the message queue is created.
The format of the API is shown in Figure 1.6.

BOCL APIENTRY WinCancelShutdown (HMQ hmg,
BOOL fCancelhlways) ;

Figure 1.6 The WinCGancelShutdown prototype.

8 welcome to the Presentation Manager for Powsr Programmers

o The hmq parameter is the handle of the message queue.
e The fCancelAlways flag is used to control the processing of the WM_QI{IIIT
message. If this flag is set to TRUE, no quit messages are placed on the

application message queue during shutdown.

COMMUNICATING WITH MULTIPLE WINDOWS OR QUEUES

There may be times that an application needs to communicate a part1c‘:'1:r:ar
message to multiple windows or message queues concurrently. T}_le API Win-
BroadcastMsg can be used to post or send a message to all application messaffle
queues or all descendents of a particular window. For example, the. Wian;a -
castMsg API can be used to get a particular message to every window of an

application. =
The format of the WinBroadcastMsg appears in Figure 1.7.

» The hwnd parameter is the window handle representing the parent win-

dow. ‘ o
o The next three parameters are the msg to be delivered along with its

message parameters. _ . .
e The rqf parameter is a flag used to indicate how the message is to be

delivered to the window. These flags are known as the broadcast message
flags and are defined in PMWIN.H as:

Understanding 0S/2 Memory 9

SEMAPHORE HANDLING

PMWIN provides a set of API functions designed to allow 32-bit PM appli-
cations to wait on the 32-bit system semaphores. These semaphore API's are
a necessary evil, since they are required to prevent hang situations that are
caused by the inability of an application to process input while blocked. The
WinWaitEventSem and WinWaitMuxWaitSem API's are essentially wrapper
functions that call their control program API (DOS) equivalents, but these
functions differ slightly, since they use a loop to peek the message queue
about once every fifth of a second. This essentially allows PM to wait on the
semaphore for the thread, so that the thread can continue to process the mes-
sages. PM-based applications that do not use the PMWIN semaphore wait
calls could potentially hang the system because the application thread cannot
process any sent messages due to the fact that it is blocked.

UNDERSTANDING 0S/2 MEMORY

For any software developer planning to write successful 0S/2 PM-based ap-
plications, it is critical that they understand how the 0S/2 memory subsystem
works. The 1.x versions of OS/2 used a segmented memory architecture, de-
signed around the Intel 286 processor. Unfortunately due to the 64K segment
size, there are many limitations that exist in PMWIN based on the 64K size.

Fortunately, the 0S/2 2.x versions and above are designed around a 32-bit

BMSG_POST 0x0000 Indicates that the message is to be posted. flat memory model that removes the segment boundaries. However, it was
BMSG_SEND 0x0001 Indicates that the message is to be sent. not until 08/2 Warp that PMWIN was co.nv.erted to 32-bit code. Although the
BMSG_POSTQUEUE 0x0002 Indicates that the message should be posted to 32-bit PMWIN removes a lot of the restrictions caused by the 16-bit PMWIN
all PM threads that have an application message code, there are still limitations due to the need to provide backwards com-

queue. {)atlijbility with the 1116-bit c?)de. For tei‘i(amplel,l ;he 32K itlem restricti(})ln on l1);he

. roadcast to istbox control, still exists because the scrollbar controls used by the listbox

BMSG.DESCENDANTS 0x0004 ;]ﬁd;]:_:a:ﬁz B};a;tc;l:lz:::sssgfg ihseharl;ﬁi::vbspeciﬁed by use a 16-bit integer value as an index. Any changes made to correct this could

cause applications that subclass the controls or hook the messages sent to the
controls to break.

It is very important for experienced PM developers to fully understand how
memory works in the OS/2 operating system. Since PM is a graphical based
interface, it relies heavily on system resources to maintain its appearance.
Poorly designed PM applications that do not take advantage of 0S/2’s superior
memory architecture can cause system performance to degrade.

the hwnd parameter.

RAM i broad-
EONLY 0x0008 Indicates that the message should_ only. be
08 Jirine cast to frame windows (which is identified as all

windows using the CS_FRAME class style).

BOOL APIENTRY WinBroadcastMsg (HWND hwnd,

UPLONG msg,

MPARAM mpl, n =

MeARaM. ool esource Considerations

ULONG rqf}; In an effort to provide portability across different platforms, developers have
become accustomed to relying on the language run-time interface provided

Figure 1.7 The WinBroadcastMsg prototype.

10 Welcome to the Prasentation Manager for Power Programmers

by their compiler, and as a result sometimes choose the equivalent language
function call over the actual 0S/2 API to which the runtime will eventually
resolve. One scenario where this can be detrimental to the functionlity of the
entire system is in the area of session management.

If you are an application developer who will start different sessions from
within your program, be aware that when you are in the PM screen group,
you should not use the DosExecPgm API or the C run-time calls such as system
or spawnl to invoke a non-PM session type. You must use the DosStartSession
API if you are going to start non-PM sessions such as 0S/2 fullscreen, OS/2
windowed or DOS sessions from within a PM application. The reason is that
DosStartSession properly maintains session origination, while the other calls
do not. Without a method of determining how and where the session was
invoked, the resources are not cleaned up when the session is ended. The
result is that overuse of these calls can cause the application to exhaust the
heap reserved for session management, and once the heap is gone, the user
will be unable to start any other applications. The system may eventually
respond by posting an error message like SYS0008 telling the operator that
some resource on the machine has been exhausted.

Using the run-time function instead of the equivalent OS/2 API may not
necessarily be bad, and in some cases may actually be the best call to use. For
instance, care needs to be taken when dispatching individual threads using
DosCreateThread. Although DosCreateThread is the individual API that any
run-time beginthread function will call, DosCreateThread does not set up the
run-time environment, and your thread may have problems calling some run-
time functions. If this is the case, you should use your compiler’s version of
beginthread to create the separate thread of execution. In any case, using the
run-time equivalent of a function allows for portability while, using the API
provides greater flexibility since some options may not be available via the
run-time library function.

MEMORY-RELATED ERRORS

There are several critical heaps maintained for OS/2, when any one heap is
low on memory and unavailable to perform a given task, the application or
shell may post an error message, like SYS0008 or PMV2001 or some other,
indicating a memory or resource error has occurred. It is also possible that
strange visual behavior may occur, such as windows not being updated prop-
erly depending on the heap; and in some cases, the system may eventually
hang.

%t is common that users assume no memory error has occurred since the
size of the SWAPPER.DAT file has not grown to the full extent of the fixed disk
where it resides. There is no correlation between swapper growth and memory

Avoiding the Dreaded Bad-Appiication Dialog 11

usage to private heap usage. These heaps are a small portion of local storage
used for specific memory management, so you can get the dreaded error
message regardless of the amount of memory or disk usage on your system.

PMWIN CONSIDERATIONS

Under the 0S/2 2.x versions of the Presentation Manager, the window manager
(PMWIN) component is still 16-bit code. The largest code change within the
0S/2 WARP operating system was to migrate the PMWIN code to 32-bit.
There have been significant enhancements made to the design of PMWIN
within the WARP release of 0S/2. The code for PMWIN is now contained
within the PMMERGE library. The move to 32-bit code for the most part
provided a complete redesign of the underlying window-manager architecture.
Most notably, there were several enhancements made internal to PMWIN with
regard to memory usage. The PMWIN heap management has been optimized
to provide better performance.

Sometimes, even experienced PM developers tend to lose sight of the fact that
every control window is just that, a window; therefore, it requires a window
handle or HWND as well. It is easy to forget the fact that static text windows
require window handles. Under the OS/2 version 2.x release of the Presentation
Manager, there were approximately 12,000 window handles available for use,
but this limit is also based on the type of window class associated with the
window, since different window classes can theoretically consume a different
amount of heap required; consequently, the actual limit on available window
handles is reduced. The 32-bit 0S/2 WARP PM window manager, allows for
approximately 11 times the number of window handles available in a 2.x
system, but more important, the only limiting factor is the amount of virtual
memory available. Of course, using that many window handles is extremely
unrealistic in today’s application environment. But then, someone also once
said that 640K was enough memory, so who knows what may or may not be a
realistic limit in the near future.

AVOIDING THE DREADED BAD-APPLICATION DIALOG

Any experienced 0S/2 user has occasionally run into a situation at one time
or another where the workplace shell enters a hung state. After patiently
hitting the Ctrl-Esc key several times, the user is prompted with what is known
as the bad-app dialog box, indicating that the program is not responding to
systemn requests; it then prompts the user to end the offending process. 0S/2

12 Weicome to the Presentation Manager for Power Programmers

offers probably the best crash protection system available for PC operating
systems, although poorly designed and poorly written applications can still
cause problems for the operating environment.

Fortunately, the design of 0S/2 and the Presentation Manager allow most
hang situations to recover. There have been several changes made to the de-
sign of the 0S/2 WARP 32-bit PMWIN that aid in preventing bad application
code from compromising the integrity of the system. In any case, application
developers must share the responsibility of ensuring that the user environment
is safe for the user.

There has long been an unwritten rule for PM developers called the 1/10
rule. This rule applies to the processing of messages within the PM environ-
ment. Basically, if any message takes longer than 1/10th of a second to process,
it’s probably way too long, and the application should execute this code outside
of the message processing, within a separate thread. In the software world of
user interfaces, implementation is everything, and if the user has to see the
busy mouse pointer too long, it can be extremely frustrating, let alone poten-
tially causing a hang situation. The 1/10 rule is not written in stone, and almost
every application, even the best-written ones, will more than likely violate this
rule at one time or another.

The point is that application developers should be mindful of the applica-
tion user interface, and understand that the user, no matter how uneducated
an 0S/2 user he or she may be, still desires the ability to multitask by per-
forming different tasks concurrently. We were once told by a developer of a
large computerized 0S/2 banking system that it was okay for the end users to
wait 20 seconds longer, while the single threaded application was processing a
transaction, since the application was only designed for bank tellers and they
have nothing else to do. Although this may or may not be true, the attitude, that
any application can monopolize the user interface can be extremely damaging
and is the wrong method of application design. Whether you are developing
a simple file management utility or a complex plant floor scheduling appli-
cation, the design of your application should be taken seriously and special
consideration made to designing your application for end users. One of the
biggest advantages of programming in 0S/2 and the Presentation Manager
environment specifically, is the availability of the superior multitasking and
multithreading capabilities inherent to the operating system. After all, this is
what separates 08/2 and PM from DOS/Windows. Unfortunately, a lack of well
written 32-bit consumer applications exist in the software market today, and
this can be attributed partially to some application vendors writing lacklus-
ter 0S/2 applications when compared to their Windows-equivalent products.
Fortunately, there are a few exceptions to the rule.

The PM Input Mechanism

In the 0S/2 2.x versions of PM, the PM input mechanism was disabled until the
application got around to creating its primary message queue. After the first

DebuggingPm 13

message queue was created, the input mechanism was reenabled although
input was not tied to a particular window until the first window wz;s creategd
then made visible and finally the recipient of the input focus. At this point thé
input was tied to that window and the appropriate application message qu’eue
Applications that attempt to do too much initialization code prior to arriving
at the message processing loop can hang the system. £

Since implementation is everything, it is important to get the main window
of the application drawn as quickly as possible to allow the user to continue
to interact with the rest of the system while maintaining the responsiveness of
the system. Therefore, if you are designing an application that requires a lot of
initialization prior to drawing your frame window, you should call WinlInitial-
ize and WinCreateMsgQueue to create a message queue as soon as possible
then dispatch a worker thread to do the rest of your application initialization:
If the user needs to be kept away from the application functionality until the
real initialization completes, then you can create a “please wait...” window to
indicate that the application initialization is not complete. The goal is to get
the first thread to the message processing loop as soon as possible.

DEBUGGING PM

Application developers who desire a powerful low-level debugger, can obtain
a debug version of the 0S2KRNL along with symbol files for all of the major
085/2 components from IBM. The kernel debugger provides the developer with
unparalleled access to the 08/2 API layer, since it allows the developer to set
breakpoints on the API functions and step through the code at an instruction
level. The 0S/2 toolkit ships with an INF reference file for the 0S/2 kernel de-
bugger. There are two different versions of the debug OS2KRNL: the all-strict
debug kernel contains all of the debug code, while a scaled-down debug kernel
known as the half-strict kernel more closely resembles the retail 0S2KRNL
that ships with the operating system. For the most part, the all-strict debug
kernel will be adequate. The half-strict kernel is designed to offer slightly bet-
ter performance than the full all-strict debug kernel and avoids any timing
oddities introduced by the all-strict kernel that may impede the debug process.

There are also debug-specific versions of several 0S/2 modules that can
be used to assist with debugging. These debug modules are much slower and
larger than the retail versions of the modules, because the modules will dump
information to the debug terminal to indicate what the current function is up
to. To enable the debug output to dump to the debug terminal, the developer
must modify the PMDD statement in the CONFIG.SYS file to indicate the
appropriate COM port to which to dump the debug information.

If errors occur within the code contained in the debug module, an er-
ror message is typically dumped immediately to the debug terminal, although
sometimes an error may be recoverable, and the error output may not neces-

14 Welcome to the Presentation Manager for Power Programmers

ERRORID APIENTRY WinGetLastError (HAB habk};

Figure 1.8 The WinGetLas{Errar profolype.

sarily be significant. There are debug versions of PMWIN, PMGRE, and PMWP
available, as well as PMMERGE for 0S/2 WARP.

If you do not require the low-level power provided by the 0S/2 kernel
debugger, there are several good high-level debuggers that can be used to
debug your application. The IPMD compiler that ships with the IBM CSET/2
product is one example of a high-level debugger that can be used by application
developers to debug their applications.

The ability to debug your application to resolve code defects is critical to
the success of the application. Let’s face it, nobody writes perfect code, and
the ability to resolve problems in your application quickly, can make a big
difference. The application debug stage is an extremely important part of the
application software development life cycle, yet often the most overlooked.
Good debug tools are an important part of any development effort. There are
a variety of good debug tools available for 0S/2, such as the kernel debugger,
dump formatter, and trace formatter, that can help developers and technical
support personnel identify and resolve problems quickly.

ERROR HANDLING

The WinGetLastError API is designed to return error information if an error
has occurred in one of the previous Win API function calls. The function should
only be called if an error occurred to obtain the error, or if the error buffer
needs to be cleared which will occur any time the function is called. The
prototype for the API is found in Figure 1.8.

The return information from the WinGetLastError API consists of two
words stored in the returned ERRORID, which is simply a ULONG value. The
high word contains the severity of the error while the low word contains the
actual error code. The error severity describes the type of error, and can be
used to determine how an application should react to the error conditions,
while the actual error code indicates the type of failure that occurred. The
severities are defined in the header file, 0S2DEFH, shown in Figure 1.9.

SEVERITY_NOERROR 00000
SEVERITY_WARNING 0x0004
SEVERITY_ERROR 0x0008
SEVERITY_SEVERE 0x000C
SEVERITY_UNRECOVERABLE 0=x0010

Flgure 1.9 The severity definitions.

Error Handling 15

bp _WinSetErrorInfo "dw ss:sp id;g*

Flgure 1.10 Tracing errors using WinSetErrorinfo.

The errors are stored through the use of a internal function _WinSetError-
Info. Application developers can set a breakpoint on this function with the
08/2 kernel debugger to find the occurrence of an error.

The breakpoint in Figure 1.10 is used to dump all of the errors recorded
with WinSetErrorInfo. It effectively dumps the same information that WinGet-
LastError would return, except it does it every single time an error is recorded.
The breakpoint will display in words the stack represented by SS:SP for a
length of four words and continue execution, so it will not halt your system at
the breakpoint. Using this information can be helpful in determining where an
error occurred.

Figure 1.11 shows a sample debug output.

The actual error codes are defined in the PMERR.H header file, and all
begin with the prefix PMERR. Here, the error represented by 1001 corresponds
to the error indicating an invalid window handle has been used,

PMERR_INVALID_HWND 0x1001

##bp _winseterrorinfo "dw ss:sp 14;g"

##g

0036:00003£56 0449 dile 205b 0008
001£:0000e796 eedd d0df 1003 0008
001£:0000e79%e eed% 40Af 1003 0008
001£:0000f1aa 4051 A0Af 1001 0008
0036:00003£f7e 04d9 dl0e 2044 0008
001£:0000£0a2 d051 40dAf 1001 0008
001£:0000£534 4051 4A0GE 1001 0008

##1n d0df:dosl
d0df:0000ede0 pmwin: TEXT:TOTALLYBOGUSPMWINCODE + 69
d0df:0000ee57 WINSETWINDOWBITS - e

The first two words on the stack correspond to the return address where the
error was set with WinSetErroxInfo. If the error originated from your
application code, you will have to walk the stack back to your application
code to find the appropriate routine containing the failure.

The third and fourth word correspond to the error and severity respectively.
In the hold lines above, the routine TotallyBogusPMWINCode within PMWIN
reported an invalid window handle.

Figure 1.11 Viewing PM errors via the debugger.

16 Welcoms to the Presentation Manager for Power Programmers

SUMMARY

Many of the subjects covered throughout this chapter and throughout the
book may be old hat for experienced PM developers, but it is important to
understand the concepts involved in the design of the Presentation Manager
before embarking on a long and prosperous PM development path. Therefore,
we will provide relevent background information and design considerations
along with reviewing requisite subjects occasionally, so that you can thoroughly
grasp the subject before viewing the sample source code.

The Presentation Manager and OS/2 have certainly come a long way since
their inception. The Presentation Manager API offers application developers a
rich set of programming functionality that allows developers to create power-
ful graphical programs that conform to the Systems Application Architecture
(SAA) guidelines for application design. The future of PM development is excit-
ing. Changes made to PM in 0S/2 Warp, as well as the enhancements that are
currently being designed and developed for the Presentation Manager in future
0S/2 family products holds promise for the future of 0S/2 and the popularity
of native 0S/2 PM based applications.

0S/2 has always had exceptional development tools available for applica-
tion developers. Unfortunately the lack of native 0S/2 applications has been
the worst thorn in the side of OS/2 users. Although great progress has been
made since 0S/2 1.x, the road ahead is still long and bumpy. The battle at
this time is neither won, nor is it lost. Radical new PM development tools
continue to redefine the standards of graphical application design. The intent
of this book is to teach valuable PM programming techniques while simulta-
neously providing insight into the design and development of the Presentation

Manager. Now let’s begin.

CHAPTER 2

Gaining Gontrol:
Mastering the Standard
PM Control Windows

or provide information to a user. The proper use of control windows can

make a susbtantial difference in the usability of the application. Several
new controls have been added to the Presentation Manager code throughout
the years to allow developers to provide a consistent interface to the user for
communication with the application. Version 2.0 of 0S/2 introduced several
new control windows into the vocabulary of PM developers, including the note-
book control, the value set control, and the powerful container control which
is an integral part of the Workpiace Sheil’s object-oriented implementation.
With the release of OS/2 WARP most of the basic controls have been enhanced
thanks to the conversion of the window manager code to 32-bit. The release of
the multimedia Presentation Manager that ships with the 0S/2 product lines
provides more powerful controls that can be used to enhance the application
interface.

But, if the standard PM controls do not offer the functionality that you are
looking for, PM provides the ability to modify the control through subclassing,
or you can just create your own control. This chapter will focus on the basics of
control windows and provide insight into mastering the standard PM controls
that are often taken for granted, but critical to providing and obtaining input
from the user.

Controls typically process user input and then provide a notification to the
control’s owner window. Like any other window, the input received from the
user takes the form of messages that are processed by the controls window

A control is a child window that can be used to solicit input from a user

17

18 Gaining Control: Mastering the Standard PM Control Windows

procedure. The code for the basic PM controls reside within the window
manager code itself, which in the previous versions of PM was called PMWIN.
In the 32-bit 0S/2 WARP PM release, the PMWIN code is actually contained in
the PMMERGE.DLL library. As part of the optimization required to improve
performance for 0S/2 WARP, the window manager (PMWIN), graphics engine
(PMGRE), and shell API (PMSHAPI) components were combined into a single
dynamic link library. Although the individual modules still physically exist in
the \OS2\DLL directory, they are now much smaller in size. These modules
are still required to support applications that dynamically link to them at load
time. The purpose of these modules in 0S/2 WARP is to simply forward the
request for a given function to the proper location in PMMERGE to satisfy the
application.

The standard PM controls are defined by a set of predefined window
classes. The basic control windows that we are about to examine are derived
from the following window classes. With the exception of the MLE control,
the code for all of these controls resides within PMWIN in 0S/2 2.x. The MLE
code is contained in the PMMLE dynamic link library. Although you should
already be familiar with all of the controls derived from the window classes
listed here, 2 simple explanation of the control is provided.

These are the basic PM controls:

WC_STATIC This window class represents the static window control. It is the most
primitive control window. Its only purpose is to display information
to the user, thus it is not used to obtain input from the user.

WC_BUTTON The button window class actually provides three distinct controls: the

pushbutton, the checkbox, and the radiobutton. Button windows are
used to derive some action from the user.

WC_ENTRYFIELD This window class represents the entryfield control, the entryfield is an

WC_MLE

editable rectangle that is typically used to solicit input from the user.
This is the window class for the multiline entry field. It is used in the
Chapter 8 sample program.

WC.SCROLLBAR This window class represents the scrollbar control. The scrollbar

window has very little significance on its own. It is primarily used
to scroll the contents of another window, like in a listbox for exam-
ple. The only input it receives from the user is the movement of the

scrollbar slider.

WC_LISTBOX This window class is used to create the listbox control. The listbox is a

scrollable window that allows the user to make a selection from a list
of items.

WC.COMBOBOX This window class represents the combobox control. A combobox com-

bines the functionality of the entryfield and the listbox controls to allow
the user the ability to make a selection.

The Purpose of the Sample Program 19

WC_SPINBUTTON This is the window class for the spinbutton control, The spinbutton
control is used to allow the user to make a selection from a list of
numeric values.

These are the advanced PM controls that are contained within PMCTLS:

WC_SLIDER This window class is for the slider control. This control is used to
illustrate some kind of progression to the user. It is discussed in Chap-
ter 11.

WC_VALUESET This window class is for the value set control. The value set allows the
user to make a visual selection from a group of objects. This control
is also discussed in Chapter 11.

WC_NOTEBOOK The notebook window class. The notebook control is a metaphor for a
paper notebook. It provides information to users by allowing them to
navigate through different pages of information. This is also discussed
in Chapter 11.

WC_CONTAINER This is the most powerful and complex of all the standard PM controls.
It allows for multiple views of the same information. It is discussed
thoroughly in Chapter 12.

THE PURPOSE OF THE SAMPLE PROGRAM

The 0S8/2 WARP release of OS/2 contains a handy little utility called the
Launchpad. The Launchpad is something that the user community has re-
quested throughout the years. The purpose of the Launchpad is to provide
immediate access to frequently used objects and the ability to start applica-
tions with a single press of a button. This chapter’s sample program is simply
called BUTTONS, and its purpose is similar to that of the Launchpad, ex-
cept that BUTTONS is purely a program starter and does not deal with the
manipulation of workplace objects. The BUTTONS program does provide an
extremely intuitive interface that allows applications to be started at the touch
of a pushbutton. BUTTONS offers a customizable user interface and allows
applications to be configured with relative ease.

BUTTONS also provides graphical pushbuttons for lockup and shutdown.
Figure 2.1 illustrates the sample program.

The sample program demonstrates most of the remaining basic PM con-
trols. The comfortable button interface is created through the use of graphical
pushbuttons. The BUTTONS control panel features the other remaining basic
PM controls to configure and maintain the interface of the application.

20 Gaining Control: Mastering the Standard PM Control Windows

Figurs 2.1 The BUTTONS interface.

CONTROLS IN DIALOGS

The dialog box functionality allows the basic PM controls to be created and
maintained more easily. The control window is created from the window key-
word in the resource script file specifying the type of control that is to be
created. It is far more efficient to create the basic controls in dialog boxes
since the dialog box logic makes it easier to handle the sizing and position-
ing of the control within the dialog along with the simplicity of moving the
keyboard input focus between controls.

Types of Controls

There are three basic types of PM controls that all controls, even those not
provided as part of the Presentation Manager fall into. The basic categories
are the output only control, the input only control, and the combination input
and output control. The purpose of the output only control is simply to allow
the application to display something to the user. The output only control type
is the simplest since the user cannot interact in any way with the control, and
the control does not need to provide communication to its owner window.
Examples of this control type include the static text window and the groupbox.
The input only control type is a little more complex. The purpose of this
control type is to allow the user to make a selection based on what the control
displays to the user. This control type allows the user to manipulate the control
to provide information (input) back to the application based on the user’s
selection or movement of the control. The pushbutton, radiobutton, checkbox,
and scroll bar controls are classic examples of the input only control type.
Finally, the most complex control type combines both input and output
communication methods between the control and the application. These types

Creating the Control Window 21

of controls provide information to the user while simultaneously allowing
the user to make selections based on the information provided. The listbox
combobox, and spinbutton are all examples of the input/output control type'
The entryfield and multiline entryfield controls are also derived from this;
control type since they can provide either input or output information, thus
acting.as: a communication mechanism between the user and the application,

It is important to remember that a control is nothing more than a window
based on a defined window class that is developed to be used by independent
applications. Controls are usually designed to act as independent paradigms
so that they can function without any specific application code. A properly
designed control is a window that has no relation to any other window within
your application. In other words, although a scroll bar may be used to scroll
the contents of a window in your application, can the same scroll bar control
window be used with any application? When designing a control window try
to imagine it as the only window other than the desktop window. The design
of the control window will be thoroughly discussed in Chapter 14.

CREATING THE CONTROL WINDOW

When a control window is created outside of a dialog window, the developer is
responsible for creating the control through the use of the WinCreateWindow
APL. Although you should already be familiar with creating windows by using
this function, there are several parameters that are specific to control window
f:reation, so it is a good idea to review this API. The prototype for the function
1s given in Figure 2.2.

* The hwndParent parameter is the handle of the parent window. This pa-
rameter can be set to the desktop window, HWND_DESKTOP to create a

HWND APIENTRY WinCreateWindow(HWND hwndParent,
P52 pszClass,
PSZ pszName,
ULONG flStyle,

LONG x,
LONG vy,
LONG c¢x,
LONG ¢y,

HWND hwndOwner,

HWND hwndInsertBehind,
ULONG id,

PVOID pCtlbata,

PVOID pPresParams);

Figure 2.2 WinCreateWindow.

22 Gaining Controi: Mastering the Standard PM Control Windows

top-level frame window. This parameter can also be set to HWND.OBJECT
to create an object window.

The pszClass parameter is the window class name field. All window classes
must either be registered through the use of WinRegisterClass or be a
predefined public window class. The predefined public window classes are
identified by the WC_ constants in PMWIN.H.

The pszName parameter is a null-terminated string that represents the
window text for the window being defined. Whether the window text is
visible in the window is based on the type of window class for the window
being created. For example, some control windows display text as part of
the control, like a pushbutton. Other control windows, like the scrollbar,
have no need for the text. Keep in mind that the window text represented
by this string is an initial value and can be changed through the use of the
WinSetWindowText API

The flStyle parameter specifies the window styles that are to be used for
the window being created. The style flags are combined to create the ap-
pearance of the window. The window style identifier WS VISIBLE can be
used if the window is designed to be visible immediately after its creation.
If the window is not initially visible, it will be created but not shown. The
APIs WinShowWindow or WinSetWindowPos with the SWP_.SHOW flag
can then be used to ultimately show the window. Other than the visibility
style, this value can be used to represent window styles that are dependent
on the type of window class being created. For example, when you create
a control window based on the WC_BUTTON window class, this parame-
ter is used to identify whether the button is a pushbutton, radiobutton, or
checkbox, and is also used to define the behavior of the button.

The x parameter is simply the initial horizontal coordinate for the window.
The value represents a window coordinate that is based on the origin of
the parent window.

The y parameter is simply the initial vertical coordinate for the window.
The value represents a window coordinate that is based on the origin of
the parent window.

The ex parameter is the horizontal width of the window in window coor-
dinates.

The cy parameter is the vertical length of the window in window coordi-
nates.

The hwndOwner parameter represents the owner window. The owner win-
dow is the window to which messages are typically sent for controls. When
the window represented by the hwndOwner window handle is destroyed,
all windows that it owns are also destroyed.

The hwndInsertBehind parameter is used to identify the placement of the
window. This parameter represents the sibling window behind which the
created window will be placed. This parameter can be set to the values
of HWND_TOP or HWND_BOTTOM. If this value is HWND_TOE the win-

Understanding the Owner and Parent Window Relationships 23

dow that is created is placed on top of all its sibling windows, If this
value is HWND_BOTTOM, it is placed on the bottom of all its sibling win-
dows in the ZORDER. This value must either be the constant HWND _TOP,
HWND_BOTTOM, or a window handle that is a child of the parent window.

¢ The id parameter is used to specify a window identifier. Typically, the win-
dow identifier is a unique number that is used to represent the relationship
of the window to other windows. For example, if an application creates
multiple control windows, each control window gets a unique ID that
identifies the window, so that the owner window can determine which of
the control windows initiated the notification. An application can obtain
the associated window handle from the window identifier by calling the
WinWindowFromID API.

¢ The pCtlData parameter is a pointer to a data structure that is specific for
the control window being created. Therefore, the structure that is repre-
sented by this pointer is based on the window class of the window being
created. The structure is automatically passed as part of the WM_CREATE
message processing. Since the data of the structure can vary based on the
control window being created, the first two bytes of the structure refer-
enced by this pointer should contain the total size of the structure to be
passed. This structure is very important since it contains control data for
the type of control. For example, button class windows use the BTNCDATA
structure while scroll bars use the SBCDATA structure.

¢ The pPresParams parameter is a pointer to presentation parameter infor-
mation based on the window class of the window being created.

UNDERSTANDING THE OWNER AND PARENT WINDOW RELATIONSHIPS

The owner window and parent window both have a distinct relationship to the
control window that is created. Unfortunately, these windows are often con-
fused for one another. Understanding their differences is critical to mastering
the philosophy of the control window. Although it is common for a control
window to use the same window for the owner and parent, it is important
to understand the difference in case it becomes necessary to have a window
other than the window where the control is drawn on to process notification
messages for the control. When a control window is created through the use
of WinCreateWindow, the parent and owner window handles are specified
through the use of the hwndParent and hwndOwner parameters.

The purpose of the parent window is to determine the positioning for the
control window. The window coordinates of the control window specified by
x, ¥, ¢x, and cy represent the coordinates of the control window relative to
the lower left corner of the parent window. Therefore, the control window is
relative to the position of its parent window, so that when the parent window
is moved, the control window is also moved and repositioned based on the

24 Gaining Control: Mastering the Standard PM Conltrol Windows

coordinates. As with any child window, a control window cannot be viewed
outside the boundaries of its parent, meaning that the control will be clipped
on the basis of its parent.

The purpose of the owner window is to process the notification messages
that are sent by the control. In other words, the window procedure for the
window represented by hwndOwner will get the notification messages for the
control window that is created. For example, the iconic pushbuttons created by
the BUTTONS program are drawn within the client window of the application.
Therefore, it makes sense that the individual pushbutton control windows use
the client window as the owner of the pushbuttons, which means that the
client window procedure represented by ClientWndProc will be responsible
for handling the button notification messages.

Control Window Communication Messages

For the application to communicate with the control, several messages are
defined that are specific to the control. The messages are sent to the control
window through the use of the WinSendMsg API function. The purpose of the
control window communication messages is to allow the application to query
or set the state of the control.

Control Window Notification Messages

Notification messages are messages that are sent to the owner window from
the control based on input from the user. The input is triggered by the user
manipulating the control, usually by clicking on it or pressing a key that
corresponds to the control while the control has input focus. The notification
messages let the application control the functionality of the individual control
by allowing the developer to determine the action for the control to take. The
notification messages received by the owner window are usually in the form of
WM_COMMAND or WM_.CONTROL messages, which are used to determine
the visual impact that the control will take once the input from the user is
completed.

Using Control Data

The function WinCreateWindow allows you to pass a pointer to a control data
structure. The pointer is used to point to a structure containing the control data
for the particular window. The first element of the structure must be a USHORT
value that contains the size of the structure. The element containing the size of
the structure is extremely important since it is used internally to determine the
size of the available control data. Determining the size is extremely important
because the control data may overlap a segment boundary. Knowing the size

Understanding the Owner and Parent Window Relationships 25

of the structure allows the Presentation Manager to ensure that the entire
structure fits within a single segment.

The Button Window Class

The button window class is one of the simplest class types, yet it offers power-
ful functionality because the appearance of the button can be altered to create
several different control windows derived from the same WC_BUTTON win-
dow class. The button styles are used to determine the appearance that the
button control will take. The primary button styles that are used to determine
the control’s appearance are shown in Figure 2.3.

¢ The BS_ PUSHBUTTON style is used to create a standard pushbutton con-
trol window. The pushbutton is a window that generally contains text, but
may also contain a graphical image, like a bitmap or icon.

¢ The BS_.CHECKBOX style is used to create the checkbox control window.
As its name denotes, a checkbox is a small square pushbutton with a spec-
ified text string to its right. Checkboxes are used to allow the user to select
an option via the selection. Checkbox controls are usually independent of
each other.

e The BS_ AUTOCHECKBOX style is similar to the BS.CHECKBOX style
except that this control type will automically toggle its check state after
the user has interacted with it by selecting it with the mouse pointer or by
pressing the Spacebar.

e The BS_ RADIOBUTTON style is used to create the radiobutton control.
Unlike the checkbox control, radicbuttons are not independent of one
another. They allow the user to select an individual option from a series of
choices represented by the radiobuttons.

+ The BS_AUTORADIOBUTTON style is used to create an autoratic ra-
diobutton. When this button style is used for a group of radiobuttons, and
the button is clicked, it highlights the selected button while unhighlight-
ing all other radiobuttons within the group. The group of radiobuttons is
specified through the use of the WS_GROUP window style.

BS_PUSHBUTTON 0L
BS_CHECKBOX 1L
BS_AUTOCHECKBOX 2L
BS_RADIGBUTTON 3L
BS_AUTORADICBUTTON 4L
BS_3STATE 5L
BS_AUTO3STATE 6L
BS_USERBUTTON L

Flgure 2.3 Primary button window styles.

26 Gaining Control: Mastering the Standard PM Control Windows

¢ The BS_3STATE style is used to create a checkbox control window that
visually contains three display states. In addition to the checkbox button
being checked or unchecked, it can also be halftoned to provide an addi-
tional button state to the user.

¢ The BS_AUTO3STATE style—you guessed it—is exactly like the BS 3STATE
style except that the state of the checkbox is automatically toggled when
the user selects it.

DLGTEMPLATE IDD_SETUP LOADONCALL MOVEABLE DISCARDABLE

DIALOG *BUTTONS - Configure Program Buttons®, IDD_SETUP, 32, 32, 330, 200,, FCF_DLGBORDER | FCF_SYSMENU | PCF_TETLEBAR |
PCP_TASKLIST | FCF_MINBUTTON

{

CONTRGL ID_MAINWND, ID_MAINWND, 25, 120, 21, 21, WC_STATIC, SS_ICON |
WS_GROUP | WS_VISIBLE

GROUPBOX *Program Icon* -1 3, 115, 70, 3¢

PUSHBUTTON "~Find..." DID_FIND, 250, 170, 40, 18,

LTEXT “Program File® ID_TEXT, 10, i8¢, 70, 8

ERTRYFIELD .. IDE_EXECUTABLE, 90, 180, 130, 8, ES_MARGIN

LTEXT "Parameters" ID_TEXKT, 10, 165, 70, 8

ENTRYFEELD iy IDE_PARAMETERS, 90, 165, 130, B, ES_MARGIN

PUSHBUTTON "#605° DID_LEFT, 110, 12¢, 32, 16, WS_GROUP | BS_ICON

PUSHBUTTON “4606* DID _RIGHT, 150, 120, 32, 16, BS_ICON

GROUPBOX "Change Program Icon" -1 220, 115, 100, 30

PUSHBUTTON *-=Icon..." DID_ICON, 230, 120, 40, 16,

PUSHBUTTON *-Default*® DID_DEFAULT, 270, 120, 40, 16,

GROUPBOX *Program Type" ED_TEXT 15, 3¢, 300, 70

AUTORADIOBUTTCN "Default*, IDR_DEFAULT, 30, 70, 140, 10, WS_GROUP

AUTORADIOBUTTON "Presentation Manager®, IDR_PHM, 30, 60, 140, 10,

AUTORADIOBUTTON "0S/2 Windowed Session®, IDR_OS2WINDOW, 30, 50, 140, 10,

AUTORADIOBUTTON "0S5/2 Fullscreen Session®, IDR_OS2FSCREEN, 30, 40, 140, 10,

AUTURADIOBUTTON "DOS Windowed Session®, IDR_DOSWINDOW, 170, 7¢, 140, 1¢,

AUTORADIOBUTTON "DOS Fullscreen Session”®, IDR_DOSFSCREEN, 170, 60, 140, 10,

AUTORADIOBUTTON "Seamiess Win-08/2 Session®, IDR_WINWINDOW, 170, S0¢. 140, 10,
AUTCRADIOBUTTON "Fullscreen Win-08$/2 Sesgion®, IDR_WINFSCREEN, 170, 40, 140, 10,

DEFPUSHBUTTON "~Apply” DID_OK, 30, 8, 45, 15, WS_GROUP
PUSHBUTTON "-Saye" DID_SAVE, 100, 8, 45, 15,
PUSHBUTTON "~Close" DID_CANCEL. 170, 8, 45, 15,
PUSHBUTTON "~Help® DI _HELP, 240, 8, 45, 15,

Understanding the Owner and Parent Window Relationships 27

¢ The BS_USERBUTTON style is designed to allow the PM developer to
create alternative buttons. It is up to the application to paint and maintain
the button when the owner window receives a BN_PAINT notification
message.

With the exception of the BS_3STATE and BS_AUTO3STATE styles, all of
the other primary button styles can be specified in a dialog template simply by
removing the BS_ header from the style. For example, the ConfigureDlgProc
dialog procedure uses the dialog template in Figure 2.4, which contains most
of the primary button styles.

There are several other secondary button window styles that control the
appearance and functionality of the button that is created. These styles are
designed to be ORed with the primary button styles to change the button
function or appearance. Some of these button styles are exclusive to a specific
type of primary button style.

The button styles in Figure 2.5 are specific to the BS_ PUSHBUTTON pri-
mary button style and control the appearance of the border around the button
window.

* The BS_.DEFAULT style does not alter the default functionality of the push-
button, but it does highlight the button by drawing a border around it,
and also allows the user to use the Enter key to depress the button. This
button style is used through the DEFPUSHBUTTON keyword in a dialog
template. Only one button in a group can have this style set. This style can
also be used by the BS.USERBUTTON primary style, but it is up to the
application to define the appearance of the default button; for example,
like drawing a border or changing the color.

o The BS. NOBORDER style is exactly as it sounds. The pushbutton is drawn
without the border around it. The functionality of the button is not changed,
only its appearance.

In addition, there are two button styles that control the message functional-
ity of the button. When a pushbutton is depressed, the default button behavior
is to generate a WM_COMMAND message to the owner window. Using either
of the styles given in Figure 2.6 will cause a different message to be sent to the
owner window.

Figure 2.4 Sample dialog template using cantrols.

BS_DEFAULT 0x0400L
BS_NCBORDER 0x1000L

Figure 2.5 Button border styles.

28 Gaining Control: Mastering the Standard PM Control Windows

BS_HELP 0x0100L
BS_SYSCOMMAND 0x0200L

Flgure 2.6 Buiton message styles.

e The BS_HELP style, when used in conjunction with the BS_PUSH-
BUTTON primary style, will cause the button to generate a WM_HELP
message instead of a WM_.COMMAND message.

e The BS.SYSCOMMAND style, when used in conjunction with the BS._
PUSHBUTTON primary style, will cause the button to generate a WM.
SYSCOMMAND message instead of a WM_.COMMAND message.

These button styles are useful in defining what the button is to accomplish
when clicked. The BS_HELP and BS_.SYSCOMMAND button styles are not
designed to be used with one another, but if for some reason they are both
set, the BS_HELP style will override the BS_.SYSCOMMAND style causing
the WM_HELP message to be generated in lieu of the WM_SYSCOMMAND
message.

There are a few other button styles that can be used to alter the appearance
of a pushbutton, listed in Figure 2.7.

o The BS_BITMAP style is used to substitute a bitmap image in the pushbut-
ton window instead of the standard window text.

¢ The BS_ICON style is used to substitute an icon image in the pushbutton
window instead of the standard window text.

s The BS_MINIICON style is the same except it uses a miniature icon.

The BS_ICON button style is the basis for the BUTTONS program, and each
of the buttons drawn within the client area of the main window use this style
to represent a function or program. When the button is pressed, the function
is performed or the program is started. The buttons are created through a for
loop that will call the WinCreateWindow function. All of the buttons use a
combination of the WS_VISIBLE, BS_ PUSHBUTTON, and BS_ICON window
styles to create the buttons. The third parameter to the WinCreateWindow call
specifies the window text of the button; and buttons that use BS_ICON have no
need for window text. This parameter will change based on whether the icon
is preloaded as a resource or needs to be loaded from the executable program.

BS_MINIICON (x0020L
BS_BITMAP 0x0040L
BS_ICON 0x0080L

Understanding the Owner and Parent Window Relationships 29

The function buttons, which occupy the bottom row of buttons cannot
change so we have no need to use different icons. Therefore, these icons are
loaded as resources into the executable through the ICON statement in the
resource script file. Here is an example of how the shutdown icon is declared
in the BUTTONS.RC resource script file.

ICON IDI_SHUTDOWN PRELOAD shutdown.ico

The IDI.SHUTDOWN resource identifier is used to represent the actual icon
shutdown.ico which will be built into the executable as a resource. The
IDI.SHUTDOWN identifier is defined as a unique number that represents the
icon. Here is how it is defined within BUTTONS.H.

#define IDI_SHUTDCWN 602

Note that the actual icon is now represented by the number 602. In order to
load this icon in the button you can specify the number as the window text,
preceded by the pound sign. For example, the code in Figure 2.8 will load the
shutdown.ico icon within a pushbutton.

That is all there is to loading icons into the button from a resource. But
what about the rest of the buttons necessary for the rest of the application
interface? Since the purpose of the program is to allow the user to launch
programs, the user must be responsible for configuring the applications that
will be started. Therefore, since the applications will be different for each user,
we do not have the ability to detect which icons to load as resources, so we
have to extract the icon from the actual executable and then use that icon
within the button. Unlike the manner that we used to load the icons for the
function buttons, this time there will be no window text at all. Instead, the

WinCreateWindow (hwndClient, /{ Parent Window
WC_BUTTON, // Window Class
"$602", // Resource Identifier
WS_VISIBLE BS_PUSHBUTTON | BE_ICON, // Window Styles
50, // Initial x
o, // Initial y
50, // Length of hutton
50, // width of button
NULLHANDLE, // Owner is Client
HWND_BOTTOM, // Sibling Window
IDM_SHUTDOWN, // WM_COMMAND identifier
NULL, // Control Data
NULL | ; // Presentation Parameters

Figure 2.7 Bution Image styles.

Figure 2.8 Loadinp the icon bufton.

30 Gaining Control: Mastering the Standard PM Control Windows

icon will be loaded from the control data that will be passed to the call to
WinCreateWindow.

The format of the control data structure for the button window class is
given in Figure 2.9,

e The cb parameter is the length in bytes of the control data structure.

e The fsCheckState parameter is the button check state that is used to de-
termine whether the button is currently checked. It is the same value that
is returned by the BM_QUERYCHECK message or the same value that is
passed to the BM_.SETCHECK message.

e The fsHiliteState parameter is the button highlight state that is used to
determine whether the button is currently highlighted. It is the same value
that is returned by the BM_.QUERYHILITE message or the value that is
passed to the BM_SETHILITE message.

e The hImage parameter represents a handle to an image file. The image file
can either be in the form of an icon or a bitmap.

The BUTTONS program uses the WinLoadFileIcon API to obtain the handle to
the icon from the application’s executable. The configuration dialog box allows
the user to enter the applications that they wish to create buttons for. The path
and file names of the executables are then stored in an array called the program
list, that will be written to a text configuration file called BUTTONS.PRO.
When you are storing large data structures or arrays, it is good programming
practice to create your own profile instead of using the 0S2.INI file, since the
size of the 0S2.INI profile should be as small as possible for both performance
and maintenance reasons. Alternatively, an application can create its own
binary INI file using the Profile (Pxf) library functions, to store the program
information. The Prf API's are discussed later in the book. For the purposes of
this sample program, it is easier to maintain a simple text based configuration
file since it can be easily edited by the user. Since the beginning of the 0S/2
Presentation Manager, a debate has raged among programmers as to whether
or not the binary INI file format used by OS/2 or the text based INI files used
by Microsoft Windows is superior. In any case that debate is irrelevant here.

typedef struct _BTNCDATA /7 btned
{
USHORT cb;
USHORT £sCheckState;
USHORT fsHiliteState;
LHANDLE hImage;
} BTNCDATA;
typedef BTNCDATA *PBTNCDATA;

Flgure 2.9 The button control data structure.

Understanding the Owner and Parent Window Relationships 31

HPOINTER WinLoadFileIcon(PSZ pszFileName,
BOOL fPrivate);

Flgure 2.10 The WinLoadFllelcon API.

For each of the program path and filenames stored in the BUTTONS.PRO file,
the WinLoadFileIcon API is called to obtain its associated icon. Its prototype
is in Figure 2.10.

» The pszFileName parameter is the path and file name of the executable
that contains the icon.

* The fPrivate parameter is a BOOL flag that is used to determine whether a
private copy of the icon is needed. If your application needs to modify the
icon once it is determined, you can request a private copy solely for your
application’s use by setting this parameter to TRUE. Once you are done
modifying the icon, free your private copy by calling the WinFreeFileIcon
function. Otherwise, if the application only intends to display the icon, set
this parameter to FALSE indicating that a single shared pointer to the icon
is all that is needed. This will save on memory since a private copy of the
icon will not have to be loaded.

Unlike most of the PM APIs, the code for the WinLoadFilelcon function
is stored within the actual Workplace Shell library, PMWEDLL, which means
that this function was already 32-bit code before 0S/2 WARP. The function
returns a handle to a pointer that contains the icon. The icon that is returned
is derived from the executable based on a series of precedence rules. Figure
2.11 contains the rules that WinLoadFilelcon uses to determine the order in
which the icon will be loaded.

Once the icon is no longer needed, the application should call the Win-
FreeFilelcon API to unload the graphics engine resources required for the
icon. Figure 2.12 contains the prototype for the WinFreeFileIcon API. The
WinFreeFileIcon API takes a single parameter, the pointer handle. The func-
tion will return TRUE if successful. The function works by first checking if the

» Use the ICON stored in the executables extended attributes.

s Use the .ICO file stored in the same directory with the same prefix as the
executable.

¢ Use the ICON that is bound into the executable for PM and WINDOWS
applications.

» Use the default ICON based on the actual program type.

Flgure 2.11 The logic used to load an icon via WinLoadFilelcon.

32 Gaining Control: Mastering the Standard PM Control Windows The Button Control Messages 33

BOOL APIENTRY WinFreeFileIcon{HPOINTER hptri; btned.hImage = {LHANDLE}hptrTemp [usCounter];
}

Figure 2.12 The WinFreeFilelcon prototype.
// Ok, so here we are about to create the BUTTONS control panel which consists of

// twelve pushbuttons. The functicn buttons{first row) are non-configurable unlike

icon specified is still resident and, if it is, the function returns FALSE. Iff the // the remaining eight buttons{known as the program buttons). The buttons are a
function is not resident, it will call WinDestroyPointer to destroy the pointer // fixed size 50 x 50, beginning at the origin that is referenced from the
handle. // usXPosition and usYPosition arrays. This is where we pass the button control
The code fragment shown in Figure 2.13 shows how the BUTTONS pro- éing:::tzgﬁggurghwhéglll.c:;-ztams the icon information for the program buttons.
gram creates the button windows and loads the program icons on the buttons. 4 lwgan;Oeg ! x g?;:gtNEZdow sl
szWinTitle, // Window Text
WS_VISIBLE | BS_PUSHBUTTON | BS_ICON, // Window Styles
- . usXPosition[usCounter}, //f Initial X i
// Fill in most of the Buttons Control Data Structure usYPosition{usCounter], /; Iniltial Y ggg:gﬂ:i:
btncd.cb i sizeof {BTNCDATA] ; 50, /! Horizontal Length of Button
btncd.fsCl‘le(':kState = NULLHANDLE; 50, // Vertical Length of Button
btncd. fsHiliteState = NULLHANDLE; NULLHANDLE, // Owner Window Handle
. . HWND_BOTTOM, Sibli i
// Parse the BUTTONS profile(BUTTONS.PRO} looking for the executables to be usCounter, x Relzso;?gew;gzg:ifier
/! started, along with the session types and any command line parameters. {PVOID] &btned, // Button Control Data
ReadExecutablesFromProfile (BUTTONSPRO) ; NULL} ; // Presentation Parameters

i

// The function buttons{first/bottom row of four buttons} correspond
/! to Product-Information/Lockup/Shutdown/Command Prompt. These icons Figure 213 Drawing the BUTTONS controi panel
/{ are going to be loaded as resources from our executable. To load '
// these icons using the BS_ICON button style we will need to specify
// the resource number preceeded by a pound sign as the window text
// on the call tc WinCreateWindow. The remaining eight buttons are

// known as the program buttons, and need no window text.
THE BUTTON CONTROL MESSAGES

for {usCounter = BID_ABQUT; usCounter < BID END; usCounter++)
{

strcpy(szWinTitle, szResourceNumber [usCounter]); Button control messages signal the button actions (see Figure 2.14).

// For our program buttons {all buttons greater than the first row) . .

77 get the fcon from the executable via WinlLoadFileTcon(). If BM_CLICK This message is used to send the button control a WM_BUT-
TONIDOWN and WM_BUTTONI1UP message so that the

// the pointer handle returned by WinLoadFileIcon is NULL, we were
// unable to get a valid icon from the various methods used by behavior and appearance of the button indicate that it has

// WinLoadFileIcon, which probably implies that the path and been clicked b
// filename of the executable is bogus. In which case, we will L y the user.
// load the SPTR_ICONQUESTION default pointer {a simple question mark)
// to alert the user that something is wrong.

if (usCounter > BID_VIOCMD

[{u er _) BM_CLICK 0x0120
hptrTemp{usCounter] = WinLoadFileIcon{pszAppName{usCounter], FALSE); %‘gﬁgﬁﬁgﬁmm gigi%é

if {hptrT C == NULLHANDLE i
1{ {hptrTemp [usCountex]) BY_SETHILITE 0x0123
. \ BM_QUERYCHECK 0x0124

hptrT Coun = W SysPointer (HWND_DESKTOP, SPTR_ICONQUESTION, FALSE); -
} ptrTemp{usCounter} = WinQuerySysPointer (HWND_ Q) BM_SETCHECK 0%0125
BM SETDEFAULT 0x0126

Figure 2.13 Drawing the BUTTDNS control panei. continued Figure 2.14 The Button control messages

34 Gaining Control: Mastering the Standard PM Control Windows

BM_QUERYCHECKINDEX This message is used to return the index (zero-based) of the

BM.QUERYHILITE

BM_SETHILITE
BM.QUERYCHECK

button that is selected within a group of buttons. If no button
in the group is selected, it will return a — 1. This message is
used for radiobuttons.

This message is used to determine whether the button is high-
lighted. The highlight status is returned.

This message is used to highlight a button.

This message is used to determine whether the specified but-
ton is checked. If the button is checked, the message will
return TRUE; if the button is unchecked, the message will re-
turn FALSE. PMWIN.H contains a macro that resembles an
API called WinQueryButtonCheckState, which simply sends
the BM_.QUERYCHECK message on to the button control to
determine whether the button is checked. The macro works
by using the AP] WinSendDlgltemMsg to send the message.
Therefore, this macro is only used for dialog checkboxes and
radiobuttons.

The WinQueryButtonCheckState macro is defined as shown in Figure 2.15.

BM_SETCHECK

This message is used to set the check appearance of the but-
ton. The first message parameter is used to set the check state.
If mp1 is set to 0, the button will be unchecked. If mpl is set
to 1, the button will be checked. mp1 can also be set to 2 for
buttons that use the BS_3STATE or BS_AUTO3STATE button
style. Setting mp1 to 2 indicates that the buiton will be set to
the intermediate state of the three state buttons. This message
and the check functionality correspond to the radiobutton and
checkbox buttons styles only. This message will return the pre-
vious check appearance of the button control. This message
also corresponds to the WinCheckButton macro defined in
PMWIN.H.

The WinCheckButton macro is defined as shown in Figure 2.16.

BM_SETDEFAULT

This message is used to set the appearance of a pushbutton to
the default state. This message can be used by any button with

#define WinQueryButtonCheckstate(hwndDlg, id}
{ {ULONG}WinSendDlgItemMsg (hwndDlg, id, BM_QUERYCHECK, i
(MPARAM)NULL, (MPARAM)NULL))

Flgure 2.15 The WinGueryButtonCheckState macro.

The Button Control Messages 35

#define WinCheckButton(hwndDlg, id, usCheckState)
{ {ULONG) WinSendDlgItemMsg (hwndDlg, id, BM_SETCHECK, '
MPFROMSHORT {usCheckState), (MPARAM)NULL) }

Figure 2.16 The WinCheckBuiton macso.

BN_CLICKED 1
BN_DBLCLICKED 2
BN_PAINT 3

Figure 2,17 The Buttan notification messages.

the BS_.PUSHBUTTON or BS_.USERBUTTON button style.
The message essentially sets the BS_ DEFAULT style for the
button to indicate that the button is a default selection. The
first message parameter is used to control the default button
appearance. If mp1 is set to TRUE, then the button control
is set to the default button. If mp1 is set to FALSE, then the
default state is removed from the button.

The button notification codes are shown in Figure 2.17.

BN_CLICKED This message is used to provide notification that the user has actually

clicked a button.

BN_DBLCLICKED This message is used to provide notification that the user has actually

BN_PAINT

double-clicked a button.

This message is used to provide notification to the owner window
to paint the button control. This notification message is only used
for user-drawn buttons that use the BS_USERBUTTON button style.
In this case, the second message parameter, mp2, will point to a
USERBUTTON structure that contains all of the information required
for painting the button. This structure is shown in Figure 2.18.

typedef struct _USERBUTTON /{ userbutton
{
HWND hwnd;
HP3 hps;
ULONG fsState;
ULONG fsState0ld;
} USERBUTTON;
typedef USERBUTTON *PUSERBUTTON;

Figure 2.18 The USERBUTTON structure.

36 Gaining Control: Mastering the Standard PM Control Windows

Both pushbuttons and user-defined pushbuttons post a WM.COMMAND
message to its owner window when the user clicks on the pushbutton. If
the button code uses another style other than the BS_PUSHBUTTON or
BS_USERBUTTON button style, like BS.SYSCOMMAND or BS_.HELE, the
message posted will be different. The BS_SYSCOMMAND button style posts a
WM_SYSCOMMAND message, while the BS_ HELP style causes a WM_HELP
message to be posted to the owner window. If a window procedure uses du-
plicate window identifiers for different types of windows, it can differentiate
the window type by looking for the command source value, which is passed in
the low word of the second message parameter, mp2. Figure 2.19 contains the
command source values defined in PMWIN.H.

The values contained in this figure can be used to determine which con-
trol generated the WM_COMMAND message. These values can be useful in
determining what the user did to generate the command message if your win-
dow procedure needs to handle the command differently depending on the
origin or if the application uses duplicate window identifiers for menu items,
accelerators, and pushbuttons. For example, if you have a menuitem, push-
button, and accelerator key that are all defined as 100 but are supposed to
do different things, they won't, because the WM_COMMAND message will be
the same for that value. Therefore, the window procedure can have code that
validates the origin of the command message to appropriately interpret the
correct command message code.

Button control windows that are not pushbuttons generate WM_CONTROL
messages that are posted to the owner window. The message parameters con-
tain the window identifier for the button and the notification message.

mpl = button identifier

mp2 = notification message

For example, the code fragment in Figure 2.20 handles the WM_CONTROL
message for a group of radiobuttons used to change colors.

The BUTTONS Control Panel can be configured by the user through the
use of the Configure Program Buttons dialog box. The Program File entryfield

CMDSRC_PUSHBUTTON
CHDSRC_MENU
CMDSRC_ACCELERATOR
CMDSRC_FONTDLG
CMDSRC_FILEDLG
CMDSRC_PRINTDLG
CMDSRC_COLORDLG
CMDSRC_QOTHER

S OV B

Figure 2.19 Determining the source of WM_COMMAND messages.

The Button Control Messages 37

case WM_CONTROL:
switch (SHORT1FROMMP (mpl))
{
case CLR_BLUE:
sColor = CLR_BLUE;
return FALSE;

case CLR_RED:
sColor = CLR_RED;
return FALSE;

case CLR_PINK:
sColor = CLR_PINK;
return FALSE;

case CLR_GREEN:

sColor = CLR_GREEN;
return FALSE;

}
Figure 2.20 Processing the WM_CONTROL message.

is used to specify the program path and filenames for the executable programs.
The Parameters entryfield is used to enter any command line parameters that
can be passed to the program. The Find pushbutton will use the standard file
dialog box to allow the user to select the executable. Two direction buttons,
centered in the middle of the dialog box are used to navigate through the
program list. As the user presses the forward button, the next executable
program is displayed. If a program exists in the program list or is entered by
the user, it is displayed in the static Program Icon. Figure 2.21 shows what
the dialog box looks like, while Figure 2.22 shows the code that updates the
Program File icon. The source code for the Updatelcon routine updates the
icon in the Configure Program Buttons dialog whenever the user selects one
of the direction pushbuttons.

The UpdateIlcon function takes three parameters. The first parameter is the
dialog window handie. The second parameter represents the static icon win-
dow identifier. The last parameter, pszlcon represents the path and filename
for the executable program whose icon is to be displayed. If this parameter
is set to NULLHANDLE, the function will call WinQuerySysPointer to obtain
the pointer handle for the question mark icon. This can be used to indicate to
the user that the program path and filename could not be resolved, therefore,
the icon could not be loaded. Otherwise, if pszIcon contains a valid path and
filename, the program icon will be loaded via the WinLoadFileIcon API. The
program file icon itself is finally updated by sending a SM_.SETHANDLE mes-

38 Gaining Control: Mastering the Standard PM Control Windows

BUTTGHS - Contigure Program Buttons

Program File [C:\OS2\APPS\MAHJONGG.EXE | E-
Parameters { | = '
|—Program Icon Change Program Icon
ﬁ i| << »? " Icon... | Default \l

~Program Type

(O Default (O DOS Windowed Session

@® Presentation Manager (O DOS Fullscreen Session

(O 0872 Windowed Session () Seamless Win-05/2 Session
(05/2 Fullscreen Session (O Fuliscreen Win-05/2 Session

Apply I Save J rglosej r Help l

Figure 2.21 Configuring the BUTTONS control panel.

sage to the static icon window. The mp1 parameter for the message contains

the pointer handle.
When the end of the program list is reached, the buttons are disabled. The

code fragment shown in Figure 2.23 handles the processing of the DID_LEFT
and DID_RIGHT pushbuttons.

THE STATIC WINDOW CLASS

The static window class represents the simplest of all of the PM controls. The
sole purpose of the static control is to provide information to the user. Typically,
applications use static controls to display meaningful text, but there are several
static window styles that can also be used to create graphical static controls.
Since static controls just display information, no user input is required for a
static control.

Processing static controls is very simple, since static controls do not send
notification messages back to their owner window. Also, static controls do
not comprehend input focus. When a static control gets a focus message via

The Static Window Class 39

?GCIL UpdateIcon{HWND hwndDlg, ULONG ullconlP, PSZ pszIcon)

HWND hwndButton
HPQINTER hptr;
BOOL res

hv_mdButton = WinWindowFromID(hwndDlg, ulIconlID);
WinShowWindow{hwndButton, FALSE);

/ If no executable is passed in pszlcon
/{ then let’s punt and just use the system pointer
// that resembles a question mark???
if {pszlcon == NULLHANDLE}
{
lllptr = WinQuerySysPointer (HWND_DESKTOP, SPTR_ICONQUESTION, FALSE);
if {1hptr) i
{
}DisplayMessages (ERROR_GETTING_SYSPTR, NULLHANDLE, MSG_INFOQ);
]

else

hptr = WinLoadFileIcon(pszIcon, FALSE);
if (hptr == NULLHANDLE)

/! I1f WinLoadFilelcon failed return FALSE
return FALSE;

i

1

! I Update our static icon and return TRUE
WinSendMsg (hwndButton, SM_SETHANDLE, (MPARAMIhptr, NULL};
WinShowWindow {hwndButton, TRUE); .
return TRUE;

}

Figure 2.22 The Updatelcon function.

WM_SETFOCUS, the default static window procedure forwards the focus to
the next possible child window that can have input focus. If there is no child
window available that can possibly accept the input focus, then the focus is
passed on to the owner of the static control window.

The BUTTONS sample program uses several forms of the static window
control (see Figure 2.24), including the static text window and the GROUPBOX;
and the Program File icon in the Configure Program Buttons dialog uses the
SS.ICON static style.

e

40 Gaining Control: Mastering the Standard PM Control Windows

case DID_RIGHT:
if (!WinIsControlEnabled(hwnd, DID_LEFT))
WinEnableControl (hwnd, DID_LEFT, TRUE);

if (sCounter < LAST BUTTON}

{

sCounter++;

UpdateIcon{hwnd, ID_MAINWND, pszAppName[sCounter]);
WinSetDlgItemText (hwnd, IDE_EXECUTABLE, pszAppName jsCounter]) ;

}

else
{ &
WinEnableContrel (hwnd, DID_RIGHT, FALSE];

}
return FALSE;

Figure 2.23 The pracessing of the direction pushbutions,

S5_TEXT 0x0001L
SS_GROUPBOX 0x000:L
5S_ICON 0x0003L
55_BITMAP 0x0004L
5S_FGNDRECT 0x0005L
SS_HALFTONERECT 0x0006L
SS_BKGNDRECT 0x0007L
SS_FGNDFRAME 0x0008L
SS_HALFTONEFRAME 0x0009L
SS_BEGNDFRAME 0x000aL
SS_SYSICON 0x000bL
SS_AUTOSIZE 0x0040L

Figure 2.24 The static controi styles.

ADDING MULTIPLE ITEMS TO A LISTBOX

One of the most significant improvements made to the standard PM controls
in 0S/2 Warp was in updates to the listbox control. A new control message
was added that simplifies the process of adding multiple items to a listbox. The
LM_INSERTMULTITEMS message allows an application to insert multiple
items into a listbox within the context of a single message. Previously, adding
items to a listbox required that the application send multiple LM_INSERTITEM
messages; one for each individual item to be added to the listbox. The purpose
of the LM_INSERTMULTITEMS message is to reduce the overhead required

Adding Muttiple items to a Listhox 41

typedef struct _LBOXINFO //1boxinfao
{
LONG 1ItemIndex;
ULONG ulItemCount;
ULONG reserved;
ULONG reservedl;
} LBOXINFGO;

Figure 2.25 The LBOXINFO structure.

when adding items to the listbox; thereby, improving the time required to
populate the listbox.

The message uses a structure called LBOXINFO. The structure is passed as
the first message parameter. The second message parameter contains an array
of pointers to NULL terminated strings, that contain the text to be inserted.
The LBOXINFO structure is shown in Figure 2.25.

The LBOXINFO structure contains two significant elements that control
how the items in the array will be displayed. The lltemiIndex element specifies
how the items are to be indexed and sorted within the listbox. The LIT. con-
stants defined in PMWIN.H, control the indexing. The ulltemCount element is
used to specify the total number of items in the array of strings to be inserted.
The source code in Figure 2.26 is used to insert the program list array into a
listbox.

The PopulateListBox function uses the LIT_NONE constant to indicate
that the inserted strings are not to be sorted. The BID_.END value is used to
indicate that there are 12 items in the program list array. However, the first four
elements of the array are not used since they correspond to the function buttons
rather than the program buttons. Therefore the second message parameter for
the LM_INSERTMULTITEMS message, indicates that the start of the array
will begin with the fourth element of the array. The current design of the

VOID PopulatelListBox (HWND hwndListBox)

{
LBOXINFO lboxinfo;

{{ Populate LBOXINFO structure
1boxinfo. 1ItemIndex LIT_NONE; // don't sort
1boxinfo.ulItemCount = BID_END; //Number of items in array

WinSendMsg (hwndListBox, LM_INSERTMULTITEMS, &lboxinfo, &pszAppName([4);
WinSendMsg (hwndListBox, LM_SELECTITEM, MPFRCMSHORZT(FALSE}, MPFROMSHORT {TRUE});
return;

]

Figure 2.26 Using the LM_INSERTMULTITEMS message.

42 Gaining Control: Mastering the Standard PM Control Windows

worker routine for this message will stop inserting items at the first NULL. An
application needs to ensure that all of the elements of the array to be inserted
contain valid pointers to the text strings that will be inserted.

STARTING THE APPLICATIONS

The main purpose of the sample program is to allow the user to configure
a series of graphical pushbuttons that, when depressed, will start a specific
application. The user defines all of the programs that they wish to add to the
BUTTONS control panel. The path and file names of the executables to be
started are stored in a program list along with the application configuration
information. The program list information is written to a file. The default
profile containing the program list is called BUTTONS.PRO. Every time the
BUTTONS program is started, the program list profile is read from disk, and
the values are parsed. The program information derived from the list is used
to configure each of the BUTTONS. Figure 2.27 contains a sample BUTTONS
profile.

The most important part of the sample program is the program starter
component itself. The BUTTONS sample program uses the API WinStartApp
to launch the applications from the program list. The WinStartApp AP is
a quick and convenient method for starting different programs of multiple
session types. Further, the required PROGDETAILS structure is a little bit less
intimidating than the STARTDATA structure provided by DosStartSession, and
WinStartApp provides a much better interface to maintain the environment.
The format of the WinStartApp API is shown in Figure 2.28.

o The hwndNotify parameter is the handle of the window that is to receive
notification when the program is terminated. The notification comes in
the form of a WM_APPTERMINATENOTIFY message that is posted. The
notification message can be used by an application to perform some task
when the application is terminated. For example, an application may need
to update the contents of another window based on an application termi-
nating. A NULLHANDLE can be used in lieu of a valid window handle, if
the posting of the notification message is not required.

s The pDetails parameter points to a PROGDETAILS structure. This struc-
ture contains the information required to start the session and is populated
prior to calling WinStartApp. The structure contains valuable information
about the type of session to be started, the path and file name of the
executable, and the environment required by the application.

o The pszParams parameter is used to specify command line parameters
that will be passed along to the application when it is launched.

Starting the Applications 43
R T oo s
G FILENAME: BUTTONS.PRC
DESCRIPTION: BUTTONS profile information
NOTES: This file contains the BUTTONS program list. The BUTTONS

control panel contains eight configurable pushbuttons.
The pregram list contains nine entries.

RULES: - The first entry is a dummy entry used to validate
if this file is indeed in the correct format. The dummy
entry must read BUTTONS.

- Comment lines begin with a semicelon and blank lines
are ignored,

- An asterisk is used to mark the end of the program list.

COPYRIGHTS: Uri J. Stern and James S. Morrow
0S/2 WARP Presentation Manager for the Power Programmer

0S/2 Fullscreen session

08/2 windowed session

DOS Fullscreen session

DOS Windowed sessicn

= Win0S/2 Fullscreen session

= Win0S/2 Seamless session

/% = Specify Command line parameters to application

PARAMETERS: /F
/f

—
o
I n mn n

e
£ =
[I}

BUTTONS
G:\DESCRIBE\DESCRIBE.EXE
E:\SMMATH\SMMATH.EXE /%
E:\KDEBUG\KE.EXE
E:\TOOLS\cdexpl.exe /p /%

F:\PCOMOS2\PCSWS.EXE /p /%F:\PCOMOS2\PRIVATE\uri.wWS
E:\RELISH\RELISH.EXE /p /%

E:\TVFS\tvctl.exe /%-dorf

D: \CMVC\CMVC .EXE /%

%* % X X X 3 W m T M W R T F WX N R K R X W R W O™ Y X kT w

Flgure 2.27 A sample BUTTONS profile.

HAPP APIENTRY WinStartapp (HWND hwndNotify,
PPROGDETAILS pDetails,
PSZ pszParams,
PVOID Reserved,
ULONG fhOptions) ;

Figure 2.28 The WinStrtApp profotype.

44 Gaining Control: Mastering the Standard PM Control Windows
HAPP StartApplication{PCH szPgmName, PCH szComLine, PCH szProgTitle}

{

o The Reserved parameter is just that—reserved—and must be set to NULL. ;;DRET ;:n i
s The fbOptions parameter contains the start application flags that are used AR szDir[CC}mAXPATH];
to control the appearance and behavior of the session to be started. Some — azFile [CCHMAXPATH) ;
of these flags can be combined. ULOKG ulAppType;
HAPP happ;
B X f CHAR szBuffer([250];
Figure 2.29 contains the start application flags for WinStartApp, which e -
are defined in the PMSHL.H header file.
’ i . . // Take the full program path and filename
SAF.INSTALLEDCMDLINE This flag is used to indicate that the command line param- [y sg t:at t:z scais® % 1\DAHRCTORY\FILE, T4
eters contained in the program details structure are to bg 7/ becomes two strings X:\DIRECTORY and FILE.TXT
used to pass parameters on to the application. If this flag is ParsePathFronFileName (szPguNane, szDir, szFile};
used, the pszParams parameter is ignored.
SAF_STARTCHILDAPP This flag is used to indicate that the started application i.s to 1/ HOTE: Determine the application default type
be a child of the session that calls the WinStartApp function.)y if the application is a Windows based
SAF_.MAXIMIZED This flag is used to start the specified application in a maxi- " application change the default for BUTTONS
ized state I to be Enhanced Seamless as oppossed to a
e #13 . . 1= 3 .. I yucky Win0S/2 Fullscreen session, since
SAF_MINIMIZED This flag is used to start the specified application in a mini- y sdhmieksi3 grocvy!
mized state. rc = DosQueryAppType (szPguName, &uldppType):
i i indi that the session should be started
SAF_BACKGROUND Thls ﬂ:il)g 1si(used tg indicate Tt (felirpTrre vt G096y | e (aLaomrems e T
in the background. (
ulAppType = PROG_31_ENRSEAMLESSVDH;
The WinStartApp API is the routine used by the Workplace Shell to start }
program objects. The WinStartApp API will return a handle that represents B Ay —. A AN Ty T
the application. The data type for the handle 1sa HAPP’ Wh]‘Ch = aCtually the progdetails.progt.progc = ulAppType: // Application Program Type
session identifier for the started session. progdetails.progt. fbVisible = SHE_VISIBLE; /7 Visibility Indicator
The code fragment in Figure 2.30 uses the WinStartApp API to start all of progdetails.pszTitle i propmit 3| 77 e e 1
the programs in the program list profile. Proggeta{i&psz&ecutable - sngmN§mef 1 Execut:blf_- Path and Filename
The code to resolve the WinStartApp API is contained in the PMSHAPI E;’:gd:::;lz-izzls’::ﬁ;;ﬁ = :;Sz:;u.me. ;‘; ﬁzmnrking Eiﬂﬁ :arameters
EN= . : : . = H ctory
dynamic link library. The code for WinStartApp is actyally a wrapper functfon RS - WL] e ——
for the DosStartSession API; thus, WinStartApp will take the information I e e RC T e - NULL: /7 Environment String
passed in the PROGDETAILS structure and populate a STARTDATA structure progdetails.swplnitial.x = §: // Initial x Window Position
that will be passed on to DosStartSession, to eventually invoke the session progdetails.swplnitial.y = 0; /{ nitial y Window Position
h fam progdetails.swpInitial.cx =0; // Initial cx Window Size
manager to start the prog ' progdetails.swpInitial.cy = 0; // Initial cy Window Size
progdetails.swplnitial.hwndInsertBehind = HWND_TOP; // Window Placement
progdetails.swpInitial.fl = SWP_SHOW; // Initial Window Flags
SAF_INSTALLEDCMDLINE 0x0001 happ = WinStartApp(NULLHANDLlIE, Iy Notification.window handle
SAF_STARTCHILDAPP 0x0002 &progdetails, /} Program Dgtaus Structure
SAF_MAXIMIZED 0x0004 NULL, // Command Line Parameters for the started program
SAF MINIMIZED 0x0008 NULL, /1! Reserved i1
SAF BACKGROUND 0x0010 S$AF_INSTALLEDCMDLINE); // Start Application Flags
Figure 2.29 The Start application flags. return happ;

}

Figure 2.30 The StartApplication function.

46 Gaining Control: Mastering the Standard PM Control Windows

TERMINATING A STARTED APPLICATION

When the user starts a program by pressing one of the program pushbut-
tons, the client window procedure receives a WM_COMMAND message with a
command identifier between BID_PROGRAM1 and BID_PROGRAMS, corre-
sponding to the element of the program list array containing the program to
be started. The StartApplications function will return a valid application han-
dle (HAPP), if the program was successfully started. The application handle
is stored in the window words of the corresponding program button window.
This allows the View Program List dialog box to use the WinTerminateApp API
to stop the execution of the program at the user request. The View Program
List dialog box is shown in Figure 2.31.

The code fragment shown in Figure 2.32, shows how the programs are
started, and how the application handle is stored in the window words of
the program button window, whenever the user presses one of the program
buttons.

When the user clicks the Kill pushbutton, the application handle is re-
trieved from the window words of the button window, and the WinTermi-
nateApp API is called to stop the running program. The code fragment shown
in Figure 2.33 handles the processing of the Kill pushbutton.

THE ES_UNREADABLE ENTRYFIELD CONTROL STYLE

The entryfield control is one of the most useful standard controls provided by
the Presentation Manager. It provides a powerful mechanism to obtain input
from the user. The entryfield can be customized by subclassing the default
behavior of the control, to provide additional functionality. For example, an
application can create customized numeric entryfields for obtaining phone
numbers or social security numbers. One very important use of this control
is to create a password entryfield. The Presentation Manager code provides
an entryfield style called ES_'UNREADABLE that is designed to automate the
masking of the entryfield text as it is typed. Several commercial applications
use this entryfield style to create a password entryfield.

As the name of the entryfield style denotes, the ES_UNREADABLE style
causes the text in the entryfield control to be nonreadable, by replacing
each character entered with an asterisk. An application cannot remove the
ES_.UNREADABLE style bit. Although this style has a practical use for creat-
ing a password entryfield, it does not provide a complete security mechanism
for mission critical applications. Programmers with an application that has
strict security requirements should rethink the design of their application and

The ES_UNREADABLE Entryfield Control Style

BUTTOHS ~ View Program List

CAOSAAPPSAHAHJONGGLEXT
D:\CALCA\SMMATH.EXE
D:ATOOLS\CDEXPL.EXE
D:ATOOLS\PMFILE.EXE
D:\PASSPORT\PASZA.EXE

0K Kiit Help

Figure 2.31 Viewing the Program List array.

// These are the program buttons, indicating that the user wants to start
f/ a program, so let's oblige!
case BID PROGRAMIL:

case BID_PROGRAMZ2:

case BID_PROGRAM3:

cagse BID PROGRAMY:

case BID_PROGRAMS:

case BID_PROGRAMG:

case BID PROGRAMT7:

case BID_PROGRAME:

if (pszAppName [CMD_MSG)}
{

ulSID = Starcapplication{pszAppN: CMD,
\ pszAppName [CMD_MSG), pszParams{CMD_MSG), 0, ulPgmType[CMD_MSG]);

if {!ulSID)
{
DisplayMessages (ERROR_STARTING_PROGRAM, NULLHANDLE, MSG_EXCLAMATION) ;
return FALSE; - '
}

// The Startdpplications routine returns a HAPP which is actually the
// session identifier. We will store the HAPP in the window words of
// button window, that way we can call WinTerminateApp if the user

// wants to kill a program they started from BUTTONS.

hwndProgram = WinWindowFromID(hwnd, CMD_MSG);

WinSetWindowULong {hwndProgram, QWL_USER, ulSID);

return FALSE;

Figure 2.32 Starting the application and storing the HAPP in the window words.

48 Gaining Control: Mastering the Standard PM Control Windows The ES_UNREADABLE Entryfield Control Style 49

case DID_KILL: #1g
usIndex = [(USHORT) WinSendDlgItemMsg(hwnd, ILL_PROGLIST, LM _QUERYSELECTION, MPFROMZSHORT (4, 01, 0}; eax=00000009 ebx=0000dbl0e ecx=00000000 edx=92e0014f esi=00000004 edi=00003c54
eip=0000be?9 esp=00009£26 ebp=00009fde iopl=2 -- -- -- nv up ei pl nz na pe nc

usIndex += 4;:
cs=bdbf ss=001f ds=9077 es=014f fs=150b gs=07cb cr2=00030000 cr3=00146000

hwndButton = WinWindowFromID({hwndClient, usIndex}; pmwin:_FRAMEMGR : WINQUERYWINDOWTEXT

ulsS1D = WinQueryWindowULong(hwndButton, OWL_USER]); bdbf : 0000be79 b827he mnov ax,DGROUP (be27) ;brl
if (ulSID) #Hip
; eax=0000be27 ebx=0000dble ecx=00000000 edx=92e0014f esi=00000004 edi=00003c54
I.".-' User has asked to kill the application eip=0000be7c esp=00009f26 ebp=00009fie iopl=2 -~ -- -- nv up ei pl nz na pe nc
WinTerminateapp{ulsID); cs=bdbf ss=001f ds=9077 es=014f fs=150b gs=07cb cr2=00030000 cr3=00146000
bdbf:0000be7c 55 push bp
// Reset window words so that the next time the user
// asks to kill the program and it is not started, they kp
// get the error message indicating that the program is eax=0000be27 ebx=0000dble ecx=00000000 edx=92e0014f esi=00000004 edi=00003c54
'/ not currently running. eip=0000be7d esp=00009£24 ebp=00009fde iopl=2 -- -- -- nv up ei pl nz na pe nc
WinSetWindowULong {hwndButton, QWL_USER, NULLHANDLE}; cs=bdbf ss=001f ds=9077 es=014f £s=150b gs=07ch cr2=00038804 cr3=00146000
1 bdbf : 0000be7d 8bec mov bp. sp
else ##p .
! eax=0000be27 ebx=0000dble ecx=00000000 edx=92e0014f esi=00000004 edi=00003c54
DisplayMessages (ERROR_PROGRAM_NOT_RUNNING, NULLHANDLE, MSG_EXCLAMATION) ; eip=0000be7f esp=00009£f24 ebp=00009£24 iopl=2 -- -- -- nv up ei pl nz na pe nc
1 cs=bdbf s5=001f ds=9077 es=014f fs=150b gs=07ch c¢r2=00038804 ¢r3=00146000
bdbf:0000be7f le push ds
return FALSE;
##dw ss:bp
Figure 2.33 Terminating the application. 001£:00009£24 9fde 4158 908f db44 014f 0009 8de8 3940
001£:00009£34 90b7 dble 014f 0000 bl67 9£50 dlc0 bdb7?

001£:00009£44 9f6a 001f 000a 0000 0000 9f7a 30al 90bf
001£:00009£54 0008 0009 1idé 017f 8deB 3940 90b7 3523
001£:00009£64 0000 0400 9£00 3623 0000 1f5c 0004 Olac
001£:00009£74 aa2f 8deB 39d0 9£92 2£09 90bf a922 001f

implement additional security functionality. Getting at the actual text entered 001F:00009£84 8023 1£d6 017f 0008 0009 7£27 0001 9faa
o —— still be quite simple as shown in Figure 2.34. 001£:00009£94 08cc 7£57 0009 1f£d6 017f 8023 a922 001f
Figure 2.34 shows how simple it can be to obtain the entryfield text even T)
. - i inQuery- :
with the ES_UNREADABLE style by setting a breakpoint on the WinQuery 014£:0000db4d 44 55 52 50 48 59 00 00-00 56 22 00 ae le 7f 01 MURPHY...Y".....

WindowText function that will be used to extract the entryfield text.

// The user’s password was MURPHY. Wonder if it’s the same guy with the law???

Using the Delete Key with the Entryfield Control Figure 2.34 Geting at the password.

The Delete key will delete either the current selection or the next character if
there is no text selected within the entryfield. The Shift+Del key combination
corresponds to the cut clipboard operation, only if there is selected text within
the entryfield. If no text is selected, the key comnbination merely deletes the next
character as if only the delete key was pressed, no text is cut to the clipboard.

Validating the Entryfield

There may be times that an application will need to validate the contents of an
entryfield before the user interacts with another control window that would
normally handle the processing of the entryfield. The code fragment shown

The Ctrl4Del key combination works by deleting from the cursor insertion
point to the end of the entryfield.

in Figure 2.35 is used to validate the contents of the program file entryfield
whenever the focus is switched away from this entryheld.

case WM_CONTROL:
if (SHORT1FROMMP{mpl) == IDE_EXECUTABLE)

{

switch (SHORT2FROMMPimpl}}

{

!/ Wow check to see if the user has changed the focus

// away from the Program File entryfield by handling the
/# EN_KILLFOCUS notification message.

case EN_EILLFOCUS:

1
break;

!/ Since focus is switching away from the entryfield

!/ check to see if the actual text has been modified

// by the user. The new text is stored in szBuffer

// and will be compared to the original text

{/ that is stored in szEntryField,

hwndEntryField = WinWindowFromID (hwnd, IDE_EXECUTABLE};

WinQueryWindowText (hvmdEntryField, sizeof{szBuffer}, szBuffer};

rc = stremp(szEntryField, szBuffer)
if {rc}
{
// If the text of the entryfield after the entryfield focus switch
// does not match the original program file, this means the
/7 user has modified the text in the entryfield, so we want
// to reset the Program Type radiobuttons te indicate that the
// program type is the default, Of course, all of this will be
// lost if the user does not select the Apply/Save pushbuttons to
// record the changes.

WinSendDlgItemMsg {hwnd, IDR_DEFAULT, BM_SETCHECK, MPFROMSHORT (1), MPFROMLONG{IL}|:

// A little recursion here. We first call Updatelcen to try and
// set the icon based on the text in the entryfield. If ail goes
/f well the entryfield contains a valid path and filename for an
// executable program. However, if no icon can be pulled from the
// executable, it probably means cur EXE program is totally bogus
/7 s0 we will call Updatelcon again, cnly this time with a NULLHANDLE
// as the last parameter. A NULLHANDLE indicates that the static icon
/1 should be changed to the system pointer for a question mark???
// This little hack is much faster than actually validating the
// executable... The question mark icon provides a visual clue to
// the user that the path and filename for the executable is probably
// not valid and therefore, they should not Apply/Save the changes.
rc = Updatelcon(hwnd, ID _MAINWND, =zBuffer);
if (lre)
{
UpdateIcon(hwnd, ID_MAINWND, NULLHANDLE};
}
}

return FALEE;

Updating the Program Buttons 51

Typically, the text entered by a user within an entryfield is processed when
the user interacts with some other control window, like a pushbutton, or when
a window is closed. For example, when a button is pressed a WM_COMMAND
message is generated and sent to the owner window. Within the context of this
message the text of the entryfield can be queried and the appropriate processing
of the user input can occur. However, there are times that an application may
need to process the entryfield text immediately after it is changed by the user.

The Configure Program Buttons dialog box uses the code fragment shown
in Figure 2.35 to ensure that the user has entered a valid executable path
and filename in the Program File entryfield. The Program File entryfield
corresponds to the IDE_EXECUTABLE identifier. The code handles the
EN_KILLFOCUS notification control message. The EN_KILLFOCUS noti-
fication code is received whenever the specified entryfield control is about to
lose the cursor input focus. Since this message will only be received when
focus is switched away from the entryfield, it will not occur unless the user
has changed the contents of the entryfield, since the entryfield is not the initial
control that receives focus within this dialog.

The szEntryField string contains the initial text representing the specified
executable path and filename. As the user shifts the input focus away from the
Program File entryfield, for example by pressing the tab key, the current text
in the entryfield is compared against the text in the szEntryField string. If the
strings do not match a BM_SETCHECK message is sent to the default program
type radiobutton. Finally, the UpdateIcon routine is called to update the static
icon with the new program icon. If the icon cannot be obtained, the path and
filename for the specified program is assumed to be invalid, so the UpdateIcon
routine is called again to change the static icon to a question mark.

UPDATING THE PROGRAM BUTTONS

Figure 2.35 Validating the program file eniryfield.

The Updatelcon routine handles the updating of the static icon shown in
the Configure Program Buttons dialog, but what about updating the actual
program buttons once the user makes a change to the program list array? The
answer is the UpdateBtnIcon function. This routine is similar in concept to
the Updatelcon routine, except the code works by updating the icon drawn on
the button control, rather than an icon drawn on a static control.

The source code listing in Figure 2.36 shows how the program buttons
are updated whenever the user selects the Apply button. The UpdateBtnIcon
routine, is used to change the icon that is drawn on the program buttons to
correspond to the new executable program that was specified by the user.

The code works by sending a WM_SETWINDOWPARAMS message to the
pushbutton window. The mp1 parameter of the message contains the address
of a WNDPARAMS structure containing a pointer to a button control data

52 Gaining Controi: Mastering the Standard PM Control Windows

VOID UpdateBtnIcon{HWND hwndDlg, ULONG ulIconID, PSZ pszIcon)
{

HWND hwndButton;
HPOINTER hptr;
BOOL =1

WNDPARAMS wp
BTNCDATA bed;

bed.ch = sizeof {BTNCDATA) ;
wp.fsStatus = WPM_CTLDATA;
wp.pCtlData = &bcd;

hwndButton = WinWindowFromID(hwndDlg, ulIconID);

WinShowWindow (hwndButton, FALSE);

WinSendMsg (hwndButton, WM_QUERYWINDOWPARAMS, (MPARAM)&wp, NULL);
bed. hImage = WinloadFileIcon(pszIcon, FALSE);

winSendMsg (hwndButton, WM_SETWINDOWFARAMS, (MPARAM)&wp, NULL);
winShowWindow {hwndButton, TRUE};

return;

}
Flgure 2.36 Changing the program buttons on the control panel.

structure, BTNCDATA. The Almage element of the BTNCDATA structure con-
tains the handle of the icon for the new executable program. The icon is loaded
from the executable by calling the WinLoadFileIcon API.

CHANGING THE ICON ASSOGIATED WITH AN EXECUTABLE

The Configure Program Buttons dialog box contain two pushbuttons that al-
low the user to change the icon that is associated with an executable. The
pushbutton labeled Icon will use the standard file dialog to allow the user to
specify the icon file that Changelcon function will use to change a program'’s
icon. The Default pushbutton will reset the icon back to the original program
icon. The Changelcon function is shown in Figure 2.37.

The Changelcon function allows the user to specify a different icon for
a program in much the same way as the workplace shell does. The function
uses the WinSetFileIcon API to store the icon file in the executable’s extended
attribute information. The WinSetFileIcon API uses an ICONINFO structure
to set the icon information. The fFormat element of the structure is used to
determine whether the function should store new icon data in the extended
attribute information, or clear the icon data thus restoring the icon back to the
default icon for the executable. If the fFormar element is set to ICON_FILE,

Changing the Icon Associated with an Executable 53

BOOL ChangelIcon{HWND hwndDlg, ULONG ullconID, PSZ pszExecutable, PSZ pszIcon)
{

BOOL re;

ICONINFO iceoninfo;

if (!pszlIcon)
{
iconinfo.fFormat = ICON_CLEAR;
}

else
{

iconinfo. fFormat

]

ICON_FILE;

iconinfo.ch sizeof (ICONINFO) ;

iconinfo.pszFileName = pszIcon;
iconinfo.hmod = (HMODULE)NULL;
iconinfo.resid = NULLHANDLE;
iconinfo.cbIconData = NULLHANDLE;
iconinfo.pIconData = {PVOID)NULL;

rc = WinSetFileIcon{pszExecutable, &iconinfo);
if (rc !'= TRUE)

{
DisplayMessages (ERROR_CHANGING_ICON, NULLHANDLE, MSG_ERROR);

return FALSE;
}

UpdateIcon{hwndDlg, ulIconlID, pszExecutable);
return TRUE;
}

Flgure 2.37 The Changelcon function.

the new icon will be stored. If the fFormat element is set to ICON_CLEAR, the
default icon information is restored. The ICON_CLEAR value is used whenever
the user clicks the Default pushbutton. The last two parameters of the Change-
Icon function, pszExecutable and pszlcon, correspond to the executable file
and the icon file.

The function will return TRUE if successful and FALSE if an error occurs.
If the function is successful, it will call the Updatelcon routine to update the
static icon, to reflect the new icon stored for the executable program. It is
important to note that the WinSetFileIcon function will fail if the program is
already running when the user attempts to change the icon. If this is the case,
the DisplayMessages function will be called to give the user a meaningful error
message.

54

Gaining Control: Mastering the Standard PM Control Windows

DISPLAYING MESSAGES

It is important for PM applications to reuse code whenever possible. The
SHCOMMON code located on Wiley's FTP" site provides a common set of
functions that are used throughout several of the sample programs. The Dis-
playMessages function is used by every sample program. The purpose of this
function is to provide a message to the user, indicating that the user may
have to take an appropriate action based on the type of message. There are
essentially four types of messages that this function can display.

A message indicating a fatal error has occurred.

A cautionary warning message.

A warning messages that requires a Yes or No response.
A message that is used to display information.

The DisplayMessages function uses the WinMessageBox API to display the
message box containing the message information. The text to be displayed in
the message box can either be loaded from a stringtable, or specified directly by
the caller. The first parameter, ulMessagelD, corresponds to the string resource
identifier. If the caller of the function wishes to bypass the stringtable and
simply pass a text string, then the caller must set the ulMessagelD parameter
to zero and the pchText parameter to the text string. The function uses the
WinLoadString API to load the text string from the stringtable resource. The
function will return the value returned by the WinMessageBox API. The source
code for the DisplayMessages function is shown in Figure 2.38.

USHORT DisplayMessages {ULONG ulMessageID, PCH pchText, USHORT usMsgType)

{

CHAR szTempString{CCHMAXPATH];

PSZ pszMessageString;
APIRET rc;
HAB hab;

// If a valid ulMessageID {a non-zero value| was passed, then we need to

// load the appropriate message from the message/string table. Otherwise

// if ulMessageID is NULLHANDLE, then pchText contains the text to be displayed.
hab = WinQueryAnchorBlock (HWND_DESKTOP} ;

if {ulMessagelD)

{
rc = WinLoadString(hab, (HMODULE)O, ulMessageID, sizeof(szTempString), szTempString);
if {rc == FALSE)

{
DosBeep {1000, 1000};

Figure 2.38 The DisplayMessages function.

*[nformation regarding Wiley's FTP site can be found in the Appendix on page 537.

}

else
{
pszMessageString = szTempString;
}
}

else
{
pszMessageString = pchText;
}

switch {usMsgType)
{
case MSG_ERRIR:
rc = WinMessageBox {HWND_DESKTQP,
HWNLD_DESKTOP,
pszMessageString,
TITLEBAR,
ID_MESSAGEBOX,
MB_OK | MB_SYSTEMMODAL | MB_MOUVEABLE | MB_ERROR};
break;

case MSG_WARNING:
rc = WinMessageBox (HWND_DESKTOP,
HWND_DESKTOP,
pszMessageString,
TITLEBAR,
ID MESSAGEBOX,
s MB_MOVEABLE | MB_ICONQUESTION | MB_YESNC | MB_DEFBUTTONL);
reak;

case MSG_EXCLAMATION:

r¢ = WinMessageBox (HWND DESKTOP,
HWND_DESKTOP,
pszMessageString,
TITLEBAR,
ID MESSAGEBOYX,

b . MB_MOVEABLE | MB_ICONEXCLAMATION = MB_OK | ME_DEFBUTTON1) ;

red

case MSG_INF(:
rc = WinMessageBox (HWND_DESKTOP,
HWND_DESKTOP,
pszMessageString,
TITLEBAR,
ID_MESSAGEBOX,
MB_MOVEABLE | MB_ICONASTERISK | MB_CK | MB_DEFBUTTON1);
break;
)

return rc;

continued

Figure 2.38 The DisplayMessages function.

956 Gaining Control: Mastering the Standard PM Control Windows

REMOVING THE STANDARD FRAME CONTROLS

The SHCOMMON code provided with the sample programs, contains another
handy little routine called HideControls, that is used to toggle the visibility
of the titlebar, action bar, system menu, and minimize/maximize buttons. This
function allows the user the ability to display only the BUTTONS control panel
without the default frame control windows. The source code for the function
is shown in Figure 2.39.

The HideConirols function takes a single parameter, the handle of the
frame window, whose controls are to be removed and works as a toggle. The
first time it is called, the controls are hidden. The next time the function is
called, the controls are made visible. The function uses a flag called bHidden
to control the toggle state. The function first obtains the window handles of the
controls from their associated frame identifiers. In order to hide the controls,
the parent window is changed to HWND_OBJECT via the WinSetParent API.
The controls are made visible by resetting the parent of the controls to the
frame window. Finally, a WM_UPDATEFRAME message is sent to the frame
window to inform the frame window that the controls have been updated.

USING THE TITLEBAR CONTROL

The titlebar control window is a very unique control window. Normally, an
application should not have a need to alter the titlebar. However, there may
be times that an application may require modifying the text displayed in the
titlebar. If you are writing an application like a text editor for example, it makes
sense to display the edited path and filename within the titlebar. However, if
your application is constantly modifying the titlebar text, it can become an eye
sore to watch the titlebar constantly changing. Instead of actually modifying
the titlebar text, an application can alternatively choose to create a status bar
by using the WinDrawBorder API.

An application can use the WinSetWindowText API to modify the frame
window text, causing the titlebar text to change. However, if an application
uses the WinSetWindowText API, specifying the frame window handle as the
first parameter, the titlebar text cannot exceed 60 characters. All characters
exceeding 60 will be truncated. This may not be ideal if you are writing an
editor program, since HPFS allows for long filenames, and with sub-directories
it is easy to exceed the 60 character limit. If you need the titlebar to exceed 60
characters, you need to directly set the window text of the titlebar by calling
the WinSetWindowText API. Instead of specifying the frame window handie,
however, use the titlebar window handle, which can be obtained by calling
the WinWindowFromID API with the frame window handle and the frame
identifier FID_TITLEBAR.

Using the Titlebar Contrel 57

VOID HideControls (HWND hwndFrame)

{
stat%c HWND hwndTitleBar; // Must be static for initial invecation
stat}c HWND hwndSysMenu; // Must be static for initial invocation
static HWND hwndAppMenu; // Must be static for initial invocation
stat}c HWND hwnglnMax; /1 Must be static for initial invocation
static BOOL bHidden = FALSE; // Must be static for initial invocation
// 1f bﬁidden is not TRUE, this means that we want to hide the controls. So
/! we w1ll'obtalps handles to all of the control windows by querying the
/! frame w1pdow identifiers. Then we will remove the controls by setting the
// parent windows to HWND_OBJECT rather than the frame. The frame controls
/I are restored by resgtting the parent windows back to the frame window. This
// allows us to temporily remove the frame control windows without destroying
// them explicitly.
if (!bHidden) // Hide Frame Control Windows
{
hwndTitleBar = WinWindowFromID(hwndFrame, FID TITLEBAR);
hwndSysMenu = WinWindowFromiD(hwndFrame, FID_SYSMENU);
hwndAppMenu = WinWindowFromID{hwndFrame, FID_MENU);
hwndMinMax = WinWindowFromiD{hwndFrame, FID_MINMAX):
WinSetParent (hwndTitleBar, HWND_OBJECT, FALSE);
WinSetParent (hwndSysMenu, HWND_OBJECT, FALSE);
WinSetParent (hwndAppMenu, HWND_OBJECT, FALSE);
WinSetParent (hwndMinMax, HWND_OBJECT, FALSE);
WinSendMsg (hwndFrame, WM_UPDATEFRAME, (MPARAM)(FCF_TITLEBAR | FCF_MENU | FCF_SYSMENU |
) FCF_MINBUTTON), NULL);
bHidden = TRUE;
)
else // Show Frame Control Windows
{
WinSetParent (hwndTitleBar, hwndFrame, FALSE);
WinSetParent (hwndSysMenu, hwndFrame, FALSE);
WinSetParent (hwndAppMenu, hvndFrame, FALSE);
WinSetParent (hwndMinMax, hwndFrame, FALSE);
WinSendMsg (hwndFrame, WM_UPDATEFRAME, (MPARAM) (FCF_TITLEBAR | FCF_MENU | FCF_SYSMENU |
. FCF_MINBUTTON), NULL };
bHidden = FALSE;
}
return;

}

Figure 2.39 The HideControls function.

B8 Gaining Control: Mastering the Standard PM Control Windows

// where LONGTITLEBAR represents a string greater than 60 characters
hwndTitleBar = WinWindowFromID({hwndFrame, FID_TITLEBAR);
WinSetWindowText (hwndTitleBar, LONGTITLEBAR};

Figure 2.40 Setting the titlebar window tex1.

The 60 character truncation of the titlebar text is a result of the default
frame window processing using the MAXNAMEL constant, which is defined as
60. As a result of default frame window processing the frame window receives
a WM_SETWINDOWPARAMS message containing the window text that is to
be set by the WinSetWindowText API. A worker routine truncates the text to
the 60 character limit. If the application explicitly modifies the titlebar window
text, the default frame window processing is avoided and the limit is the size
of the titlebar itself. The code fragment shown in Figure 2.40 allows for the
titlebar window text to exceed 60 characters.

SUMMARY

The Presentation Manager environment contains a rich, functional set of con-
trols that allow the developer to provide a consistent user interface to the
application end user. The usage of the standard PM controls can make or
break an application depending on how the user interacts with the controls.
To make the interface as intuitive as possible is the ultimate goal of any PM-
based application, and the Presentation Manager itself. The basic PM controls
are used throughout the sample programs in this book and should be common-
place to experienced PM developers. The intent of this chapter was to review
some of the more important control concepts, and demonstrate how to max-
imize the effectiveness of the basic PM controls provided by the Presentation
Manager components. The concepts discussed throughout the chapter and the
source code for the BUTTONS program provide all of the elements required
to master the standard PM controls.

CHAPTER @

Mastering the Keyboard
Interface and Scrolling
Functionality

mechanism for interacting with PM applications. In fact, applications are
often tailored to ensure that significant portions of the application’s func-
tionality are accessible with the mouse or other pointing device. Unfortunately,
these same applications often neglect to ensure that all functionality is accessi-
ble via the keyboard. This omission can be a burden to the user when a machine
is not equipped with a pointing device or when the user simply prefers to use
the keyboard. In order to help programmers provide keyboard accessibility,
this chapter examines how applications receive and process keyboard input.
The chapter also examines scrolling, an important feature for all applica-
tions that must present more information than can be conveniently displayed
on the screen. The standard keys defined for scrolling with the keyboard and
the scroll bar control will both be discussed.

E xcept for direct textual input, the pointing device has become the primary

PROCESSING KEYBOARD INPUT

When the system receives input from the keyboard, the input is first stored in
the system message queue and then later posted to an application queue in the
form of a WM_CHAR message. The queue to which the message is eventually
posted is based on the window that has currently been given the input focus
when the keystroke is removed from the system message queue.

When the WM_CHAR message is placed in the application’s message queue,
it contains the raw keyboard scan code and, if one exists, the matching ASCII

99

60 Mastering the Keyboard Interface and Scrolling Funclionality

character or virtual key value. (Virtual keys are common keyboard keys, such as
HOME and INSERT, which do not have a defined ASCII representation.) When
the application calls WinGetMessage or WinPeekMessage, the WM_CHAR mes-
sage is removed from the message queue and a check is made to determine
if the character matches an accelerator, or shortcut, key. If so, the message
is changed into a WM_SYSCOMMAND, WM_COMMAND, or WM_HELP mes-
sage. If the WM_SYSCOMMAND or WM_COMMAND message correspond§ to
a disabled menu item, the message is modified to WM_NULL before being

returned to the application.

THE WM_CHAR MESSAGE

Thus, the application need not concern itself with translation and may process
any WM_.CHAR messages received as actual keystrokes. The mpl and mp2
parameters passed with the WM_CHAR message contain five separate fields of
information. Parameter mpl contains three fields:

o fsflags is the low-order word of mp1 and holds a number of flags indica‘tipg
the state of the keyboard when the keystroke was received and the validity
of the remaining fields. These flags are enumerated below.

e ucrepeat is the low-order byte of the high-order word of mpl (accessed us-
ing CHAR3FROMMP). This field normally contains the value 1; h.owever,
when a key is pressed and held for a period of time, the application may
not be able to process WM_CHAR messages quickly enough to prevent the
system message queue from becoming full. When this happens, the system
gathers the duplicated WM_CHAR messages into one message and sets
ucrepeat to the actual number of keystrokes received.

o ucscancode is the high-order byte of the high-order word of mpl (accessed
using CHAR4FROMMP). If the KC_.SCANCODE flag is set in fsflags, the
field contains the actual scan code transmitted by the keyboard.

Parameter mp2 contains the remaining two fields:

o usch is the low-order word of mp2. If the appropriate flags are set in
fsflags, this field contains the ASCII value that maps to the keyboard scan

code. _
o usvk is the high-order word of mp2. If the KC_.VIRTUALKEY flag is set in

fsflags, this field contains the virtual key that maps to the keyboard scan
code. Virtual keys are defined to match the function, direction, and other

nonprintable keys on the keyboard.

The application must examine the fsflags field to determine how the key-
board input should be handled. The field contains a set of flag bits defined

as:

KC_SCANCODE

KC_KEYUP

KC_PREVDOWN

KC_TOGGLE

KC_LONEKEY

KC_VIRTUALKEY

KC.CHAR

KC.CTRL

0x0004

0x0040

0x0080

0x1000

0x0100

0x0002

0x0001

0x0010

The WM_CHAR Message 61

indicates that the ucscancode field contains valid data. This
flag is normally set on all input from the keyboard, but
would typically be clear when another window posted the
WM_CHAR message.

indicates that a key has been released. For consistency with
the system’s translation of accelerators, applications should
normally ignore all WM_CHAR messages with this flag set.

indicates that the previous WM.CHAR message for this key
represented a key down event. This flag is set when a key is
pressed and held such that multiple keystrokes are received;
otherwise, a WM_CHAR message with the KC_KEYUP flag
set would have been received.

is set on every other instance of a given key being pressed.
While this flag is valid for all keys, it is typically only im-
portant for keys such as CAPS LOCK which have a defined
on-off state. Note that the toggle state is global—if focus
changes between instances of a given key stroke, an appli-
cation may receive consecutive occurrences of a keystroke
without the toggle state changing.

is set in conjunction with KC_ KEYUP to indicate that no
other key transitions have occurred since the downstroke
of the key. For example, pressing the CTRL key followed by
an alphabetic key, and then releasing first the alphabetic key
followed by the CTRL key, the KC_LONEKEY flag will be set
on the WM_CHAR message for the release of the alphabetic
key. If the CTRL key is released first, the KC_LONEKEY flag
is not set. Note that the system can be forced to perform
accelerator translation on the release of a key by setting the
LONEKEY flag in the accelerator table entry for the key.
indicates that the usvk field contains valid data. If this
flag is not set, usvk should be ignored. This flag is nor-
mally set when a function key or other key that does not
have a “normal” ASCII translation is pressed. In a few in-
stances, such as when the TAB or ENTER key is pressed,
both KC_.VIRTUALKEY and KC_CHAR are set indicating
that usvk contains the virtual key representation of the key
and usch contains the ASCII representation for the key.
KC_VIRTUALKEY is always set for the numeric keypad keys;
if NUMLOCK is in effect, KC_CHAR will also be set.

indicates that the usch field contains valid data and that
neither the CTRL or ALT key is pressed.

indicates that the CTRL key was depressed when the mes-
sage was generated. If the KC_VIRTUALKEY flag is not also

62 Mastering the Keyboard Interface and Scrolling Functionality

KC_ALT 0x0020

KC_SHIFT 0x0008

KC_DEADKEY 0x0200

KC_.COMPOSITE 0x0400

KC_.INVALIDCOMP 0x0800

KC_.INVALIDCHAR 0x2000

set, the usch field contains the ASCII character code that
would have been generated had the CTRL key not been de-
pressed.

indicates that the ALT key was depressed when the message
was generated. If the KC_VIRTUALKEY flag is not also set,
the usch field contains the ASCII character code that would
have been generated had the ALT key not been depressed.
indicates that the SHIFT key was depressed when the mes-
sage was generated.

is set in combination with KC_CHAR to indicate that the key
represents a diacritical that must be used in combination
with another key. Text processing applications might draw
the diacritical mark but not advance the cursor until the
following keystroke is entered.

is set in combination with KC_.CHAR to indicate that usch
contains a character code that represents the combination
of the previous KC.DEADKEY character and the current
key. The accented vowels of many non-English languages
are typically formed as composite keystrokes.

indicates that the current key cannot be combined with the
previous key to represent a valid combined character.
indicates that the current keystroke cannot be found in the
active translation tables.

Applications that process WM.CHAR messages must check to see that the

The WM_CHAR Message 63

if {'(fsflags & KC_KEYUP}) (/* normally processed on downstroke */
/* Process Virtual keys */ :
if (fsflags & KC_VIRTUALKEY) {
if (fsflags & KC_CTRL && fsflags & KC_ALT! {
if (fsflags & KC_SHIFT) { }/* CTRE+ALT+SHIPT+virtual key */
else {) /* CTRL+ALT+virtual key */
} else if {fsflags & KC_CTRL) {
if (fsflags & KC_SHIFT) { }/* CTRL+SHIFT+virtual key */
else { } /* CTRL#virtual key */
} else if (fsflags & KC_ALT) {
if (fsflags & KC_SHIFT) { }/* ALT+SHIFT+virtual key */

else { } /* ALT+virtual key */

} else {
if (fsflags & KC_SHIFT) { }/* SHIFT+virtual key */
else {) /* virtual key */

} /* endif */
/* Process normal, non-virtual keys */
} else {
if (fsflags & KC_CTRL && fsflags & KC_ALT) {
if (fsflags & KC_SHIFT) { }/* CTRL+ALT+SHIFT+key */
else { } /* CTRL+ALT+key */
} else if (fsflags & KC CTRL) ({
if (fsflags & KC_SHIFT) { }/* CTRL+SHIFT+key */
else {) /* CTRL+key */
} else if {fsflags & KC_ALT) {
if (fsflags & KC_SHIFT) { }/* ALT+SHIFT+key */
else { } /* ALT+key */
} else if (fsflags & KC_CHAR) {
if (fsflags & KC_SHIFT) { }/* SHIFT+key */
else { } /* key */
} /* endif */

desired flags are set and that undesired flags are not set. For example, an

application that processes a particular control character will only consider 1 /* endif */

WM_CHAR messages with the KC.CTRL flag set. But the application must) else {

also ensure that the KC_ALT and KC_VIRTUALKEY flags are not set to avoid : /f ' hgf}‘fﬂil;g of KEYUP - normally ignored */
endl

processing invalid keystrokes as ordinary control characters. The KC_SHIFT
flag is generally not considered in this instance as the control value of ASCII
characters is the same for both upper- and lowercase. Figure 3.1 shows an
example of the code required to recognize the downstroke of the CTRL+C

keystroke.

Figure 3.2 General keystroke processing.

An application, such as a word processor, which processes many different
keystrokes will normally employ a routine that provides handling for most
if not all types of keystrokes. The application could be programmed using a
series of IF statements that explicitly check for each combination of set and

if {1({fsflags & KC_KEYUP}) {
if{ fsflags & KC_CTRL &&
1(fsflags & (KC_ALT | KC_VIRTUALKEY}| { |

if(usch == *¢* || usch == 'C*) {
/* perform CTRL+C processing */ | unset ﬂ.ags._ However, a set of nested IF and ELSE clauses similar to that
shown in Figure 3.2 will typically use less memory and execute more quickly.

}
) The routine first checks to see if the message signifies a downstroke; and if

} so, it th.en checks for a virtual key. If the keystroke represents a virtual key,
th}e various combinations of the CTRL and ALT keys are tested, beginning
with the most complex combination and working down to the situation where

Figure 3.1 Detacting CTRL+C.

B

64 Mastering the Keyboard Interface and Scrolling Functionality

if (!(fsflags & KC_KEYUP}} {
switch({ fsflags &
[KC_VIRTUALKEY | KC_CHAR | KC_CTRL | KC_ALT | KC_SHIFT}} {

case KC_VIRTUALKEY | KC_ALT | KC_CTRL | KC_SHIFT: { } break;
case KC_VIRTUALKEY | KC_ALT | KC_CTRL: { } break;
case KC_VIRTUALKEY | KC_ALT | KC_SHIFT: { } break;
case KC_VIRTUALKEY | KC_ALT: { } break;
case KC_VIRTUALKEY | KC_CTRL | KC_SHIFT: { } break;
case KC_VIRTUALKEY | KC_CTRL: { } break;
case KC_VIRTURLKEY | KC_CHAR | KC_SHIFT: { } break;
case KC_VIRTUALKEY | KC_CHAR: { } break;
case KC_VIRTUALKEY | KC_SHIFT: { } break;
case KC_VIRTUALKEY: { } break;
case KC_ALT | KC_CTRL | KC_SHIFT: { } break;
case KC_ALT | KC_CTRL: { } break;
case KC_ALT | KC_SHIFT: { } break;
case KC_ALT: { } break;
case KC_CTRL | KC_SHIFT: { } break;
case KC_CTRL: { } break;
case KC_CHAR | KC_SHIFT: { } break;
case KC_CHAR: [} break;
default: { } break;
}
} else {

/* process KEYUP events */
]

Figure 3.3 Alternate keysiroke processing.

neither key is pressed. This ensures that the proper combination is recognized
without having to explicitly check for unset flags. If KC_VIRTUALKEY is not
set, then the various combinations of KC.CTRL and KC_ALT are again scanned
to process the various possibilities for a normal ASCII character keystroke.
Note that the KC_SHIFT flag is checked within the handling for each of the
KC.CTRL and KCALT combinations. This is particularly important for the
ASCII keys, as the shifted state actually modifies the character code in usch,
eliminating the requirement to check for KC_SHIFT in most instances.

The requirement to process keystrokes based on the most complex flag
combination can also be achieved by using a SWITCH statement, as shown in
Figure 3.3. In this example, the relevant flags are masked to form the switch
value. A case is then provided for each combination of interest. This method
uses one logical operation and a series of comparisons and is thus extremely
efficient. Since this method explicitly checks for both set and unset flags, the
case statement for any combinations that the application does not process can
be eliminated, allowing that combination to be processed by the default case
and further increasing the efficiency of the operation.

The Keyboard Input Cursor 65

OBTAINING KEYBOARD INPUT

While WM_CHAR messages may be sent from one window to another, the
messages are usually received when a window or one of its owned windows
is the window that currently has the input focus. PM normally gives the focus
to a window when the user clicks the window with the mouse, selects the
window from the task list, or uses one of the navigation keys. However, an
application can give or take the keyboard focus by calling the WinSetFocus
API. The prototype for this function is:

BJOL APIENTRY WinSetFocus(HWND hwndDesktop,
HWND hwndFocus };

Figure 3.4 The WinSetFocus prototype.

¢ The hwndDesktop parameter is a handle of a desktop window or the
HWND_DESKTOP constant.

» The hwndFocus parameter is the handle of the window which is to receive
the keyboard input focus.

The return value indicates the success of the focus change. The value
TRUE indicates that the focus change was successful while a value of FALSE
indicates that an error occurred, typically the result of passing an invalid
window handle. Use this function with care as an arbitrary change of focus
can interrupt work the user is performing in some other application. As a rule,
this function should only be called to change focus to another window in the
current application and only when requested either directly or indirectly by
the user.

A similar API, WinFocusChange, can also be used to assign the keyboard
input focus to another window. The API takes one additional parameter which
allows an application to modify the system’s handling of the focus change.

THE KEYBOARD INPUT CURSOR

Just as the mouse pointer shows the user the location affected by mouse input,
the keyboard input cursor informs the user of the location that will be affected
by keyboard input. However, unlike the mouse pointer, the keyboard input
cursor is not automatically handled by the system—application intervention is
required. Only one keyboard input cursor is supported, and an existing cursor
is deleted when another is created. Thus, for proper integration with other
programs, applications that employ a cursor should create the cursor when

66 Mastering the Keyboard Interface and Scrolling Functionality

the window in which the cursor is displayed receives the input focus and should
destroy the cursor when the window loses the input focus. The appearance of
the cursor is specified by the application when the cursor is created. When
operating in insert mode, an application normally creates a narrow, vertical
cursor and positions the cursor between the two characters where insertion
will occur. When operating in overstrike mode, a cursor that is the width of
the character is created and positioned to overlay the character which will be
replaced by a character keystroke. The application can specify a blinking or
nonblinking cursor which is either solid, half-toned, or transparent.

The WinCreateCursor API is used to create and manipulate the cursor. The
function is prototyped as shown in Figure 3.5.

o The hwnd parameter is the handie of the window where the cursor will be
displayed.

e The Ix parameter is a 32-bit integer specifying the x or horizontal coordi-
nate of the left edge of the cursor specified in window coordinates.

e The ly parameter is a 32-bit signed integer specifying the y or vertical co-
ordinate of the bottom edge of the cursor specified in window coordinates.

e The lex parameter is a 32-bit signed integer specifying the width of the
cursor in window coordinates. If lex is set to 0, the width is set to the
system border width specified by the system value SV.CXBORDER.

o The lcy parameter is a 32-bit signed integer specifying the height of the
cursor in window coordinates. If lcy is set to 0, the height is set to the
system border height specified by system value SV.CYBORDER.

e The ulrgf parameter is a 32-bit field containing flags that primarily specify
the appearance of the cursor. The flags are defined as follows:

CURSOR_SOLID 0x0000 indicates that the cursor is to be displayed as a filled

rectangle.

CURSOR_HALFTONE 0x0001 indicates that the cursor is to be displayed as a

halftoned filled rectangle.

CURSOR.FRAME 0x0002 indicates that the cursor is to be displayed as a non-

filled rectangle.

BOOL APIENTRY WinCreateCursor (HWND hwnd,

LONG 1x,
LONG 1y,
LONG lex,
LONG ley,
ULONG ulrgf,

PRECTL prelClip };

The Keyhoard Input Cursor 67

CURSOR_FLASH 0x0004 indicates that the cursor should alternate between

visible and hidden, that is blink.

CURSOR_SETPOS 0x8000 indicates that the cursor should maintain its current

characteristics but be moved to the indicated posi-
tion. lex, ley, and the other bits of ulrgf are ignored
when this flag is set.

¢ The prclClip parameter is a pointer to a RECTL structure which specifies
the rectangle within which the cursor will be displayed. If the cursor is
moved outside this rectangle, it is clipped and not displayed. This param-
eter may be set to NULL to specify that the clipping rectangle is the area
occupied by hwnd. The actual clipping region is the intersection of the area
specified by prelClip and the area occupied by hwnd. The coordinates of
the clipping rectangle are specified in window coordinates.

WinCreateCursor returns TRUE if the cursor is successfully created. Oth-
erwise, FALSE is returned.

PM maintains a visibility count for the cursor. When this count is zero,
the cursor is visible on the display; when the count is nonzero, the cursor
is hidden. Following creation, the visibility count is set to 1 and thus the
cursor is invisible. The application must call the WinShowCursor API in order
to reduce the visibility count to zero and make the cursor visible. Each time
WinShowCursor is called to hide the cursor, the visibility count is incremented;
when WinShowCursor is called to show the cursor, the visibility count is
decremented (unless the current count is already zero). WinShowCursor is
prototyped as shown in Figure 3.6.

» The hwnd parameter is the handle of the window that currently owns the
cursor.

¢ The fShow parameter is a Boolean value that indicates the desired visibility
of the cursor. If TRUE, the cursor should be shown and the visibility count
is decremented; if FALSE, the cursor should be hidden and the visibility
count is incremented.

The return value indicates the success of the function. A FALSE return in-
dicates that an error occurred; for example, hwnd specified an invalid window
handle, or that an attempt was made to show the cursor when it was already

BOOL APIENTRY WinShowCursor({ HWND hwnd,
BOOL fsShow) ;

Figwre 3.5 The WinCreateCursor prototype.

Figure 3.6 The WinShowCursor proiotype.

68 Mastering the Keyboard interface and Scroliing Funclionality

BOOL APIENTRY WinbDestroyCursor(HWND hwnd };

Figure 3.7 The WinDestroyCursor prototype.

visible. In multithreaded applications, WinShowCursor must be called from
the same thread that created the cursor.

When an application no longer needs the input cursor or loses the input
focus, the cursor should be destroyed with the WinDestroyCursor API. The

API is prototyped as shown in Figure 3.7.

o The hwnd parameter is the handle of the window that currently owns the
cursor.

The API return value indicates the success of the function. It will be FALSE
if the window specified by hwnd is not the current owner of the cursor.

Figure 3.8 shows the WM_SETFOCUS message processing for a window
that displays a text insertion cursor. If the window is receiving the fom_,ls, the
utility function CalcCurrentPos is called to obtain the coordinates for display-
ing the cursor. WinCreateCursor is then called to create an input cursor at
the calculated location. The lex and lcy parameters are set to zero so that
the system-defined values are used, and prelClip is set to NULL to indicate

Updating the Dispiay 69

that the window rectangle should serve as the clipping rectangle. Parame-
ter ulrgf is set to create a blinking, solid cursor. After the cursor is created,
WinShowCursor is called with fShow set to TRUE to decrement the cursor's
visibility count, causing the cursor to become visible. If the window is losing
the focus, WinDestroyCursor is called to destroy the input cursor.

UPDATING THE DISPLAY

USHORT usFocus = SHORT1FROMMP(mpl |;
LONG 1x = 0;
LONG ly = 0;

case WM_SETFOCUS:

if {usFocus) { .
/* gaining the focus - create the input cursor */

/* where should the cursor be positioned */
CalecCurrentPos{ &lx, &ly };:

/* create the cursor */
WinCreateCursor{ hwnd, 1x, ly, 0, 0,
CURSOR_SOLID | CURSOR_FLASH, NULL);

/* make the cursor visible */
WinShowCursor(hwnd, TRUE);
} else {
/* losing the focus - destroy the input cursor */
WinDestroyCursor(hwnd };
} /* endif */f
return WinDefWindowProc{ hwnd, msg, mpl, mp2 };

Figure 3.8 Processing the WM_SETFOCUS message.

Now that you know the basics of processing keyboard input and managing the
input cursor, let's examine how a text-based application can echo keyboard
input to the display. One means of achieving this function is to update the text
buffers and then repaint the entire window by calling the WinInvalidateRect
API each time a character is added or deleted. While this method is relatively
simple from a programming standpoint, repainting the entire window is a
time-consuming process which, repeated frequently, can prevent the user from
rapidly entering text.

One alternative is to invalidate only the area of the screen affected by the
input. For example, assume that an application inserts received characters into
existing text. As each character is received, the application must insert the new
character at the proper position in the text and then repaint from the point of
insertion to the end of the line containing the new character—no other text in
the window is affected and thus does not need to be redrawn. In this case, the
application can compute a rectangle which begins at the insertion point and
is wide enough to contain the remaining characters on the line. This rectangle
is then passed to WinInvalidateRect and only that portion of the window is
repainted. For maximum efficiency, the application’'s WM_PAINT processing
should locate the text that corresponds to the invalid rectangle and only issue
drawing orders for that text.

A second alternative removes the need to call WinInvalidateRect and then
calculate the proper text for redrawing. With this method, the application
obtains a presentation space for the window using the WinGetPS API, draws
the text, and then releases the presentation space using the WinReleasePS
API. Figure 3.9 provides an example of the code to implement this method.
The function InsertCharacter is called from the WM.CHAR processing to
place a new character into the text buffer. A pointer to a control structure
that maintains the current insert position in the text buffer and a pointer to
an array of line data structures that contain the text for each line, are stored
in the window instance data. After retrieving the pointer to the structure
from the window data, the function sets a pointer to the line data structure
for the current line. A new text buffer is then allocated to hold the current
text plus the new character and the zero terminator character, The old text
before the insertion point is then copied to the new string. The new charac-
ter is then added and the remainder of the current line is copied to the new

70 Wastering the Keyboard Interface and Scrolling Functionality Updating the Display 71

buffer. InsertCharacter then calls routine CalcCurrentPos to determine the
coordinate of the lower left corner of the current insertion point. This point
is used as the lower left corner of the rectangle to be drawn and, assuming
a monospaced font, the upper edge of the rectangle is calculated based on
the height of characters; and the right edge is calculated by multiplying the
number of characters remaining on the line by the width of a character. The 2oA% DATPDALS DL LocOurL R vy

z‘aifgwléctz]a;;otr;xr:ow has the text to be drawn and the rectangle within which to pszNewText = [PSz)malloc strlen(pline->pszlext) + 2);

. if (pszNewText != (PSZ)NULL) {

/* insure that window control data exists and file is open */
pAppData = [PAPP_DATA)WinQueryWindowPtr| hwnd, APP_DATA_POINTER);
if (pAppData != (PAPP_DATA)NULL} {

/* Get pointer to control structure for current line */
pline = pAppData->plineCurLine;

Next, WinShowCursor is called to hide the input cursor to prevent cor-
ruption from the display of the cursor. WinGetPS$ is then called to obtain a
presentation space for drawing, the text is drawn using the WinDrawText API
(see Chapter 16 for a detailed treatment of this API), and the presentation
space is released with a call to WinReleasePS. The operation is completed by
freeing the memory for the original text string and changing the text pointer
in the current line structure to point to the newly allocated text buffer. The
current insertion point is updated to the next column, and the new cursor
position is calculated by adding the width of a character to the old position.
WinCreateCursor is then called with the CURSOR_SETPOS flag to move the
cursor to the new location, and WinShowCursor is called to make the cursor
visible again.

Removing a character is handled in much the same manner. The primary
difference is that the rectangle must be extended one character beyond the
end of the text to erase the location where the last character of the line was
previously displayed.

This discussion has assumed that monospaced fonts are used. These fonts
allow the application to assume that the characters are essentially placed on a
grid, allowing the display coordinates of a character to be derived with simple
mathematical calculations. If the application allows proportional fonts to be
used, the position of any given character is best determined by calling the
GpiQueryCharStringPos API. This function returns an array that contains the
coordinates of each character. See Chapter 16 for detailed information on this
APL

static void InsertCharacter{ HWND hwnd, char chInsert)

{
/* See the sample program accompanying this chapter for a */

/* copy over old text that is before the current position */
strncpy{ pszNewText, pline->pszText, pAppData->1CurCel };

/* insert new character */
pszNewText [pAppData->1CurCol] = chlnsert;
pszNewText | pAppData->1CurCol + 1} = *\0';

/* copy over text following current position */
strcat { pszNewText, &pline->pszText[pAppData->1CurCol } |;

/* get window coordinates of current position */
CalcCurrentPos(hwnd, pAppData,

&rectlText.xLeft, &rectlText.yBottom);

/* determine width of remaining text and add to current pos */

rectlText.xRight = strlen|&pszNewText [pAppData->1CurCol}} *
pAppData->1Width + rectlText.xLeft;

/* add height to current pos */
rectlText.yTop = rectlText.yBottom + pAppData->lHeight;

/* hide the cursor during output */
WinShowCursor | hwnd, FALSE };

/* obtain presentation space for the window */
hps = WinGetPS(hwnd };

/* draw the text */
WinDrawText{ hps, -1, &pszNewText[pappData->1CurCol}l, &rectlText,

0, 0, DT_TOP | DT_LEFT | DT_TEXTATTRS | DT_ERASERECT);

/* and release the PS */
WinReleasePS(hps);

/* get rid of old buffer and store new one in control struct */
free{ pline->pszText };
pline->pszText = pszNewText;

/* advance current location and cursor by one character */
rectlText.xLeft += pAppData->1Width;
pappData->1CurCol++;

/* move and redisplay the cursor */
WinCreateCursor{ hwnd, rectlText.xLeft, rectlText.yBottom,

0, 0, CURSOR_SETPOS, NULL };

WinShowCursor{ hwnd, TRUE);

/* full description of the PAPP_DATA and PLINE data types */ } /% endif */

PAPP_DATA pAppData = (PAPP_DATA}NULL; } /* endif */

PLINE pline = (PLINE}NULL; return;

HPS hps; }

PSZ pszNewText = (PSZ)NULL;

RECTL rect1Text; Figure 3.9 Drawing inserted characters.

Figure 3.9 Drawing inserted characters. continued

72 Mastering the Keyhoard Interface and Scrolling Functionaiity

Function InsertCharacter would normally be called whenever a normal
ASCII key is received. Receipt of a virtual key would not normally cause this
routine to be called, however, some of the virtual keys are typically processed
in text editing applications. For example, the keyboard directional keys (ar-
rows, PAGE UP PAGE DOWN, and so on) are typically assigned to functions
that allow the user to move the input cursor within the text and/or to cause
different portions of the text to be displayed on the screen. These keys provide
keyboard access to the functionality that is available to mouse users via the
scroll bar controls. Discussion of the programming techniques for these keys
will therefore be deferred to the following section which describes the scroll
bar control.

THE SCROLL BAR CONTROL

SBS_HORZ

The scroll bar control graphically represents a finite range of values from which
a single value has been selected and allows the user to select a value within
the prescribed range. Visually, the control consists of a background area, the
bar, representing the entire range of selectable values; a slider representing
the currently selected value; and arrow icons at each end of the bar which can
be used to incrementally change the selected value. The slider portion of the
scroll bar can itself be sized to indicate a range of values within the greater
range specified by the bar, for example, the slider can represent the portion of
a file which is actually displayed within a window. Scroll bars can be displayed
either vertically or horizontally.

In the past, the scroll bar was often used for data input; for example,
three scroll bars could be used to represent and select the red, green, and
blue components of an RGB color value. New applications should use slider
controls (see Chapter 11) for data input and restrict their usage of the scroll
bar to its intended purpose, indicating and controlling that portion of a set of
data that is displayed within a window.

Scroll bar controls may be explicitly created by an application; however,
they are normally included as part of another control type or by specifying the
FCF_VERTSCROLL and/or FCF.HORZSCROLL flags when a frame window
is created. When created in the latter fashion, horizontal scroll bars extend the
width of the client area and vertical scroll bars extend the height of the client

area.

Scroll Bar Styles

Five class-specific styles are available to modify the behavior and appearance
of the scroll bar. These flags are:

0x0000 causes the control to act as a horizontal scroll bar; issuing
WM_HSCROLL notifications, placing the arrows along the

SBS_VERT

The Scroll Bar Control 73

left and right edges of the bar, and moving the slider between
the left and right edges of the control.

0x0001 causes the control to act as a vertical scroll bar; issuing
WM_VSCROLL notification messages, placing the arrows
along the top and bottom edges of the bar, and moving the
slider between the top and bottom edges of the bar,

SBS_AUTOTRACK 0x0004 is used by the control when the slider position is directly

modified with the mouse. If this style is specified, the entire
slider moves with the mouse. If the style is not specified, the
slider remains in place and only a shadow of the slider moves
with the mouse.

SBS.THUMBSIZE 0x0002 indicates that the slider size should represent the portion of

the data displayed in the window. The cVisible and cTotal
elements of the control data for the scroll bar are used for
this purpose. The size of the slider in proportion to the length
of the bar is matched to the proportion of cVisible to cTotal.

SBS_AUTOSIZE 0x2000 causes the system to automatically assign a width to vertical

scroll bars and a height to horizontal scroll bars.

Scroll Bar Notification Messages

The scroll bar control provides the user with three types of scrolling functions.
When the scroll bar is associated with a window displaying text, the user may
click on one of the arrow keys to scroll the text by one line or character, click
on the bar to scroll the text by a page, or click on and drag the slider to scroll
the text to a specific location. If the window is displaying graphical, rather
than textual, information, the application must define a suitable equivalent
for scrolling by a line or character. Even in textual windows, the application
controls the scrolling and can therefore modify the functionality of each scroll
type; however, failure to provide the standard functionality may confuse the
user. Depending on the scroll bar style, one of two messages is used to transmit
the user request to the application. A scroll bar with the SBS_HORZ style sends
a WM_HSCROLL message and a scroll bar with the SBS_VERT style sends a
WM_VSCROLL message. The message is sent to the window that owns the
scroll bar, and frame windows forward the message to the client window.
The mpl and mp2 parameters of both messages are identical. Parameter mpl
contains the window ID of the scroll bar window in the low-order word.
Parameter mp2 is divided into two fields:

» sslider is contained in the low-order word. This field identifies the cur-
rent position of the slider when usemd is set to SB.SLIDERTRACK or
SB.SLIDERPOSITION.

74 Wastering the Keyboard interface and Scrolling Funclionality

o uscmd is contained in the high-order word. This field contains a noti-
fication code indicating the user action that caused the message to be
transmitted.

For a vertical scroll bar, the usemd field may be set to one of the following

values:

SB_LINEUP 0x0001

SB.LINEDOWN 0x0002

SB_PAGEUP 0x0003

SB_PAGEDOWN 0x0004

indicating that the up arrow at the top of the scroll bar was
clicked.

indicating that the down arrow at the bottom of the scroll bar
was clicked.

indicating that the bar was clicked at a location above the
current position of the slider.

indicating that the bar was clicked at a location below the
current position of the slider.

The uscmd field may be set to the following values for messages received
from a horizontal scroll bar:

SB LINELEFT 0x0001

SB_.LINERIGHT 0x0002

SB.PAGELEFT 0x0003

SB.PAGERIGHT 0x0004

indicating that the left arrow at the left end of the scroll bar
was clicked.

indicating that the right arrow at the right end of the scroll bar
was clicked.

indicating that the bar was clicked at a location to the left of
the current slider position.

indicating that the bar was clicked at a location to the right of
the current slider position.

Both horizontal and vertical scroll bars may also set uscmd to the following

values:

SB_SLIDERTRACK 0x0005 indicating that the user is dragging the slider. The cur-

rent position is contained in the sslider field. Applica-
tions that can update the window quickly process this
message to provide direct feedback on the window con-
tents as the slider is moved.

SB_SLIDERPOSITION 0x0006 indicating that the user has completed a drag operation

on the slider. The sslider field contains the final position
of the slider.

SB_ENDSCROLL 0x0007 indicating that the user has clicked and released the

mouse on either the bar or an arrow. Since multiple
scroll messages will be sent when the user holds the

The Scrolf Bar Control 75

mouse button down, an application that cannot draw
its output quickly may wish to maintain the scrolled
position but defer painting until this message is received,
indicating that the scrolling operation is complete.

Managing the Scroll Bar

In order to effectively utilize scroll bars, an application must concern itself
with three basic functions: maintaining the scroll bar range and, optionally,
the size of the slider; processing scroll bar messages and maintaining the slider
position; and updating the window contents to track the scroll bar position.

Maintaining the Scrofl Bar Range

When a scroll bar is created and no data is displayed in the associated window,
the scroll bar range should be set such that both the low and high end of the
value range are zero, effectively disabling the scroll bar. As data is added
to the window—for instance, by opening a file—the scroll bar range should
be modified to reflect the actual amount of data available. The application
establishes the scroll bar range by sending an SBM_SETSCROLLBAR message
to the scroll bar window. The low-order word of parameter mpl is the sslider
parameter, a signed integer value specifying the position within the range
where the slider should be positioned. Parameter mp2 contains two fields.
The low-order word contains parameter sfirst, the lowest value in the range,
and must be greater than or equal to zero. The high-order word of mp2 is
parameter slast and specifies the highest value in the range of values. This
value must be greater than or equal to sfirst.

Figure 3.10 shows an example of the code that an application could use
to initialize the scroll bar after a new file is opened. In this example, a data
structure is used that contains elements specifying the number of lines in
the file and the number of lines displayed in the window. This latter value is
calculated by dividing the size of the window by the height of a character.
The code establishes the slider range by sending an SBM_SETSCROLLBAR
message to the vertical scroll bar window. The sslider parameter is set to

/* Update the vertical scroll bar */
WinSendMsg{ hwndScroll, SBM_SETSCROLLBAR, 0L,
MPFROM2SHORT{ 0, (SHORT)pAppData->lNumLines - 1)};
WinSendMsg{ hwndScroll, SBM_SETTHUMBSIZE,
MPFROM2SHORT{ (SHORT)pAppData->1LinesPerPage,
(SHORT)pAppData->1NumLines), OL };

Figure 3.10 Seiting scroll bar range, position, and thumb size.

76 Mastering the Keyboard Interface and Scrolling Functionality

zero since the first line of the file will be displayed at the top of the window.
Parameter sfirst is set to zero, and slast is set to the number of lines in the file.
This will allow the user to scroll between the first line and the last line.

The optional size of the slider is also set in Figure 3.10 by sending an
SBM_SETTHUMBSIZE message to the scroll bar. Parameter mp1 of this mes-
sage contains two fields. Field svisible is the low-order word of mpl and
contains a value specifying the number of lines that can be displayed in the
window. The units of the value are considered to be the same as the units used
to set the scroll bar range. The high-order word of mp1 is field stotal and is
set to the number of lines in the file. Parameter mp2 is reserved and must be

set to zero.

Processing Scroll Bar Messages

Let’s examine how an application processes messages received from a scroll
bar by looking at an example program that displays text files. The vertical
scroll bar range represents the number of lines of text in a displayed file and
the scroll bar position represents the number of the line displayed at the top of
the window. Figure 3.11 shows a switch statement that computes the number
of lines of text that correspond to a particular scroll command. Note that
an upward scrolling action moves toward the top of the file, reducing the line

HWIND hwndScroll; /* scroll bar window handle */
SHORT sLinesPerPage; /* lines displayable in window */
SHORT sDLines = 0; /* delta display lines */

switch {SHORT2FROMMP (mp2)) {
case SB_LINEUP:
sDLines = -1;
break;
case SB_LINEDOWN:
sOLines = 1;
break;
case SB_PAGEUP:
sDLines = [-1) * sLinesPerPage;
break;
case SB_PAGEDOWN:
sDLines = sLinesPerPage;
break;
case SB_SLIDERTRACK:
sDLines = (SHORT)WinSendMsg(hwndScroll, SBM_QUERYPOS,
MPFROMLONG {0L), MPFROMLONG(OL) 1:
sDLines = SHORT1FROMMP{mp2) - sDLines;
break;
} /* endswitch */

Figure 3.11 Computing the scroll deita.

The Scroll Bar Control 77

number; and scrolling down moves toward the bottom of the file, increasing the
line number. Thus an SB_LINEUP command will move the window contents
one line closer to the start of the file or a delta of negative one, and an
SB_LINEDOWN command will move the window contents one line closer
to the end of the file or a delta of positive one. Likewise, an SB_PAGEUP
command sets the delta to negative one times the number of lines displayed
on a page, and an SB_.PAGEDOWN command sets the delta to the number of
lines in one page. (The lines per page value is computed by dividing the height
of the window by the height of the current font.) The SB.SLIDERTRACK
command provides an absolute position, and the value delta is set to the
difference between the current position and the SB_SLIDERTRACK position.
The current position is retrieved by sending an SBM_QUERYPOS message to
the scroll bar window. Parameters mp1 and mp2 are both reserved and must
be passed as zero. The message returns a 16-bit, signed integer representing
the current location of the slider.

Once the delta value has been determined, Figure 3.12 shows code that
computes and validates the new top line of the display and then updates the
slider position to represent the new value. First the current slider position is
queried using the SBM_QUERYPOS message. The delta value is then added

SHORT sCurPos, sSavePos;
LONG 1Dy, 1FullPage;
RECTL rectl;

/* Adjust the slider position */

sCurPos = SHORTI1FROMMR (WinSendMsg(hwndScroll, SBM_QUERYPOS,
MPFROMLONG (0L), MPFROMLONG({OL)} });

sSavePos = sCurPos;

sCurPos += sDLines;

if(sCurPos < 0) sCurPos = 0;

if((LONG)sCurPos > sNumlines } sCurPos = sNumbines;

WinSendMsg(hwndScroll, SBM_SETPQS, MPFROMSHORT{ sCurPos), 01 };

sDLines = sCurPos - sSavePos;

/* Update the window contents */

1Dy = [LONG)sDLines * lHeight;

1FullPage = (LONG)sLinesPerPage * lHeight;

if (1Dy >= 1FullPage} {
WinInvalidateRect{ hwnd, NULL, TRUE };

} else {
WinQueryWindowRect{ hwnd, &rectl };
rectl.yBottom = rectl.yTop - 1Fullpage;
WinScrollWwindow(hwnd, 0L, 1Dy, &rectl, &rectl,

NULLHANDLE, NULL, SW_INVALIDATERGN);
Y /* endif */

Figure 3.12 Updating the display after scrolling.

78 Mastering the Keyboard Interface and Scrolling Functionality

to the current position to obtain the new position. If this position is less than
zero, the beginning of the file, the position is set back to the beginning of the
file. If the position is beyond the last line of the file, the position is set to the last
line of the file. An SBM_SETPOS message is then sent to the scroll bar window
to establish the new slider position. The low-order word of parameter mpl of
this message is set to the new slider position. Parameter mp2 is reserved and

must be set to zero.

Updating Window Contents

Also shown in Figure 3.12 is the code to update the data displayed in the win-
dow. The code first determines the distance by which the data in the window
is to be moved by multiplying the number of lines times the height of a char-
acter. If this distance represents a full-page repaint, calling WinInvalidateRect
with a NULL pointer as the pRectl parameter forces the entire window to be
redrawn. If the distance is less than a full page, then the WinScrollWindow
API is used to move the window contents which will still be displayed to their
new location, and will redraw only that portion of the window that will show
new data, providing a significant performance boost. The prototype for this

API is shown in Figure 3.13.

o The hwnd parameter is the handle of the window whose contents are to
be scrolled.

e The IDx parameter is a 32-bit signed integer indicating the horizontal
distance by which the window contents are to be scrolled. This distance is
expressed in device units. Positive integers cause the window contents to
scroll to the right, negative integers cause the window contents to scroll to
the left.

o The IDy parameter is a 32-bit signed integer which indicates the vertical
distance by which the window is to be scrolled. The distance is expressed
in device units. A positive integer causes the window contents to scroll
upward and a negative integer causes the contents to scroll downward.

LONG WinScrollWindow{ HWND hwnd,
LONG 1Dx,
LONG 1Dy,
PRECTL prclScroll,
PRECTL prclClip,
HRGN hrgnUpdateRgn,
PRECTL prelUpdate,
ULONG flOptions)

Figure 3.13 The WinScroiiWindow prototype.

The Scroll Bar Control 79

 The prclScroll parameter is a pointer to a RECTL structure which identifies
the portion of the window’s contents to move. If the pointer is NULL, the
entire contents of the window are moved. .

e The prclClip parameter is a pointer to a RECTL structure which, if not
NULL, identifies the clip rectangle for the scrolling operation. 0;11)7 the
area of the window within this rectangle is affected by the scroll. For
example, if the prclScroll rectangle and prelClip rectangle identify the
same area of the screen, the entire contents of that area will be moved, but
the portion that moves beyond the prelClip rectangle is discarded.

» The hrgnUpdateRgn parameter is a handle to the update region. If this
parameter is not NULLHANDLE, the region identified by hrgnUpdateRgn
will be set to the area uncovered by the scroll operation when the API
returns,

¢ The prclUpdate parameter is a pointer to a RECTL structure which the API
fills with the coordinates of the bounding rectangle for the area uncovered
by the scroll operation. This pointer may be set to NULL if this information
is not desired.

¢ The flOptions parameter is a set of flags that identify optional functions to
be performed. The valid flags are:

SW_SCROLLCHILDREN 0x0001 causes all child windows of hwnd to also be
scrolled. If this flag is not set, only the child
windows within the rectangle identified by
prclScroll are scrolled.

SW_INVALIDATEREGION 0x0002 causes the area uncovered by the scrolling oper-
ation to be added to the invalid regions for the
windows (hwnd and children) affected by the
scroll. This causes a WM_PAINT message to be
generated. If any of the affected windows have
class style CS_.SYNCPAINT, the WM_PAINT mes-
sage will be sent before WinScrollWindow re-
turns. If this bit is not set, the application should
use the hrgnUpdateRgn and/or prelUpdate pa-
rameter return values to paint the uncovered
area without the WM_PAINT message.

WinScrollWindow returns a 32-bit integer which indicates the complexity
of the area uncovered by the scrolling operation.

RGN_NULL 0x0001 indicates that the operation did not invalidate any portion of
the window. This could occur when there is no intersection
between prelScroll and prelClip.

RGN_RECT 0x0002 indicates that a simple rectangle was invalidated. This would
normally occur when either 1Dx or 1Dy is zero.

80 Mastering the Keyboard Interface and Scrolling Functionality

RGN_.COMPLEX 0x0003 indicates that a complex region was invalidated. This would

normally occur when both 1Dx and 1Dy are nonzero.

RGN_ERROR 0x0000 indicates that an error occurred.

Getting back to the example in Figure 3.12, before WinScrollWindow is
called, a scroll and clip rectangle is computed which prevents the scrolling
operation from moving unwanted data into the area left at the bottom of the
window where a full line of text cannot be displayed. This is accomplished first
by obtaining the coordinate rectangle for the entire window area. The bottom
coordinate of the rectangle is then set to the top coordinate less the distance
required to display the number of lines of text that will fit on the screen.

WinScrollWindow is then called with 1Dx set to zero, since this is a verti-
cal scroll; and IDy set to the scroll distance computed earlier. The prclScroll
and prelClip pointers are set to reference the computed rectangle which en-
closes the actual text display rectangle. The SW_INVALIDATEREGION flag of
flOptions is set so that a WM_PAINT message will be generated to redraw the
portion of the window uncovered by the scroll operation. Parameters hrgnUp-
dateRgn and prclUpdate are set to NULL since they will not be needed.

The final aspect of the scrolling operation is maintenance of the input
cursor position. Applications that display an input cursor typically employ one
of two approaches for managing the current input location, and thus the input
cursor, during scrolling. The first approach is an independent input cursor
which is not affected by scrolling operations. The user is able to freely scroll
through the data, perhaps for reference, and quickly return to the current input
location whenever a keystroke is entered. This approach does not require any
additional processing during scrolling operations, but the application normally
must redraw the text when a keystroke is received in order to display the data
at the input location.

The second approach moves the input cursor as necessary to ensure that
it remains within the displayed portion of the data. For example, in a text
application, if the display area is scrolled up such that the input cursor position
is below the last displayed line, the cursor is moved to the last line of the
displayed area. Figure 3.14 shows code that will handle these calculations.

SHORT sCurLine;

/* adjust the cursor */

if {(sCurlLine < sCurPos) {
sCurLine = sCurPos;

} else if (sCurLine »= sCurPos + sLinesPerPage)} {
sCurLine = sCurPos + sLinesPerPage - 1;

} /* endif */

UpdateCursor{ hwnd);

Flgure 3.14 Adjusting the input cursor.

Processing the Directional Keys 81

Variables sCurPos and sLinesPerPage are taken from Figures 3.11 and 3.i2.
Variable sCurLine contains the number of the line that is currently displayed
at the top of the window. The first step is to determine if the current input line
number is less than the first line displayed in the window. If so, the cursor must
be moved to the first displayed line. Next a check is made to see if the current
input line number is beyond the last line displayed in the window. If so, the
current input line is changed to the last line of the displayed data. At this point,
the current input line is known to be within the displayed data, and a utility
routine, UpdateCursor, is called to display the input cursor at the current
input line. This routine computes the x and y coordinates of the cursor based
on the current input line and column and then calls WinCreateCursor with
the CURSOR_SETPOS flag to move the existing cursor to the new position.

PROGESSING THE DIRECTIONAL KEYS

The standard PC keyboard has a number of keys that are typically used in both
textual and graphical applications to manipulate the input cursor position.
In most instances, if one of these keys moves the input cursor to a position
outside the current display area, the display area is adjusted to keep the in-
put cursor in view. While separate routines could be implemented to adjust
the display area, the scroll bar message procedures are typically capable of
meeting this requirement. Thus the keyboard routines can send an appropriate
WM_VSCROLL or WM_HSCROLL message to display the proper data in the
window. The following discussion examines the standard functional definitions
of the keyboard keys and the coding required to implement this functionality.
The discussion is organized into sets of keys based on the modifiers used to
obtain the keystroke.

All of the keys normally used for cursor movement are considered virtual
keys. The first set of keys are those that are modified by the CTRL key. Thus
these are recognized by testing for the presence of the KC_VIRTUALKEY and
KC.CTRL flags and the absence of the KC_ALT and KC.SHIFT flags as shown
in Figure 3.15. The definitions and processing for these keys are as follows:

CTRL+PAGEUP This keystroke is used to move the cursor one page to the left.

The cursor is adjusted by subtracting the number of columns per
page from the current cursor position and ensuring that the re-
sult is not less than zero. The display area is adjusted by sending a
WM_HSCROLL message with uscmd set to SB_.PAGELEFT.

CTRL+PAGEDOWN This keystroke is used to move the cursor one page to the right. The

cursor is adjusted by adding the number of columns per page to the
current cursor position and ensuring that the result is not greater
than the width of the longest line in the data. The display area is
adjusted by sending a WM_HSCROLL message with uscmd set to
SB.PAGERIGHT.

82 Mastering the Keyboard Intertace and Scrolling Functionallty

if (fsflags & KC_VIRTUALKEY && fsflags & KC_CTRL &&
| {fsflags & (KC_ALT | KC_SHIFT})) {
switch (CHAR3FROMMP (mp2)) {
case VK_PAGEUP: /* CTRL+PAGE UP = cursor page left */
sCurCol -= sColsPerPage;
if (sCurCol < 0} sCurCol = 0;
winSendMsg({ hwnd, WM_HSCROLL, {MPARAM) FID_HORZSCROLL,
MPFROM2SHORT{ 0, SB_PAGELEFT }};
break;
case VK_PAGEDOWN: /* CTRL+PAGE DCOWN = cursor page right */
sCurCol += sColsPerPage;
if {sCurCol > sMaxWidth} {
sCurCol = sMaxWidth;
} /% endif */
WinSendMsg(hwnd, WM_HSCROLL, {MPARAM) FID_HORZSCROLL,
MPFROM2SHORT{ 0, SB_PAGERIGHT)};
break;
case VK_HOME: /* CTRL+HOME = cursor to start of data */
sCurLine = 0;
sCurCel = 0;
WinSendMsg{ hwnd, WM _VSCROLL, {MPARAM) FID_VERTSCROLL,
MPFROM2SHORT{ 0, SB_SLIDERTRACK }};
WinSendMsg{ hwnd, WM_HSCROLL, {MPARAM) FID_HORZSCROLL,
MPFROM2SHORT{ 0, SB_SLIDERTRACK)};
break;
case VK_END: /* CTRL+END = cursor to end of data */
sCurLine = sNumLines - 1;
sCurCol = strlen{plineLast->pszText };
sTemp = sCurline - sLinesPerPage + 1;
if {sTemp < 0) sTemp = 0;
WinSendMsg(hwnd, WM_VSCROLL, {MPARAM) FID_VERTSCROLL,
MPFROM2SHORT(sTemp, SB_SLIDERTRACK)} ;
sTemp = sCurCol - sColsPerPage;
if (sTemp < 0} sTemp = 0;
WinSendMsg{ hwnd, WM_HSCROLL, {MPARRM) FID_HORZSCROLL,
MPFROM2SHORT{ sTemp, SB_SLIDERTRACK }}:
break;
} /* endswitch */
b /% endif */

Figure 3.15 Processing CTRL+ directional keys.

CTRL+HOME This keystroke is used to move the input cursor to the start of the
data. The input cursor location is changed to line zero and col-
umn zero. The display area is adjusted such that the start of data
is displayed in the top left corner of the display by sending both
WM_HSCROLL and WM_VSCROLL messages. For each, usemd is
set to SB_.SLIDERTRACK and sslider is set to zero.

CTRL+END This keystroke is used to move the input cursor to the end of the
data. The current line is set to the last line, the number of lines

Processing the Directional Keys 83

less one. The current column is set to the length of the last line
of text, a value that will place the cursor after the last character
on the line. The display area is adjusted to cause the end of data
to be displayed at the bottom of the screen. Thus a WM_VSCROLL
message is sent with usemd set to SB_.SLIDERTRACK and sslider
set to the number of lines less the number of lines on a page. This
value is incremented so that the current line will be the last line in
the display area. Similarly, a WM_HSCROLL message is sent with
uscmd set to SB_SLIDERTRACK and sslider set to the length of the
text less the number of columns per page.

The next set of keys are lone VIRTUAL keystrokes—the key is pressed with-
out the CTRL, ALT, or SHIFT keys being pressed. As shown in Figure 3.16 the
if statement to test for this type of key checks to see that the KC_VIRTUALKEY
flag is set and that KC_CTRL, KC_ALT, and KC_SHIFT are not set. On most

} else if {fsflags & KC_VIRTUALKEY &&
t(fsflags & (KC_ALT | KC_CTRL | KC_SHIFT }))} {
switch (CHAR3FROMMP{mp2}) {
case VE_UP:
if (fsflags & KC_CHAR) { /* keypad '8’ - insert character */
InsertCharacter{ hwnd, CHARIFROMMP(mp2) };
I else { /* UP ARROW = cursor up one line */
if(sCurLine '= 0 } {
sCurLine--;
if{ sCurLine < sCurTop | {
WinSendMsg(hwnd, WM_VSCROLL, (MPARAM|FID_VERTSCROLL,
MPFROM2SHORT{ 0, SB_LINEUP }};
} /* endif */
UpdateCursori hwnd };
} /% endif */
} % endif *f
break;
case VE_DOWN:
if (fsflags & XC _CHAR) { /* keypad '2’ - insert character */
InsertCharacter(hwnd, CHARIFROMMP (mp2} };

1 e}se { /* DOWN ARROW = cursor down 1 line */
if{ sCurLine != sMumLines - 1 } {
sCurLine++;

if{ sCurline >= sCurTop + sLinesPerPage) {
WinSendMsg(hwnd, WM_VSCROLL, (MPARAM)FID_VERTSCROLL,
MPFROMZSHORT(0, SB_LINEDOWN)};
} /* endif */
UpdateCursor{ hwnd);
} /* endif */

} /% endif */
break;

Figure 3.16 Handling the UP and ODWN keys.

84 Mastering the Keyhoard Interface and Scrolling Functionality

keyboards the cursor movement keys in this set are replicated on the numeric
keypad. When the keyboard is in numeric mode, these keys will have both the
KC.VIRTUALKEY and KC_CHAR flags set. In this instance, the application
should treat the keystroke as a normal character as shown in Figures 3.16
through 3.19, which show the code for handling the various keys in this set.
The definitions and processing for these keys are as follows:

UP ARROW This key moves the input cursor up by one line. If the cursor is not already
on the first line, line zero, the cursor line is decremented. If the resulting
cursor line is above the line currently at the top of the displayed data, a
WM_VSCROLL message is sent with the uscmd field set to SB_LINEUFE.
DOWN ARROW This key moves the input cursor down by one line. If the cursor is not
already on the last line of the data, the cursor line is incremented. If the
resulting cursor line is below the last line displayed (first line displayed

case VE_LEFT:
if (fsflags & KC_CHAR) { /* keypad ‘4' - insert character */
InsertCharacter(hwnd, CHARIFROMMP{mp2} };
} else { /* LEFT ARROW = cursor left 1 char */
if(sCurCol != 0) {
sCurCol--;
if({ sCurCol < sCurLeft } {
WinSendMsg{ hwnd, WM_HSCROLL, (MPARAM)FID_HORZSCROLL,
MPFROM2SHORT(0, SB_LINELEFT }):
} /* endif */
UpdateCursor(hwnd };
} /* endif */
} /* endif */
break;
case VK_RIGHT:
if (fsflags & KC_CHAR} { /* keypad ‘6’ - insert character */
InsertCharacter(hwnd, CHARLFROMMP(mp2) };

} else { /* RIGHT ARROW = cursor right 1 char */
if(sCurCol 1= sMaxWidth } {
sCurCol++;

if{ sCurCol > sCurlLeft + sColsPerPage) {
WinSendMsg(hwnd, WM_HSCROLL, (MPARAM}FID_HORZSCROLL,
MPFROM2SHORT(0, SB_LINERIGHT));
} /* endif */
UpdateCursor{ hwnd);
) /* endif */

} /* endif */
break;

Figure 3.17 Handling the LEFT and RIGHT keys.

Processing the Directional Keys 85

case VK_PAGEUP:
if (fsflags & KC_CHAR) { /* keypad ‘9’ - insert character */
InsertCharacter(hwnd, CHARIFROMMP(mp2) };
} else { /* PAGEUP = cursor up one page */
sCurLine -= sLinesPerPage;
if (sCurLine < 0) sCurLine = §;
WinSendMsg(hwnd, WM_VSCROLL, {(MPARAM)FID VERTSCROLL,
MPFROM2SHORT{ 0, SB_PAGEUP }};
} /* endif */
break;
case VK_PAGEDOWN:
if (fsflags & KC_CHAR) { /* keypad ’'3' - insert character */
InsertCharacter(hwnd, CHAR1IFROMMP (mp2));
} else { /* PAGEDOWN = cursor down one page */
sCurLine += sLinesPerPage;
sCurLine = min{ sCurline, sNumLines - 1);
WinSendMsg(hwnd, WM_VSCROLL, (MPARAM)FID_VERTSCROLL,
MPFROMZSHORT(0, SB_PAGEDOWN }};
} /* endif */
break;

Figure 3.18 Handling the PAGEUP and PAGEDOWN keys.

plus number of lines displayable), a WM_VSCROLL message is sent with
the uscmd field set to SB.LINEDOWN.

LEFT ARROW This key moves the input cursor one character to the left. If the cursor
is not already at the leftmost character, the cursor column is decre-
mented. If the resulting column is to the left of the first displayed
column, a WM_HSCROLL message is sent with the uscmd field set to
SB_.LINELEFT.

RIGHT ARROW This key moves the input cursor one character to the right. If the cursor
is not already positioned just beyond the rightmost column in the data,
the cursor column is incremented. If the resulting cursor column is
beyond the rightmost column displayed (leftmost column plus number of
columns displayable), a WM_HSCROLL message is sent with the uscmd
field set to SB_.LINERIGHT.

PAGE UP This key is used to scroll the displayed data area up by one page. In
this application, the key also causes the input cursor to move up by one
page. The input cursor position is adjusted by subtracting the number of
lines per page from the current cursor position. If the result is less than
zero, the new cursor position is set to zero. Scrolling is accomplished
by sending a WM_VSCROLL message with usecmd set to SB_.PAGEUP.
Note that the cursor position is not updated since the scrolling operation
ensures that the cursor will be moved by the scrolling routine.

86 Mastering the Keyboard Interface and Scrolling Functionallty

case VE_HOME:

if (fsflags & KC_CHAR) { /* keypad '7' - insert character */

InsertCharacter{ hwnd, CHARIFROMMP{mp2) };

} else { /* HOME = cursor to start of line */

1CurCol = 0;

WinSendMsg(hwnd, WM_HSCROLL, (MPARAM)FID_HORZSCROLL,
MPFROMZSHORT(0, SB_SLIDERTRACK });

UpdateCursor{ hwnd };

} /* endif */
break;

case VK_END:

if (fsflags & KC_CHAR) { /* keypad ‘1’ - insert character */

InsertCharacter(hwnd, CHARIFROMMP(mp2}):

} else { /* END = cursor to end of line */

1CurCol = strlen{plines[sCurlLine]->pszText};
winSendMsg{ hwnd, WM_HSCROLL, (MPARAM)FID_ HORZSCROLL,
MPFROM2SHORT (max (0, 1CurCol - 1ColsPerPage + 1),
SB_SLIDERTRACK));
UpdateCursor{ hwnd);

} /* endif */
break;

PAGE DOWN

HOME

END

Figure 3.19 Handllng the HOME and END keys.

This key is used to scroll the displayed data area down by one page.
This application also moves the input cursor down by one page. The new
cursor position is calculated by adding the number of lines per page to
the current cursor position and taking the minimum of this value and
the line number of the last line of data. A WM.VSCROLL message is
sent with usemd set to SB_LPAGEDOWN to scroll the displayed data area
down by one page. No cursor update is necessary since the scrolling
operation is guaranteed to move the cursor in this instance.

This key is used to move the input cursor to the beginning of the
current line. The current cursor position is set to column zero and
a WM_HSCROLL message with usemd set to SB.SLIDERTRACK and
sslider set to zero is sent to force display of the leftmost data. The Update-
Cursor routine is called to ensure that the cursor is properly positioned
since the scroll message may not necessarily update the window.

This key moves the input cursor to the end of the current line. The
column value of the current cursor position is set to the length of the text
for the current line. A WM_HSCROLL message is sent with uscmd set to
SB_SLIDERTRACK. The sslider field is set to the maximum of zero and
the new cursor position less the number of columns per page plus one to

Painting after Scrolling 87

display the maximum amount of data on the line. UpdateCursor is called
since the scroll message may not necessarily update the window.

For scrolling purposes, all other keystrokes are ignored. The sample program
accompanying this chapter contains a routine wmchar which combines the
processing for all the keystrokes discussed in this chapter. This routine, in
combination with Figures 3.15 through 3.19, can be studied to see how a
typical keystroke processing routine should test the various elements of fsflags
to determine the actual keystroke received.

PAINTING AFTER SCROLLING

Performance gains from using the WinScrollWindow API to reduce the area
of the window to be repainted were discussed earlier. These gains are realized
due to the clipping performed to prevent actual drawing outside the invali-
dated rectangle. Further gains can be realized if the application’s WM_PAINT
processing recognizes the invalid rectangle and restricts its calls to the draw-
ing APIs to the minimum necessary. This section examines how the text-based
application we have been using can achieve these gains.

Following the normal initialization of the WM_PAINT processing—
obtaining the presentation space and filling in the background—the appli-
cation determines the first line that falls at least partially within the invalid
rectangle and then determines the first and last columns that are at least
partially within the invalidated area. With these boundaries available, the
application draws lines of text until the bottom of the invalid rectangle is
reached.

Figure 3.20 shows the code used to compute the first line that requires
painting. First, the area of the entire window is obtained. The top of the
rectangle less the top of the invalid rectangle provides the area of the window

/* calculate first line to draw */
iLineFirst = (LONG)sCurTop;
iLineFirst += (rectlHwnd.yTop - rectl.yTop} / lHeight;

/* set pointer to structure for first line */
if (ilLineFirst < {LONG)sNumLines) {
if (plines !'s {PLINE *)NULL) {
plineDraw = pLines[iLineFirst];
rectlHwnd.yTop -= {(ilineFirst - {LONG)sCurTop } * lHeight;
} /* endif */
} /* endif */

Figure 3.20 Calculatlng the initial y coordinate.

88 Mastering the Keyboard Interface and Scrolling Functionality

that does not require painting, and dividing this number by the height of a
character;, or line, results in the number of whole lines that do not require any
repainting. This number is added to the line number of the current top line in
the display to determine the line number of the first line to be drawn. If this
line number is within the range of the displayed file, pointer pLineDraw is set
to the structure that describes this line. Then, since the invalidated rectangle
may not necessarily fall on the exact coordinates for a line, the top of the
drawing rectangle, rectlHwnd, is computed by subtracting the space occupied
by lines from the top displayed line to the first line to draw from the top of the
window rectangle.

Figure 3.21 shows the calculations necessary to obtain the first and last
column positions to be drawn. Like the computation of the first line in Figure
3.20, the first column to display is computed by subtracting the left coordinate
of the invalid area from the left coordinate of the entire window and dividing
by the width of a character. The value is then added to the column number
currently displayed at the leftmost position in the window. If the computed
first column is beyond the last column position of the longest line in the file,
no drawing is necessary and the pLineDraw pointer from above is set to
NULL. Otherwise, the coordinate of the first column to draw is calculated
by adding the space occupied by nondrawn columns to the coordinate of the
left edge of the window. Then the number of columns to draw is calculated
by subtracting the left edge of the drawing rectangle from the right edge of
the invalid rectangle and dividing by the width of a character. The number
of columns is incremented to ensure that partial characters at the right edge
of the invalid rectangle are drawn.

Figure 3.22 shows the loop that actually draws the text into the window.
The control conditional for this loop first checks the pointer to the current
line structure for validity. If the pointer is NULL, either this is the entry to
the loop and no text is to be drawn (in which case the loop body is never
entered) or the last line of the displayed file has been drawn. The conditional

/* compute the first column to paint */
1ColFirst = (rectl.xLeft - rectlHwnd.xLeft) / lWidth;
1ColFirst += lCurLeft;
if (lColFirst > 1Maxwidth) (
plineDraw = (PLINE}NULL; /* nothing to draw */
} else {
rectlHwnd.xLeft += (1ColFirst - lCurLeft)} * 1lwidth;
/* compute the last column to paint */
1NumCols = (rectl.xRight - rectlHwnd.xLeft) / 1Width;
1NumCols++;
} /* endif */f

Summary 89

/* draw while the data fits on the screen */
while (plineDraw != (PLINE)NULL &&
rectlHwnd.yTop > rectl.yBottom &&
rectlHwnd.yTop - lHeight >= 0) {
{* but only if text to be drawn for the current line */
if (strlen(plineDraw->pszText} > 1ColFirst) {
WinDrawText{ hps,
min{1NumCols, strlen(&plineDraw->pszText[1ColFirst))),
&plineDraw->pszText [1ColFirst],
§rectlHwnd, 0, 0, DT_TOP | DT_LEFT | DT_TEXTATTRS);
} /% endif */
/* bump down to top position of next line */
rectlHwnd.yTop -= lHeight;
/* get next line to draw */
plineDraw = plineDraw->next;
} /* endwhile */

Figure 3.22 Drawing texi.

then checks to be sure that the top of the current line does not fall below the
invalid rectangle and then ensures that the bottom of the current line falls
within the drawing rectangle to prevent a partial line from being drawn at
the bottom of the window. The body of the drawing loop checks to see if the
text for the current line contains enough characters to require drawing. If so,
the WinDrawText API (see Chapter 16) is called to draw the text. The second
parameter to this API is the number of characters to be drawn, and it is set
to the minimum of the computed number of columns to draw or the number
of characters remaining in the text for the current line. Once the drawing
is complete, the top of the drawing rectangle is lowered by the height of a
character to set the starting coordinate for the next line, and the pointer to the
line structure is bumped to the next line in the displayed file.

SUMMARY

Figure 3.21 Calculating the initial x coordinate.

This chapter has discussed how Presentation Manager applications receive
input from the keyboard and process that input to edit text and manipulate the
display. In conjunction with the processing of virtual keys, the scroll bar has
been discussed, and techniques have been shown for scrolling the information
displayed in a window and manipulating the keyboard input cursor. By using
and extending these principles and techniques, programmers can create ap-
plications that fuily exploit the use of the keyboard to access the application’s
functionality.

CHAPTER 41

Building A Better
Mousetrap: Taming
the Mouse in PM

an aversion to rodents. It took many years of cartoon culture therapy

for the general population to begin to embrace such popular cartoon
mice as Mickey and Minnie, Mighty, and of course our pal from the south
of the border, Speedy Gonzalez. This fear of mice has even transferred to
the computer world, via the graphical programming community. This chapter
will attempt to explain how to master programming the mouse under the
Presentation Manager environment.

The input pointing device has arguably become the most important tool
in the graphical user interface. Some of the early more primitive graphical
application interfaces failed because the keyboard interface did not provide
quick and easy access to controlling the application, and the keystroke combi-
nations that were required 1o master the interface were difficult to remember
and were not intuitive enough for even advanced users. A hardware device
that allowed the user to communicate quickly and effectively was desired. This
brought about the invention of the mouse, and completely revolutionized the
look and feel of the graphical user interface. Finally users were able to control
how applications were started and more easily manipulate text and graphics
through the movement of the mouse pointer. Unfortunately, in the early days
before graphical programming environments standardized mouse manipula-
tion through the use of the window API, it was difficult for programmers to
control the mouse for the user. Luckily, mastering how to program the mouse
is relatively simple in the Presentation Manager environment, and once you

T here is something about human nature that has made most of us develop

91

92 Building A Beftter Mousetrap: Taming the Mouse in PM

realize just how simple it is maybe you won't fear our little furry white friends
either; well, maybe not, but let's begin mastering the art of programming the
computer mouse anyway.

This chapter’s sample program combines practical mouse usage with sim-
ple drawing functionality that is bound to espouse some nostalgic memo-
ries among children from the baby boomer generation. Two favorite toys
among children with active imaginations were the Etch-a-Sketch® and the
Spirograph®. Both toys were very simple to understand and use, but taught
different fundamentals while helping to cultivate cognitive and imaginative
learning skills. The sample program CLKDRAW, is designed with similar in-
tentions. Although it is very simple to use, it may not provide as much of an
education value as its toy counterpart. It does, however, illustrate some simple
pointer programming concepts.

The Etch-a-Sketch® toy was a simple drawing device that allowed children
to express their artistic talents, although they really had to be artistically
inclined to make anything look good because of the small lines and simple
round controls. The toy basically contained two knobs: one that controlled
the horizontal movement of the line, and the other that controlled the vertical
movement. The sample program demonstrates the technique for capturing the
mouse pointer, and through the use of some simple GPI drawing, allows the
user to manipulate the mouse buttons to control the drawing.

The Spirograph® made geometry “cool.” It allowed you to draw basic
geometric shapes simply by using colored pens and various plastic ridged disks
with holes. To create an image, the user put a pen through one of the holes on
a plastic disk, then rotated the pen within the disk around or within another
larger plastic disk, thereby creating a simple yet colorful image. When the user
double-clicks on the client area with the right mouse button, an image similar
to a Spirograph® is created. The size of the geometric figure created, as well
as the circular shape of the image, are based on the current pointer position.

CLKDRAW also demonstrates how to capture the mouse pointer outside of
the frame window, giving the user to ability to capture an area of the desktop
by highlighting it with a tracking rectangle created by manipulating the mouse
pointer. The pointer used to create the tracking rectangle is different from
the default mouse pointer, making it easy for the user to distinguish between
the captured mouse pointer and the default mouse pointer. The purpose of
the program is to demonstrate how to handle mouse messages and use the
APIs specific for mouse pointer manipulation to allow the developer to more
accurately control the user interface through the input pointing device.

UNDERSTANDING THE USE OF THE MOUSE

Even though the PM graphical user interface allows for keyboard input, using
most PM applications without a mouse can become difficuit or even awkward.

Understanding the Use of the Mouse 93

A well-written application should allow for both keyboard and mouse move-
ment, but most users will definitely agree that using a mouse is much less
complex. Have you ever tried using the Workplace Shell without a mouse? It
definitely takes time to get used to, whereas the mouse allows the shell to be
much more intuitive and friendly.

There are many manufacturers that make the mouse pointing device. To-
day, some even are designed with ergonomics in mind to allow greater comfort
for the user. Variations on the design of the mouse have changed over the years
to include trackballs, three-button configurations, and even that funny red
eraser thing on the IBM Thinkpad machines. The 0S/2 Presentation Manager
supports a large variety of pointing devices, thus allowing the PM developer to
use the mouse to simplify the application learning curve, Based on the number
of buttons on the mouse, developers can take advantage of one, two, or three
buttons.

The movement of the mouse is represented in the PM window manager
through the use of a bitmapped image on the display called the mouse pointer.
Obviously, as the mouse moves, the pointer moves. The default PM mouse
pointers are shown in Figure 4.1.

- c)
ML)
[Ssp.5]

rSystem Pointers

PR

Text Wait Size NWSE

« G%D 'y

Size WE Move Size NESW

§
S
:
H S
=
-
;
=

Mouse - Setlings

i

Pointers

General

Size NS lllegal

Edit... | | Find... | | Load Set...

Undo | | Defautt | [Help

Figure 4.1 The default Warp mouse pointers.

94

Building A Better Mousetrap: Taming the Mouse in PM

Every mouse pointer has a hotspot, which is simply a single pixel within
the pointer bitmap that is where the manipulation originates. The very tip of
the black arrow is the hotspot on the default mouse pointer. One of the biggest
requests of the PM user community has been to allow the user to change the
default mouse pointer with ease. The 0S/2 Warp system grants this wish by
allowing the user to change the default mouse pointer. The mouse pointer file
format is essentially a bitmap, and pointers can be drawn using the 0S/2 Icon
Editor.

QUERYING AND SETTING THE SYSTEM VALUES FOR AN INPUT DEVICE

SV_SWAPBUTTON

SV_DBLCLKTIME

PM has several default system value flags that can be used to query the res-
olution of the pointer along with other important characteristics. Figure 4.2
shows some of the system value flags defined in PMWIN.H that affect the mouse
pointer. The system values can be queried using the API WinQuerySysValue
and can be changed using the WinSetSysValue API.

This value is used to change the default function of the mouse
buttons. The PM default is for the mouse buttons to be config-
ured for a right-handed user. In the workplace shell, the left
button is used for selection while the right button is used for
object manipulation. It is generally not advised that this value be
changed, since it is usually controlled by the user who can adapt
the mouse configuration to fit his or her needs. If this value is
set to TRUE, then the mouse buttons have been swapped and the
window procedure will get right button messages when the left
mouse button is pressed, and left button messages when the right
button is pressed.

This value can be used to change the pointing device’s double-
click time. PM determines a double-click by two quick single

SV_SWAPBUTTON 0
SV_DBLCLKTIME 1
SV_CXDBLCLK 2
SV_CYDBLCLK 3
SV_CXPOINTER 40
SV_CYPOINTER 41
SV_CMOUSEBUTTONS 43
SV_CPOINTERBUTTONS 43
SV_POINTERLEVEL 44
SV_MOUSEPRESENT 48

Figure 4.2 Mouse poinier system values.

SV_CXDBLCLK

SV.CYDBLCLK

SV_MOUSEPRESENT

SV_CXPOINTER

SV_CYPOINTER

SV_.CMOUSEBUTTONS
or SV_.CPOINTERBUTTONS

SV_CXMOTIONSTART

SV_.CYMOTIONSTART

Querying and Setting the System Values for an Input Device 95

mouse clicks in succession. The default double-click time is
half a second. Using this value, you can modify the default
click time. If you decide to change this value, the time is
measured in milliseconds. The only time this value should
be changed is when you have a controlled user interface—
for example, a single application that replaces the workplace
shell—and you need to change the double-click time to cor-
respond with the user requirements of the shell.

This is the horizontal length of the double-click sensitive
area. In other words, this value is the width of the distance
a double click is valid. PM uses the system font character
width as the default.

This is the vertical length of the double-click sensitive area.
In other words, this value is the height of the distance a
double-click is valid. PM uses half the height of the system
font character height as the default.

If this value returns TRUE, then an input pointing device is
present and recognized by the Presentation Manager.

This flag can be used to query the horizontal dimensions of
the mouse pointer bitmap. The value returned is in pixels
wide. This value is based on the resolution of the display
driver and cannot be modified.

This flag can be used to query the vertical dimensions of the
mouse pointer bitmap. The value returned is in pixels high.
This value is also based on the resolution of the display
driver and cannot be modified.

This value returns the number of buttons on the pointing
device. It can be used to query whether the user has a two-
or three-button mouse; then, depending on the result, the
programmer can assign functionality of the buttons. If a
zero is returned, then no mouse device is currently installed.
Another method of querying whether a mouse is present is by
querying the SV.MOUSEPRESENT flag. This value cannot
be modified. The code fragment in Figure 4.3 checks to see
if a pointing device is installed and then determines if the
pointing device supports a third mouse button.

This value flag can be used to set or query the num-
ber of pixels that a pointing device can be moved hor-
izontally while the mouse button is depressed before a
WM_BUTTONnMOTIONSTART message is sent to the win-
dow.

This value flag can be used to set or query the number of pix-
els that a pointing device can be moved vertically while the

SV_POINTERLEVEL

96 Building A Better Mousetrap: Taming the Mouse in PM

1Buttons = WinQuerySysValue {HWND_DESKTOP, SV_CPOINTERBUTTONS) ;

if {lButtons == 0}

{
return ERROR_MOUSE_NOT_INSTALLED;

)

else if {1Buttons == 3)

{
return THREE_BUTTON_MOUSE_INSTALLED;

}
Figure 4.3 Determining the number of butions.

mouse button is depressed before a WM_BUTTONnMO-
TIONSTART message is sent to the window.

*Where n represents the mouse button depressed.

This flag is used to determine if the mouse pointer is visible
or invisible. Often it is not desirable to have a mouse pointer
present, so the visibility of the pointer can be changed. For
instance, if the user is entering or reading text within a win-
dow and has not touched the mouse pointer for a long period
of time, it may be desirable to hide the mouse pointer so that
it does not appear within the text. Also, screen capture pro-
grams may want to hide the mouse pointer until a specific
window has been captured. If a zero is returned when spec-
ifying this flag, then the pointer is visible. Any other positive
value indicates that the pointer is invisible. This value can-
not be modified directly using WinSetSysValue. The pointer
level is actually controlled through the use of the API, Win-
ShowPointer. This function is used to either increment or
decrement the pointer level usage count.

CHANGING THE VISIBILITY OF THE MOUSE POINTER

The format of the WinShowPointer call is as shown in Figure 4.4.

+ hwndDesktop is the window handle of the desktop window.
¢ bVisibility represents the pointer level visibility indicator. If this value is
set to TRUE, then the pointer display level is decremented by one until

BOOL WinShowPointer (HWND hwndDesktop,
BOOL bVisibility);

Figure 4.4 The WinShowPointer profotype.

Capturing the Mouse Pointer 97

the usage count is zero. When the pointer display level reaches zero, the
pointer is made visible. If the value is set to FALSE, then the pointer display
level is incremented by one. If the pointer display level is any value greater
than one, then the pointer is invisible.

The initial pointer display level is based on the capabilities of the pointing
device. If a mouse is detected, the initial pointer display level is set to visible.
If no input pointing device is detected, the initial pointer display level is set to
invisible.

The code for WinShowPointer actually checks the pointer usage count to
determine whether the pointer should be made visible. If the pointer should
be made visible, it calls a routine in the graphics engine to display the pointer
at the next interrupt and then returns FALSE; otherwise, the function call will
return TRUE.

CAPTURING THE MOUSE POINTER

The options menu contains a menu item called HideMousePointer that will
allow the user to change the visibility of the pointer by modifying the pointer
visibility level. Once the user selects the Options/HideMousePointer menu item,
the mouse pointer is made invisible by calling WinShowPointer. If the Capture
Pointer to Window checkbox was not checked prior to hiding the pointer,
then the visibility level usage count of the pointer will be decremented every
time the mouse is moved outside the bounds of the window. Eventually, the
mouse pointer is made visible if you move the mouse around long enough.
If the checkbox is checked prior to the Hide pushbutton being selected, the
mouse pointer will not be shown until the user selects the Show pushbutton
by pressing Enter.

The solution to ensuring that the mouse pointer will not be shown when
moved outside the client window boundary is to capture the mouse input.
The purpose of capturing the mouse input is to allow mouse messages 1o be
directed to a specific window regardless of the position of the mouse pointer in
relation to the desktop. In other words, no matter which window the pointer is
positioned over the associated mouse messages are passed on to your window
procedure for processing.

Believe it or not, you do not need a mousetrap to capture the mouse
pointer. A simple API called WinSetCapture does the job without the smelly
cheese. This function works by trapping all WM_MOQUSEMOVE messages and
redirecting them to the capture window. Only one window can become the
capture window. The format of the WinSetCapture API is shown in Figure 4.5.

» hwndDesktop is the handle of the desktop window.
* hwnd is the window handle of the capture window.

98 Building A Better Mouseirap: Taming the Mouse in PM

BOOL APIENTRY WinSetCapture {HWND hwndDesktop,
HWND hwnd);

Flgure 4.5 The WinSeiCapture prototype.

The WinSetCapture function returns TRUE if the mouse pointer is cap-
tured. The function will return FALSE if an error occurs. The function will
fail if a hard system model window is up and a pointer capture is attempted.
The function will also fail if another window is currently set as the capture
window.

The hwnd parameter is the key value here, since it contains the handle
of the window to which the WM_MOUSEMOVE message will be redirected.
When capturing the mouse is complete, the capture window can be reset by
once again calling WinSetCapture and passing a NULL value in the hwnd pa-
rameter. When the capture window is released, a WM_MOUSEMOVE message
is posted to the window regardless of whether the mouse pointer has actually
been moved. This is done to ensure that the window currently under the mouse
pointer has an opportunity to refresh the pointer.

Applications that need to determine whether the mouse movement message
is being captured by a specific window can use the function WinQueryCapture
to determine the capture window. The function will return the handle of the
window that has the mouse input captured.

Figure 4.6 shows the format of the function.

Obtaining Pointer information 99

18ysVal = WinQuerySysValue (HWND_DESKTOP, SV_MOUSEPRESENT);

if (18ysval != TRUE)
{
return ERROR_MOUSE_NOT_INSTALLED;
} /* endif */

18ysval = WinQuerySysValue (HWND_DESKTOP, SV_POINTERLEVEL);

for (usCounter = 0; usCounter < 1SysVal; usCounter++)

{
WinShowPointer (HWND_DESKTOP, TRUE);

} /* endfor */

Figure 4.7 Making the mouse pointer visible again,

OBTAINING POINTER INFORMATION

SHOWING THE MOUSE POINTER

The code fragment in Figure 4.7 illustrates the proper use of decrementing
the pointer visibility level until the mouse pointer is visible. The code first
checks to see if a pointing device is currently installed and then checks the
pointer visibility level. If the pointer is currently invisible, the call to Win-
QuerySysValue with the SV POINTERLEVEL will return a number greater
than zero in ISysVal. This code fragment will then enter a for loop and call
WinShowPointer with TRUE in the bVisibility field, thereby decrementing
the pointer level usage count until it finally reaches zero forcing the pointer
visible.

HWND APIENTRY WinQueryCapture (HWND hwndDesktop);

Figure 4.6 The WinQueryCapture prototype.

There may be times when you need to obtain information about a specific
mouse pointer. Obtaining this information is relatively easy since PM maintains
a POINTERINFO structure that contains all of the relevant pointer information
like the size of the pointer bitmap, the handle of the various bitmap for a
specific pointer, and the hotspot coordinates. The format of the POINTERINFO

structure is shown in Figure 4.8.

¢ fPointer is used to indicate whether the mouse pointer bitmap is the size
of pointer or an icon. If this value contains a 1, then the bitmap is the size
of a pointer. If this value contains a 0, then the bitmap is the size of an
icon.

+ xHotspot represents the horizontal coordinate for the primary point of
action in relation to the size of the pointer.

typedef struct _POINTERINFO /i ptri
{
ULONG fPointer;
LONG xHotspot;
LONG yHotspot;
HBITMAP hbmPointer;
HBITMAP hbmColoxr;
HRITMAP hbmMiniPointer;
HBITMAP hhmMiniColor;
} POINTERINFO;
typedef POINTERINFO *PPOINTERINFO;

Figure 4.8 The POINTERINFO structure.

100 Building A Betier Mousetrap: Taming the Mouse in PM

BOOL, APIENTRY WinQueryPointerInfo (HPOINTER hptr,
PPOINTERINFC pPointerInfe);

Figure 4.9 The WinQueryPointerinfo prototype.

yHotspot represents the vertical coordinate for the primary point of action
in relation to the size of the pointer.

hbmPointer is the handle of the mouse pointer bitmap.

hbmColor is the handle of the mouse pointer color bitmap.
hbmMiniPointer is the handle of the mouse pointer mini-bitmap.
hbmMiniColor is the handle of the mouse pointer mini-color bitmap.

To obtain the POINTERINFO structure you must first call the WinQuery-
PointerInfo function specifying the handle of the pointer for which you need
the pointer information. This function will return a valid POINTERINFO struc-
ture for a valid pointer handle. The format of the WinQueryPointerInfo API is
given in Figure 4.9.

s hptr represents a valid pointer handle.
+ pPointerInfo represents a pointer to a POINTERINFO structure. This

structure is returned if the call is successful.

The function itself will return TRUE if the function is successful and FALSE
if an error occurred.

The first parameter to the WinQueryPointerInfo API is the pointer handle
for which you wish to obtain a POINTERINFO structure. If you need to obtain
the current pointer information, you can use the WinQueryPointer API to
return a pointer handle for the current mouse pointer. The only parameter
that this function requires is the desktop window handle. Figure 4.10 has the
prototype forWinQueryPointer.

¢ hwndDesktop is of course the desktop window handle.
The code fragment in Figure 4.11 obtains the current pointer handle

through the use of the WinQueryPointer function, then it obtains a POINTER-
INFO structure for the pointer by calling the WinQueryPointerInfo function.

Where Is Mickey? 101

hwndStatic = WinWindowFromID{hwnd, ID_STATIC);
hptr = WinQueryPointer (HWND_DESKTOP} ;
WinQueryPointerinfoihptr, &ptrinfo);

sprintfiszBuffer, "x = %1d y = %1d", ptrinfo.xHotspot, ptrinfo.yHotspot};
WinSetWindowText (hwndStatic, szBuffer);

Figure 4.11 Obtaining current polnter informatlion.

Once a valid POINTERINFO structure is obtained, the hotspot coordinates are
displayed in a static text window.

WHERE IS MICKEY?

HPOINTER APIENTRY WinQueryPointer (HWND hwndDesktop);

Figure 4.10 The WinQueryPointer prototype.

As the user moves the mouse around the desktop, the Presentation Manager
code sends a mouse message to the window that the mouse pointer is currently
over. In order to send the right message to the right window, PM must deter-
mine where the pointer is in relation to the window hierarchy. Probably, the
most important concept to learn about mastering the mouse from a develop-
ment perspective is how to determine where the mouse pointer is at the right
time, and then translate the pointer position into something the user needs
to accomplish via the pointer. For example, once you are able to determine
the location of the mouse in relation to a user event, it becomes very easy to
capture the mouse movement and translate the movement into something that
the user can visualize.

The CLKDRAW sample program is the best example of this point. The
sample program tracks the movement of the mouse pointer over the client
window by processing the WM_MOUSEMOVE message. Once the current
pointer position is obtained via a POINTL structure, the movement of the
mouse pointer is translated into a line through the use of the GpiLine function.
There are effectively three methods of obtaining the current mouse pointer
position. Each method returns the pointer position in response to a different
user event.

There are two PM APIs that are used to determine the current mouse
pointer position. The functions WinQueryPointerPos and WinQueryMsgPos
both return the pointer position in screen coordinates, but the two functions
return the pointer position based on different events and at different processing
times. The WinQueryPointerPos function returns the current pointer position
immediately, while the WinQueryMsgPos function returns the position of the
pointer based on when the message that is currently being processed was
actually posted to the message queue. The coordinates returned are in the form
of a POINTL structure, which contains the valid x and y screen coordinates

102 Building A Bstter Mouseirap: Taming the Mouse in PM

BOOL APIENTRY WinQueryPointerPos {HWND hwndDesktop,
PPOINTL pptli;

Figure 4.12 The WinQueryPeinterPos profotype.

BOOL APIENTRY Win{ueryMsgPos{HAB hab,
PPOINTL pptl);

Figure 4.13 The WinQueryMsgPos prolotype.

of the pointer. The prototype for WinQueryPointerPos is shown in Figure 4.12
and the prototype for WinQueryMsgPos is in Figure 4.13.

The difference between the layout of the functions is in the first parameter.
The first parameter to WinQueryPointerPos is the desktop window handle,
while the WinQueryMsgPos takes an anchor block handle as its first parameter.
Both functions return TRUE for success and FALSE for failure.

As previously stated, both of these functions return values in screen coor-
dinates. However, what if you want to determine the position of the pointer in
relation to the client window? In order to obtain the coordinates in relation
to the window, you must convert the screen coordinates to window coordi-
nates. PM provides two APIs that can be used to do the conversion from one
coordinate system to the other. The function WinMapWindowPoints can be
used to convert or map the screen coordinates which are in relation to the
desktop window to a set of coordinates within the client window. Likewise, the
function WinMapDlgPoints can be used to map window coordinates to dialog
coordinates and vice versa. It is extremely useful to understand how these
two functions work, since they allow the ability to quickly convert different
coordinate schemes. The format of WinMapWindowPoints is in Figure 4.14.

» hwndFrom represents the handle of the window from which the co-
ordinates are mapped. If you specify the desktop window handle,
HWND_DESKTOP, this effectively means that you are converting from
screen coordinates to window coordinates.

BOOL APIENTRY WinMapWindowPoints (HWND hwndFrom,
HWND hwndTo,
PPOINTL prgptl,
LORG cwpt);

Flgure 4.14 The WinMapWindowPoints prototype.

Where is Mickey? 103

¢ hwndTo represents the handle of the window to which the coordinates are
mapped. If you specify the desktop window handle, HWND_DESKTOP,
this effectively means that you are converting from window coordinates to
screen coordinates.

s prgptl represents the actual coordinates that are being mapped from one
coordinate system to the other. The caller specifies the coordinates in the
form of a pointer to a POINTL structure. When the function returns, this
value contains the converted coordinates.

¢ cwpt represents the count of points to be converted based on the prgptl
parameter. If the prgptl coordinates represent a POINTL structure, then
the valid point count is 1. If the prgptl coordinates are in the actual form
of a RECTL structure, then the point count is 2.

The Configure Spirographs dialog box allows the user to configure the
drawing of the spirographs based on window or screen coordinates via a
simple radiobutton. As you will notice, unless the window is maximized, the
screen coordinates may not be visible in the client window. The program
defaults to using window coordinates for drawing the spirographs. The code
fragment in Figure 4.15 is used to convert the screen coordinates returned from
the function WinQueryPointerPos to window coordinates prior to calling the
SpiroGraphBox function.

Figure 4.15 shows how the pointer coordinates are converted from
screen coordinates to window coordinates during the processing of the WM-
BUTTON2DBLCLK message. If the bUseWndCoordinates flag is set to TRUE,
the coordinates are converted prior to calling the SpiroGraphBox routine.

case WM_BUTTONZDBLCLK:
WinQueryPointerPos {HWND_DESKTOP, &ptlCurrent);

if (bUsezWndCoordinates == TRUE)

{
WinMapWindowPoints (HWND_DESKTOP, hwndClient, &ptlCurrent, 1);

}

hwvmdsStatic = WinWindowFromID(hwndClient, ID_STATIC):

sprintf (szCoordinates, *x = %1d y = %1d*, ptlCurrent.x, ptlCurrent.y};
WinSetWindowText {hwndStatic, szCoordinates);

SpiroGraphBox {hwnd, ptlCurrent, usRotangle, sColor);
break;

Figure 4.15 Mapping screen coordinates to window cocrdinates.

T

R T

104 Building A Better Mousetrap: Taming the Mouse in PM

USING THE WM_MOUSEMOVE MESSAGE

As discussed previously, moving the mouse around the client window generates
a mouse movement message called WM_.MOUSEMOVE. The WM_MOUSE-
MOVE message can also be used to determine the current position of the
mouse pointer. The CLKDRAW sample program uses this message to allow the
user to draw lines within the client window, thereby creating the etch-a sketch
effect. In order to obtain the pointer coordinates during WM. MOUSEMOVE
processing, you must extract the coordinates from a mouse message structure
that is maintained by PM.

The mouse message structure MSEMSG also provides access to the mes-
sage parameters for mouse button processing messages, such as button up, but-
ton down, and button click messages. PM defines a simple macro in PMWIN.H
that can be used to obtain the information contained within the MSEMSG
structure. The MOUSEMSG macro is defined as shown in Figure 4.16. The
format of the actual MSEMSG structure is in Figure 4.17.

The x and y values correspond to the current pointer position. Within the
processing of the WM_MOUSEMOVE message in the sample program, the code
will draw a line based on the movement of the mouse. The question is, if the
mouse is constantly being moved around the client window, how does PM allow
your application to keep up with the processing of the WM-MOUSEMOVE
messages?

The code to resolve WM_MOUSEMOVE processing ensures that the cur-
rent message queue does not get a flurry of wasted mouse movement mes-
sages. The messages are posted based on how quickly the message is actually
processed by the window procedure. For example, if your application mes-

#define MOUSEMSG (pmsg) \
({PMSEMSG) ({PBYTE) pmsg + sizeof (MPARAM) })

Figure 4.16 The mouse message macro MOUSEMSG.

typedef struct _MOUSEMSG // mousemsg
(

SHORT x; /1 mpl

SHORT y;

USHORT codeHitTest; /i mp2

USHORT fsinp; // input flags
} MSEMSG;

typedef MSEMSG *PMSEMSG;

Figure 4.17 The mouse message structure MSEMSG.

Using the WM_MOUSEMOVE Message 105

ptlPointerPos.x
ptlPointexPos.y

MOUSEMSG (&msg) ->X;
MOUSEMSG {&msg) ->y;

Figure 4.18 Obiaining the pointer position within the WM_MOUSEMOVE message.

sage queue is about to process a WM_MOUSEMOVE message, and another
WM_.MOUSEMOVE message has arrived for processing, PM will automati-
cally replace the message that is already in the message queue so that only the
most recent mouse movement message will be processed. The rationale behind
this is that the interrupts generated by the mouse movement occur much more
frequently than any application could feasibly handle.

The code fragment found in Figure 4.18 uses the MOUSEMSG macro to
extract the pointer position.

Determining the Pointer Position in Relation to a Rectangle

Once the pointer position coordinates have been obtained the WinPtInRect API
can be used to determine whether the coordinates reside within the boundary
of a specific rectangle (Figure 4.19).

¢ The hab parameter specifies the anchor block handle,

¢ The prel parameter specifies a pointer to the rectangle structure that will
be used to determine if the point coordinates exist within.

e The pptl parameter specifies a pointer to a POINTL structure. This param-
eter contains the coordinates that will be checked against the rectangle
coordinates to determine if the points reside within the rectangle.

Drawing the Spirographs

When the user double-clicks the right mouse button anywhere over the client
window, a symmetric image that resembles a spirograph is drawn. The image
is drawn based on the current mouse pointer position that is obtained from
WinQueryPointerPosition. The processing of the right mouse button double-
click message is shown in Figure 4.20.

The code fragment shown in Figure 4.20 obtains the current pointer posi-
tion and stores the coordinates in ptlCurrent. The coordinates are then passed
to the function SpiroGraphBox to draw the image in the client area. The im-

BOOL APIENTRY WinPtInRect (HAR hab,
PRECTL prcl,
PPOINTL pptl);

Figure 4.19 The WinPtinRect prototype.

106 Building A Better Mousetrap: Taming the Mouse in PM Using the WM_MOUSEMOVE Message 107

case WM_BUTTONZDBLCLK: // Query the current contents of the model transform
WinQueryPointerPos (HWND_DESKTOP, &ptlCurrent); GpiQueryModelTransformMatrix (hps, 9L, &matrix);
usXValue = ptlCurrent.x;
hwndStatic = WinWindowFromID{hwndClient, ID_STATIC); usY¥Value = ptlCurrent.y;
sprintf (szCoordinates, *x = $1d y = $1d", ptlCurrent.x, ptlCurrent.y};
WinSetwindowText (hwndStatic, szCoordinates); ptlDraw.x = ptlCurrent.x + (usXvalue / 10};

ptlDraw.y = ptlCurrent.y + {usYValue / 10};
SpiroGraphBox (hwnd, ptlCurrent, usRotAngle, sColor);

break; // Use default if X or Y is less than 30
if (usXvalue < 30 || us¥value < 30)
Figure 4.20 Processing the WM_BUTTONZDBLCLK message. {
ptibraw.x = ptlCurrent.x + 30;
ptlDraw.y = ptlCurrent.y + 30;
age is created simply by drawing a series of boxes on the screen and rotating }
the boxes in a circle until the image is complete. The current pointer position // The secret of creating the spirographs is simple. We simply
coordinates are used as the origin for drawing the boxes. // start by drawing a series of boxes all the way around a circle
When the user double clicks, the current coordinates that are passed to // each time through the loop we will rotate an extra x degrees.

// Where x is the value of the rotational angle that the user
// specifies via usRotAngle. All the while, we will bhe replacing
// our transform along the way with the newly calculated transform.

the function are displayed in a static text window in the lower left corner of
the window. Based on these coordinates, this function will draw the image.

The higher the y coordinate, the more the corner Qf the boxes will be \.risible for (usCounter = 0; usCounter < 360; usCounter += usRotAngle)
creating the pointed effect. The lower the y coordinate, the more the image {
will resemble a circle. The further the image is along the x and y axes, the GpiRotate(hps, // Handle to Presentation Space
larger the image will become; and conversely, the closer the image is to the ;ﬁ;gﬁn CEPLACE x gransgorm mafé].:'lx

i ioin i i i - ' ransform options
window origin in the lower left corner, the smaller the image will appear. If e e

either the x or y coordinate is less than 30, the image will use a default size for sptlCurrent) ; /7 POINTL coordinates for center of rotation

drawing. The function is shown in Figure 4.21.
GpiSetModelTransformMatrix(hps, 9L, &matrix, TRANSFORM_REPLACE) ;

GpiSetCurrentPosition(hps, &ptlCurrent);

BOOL SpiroGraphBox {HWND hwnd, POINTL ptlCurrent, USHCORT usRotAngle, SHORT sDrawColor) // Draw a normal box based on the ptlDraw coordinates that are obtained.

{ // The logic that handles the hox drawing is totally unaware that the
HPS hps; // transform will cause the box to be rotated.
POINTL ptlDraw; GpiBox (hps, // Handle to Presentation Space
MATRIXLF matrix; DRO_OUTLINE, // Outline and Fill control
USHORT usCounter; &pt1Draw, // POINTL coordinates for box
gg:ggg Ez¥32i325 0, // Horizontal corner rounding
b e , 0); // Vertical corner rounding
P57 pszCoordinate;

] WinReleasePS (hps);

hps = WinGetPS(hwnd); return FALSE;

/! Set the color of the spirograph)
GpiSetColoxibing AsbrawColor) ; Figure .21 The SpiroGraphBox function.

Figure 4.21 The SpiroGraphBox function. continued

108 Building A Better Mousetrap: Taming the Mouse in PM

Changing the Default Mouse Pointer

Graphics applications will often need to change the default mouse pointer
to provide the user an easier interface to accomplish a drawing task The
Options/Capture menu item allows the user the ability to capture a portion of
any window on the desktop. The area inside of the captured window is then
copied to the client area of the status window, which is simply another window
drawn within the client area of the main CLKDRAW window.

The illustratration shown in Figure 4.22 depicts the use of the capture
window. When the user selects the Options/Capture menuitem, the pointer
is changed to simplify the navigation of the tracking rectangle that is used
to capture a portion of the screen. The tracking rectangle is the temporary
box that the user will move and size when capturing. When the tracking is
complete, the coordinates that composed the tracking rectangle are stored i_n a
RECTL structure. Changing the system mouse pointer is as simple as changing
the cheese on a mousetrap, except there’s no yucky cheese to dispose of. The
mouse pointer is changed by calling the API WinSetPointer and specifying the
new system pointer to be used.

The prototype for WinSetPointer is shown in Figure 4.23.

CLEDRAW = Click Drane Samplae Progran
At e pES e

Tptions Ed

x = 487 y = 389

Figure 4.22 Using the capture window functionality.

Using the WM_MOUSEMOVE Message 109

BOOL APIENTRY WinSetPointer (HWND hwndDesktop,
HPOINTER hptrNew);

Figure 4.23 The WinSetPoinier prototype.

s The hwndDesktop parameter specifies the desktop window handle.
¢ The hptrNew parameter specifies the new pointer that is to be used.

The pointer used by the sample program is a simple cross that is helpful for
sizing the tracking rectangle. When the user begins the capture, the pointer is
centered within the tracking rectangle to indicate that the tracking can begin.
The tracking begins as soon as the user clicks the first mouse button. From
there, the north-west quadrant of the cross will correspond to the bottom right
end corner of the tracking rectangle. The cross pointer is more intuitive for
the user to associate with the tracking rectangle. An application should only
modify the system pointer when it provides the user an easier interface to
accomplish a specific task.

The cross pointer itself was created by the Icon Editor(ICONEDIT), pro-
vided with 0S/2. The pointer file is built as a resource into the executable, just
like a bitmap or icon.

POINTER IDP_TRACKRECT clkdraw.ptr

Loading the Pointer

Prior to the pointer being changed, it needs to be loaded from the resource. The
API that is used to load the pointer is called, WinLoadPointer. Upon success,
the WinLoadPointer API will return a valid pointer handle that can be used to
change the system pointer via a call to WinSetPointer (Figure 4.24).

¢ The hwndDesktop parameter specifies the desktop window handle

¢ The hmod parameter specifies the module handie of the module containing
the pointer resource. A NULLHANDLE may be used to indicate that the
pointer resource is built into the executable.

e The idres parameter corresponds to the identifier that represents the
pointer to be loaded.

HPOINTER APIENTRY WinLoadPointer (HWND hwndbDesktop,
HMODULE hmod,
ULONG idres);

Figure 4.24 The WinLoadPointer prototype.

110

Bullding A Better Mousetrap: Taming the Mouse in PM

case IDM_TRACKBOX:
hptrTrack = WinLoadPointer {HWND_DESKTOP,
NULLHANDLE,
IDP_TRACKRECT};

rclPrack = ProcessTrackingRectangle (hptrTrack, HWND_DESKTOP};

Figure 4.25 Loading the cross pointer used for tracking.

In the code fragment found in Figure 4.25, the pointer is loaded during
the processing of the IDM_TRACKBOX command message, and then the Pro-
cessTrackingRectangle function is called to set the pointer and handle the
tracking rectangle.

Destroying the Pointer

A pointer is a bitmap resource that requires memory from the graphics engine
heap. Although the Presentation Manager code should automatically free all of
the bitmap resources used by an application when the application terminates,
it is a good idea to free the resource as soon as possible. This is especially true,
if your application will run for hours without exiting, while the application
continuously loads bitmap resources. One common programming error is to
repetitively call WinLoadPointer without destroying the pointer when it is no
longer needed. Eventually, the application will consume the bitmap resources
in the graphics engine heap causing all kinds of nasty problems. Therefore, an
application should use the WinDestroyPointer API to free all loaded pointers

that are no longer being used (Figure 4.26).
e The hptr parameter specifies the handle of the pointer to be destroyed.

The WinDestroyPointer API will return TRUE if the function is successful
and FALSE if an error occurred. The calling thread can only destroy the
pointer if it was the same thread that created the pointer. Also, a check is done
to ensure the current pointer is not destroyed, and that the system pointers are
not inadvertantly destroyed. Finally, the worker routine for the API will call a
routine in the graphics engine to delete the bitmaps associated to the pointer,
hbmColor, hbmMiniPointer and hbmMiniColor.

BOOL APIENTRY WinDestroyPointer {HPOINTER hptr);

Figure 4.26 The WinDestroyPointer prototype.

Using the WM_MOUSEMOVE Message 111

Creating Pointers Dynamically

Since a pointer is actually composed of multiple bitmaps, an application may
choose to manually create a pointer from various bitmaps. Creating the pointer
dynamically from the bitmaps is a little bit more complex since it requires
working with multiple bitmaps, along with the required presentation space.
The pointer is created via a call to the API WinCreatePointer, specifying the
bitmap required to create the pointer. The API will return a valid pointer handle
on success or a NULLHANDLE if an error occurred creating the pointer,
The prototype for the API is shown in Figure 4.27,

¢ The hwndDesktop parameter specifies the desktop window handle.

o The hbmPointer parameter specifies the handle of the bitmap that will be
used to create the pointer.

* The fPointer value is used to indicate whether the specified bitmap repre-
sented by hbmPointer should be the size of a system pointer or a system
icon. If the value is set to TRUE, then the bitmap will be sized to fit the di-
mensions of a system pointer. If the value is set to FALSE, then the bitmap
will be sized to fit the dimensions of a system icon. The icon sized pointer
can be used for drag and drop operations.

» The xHotspot value is used to indicate the horizontal location of the pointer
hotspot. This value is in pels and is based off the lower left corner of the
image.

* The yHotspot value is used to indicate the vertical location of the pointer
hotspot. This value is in pels and is based off the lower left corner of the
image.

Processing the Tracking Rectangle

The tracking rectangle provides a visual mechanism for the user to size and
move a rectangular box that can be used to track the movement of the pointing
device. The tracking rectangle gives the developer a simple method of obtaining
the coordinates for a rectangle based on the user’s movement of the pointing
device.

The manipulation of the tracking rectangle is accomplished through the
use of the WinTrackRect API. The window manager code makes use of the

HPOINTER APIENTRY WinCreatePointer {HWND hwndDesktop,
HBITMAP hbmPointer,
BOOL fPointer,
LONG XHotspot,
LONG yHotspot};

Figure 4.27 The WinCreatePointer prototype.

110 Building A Better Mouselrap: Taming the Mouse in PM Using the WM_MOUSEMOVE Message 111

Creating Pointers Dynamically

case IDM_TRACKBOX:
hptrTrack = WinLoadPointer (HWND _DESKTOP,
NULLHANDLE,
IDP_TRACKRECT) ;

rclTrack = ProcessTrackingRectangle (hptrTrack, HWND_DESKTOP);

Figure 4.25 Leading the cross pointer used for tracking.

In the code fragment found in Figure 4.25, the pointer is loaded during
the processing of the IDM_.TRACKBOX command message, and then the Pro-
cessTrackingRectangle function is called to set the pointer and handle the
tracking rectangle.

Destroying the Pointer

A pointer is a bitmap resource that requires memory from the graphics engine
heap. Although the Presentation Manager code should automatically free all of
the bitmap resources used by an application when the application terminates,
it is a good idea to free the resource as soon as possible. This is especially true,
if your application will run for hours without exiting, while the application
continuously loads bitmap resources. One common programming error is to
repetitively call WinLoadPointer without destroying the pointer when it is no
longer needed. Eventually, the application will consume the bitmap resources
in the graphics engine heap causing all kinds of nasty problems. Therefore, an
application should use the WinDestroyPointer API to free all loaded pointers

that are no longer being used (Figure 4.26).
e The hptr parameter specifies the handle of the pointer to be destroyed.

The WinDestroyPointer API will return TRUE if the function is successful
and FALSE if an error occurred. The calling thread can only destroy the
pointer if it was the same thread that created the pointer. Also, a check is done
to ensure the current pointer is not destroyed, and that the system pointers are
not inadvertantly destroyed. Finally, the worker routine for the API will call a
routine in the graphics engine to delete the bitmaps associated to the pointer,
hbmColor, hbmMiniPointer and hbmMiniColor.

BOOL APIENTRY WinDestroyPointer (HPOINTER hptri;

Figure 4.26 The WinDestroyPointer prototype.

Since a pointer is actually composed of multiple bitmaps, an application may
choose to manually create a pointer from various bitmaps. Creating the pointer
dynamically from the bitmaps is a little bit more complex since it requires
working with multiple bitmaps, along with the required presentation space.
The pointer is created via a call to the API WinCreatePointer, specifying the
bitmap required to create the pointer. The API will return a valid pointer handle
on success or a NULLHANDLE if an error occurred creating the pointer.
The prototype for the API is shown in Figure 4.27.

» The hwndDesktop parameter specifies the desktop window handle.

e The hbmPointer parameter specifies the handle of the bitmap that will be
used to create the pointer.

* The fPointer value is used to indicate whether the specified bitmap repre-
sented by hbmPointer should be the size of a system pointer or a system
icon. If the value is set to TRUE, then the bitmap will be sized to fit the di-
mensions of a system pointer. If the value is set to FALSE, then the bitmap
will be sized to fit the dimensions of a system icon. The icon sized pointer
can be used for drag and drop operations.

» The xHotspot value is used to indicate the horizontal location of the pointer
hotspot. This value is in pels and is based off the lower left corner of the
image.

¢ The yHotspot value is used to indicate the vertical location of the pointer
hotspot. This value is in pels and is based off the lower left corner of the
image.

Processing the Tracking Rectangle

The tracking rectangle provides a visual mechanism for the user to size and
move a rectangular box that can be used to track the movement of the pointing
device. The tracking rectangle gives the developer a simple method of obtaining
the coordinates for a rectangle based on the user’s movement of the pointing
device.

The manipulation of the tracking rectangle is accomplished through the
use of the WinTrackRect APl. The window manager code makes use of the

HPOINTER APIENTRY WinCreatePointer [HWND hwndDesktop,
HBITMAP hbmPointer,
BOOL fPointer,
LONG xHotspot,
LONG yHotspot};

Figure 4.27 The WinCreatePointer prototype.

112 Building A Bstter Mousetrap: Taming the Mouse in PM

BOOL APIENTRY WinTrackRect (HWND hwnd,
HPS hps,
PTRACKINFO pti};

Figure 4.28 The WinTrackRect prototype.

tracking rectangle for moving and sizing a frame window with a sizeable

border.
Figure 4.28 shows the prototype for WinTrackRect.

¢ The hwnd parameter specifies the window that the user can use for the
tracking. If this parameter is set to HWND_DESKTOP, the user can move
the tracking pointer anywhere on the desktop.

o The hps parameter specifies the presentation space handle of the area that
is to be tracked. If this parameter is a NULLHANDLE then the hwnd
parameter will be used to determine the presentation space required for

tracking.
e The pti parameter represents a pointer to the tracking information struc-

ture called TRACKINFO, that is used to create the tracking rectangle.
The TRACKINFO structure is shown in Figure 4.29.

o The cxBorder element is used to specify the border width of the left and
right sides of the tracking rectangle.

¢ The cyBorder element is used to specify the border height of the top and
bottom sides of the tracking rectangle.

o The cxGrid element is used to specify the horizontal boundary for track

movement.

typedef struct _TRACKINFO /! trackinfo
{

LONG cxBorder;

LONG cyBorder;

LONG cxGrid;

Using the WM_MOUSEMOVE Message 113

The cyGrid element is used to specify the vertical boundary for track move-
ment.

The cxKeyboard element allows the user to use the keyboard arrow keys to
move the tracking rectangle. This element specifies the horizontal width
that the rectangle will move.

The cyKeyboard element allows the user to use the keyboard arrow keys to
move the tracking rectangle. This element specifies the vertical length that
the rectangle will move.

The rclTrack element represents a RECTL structure that contains the rect-
angle coordinates corresponding to the user’s movement of the tracking
rectangle.

The relBoundary element specifies the bounding rectangle that the tracking
rectangle cannot exceed. This element is used in conjunction with the
TF_ALLINBOUNDARY flag.

* The ptiMinTrackSize element specifies the minimum tracking size.
» The ptIMaxTrackSize element specifies the maximum tracking size.

The fs element contains the tracking flags which are shown in Figure 4.30.
Figure 4.30 shows the tracking rectangle flags.

The TF_LEFT flag is used to track the left side of the rectangle.

The TF_TOP flag is used to track the top of the rectangle.

The TF_RIGHT flag is used to track the right side of the rectangle.

The TF_.BOTTOM flag is used to track the bottom of the rectangle.

The TF_MOVE flag is used to allow all of the rectangle sides to be tracked.
The TF_SETPOINTERPOS flag is used in conjunction with the direction
tracking flags to determine how the pointer will be positioned.

If no additional direction flag is used, the pointer will be positioned in the
center of the tracking rectangle.
If used with the TF.MOVE flag, the pointer will also be positioned in the
center of the tracking rectangle.

LONG cyGrid; : TF_LEFT 0x0001
LONG cxKeyboard; : TF_TOP 0x0002
LONG cyKeyboard; ! TF_RIGHT (x0004
RECTL rclTrack; i TF_BOTTOM 0x0008
RECTL rclBoundary; TF_MOVE 0x000F
POINTL ptlMinTrackSize; TF_SETPOINTERPOS 0x0010
POINTL ptlMaxTrackSize; TF_GRID 0x0020¢
ULONG fs; TF_STANDARD 0x0040
} TRACKINFO; TF_ALLINBOUNDARY 0x0080

typedef TRACKINFC *PTRACKINFO; | TF_VALIDATETRACKRECT (0x0100

Figure 4.30 The tracking fiags.

Figure 4.29 The TRAGKINFO structure.

116 Building A Better Mousetrap: Taming the Mouse in PM Using the WM_MOUSEMOVE Message 117

clipboard data types. In these cases an application may define a private data

?YSV e Sl () format to allow other applications the ability to obtain specific data other than
SYSVALUES sysvalues: the types covered by the public cIipboarc? data types.

In order for an application to use a private clipboard format it must register
sysvalues.lcxScreen = WinQuerySysvalue (HWND_DESKTOP, SV_CXSCREEN); the format in the systern atom table. Once it is registered, the application
sysvalues.lcyScreen = w:l.nQuerygy sgaiue {HWND_DESKTOP, SV—CYIECR%:I&EEN) _ uses a unique format identification number that identifies the private format.
zizzgﬁz:ig;ﬁﬁgg:g ; ngzzg S§:V2132 gm—gggggg‘ g_giFEELSCREEN): Applications that wish to make use of the private clipboard format must be
sysvalues.loxPointer = WinQuerySysValue (HWND_DESKTOP, SV_CXPOINTER); able to identify the format, eitherl by the ft?rmat identification number or by
sysvalues.lcyPointer = WinQuerySysValue (HWND DESKTOP, SV_CYPOINTER}); querying the system atom table with the private format name.
sysvalues.lcxDlgFrame = WinQuerySysValue (HWND_DESKTOP, SV_CXDLGFRAME); Figure 4.33 shows the public clipboard data formats.
sysvalues,lcyDlgFrame = WinQuerySysValue ({HWND_DESKTOP, SV_CYDLGFRAME);
return sysvalues; e The CF_TEXT format is the simplest of all the data formats. It is used

} to represent an array of characters. A single "\0’ character is used to

terminate the text and the newline character "\n’ can be used to put a line
break in the text.

¢ The CF_.BITMAP format is the one used in the sample program. It is used
to represent bitmap data.

Figure 4.32 The GeiSysVaiues function.

Using the Clipboard o The CF_DSPTEXT format is used by the acting clipboard viewer to repre-
The CLKDRAW sample program is a very basic drawing utility. Most graphics sent a private data format for text data.
programs provide a mechanism to exchange the graphical data with other ¢ The CF_DSPBITMAP format is used by the acting clipboard viewer to
applications, as well as provide the ability to import graphical data from these represent a private data format for bitmap data.
applications. The PM clipboard is the facility provided by the Presentation s The CF_METAFILE format is used to represent a metafile.
Manager to process the exchange of the data. The clipboard is a simple ¢ The CF_DSPMETAFILE format is used to by the acting clipboard viewer
one-time data transfer mechanism, as oppossed to the Dynamic Data Ex- to represent a private data format for metafile data.
change (DDE) facility discussed in Chapter 9, which allows for multiple, non-
interactive data exchanses, Placing Bitmap Data in the Clipboard

The clipboard manager uses the cut, copy, and paste metaphors to corre-

spond to the functionality of the clipboard. The cut and copy features allow The process of putting our bitmap data in the clipboard is a relatively straight-
an application to place data in the clipboard. The difference between cut and forward task since most of the clipboard APIs only take an anchor block handle
copy is simple. Cut deletes the data from an application perspective once the as a parameter. To gain access to the clipboard, an application needs to first

data is copied to the clipboard, while a copy operation leaves the data intact. open the clipboard by calling the WinOpenClipbrd API. The purpose of this

The paste feature allows an application to retrieve data from the clipboard. All API is to block all other threads in the system from modifying the contents

of these clipboard operations must be specifically initiated by the user. of the data in the clipboard. The function will return TRUE for success and
Programming the PM clipboard is a relatively simple task, so we don’t FALSE if an error occurred opening the clipboard as a result of another ap-

spend too much time covering it in this book. However, since the sample plication having the clipboard open. Also, the API cannot be called twice from

program for this chapter is a simple drawing and capture utility, it makes the same thread. The function works by simply obtaining access to a special

sense to provide the user, the ability to exchange the graphical images created clipboard semaphore.

by this program with other programs via the clipboard.

There are essentially three different types of data that the clipboard can CF_TEXT 1
support by default: text, bitmaps, and metafiles. An application may choose to gg—gg%,r §
copy the same data in multiple data formats so that the application receiving CF DSPBITMAP p
the data can determine which form it requires when it processes the paste CF METAFILE 5
operation. Aside from the standard clipboard formats, an application may CF_DSPMETAFILE 6

choose to process data in the clipboard that does not fit into any of the public

Figure 4.33 The public ciipboard data farmats.

118 Building A Better Mousetrap: Taming the Mouse in PM Using the WM_MOUSEMOVE Message 119

BOOL APIENTRY WinOpenClipbrd(HAB habl; BOOL PutBitmapInClipboard{HBITMAP hbmClipboard)
{
Figure 4.34 Opening the clipboard. HAB habTemp;
BOOL rc¢;

: : , // Obtain anchor block handle
BOCOL APIENTRY WinEmptyClipbrd{HAB habi; habTemp = WinQueryanchorBlock {HWND_DESKTOP) ;

Figure 4.35 Emptying the contents of the ciiphoard.
// Attempt to open the Clipboard
r¢ = WinOpenClipbrd(habTemp) ;

The prototype for WinOpenClipbrd is listed in Figure 4.34.
P typ Ope P gu if (rc¢ != TRUE) // If we get an error opening, return FALSE and post message

Once the clipboard is opened by the application, the current contents of the ;
clipboard can be emptied by calling the WinEmptyClipbrd API. The prototype DisplayMessages (NULLHANDLE, "Error Opening Clipboard®, MSG_ERROR);
for WinEmptyClipbrd is shown in Figure 4.35. return rc; -

The purpose of the WinEmptyClipbrd API is to clear the contents of the }

clipboard and free all of the handles representing data for the clipboard. The

function will return TRUE for success and FALSE if an error occurred as a // OK, no error so let's empty the clipboard and

// place our bitmap in there!

result of the clipboard not being opened or the call being made from a different else
thread. The function will send a WM_DESTROYCLIPBOARD message to the {
owner of the clipboard to indicate that it free any CFI.OWNERFREE data. rc = WinEmptyClipbrd(habTemp) ;
The function works by enumerating through all of the clipboard formats and 1f {rc != TRUE}
freeing all of the resources used, like ATOMS, the memory for the clipboard .)
structtglr: a‘;l d finally the aitual datla ihithe clipboar d Iy tor P DisplayMessages {NULLHANDLE, "Error Emptying Data In Clipboard®, MSG_ERROR);
) . return rc;
Once the clipboard is emptied, an application can place data in the clip- }
board by calling the WinSetClipbrdData API. The prototype is shown in Figure
4.36. rc = WinSetClipbrdData (habTemp, // anchor block handle
hbmClipboard, // bitmap handle
¢ The hab parameter represents the anchor block handle. g::meié) ; x ?iiﬁ:?aﬁfgiﬁ;ufgfw -
e The ulData parameter is used to represent the generic handle of the object - '
that is to be placed in the clipboard. if {rc != TRUE)
o The fint parameter represents the clipboard data format. (. . ‘
e The rgfFmtInfo parameter is used to identify the type of data that is repre- g;iﬁizylggfsages {NULLHANDLE, *Error Placing Data In Clipboard", MSG_ERROR);
sented by the u/Data parameter. } [
The routine PutBitmapInClipboard is used to put the bitmap created by rc = WinCloseClipbrd (habTemp) ;
the tracking rectangle into the clipboard. The function will return TRUE for 1’{5 {rc != TRUE)
success or FALSE if an error is returned by one of the clipboard API's. The . . .)
code for this function is shown in Figure 4.37. E;iﬁiiyfgfsagES{Mme’ Error Closing Clipboard®, MSG_ERROR);
}
: : }
BOOL APIENTRY WinSetClipbrdData(HAB hab, .
ULONG ulData, } return TRUE;
ULONG fmt,
ULONG rgfFmtInfo); Figure 4.37 Puiting a bitmap in the clipboard.

Figure 4.36 The WinSetClipbrdData prototype.

120 Buiiding A Betier Mousetrap: Taming the Mouse in PM

SUMMARY

This chapter demonstrates how to capture and utilize the mouse pointer, mouse
pointer position, and pointer resources. The CLKDRAW sampl_e program is a
very simplistic drawing tool designed to illustrate various pointer program-
ming techniques. The processing of the mouse button and mouse movement
messages along with the pointer manipulation APIs are discussed throug}lout
the chapter. This chapter makes use of the mouse movement and the pointer
position concepts by integrating these elements into a fun yet somew}_lat practi-
cal graphics program. The CLKDRAW sample program uses some szmplt? and
advanced GPI drawing techniques to illustrate the effective use of_ the pointer.
Learning how to conquer the pointing device issues covered in T.hlS: ch'f\pter is
essential to creating well-designed and well-written graphical applications.

CHAPTER 5

S0S for PM Developers:
Help Management through
the Information
Presentation Facility

context-sensitive help a luxury. Now these features have become a neces-

sity. If programmers were forced to build their own help systems from the
ground up, the time and expense required to build applications would increase
significantly. Fortunately for 0S/2 developers, this is not the case—the oper-
ating system provides an internal system for managing on-line help data, the
Information Presentation Facility, IPF.

Since many of the Presentation Manager applications and utilities for 0S/2
utilize IPF to display on-line help, users of the operating system already know
how to access help using the IPF facilities. Applications that also use the IPF
API to access help provide a consistent user interface which helps give the
user a sense of unity and security knowing that help is almost always available
and accessible.

For programmers, IPF simplifies the task of providing the proper text based
on the context from which the user requests help. For simple applications, the
only program code modifications required are three API calls and a set of
tables that define the text to be displayed for each element of the application.
IPF automatically handles the user’s request for help, the display of the help
windows, the processing of messages sent to these windows, and the formatting
of the text displayed in the windows.

I n the not too distant past, computer users considered extensive, on-line,

121

122

S0S for PM Developers

DESIGNING HELP TEXT

The purpose of on-line help is to assist the user in determining }_mw to é:roperly
operate an application. Users of an application tend.to exhibit a wide range
of experience, so the on-line help system must be de31gn§d to prqwc}e various
levels of detail. Experienced users may need only a brief _descnptn?'n to jog
their memory while a novice may require lengthy explanations and “how to
i tion. '
lnfo?;; meets these needs by organizing the help text into panefs of informa-
tion. A properly designed system gives the user access to a basic, or genera.li
help panel which describes the application. Hypertext lmk§ from this panle
lead the novice user to more detailed how-to type mfo.rmatlon. Ge-neral help
panels can be created for each window of the appl?cz?tlon to explain the pul:
pose and general functionality of the window. In this instance, hyperte:ft links
can lead to additional information about the various elem_ents of the window,
such as menus and controls. The text can also be orgamzed. such that e?ch
element of the window has its own help panel which is immediately acc3551!:>1e
when the user is working with that element. Typically, these panels provide
concise, expert-level information describing the particular element, and con-
tain a hypertext link to more detailed information when necessary. .
Thus the task of the help text designer is twofold: determ‘lnmg the organi-
zation of the panels, and determining the text to be displayed in the panel. This
second item, the actual text, is largely outside the scope of this book; however,
we will describe the tagging necessary to define and link panels.

Organization of Panels

The organization of on-line help into panels is largely deter_min'ed by the struc-
ture of the application itself. The main window of {he apphc':atlon shouldlll'uscllve
a panel, referred to as the general help panel, which provxclles an overall l(;
scription of the application. If desired, this panel can contain hypert.ext lin
10 additional information; for example, panels that describe the major fun(.:-
tional areas of the application and/or how-to panels. The general help Rane_l is
displayed when the user requests help via the F1 key and no other appllcgtlon
element is currently in use, or when the user selects the General Help item
he Help menu.
fmn;;plicatigns that define special uses for the keyboard keys, such as accelci
erator keys, should provide one or more keys help panels to list tht?se keys an
their functions. If appropriate, the keys help panel(s} can contain hypertext
links to the panels associated with menu items or OtheI: apphcanon elements
to which the special use keys are mapped. This panel is displayed when the
user selects the Keys Help item from the Help menu.

Constructing the IPF Source Flie 123

Next, panels should be defined for each element of the main window. These
elements include menu items, pushbuttons, and other controls. The panels for
primary menu items like File should describe the type of actions performed by
the submenu items and contain hypertext links to the panels defined for the
submenu items. Panels for the submenu items should describe the action that
is taken when that item is selected. If the item causes a secondary window,
such as a dialog box to be displayed, a hypertext link to the general help panel
for the secondary window should be provided.

After the help panels for the main application window have been defined,
help panels for the secondary windows—dialog boxes, message boxes, and so
on—should be defined. Panels for these windows are defined similarly to those
for the main window: A general help panel is defined to explain the function
of the window, and additional panels are defined as required for each control
or menu item associated with the window.

While observing the preceding will provide good context-sensitive help for
the application, the designer should remember that IPF also generates a table
of contents for the panels. Since the table of contents is accessible by the user
when a help panel is displayed, some care must be taken to ensure that a
logical representation of the panels in the help file is shown. The IPF table of
contents is essentially an outline of the help file, organized in the same order as
the panels are defined in the help file source and using the title of the panel as
the table of contents entry. Panels may be defined with various heading levels,
the highest level being level 1. The practice of defining all panels in a help file
at level 1, while common, significantly reduces the usefulness of the table of
contents. A scheme that defines the general help panels for each window at
heading level 1 and the menu and control panels at level 2 or below provides
a logical, easy-to-navigate organization. The keys help panel should be defined
at level 1. A single how-to panel should be defined at level 1 or, if several are
available, define a summary panel at level 1 and the actual help panels below
this at level 2.

IPF also allows indexes to be defined which provide access to all panels
that reference a particular topic. Indexes should be defined as needed. If no
index entries are available, IPF will disable the help index item in the menu
of the help window—the application is responsible for removing or disabling
this item in its Help menu.

CONSTRUCTING THE IPF SOURCE FILE

Help files are created by constructing a tagged ASCII file containing the help
text. Special tags are used to split the text into panels, describe how the text
should be formatted, establish links between panels, and so forth. This file is
then used as the source for the IPFC compiler, provided in the 0S/2 Devel-

124

S0S for PM Developers

:userdoc.
thl.Title
Word
:euserdoc.

Figure 5.1 A minimal heip scripl.

oper’s Toolkit, which produces the help library file used by IPF at runtime.
Construction of the help source file can proceed in two phases. In the first
phase, the application developer constructs a template file whicb defines the
panels and hypertext links that represent the application architecture. The
panel text in this file merely indicates the subject of the help text for the panel.
The actual text is added in phase 2 by technical writers or others responsible
for this task. As our main concern is the task of the application program-
mer, let’s examine how the template file would be constructed for a sample
application, a text editor.

Figure 5.1 shows a basic help source file which consists of three tags and
one word of text. This file can be used as the initial template from which to
build a full help file for an application. Note that IPF tags begin with a colon
and end with a period. The :userdoc. tag must be the first tag of the source file
and indicates to IPFC that this is the beginning of the document. The reuserdoc.
tag must be the last tag in the file; text beyond this tag is ignored. The :hl. tag
defines a level 1 panel which will include all text until another :hx. tag or the
-euserdoc. tag is encountered. “Title” is the text to be displayed in the title bar
of the help window when this panel is displayed and is also used to represent
this panel in the table of contents. “Word” is the text that will be displayed in
body of the help window. ‘

Using this basic file, we begin adding panels as described in the previous
section. The first step is defining the general help panel for the main window of
the application. Figure 5.2 shows the basic help source file modified to deﬁr!e
the general help panel for an application named Editor. In this figure, the basic
help file has been modified to include a valid help panel title, and the text of
the panel has been changed to a placeholder to be filled in later. Also, the :h{l.
tag now contains a res= attribute which provides the panel with a numeric
resource ID. This ID is required for IPF to automatically access the appropriate
panel when help is requested and must be unique within the help file. W_hen
the application coding language permits, the panel IDs can be defined in a

:userdoc.

:hl res=1000.Help for Editor

:p.Insert Editor "General Help® text here.
:euserdoc.

Figure 5.2 Basic help seript for Editor.

Constructing the IPF Source File 125

separate header file which is used by both the application code and the IPF
source file. With this technique, the IPF source file is first passed through the
coding language’s precompiler and then compiled with IPFC. Be forewarned,
however, that IPFC does not perform any arithmetic operations—the definition
in the header file must use an explicit numeric value, not a calculation. The
sample program accompanying this chapter uses this technique and should be
referenced if more detailed information is required.

Now the help panels for the primary menu items and controls associated
with the main window need to be defined. Figure 5.3 shows the IPF source file
for Editor which defines three primary menu items, File, Edit, and Help, and
does not have any embedded controls. Level 2 panels have been added for each
of the main menu items using an :h2. tag. When the table of contents for this
file is displayed, these panels will be displayed under the entry for the main
application window general help. In addition, :/ink. and :elink. tags have been
added to the general help panel. These tags are used to define a hypertext link
allowing the user to jump from one panel to another. The text between the two
tags is displayed with hypertext highlighting. When the user clicks on this text,
the panel defined by the hypertext link is displayed. The :/ink. tag contains two
attributes, reftype=, which indicates the type of link, and res=, which indicates
the resource ID of the linked heading. Reftype hd indicates that the link is to
another help panel. Note that a :p., or paragraph, tag is used to cause the text
and each of the links to be displayed on a separate line.

Next, panels for the submenu items of each of the main menu selections are
defined. Figure 5.4 illustrates the file following the addition of panels for the
File menu. These panels are defined with :h3. tags and will thus be displayed
under the Help for File Menu entry in the table of contents. The Help for Open
Menu pane] contains two additional links. The first link references the Level
1 panel for the dialog window used to select a file. By following this link, the
user will be able to determine all the information required to actually open the
file just by selecting help on the Open menu item. The second link references

ruserdoc.

:hl res=1000.Help for Editor

:p.Insert Editor "General Help" text here.
:p.:link reftype=hd res=1100.File:elink.
:p.:link reftype=hd res=1200.Edit:elink.
:p.:1link reftype=hd res=1300.Help:elink.
:h2 res=1100.Help for File Menu.
:p.Insert FILE menu help here.

:h2 res=1200.Help for Edit Menu.
:p.Insert EDIT menu help here.

th2 res=1300.Help for Help Menu.
:p.Insert HELP menu help here,
:euserdoc.

Flgure 5.3 Adding Editor's menu items.

126 $0S for PM Developers

:userdoc.

+hl res=1000.Help for Editor

:p.Insert Editor "Extended Help" text here.
:p.:link reftype=hd res=1100.File:elink.
:p.:link reftype=hd res=1200.Edit:elink.
:p.:link reftypeshd res=1300.Help:elink.
:h2 res=1100.Help for File Menu

:p.Insert FILE menu help here.

:1ink reftype=hd res=1110.New:elink.
:1ink reftype=hd res=1120.0pen...:elink.
:link reftype=hd res=1130.Save:elink.
:link reftype=hd res=1140.Save as...:elink.
.:1link reftype=hd res=1150.Exit:elink.

+h3 res=1110.Help for New Menu

:p.Insert FILE NEW menu help here.

:h3 res=1120.Help for Open Menu

:p.Insert FILE OPEN menu help here.

:p.:link reftype=hd res=2000.File Open Dialog Window:elink.
:p.Additional Information

:p.:1ink reftype=hd res=20010.File Management Concepts:elink.
:h3 res=1130.Help for Save Menu

:p.Insert FILE SAVE menu help here.

:h3 res=1140.Help for Save As Menu

:p.Insert FILE SAVE AS menu help here.

:h3 res=1150.Help for Exit Memu

:p.Insert FILE EXIT menu help here.

+h2 res=1200.Help for Edit Menu

:p.Insert EDIT menu help here.

:h2 res=1300.Help for Help Menu

:p.Insert HELP menu help here.

:hl res=2000.Help for File Open Dialog Window

:p.Insert extended help for the file open dialog box here.
:hl res=20000.User’s Guide

Insert User’s Guide introduction here.

:h2 res=20010.File Management

Insert File Management Concepts section here.

:euserdoc.

Flgure 5.4 Adding Editor’s file menu heip.

R

a Level 2 panel which provides the novice user with additional information
on general file management concepts. Links similar to these two should also
be provided as appropriate for the other file menu items—the Help for Save
as panel should contain a link to the general help panel for the Save as dialog
window and all the panels except Help for Exit should provide a link to the
file management concepts panel.

When the panels for the Edit and Help submenu items have been added
to Figure 5.4, the main application window’s help template will be complete.
The same process should then be followed to complete the template for other

Mapping Appiication Eiements to Help Panels 127

fipplication windows such as the File Open dialog window. Additional general
information or how-to panels should be added to the User's Guide section
as n._f:eded or desired. Finally, a Keys help panel should be provided if the
application assigns special functions to the keyboard keys. A link to this panel
should be provided from the Keys help submenu item of the Help menu.

The template help source file is now complete. After compilation, the file
can be used as is during application development and tested while the actual
text is being developed. The file is compiled by invoking the IPFC compiler
with the name of the source file as a parameter. Assuming the name of the

source file is editor.ipf, the following command line would be used to compile
the file:

IPFC editor

The ipf extension is the default expected by the IPFC compiler; however, other
extensions can be used if the file name and extension are both specified on the
command line.

The IPFC compiler can also be used to generate on-line documents which
are displayed using the OS/2 View utility by adding the /INF parameter to
the command line. Generating a viewable document from a help source file is
often useful to verify the contents of the file during the development phases.

MAPPING APPLICATION ELEMENTS TO HELP PANELS

In order to provide the correct on-line help panel for each window, control,
menu item, dialog box, and so on, IPF requires the application to define a set
of tables that map these elements to the proper help panel. Two table types are
used: A help table maps help panels to frame windows and help subtables map
help panels to control and menu windows within frame windows.

The help table is an array which normally contains one element for each
frame window in the application. Each element of the array is a structure of
type HELPTABLE which defines the general help panel for the frame window
and identifies the help subtable for the nonframe child windows of the frame.
The final element of the array must contain a structure whose elements are all
sl:t to eg:l’;er zero or NULL. The HELPTABLE structure is defined as shown in

igure 5.5.

typedef struct _HELPTABLE {

USHORT idappWindow;
PHELPSUBTABLE phstHelpSubTable;
USHORT idExtPanel;

} HELPTABLE;

Flgura 5.5 The HELPTABLE structure.

128 s0S for PM Developers

e The idAppWindow element is the window ID of the frame window whose
help is mapped with this structure.

. Thtf phstHsll;SubTable element is a pointer to the ﬁrs'_c element of the sub-
table which maps the frame window’s children to their proper help }.Janel.

e The idExtPanel element is the resource ID of the help p?.nel to display
when general help is requested for the frame window. This value should
match one of the res= IDs defined in the help source file.

A help subtable is an array of 16-bit values which define the mapping
between nonframe child windows and help panels. The first elemer_lt indicates
the number of array elements that are used to represent each entry in the‘ table
and is normally set to the value 2. The remainder of the array comprises a
number of mapping entries each consisting of the specified nux:nber of. array
elements. Each entry contains at least two 16-bit values: the first is the window
ID of a child window, and the second is the resource ID of the l:n?lp panel to
be displayed when help is requested for the child window. Additional 16-bit
values may be included in each entry; if so, these values are not used by IPF
and are available for application defined use.

Defining Help Tables

The help tables and subtables may be variables within the application’s code
but normally are defined in the application’s resources. The 0S5/2 Resource
Compiler has defined keywords and resource types spec1ﬁca}lly for generating
the help mapping information. The generic syntax for defining a help table is
given in Figure 5.6. o

The HELPTABLE keyword indicates that the Resource Compiler is to cre-
ate a HELPTABLE resource. The helptable_id is the numl?er 'Ehat the compiler
will assign to the HELPTABLE resource and which appllcat}ons use to refer-
ence the resource. The BEGIN and END keywords are required to signal the
start and finish of the individual elements of the help table. Each HELPITE:M
statement defines one entry. The window._id is the ID assigned to a frame win-
dow. The subtable_id is the resource number assigned to the help subtable
which defines the help panel mapping for the nonframe children of the spec-
ified frame window. The extended_help_panel_id is the help panel resource ID
assigned to the panel containing the general help for this window.

HELPTABLE helptable_id

BEGIN))
HELPITEM window_id, subtable_id, extended_help panel id

END

Figure 5.6 Resource file HELPTABLE syniax.

Mapping Application Elements to Help Pansls 129

HELPTABLE APP_HELPTABLE_ID

BEGIN
HELPITEM APP_WINDOW_ID, APP_SUBHELP_ID, 1000
HELPITEM OPEN_DLG, OPEN_SUBHELP_ID, 2000
HELPITEM SAVEAS_DLG, SAVEAS_SUBHELP_ID, 3000
HELPITEM MSGBOX_ID, 0, 4000
END

Figure 5.7 The HELPTABLE for Editor.

Figure 5.7 shows the help table definition statements for the Editor ap-
plication. The HELPTABLE ID, window IDs, and HELP SUBTABLE IDs are
arbitrary and should be defined in a header file for use by the application and
the resource compiler. The resource compiler’s preprocessor will substitute
the actual numeric values at compile time. This technique may also be used
for the extended _help_panel id if a preprocessor is available for substituting the
appropriate numeric values into the help source prior to compilation by IPFC.
In the example, this technique is not used—the panel resource IDs from Figure
5.4 are explicitly specified.

Examining the figure more closely, the HELPTABLE resource is identified
as APP_ HELPTABLE_ID. The table contains one entry for each of the applica-
tion's frame windows, The first entry is for the main application window which
is created with window ID APP_WINDOW.ID. A HELPSUBTABLE will be used
to provide context-sensitive help for this window’'s menus; the ID of the sub-
table will be APP.SUBHELP_ID. The help panel with resource ID 1000 will be
displayed when the user requests general help for the window. The second en-
try in the table is for the dialog used to open files. OPEN_DIALOG specifies the
ID with which the window is created, and OPEN_SUBHELP_ID identifies the
help subtable that maps the dialog’s controls to the correct context-sensitive
help panel. Help panel 2000 is displayed when general help is requested for
the dialog. The third entry is for the dialog used to save the edited file under a
new file name. The fourth entry is for a message box. Note that the help sub-
table entry for this window is set to zero, indicating that no subtable exists and
that specific context-sensitive help is not available. If the user requests help on
one of the message box buttons, the general help panel for the message box is
displayed.

One further note that can help in organizing help tables: Since the HELP-
TABLE, window, and HELPSUBTABLES are all different types of entities,
they may all be assigned the same ID; for example, APP.WINDOW_ID could
be used as the helptable._id and as the window_id and subtable_id for the first
HELPITEM.

Defining Help Subtahies

HELPSUBTABLES must now be defined for each frame window to map the
controls, menus, and other nonframe child windows to the appropriate help

130 s0S for PM Developers

HELPSUBTABLE helpsubtable_id
SUBITEMSIZE subitem_size
BEGIN
HELPSUBITEM subwindow_id, help_panel_ id
END

Figure 5.8 Resource file HELPSUBTABLE syntax.

panels. The resource compiler syntax for defining a help subtable is given
in Figure 5.8. The HELPSUBTABLE keyword indicates that the Resource
Compiler is to create a HELPSUBTABLE resource. The resource is to be as-
signed helpsubtable_id. The SUBITEMSIZE phrase is optional; if specified,
subitem_size determines the number of 16-bit values to assign to each HELP-
SUBITEM entry in the table—the minimum, and default, value is 2. The BE-
GIN and END keywords signal the beginning and end of the list of individual
elements in the table. Each HELPSUBITEM statement maps a child element
of the frame window to a help panel. The subwindow_id field is the ID of the
child element to be mapped, and the kelp_panel_id field identifies the resource
ID of the help panel to be displayed when help is requested for the child el-
ement. If subitem_size has been specified, additional values may be added at
the end of the line for use as defined by the application.

Figure 5.9 shows the help subtable coding used to provide context-sensitive
help for the Editor application’s main window. The ID of the subtable is set to
APP_SUBHELP_ID. Each element of the table is a pair of values specifying a

HELPSUBTABLE APP_SUBHELP_ID

BEGIN
HELPSUBITEM MENUID_FILE, 1100
HELPSUBITEM MENUID_FILENEW, 1110

HELPSUBITEM MENUID_FILEOPEN, 1120
HELPSUBITEM MENUID FILESAVE, 1130
HELPSUBITEM MENUID FILESAVEAS, 1140
HELPSUBITEM MENUID FILEEXIT, 1150

HELPSUBITEM MENUID _EDIT, 1200
HELPSUBITEM MENUID_EDITCOPY, 1210
HELPSUBITEM MENUID_EDITCUT, 1220
HELPSUBITEM MENUID_EDITPASTE, 1230
HELPSUBITEM MENUID_HELP, 1300

HELPSUBITEM MENUID_HELPINDEX, 1310

HELPSUBITEM MENUID_HELPGENERAL, 1320

HELPSUBITEM MENUID HELPUSING, 1330

HELPSUBITEM MENUID HELPKEYS, 1340

HELPSUBITEM MENUID HELPTUTOR, 1350

HELPSUBITEM MENUID_PROUDINFO, 1360
END

Figure 5.9 The Editor main window help subtabla.

Adding Help to Your Source Code 131

menu item ID and the help panel resource ID from the help source file, For
example, the first entry specifies the menu ID for the FILE item on the main
menu, and help panel resource ID, 1100, for the panel describing the use of
the File menu. The second entry specifies the menu ID of the New submenu
item under the File menu, and the ID of the help panel describing the function
of the new submenu item. Similar subtables would be defined for the dialog
boxes used by the editor application.

MENU SUPPORT FOR ON-LINE HELP

Help index

Applications that use the IPF feature normally add a Help item to the main
menu of the primary application window. The Help menu should normally be
added to any frame window or popup menu defined for the application, and it
typically contains the following subitems:

displays a help window that contains the index entries for the help library.
Do not include this subitem if the library does not contain any index entries.

General help displays the general help panel for the application, typically the general help

Using help
Keys help

Tutorial

panel for the primary application window.

displays the 0S/2 panel that describes the user interface to IPF,

displays a panel that describes special keys defined by the application. This
entry should not be included if the panel is not defined or if the application
does not use any special keys.

executes the tutorial for the application. Note that this is an executable file

provided with the application. If no such executable exists, do not add this
menu item.

Product information

displays an application-defined window that identifies the application and
provides other pertinent information. Note that this function is not related
to IPF; however, CUA guidelines specify that this subitem be placed with the
Help menu,

ADDING HELP TO YOUR SOURCE CODE

We have now seen how the help source file is generated and how the help
panels are mapped to the application elements via tables defined in the appli-
cation’s resource script. Before IPF will actually provide help, the application
must provide IPF with the information required to access the help file and
the mapping tables. This information is provided by establishing an instance
of IPF for the application and then associating this instance with the applica-
tion’s windows. When the Help menu is provided, code must be added to the
application’s WM_COMMAND message processing to support the menu items.

132 $0S tor PM Developers

HWND APIENTRY WinCreateHelpInstance(

HAB hab,
PHELPINIT phinitHMInitStructure);

Figure 5.10 The WinCreateHelpinstance prototype.

Creating an Instance of IPF

An instance of IPF is an object window with which the user and the: applia-::ation
communicate to control the display of help information. This object window
is called a help instance and is created using the WinCreateHelpInstance API.

This API is prototyped as shown in Figure 5.10.

The hab parameter is the thread’s anchor block handle obtained from the
Winlnitialize API.

The phinitHMInitStructure parameter is a pointer to a HELPINIT struc-
ture which provides the information that IPF needs to locate and display
help for the application. The structure is defined in Figure 5.11.

The cb element specifies the number of bytes contained in the structure.
This element should be set to sizeof{f HELPINIT).

The wulReturnCode element contains the error code for any error encoun-
tered by IPF during creation of the help instance. _
The pszTutorial name element is a pointerto a zero-terminated ASCII string
containing the name of the executable file that executes the application’s
tutorial. If this element is non-NULL, IPF will automatically add a Tutorial
itemn to the Help menu of the help windows. If no tutorial is provided, this
element should be set to NULL.

The phtHelpTable element can contain either a pointer to a HELPTABLE,
which has been constructed in memory, or the ID of the HELPTABLE
resource in an executable module. In the latter instance, the high word of
phtHelpTable is set to 0xFFFF and the low order word is set to the resource

typedef struct _HELPINIT {

ULONG cb;

ULONG ulReturnCode;

PSE pszTutorialName;

PHELPTABLE phtHelpTable;

HMODULE hmodHelpTableModule;

HMODULE hmodAccelActionBarModule;

ULONG idAccelTable;

ULONG idActionBar;

PSZ pszHelpWindowTitle;

ULONG fshowPanellId;

PSZ pszHelplLibraryName;
} HELPINIT;

Figure 5.11 The HELPINIT structure.

Adding Help to Your Source Code 133

ID—set the element to the value (PHELPTABLE)MAKEULONG(resource_
id,0xFFFF). Note that element hmodHelpTable must also be set when using
resources.

¢ The hmodHelpTable module element specifies the module handle of the ex-
ecutable module whose resources contain the help table. Setting this field
to NULLHANDLE indicates that the resources are contained in the appli-
cation’s .EXE file. If the resources are contained in a separate DLL, this
element should be set to the module handle returned from DosLoadModule
when the DLL was loaded.

o The hmodAccelActionBar module element specifies the module handle of
the executable module whose resources contain a customized accelerator
table and/or action bar menu. Setting this field to NULLHANDLE indi-
cates that the resources are contained in the application's .EXE file. If
the resources are contained in a separate DLL, this element should be set
to the module handle returned from DosLoadModule when the DLL was
loaded. This element should be set to NULLHANDLE if the application
does not specify a customized accelerator table or menu.

¢ The idAccelTable element specifies the ID of the accelerator table in the
resource file. This element should be set to zero if the application does not
specify a custom accelerator table.

e The idActionBar element specifies the ID of the customized action bar
menu in the resource file. This element should be set to zero if the appli-
cation does not specify a custorn menu.

» The pszHelpWindowTitle element is a pointer to a zero-terminated ASCII
string which IPF uses as the title for the window in which help information
is displayed.

o The fShowPanelld element is a flag that is used to cause IPF to display the
help panel ID in the title bar of each help panel window. Normally this
element is set to CMIC_HIDE_PANEL_ID so that the IDs are not displayed.
Setting this element to CMIC_SHOW_PANEL _ID can often be helpful dur-
ing debugging.

o The pszHelpLibraryName element is a pointer to a zero-terminated ASCII
string that contains the name(s) of the file(s) where the help panel informa-
tion is stored. If multiple file names are specified, they should be separated
by the space character. Help library files are created from help source files
by the IPFC compiler contained in the 0S/2 Developer’s Toolkit.

The WinCreateHelpInstance API returns the handle of the created object
window if successful; NULLHANDLE is returned if the API fails. In this in-
stance, the error code for the failure is stored in the ulReturnCode element
of the HELPINIT structure. The call to WinCreateHelpInstance is normally
placed in either the main routine of the application or in the routine that pro-
cesses the WM_CREATE message for the application’s main window. Figure

134 s0S for PM Developers

HELPINIT hi;

{+ Fill in the help manager initialization structure */
hi.chb = sizeof(HELPINIT };

hi.ulReturnCode = 01;

hi.pszTutorialName = NULL;

hi.phtHelpTable = { PHELPTAELE) MAKEULONG (APP_HELPTAB_ID, Oxffff |;
hi.hmodHelpTableModule = NULLHANDLE;
hi.hmodAccelactionBarModule = NULLHANDLE;
hi.idAccelTable = 01;

hi.idActionBar = 01;

hi.pszHelpWindowTitle = "Help for Editor®;
hi.fShowPanelld = CMIC_HIDE PANEL_ID;
hi.pszHelpLibraryName = "EDITOR.HLP®;

/* initialize an instance of the help manager for this application */
hwndHelpInstance = WinCreateHelpInstance(WinQueryAnchorBlock (hwnd} ,
&hi };
if (hwndHelpInstance == NULLHANDLE} {
ShowError (hi.ulReturnCode);
| /* endif */

Figure 5.12 Creating a help instance.

5.12 shows code that the Editor application (discussed earlier) could use to
create its help instance.

The application first initializes the HELPINIT structure. Element ch is set
to the size of the structure, and ulReturnCode is initialized to zero. No tutorial
application is available, so pszTutorialName is set to NULL. Since the help ta-
ble is contained in the executable’s attached resources, the low-order word of
phtHelpTable is set to APP_ HELPTABID, the value specified for the help table
in the resource script; and the high-order word is set to Oxffff. Element hmod-
HelpTableModule is set to NULLHANDLE, indicating that IPF should search
the executable for the HELPTABLE resource. The application does not define a
custom accelerator table or help window menu, so elements idAccelTable and
idActionBar are both set to zero, and element hmodAccelActionBarModule is
set to NULLHANDLE. The help window title bar text is specified by setting
element pszHelpWindowTitle to a pointer to the string “Help for Editor.” Ele-
ment fShowPanelld is set to CMIC_HIDE PANEL.ID to prevent the resource
IDs of the help panels from being displayed. Finally, the pszHelpLibraryName
is set to point to the string “EDITOR.HLP” the name given to the help library
produced from the help source file.

After the structure is initialized, the help instance is created by calling Win-
CreateHelpInstance. The hab parameter is obtained by querying the anchor
block for the current window; or, if this code is placed in the main routine, to
the handle returned for WinlInitialize. The phinitHMInitStructure parameter
points to the HELPINIT structure just initialized. If the help instance handle

Adding Help to Your Source Code 135

BOOL APIENTRY WinAssociateHelpInstance{HWND hwndHelpInstance,
HWND hwndApp) ;

Figure 5.13 The WinAssociateHelpinsiance pratotype.

retumsd is NU:{ILHAI?IDLE, an error processing routine is called with the er-

ror code passed back to the application in the wlRerurnCode el

HELPINIT structure, G ment of the
ane the help instance has been created, the WinAssociateHelpInstance

API is called to attach the help instance to the window chain. The prototype

for this API is shown in Figure 5.13.

* The hwndHelplnstance parameter is the help instance handle returned by
WinCreateHelpInstance.

¢ The hwndApp parameter is the window handle of the frame window with
which the help instance is to be associated. IPF provides help services
for this window, all windows descended from this window, and windows
gwned, either directly or indirectly, by this window. Normally, the help
instance is associated with the main frame window of the application
enabling IPF to service all windows of the application that are descended
from this window. Passing NULLHANDLE for the parameter removes the
association between the window chain and the help instance.

WinAssociateHelpInstance returns TRUE if the association was successful
and FALSE if the association failed. Figure 5.14 provides example code foxi
calling WinAssociateHelpInstance. In this example, the hwndHelpInstance
parameter is set to the handle returned from WinCreateHelpInstance. The
code is assumed to be within the message processing for the WM_CREATE
message, s the hwndApp parameter is set to the frame window handle which
is the parent of the current window, the application’s client window. If an error
occurs, a routine is called to obtain and process the current PM error code.

When the help instance has been successfully associated with the window
chain, IPF will automatically display help panels as defined in the help tables
when the user requests help by pressing the F1 key or by clicking a pushbutton
control with the BS_HELP style.

{* assqciate the help instance with the frame window */
if {!'WinAssociateHelpInstance{ hwndHelpInstance,
_ WinQueryWindow{ hwnd, QW_PARENT }i) |
ShowWinError();
} /* endif */

Figure 5.14 Associating help with a window.

136 s0S for PM Developers

PROCESSING THE HELP MENU COMMANDS

Most applications that use the IPF facilities add a Help item to the menus of
their frame windows. Typical menu items associated with the Help menu were
discussed previously; however, IPF does not provide any automated processing
for these menu items. The application must handle the menu items when a
WM_COMMAND message specifying the menu ID of the menu item is received.
This section describes the typical processing used to process the menu items.

The Help Index menu item displays the index window for the application’s
help library. The WM_.COMMAND message processing for this item should
send a HM_HELP_INDEX message to the application’s help instance. Figure
5.15 shows the WM_COMMAND case statement to accomplish this function.

In the figure, WinQueryHelpInstance is called to obtain the handle of the
help instance window associated with the window that received the message.
WinSendMsg is then called to send the HM_HELP_INDEX message to the
help instance window. Parameters mpl and mp2 of this message are both
reserved and set to zero. IPF displays a window listing the index entries for
the current help library when this message is received. If no index entries are
contained in the help library, HMERR INDEX NOT_FOUND is returned from
the WinSendMsg call.

The General help mepu item is used to display the general help panel
for the currently active window, normally the window from which the menu
item was chosen. The application should respond to this command by sending
an HM GENERAL_HELP message to the help instance associated with the
window. Figure 5.16 shows how this is accomplished.

As before, WinQueryHelpInstance is called to obtain the current help in-
stance window handle. WinSendMsg is then called to send the HM. GENERAL.
HELP message to the help instance. The parameters to this message are both
reserved and should be set to zero. When IPF receives this message, it searches
the help tables to find the ID of the general help panel for the current win-
dow and then displays the panel if found. If the current window does not

case MENUID_HELPINDEX:

{
HWND hwndHelp;

hwndHelp = WinQueryHelpInstance{ hwnd };
if (hwnddelp != NULLHANDLE] {
WinSendMsg | hwndHelp, HM_HELP_INDEX, 0L, 0L };:
} /% endif */
]
break;

Figure 5.15 Processing the Help index menu item.

Processing the Help Menu Commands 137

case MENUID_GENERALHELP:
{
HWND hwndHelp;

!}wnd}lelp = WinQueryHelplInstance| hwnd);
if t(hwndHelp != NULLHANDLE) {
WinSendMsg(hwndHelp, HM_GENERAL_HELP, 0L, OL };
} /* endif */
)
break;

Figure 5.16 Processing the General help menu ilem.

have a gf:neral help panel, IPF searches the parent and owner chains until a
frame window with a general help panel is found. If no general help panel
is found, IPF sends an HM_.GENERAL_HELP_UNDEFINED message back to
T.he .application which may either ignore the message, in which case no panel
is displayed, or take steps to display an alternate panel or otherwise notify the
user of the failure.

Tl‘xe Using help menu item normally displays an IPF-supplied panel that
des_crlbes how on-line help is used. When this command is received, the appli-
cation should respond by sending an HM_DISPLAY_HELP message 'to the help
instance. Figure 5.17 provides an example of the required code. After obtaining
thc.e current help instance, the HM_DISPLAY HELP message is sent by calling
WinSendMsg. In this instance, both parameters to the HM_DISPLAY.HELP
message are set to zero. This particular combination of parameters causes
IPF to display either its own Using help panel or an application-defined panel
that has been specified by sending the HM_REPLACE_USING.HELP message
to th_e help instance. The low-order word of this message’s mpl parameter
specifies the help resource ID to be displayed when the Using help panel is
requested via the preceding special instance of the HM.DISPLAY. HELP mes-
sage or when the user selects the Using help menu item for the help display

case MENUID_USINGHELP:

{
HWND hwndHelp;

?wndﬂelp = WinQueryHelpInstance(hwnd };
if (hwndHelp != NULLHANDLE) {
WinSendMsg{ hwndHelp, HM_DISPLAY_HELP,
MPFROMLONG (0L}, MPFROMLONG (0L}) ;
Yy /% endif */
}
break;

Figure 5.17 Proacessing the Using help menu item.

138

S0S for PM Developers

window. The high-order word of mp1 and parameter mp2 are reserved and
should be set to zero.

The Keys help menu item sho
special uses that the application

uld display a help panel that describes any
defines for the keyboard. The processing
required when this menu item is selected is a bit more gomplex t‘}:lan tha;
previously discussed. Unlike Using help, IPF does not pl.'owde a defa It éaam’e
for Keys help, but does provide a Keys help menu item in thfe Help window’s
menu. Therefore, IPF must send a message to the application to determine
which panel to display whenever a request for keys help arrives, \;f'het}-ler
from the application or from the Help window menu. From the app 1caélfg
standpoint, when the Keys help menu item is selec.ted, an HMJ(EYS.H p
message is sent to the help instance. When IPF receives this message, it sen
an HM_QUERY.KEYS_HELP message to the application. Thfe application must
then return either the help resource ID for the panel to be displayed or zero t(;
inform IPF that no panel should be displayed. Figure 5.18 s'hows a section o
the window procedure code to perfoml'l these functions, ultimately returning
: SHELP panel ID for display. _
the ?llleDTlﬁfo\:'ial rnemf item is used to execute an application-deﬁnecli tuton.al.
When this command is received, the application does not communicate with
IPF but processes the request independently, normally by executing antohtheé
program using either the WinStartApp API or thg DosExecPgm API— l'e
Library system function is not recommended as it can prevent the app. ica-
tion from processing messages until the started program completes execution.
If the user selects the Tutorial on the Help window’s menu, IPI':‘ sends an
HM._TUTORIAL message to the application. Parameter mpl of this message
is a pointer to a string that specifies the name of the tutorl_al to be executed.
The name will be either the name passed in the pszTutorial element‘ of the
HELPINIT structure or a panel-specific name, added to the panel using the

tutorial attribute of the :hx. tags.

switch (msg) {
case HM_QUERY KEYS_HELP:
return (MRESULT)HID_KEYSHELP;
case WM_COMMAND:
switch (SHORT1FROMMP{mpl)} {
case MID _KEYSHELP: (
hwndHelp = WinQueryHelpInstance(hvmd) ;
if (hwndHelp != NULLHANDLE} {
WinSendMsg(hwndHelp, HM_KEYS_HELP,
MPFROMLONG (0L), MPFROMLONG{0L)};
Y} /* endif */
break;
} /* endswitch */
} /* endswitch */

Muitiple Frame Window Considerations 139

The Product information menu item is not related to IPF and its processing
is entirely up to the application. Typically, an application will respond to this
menu item by displaying a dialog box that names the application, provides
version information, and displays any additional information that the author
of the application deems appropriate.

MULTIPLE FRAME WINDOW CONSIDERATIONS

Figure 5.18 Processing the Keys help menu item.

IPF’s mapping of help panels to window elements is based on the activation
states of an application’s windows. When IPF receives a help request, it first
determines the currently active window using the WinQueryActiveWindow
API. IPF then searches the parent and owner chains for this window to find a
frame window that is associated with a help instance. The help table for this
instance is then searched for a window ID that matches the active window.
If a match is found, IPF then searches the help subtable to find a match for
the ID of the element that generated the help request. If a subtable match
is found, the panel mapped by that subtable is displayed. If IPF cannot find
a matching subtable entry, an HM_HELPSUBITEM_NOT_FOUND message
is sent to the application window associated with the help instance. If the
application responds to this message by returning FALSE, the general help
panel for the matched help table entry is displayed; if the response is TRUE,
no help is shown.

Normally, the association of a help instance with the main application
frame window is sufficient to allow IPF to map the help panels for ail of the
application’s windows. However, there are two instances that require addi-
tional programming for the mapping to function properly. The first instance
occurs when the application creates multiple, independent frame windows,
windows that are children of the desktop and have no owner relationship.
Since these windows do not share a common parent or owner chain with
the initial window, IPF will not be able to find a help instance. The appli-
cation must provide a separate association for each window through one of
two methods. A relatively simple method is to merely create an additional
help instance to be associated with each window. This, however, may consume
significant resources, since IPF must duplicate all of the internal information
used to track and display help. The second method involves processing the
WM_ACTIVATE message. Whenever one of the windows receives this message
indicating that it is becoming the active window, it reassociates a single global
help instance with itself by calling WinAssociateHelpInstance. Since only one
of these independent windows can be active at any given time, this method
ensures that help is always available.

The second instance where application assistance is required occurs when
an application creates one or more additional frame windows that are chil-
dren of the window with which the help instance is associated; for example,

140 s0S for PM Developers

a word processor that allows the user to open and view multiple documents.
With this arrangement, both the parent frame and a child frame may be ac-
tive at the same time, and IPF’s query for the active window will find the
parent frame preventing the child frame’s help subtable from being searched.
IPF provides the HM_SET_ ACTIVE_WINDOW message to allow the appli-
cation to handle this situation by specifying which window to consider the
active window and therefore which help subtable to search when help is re-
quested. Parameter mpi of this message specifies the handle of the window
for IPF to use as the active window. If mpl is set to NULLHANDLE, IPF’s
active window is cleared and IPF again queries PM for the active window.
Parameter mp2 specifies the handle of the window IPF should use for posi-
tioning the help window. The application’s child windows should process the
WM_ACTIVATE message. If the child window is being activated, it should send
the HM_SET_ACTIVE_WINDOW message, specifying that its frame window is
the active window. When the child window is deactivated, it should send the
HM_SET_ACTIVE_WINDOW message to restore the active window to the de-
fault. Both the parent and child windows should process the WM.INITMENU
message and set the associated frame window as the IPF active window. Figure
5.19 shows the coding for the messages.

MULTIPLE THREAD CONSIDERATIONS

While most applications employ a single thread for all displayable windows,
sometimes an application will create additional threads that can also display
windows. If the application intends to use the IPF features for displaying
help for these windows, a new help instance must be created and associated
with the threads’ window chain. This should come as no surprise, since the
secondary threads must also initialize their own PM environment and create
their own message queue. If the secondary threads’ windows are identical to
the that of the primary thread, the same help tables and other resources may
be used when the help instance is created. If the windows are not identical,
new help tables and resources may be used for the secondary threads, or the
appropriate information may be embedded into the tables and resources used
by the primary thread.

SUMMARY

0S/2’s Information Presentation Facility is a powerful, yet easy-to-implement
means of providing context-sensitive, on-line help for application users. This
chapter has examined the basic features of IPF, and it has shown how applica-
tions gain access to these features. IPF also provides many additional features
that are beyond the scope of this book. These include application control and

Summary 141

i_JRESULT child wm_activate(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)

HWND hwndHelpInstance;
HWND hwndParent;

hwndHelpInstance = WinQueryHelpInstance{ hwnd);
hwndParent = WinQueryWindow{ hwnd, QW_PARENT };
if {SHORT1FROMMP (mpl}} {
/* Activating - set the active window to the frame */
rc = WinSendMsg{ hwndHelpInstance, HM_SET ACTIVE_WINDOW,
0 slse | (MPARAM) hwndParent, (MPARAM)hwmdParent };
} else
/* Deactivating - clear the active window */
rc = WinSendMsg({ hwndHelpInstance, HM_SET_ACTIVE_WINDOW,
NULLHANDLE, NULLHANDLE };
} /* endif */
: return WinDefWindowProc(hwnd, msg, mpl, mp2);

I;IRESULT win_initmenu(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2 |
HWND hwndHelpInstance;
HWKND hwndParent;

hwndHelpInstance = WinQueryHelpInstance(hwnd };
hwndParent = WinQueryWindow{ hwnd, QW_PARENT):

WinSendMsg(hwndHelpInstance, HM_SET_ACTIVE_WINDOW,
(MPARAM| hwndParent, (MPARAM}hwndParent);

return WinDefwindowProc{ hwnd, msg, mpl, mp2 |;
}

Figure 5.19 Setting the active help window.

customization of the IPF windows; dynamic data formatting, which allows
the application to specify the contents of help panels rather than having the
contents read from help libraries; and on-line books, viewable independent
of the application. To learn more about these advanced features, see the IPF
reference material included in the Developer’s Toolkit documentation.

CHAPTER @

Getting More Power for
Your Program: Using 0S/2’s
Multithreading
Capabhilities

failure to always process messages in a timely fashion. The failure
becomes apparent to the end user when an operation like a database
search, which requires a few moments to complete, is requested. The system
stops processing input for the duration of the operation such that the work-
place shell (and therefore the system) appears to be “hung.” In extreme cases,
this condition may last for several minutes such that the user hits Ctrl+Esc and
terminates the application or, even worse, resets or powers off the computer.
This failure occurs because the application program ignores the manner in
which PM handles input from the keyboard and pointing device. Without going
into great detail, input events are, in essence, posted to the message queue of
the window that holds the input focus. But messages are normally retrieved
from the message queue one at a time and sent to the window procedure by the
WinDispatchMsg API. No further messages are retrieved from the queue until
the window procedure completes its processing for this message. Thus, input
messages that would cause the focus to change are not processed until previous
messages have completed their processing. To maintain systern responsiveness,
all messages should process in a short period of time.
Failing applications typically receive a WM_.COMMAND message to trigger
some long-running operation and run the operation to its completion before

143

M any Presentation Manager applications suffer from a common malady—

144 Getting More Power for Your Program: Using 08/2’s Muitithreading Capabiiities

returning from the WM_COMMAND message processing. In this chapter, a
program of this type is examined, and then three methods to diminish or avoid

the problem are introduced.

A TYPICAL SINGLE THREADED APPLICATION

Applications that exhibit the hung system malady typically provide some type
of functionality that requires a significant amount of file access, such as a
database or directory search. Other causes include waiting for event or mutex
semaphores when the desired event or resource is not immediately available or
merely getting stuck in a loop due to bad user parameter specification. The ap-
plication used as an example provides functionality for initializing the contents
of a 1 Megabyte file to zeroes. For demonstration purposes, the initialization
function is implemented in less than optimal fashion, performing a separate
/O operation for each byte to be written. Let's examine this application in
detail.

The main routine for the application is the typical template: initializing
the PM environment, creating a message queue, registering the client window
class, creating the application’s primary window, and then retrieving and dis-
patching messages from the application’s queue. The client window procedure
is shown in Figure 6.1. As usual, this routine is a switch statement that calls
worker routines to process the messages. At this stage, only two messages are

MRESULT APIENTRY AppWndProc(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2 |

{
switch (msg) {

case WM_COMMAND: return wmCommand{ hwnd, msg, mpl, mp2);
case WM_PAINT: return wmPaint(hwnd, msg, mpl, mp2);
default: return WinDefWindowProc(hwnd, msg, mpl, mp2];

} /* endswitch */
}
static MRESULT wmPaint(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)
{

HPS hps:

RECTL rectl;

hps = WinBeginPaint(hwnd, NULLHANDLE, &rectl };
if (hps != NULLHANDLE} {
WinFillRect{ hps, &rectl, CLR_BACKGROUND };
WinEndPaint{ hps };
} /* endif */
return (MRESULT)OL;
}

Figure 6.1 Basic ciieni window procedures.

A Typical Single Threaded Application 145

static MRESULT wmCommand{ HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)

{
char szFileName[_MAX_PATH];

switch {SHORT1FROMMP (mpl}) |
case MID_FILEINITIALIZE:
if (GetFileNamez{ hwnd, szFileName))
InitializeFile{ hwnd, szFileName };
break;
case MID_FILEDELETE:
if {(GetFileName(hwnd, szFileName })
DeleteFile(szFileName);
break;
case MID_FILEEXIT:
WinSendMsg(hwnd, WM_CLOSE, MPFROMLONG{OL}, MPFROMLONG(OL));
break;
} /* endswitch */
return MRFROMLONG{OL};
}

Figure 6.2 The WM_CDMMAND worker function.

processed, WM_PAINT and WM_COMMAND); as additional messages are pro-
cessed throughout the chapter, they will be added in similar fashion. Figure
6.1 also shows the worker routine for the WM_PAINT message, wmPaint. This
routine fills the client window rectangle with the system background color; no
other painting is performed by this application.

The worker routine for the WM_.COMMAND message, wm.command, is
shown in Figure 6.2. This routine is a switch statement based on the menu
itemn selected by the user. When the user selects the File/Initialize menu item,
routine GetFileName retrieves the name of the file to be initialized. If a file
name is entered, routine InitializeFile is called to perform the initialization
function. Similarly, the File/Delete menu item causes GetFileName to be called
to select the file to be deleted, and routine DeleteFile is called to delete the
file. The File/Exit menu item causes a WM_CLOSE message to be posted to the
application’s message queue to terminate the application.

Routine GetFileName is shown in Figure 6.3. This routine uses the Win-
FileDlg API to invoke the standard file dialog and retrieve a file name for the
user. After filling the FILEDLG structure with zeroes, the cbsize element is
set to the size of the structure. The fl element is set to FDS_OPEN_DIALQG,
allowing the user to select a name from the displayed list of file names, and
the dialog title is specified as Select File by setting the pszTitle element. The
szFullFile element is initialized to the * wildcard character, causing all file
names in the current directory to be displayed when the dialog box is ini-
tialized, and a unique window ID for the dialog is specified in the usDigld
element. WinFileDlg is then called to display and process the dialog. After the

R |

146 Getting More Power for Your Program: Using 08/2’s Multithreading Capabilities

static BOOL GetFileName({ HWND hwnd, PSZ pszFileName |

{
FILEDLG fd;

memset ([PVOID)&fd, 0, sizeof (FILEDLG});
fd.cbSize = sizeof (FILEDLG);

fd.f1 = FDS_OPEN_DIALOG;

fd.pszTitle = "Select File";

strepy (fd.szFullFile, "**);

£d.usDlgId = SELECTFILE_ID;

if ((BOOL) (WinFileDlg(HWND_DESKTOP, hwnd, &fd }) &&
fd.lReturn == DID_CK) {

strcpy!(pszFileName, fd.szFullFile |;

} else {
strepy{ pszFileName, "* J);
/* endif */

return (strlen(pszFileName) != 0 };

}

figure 6.3 Using WinFileDlg to select a file.

API call returns, the return value is checked to determine if the user actually
selected a file. If the return value is DID_OK, a file name was selected and the
file name returned in the szFullFile element is copied into the supplied buffer.
If the return value is not DID_OK, the user did not select a file and the buffer
is set to a NULL string. The function then returns FALSE if the buffer contains
a NULL or zero-length string, or TRUE if the buffer contains a valid file name.

Routine InitializeFile, shown in Figure 6.4, performs the actual file ini-
tialization. The routine first opens the file in write mode causing the file to be
created if it does not already exist and setting the file pointer to the beginning
of the file. If the file is successfully opened, a dialog containing a progress
indicator slider is loaded as a modeless dialog, the title of the dialog is set to
the name of the file being initialized, the OK button is temporarily disabled,
and the dialog box is made visible. A nested loop is then used to perform
the actual initialization. The outer loop executes once for each record in the
file, and the inner loop executes once for each byte of an individual record.
Each iteration of the inner loop writes one byte of the record to the file. After
an entire record is written, the outer loop sends an SLM_SETSLIDERINFO
message to the progress indicator slider, updating the shaded portion of the
slider bar to reflect the percentage of the initialization operation that has been
completed. After all records have been initialized, the file is closed and the OK
button in the dialog is enabled providing the user with a positive indication
that the operation is complete.

The behavior of the system with this method may be seen by running
the sample program, selecting single thread mode, and then initializing a file.
While the initialization operation is in progress, no user input is processed and

Peeking al the Message Queve 147

¥cid InitializeFile{ HWND hwnd, PSZ pszFileName }
FILE *file;
ULONG record;
char buffer = *\0’;
int i;
HWND hwndProgress;

file = fopen(pszFileName, *w" };

if (file !'= (FILE *INULL) ({
hwndProgress = WinLoadDlg{ HWND_DESKTOP, hwnd, ProgDlgProc, NULLHANDLE

| PROGRESS_ID, NULL); '
WinSetWindowText | WinWindowFromID{ hwndProgress, DID_FILENAME),
pszFileName);

WinEnableWindow({ WinWindowFromID{ hwndProgress, DID_(K }, FALSE };
WinShowwindow(hwndProgress, TRUE); - r

for { record = 0; record < MAX RECORD; record++ | {
for (i = 0; i < RECORD_SIZE; i++ }
fwrite{ &buffer, 1, 1, file };
WinSendDlgItemMsg({ hwndProgress, DID_PROGRESS, SLM SETSLIDERINFO,
MPFROM2SHORT (SMA_SLIDERARMPOSITION,
SMA_INCREMENTVALUE),
. MPFROMLONG{ (record * 100) / (MAX_RECORD - 1)});
} /* endfor */
fclose(file);
: TinEgagleWindow(WinwindowFromID| hwndProgress, DID 0K), TRUE);
} /* endif */ -

i

Figure 6.4 The incorrect way to initialize a file.

t}_le only ir.ldication that the system is not hung is the update of the progress in-
dicator. S.imce no user input is processed, no other windows can be selected and
the multitasking advantages of OS/2 are essentially nullified for the duration
of the operation.

PEEKING AT THE MESSAGE QUEUE

One method of circumventing this problem is to periodically take a peek at the
message queue using the WinPeekMsg API, which performs the same function
as WinGetMsg, but does not wait when no message is available. If a message is
waiting in the application’s message queue, the message is returned and then
dispatched to the proper window procedure with the WinDispatchMsg API.
This allows user input to be processed so that other windows may be selected
and prevents the hung system scenario in most cases.

148 Getting More Power for Your Program: Using 0S/2’s Multithreading Capabilities

Figure 6.5 shows the previous InitfalizeFile function with a call to the
WinPeekMsg API (shown in boldface type) added to the outer loop. The API
is called once for each record written to the file. If TRUE is returned, the
retrieved message is sent to the appropriate window procedure using the
WinDispatchMsg API.

The results of using this method can be seen by selecting peek loop mode
in the sample program before initializing a file. Note that the user is now free
to switch away to another task while the initialization function is processing.
The user can also select the File/Initialize menu item again; however, the first
initialization operation is suspended until the new one finishes. To prevent
real or apparent conflicts such as this, many applications that use a peek loop
disable the menu items that would result in conflict while an operation is in

progress.

Creating a New Thread 149

The peek method works well as long as the operation can be divided
into reasonable intervals at which to call WinPeekMsg. However, situations
can arise where this method is ineffective. In this example, if the file write
operation involves a LAN file and problems on the LAN cause delays, the
process will be blocked until the write operation is complete. During this time,
WinPeekMsg will not be called, and the system will again be nonfunctional
from the user’s viewpoint.

CREATING A NEW THREAD

void InitializeFile{ HWND hwnd, PSZ pszFileName }
{

FILE *file;

ULONG record;

char buffer = "\0';

int i;

HWND hwndProgress;

HAB hab = WinQueryAnchorBlock({ hwnd };

OMSG qmsyg;

file = fopen(pszFileName, *w" };
if (file != (FILE *)NULL) {
hwndProgress = WinLoadDlg{ HWND_DESKTOP, hwnd, ProgDlgProc, NULLHANDLE,
PROGRESS_ID, NULL):
WinSetWindowText { WinWindowFromID{ hwndProgress, DID_FILENAME },
pszFileName };
WinEnableWindow{ WinWindowFromID{ hwndProgress, DID_OK)}, FALSE);
winShowwWindow(hwndProgress, TRUE };
for (record = 0; record < MAX_RECORD; record++ } {
for {i = 0; 1 < RECORD_SIZE; i++ }
fwrite(&buffer, 1, 1, file);
WinSendDlgItemMsg({ hwndProgress, DID_PROGRESS, SLM_SETSLIDERINFO,
MPFROM2SHORT (SMA_SLIDERARMPOSITION,
SMA_TNCREMENTVALUE },
MPFROMLONG{ (record * 100) / (MAX_RECORD - 1))};
if (winPeekMsg(hab, &gmeg, NULLHANDLE, OL, 0L, PM FEMNE)) {
WinDispatcliteg(hab, &gueg);
} /* endif */
} /* endfor */
fclose{ file };
WinEnableWindow{ WinWindowFromID{ hwndProgress, DID_OK }, TRUE);
1 /* endif */
)

The only way to ensure that the message processing loop is not interrupted due
to an external resource is to place all operations that access these resources
in one or more separate threads. This will allow the initial thread to continue
operating when external events block the new threads from running. Routine
InitializeFile is limited to creating the progress indicator dialog and starting
the new thread. The actual file operations have been moved to a new thread
function, InitThread. This thread has been implemented as a non-PM thread
since it does not create windows or require a message queue. The only PM API
used by the thread is WinPostMsg which does not require a PM environment.

Function InitializeFile first allocates a block of memory to hold the pa-
rameters that will be passed to the new thread and then creates and initializes
the progress indicator dialog as before. The format of the thread parameters
memory block is defined by the structure shown in Figure 6.6.

o The hwnd element is the handle of the main application window. This
handle will be used to notify the main window of the completion status of
the initialization operation.

¢ The hwndSlider element is the handle of the progress indicator dialog’s
slider. This window handle is used to update the slider with the current
progress of the operation.

* The szFile element is the name of the file to be initialized. Note that the
actual name and not a pointer to the name is passed in the structure. If
a pointer is used and the memory is on the program’s stack or is globally
accessible, it can be overwritten and affect the operation of the new thread.
If a pointer is used to pass information to a new thread, the memory should
typically be allocated specifically for this purpose.

typedef struct _ thread param__ {
HWND hwnd;
HWND hwndsSlider;
char szFile[_MAX PATH];
} TPARM, *PTPARM;

Flgure 6.5 Inlilalizing with a peek message.

Figure 6.6 The TPARM structure.

150 Getting More Power for Your Program: Using 08/2's Muitithreading Capabilities

void InitializeFile(HWND hwnd, PSZ pszFileName)
{

HWND hwndProgress;

PTPARM ptp:

ptp = (PTPARM)malloc(sizeof (TPARM});

if (ptp !'= (PTPARM}NULL) ({
hwndProgress = WinLoadDlg(HWND_DESKTOP, hwnd, ProgDlgProc,

NULLHANDLE, PROGRESS_ID, NULL };
WinSetWindowText (WinWindowFromID| hwndProgress, DID_FILENAME },
pszFileName };

WinEnableWindow(WinWindowFromID{ hwndProgress, DID OK }, FALSE };
WinShowWindow({ hwndProgress, TRUE };

ptp->hwndSlider = WinWindowFromID{ hwndProgress, DID_PROGRESS) ;
ptp->hwnd = hwnd;
strcpy(ptp->szFile, pszFileName);
_beginthread(InitThread, (, 0x2000, [PVOID)ptp |;
} /* endif */
}

Figure 6.7 Multiple thread file initialization.

After InitializeFile, shown in Figure 6.7, establishes appropriate values for
each element of the structure, the C library function _beginthread is called
to create and start the new thread. It is used in lieu of the DosCreateThread
API to ensure that the C runtime environment for the new thread is properly
established. After this call completes, the main thread returns to processing
messages as normal. Note that the allocated memory is not freed as would
normally be the case with interprocess communication. Memory is a process-
wide resource and can thus be freed by the new thread when no longer needed.

Function InitThread, shown in Figure 6.8, first opens the file named by el-
ement szFile of the TPARM structure. If this operation is successful, the nested
loop from the previous examples is used to perform the file initialization. How-
ever, instead of using WinSendMsg to update the progress indicator slider
position, the WinPostMsg API is called to place the SLM.SETSLIDERINFO
message on the message queue of the main thread. As the main thread pro-
cesses messages, the SLM_SETSLIDERINFO message will be dispatched to
the slider. The return code from WinPostMsg is not checked when the API is
called within the file initialization loop since missing one of the many posi-
tioning messages will not pose a serious problem. After the initialization loop
completes, one final SLM_SETSLIDERINFO message is posted. In this case,
the return code from WinPostMsg is checked to ensure that the final position
of the slider reflects 100 percent completion of the operation. After the slider
message is successfully posted, a user-defined message, UM_DONE, is posted
to the application’s main window with the handle of the progress indicator

Creating a New Thread 151

void InitThread{ void *param) {
PTPARM ptp = (PTPARM)param;
HWND hwndProgress = ptp->hwndSlider;
FILE *file;
ULONG record:
char buffer = \)';
int ir
ULONG status = INIT_ERROR;

file = fopen{ ptp->szFile, "w");
if {file != (FILE *)NULL) {
for { record = 0; record < MAX RECORD; record++ | |
for (i = 0; 1 < RECORD_SIZE; i++) {
fwrite{ &buffer, 1, 1, file };
} /* endfor */
WinPostMsg(hwndProgress, SLM SETSLIDERINFO,
MPFROM2 SHORT {SMA_SLIDERARMPOSITION, SMA_INCREMENTVALUE ¥,
MPFROMLONG{ (record * 100) / {MAX_RECORD - 1)}}:
} /* endfor */
fclose{ file };
while (! {BOOL)WinPostMsg{ hwndProgress, SLM_SETSLIDERINFO,
MPFROM2SHORT (SMA_SLIDERARMPOSITION, SMA_INCREMENTVALUE L
MPFROMLONG((reccrd * 100) / (MAX_RECORD - 1)}));
status = INIT_COMPLETE;
} /* endif */
while{ !({BOOL|WinPostMsg(ptp->hwnd, UM_DONE,
MPFROMHWND (hwndProgress), MPFROMLONG(status))}:

free(param};
3

Figure 6.8 Secondary thread routine to initialize a file.

slider in parameter mp1 and the completion status of the operation in param-
eter 1:np2. The thread parameter structure memory is then freed and the thread
terminates.

Back in the main application thread, receipt of the UM_DONE message
causes a worker routine umDone to be called. This function first examines
parameter mp2 of the UM_DONE message to determine if an error occurred.
If there was no error, the function implements the final piece of the old Initial-
izeFile function by enabling the OK button in the progress indicator dialog. If
there was an error, an appropriate message box is displayed with the WinMs-
gBox API and then the progress indicator dialog is destroyed.

The results of this method can be seen when running the sample program
by selecting multithread mode and then initializing a file. The user may switch
away to another window while the initialization is in progress and additional
initialization operations can be performed in parallel. Unlike the peek loop
method, messages continue to be processed even if the initialization thread
becomes blocked due to a delay or failure in the I/O process.

152 Getting More Power for Your Program: Using 0S/2’s Multithrsading Capabilities

Be aware that more complicated operations may require access to common
resources when multiple threads are executing. The application may need to
either synchronize access to these resources or prevent multiple access by
disabling some of its functionality for a period of time to prevent concurrent
access to resources.

USING AN OBJECT WINDOW

The separate thread method just shown is sufficient for operations like file
initialization which do not require any real interaction with PM or the ap-
plication window. But suppose the operation required that each record be
formatted based on information retrieved from a container control. At first
glance, one might suppose the application could allocate a large buffer, re-
trieve the information from the container, and format the records in the buffer
before starting the second thread. But this formatting operation itself could
take considerable time and qualify as the type of long-running operation which
blocks the processing of input messages.

An alternative method is the use of an object window. An object window is a
window that is a descendent of the system-defined HWND_OBJECT. Windows
of this type are never displayed and cannot receive the input focus, so an
object window created in a separate thread with its own message queue is
not constrained by the time required to process messages. Note that an object
window that shares a thread, and therefore a message queue, with windows
descended from HWND_DESKTOP can block the processing of input messages
posted to the message queue.

For iterative operations of the type discussed in this chapter, the main
application would normally allocate a control structure that tracks the current
state of the operation. This structure is passed back and forth as a message
parameter between the application window and the object window as the
operation proceeds. First the application window posts a message to the object
window to initiate the operation and perhaps perform the first iteration. When
this is complete, the object window posts a message back to the application. The
application window then updates the control structure for the next iteration
and posts a message back to the object window. The object window performs
the next iteration and again posts a message back to the application. This
continues until the entire operation is complete. If necessary, the application
can post a final message to the object window to terminate the operation and
clean up any resources. If no termination is needed, the application posts no
message and goes on about its business. The object window remains idle until
another initiation message is posted.

Figure 6.9 shows how the object window and its thread are created during
the WM_CREATE processing for the main application window. The wimCreate
function calls the C library function _beginthread to initiate a second thread

Using an Object Window 153

mswr wmCreate{ HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2 |

_beginthread{ InitObjwnd, 0, 0x2000, (PVOID)hwnd |;
return MRFROMLONG (FALSE) ;
}

void InitObjWnd(void *param) {
HAB hab = (HAB)NULLHANDLE;
HMQ hmg = (HMQ)NULLHANDLE;
QMSG gmsg;
HWND hwndObject = (HWND)NULLHANDLE;
HWND hwndMain = (HWND)param;

do {
?f {thab = WinInitialize(¢) == NULLHANDLE } break;
if ((hmg = WinCreateMsgQueue{ hab, 0) == NULLHANDLE | break;

if (!WinRegisterClass(hab, "APPOBJECT", ChjwndProc,0L, 0L }) break;
hadtbiect = WinCreatetindow(BED OBIECT, "APRCBIECT™, NULL, '
0L, 0L, OL, OL, (L, NULTHANTLE,
BaD TOP, 0L, MIII, NULL);
if (ndbiect = (HMND)NULLEANILE) hreak;
WinPostMsg(rnddain, UM SETORT,
' . MEFROMEAD (lhedChyject) , MPFROMLONG(OL)) 7
while (WinGetMsg(hab, &gmsg, NULLHANDLE, O, 0 J} {
WinDispatchMsg{ hab, &gmsg);
} /* endwhile */
| while (false); /* enddo */
%f (hmg != (HMQ)NULLHANDLE} WinDestroyMsgQueue(hmg };
, if (hab != (HAB)NULLHANDLE) WinTerminate(hab };

Figure 6.9 Creating the object window.

executing function InitObjWnd. Since this thread creates a window and re-
quires a message queue, the thread needs a PM environment and goes through
the normal sequence for the main routine of a PM application. The only dif-
ferences, shown in boldface type, are that the object window is created with a
call to the WinCreateWindow API rather than WinCreateStdWindow, and that
a message is posted to the main application window to notify it of the object
window handle.

Figure 6.10 shows the InitializeFile routine for this method. First, the
object window handle is retrieved from the window data, where it was placed
when the UM_SETOBJ message was posted by the object window. The routine
then loads and initializes the progress indicator dialog in the same manner
as before and allocates memory for the control parameters structure. The
layout of this structure is shown in Figure 6.11 along with the content and
initialization of its elements.

154 Getting More Power for Your Program: Usin 08/2’s Muitithreading Capabiiities
! ’ ! o Using an Object Window 159

» The ulRecord element is the record number to be written, and it is initial-

void InitializeFile{ HWND hwnd, PSZ pszFileName) L
ized to zero.

{

mw;gp h;r}dProgress: e The record element is the data to be written to the file, and in this case is
0 Jp; . a, . - . ’
TILE ARM e mltlal_lzed to zeroes. The record could be filled with data retrieved from a
container control or other source at this point.

HWND hwndObj = WinQueryWindowULong{ hwnd, APP_HWNDOBJ) ; :
¢ The cbRecord element specifies the number of bytes contained in the record

objp = {POBJPARM)malloc{ sizeof (OBJPARM}); element.

if {objp != (POBJPARM)NULL } {
hwndProgress = WinLoadDlg{ HWND_DESKTOP, hwnd, ProgDlgProc, . et
NLLHANDLE PROGRESS. 1P, NULL }; Onctf1 this .struct.ure has been initialized, user-defined message UM_INIT is

sent to the object window to open the file and begin the operation. Parameter

WinSetWindowText [WinWindowFromID(hwndProgress, DID_FILEWAME }, - t
pszFileName }; mpl of this message contains a pointer to the control parameters structure

o et (hundProgress, DID_OK), FALSE); Figure 6.12 shows the window procedure for the object window. When

WinShowWindow{ hwndProgress. TRUE); the object window receives the UM_INIT message posted by the InitiaiizeFile
routine, i i

L ‘ Ine,c1 it attempts to open the specified file. If successful, the handle of the file
is stored in the control parameters structure. A UM_WRITE message is then

objp->hwnd = hwnd;
strcpy(objp->szFileName, pszFileName);
objp->ulRecord = 0;

objp->cbRecord = RECORD_SIZE;]
memset { objp->record, 0, RECORD_SIZE) ?RESULT APIENTRY ObjWndProc{ HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)
WinPostMsg{ hwndObj, UM_INIT, MPFROMP(objp), MPFROMLONG(OL}); ‘
} /* endif */ it o |l
} i
Figure 6.10 Main thread routine to starl initiaiization. i:;gcgémighf
- . S . pObj = (POBJPARM)mpl;
e The hwnd element is the window handle of the main application window. pObj->file = fopen(pObj->szFileName, "w*);
The object window will use this handle for communicating with the main if (pobj->file != (FILE *)NULL}) {
thread. } e‘f;gP?stMsg(hwnd, UM_WRITE, mpl, mp2 };
o The hwndProgress element is set to the handle of the progress indicator :)
] c ; 1 : . WinPostMsg({ pObj->hwnd, UM
dialog window. This allows the proper indicator to be updated if multiple } /% endif ,3 pUb)=>fwn _READY, mpl, MPFROMLONG{READY_ERROR} };

return QL;
case UM_WRITE:
pObj = (POBJPARM)mpl;

initialize operations are running concurrently.
e The szFileName element is filled with the name of the file to be initialized.

e The file parameter is a pointer to a ‘C’ FILE control structure. This field is for (i = 0; i e i
filled by the object window when the output file is opened. fwriEe(’&tpt;b?-it;:g?g‘[ﬂiz?]):d;11+I)pOb' file)
k y r ' ' J->tflle);
WinPostMsg{ pObj->hwnd, UM_READY, mpl, MPFROMLONG{READY OK}):
_ return 0L; N ’
typedef struct __objwnd_param__ { case UM _CLOSE:
HWND hwnd; pobj = (POBJPARM}mpl;
HWND hwn@?rogress; fcloge({pObj->file};
char szFileName(_MAX_PATH]; free(pobj);
FILE *file; return 0L;
ULONG ulRecord; default:
ULONG chbRecord; return WinDefWi
char record{ RECORD_SIZE }; } indowproc(hund, msg. mpl, mp2 1;
} OBJPARM, *POBJPARM; }

Figure 6.11 The OBJPARM structure. Figure 6.12 Object window procedure 1o initialize file.

156 Getting More Power for Your Program: Using 0S/2's Multithreading Capabllities

posted back to the object window to write the first record. Another approach
would be to post a message back to the main application window to cause
the initial record to be filled. The main application window would then fill the
record and post the UM_WRITE message back to the object window.

When the object window receives the UM.-WRITE message, it executes the
inner loop from our old InitializeFile function to write the contents on the
record to the file one byte at a time. Once the record has been completely
written, a UM_READY message is posted back to the application to indicate
that the object window is ready to write the next record.

Figure 6.13 shows the main window processing for the UM_READY mes-
sage. The routine first verifies the success of the previous write operation,
and if there are more records to process, the u/Record element of the control
parameters structure is updated to reflect the next record number to write. If
the application were actually loading data into the records, the new record
data would be inserted into the record element at this point. The position of
the progress indicator slider is then updated and a UM.WRITE message is
posted back to the object window to cause the new record to be processed.
This interchange of the UM.WRITE and UM_READY messages will continue
until all records have been processed.

When the main window determines that the final record has been written,
the OK button in the progress indicator dialog is enabled and a UM_.CLOSE
message is sent to the object window. Back in Figure 6.12, the object window
processes the UM.CLOSE message by closing the file and deallocating the
memory allocated for the control parameters structure.

static MRESULT umReady(HWND hwnd, ULONG msg, MPARRM mpl, MPARAM mp2 }
{

POBJPARM pObj = (POBJPARM)mpl;

HWND hwndoObject = WinQueryWindowULong hwnd, APP_HWNDOBJ };

if (LONGFROMMP{mp2) == READY OK && pObj->ulRecord < MAX_RECORD) {
pObj->ulRecord++;
WinSendDlgltemMsg(pObj->hwndProgress, DID_PROGRESS, SLM_SETSLIDERINFO,
MPFROM2SHORT (SMA_SLIDERARMPOSITION,
SMa_TNCREMENTVALUE },
MPFROMLONG [{pObj->ulRecord * 100} /
(MAX_RECORD - 1}}1};
WinPostMsg(hwndObject, UM_WRITE, mpl, MPFROMLONG {OL) } ;
} else {
WinEnablewindow(winWindowFromID({ pObj->hwndProgress, DID_OK }, TRUE |;
WinPostMsg(hwndObject, UM_CLOSE, MPFROMP(pObj), MPFROMLONG (0L})
) /* endif */
return (MRESULT}OL;
}

Summary 157

. The results of using this method can be observed in the sample applica
tion associated with this chapter by selecting object window mode andpther;
1pit.ialiging a file. Again, the user may perform other functions while the ini-
tlallzaftlon operation is in progress, including starting another initialization
operation. I/O delays or failures only affect the progress of the initialization
not the responsiveness of the system. '

This method also tends to be less likely to cause resource conflicts since
each step of the operation is an integrated whole and the data required to per-
form the operation is allocated specifically for each instance of the operation.

SUMMARY

Figure 6.13 Main thread routine to complete initialization.

This_ chapter has shown several methods of performing time-consuming op-
erations. The first two methods leave open the possibility that the application
will cease to process input messages for some period of time, preventing the
user fro¥n doing further work, and perhaps leading to the impression that
the application or system is completely hung. The latter two methods employ
separate threads to prevent this from occurring. The first of these creates an
1ndeper1.dent thread capable of performing the complete operation without
further intervention and is appropriate when the application does not need to
supply data to complete the operation. The last method uses an object window
to allow. the application window to supply data at various stages of the opera-
tion. This method is more appropriate in many cases since it allows for control
of the flow of data.

CHAPTER 7

She Sells Sea Shells:
Programming the
Workplace Shell

built on the Presentation Manager API. This interface removed the user’s

dependence on the keyboard by allowing the user to navigate the system’s
storage devices and start programs using the mouse. The user interface con-
sisted of a desktop, a Program Manager, and Program Groups. The desktop
was basically a blank background upon which icons would be painted. They
represented running programs that the user had requested to be minimized,
or hidden. When the system was started, the Program Manager was auto-
matically started as the base application. This application allowed the user to
select a Program Group, an application that displayed a list of programs that
the user could execute. Thus the Version 1 GUI was a simple two-level hier-
archy allowing the user a relatively limited ability to organize and customize
the system. Some additional flexibility was provided by the File Manager ap-
plication which allowed the user to graphically display the directories on the
system’s storage devices and to manipulate files and execute programs.

The current user interface, the Workplace Shell, was introduced with 0S/2
Version 2. The Workplace Shell is an object-oriented graphical user interface,
based on PM and a new technology, SOM, the System Object Model. In this
new shell, the distinction between Program Groups, Programs, and Data Files
is removed and all types of files are represented as objects. The blank desktop
is replaced by the desktop object which is a derivation of a folder object, an
object that holds, or contains, an homogenous set of objects such as programs,
data, and even other folders. Since folders, and therefore the desktop, can

0 S/2 Version 1 provided the user with a graphical user interface, or GUI,

159

160 she Sells Sea Shells: Programming the Workplace Shell

contain other folders, the two-tiered hierarchy of the Version 1 Program Man-
ager/Program Group is replaced by the multitiered hierarchy of folders. This
also means that the desktop can contain a mixture of folders, programs, and
data files, all of which can be started or opened by clicking the mouse. This
organization along with a host of other new features provides the user with an
easy-to-operate and highly customizable system.

One of the key concepts of the Workplace Shell is the ability to actually
move and otherwise manipulate objects using the mouse. For example, rather
than typing a command to copy a file, the user selects the icon representing the
file with the mouse and then moves the mouse to the desired folder, dragging
the file along. When the user releases the mouse button, the file itself is copied
to the new location. Data files can also be dragged in this manner and dropped
on an application, causing the application object or program to open and
process the dragged file. Workplace Shell aware applications should support
these direct manipulation features.

Another important feature of the Workplace Shell is its ability to maintain
the state of the desktop through an IPL, or reboot, of the system. The Shell
assumes responsibility for opening the objects that were open at the time the
system was shut down (this feature depends on a user-initiated safe shutdown
procedure—if the system is simply powered off, the results are unpredictable
and sometimes catastrophic). The objects themselves, for example, folders, ap-
plication objects, and data files, are responsible for saving and restoring the
elements of their internal state, such as window size, presentation parame-
ters, and processing state. Application programmers do not have to design
their own individual methods for storing restart data; binary data files, called
initialization files, and APIs to manipulate them are provided by the system
for this purpose. We will discuss how Workplace Shell aware applications can
take advantage of initialization files later in this chapter.

Finally, a brief overview of SOM and the object hierarchy of the Workplace
Shell is given to provide a better understanding of how the Workplace Shell
works and to assist in the design and implementation of Workplace Shell aware

applications.

DIRECT MANIPULATION

Direct manipulation is the Workplace Shell’s feature that allows users to ma-
nipulate files or other objects using the mouse. The most commonly known
direct manipulation operation is called drag and drop. The user selects and
drags an object by placing the mouse pointer over the object, pressing and
holding the appropriate mouse button, then moving the mouse. As the mouse
moves, an icon representing the object or objects being dragged moves along
with the mouse, indicating the current drop location. When the mouse button
is released, the object is dropped. The application over which the object is

Drag-and-Drop Data Structures 161

dropped determines what action will be taken—for example, dropping a file
on a folder causes the file to be moved or copied to that folder; dropping the
same file on a printer object causes the file to be printed.

08/2 Warp introduced a second direct manipulation operation known as
lazy drag or pickup and drop. The drag-and-drop operation is modal—once
the user begins dragging objects, the operation must be completed or can-
celled before any other operations can be accomplished. Pickup and drop is
a nonmodal operation. After the user has started the operation by picking up
an object, other operations may be performed, such as moving a window or
opening an application. The picked objects remain available until dropped or
the operation is explicitly cancelled. This capability is extremely useful when
the source and target of the direct manipulation operation cannot easily be
displayed simultaneously.

The low-level activities of direct manipulation are handled by the Presen-
tation Manager. These activities inciude notifying an application when a direct
manipulation operation is requested, moving and painting the icon represent-
ing the dragged object and notifying an application when an object has been
dropped. Applications are responsible for responding to a direct manipula-
tion request by initiating the operation, notifying PM when they are able to
receive a drop, and conversing among themselves using predefined protocols
to properly transfer dropped objects.

These application responsibilities can be divided into those performed
by source applications and those performed by target applications. A source
application is an application that understands PM’s notification that a drag
operation has been requested and performs the actions necessary to start
the operation. An application that performs the actions required to accept a
dropped object is a target application. An application that does both can serve
as a source application, a target application, or both simultaneously. Before
discussing the details of this processing, a grasp of the data structures used to
communicate between the source application, PM, and the target application
is necessary.

DRAG-AND-DROP DATA STRUCTURES

Four data structures are used during the processing of direct manipulation
operations. The DRAGINFO structure is the base structure that contains the
controlling information for the operation. Linked to the DRAGINFO structure
are DRAGITEM structures that provide detailed information about each object
being dragged. The DRAGIMAGE structure is used by the source application
to inform PM which image or images are to be used to represent the dragged
objects during a drag and drop operation. The DRAGTRANSFER structure is
used for communication between the source and target applications after a
drop has occurred and objects are being rendered. Except for DRAGIMAGE,

162 she Sells Sea Shells: Programming the Workplace Shell

these structures must be accessible by multiple applications running as differ-
ent processes and thus must be allocated in shared memory. Rather than have
the applications manage the memory themselves, PM provides APIs for allo-
cating, accessing, and freeing the memory associated with these structures. In
the following sections, we will examine the elements of the structures and the
APIs provided for manipulation.

The DRAGINFO Structure

The DRAGINFO structure is the basic, controlling entity for the drag operation
and contains generic information about the operation as a whole. The format
of the structure is shown in Figure 7.1.

¢ The chbDraginfo element specifies the length of the DRAGINFO structure
in bytes. The element is initialized by PM and must not be modified by the
application.

¢ The cbDragitem element specifies the length of the DRAGITEM structures
associated with this DRAGINFO structure. This element is initialized by
PM and must not be modified by the application.

o The usOperation element specifies the default function to be performed
when the dragged objects are dropped. PM initializes this field to DO_
DEFAULT. The application may modify this element to specify DO.COPY,
DO_LINK, DO_MOVE or another application-defined operation. This is
the only element of the DRAGINFO structure that the application should
modify.

» The hwndSource element specifies the handle of the window that is the
source window for the drag-and-drop operation. PM initializes this element
to the window over which the mouse pointer was positioned when the
drag-and-drop operation was initiated.

* The xDrop element contains an unspecified value at initialization. This
element contains the x coordinate of the mouse pointer position after a
drop occurs. This element should not be modified by the application.

typedef struct _DRAGINFO {
ULONG chDraginfo;
USHORT cbDragitem;
USHORT usQperation;
HWND hwndSource;
SHORT xDrop;
SHORT yDrop;
USHORT cditem;
USHORT usReserved;

} DRAGINFOQ;

Figure 7.1 The DRAGINFO structure.

Drag-and-Drop Data Structures 163

PDRAGINFD APIENTRY DrgAllocDraginfo(ULONG cditem);

Figure 7.2 The DrgAllocDraginfo prototype.

» The yDrop element contains an unspecified value at initialization. This
element contains the y coordinate of the mouse pointer position after a
drop occurs. This element should not be modified by the application.

» The cditem element specifies the number of DRAGITEM structures that are
associated with this DRAGINFO structure. The number of DRAGITEM
structures indicates the number of objects being dragged. This field is
initialized to the value specified in the cDitem parameter of the DrgAlloc-
Draginfo API. This element should not be modified by the application.

» The usReserved element is reserved and should not be modified by the
application.

Five APIs are provided for managing the DRAGINFO structure. These
APIs allow an application to allocate the structure, resize the structure, free
the structure, give another application access to the structure, and obtain
access to the structure.

The source application uses the DrgAllocDraginfo API to allocate and
initialize the structure. PM responds to this API by allocating the DRAGINFOQ
structure and the specified number of DRAGITEM structures within shared
memory. The prototype for this API is shown in Figure 7.2.

¢ The cditem parameter is the number of objects to be dragged and is used to
allocate space for the DRAGITEM structures associated with the allocated
DRAGINFO structure.

The API returns a pointer to the allocated DRAGINFQ structure if successful;
otherwise, NULL is returned.

When a pickup-and-drag operation is in progress, additional objects can
be added to the set of objects being dragged after the initial call to DrgAlloc-
Draginfo. In this instance, additional space for DRAGITEM structures will be
required so the DRAGINFO structure must be reallocated. The DrgRealloc-
Draginfo API accomplishes this function. The prototype of the API is in Figure
7.3.

¢ The pdinfoOld parameter is the address of the current DRAGINFO struc-
ture obtained from a prior call to DrgAllocDraginfo or DrgReallocDrag-
Info.

PDRAGINF(APIENTRY DrgReallocDrgInfo(PDRAGINFO pdinfoOld,
ULONG cdItem };

Figure 7.3 The DrgReallacDrginfo protatype.

164 she Sells Sea Shells: Programming the Workplace Shell

BOOL APIENTRY DrghccessDraginfo(PDRAGINFO pdinfeo];

Figure 7.4 The DrgAccessDraginfo prototype.

o The cdItem parameter is the total number of DRAGITEM structures to be
associated with the new DRAGINFO structure.

DrgReallocDragInfo returns a pointer to the newly allocated DRAGINFO
structure. The memory for the previous DRAGINFO structure is freed and
should not be accessed further. The application is responsible for maintaining
the DRAGITEMs. DrgReallocDraginfo makes no attempt to save the existing
structures.

When PM sends a notification message to a potential target application, a
pointer to the DRAGINFO structure is sent as one of the parameters. However,
the application is not automatically given access to the memory containing the
structure. The DrgAccessDraginfo API must be called to gain access to the
DRAGINFO structure. The prototype of this API is in Figure 7.4.

* The pdinfo parameter is a pointer to the DRAGINFO structure to be ac-
cessed.

The API returns TRUE if access is granted or FALSE if an error occurs.

The DrgFreeDraginfo API must be called to release an application’s ac-
cess to the DRAGINFO memory when the application has finished using the
DRAGINFQ structure. When the structure has been freed by all applications,
it is deallocated. The DrgFreeDraginfo API is prototyped as shown in Figure
7.5.

o The pdinfo parameter is a pointer to the DRAGINFO structure to be freed.

The API returns TRUE if the structure was successfully freed and FALSE if an
error occurs. If the source and target applications are the same application
and the DrgDrag API is still active, the DRAGINFO structure will not be freed
and DrgFreeDraginfo will return FALSE. In this instance, the PM error code
will be set to PMERR_SOURCE_SAME _AS_TARGET. This prevents accidental
deallocation of the structure while it is still in use.

The DrgPushDraginfo API is used to directly give access to the DRAGINFO
structure to another process. This API should be used with caution. If the
process receiving access is unaware that access has been given and does not

BOOL APIENTRY DrgFreeDraginfo(PDRAGINFO pdinfe);

Figure 7.5 The DrgFreeDraginfo prototype.

Drag-and-Drop Data Structures 165

BOOL APIENTRY DrgPushDraginfo(PDRAGINFO pdinfo,
HWND hwndDest);

Figure 7.6 The DrgPushDraginfo prototype.

release its access with the DrgFreeDraginfo API, the memory will never be
released until the process terminates. This type of behavior results in a loss of
systemm memory and can eventually cause the system to cease operating due
to a lack of resources. The prototype of the DrgPushDraginfo API is in Figure
7.6.

+ The pdinfo parameter is a pointer to the DRAGINFO structure to be given.
+ The hwndDest parameter is the handle of a window whose process is to
receive access to the DRAGINFO structure.

DrgPushDraginfo returns TRUE if access is successfully granted and FALSE
if an error occurs.

The DRAGITEM Structure

The DRAGITEM structure is used to convey information about the individual
objects involved in a direct manipulation operation. The source and target
applications use this information to negotiate the transfer of the object. The
format of the structure is given in Figure 7.7.

o The hwndltem element is the handle of the source window for this item.
This element is typically initialized to a value equal to the hwndSource
element of the DRAGINFOQ structure. Source applications that require
a DM_RENDERPREPARE message from the target may use a different

typedef struct _DRAGITEM {
HWND hwndItem;
ULONG ulltemID;
HSTR hstrType;
HSTR hstrRMF;
HSTR hstrContainerName;
HSTR hstrSourceName;
HSTR hstrTargetName;
SHORT cxOffset;
SHORT cyOffset;
USHORT fsControl;
USHORT fsSupportedOps;
} DRAGITEM;

Figure 7.7 The DRAGITEM structure.

166 she Sells Sea Shells: Programming the Workplace Shell

window to perform the rendering operation and will modify this element
so that the target can establish a conversation with the new window.

The ulltemID element is a 32-bit value used by the source application to
identify the object to which this DRAGITEM structure pertains.

The hstrType element is a handle to a string that specifies the type, or
format, of the object; for example, plain text, executable, or metafile. A
set of predefined types are included in the Developer’s Toolkit header
and include files as DRT. constants; additional types may be defined by
applications. Some objects may correctly be defined as having multiple
types; for instance, a C program source file could be defined as C Code
and Plain Text. All possible types should be listed, separated by commas.
The first type in the list should be the type that best describes the object.
This type is known as the frue type of the object. In the example, C Code
would be the true type.

The hstrRMF element is a handle to a string that specifies the mecha-
nism(s) and format(s) that may be used to transfer the object between the
source and target applications. The mechanism is the manner in which the
object is transferred; for example, DRM_OS2FILE indicates that the object
is stored as a file and thus may be transferred with the file system API func-
tions used to manipulate files while DRM_DDE indicates that the Dynamic
Data Exchange (DDE) protocol may be used to transfer the data. Format
refers to the structure of the data, for example, a bitmap structure or plain
text. These items are formatted in the string as pairs, either explicitly as
a mechanism/format pair enclosed in angle brackets (<>) or as a cross
product of one or more mechanisms and one or more formats separated
by an (x) and enclosed in parentheses (). Multiple pairs or multiple items
in a cross product are separated by commas. In order for a transfer to
take place, both the source and target applications must agree on both the
transfer mechanism and format. As an example, suppose a source appli-
cation supports transfer of a graphical object in both bitmap format and
metafile format; however, it can only render the bitmap format via a DDE
interchange and the metafile format through an external data file. If the
target can only accept a bitmap format but does not support DDE, then no
transfer can occur. An example of an RMF string is:

{DRM_OS2FILE x DRF_METAFILE, [RF_BITMAP),<[RM DDE,DRF_BITMAP>

The first paix, either explicit or formed by a cross product, must be
the native, or natural, mechanism and format for the object. In the ex-
ample, the native mechanism is DRM.OS2FILE and the native format is
DRF_METAFILE. In general, the native format provides the truest repre-
sentation of the object. Thus a graphical drawing program would be likely
to specify DRF_.METAFILE as the native format over DRF_BITMAP since
the metafile format retains the lines and other graphical elements, whereas

DC_OPEN
DC_REF
DC_GROUP

Drag-and-Drop Data Structures 167

the bitmap format only provides the visual image of the graphic, The native
mechanism generally provides the most natural means of transferring the
data.

Since most programmers are familiar with file manipulation, DRM_
OS2FILE is likely to be a common native mechanism and should gen-
erally be supported by all applications that provide direct manipulation
capability. Additional formats and/or mechanisms may also be provided
and may be desirable when direct manipulation is provided between a set
of interrelated applications.

The hstrContainerName element is a handle to a string that provides the
location of the object. For objects transferred as files this might be a di-
rectory; for objects that are parts of a file, say a range of cells in a spread-
sheet, a full path (directory and file name) to the spreadsheet file might be
specified; for an object transferred through interprocess communications,
this might be the name of a shared memory area. Note that this latter
method is not one of the predefined mechanisms but could perhaps be an
application-defined extension.

The hstrSourceName element is a handle to a string that identifies the
object to be transferred; for example, the file name for objects transferred
as a file, or the cell range for a portion of a spreadsheet. hstrSourceName
may be passed as NULLHANDLE by the source when the source wishes
to be notified of the transfer before rendering occurs, or wishes to handle
the rendering itself.

The hstrTargetName element is a handle to a string provided by the source
application to suggest the identity of the object after the transfer. This
might be the name of the file after the transfer or the range into which
spreadsheet cells are to be transferred. This element is optional; the target
can always decide the name for itself.

The cxOffset element is the offset in the direction of the x axis from the
pointer’s hotspot to the origin of the image used to represent this object.
This element is used when the spatial representation of the dragged objects
is to be maintained at the target and is copied from the DRAGIMAGE
structure which provides the representation of the object.

The cyOffset element is the offset in the direction of the y axis from the
pointer’s hotspot to the origin of the image used to represent this object.
This element is used when the spatial representation of the dragged objects
is to be maintained at the target and is copied from the DRAGIMAGE
structure which provides the representation of the object.

The fsControl element is a set of flags that specify various attributes of the
object being dragged. These flags are defined as:

0x0001 the object is currently open.
0x0002 the dragged object is a reference to another object.
0x0004 the dragged object is a group of objects.

168 she Sells Sea Shells: Programming the Workplace Shell

DC_CONTAINER 0x0008 the dragged object is a container of other objects, for
example, a directory.
DC_PREPARE 0x0010 a DM_RENDERPREPARE message must be sent to

the source application before the transfer begins in
order to ready the object for transfer; for example, a
text editor might set this flag so that it could copy a
selected block of text to a file.

DC_REMOVABLEMEDIA 0x0020 the dragged object is either on removable media or
cannot be recovered at the source following a move
operation.

e The fsSupportedOps element is a set of flags that indicate the operations
allowed by the source. These flags are:

DO_COPYABLE 0x0001 indicates that the object may be copied. A new object is created
at the target. The source object is not affected.

DO_MOVEABLE 0x0002 indicates that the object may be moved. The object is trans-
ferred to the target and is no longer available at the source.

DO_LINKABLE 0x0004 indicates that the object may be linked. A new object is created
at the target and a connection to the original object at the
source is established, typically so that both copies of the object
may be kept synchronized.

Three APIs are provided for managing and accessing DRAGITEM struc-
tures. These APIs allow an application to copy a local DRAGITEM structure
to the shared memory associated with the DRAGINFO structure, to fill a local
DRAGITEM structure from the shared memory, and to obtain a pointer to a
DRAGITEM structure in the shared memory.

The DrgSetDragitem API is used to copy the contents of a DRAGITEM
structure provided by the application into one of the DRAGITEM structures
associated with the DRAGINFQ structure. The prototype of this API is shown
in Figure 7.8.

» The pdinfo parameter is a pointer to the DRAGINFO structure associated
with the shared memory to which the DRAGITEM structure will be copied.

BOOL APIENTRY DrgSetDragitem{PDRAGINFO pdinfo,
PDRAGITEM pditem,
ULONG cbBuffer,
ULONG iItem};

Figure 7.8 The DrgSetDragitem prototype.

Drag-and-Drop Data Structures 169

BOOL APIENTRY DrgQueryDragitem{PDRAGINFO pdinfo,
ULONG cbBuffer,
PDRAGITEM pditem,
ULONG iItem);

Figure 7.9 The DrgQueryDragitem prototype.

» The pditem parameter is a local pointer to the DRAGITEM structure to be
copied.

¢ The cbBuffer parameter is the length in bytes of the DRAGITEM structure
pointed to by pditem.

¢ The iltem parameter is the zero-based index within the array of DRAGITEM
structures allocated with pdinfo to which pditem should be copied.

DrgSetDragitem returns TRUE if successful and FALSE if an error occurred.

The DrgQueryDragitem API is used to copy all or part of a DRAGITEM
structure from the shared memory associated with a DRAGINFO structure.
The prototype for this call is in Figure 7.9.

e The pdinfo parameter is a pointer to the DRAGINFO structure which iden-
tifies the shared memory area containing the desired DRAGITEM struc-
ture.

o The cbBuffer parameter is the length in bytes of the structure pointed to
by pditem. This may be less than the length of the DRAGITEM structure if
the entire structure is not desired.

¢ The pditem parameter is a pointer to the location in local memory to which
the desired DRAGITEM structure is copied.

¢ The iltem parameter identifies the zero-based index of the desired
DRAGITEM structure within the array of DRAGITEM structures allo-
cated to pdinfo.

DrgQueryDragitem returns TRUE if successful or FALSE if an error occurred.

DrgQueryDragitemPtr is used to obtain a pointer to a drag item within the
shared memory area. Unlike DrgQueryDragitem, which makes a local copy of
the structure, this API allows the application to modify the actual structure in
DRAGINFQ. The syntax of the API call is in Figure 7.10.

PDRAGITEM APIENTRY DrgQueryDragitemPtr (PDRAGINFO pdinfo,
ULONG ulIndex};

Figure 7.10 The DrgQueryDragitemPtr prototype.

170 Sshe Sells Sea Shells: Programming the Workplace Shell

¢ The pdinfo parameter is a pointer to the DRAGINFO structure which iden-
tifies the shared memory area containing the desired DRAGITEM struc-

ture.
¢ The ullndex parameter is the zero-based index of the desired DRAGITEM

structure within the array of DRAGITEM structures allocated with pdinfo.

This function returns a pointer to the DRAGITEM structure indicated by pa-

rameter ullndex.
The DrgQueryDragitemCount API returns the number of DRAGITEM
structures allocated for a given DRAGINFO structure. The API is defined as

shown in Figure 7.11.

¢ The pdinfo parameter is a pointer to the DRAGINFO structure for which
the number of DRAGITEM structures is desired.

The function returns the number of DRAGITEM structures allocated for the
DRAGINFO structure identified by pdinfo.

The DRAGIMAGE Structure

The DRAGIMAGE structure is used to describe the graphic image used to
represent one or more of the objects being dragged during a drag-and-drop
operation. For compatibility DRAGIMAGE structures may be specified for
pickup-and-drop operations, but are ignored. An application may associate
one or more DRAGIMAGE structures with a DRAGINFO structure. If the to-
tal number of DRAGIMAGE:S is less than the number of dragged objects or
DRAGITEM structures, then the first n DRAGIMAGE structures are used to
represent the first n DRAGITEM structures; DRAGIMAGE structure n is then
used to represent the remaining DRAGITEM structures. The DRAGIMAGE
structure may also be used to convey spatial information to the target applica-
tion so that objects may retain their original orientation to one another when
dropped. The DRAGIMAGE structure is defined as shown in Figure 7.12.

e The cb element is the length of the DRAGIMAGE structure in bytes.

o The cptl element is the number of points in the array pointed to by hlmage
when the image is a polygon (see fl); otherwise, this element is ignored.

s The himage element identifies the image to be drawn. The fI element de-
termines how this element is interpreted.

ULCNG APIENTRY DrgQueryDragitemCount (PDRAGINFO pdinfo);

Figura 7.11 The DrgQueryDragitemCount profotype.

DRG_ICON

Drag-and-Drop Data Structures 171

typedef struct _DRAGIMAGE
{
USHORT c¢b;
USHORT «¢ptl;
LHANDLE hImage;
SIZEL sizlStretch;
ULONG £1;
SHORT cxCffset;
SHORT cyOffset;
} DRAGIMAGE;

Figure 7.12 The DRAGIMAGE structure.

o The siziStretch element is a SIZEL structure that defines the size of the
image. If the appropriate flag is set in fI, the image will be stretched or
compressed to match this size; if the /I flag is not set, this field is not used.

o The fl element is a set of flags that define the type of image and how the
image will be displayed. The valid flags are:

0x0001 specifies that a graphic pointer is used to represent the as-
sociated object. hlmage is interpreted as an HPOINTER.

DRG_BITMAP 0x0002 specifies that a bitmap is used to represent the associated

object. ilmage is interpreted as an HBITMAP.

DRG_POLYGON 0x0004 specifies that a polygon (or series of connected points) is

used to represent the associated object. hlmage is inter-
preted as a pointer to an array containing at least cpt/
POINTL structures.

DRG.STRETCH 0x0008 when ORed with either DRG.ICON or DRG_BITMAP

causes the image to be stretched or compressed as neces-
sary to maich the size specified in siziStretch.

DRG_TRANSPARENT 0x0010 when ORed with DRG_ICON, causes an outline of the

pointer to be created and displayed instead of the actual
pointer.

DRG_CLOSED 0x0020 when ORed with DRG_POLYGON causes the first and

last points of the himage array to be connected so that
the image is a closed polygon.

¢ The cxOffset element specifies the position of the image's origin in relation
to the pointer hotspot measured as the distance between the two points
along the x axis. This element is copied to the cxOffset element of the
associated DRAGITEM before the target application is notified of a drop.

¢ The cyOffset element specifies the position of the image’s origin in relation
to the pointer hotspot measured as the distance between the two points

172 she Sells Sea Shalls: Programming the Workplace Shell

along the y axis. This element is copied to the cyOﬁ'sgt e}eme_:nt of' the
associated DRAGITEM structure before the target application is notified

of a drop.

An array of one or more DRAGIMAGE structures is passed as a parameter
to the DrgDrag API to define the default images that represent the dragged
objects. As the objects are dragged over a potentlral target, the target may u;e
the DrgSetDraglmage API to cause a different image or set of 1magefs toth_e
displayed while the pointer is located over its window. The prototype for this

API is given in Figure 7.13.

e The pdinfo parameter is a pointer to the DMGINFO structure for the
current drag and drop operation. This value is normally passed to the
target application as one of the MPARAM parameters of a message.

s The pdimg parameter is a pointer to an array of' DRAGIMAGE_ structures
which define the graphical images to display while the pointer is over this

target window. -
e The edimg parameter specifies the number of structures in the array

ointed to by pdimg.
. ’I;'he pRsvd parameter is a reserved parameter and must be set to NULL.

The API returns TRUE if successful and FALSE if an error occurred.

The DRAGTRANSFER Structure

The DRAGTRANSFER structure is used to pass information during the ensuing
conversation between the source and target applications after a drop occurs.
The definition of the structure is given in Figure 7.14.

e The cb element is the length of the structure in bytes. o _
o The hwndClient element is the handle of the target application window

with which the source application communicates. _
o The pditem element is a pointer to the DRAGITEM structure that describes

the object being rendered. The DRAGITEM structure pointed to by this
element must exist within the shared memory identified by.the DRAG-
INFO structure for the direct manipulation operation. This pointer should
normally be obtained by calling the DrgQueryDragitemPtr APL

BOXL APIENTRY DrgSetDragImage (PDRAGINFC pdinfo,
PDRAGIMAGE pdimg,
ULONG cdimg,
PVOID pRsvd):

Figure 7.13 The DrgSetDragimage prototype.

Drag-and-Drop Data Structures 173

typedef struct _DRAGTRANSFER
{

ULONG cb;

HWND hwndClient;
PDRAGITEM pditem;

HSTR hstrSelectedRMF;
HSTR hstrRenderToName;
ULONG ulTargetInfo;

USHORT usOperation;
USHORT fsReply;
} DRAGTRANSFER;

Figure 7.14 The DRAGTRANSFER siructure.

¢ The hstrSelectedRMF element is a handle to a string that specifies the ren-
dering mechanism and format that the target has selected for the operation.
Note that this string must be formatted as a single mechanism/format pair
enclosed in angle brackets (< >).

¢ The hstrRenderToName element is a handle to a string that identifies the
location where the source should store the rendered object. If this item is
a file name, the full path should be specified.

* The ullargetinfo element is a 32-bit value reserved for use by the target
application.

* The usOperation element defines the rendering operation to be performed.
The standard, predefined values for this field are:

DO_COPY 0x0010 creates a new instance of the object and passes to the target.

DO_MOVE 0x0020 passes the object to the target; the object is no longer available to
the source.

DOLINK 0x0018 provides the target with a means of accessing the existing copy of
the object.

Additional operations may be defined by applications; however, the op-
eration will not be performed unless both the source and target understand
the operation.

* The fsReply element is a set of flags that the source application uses to
communicate its success or failure in performing the rendering operation.
The valid flags are:

DMFL.NATIVERENDER 0x0004 indicates that the source will not render this object
and that the target should use the native mechanism
and format to render the data.

DMFL RENDERRETRY 0x0008 indicates that the source is able to render the object
but does not support the selected mechanism and for-
mat. The target may retry with a different mechanism
and format if desired.

174 She Sells Sea Shelis: Programming the Werkplace Shell

FDRAGTRANSFER APIENTRY DrgAllocDragtransfer (ULONG cdxfer};

Figure 7.15 The DrgAllocDragtransfer prototype.

Two APIs are provided for managing DRAGTRANSFER structures; one
API is used to allocate one or more structures in an array, the other is used
to free an allocated array of structures. While the structures may be allocated
as an array, they are passed to the source application individually. Therefore,
DrgFreeDragtransfer allows the structures to be freed on an individual basis
and does not free the shared memory until all structures have been freed.

The DrgAllocDragtransfer API must be called by the target application
to allocate DRAGTRANSFER structures in shared memory so that they can
be properly accessed by both the source and target applications. The API is
prototyped as in Figure 7.15.

e The cdxfer parameter specifies the number of DRAGTRANSFER structures
to be allocated.

The API returns a pointer to an array containing cdxfer DRAGTRANSFER
structures. Again, while multiple DRAGTRANSFER structures may be allo-
cated, the drag-and-drop protocols process the array one element at a time.
The DrgFreeDragtransfer API frees the memory allocated by the DrgAl-
locDragtransfer API. This API must be called by both the source and target
applications since the memory allocated for the DRAGTRANSFER structure
is given to the source application. The prototype for the API is in Figure 7.16.

e The pdxfer parameter is a pointer to the DRAGTRANSFER structure to
free. When all structures allocated by a call to DrgAllocDragtransfer have
been freed, the memory is freed.

The API returns TRUE if successful and FALSE if an error occurred.

STRING HANDLES

Like most of the memory used during a direct manipulation operation, the
text needed to complete the operation must be accessible to multiple processes
and cannot therefore be allocated in the local memory of any one application.
Rather than require the applications to allocate and manage memory for the

BOOL APIENTRY DrgFreeDragtransfer (PDRAGTRANSFER pdxfer);

Flgure 7.16 The DrgFreeDragiransfer prototype.

String Handles 175

HSTR APIENTRY DrgiAddStrHandle (PSZ psz);

Figure 7.17 The DrgAddSirHandie prototype.

strings, an API is provided, which copies the text into memory managed by
PM and returns a unique handle with which applications can identify the
string. Another API is provided, which copies the string associated with a
given handle from PM’s memory back into the local memory of an application
Of course, an API is provided to remove the string from PM’s memory and free:
the handle. These string handles are stored in the direct manipulation data
structures instead of the strings themselves.
The API used to copy the text into PM’s memory and assign the stri

handle is DrgAddStrHandle. The prototype for this furzction is ingFigureS;IjllI;g.

» The psz parameter is a pointer to the NULL-terminated string for which a
handle is desired.

DrgAddStrHandle returns NULLHANDLE if an error occurs or the handle
assigned to the text string if successful.

. The DrgQueryStrName API copies the text associated with a string handle
into a buffer in the application'’s local memory. The prototype for the API is in
Figure 7.18.

» The hstr parameter specifies the string handle representing the desired
string.

* The cbBuffer parameter is the length of the local buffer in bytes. The num-
be:r of bytes required to accommodate the entire string may be obtained
with the DrgQueryStrNameLen API (upcoming).

¢ The pBuffer parameter is a pointer to the local memory to which the string
should be copied.

DrgQueryStrName returns the number of bytes copied to pBuffer. If hstr is
invalid, zero is returned.

The length gf the string associated with a given string handle may be
obtained by calling the DrgQueryStrNameLen API, which is prototyped as in
Figure 7.19.

ULONG APIENTRY DrgQueryStrName{HSTR hstr,
ULONG cbBuffer,
PSZ pBuffer};

Flgure 7.18 The DrgQueryStrName prototype.

176 She Sells Sea Shells: Programming the Workplace Shell

ULONG APIENTRY DrgQueryStrNameLen (HSTR hstr);

Figure 7.18 The DrgQueryStrNameLen prototype.

o The hstr parameter is the handle to the string whose length is desired.

The API returns the number of bytes in the string associated with hstr, but
does not include the NULL character terminating the string.

The DrgDeleteStrHandle API frees the resources associated with a string
handle obtained via the DrgAddStrHandle API and invalidates the handle. The
prototype for this API is shown in Figure 7.20.

» The hstr parameter is the handle that identifies the string to delete.

The API returns TRUE if successful and FALSE if an error occurred.

String handles may also be removed with the DrgDeleteDraginfoStrHan-
dles API. This API provides a shortcut for the programmer by deleting all
the string handles referenced in the DRAGITEM structures associated with a

DRAGINFO structure. The prototype for this API is in Figure 7.21.

o The pdinfo parameter is a pointer to the DRAGINFO structure associated
with the DRAGITEM structures whose string handles are to be freed.

The API returns TRUE is successful or FALSE if an error occurred.

DIRECT MANIPULATION CODING

Now that you have at least a basic understanding of the data structures used
for direct manipulation, we can turn our attention to the coding required
for an application to support direct manipulation. In order to clearly see the
complete flow of the operation, we will begin with the coding required for a
window to act as the source of a drag-and-drop operation and then proceed to
the coding that allows a window to be a target. After examining the drag-and-
drop programming, we will examine the additional code required to also act
as the source or target of a pickup-and-drop operation.

The application used for the examples provides direct manipulation capa-
bility for a listbox control that displays a list of the file names in a directory.
The application creates the listbox control as the client window of a standard

BOOL APIENTRY DrgDeleteStrHandle(HSTR hstr);

Figure 7.20 The DrgDefeteSirHandle prototype.

Direct Manipulation Coding 177

BOOL APIENTRY DrgDeleteDraginfoStrHandles (PDRAGINFO pdinfo):

Figure 7.21 The DrgDeleteDraginfoStrHandles prototype.

frame and then subclasses the control to provide menu support and direct
manipulation functionality. See Chapter 10 for additional information on sub-
classing.

Starting the Drag and Drop Operation

The source application in a drag-and-drop operation is the application that
controls the window from which objects are dragged. This application is re-
sponsible for initiating the drag operation, informing the system which objects
are being dragged, specifying the graphical image(s) used to represent the
object(s) during the operation, specifying the rendering mechanism(s) and for-
mat(s) that it supports, and rendering the object(s) using the mechanism and
in the format selected by the target application.

A drag-and-drop operation is initiated when the user presses and holds
the drag-and-drop button on the pointing device and then moves the pointing
device. PM responds to the user action by sending a WM_.BEGINDRAG mes-
sage to the window over which the mouse pointer is positioned. An application
capable of acting as a source application responds to this message by allocat-
ing and initializing the data structures for the operation and then calling the
DrgDrag API function.

Figure 7.22 provides an example of the code for processing the WM_BEGIN
DRAG message. First the number of items being dragged must be determined
so that the correct number of DRAGITEM structures can be allocated along
with the DRAGINFO structure. The application determines this number by
calling a utility function, QuerySelectionCount, to scan the items in the listbox
and determine how many are selected. Once the number of selected items is
known, DrgAllocDraginfo is called to allocate the DRAGINFQ structure and
the proper number of DRAGITEM structures. If this function is successful,
another utility function, SetDragltems, is called to initialize a DRAGITEM
structure for each selected element of the listbox.

Next, one or more DRAGIMAGE structures must be initialized to inform
PM how to graphically represent the dragged objects during the drag opera-
tion. This application displays a single image no matter how many objects are
dragged, but the image varies depending on whether there is one object or mul-
tiple objects. First the DRAGIMAGE structure is cleared, then the size of the
structure is stored in the cb element. Next, the fl flag for the type of graphical
representation is set; in this instance, a pointer is used so the DRG_ICON flag is
set. The himage element is set to a system-defined pointer handle obtained via
a call to the WinQuerySysPointer API. The handle to the SPTR_FILE pointer

178 she Sells Sea Shells: Programming the Workplace Shell

static MRESULT wm_begindrag| HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mpZ)
{

ULONG cFiles;

DRAGIMAGE dImage;

PDRAGINF(D pDinfo = NULL;

SHORT sltem = LIT_FIRST;
HWND hwndTarget;
do {
if ({cFiles = QuerySelectionCount{ hwnd }} == 0} break;
if {|pDinfe = DrgallocDraginfo(cFiles)) == (PDRAGINFO} (NULL}}
break;

SetDragItems(pDinfo, hwnd, cFiles);
memset | &kdImage, [, sizeof (DRAGIMAGE));
dImage.ch = sizeof (DRAGIMAGE);
dImage.fl = DRG_ICON;
dImage.hImage = (LHANDLE)WinQuerySysPointer(HWND_DESKTOP,
cFiles == 1 ? SPTR_FILE : SPTR_MULTFILE,

FALSE };
gpSrcDinfo = pDinfo

gulSrcCount = cFiles; .
hwndTarget = DrgDrag(hwnd, pDinfo, &dImage, 1, VK_ENDDRAG, NULL };

if (hwndTarget == NULLHANDLE) {
DrygDeleteDraginfoStrHandles(pDinfo };
DrgFreeDraginfa{ pDinfo);
} /* endif */
} while { false }; /* enddo */
return (MRESULT)TRUE;
}

Figure 7.22 Handling the WM_BEGINDRAG message.

is used if a single listbox item is selected; the handle to the SﬂMULTFILE
pointer is used if multiple listbox items are selected. The remaining elemepts
of the structure remain at their default values since the program does not w1.sh
to modify the size of the pointer, and no spatial orientation is possible with
only one image. i)

After initializing the DRAGIMAGE structure, the appllcatlgn saves the
DRAGINFO pointer and the number of dragged items in global varlables: Th.ese
values are used after a drop occurs to determine when the target apr?hcanon
has completed its processing of all items so that the source application may
release its access to the DRAGINFO structure. _

The DrgDrag API is then called to initiate PM'’s processing of the drag
operation. The prototype for the DrgDrag API is shown in Figure 7.23.

e The hwndSource parameter is the window handle of the source window for
the operation, normally the window that received the WM.BEGIN DRAG

message.

Direct Manlpuiation Coding 179

HWND APIENTRY DrgDrag(HWND hwndSource,
PDRAGINFO pdinfo,
PDRAGIMAGE pdimg,
ULONG cdimg,
LONG vkTerminate,
PVOID pRsvd};

Figure 7.23 The DrgDrag profotype.

* The pdinfo parameter is the pointer to the DRAGINFO structure and
associated DRAGIMAGE structures that convey the information necessary
to complete the drag-and-drop operation.

* The pdimg parameter is a pointer to the DRAGIMAGE structure or array
of DRAGIMAGE structures that inform PM how to graphically represent
the dragged objects during the drag portion of the operation.

s The cdimg parameter indicates the number of DRAGIMAGE structures in
the array pointed to by pdimg.

* The vkTerminate parameter indicates the pointing device button whose
release will terminate the drag-and-drop operation. Possible values for
this parameter are:

VK_ENDDRAG 0x0038 indicates that the system-defined button must be released. vkTer-
minate should normally be set to this value.

VK BUTTON1 0x0001 indicates that releasing button 1 of the pointing device terminates
the operation.

VK BUTTON2 0x0002 indicates that releasing button 2 of the pointing device terminates
the operation.

VK BUTTON3 0x0003 indicates that releasing button 3 of the pointing device terminates
the operation.

» The pRsvd parameter is reserved and must be set to NULL.

The DrgDrag API returns the handle to the window on which the objects
were dropped, or NULLHANDLE if the operation was cancelled or an error
occurred. Note that this API starts a modal operation and does not return until
the objects are dropped or the operation is cancelled. PM handles processing of
the message queue in the same manner as when the WinDlgBox API is called.
When the drag operation ends by dropping the objects, a DM_DROP message is
sent to the target window before the DrgDrag API returns. If DrgDrag returns
NULLHANDLE, the DRAGINFO structure is freed immediately by calling the
DrgDeleteDraginfoStrHandles and DrgFreeDraginfo APIs. The wm_begindrag
function then returns TRUE to indicate that the WM_BEGINDRAG message
was processed.,

180 She Sells Sea Shells: Programming the Workplace Shelt

Figure 7.24 shows the code for routine SetDragltems which was mentioned
earlier. This routine is responsible for initializing the DRAGITEM structures
with the required information to identify the objects being dragged. A pro-
totype DRAGITEM structure is allocated in the routine’s local memory as a
stack variable. After the prototype structure is cleared, the elements of the
structure that remain constant for every object are set to appropriate values.
Then a loop is executed which scans the selected items in the listbox, storing
appropriate values in the varying elements of the DRAGITEM structure and
copying the completed DRAGITEM structure to the shared memory allocated
for the operation's DRAGINFO structure.

The constant elements of the DRAGITEM structure in this example are
the string handle for the rendering mechanism and format, the supported
operations flags, and the source window handle. This application only sup-
ports transferring objects as files, thus the rendering mechanism is set to
DRM._OS2FILE. Since this application does not concern itself with the format
in which files are stored and does no translation of the file format, the render-
ing format is set to DRF_.UNKNOWN. These two selections are merged into the
RMF string “<DRM_OS2FILE,DRF_ UNKNOWN>" for which a string handle
is allocated and stored in the hstrRMF element of the DRAGITEM structure.
The application will allow files to be moved or copied, but does not support
linking; therefore, the DO_COPYABLE and DO_MOVEABLE flags are set in
the fsSupportedOps element.

The loop in SetDragltems scans the listbox for selected jtems. When an
item is found, the text of the item is retrieved from the listbox. A string handle
is allocated for this text and stored in the hstrSourceName element of the
DRAGITEM structure. Since the application expects the name to remain the
same when transferred to the target, the hstrTargetName element is also set
to this handle (the target name is a suggestion, the target application may
change the name). Next, routine QueryType is called to obtain the type of the
file from the extended atiributes associated with the file. The routine sets this
value as the native type of the file and appends the DRT_UNKNOWN type for
applications that are not concerned about the actual file type. A string handle
is allocated for the resulting string and stored in element hstrType. Finally, the
name of the current directory is obtained and a string handle allocated for
the text. This handle is then stored in the hstrContainerName element. At this
point, the prototype structure has been filled and DragSetDragitem is called
to copy the prototype to the operation’s shared memory area.

We will return to the source application later to examine how the rendering
operation is handled, but first, let's examine how target applications handle
the messages received during the drag portion of the operation.

Responding to the Drag Operation

After DrgDrag is called, PM assumes control of the drag operation and modifies
the mouse pointer to include the graphic image or images that represent the

Direct Manipulation Coding 181

?tatic void SetDragItems{ PDRAGINFO pDinfo, HWND hwnd, ULONG cFiles }

SHORT sItem;

SHORT cbItem;

PSZ pszFileName;
PSZ pszType;

Psg pszContainer;

DRAGITEM dItem;

memset{ &dIltem, 0, sizeof (DRAGITEM)};

dItem.hstrRMF = DrgAddStrHandle(*<DRM_0S2FILE,DRF_UNKNOWN>") ;
dItem.fsSupportedOps = DO_COPYABLE | DO_MOVEABLE;
dItem.hwndItem = hwnd;

sItem = LIT FIRST;
while ({sItem = SHORTIFROMMR(WinSendMsg{ hwnd, LM QUERYSELECTION,
MPFROMSHORT(sItem }, OL)})} != LIT_NONE } {

cbItem = SHORTIFROMMR{ WinSendMsg(hwnd, LM_QUERYITEMTEXTLENGTH,
' . MPFROMSHORT(sItem }, OL }} + 1;
if ((pszFileName = {PSZ)malloc(cbItem }} != (PSZ}NULL) {
WinSendMsg{ hwnd, LM_QUERYITEMTEXT,
MPFROM2SHORT{ sItem, cbItem), pszFileName);
dItem.hstrSourceName = dItem.hstrTargetName =
. DrgaddStrHandle{ pszFileName);
if {(pszType = QueryType(pszFileName)} != NULL) {
dItem. hstrType = DrgAddStrHandle(pszType);
free{ pszType };
} else {
dItem.hstrType = NULLHANDLE;
/* endif */
if {(pszContainer = QueryCurrentDirectory(}} !'= NULL) {
dItem.hstrContainerName = DrgAddStrHandle(pszContainer |;
free{ pszContainer }; i

} else {
dItem.hstrContainerName = NULLHANDLE;
} /* endif */
DrgSetDragitem(pDinfo, &dItem, sizeof{ DRAGITEM |, --cFiles };

free{ pszFileName);
} /% endif */
} /* endwhile */
return;

}

Figure 7.24 initializing the DRAGITEM structures.

182 she Selis Sea Shells: Programming the Workplace Shell

dragged objects. As the pointer moves over a window, PM sends messages to
the window to notify it of the drag operation. Windows that are capable of
being targets of the drag operation must respond to these messages.

One of these messages is the DM_DRAGOVER message. This message in-
forms a window that it is the current target of a direct manipulation operation
and is sent as the pointer moves into and within the window, allowing a win-
dow with multiple target areas, such as a container, to respond based on the
capabilities of the area under the pointer. Parameter mp1 of the message is a
pointer to the DRAGINFO structure for the operation. Parameter mp2 contains
the current location of the pointer in desktop coordinates; the x coordinate is
in the low-order 16 bits of the parameter and the y coordinate is in the high-
order 16 bits. The application’s response to the message depends on the ability
of the application to act as a target for the current drag operation and set of
dragged objects.

When an application receives the DM_LDRAGOVER message, it should pro-
vide some type of emphasis indicating that the current window is the current
target. While this emphasis can take many forms, a thin border is normally
drawn around the inner edge of the window; or, if the window supports mul-
tiple target areas, the portion of the window that is the current target. After
emphasis is provided, the application obtains access to the DRAGINFO strue-
ture and determines if the current operation is supported for all elements of the
set of dragged objects. In making this determination, the application should
examine the type of operation in the usOperation field of the DRAGINFO
structure and the object type, rendering mechanism, and format in each of the
DRAGITEM structures associated with the DRAGINFO structure. In order to
accept a drop of the current set of objects, the application should be able to
support all of these’ items. Once this determination is made, the application
should release its access to the DRAGINFO structure and prepare a response
to the message.

The return code for the DM.DRAGOVER message consists of two fields.
The lower-order 16 bits, usDrop, indicate the application’s ability to accept the
dragged objects; and the high-order 16 bits, usDefaultOp, indicate the default
operation that the application will perform. usDefaultOp is only necessary
when the drop can be accepted and the usOperation field of the DRAGINFO
structure is set to DO_DEFAULT or DO_UNKNOWN. Field usDrop may be set

to the following values:

DOR_DROP 0x0001 indicates that the application is capable of supporting a
drop of the current set of objects.
DOR_NODROP 0x0000 indicates that the application is capable of supporting a

drop of the current set of objects, but is not able to do so
at this time; possibly because the application is busy with
some other operation.

Direct Manlpulation Coding 183

DOR_NODROPOP 0x0002 indicates that the application is capable of supporting a

drop of the objects, but does not support the requested op-
eration. %

DOR_NEVERDROP 0x0003 indicates that the application cannot accept a drop of the

objects.

The usDefaultOp field may be assigned the following values:

DO_COPY 0x0010 indicates that a copy operation will be performed.
DO_MOVE 0x0020 indicates that a move operation will be performed.
DO_LINK 0x0018 indicates that a link operation will be performed.

other

indic_ate§ that an application-defined operation will be performed.
Application-defined operations should be assigned a value greater
than DO_UNKNOWN (0xBFFF).

Figure 7.25 shows the code our example application uses to pr
D_M_DRAGOVER message. The application canpl:erve as the targgt (f)(;:: sjr:)];e-
ping 0S/2 files of any type in any format. If not already applied by a prior
DM.DRAGOVER message, the routine first establishes target emphasis for the
window and then determines if the current drag operation and objects are
supported.

If cl'fec.:king the window data determines that target emphasis is needed, the
emphasis is supplied by drawing a border around the interior of the windov;' To
ac<;omplish this, a presentation space is obtained by calling the DrgGetPS A'PI
This API takes one parameter, the handle of the window in which drawing wili
oceur, and returns a handle to the presentation space. WinQueryWindowRect
is then called to obtain the area occupied by the window and the coordinates
are adjusted to account for scroll bar controls and the size of the border to
be dr?wn. Next, WinDrawBorder is called to draw the actual border, and
the window data is updated to indicate that emphasis has been applieci. The
presentation space is then released by calling DrgReleasePS and by passing
the handle to the presentation space obtained earlier. The prototype for the
WinDrawBorder API is shown in Figure 7.26.

. The hps parameter is the handle of the presentation space where drawing
is to occur.

Tht? prcl parameter is a pointer to a rectangle describing the area around
which the border is to be drawn.

The ex parameter specifies the width of the border.

The cy parameter specifies the height of the border.

The clrFore parameter specifies the foreground color for the border.

The clrBack parameter specifies the background color for the border.

static MRESULT dm dragover{ HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)

{

}

PDRAGINFO pdinfo = (PDRAGINFO)NULL;
USHORT usDrop = DOR_NEVERDROP;
USHORT usDefaultOp;

PDRAGITEM pditem = NULL;

ULONG 1Item = 0;

HPS hps;

RECTL rclReck;

do {

if {!'WinQueryWindowULong (WinQueryWindow (hwnd, QWw_OWNER} , WL_EMPHASIZED)) {
hps = DrgGetPS{ hwnd };
if (hps == NULLHANDLE} break;
WinQueryWindowRect{ hwnd, &rclRect };
rclRect .xLeft += WinQuerySysValue (HWND_DESKTOP, SV_CXBORDER};
rclRect.yTop -= WinQuerySysValue (HWND_DESKTOP, SV_CYBORDER);
rclRect.xRight -= WinQuerySysValue {HWND_DESKTOP, SV_CXVSCROLL);
rclRect.yBottom += WinQuerySysValue (HWND_DESKTOP, SV_CYBORDER) + 1;
WinDrawBorder (hps, &rclRect,1,1,01, 01, DB_DESTINVERT DB_STANDARD) ;
WinSetWindowUlLong{ WinQueryWindow(hwnd, QW _OWNER],
WL_EMPHASIZED, (LONG)TRUE };
DrgReleasePS(hps };
} /* endif */
pdinfo = (PDRAGINFO)mpl;
if |!DrgAccessDraginfo(pdinfo)) pdInfo = [PDRAGINFO|NULL; break;
usDrop = DOR_DROP;
switch({pdInfo->usOperation) {
case DO_COPY: usDefaultOp = DO_COPY; break;
case DO_MOVE: usDefaultOp = DO_MOVE: break;
case DO_DEFAULT: usDefaultOp = DO_MOVE; break;
case DO_UNKNOWN: usDefaultOp = DO_MOVE; break;
default: usDrop = DOR_NODROPOP;
}
for(1Item = 0; 1Item < pdInfo->cditem; 1Item++)} {
if{ {pdIitem = DrgQueryDragitemPtr(pdInfo, 1Item)) != NULL } {
if{ !DrgVerifyRMF({ pdItem, "DRM_OQS2FILE", NULL }) {
usDrop = DOR_NEVERDROP; /* can't handle this object */
break;
}
/* do type here if necessary - bad type = DOR_NEVERDROP */
if{ usDefaultOp == DO_COPY &&
! (pdItem->fsSupportedOps & DO_COPYABLE }) {
usDrop = DOR_NODROPOP;
} else if(usDefaultOp == DO_MOVE &&
| {pditem->fsSupportedOps & DO_MOVERBLE }) {
usDrop = DOR_NODROPOP;
}
}

}
} while { false); /* enddo */

if

(pdInfo != {(PDRAGINFO}NULL) DrgFreeDraginfo{ pdInfo };

return MRFROM2SHORT(usDrop, usDefaultOp);

Figure 7.25 Handling the DM_DRAGOVER message.

184

S

Direct Manipulation Coding 185

BOOL APIENTRY WinDrawBorder {HPS hps,

PRECTL prcl.
LONG cx,

LONG cy,
LONG clrFore,
LONG clrBack,
ULONG f£1Cmd) ;

Figure 7.26 The WinDrawBorder prototype.

* The ICmd parameter is a set of flags that modify the operation of the
function. These are defined as:

DB_PATCOPY 0x0000 uses the current pattern to draw the border.
DB_PATINVERT 0x0001 exclusive ORs the current pattern with the existing

presentation space data.

DB_DESTINVERT 0x0002 inverts the destination.
DB AREAMIXMODE 0x0003 uses the current mix mode for drawing the border

area.

Note that the above four flags are collectively known as DB_ROP and
are mutually exclusive. The remaining flags may be ORed with one of these.

DB.INTERIOR 0x0008

DB_AREAATTRS 0x0010

DB_STANDARD 0X0100

DB.DLGBORDER 0x0200

causes the area within the prel rectangle that is not part
of the border specified by ex and cy to be drawn.

causes the current area attributes to be used rather than
the specified foreground and background colors.

specifies that the ex and cy parameters are to be multi-
plied by SV.CXBORDER and SV.CYBORDER to obtain
the width and height of the border.

specifies that a dialog border is to be drawn. The border is
drawn in the active title bar color if DB.PATCOPY is spec-
ified and in the inactive title bar color if DB_.PATINVERT
is specified. If DB_INTERIOR is specified, the interior
is drawn using the clrFore and clrBack parameters; the
DB_ROP and DB_AREAATTRS parameters are ignored
for interior drawing.

WinDrawBorder returns TRUE if successful and FALSE if an error occurs. In
the example code, the API is used to show emphasis by inverting a narrow
border around the inside edge of the window.

After the emphasis has been applied, the application obtains access to
the shared memory containing the DRAGINFO and DRAGITEM structures
by calling the DrgAccessDraginfo API with the pointer passed as mpl1 of the

186 She Sells Sea Shells: Programming the Workpiace Shell

RAGOVER message. The application then verifies that tl:ne operation
;Tc:gied in the usOperation element of the DRAQIN FO structux}‘le is s;pfoﬁg:l.
A switch statement is used to handle this verification and to set the usDefau rtez
variable if the operation is supported. Copy and move operatlonsharz s?p;i;) e
and merely assign DO.COPY or DO_MOVE to usDefaultOp. The tﬁ at:i 2nd
unknown operations are also supported and set usDefaultOp to the de

i icati i not supported by this
for this application, DO_MOVE. All other operations are
application, so the default case sets the usDrop vanable.to DORJ?DI:OI:}(:;
Assuming that the objects themselves are supported, this value indicates

the application does not support the current opgrat.ion.
AFf)tir the operation type is verified, the application scans the DRAGITEMs

connected to the DRAGINFO structure to verify that the individual objects

can be rendered. In order to make this determination, the application calls

the DrgVerifyRMF API to ensure that the objects can be rendered using the

echanism—this application is not concerr.'led with the file
;:C)JRnll\ldaf gcf tFl':: E)rﬁat string parameter is set to N UI:.L. If an object does IIIS:I)C ;_l(lj)pP
port the OS/2 file mechanism, the usDrop variable is set to DOR NEVE ROP
to indicate that the application cannot support a t.:Irop of_the curr;:lnt set of o -
jects, and the loop to check the dragged objects is terminated. The prototyp

for the DrgVerifyRMF API is given in Figure 7.27.

e The pditem parameter is a pointer to the DRAGIT]-;-.M to be 1':ested.
s The pszMech parameter is a pointer to a zero-terminated string of characi:
ters representing the mechanism for which to search. Specifying a NUL
ointer will match any mechanism. ’ .
. %he pszFmt parameter is a pointer to a zero-termma'ttefi string of chara'tcter
representing the format for which to search. Specifying a NULL pointer

will match any format.

VerifyRMF API returns TRUE if the desired _mechamsm and fo_rmat
3‘1: sll::;iortegfor the object and FALSE if the mechanism and fom;lat 1}31; ;1;_
not supported. The API obtains the string represented by e.element‘ St:i e
the DRAGITEM structure and expands any cross products into their “:1 1fv1 rh
pairs. The resulting set of paired mechanisms and formats are tested tor the

desired pair.
Normally,
ify the type passed

an application that processes the object's contents wc?uld ver-
in hstrType at this stage; but, since this application does

BOOL APIENTRY DrgVerifyRMF{PDRAGITEM pditem,
PSZ pszMech,

PSZ pszFmt);

Figure 7.27 The DrgVerityRMF profotype.

Direct Manipulation Coding 187

not interpret the contents of the file, the file type is unimportant and is not
verified. The final step for verifying the objects is to ensure that the current
operation is supported for the object. This is accomplished by testing the fs-
SupportOps element of the DRAGITEM structure for the bit that corresponds
to the current operation. If the corresponding bit is not set, usDrop is set to
DOR-NODROPOE, once again indicating that transfer of the objects may be
supported, but not using the current operation. When all objects have been
checked, the application releases its access to the DRAGINFO structure and
returns usDrop and usDefaultOp to PM.

Once a DM_.DRAGOVER message has been received, the application will
receive either a DM_DRAGLEAVE message or a DM.DROP message. The
DM_DRAGLEAVE message indicates that either the pointer has left the window
or the direct manipulation operation has been cancelled. When this message
is received, the target emphasis applied to the window should be removed.
Parameter mpl of the DM_DRAGLEAVE message is a pointer to the DRAG-
INFO structure, allowing the application to query information about the op-
eration or the dragged objects if necessary. The target application will receive
a DM.DROPHELP message in addition to the DM_DRAGLEAVE message if
a drag-and-drop operation is cancelled as the result of the user pressing the
Help key, F1. This message allows the application to display help explaining
how it handles a drop operation and/or why it cannot accept a drop for the
currently dragged objects.

The DM_DROP message indicates that the user has requested that the
dragged objects be dropped on the window that receives the message. When the
application receives this message, it should remove the target emphasis from
the window, obtain access to the DRAGINFO structure pointed to by parameter
mpl of the message, and take steps to initiate the rendering of the objects;
for example, by posting a message to itself to perform the rendering. The
application should not wait until the objects have actually been rendered before
responding to the DM_DROP message. After the target application returns from
DM.DROE the DrgDrag API will return to the source application.

Figure 7.28 provides an example of the target application processing of
the DM_DROP message. In this example, the target first obtains access to
the DRAGINFO structure using the DrgAccessDraginfo API. An application-
defined message is then posted to an object window associated with the target
application to handle the task of communicating with the source window to
render the objects. This method allows the rendering to occur on a separate
thread so that the application’s user interface remains active. After posting the
message, the emphasis set in the processing for the DM_DRAGOVER message
is removed by using the same code to again invert the border around the edge
of the window. The emphasis flag in the window instance data is then cleared
so that future DM_DRAGOVER messages from another drag operation will be
able to establish the emphasis. The function then returns and PM allows the
source application to return from the DrgDrag API call.

188 she Sells Sea Shells: Programming the Workplace Shell

static MRESULT dm_drop(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)

{

HPS hps;

PDRAGINFO pdInfo = (PDRAGINFO)mpl;

RECTL rciReck; .

HWND hwndMain = (HWND)WinQueryWindow{ hwnd, QW_OWNER);
HWND hwndObj = (HWND)NULLHANDLE;

if (DrgAccessDraginfo(pdinfo }} {
hwndObj = {HWND)WinQueryWindowULong{ hwndMain, WL_HWNDOBJECT };
WinPostMsg(hwndObj,UM_RECEIVEDROP,MPFROMHWND(hwnd),MPFROMP(denfo));

} /* endif */

if {WinQueryWindowULong{ hwndMain, WL_EMPHASIZED)) {
hps = DrgGetPS{ hwnd);
if (hps != NULLHANDLE} {
WinQueryWindowRect { hwnd, &rclRect);
rclRect.xleft += WinQuerySysValue (HWND_DESKTOP, SV_CXBORDER);
rclRect.yTop -= WinQuerySysValue {HWND_DESKTOF, SV_CYBORDER);
rclRect.xRight -= WinQuerySysValue (HWND_DESKTOP, SV_CXVSCROLL) ;
rclRect ,yBottom += WinQuerySysValue (HWND_DESKTOP, SV_CYBORDER) + 1;
WinDrawBorder (hps, &rclRect,1,1,01,01, DB_DESTINVERT | DB_STANDARD) ;
WinSetWindowULong { WinQuerywindow({ hwnd, QW_OWNER)},
WL_EMPHASIZED, (LONG)FALSE };
DrgReleasePS(hps };
} /* endif */
} /* endif */

return MRFROMLONG{ OL);
}

Figure 7.28 Handiing the DM_DROP message.

RENDERING OBJECTS

When the application-defined message posted during DM_DROP processing 1s
received by the target’s object window, the rendering stage of the drag-and-
drop operation begins. During this stage, the target ap_phcation processes each
of the dragged objects, determines which of the avalla_tble rendering formats
to use, and performs the rendering operation according to the protocol for
the selected mechanism. The DRM_OS2FILE mechanism protocol uses estab-
lished direct manipulation messages to converse with the source and perform
rendering. This mechanism is discussed in detail next. The DRM_DDE me(fha-
nism uses the standard DDE messages and protocol to perform the rendering.
See Chapter 9 for a complete description of the DDE protocol. When the
DRM _PRINT mechanism is selected, the target sends a DM_PRINT OBJECT
message to the source after filling a PRINTDEST structure. The source is then

Rendering Objects 189

expected to complete the rendering operation by printing the object or by di-
recting the target to print the object. A target that supports the DRM_DELETE
mechanism sends a DM_DELETEOBJECT message to the source. The source
may either delete the object or request that the target perform the deletion.
These are the predefined mechanisms—applications may define additional pro-
tocols; however, these will not be selected unless both the source and target
applications are capable of supporting the mechanism.

Our examples have specified the DRM_OS2FILE mechanism. This mecha-
nism allows objects to be rendered as common 0S/2 file system files, a concept
understood by most programmers. When this mechanism is used, the conver
sation between the source and target applications is conducted using messages
native to the direct manipulation support. While the actual conversation varies
depending on the exact actions required, the general flow of the conversation
is:

1. If requested by the source application, the target sends a DM_RENDER
PREPARE message to the source window. This allows the source to per-
form actions to prepare for the rendering operation. For example, the
source may wish to create an object window to perform the operation; or,
in the case of an editor, it may need to save a portion of the text to a file.

2. The target sends a DM_RENDER message to request that the source per-
form the rendering operation.

3. The source sends a DM_.RENDERCOMPLETE message to the target to
indicate that the rendering operation has been completed.

4. The target sends a DM_LENDCONVERSATION message to the source to
indicate that no further action is necessary for the current object and
that the source may release any resources it has allocated to perform the
rendering of the object.

When the target application chooses DRM_OS2FILE as the rendering
mechanism for a particular dropped object and DRM_OS2FILE is the na-
tive mechanism, it may choose to render the object itself without involvement
from the source. This is possible if the source has provided all information
necessary to complete the rendering operation. The primary requirement is
that the source has provided both the hstrContainerName and hstrSourceName
elements of the DRAGITEM structure for the object. Additionally, the target
must be able to understand the native format and true type of the object.
When these conditions are met, the target may perform the rendering opera-
tion and then send the DM_ENDCONVERSATION message without sending
the DM_RENDER message.

If the conditions for target rendering are not met, or if the target chooses,
a DM_RENDER message is sent to the source application to request that the
source render the object. The source responds to this message indicating that:

190 she Sells Sea Shelis: Programming the Workplace Shell

it will perform the rendering; rendering cannot be performed; or the target
should either perform the rendering or retry the operation. Since the source
can elect the third option, the easiest course for a target application is to first
request that the source render objects, and then if the source cannot perform
the rendering, attempt to render the objects itself.

Figure 7.29 shows an example of the processing that a target applica-
tion performs in response to the message to begin rendering of objects.
The example application supports the DRM_OS2FILE mechanism. The rou-
tine first stores the DRAGINFO pointer in a global variable for later use.
Normally, the DrgQueryDraginfoPtrFromHwnd or DrgQueryDraginfoPtr-
FromDragitem APl could be used to obtain the DRAGINFO pointer, but
unfortunately, the original release of WARP has a nasty bug in the latter
API, so a global variable is used instead. The routine allocates a counter and
initializes it to the number of objects dropped. This counter will be decre-
mented each time an object is rendered. When the count reaches zero, all of
the objects have been rendered and the application can release its access to
the DRAGINFO structure. A for loop is used to process each of the objects
dragged. As each object is processed, the DrgQueryDragitemPtr API is used to
obtain a pointer to the DRAGITEM structure for the object. A utility routine,
MakeXfer, is then called to allocate and fill the DRAGTRANSFER structure
for rendering the object.

After the DRAGTRANSFER structure is allocated and initialized, an at-
tempt is made to allow the source to render the object. If the source has
indicated that it needs to prepare for the rendering, a DM_RENDERPREPARE
message is sent to the source and the conversation window handle is set to the
value returned from the source as the hwndltem element of the DRAGITEM
structure. A DM_RENDER message is then sent to the source using the
DrgSendTransferMsg APL. In addition to sending the message, this API gives
the source access to the DRAGTRANSFER structure. If the response to
DM _RENDER indicates that the source will perform the rendering operation,
the target suspends processing of the current object until notified that the
source has finished its processing.

The prototype of the DrgSendTransferMsg API is shown in Figure 7.30.

The hwnd parameter specifies the handle of the window that is to receive
the message.

The msg parameter is the message to be sent.

The mp1 parameter is a value defined by the message being sent.

The mp2 parameter is a value defined by the message being sent.

DragSendTransferMsg returns FALSE if the message could not be sent to
hwnd; otherwise, the MRESULT response from hwnd is returned. This API
specifically addresses the requirements for sending messages involving DRAG-

Rendering Objects

191

HWND hwndTarget = HWNDFROMMP (mpl) ;
HIWND hwndRender;

PDRAGINFO pDraginfo = (PDRAGINFO)mp2;
PDRAGITEM pDragitem = (PDRAGITEM)NULL;
IISHORT usDragitem = 0;

PUSHORT pusToDo;

PDRAGTRANSFER pDragXfer = (PDRAGTRANSFER)NULL;

gpDraginfo = pDraginfo;
pusToDo = (PUSHORT)malloc(sizeof (USHORT));
*pusToDo = pDraginfo->cditem;
for| usD;agitem = 0; usDragitem < pDraginfo-> cditem; usDragitem++) {
pgragigem = BziQuiry?gagitemPtr(pDraginfo, (ULONG)usDragitem):
pDragXfer = eXfer (hwnd, pDragitem, pDraginfo-»> i !
hwndRender = pDraginfo->hwngSougce; poragintasustpecation, pustobely
if(pDragitem->fsControl & DC_PREPARE) {
if(!DrgSendTransferMsg(pDraginfo->hwndSource, DM_RENDERPREPARE,
. MPFROMP(pDragXfer), MPFROMLONG{ 01 })} {
KillXfer(pDragXfer };
-={*pusToDo) ;
continue;
} /* endif */
hwndRender = pDragitem->hwndItem;
} /* endif */
if{ DrgSendTransferMsg (hwndRender, DM_RENDER,
. MPFROMP({ pDragXfer), MPFROMLONG{ 01 })) f
continue;
} /% endif */
if{ pDragXfer->fsReply & DMFL_RENDERRETRY } {
/* no different ops supported - try target render */
/* endif */
if (RenderFile{ pDragXfer)} {
DrgSendTransferMsg(hwndRender, DM_ENDCONVERSATION,
o { MPFROMSHORT {usDragitem) , MPFROMSHORT (DMFL_TARGETSUCCESSFUL)) ;
se
DrgSendTransferMsg(hwndRender, DM_ENDCONVERSATION,
MPFROMSHORT (usDragitem), MPFROMSHORT (DMFL_TARGETFAIL));
} /% endif */ - '
KillXfer{ pDragXfer);
--{*pusToDo };
} /* endfor */
if(*pusTobo == 0) {
free{ pusToDo };
DrgDeleteDraginfoStrHandles(pDraginfo };
DrgfreeDraginfo{ pDraginfo);:
; } /* endif */

Figure 7.29 Target process {o render objects.

192 She Sells Sea Shells: Programming the Workplace Shell

MRESULT APIENTRY DrgSendTransferMsg(HWND hwnd,
ULCNG msg,
MPARAM mpl,
MPARAM mp2) ;

Figure 7.30 The DrgSendTransferMsg prototype.

TRANSFER structures between applications by setting the fsReply element of
the DRAGTRANSFER structure to zero and by giving access to the DRAG-
TRANSFER structure to the source application when a DM_RENDER message
is sent.

Continuing with Figure 7.29, if the source did not perform the rendering,
the target application attempts to either retry the operation or render the object
itself. If, following the DM_RENDER message, the DMFL_RENDERRETRY
flag of the fsReply element of the DRAGTRANSFER structure is set, the
target can change the rendering mechanism/format pair and then resend
the DM_RENDER message. The application in the example opts to ignore
the DMFL_RETRY flag and perform the rendering itself. Normally, this pro-
cessing would only occur if the source had set the DMFL_NATIVERENDER
flag in fsReply; however, some applications, most notably, the Workplace
Shell, do not set this flag even when target rendering is possible. Thus
the application ignores the fsReply field and calls a utility routine Render-
File to perform the operation. If the rendering operation was successful, a
DM_ENDCONVERSATION message is sent to the source, indicating that the
rendering for this object is complete and allowing the source to release any
resources dedicated to rendering the specified object. The DRAGTRANSFER
structure is then released by routine KillXfer and the next object is processed.
When all objects have been processed through the loop, if the current count
of objects being rendered is zero, the counter itself is freed along with the
DRAGINFO structures. If the count is not zero, the source is still in the pro-
cess of rendering objects, so none of the items associated with the DRAGINFO
structure is freed.

Routine MakeXfer is shown in Figure 7.31. This routine is responsible for
allocating and initializing a DRAGTRANSFER structure for use in render-
ing an object. The routine uses the DrgAllocDragtransfer API to obtain the
DRAGTRANSFER structure, which is then initialized to all zero values using
the memset library function. Element cb is set to the size of the structure.
Element iwnd is set to the handle of the object window which serves as the
target window for the rendering conversation. A pointer to the DRAGITEM
structure is stored in element pditem. The hstrSelectedRMF element is ini-
tialized to a string handle representing the DRM_OS2FILE mechanism and
DRF_UNKNOWN file format, indicating that this application will accept any
0S/2 file. The routine then obtains the name of the source file by querying the

Rendering Objects 193

static PDRAGTRANSFER MakeXfer{ HWND hwnd, PDRAGITEM pdi,

{

USHORT usOp, PUSHORT pusToDo)

PDRAGTRANSFER pXfer;

ULONG
PS%
PSZ

len;
pszSource;
pszTarget;

pXfer = DrgAllocDragtransfer(1);
if(pXfer != (PDRAGTRANSFER)NULL) {
memset (pXfer, 0, sizeof(DRAGTRANSFER });
pXfer->ch = sizeof{ DRAGTRANSFER };
pXfer->hwndClient = hwnd;
pXfer->pditem = pdi;
pifer->hstrSelectedRMF = DrgAddStrHandle{"<DRM_OS2FILE, DRF_UNKNOWN>") ;
len = DrgQueryStrNameLen{ pdi->hstrSourceName)} + 1; X ‘
pszSource = (PSZ)malloc(len);
DrgQueryStrName(pdi->hstrSourceName, len, pszSource);
pszTarget = _fullpath(NULL, pszSource, _MAX PATH);
pAfer->hstrRenderToName = DrgRddStrHandle{ pszTarget };
free{ pszSource); ,
free(pszTarget);
pXfer->ulTargetInfo = (ULONG)pusToDo;
pXfer->usQperation = usOp;
} /* endif */
return pXfer;

}

Figure 7.31

initializing the DRAGTRANSFER structure.

string associated with iistrSourcename in the DRAGITEM structure and calling
the fullpath function to append the name to the current directory, forming
the full path name of the target file. This string is then converted to a string
handle and stored in the hstrRenderToName element of the DRAGTRANSFER
structure. The memory allocated to hold the source and target names is then
freed. The ulTargetinfo element is set to a pointer to the count of items to ren-
der, allowing the DM_RENDERCOMPLETE message processing to access this
element and free the resources used for the drag operation when the render
c;)unt goes :g zero. The dinitialization is completed by setting the usOperation
element to the current drag operation. i i
cloment tothe cu stmcturg. peration. The function returns a pointer to the
‘ When the application is finished with the DRAGTRANSFER structure, rou-
tine KillXfer, shown in Figure 7.32, is called to release the resources assoc,iated
with the transfer operation. The routine first uses the DrgDeleteStrHandle
function to free the string handles stored in the hstrSelectedRMF and hstrRen-
derToName elements. The DRAGTRANSFER structure is then freed by calling
the DrgFreeDragtransfer APL.

194 she Sells Sea Shells: Programming the Workplace Shell

static void KillXfer({ PDRAGTRANSFER pDragXfer }

{
if (pDragXfer->hstrSelectedRMF != (HSTR)NULL)
DrgDeleteStrHandle(pDragXfer->hstrSelectedRMF);
if (pDragXfer->hstrRenderToName != (HSTR)NULL)
DrgDeleteStrHandle(pDragXfer->hstrRenderToName) ;
DrgFreeDragtransfer{ pDragXfer);

)
Figura 7.32 Releasing the DRAGTRANSFER structure.

When the rendering is performed by the source, the target must wait to
complete the rendering operation and free the resources until a DM_.RENDER
COMPLETE message is received from the source. If this message indicates
that the source failed to render the object, the target may attempt to retry the
operation, provided the source indicates retries are allowed. Otherwise, if the
target chooses not to retry a failed operation or if the operation was successful,
the target should perform any additional processing required to complete the
rendering, send a DM_ENDCONVERSATION message to the source, and then
free any resources it has allocated to handle the rendering of the object. This
processing is shown in Figure 7.33. Since this application is not concerned
about retries, the function first posts the DM_LENDCONVERSATION message
to the source. A pointer to the count of items to render is then obtained

Rendering Objects 195

from the ulTargetInfo element of the DRAGTRANSFER structure before that
structure is freed by calling KillXfer. The number of items is decremented
and if this item was the last item, a pointer to the DRAGINFOQ structure fonz
the entire drag operation is obtained. The DrgDeleteDraginfoStrHandles AP]
is called to release all string handles associated with the operation, and then
DrgFreeDraginfo is called to release the DRAGINFO structure, com];leting the
target’s processing of the direct manipulation operation.

The_ source application processing to handle the rendering operation is
shm)rn in Figure 7.34. As shown by this routine, the source application’s pro-
cessing should determine if the requested rendering can be performed. If not
the fsReply element of the DRAGTRANSFER structure is set to an appropriaté
value and FALSE is returned. If the source can handle the rendering, it returns
TRUE after initiating the operation—the rendering operation is not performed
while processing the DM_RENDER message from the target application.

. ‘The routine in Figure 7.34 first presets the fsReply element to zero to
indicate that if the rendering operation cannot be performed, the target is not
allowed to retry the operation. The routine then verifies that a target file name

MRESULT dm_rendercomplete{ HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2 }

{

)

PDRAGTRANSFER pDragXfer = {PDRAGTRANSFER) PVOIDFROMMP{ mpl);
USHORT usFlags = SHORT1FROMMP({ mp2);

PUSHORT pusToDo;

PDRAGINFC pDraginfo;

WinPostMsg(pDragXfer->pditem->hwndItem, DM_ENDCONVERSATION,

MPFROMLONG (pDragXfer->pditem->ulltemID),
MPFROMSHORT { DMFL_TARGETSUCCESSFUL)) ;

pusToDo = (PUSHORT)pDragXfer->ulTargetInfo;

¥illXfer(

pDragXfer };

if(--(*pusToDo} == 0) {

free(

pusToDo };

pDraginfo = DrgQueryDraginfoPtrFrombragitem{ pDragXfer->pditem);
DrgDeleteDraginfoStrHandles{ pDraginfo }:
DrgFreebraginfo(pDraginfo);

} /* endif */

return (MRESULT)(L;

static MRESULT dm_render(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)

[

1

HWND
HWND

hwndMa%n = WinQueryWindow{ hwnd, QW_OWNER);
hwndCbj = WinQueryWindowULong{ hwndMain, WL_HWNDOBJECT);

PDRAGTRANSFER pDT;

MRESULT
ULONG
PSZ

do {

mrRetVal = (MRESULT)FALSE;
CERMF;
pPSzZRMF;

pDT->fsReply = 0;
if (pDT->hstrRenderToName == (HSTR)NULLHANDLE) break;
%f (pDT->hstrSelectedRMF == (HSTR)NULLHANDLE) break:
if {pDT->usOperation != DO_COPY && pDT->usOperation != DO_MOVE) break:
pDT->fsReply = DMFL_RENDERRETRY: - '
%f ({cRMF = DrgQueryStrNameLen(pDT->hstrSelectedRMF)} == 0) break;
}f {(pszRMF = (PSZ)malloc (++¢RMF)) == (PSZ)NULL} break; '
}f (DrgQueryStriame (pDT->hstrSelectedRMF, cRMF, pszRMF) == 0) break:
if }g!st;str(pszRMF, “DRM_OS2FILE" || !strstr(pszRNF, "DRF_UNKNOWN‘:))
reak;
WinPostMsg(hwndObj, UM_RENDER, mpl, mp2);
pDT->fsReply = 0;
mrRetVal = (MRESULT)TRUE;
} while (FALSE); /* enddo */
if{ !'mrRetVal) DrgFreeDragtransfer{ pDT);
return mrRetVal;

Figure 7.33 Handiing ihe DM_RENDERCOMPLETE message.

Figure 7.34 Handling the DM_RENDER message.

196 she Sells Sea Shells: Programming the Workplace Shell

and RMF value are specified and that the rendering operation is supported.
If not, the function immediately returns—the operation cannot be performed.
Otherwise, fsReply is preset to indicate that the target can either perform native
rendering itself or retry the operation—indicating that the source does not
support the requested rendering mechanism or format. The string associated
with the hstrSelectedRMF element of the DRAGTRANSFER structure is then
obtained and checked for the DRM_OS2FILE rendering mechanism since this
application only deals with files. The RMF string is then checked to ensure that
the rendering format is DRE_UNKNOWN—this application does not know and
cannot change the internal format of the file; thus, DRF_UNKNOWN is the only
supported format. If the RMF is supported, the routine posts a message to an
object window to actually perform the rendering. The fsReply field is set to
zero—since no target rendering is necessary—and the result code is set to
TRUE. As the routine exits, if the result code is FALSE, the DRAGTRANSFER
structure is freed as it will no longer be used. If the result code is TRUE, access
to the DRAGTRANSFER structure is maintained for use by the object window
procedure.

Figure 7.35 shows the processing that the object window uses to perform
the actual rendering operation. As an alternative to the normal method of
allocating string handle string buffers, this function preallocates fixed-length
character buffers then verifies that the string handle strings will fit in the
buffers. The function first obtains the string associated with the hstrRender-
ToName element of the DRAGTRANSFER structure as the target name of the
file and then obtains the source file directory and name from the hstrCon-
tainerName and hstrSourceName elements of the DRAGITEM structure. These
two are concatenated to form the full path name of the source file. The func-
tion then uses the DosCopy API to copy the source file to the target file. If
the rendering operation was a move, DosDelete is called to delete the source
file. Note that the DosMove API is not used, because it does not allow move-
ment between different drives. If no errors have occurred, the return value is
changed from its preset value of DMFL_RENDERFAIL to DMFL_RENDEROK,
and the DMFL_RENDERRETRY flag is set so that the target can try again if it
cannot complete the rendering. A DM_RENDERCOMPLETE message is then
posted to the target with the return value and the DRAGTRANSFER structure
is released.

When the target application receives the DM_RENDERCOMPLETE mes-
sage, it should respond with a DM_ENDCONVERSATION message. This mes-
sage informs the source that the rendering operation for a given target is
complete and any resources allocated to support the rendering can be re-
leased. For example, a word processor might store a portion of a document in
a temporary file during the rendering. When the DM_ENDCONVERSATION
message is received, the temporary file can be deleted. Figure 7.36 shows the
code used by the example application we have been studying. This function

Rendering Objects

197

?tatic MRESULT dm_render { HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)

PDRAGTRANSFER pDT = (PDRAGTRANSFER)PVOIDFROMMP (mpl) ;
char pszSource| CCHMAXPATH];

char pszTarget[CCHMAXPATH];

char pszSourceDir|[CCHMAXPATHCOMP];

char pszSourceFile[CCHMAXPATHCOMP];

ULONG cString;

USHORT usRetVal = DMFL_RENDERFAIL;

do {

if ((cString = DrgQueryStrNameLen{ pDT->hstrRenderT
oName =
CCHMAXPATH) break; e

p;g??e;{SFrName(pDT->hstrRenderToName, ++cString, pszTarget);

i cString = DrgQueryStrNameLen (pDT->pditem—>hstrContainerﬁ =

CCHMAXPATHCOMP)} break:; e i

DrgQueryStrName(pDT->pditem->hstrContainerName, ++cString,

i pszSourceDir) ;

i cString = DrgQueryStrNameLen(pDT->pditem->hstrSourceN =
CCHMAXPATHCOMP) break; roctanel] >

DrgQueryStrName{ pDT->pditem->hstrSourceName, ++cString,
pszSourceFile) ;

if éstrien(pszSourceFile) + strlen{pszSourceFile) + 1 > CCHMAXPATH)
reak;

strepy(pszSource, pszSourceDir };

strcat{ pszSource, pszSourceFile };

if (DosCopy(pszSource, pszTarget, DCPY EXISTING) !

, . . _ != NO_ERROR ;

if ngT->u50peration == DO_MOVE} - i
if (DosDelete(pszSource) != NO_ERROR) break;

usRetVal = DMFL_RENDEROK | DMFL_RENDERRETRY;
} while { FALSE }; /* enddo */
DrgPostTransferMsg(pDT->hwndClient, DM_RENDERCOMPLETE, pDT
{ULONG)usRetVal, 0L, TRUE }; ‘
DrgFreebragtransfer(pDT };
return (MRESULT)OQL;
}

Figure 7.35 Source application object rendering.

static MRESULT dm endconversation{ HWND hwnd, ULONG msg,
[MPFARAM mpl, MPARAM mp2)

if(--gulDragCount == 0) {
: DrgFreeDraginfo({ gpSrcDinfo);
return MRFROMLONG (OL) ;

)]

Figure 7.36 Handling the DM_ENDCONVERSATION message.

198 She Selis Sea Shells: Programming the Workplace Shell

decrements the global count established when the drag operation was initiated.
When the count reaches zero, indicating that all items have been rendered,
DrgFreeDraginfo is called to release the source application’s access to Fhe
structure pointed to by the global pointer stored when the direct manipulation
operation was started. Deletion of the associated string handles is left to the
target application.

This completes the coding for the drag-and-drop direct manipulation func-
tion. In the next section we will see how to modify this code to include support

for the pickup-and-drop, or lazy drag operation.

SUPPORTING PICKUP AND DROP

While the new 0S/2 WARP pickup-and-drop direct manipulation uses the same
basic structure as drag and drop, some modifications are required due to the
new APIs that are provided to implement this feature. This section details
the additions and changes necessary to add pickup-and-drop support to the
examples used in our discussion of drag and drop.

Pickup-and-drop operations can be initiated by pointing device button
clicks or by menu selection, which will be discussed later. When the proper
pointing device click is received, PM sends a WM_PICKUP message to the
application window. Parameter mp1 provides the pointing device coordinates
at the time of the click. Parameter mp2 is not used. This message corresponds
to the WM_BEGINDRAG message of the drag-and-drop operation. Rather
than coding a whole new routine to initiate an operation when WM.PICKUP
is received, the initiation code can be moved to a separate function which is
called by both the WM_.BEGINDRAG and WM_PICKUP message processing.
The new message processing routines are shown in Figure 7.37. Each routine
calls the initiation routine passing the window handle, and a flag that is set to
TRUE if a pickup-and-drop operation has been requested.

MRESULT wm_begindrag{ HWND hwnd, ULONG msg, MPARAM mpl, MPARAM np2)

{
StartDragOp{ hwnd, FALSE);
return {MRESULT)TRUE;

MRESULT wm_pickup{ HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2 |

StartDragOp(hwnd, TRUE };
return (MRESULT)TRUE;
]

Figure 7.37 Handling the WM_PICKUP massage.

Supporting Pickup and Drop 199

The StartDragOp function is the original WM_BEGINDRAG processing
function modified to support pickup-and-drop, or lazy drag, operations. Only
two major changes are required. First, if a lazy drag has been requested, the
DrgLazyDrag API must be called to initiate the operation. Second, additional
objects can be added to a lazy drag object set after the operation is initiated.
When this occurs, the DRAGINFO structure must first be reallocated and then
D}:gLazyDrag must again be called to restart the operation with the new set of
objects.

Figure 7.38 shows the StartDragOp function with the major changes high-
lighted in boldface type. The first change is the inclusion of a new Boolean
variable that indicates when the DRAGINFO structure must be updated to add
new objects during a pickup-and-drop operation. The second change occurs
at the point where the DRAGINFO structure is normally allocated. Now, if
the request is for a pickup-and-drop operation and an operation is already in
progress, the existing DRAGINFO structure is queried. If the structure belongs
to a different window, the operation is cancelled since pickup from multiple
windows is not currently allowed. Otherwise, the reallocation flag is set to indi-
cate that an item is being added to the current set. If no operation is currently
in progress, the code follows the previous path and allocates a new DRAG-
INFO structure. The next change involves modifications to the SetDragltems
function call. The first parameter has been changed to a pointer to the loca-
tion where the DRAGINFO structure pointer is stored, allowing the routine to
reallocate the structure as necessary and pass back the new value; an addi-
tional parameter has been added to indicate to the function when reallocation
is required. The final change in StartDragOp occurs at the point where the
operation is initiated. If a lazy drag has been requested, DrgLazyDrag is called
instead of DrgDrag.

The prototype for the DrgLazyDrag API is shown in Figure 7.39.

» The hwndSource parameter is the window handle of the source window
for the operation, normally the window that received the WM_PICKUP
message.

¢ The pdinfo parameter is a pointer to the DRAGINFO structure and asso-
ciated DRAGITEM structures which convey the information necessary to
complete the drag-and-drop operation.

* The pdimg parameter is a pointer to a DRAGIMAGE structure or array of
DRAGIMAGE structures. This parameter is provided to maintain compat-
ibility with the DrgDrag API but is not used for image display during lazy
drag operations.

¢ The cdimg parameter indicates the number of DRAGIMAGE structures in

the array pointed to by pdimg.

The pRsvd parameter is reserved and must be set to NULL.

200 she Sells Sea Shells: Programming the Workplace Shell

void StartDragOp(HWND hwnd, BOOL fLazy)

{

ULONG cFiles;
DRAGIMAGE dImage;
PDRAGINFC pDinfo = NULL;

HWND hwndDest ;
SHORT sItem = LIT_FIRST;
BOCL flazyRealloc = FALEE;
do {
if ((cFiles = QuerySelectionCount(hwnd)} == 0) break;

if (flazy && DrglueryDragStatus() — DG LAZYDRAGINFROGRESS) {
poinfo = DrgQueryDraginfoPtrFradied (heand) ;
if (phinfo == NIIL} Lweak;
flazyRealloc = TRIE;

} else { /* do drag and drop */
if ((pDinfo = DrgAllocDraginfe{ cFiles)) == (PDRAGINFO) {NULL})
break;
} /* exdif */

SetDragTtams(spDinfo, kmad, cFiles, flazyRealloe);
memset (&dImage, 0, sizeof (DRAGIMAGE));
dImage.ch = sizeof (DRAGIMAGE) ;
dImage.fl = DRG_ICON;
dImage.hImage = (LHANDLE)WinQuerySysPointer{ HWND_DESKTOP,
cFiles == 1 ? SPTR_FILE : SPTR _MULTFILE,
FALSE };
gulDragCount = pDinfo->cditem;
gpSrcDinfo = pDinfo;
if (flazy) {
Drglazyirag(hnd, pDinfo, &dlmage, 1, OL);
} else {
hwndDest = DrgDrag{ hwnd, pDinfo, &dImage, 1, VK_ENDDRAG, NULL);
if (hwndDest == NULLHANDLE) {
DrgDeleteDraginfoStrHandles(pbinfo };
DrgFreeDraginfo{ pDinfo);
} /* endif */
y /* endif */
} while (false }; /* enddo */
)

Figure 7.38 The StariDragOp function.

BOOL APIENTRY DrgLazyDrag(HWND hwndSource,
PDRAGINFO pdinfo,
PDRAGIMAGE pdimg,
ULONG cdimg,
PVOID pRsvd };

Figure 7.39 The DrglazyDrag profotype.

Supporting Pickup and Drop 201

The DrgLazyDrag API returns TRUE if the drag operation is successfully
initiated and FALSE if an error occurs. Unlike the DrgDrag API, which ini-
tiates a2 modal operation and does not return until the dragged objects are
dropped, DrgLazyDrag returns immediately after starting the drag as a mod-
eless operation.

The new SetDragltems routine is shown in Figure 7.40. As noted, the
parameters to the routine have changed to pass a pointer to the location of the
pointer to the DRAGINFO structure and a flag, which indicates that a lazy drag
is in progress and reallocation of the DRAGINFO structure may be necessary.
Three internal changes are necessary. First, when a lazy drag is in progress,
routine GetltemForFile is called to determine if the new object is already in
the drag set; and, if so, the object is skipped—no need to drag the same object
twice. Later, before the object is added to the drag set, if a lazy drag is already
in progress, routine ReallocDraglnfo is called to reallocate the DRAGINFQ
structure and maintain the set of DRAGITEM structures. The final change is
the addition of the litem variable. This value is used to track the actual item
number to be inserted into the DRAGINFO structure since the object count in
cFiles is no longer directly related to the number of DRAGITEMs associated
with the DRAGINFO structure.

The code for routine GetItemForFile is shown in Figure 7.41. This function
scans the DRAGITEMs associated with a DRAGINFO structure to determine
if a particular object is a member of the set of dragged objects. Within the
loop that enumerates each item, a pointer to the current item is obtained
by calling DrgQueryDragitemPtr. DrgQueryStrNameLen and DrgQueryStr-
Name are then called to retrieve the name of the object associated with the
DRAGITEM. The C library function stremp is used to determine if the object
name matches the requested name; if so, the loop exits. When the loop termi-
nates, a check is made to determine if a valid item was found; if so, the item
number is returned; if not, the value —1 is returned.

The code for routine ReallocDraginfo is shown in Figure 7.42. This routine
is used to perform reallocation of the DRAGINFO structure when items are
added to the dragged set during a pickup-and-drop operation. Unfortunately,
PM does not automatically copy the DRAGITEM set when reallocating the
structure, so the application must either maintain a separate list of the objects
comprising the drag set or, as shown here, retrieve the DRAGITEM struc-
tures before reallocating the DRAGINFO structure. ReallocDraginfo first allo-
cates sufficient memory to hold the DRAGITEMs currently associated with the
DRAGINFO structure, and then copies them from the DRAGINFO using the
DrgQueryDragitem API. When all the items have been retrieved, DrgRealloc-
Draginfo is called to associate an additional DRAGITEM with the DRAGINFO
structure. The saved DRAGITEMs are then reassociated with the DRAGINFO
structure by calling DrgSetDragitem. After freeing the memory, the function
returns.

202 she Sells Sea Shells; Programming the Workplace Shell

void SetDragItems(PORAIENFO *ppDinfo, HWND hwnd, ULONG cFiles, BOCL flazy)
{

SHORT sItem;

SHORT chltem;

PSZ pszFileName;
PSZ pszType;

PSZ pszContainer;
DRAGITEM ditem;

ULONG litem;

PIRAGINFO pDinfo = *ppDinfo;

memset (&dItem, 0, sizeof (DRAGITEM));
dItem.hstrRMF = DrgAddStrHandle(SUPPORTED RMF) ;
ditem.hwndItem = hwnd;
dItem.fsSupportedOps = DO_COPYABLE | DO_MOVEABLE;
litem = 0;
sItem = LIT_FIRST;
while ({sItem = SHORT1FROMMR(WinSendMsg{ hwnd, LM_QUERYSELECTION,
MPFROMSHORT(sItem), OL }}) != LIT_NONE } {
cbItem = SHORTIFROMMR(WinSendMsg{ hwnd, LM_QUERYITEMTEXTLENGTH,
MPFROMSHORT (sItem), OL)};
chItem++;
if {{pszFileName = (PSZ)malloc{ cbItem)} != (PSZ)NULL) ({
WinSendMsg(hwnd, LM_QUERYITEMTEXT,
MPFROM2SHORT (sItem, chItem), pszFileName);
if (Iflazy || GetTtenForFile(phinfo, pezFiletame) == -1) {

ditem.hstrSourceName = dItem.hstrTargetName =
DrgaddStrHandle(pszFileName };
if ({pszType = QueryType{ pszFileName)} != NULL} {
dItem_hstrType = DrgaddStrHandle({ pszType };
free{ pszType }:
} else {
dItem.hstrType = NULLHANDLE;
} /* endif */
if ((pszContainer = QueryCurrentDirectory()) != NULL) {
dItem.hstrContainerName = DrgAddStrHandle(pszContainer);
free(pszContainer);
} else {
dItem.hstrContainerName = NULLHANDLE;
} /* endif */
if (frazy) {
*poDinfo = phinfo = ReallocDraginfo{ phinfo);
litem = pDinfo->oditem - 1;
} /* endif */ |
DrgSetDragitem(pbinfo, &dItem, sizeof(DRAGITEM), litem++);
} /* endif */
free(pszFileName];
} /* endif */
-=cFiles;
} /* endwhile */
return;

}

Supporting Pickup and Drop 203

SHORT GetItemForFile(PDRAGINFO pbinfo, PSZ pszFileName)
{

SHORT item;
PSZ pszSource;
ULONG chSource;

PDRAGITEM pDitem;

for (item = 0; item < pDinfo->cditem; item++) {
pDitem = DrgQueryDragitemPtr{ pDinfo, item);
chbSource = DrgQueryStrNameLen(pDitem->hstrSourceName):
pszSource = (PSZ)malloc(++chSource)
DrgQueryStrName(pDitem->hstrSourceName, cbSource, pszSource);
if('strcmp(pszFileName, pszSource)) break;

} /* endfor */

if{ item == pDinfo->cditem) item = -1;

return item;

)

Figure 7.41 Determlining presence of a file in a drag set.

Post-Drop Notification

When a pickup-and-drop operation is in progress and the objects are dropped
or the operation is cancelled, the source application receives a DM_DROPNOTI-
FY message. Parameter mp1 of this message is the DRAGINFO pointer for the
drag operation, and parameter mp2 is the handle of the target window. The
08/2 documentation indicates that the application should free the DRAGINFO
structure when this message is received. The apparent intent is that the Drg-
QueryDraginfoPtrFromHwnd and DrgQueryDraginfoPtrFromDragitem APIs

PDRAGINFQ ReallocDraginfo{ PDRAGINFO pDinfo)
{
PDRAGITEM pdItem;
ULONG cdlitem = pDinfo->cditem;
ULONG iltem;

pdItem = (PDRAGITEM)malloc(cdItem * sizeof (DRAGITEM)):
for {(iltem = 0; iltem < cdItem; iTtem++)

DrgQueryDragitem(pDinfo, sizeof(DRAGITEM), &pdItem[iItem]}, iltem);
pbinfo = DrgReallocDraginfo(pDinfo, cdltem + 1);:
for (iItem = 0; iItem < cdItem; iItem++)

DrgSetPragitem(pDinfo, &pditem{iItem], sizeof (DRAGITEM), iItem);
free{pdItem);
return pDinfo;

}

Figure 7.40 Modified SetDragltems routine.

Figure 7.42 Reallocating the DRAGINFO structure,

204 she Selis Sea Shells: Programming the Workplace Shell

should be used to obtain the address of the DRAGINFO structure during the
rendering operations. Unfortunately, the bug in the latter of .these APIs makes
this impossible. The method shown earlier of storing the object count and re-
leasing the DRAGINFO structure when DM.ENDCONVERSATIO:}I messages
have been received for all objects should be used until this bug is resolved.
However, if the DM_DROPNOTIFY message is received with parameter mp2
set to NULLHANDLE, the DRAGINFO structure should be released by calling
DrgFreeDraginfo since no post-drop conversation will occur. Note.that neit}§er
the target application drop procedures nor the rendering operations require

any changes for pickup-and-drop support.

Menu Support for Pickup and Drop

As mentioned at the beginning of this section, a pickup-and-drop operati‘on
can also be initiated from a menu choice. Applications that provide this chO}ce
normally include additional items to support dropping objects and gancelil.ng
the operation. Figure 7.43 shows the WM_COMMAND message routine which

MRESULT wm_command({ HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2 }
{

POINTL ptl = {0,0};

PDRAGINFO pdi;

switch (SHORT1FROMMP(mpl)} {

case MID_PICKUP:
WinSendMsg{ hwnd, WM_PICKUP, MPFROMP {&ptl), MPFROMLONG{OL});

break;
case MID _DROPCOPY:
if (i{pdi = DrgQueryDraginfoPtr{NULL}) != NULL } {

DrgAccessDraginfo(pdi);
DrglazyDrop{ hwnd, DO_COPY, &ptl };
} /* endif */
break;
case MID_DROPMOVE:
if {{pdi = DrgQueryDraginfoPtr(NULL)} != NULL) {
DrgaAccessbraginfo({ pdi };
DrgLazyDrop{ hwnd, DO_MOVE, &ptl);
} /* endif */
break;
case MID_CANCEL:
DrgCancelLazyDragi }:
break;
} /* endswitch */
return MRFROMLONG{{L};
}

Figure 7.43 Handling pickup-and-drop menu items.

Supporting Pickup and Drop 205

supports these menu items for the listbox application we have been using for
a sample.

The MID_PICKUP menu emulates the pointing device click to initiate the
lazy drag operation by sending a WM_PICKUP message. Since the position
is not important, parameter mpl points to a POINTL structure containing
coordinates (0, 0).

The MID_DROPCOPY and MID_DROPMOVE items indicate that the user
is requesting that the current set of objects be dropped. MID_DROPCOPY in-
dicates that a copy operation is desired, and MID_DROPMOVE indicates that
a move operation is desired. The processing for these items first queries the
current DRAGINFO structure. If one exists, indicating that a drag operation is
in progress, access to the DRAGINFO structure is obtained and API DrgLazy-
Drop is called to perform the drop operation. The prototype for this AP] is
given in Figure 7.44.

¢ The hwndTarget parameter is the handle of the window that is to serve
as the target of the drag operation, normally the client window of the
application.

¢ The ulOperation parameter indicates the operation to be performed. Valid
values for this parameter are the same as those for the usOperation element
of the DRAGINFO structure.

» The pptlDrop parameter is a pointer to a POINTL structure indicating the
desired drop coordinates.

DrgLazyDrop returns TRUE if the drop is successful or FALSE if an error
occurs. Be sure to access the DRAGINFO structure before calling this API;
otherwise a trap will occur if the source and target windows are not part of
the same application.

The MID_CANCEL item indicates that the user wishes to cancel the current
pickup-and-drop operation. This request is fulfilled by calling the DrgCancel-
LazyDrag APL. This API requires no parameters, returns TRUE if the operation
is successfully cancelled, and returns FALSE if an error occurs.

Direct Manipulation Summary

This completes the discussion of the direct manipulation features. These fea-
tures provide the user with a powerful, yet easy-to-use means of manipulating

BOOL APIENTRY DrgLazyDrop(HWND hwndTarget,
ULONG ulOperation,
PPOINTL pptlDrop);

Figure 7.44 The DrgLazyDrop prototype.

206 she Sells Sea Shells: Programming the Workplace Shell

objects, and they are applicable to most applications. The programming re-
quirements may initially seem quite complex; but the effort to understand and
implement these features will be handsomely rewarded with applications that
are easy to use and that integrate well with the standard operations of the 0S/2

Workplace Shell.

INITIALIZATION FILES

Another of the important features of the Workplace Shell, which applications
should provide, s its ability to maintain the state of applications and the en-
tire system between invocations, including a complete shutdown of the system.
Contrary to what many think, very little of the work required to implement this
feature is actually performed by the Workplace Shell, which primarily main-
tains a list of the objects that were open at the time of shutdown, and restarts
or reopens these objects when the system is rebooted. The data required for
an object or application to restore its size and position on the screen and, in
some instances, other aspects of its termination state, must be maintained by
the object or application.

There are a number of avenues open to applications for storing the neces-
sary information. Applications that process private data file formats may store
the required information within the data file. Word processors and spread-
sheets often use this technique to return the user to the same location in the
file and reestablish options when a file is opened. Applications that process
common format files, such as ASCII text, can accomplish this same type of
functionality by storing the required information in the data file's extended at-
tributes. Private configuration files can also be used by applications for storing
global options and other restart information. This method would not normally
be used for storing information about individual data files since the applica-
tion would need to provide functionality for removing information for data
files that are no longer available.

0872, PM, and the Workplace Shell, along with the Workplace Shell objects
and many 0S/2 applications, use configuration files of a specific type called
initialization, or INI, files to store their internal state information. These files
have a defined structure for storing and organizing variable length data, and a
set of APIs is provided that allow applications to store and retrieve specific data
records. Internally, 0S/2 uses two INI files, known as the USER and SYSTEM
INI files. The names of the files are established in the system CONFIG.SYS
file by setting the environment variables USER_INI for the USER file and
SYSTEM_INI for the SYSTEM file. Applications may use either of these files
or create private INI files of their own, though, as a rule, applications should
use the USER INI file, not the SYSTEM INI file, for private variables.

Data in the initialization files is organized into named sections. The section
name is referred to as the application name since an application will normally,

initlalization Files 207

but not necessarily, store all of its data within one section. The records within
each section are stored as tuples in the form name = value. The name portion
of the tuple, known as the key name, is an ASCII string that the application
must specify when accessing the record. Key names are unique; when the
application stores data and specifies a key name that already exists, the value
portion of the tuple is overwritten with the new data. The value portion of the
tuple may be in the form of either an ASCII string or binary data.

In this section we will examine the code required to use initialization files
to save and restore an application’s primary window size and position. We will
also see how the application can store and retrieve additional data to restore
its internal state.

Restoring the Window State

PM provides two specific API's for saving and restoring the size and position
of a window. These APIs also store and retrieve the presentation parameters
associated with the window, allowing an application to easily maintain its fonts
and colors. These APIs access the USER initialization file.

The WinStoreWindowPos API is used to store the window state. In many
cases this API is called during an application’s WM_.CLOSE processing to
save the final state of the window for restoration when the application is next
invoked. Another popular method is to provide a menu item that allows the
user to specify when the window state should be saved. The prototype for the
API is given in Figure 7.45.

e The pszAppName parameter is the name of the application key under
which the window state information is to be stored.

* The pszKeyName parameter is the name of the key under which the win-
dow state information is to be stored.

e The cll1wnd parameter is the handle of the window whose state is to be
saved.

WinStoreWindowPos returns TRUE if successful or FALSE if an error oc-
curred.

Figure 7.46 shows the WM.CLOSE message processing for the example
program from the direct manipulation discussion. This application uses Win-
CreateStdWindow to create a frame window and a listbox window in the client

BOOL APIENTRY WinStoreWindowPos{ PSZ pszAppName,
PSZ pszKeyName,
HWND hwnd };

Figure 7.45 The WinStoreWindowPos prototype.

208 she Sells Sea Shells: Programming the Workplace Shell

#define INIAPPNAME "SAMPLE"
#define INIFRMPOSKEY "FRAMEPOS*
$define INILBXPOSKEY "LISBIXPOS"

MRESULT wm_close(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)

{
HWND hwndParent = WinQueryWindow{ hwnd, (W_PARENT);

WinStoreWindowPos({ INIAPPNAME, INIFRMPOSKEY, hwndParent);
WinStoreWindowPos (INIAPPNAME, INILBXPOSKEY, hwnd);
return plLBDefProc(hwnd, msg, mpl, mp2):

]

Figure 7.46 Saving the window size and position.

area of the frame. The sample code saves the positioning and presentation pa-
rameters of each of these windows. The initialization file application and key
names are predefined so that they may be easily reused when the window
positions are restored. The wm_close function is called when the WM_CLOSE
message is received by the client area listbox. The function first obtains the
window handle of the frame window by querying the listbox window’s par-
ent. The position and presentation parameters of the frame window and its
controls are then stored with the key name defined by INIFRMPOSKEY. The
data for the listbox and its controls are stored under the key name defined
by INILBXPOSKEY. The normal listbox window procedure is then called to
complete the WM_CLOSE processing.

After the window data has been saved, the application can call the Win-
RestoreWindowPos API to return the window to the saved state. This function
is normally called at application startup to restore the state of the window
when the application was last terminated. Some applications also provide
menu items or other input mechanisms that allow the user to specifically re-
quest that the window be returned to its saved state. The prototype of the
WinRestoreWindowPos API is defined as shown in Figure 7.47.

o The pszAppName parameter is a pointer to a zero-terminated array of
characters containing the application name under which the window state
was saved.

o The pszKeyName parameter is a pointer to a zero-terninated array of
characters containing the key under which the window state was saved.

ROOL APIENTRY WinRestoreWindowPos{ PSZ pszAppName,
PSZ pszKeyName,

HWND hwnd);

Flgure 7.47 The WinRestoreWindowPos prototype.

InMtialization Filess 209

* The hwnd parameter is a handle to the window whose state is to be
restored. ‘

WinRestoreWindowPos returns TRUE i i
Par s pstoreWindowPos r if the state is successfully restored or
: (.Ioding that can be used to restore the window position when the applica-
tion is started is shown in Figure 7.48. This code is a segment of the application
a.nd window initialization code normally found in the application’s main rou-
tine. '!‘he WinCreateStdWindow call is the usual, except that the WS_VISIBLE
style is not set to prevent the window from being displayed prior to the state
restoration. After the frame and client windows have been created, WinRe-
storeWindowPos is called to restore the state of the frame window 'and then
the liftbox control window that acts as this application’s client area. The win-
dows’ states are then changed to visible using the WinShowWindow API. Last
the system’s active window is set to the frame window by calling WinSetAc:
tiveWindow. If this last step is not executed, focus will not be given to the
application when it is started from a Workplace Shell icon.

Accessing Initialization Files

{kPIs are also available that allow applications to store additional information
in the USER, the SYSTEM, or private initialization files. In order to access
an initialization file, an application must have a handle for the file. The stan-
dard INI files have predefined constant handles; HINI.USERPROFILE is the
handle to the USER initialization file, HINI. SYSTEMPROFILE is the handle
to the SYSTEM initialization file, and HINI_PROFILE is a pseudo handle that
accesses both the USER and SYSTEM files when reading, and accesses the
USER file when writing. Applications obtain a handle to a private initialization
file by calling the PrfOpen API. This API is prototyped as shown in Figure 7.49,

hvndFrame = WinCreateStdWindow(HWND_DESKTOP,
oL,
&f15tyle,
WC_LISTBOX,
"Sample Application",
LS_MULTIPLESEL | LS_EXTENDEDSEL,
NULLHANDLE,
RID_APPLICATION,
. &hwndClient | ;
if (hwndFrame == NULLHANDLE) break;
w}nRestorewindowPos(INIAPPNAME, INIFRMPOSKEY, hwndFrame):
WinRestoreWindowPos{ INIAPPNAME, INILBXPOSKEY, hwndClient i-
WinShowWindow({ hwndFrame, TRUE }; ’
WinSetActiveWindow(HWND_DESKTOF, hwndFrame };

Figure 7.48 Restoring the window size and positton.

210 she Sells Sea Shells: Programming the Workplace Shell

HINI APIENTRY PrfQpenProfile(HAB hab,
PSZ pszFileName);

Figure 7.49 The Pri0penProfiie prototype.

e The hab parameter is the anchor block handle for the appli‘catim.l. This
handle is provided by the WinInitialize API or may be queried with the
WinQueryAnchorBlock API. =

o The pszFileName parameter is the name of the initialization file to open.

If this file does not already exist, it is created.

PrfOpenProfile returns the handle to the initialization file if successful and
returns NULLHANDLE if a failure occurs. o

Two APIs are provided to allow an application to write data to }nltx_allzatlon
files. Both of these APIs require that the application supply an apphcat.xon name
and a key name with which to associate the data. Depending on which APl is
chosen, the data may be presented in the form of an ASCII string or as binary
data. The PrfWriteProfileString API is used to store data in the form of an
ASCII string. The prototype for this API is given in Figure 7.50.

e The hini parameter is the handle of the initialization file to receive the
data. ‘

e The pszApp parameter is a pointer to a zero-terminated array of characters
that specify the application name under which the data is to be stored.
The content of the string is defined by the application; however, names
beginning with PM. are reserved for system use.

o The pszKey parameter is a pointer to a zero-terminated array of characters
that specify the key name with which the data is to_be associated.

o The pszData parameter is a pointer to a zero-terminated array of charac-
ters to be associated with application name pszApp and key name pszKey.

PrfWriteProfileString returns TRUE if successful or FALSE if an error oc-

curred. o ‘
Blocks of binary data may be written to initialization file records using the

PriWriteProfileData API. The prototype for this API is in Figure 7.51.

e The hini parameter is the handle of the initialization file to receive the
data.

BOOL APIENTRY PriwriteProfileString{ HINI hini,
PSZ pszdpp,
PSZ pszKey,
PSZ pszbata);

Figura 7.50 The PriWriteProfileString prototype.

Initlalization Fliles 211

BOOL APIENTRY PriWriteProfileData({HINI hini,

PSZ pszApp,
PSZ pszKey,
PVOID pData,

ULONG cchDatalen);

Figure 7.51 The PriWriteProflleData prototype.

* The pszApp parameter is a pointer to a zero-terminated array of characters
that specify the application name under which the data is to be stored.
The content of the string is defined by the application; however, names
beginning with PM. are reserved for system use.

The pszKey parameter is a pointer to a zero-terminated array of characters
that specify the key name with which the data is to be associated.

¢ The pData parameter is a pointer to the binary data to be associated with
application name pszApp and key name pszKey.

The cchDataLen parameter is the number of bytes of data to write from
the location pointed to by pData.

PrfWriteProfileData returns TRUE if successful or FALSE if an error occurred.

Both of these APIs first perform a case-sensitive search of the initialization
file to determine if a record with the specified application name/key name pair
already exists. If an existing record is found, the value portion of the record
tuple is updated with the new data specified in the API call. If an existing record
is not found, a new record is added with the specified application name/key
name pair and the data specified by the function call.

These APIs may also be used to remove records from an initialization file.
If the pszData parameter or pData parameter is specified as a NULL pointer
and a record matching the values in pszApp and pszKey is found, the record is
deleted. All records associated with a given application name may be deleted
by passing the pszKey parameter as a NULL pointer.

Four APIs are available for application use when reading initialization file
records. The first of these, PrfQueryProfileSize, is a utility function that re-
turns the length of the value portion of an INI file record or the length of an
enumeration list. The remaining three APIs allow the application to retrieve
the value from an initialization file record as an integer value, PriQueryPro-
fileInt; an ASCII string, PrfQueryProfileString: or a block of binary data,
PrfQueryProfileData. The latter two APIs also allow the application to receive
an enumerated list of the application names in an initialization file or the key
names associated with an application name.

The PrfQueryProfileSize API provides an application with the size of the
value portion of an initialization file record or the total length of an enumera-
tion buffer. If both an application name and a key name are provided, and a
record matching these parameters is found, the function returns the length of

212

She Selis Sea Sheils: Programming the Workpiace Sheli

the value portion of the record in bytes. If the key name or application name
is NULL, the length of an enumerated list of key names or application names
is returned. Note that the value returned for an enumeration list is the total
length of the buffer, including the final NULL character terminator, which is
not included in the length returned by the APIs that perform the enumeration.
Typical uses for this API include determining the number of bytes of memory
to allocate for buffers, verifying that an initialization value will fit in a local
buffer, and avoiding corrupted data by verifying that a value is of the expected
size. The prototype for the API is shown in Figure 7.52.

o The hini parameter is the handle of the INI file where the data is stored.

¢ The szApp parameter is a pointer to a zero-terminated array of characters
specifying the application name for which to search. Set this parameter to
NULL to determine the length of an enumeration of all application names.

¢ The szKey parameter is a pointer to a zero-terminated array of characters
specifying the key name for which to search. Set this parameter to NULL
to determine the length of an enumeration of all key names for the given
application name.

¢ The pulReqLen parameter is a pointer to a ULONG where the length of the
profile data is stored. This value includes the zero-termination character

for data stored as an ASCII string.

PrfQueryProfileSize returns TRUE if successful or FALSE if an error occurs,
including not finding a match for the supplied pszApp and pszKey. The length
of the data is returned in the location pointed to by pulReqLen.

When retrieving data from an initialization file, it is important to remember
that the internal representation of the data in the initialization file is always
binary. Thus, a record written with PrfWriteProfileString may be retrieved
as binary data, and data written with PrfWriteProfileData may be retrieved
with PrfReadProfileString. In fact, PrfQueryProfileData and PrfQueryPro-
fileString always return identical data for any given initialization file record,
but PrfQueryProfileString allows the application to supply a default value if
the requested initialization file record does not exist.

The PrfQueryProfileData API is normally used to retrieve the value portion
of an initialization file record as a block of binary data. The API may also be
used to enumerate the key names associated with an application by passing

BOOL APIENTRY PrfQueryProfileSizel HINI hini,
PSZ szApp,
PSZ szKey,
PULONG pulReqLen };

Figure 7.52 The PriQueryProfileSize prototype.

Initialization Files 213

1.'.he ke)f name field as a NULL pointer or to enumerate the application names
in an initialization file by passing the application name as a NULL pointer.
Enumerations are returned as a set of variable length, zero-terminated ASCIf
strings followed by a final zero character (the end of the buffer is signaled b
a double NULL character). The returned length of the enumeration does no{
include the final NULL terminator. If the return buffer size is not sufficient
to con_tain the entire enumeration, the list is truncated at the buffer size. No
effort is made to ensure that a NULL termination character is provided sc; the
application must rely on the returned buffer length. ,
The prototype for the PrfQueryProfileData API is given in Figure 7.53.

* The hini parameter is the handle of the INI file where the data is stored.

¢ The pszApp parameter is a pointer to a zero-terminated array of characters
specifying the application name for which to search. Set this parameter to
NULL to retrieve a list of all application names contained in the initializa-
tion file.

* The pszKey parameter is a pointer to a zero-terminated array of characters
specifying the key name for which to search. Set this parameter to NULL
to retrieve a list of all key names for the application name specified by
pszApp.

* The pBuffer parameter is a pointer to the location where the retrieved
data is to be stored. This buffer should contain at least the number of bytes
indicated by pulBuffLen.

¢ The pulBuffLen parameter is a pointer to a location that on input contains
a value specifying the maximum number of bytes to retrieve. The number
of bytes actually copied to pBuffer is stored in this location when the
function returns.

PrfQueryProfileData returns TRUE if the function is successful and returns
FALSE if an error occurs.

The PrfQueryProfileString API performs essentially the same function as
!’erueryProﬁleData but allows the specification of a default value to return
if the specified application name or key name is not found in the initialization
ﬁle‘. Since the function is designed to primarily return a zero-terminated ASCII
string, the value specified for the default value must be zero-terminated. At-
tempting to specify binary data for this parameter that is not zero-terminated

BOOL APIENTRY PrfQueryProfileData({HINI hini,
P52 pPsSzApp,
PSZ pszKey,
PVOID pBuffer,
PULONG pulBuffLen):

Figura 7.58 The PriQueryProflleData prototype.

214 she Sells Sea Shells: Programming the Workplace Shell

ULONG APIENTRY PrfQueryProfileString(MINI hini,
PSZ pszApp.
PSz pszKey,
PSZz pszDefault,
PVOID pBuffer,
ULONG cchBufferMax) ;

Figure 7.54 The PrfQueryProfileString prolotype.

can lead to catastrophic results. Like PrfQueryProfileData, this function will
return an enumerated list if the application name parameter or the key name

parameter is specified as a NULL pointer.
The prototype for PrfQueryProfileString(} is shown in Figure 7.54.

e The hini parameter is the handle of the INI file where the data is stored.

¢ The pszApp parameter is a pointer to a zero-terminated array of characters
specifying the application name for which to search. Set this parameter to
NULL to retrieve a list of all application names contained in the initializa-
tion file. £

¢ The pszKey parameter is a pointer to a zero-terminated array of characters
specifying the key name for which to search. Set this parameter to NULL
to retrieve a list of all key names for the application name specified by
pszApp.

o The pszDefault parameter is a pointer to a zero-terminated ASCII string
to return in pBuffer if the name specified in pszApp or pszKey cannot be
found.

« The pBuffer parameter is a pointer to the location where the retrieved
data is to be stored. This buffer should contain at least the number of bytes

indicated by cchBufferMax.
e The cchBufferMax parameter specifies the maximum number of bytes to

store into pBuffer.

PrfQueryProfileString returns the number of bytes copied into pBuffer, or

zero if an error occurs.
The final API for retrieving initialization file record data is PrfQueryPro-

fileInt. This API interprets the value portion of the record as a numeric ASCII
string and converts the string to an integer. The first non-numeric character
in the data terminates the conversion. Like the PrfQueryProfileString API,
a default value is returned if the specified application name and key name
combination is not found in the initialization file.

PrfQueryProfileInt is prototyped as shown in Figure 7.55.

¢ The hini parameter is the handle of the INI file where the data is stored.
o The pszApp parameter is a pointer to a zero-terminated array of characters
specifying the application name for which to search.

Initialization Files 215

LONG APIENTRY PriQueryProfilelnt{(HINI hini,
PSZ pszlpp,
PSZ pszKey,
LONG sDefault);

Figure 7.55 The PriQueryProfileint prototype.

* The pszKey parameter is a pointer to a zero-terminated array of characters
specifying the key name for which to search.

. ’I_‘he sDefault parameter specifies the default value to return if the applica-
tion name or key name is not contained in the initialization file.

PerueryPt:oﬁleInt returns the converted value of the initialization file data
corresponding to pszApp and pszKey or the value passed in sDefault if pszApp
or pszKey cannot be found.
When an application no longer requires access to a pri initializati
private initialization
file, the PrfCloseProfile API should be called to release the file. This API is
prototyped as in Figure 7.56.

¢ The hini parameter is the handle of the private initialization file to close.

PrfCloseProfile returns TRUE if the function was successful and FALSE if an
error occurred. Note that this API cannot be used to close the system-defined
initialization files, thus the constants HINI.USERPROFILE, HINI_SYSTEM
PROEILE, and HINI_PROFILE are not valid when this API is called.

F_lgure 7.57 shows two routines used by our example program to maintain
the displayed directory between applications. Routine IniToDir resets the cur-
rent disk drive and directory to the directory that was displayed when the appli-
cation was last closed. The routine first queries the current drive and directory
for use as the defaults should the initialization file records not be present, as
would occur on the first invocation of the program. PrfQueryProfileInt is tl'len
callt_ed to obtain the saved disk number, and PrfQueryProfileString is called to
retrieve the directory. Note that the pBuffer parameter is set to point to the
second character of the output string. This allows the backslash character to
be placed in front of the directory so that DosSetCurrentDir will set the new
current directory relative to the root directory of the drive rather than to the
current directory. Once the initialization file data, or appropriate defaults, are
obtained, the DOS API functions to set the default drive and current direc;tory
are called.

BOOL APIENTRY PriCloseProfile(HINI hini };

Figure 7.56 The PrfCloseProfila profotype.

216 She Sells Sea Shells: Programming the Workplace Shell

#define INIAPPNAME "CHAPTE"
#define INICURDSKKEY "CURRENT DISK"
#define INICURDIRKEY "CURRENT DIR"

MRESULT IniToDir{ HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)
{

ULONG ulbiskNum;

ULONG ulDiskMap;

char szCurDir[_MAX PATH];

char szIniDir[_MAX_PATH];

ULONG cbCurDir = _MAX_PATH;

DosQueryCurrentDisk(&ulDiskNum, &ulD%skMapbé; -
DosQueryCurrentbir (ulDiskium, szCurDir, &c urDir };
ulDiskNum = PrfQueryProfilelnt(HINI_USERPROFILE, INIAPPNAME, INICURDSKKEY,

ulDisk¥um) ;
PerueryProfileString(HINI_USERPRCFILE, INIAPPNAME, INICURDIRKEY,
szCurDir, &szIniDir(it], _MAX PATH);
szInibir{ ¢ 1 = "\\‘;
DosSetbefaultDisk({ ulDisklum);
DosSetCurrentDir({ szIniDir);

)

MRESULT DirTelni{ HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mpZ)
{

ULONG ulDiskNum;

ULONG ulDiskMap:

char szCurDir{ _MAX_ PATH];
char szIniDir([_MAX_PATH];
char szDisk([3);

ULONG cbCurDir = _MAX_PATH;

DosQueryCurrentDisk(&ulDiskNum, &ulDiskMap Vi

szDisk[0] = {(CHAR) {ulDiskdum/10) + 0x30;

szDisk[1] = (CHAR) {ulDiskium % 10) + 0x30;

szDisk[2] = ‘\0*;

PriwriteProfileString| HINI_USERPROFILE, INIAPPNAME, INICURDSKKEY,

szDisk); : .
DosQueryCurrentDir{ ulDiskNum, szCurDir, &cbCurDir }:
PriwWriteProfileString(HINI_USERPROFILE, INIAPPNAME, INICURDIRKEY,

szCurDir);
return MRFROMLONG({OL) ;
}

som 217

Routine DirTolni saves the default drive and current directory to the initial-
ization file. DosQueryCurrentDisk returns the default drive as an integer num-
ber. This value is then converted to a zero-terminated ASCII string and saved
into the initialization file with the PrfWriteProfileString API. DosQueryCur-
rentDir is then called to obtain the current directory and the resulting string
is written to the initialization file by again calling PriWriteProfileString.

Routine IniToDir is called during the startup of the program prior to the
initial filling of the listbox. In many applications, these types of values would be
retrieved from within the WM_CREATE message processing or from inside the
main routine. Routine DirTolni is called from within the WM_CLOSE message
processing, which is the normal routine for saving this type of information.
In some instances, it may be more convenient to store the information to the
initialization file when the values are changed rather than waiting for the
application to terminate.

Figure 7.57 Saving and restoring application data.

SOM, an acronym for System Object Model, is an architecture and method-
ology for implementing language-independent, extendable systems of classes
and objects. Unlike systems built by most object-oriented programming lan-
guages, object classes that conform to this model may be implemented as
separate units of executable code, possibly developed using different high-level
languages. SOM defines the manner in which interactions between classes are
resolved, such as when a method in a parent class is called via an object of a
derived class. When using C++ and other object-oriented programming lan-
guages, this type of interaction is often resolved statically when the executable
module is linked. The SOM model allows this interaction to be resolved dy-
namically at runtime. This requires some additional overhead, but provides
significant flexibility in the construction of object classes.

0S/2 provides functionality for run-time resolution of the interfaces be-
tween SOM-compatible objects and also provides a base set of SOM classes
from which programmers can derive their own SOM-compatible classes. The
08/2 Developer’s Toolkit provides the SOM Compiler, which converts source
files containing class definitions written in IDL, Interface Definition Language,
into language-specific headers and source files. The source files contain stubs
for each object method, which the programmer can then expand to implement
the object functionality. The Toolkit also provides the language headers and
IDL specifications for the SOM base classes so that additional classes may be
derived by the programmer.

The base classes provided with 0S/2 are SOMObject, a class that defines
the basic functionality of a SOM-compatible object; SOMClass, a class derived
from SOMObject that provides the basic functionality of a SOM metaclass;

218 she Sells Sea Shells: Programming the Workplace She!!

SOMObject

SOMClass

and SOMClassMgr, a class that provides registration functions for classes and
objects within a process.

Class SOMObject is the base class from which all SOM-compliant classes
must be descended. This class defines and implements the basic functional-
ity required for SOM compliance. Methods are provided to manage instance
data, to retrieve information about an object’s class, to determine the type
and derivation of an object’s class, to dump debug information, and most
important, to dynamically access methods of the class.

Three methods are provided for managing object data; somInit, somUninit,
and somFree. Since SOMObject does not define any data, these methods do
nothing for the base object. The somInit method should normally be overrid-
den by classes that define instance data in order to ensure that the data is in
2 known state after the object is created. The somUninit method should be
overridden by classes that define instance data requiring cleanup when the ob-
ject is destroyed; for instance, a pointer to allocated memory. Method somFree
releases the memory used by the object and should not normally require an
overriding method.

Four additional methods are provided for dynamically accessing meth-
ods of the class; somDispatchA, somDispatchD, somDispatchL, and somDis-
patchV. The method called depends on the return value of the accessed method:
somDispatchA is used to access methods that return a pointer; somDispatchD
is used to access methods that return a floating point number; somDispatchL
is used to access methods that return an integer; and somDispatchV is used to
access methods that return void, or no value. These routines locate and call a
stub routine for the target method, which parses a variable length argument list
and then calls the actual target method with these parameters. These methods
define 0S/2's standard methodology for dynamically accessing the methods of
a given object and are not normally overridden; however, the methods may be
overridden if a different access method is desired.

Within the SOM model, a method must operate on an established instance of
a class, that is, an existing object. Thus, object constructor methods cannot be
defined in the class whose objects are being instantiated. Rather, the construc-
tor method must be defined in some class for which an object already exists.
In SOM terminology, the class defining the constructor method is known as
the metaclass of a class, and an instantiation of this class is known as a class
object. A class’s metaclass may either be explicitly defined or inherited from its
parent class. The root metaclass is SOMClass, which by definition is its own
metaclass and is also the metaclass for SOMObject, from which it is derived.

Oistributed SoOM 219

Since SOMClass is derived from SOMObject, it inherits all the methods of
SOMObject. It also defines a number of new methods used in the constructioon
of objects. Four methods are defined for creating objects: somNew constructs
and initializes a new object by invoking somInit; somNewNolnit constructs an
object. but does not perform initialization; somRenew constructs and initializes
an object in memory provided by its caller; and somRenewNolInit constructs
an object in caller-provided memory without invoking the initialization method
somlInit. These methods may be overridden to perform special initialization or
construction as required for a particular class.

Metaclasses derived from SOMClass may also define additional data and/or
methods for use by all objects of a given class.

SOMClassMgr

Plass SOMClassMgr is derived from SOMObject to provide methods for reg-
istering new classes and, in 0S/2, for loading and unloading the Dynamic
Link Libraries (DLLs) that contain the classes. Only one instance of SOM-
ClassMgr or a class derived from SOMClassMgr is allowed per process. If a
derived class is used, it should invoke the somMergelnto method to replace
the SOMClassMgr object created during SOM initialization.

DISTRIBUTED SOM

The version of SOM provided with 0S/2 version 2.0 was limited to a single
process. Thus, an application was not allowed to directly access the data
or methods of a Workplace Shell object. 0S/2 Warp contains a workstation
implementation of the Distributed System Object Model. This model allows
an application to create and access objects that are defined and supported by
another process. In general, this allows applications to create and manipulate
Workplace Shell objects without themselves being part of the sheil.

The Workplace Shell is an object-oriented environment implemented as a hi-
erarchy of SOM-compiliant classes. The Workplace class hierarchy begins with
class WPObject, which is derived from SOMObject, to define the basic behav-
ior of all Workplace objects. Next in the hierarchy are the three Workplace
storage classes: WPTransient, WPAbstract, and WPFileSystem. In general, all
Workplace objects must be derived from one of these three storage classes.

Hierarchy

Class WPObject, itself derived from SOMObject, is the root class from which all
Workplace Shell classes are derived. This class defines the “normal” behavior

220 She Sells Sea Shells: Programming the Workplace Shell

for a Workplace object. As might be expected, WPObject defines a large num-
ber of methods. These methods implement functionality that includes man-
aging the settings notebook, saving and restoring an object’s state, or data,
displaying and handling popup menus, modifying and querying object data,
handling errors, managing memory, and direct manipulation of objects. Be-
cause this functionality is provided by WPObject, new Workplace classes may
be developed without a great deal of concern for the Workplace environment.
Typically, new classes will override the methods that provide appearance or
configuration information, such as title text, icons, or help information, but
the functional behavior methods are typically inherited.

Immediately below WPObject in the Workplace class hierarchy are the
storage classes. These are so named because they provide different methods of
saving an object’s state or data. New Workplace classes must be derived from
a storage class, and while additional storage classes can be developed, the
three provided with QS/2—WPTransient, WPAbstract, and WPFilesystem—are
normally used for deriving new classes.

The first of the storage classes, WPTransient, is used to derive classes that
represent objects that are temporary in nature and do not require their state
to be saved. Objects instantiated from these classes are not automatically re-
created when the system is booted, but in some instances will be reinstantiated
from data available on the system. A good example of a class derived from
WPTransient is the class that is used to represent a print job, WPJob. As
output is sent to a printer, a pair of files are created on the system storage
device to retain the data until it can actually be output. The printer object
representing this printer creates objects of class WPJob to represent the files
that are waiting to be sent to the printer. When a file has been completely
processed, it is deleted along with its object. If the system is restarted while
spool files are still present on the storage device, the WPJob objects must
be re-created by the printer object—they are not automatically generated by
the Workplace startup procedure. Another good use for a class derived from
WPTransient would be a class used to represent records in a database. In most
instances, objects representing these records can be easily re-created from
the data in the record and therefore should not require additional storage in
the initialization files, as provided by WPAbstract. Also, since the records are
not individual files on the disk, objects derived from WPFileSystem are not
appropriate.

The second storage class provided with 0S/2 is WPAbstract. Classes are
derived from WPAbstract in order to create objects that must be re-created
after the system is booted but which are not properly represented by a single
file (or directory) on the system storage device(s). WPAbstract provides meth-
ods that save the state of the object in the USER initialization file, normally,
0S2.INI. WPProgram, which is used to represent a reference to a program
(not the program executable file), is an example of such a class. Objects created
from WPProgram represent a particular state of the referenced program. For

Summary 221

in§tance, one WPProgram object might be used to perform a ba i
using XCOPY.EXE, while another WPProgram objzct, which alcsl;ul?e?:;cxﬁgs}
XCOPFY.EXE, performs a restore function. Thus the WPProgram object repre-
sents more than just the executable file; it represents the program performin
a function. All the information necessary to cause the executable to perfomg1
the desired function is stored in the initialization file.

- The final storage class provided with 0S/2 is WPFileSystem. Classes de-
rived from this class are used to represent files (including directories) stored on
the system storage device(s). The state of objects created from these classes is
stored with the files, typically in the directory entry and extended attributes for
the file. An example of a class derived from WPFileSystem is WPProgramFile
which represents an executable file on the disk. Unlike the WPProgram class,
just discussed, whose title is not necessarily related to the executable program
the title for WPProgramFile objects is the name of the executable—changiné
th(? object’s title changes the executable file name. Also, when a WPProgram
object is moved or copied, the executable file is not touched; when a WPPro-
gramFile object is moved or copied, the file itself is moved or copied. Thus
objects created from classes derived from WPFileSystem directly represent
gies on the storage device, and manipulating these objects manipulates the

e.

Programmers may use these classes, or the specific classes derived from
tbem, to produce new Workplace Shell classes that perform application func-
tions. In time, many popular types of applications may be implemented as
one or more Workplace Shell objects, rather than as separate executable pro-
grams. The details of how to implement these classes is beyond the scope of
this book, but the information presented here should serve as a starting point
to understand how the Workplace Shell is implemented.

SUMMARY

This chapter has described 0S/2’s object-oriented, graphical user interface,
the Workplace Shell. Drag-and-drop manipulation and initialization files, es-
sential functionality required for Workplace-aware PM applications, have been
described in detail. A brief introduction to SOM and the object hierarchy of
the Workplace Shell has been provided.

CHAPTER .

Mastering Dialogs, Menus,
and Other PM Resources

concise, and consistent way of navigating through the application to ac-

complish a desired function. Unfortunately, because of the overwhelming
power and complexity of the Presentation Manager, it is all too easy to design
applications that confuse the user due to poor resource management. For in-
stance, application menus that do not flow logically or dialogs cluttered with
controls can frustrate the user who only wants to create a simple text file. Ap-
plications that make poor use of the simplicity of the graphical user interface
will probably not succeed in the marketplace. Today’s computer user demands
complex functionality with a simple look and feel. The software development
community is keenly aware of this desire, and thus it has become increasingly
important to master the art of using PM resources. This chapter will focus on
making the best use of menus, dialogs, and other simple PM resources.

T he intent of the graphical user interface is to provide the user with a clear,

THE PURPOSE OF THE SAMPLE PROGRAM

The sample program for this chapter may seem similar to the 0S/2 System
Editor, E.EXE. The sample program PMEDIT.EXE, like the E Editor, also
draws an MLE control within the client area that acts as the editor window.
The MLE control was introduced in Chapter 2.

The sampile is intended to demonstrate the proper use of menus, dialogs,
and various other PM resources, such as string tables and accelerators. The
program uses a combination of menus and dialog boxes along with various
other PM resources.

223

224 mastering Diatogs, Menus, and Other PM Resources Application Menus 225

Virtually any application that requires some sort of user input will require an
application menu; therefore, designing the menu is an extremely important
element of a successful PM program. Menus that make sense can have a
great impact on the learning curve that the user will have to endure when
initially using the application. Menus should be grouped in a scheme that
makes sense functionally. A menu that contains file operations—for example,
open, save, and search functions—should not contain clipboard operations
as well. Users should be able to visualize the groupings in their head. This
becomes increasingly important the more menuitems there are on a menu.
The associations between a submenu, menuitern, and menu function should
be distinguishable. For example, a submenu labeled File would be the logical
place to find an Open File menuitem, which would signify to users that this is
where they need to click to be able to open a text file.

Developers should be cognizant of the user learning curve, and envision
themselves using the application for the first time. Menuitems that contain
similar or identical functionality are useless because they impede the user’s
ability to associate a function with a menuitem selection. Thus, the next time
the user is confronted with finding the option he or she needs, it will again be
necessary to evaluate which menuitem will perform the necessary function.

The purpose of the Presentation Manager is to provide a common interface
to the user. So, to some extent, every single application designed and developed
for PM should share a common look and feel. In the programmer’s best of all
possible worlds, every PM application would look so similar to the next that
the user would automatically know exactly what to do next. In reality, complex
menu interfaces can destroy the usability of any application.

A menu is a control window that provides the user with the ability to make
a selection that will perform some type of function or operation. There are
three types of application menus that appear on virtually every main window
of an application. The most primitive form of a menu is the minimize and
maximize buttons, located in the upper right-hand corner of the main frame
window. These two bitmapped windows are menus by definition because they
allow the user to modify the appearance of the entire frame window by mini-
mizing, maximizing, or restoring the window coordinates for the window. The
programming functionality of these control windows is limited: the program-
mer can choose via frame control flags whether to display one or both of these
windows or remove them entirely from the frame window. The implementation
of these control windows corresponds directly to their equivalent menuitems
on the system menu. The other two types of application menus are the system
menu and the action bar menu. Before we discuss these two types, however, it
is important to understand the composition of the menu window.

APPLICATION MENUS
There are several menu control messages designed to allow the developer to

alter the appearance of a particular menu window. Once an application starts
it is usually initialized with an action bar menu and a system menu through th:;
frame control flags FCF_.MENU and FCF_SYSMENU, respectively. However,
there may be times that the application will have to change the contents of a
particular menu based on input from the user. For example, if you examine
the sarmple program PMEDIT, you will notice that the clipboard options in the
Edit submenu will either be enabled or disabled based on the data contained
in the clipboard. It makes sense that if a menuitem is not functional, that the
menuitem is disabled, preventing the user from selecting it. Also, menuitems
that will never be used should be deleted entirely, and menuitems that illustrate
some kind of a default selection should have a check mark associated with
them. All of these menu characteristics are known as menu item attributes. The
menu control messages provide the vehicle to change the attributes associated
with a particular menuitem.

Figure 8.1 lists the menu control messages. It is extremely important to
understand the message parameters associated with each of the menu control
messages. The message parameters mpl and mp2 are actually a 4-byte area
of storage that can be used to hold various pieces of information based on

MM_INSERTITEM 0x0180
MM_DELETEITEM 0x0181
MM_QUERYITEM 0x0182
MM_SETITEM 0x0183
MM_QUERY ITEMCOUNT 0x0184
MM_STARTMENUMODE 0x0185
MM_ENDMENUMODE 0x0186
MM_REMOVEITEM 0x0188
MM_SELECTITEM 0x0189
MM_QUERYSELITENID 0x018a
MM_QUERY TTEMTEXT 0x018b
MM_QUERY ITEMTEXTLENGTH 0x018¢
MM_SETITEMHANDLE 0x018d
MM_SETITEMTEXT 0x018e
MM_ITEMPOSITIONFROMID Ox018£
MM_ITEMIDFROMPOSITICN 0x0190
MM_QUERYITEMATTR 0x0191
MM_SETTTEMATTR 0x0192
MM_ISITEMVALID 0x0193
MM_QUERYITEMRECT 0x0194
MM_QUERYDEFAULTITEMID 0x0431
MM_SETDEFAULTITEMID 0x0432

Figure 8.1 Menu control messages.

226 Mastering Dialogs, Menus, and Other PM Resourcas

the message type. Most of the menu control messages do not use the entire
4-byte storage area and actually may use both the low word and high word
for storage. The storage is divided based on the data type that is stored in the
message parameters. For example:

o If the data type is NULL, then all four bytes are equal to zero.

o If the data type is a SHORT variable, then the value of the message param-
eter is stored in the low word, and the sign is placed in the high word.

o If the data type is a BOOL or USHORT variable, then the value of the
message parameter is stored in the low word, and the high word equals
zZero.

We already know that a menu is a control window in its purest form,
therefore, menus contain characteristics of other windows, including window
styles and attributes. Figure 8.2 is a chart indicating the different menu control
styles that can be used to define a menu window. A definition of their usage
is provided, along with their hexadecimal values defined in PMWIN.H. The
menu control styles can be used to create different types of menu controls,
each with their own distinct behavior.

MS_ACTIONBAR 0x00000001L Used to implement the Action Bar Sub-

menu concept, this style displays menu-
jtems side by side. Although menus with
this style may be used to perform some
function, they are usually used to display
the actual pull-down menu that is associ-
ated with the submenu.

MS_TITLEBUTTON 0x00000002L Used to implement menus that may be

drawn within the title bar. This menu
style needs to be used in conjunction with
MS_ACTIONBAR.

MS_VERTICALFLIP 0x00000004L Used when a submenu's pull-down win-

dow cannot be entirely displayed within
the desktop's presentation space.

MS.CONDITIONALCASCADE 0x00000040L This style was introduced with 0S/2 2.0.

It is used to implement a conditional cas-
cade menu. A conditional cascade menu
is a menu that is only revealed when the
user selects the cascade via a bitmap ar-
row on the menuitem with the conditional
cascade.

Application Menus 227

The conditional cascade menu, like a regular cascade menu, is designed
to show the user a selection of similar menuitems that correspond to a single
menuitem choice. The difference is that the user must press the arrow button
located to the right of the menuitem to display the pull-down menuitemsj
One of the menuitems in the pull-down may be selected as a default choice.
The default menuitem option is marked by a check mark. An example of this
menu style is illustrated in Figure 8.3. The PMEDIT sample program uses a
conditional cascade menu to allow the user to select color choices for the edit
window.

The best example of the difference between a cascade menu and a con-
ditional cascade menu is found in 0S/2’s desktop popup menu. This menu
contains a typical example of the cascade and conditional cascade menu us-
age. In Figure 8.3, the Open menuitem uses the conditional cascade control
style. As you can see, the menuitem contains an arrow within a buiton that,
when selected, will reveal the different views of the container for the desktop
folder. When the user selects this item, an additional popup menu is revealed.
This popup menu contains a default selection identified by a check mark. A
standard cascade menu is used for the Select menuitemn. When this menuitem
is selected, it reveals two choices, Select all or Deselect all, in its popup menu.
If there is no default choice in a menu, you should use the Cascade menu. If
a default choice is required, use the conditional cascade. Creating the condi-
tional cascade is simple. The first step is to create a simple cascade menu. The

Figure 8.2 Menu control styles.

Figure 8.3 The conditlonal cascads menu.

228 Mastering Dialogs, Menus, and Other PM Resources

SUBMENU *~Options”, ID_OPTIONSMENU

MENUITEM *Change Font Selection®, IDM_EDITFONT
SUBMENU "Change Foreground Color", 1D_COLORMENU
{
MENUITEM "Red", IDM_RED
MENUITEM "Blue", IDM_BLUE
MENUITEM "Green®, IDM_GREEN
MENUITEM *Yellow”, IDM_YELLOW

}
1

Flgure 8.4 Defining a cascade menu.

code fragment in Figure 8.4 is from the resource script file and it represents
the Options submenu. Within this submenu, a cascade menu is created that is
used to change the foreground color of the editor.

The cascade is essentially a submenu embedded within another submenu,
in this case, the Change Foreground Color submenu within the Options
submenu. The master submenu is the Options submenu. It contains one
menuitem, IDM_EDITFONT, and the embedded submenu represented by
ID.COLORMENU. The ID.COLORMENU submenu contains several menu-
items that represent the individual foreground color selections.

Be very careful not to embed too many cascade menus, as it becomes very
difficult to follow the flow of multiple cascades. The goal of any application
menu is to get the application to perform the task that the user wants to initiate
as quickly and easily as possible. When you start to embed too many cascade
windows, it works against that goal.

The code fragment in Figure 8.5 converts the cascade menu by using
the conditional cascade control style. The function CreateConditionalCascade-
Menu takes three parameters. The first parameter hwndMenu is the window
handle of the menu that contains the cascade menu. The second parameter is
a SHORT variable, sSubMenu, that represents the identifier of the submenu
that is to be converted to the conditional cascade. The final parameter is an-
other SHORT, sDefault, that is used to identify the default selection within
the conditional cascade menu. The default selection is represented by a check
mark next to the menuitem.

The function first sends a MM_QUERYITEM message to the menu win-
dow represented by hwndMenu. The first message parameter, mpl, contains
the identifier of the submenu, which in the preceeding sample would be
ID.COLORMENU. The second message parameter returns a valid MENU-
ITEM structure.

The MENUITEM structure is shown in Figure 8.6.

Application Menus 229

BOOL CreateConditionalCascadeMenu (HWND hwndMenu, SHORT sSubMenu, SHORT sDefault)

{

}

HWND hwndSubMenu;
ULONG ulSubMenuStyle;
MENUITEM menuitem;

WinSendMsg (hwndMenu,
MM_QUERYITEM,
MPFROMZ2SHORT (sSubMenu, TRUE!,
MPFROMP (&menuitem)) ;

hwndSubMenu = menuitem.hwndSubMenu;
ulSubMenuStyle = WinQueryWindowULong(hwndSubMenu, QWL_STYLE};

WinSetWindowULong (hwndSubMenu,
QWL_STYLE,
ulSubMenuStyle | MS_CONDITIONALCASCADE) ;

WinSendMsqg {hwndSubMenu,
MM_SETDEFAULTITEMID,
MPFROMSHORT (sDefault) ,
NULL} ;

return FALSE;

Figure 8.5 The CreateConditionalCascadeMeny function.

¢ The iPosition element is used to indicate the position of the menuitem.

s afStyle represents the menu style flags. The menu style flags are listed in
Figure 8.7, and are prefixed by MIS_.

o afAttribute represents the menu attribute flags. The menu attribute flags
are listed in Figure 8.8, and are prefixed by MIA .

e id is the window identifier.

* hwndSubMenu is the window handle of the submenu.

o hitem is the item handle.

typedef struct _MENUITEM Homi
{

SHORT iPosition;

USHORT afStyle;

USHORT afattribute;

USHORT id;

HWND hwndSubMenu;

ULONG hItem;

} MENUITEM;
typedef MENUITEM *PMENUITEM;

Flgure 8.6 The MENUITEM structure.

MIS_TEXT

MIS_BITMAP

MIS_SEPARATOR

MIS_OWNERDRAW

MIS_SUBMENU

MIS_SYSCOMMAND

MIS_HELP

MIS_STATIC

MIS_BUTTONSEPARATOR

MIS_BREAK

MIS_.BREAKSEPARATOR

0x000

0x0002

0x0004

0x0008

0x0010

0x0040

0x0080

0x0100

0x02Q0

0x0400

0x0800

The simplest of menuitem styles, this is used for all
menuitems that display a simple ASCII text string.
This menuitem should only be used when a graph-
ical image is needed to simplify the explanation of
the menuitem. It is used to display a bitmapped im-
age within a menuitem.

This menuitemn can only be used within a SUB-
MENU pull-down. Its purpose is to graphically rep-
resent a change in the contextual flow of the menu.
This menuitemn serves no functional purpose other
than to display the horizontal separator line. The
keyword SEPARATOR, when used in a resource
script file, signifies this menuitem style.

This menuitem style is left to the developer to cus-
tomize. Notification messages are sent to the owner
for manipulating the item’s appearance.

This menuitem is used to draw SUBMENUs. A SUB-
MENU is a menuitem that usually does not perform
a function on its own other than reveal a pull-down
menu with additional menuitem options. The key-
word SUBMENU, when used in a resource script
file, signifies this menuitem style.

This menuitem style is used when the menu window
needs to send a WM_SYSCOMMAND to its owner.
It is used primarily in the system menu context.
When this menuitem style is used, a WM_HELP
message is posted to the owner when the item is
selected.

This menuitem is used to indicate that a given menu-
item cannot be selected.

This item is used to simulate a button. When used,
the user cannot move to the item via the keyboard,
but can use an accelerator key or pointing device to
make the selection. The item can be used to display
the HELP SUBMENU, and is drawn with a vertical
separator bar.

This menuitem style is used to denote the start of a
new column or row.

This item is the functional equivalent of the MIS.
BREAK. menuitem style, except it also physically
draws a separator bar. It is used in the context of
the action bar submenu.

Figure 8.7 The menuitem styles.

230

Application Menus 231

MIANODISMISS 0x0020 If this menuitem attribute is used, the specified item's sub
menu pull-down is not dismissed until the user explicitly dis:
misses the menu via a selection using the keyboard or mouse
or by pressing the Esc key. ;

MIA_FRAMED 0x1000 When this attribute is used, a visible frame is drawn around
the item,

MIA.CHECKED 0x0004 When this attribute is set, a check mark appears to the left
of the menuitem. This menuitemn attribute is used to indicate
the current selection in a cascade or multiple-choice menu

MIADISABLED 0x4000 When this attribute is used, the menuitem is disabled ar;d
therefore cannot be selected by the user.

MIA_HILITED 0x8000 Thlis atéribute is used to highlight the menuitem when it is
selected.

Figure 8.8 The menuitem atirlbutes.

The function then stores the huwndSubMenu element of the i
‘ structure in th
variable hwndSubMenu through the following assignment: e

hwndSubMenu = menuitem.hwndSubMenu;

The next step is to obtain the style flags that are stored in the window words
of.the submenu window. The style flags are obtained by calling the WinQuery-
WindowULong function with the QWL _STYLE index value. The resulting style
flags for the window are returned in the ULONG variable ulSubMenuStyle
Ct?nversely, the style flags are set by calling the function WlnSetWindowULoné
with the QWL_STYLE index value. The following code fragment sets the style
flags by ORing the current style flags with the MS_CONDITIONALCASCADE

menu style flag. This is the code that actually creates the conditional cascade
menu:

WinSetwWindowlULong {hwndSubMenu,
QWL_STYLE,
ulSubMenuStyle | ¥5_CONDITIONALCASCADE) ;

' The final step in the function is to set the default selection in the condi-
tional cascade menu. This is done by sending an MM_SETDEFAULTITEMID
message and passing the sDefault value that was passed to the function. The
CreateConditionalCascadeMenu function will return FALSE if it can success-
fully create the conditional cascade menu. If the function encounters an error
along the way, like an invalid hwnd passed in hwndMenu, the function will
return TRUE representing an error that occurred,

232 Mastering Dialogs, Menus, and Other PM Resources

Altering the System Menu

The System menu, which is located in the upper left-hand corner of the frame
window by default, contains a drop-down that performs system operations
that manipulate the frame window’s appearance or identity. The System menu
contains menuitems that can maximize, minimize, restore, hide, move, size,
or close the frame window. The System menu menuitems can be manipulated
based on the functionality of the frame window. For example, frame windows
that should not be closed can have the close menuitem removed from the
Systern menu.

The menuitem text for the Close option can be altered or removed entirely
along with any other menuitem in the list. Also, if the frame window requires
some additional function, menuitems can be added to the Systern menu. A
routine in the PMEDIT sample program called SetTheSysMenu is used to
remove the menuitems that are redundant for the given window. This routine
also shows how to change a system menuitem by modifying the Close option.
But take care when changing system menuitems, because foreign language
versions of 0S/2 use the SC.CLOSE menuitem to correspond to the language

equivalent of the word close.

The Composition of the System Menu

The actual System menu as we know it, is composed of two distinct windows.
The first is the small window located in the upper left-hand corner of a frame
window. This window contains a small bitmapped image that denotes that it
can reveal a pull-down menu. This window receives a WM_BUTTONIDOWN
message to indicate that it should display another window with the pull-down
menuitems. The second window is the pull-down window itself, revealing the
System menu items. The combination of both of these windows form the basis

for the System menu functionality.
The frame identifier for the system menu is defined in PMWIN.H as

FID_SYSMENU:
#define FID_SYSMENU 0x8002

The goal of the SetTheSysMenu function is to remove all unnecessary menu-
items in the System menu. Since the Search dialog box does not have sizing
capabilities, the restore, minimize, and maximize options are useless in the
System menu. The function first obtains the handle of the System menu window
from the frame window identifier representing the system menu by calling the
WinWindowFromID API and specifying the FID_.SYSMENU frame identifier.
The handle to the System menu is then stored in the hwndSysMenu variable
and subsequently will be used to send messages to the System menu window.

The first message sent is the MM_QUERYITEM message, whose purpose
is to obtain a valid MENUITEM structure for the System menu pull-down

Application Menus 233

window. The first message parameter, mpl, contains the
stant SC.SYSMENU and a TRUE indicating that it is not nse)éset:szlrymtzn:e:::};
all submenus. The MENUITEM structure is returned in the second message
parameter, mp2. Once we have obtained the valid MENUITEM structure reg -
resenting the system menu, we can query information regarding the curreﬁt
menuitems, or change the menuitems by sending additional menu messages

The next message sent to the System menu submenu window 1:s
MM. QUERYITEMCOUNT. This message is used to determine the number
of mequitems contained within the submenu for the System menu. The num-
!:)er of items is returned and stored in the sNumltems variable. Then, for every
itern within the submenu, the code enters a while loop to determine the me-
nuitemn identifiers for each item by sending the MM_ITEMIDFROMPOSITION
message. This message returns the menuitem identifiers based on the position
of the item within the System menu.

The code that removes unnecessary system menu items is shown in Fig-
ure 8.9,

Figure 8.10 lists the overall layout of the System menu including the posi-
tioni, which should give you a better understanding of how the System menu
works.

VOID SetTheSysMenu (HWND hwnd, PCH szCloseltem)
{

HWND hwndSysMenu;

MENUITEM menuitem;

ULONG ulMenulID;

SHORT sNumitems;

SHORT sIndex = 0;

BOOL bDontChangeClose = FALSE;

if {!'szCloseltem)
{
bDontChangeClose = TRUE;
}
* f nbtan_l the system menu window handle from the identifier
/f and find out how many items exist in the menu.

hwndSysMenu = WinWindowFromID{hwnd, FID_SYSMENU};

WinSendMsg (hwndSysMenu,
MM_QUERYITEM,
MPFROMZSHORT (SC_SYSMENU, FALSE),
MPFROMP((PCH) &menuitem});

sNumItems = SHORT1FROMMR (WinSendMsg (menuitem.hwndSubMenu,
MM_QUERYITEMCOUNT,

Figure 8.9 The SetThaSysMenu function. continued

234 Mastering Dialogs, Menus, and Other PM Resources Application Menus 235

After we have all of the System menu identifiers, we enter a switch state-

(MPARAM) NULL ment to filter out those menuitems that we want to remove and identify those

(MPARAMMM)NULLS)i we want to keep. Since we want to keep the Move and Close menuitems, we

increment the sIndex counter and break out of the switch statement. All other

while (sNumItems--) menuitem identifiers are handlefl b_y the default case statement, which sends

{ ' YA an MM_DELETEITEM message indicating that those menuitem options are to
ulMenuID = {ULONG) WinSendMsg (mm;;;?ﬁ;guwsmloﬁ be removed from the System menu.

MPFROM2SHORT (sIndex, TRUE), The final step in this routine involve.s changir:.tg'the Close menuitem text.

(MPARAM) NULL} ; The caller of this function can pass a string containing the text to replace the

standard Close menuitem. The code works by sending a MM.SETITEMTEXT

switch (SHORT1FROMMP (ulMenuID)) message for the SC.CLOSE identifier, to change the menuitem text of the

{

. System menu Close option. If a valid value is passed in to the routine in th
case SC_MOVE: // DO NOT REMOVE THE MOVE MENUITEM }(,:‘1 ; e P 5 e ‘ P i, i e
case SC_CLOSE: // DO NOT REMOVE THE CLOSE MENUITEM 52 g oseltem variable, we W} set the cese 1'tem tfext to retlect t f.a user—passed
S donte. string. If the value passed into the routine is NULL, then we will not modify
break; the Close menuitem option.
default: // DELETE ALL OTHER MENUITEMS
WinSendMsg (menui tem. hwndSubMenu, Removing the System Menu Separators
MM_DELETEITEM,])
MPFROM2SHORT (ulMenuID, TRUE), The system menu contains two menuitem separators, one before the Close
(MPARAM}NULL) ;

menuitem and one after. The identifiers for these separators are shown in Fig-
ure 8.10. The code fragment shown in Figure 8.11 removes the separators from
the system menu. The code works by sending a MM_QUERYITEM message to

}
}

the System menu window to obtain the MENUITEM structure for the system
i |= TRUE)
11{: (bDontChangeClose menu. The MENUITEM structure is needed to obtain the window handle of
WinSendMsg {(hwmdSysMenu, the submenu. The last step involves sending two MM_DELETEITEM messages
M‘SETITMEXE:';E to the submenu specifying the separator identifiers, ~2 and —3.
{MPARAM) SC_CLOSE,
MPFROMP (szCloseltem)) ;
) Replacing the System Menu Entirely

}
Figure 8.9 The SetTheSysMenu function.

The PMEDIT sample program also contains a routine called ReplaceTheSys-
temMenu that is used to replace the default System menu bitmap with the
old-fashioned System menu bitmap, which was a straight horizontal bar. Those

Window Name W1 SYSOOMAND Identifier Menmitem Styles
; : UBMENU | MIS_BITMAP -

SysMenu Bitmap Window ke 3008 ﬁii:ﬁm MIS_SYSCOMMAND hundSysMenu = WinWindowFromID(hwnd, FID_SYSHENU); .

- Puﬁgown ﬁeszore SC_MOVE 0x8001 MIS_TEXT MIS_SYSCOMMAND WlnSendMsgl.:LGdﬁg:I;\Ieg;; ; / :mdow Handle

Rt Sy 1down s(')V SC_SIZE 0x8000 MIS_TEXT MIS_SYSCOMMAND _goustORTrSC SYSMENU, FALSE // Message i
SysMenu Pulldown Size — NTMIZE 0x8002 MIS TEXT MIS_SYSCOMMAND MPF {5C_s) : 1. / Message Parameter
Sysgenu guﬂgox g;ziﬂi:: iﬁ“ﬂlung 0x8003 MIS_TEXT MIS_SYSCOMMAND MPFROMP {&menuitem) } ; /! Message Parameter 2
SysMenu Pu..1d0 - X MIS_SYSCOMMAND

SysMenu Pulldown Hide S ”’5302& ﬂi“@ﬁﬁmm - WinSendMsg (menuitem.hwndSubMenu, MM_DELETEITEM, MPFROM2SHORT(-2, TRUE}, (MPARAM)NULL);
SysMenu Pulldown Separator ., 6x3004 MIS TEXT | MIS_SYSCOMMAND WinSendMsg (menuitem hwndSubMenu, MM_DELETEITEM, MPFROM2SHORT(-3, TRUE), (MPARAM)NULL);
SysMenu Pulldown Close sC_C - GEPARATOR =

gysgenu gﬁﬁggﬁ :‘;ﬁgﬁ;ﬁgzt SC TASKMANAGER (-),3(3011 Eg_'?‘EXT | MIS_SYSCOMMAND Flgure 8.11 Removing the system menu separators.

ysMenu = -

Figure 8.10 The composition of the system menu.

936 Mastering Dialogs, Menus, and Other PM Resources

of you familiar with the 0S/2 1.x PM or Windows 3.x graphical user interface
will remember this System menu. The 0S/2 2.x Presentation Manager keeps

this bitmap around for compatability with previous versions.

This routine not only changes the actual System menu bitmap, but also
does pretty much the same thing as the SetTheSysMenu routine by removing
all unnecessary System menu items. It accomplishes the same goal through a
totally different route; it starts with no System menu, then adds values for the

Move and Close menuitems, SCCMOVE and SC.CLOSE respectively.

The routine starts by obtaining an object window through a call to Win-
QueryObjectWindow. We need to have an object window to set the actual
System menu pull-down’s parent, since the System menu pull-down is not a
child of the frame, but is owned by the System menu. It is important to under-
stand the window relationship in the entire System menu. The System menu
bitmap window is owned by and is a child of the frame window. The system
menu pull-down window is owned by the System menu bitmap window and
is a child of our object window that we obtain from the desktop. The System
menu bitmap window has a sibling window, the title bar window. The handle
of the title bar window is obtained by calling WinWindowFromID with the

frame identifier FID.TITLEBAR; the handle is stored in the
hwndSibling.

HWND variable

For backward compatibility, the current versions of PM still maintain all
of the older system bitmaps. They can be found in the PMWIN.H header file,
prefixed SBMP, along with all of the current System bitmaps. To implement
our 1.x system menu bitmap, we obtain the handle to the bitmap by calling

WinGetSysBitmap with the SBMP_OLD_SYSMENU value.

The next steps involve actually populating the MENUITEM data struc-
tures and adding them to our newly created menu windows via calls to

MM_INSERTITEM. The code for this is given in Figure 8.12.

VOID ReplaceTheSystemtenu (HWND hwndFrame)

HWND hwndSysMenu ;

HWND hwndPullbown;

HWND hwndObject:

HWND hwndSibling;

HBITMAP hbm;

MENUITEM menuitem;

CHAR szMoveText[] = "~Move\tAlt+F7";

CHAR szCloseText (] = "~Close Product Information\tAlt+F4";

hwndCbject = winQueryObjectwindow(HWND_DESKTOP);
hwndSibling = WinwindowFromID {hwndFrame, FID_TITLEBAR) ;
hbm = WinGetSysBitmap(HWND_DESKTOP, SBMP_OLD_SYSMENU);

Figure 8,12 The ReplaceTheSystemMenu function.

continued

Application Menus

237

hwndSysMenu = WinCreateWindow{hwndFrame,
WC_MENU,
NULL,
MS_ACTICNBAR | MS_TITLEBUTTON,
6, 0, 0, 0,
hwndFrame,
hwndsibling,
FID_SYSMENU,
NULL,
NULL) ;

hwndPullDown = WinCreateWindow (hwndObject,
WC_MENU,
NULL,

. NULLHANDLE,

0, 0, 0, 0,
hwndSysMenu,
HWND_BOTTOM,
FID_SYSMENUPOP,
NULL,
NULL } ;

I Popylate MENUITEM structure
menuitem.iPosition = MIT_END:
menuitem.afStyle MIS_BITMAP | MIS_SUBMENU;

menuitem.afAttribute = NULLHANDLE;
menuitem.id = SC_SYSMENU:
menu+tem.hwnd5ubﬂenu = hwndPullDown;
menuitem, hItem = hbm; ‘

WinSendMsg (hwndSysMenu,

// Window Handl
MM_INSERTTTEM, e to send message to

// Menu Message

ﬁgig?ftem, // mpl = MENUITEM structure

) . LL) ; // mp2 = Text for Menuitem

menultem.iPosition = MIT END;

menuitem.afStyle = MIS_TEXT | MIS MMAND

1 ! SYS ;

menuitem.afAttribute = NULLHANDLE! o ‘

menuitem,id = SC_MOVE; |

menu%tem.hwndSubMenu = NULLHANDLE;

menuitem.hItem = NULLHANDLE;

WinSendMsg {hwndPullDown /1 Wi

. Window Handle to send messa

MM_INSERTITEM, {/ Menu Message 9t
&m;nultem, // mpl = MENUITEM structure
szMoveText) ; // mp2 = Text for Menuitem

menuitem.id = SC_CLOSE;

WinSendMsg (hwndPullDown /Wi
. / Window Handle to send messa
e
MMHIN$ERTITEM, // Menu Message s e
&mg?u1tem, // mpl = MENUITEM structure
szCloseText); /f mp2 = Text for Menuitem

Figura 8.12 The RepiaceTheSystemMenu function.

238 Mastering Dialogs, Menus, and Other PM Resources Application Menus 230

reserved is reserved.
cMti is the total number of items in the template.

The Action Bar Menu MENU 1D_MAINWINDOW PRELOAD
. . {
The most important type of menu in an application is the action bar menu. SUBMENU *~File", b FIL L
It provides the user with choices that will execute the functionality of the { _FILEMENU, MIS_TEXT
program. Each option on the menu corresponds to a WM.COMMAND message MENUITEM "Create a ~New File", IDM_FILENEW
that contains the instructions that the menu item will perform when selected. mugg Sgg:]r!lA ;Oglle- .- \tF5", IDM_FILEOPEN
Figure 8.13 is the action bar menu for the PMEDIT sample program, where you MENUITEM *~Save\tF7*
can see that the File submenu has been selected, thus revealing the pull-down MENUITEM "Save -as.. . \tF§", %g:_giig;&s
list of menuitems. MENUITEM SEPARATOR =
The sample application shown in this figure contains several submenus, migﬁ :g:e'arch. - \LF9", IDM_FILESEARCH
including File and Edit. The submenu is generally not used to perform an }MENU it PMEQit\tF3", IDM_EXIT
application function, but rather to display additional menu item choices that
will associate with a given function. The File submenu in this figure contains SUBMENU "~Edit"
i F . p 0 ID_EDITMENU
six menuitems that perform functions that are related to file operations such { = » WIS_TEXT
as opening a file and saving a file. MENUITEM *~Undo\tAlt+Backspace’, IDM_EDITUNDO
An action bar menu is usually defined as a resource in the resource script MENUgg ?gEMK\TOﬁ_ ;
file and then built into the executable. A menu is identified in the resource file MUHEHUITEM . Copytfciﬁgﬁiiﬁiu' IDM_EDITCUT
by the MENU keyword. Figure 8.14 is a sample of the action bar menu used MENUITEM "~Paste\tShift+Insert" igg—ggigggg}g
in the PMEDIT sample. The action bar menu is included as part of the frame MENUITEM SEPARATOR N
window by including the FCF.MENU frame creation flag when creating the }MENUITEM "Cl-ear\tDelete", IDM_EDITCLEAR
frame window. The identifier specified in the MENU template in the resource }
file should correspond to the frame window identifier.
An application can choose to selectively create and load a menu by dy- Figare 8.14 Sample of PMEDIT's acti
. : i s action bar menu]
namically creating a menu by populating a MENUTEMPLATE(MT) structure definition
in memory, and then create a window of the WC_MENU class.
typedef struct _mt /! mt
CAAUTOE XEC {
ptions " Help [T eaa Bl ULONG ulLength; // Length of template in bytes
USHORT usCodepage; // Codepage by
USHORT reserved; // Reserved
UMTSHORT cMti; /{ Count of template items
} I i . \
i IMDOS ;0 1 \OS2\MDOS\WINOS2;C 1\ ;e 1 \tepiphdoshbin; S rgMti(1]; // Array of template items
C:N052;C: \OS2\SYSTEM i
typedef MT *LPMT;
e “FDFILE-DI /3 /B
CUALHL FET WOFILE=DIR ~A gn
DOSKEY EDIT=QBASIC/EDITOR $# Figure 8.15 The menu tempiate structure MT.
rem SET DIRCMD=/A
@SET ETC=e:\tcpip‘dosietc "
SET BLASTER=AZ20 IS D1 H5 P330 T
SET SOUND-E :\BLASTER The MENUTEMPLATE struct i : : .
S o oToaYMTH:1 MAD:E Figure 8.15 ure that is defined in PMWIN.H is shown in
rem E:\BLASTER\DIAGNOSE /S S,
E:\BLASTER\SB16SET /P /Q
ET ETC=e:\tcpip\dos\e .
= S L e ulLength is the length of the menu template in bytes.
| : usCodepage represents the code page used for the menu.
[]

Figure 8.13 A sampie action bar menu.

240 Mastering Dialogs, Menus, and Other PM Resources

e rgMti[1] is an array of template items based on a menu template item
structure MTL

When a menu window is created by calling WinCreateWindow with the
WC_MENU window class, the control data structure, specified by the pCtlData
parameter of WinCreateWindow, should contain the menu template. Although
using this method for creating a menu is not as simple as using the menu
resource, it does provide more control for maintaining multiple menus.

The menu can be loaded dynamically by calling the WinLoadMenu API and
sending menu messages to the window to change the menuitems. Menuitem
messages are signified in PM by the prefix MM... The ToggleMenultem routine
uses several of these messages to dynamically update the menuitems for the
PMEDIT action bar menu. The format of the WinLoadMenu API is given in
Figure 8.16.

The actual menu window code processes most messages needed for the
menu so that maintaining a menu is relatively simple; the developer does not
have to send paint messages to the frame for handling menu code. There are
instances when creating or loading a menu window may require updating the
frame window. This can be done by sending a WM_UPDATEFRAME message
to force the frame to update the menu, after the menu has been modified.

Adding an Action Bar Menu to a Dialog Box

The purist PM programmer views the dialog box as a functional frame window
that automates several of the complexities involved in frame window process-
ing. Most dialogs are used as a simple user input mechanism, or as a vehicle
to display information to the user. If complex drawing is required within the
window, a dialog does not offer the flexibility of a frame window.

Therefore, most applications will create their own frame window by call-
ing the function WinCreateStdWindow, and since most applications do not
require additional action bar menus, there is usually no need to add one to
a dialog window. Many purists believe that to add a menu to a dialog win-
dow contradicts the purpose and functionality of the dialog box because it is
not intended to provide that type of interface. However, if you are writing a
simple utility program that really doesn’t do much, it may be easier to use a
dialog window instead of a frame because of the various advantages offered
by the dialog manager code within PMWIN (the code for which resides in
PMMERGE.DLL in 0S/2 WARP). Fortunately, adding an action bar menu to

Application Menus 241

MENU ID_DIALOGMENU
{

SUBMENU *~File", ID FILEMENU
{ Ll
MENUITEM "Run Chkdsk*, IDM_CHKDSK
MENUITEM "Exit This Dialog", IDM_EXITDLG

}
}

Figure 8.17 The menu tempiale for a dialog box.

a dialog is a relatively painless task. Besides, the differences between a dialo
and a standard frame window are transparent to the application user. %

To add an action bar menu to a dialog, define a MENU template in the
resource script file as you would for any action bar menu. For this menu, do
not use the same resource identifier as the frame window. The code is give;l in
Figure 8.17.

The dialog procedure for the dialog box has to explicitly 1
by calling the WinLoadMenu function, specifying the]:)iden}tfiﬁi;:df(ﬁ'1 etlizeg;f
alog menu, which in this case is ID_.DIALOGMENU. The procedure loads
the menu as part of the initialization of the dialog, during the processing
of the WM_INITDLG message. Once the menu is loaded, you must send a
WM_UPDATEFRAME message to notify the frame window that the menu is
added. The code fragment in Figure 8.18 is a dialog procedure that loads the
action bar menu.

MRESULT EXPENTRY DialogMenuDlgProc {HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)

{

switch (msg)

{

case WM_INITDLG:
w%nLoadMenu (hwnd, NULLHANDLE, ID_DIALOGMENU);
WinSendMsg (hwnd, WM_UPDATEFRAME, 0,0);
break;

case WM_COMMAND:
switch (COMMANDMSG (&msg)->cmd)

{

}

case DID _OK:

WinDismissDlg (hwnd, TRUE) ;
break;

HWND APIENTRY WinLoadMenu (HWND hwndFrame,
HMODULE hmod,
ULONG idMenu) ;

Figure 8.16 The WinLoadMenu APi.

break ;
}
return WinDefDlgProc (hwnd, msg, mpl, mp2) :
}

Figure 8.18 Adding an action bar menu to a dialog window.

242

Mastering Dialogs, Menus, and Other PM Resources

MENU ID_MAINWINDOW PRELOAD

LPRESPARAMS PP_MENUPOREGROUNDCOLORINDEX, CLR_RED

SUBMENU *-Classes”, ID_OPTIONS, MIS_TEXT

MENUITEM "-Math...\tF5", IDM_MATH
MENUITEM "-Science...\tFé", IDM SCIENCE
MENUITEM "~Reading...‘tF7", IDM_READING

}
Figure 8.19 Changing the colors of a menu.

Using Presentation Parameters in Menu Templates

It is possible to change the presentation parameters for a menu window like
if an application ever has a need to change the colors of an action bar menu.
However, changing the presentation parameters for a menu window is not
advisable, and contradicts CUA interface guidelines. The action bar menu,
should be consistent among all PM applications, and the user should be re-
sponsible for configuring the appearance of the action bar menu. However,
if the environment that you are developing the application for is specific to a
defined set of users, it may be acceptable to change the menu colors to provide
a simple customized interface. For example, if you are writing an application
that will be the only application a user will ever run on their machine, like a
machine used to control a plant-floor environment, the user will likely never
use the workplace shell or any other application. So if you absolutely must,
here is how it is done. The code fragment shown in Figure 8.19 changes the
foreground color of the action bar menu and all of the menuitems.

POPUP MENUS

There are times that your application may need additional menu functionality
outside the context of the action bar menu. For example, applications that cre-
ate workplace objects that will interface with other objects will require a menu
specific to that object. In this case, a popup menu provides the functionality
for a particular object, since the menu is specific to that object. The popup
ment is an integral part of the Workplace Shell paradigm, as it allows every
object to have a unigue menu. The format of the WinPopupMenu function is

given in Figure 8.20.

s

Popup Menus 243

BOCL APIENTRY WinPopupMenu (HWND hwndParent,
HWND hwndOwner,
HWND hwndMenu,

LONG 1x,
LONG ly,
LONG idItem,

ULONG usOptions);

Figure 8.20 The WinPopupMenu prototype.

. Tl:le hwndParent parameter is the window handle representing the parent
window.

¢ The hwndOwner parameter is the window handle representing the owner
window.

* The hwndMenu is the window handle representing the popup menu. The
popup menu is typically created through the use of the WinLoadMenu
API. The window handle returned by WinLoadMenu corresponds to this
window handle.

* The Ix parameter is the x coordinate representing the position of the popup
menu in the window based on the origin of its parent window.

* The ly parameter is the y coordinate representing the position of the popup
menu in the window based on the origin of its parent window.

* The idItem parameter represents a menuitem identifier within the popup
menu that can be selected based on whether the PU_POSITIONITEM flag
or the PU.SELECTITEM flag is set in the usOptions parameter.

* The usOptions parameter contains a series of flags that are combined to
determine or set the position of the popup, the initial popup menu state
the selection state, as well as the horizontal or vertical constraints of the:
popup. There are also flags that determine the user input method that can
be used to control the popup menu.

The Win?opupMenu function returns TRUE if the function is successful
and FALSE if an error occurred. Figure 8.21 lists the valid option flags for
usOptions.

Creating the Popup Menu

Adding a popup menu to your application is extremely simple. For the most
part, the menu is constructed the same way as a standard action bar menu in
the_ resource script file. The code fragment in Figure 8.22 from the resource
script file is used to create the popup menu and the code fragment in Figure
8.23 loads the popup menu.

944 Mastering Dialogs, Menus, and Other PM Resources

// Popup Menu position flag
PU_POSITIONONITEM

// Popup Menu constraint flags
PU_HCONSTRAIN
PU_VCONSTRAIN

// Popup Menu initial state flags
PU_NONE
PU_MOUSEBUTTONIDOWN
PU_MOUSEBUTTCN2DOWN
PU_MOUSEBUTTONBDOWN

// Popup Menu selection flags
PU_SELECTITEM

{/ Popup Menu user input method flags

PU_MOUSEBUTTON1
PU_MOUSEBUTTON2
PU_MOUSEBUTTON3
PU_KEYBOARD

0x0001

0x0002
0x0004

0x0000
0x0008
0x0010
0x0018

0x0020

0x0040
0x0080
0x0100
0x0200

Figure 8.21 The WinPopupMenu option fiags.

MENU ID_POPUPMENU

{

SUBMENU “Change ~Attributes”,
{
MENUITEM "~Normal®,
MENUITEM "~Bold",
MENUITEM "~Italic",
MENUITEM "-Underline®,
}

SUBMENU "Change Text ~Colors®,
{
MENUITEM 'Default”,
MENUITEM "Red",
MENUITEM "Blue”,
MENUITEM "Green”,
MENUITEM "Yellow",
}

MENUITEM SEPARATOR
MENUITEM "~Settings...",
MENUITEM *~Exit PMEDIT",
}

ID_ATTRIBS,,MIA_NODISMISS

IDM_NORMAL, ,MIA_CHECKED
IDM_BOLD

IDM_ITALIC
IDM_UNDERLINE

1D_COLORS,

IDM_DEFAULT
IDM_RED
IDM_BLUE
IDM_GREEN
IDM_YELLOW

IDM_SETTINGS
IDM_EXIT

Figure 8.22 Defining the popup menu.

Popup Menus

MRESULT EXPENTRY MLESub
{ classProc (HWND hwnd, ULONG msg, MPARAM mpl, MPARM mp2)

MRESULT rc;

ULONG ulOptions:
POINTL ptlCurrent;
CHAR szFont[30];

static HWND hwndPopup;

// if the user presses the first m
uSe ouse button anywhere i
{/ the position of the cursor and update the lingwnu;geig Ehe MLE ebtaiz
1f (msg == WM_BUTTON1DOWN) '
rc = ((*OldMLEProc) (hwnd, msg, mpl 3
UpdateLineNumbers() ; ot
return rc;

}
e%se if (msg == WM_BUTTON2DOWN}

W@nQueryPointe;Pos(HWND_DESKTOP. &ptlCurrent};
WinMapwWindowPoints (HWND_DESKTOP, hwnd, &ptlCurrent, 1);

if {hwndPopup)
{

}winDestroyWindow(hwndPopup);

hwndPopup

bl

WinLoadMenu (hwnd, NULLHANDLE, ID_POPUBMENU) ;

ulOptions = PU_NONE | PU_MOUSEBUTTON1 | PU_KEYBOARD | PU_HCONSTRAIN | PU_VCONSTRAIN;
// set the font of the popup menu
strcpy(szFont, "8.Courier");

WinSetPresParam(hwndPopup, PP_FONTNAMESIZE, sizeof(szFont + 1, szFont):

WinPopupten (lead, // Parent Window is MLE
bodClient, // Owner is Client Window
bedicpup, // Window handle of Popap
ptlQorent.x, // x coxxdinate e
ptlOnrent.y, // y cocxdinate
0, // Ttem identity
uloptiong); // Opticn Flags

return ({*0ldMLEProc) (hwnd, msg, mpl, mp2)});

else

{

)
}

return {(*0ldMLEProc) (hwnd, msg, mpl, mp2));

Figure 8.23 Using the WinPopupMenu APi.

246 Mastering Dialogs, Menus, and Other PM Resources

ACCELTABLE ID_MAINWINDOW PRELOAD

{

VK_F2, IDM_ABOUT, VIRTUALKEY
VK_F3, IDM_EXIT, VIRTUALKEY
VK_F5, IDM_FILEOPEN, VIRTUALKEY
VK_F7, IDM_FILESAVE, VIRTUALKEY
VK_F8, IDM_FILESAVEAS, VIRTUALKEY
VK_F9, IDM_FILESEARCH, VIRTUALKEY

Figure 8.24 The Accelerator Table.

KEYBOARD ACCELERATORS

perate with the keyboard is an important part
of designing a successful user interface. End users often associate particular
functions with keys more easily than they can navigate through menuitems.
Therefore, it is critical to provide a corresponding keyboard interface to your
application menu. This functionality is known as the keyboard accelerator
table. Essentially a keyboard accelerator is a shortcut key that allows the user
quick access to the function of a particular menuitem. Since the accelerator
represents a particular menuitem, it is important that the accelerator key make
sense to the user selection.

It has become programming commonplace to reserve the F1 and F3 func-
tion keys for the specific functions Help and Exiting the application. (Consult
the Common User Access (CUA) guidelines for complete keystroke recommen-
dations.)

The easiest way to use keyboard accelerators is to specify the keyboard
accelerator table as a resource in the resource script file, then include the
resource when creating the frame window by using the frame control flag
FCF.ACCELTABLE. Figure 8.24 is a sample ACCELERATOR table from the

PMEDIT resource script file.

Making an application menu coo

MENU MNEMONICS

OK, this is definitely a tongue twister. Try saying menu mnemonics five times
really fast. Trust me, Menu Mnemonics are far easier to implement than having
to say menu mnemonics. Although they are often taken for granted, and some

users don't know what they provide, menu mnemonics offer a simple method

for obtaining access to menuitem functions. The mnemonic keys are identified

by an underscore character in one letter of the menu. The user can use make

a selection with the keyboard quicker by pressing the mnemonic key as a
d by pressing the

shortcut. A mnemonic key on an action bar menu is accesse

Standard Dialogs 247

MENUITEM "~Save\tF7", IDM_FILESAVE
MENUITEM "Save ~as...\tF8-, IDM:FILESAVEAS

Figure 8.25 MenuMnemonics.

keydm conjunction with the Alt key. From a pulldown menu the user onl
2?1: s to press the mnemonic key to make the selection from the keyboardy
ike the 'accelerator keys, mnemonics need to make sense to the user. Th‘
mngmomc keys are fieﬁned by using a tilde character before the key to bee
18152e5 3: ;nxglsnf}inomc in thfe menu. f‘or example, the fragment shown in Figure
B SR € mnemonic key “s” for the File/Save and “a” for File/Save as

STANDARD DIALOGS

Virtually every PM 'application will somehow manipulate a file to perform
Eome fgnctlon within the application. The need to open and save files to a
xed disk p.rompted the development of a common user interface so that
ug(:ll;s coulc.l immediately become familiar with the opening and saving of ﬁl:s
xlo Stog; gi:iggﬁgizegfl;nt Orll(th; appIicatior; to provide the interface. Similarly,
: make heavy use of text or i ide
an interface to the user to changevgonts. Because ofgtl:epstlzserﬂz?ilsmopsrlngdg
introduced two new standard dialog windows, the standard file dialo’ and th
standard font dialog. We will focus primarily on the standard file diagfo h \
The standard font dialog is covered in detail in Chapter 16. R

The Standard File Dialog

In previous versions of the Presentation Ma i
i : nager, it was up to the
tﬁ provide the interface for manipulating files to the user].DIn ordt}:: (:grc?;n trlrll;r
e developer had to manually create dialog boxes with listbox and pushbuttm;
controls, and then <.:all file system functions such as DosQueryCurrentDisk
Do.';d . Qu;ryCun*entD:r, ar!d DosFifzdFirst to fill the listboxes with the prope;
a:nfcle,bllrfctﬂt:])lry, and lt_:lltzl information. Therefore, almost every PM application
ailable to the user had a different lock and feel for openi i
‘ pening and saving files.
?Ithougg rr;:?ny file d}llalogs were elaborate, it took a great dea% of progrgllﬁmiisg
1me and ettort t i i i
g on the part of the developer to provide a simple interface to
The standard file dialog requires little codi
he . oding on the part of the devel
apd it is also simple to use. To create the standard file gialog, the devel(;}]’:g:
;1;1;%)/ calls one API, W"inFtIeDlg, and passes a pointer to a structure called
FIL DLG, which contains all of the options available for the standard file
ialog. The programmer also specifies the parent and owner windows, when

248 Mastering Dialogs, Menus, and Other PM Resources

standard file dialog (SFD) can be used for either
opening or saving a nonnamed file. These functions usually correspond to an
Open or Save As option within a File submenu. The PMEDIT program uses
the standard file dialog for both the Open and Save As functions.

The SFD is an extremely powerful dialog window, since it can be cus-
tomized to accommodate the needs of the user. It may contain a help pushbut-
ton, include extended attribute information, and it can even allow for multiple
file selections. An example of the standard file dialog is shown in Figure 8.26.

The routine StandardFileDialog is called from within both the FileOpen
and FileSaveAs routines, based on the specific type of dialog required for
either opening or saving a nonnamed file. This routine takes parameters that
coordinate the appearance of the standard file dialog by filling in the important

elements of the FILEDLG structure.
the elements of the structure to zere by

The routine initially sets all of
calling the memset function, then calls WinFileDlg to draw the file dialog.

The important elements of the FILEDLG structure that are specific to the

appearance of our file dialog are filled in based on the parameters passed to

StandardFileDialog. Specifically, we are interested in the title bar text of the

dialog, the OK pushbutton text, and the flags that indicate whether an Open
or Save As dialog is required. The final parameter is the filter parameter that
tells the file dialog with which filetype extensions 10 flter the file listbox. This
is useful when programs that only work with a specific filetype only want
the user to see files of this type. For example, a graphics program may only
want to fll the file listbox with .BMP files, rather than every single file in a

calling WinFileDlg. The

PHEDIT - Open a Text File

Open filename:
[ELVIS.TXT]
Type of file: Drive:

[<All Fites> T#fe: l#)
File: Directory:

_| [0 B
book

HYMAN.TXT |chapdl

STAN.TXT FILES

URLTXT N N
i =1 —

Open r Cancel

Figure 8.26 The Open File standard file dialog.

Standard Dialogs 249

HWND APIENTRY WinFileDlg{HWND hwndParent
HWND hwndOwner,
PFILEDLG pfiledlg);

Figure 8.27 The WinFileDlg prototypae.

given directory; this makes sense since only .BMP files will be read by th
e

program. Figure 8.27 has the functi
the PMSTDDLG.H header file. ction prototype for WinFileDlg as defined in

o hwndParent is the window handle
: : of the parent wind
: hu;ng&yner is _the window handle of the owner w:Edgx
pfiledlg is a pointer to a file dialog structure FILEDLG !

The WinFileDlg API will return id wi
- _ a valid window handle i
:}tli;ng:lcé ﬁlfz dtlalgg if the FDS_MODELESS flag was Speciﬁeieip;gis:zgﬂfgtﬁhet
e fi is to e‘modeless. If the FDS_MODELESS flag is not specgiﬁez
loss of wh:&ggnmuglégeéino‘%g%g Sthf(]e call completes successfully. Regard:
h - ag is set, the functi i
NULLHANDLE if the dialog cannot be created successfulr;; L rewuerl 8

The file dialog struct :)
in Figure 8.28. g structure FILEDLG is defined in PMSTDDLG.H as shown

l{:ypedef struct _FILEDLG fifiledlg
ULONG chsize;
ULONG fl;
ULONG ulUser;
LONG 1Return;

LONG 13RC;

PSZ pszTitle;

P5Z pszOKButton;
PFNWP pfnDlgProc;

PSZ pszIType;

PAPSZ papszITypeList;
PSZ pszlDrive;

PAPSZ papszIDriveList;
HMODULE hMod;

CHAR szFullFile [CCHMAXPATH] :
PAPSZ papszFQFilename;

ULONG ulFQFCount;

USHORT usDlgId;

SHORT x;
SHORT y;
SHORT SEAType;

} FILEDLG;

typedef FILEDLG FAR *PFILEDLG;

Flgure 8.28 The FILEDLG structure.

950 Mastering Dialogs, Menus, and Other PM Resources

o cbSize is the size of the FILEDLG structure.

o The fI element represen
the appearance and be

i I
ts the file dialog flags. The flags are used to contro
havior of the standard file dialog. There are two

basic types of standard file dialogs, the Open SFD and the Save As SFD.

Therefore, this parameter mus
FDS.SAVEAS_DIALOG flag. Yo

but you cannot specify both.

All of the file

FDS.CENTER

FDS.CUSTOM

FDS_FILTERUNION

FDS_HELPBUTTON

FDS_APPLYBUTTON

+ contain either the FDS_.OPEN _DIALOG or
u must specify at least one of these flags,

dialog flags are listed here:

0x00000001L The use of this flag indicates that the dia-

0x00000002L

0x00000004L

0x00000008L

0x00000010L

log will be positioned in the center ‘of its
parent window. The use of this flag »?'111 su-
percede any specified x and y coordinates.
This flag is used to override the 'default
appearance of the SFD by allgwmg the
application to define a custom dialog tem-
plate that will be used to replace the SFD.
If this flag is used, the hMod and usDIgID
fields of the structure must be valid.
This flag is used to control the filtering of
the FILES listbox. If this flag is set, the
SFD uses a “union” of the EA type filter
specified by pszlType and the string filter,
which can be specified in the szFullFile
character array.
This flag is used to add a Help pushbut-
ton to the SFD. The pushbutton is created
using the BS.HELP | BS_NOPOINTER
FOCUS button styles by default, and a
WM_HELP message is sent to the owner
window specified by hbwndOwner, in th’e
call to WinFileDlg. The Help pushbutton’s
identifier is defined as DID_HELP._PB.

This flag is used to add an Apply button to
the dialog. The purpose of the Apply but-
ton is to allow the user to view the change.s
made through the use of the standard di-
alog, without actually dismissing the stan-
dard file dialog. Essentially, it performs
the same functionality that the OK push-
button performs, without dismis.sing the
dialog. This button is typically demgx:;ed .for
the modeless SFD, since the application

FDS_PRELOAD_VOLINFQO 0x00000020L

Standard Diatogs 251

input is not tied to the standard file dialog
when using a modeless window: therefore,
the user can move back and forth between
the SFD and the window.

The use of this flag allows the SFD to
preload the volume information for the
drives, and also to set the current default
directory for every drive.

FDS_MODELESS 0x00000040L This flag is used to make the standard file
dialog a modeless dialog window.

FDS_INCLUDE_EAS 0x00000080L. This flag is used to force the dialog to
search for extended attribute information
every time it populates the FILES listbox.

FDS_OPEN_DIALOG 0x00000100L This flag is used to indicate that the SFD

FDS_SAVEAS_DIALOG

0x00000200L

is an Open dialog.

This flag is used to indicate that the SFD
is a Save As dialog.

FDS_MULTIPLESEL 0x00000400L This flag is used to give the user the abil-
ity to select multiple files from the FILES
listbox.

FDS_ENABLEFILELB 0x00000800L This flag is used to allow the FILES listbox

on a Save As SFD to be enabled.

* The ulUser element is reserved for use by the application. This field is
useful for applications that will end up subclassing the file dialog.

* The IReturn element is the actual value returned when the dialog is dis-
missed. If an error occurs during the processing of the dialog, this field is
set to zero. Otherwise, the pushbutton identif