
0512® Warp
Presentation Manager

Accredited for Power Programmers

Uri J. Stern and James S. Morrow

OS/2 WARP PRESENTATION
MANAGER FOR POWER
PROGRAMMERS

Uri Joseph Stern
James Stan Morrow

John Wiley & Sons, Inc.

New York • Chichester • Brisbane • Toronto • Singapore

Publisher: Katherine Schowalter
Editor: Theresa Hudson
Managing Editor: Micheline Frederick
Text Design & Composition: Integre Technical Publishing Co., Inc.

Designations used by companies to distinguish their products are often claimed as ~­
In all instances where John Wiley & Sons, Inc . is aware of a claim, the product n.a::ies a;ipear in
initial capital or all capital letters. Readers, however, should contact the approp · es
for more complete information regarding trademarks and registration.

This text is printed on acid-free paper.

Copyright © 1995 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold with the understanding that the publisher is nOl ecga.,aecl in
rendering legal, accounting, or other professinal service. If legal advice or other expen assistance
is required, the services of a competent professional person should be sought.

Reproduction or translation of any part of this work beyond that permitted by section 107 or
108 of the 1976 United States Copyright Act without the permission of the copyright owner is
unlawful. Requests for permission or further information should be addressed to the Permissions
Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data:

ISBN 0-471-05839-4 (pbk)

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

DEDICATION

This book is dedicated to all of our loved ones:

Uri Stern:

To Dori, for your love and understanding. You are the greatest.
And to my Mom, Dad, and Brother Irv.

Stan Morrow:

To my loving family:
Linda, Chantell, Joey, Jesse, and Jared.

CONTENTS

Chapter 1 Welcome to the Presentation Manager
for Power Programmers

Goodbye Hello World 2
OS/2 Compilers and Linkers 3
PM Initialization 3
Message-Based Architecture 4

Sending versus Posting Messages 4
Using the WinPostQueueMsg API 4
Obtaining Information about a Particular Message Queue
Using WinCancelShutdown 7

Communicating with Multiple Windows or Queues 8
Semaphore Handling 9
Understanding OS/2 Memory 9

Resource Considerations 9
Memory-Related Errors 1 O
PMWIN Considerations 11

Windows Galore 11
Avoiding the Dreaded Bad-Application Dialog 11

The PM Input Mechanism 12
Debugging PM 13
Error Handling 14
Summary 16

Chapter 2 Gaining Control: Mastering the Standard
PM Control Windows

The Purpose of the Sample Program 19
Controls in Dialogs 20

Types of Controls 20

1

5

17

v

VI Contents

Creating the Control Window 21
Understanding the Owner and Parent Window Relationships

Control Window Communication Messages 24

Control Window Notification Messages 24

Using Control Data 24
The Button Window Class 25

The Button Control Messages 33

The Static Window Class 38

Adding Multiple Items to a Listbox 40

Starting the Applications 42

Terminating A Started Application 46
The ES_UNREADABLE Entryfield Control Style 46

Using the Delete Key with the Entryfield Control 48

Validating the Entryfield 49

Updating the Program Buttons 51
Changing the Icon Associated with an Executable 52

Displaying Messages 54
Removing the Standard Frame Controls 56

Using the Titlebar Control 56

Summary 58

Chapter 3 Mastering the Keyboard Interface
and Scrolling Functionality

Processing Keyboard Input 59

The WM_CHAR Message 60

Obtaining Keyboard Input 65

The Keyboard Input Cursor 65

Updating the Display 69

The Scroll Bar Control 72

Scroll Bar Styles 72
Scroll Bar Notification Messages 73

Managing the Scroll Bar 75

Processing the Directional Keys 81

Painting after Scrolling 87

Summary 89

23

59

Chapter 4 Building A Better Mousetrap:
Taming the Mouse In PM

Understanding the Use of the Mouse 92

Querying and Setting the System Values for an Input Device

Changing the Visibility of the Mouse Pointer 96

Capturing the Mouse Pointer 97

Showing the Mouse Pointer 98

Obtaining Pointer Information 99

Where Is Mickey? 101

Using the WM_MOUSEMOVE Message 104

Determining the Pointer Position in Relation to a Rectangle

Drawing the Spirographs 105

Changing the Default Mouse Pointer

Loading the Pointer 109

Destroying the Pointer 11 O

Creating Pointers Dynamically

Processing the Tracking Rectangle

Using the Clipboard 116

111

Placing Bitmap Data in the Clipboard

Summary 120

108

111

117

Chapter 5 SOS tor PM Developers: Help Management through
the Information Presentation Facility

Designing Help Text 122
Organization of Panels 122

Constructing the IPF Source File 123

Mapping Application Elements to Help Panels 127

Defining Help Tables 128

Defining Help Subtables 129

Menu Support for On-Line Help 131

Adding Help to Your Source Code 131

Creating an Instance of IPF 132

Processing the He1p Menu Commands 136

Multiple Frame Window Considerations 139

Multiple Thread Considerations 140

Summary 140

Contents Vil

91

94

105

121

Viii Contents

Chapter 6 Getting More Power tor Your Program:
Using OS/2's Multlthreadlng Capabllities

A Typical Single Threaded Application 144
Peeking at the Message Queue 147
Creating a New Thread 149
Using an Object Window 152
Summary 157

Chapter 7 She Sells Sea Shells: Programming
the Workplace Shell

Direct Manipulation 160
Drag-and-Drop Data Structures 161

The DRAGINFO Structure 162
The DRAGITEM Structure 165
The DRAGIMAGE Structure 170
The DRAGTRANSFER Structure 172

String Handles 174
Direct Manipulation Coding 176

Starting the Drag and Drop Operation 177
Responding to the Drag Operation 180

Rendering Objects 188
Supporting Pickup and Drop 198

Post-Drop Notification 203
Menu Support for Pickup and Drop 204
Direct Manipulation Summary 205

Initialization Files 206
Restoring the Window State 207
Accessing Initialization Files 209

SOM 217
SOMObject 218
SOMClass 218
SOMClassMgr 219

Distributed SOM 219
Workplace Classes 219

Summary 221

143

159

Contents Ix

Chapter 8 Mastering Dialogs, Manus, and Other PM Resources
The Purpose of the Sample Program 223
Application Menus 224

Menu Messages 225
Altering the System Menu 232
The Composition of the System Menu 232
Removing the System Menu Separators 235
Rep,acing the System Menu Entirely 235
The Action Bar Menu 238
Adding an Action Bar Menu to a Dialog Box 240
Using Presentation Parameters in Menu Templates 242

Popup Menus 242
Creating the Popup Menu 243

Keyboard Accelerators 246
Menu Mnemonics 246
Standard Dialogs 247

The Standard File Dialog 247
Dialog Boxes 253

Processing the WMJNITDLG Message 253
Understanding TabStops and Groups 254
Sizing a Dialog Window 255
Avoiding a Common Error 256

Summary 257

Chapter 9 Communication Between Applications Using
PM's Dynamic Data Exchange Protocol

Implementing the ODE Communication Architecture 260
The Purpose of the Sample Program 261

Understanding the Client and Server Interaction 263
Understanding the Data Transfer Hierarchy 264

DDE Messages 265
Initiating a DDE Conversation Using WM.DDEJNITIATE
Using WinDdelnitlate to Initiate the DDE Conversation
Using Unnamed Application and Topic Name Strings
Using the System Topics 268
The Reason for a Common DOE Protocol 269

265
266

267

223

259

X Contents

DDEINIT Structure 269
Using WlnDdeRespond 271
WM.DDE.INITIATEACK 272
Using Window Words to Store Transaction-specific Data
The DOE Communication Process 273
Terminating the DOE Conversation 274
Building a ODE Message Spy Window 275

Providing for the ClienVServer Data Exchange 275
The DOE Shared Memory Object 278
Using the Same Memory Object for a Response 280

The DOE Communication Messages 280
WM_OOE. REQUEST 281
WM.DOE. DATA
WM.DOE.POKE

282

WM.DOE.ADVISE
WM.DDE.UNADVISE

282
283

284
WM.ODE.ACK 287

The DOE Helper Macros 289
Exchanging the Sample Program Data 292
Chafting the Data 295
Summary 296

Chapter 10 Getting to the Head of the Class:
Understanding Subclasslng

Replacing a Window's Window Procedure 298
Creating a New Class 302
Summary 307

Chapter 11 Improving Your Control: Using the
Advanced OS/2 Controls

Notebooks 309
Selecting a Notebook Style 31 O
Creating the Notebook 312
Customizing the Notebook 313

Value Sets 335
Creating and Initializing the Value Set
Processing Value Set Input 342

336

273

297

309

Direct Manipulation of Value Set Items 345
Owner Draw and the Value Set 347

Sliders 348
The Linear Slider 348
Circular Sliders 362

Changing the Circular Slider Background Color 367
Summary 367

Chapter 12 Containing Your Excitement: Making Use of
the Container Control

Container Views 370
Container Data Structures 371

CNRINFO 371
RECORDCORE and MINIRECORDCORE 376
FIELDINFO 384

Creating Containers 389
Loading Container Data 391
Processing User Input 391

Record Emphasis 391
Field Editing 394
Context Menus 396
TREE Mcxle 398
Scrolling 398
Drag and Drop 399

Summary 400

Chapter 13 What's New with OS/2: Getting a Look
at the Multimedia Controls

Graphic Buttons 401
Registering the Graphic Button Class 402
Creating Graphic Buttons 403
Controlling the Graphic Button 408
Additional Graphic Button Messages 419
Secondary Windows 420

Using Secondary Windows 420
Secondary Message Boxes 423

Summary 426

Contents xi

369

401

Xii Contents

Chapter 14 PM, Your Kingdom Awaits: Creating Your Own Controls

Designing the Control Window Application Interface 429

Coding the Custom Control 433
A Few Words of Caution 438
Packaging the Control 438

Summary 439

Chapter 15 Win, Lose, or Draw: The Art of Drawing Bitmaps

The PM Graphics Subsystem 441
The Purpose of the Sample Program 442
The Composition of a Bitmap File 443
Examining the Contents of Bitmap Data 443

The Bitmap File Format Structures 444
The BitmaplnfoHeader Structure 445
The 32-bit BitmapFileHeader Structure 447

The Color Table Structure 449
Drawing within a PM Window 449

Understanding Presentation Spaces 451
Using WlnDrawBltmap 454
Using the Bit Block Transfer Function-GplBitBlt 456
Changing the Desktop Bitmap 458
Obtaining the Screen Resolution 461
Displaying the Bitmap 462
Summary 468

Chapter 16 Getting It in Print: Mastering Fonts and Printing

Fonts 469
Font Terminology 470

Using Fonts 470
WinAPI 471

Determining the Currently Selected Font 471
Selecting a Different Font 473
Drawing Text 481
Gpi API 484
Font Summary 493
Printing 493

Preparing to Print 494
Associating the Presentation Space 504

429

441

469

Caltats xiii

Starting the Job 505
Setting Characteristics 506
Drawing the Output 507
Ending the Job 507

Using a New Thread for Printing 507
Printing Summary 507

Chapter 17 Captain Hook Lives: Mastering PM Hooks

The Purpose of the Sample Program 511
Installing a Hook 514
Types of Hooks 515

The Message Filter Hook-HK.MSGFILTER 516
The Input Hook-HK.INPUT 518

Capturing the Active Window 523
The Send Message Hook-HK.SENDMSG 525
The Journal Record Hook-HK.JOURNALRECORD 526
The Journal Playback Hook-HK.JOURNALPLAYBACK 527
The Help Hook- HK.HELP 528
The lockup Hook- HK.LOCKUP 528
The Message Input Hook-HK_MSGINPUT 529
The Find Word Hook- HK_FINDWORD 530
The Code Page Changed Hook-HK.CODEPAGECHANGED
The Flush Buffer Hook-HK_FLUSHBUF 532

Releasing the Hook 532
Summary 535

Appendix

Index

509

531

537

539

PREFACE

For those of us who have been involved in OS/2 in one way or the other as
users, developers, or just curious computer geeks, it has been a long, tiresome
journey to get our beloved operating system to where it is today. The OS/2
operating system has one of the most dedicated group of devotees espousing
the benefits of the operating system. Thanks to the effort of all the OS/2 fa­
natics, the operating system has matured into the most stable 32-bit operating
system available for the personal computer today. This book will concentrate
on programming the OS/2 Presentation Manager subsystem.

The first version of the OS/2 operating system resembled the command line
interface that was popularized by the DOS operating system. The graphical
user interface revolution that eventually conquered the computer industry
was just beginning to emerge through efforts like those of the group at the
Xerox Palo Alto Research Center (PARC). The Presentation Manager was a
cooperative effort of the development teams of IBM and Microsoft. The IBM
development originated from the programming labs in Boca Raton, Florida
and Hursley, England.

The Presentation Manager GUI interface was first introduced with version
1.1 of OS/2 in late October 1988, and, like the operating system itself, it has
grown and matured with each release. Versions 1.2 and 1.3 of the operating
system introduced the Help Manager and an enhanced controls library, includ­
ing items such as the combobox and the spin button. Version 2.0 introduced
a radical new graphical user interface on top of the Presentation Manager,
known as the Workplace Shell; and new advanced controls, including the
container, the notebook, the value set, and the linear slider.

The multimedia presentation manager (MMPM), which had been available
separately, began shipping as a part of OS/2 with the release of version 2.1 .
This provided programmers with powerful new multimedia controls, such
as the graphical button and circular slider, as well as secondary windows
and message boxes. Version 3.0, or OS/2 WARP, is primarily a performance
release. The main body of the Presentation Manager has been converted to
32-bit code and a number of enhancements have been added to the existing
library set. New features include pickup-and-drop direct manipulation support
and distributed SOM technology.

xv

XVI Preface

OS/2 itself is a complete, 32-bit multitasking operating system for per­

sonal computers. The system supports multiple threads of execution in each

application and provides preemptive multitasking on a thread basis. Various

forms of interprocess and interthread communication are available, including

shared memory, queues, and semaphores. Utilization of the memory manage­

ment features of the Intel 386/486 processor family prevents processes from

inadvertently corrupting the memory of other processes, and the operating sys­

tem's l/O architecture prevents corruption when multiple processes attempt

to communicate with the same device simultaneously.
OS/2 is gaining acceptance, and more software developers are realizing the

potential for writing OS/2 PM-based applications. IBM is thoroughly commit­

ted to the OS/2 platform, and the recent merger with the Lotus development

organization provides a wealth of possibility for OS/2 applications.

The Presentation Manager Graphical User Interface, or PM, provides ad­

vanced mechanisms for user interaction and allows multiple processes to share

the video display, keyboard, and pointing device that comprise the system con­

sole. In addition to managing the user interface, PM provides facilities for

displaying and manipulating graphical information and supplies the program­

mer with a rich set of predefined controls for interacting with the user. But

PM is not a rigid system, it provides facilities that allow the programmer to

modify the function of the existing controls, create new controls, and extend

the functionality of the user interface.
While the basic concepts and programming techniques have remained the

same, many new features have been added with each new release of Presenta­

tion Manager. Applications that take advantage of these new features typically

provide an interface that is easier to understand and use than applications

that are programmed exclusively with the early features. This book, written

with the assumption that the reader is already familiar with the basics of Pre­

sentation Manager programming, provides an in-depth study of the features

available with the Warp release of OS/2. This release provides a powerful, fast

user interface that is essential for good graphical programming; it is one of

the best in the industry. Quite simply, OS/2 Warp is the "Elvis" of operating

systems.
This book and the source code on Wiley's FTP site are designed to provide

the reader with a thorough understanding of the powerful features of the

Presentation Manager and, where necessary, expand upon these features to

help produce state-of-the-art power PM-based applications. The source code

is not provided in the book itself because of the size of the samples. A listing

of the sample programs from Chapters 2-17 found on the site can be found

in Appendix A. Each source file contains well-documented code that explains

the practicality of the concepts taught in the corresponding chapter. The code

is meant to be used as a reference for the concepts discussed in the book. We

sincerely hope that you find this book useful. Application development is the

key to the success of OS/2 or any other operating system. Thanks for your

commitment, and let's begin the journey.

ACKNOWLEDGMENTS

We have always said that if we ever get this book finished, we would pay

homage to all those who have contributed to our efforts or offered their help.
So here goes

We would like to express our thanks and appreciation to the greatest

development team on the planet, as well as, those who make OS/2 development
and support possible.

• Glenn Brew Thanks for all your help debugging those funky memory
problems.

• Scott Jones Thanks for all your help and patience!

• Dave Proctor You are sorely missed at IBM. Thanks for realizing the
need to satisfy customers.

• Joseph Correnti
• Albert Kuhn
• Lee Reiswig
• Laura Sanders
• The entire OS/2 Project Office-it's a tough job.

• The entire IBM PSP SWAT team for travelling the globe to debug and
resolve OS/2-related issues.

~e also would like to thank those individuals who have forged a new

frontier for OS/2 through their efforts in promoting OS/2 through exceptional
computer publications:

• Will Zachmann
• John C. Dvorak
• Dick Conklin
• Charles Petzold

. We would also_ like to tha':1k our families and friends without whose pa­

tience, understandmg, and assistance this book would not have been possible.

xvii

XViii Acknowledgments

We would also like to extend special thanks to all of ~e fol~ a~ John
Wiley & Sons for helping to make this book a reality and offenng their tireless
patience and cooperation:

• Terri Hudson
• Terry Canela
• Micheline Frederick

Finally to all those who preach the gospel of OS/2, thanks.

INTRODUCTION

Chapter 1 is a review of the basics and provides an overview of the OS/2 oper­
ating system and the tools used to develop applications. The chapter goes on
to discuss the basic concepts of PM programming, including anchor blocks,
classes, message queues, and window concepts. The chapter also reviews sev­
eral common PM pitfalls and how to avoid them.

Chapter 2 provides a general discussion of window controls and an in­
depth study of the standard PM controls included with OS/2, including the
pushbutton, listbox, combobox, spin button, entry field, and multiline entry
field controls. The corresponding sample program uses most of the standard
controls and shows how to maximize their usage.

Chapters 3 and 4 focus on the Presentation Manager input mechanisms.
Chapter 3 deals primarily with keyboard input and describes the application
programming required to receive and process user input. The scroll bar con­
trol, and the mechanisms required for manipulating the display in response
to scrolling requests from the controls and the keyboard are also discussed.
Chapter 4 discusses application handling of input from the pointing device, or
mouse, and how to control the mouse pointer on the display. The chapter also
delves into other pointer concepts and shows how the mouse pointer can be
used to create a simple drawing utility. The clipboard and GPI concepts are
also discussed.

Chapter 5 describes the OS/2 Information Presentation Facility (IPF).
Though primarily concerned with how on·line help is implemented in appli­
cation programs, the chapter also provides an outline for organizing the help
text in a manner that supports the needs of users with different capabilities.

Chapter 6 details the programming required to add power to a PM appli­
cation by taking advantage of OS/2 's superior multi threading environment. As
programs become more complex, the multithreading considerations discussed
in this chapter become important. It describes how the use of threads can
overcome one of the most prevalent probtems in PM programming: restriction
of the user's ability to interact with the system during the execution of lengthy
procedures.

Chapter 7 delves into some of the features of the Workplace Shell inter­
face introduced with OS/2 version 2.0. The direct manipulation interface and

xix

XX lntroductton

protocols that allow the user to manipulate files and other objects with the

pointing device are described in detail along with the initialization file APis

that allow an application to restore itself to a previous operating state. The

chapter goes on to provide a brief introduction to Workplace Shell and SOM

programming.
Chapter 8 describes the use and customization of standard PM resources:

menus, keyboard accelerator tables, bitmaps, icons, and string tables. The

chapter also discusses the dialog template and the creation and use of dialog

and message boxes. The standard file dialog is also described.

Chapter 9 discusses the PM mechanisms for transferring data between

applications, including communication between PM and WINOS2-based ap­

plications. The clipboard provides a basically static transfer in which one

application saves data to the clipboard and another application then reads the

data. Dynamic Data Exchange, or DDE, allows dynamic transfer of data by

establishing "conversations" between applications.

Chapter 10 describes subclassing, a method for modifying and enhancing

the behavior of the system-defined control classes and other existing classes.

The chapter also describes how a new control may be created by building on

an existing class.
Chapter 11 discusses the advanced controls that were introduced with

OS/2 version 2.0. The notebook control, the value set control, and the slider

controls are examined.
Chapter 12 is devoted to the container control. This control, which is

the basis for the Workplace Shell folder object, is finding wide acceptance in

applications that perform operations on sets of data.

Chapter 13 describes the features that were once a part of the Multi­

media Presentation Manager but are now induded as part of the Presentation

Manager family. These features include the graphic button control. secondary

windows, and secondary message boxes.
Chapter 14 provides the framework for creating powerful application con­

trols. When the controls provided with PM just do not meet an application's

requirements, a new control can be created. Chapter 14 describes how this is

accomplished.
Chapter 15 describes the format, creation, and manipulation of bitmaps.

All graphics drawn by PM applications are ultimately converted into bitmaps

for display on the video monitor. A thorough understanding of bitmaps is thus

essential to efficient PM programming.
Chapter 16 describes the manipulation of fonts and explains how an ap­

plication sends output to a hard copy device. Both of these functions seem

relatively complex initially, but are manageable when viewed as a series of

small, simple tasks.
Chapter 1 7 describes hooks, a mechanism that allows applications to mod­

ify the internal processing of PM at selected points. Several of the less doc-

Introduction XXi

umented hooks are demonstrated in the chapter's sam le r .
screen capture utility called PMSCREEN. P P ogram, a simple

Appe.ndix A provides an easy reference for the sample source cod 1 d
on Wiley s FfP site. e ocate

Most of the chapters are accompanied by a practical sample program th t

demonstrates the concepts and techniques discussed in the chapter Th a

programs were written and compiled using the headers libran'es a d. b e~e
t 1 'd d · th • • n as1c
oo s prov1 e m e IBM OS/2 Developer's 1ioolkit h ' d

th , now s lppe as part of
. e IBM Developer Connection for OS/2 CD-ROM. The programs are written

b
m C an~ we~e compiled with the IBM C Set+ + Compiler. Minor changes may

e required 1f another compiler is used.

l

Reader please note: The sample files located on Wiley's anonymous ~ site are there
to help you utilize the models described in this book. By downloading the code, you
are agreeing to be bound by the following agreement:

This software product is protected by copyright and all righ~ are reserved b~ the
author and John Wiley & Sons, Inc. You are licensed to use this software on a s~ngle
computer. Copying the software to another medium o~ format for use on a smgle
computer does not violate the U.S. Cop~ght Law. Copying the software for any other
purpose is a violation of the U.S. Copynght Law.

This software product is sold as is without warranty of any kind, either e~~ressed
or implied, including but not limited to the implie~ warranty of ~er~hantab1hty and
fitness for a particular purpose. Neither Wiley nor its dealers or d1stnbutors ~sui:n:es
any liability of any alleged or actual damages arising from the use of or the m~b1hty
to use this software. (Some states do not allow the exclusion of implied warranties, so
the exclusion may not apply to you.)

CHAPTER

Welcome to the
Presentation Manager for
Power Programmers

I n the beginning, computers were designed for the technical elite, computer
scientists and mathematicians who used the power of the computer to make
their jobs easier. Today, the benefits derived from the computer extend to

all professions and walks of life, making almost everyone's job easier. Fortu­
nately, while today's power-hungry processors get faster and more complex,
the overall usability of the computer has been made easier, thus extending the
benefits of the computer to all computer users.

The desire and need for personal computers to be more user friendly has
created a whole new genre of computer programs based on the graphical user
interface. These applications are designed to be intuitive, fast, and powerful
and provide the user with a method of navigating through the complexities of
the operating system without the pain of learning how to master the various
program interfaces.

Today, it is essential that the native operating system provide close integra­
tion to a graphical user interface. The early Apple Macintosh machines were
the first to combine the power of the operating system with an intuitive graph­
ical interface. Although the early Macs had some techincal shortcomings, the
success of the machines demonstrated that there was a market for an object­
driven operating system interface. The success of the Macintosh was due in
large part to the simplicity of the graphical user interface, when compared
with its DOS-based command line interface.

lBM, in conjunction with Microsoft, was in the forefront of the GUI vision,
when they jointly introduced the Presentation Manager with version 1.1 of

1

2 Welcome to the Presentation Manager for Power Programmers

OS/2. Although this version of PM was really nothing more than a graphical
program starter, which seems quite lethargic and primitive by today's stan­
dards, it was an innovation for its time. It was one of the first fully integrated
graphical programming interfaces inherent to an operating system. The design
and feel of OS/2's Presentation Manager would be greatly improved with sub­
sequent versions of the operating system. Despite the shortcomings of earlier
versions of the operating system, the Presentation Manager component has
been a successful part of the strategy of OS/2.

The current version of Microsoft Windows 3.1, unquestionably one of the
most popular GUis designed for the PC, is very similar in form and function­
ality to earlier versions of PM, and relies on much of the same design. The
popularity of Windows and other GUis is due to the growing base of computer
users who demand the operating system functionality to be transparent, and
allow the user the ability to perform complex tasks with simplicity.

The earlier attempts to construct a common graphical user interface that
would provide simplicity and ease of use to the end user revolved around com­
mon utility programs to perform operating system tasks. For example, a File
Manager was used to handle file manipulation and replace the command line
by allowing the user to invoke programs directly from the file manager while
working with groups of other files. A Print Manager provided the interface to
the print subsystem, and a Control Panel guided the user through configuring
system resources. Unfortunately, because of the multiple ways a user could
accomplish these tasks and the lack of uniformity among these programs, they
soon became inefficient and complex for the inexperienced GUI user.

The OS/2 Presentation Manager has evolved into a complete graphical
programming environment; and with the addition of the Workplace Shell,
an object-oriented environment that is based on the Presentation Manager
subsystem, the object paradigm has finally been realized for OS/2. The shell
now gives users the capability to think of operating system tasks as objects
that interact with one another. Object orientation is the future of computer
programming, and a wide array of computer programming languages based
on the object technology are beginning to come of age. IBM offers the System
Object Model, better known as SOM, which is the foundation for the Workplace
Shell.

GOODBYE HELLO WORLD

Since this book is designed for developers with prior PM experience, this
chapter will not insult your intelligence with a simple Hello World sample
program. Many computer programming books use a simple sample program
that usually does nothing but print a simple Hello World greeting to the user, to
introduce the programming environment and concepts. Instead, this chapter

PM lnltlallzatlon 3

will ~eview some basic PM progra~ming techniques and focus on the elements
required to create sound Presentation Manager applications.

OS/2 COMPILERS AND LINKERS

There are several 32-bit C and C+ + language compilers designed for the OS/2
pla~o~. IBM, Borland, and Watcom each offer a comparable compiler; and
believe 1t or not, even Microsoft has a 32-bit OS/2 compiler and although it
has never been formally released, it is the compiler that was used to build
several of the OS/2 components, including the OS/2 kernel (OS2KRNL). The
IBM CSET/2 compiler was not available when the original development of
the OS/2 2.x kernel began. Each compiler offers a wide array of features. The
choice of compilers is really up to the application developer. All of the source
code and sample programs written for this book are built using the IBM
CSET/2 compiler. If you are building the sample applications with a different
compiler and linker, please consult the programming references shipped with
the compiler and linker environment for specific options.

PM INITIALIZATION

As an experienced PM developer, you already know that the first thread of
any PM process is used to service the Presentation Manager. In order for any
individual thread to call Presentation Manager functions, it must first initialize
itself by calling the Winlnitialize APL The Winlnitialize API must be the first
PM API called by any PM application or PM-based thread. The function returns
an anchor block handle, indicating that the initialization was successful. The
anchor block handle is used as a parameter to many other PM functions,
although functionally the anchor block has very little value, and in most cases,
a NULLHANDLE may be passed rather than a valid anchor block handle, and
the functions will still succeed.

The intent of the anchor block handle was to provide a unique numbering
scheme to identify the particular thread, thereby using this unique handle to
initialize an application thread to enable the thread to call the PM API. The
contents of the anchor block consist of the process identifier (PIO) stored in the
high word and the thread identifier (TIO) stored in the low word. Although this
handle currently serves no functional purpose, you should use caution when
specifying a NULLHANDLE for the anchor block handle, since future versions
of PM may actually use the anchor block handle for a purpose. For instance, if
multiple desktops were implemented, the anchor block handle could be used
to differentiate the desktop for a particular thread. Therefore, it is important to
always try to use a valid anchor block handle for the APis that use the anchor
block handle as a parameter, rather than passing a NULLHANDLE.

4 Welcome to the Presentation Manager for Power Programmers

HAB APIENTRY WinQueryAnchorBlock{HWND hwnd) ;

Fl1ure 1.1 The WlnQueryAnchorBlock prototype.

If you know the window handle use the code shown in Figure 1.1. If you
do not know the window handle, you should specify HWND..DESKTOP as
the window handle to obtain the anchor block handle. The HWND..DESK­
TOP constant represents the desktop window handle, which may be used to
represent the thread of the current desktop in use.

MESSAGE-BASED ARCHITECTURE

The Presentation Manager is based on a message-driven 1/0 design. Each user
event is translated into a message and passed on to the application, through
its window procedure message processing. The user input mechanisms are
represented by the keyboard and mouse, and, in some cases, the pen. As a
result of the user interacting with the input device, messages are generated in
something called the system input queue based on the order of the occurrence.
The system input queue is essentially a routing mechanism that is used to
facilitate the delivery of both synchronous and asynchronous messages to the
appropriate application message queue.

Sending versus Posting Messages
There are two API' s used for getting a message delivered to a window. The
WinSendMsg API is used to directly send a message to the specified window
to be processed by the given window procedure. The code for WinSendMsg
does not return to its caller until the window procedure completes the pro­
cessing of the message. The WinPostMsg function is a little bit different since
it is essentially for asynchronous processing, and it is used to place a mes­
sage into the appropriate application message queue for the specified window.
Basically, WlnPostMsg places the message in the queue and then returns im­
mediately. One of the most used metaphors to represent the process of sending
versus posting says that sending the message is like sending your package via
overnight mail-you hope it gets there immediately, while posting your mes­
sage is more like sending your package for regular mail, it will get there, but
other packages will arrive before it and who knows what the post office will
do with it.

Using the WlnPostQueueMsg API
There may be times that your application code may need to post a message to a
particular message queue, but the window handle that represents the window

Message-Based Architecture 5

to which the message is to be posted, is unavailable. PM provides a method f
placing the message on the appropriate message queue through the use of t~e
WlnPostQueueMsg API. The prototype for the API is shown in Figure 1.2.

Yo~ will notice that the function ?rototype resembles WinPostMsg, with the
exception of the first parameter, which is a message queue handle rather than
a window handle. Functionally, the WinPostQueueMsg API works the same
way that WlnPostMsg does. The WinPostQueueMsg API works by building
a QMSG structure on the fly and placing the structure on the appropriate
message queue, specified by the hmq parameter. The hwnd element of the
QMSG structure is set to NULL, while the time and ptl elements of the structure
are set to the current system time and pointer position at the time the function
is called. The remaining elements of the structure correspond to the passed
message and message parameters. The API will return TRUE if the message is
placed successfully on the message queue, or FALSE if an error occurred or
the specified message queue is full.

Obtaining Information about a Particular Message Queue

A particular function may occasionally need to know information about the
calling thread. For example, there may be times when you will have to write
a specific API that can be called by multiple application interfaces. If you
are writing a communications function that will be accessible by multiple
applications, it may become necessary to determine whether the calling thread
is actually a PM-based thread. A PM-based thread is any thread that calls
Wlnlnitlalize and creates a message queue via WinCreateMsgQueue.

The API WinQueryQueuelnfo, can be used to obtain information about a
particular message queue and also determine whether the thread associated
with a particular message queue has access to calling the Presentation Man­
ager APL The message queue information obtained from the WinQueryQueue­
Info API is in the form of a message queue information structure (MQINFO).
The structure contains valuable information about the thread associated with
the message queue. The WinQueryQueuelnfo API will return TRUE if the call
is a success or FALSE if the thread does not have an associated message queue.

Figure 1.3 shows the prototype for the WinQueryQueuelnfo API.

• The hmq parameter is the handle of the message queue for which the infor­
mation structure is being requested for. The message queue handle corre-

BOOL APIENTRY WinPost QueueMsg UiMQ hmq,
ULONG msg,
MPARAM mpl ,
MPARAM mp2) ;

Figure 1.2 The WinPostQueueMsg prototype.

6 Welcome to the Presentation Manager for Power Programmers

BOOL APIENTRY WinQueryQueuelnfo(HMQ hmq,
PMQINFO pmqi,
ULONG cbCopyl ;

Figure 1.3 Obtaining current queue Information.

sponds to the handle obtained through the WinCreateMsgQueue function
or the HMQ_CURRENT constant can be used to obtain information about
the current message queue. . .

• The pmql parameter represents a pointer to a message queue mformation
structure. A valid MQINFO structure is returned if the API is successful.

• The cbCopy parameter is simply the size of the message queue information
structure in bytes. This value is used to determine the maximum number
of bytes that should be copied into the pmql parameter. This parameter
should typically be set to the size of a MQINFO structure.

The message queue information structure contains valuable information
shown in Figure 1.4.

• The cb element represents the size of the structure.
• The pid element represents the process identifier that the message queue's

thread is within.
• The tid element is the thread identifier of the thread associated with the

particular message queue.
• The cmsgs element represents the number of messages within the message

queue.

The routine in Figure 1.5 will obtain the process ID and thread ID of the
calling thread and display its contents within a message box.

typedef struct _MQINPO II lllQinfo
{

ULONG cb;
PIO pid;
TID tid;
ULONG crnsgs ;
PVOID pReserved;

} MQINFO;
typedef MQINFO *PMQINFO;

Figure 1.4 The MQINFO structure.

USHORT GetQueueinformation(VOID)
{

MQINFO
PID
TID
BOOL

mqinfo;
pid;
tid;
re;

CHAR szBuffer(lOO);

re = WinQueryQueueinfo(HMQ_CURRENT,
&mqinfo,
sizeof(MQINFO)) ;

Message-Based Architecture 7

if (re = FALSE)
{
return ERROR_NON_PM_THREAD;

}

II If WinQueryQueueinfo returns FALSE,
II then the calling thread is not a PM
II based thread so return ERROR

else
{

pid • mqinfo .pid;
tid = mqinfo .tid;

sprintf (szBuffer, "PID = %d TIO= %d", pid, tid);
DisplayMessages (NULLHANDLE, szBuffer, MSG_INFO) ;

return FALSE ;
}

Figure 1.5 Obtaining current queue Information.

Using WinCancelShutdown
All PM-based applications that do not create additional threads of execution,
translate the input from the user by processing messages within the con­
text of the application message queue. However, additional PM-based threads
may have no need to process messages if there is no interaction from the
user handled within the thread. The additional PM-based threads that do not
communicate with the user via message processing should use the API Win·
CancelShutdown to prevent the application message queue from receiving a
WM.QUIT message. The application can call the API with the fCancelAlways
flag set to TRUE, right after the message queue is created.

The format of the API is shown in Figure 1.6.

BOOL APIENTRY WinCancelShutdown (HMQ
BOOL

Figure 1.6 The WlnCancelShutdown prototype.

hmg,
fCancelAlways);

8 Welcome to the Presentation Manager for Power Programmers

• The hmq parameter is the handle of the message queue.
• The fCancelAlways flag is used to control the processing of the WM-QUIT

message. If this flag is set to TRUE, no quit messages are placed on the
application message queue during shutdown.

COMMUNICATING WITH MULTIPLE WINDOWS OR QUEUES
There may be times that an application needs to communicate a particular
message to multiple windows or message queues concurrent!~. ~e API Win­
BroadcastMsg can be used to post or send a message to all application message
queues or all descendents of a particular window. For example, th~ WtnBroad­
castMsg API can be used to get a particular message to every window of an
application.

The format of the WinBroadcastMsg appears in Figure 1. 7.

• The hwnd parameter is the window handle representing the parent win-

dow. d l ·th ·ts • The next three parameters are the msg to be delivere a ong w1 i

message parameters. .
• The rqf parameter is a flag used to indicate how the message is to be

delivered to the window. These flags are known as the broadcast message
flags and are defined in PMWIN.H as:

BMSG_posT
BMSG-SEND
BMSG_posTOUEUE

OxOOOO
Ox0001
Ox0002

BMSG.DESCENDANTS Ox0004

BMSG..FRAMEONLY Ox0008

Indicates that the message is to be posted.
Indicates that the message is to be sent.
Indicates that the message should be posted to
all PM threads that have an application message
queue.
Indicates that the message should be broadcast to
all of the descendants of the window specified by
the hwnd parameter.
Indicates that the message should only be broad­
cast to frame windows (which is identified as all
windows using the CS..FRAME class style).

BOOL APIENTRY WinBroadcastMsg (HWND hwnd,
UPLONG msg,
MPARAM mpl ,
MPARAM mp2,
ULONG rqf);

Figure 1. 7 Tile WlnBroadcastMsg prototype.

Understanding OS/2 Memory 9

SEMAPHORE HANDLING

PMWIN provides a set of API functions designed to allow 32-bit PM appli­
cations to wait on the 32-bit system semaphores. These semaphore APl's are
a necessary evil. since they are required to prevent hang situations that are
caused by the inability of an application to process input while blocked. The
WlnWaitEventSem and WlnWaltMuxWaitSem API's are essentially wrapper
functions that call their control program API (DOS) equivalents, but these
functions differ slightly, since they use a loop to peek the message queue
about once every fifth of a second. This essentially allows PM to wait on the
semaphore for the thread, so that the thread can continue to process the mes­
sages. PM-based applications that do not use the PMWIN semaphore wait
calls could potentially hang the system because the application thread cannot
process any sent messages due to the fact that it is blocked.

UNDERSTANDING OS/2 MEMORY

For any software developer planning to write successful OS/2 PM-based ap­
plications, it is critical that they understand how the OS/2 memory subsystem
works. The 1.x versions of OS/2 used a segmented memory architecture, de­
signed around the Intel 286 processor. Unfortunately due to the 64K segment
size, there are many limitations that exist in PMWIN based on the 64K size.
Fortunately, the OS/2 2.x versions and above are designed around a 32-bit
flat memory model that removes the segment boundaries. However, it was
not until OS/2 Warp that PMWIN was converted to 32-bit code. Although the
32-bit PMWIN removes a lot of the restrictions caused by the 16-bit PMWIN
code, there are still limitations due to the need to provide backwards com­
patibility with the 16-bit code. For example, the 32K item restriction on the
listbox control, still exists because the scrollbar contr ols used by the listbox
use a 16-bit integer value as an index. Any changes made to correct this could
cause applications that subclass the controls or hook the messages sent to the
controls to break.

It is very important for experienced PM developers to fully understand how
memory works in the OS/2 operating system. Since PM is a graphical based
interface, it relies heavily on system resources to maintain its appearance.
Poorly designed PM applications that do not take advantage of OS/2 's superior
memory architecture can cause system performance to degrade.

Resource Considerations
In an effort to provide portability across different platforms, developers have
become accustomed to relying on the language run-time interface provided

10 Welcome to the Presentation Manager for Power Programmers

by their compiler, and as a result sometimes choose the e.quival~nt language
function call over the actual OS/2 API to which the runtime will eventually
resolve. One scenario where this can be detrimental to the functionlity of the
entire system is in the area of session management.

If you are an application developer who will start different sessions from
within your program, be aware that when you are in the PM screen group,
you should not use the DosEucPgm API or the C run-time calls such as syst~m
or spawn/ to invoke a non-PM session type. You must use the DosStartSesswn
API if you are going to start non-PM sessions such as OS/2 fullscreen, OS/2
windowed or DOS sessions from within a PM application. The reason is that
DosStartSesston properly maintains session origination, while the ot~er calls
do not. Without a method of determining how and where the session was
invoked, the resources are not cleaned up when the session is ended. The
result is that overuse of these calls can cause the application to exhaust the
heap reserved for session management, and once the heap is gone, the user
will be unable to start any other applications. The system may eventually
respond by posting an error message like SYS0008 telling the operator that
some resource on the machine has been exhausted.

Using the run-time function instead of the equivalent OS/2 API may not
necessarily be bad, and in some cases may actually be the best call to use. ~or
instance, care needs to be taken when dispatching individual threads usmg
DosCreateThread. Although DosCreateThread is the individual API that any
run-time beglnthread function will call, DosCreateThread does not set up the
run-time environment, and your thread may have problems calling some run­
time functions. If this is the case, you should use your compiler's version of
begtnthread to create the separate thread of execution. In any case, using the
run-time equivalent of a function allows for portability while, ~sing th~ API
provides greater flexibility since some options may not be available via the
run-time library function.

MEMORY·RELATED ERRORS
There are several critical heaps maintained for OS/2, when any one heap is
low on memory and unavailable to perform a given task, the application or
shell may post an error message, like SYS0008 or PMV2001 or some other,
indicating a memory or resource error has occurred. It is also possible that
strange visual behavior may occur, such as windows not being updated prop­
erly depending on the heap; and in some cases, the system may eventually
hang.

It is common that users assume no memory error has occurred since the
size of the SWAPPER.DAT file has not grown to the full extent of the fixed disk
where it resides. There is no correlation between swapper growth and memory

Avoiding the Dreaded Bad-Appllcatlon Dlalog 11

usage to private heap usage. These heaps are a small portion of local storage
used for specific memory management, so you can get the dreaded error
message regardless of the amount of memory or disk usage on your system.

PMWIN CONSIDERATIONS

Under the OS/2 2.x versions of the Presentation Manager, the window manager
(PMWIN) component is still 16-bit code. The largest code change within the
OS/2 WARP operating system was to migrate the PMWIN code to 32-bit.
There have been significant enhancements made to the design of PMWIN
within the WARP release of OS/2. The code for PMWIN is now contained
within the PMMERGE library. The move to 32-bit code for the most part
provided a complete redesign of the underlying window·manager architecture.
Most notably, there were several enhancements made internal to PMWIN with
regard to memory usage. The PMWIN heap management has been optimized
to provide better performance.

Windows Galore
Sometimes, even experienced PM developers tend to lose sight of the fact that
every control window is just that, a window; therefore, it requires a window
handle or HWND as well. It is easy to forget the fact that static text windows
require window handles. Under the OS/2 version 2.x release of the Presentation
Manager, there were approximately 12,000 window handles available for use,
but this limit is also based on the type of window class associated with the
window, since different window classes can theoretically consume a different
amount of heap required; consequently, the actual limit on available window
handles is reduced. The 32-bit OS/2 WARP PM window manager, allows for
approximately 11 times the number of window handles available in a 2.x
system, but more important, the only limiting factor is the amount of virtual
memory available. Of course, using that many window handles is extremely
unrealistic in today's application environment. But then, someone also once
said that 640K was enough memory, so who knows what may or may not be a
realistic limit in the near future.

AVOIDING THE DREADED BAD-APPLICATION DIALOG

Any experienced OS/2 user has occasionally run into a situation at one time
or another where the workplace shell enters a hung state. After patiently
hitting the Ctrl-Esc key several times, the user is prompted with what is known
as the bad-app dialog box, indicating that the program is not responding to
system requests; it then prompts the user to end the offending process. OS/2

.... .

12 Welcome to the Presentation Manager for Power Programmers

offers probably the best crash protection system available for PC operating
systems, although poorly designed and poorly written applications can still
cause problems for the operating environment.

Fortunately, the design of OS/2 and the Presentation Manager allow most
hang situations to recover. There have been several changes made to the de­
sign of the OS/2 WARP 32-bit PMWIN that aid in preventing bad application
code from compromising the integrity of the system. In any case, application
developers must share the responsibility of ensuring that the user environment
is safe for the user.

There has long been an unwritten rule for PM developers called the 1/ 10
rule. This rule applies to the processing of messages within the PM environ­
ment. Basically, if any message takes longer than 1/lOth of a second to process,
it's probably way too long, and the application should execute this code outside
of the message processing, within a separate thread. In the software world of
user interfaces, implementation is everything, and if the user has to see the
busy mouse pointer too long, it can be extremely frustrating, let alone poten­
tially causing a hang situation. The 1/ 10 rule is not written in stone, and almost
every application, even the best-written ones, will more than likely violate this
rule at one time or another.

The point is that application developers should be mindful of the applica­
tion user interface, and understand that the user, no matter how uneducated
an OS/2 user he or she may be, still desires the ability to multitask by per­
forming different tasks concurrently. We were once told by a developer of a
large computerized OS/2 banking system that it was okay for the end users to
wait 20 seconds longer, while the single threaded application was processing a
transaction, since the application was only designed for bank tellers and they
have nothing else to do. Although this may or may not be true, the attitude, that
any application can monopolize the user interface can be extremely damaging
and is the wrong method of application design. Whether you are developing
a simple file management utility or a complex plant floor scheduling appli­
cation, the design of your application should be taken seriously and special
consideration made to designing your application for end users. One of the
biggest advantages of programming in OS/2 and the Presentation Manager
environment specifically, is the availability of the superior multitasking and
multithreading capabilities inherent to the operating system. After all, this is
what separates OS/2 and PM from DOS/Windows. Unfortunately, a lack of well
written 32-bit consumer applications exist in the software market today, and
this can be attributed partially to some application vendors writing lacklus­
ter OS/2 applications when compared to their Windows-equivalent products.
Fortunately, there are a few exceptions to the rule.

The PM Input Mechanism
In the OS/2 2.x versions of PM, the PM input mechanism was disabled until the
application got around to creating its primary message queue. After the first

Debugging PM 13

message queue was created, the input mechanism was reenabled altho h . . d . l . d ' ug mput was not Ue to a particu ar wm ow until the first window was created
~en made ~sible and ~naJly the recipient of the input focus. At this point, th~
mput was tied to that wmdow and the appropriate application message queue.
Applications that attempt to do too much initialization code prior to arriving
at the message processing loop can hang the system.

Since implementation is everything, it is important to get the main window
of the application drawn as quickly as possible to allow the user to continue
to interact with the rest of the system while maintaining the responsiveness of
the system. Therefore, if you are designing an application that requires a lot of
initialization prior to drawing your frame window, you should call Wlnlnitlal­
ize and WinCreateMsgQueue to create a message queue as soon as possible,
then dispatch a worker thread to do the rest of your application initialization.
If the user needs to be kept away from the application functionality until the
real initialization completes, then you can create a "please wait .. . " window to
indicate that the application initialization is not complete. The goal is to get
the first thread to the message processing loop as soon as possible.

DEBUGGING PM

Application developers who desire a powerful low-level debugger, can obtain
a debug version of the OS2KRNL along with symbol files for all of the major
OS/2 components from IBM. The kernel debugger provides the developer with
unparalleled access to the OS/2 API layer, since it allows the developer to set
breakpoints on the API functions and step through the code at an instruction
level. The OS/2 toolkit ships with an INF reference file for the OS/2 kernel de­
bugger. There are two different versions of the debug OS2KRNL: the all-strict
debug kernel contains all of the debug code, while a scaled-down debug kernel
known as the half-strict kernel more closely resembles the retail OS2KRNL
that ships with the operating system. For the most part, the all-strict debug
kernel will be adequate. The half-strict kernel is designed to offer slightly bet­
ter performance than the full all-strict debug kernel and avoids any timing
oddities introduced by the all-strict kernel that may impede the debug process.

There are also debug-specific versions of several OS/2 modules that can
be used to assist with debugging. These debug modules are much slower and
larger than the retail versions of the modules, because the modules will dump
information to the debug terminal to indicate what the current function is up
to. To enable the debug output to dump to the debug terminal, the developer
must modify the PMDD statement in the CONFIG.SYS file to indicate the
appropriate COM port to which to dump the debug information.

If errors occur within the code contained in the debug module, an er­
ror message is typically dumped immediately to the debug terminal, although
sometimes an error may be recoverable, and the error output may not neces-

...

14 Welcome to the Presentation Manager for Power Programmers

ERRORID APIENTRY WinGet LastError(HAB hab) ;

Flg11re 1.8 The WlnGetlastError prototype.

sarily be significant. There are debug versions of PMWIN, PMGRE, and PMWP
available, as well as PMMERGE for OS/2 WARP.

If you do not require the low-level power provided by the OS/2 kernel
debugger, there are several good high-level debuggers that can be used to
debug your application. The IPMD compiler that ships with the IBM CSET/2
product is one example of a high-level debugger that can be used by application
developers to debug their applications.

The ability to debug your application to resolve code defects is critical to
the success of the application. Let's face it, nobody writes perfect code, and
the ability to resolve problems in your application quickly, can make a big
difference. The application debug stage is an extremely important part of the
application software development life cycle, yet often the most overlooked.
Good debug tools are an important part of any development effort. There are
a variety of good debug tools available for OS/2, such as the kernel debugger,
dump formatter, and trace formatter, that can help developers and technical
support personnel identify and resolve problems quickly.

ERROR HANDLING
The WinGetLastError API is designed to return error information if an error
has occurred in one of the previous Win API function calls. The function should
only be called if an error occurred to obtain the error, or if the error buffer
needs to be cleared which will occur any time the function is called. The
prototype for the API is found in Figure 1.8.

The return information from the WinGetLastError API consists of two
words stored in the returned ERRORID, which is simply a ULONG value. The
high word contains the severity of the error while the low word contains the
actual error code. The error severity describes the type of error, and can be
used to determine how an application should react to the error conditions,
while the actual error code indicates the type of failure that occurred. The
severities are defined in the header file, OS2DEF.H, shown in Figure 1.9.

SEVERITY_NOERROR
SEVERITY_WARNING
SEVERITY_ERROR
SEVERITY_SEVERE
SEVERITY_UNRECOVERABLE

Figure 1.9 The severity dellnlllons •

OxOOOO
OxOOOO
Ox0008
OxOOOC
OxOOlO

Error Handling 15

bp _winSetErrorinfo "dw ss :sp 14;g•

figure 1.10 Tracing errors using WlnSetErrorlnfo.

The errors are stored through the use of a internal function _WlnSetError­
lnfo. Application developers can set a breakpoint on this function with the
OS/2 kernel debugger to find the occurrence of an error.

The breakpoint in Figure 1.10 is used to dump all of the errors recorded
with WlnSetErrorlnfo. It effectively dumps the same information that WlnGet­
LastError would return, except it does it every single time an error is recorded.
The breakpoint will display in words the stack represented by SS:SP for a
length of four words and continue execution, so it will not halt your system at
the breakpoint. Using this information can be helpful in determining where an
error occurred.

Figure 1.11 shows a sample debug output.
The actual error codes are defined in the PMERR.H header file, and all

begin with the prefix PMERR. Here, the error represented by 1001 corresponds
to the error indicating an invalid window handle has been used.

PMERR_INVALID_HWND OxlOOl

##bp _winseterrorinfo 'dw ss :sp 14;g'

#lg
0036:00003f56 04d9 dlOe 205b 0008
OOl f:OOOOe796 ee49 dOdf 1003 0008
OOlf :OOOOe79e ee49 dOdf 1003 0008
OOlf :OOOOf laa d051 dOdf 1001 0008
0036 :00003f7e 04d9 dlOe 2044 0008
OOlf :OOOOfOa2 dOSl dOdf 1001 0008
001£: 0000£534 d051 emf 1001 0008

illn d0df :d051
dOdf :OOOOedeO pmwin: TEXT:TOTALLYBOGUSPMWINCODE + 69
d0df :0000ee57 WINSETWINDOWBITS - e

The first two words on the stack correspond to the return address where the
error was set with WinSetl!:l&CIClufo. If the error originated from your
applicati on code, you will have t o walk the stack back to your appli cation
code t o f i nd the appropriate routine containing the failure .

The third and fourth word correspond t o the error and severity respectively.
In the bold lines above, the routine Tot allyBogusPMWINCode within PMWIN
repor t ed an invalid window handle.

Figure 1.11 Viewing PM errors via the debugger.

16 Welcome to the Presentation Manager for Power Programmers

SUMMARY
Many of the subjects covered throughout this chapter and throughout the
book may be old hat for experienced PM developers, but it is important to
understand the concepts involved in the design of the Presentation Manager
before embarking on a long and prosperous PM development path. Therefore,
we will provide relevent background information and design considerations
along with reviewing requisite subjects occasionally, so that you can thoroughly
grasp the subject before viewing the sample source code.

The Presentation Manager and 0$/2 have certainly come a long way since
their inception. The Presentation Manager API offers application developers a
rich set of programming functionality that allows developers to create power­
ful graphical programs that conform to the Systems Application Architecture
(SAA) guidelines for application design. The future of PM development is excit­
ing. Changes made to PM in OS/2 Warp, as well as the enhancements that are
currently being designed and developed for the Presentation Manager in future
OS/2 family products holds promise for the future of OS/2 and the popularity
of native OS/2 PM based applications.

OS/2 has always had exceptional development tools available for applica­
tion developers. Unfortunately the lack of native OS/2 applications has been
the worst thorn in the side of OS/2 users. Although great progress has been
made since OS/2 l .x, the road ahead is still long and bumpy. The battle at
this time is neither won, nor is it lost. Radical new PM development tools
continue to redefine the standards of graphical application design. The intent
of this book is to teach valuable PM programming techniques while simulta­
neously providing insight into the design and development of the Presentation
Manager. Now let's begin.

CHAPTER

Gaining Control:
Mastering the Standard
PM Control Windows

A control is a child window that can be used to solicit input from a user
or provide information to a user. The proper use of control windows can
make a susbtantial difference in the usability of the application. Several

new controls have been added to the Presentation Manager code throughout
the years to allow developers to provide a consistent interface to the user for
communication with the application. Version 2.0 of OS/2 introduced several
new control windows into the vocabulary of PM developers, including the note­
book control, the value set control, and the powerful container control which
is an integral part of the Workplace Shell's object-oriented implementation.
With the release of OS/2 WARP. most of the basic controls have been enhanced
thanks to the conversion of the window manager code to 32-bit. The release of
the multimedia Presentation Manager that ships with the OS/2 product lines
provides more powerful controls that can be used to enhance the application
interface.

But, if the standard PM controls do not offer the functionality that you are
looking for, PM provides the ability to modify the control through subclassing,
or you can just create your own control. This chapter will focus on the basics of
control windows and provide insight into mastering the standard PM controls
that are often taken for granted, but critical to providing and obtaining input
from the user.

Controls typically process user input and then provide a notification to the
control's owner window. Like any other window, the input received from the
user takes the form of messages that are processed by the controls window

17

18 Gaining Control: Mastering the Standard PM Control Windows

procedure. The code for the basic PM controls reside within the window
manager code itself, which in the previous versions of PM was called PMWIN.
In the 32-bit OS/2 WARP PM release, the PMWIN code is actually contained in
the PMMERGE.DLL library. As part of the optimization required to improve
performance for OS/2 WARP, the window manager (PMWIN), graphics engine
(PMGRE), and shell API (PMSHAPI) components were combined into a single
dynamic link library. Although the individual modules still physically exist in
the \OS2\DLL directory, they are now much smaller in size. These modules
are still required to support applications that dynamically link to them at load
time. The purpose of these modules in OS/2 WARP is to simply forward the
request for a given function to the proper location in PMMERGE to satisfy the
application.

The standard PM controls are defined by a set of predefined window
classes. The basic control windows that we are about to examine are derived
from the following window classes. With the exception of the MLE control,
the code for all of these controls resides within PMWIN in OS/2 2.x. The MLE
code is contained in the PMMLE dynamic link library. Although you should
already be familiar with all of the controls derived from the window classes
listed here, a simple explanation of the control is provided.

These are the basic PM controls:

WC_STATIC This window class represents the static window control. It is the most
primitive control window. Its only purpose is to display information
to the user, thus it is not used to obtain input from the user.

WC_BUTTON The button window class actually provides three distinct controls: the
pushbutton, the checkbox, and the radiobutton. Button windows are
used to derive some action from the user.

WC ENTRYFIELD This window class represents the entryfield control, the entryfield is an
editable rectangle that is typically used to solicit input from the user.

WC..MLE This is the window class for the multiline entry field. It is used in the
Chapter 8 sample program.

WC-SCROLLBAR This window class represents the scrollbar control. The scrollbar
window has very little significance on its own. It is primarily used
to scroll the contents of another window, like in a listbox for exam­
ple. The only input it receives from the user is the movement of the
scrollbar slider.

WC-1.ISTBOX This window class is used to create the listbox control. The listbox is a
scrollable window that allows the user to make a selection from a list
of items.

WC.COMBOBOX This window class represents the combobox control. A combobox com­
bines the functionality of the entryfield and the listbox controls to allow
the user the ability to make a selection.

The Purpose of the Sample Program 19

WC_SPINBUTTON This is the window class for the spinbutton control. The spinbutton
control is used to allow the user to make a selection from a list of
numeric values.

These are the advanced PM controls that are contained within PMCTLS:

wc_sLIDER This window class is for the slider control. This control is used to
illustrate some kind of progression to the user. It is discussed in Chap­
ter 11.

WLVALUESET This window class is for the value set control. The value set allows the
user to make a visual selection from a group of objects. This control
is also discussed in Chapter 11 .

WC.NOTEBOOK The notebook window class. The notebook control is a metaphor for a
paper notebook. It provides information to users by allowing them to
navigate through different pages of information. This is also discussed
in Chapter 11.

WC_CONTAINER This is the most powerful and complex of all the standard PM controls.
It allows for multiple views of the same information. It is discussed
thoroughly in Chapter 12.

THE PURPOSE OF THE SAMPLE PROGRAM

The OS/2 WARP release of OS/2 contains a handy little utility called the
Launchpad. The Launchpad is something that the user community has re­
quested throughout the years. The purpose of the Launchpad is to provide
immediate access to frequently used objects and the ability to start applica­
tions with a single press of a button. This chapter's sample program is simply
called BUTTONS, and its purpose is similar to that of the Launchpad, ex­
cept that BUTTONS is purely a program starter and does not deal with the
manipulation of workplace objects. The BUTTONS program does provide an
extremely intuitive interface that allows applications to be started at the touch
of a pushbutton. BUTTONS offers a customizable user interface and allows
applications to be configured with relative ease.

BUTTONS also provides graphical pushbuttons for lockup and shutdown.
Figure 2.1 illustrates the sample program.

The sample program demonstrates most of the remaining basic PM con­
trols. The comfortable button interface is created through the use of graphical
pushbuttons. The BUTTONS control panel features the other remaining basic
PM controls to configure and maintain the interface of the application.

20 Gaining Control: Mastering the Standard PM Control Windows

Figure 2.1 The BUTTONS Interface.

CONTROLS IN DIALOGS
The dialog box functionality allows the basic PM controls to be created and
maintained more easily. The control window is created from the window key­
word in the resource script file specifying the type of control that is to be
created. It is far more efficient to create the basic controls in dialog boxes
since the dialog box logic makes it easier to handle the sizing and position­
ing of the control within the dialog along with the simplicity of moving the
keyboard input focus between controls.

Types of Controls
There are three basic types of PM controls that all controls, even those not
provided as part of the Presentation Manager fall into. The basic categories
are the output only control, the input only control, and the combination input
and output control. The purpose of the output only control is simply to allow
the application to display something to the user. The output only control type
is the simplest since the user cannot interact in any way with the control, and
the control does not need to provide communication to its owner window.
Examples of this control type include the static text window and the groupbox.

The input only control type is a little more complex. The purpose of this
control type is to allow the user to make a selection based on what the control
displays to the user. This control type allows the user to manipulate the control
to provide information (input) back to the application based on the user's
selection or movement of the control. The pushbutton, radiobutton, checkbox,
and scroll bar controls are classic examples of the input only control type.

Finally, the most complex control type combines both input and output
communication methods between the control and the application. These types

'I"
11

l

Creating the Control Window 21

of controls provide information to the user while simultaneously allowing
the user to make selections based on the information provided. The listbox,
combobox, and spinbutton are all examples of the inpuVoutput control type.
The entryfield and multiline entryfield controls are also derived from this
control type since they can provide either input or output information, thus
acting as a communication mechanism between the user and the application.

It is important to remember that a control is nothing more than a window
based on a defined window class that is developed to be used by independent
applications. Controls are usually designed to act as independent paradigms
so that they can function without any specific application code. A properly
designed control is a window that has no relation to any other window within
your application. In other words, although a scroll bar may be used to scroll
the contents of a window in your application, can the same scroll bar control
window be used with any application? When designing a control window try
to imagine it as the only window other than the desktop window. The design
of the control window will be thoroughly discussed in Chapter 14.

CREATING THE CONTROL WINDOW

When a control window is created outside of a dialog window, the developer is
responsible for creating the control through the use of the WinCreateWindow
API. Although you should already be familiar with creating windows by using
this function, there are several parameters that are specific to control window
creation, so it is a good idea to review this APL The prototype for the function
is given in Figure 2.2.

• The hwndParent parameter is the handle of the parent window. This pa­
rameter can be set to the desktop window, HWND..DESKTOP, to create a

HWND APIENTRY WincreateWindow(HWND
PSZ
PSZ
ULONG
LONG
LONG
LONG
LONG
HWND
HWND
ULONG
PVOID
PVOID

Figure 2.2 WlnCreateWindow.

hwndParent,
pszClass,
pszName,
flStyle,
x,
y,
ex,
cy,
hwndOwner,
hwndinsertBehind,
id,
pCtlData,
pPresParams) ;

22 Gaining Control: Mastering the Standard PM Control Windows

top-level frame window. This parameter can also be set to HWND OBJECT
to create an object window.

• The pszClass parameter is the window class name field. All window classes
must either be registered through the use of WinRegisterClass or be a
predefined public window class. The predefined public window classes are
identified by the WC_ constants in PMWIN.H.

• The pszName parameter is a null-terminated string that represents the
window text for the window being defined. Whether the window text is
visible in the window is based on the type of window class for the window
being created. For example, some control windows display text as part of
the control, like a pushbutton. Other control windows, like the scrollbar,
have no need for the text. Keep in mind that the window text represented
by this string is an initial value and can be changed through the use of the
WinSetWindowText API.

• The flStyle parameter specifies the window styles that are to be used for
the window being created. The style flags are combined to create the ap­
pearance of the window. The window style identifier WS VISIBLE can be
used if the window is designed to be visible immediately after its creation.
If the window is not initially visible, it will be created but not shown. The
APls WinShowWindow or WinSetWindowPos with the SWP_SHOW flag
can then be used to ultimately show the window. Other than the visibility
style, this value can be used to represent window styles that are dependent
on the type of window class being created. For example, when you create
a control window based on the WC..BUTTON window class, this parame­
ter is used to identify whether the button is a pushbutton, radiobutton, or
checkbox, and is also used to define the behavior of the button.

• The x parameter is simply the initial horizontal coordinate for the window.
The value represents a window coordinate that is based on the origin of
the parent window.

• The y parameter is simply the initial vertical coordinate for the window.
The value represents a window coordinate that is based on the origin of
the parent window.

• The ex parameter is the horizontal width of the window in window coor­
dinates.

• The cy parameter is the vertical length of the window in window coordi­
nates.

• The hwndOwner parameter represents the owner window. The owner win­
dow is the window to which messages are typically sent for controls. When
the window represented by the hwndOwner window handle is destroyed,
all windows that it owns are also destroyed.

• The hwndlnsertBehind parameter is used to identify the placement of the
window. This parameter represents the sibling window behind which the
created window will be placed. This parameter can be set to the values
of HWND_TOP or HWND...BOTTOM. If this value is HWND_TOP, the win-

Understanding the Owner and Parent Window Relatlonshlps 23

dow that is created is placed on top of all its sibling windows. If thi
value is HWND-130TTOM, it is placed on the bottom of all its sibling win~
<lows in the ZORDER. This value must either be the constant HWND_TOP.
HWND-130TTOM, or a window handle that is a child of the parent window'.

• The i~ pru:ame~er is ~sed to specify a window identifier. 'I}'pically, the win­
dow 1de~t1fier is a umque ~umber that is used to represent the relationship
of the wmdow to other wmdows. For example, if an application creates
multiple control windows, each control window gets a unique ID that
identifies the window, so that the owner window can determine which of
the control windows initiated the notification. An application can obtain
the associated window handle from the window identifier by calling the
WinWindowFromID API.

• The pCtlData parameter is a pointer to a data structure that is specific for
the control window being created. Therefore, the structure that is repre­
sented by this pointer is based on the window class of the window being
created. The structure is automatically passed as part of the WM_CREATE
message processing. Since the data of the structure can vary based on the
control window being created, the first two bytes of the structure refer­
enced by this pointer should contain the total size of the structure to be
passed. This structure is very important since it contains control data for
the type of control. For example, button class windows use the BTNCDATA
structure while scroll bars use the SBCDATA structure.

• The pPresParams parameter is a pointer to presentation parameter infor­
mation based on the window class of the window being created.

UNDERSTANDING THE OWNER AND PARENT WINDOW RELATIONSHIPS

The owner window and parent window both have a distinct relationship to the
control window that is created. Unfortunately, these windows are often con­
fused f~r one another. Understanding their differences is critical to mastering
the philosophy of the control window. Although it is common for a control
window to use the same window for the owner and parent, it is important
to understand the difference in case it becomes necessary to have a window
other than the window where the control is drawn on to process notification
messages for the control. When a control window is created through the use
of WinCreateWindow, the parent and owner window handles are specified
through the use of the hwndParent and hwndOwner parameters.

The purpose of the parent window is to determine the positioning for the
control window. The window coordinates of the control window specified by
x, y, ex, and cy represent the coordinates of the control window relative to
the lower left corner of the parent window. Therefore, the control window is
relative to the position of its parent window, so that when the parent window
is moved, the control window is also moved and repositioned based on the

24 Gaining Control: Mastering the Standard PM Control Windows

coordinates. As with any child window, a control window cannot be viewed
outside the boundaries of its parent, meaning that the control will be clipped
on the basis of its parent.

The purpose of the owner window is to process the notification messages
that are sent by the control. In other words, the window procedure for the
window represented by hwndOwner will get the notification messages for the
control window that is created. For example, the iconic pushbuttons created by
the BUTTONS program are drawn within the client window of the application.
Therefore, it makes sense that the individual pushbutton control windows use
the client window as the owner of the pushbuttons, which means that the
client window procedure represented by ClientWndProc will be responsible
for handling the button notification messages.

Control Window Communication Messages
For the application to communicate with the control, several messages are
defined that are specific to the control. The messages are sent to the control
window through the use of the WinSend.Msg API function. The purpose of the
control window communication messages is to allow the application to query
or set the state of the control.

Control Window Notification Messages
Notification messages are messages that are sent to the owner window from
the control based on input from the user. The input is triggered by the user
manipulating the control, usually by clicking on it or pressing a key that
corresponds to the control while the control has input focus. The notification
messages let the application control the functionality of the individual control
by allowing the developer to determine the action for the control to take. The
notification messages received by the owner window are usually in the form of
WM_COMMAND or WM_CONTROL messages, which are used to determine
the visual impact that the control will take once the input from the user is
completed.

Using Control Data
The function WinCreateWindow allows you to pass a pointer to a control data
structure. The pointer is used to point to a structure containing the control data
for the particular window. The first element of the structure must be a USHORT
value that contains the size of the structure. The element containing the size of
the structure is extremely important since it is used internally to determine the
size of the available control data. Determining the size is extremely important
because the control data may overlap a segment boundary. Knowing the size

Understanding the Dwner and Parent Window Relationships 25

of the structure allows the Presentation Manager to ensure that the entire
structure fits within a single segment.

The Button Window Class
The button window class is one of the simplest class types, yet it offers power­
ful functionality because the appearance of the button can be altered to create
several different control windows derived from the same WLBUTTON win­
dow class. The button styles are used to determine the appearance that the
button control will take. The primary button styles that are used to determine
the control's appearance are shown in Figure 2.3.

• The BS_pUSHBUTTON style is used to create a standard pushbutton con­
trol window. The pushbutton is a window that generally contains text, but
may also contain a graphical image, like a bitmap or icon.

• The BS_CHECKBOX style is used to create the checkbox control window.
As its name denotes, a checkbox is a small square pushbutton with a spec­
ified text string to its right. Checkboxes are used to allow the user to select
an option via the selection. Checkbox controls are usually independent of
each other.

• The BS_AUTOCHECKBOX style is similar to the BS_CHECKBOX style
except that this control type will automically toggle its check state after
the user has interacted with it by selecting it with the mouse pointer or by
pressing the Spacebar.

• The BS_RADIOBUTTON style is used to create the radiobutton control.
Unlike the checkbox control, radiobuttons are not independent of one
another. They allow the user to select an individual option from a series of
choices represented by the radiobuttons.

• The BS_AUTORADIOBUTTON style is used to create an automatic ra­
diobutton. When this button style is used for a group of radiobuttons, and
the button is clicked, it highlights the selected button while unhighlight­
ing all other radiobuttons within the group. The group of radiobuttons is
specified through the use of the WS GROUP window style.

BS_PUSHBUTTON OL
BS_CHECKBOX lL
BS_AUTOCHECKBOX 2L
BS_RADIOBUTTON 3L
BS_AUTORADIOBUTTON 4L
BS_3STATE SL
BS_AUT03STATE 6L
BS_USERBUTTON 7L

Figure 2.3 Primary button window styles.

26 Gaining Control: Mastering the Standard PM Control Windows

• The BS-3STATE style is used to create a checkbox control window that
visually contains three display states. In addition to the checkbox button
being checked or unchecked, it can also be halftoned to provide an addi­
tional button state to the user.

• The BS..AUT03STATE style- you guessed it- is exactly like the BS-3STATE
style except that the state of the checkbox is automatically toggled when
the user selects it.

DLG'l'l!MPLATE lDD_SETUP LOAOONCALL NOVl!ABLE DISCARDABLE

I
DIALOG "BUTJ'OHS - Configure Program Buttons• , IDD_SETllP. 32, 32, 330, 200 .. FCF_J)LGBORDBR I FCF_SYSMENU I PCF_TITLWR I

1
I

COll'l'ROL ID_MAINilllll,

GROUPBOX "Prograa Icon•

PUSllBO'l'l'Olf ' - Find . • . '

LTBXT • Prograa File•

ENTRYFIELD

LTEXT •Parameters•

EN'l'RYFIELD

PUSHBUTl'ON 't60S'

PUSHBUTTON 'I 606 •

GROOPBOX "Change Program lcon'

PUSHB!Tl'TON · - Icon •..•

PUSHBtfM'Oll ·-Default"

CROOPBOX 'Program Type'

At1l'ORADIOIM11TON 'Default''

At1l'ORADIOllUTl'Oli •Presentation Manager•,

AllTORADIOOO'l'l'Oll 'OS/2 Windowed Session•.

At1l'ORADIOIM11TOll 'OS/2 Fullscreen Session' .

Al1l'ORADIOBU'l'TON 'DOS Windowed Session' .

At1l'ORADIOBUT1'0N 'DOS Fullscreen Session• ,

ID_JIAIHWNO,

PCF _TASKLIST PC!' _KINB111'TON

2S, 120, 21. 21, WC_5TATIC, SS_ICON I
ws_GROOP I ws_vISI8LE

-1 1, ns. 10. JO

DID_PIND, 250, 170, 40 , 16,

ID_TEX'l', 10. 180, 70 , 8

lDE_EXECU'l'ABLE, 90, 180, 130, 8, ES_MARGIN

ID_'l'EX'l'.

IDE_PAIWIETERS,

DID_LEFT,

DID_RIGllT,

- 1
DID_ICOll,

DID_DEl'AUL'l',

ID_Tl!XT

IDR_J)El'AUL'l',

IDR_PM,

IDl\...OS2WINDOW,

IDR...OS2FSCRE!ll,

IDR...DOmiINDOW,

IDR._DOSFSCREEll,

10, 165, 70, 8

90, 165, 130, 8. ES_l!ARGIN

110, 120. 32, 16, llS_GROUP I BS_ICON

lSO, 120, 32, 16, BS_lCON

m. m, ioo, 30
230, 120. 40. 16,

270, 120. 40, 16,

15. 30, 300, 70

30. 70, 140, 10, llS_GROOP

30, 60, 140, 10.

30, so. 140, 10,

30 , 40, 140, 10,

170, 70, 140, 10,

170, 60, 140, 10.

At1l'ORADIOBV'M'Oll 'Seamless Win-OS/2 Session', IDR...WINWINDOW, 170, so. 140. 10.

Al1l'OAADIOIM11TON 'l'ullscreen Win-OS/2 Se•don', IDILWINPSCREEN,

DEFPUSHBl11'TOll

PUSHBU'ITO!I

PUSllllUTTON

PUSHlllJ'M'ON

'•Apply'

·-save•

·-close'

'•Help'

DID_OK,

DID_SAVE,

DlD_CANCBL,

DlD_HBLP,

170.

30.
100,

170,

240,

40 . 140. 10,

8, 45, 15, llS_GROOP

8, 45 , 15,

8, 45, 15,

s, ts, 15,

Figure 2.4 Sample dialog template using controls.

Understanding the Owner and Parent Wladow Relatlonshlps 27

• The BS_USERBUTTON style is designed to allow the PM developer to
create alternative buttons. It is up to the application to paint and maintain
the button when the owner window receives a BN_pAJNT notification
message.

With the exception of the BS-3STATE and BS..AUT03STATE styles, all of
the other primary button styles can be specified in a dialog template simply by
removing the BS_ header from the style. For example, the ConfigureDlgProc
dialog procedure uses the dialog template in Figure 2.4, which contains most
of the primary button styles.

There are several other secondary button window styles that control the
appearance and functionality of the button that is created. These styles are
designed to be ORed with the primary button styles to change the button
function or appearance. Some of these button styles are exclusive to a specific
type of primary button style.

The button styles in Figure 2.5 are specific to the as_pusHBUTTON pri­
mary button style and control the appearance of the border around the button
window.

• The BS.DEFAULT style does not alter the default functionality of the push­
button, but it does highlight the button by drawing a border around it,
and also allows the user to use the Enter key to depress the button. This
button style is used through the DEFPUSHBUTTON keyword in a dialog
template. Only one button in a group can have this style set. This style can
also be used by the BS_USERBUTTON primary style, but it is up to the
application to define the appearance of the default button; for example,
like drawing a border or changing the color.

• The BS..NOBORDER style is exactly as it sounds. The pushbutton is drawn
without the border around it. The functionality of the button is not changed,
only its appearance.

In addition, there are two button styles that control the message functional­
ity of the button. When a pushbutton is depressed, the default button behavior
is to generate a WM-COMMAND message to the owner window. Using either
of the styles given in Figure 2.6 will cause a different message to be sent to the
owner window.

BS_DE:FAULT
BS_NOBORDER

Ox0400L
OxlOOOL

Figure 2.5 Button border styles.

~ ~~~~~~~~~~~~~~~~~~~~~~--~~----------------------..:..i ________________________________

28 Gaining Control: Mastering the Standard PM Control Windows

BS_HELP OxOlOOL
BS_SYSCOMMAND Ox0200L

Figure 2.6 Button massage styles.

• The BS..HELP style, when used in conjunction with the Bs_pusH­
BUTTON primary style, will cause the button to generate a WM..HELP
message instead of a WM_COMMAND message.

• The BS_SYSCOMMAND style, when used in conjunction with the BS_
PUSHBUTTON primary style, will cause the button to generate a WM_
SYSCOMMAND message instead of a WM_COMMAND message.

These button styles are useful in defining what the button is to accomplish
when clicked. The BS..HELP and BS_SYSCOMMAND button styles are not
designed to be used with one another, but if for some reason they are both
set, the BS..HELP style will override the BS_SYSCOMMAND style causing
the WM..HELP message to be generated in lieu of the WM_SYSCOMMAND
message.

There are a few other button styles that can be used to alter the appearance
of a pushbutton, listed in Figure 2.7.

• The BS..BITMAP style is used to substitute a bitmap image in the pushbut­
ton window instead of the standard window text.

• The BS_JCON style is used to substitute an icon image in the pushbutton
window instead of the standard window text.

• The BS_MINIICON style is the same except it uses a miniature icon.

The BS-ICON button style is the basis for the BUTTONS program, and each
of the buttons drawn within the client area of the main window use this style
to represent a function or program. When the button is pressed, the function
is performed or the program is started. The buttons are created through a for
loop that will call the WinCreateWindow function. All of the buttons use a
combination of the WS_VISIBLE, BS_pUSHBUTTON, and BS_ICON window
styles to create the buttons. The third parameter to the WlnCreateWindow call
specifies the window text of the button; and buttons that use BS-ICON have no
need for window text. This parameter will change based on whether the icon
is preloaded as a resource or needs to be loaded from the executable program.

BS_MINIICON
BS_BITMAP
BS_ICON

Ox0020L
Ox0040L
Ox0080L

Figure 2.7 Button Image styles.

Understanding the Owner and Parent Window Relatlonshlps 29

The function buttons, which occupy the bottom row of buttons cannot
change so we have no need to use different icons. Therefore, these icons are
loaded as resources into the executable through the ICON statement in the
resource script file. Here is an example of how the shutdown icon is declared
in the BUTTONS.RC resource script file.

ICON IDI_SHUTDOWN PRELOAD shutdown. ico

The IDLSHUTDOWN resource identifier is used to represent the actual icon
shutdown.ico which will be built into the executable as a resource. The
IDLSHUTDOWN identifier is defined as a unique number that represents the
icon. Here is how it is defined within BUTTONS.H .

#define IDI_SHUTDOWN 602

Note that the actual icon is now represented by the number 602. In order to
load this icon in the button you can specify the number as the window text,
preceded by the pound sign. For example, the code in Figure 2.8 will load the
shutdown.ico icon within a pushbutton.

That is all there is to loading icons into the button from a resource. But
what about the rest of the buttons necessary for the rest of the application
interface? Since the purpose of the program is to allow the user to launch
programs, the user must be responsible for configuring the applications that
will be started. Therefore, since the applications will be different for each user,
we do not have the ability to detect which icons to load as resources, so we
have to extract the icon from the actual executable and then use that icon
within the button. Unlike the manner that we used to load the icons for the
function buttons, this time there will be no window text at all. Instead, the

WinCreateWindow (hwndClient,
WC_BUTTON,
'1602',
WS_VISIBLE BS_PUSHBUTTON I BS_ICON,
50,
o,
50,
50,
NULLHANDLE,
HWND_BOTTOM,
IDM_SHUTOOWN,
NULL,
NULL) ;

Figure 2.8 Loading the icon button.

II Parent Window
II Window Class
II Resource Identi f ier
II Window Styles
II Initial x
II Initial y
II Length of button
II Width of button
II Owner is Cl ient
II Sibl i ng Window
II WM_COMMAND identifier
II Control Data
II Presentation Parameters

30 Gaining Control: Mastering the Standard PM Control Windows

icon will be loaded from the control data that will be passed to the call to
WlnCreateWlndow.

The format of the control data structure for the button window class is
given in Figure 2.9.

• The ch parameter is the length in bytes of the control data structure.
• The fsCheckState parameter is the button check state that is used to de­

termine whether the button is currently checked. It is the same value that
is returned by the BM_QUERYCHECK message or the same value that is
passed to the BM_SETCHECK message.

• The fsHillteState parameter is the button highlight state that is used to
determine whether the button is currently highlighted. It is the same value
that is returned by the BM_QUERYHILITE message or the value that is
passed to the BM_SETHILITE message.

• The hlmage parameter represents a handle to an image file. The image file
can either be in the form of an icon or a bitmap.

The BUTTONS program uses the WinLoadFilelcon API to obtain the handle to
the icon from the application's executable. The configuration dialog box allows
the user to enter the applications that they wish to create buttons for. The path
and file names of the executables are then stored in an array called the program
list, that wiU be written to a text configuration file called BUTTONS.PRO.
When you are storing large data structures or arrays, it is good programming
practice to create your own profile instead of using the OS2.INI file, since the
size of the OS2.INI profile should be as small as possible for both performance
and maintenance reasons. Alternatively, an application can create its own
binary INI file using the Profile (Prf) library functions, to store the program
information. The Prf API' s are discussed later in the book. For the purposes of
this sample program, it is easier to maintain a simple text based configuration
file since it can be easily edited by the user. Since the beginning of the OS/2
Presentation Manager, a debate has raged among programmers as to whether
or not the binary INI file format used by OS/2 or the text based INI files used
by Microsoft Windows is superior. In any case that debate is irrelevant here.

typedef struct _BTNCDATA // btncd
{

USHORT cb;
USHORT fsCheckState;
USHORT fsHiliteState;
LHANDLE hirnage ;

) BTNCDATA;
typedef BTNCDATA *PBTNCDATA;

Figure 2.9 The button control data structure.

Understanding the Owner and Parent Window Relatlonshlps 31

HPOINTER WinLoadFileicon(PSZ pszFileName,
BOOL fPrivate) ;

Figure 2.10 The Wlnloadfllelcon API.

For each of the program path and filenames stored in the BUTTONS.PRO file,
the WlnLoadFllelcon API is called to obtain its associated icon. Its prototype
is in Figure 2.10.

• The pszFlleName parameter is the path and file name of the executable
that contains the icon.

• The !Private parameter is a BOOL flag that is used to determine whether a
private copy of the icon is needed. If your application needs to modify the
icon once it is determined, you can request a private copy solely for your
application's use by setting this parameter to TRUE. Once you are done
modifying the icon, free your private copy by calling the WlnFreeFilelcon
function. Otherwise, if the application only intends to display the icon, set
this parameter to FALSE indicating that a single shared pointer to the icon
is all that is needed. This will save on memory since a private copy of the
icon will not have to be loaded.

Unlike most of the PM APls, the code for the WinLoadFilelcon function
is stored within the actual Workplace Shell library, PMWP.DLL, which means
that this function was already 32-bit code before OS/2 WARP. The function
returns a handle to a pointer that contains the icon. The icon that is returned
is derived from the executable based on a series of precedence rules. Figure
2.11 contains the rules that WinLoadFilelcon uses to determine the order in
which the icon wiH be loaded.

Once the icon is no longer needed, the application should call the Win­
FreeFilelcon API to unload the graphics engine resources required for the
icon. Figure 2.12 contains the prototype for the WinFreeFilelcon APl. The
WinFreeFllelcon API takes a single parameter, the pointer handle. The func­
tion will return TRUE if successful. The function works by first checking if the

• Use the ICON stored in the executables extended attributes.
• Use the .ICO file stored in the same directory with the same prefix as the

executable.
• Use the ICON that is bound into the executable for PM and WINDOWS

applications.
• Use the default ICON based on the actual program type.

Figure 2.11 The logic used to load an icon via WlnloadFHelcon.

32 Gaining Control: Mastering the Standard PM Control Windows

BOOL APIENl'RY WinFreeFileicon{HPOINTER hptr) ;

figure 2.12 The Winfreefllelcon prototype.

icon specified is still resident and, if it is, the function returns FALSE. If the
function is not resident, it will call WlnDestroyPointer to destroy the pointer
handle.

The code fragment shown in Figure 2.13 shows how the BUTTONS pro­
gram creates the button windows and loads the program icons on the buttons.

II Fill in most of the Buttons Control Data Structur e
btncd .cb = sizeof(BTNCDATA);
btncd . fsCheckState = NULLHANDLE;
btncd . fsHiliteState = NULLHANDLE;

II Parse the BUTTONS profile(BUTTONS . PRO) looking for the executables to be
II started, along with the session types and any conunand line parameters.
ReadExecutablesPromProfile(BUTTONSPRO) ;

II The function buttons(firstlbottom row of four buttons) correspond
II t o Product-InformationlLockuplShutdownlConunand Prompt. These icons
II are going to be l oaded as resources from our executable. To load
II these icons using the BS_ICON button style we wil l need to specify
II the resource nwnber preceeded by a pound sign as the window text
II on the call t o WinCreateWindow. The remaining eight buttons are
II known as the program but tons, and need no window text.
for (usCounter = BID_ABOUT; usCounter < BID_END; usCounter++l

{
strcpy(szWinTitle, szResourceNwnber[usCounter));

II For our program buttons (all buttons greater than the first row)
II get the icon from the executable via WinLoadPileicon(). If
II the pointer handle returned by WinLoadPileicon is NULL, we were
II unable to get a valid icon from the various methods used by
II WinLoadPileicon, which probably implies that the path and
II filename of the executable is bogus. In which case, we wil l
II load the SPTR_ICONQUESTION default pointer (a simple question mark)
II to alert t he user that something is wrong.
if (usCounter > BID_VIOCMD)

(
hptrTemp(usCounter] = WinLoadPilelcon(pszAppName(usCounter], FALSE);
if (hptrTemp[usCounterl == NULLHANDLE)

(
hptrTemp(usCounter) = WinQuerySysPointer(HWND_DESKTOP, SPTR_ICONQUESTION, FALSE);

}

f igure 2.13 Drawing the BUTTONS control panel. continued

btncd.himage = {LHANDLE)hptrTemp[usCounterl;
}

The Button Control Messages 33

II Ok, so here we are about to create the BUTTONS control panel which consists of
II twelve pushbuttons . The function buttons(first row) are non configurable unl ike
II the remaining eight buttons (known as the program buttons l . The buttons are a
II fixed size 50 x 50, beginning at the origin that is referenced from the
II usXPosition and usYPosi tion arrays . This is where we pass the button control
II data structure which contains the icon information for the program buttons.
WinCreateWindow (hwndClient, II Parent Window Handle

WC_BUTTON, II Class Name
szWinTitle, II Window Text
WS_VISIBLE I BS_PUSHBUTTON I BS_ICON, II Window Styles
usXPosition[usCounter}, II Initial X coordinate
usYPosition{usCounterJ, II Initial Y coordinate
50 , II Horizontal Length of Button
50, II Vertical Length of Button
NULLHANDLE, II Owner Window Handle
HWND_BOTTOM, II Sibling Window
usCounter, II Resource Identifier

(PVOID)&btncd, II Button Control Data
NULL) ; II Presentation Parameters

Figure 2.13 Drawing the BUTTONS control panel.

THE BUTTON CONTROL MESSAGES

Button control messages signal the button actions (see Figure 2.14).

This message is used to send the button control a WM_BUT­
TONlDOWN and WM-BUTTONlUP message so that the
behavior and appearance of the button indicate that it has
been clicked by the user.

BM_ CLICK
BM_QUERYCHECKINDEX
BM_QUERYHILITE
BM_SETHILITE
BM_QUERYCHECK
BM_SETCHECK
BM_SETDEFAULT

Ox0120
Ox0121
Ox0122
Ox012 3
Ox0124
Ox0125
Ox0126

Figure 2.14 The Button control messages.

... -

34 Gaining Control: Mastering the Standard PM Control Windows

BM_QUERYCHECKINDEX This message is used to return the index (zero-based) of the
button that is selected within a group of buttons. If no button
in the group is selected, it will return a - 1. This message is
used for radiobuttons.

BM.QUERYHILITE

BM_SETHILITE
BM_QUERYCHECK

This message is used to determine whether the button is high­
lighted. The highlight status is returned.
This message is used to highlight a button.
This message is used to determine whether the specified but­
ton is checked. If the button is checked, the message will
return TRUE; if the button is unchecked, the message will re­
turn FALSE. PMWIN.H contains a macro that resembles an
API called WinQueryButtonCheckState, which simply sends
the BM_QUERYCHECK message on to the button control to
determine whether the button is checked. The macro works
by using the API WinSendDlgltemMsg to send the message.
Therefore, this macro is only used for dialog checkboxes and
radiobuttons.

The WinQueryButtonCheckState macro is defined as shown in Figure 2.15.

BM.SETCHECK This message is used to set the check appearance of the but­
ton. The first message parameter is used to set the check state.
If mpl is set to 0, the button will be unchecked. If mpl is set
to 1, the button will be checked. mpl can also be set to 2 for
buttons that use the BS-3STATE or BS.AUT03STATE button
style. Setting mp1 to 2 indicates that the button will be set to
the intermediate state of the three state buttons. This message
and the check functionality correspond to the radiobutton and
checkbox buttons styles only. This message will return the pre­
vious check appearance of the button control. This message
also corresponds to the WinCheckButton macro defined in
PMWIN.H.

The WinCheckButton macro is defined as shown in Figure 2.16.

BM_SETDEFAULT This message is used to set the appearance of a pushbutton to
the default state. This message can be used by any button with

#defi ne WinQueryButtonCheckstate (hwndDlg, id) \
((ULONG) WinSendDlgitemMsg(hwndDlg, i d, BM_QUERYCHECK, \
(MPARAM)NULL, (MPARAM)NULL))

Figure 2.15 The WlnQueryButtonCheckState macro.

The Button Control Messages 35

ldefine Wi nCheckButton(hwndDlg, id, usCheckState) \
((ULONG)WinSendDl gitemMsg (hwndDlg, id, BM_SETCHECK, \
MPFROMSHORT (usCheckState) , (MPARAM)NULL))

Figure 2.16 The WlnCheckButton macro.

BN_CLICKED
BN_DBLCLICKED
BN_PAINT

1
2
J

Figure 2.17 The Button notification messages.

the BS..PUSHBUTTON or BS_USERBUTTON button style.
The message essentially sets the BS_DEFAULT style for the
button to indicate that the button is a default selection. The
first message parameter is used to control the default button
appearance. If mpl is set to TRUE, then the button control
is set to the default button. If mp1 is set to FALSE, then the
default state is removed from the button.

The button notification codes are shown in Figure 2.17.

BN _CLICKED This message is used to provide notification that the user has actually
clicked a button.

BN_DBLCLICKED This message is used to provide notification that the user has actually
double-clicked a button.

BN_FAINT This message is used to provide notification to the owner window
to paint the button control. This notification message is only used
for u~er-drawn buttons that use the BS_USERBUTTON button style.
In this case, the second message parameter, mp2, will point to a
USERBUTTON structure that contains all of the information required
for painting the button. This structure is shown in Figure 2.18.

typedef struct _USERBUTTON // userbutton
(
HWND hwnd;
HPS hps ;
ULONG fsState ;
ULONG fsStateOld ;

} USERBUTTON;
typedef USERBUTTON *PUSERBUTTON;

Figure 2.18 The USERBUTTON structure .

36 Gaining Control: Mastering the Standard PM Control Windows

Both pushbuttons and user-defined pushbuttons post a WM_COMMAND
message to its owner window when the user clicks on the pushbutton. If
the button code uses another style other than the Bs_puSHBUTION or
BS_USERBUTION button style, like BS_SYSCOMMAND or BSJfELP, the
message posted will be different. The BS_SYSCOMMAND button style posts a
WM_SYSCOMMAND message, while the BSJfELP style causes a WMJfELP
message to be posted to the owner window. If a window procedure uses du­
plicate window identifiers for different types of windows, it can differentiate
the window type by looking for the command source value, which is passed in
the low word of the second message parameter, mp2. Figure 2.19 contains the
command source values defined in PMWIN.H.

The values contained in this figure can be used to determine which con­
trol generated the WM_COMMAND message. These values can be useful in
determining what the user did to generate the command message if your win­
dow procedure needs to handle the command differently depending on the
origin or if the application uses duplicate window identifiers for menu items,
accelerators, and pushbuttons. For example, if you have a menuitem, push­
button, and accelerator key that are all defined as 100 but are supposed to
do different things, they won't, because the WM_COMMAND message will be
the same for that value. Therefore, the window procedure can have code that
validates the origin of the command message to appropriately interpret the
correct command message code.

Button control windows that are not pushbuttons generate WM_CONTROL
messages that are posted to the owner window. The message parameters con­
tain the window identifier for the button and the notification message.

mpl = button identifier

mp2 = notification message

For example, the code fragment in Figure 2.20 handles the WM_CONTROL
message for a group of radiobuttons used to change colors.

The BUTIONS Control Panel can be configured by the user through the
use of the Configure Program Buttons dialog box. The Program File entryfield

CMDSRC_PUSHBUTTON 1
CMDSRC_MENU 2
CMDSRC_ACCELERATOR 3
CMDSRC_FONTDLG 4
CMDSRC_FILEDLG 5
CMDSRC_PRINTDLG 6
CMDSRC_COLORDLG 7
CMDSRC_OTHER 0

Flg1ra 2.19 Determining the source of WM_COMMAND messages.

case WM_CONTROL:
switch (SHORTlFROMMP (mpl))
{
case CLR_BLUE:

sColor = CLR_BLUE;
return FALSE;

case CLR_RED:
sColor = CLR_RED;
return FALSE ;

case CLR_PINK:
sColor = CLR_PI NK;
return FALSE;

case CLR_GREEN:
sColor = CLR_GREEN;
return FALSE;

Figura 2.20 Processing the WM_CONTROL message.

Tbe Blltton Control Messages 37

is used to specify the program path and filenames for the executable programs.
The Parameters entryfield is used to enter any command line parameters that
can be passed to the program. The Find pushbutton will use the standard file
dialog box to allow the user to select the executable. Two direction buttons,
centered in the middle of the dialog box are used to navigate through the
program list. As the user presses the forward button, the next executable
program is displayed. If a program exists in the program list or is entered by
the user, it is displayed in the static Program Icon. Figure 2.21 shows what
the dialog box looks like, while Figure 2.22 shows the code that updates the
Program File icon. The source code for the Updatelcon routine updates the
icon in the Configure Program Buttons dialog whenever the user selects one
of the direction pushbuttons.

The Updatelcon function takes three parameters. The first parameter is the
dialog window handle. The second parameter represents the static icon win­
dow identifier. The last parameter, pszlcon represents the path and filename
for the executable program whose icon is to be displayed. If this parameter
is set to NULLHANDLE, the function will call WinQuerySysPointer to obtain
the pointer handle for the question mark icon. This can be used to indicate to
the user that the program path and filename could not be resolved, therefore,
the icon could not be loaded. Otherwise, if pszlcon contains a valid path and
filename, the program icon will be loaded via the WinLoadFilelcon APL The
program file icon itself is finally updated by sending a SM_SETHANDLE mes-

38 Gaining Control: Mastering the Standard PM Control Windows

a HIJI IOIJ~; Co11l11jt111• l'1oq1;1111 Hult<m' a

Program File jc:\OS2\APPS\MAHJONGG.EXE

Parameters

Change Program Icon

I Jeon... II Q.efault I

Program Type--------------------,

QDefautt

@ Presentation Manager

O OS/2 Windowed Session

O OS/2 Full screen Session

APPIY .§.ave

O DOS Windowed Session

O DOS Fullscreen Session

QSeamless Wln-OS/2 Session

O Fullscreen Wln-OS/2 Session

~lose !:!elp

Figure 2.21 Configuring the BUlTONS control panel.

sage to the static icon window. The mpl parameter for the message contains

the pointer handle.
When the end of the program list is reached, the buttons are disabled. The

code fragment shown in Figure 2.23 handles the processing of the DID.LEFT

and DID-RIGHT pushbuttons.

THE STATIC WINDOW CLASS

The static window class represents the simplest of all of the PM controls. The

sole purpose of the static control is to provide information to the user. Typically,

applications use static controls to display meaningful text, but there are several

static window styles that can also be used to create graphical static controls.

Since static controls just display information, no user input is required for a

static control.
Processing static controls is very simple, since static controls do not send

notification messages back to their owner window. Also, static controls do

not comprehend input focus. When a static control gets a focus message via

The Static Window Class 39

BOOL Updateicon(HWND hwndDlg, ULONG uliconID, PSZ pszicon)
(

HWND hwndButton
HPOINTER hptr;
BOOL re;

hwndButton = Wi nWindowFromID(hwndDlg, uliconID) ;
WinShoWWindow(hwndButton, FALSE);

II If no executable is passed in pszicon
II then let ' s punt and just use the system pointer
II that resembles a question mark???
if (pszicon == NULLHANDLE)

{

hptr = WinQuerySysPointer(HWND_DESKTOP, SPTR_ICONQUESTION, FALSE);
if (!hptr)

(

DisplayMessages{ERROR GETTING SYSPTR NULLHANDLE, MSG_INFO) ;
} - - ,

else
(

hptr = WinLoadFi leicon(pszicon , FALSE) ;
if (hpt r == NULLHANDLE)

(

I

II If WinLoadFileicon failed return FALSE
return FALSE;

II Update our static icon and return TRUE

WinSendMsg(hwndButton, SM_SETHANDLE, (MPARAM)hptr NULL);
WinShOWWindow{hwndButton, TRUEI ; '

return TRUE;

Figure 2.22 The Updatelt:on function.

WM_SETFOCUS, the default static window procedure forwards the focus to

the next possible child window that can have input focus. If there is no child

window available that can possibly accept the input focus, then the focus is

passed on to the owner of the static control window.

The BUITONS sample program uses several forms of the static window

control (see Figure 2.24), including the static text window and the GROUPBOX;

and the Program File icon in the Configure Program Buttons dialog uses the

SS-ICON static style.

-.......__ _

40 Gaining Control: Mastering the Standard PM Control Windows

case DID_RIGHT:
if (!WinisControlEnabled(hwnd, DID_LEFTll

WinEnabl eControl(hwnd, DID_LEFT, TRUE);

if (sCounter < LAST_BU'M'ON)
{

sCounter++;
Updateicon(hwnd, ID_MAINWND, pszAppName [sCounter)l;
WinSetDlgitemText (hwnd, IDE_EXECUTABLE, pszAppName lsCounter));

}

else
{
WinEnableControl(hwnd, DID_RIGHT, FALSE) ;

}

return FALSE ;

Flgin 2.23 The processing of the direction pushbuttons.

SS_TEXT
ss_GROUPBOX
SS_ICON
SS_BITMAP
SS_FGNDRECT
SS_HALFTONERECT
SS_BKGNDRECT
ss_FGNDFRAME
SS_HALFTONEFRAME
SS_BKGNDFRAME
SS_SYSICON
SS_AUTOSIZE

OxOOOlL
Ox0002L
Ox0003L
Ox0004L
OxOOOSL
Ox0006L
Ox0007L
Ox0008L
Ox0009L
OxOOOaL
OxOOObL
Ox0040L

Figure 2.24 The static control styles.

ADDING MULTIPLE ITEMS TO A LISTBOX

One of the most significant improvements made to the standard PM controls
in OS/2 Warp was in updates to the listbox control. A new control message
was added that simplifies the process of adding multiple items to a listbox. The
LM_.INSERTMULTITEMS message allows an application to insert multiple
items into a listbox within the context of a single message. Previously, adding
items to a listbox required that the application send multiple LM_INSERTITEM
messages; one for each individual item to be added to the listbox. The purpose
of the LM_INSERTMULTITEMS message is to reduce the overhead required

typedef struct _LBOXINFO
{

LONG litemlndex;
ULONG ulitemCount ;
ULONG reserved;
ULONG reserved2;

) LBOXINFO;

Adding Multlple Items to a Llstbox 41

//lboxinfo

Figure 2.25 The LBOXINFO structure.

when adding items to the listbox; thereby, improving the time r equired to
populate the listbox.

The message uses a structure called LBOXINFO. The structure is passed as
the first message parameter. The second message parameter contains an array
of pointers to NULL terminated strings, that contain the text to be inserted.
The LBOXINFO structure is shown in Figure 2.25.

The LBOXINFO structure contains two significant elements that control
how the items in the array will be displayed. The lltemlndex element specifies
how the items are to be indexed and sorted within the listbox. The LIT con·
stants defined in PMWIN.H, control the indexing. The ulltemCount element is
used to specify the total number of items in the array of strings to be inserted.
The source code in Figure 2.26 is used to insert the program list a rray into a
list box.

The PopulateListBox function uses the LIT.NONE constant to indicate
that the inserted strings are not to be sorted. The BID-END value is used to
indicate that there are 12 items in the program list array. However, the first four
elements of the array are not used since they correspond to the function buttons
rather than the program buttons. Therefore the second message parameter for
the LM_.INSERTMULTITEMS message, indicates that the start of the array
will begin with the fourth element of the array. The current design of the

VOID PopulateListBox(HWND hwndListBox)
{

}

LBOXINFO l boxinfo;

II Populat e LBOXINFO s tructure
lboxinfo.litemindex = LIT NONE;
lboxi nfo . ulitemCount = BID_END;

II don 't sort
//Number of items in array

WinSendMsg{hwndListBox, LM_INSERTMULTITEMS, &lboxinfo, &pszAppName[4);
WinSendMsg{hwndListBox, LM_SELECTITEM, MPFROMSHORZTIFALSE) , MPFROMSHORT !TRUE));
return;

Figure 2.26 Using the LMJNSERTMULTITEMS message.

42 Gaining Control: Mastering the Standard PM Control Windows

worker routine for this message will stop inserting items at the first NULL. An
application needs to ensure that all of the elements of the array to be inserted
contain valid pointers to the text strings that will be inserted.

STARTING THE APPLICATIONS

The main purpose of the sample program is to allow the user to configure
a series of graphical pushbuttons that, when depressed, will start a specific
application. The user defines all of the programs that they wish to add to the
BUTTONS control panel. The path and file names of the executables to be
started are stored in a program list along with the application configuration
information. The program list information is written to a file. The default
profile containing the program list is called BUTTONS.PRO. Every time the
BUTTONS program is started, the program list profile is read from disk, and
the values are parsed. The program information derived from the list is used
to configure each of the BUTTONS. Figure 2.27 contains a sample BUTTONS
profile.

The most important part of the sample program is the program starter
component itself. The BUTTONS sample program uses the API WinStartApp
to launch the applications from the program list. The WinStartApp API is
a quick and convenient method for starting different programs of multiple
session types. Further, the required PROGDETAILS structure is a little bit less
intimidating than the STARTDATA structure provided by DosStartSession, and
WinStartApp provides a much better interface to maintain the environment.
The format of the WinStartApp API is shown in Figure 2.28.

• The hwndNotify parameter is the handle of the window that is to receive
notification when the program is terminated. The notification comes in
the form of a WM.APPTERMINATENOTIFY message that is posted. The
notification message can be used by an application to perform some task
when the application is terminated. For example, an application may need
to update the contents of another window based on an application termi­
nating. A NULLHANDLE can be used in lieu of a valid window handle, if
the posting of the notification message is not required.

• The pDetails parameter points to a PROGDETAILS structure. This struc­
ture contains the information required to start the session and is populated
prior to calling WinStartApp. The structure contains valuable information
about the type of session to be started, the path and file name of the
executable, and the environment required by the application.

• The pszParams parameter is used to specify command line parameters
that will be passed along to the application when it is launched.

Starting tlle Applications 43

• FILENAME : BUTTONS. PRO

• DESCRIPTION: BUTTONS profi l e infonnation

• NOTES:

• RULES:

• COPYRIGHTS:

• PARAMETERS:

This fil e contains the BUTTONS program list. The BUTTONS
cont rol panel contains eight configurable pushbuttons .
The program list contains nine ent ries .

- The first ent ry i s a dummy entry used to val idate
i f this fi l e is indeed in the correct format. The dummy
entry must read BUTTONS.

- Collllllent lines begin with a semicolon and blank l ines
are ignored.

- An asterisk is used to mark the end of the program list .

Uri J. Stern and James S. Morrow
OSl2 WARP Presentation Manager for t he Power Progranuner

IF
If
ID
Id
IW
/w
1%

= OSl2 Ful lscreen session
= OS/2 Windowed session
= DOS Fullscreen session
= DOS Windowed session
= WinOSl2 Fullscreen session
= WinOSl 2 Seamless session
= Specify Conunand l ine par ameters to appl icat i on

BUTTONS
G: \DESCRIBE\DESCRIBE.EXE
E:\SMMATH\SMMATH.EXE 1%
E:\KDEBUG\KE. EXE
E:\TOOLS\cdexpl.exe Ip 1%
F:\PCOMOS2\PCSWS.EXE Ip 1%F:\PCOMOS2\PRIVATE\uri.WS
E:\RELISH\RELISH.EXE Ip 1%
E:\TVFS\tvctl .exe 1%-dorf
D:\CMVC\CMVC. EXE 1%

Figure 2.%7 A sample BUTIONS profile.

HAPP APIENTRY WinStartApp(HWND hwndNoti fy ,
PPROGDETAILS pDetails ,
PSZ pszParams,
PVOID Reserved,
ULONG fbOpti ons) ;

Figure 2.28 The WinStrtApp prototype.

•

44 Gaining Control: Mastering the Standard PM Control Windows

• The Reserved parameter is just that-reserved-and must be set to NULL.
• The tbOptions parameter contains the start application flags that are used

to control the appearance and behavior of the session to be started. Some
of these flags can be combined.

Figure 2.29 contains the start application flags for WinStartApp, which
are defined in the PMSHL.H header file.

SAF_INSTALLEDCMDLINE This flag is used to indicate that the command line param­
eters contained in the program details structure are to be
used to pass parameters on to the application. If this flag is
used, the pszParams parameter is ignored.

SAF _STARTCHILDAPP This flag is used to indicate that the started application is to
be a child of the session that calls the WinStartApp function.

SAF ..MAXIMIZED This flag is used to start the specified application in a maxi­
mized state.

SAF ...MINIMIZED This flag is used to start the specified application in a mini­
mized state.

SAF _BACKGROUND This flag is used to indicate that the session should be started
in the background.

The WinStartApp API is the routine used by the Workplace Shell to start
program objects. The WinStartApp API will return a handle that represents
the application. The data type for the handle is a HAPP, which is actually the
session identifier for the started session.

The code fragment in Figure 2.30 uses the WlnStartApp API to start all of
the programs in the program list profile.

The code to resolve the WlnStartApp API is contained in the PMSHAPI
dynamic link library. The code for WinStartApp is actually a wrapper function
for the DosStartSession API; thus, WinStartApp will take the information
passed in the PROGDETAILS structure and populate a STARTDATA structure
that will be passed on to DosStartSession, to eventually invoke the session
manager to start the program.

SAF_INSTALLEDCMDLINE
SAF_STARTCHILDAPP
SAF_MAXIMIZED
SAF_MINIMIZED
SAF_BACKGROUND

OxOOOl
Ox0002
Ox0004
OxOOOB
Ox0010

Figure 2.29 The Start application flags.

HAPP StartApplicat ion(PCH szPgmName, PCH szComLine, PCH szProgTitle)
{

APIRET re;
HWND hwndNotify;
CHAR szDir[CCllMAXPATH];
CHAR szFile(CCl!MAXPATH];
ULONG ulAppType;
HAPP happ;
CHAR szBuffer [250) ;
PROGDETAILS progdetails;

II Take the full program path and filename
II and parse i t so that the string X:\DIRECTORY\FILE.TXT
II becomes two strings X:\DIRECTORY and FILE.TXT
ParsePathFromFileName(szPgmName, szDir, szFile);

II NOTB: Determine the application default type
II if the application is a Windows based
II application change the default for BUTTONS
II to be Enhanced Seamless as oppossed to a
II yucky WinOSl2 Fullscreen session, since
II seamless is groovy!
re= DosQueryAppType(szPgmName, &ulAppType) ;

if ((ulAppType == 4096) 11 (ulAppType == 1040 I
(

ulAppType = PROG_ll_ENHSEAMLESSVDM;
J

progdetails.Length
proqdetails.progt.progc
progdetails.progt.fbVisible
progdetails.pszTitle
progdetails.ps2Ex.ecutable

= sizeof{PROGDBTAILSJ ;
= ulAppType;
= SHE_VISIBLE;
= s2ProgTitle;
= szPgmName;

progdetails.ps2Parameters = s zComLine;
progdetails.pszStartupOir = szDir;
progdetails.pszicon =NULL;
progdetails.pszEnviro!l111ent =NULL;
progdetails.swpinitial.x = 0;
progdetails.swpinitial.y = O;
progdetails.swpinitial.cx = O;
progdetails .swpinitial .cy = O;
progdetails.swpinitial.hwndinsertBehind = llWND_TOP;
progdetails .swpinitial.fl = SWP_SHOW;

II Length of structure
II Application Program Type
II Visibility Indicator
II Program Title
II Executable Path and Filename
II Conmand Line Parameters
II Working Directory
II Program Icon
II Environment String
II Initial x Window Position
II Initial y Window Position
II Initial ex Window Size
II Initial cy Window Size
II Window Placement
II Initial Window Flags

happ = WinStartApp(NULLllANOLE,
&progdetails,

II Notification window handle
II Program Detail s Structure

return happ;
I

NULL,
NULL,
SAF_INSTALLEIJCMDLINE) ;

Figure 2.30 The StartAppllcatlon function.

II Cormnand Line Parameters for the started program
11 Reserved
II Start Appl ication Flags

n

46 Gaining Control: Mastering the Standard PM Control Windows

TERMINATING A STARTED APPLICATION

When the user starts a program by pressing one of the program pushbut­

tons, the client window procedure receives a WM_COMMAND message with a

command identifier between BJD_pRQGRAMl and BJD_pRQGRAM8, corre­

sponding to the element of the program list array containing the program to

be started. The StartApplications function will return a valid application han­

dle (HAPP), if the program was successfully started. The application handle

is stored in the window words of the corresponding program button window.

This allows the View Program List dialog box to use the WinTenninateApp API

to stop the execution of the program at the user request. The View Program

List dialog box is shown in Figure 2.31.

The code fragment shown in Figure 2.32, shows how the programs are

started, and how the application handle is stored in the window words of

the program button window, whenever the user presses one of the program

buttons.
When the user clicks the Kill pushbutton, the application handle is re­

trieved from the window words of the button window, and the WinTermi­

nateApp API is called to stop the running program. The code fragment shown

in Figure 2.33 handles the processing of the Kill pushbutton.

THE ES_UNREADABLE ENTRYFIELD comoL STYLE

The entryfield control is one of the most useful standard controls provided by

the Presentation Manager. It provides a powerful mechanism to obtain input

from the user. The entryfield can be customized by subclassing the default

behavior of the control, to provide additional functionality. For example, an

application can create customized numeric entryfields for obtaining phone

numbers or social security numbers. One very important use of this control

is to create a password entryfield. The Presentation Manager code provides

an entryfield style called ES_UNREADABLE that is designed to automate the

masking of the entryfield text as it is typed. Several commercial applications

use this entryfield style to create a password entryfield.

As the name of the entryfield style denotes, the ES_UNREADABLE style

causes the text in the entryfield control to be nonreadable, by replacing

each character entered with an asterisk. An application cannot remove the

ES_UNREADABLE style bit. Although this style has a practical use for creat­

ing a password entryfield, it does not provide a complete security mechanism

for mission critical applications. Programmers with an application that has

strict security requirements should rethink the design of their application and

Tiie ESJJIREADAIU EntryfteJd Control Style 47

D:\CALC\SMMA TH.EXE
D:\ TOOLS\CDEXPL.EXE
0:\ TOOLS\PMFILE.EXE
D:\PASSPORT\PAS2A.EXE

___ QK--~' _I __ Ki_u__,I _, -~-e_'P__,

Flgn 2.31 Viewing the Program List array.

II These are the program buttons indicating that th
, e user wants to start

II a program, so let's oblige!
case BID_PROGRAMl :
case BIO_PROGRAM2 :
case BID_PROGRAM3:
case BID_PROGRAM4:
case BID_PROGRAMS:
case BID_PROGRAM6:
case BID_PROGRAM7:
case BID_PROGRAM8 :

if (pszAppName [CMD_MSGJ)
{

ulSID = StartAppl i cation(pszAppName[CMD_MSGI , pszParams (CMO MSG) 0 l"""""-
)

- , , u . ,.r..,e[CMD_lfSG)) ;

if (!ulSID)
(

DisplayMessages (ERROR_STARTING_PROGRAM, NULLllANDLE, MSG EXCLAMATION) ·

return FALSE; - '

)

II The ~tar~ppl~c~tions routine returns a HAPP which i s actually the

II session ~dent 1f1er. We wil l store the HAPP in the window words of

II button win~, that way we can cal l WinTerninateApp i f the user

II wants to kill a program they s tarted frOll BUTTONS.

h~dProgram = WinWindowFromID (hwnd, CMD_HSG);

W1n5etWindowULong(hwndProgram, QWL_USER, ulSID) ;
return FALSE;

Flpre 2.32 Starting the application and storing the HAPP In the window words.

48 Gaining Control: Mastering the Standard PM Control Windows

case DID..JtIIJ .. :
uslndex = (USHORT) WinSendDlgitemMsg(hwnd, IDL_PROGLIST, LM_QUERYSELECTION, MPFROM2SHORT(4, 0), 0);

uslndex + 4;

hwndButton: WinWindowFromJDfhwndClient , usi ndexl;
ulSID = WinQueryWindowULong{hwndButton, QWL_USl!Rl;

if (ulSID)
I

l

II User has asked to kill t he application
WinTerminateApp(ulSIDI;

II Reset window words so that the next time the user
II asks to kill the pregram and it is not started, they
fl get the error message indicating that the program is
// not currently running.
WinSetWindowULong(hwndButton. QWL_USBR. NULLHANOLE) ;

else
(
DisplayMessages(ERROR_PROG~OT_RUNNING, NULLHANOLE, MSG_EXCLAMATION);

I

return l'ALSE;

Figure 2.33 Terminating the application.

implement additional security functionality. Getting at the actual text entered
by the user can still be quite simple as shown in Figure 2.34.

Figure 2.34 shows how simple it can be to obtain the entryfield text even
with the ES_UNREADABLE style by setting a breakpoint on the WinQuery­
WindowText function that will be used to extract the entryfield text.

Using the Delete Key with the Entryfield Control
The Delete key will delete either the current selection or the next character if
there is no text selected within the entryfield. The Shift+ Del key combination
corresponds to the cut clipboard operation, only if there is selected text within
the entryfield. If no text is selected, the key combination merely deletes the next
character as if only the delete key was pressed, no text is cut to the clipboard.
The Ctrl+Del key combination works by deleting from the cursor insertion
point to the end of the entryfield.

Tbe ESJllRWABLE Entryfteld Control Style 49

Ilg
eax=00000009 ebx=OOOOdbOe ecx=OOOOOOOO edx=92e0014f esi=00000004 edi~00003c54

eip=0000be79 esp=00009f26 ebp=00009f4e iopl=2 -- -- -- nv up ei pl nz na pe nc
cs=bdbf ss=OOlf ds=9077 es=014f fs=150b gs=07cb cr-2=00030000 cr3• 001d6000
pmwin :_FRAMEMGR:WINQUERYWINDOWfEXT:
bdbf :OOOObe79 b827be mov ax,DGROUP (be27) ;brO

##p
eax=OOOObe27 ebx=OOOOdhOe ecx=OOOOOOOO edx=92e0014f esi=00000004 edi=00003c54
eip=0000be7c esp=00009f26 ebp=00009f4e iopl=2 - - -- -- nv up ei pl nz na pe nc
cs=bdbf ss=OOlf ds=9077 es=014f fs=150b gs=07cb cr2- 00030000 cr3• 00ld6000
bdbf:OOOObe7c 55 push bp

Up
eax=0000be27 ebx=OOOOdhOe ecx=OOOOOOOO edx=92e0014f esi-00000004 edi=00003c54
eip~0000be7d esp=00009f24 ebp=00009f4e iopl- 2 -- -- -- nv up ei pl nz na pe nc
cs=bdbf ss=OOlf ds=9077 es=014f fs=150b gs=07cb cr2=00038804 cr3=001d6000
bdbf :OOOObe7d Bbec mov bp,sp

Hp
eaxs0000be27 ebx=OOOOdhOe ecx=OOOOOOOO edx- 92e0014f esi=00000004 edi=00003c54
eip=0000be7f esp=00009f24 ebp=00009f24 iopl=2 -- -- -- nv up ei pl nz na pe nc
cs=bdbf ss=OOlf ds=9077 es~014f fs=150b gs=07cb cr2=00038804 cr3=001d6000
bdbf:OOOObe7f le push ds

Hdw ss :bp
001f :00009f24 9f4e d158 908f dh44 014f 0009 8de8 39d0
001f:00009f34 90b7 dhOe 014f 0000 bl67 9f50 dlcO bdb7
001f:00009f44 9f6a OOlf OOOa 0000 0000 9f7a 30al 90bf
001f:000 09f54 0008 0009 lfd6 017f BdeB 39d0 90b7 3523
00lf :00009f64 0000 0400 9f00 3623 0000 l f5c 0004 OOac
001f:00009f74 aa2f 8de8 39d0 9f92 2f09 90bf a922 OOlf
001f :00009f84 8023 lfd6 017f 0008 0009 7f27 0001 9faa
001f: 00009f94 08cc 7f57 0009 lfd6 017f 8023 a922 OOlf

Udh 14f:dh44
014f :0000dh44 4d 55 52 50 48 59 00 00-00 59 22 00 ae le 7f 01 MURPHY .. . Y"

I I The user's password was MURPHY. Wonder if it's the same guy with the law???

Figure 2.34 Getting at the password.

Validating the Entryfleld
There may be times that an application will need to validate the contents of an
entryfield before the user interacts with another control window that would
normally handle the processing of the entryfield. The code fragment shown
in Figure 2.35 is used to validate the contents of the program file entryfield
whenever the focus is switched away from this entryfield.

case WlCCONTROL:
if (SHORTlFROMMP(mpl) := IDE_EXECUTABLE)

(

switch (SHORT2FROMMP lmpl})
{

II Now check to see if the user has changed the focus
fl away from the Program File entryfield by handling the
II EN_KILLFOCUS notification message.
case EN_KILLFOCUS:

break;

II Since focus is switching away from the entryfield
II check to see if the actual text has been modified
II by the user . The new text is stored in szBuffer
If and will be compared to the original text
JI that is stor ed in szEntryField.
hwndEntryField = Wi nWindowFromtO[hwnd, IDE_EXECUTABLE);
WinQueryWindowText thwndEntryField , sizeof(szBuffer l , szBuffer };

re = strcmp(szEntryField, szBuffer)
if (rct

(
/I If the text of the entryfield after the entryfield focus switch
/I does not match the original program file, this means the
II user has modified the text in the entryfield, so we want
II to reset the Program Type radiobuttons to indicate that t he
/I program type is the default. Of course, all of this will be
II lost if the user does not select the Apply/save pushbuttons to
II record the changes.
WinSendDlgitemMsg(hwnd, IDR_DEFAULT, BM_SETCHECK, MPFROMSHORT [l), MPFROMLONG (GL)I ;

/I A little recursion here. We first call Updatelcon to try and
II set the icon based on the text in the entryfield. If all goes
II well the entryfield contains a valid path and filename for an
II executable program. However, if no icon can be pulled from the
II executable, it probably means our EXE program is totally bogus
II so we will call Updateicon agai n, only this time with a NULLHANDLE
// as the last parameter. A NULLHANDLE indicates that the stat ic icon
II should be changed to the system pointer for a question mark???
/I This little hack is much faster than actually validating the
/I executable ... The question mark i con provides a visual clue to
/I the user that the path and filename for the executable is probably
/I not valid and therefore, they should not Apply/Save the changes.
re= Updatelcon(hwnd, ID_MAINWND, szBufferJ;
if (! re l

(

Updatelcon (hwnd, IO_MAINWND, NULLHANDLE);
)

return FJU.S! ;

Figure 2.35 Validating the program Ille entryfleld.

50

Updating Ille Program Buttons 51

Typically, the text entered by a user within an entryfield is processed when
the user interacts with some other control window, like a pushbutton, or when
a window is closed. For example, when a button is pressed a WM-COMMAND
message is generated and sent to the owner window. Within the context of this
message the text of the entryfield can be queried and the appropriate processing
of the user input can occur. However, there are times that an application may
need to process the entryfield text immediately after it is changed by the user.

The Configure Program Buttons dialog box uses the code fragment shown
in Figure 2.35 to ensure that the user has entered a valid executable path
and filename in the Program File entryfield. The Program File entryfield
corresponds to the IDE.EXECUTABLE identifier. The code handles the
EN..KILLFOCUS notification control message. The EN..KILLFOCUS noti­
fication code is received whenever the specified entryfield control is about to
lose the cursor input focus. Since this message will only be received when
focus is switched away from the entryfield, it will not occur unless the user
has changed the contents of the entryfield, since the entryfield is not the initial
control that receives focus within this dialog.

The szEntryField string contains the initial text representing the specified
executable path and filename. As the user shifts the input focus away from the
Program File entryfield, for example by pressing the tab key, the current text
in the entryfield is compared against the text in the szEntryField string. If the
strings do not match a BM_SETCHECK message is sent to the default program
type radiobutton. Finally, the Updatelcon routine is called to update the static
icon with the new program icon. If the icon cannot be obtained, the path and
filename for the specified program is assumed to be invalid, so the Updatelcon
routine is called again to change the static icon to a question mark.

UPDATING THE PROGRAM BUTIONS

The Updatelcon routine handles the updating of the static icon shown in
the Configure Program Buttons dialog, but what about updating the actual
program buttons once the user makes a change to the program list array? The
answer is the UpdateBtnlcon function. This routine is similar in concept to
the Updatelcon routine, except the code works by updating the icon drawn on
the button control, rather than an icon drawn on a static control.

The source code listing in Figure 2.36 shows how the program buttons
are updated whenever the user selects the Apply button. The UpdateBtnlcon
routine, is used to change the icon that is drawn on the program buttons to
correspond to the new executable program that was specified by the user.

The code works by sending a WM_SETWINDOWPARAMS message to the
pushbutton window. The mp1 parameter of the message contains the address
of a WNDPARAMS structure containing a pointer to a button control data

52 Gaining Control: Mastering the Standard PM Control Windows

VOID UpdateBtnicon(HWND hwndDlg, ULONG uliconID, PSZ pszicon)
{

HWND hwndButton;
HPOINTER hptr;
BOOL re;
WNDPARAMS wp
BTNCDATA bed;

bed.Cb = sizeof(BTNCDATA);
wp.fsStatus = WPM_CTLDATA;
wp.pCtlData = &bed;

hwndButton = WinWindowFromID(hwndDlg, uliconID);
WinShowWindow(hwndButton, FALSE);
WinSendMsg(hwndButton, WM_QUERYWINOOWPARAMS, (MPARAM)&wp, NULL);
bed.himage = WinLoadFileicon(pszicon, FALSE);
WinSendMsg(hwndButton, WM_SE'IWINDOWPARAMS, (MPARAM)&wp, NULL);
WinShowWindow(hwndButton, TRUE);

return;

Figure 2.36 Changing the program buttons on the control panel.

structure, BTNCDATA. The hlmage element of the BTNCDATA structure con­
tains the handle of the icon for the new executable program. The icon is loaded
from the executable by calling the WlnLoadFilelcon APL

CHANGING THE ICON ASSOCIATED WITH AN EXECUTABLE

The Configure Program Buttons dialog box contain two pushbuttons that al­
low the user to change the icon that is associated with an executable. The
pushbutton labeled Icon will use the standard file dialog to allow the user to
specify the icon file that Changelcon function will use to change a program's
icon. The Default pushbutton will reset the icon back to the original program
icon. The Changelcon function is shown in Figure 2.37.

The Changelcon function allows the user to specify a different icon for
a program in much the same way as the workplace shell does. The function
uses the WinSetFilelcon API to store the icon file in the executable's extended
attribute information. The WinSetFilelcon API uses an ICONINFO structure
to set the icon information. The {Format element of the structure is used to
determine whether the function should store new icon data in the extended
attribute information, or clear the icon data thus restoring the icon back to the
default icon for the executable. If the {Format element is set to ICON_FILE,

Cbangl1g the le• Associated wltll an Exaclltable 53

BOOL Changeicon(HWND hwndDlg, ULONG uliconID, PSZ pszExecutable, PSZ pszicon)
{

BOOL re ;
ICONINFO iconinfo;

if (! pszicon)
{

iconinfo.fFormat
}

else
{

iconinfo.fFonnat
}

iconinfo . cb
iconinfo.pszFileNarne
iconinfo.hrnod
iconinfo.resid
iconinfo.cbiconData
iconinfo.piconData

= ICON_CLEAR;

= ICON_FILE;

= sizeof(ICONINFO);
= pszicon;
= (HMODULE)NULL;
= NULLHANDLE ;
= NULLHANDLE;
= (PVOID)NULL;

re= WinSetFileicon(pszExecutabl e, &iconinfo) ;
if (re ! = TRUE)

{

}

DisplayMessages(ERROR_CHANGING_ICON , NULLHANDLE, MSG_ERROR);
return FALSE;

Updateicon(hwndDlg, uliconID, pszExecutable);
return TRUE;

Figure 2.37 Tiie Changelcon function.

the new icon will be stored. If the {Format element is set to ICON.CLEAR. the
default icon information is restored. The ICON_CLEAR value is used whenever
the user clicks the Default pushbutton. The last two parameters of the Change­
Icon function, pszExecutable and psz/con, correspond to the executable fi le
and the icon file.

The function will return TRUE if successful and FALSE if an error occurs.
If the function is successful, it will call the Updatelcon routine to update the
static icon, to reflect the new icon stored for the executable program. It is
important to note that the WinSetFilelcon function will fail if the program is
already running when the user attempts to change the icon. If this is the case,
the DisplayMessages function will be called to give the user a meaningful error
message.

54 Gaining Control: Mastering the Standard PM Control Windows

DISPLAYING MESSAGES

It is important for PM applications to reuse code whenever possible. The
SHCOMMON code located on Wiley's FfP• site provides a common set of
functions that are used throughout several of the sample programs. The Dis­
playMessages function is used by every sample program. The purpose of this
function is to provide a message to the user, indicating that the user may
have to take an appropriate action based on the type of message. There are
essentially four types of messages that this function can display.

• A message indicating a fatal error has occurred.
• A cautionary warning message.
• A warning messages that requires a Yes or No response.
• A message that is used to display information.

The DisplayMessages function uses the WinMessageBox API to display the
message box containing the message information. The text to be displayed in
the message box can either be loaded from a stringtable, or specified directly by
the caller. The first parameter, ulMessagelD, corresponds to the string resource
identifier. If the caller of the function wishes to bypass the stringtable and
simply pass a text string, then the caller must set the ulMessagel D parameter
to zero and the pchText parameter to the text string. The function uses the
WlnLoadString API to load the text string from the stringtable resource. The
function will return the value returned by the WinMessageBox APL The source
code for the DisplayMessages function is shown in Figure 2.38.

USHORT DisplayMessages{ULONG ulMessageID, PCH pchText, USHORT usMsgType)
{

CHAR szTempString{CCHMAXPATH);
PSZ pszMessageString;
APIRET r e;
HAB hab;

f l If a valid ulMessageID {a non-zero value) was passed, then we need to
I I load the appropriate message from the message/string tabl e. Otherwise
I I if ulMessageID is NULLHANDLE, then pchText contains the text t o be displayed.
hab = WinQueryAnchorBlock(HWND_DESKTOP);

if {ulMessageID)
{

re= WinLoadString(hab, (HMODULE)O, ulMessageID, sizeof{szTempStringl, szTempString);
if (re =~ FALSE)

{
DosBeep(lOOO, 1000);

Figure 2.38 The DlsplayMessages function. continued

•information regarding Wiley's FTP site can be found in the Appendix on page 537.

else
{

else
{

pszHessageString - szTernpString;
)

pszMessageString = pchText;
)

switch(usHsgTypel
(
case HSG_ERROR:

re = WinMessageBox (HWND_DESKTOP,
HWND_DESKTOP,
pszMessageString,
TITLEBAR,
ID_MESSAGEBOX,

break;
MB_OK I MB_SYSTEMMO.DAL MB_MOVEABLE I MB_ERROR) j

case MSG_WARNING:
re = WinMessageBox{HWND_DESKTOP,

HWND_DESKTOP,
pszMessageString,
TITLEBAR,
ID_MESSAGEBOX,

break;
MB_MOVEABLE I MB_ICONQUESTION I MB YESNO I MB_DEFBUTl'ONl);

case MSG_EXCLAMATION:
re = Wi nMessageBox (HWND_DESKTOP,

HWND_DESKTOP,
pszMessageString,
TITLEBAR,
IO_MESSAGEBOX,

break
MB_MOVEABLE I MB_ICONEXCLAMATION I MB_OK I MB_DEFBUTTONl) ;

case MSG_INFO:
re = WinMessageBox (HWND_DESKTOP,

HWND_DESKTOP I
pszHessageString,
TITLEBAR,
ID_MESSAGEBOX,

break;
MB_MOVEABLE I MB_ICONASTERISK I MB_OK I MB_DEFBUTTONl);

return re;

Figure 2.38 The DlsplayMessages lunctlon.

55

56 Gaining Control: Mastering the Standard PM Control Windows

REMOVING THE STANDARD FRAME CONTROLS

The SHCOMMON code provided with the sample programs, contains another
handy little routine called HldeControls, that is used to toggle the visibility
of the titlebar, action bar, system menu, and minimize/maximize buttons. This
function allows the user the ability to display only the BUTTONS control panel
without the default frame control windows. The source code for the function
is shown in Figure 2.39.

The HfdeControls function takes a single parameter, the handle of the
frame window, whose controls are to be removed and works as a toggle. The
first time it is called, the controls are hidden. The next time the function is
called, the controls are made visible. The function uses a flag called bHidden
to control the toggle state. The function first obtains the window handles of the
controls from their associated frame identifiers. In order to hide the controls,
the parent window is changed to HWND_OBJECT via the WlnSetParent APL
The controls are made visible by resetting the parent of the controls to the
frame window. Finally, a WM_UPDATEFRAME message is sent to the frame
window to inform the frame window that the controls have been updated.

USING THE TITLEBAR CONTROL

The titlebar control window is a very unique control window. Normally, an
application should not have a need to alter the titlebar. However, there may
be times that an application may require modifying the text displayed in the
title bar. If you are writing an application like a text editor for example, it makes
sense to display the edited path and filename within the titlebar. However, if
your application is constantly modifying the titlebar text, it can become an eye
sore to watch the titlebar constantly changing. Instead of actually modifying
the titlebar text, an application can alternatively choose to create a status bar
by using the WinDrawBorder APL

An application can use the WinSetWindowText API to modify the frame
window text, causing the titlebar text to change. However, if an application
uses the WinSetWindowText API, specifying the frame window handle as the
first parameter, the titlebar text cannot exceed 60 characters. All characters
exceeding 60 will be truncated. This may not be ideal if you are writing an
editor program, since HPFS allows for long filenames, and with sub-directories
it is easy to exceed the 60 character limit. If you need the titlebar to exceed 60
characters, you need to directly set the window text of the titlebar by calling
the WinSetWindowText APL Instead of specifying the frame window handle,
however, use the titlebar window handle, which can be obtained by calling
the WinWindowFromID API with the frame window handle and the frame
identifier FID_TITLEBAR.

VOID HideControls(HWND hwndFrame)
{

Ustng the Tltlebar Control 57

static HWND hwndTitleBar;
static HWND hwndSysMenu;
static HWND hwndAppMenu;
static HWND hwnd.MinMax ;
static BOOL bHidden = FALSE;

II Must be static for initial invocation
II Must be static for initial invocation
II Must be static for initial invocation
II Must be static for initial invocation
II Must be static for initial invocation

II If bHidden is not TRUE, this means that we want to hide the controls so
II we will obtains handles to all of the control windows by querying th~
II frame window identifiers. Then we will remove the controls by setting the
II parent windows to HWND_OBJECT rather than the frame. The frame controls
II are restored by resetting the parent windows back to the frame window. This
II allows us to temporily remove the frame control windows without destroying
II them explicitly.

if (!bHidden) II Hide Frame Control Windows
{

hwndTitleBar = WinWindowFromID(hwndFrame, FID_TITLEBAR);
hwndSysMenu = WinWindowFromID(hwndFrame, FID_SYSMENU);
hwndAppMenu = WinWindowFromID(hwndFrame, FID_MENU);
hwndMinMax = WinWindowFromID(hwndFrame, FID_.MINMAX);

WinSetParent(hwndTitleBar,
WinSetParent(hwndSysMenu,
WinSetParent(hwndAppMenu,
WinSetParent(hwnd.MinMax,

HWND_OBJECT, FALSE);
HWND_OBJECT, FALSE) ;
HWND_OBJECT I FALSE) ;
HWND_OBJECT, FALSE) ;

WinSend.Msg(hwndFrame, WM_UPDATEFRAME, (MPARAM) (FCF_TITLEBAR I FCF_MENU I FCF_SYSMENU I
FCF_MINBUTTON), NULL);

bHidden = TRUE;
)

else II Show Frame Control Windows
(

WinSetParent(hwndTitleBar,
WinSetParent(hwndSysMenu,
WinSetParent(hwndAppMenu,
WinSetParent(hwnd.MinMax,

hwndFrame,
hwndFrame,
hwndFrame,
hwndFrame,

FALSE) ;
FALSE) ;
FALSE);
FALSE) ;

WinSendMsg(hwndFrame, WM_UPDATEFRAME, (MPARAM) (FCF_TITLEBAR I FCF_MENU I FCF_SYSMENU

bHidden = FALSE;
)

PCF _MINBUTI'ON) , NULL) ;

return;
)

Flg11re 2.39 The HldeControls function.

58 Gaining Control: Mastering the Standard PM Control Windows

II where LONGTITLEBAR represents a string greater than 60 characters
hwndTitleBar = WinWindowFrornID(hwndFrame, FID_TITLEBAR);
WinSetWindowText(hwndTitleBar, LONGTITLEBAR);

Figure 2.40 Setting the tlllebar window text.

The 60 character truncation of the titlebar text is a result of the default
frame window processing using the MAXNAMEL constant, which is defined as
60. As a result of default frame window processing the frame window receives
a WM_SETWINDOWPARAMS message containing the window text that is to
be set by the WinSetWindowText APL A worker routine truncates the text to
the 60 character limit. If the application explicitly modifies the titlebar window
text, the default frame window processing is avoided and the limit is the size
of the titlebar itself. The code fragment shown in Figure 2.40 allows for the
titlebar window text to exceed 60 characters.

SUMMARY

The Presentation Manager environment contains a rich, functional set of con­
trols that allow the developer to provide a consistent user interface to the
application end user. The usage of the standard PM controls can make or
break an application depending on how the user interacts with the controls.
To make the interface as intuitive as possible is the ultimate goal of any PM­
based application, and the Presentation Manager itself. The basic PM controls
are used throughout the sample programs in this book and should be common­
place to experienced PM developers. The intent of this chapter was to review
some of the more important control concepts, and demonstrate how to max­
imize the effectiveness of the basic PM controls provided by the Presentation
Manager components. The concepts discussed throughout the chapter and the
source code for the BUTTONS program provide all of the elements required
to master the standard PM controls.

CHAPTER

Mastering the Keyboard
Interface and Scrolling
Functionality

E xcept for direct textual input, the pointing device has become the primary
mechaD:ism for interacting with PM applications. In fact, applications are
often tailored to ensure that significant portions of the application's func­

tionality are accessible with the mouse or other pointing device. Unfortunately,
these same applications often neglect to ensure that all functionality is accessi­
ble via the keyboard. This omission can be a burden to the user when a machine
is not equipped with a pointing device or when the user simply prefers to use
the keyboard. In order to help programmers provide keyboard accessibility,
this chapter examines how applications receive and process keyboard input.

The chapter also examines scrolling, an important feature for all applica­
tions that must present more information than can be conveniently displayed
on the screen. The standard keys defined for scrolling with the keyboard and
the scroll bar control will both be discussed.

PROCESSING KEYBOARD INPUT

When the system receives input from the keyboard, the input is first stored in
the system message queue and then later posted to an application queue in the
form of a WM_CHAR message. The queue to which the message is eventually
posted is based on the window that has currently been given the input focus
when the keystroke is removed from the system message queue.

When the WM_ CHAR message is placed in the application's message queue,
it contains the raw keyboard scan code and, if one exists, the matching ASCII

59

m

60 Mastering the Keyboard Interface and Scrolling functionality

character or virtual key value. (Virtual keys are common keyboard keys, such as

HOME and INSERT. which do not have a defined ASCII representation.) When

the application calls WinGetMessage or WinPeekMessage, the WM_ CHAR mes­

sage is removed from the message queue and a check is made to determine

if the character matches an accelerator, or shortcut, key. If so, the message

is changed into a WM_SYSCOMMAND, WM_COMMAND, or WM..HELP mes­

sage. If the WM_SYSCOMMAND or WM.COMMAND message corresponds to

a disabled menu item, the message is modified to WM..NULL before being

returned to the application.

THE WM.CHAR MESSAGE

Thus, the application need not concern itself with translation and may process

any WM_CHAR messages received as actual keystrokes. The mpl and mp2

parameters passed with the WM_CHAR message contain five separate fields of

information. Parameter mpl contains three fields:

• fsflags is the low-order word of mpl and holds a number offlags indicating

the state of the keyboard when the keystroke was received and the validity

of the remaining fields. These flags are enumerated below.

• ucrepeat is the low-order byte of the high-order word of mpl (accessed us­

ing CHAR3FROMMP). This field normally contains the value 1; however,

when a key is pressed and held for a period of time, the application may

not be able to process WM..CHAR messages quickly enough to prevent the

system message queue from becoming full. When this happens, the system

gathers the duplicated WM_CHAR messages into one message and sets

ucrepeat to the actual number of keystrokes received.

• ucscancode is the high-order byte of the high-order word of mpl (accessed

using CHAR4FROMMP). If the KC-SCANCODE flag is set in fsftags, the

field contains the actual scan code transmitted by the keyboard.

Parameter mp2 contains the remaining two fields:

• usch is the low-order word of mp2. If the appropriate flags are set in

fsflags, this field contains the ASCII value that maps to the keyboard scan

code.
• usvk is the high-order word of mp2. If the KC VIRTUALKEY flag is set in

fsflags, this field contains the virtual key that maps to the keyboard scan

code. Virtual keys are defined to match the function, direction, and other

nonprintable keys on the keyboard.

The application must examine the fsflags field to determine how the key­

board input should be handled. The field contains a set of flag bits defined

as:

KC-SCAN CODE

KCJ<EYUP

KC.PREVDOWN

KLTOGGLE

KC-LONEKEY

KC-VIRTUAL.KEY

KC.CHAR

KC.CTRL

The WM.CHAR Message 61

Ox0004 indicates that the ucscancode field contains valid data. This

flag is normally set on all input from the keyboard, but

would typically be clear when another window posted the
WM_CHAR message.

Ox0040 indicates that a key has been released. For consistency with

the system's translation of accelerators, applications should

normally ignore all WM.CHAR messages with this flag set.

Ox0080 indicates that the previous WM.CHAR message for this key

represented a key down event. This flag is set when a key is

pressed and held such that multiple keystrokes are received;

otherwise, a WM_CHAR message with the KC-KEYUP flag
set would have been received.

OxlOOO is set on every other instance of a given key being pressed.

While this flag is valid for all keys, it is typically only im-
portant for keys such as CAPS LOCK which have a defined

on-off state. Note that the toggle state is global-if focus

changes between instances of a given key stroke, an appli-
cation may receive consecutive occurrences of a keystroke
without the toggle state changing.

Ox0100 is set in conjunction with KLKEYUP to indicate that no

other key transitions have occurred since the downstroke

of the key. For example, pressing the CTRL key followed by

an alphabetic key, and then releasing first the alphabetic key

followed by the CTRL key, the Kc_LONEKEY flag will be set

on the WM_CHAR message for the release of the alphabetic

key. If the CTRL key is released first, the KC.LONE.KEY flag

is not set. Note that the system can be forced to perform

accelerator translation on the release of a key by setting the

LONEKEY flag in the accelerator table entry for the key.

Ox0002 indicates that the usvk field contains valid data. If this

flag is not set, usvk should be ignored. This flag is nor-

mally set when a function key or other key that does not
have a "normal" ASCII translation is pressed. In a few in-

stances, such as when the TAB or ENTER key is pressed,

both KC. VIRTUALKEY and KC_CHAR are set indicating
that usvk contains the virtual key representation of the key

and usch contains the ASCII representation for the key.

KC_ VIRTUALKEY is always set for the numeric keypad keys;
if NUMLOCK is in effect, Kc_CHAR will also be set.

OxOOOl indicates that the usch field contains valid data and that
neither the CTRL or ALT key is pressed.

OxOOlO indicates that the CTRL key was depressed when the mes-
sage was generated. If the KC_ VJRTUALKEY flag is not also

m

62 Mastering the Keyboard Interface and Scrolling Functlonality

KC.ALT Ox0020

KLSHIFT Ox0008

KC..DEADKEY Ox0200

KC_COMPOSITE Ox0400

set, the usch field contains the ASCII character code that
would have been generated had the CTRL key not been de­
pressed.
indicates that the ALT key was depressed when the message
was generaled. If the KL VIRTUALKEY flag is not also set,
the usch field contains the ASCII character code that would
have been generated had the ALT key not been depressed.
indicates that the SHIFT key was depressed when the mes­
sage was generated.
is set in combination with KC_CHAR to indicate that the key
represents a diacritical that must be used in combination
with another key. Text processing applications might draw
the diacritical mark but not advance the cursor until the
following keystroke is entered.
is set in combination with KLCHAR to indicate that usch
contains a character code that represents the combination
of the previous Kc_DEADKEY character and the current
key. The accented vowels of many non-English languages
are typically formed as composite keystrokes.

KC_INVALIDCOMP Ox0800 indicates that the current key cannot be combined with the
previous key to represent a valid combined character.
indicates that the current keystroke cannot be found in the
active translation tables.

KCJNVALIDCHAR Ox2000

Applications that process WM_CHAR messages must check to see that the
desired flags are set and that undesired flags are not set. For example, an
application that processes a particular control character will only consider
WM_CHAR messages with the KC_CTRL flag set. But the application must
also ensure that the KC.ALT and KC_ VIRTUALKEY flags are not set to avoid
processing invalid keystrokes as ordinary control characters. The KC_SHIFT
flag is generally not considered in this instance as the control value of ASCII
characters is the same for both upper- and lowercase. Figure 3.1 shows an
example of the code required to recognize the downstroke of the CTRL+ C
keystroke.

if (! (fsflags & KC_KEYUP)) {
if(fsflags & KC_CTRL &&

! (fsflags & (KC_ALT I KC_VIRTUALKEYI)
if(usch == 'c' I I usch == 'C' l {

I* perform CTRL+C processing */

Figure 3.1 Detecting CTRL+C.

The WM_CHAR Message 63

if (!(fsflags & KC_KEYUP)) { /*normally processed on downstroke */
/ * Process Virtual keys */

if (fsflags & KC_VIRTUALKEY) {
if !fsflags & KC_CTRL && fsflags & KC_ALTI {

if (fsflags & KC_SHIFT) (}/* CTRL+ALT+SHIFT+virtual key */
else (} /* CTRL+ALT+virtual key */

} else if (fsflags & KC_CTRL) {
if (fsflags & KC_SHIFT) { }/* CTRL+SHIF'T+virtual key */
else { } / * CTRL+virtual key */

} else if (fsflags & KC_ALT) {
if (fsflags & KC_SHIFT) { }/* ALT+SHIFT+virtual key */
else { } / * ALT+virtual key */

else {
if (fsflags & KC_SHIFT) }/* SHIFT+virtual key */
else { } /* virtual key */

I* endif */
/ * Process normal , non-virtual keys */
} el se {

i f (fsflags & KC_CTRL && fsflags & KC ALT) {
if (fsflags & KC_SHIFT) { }/* CTRL~ALT+SHIFT+key */
el se { } /* CTRL+ALT+key */

} else if (fsflags & KC_CTRL) {
if (fsflags & KC_SHIFT) (}/* CTRL+SHIFT+key */
else { } /* CTRL+key */

} else if (fsflags & KC_ALT) {
if (fsflags & KC_SHIFT) { }/* ALT+SHIFT+key * /
else { } / * ALT+key */

else if (fsflags & KC_CHAR) {
if (fsflags & KC_SHIFT) { }/ * SHIFT+key */
else { } /* key * /

} / * endif */
} / * endif */

else (
/* handling of KEYUP - normally ignored */

I* endif */

Figure 3.2 General keystroke processing.

An applic~tion, such as a word processor, which processes many different
~eystrokes wtll normally employ a routine that provides handling for most
tf ~ot all types of keystrokes. The application could be programmed using a
senes of IF statements that explicitly check for each combination of set and
unset flags. However, a set of nested IF and ELSE clauses similar to that
shown i°: Figure 3.2 will typically use less memory and execute more quickly.
The routme first checks to see if the message signifies a downstroke· and if
so, it t~en checks. for .a virtual key. If the keystroke represents a virt~al key,
th_e vanous combmat1ons of the CTRL and ALT keys are tested, beginning
with the most complex combination and working down to the situation where

-

64 Mastering the Keyboard Interface and Scrolling Functionality

if (! (fsflags & KC_KEYUP}) {
switch{ fsflags &

fKC_VIRTUALKEY I KC_CHAR I KC_CTRL I KC_ALT I KC_SHIFT})
case KC_VIRTUALKEY KC_ALT I KC_CTRL I KC_SHIFT; { } break;
case KC_VIRTUALKEY KC_ALT KC_CTRL: { } break;
case Kc_VIRTUALKEY KC_ALT KC_SHIFT: (} break;
case KC_VIRTUALKEY KC_ALT: { } break;
case KC_VIRTUALKEY KC_CTRL I KC_SHIFT: { } break;
case KC_VIRTUALKEY KC_CTRL: { } break;
case KC_VIRTUALKEY KC_CHAR I KC_SHIFT: { } break;
case KC_VIRTUALKEY KC_CHAR: { } break;
case KC_VIRTUALKEY KC_SHIFT: { } break ;
case KC VIRTUALKEY: { } break;
case KC=ALT I KC_CTRL I KC_SHIFT: (} break;
case KC_ALT KC_CTRL: (} break;
case KC_ALT KC_SHIFT: { } break;
case KC_ALT: { } break;
case KC_CTRL KC_SHIFT: { } break;
case KC_CTRL: { } break;
case KC_CHAR I KC_SHIFT: { } break;
case Kc_CHAR: { } break;
default: (} break;
}

else {
/ * process KEYUP events */

Figure 3.3 Alternate keystroke processing.

neither key is pressed. This ensures that the proper combination is recognized
without having to explicitly check for unset flags. If KC_VIRTUALKEY is not
set, then the various combinations of KC_CTRL and KLALT are again scanned
to process the various possibilities for a normal ASCII character keystroke.
Note that the KLSHIFI flag is checked within the handling for each of the
KC.CTRL and KC.ALT combinations. This is particularly important for the
ASCII keys, as the shifted state actually modifies the character code in usch,
eliminating the requirement to check for KLSHIFI in most instances.

The requirement to process keystrokes based on the most complex flag
combination can also be achieved by using a SWITCH statement, as shown in
Figure 3.3. In this example, the relevant flags are masked to form the switch
value. A case is then provided for each combination of interest. This method
uses one logical operation and a series of comparisons and is thus extremely
efficient. Since this method explicitly checks for both set and unset flags, the
case statement for any combinations that the application does not process can
be eliminated, allowing that combination to be processed by the default case
and further increasing the efficiency of the operation.

Tbe Keyboard Input Cursor 65

OBTAINING KEYBOARD INPUT

While WM.CHAR messages may be sent from one window to another, the
messages are usually received when a window or one of its owned windows
is the window that currently has the input focus . PM normally gives the focus
to a window when the user clicks the window with the mouse, selects the
window from the task list, or uses one of the navigation keys. However, an
application can give or take the keyboard focus by calling the WinSetFocus
API. The prototype for this function is:

BOOL APIENTRY WinSet Focus (HWND
HWND

Figure 3.4 The WinSetfocus prototype.

hwndDesktop,
hwndFocus);

• The hwndDesktop parameter is a handle of a desktop window or the
HWND__DESKTOP constant.

• The hwndFocus parameter is the handle of the window which is to receive
the keyboard input focus.

The return value indicates the success of the focus change. The value
TRUE indicates that the focus change was successful while a value of FALSE
indicates that an error occurred, typically the result of passing an invalid
window handle. Use this function with care as an arbitrary change of focus
can interrupt work the user is performing in some other application. As a rule,
this function should only be called to change focus to another window in the
current application and only when requested either directly or indirectly by
the user.

A similar API, WinFocusChange, can also be used to assign the keyboard
input focus to another window. The API takes one additional parameter which
allows an application to modify the system's handling of the focus change.

THE KEYBOARD INPUT CURSOR

Just as the mouse pointer shows the user the location affected by mouse input,
the keyboard input cursor informs the user of the location that will be affected
by keyboard input. However, unlike the mouse pointer, the keyboard input
cursor is not automatically handled by the system-application intervention is
required. Only one keyboard input cursor is supported, and an existing cursor
is deleted when another is created. Thus, for proper integration with other
programs, applications that employ a cursor should create the cursor when

66 Mastering the Keyboard Interface and Scrolling Functionality

the window in which the cursor is displayed receives the input focus and should
destroy the cursor when the window loses the input focus. The appearance of
the cursor is specified by the application when the cursor is created. When
operating in insert mode, an application normally creates a narrow'. verti_cal
cursor and positions the cursor between the two characters where msert1on
will occur. When operating in overstrike mode, a cursor that is the width of
the character is created and positioned to overlay the character which will be
replaced by a character keystroke. The application can specify a blinking or
nonblinking cursor which is either solid, half-toned, or transparent.

The WinCreateCursor API is used to create and manipulate the cursor. The
function is prototyped as shown in Figure 3.5.

• The hwnd parameter is the handle of the window where the cursor will be
displayed. . .

• The Ix parameter is a 32-bit integer specifying the x or honzontal coordi-
nate of the left edge of the cursor specified in window coordinates.

• The ly parameter is a 32-bit signed integer specifying the y or vertical co­
ordinate of the bottom edge of the cursor specified in window coordinates.

• The lex parameter is a 32-bit signed integer specifying the width of the
cursor in window coordinates. If lex is set to 0, the width is set to the
system border width specified by the system value SV_CXBORDER.

• The Icy parameter is a 32-bit signed integer specifying the height of the
cursor in window coordinates. If Icy is set to 0, the height is set to the
system border height specified by system value SV_CYBORDER.

• The ulrgf parameter is a 32-bit field containing flags that primarily specify
the appearance of the cursor. The flags are defined as follows:

CURSOR-SOLID OxOOOO indicates that the cursor is to be displayed as a filled
rectangle.

CURSOR-HALFTONE OxOOO 1 indicates that the cursor is to be displayed as a
halftoned filled rectangle.

CURSOR_FRAME Ox0002 indicates that the cursor is to be displayed as a non­
filled rectangle.

BOOL APIENTRY WinCreateCursor(HWND
LONG
LONG
LONG
LONG
UL ONG
PRECTL

Figure 3.5 The WlnCreateCursor prototype.

hwnd,
lx,
ly,
lex,
lcy,
ulrgf,
prclClip) ;

CURSOR-FLASH

CURSOR-SETPOS

The Keyboard Input Cursor 67

Ox0004 indicates that the cursor should alternate between
visible and hidden, that is blink.

Ox8000 indicates that the cursor should maintain its current
characteristics but be moved to the indicated posi­
tion. lex, Icy, and the other bits of ulrgf are ignored
when this flag is set.

• The prclClip parameter is a pointer to a RECTL structure which specifies
the rectangle within which the cursor will be displayed. If the cursor is
moved outside this rectangle, it is clipped and not displayed. This param­
eter may be set to NULL to specify that the clipping rectangle is the area
occupied by hwnd. The actual clipping region is the intersection of the area
specified by prclClip and the area occupied by hwnd. The coordinates of
the clipping rectangle are specified in window coordinates.

WinCreateCursor returns TRUE if the cursor is successfully created. Oth­
erwise, FALSE is returned.

PM maintains a visibility count for the cursor. When this count is zero,
the cursor is visible on the display; when the count is nonzero, the cursor
is hidden. Following creation, the visibility count is set to 1 and thus the
cursor is invisible. The application must call the WlnShowCursor API in order
to reduce the visibility count to zero and make the cursor visible. Each time
WinShowCursor is called to hide the cursor, the visibility count is incremented;
when WlnShowCursor is called to show the cursor, the visibility count is
decremented (unless the current count is already zero). WinShowCursor is
prototyped as shown in Figure 3.6.

• The hwnd parameter is the handle of the window that currently owns the
cursor.

• The fShow parameter is a Boolean value that indicates the desired visibility
of the cursor. If TRUE, the cursor should be shown and the visibility count
is decremented; if FALSE, the cursor should be hidden and the visibility
count is incremented.

The return value indicates the success of the function. A FALSE return in­
dicates that an error occurred; for example, hwnd specified an invalid window
handle, or that an attempt was made to show the cursor when it was already

BOOL APIENTRY WinShowCursor(HWND
BOOL

Figure 3.6 The WlnShowCursor prototype.

hwnd,
fShow) ;

68 Mastering the Keyboard Interface and Scrolling Functionality

BOOL APIENTRY WinDestroyCursor (HWND hwnd } ;

Figure 3.7 The WlnDestroyCursor prototype.

visible. In multithreaded applications, WlnShowCursor must be called from
the same thread that created the cursor.

When an application no longer needs the input cursor or loses the input
focus, the cursor should be destroyed with the WinDestroyCursor APL The
API is prototyped as shown in Figure 3. 7.

• The hwnd parameter is the handle of the window that currently owns the
cursor.

The API return value indicates the success of the function. It will be FALSE
if the window specified by hwnd is not the current owner of the cursor.

Figure 3.8 shows the WM_SETFOCUS message processing for a window
that displays a text insertion cursor. If the window is receiving the focus, the
utility function CalcCurrentPos is called to obtain the coordinates for display­
ing the cursor. WinCreateCursor is then called to create an input cursor at
the calculated location. The lex and Icy parameters are set to zero so that
the system-defined values are used, and prclClip is set to NULL to indicate

USHORT usFocus = SHORTlFROMMP(mp2) ;
LONG lx = 0;
LONG ly = 0;

case WM_SETFOCUS:
if (usFocus) (

/* gaining the focus - create the input cursor •t

/* where should the cursor be positioned •/
CalcCurrentPos(&lx, &ly);

/* create the cursor */
WinCreateCursor(hwnd, lx, ly, 0, 0,

CURSOR_SOLID I CURSOR_FLASH, NULL);

/*make the cursor visible */
WinShowCursor(hwnd, TRUE);

else (
/* losing the focus - destroy the input cursor */
WinDestroyCursor(hwnd);

} /* endif */
return WinDefWindowProc(hwnd, msg, mpl, mp2) ;

Figura 3.8 Processing the WM.SETFOCUS message.

Updating the Display 69

that the window rectangle should serve as the clipping rectangle. Parame­
ter ulrgf is set to create a blinking, solid cursor. After the cursor is created,
WinShowCursor is caUed with £Show set to TRUE to decrement the cursor's
visibility count, causing the cursor to become visible. If the window is losing
the focus, WinDestroyCursor is called to destroy the input cursor.

UPDATING THE DISPLAY

Now that you know the basics of processing keyboard input and managing the
input cursor, let's examine how a text-based application can echo keyboard
input to the display. One means of achieving this function is to update the text
buffers and then repaint the entire window by calling the WinlnvalidateRect
API each time a character is added or deleted. While this method is relatively
simple from a programming standpoint, repainting the entire window is a
time-consuming process which, repeated frequently, can prevent the user from
rapidly entering text.

One alternative is to invalidate only the area of the screen affected by the
input. For example, assume that an application inserts received characters into
existing text. As each character is received, the application must insert the new
character at the proper position in the text and then repaint from the point of
insertion to the end of the line containing the new character-no other text in
the window is affected and thus does not need to be redrawn. In this case, the
application can compute a rectangle which begins at the insertion point and
is wide enough to contain the remaining characters on the line. This rectangle
is then passed to WinlnvalidateRect and only that portion of the window is
repainted. For maximum efficiency, the application's WM_pAINT processing
should locate the text that corresponds to the invalid rectangle and only issue
drawing orders for that text.

A second alternative removes the need to call WinlnvalidateRect and then
calculate the proper text for redrawing. With this method, the application
obtains a presentation space for the window using the WinGetPS API, draws
the text, and then releases the presentation space using the WinReleasePS
APL Figure 3.9 provides an example of the code to implement this method.
The function lnsertCharacter is called from the WM~CHAR processing to
place a new character into the text buffer. A pointer to a control structure
that maintains the current insert position in the text buffer and a pointer to
an array of line data structures that contain the text for each line, are stored
in the window instance data. After retrieving the pointer to the structure
from the window data, the function sets a pointer to the line data structure
for the current line. A new text buffer is then allocated to hold the current
text plus the new character and the zero terminator character. The old text
before the insertion point is then copied to the new string. The new charac­
ter is then added and the remainder of the current line is copied to the new

70 Mastering the Keyboard Interface and Scrolling Functionality

buffer. InsertCharacter then calls routine CalcCurrentPos to determine the
coordinate of the lower left comer of the current insertion point. This point
is used as the lower left comer of the rectangle to be drawn and, assuming
a monospaced font, the upper edge of the rectangle is calculated based on
the height of characters; and the right edge is calculated by multiplying the
number of characters remaining on the line by the width of a character. The
application now has the text to be drawn and the rectangle within which to
draw the text.

Next, WinShowCursor is called to hide the input cursor to prevent cor­
ruption from the display of the cursor. WinGetPS is then called to obtain a
presentation space for drawing, the text is drawn using the WinDrawText API
(see Chapter 16 for a detailed treatment of this API), and the presentation
space is released with a call to WinReleasePS. The operation is completed by
freeing the memory for the original text string and changing the text pointer
in the current line structure to point to the newly allocated text buffer. The
current insertion point is updated to the next column, and the new cursor
position is calculated by adding the width of a character to the old position.
WinCreateCursor is then called with the CURSOR..SETPOS flag to move the
cursor to the new location, and WinShowCursor is called to make the cursor
visible again.

Removing a character is handled in much the same manner. The primary
difference is that the rectangle must be extended one character beyond the
end of the text to erase the location where the last character of the line was
previously displayed.

This discussion has assumed that monospaced fonts are used. These fonts
allow the application to assume that the characters are essentially placed on a
grid, allowing the display coordinates of a character to be derived with simple
mathematical calculations. If the application allows proportional fonts to be
used, the position of any given character is best determined by calling the
GpiQueryCharStringPos API. This function returns an array that contains the
coordinates of each character. See Chapter 16 for detailed information on this
APL

stati c void InsertCharacter (HWND hwnd, char chinsert)
{

/* See the sample program accompanying this chapter for a */
/* full description of the PAPP_DATA and PLINE data types */
PAPP_OATA pAppData = (PAPP_DATA)NULL;
PLINE pline = (PLINE)NULL;
HPS hps;
PSZ pszNewText = (PSZ)NULL;
RECTL rectlText;

figure 3.9 Drawing Inserted characters. continued

Updatl19 Ille DltpllJ 71

/* insure that window control data exists and file is open */
pAppData = [PAPP_OATA)WinQueryWindowPtr[hwnd, APP_OATA_POINTER);
if (pAppData != (PAPP_OATA)NULL) {

/*Get pointer to control structure for current line */
pl ine = pAppData->plineCurLine;

I* all ocate a new text buffer */
pszNewText = [PSZ)malloc(strlen(pline->pszText) + 2);
if (pszNewText != (PSZ)NULL) {

/* copy over old text that is before the current position */
strncpy(pszNewText, pline->pszText, pAppData->lCurCol);

/* insert new character */
pszNewText(pAppData->lCurCol J = chinsert;
pszNewText[pAppData->lCurCol + 1 J = '\0';

/* copy over text following current position */
strcat(pszNewText, &pline->pszText[pAppData->lCurCol);

/* get window coordinates of current position */
CalcCurrentPos(hwnd, pAppData,

&rectlText.xLeft, &rectlText .yBottom) ;
/* determine width of remaining text and add to current pos */

rectlText.xRight = strlen[&pszNewText[pAppOata->lCurCol]) *
pAppData->lWidth + rectlText.xLeft ;

I* add height to current pos */
rectlText.yTop = rectlText.yBottom + pAppData->lHeight;

/* hide the cursor during output */
WinShowCursor[hwnd, FALSE);

/* obtain presentation space for the window*/
hps = WinGetPS(hwnd);

/* draw the text */
WinDrawText(hps, -1, &pszNewText [pAppData->lCurCol], &rectlText,

0, o, DT_TOP I DT_LEFT l DT_TEXTATTRS I DT_ERASERECT) ;
/* and release the PS */

WinReleasePS(hps);
/* get rid of old buffer and store new one in control struct */

free(pline->pszText);
pline->pszText = pszNewText;

/* advance current l ocation and cursor by one character */
rect lText.xLeft += pAppOata->lWidth;
pAppData->lCurCol++;

I* move and redisplay the cursor */
WinCreateCursor(hwnd, rectlText.xLeft , rectlText.yBott om,

0, 0, CURSOR_SETPOS, NULL) ;
WinShowCursor(hwnd, TRUE);

/* endif */
/* endif */

return;

Flgn 3.9 Drawing Inserted characters.

72 Mastering the Keyboard Interface and Scrolllng Functionality

Function InsertCharacter would normally be called whenever a normal
ASCII key is received. Receipt of a virtual key would not normally cause this
routine to be called, however, some of the virtual keys are typically processed
in text editing applications. For example, the keyboard directional keys (ar­
rows, PAGE UP, PAGE DOWN, and so on) are typically assigned to functions
that allow the user to move the input cursor within the text and/or to cause
different portions of the text to be displayed on the screen. These keys provide
keyboard access to the functionality that is available to mouse users via the
scroll bar controls. Discussion of the programming techniques for these keys
will therefore be deferred to the following section which describes the scroll
bar control.

THE SCROLL BAR CONTROL

The scroll bar control graphically represents a finite range of values from which
a single value has been selected and allows the user to select a value within
the prescribed range. Visually, the control consists of a background area, the
bar, representing the entire range of selectable values; a slider representing
the currently selected value; and arrow icons at each end of the bar which can
be used to incrementally change the selected value. The slider portion of the
scroll bar can itself be sized to indicate a range of values within the greater
range specified by the bar, for example, the slider can represent the portion of
a file which is actually displayed within a window. Scroll bars can be displayed
either vertically or horizontally.

In the past, the scroll bar was often used for data input; for example,
three scroll bars could be used to represent and select the red, green, and
blue components of an RGB color value. New applications should use slider
controls (see Chapter 11) for data input and restrict their usage of the scroll
bar to its intended purpose, indicating and controlling that portion of a set of
data that is displayed within a window.

Scroll bar controls may be explicitly created by an application; however,
they are normally included as part of another control type or by specifying the
FCF.VERTSCROLL and/or FCF.HORZSCROLL flags when a frame window
is created. When created in the latter fashion, horizontal scroll bars extend the
width of the client area and vertical scroll bars extend the height of the client
area.

Scroll Bar Styles

SBS..HORZ

Five class-specific styles are available to modify the behavior and appearance
of the scroll bar. These flags are:

OxOOOO causes the control to act as a horizontal scroll bar; issuing
WM..HSCROLL notifications, placing the arrows along the

SBS.VERT OxOOOl

The Scroll Bar Control 73

left and right edges of the bar, and moving the slider between
the left and right edges of the control.
causes the control to act as a vertical scroll bar; issuing
WM.VSCROLL notification messages, placing the arrows
along the top and bottom edges of the bar, and moving the
slider between the top and bottom edges of the bar.

SBS.AUTOTRACK Ox0004 is used by the control when the slider position is directly
modified with the mouse. If this style is specified, the entire
slider moves with the mouse. If the style is not specified, the
slider remains in place and only a shadow of the slider moves
with the mouse.

SBS_THUMBSIZE Ox0002

SBS.AUTOSIZE Ox2000

indicates that the slider size should represent the portion of
the data displayed in the window. The cVistble and cTotal
elements of the control data for the scroll bar are used for
this purpose. The size of the slider in proportion to the length
of the bar is matched to the proportion of cVisible to cTotal.
causes the system to automatically assign a width to vertical
scroll bars and a height to horizontal scroll bars.

Scroll Bar Notification Messages
The scroll bar control provides the user with three types of scrolling functions.
When the scroll bar is associated with a window displaying text, the user may
click on one of the arrow keys to scroll the text by one line or character, click
on the bar to scroll the text by a page, or click on and drag the slider to scroll
the text to a specific location. If the window is displaying graphical, rather
than textual, information, the application must define a suitable equivalent
for scrolling by a line or character. Even in textual windows, the application
controls the scrolling and can therefore modify the functionality of each scroll
type; however, failure to provide the standard functionality may confuse the
user. Depending on the scroll bar style, one of two messages is used to transmit
the user request to the application. A scroll bar with the SBS..HORZ style sends
a WM..HSCROLL message and a scroll bar with the SBS VERT style sends a
WM_VSCROLL message. The message is sent to the window that owns the
scroll bar, and frame windows forward the message to the client window.
The mpl and mp2 parameters of both messages are identical. Parameter mpl
contains the window ID of the scroll bar window in the low-order word.
Parameter mp2 is divided into two fields:

• sslider is contained in the low-order word. This field identifies the cur­
rent position of the slider when uscmd is set to SB_SLIDERTRACK or
SB.SLIDERPOSITION.

74 Mastering the Keyboard Interface and Scrolllng Functionality

SB.LINEUP

• uscmd is contained in the high-order word. This field contains a noti­
fication code indicating the user action that caused the message to be
transmitted.

For a vertical scroll bar, the uscmd field may be set to one of the following
values:

OxOOO 1 indicating that the up arrow at the top of the scroll bar was
clicked.

SB.LINEDOWN Ox0002 indicating that the down arrow at the bottom of the scroll bar
was clicked.

SB.PAGEUP Ox0003 indicating that the bar was clicked at a location above the
current position of the slider.

sB_pAGEDOWN Ox0004 indicating that the bar was clicked at a location below the
current position of the slider.

The uscmd field may be set to the following values for messages received
from a horizontal scroll bar:

SB.LINELEFT OxOOOl indicating that the left arrow at the left end of the scroll bar
was clicked.

SB.LINERIGHT Ox0002 indicating that the right arrow at the right end of the scroll bar
was clicked.

SB.PAGELEFT Ox0003 indicating that the bar was clicked at a location to the left of
the current slider position.

SB.PAGERIGHT Ox0004 indicating that the bar was dicked at a location to the right of
the current slider position.

Both horizontal and vertical scroll bars may also set uscmd to the following
values:

SB_SLIDERTRACK OxOOOS indicating that the user is dragging the slider. The cur­
rent position is contained in the sslider field. Applica­
tions that can update the window quickly process this
message to provide direct feedback on the window con­
tents as the slider is moved.

SB.SLIDERPOSITION Ox0006 indicating that the user has completed a drag operation
on the slider. The sslider field contains the final position
of the slider.

SB..ENDSCROLL Ox0007 indicating that the user has clicked and released the
mouse on either the bar or an arrow. Since multiple
scroll messages will be sent when the user holds the

Managing the Scroll Bar

The Scroll Bar Control 75

mouse button down, an application that cannot draw
its output quickly may wish to maintain the scrolled
position but defer painting until this message is received,
indicating that the scrolling operation is complete.

In order to effectively utilize scroll bars, an application must concern itself
with three basic functions: maintaining the scroll bar range and, optionally,
the size of the slider; processing scroll bar messages and maintaining the slider
position; and updating the window contents to track the scroll bar position.

Maintaining the Scroll Bar Range

When a scroll bar is created and no data is displayed in the associated window,
the scroll bar range should be set such that both the low and high end of the
value range are zero, effectively disabling the scroll bar. As data is added
to the window- for instance, by opening a file-the scroll bar range should
be modified to reflect the actual amount of data available. The application
establishes the scroll bar range by sending an SBM_SETSCROLLBAR message
to the scroll bar window. The low-order word of parameter mpl is the sslider
parameter, a signed integer value specifying the position within the range
where the slider should be positioned. Parameter mp2 contains two fields.
The low-order word contains parameter sfirst, the lowest value in the range,
and must be greater than or equal to zero. The high-order word of mp2 is
parameter slast and specifies the highest value in the range of values. This
value must be greater than or equal to sfirst.

Figure 3.10 shows an example of the code that an application could use
to initialize the scroll bar after a new file is opened. In this example, a data
structure is used that contains elements specifying the number of lines in
the file and the number of lines displayed in the window. This latter value is
calculated by dividing the size of the window by the height of a character.
The code establishes the slider range by sending an SBM_SETSCROLLBAR
message to the vertical scroll bar window. The sslider parameter is set to

/ * Update the vertical scroll bar */
WinSendMsg(hwndScroll , SBM_SETSCROLLBAR, OL ,

MPFROM2SHORT(0, (SHORT) pAppData->lNumLines - 1)};
WinSendMsg(hwndScroll , SBM_SE'l'I'HUMBSIZE,

MPFROM2SHORT((SHORT)pAppData->lLinesPerPage,
(SHORT)pAppData->lNumLines), OL);

Figure 3.10 Setting scroll bar range, position, and thumb size.

76 Mastering the Keyboard Interface and Scrolling Functionality

zero since the first line of the file will be displayed at the top of the window.
Parameter sfirst is set to zero, and alast is set to the number of lines in the file.
This will allow the user to scroll between the first line and the last line.

The optional size of the slider is also set in Figure 3.10 by sending an
SBM_SEITHUMBSIZE message to the scroll bar. Parameter mpl of this mes­
sage contains two fields . Field svisible is the low-order word of mpl and
contains a value specifying the number of lines that can be displayed in the
window. The units of the value are considered to be the same as the units used
to set the scroll bar range. The high-order word of mpl is field stotal and is
set to the number of lines in the file. Parameter mp2 is reserved and must be
set to zero.

Processing Scroll Bar Messages

Let's examine how an application processes messages received from a scroll
bar by looking at an example program that displays text files. The vertical
scroll bar range represents the number of lines of text in a displayed file and
the scroll bar position represents the number of the line displayed at the top of
the window. Figure 3.11 shows a switch statement that computes the number
of lines of text that correspond to a particular scroll command. Note that
an upward scrolling action moves toward the top of the file, reducing the line

HWND hwndScroll; / * scroll bar window handle */
SHORT sLinesPerPage; / * lines displayable in window */
SHORT sDLines = O; / * delta display lines */

swi tch (SHORT2FROMMP(mp2))
case SB_LINEUP:

sDLines = -1;
break;

case SB_LINEDOWN:
sDLines = 1;
break;

case SB_PAGEUP :
sDLines = (-1) * sLinesPerPage;
break;

case SB_PAGEDOWN:
sDLines = sLinesPerPage;
break;

case SB_SLIDERTRACK:
sDLines = ISHORT)WinSendMsg{ hwndScroll, SBM_QUERYPOS,

MPFROMLONG(OL), MPFROMLONG (OL));
sDLines = SHORT1FROMMP{mp2) - sDLines;
break;

/ * endswitch */

Figure 3.11 Computing the scroll delta.

The Scroll Bar Control 77

number; and scrolling down moves toward the bottom of the file, increasing the
line number. Thus an SB.LINEUP command will move the window contents
one line closer to the start of the file or a delta of negative one, and an
SB..LINEDOWN command will move the window contents one line closer
to the end of the file or a delta of positive one. Likewise, an sa_pAGEUP
command sets the delta to negative one times the number of lines displayed
on a page, and an sa_pAGEDOWN command sets the delta to the number of
lines in one page. (The lines per page value is computed by dividing the height
of the window by the height of the current font.) The SB-SLIDERTRACK
command provides an absolute position, and the value delta is set to the
difference between the current position and the SB_SLIDERTRACK position.
The current position is retrieved by sending an SBM_QUERYPOS message to
the scroll bar window. Parameters mpl and mp2 are both reserved and must
be passed as zero. The message returns a 16-bit, signed integer representing
the current location of the slider.

Once the delta value has been determined, Figure 3.12 shows code that
computes and validates the new top line of the display and then updates the
slider position to represent the new value. First the current slider position is
queried using the SBM_QUERYPOS message. The delta value is then added

SHORT sCurPos , sSavePos;
LONG lDy, l Ful l Page;
RECTL rect l ;

/ * Adjust the sl ider position */
sCurPos = SHORTlFROMMR (WinSendMsg (hwndScrol l , SBM_QUERYPOS,

MPFROMLONG(OL), MPFROMLONG{OL)));
sSavePos = sCurPos ;
sCurPos +- sDLines ;
if(sCurPos < 0) sCurPos - O;
if(ILONG)sCurPos > sNumLines) sCurPos = sNumLines;
WinSendMsg (hwndScrol l , SBM_SETPOS, MPFROMSHORT{ sCurPos J, 01 I ;
sDLines = sCUrPos - sSavePos;

/ * Update the window contents */
lDy - (LONG)sDLines * lHeight;
lFullPage - (LONGl sLinesPerPage * ! Height ;
if {l Dy >= lFullPage) (

Wi ninval1dateRect (hwnd, NULL, TRUE);
else (
WinQueryWindowRect{ hwnd, &rectl J;
rectl.yBottom • rect l.y'I'op - lFul lPage;
WinScrollWindow{ hwnd, OL, lDy, &rectl , &r ectl ,

NULLHANDLE, NtJr.1 , SW_INVALIDATERGN) ;
/ * endif */

Figure 3.12 Updating the display after scrolllng.

78 Mastering the Keyboard Interface and Scrolling Functionality

to the current position to obtain the new position. If this position is less than
zero, the beginning of the file, the position is set back to the beginning of the
file. If the position is beyond the last line of the file, the position is set to the last
line of the file. An SBM-SETPOS message is then sent to the scroll bar window
to establish the new slider position. The low-order word of parameter mpl of
this message is set to the new slider position. Parameter mp2 is reserved and
must be set to zero.

Updating Window Contents

Also shown in Figure 3.12 is the code to update the data displayed in the win­
dow. The code first determines the distance by which the data in the window
is to be moved by multiplying the number of lines times the height of a char­
acter. If this distance represents a full-page repaint, calling WinlnvalidateRect
with a NULL pointer as the pRectl parameter forces the entire window to be
redrawn. If the distance is less than a full page, then the WinScrollWindow
API is used to move the window contents which will still be displayed to their
new location, and will redraw only that portion of the window that will show
new data, providing a significant performance boost. The prototype for this
API is shown in Figure 3.13 .

• The hwnd parameter is the handle of the window whose contents are to
be scrolled.

• The lDx parameter is a 32-bit signed integer indicating the horizontal
distance by which the window contents are to be scrolled. This distance is
expressed in device units. Positive integers cause the window contents to
scroll to the right, negative integers cause the window contents to scroll to
the left.

• The lDy parameter is a 32-bit signed integer which indicates the vertical
distance by which the window is to be scrolled. The distance is expressed
in device units. A positive integer causes the window contents to scroll
upward and a negative integer causes the contents to scroll downward.

LONG WinScrollWindow(HWND hwnd,
LONG lDx,
LONG lDy,
PRECTL prclScroll,
PRECTL prclClip,
HRGN hrgnUpdateRgn,
PRECTL prc1update,
ULONG flOptions)

Fl1ure 3.13 The WinScrollWlndow prototype.

The Scroll Bar Contral 79

• The prclScroll parameter is a pointer to a RECTL structure which identifies
the portion of the window's contents to move. If the pointer is NULL the
entire contents of the window are moved. '

• The prclClip parameter is a pointer to a RECTL structure which, if not
NULL, identifies the clip rectangle for the scrolling operation. Only the
area of the window within this rectangle is affected by the scroll. For
example, if the prclScroll rectangle and prclClip rectangle identify the
same area of the screen, the entire contents of that area will be moved, but
the portion that moves beyond the prclClip rectangle is discarded.

• The hrgnUpdateRgn parameter is a handle to the update region. If this
parameter is not NULLHANDLE, the region identified by hrgnUpdateRgn
will be set to the area uncovered by the scroll operation when the API
returns.

• The prclUpdate parameter is a pointer to a RECTL structure which the API
fills with the coordinates of the bounding rectangle for the area uncovered
by the scroll operation. This pointer may be set to NULL if this information
is not desired.

• The ftOptions parameter is a set of flags that identify optional functions to
be performed. The valid flags are:

SW _SCROLLCHILDREN OxOOO 1 causes all child windows of hwnd to also be
scrolled. If this flag is not set, only the child
windows within the rectangle identified by
prclScroll are scrolled.

SW_JNVALIDATEREGION Ox0002 causes the area uncovered by the scrolling oper­
ation to be added to the invalid regions for the
windows (hwnd and children) affected by the
scroll. This causes a WM_pAJNT message to be
generated. If any of the affected windows have
class style CS_SYNCPAINT, the WM_pAJNT mes­
sage will be sent before WinScrolIWindow re­
turns. If this bit is not set, the application should
use the hrgnUpdateRgn and/or prclUpdate pa­
rameter return values to paint the uncovered
area without the WM_PAINT message.

RGN-..NULL

RGN_.RECT

WinScrollWindow returns a 32-bit integer which indicates the complexity
of the area uncovered by the scrolling operation.

OxOOO 1 indicates that the operation did not invalidate any portion of
the window. This could occur when there is no intersection
between prclScroll and prclClip.

Ox0002 indicates that a simple rectangle was invalidated. This would
normally occur when either lDx or lDy is zero.

80 Mastering the Keyboard Interface and Scrolling Functionality

RGN_COMPLEX Ox0003 indicates that a complex region was invalidated. This would
normally occur when both lDx and lDy are nonzero.

RGN...ERROR OxOOOO indicates that an error occurred.

Getting back to the example in Figure 3.12, before WlnScrollWlndow is
called, a scroll and clip rectangle is computed which prevents the scrolling
operation from moving unwanted data into the area left at the bottom of the
window where a full line of text cannot be displayed. This is accomplished first
by obtaining the coordinate rectangle for the entire window area. The bottom
coordinate of the rectangle is then set to the top coordinate less the distance
required to display the number of lines of text that will fit on the screen.

WinScrollWlndow is then called with lDx set to zero, since this is a verti­
cal scroll; and lDy set to the scroll distance computed earlier. The prclScroll
and prclCllp pointers are set to reference the computed rectangle which en­
closes the actual text display rectangle. The SW_INVALIDATEREGION flag of
flOptlons is set so that a WM_PAINT message will be generated to redraw the
portion of the window uncovered by the scroll operation. Parameters hrgnUp­
dateRgn and prclUpdate are set to NULL since they will not be needed.

The final aspect of the scrolling operation is maintenance of the input
cursor position. Applications that display an input cursor typically employ one
of two approaches for managing the current input location, and thus the input
cursor, during scrolling. The first approach is an independent input cursor
which is not affected by scrolling operations. The user is able to freely scroll
through the data, perhaps for reference, and quickly return to the current input
location whenever a keystroke is entered. This approach does not require any
additional processing during scrolling operations, but the application normally
must redraw the text when a keystroke is received in order to display the data
at the input location.

The second approach moves the input cursor as necessary to ensure that
it remains within the displayed portion of the data. For example, in a text
application, if the display area is scrolled up such that the input cursor position
is below the last displayed line, the cursor is moved to the last line of the
displayed area. Figure 3.14 shows code that will handle these calculations.

SHORT sCurLine;

/ * adjust the cursor */
if (sCurLine < sCurPos)

sCurLine = sCurPos;
} else if (sCurLine >= sCurPos + sLinesPerPage)

sCurLine = sCurPos + sLinesPerPage 1;
} / * endif */
UpdateCursor (hwnd) ;

Flgure 3.14 Adjusting the input cursor.

Processing the Directional Kays 81

Variables sCurPos and sLlnesPerPage are taken from Figures 3.11 and 3.12.
Variable sCurLlne contains the number of the line that is currently displayed
at the top of the window. The first step is to determine if the current input line
number is less than the first line displayed in the window. If so, the cursor must
be moved to the first displayed line. Next a check is made to see if the current
input line number is beyond the last line displayed in the window. If so, the
current input line is changed to the last line of the displayed data. At this point,
the current input line is known to be within the displayed data, and a utility
routine, UpdateCursor, is called to display the input cursor at the current
input line. This routine computes the x and y coordinates of the cursor based
on the current input line and column and then calls WinCreateCursor with
the CURSOILSETPOS flag to move the existing cursor to the new position.

PROCESSING THE DIRECTIONAL KEYS

The standard PC keyboard has a number of keys that are typically used in both
textual and graphical applications to manipulate the input cursor position.
In most instances, if one of these keys moves the input cursor to a position
outside the current display area, the display area is adjusted to keep the in­
put cursor in view. While separate routines could be implemented to adjust
the display area, the scroll bar message procedures are typically capable of
meeting this requirement. Thus the keyboar d routines can send an appropriate
WM_VSCROLL or WM_HSCROLL message to display the proper data in the
window. The following discussion examines the standard functional definitions
of the keyboard keys and the coding required to implement this functionality.
The discussion is organized into sets of keys based on the modifiers used to
obtain the keystroke.

All of the keys normally used for cursor movement are considered virtual
keys. The first set of keys are those that are modified by the CTRL key. Thus
these are recognized by testing for the presence of the KL VIRTUALKEY and
KC-CTRL flags and the absence of the KC.ALT and KC-SHIFT flags as shown
in Figure 3.15. The definitions and processing for these keys are as follows:

CTRL+PAGEUP This keystroke is used to move the cursor one page to the left.
The cursor is adjusted by subtracting the number of columns per
page from the current cursor position and ensuring that the re­
sult is not less than zero. The display area is adjusted by sending a
WM_HSCROLL message with uscmd set to SBYAGELEFT.

CTRL+ PAGEDOWN This keystroke is used to move the cursor one page to the right. The
cursor is adjusted by adding the number of columns per page to the
current cursor position and ensuring that the result is not greater
than the width of the longest line in the data. The display area is
adjusted by sending a WM..HSCROLL message with uscmd set to
sa_pAGERIGHT.

82 Mastering the Keyboard Interface and Scrolling Functionallty

if (fsflags & KC_VIRTUALKEY && fsflags & KC_CTRL &&
!{fsflags & (KC_ALT I KC_SHIFT}}} {

CTRL+HOME

CTRL+END

switch (CHAR3FROMMP(mp2}) {
case VK_PAGEUP: /* CTRL+PAGE UP = cursor page left */

sCurCol -= sColsPerPage;
if (sCUrCol < 0) sCurCol = 0;
WinSendMsg(hwnd, WM_HSCROLL, {MPARAM)FID_HORZSCROLL,

MPFROM2SHORT(0, SB_PAGELEFT));
break;

case VK_PAGEDOWN: /* CTRL+PAGE DOWN= cursor page right */
scurcol += sColsPerPage;
if (sCurCol > sMaxWidth) {

scurCol = sMaxWidth;
} /* endif */
WinSendMsg(hwnd, WM_HSCROLL, {MPARAM)FID_HORZSCROLL,

MPFROM2SHORT{ 0, SB_PAGERIGHT));
break;

case VK_HOME: /* CTRL+HOME = cursor to start of data */
sCUrLine = O;
sCUrCol = O;
WinSendMsg{ hwnd, WM_VSCROLL, (MPARAM)FID_VERTSCROLL,

MPFROM2SHORT(0, SB_SLIDERTRACK });
WinSendMsg(hwnd, WM._HSCROLL, (MPARAM)FID_HORZSCROLL,

MPFROM2SHORT{ 0, SB_SLIDERTRACK));
break;

case VK_END: /* CTRL+END = cursor to end of data */
sCUrLine = sNwnLines - 1;
sCUrCol = strlen{plineLast->pszText);
sTemp = sCurLine - sLinesPerPage + 1;
if {$Temp < 0) sTemp = O;
WinSendMsg(hwnd, WM_VSCROLL, (MPARAM}FID_VERTSCROLL,

MPFROM2SHORT(sTemp , SB_SLIDERTRACK)};
sTemp = sCUrCol - sColsPerPage;
if (sTemp < 0) sTemp = 0;
WinSendMsg{ hwnd, WM_HSCROLL, (MPARAM)FID_HORZSCROLL,

MPFROM2SHORT(sTemp, SB_SLIDERTRACK }) ;
break;

I / * endswitch */
/ * endif */

Figure 3.15 Processing CTRL+ directional keys.

This keystroke is used to move the input cursor to the start of the
data. The input cursor location is changed to line zero and col·
umn zero. The display area is adjusted such that the start of data
is displayed in the top left corner of the display by sending both
WM_HSCROLL and WM_VSCROLL messages. For each, uscmd is
set to SB_SLIDERTRACK and sslider is set to zero.
This keystroke is used to move the input cursor to the end of the
data. The current line is set to the last line, the number of lines

Processing the Dlrectlonal Keys 83

less one. The current column is set to the length of the last line
of text, a value that will place the cursor after the last character
on the line. The display area is adjusted to cause the end of data
to be displayed at the bottom of the screen. Thus a WM_VSCROLL
message is sent with uscmd set to SB_SLIDERTRACK and ssllder
set to the number of lines less the number of lines on a page. This
value is incremented so that the current line will be the last line in
the display area. Similarly, a WMJISCROLL message is sent with
uscmd set to SB_SLIDERTRACK and sslider set to the length of the
text less the number of columns per page.

The next set of keys are lone VIRTUAL keystrokes- the key is pressed with­
out the CTRL, ALT, or SHIFT keys being pressed. As shown in Figure 3.16 the
if statement to test for this type of key checks to see that the KC_VIRTUALKEY
flag is set and that KC_CTRL, KC.ALT, and Kc_SHIFf are not set. On most

else if (fsflags & KC_VIRTUALKEY &&
!(fsflags & {KC_ALT I KC_CTRL I KC_SHIFT))) {

switch {CHAR3FROMMP(mp2)} {
case VK_UP:

if (fsflags & KC_CHAR) { / * keypad '8' - insert character */
InsertCharacter(hwnd, CHAR1FROMMP{mp2));

else { /* UP ARROW = cursor up one l i ne */
if(sCUrLine != 0) {

sCUrLine--;
if(sCurLine < sCurTop) {

WinSendMsg(hwnd, WM_VSCROLL, (MPARAMIFID_VERTSCROLL,
MPFROM2SHORT{ 0, SB_LINEUP II ;

} / * endif */
Updateeursor (hwnd) ;

} / * endif */
/ * end.if */

break;
case VK_DOWN:

if (fsflags & KC_CHAR) { / * keypad ' 2' - i nsert character */
InsertCharacter{ hwnd, CHAR1FROMMP(mp2} };

else { / * DOWN ARROW - cursor down 1 line • I
if(sCurLine != sNwnLines 1 } {

sCurLine++;
if(sCUrLine >- sCUrTop + sLinesPerPage) {

WinSendMsg (hwnd, WM_VSCROLL, (MPARAM) FID_VERTSCROLL,
MPFROM2SHORT{ 0, SB_LINEDOWN)) ;

} / * endif *I
UpdateCursor l hwnd);

/ * endif */
/ * endif * I

break;

Figure 3.16 Handling the UP and DOWN keys.

84 Mastering the Keyboard Interface and Scrolling Functionality

keyboards the cursor movement keys in this set are replicated on the numeric
keypad. When the keyboard is in numeric mode, these keys will have both the
KC. VIRTUAL.KEY and KG_CHAR flags set. In this instance, the application
should treat the keystroke as a normal character as shown in Figures 3.16
through 3.19, which show the code for handling the various keys in this set.
The definitions and processing for these keys are as follows:

UP ARROW This key moves the input cursor up by one line. If the cursor is not already
on the first line, line zero, the cursor line is decremented. If the resulting
cursor line is above the line currently at the top of the displayed data, a
WM_VSCROLL message is sent with the uscmd field set to SB.LINEUP.

DOWN ARROW This key moves the input cursor down by one line. If the cursor is not
already on the last line of the data, the cursor line is incremented. If the
resulting cursor line is below the last line displayed (first line displayed

case VK_LEFT:
if (fsflags & KC_CHARI (/* keypad '4' - insert character */

Insertcharacter(hwnd, CHAR1FROMMP(mp2));
} else (/* LEFT ARROW = cursor left 1 char */

if(sCurCol != 0 I (
sCurCol--;
if(sCurCol < sCurLeft } (

WinSendMsg(hwnd, WM_HSCROLL, (MPARAM)FID_HORZSCROLL,
MPFROM2SHORT(0, SB_LINELEFT));

} /* endif */
OpdateCursor (hwnd) ;

/* endif */
/* endif *I

break;
case VK_RIGHT:

if (fsflags & KC_CHAR} (/* keypad '6' - insert character */
InsertCharacter(hwnd, CHAR1FROMMP(mp2));

else { / * RIGHT ARROW= cursor right 1 char */
if(sCurCol != sMaxWidth l {

sCurCol++;
if(sCurCol > sCUrLeft + sColsPerPage) {

WinSendMsg(hwnd, WM_HSCROLL, (MPARAM)FID_HORZSCROLL ,
MPFROM2SHORT(0, SB_LINERIGHT)) ;

} /* endif */
UpdateCursor(hwnd);

/* endif *I
I* endif *I

break ;

Figure 3.17 Handling the LEFT and RIGHT kays.

Processing the Dlractlonal Keys 85

case VK_PAGEUP:
if (fsflags & KC_CHAR) (/ * keypad ' 9' - insert character */

Insertcharacter(hwnd, CHAR1FROMMP(mp2));
else { / * PAGEOP = cursor up one page */

sCurLine -= sLinesPerPage;
if (sCurLine < 0) sCurLine = O;
WinSendMsg(hwnd, WM_VSCROLL, (MPARAM)FID_VERTSCROLL,

MPFROM2SHORT(0, SB_PAGEUP));
/ * endif */

break;
case VK_PAGEDOWN:

if (fsflags & KC_CHARI / *keypad ' 3' - insert character* /
InsertCharact er (hwnd, CHAR1FROMMP (mp2) I;

else { / * PAGEDOWN = cursor down one page */
sCurLine += sLinesPerPage;
scurLine = min (sCurLine, sNumLines - 1);
WinSendMsg(hwnd, WM_VSCROLL, (MPARAM)FID_VERTSCROLL,

MPFROM2SHORT(0, SB_PAGEDOWN));
} /* endif */
break;

Figure 3.18 Handling Iha PAGEUP and PAGEDOWN keys.

plus number of lines displayable), a WM_VSCROLL message is sent with
the uscmd field set to SB-1.INEDOWN.

LEFT ARROW This key moves the input cursor one character to the left. If the cursor
is not already at the leftmost character, the cursor column is decre­
mented. If the resulting column is to the left of the first displayed
column, a WM_HSCROLL message is sent with the uscmd field set to
SB-1.INELEFT.

RIGHT ARROW This key moves the input cursor one character to the right. If the cursor
is not already positioned just beyond the rightmost column in the data,
the cursor column is incremented. If the resulting cursor column is
beyond the rightmost column displayed (leftmost column plus number of
columns displayable), a WM_HSCROLL message is sent with the uscmd
field set to SB-1.INERIGHT.

PAGE UP This key is used to scroll the displayed data area up by one page. In
this application, the key also causes the input cursor to move up by one
page. The input cursor position is adjusted by subtracting the number of
lines per page from the current cursor position. If the result is less than
zero, the new cursor position is set to zero. Scrolling is accomplished
by sending a WM_VSCROLL message with uscmd set to sa_pAGEUP.
Note that the cursor position is not updated since the scrolling operation
ensures that the cursor will be moved by the scrolling routine.

86 Mastering the Keyboard Interface and Scrolling Functionality

case VK_HOME :
if (fsflags & KC_CHAR) (

InsertCharacter(hwnd,
else (
lCurCol = O;

/ * keypad '7 ' - insert character */
CHAR1FROMMP(mp2));

/ * HOME= cursor to start of line */

WinSendMsg(hwnd, WM_HSCROLL, (MPARAM)FID_HORZSCROLL,
MPFROM2SHORT(0, SB_SLIDERTRACK));

UpdateCursor(hwnd);
} /* endif *I
break;

case VK_END:
if (fsflags & KC_CHAR) (/* keypad 'l' - insert character */

InsertCharacter (hwnd, CHAR1FROMMP(mp2));
} else { /* END = cursor to end of line */

lCUrCol = strlen(pLines[sCurLine]->pszText);
WinSendMsg(hwnd, WM_HSCROLL, (MPARAM)FID_HORZSCROLL,

MPFROM2SHORT(max(O, lCUrCol - lColsPerPage + 1),
SB_SLIDERTRACK));

UpdateCursor (hwnd) ;
/ * endif */

break;

Figure 3.19 Handling the HOME and END keys.

PAGE DOWN This key is used to scroll the displayed data area down by one page.
This application also moves the input cursor down by one page. The new
cursor position is calculated by adding the number of lines per page to
the current cursor position and taking the minimum of this value and
the line number of the last line of data. A WM_VSCROLL message is
sent with uscmd set to sa_pAGEDOWN to scroll the displayed data area
down by one page. No cursor update is necessary since the scrolling
operation is guaranteed to move the cursor in this instance.

HOME

END

This key is used to move the input cursor to the beginning of the
current line. The current cursor position is set to column zero and
a WM_1ISCROLL message with uscmd set to SB_SLIDERTRACK and
sslider set to zero is sent to force display of the leftmost data. The Update­
Cursor routine is called to ensure that the cursor is properly positioned
since the scroll message may not necessarily update the window.
This key moves the input cursor to the end of the current line. The
column value of the current cursor position is set to the length of the text
for the current line. A WM_HSCROLL message is sent with uscmd set to
SB_SLIDERTRACK. The sslider field is set to the maximum of zero and
the new cursor position less the number of columns per page plus one to

Pallltlng after Scrolllng 87

display the maximum amount of data on the line. UpdateCursor is called
since the scroll message may not necessarily update the window.

For scrolling purposes, all other keystrokes are ignored. The sample program
accompanying this chapter contains a routine wmchar which combines the
processing for all the keystrokes discussed in this chapter. This routine, in
combination with Figures 3.15 through 3.19, can be studied to see how a
typical keystroke processing routine should test the various elements of fsflags
to determine the actual keystroke received.

PAINTING AFTER SCROLLING

Performance gains from using the WinScrollWindow API to reduce the area
of the window to be repainted were discussed earlier. These gains are realized
due to the clipping performed to prevent actual drawing outside the invali­
dated rectangle. Further gains can be realized if the application's WM_pAJNT
processing recognizes the invalid rectangle and restricts its calls to the draw­
ing APis to the minimum necessary. This section examines how the text-based
application we have been using can achieve these gains.

Following the normal initialization of the WM_PAINT processing­
obtaining the presentation space and filling in the background-the appli­
cation determines the first line that falls at least partially within the invalid
rectangle and then deter mines the first and last columns that are at least
partially within the invalidated area. With these boundaries available, the
application draws lines of text until the bottom of the invalid rectangle is
reached.

Figure 3.20 shows the code used to compute the first line that requires
painting. First, the area of the entire window is obtained. The top of the
rectangle less the top of the invalid rectangle provides the area of the window

/ * calculate first l ine to draw */
iLineFirst = (LONG)sCurTop;
iLineFirst += (rectlHwnd.yTop - rectl.yTop) / !Height;

/* set point er to s t ructure for first line */
if (iLineFirst < (LONG)sNumLines) {

if (pLines != (PLINE *)NULL) {
pl ineDraw = pLines [iLineFirst];
rectlHwnd.yTop -= (iLineFirst - (LONG)sCurTop) * !Height;

} / * endif */
/* endif */

Figure 3.20 Calculating the initial y coordinate.

88 Mastering the Keyboard Interface and Scrolllng Functionality

that does not require painting, and dividing this number by the height of a
character, or line, results in the number of whole lines that do not require any
repainting. This number is added to the line number of the current top line in
the display to determine the line number of the first line to be drawn. If this
line number is within the range of the displayed file, pointer pLlneDraw is set
to the structure that describes this line. Then, since the invalidated rectangle
may not necessarily fall on the exact coordinates for a line, the top of the
drawing rectangle, rectlHwnd, is computed by subtracting the space occupied
by lines from the top displayed line to the first line to draw from the top of the
window rectangle.

Figure 3.21 shows the calculations necessary to obtain the first and last
column positions to be drawn. Like the computation of the first line in Figure
3.20, the first column to display is computed by subtracting the left coordinate
of the invalid area from the left coordinate of the entire window and dividing
by the width of a character. The value is then added to the column number
currently displayed at the leftmost position in the window. If the computed
first column is beyond the last column position of the longest line in the file,
no drawing is necessary and the pLineDraw pointer from above is set to
NULL. Otherwise, the coordinate of the first column to draw is calculated
by adding the space occupied by nondrawn columns to the coordinate of the
left edge of the window. Then the number of columns to draw is calculated
by subtracting the left edge of the drawing rectangle from the right edge of
the invalid rectangle and dividing by the width of a character. The number
of columns is incremented to ensure that partial characters at the right edge
of the invalid rectangle are drawn.

Figure 3.22 shows the loop that actually draws the text into the window.
The control conditional for this loop first checks the pointer to the current
line structure for validity. If the pointer is NULL, either this is the entry to
the loop and no text is to be drawn (in which case the loop body is never
entered) or the last line of the displayed file has been drawn. The conditional

/* compute the first column t o paint • /
lColFirst = (rectl .xLeft - rectlHwnd .xLeft) I !Width;
lColFirst += lCUrLeft ;
if (lColFirst > lMaxWidth) (

plineDraw = (PLINE)NULL; /* nothing to draw */
else (
rectlHwnd.xLeft += (lColFirst - lCurLeft) * !Width;
I* compute the last column to paint */
lNumCols = (rectl.xRight - rectlHwnd.xLeft) I !Width;
lNumCols++;

/* endif *I

Figure 3.21 Calculating the initial x coordinate.

/* draw whi l e the data fits on the screen • /
while (pli neDraw != (PLINE)NULL &&

rectl Hwnd.yTop > r ect l.yBott om &&
rectlHwnd.yTop - l Height >= 0) (

I * but only if text to be drawn for the current line */
i f (strlen(plineDraw->pszText) > lColFirst) (

Summary 89

WinDrawText(bps,
min~lNumCols , strlen (&plineDraw->pszText[lColFirst}}),
&pl1neDraw->pszText[lColFirst],
&rectlHwnd, 0, 0, DT_TOP I DT_LEFT I DT_TEXTATTRS);

I * endif */
/ * bump down to top position of next l ine */
r ect l Hwnd.yTop -= ! Height;
I * get next l i ne to draw */
pli neDraw = plineDraw->next;

/ * endwhile *I

Figure 3.22 Drawing text.

SUMMARY

then checks to be sure that the top of the current line does not fall below the
invalid rectangle and then ensures that the bottom of the current line falls
within the drawing rectangle to prevent a partial line from being drawn at
the bottom of the window. The body of the drawing loop checks to see if the
text for the current line contains enough characters to require drawing. If so,
the WlnDrawText API (see Chapter 16) is called to draw the text. The second
parameter to this API is the number of characters to be drawn, and it is set
to the minimum of the computed number of columns to draw or the number
?f characters remaining in the text for the current line. Once the drawing
is complete, the top of the drawing rectangle is lowered by the height of a
character to set the starting coordinate for the next line, and the pointer to the
line structure is bumped to the next line in the displayed file.

!his chapter has discussed how Presentation Manager applications receive
mput from the keyboard and process that input to edit text and manipulate the
display. In conjunction with the processing of virtual keys, the scroll bar has
been discussed, and techniques have been shown for scrolling the information
displayed in a window and manipulating the keyboard input cursor. By using
~d e~tending these prin~iples and techniques, programmers can create ap­
phcations that fully exploit the use of the keyboard to access the application's
functionality.

h

CHAPTER

Building A Better
Mousetrap: Taming
the Mouse in PM

T here is something about human nature that has made most of us develop
an aversion to rodents. It took many years of cartoon culture therapy
for the general population to begin to embrace such popular cartoon

mice as Mickey and Minnie, Mighty, and of course our pal from the south
of the border, Speedy Gonzalez. This fear of mice has even transferred to
the computer world, via the graphical programming community. This chapter
will attempt to explain how to master programming the mouse under the
Presentation Manager environment.

The input pointing device has arguably become the most important tool
in the graphical user interface. Some of the early more primitive graphical
application interfaces failed because the keyboard interface did not provide
quick and easy access to controlling the application, and the keystroke combi­
nations that were required to master the interface were difficult to remember
and were not intuitive enough for even advanced users. A hardware device
that allowed the user to communicate quickly and effectively was desired. This
brought about the invention of the mouse, and completely revolutionized the
look and feel of the graphical user interface. Finally users were able to control
how applications were started and more easily manipulate text and graphics
through the movement of the mouse pointer. Unfortunately, in the early days
before graphical programming environments standardized mouse manipula­
tion through the use of the window API, it was difficult for programmers to
control the mouse for the user. Luckily, mastering how to program the mouse
is relatively simple in the Presentation Manager environment, and once you

91

92 Building A Better Mousetrap: Taming the Mouse in PM

realize just how simple it is maybe you won't fear our little furry white friends
either; well, maybe not, but let's begin mastering the art of programming the
computer mouse anyway.

This chapter's sample program combines practical mouse usage with sim­
ple drawing functionality that is bound to espouse some nostalgic memo­
ries among children from the baby boomer generation. Two favorite toys
among children with active imaginations were the Etch-a-Sketch® and the
Spirograph®. Both toys were very simple to understand and use, but taught
different fundamentals while helping to cultivate cognitive and imaginative
learning skills. The sample program CLKDRAW, is designed with similar in­
tentions. Although it is very simple to use, it may not provide as much of an
education value as its toy counterpart. It does, however, illustrate some simple
pointer programming concepts.

The Etch-a-Sketch® toy was a simple drawing device that allowed children
to express their artistic talents, although they really had to be artistically
inclined to make anything look good because of the small lines and simple
round controls. The toy basically contained two knobs: one that controlled
the horizontal movement of the line, and the other that controlled the vertical
movement. The sample program demonstrates the technique for capturing the
mouse pointer, and through the use of some simple GPI drawing, allows the
user to manipulate the mouse buttons to control the drawing.

The Spirograph® made geometry "cool." It allowed you to draw basic
geometric shapes simply by using colored pens and various plastic ridged disks
with holes. To create an image, the user put a pen through one of the holes on
a plastic disk, then rotated the pen within the disk around or within another
larger plastic disk, thereby creating a simple yet colorful image. When the user
double-clicks on the client area with the right mouse button, an image similar
to a Spirograph® is created. The size of the geometric figure created, as well
as the circular shape of the image, are based on the current pointer position.

CLKDRAW also demonstrates how to capture the mouse pointer outside of
the frame window, giving the user to ability to capture an area of the desktop
by highlighting it with a tracking rectangle created by manipulating the mouse
pointer. The pointer used to create the tracking rectangle is different from
the default mouse pointer, making it easy for the user to distinguish between
the captured mouse pointer and the default mouse pointer. The purpose of
the program is to demonstrate how to handle mouse messages and use the
APis specific for mouse pointer manipulation to allow the developer to more
accurately control the user interface through the input pointing device.

UNDERSTANDING THE USE OF THE MOUSE

Even though the PM graphical user interface allows for keyboard input, using
most PM applications without a mouse can become difficult or even awkward.

Understanding the Use of the Mouse 93

A well-written application should allow for both keyboard and mouse move­
ment, but most users will definitely agree that using a mouse is much less
complex. Have you ever tried using the Workplace Shell without a mouse? It
definitely takes time to get used to, whereas the mouse allows the shell to be
much more intuitive and friendly.

There are many manufacturers that make the mouse pointing device. To­
day, some even are designed with ergonomics in mind to allow greater comfort
for the user. Variations on the design of the mouse have changed over the years
to include trackballs, three-button configurations, and even that funny red
eraser thing on the IBM Thinkpad machines. The OS/2 Presentation Manager
supports a large variety of pointing devices, thus allowing the PM developer to
use the mouse to simplify the application learning curve. Based on the number
of buttons on the mouse, developers can take advantage of one, two, or three
buttons.

The movement of the mouse is represented in the PM window manager
through the use of a bitmapped image on the display called the mouse pointer.
Obviously, as the mouse moves, the pointer moves. The default PM mouse
pointers are shown in Figure 4.1.

Iiming

I 6 '\a Setup

Text Wan Size NWSE Mappings

++ ~ ,zt

Size WE Move Size NESW

fainters

.Comet Cursor

i ~
Size NS Illegal

Edit... 11 Find ... j j Load Set ...

.!.!ndo / I Qefault I I Help

Figure 4.1 The default Warp mouse pointers.

94 Building A Better Mousetrap: Taming the Mouse in PM

Every mouse pointer has a hotspot, which is simply a single pixel within
the pointer bitmap that is where the manipulation originates. The very tip of
the black arrow is the hotspot on the default mouse pointer. One of the biggest
requests of the PM user community has been to allow the user to change the
default mouse pointer with ease. The OS/2 Warp system grants this wish by
allowing the user to change the default mouse pointer. The mouse pointer file
format is essentially a bitmap, and pointers can be drawn using the OS/2 Icon
Editor.

QUERYING AND SETTING THE SYSTEM VALUES FOR AN INPUT DEVICE

PM has several default system value flags that can be used to query the res­
olution of the pointer along with other important characteristics. Figure 4.2
shows some of the system value flags defined in PMWIN .H that affect the mouse
pointer. The system values can be queried using the API WlnQuerySysVaJue
and can be changed using the WinSetSysValue APL

sv _SWAPBUTTON

SV-DBLCLKTIME

This value is used to change the default function of the mouse
buttons. The PM default is for the mouse buttons to be config­
ured for a right-handed user. In the workplace shell, the left
button is used for selection while the right button is used for
object manipulation. It is generally not advised that this value be
changed, since it is usually controlled by the user who can adapt
the mouse configuration to fit his or her needs. If this value is
set to TRUE, then the mouse buttons have been swapped and the
window procedure will get right button messages when the left
mouse button is pressed, and left button messages when the right
button is pressed.
This value can be used to change the pointing device's double­
click time. PM determines a double-dick by two quick single

SV_SWAPBUTTON 0
SV_DBLCLKTIME 1
SV_CXDBLCLK 2
SV_CYDBLCLK 3
SV_CXPOINTER 40
SV_CYPOINTER 41
SV_CMOUSEBUTTONS 43
SV_CPOINTERBUTTONS 43
SV_POINTERLEVEL 44
SV_MOUSEPRESENT 48

Figure 4.2 Mouse pointer system values.

SV _CXDBLCLK

SV_CYDBLCLK

SV.MOUSEPRESENT

SV _CXPOINTER

SV _CYPOINTER

SV _CMOUSEBUTTONS
or SV_CPOINTERBUTTONS

SV _CXMOTIONSTART

SV _CYMOTIONSTART

Queryl•g and Settl19 tlle SJst1111 Val•es tor an Input Device 95

mouse clicks in succession. The default double-click time is
half a second. Using this value, you can modify the default
click time. If you decide to change this value, the time is
measured in milliseconds. The only time this value should
be changed is when you have a controlled user interface­
for example, a single application that replaces the workplace
shell-and you need to change the double-click time to cor­
respond with the user requirements of the shell.
This is the horizontal length of the double-click sensitive
area. In other words, this value is the width of the distance
a double click is valid. PM uses the system font character
width as the default.
This is the vertical length of the double-click sensitive area.
In other words, this value is the height of the distance a
double-click is valid. PM uses half the height of the system
font character height as the default.
If this value returns TRUE, then an input pointing device is
present and recognized by the Presentation Manager.
This flag can be used to query the horizontal dimensions of
the mouse pointer bitmap. The value returned is in pixels
wide. This value is based on the resolution of the display
driver and cannot be modified.
This flag can be used to query the vertical dimensions of the
mouse pointer bitmap. The value returned is in pixels high.
This value is also based on the resolution of the display
driver and cannot be modified.
This value returns the number of buttons on the pointing
device. It can be used to query whether the user has a two­
or three-button mouse; then, depending on the result, the
programmer can assign functionality of the buttons. If a
zero is returned, then no mouse device is currently installed.
Another method of querying whether a mouse is present is by
querying the SV .MOUSEPRESENT flag. This value cannot
be modified. The code fragment in Figure 4.3 checks to see
if a pointing device is installed and then determines if the
pointing device supports a third mouse button.
This value flag can be used to set or query the num­
ber of pixels that a pointing device can be moved hor­
izontally while the mouse button is depressed before a
WM_BUTTONnMOTIONSTART message is sent to the win­
dow.
This value flag can be used to set or query the number of pix­
els that a pointing device can be moved vertically while the

96 Building A Better Mousetrap: Taming the Mouse In PM

!Buttons = WinQuerySysValue(HWND_DESKTOP, SV_CPOINTERBUTTONS);

if (!Buttons == 0)
{
return ERROR_MOUSE_NOT_INSTALLED;

}

else if (!Buttons == 3)
{
return THREE_BUTTON_MOUSE_INSTALLED;

}

Figure 4.3 Determining the number of buttons.

SV J>OINTERLEVEL

mouse button is depressed before a WM..BUITONnMO­
TIONSTART message is sent to the window.

•where n represents the mouse button depressed.

This flag is used to determine if the mouse pointer is visible
or invisible. Often it is not desirable to have a mouse pointer
present, so the visibility of the pointer can be changed. For
instance, if the user is entering or reading text within a win­
dow and has not touched the mouse pointer for a long period
of time, it may be desirable to hide the mouse pointer so that
it does not appear within the text. Also, screen capture pro­
grams may want to hide the mouse pointer until a specific
window has been captured. If a zero is returned when spec­
ifying this flag, then the pointer is visible. Any other positive
value indicates that the pointer is invisible. This value can­
not be modified directly using WlnSetSysValue. The pointer
level is actually controlled through the use of the API, Win­
ShowPointer. This function is used to either increment or
decrement the pointer level usage count.

CHANGING THE VISIBILITY OF THE MOUSE POINTER

The format of the WinShowPointer call is as shown in Figure 4.4.

• hwndDesktop is the window handle of the desktop window.
• bVisibility represents the pointer level visibility indicator. If this value is

set to TRUE, then the pointer display level is decremented by one until

B(X)L WinShowPointer(HWND hwndDesktop,
BOOL bVisibility);

Figure 4.4 The WlnShowPolnter prototype.

Capturing the Mouse Pointer 97

the usage count is zero. When the pointer display level reaches zero, the
pointer is made visible. If the value is set to FALSE, then the pointer display
level is incremented by one. If the pointer display level is any value greater
than one, then the pointer is invisible.

The initial pointer display level is based on the capabilities of the pointing
device. If a mouse is detected, the initial pointer display level is set to visible.
If no input pointing device is detected, the initial pointer display level is set to
invisible.

The code for WinShowPointer actually checks the pointer usage count to
determine whether the pointer should be made visible. If the pointer should
be made visible, it calls a routine in the graphics engine to display the pointer
at the next interrupt and then returns FALSE; otherwise, the function call will
return TRUE.

CAPTURING THE MOUSE POINTER

The options menu contains a menu item called HideMousePointer that will
allow the user to change the visibility of the pointer by modifying the pointer
visibility level. Once the user selects the Options/HideMousePointer menu item,
the mouse pointer is made invisible by calling WinShowPointer. If the Capture
Pointer to Window checkbox was not checked prior to hiding the pointer,
then the visibility tevel usage count of the pointer will be decremented every
time the mouse is moved outside the bounds of the window. Eventually, the
mouse pointer is made visible if you move the mouse around long enough.
If the checkbox is checked prior to the Hide pushbutton being selected, the
mouse pointer will not be shown until the user selects the Show pushbutton
by pressing Enter.

The solution to ensuring that the mouse pointer will not be shown when
moved outside the client window boundary is to capture the mouse input.
The purpose of capturing the mouse input is to allow mouse messages to be
directed to a specific window regardless of the position of the mouse pointer in
relation to the desktop. In other words, no matter which window the pointer is
positioned over the associated mouse messages are passed on to your window
procedure for processing.

Believe it or not, you do not need a mousetrap to capture the mouse
pointer. A simple API called WinSetCapture does the job without the smelly
cheese. This function works by trapping all WM..MOUSEMOVE messages and
redirecting them to the capture window. Only one window can become the
capture window. The format of the WinSetCapture API is shown in Figure 4.5.

• hwndDesktop is the handle of the desktop window.
• hwnd is the window handle of the capture window.

98 Building A Better Mousetrap: Taming the Mouse in PM

BOOL APIENTRY WinSetCapture(HWND hwndDesktop,
HWND hwnd);

Figure 4.5 The WlnSetCapture prototype.

The WinSetCapture function returns TRUE if the mouse pointer is cap­
tured. The function will return FALSE if an error occurs. The function will
fail if a hard system model window is up and a pointer capture is attempted.
The function will also fail if another window is currently set as the capture
window.

The hwnd parameter is the key value here, since it contains the handle
of the window to which the WM..MOUSEMOVE message will be redirected.
When capturing the mouse is complete, the capture window can be reset by
once again calling WinSetCapture and passing a NULL value in the hwnd pa­
rameter. When the capture window is released, a WM..MOUSEMOVE message
is posted to the window regardless of whether the mouse pointer has actually
been moved. This is done to ensure that the window currently under the mouse
pointer has an opportunity to refresh the pointer.

Applications that need to determine whether the mouse movement message
is being captured by a specific window can use the function WinQueryCapture
to determine the capture window. The function will return the handle of the
window that has the mouse input captured.

Figure 4.6 shows the format of the function.

SHOWING THE MOUSE POINTER

The code fragment in Figure 4. 7 illustrates the proper use of decrementing
the pointer visibility level until the mouse pointer is visible. The code first
checks to see if a pointing device is currently installed and then checks the
pointer visibility level. If the pointer is currently invisible, the call to Win­
QuerySysValue with the SV YOINTERLEVEL will return a number greater
than zero in lSysVal. This code fragment will then enter a for loop and call
WinShowPointer with TRUE in the bVlsibility field, thereby decrementing
the pointer level usage count until it finally reaches zero forcing the pointer
visible.

HWND APIENTRY WinQueryCapture(HWND hwndDesktop);

Figure 4.6 The WinQueryCapture prototype.

Obtalnlag Pointer lllfonnatlon 99

lSysVal = WinQUerySysValue(HWND_DESKTOP, SV_MOUSEPRESENT);

if (lSysVal != TRUE)
{

return ERROR_MOUSE_NOT_INSTALLED;
) /* endif * I

l SysVal = WinQuerySysValue (HWND_DESKTOP, SV_POINTERLEVEL);

for (usCounter = O; usCounter < lSysVal; uscounter++)
{
WinShowPointer(HWND_DESKTOP, TRUE);

} I * endfor *I

Figure 4.7 Making the mouse pointer visible again.

OBTAINING POINTER INFORMATION

There may be times when you need to obtain information about a specific
mouse pointer. Obtaining this information is relatively easy since PM maintains
a POINTERINFO structure that contains all of the relevant pointer information
like the size of the pointer bitmap, the handle of the various bitmap for a
specific pointer, and the hotspot coordinates. The format of the POINTERINFO
structure is shown in Figure 4.8.

• !Pointer is used to indicate whether the mouse pointer bitmap is the size
of pointer or an icon. If this value contains a 1, then the bitmap is the size
of a pointer. If this value contains a 0, then the bitmap is the size of an
icon.

• xHotspot represents the horizontal coordinate for the primary point of
action in relation to the size of the pointer.

typedef struct _POINTERINFO // ptri
{
ULONG fPointer;
LONG xffotspot;
LONG yHotspot;
HBITMAP hbmPointer;
HBITMAP hbmColor;
HBITMAP hbmMiniPointer;
HBITMAP hbmMiniColor;

} POINTERINFO;
typedef POINTERINFO *PPOINTERINFO;

Figura 4.8 The POINTERINFO structure.

100 Building A Better Mousetrap: Taming the Mouse In PM

BOOL APIENTRY WinQueryPointerinfo (HPOINTER hptr,
PPOINTERINFO pPointerinfo) ;

Figure 4.9 The WlnQueryPolnterlnfo prototype.

• yHotspot represents the vertical coordinate for the primary point of action
in relation to the size of the pointer.

• hbmPointer is the handle of the mouse pointer bitmap.
• hbmColor is the handle of the mouse pointer color bitmap.
• hbmMiniPolnter is the handle of the mouse pointer mini-bitmap.
• hbmMiniColor is the handle of the mouse pointer mini-color bitmap.

To obtain the POINTERINFO structure you must first call the WinQuery·
Pointerlnfo function specifying the handle of the pointer for which you need
the pointer information. This function will return a valid POINTERINFO struc­
ture for a valid pointer handle. The format of the WinQueryPointerlnfo API is
given in Figure 4. 9.

• hptr represents a valid pointer handle.
• pPointerlnfo represents a pointer to a POINTERINFO structure. This

structure is returned if the call is successful.

The function itself will return TRUE if the function is successful and FALSE
if an error occurred.

The first parameter to the WinQueryPointerlnfo API is the pointer handle
for which you wish to obtain a POINTERINFO structure. If you need to obtain
the current pointer information, you can use the WinQueryPointer API to
return a pointer handle for the current mouse pointer. The only parameter
that this function requires is the desktop window handle. Figure 4.10 has the
prototype forWinQueryPointer.

• hwndDesktop is of course the desktop window handle.

The code fragment in Figure 4.11 obtains the current pointer handle
through the use of the WinQueryPointer function, then it obtains a POINTER­
INFO structure for the pointer by calling the WinQueryPointerlnfo function.

HPOINTER APIENTRY WinQueryPointer(HWND hwndDesktop);

Figure 4.10 The WlnQueryPolntar prototype.

hwndStatic = WinWindowFromID(hwnd, ID_STATIC);
hptr = WinQueryPointer(HWND_DESKTOPJ;
WinQueryPointerinfo (hptr, &ptrinfo);

Where Is Mickey? 101

sprintf(szBuffer, 'x = %ld y = %ld", ptrinfo.xHotspot, ptrinfo.yHotspot);
WinSetWindowText (hwndStatic, szBuffer);

Figure 4.11 Obtaining currant pointer Information.

Once a valid POINTERINFO structure is obtained, the hotspot coordinates are
displayed in a static text window.

WHERE IS MICKEY?

As the user moves the mouse around the desktop, the Presentation Manager
code sends a mouse message to the window that the mouse pointer is currently
over. In order to send the right message to the right window, PM must deter­
mine where the pointer is in relation to the window hierarchy. Probably, the
most important concept to learn about mastering the mouse from a develop­
ment perspective is how to determine where the mouse pointer is at the right
time, and then translate the pointer position into something the user needs
to accomplish via the pointer. For example, once you are able to determine
the location of the mouse in relation to a user event, it becomes very easy to
capture the mouse movement and translate the movement into something that
the user can visualize.

The CLKDRAW sample program is the best example of this point. The
sample program tracks the movement of the mouse pointer over the client
window by processing the WM-.MOUSEMOVE message. Once the current
pointer position is obtained via a POINTL structure, the movement of the
mouse pointer is translated into a line through the use of the GpiLine function.
There are effectively three methods of obtaining the current mouse pointer
position. Each method returns the pointer position in response to a different
user event.

There are two PM APis that are used to determine the current mouse
pointer position. The functions WinQueryPointerPos and WinQueryMsgPos
both return the pointer position in screen coordinates, but the two functions
return the pointer position based on different events and at different processing
times. The WinQueryPointerPos function returns the current pointer position
immediately, while the WinQueryMsgPos function returns the position of the
pointer based on when the message that is currently being processed was
actually posted to the message queue. The coordinates returned are in the form
of a POINTL structure, which contains the valid x and y screen coordinates

102 Building A Better Mousetrap: Taming the Mouse in PM

BOOL APIENTRY WinQueryPointerPos (HWND hwndDesktop,
PPOINTL pptl) ;

Figure 4.12 The WlnQueryPointerPos prototype.

BOOL API ENTRY WinQ\leryMsgPos fHAB hab,
PPOINTL pptl) ;

Figura 4.13 The WinQueryMsgPos prototype.

of the pointer. The prototype for WinQueryPointerPos is shown in Figure 4.12
and the prototype for WinQueryMsgPos is in Figure 4.13.

The difference between the layout of the functions is in the first parameter.
The first parameter to WinQueryPointerPos is the desktop window handle,
while the WinQueryMsgPos takes an anchor block handle as its first parameter.
Both functions return TRUE for success and FALSE for failure.

As previously stated, both of these functions return values in screen coor­
dinates. However, what if you want to determine the position of the pointer in
relation to the client window? In order to obtain the coordinates in relation
to the window, you must convert the screen coordinates to window coordi­
nates. PM provides two APis t hat can be used to do the conversion from one
coordinate system to the other. The function WinMapWindowPoints can be
used to convert or map the screen coordinates which are in relation to the
desktop window to a set of coordinates within the client window. Likewise, the
function WinMapDlgPoints can be used to map window coordinates to dialog
coordinates and vice versa. It is extremely useful to understand how these
two functions work, since they allow the ability to quickly convert different
coordinate schemes. The format of WinMapWindowPoints is in Figure 4.14.

• hwndFrom represents the handle of the window from which the co­
ordinates are mapped. If you specify the desktop window handle,
HWND__DESKTOP, this effectively means that you are converting from
screen coordinates to window coordinates.

BOOL APIENTRY WinMapWindowPoints (HWND hwnd.From,
HWND hwndTo,
PPOINTL prgptl,
LONG cwpt) ;

Figure 4.14 The WinMapWindowPoints prototype.

Where Is Mickey? 103

• hwndTo represents the handle of the window to which the coordinates are
mapped. If you specify the desktop window handle, HWND--DESKTOP.
this effectively means that you are converting from window coordinates t~
screen coordinates.

• prgptl represents the actual coordinates that are being mapped from one
coordinate system to the other. The caller specifies the coordinates in the
form of a pointer to a POINTL structure. When the function returns, this
value contains the converted coordinates.

• cwpt represents the count of points to be converted based on the prgptl
parameter. If the prgptl coordinates represent a POINTL structure, then
the valid point count is 1. If the prgptl coordinates are in the actual form
of a RECTL structure, then the point count is 2.

The Configure Spirographs dialog box allows the user to configure the
drawing of the spirographs based on window or screen coordinates via a
simple radiobutton. As you will notice, unless the window is maximized, the
screen coordinates may not be visible in the client window. The program
defaults to using window coordinates for drawing the spirographs. The code
fragment in Figure 4.15 is used to convert the screen coordinates returned from
the function WinQueryPointerPos to window coordinates prior to calling the
SpiroGraphBox function.

Figure 4.15 shows how the pointer coprdinates are converted from
screen coordinates to window coordinates during the processing of the WM­
BUTTON2DBLCLK message. If the bUseWndCoordinates flag is set to TRUE,
the coordinates are converted prior to calling the SpiroGraphBox routine.

case WM_BU'M'ON2DBLCLK:
WinQueryPoi nterPos{HWND_DESKTOP, &ptlCurr ent);

i f (bUseWndCoordinates : = TRUE)
(

WinMapWindowPoints (HWND_DESKTOP, hwndCl i ent, &ptlCurrent, 1);
}

hwndStati c = WinWindowFI"-OmID(hwndCl ient , ID_STATIC);

spr intf(szCoordinates , •x = %l d y = %ld" , ptlCurrent .x, ptlCurrent .y l ;
WinSetWindowText thwndStatic, szCoordinates J;

SpiroGraphBox(hwnd, ptlCurrent, usRotAngl e , sColor);
break;

Figure 4.15 Mapping screen coordinates to window coordinates.

104 Building A Better Mousetrap: Taming the Mouse in PM

USING THE WM_MOUSEMOVE MESSAGE

As discussed previously, moving the mouse around the client window generates
a mouse movement message called WM.MOUSEMOVE. The WM.MOUSE­
MOVE message can also be used to determine the current position of the
mouse pointer. The CLKDRAW sample program uses this message to allow the
user to draw lines within the client window, thereby creating the etch-a sketch
effect. In order to obtain the pointer coordinates during WM.MOUSEMOVE
processing, you must extract the coordinates from a mouse message structure
that is maintained by PM.

The mouse message structure MSEMSG also provides access to the mes­
sage parameters for mouse button processing messages, such as button up, but·
ton down, and button click messages. PM defines a simple macro in PMWIN.H
that can be used to obtain the information contained within the MSEMSG
structure. The MOUSEMSG macro is defined as shown in Figure 4.16. The
format of the actual MSEMSG structure is in Figure 4.17.

The x and y values correspond to the current pointer position. Within the
processing of the WM.MOUSEMOVE message in the sample program, the code
will draw a line based on the movement of the mouse. The question is, if the
mouse is constantly being moved around the client window, how does PM allow
your application to keep up with the processing of the WM.MOUSEMOVE
messages?

The code to resolve WM.MOUSEMOVE processing ensures that the cur­
rent message queue does not get a flurry of wasted mouse movement mes­
sages. The messages are posted based on how quickly the message is actually
processed by the window procedure. For example, if your application mes-

#define MOUSEMSG(pmsg) \
((PMSEMSG) ((PBYTE)pmsg + sizeof(MPARAM)))

Figure 4.16 The mouse message macro MOUSEMSG.

typedef struct _MOUSEMSG
(

SHORT x;
SHORT
USHORT
USHORT

} MSEMSG;

y;
codeHitTest;
fsinp;

typedef MSEMSG *PMSEMSG;

II mousemsg

II mpl

II mp2
II i nput flags

Figure 4.17 The mouse message structure MSEMSG.

ptl PointerPos.x = MOUSEMSG(&msg) ->x;
ptl PointerPos.y = MOUSEMSG(&msg) ->y;

Using the WM..MOUSEMOVE Message 105

Figure 4.18 Obtaining the pointer position within the WM.MOUSEMOVE message.

sage queue is about to process a WM.MOUSEMOVE message, and another
WM.MOUSEMOVE message has arrived for processing, PM will automati­
cally replace the message that is already in the message queue so that only the
most recent mouse movement message will be processed. The rationale behind
this is that the interrupts generated by the mouse movement occur much more
frequently than any application could feasibly handle.

The code fragment found in Figure 4.18 uses the MOUSEMSG macro to
extract the pointer position.

Detennining the Pointer Position In Relation to a Rectangle
Once the pointer position coordinates have been obtained the WlnPtlnRect API
can be used to determine whether the coordinates reside within the boundary
of a specific rectangle (Figure 4.19).

• The hab parameter specifies the anchor block handle.
• The prcl parameter specifies a pointer to the rectangle structure that will

be used to determine if the point coordinates exist within.
• The pptl parameter specifies a pointer to a PO INTL structure. This param­

eter contains the coordinates that will be checked against the rectangle
coordinates to determine if the points reside within the rectangle.

Drawing the Spirographs
When the user double-clicks the right mouse button anywhere over the client
window, a symmetric image that resembles a spirograph is drawn. The image
is drawn based on the current mouse pointer position that is obtained from
WinQueryPointerPosition. The processing of the right mouse button double­
click message is shown in Figure 4.20.

The code fragment shown in Figure 4.20 obtains the current pointer posi·
tion and stores the coordinates in ptlCurrent. The coordinates are then passed
to the function SpiroGraphBox to draw the image in the client area. The im·

BOOL APIENTRY WinPtlnRect (HAB hab,
PRECTL prcl.
PPOI NTL pptl) ;

Figure 4.19 The WinPtlnRect prototype.

>

106 Building A Better Mousetrap: Taming the Mouse In PM

case WM BUTI'ON2DBLCLK:
Wi~QueryPointerPos(HWND_DESKTOP, &ptlCurrent);

hwndStatic = WinWindowFromID(hwndClient, ID_STATIC);
sprintf(szCoordinates, •x = %ld y = %ld", ptlCUrrent.x, ptlCurrent.y);
winSetWindowText(hwndStatic, szCoordinates);

SpiroGraphBox(hwnd, ptlCUrrent, usRotAngle, sColor);
break;

figure 4.20 Processing the WM..BUTTON2DBLCLK message.

age is created simply by drawing a series of boxes on the screen and rotating
the boxes in a circle until the image is complete. The current pointer position
coordinates are used as the origin for drawing the boxes.

When the user double clicks, the current coordinates that are passed to
the function are displayed in a static text window in the lower left comer of
the window. Based on these coordinates, this function will draw the image.
The higher the y coordinate, the more the comer of the boxes will be visible
creating the pointed effect. The lower the y coordinate, the more the image
will resemble a circle. The further the image is along the x and y axes, the
larger the image will become; and conversely, the closer the image is to the
window origin in the lower left comer, the smaller the image will appear. If
either the x or y coordinate is less than 30, the image will use a default size for
drawing. The function is shown in Figure 4.21.

BOOL SpiroGraphBox(HWND hwnd, POINTL ptlCurrent, USHORT usRotAngle, SHORT sDrawColor)
{

HPS
PO INTL
MATRIXLF
USHORT
US HORT
USHORT
CHAR
PSZ

bps;
ptlDraw;
matrix;
usCounter;
usxvalue;
usYValue;
szBuffer[25];
pszCoordinate;

hps = WinGetPS(hwnd);

II Set the color of the spirograph
GpiSetColor(hps, sDrawColor);

Figure 4.21 Tiie SpiroGraphBox function. continued

Using tlle WM...MOUSEMOVE Message 107

II Query the current contents of the model transform
GpiQueryModelTransformMatrix(hps, 9L, &matrix);

usXValue = ptlCUrrent.x;
usYValue = ptlCurrent.y;

ptlDraw.x = ptlCUrrent.x + (usxvalue I 10);
ptlDraw.y = ptlCurrent.y + (usYValue I 10);

II Use default if X or Y is less than 30
if (usxvalue < 30 I I usYValue < 30)

{

ptlDraw.x = ptlCUrrent.x + 30;
ptlDraw.y = ptlCurrent.y + 30;

}

II The secret of creating the spirographs is simple. we simply
II start by drawing a series of boxes all the way around a circle
II each time through the loop we will rotate an extra x degrees.
II Where xis the value of the rotational angle that the user
II specifies via usRotAngle. All the while, we will be replacing
II our transform along the way with the newly calculated t ransform.
for (usCounter = O; usCounter < 360; usCounter ~= usRotAngle)
{

GpiRotate(hps,
&matrix,
TRANSFORM_REPLACE,
MAKEFIXED(usCounter, 0),
&ptlCUrrent);

II Handle to Presentation Space
II Transform matrix
II Transform options
II Rotation angle
II POINTL coordinates for center of rotation

GpiSetModelTransformMatrix(hps , 9L, &matrix, TRANSFORM_REPLACE) ;

GpiSetCurrentPosition(hps, &ptlCurrent) ;

II Draw a normal box based on the ptlDraw coordinates that are obtained.
II The logic that handles the box drawing i s totally unaware that the
II transform will cause the box to be rotated.
GpiBox(hps, II Handle to Presentation Space

DRO_OUTLINE, II outline and Fill control
&ptlDraw, II POINTL coordinates for box
0, II Horizontal corner rounding
0); II Vertical corner rounding

WinReleasePS(hps);
return FALSE;

figure 4.21 The SplroGraphBox function.

>

108 Building A Better Mousetrap: Taming the Mouse in PM

Changing the Default Mouse Pointer
Graphics applications will often need to change th~ default ~ouse pointer
to provide the user an easier interface to accoin:p.hsh a drawmg tas~. The
Options/Capture menu item allows the user the ab1hty to captur~ a po~10n of
any window on the desktop. The area inside of the captured wmdow l~ then
copied to the client area of the status window, which is simply another wmdow
drawn within the client area of the main CLKDRAW window.

The illustratration shown in Figure 4.22 depicts the use of the capture
window. When the user selects the Options/Capture menuitem, the pointer
is changed to simplify the navigation of the tracking rectangle that is used
to capture a portion of the screen. The tracking rectangle is the temporary
box that the user will move and size when capturing. When the tracking is
complete, the coordinates that composed the tracking rectangle are stored i? a
RECTL structure. Changing the system mouse pointer is as simple as changmg
the cheese on a mousetrap, except there's no yucky cheese to dispose of. The
mouse pointer is changed by calling the API WinSetPointer and specifying the
new system pointer to be used.

The prototype for WinSetPointer is shown in Figure 4.23.

x ~ 487 y = 389

Figure 4.22 Using the capture window functionality.

Using the WM_MOUSEMOVE Message 109

BOOL APIENTRY WinSetPoint er (HWND hwndDesktop,
HPOINTER hptrNew);

Figura 4.23 The WinSetPointer prototype.

• The hwndDesktop parameter specifies the desktop window handle.
• The hptrNew parameter specifies the new pointer that is to be used.

The pointer used by the sample program is a simple cross that is helpful for
sizing the tracking rectangle. When the user begins the capture, the pointer is
centered within the tracking rectangle to indicate that the tracking can begin.
The tracking begins as soon as the user clicks the first mouse button. From
there, the north-west quadrant of the cross will correspond to the bottom right
end corner of the tracking rectangle. The cross pointer is more intuitive for
the user to associate with the tracking rectangle. An application should only
modify the system pointer when it provides the user an easier interface to
accomplish a specific task.

The cross pointer itself was created by the Icon Editor(ICONEDIT), pro­
vided with OS/2. The pointer file is built as a resource into the executable, just
like a bitmap or icon.

POINTER IDP_TRACKRECT cl kdraw. ptr

loading the Pointer
Prior to the pointer being changed, it needs to be loaded from the resource. The
API that is used to load the pointer is called, WinLoadPointer. Upon success,
the WinLoadPointer API will return a valid pointer handle that can be used to
change the system pointer via a call to WinSetPointer (Figure 4.24).

• The hwndDesktop parameter specifies the desktop window handle
• The hmod parameter specifies the module handle of the module containing

the pointer resource. A NULLHANDLE may be used to indicate that the
pointer resource is built into the executable.

• The idres parameter corresponds to the identifier that represents the
pointer to be loaded.

HPOINTER APIENTRY WinLoadPointer (HWND hwndDesktop,
HMODULE hmod,
ULONG idres l ;

Figure 4.24 The WinloadPolnter prototype.

110 Bullding A Better Mousetrap: Taming the Mouse in PM

case IDM_TRACKBOX:
hptrTrack = WinLoadPointer (HWND_DESKTOP,

NULLHANDLE,
IDP_TRACKRECT);

rclTrack = ProcessTrackingRectangle(hptrTrack, HWND_DESKTOP);

Figure 4.25 Loading the cross pointer used for tracking.

In the code fragment found in Figure 4.25, the pointer is loaded during
the processing of the IDM_TRACKBOX command message, and then the Pro­
cessThackingRectangle function is called to set the pointer and handle the
tracking rectangle.

Destroying the Pointer
A pointer is a bitmap resource that requires memory from the graphics engine
heap. Although the Presentation Manager code should automatically free all of
the bitmap resources used by an application when the application terminates,
it is a good idea to free the resource as soon as possible. This is especially true,
if your application will run for hours without exiting, while the application
continuously loads bitmap resources. One common programming error is to
repetitively call WinLoadPointer without destroying the pointer when it is no
longer needed. Eventually, the application will consume the bitmap resources
in the graphics engine heap causing all kinds of nasty problems. Therefore, an
application should use the WinDestroyPointer API to free all loaded pointers
that are no longer being used (Figure 4.26).

• The hptr parameter specifies the handle of the pointer to be destroyed.

The WinDestroyPointer API will return TRUE if the function is successful
and FALSE if an error occurred. The calling thread can only destroy the
pointer if it was the same thread that created the pointer. Also, a check is done
to ensure the current pointer is not destroyed, and that the system pointers are
not inadvertantly destroyed. Finally, the worker routine for the API will call a
routine in the graphics engine to delete the bitmaps associated to the pointer,
hbmColor, hbmMiniPointer and hbmMiniColor.

BOOL APIENTRY WinDestroyPointer(HPOINTER hptr);

Figure 4.26 The WinDestroyPointer prototype.

Usl•g the WM_MOUSEMOVE Message 111

Creating Pointers Dynarnlcally
Since a pointer is actually composed of multiple bitmaps, an application may
choose to manually create a pointer from various bitmaps. Creating the pointer
dynamically from the bitmaps is a little bit more complex since it requires
working with multiple bitmaps, along with the required presentation space.
The pointer is created via a call to the API WinCreatePointer, specifying the
bitmap required to create the pointer. The API will return a valid pointer handle
on success or a NULLHAND LE if an error occurred creating the pointer.

The prototype for the API is shown in Figure 4.27.

• The hwndDesktop parameter specifies the desktop window handle.
• The hbmPointer parameter specifies the handle of the bitmap that will be

used to create the pointer.
• The lPointer value is used to indicate whether the specified bitmap repre­

sented by hbmPointer should be the size of a system pointer or a system
icon. If the value is set to TRUE, then the bitmap will be sized to fit the di­
mensions of a system pointer. If the value is set to FALSE, then the bitmap
will be sized to fit the dimensions of a system icon. The icon sized pointer
can be used for drag and drop operations.

• The xHotspot value is used to indicate the horizontal location of the pointer
hotspot. This value is in pels and is based off the lower left corner of the
image.

• The yHotspot value is used to indicate the vertical location of the pointer
hotspot. This value is in pels and is based off the lower left corner of the
image.

Processing the Tracking Rectangle
The tracking rectangle provides a visual mechanism for the user to size and
move a rectangular box that can be used to track the movement of the pointing
device. The tracking rectangle gives the developer a simple method of obtaining
the coordinates for a rectangle based on the user's movement of the pointing
device.

The manipulation of the tracking rectangle is accomplished through the
use of the WinThackRect API. The window manager code makes use of the

HPOINTER APIENTRY WinCreatePointer (HWND hwndDesktop,
HBITMAP hbmPoi nter ,
BOOL fPointer,
LONG xHotspot,
LONG yHotspot);

Figure 4.27 The WinCreatePolnter prototype.

110 Building A Better Mousetrap: Taming the Mouse in PM

case IDM_TRACKBOX:
hptrTrack = Wi nLoadPointer(HWND_DESKTOP,

NULLHANDLE,
IDP_TRACKRECT);

rclTrack : ProcessTrackingRectangle(hptrTrack, HWND_DESKTOP);

Figura 4.25 Loading the cross pointer used for tracking.

In the code fragment found in Figure 4.25, the pointer is loaded during
the processing of the IDM_TRACKBOX command message, and then the Pro­
cessli"ackingRectangle function is called to set the pointer and handle the
tracking rectangle.

Destroying the Pointer
A pointer is a bitmap resource that requires memory from the graphics engine
heap. Although the Presentation Manager code should automatically free all of
the bitmap resources used by an application when the application terminates,
it is a good idea to free the resource as soon as possible. This is especially true,
if your application will run for hours without exiting, while the application
continuously toads bitmap resources. One common programming error is to
repetitively call WinLoadPointer without destroying the pointer when it is no
longer needed. Eventually, the application will consume the bitmap resources
in the graphics engine heap causing all kinds of nasty problems. Therefore, an
application should use the WinDestroyPointer API to free all loaded pointers
that are no longer being used (Figure 4.26).

• The hptr parameter specifies the handle of the pointer to be destroyed.

The WinDestroyPolnter API will return TRUE if the function is successful
and FALSE if an error occurred. The calling thread can only destroy the
pointer if it was the same thread that created the pointer. Also, a check is done
to ensure the current pointer is not destroyed, and that the system pointers are
not inadvertantly destroyed. Finally, the worker routine for the API will call a
routine in the graphics engine to delete the bitmaps associated to the pointer,
hbmColor, hbmMiniPointer and hbmMiniColor.

BOOL APIENTRY WinDestroyPointer (HPOINTER hptrl ;

Figura 4.26 The WlnDestroyPolnter prototype.

Using the WM...MOUSEMOVE Message 111

Creating Pointers Dynamically

Since a pointer is actually composed of multiple bitmaps, an application may
choose to manually create a pointer from various bitmaps. Creating the pointer
dynamically from the bitmaps is a little bit more complex since it requires
working with multiple bitmaps, along with the required presentation space.
The pointer is created via a call to the API WlnCreatePointer, specifying the
bitmap required to create the pointer. The API will return a valid pointer handle
on success or a NULLHANDLE if an error occurred creating the pointer.

The prototype for the API is shown in Figure 4.27.

• The hwndDesktop parameter specifies the desktop window handle.
• The hbmPolnter parameter specifies the handle of the bitmap that will be

used to create the pointer.
• The fPointer value is used to indicate whether the specified bitmap repre­

sented by hbmPolnter should be the size of a system pointer or a system
icon. If the value is set to TRUE, then the bitmap will be sized to fit the di­
mensions of a system pointer. If the value is set to FALSE, then the bitmap
will be sized to fit the dimensions of a system icon. The icon sized pointer
can be used for drag and drop operations.

• The xHotspot value is used to indicate the horizontal location of the pointer
hotspot. This value is in pels and is based off the lower left corner of the
image.

• The yHotspot value is used to indicate the vertical location of the pointer
hotspot. This value is in pels and is based off the lower left corner of the
image.

Processing the Tracking Rectangle
The tracking rectangle provides a visual mechanism for the user to size and
move a rectangular box that can be used to track the movement of the pointing
device. The tracking rectangle gives the developer a simple method of obtaining
the coordinates for a rectangle based on the user's movement of the pointing
device.

The manipulation of the tracking rectangle is accomplished through the
use of the Wlnli"ackRect APL The window manager code makes use of the

HPOINTER APIENTRY WinCreat ePointer (HWND hwndDesktop,
HBITMAP hbmPointer ,
BOOL fPointer ,
LONG xHotspot ,
LONG yHotspot);

Fl91re 4.27 The WlnCreatePolnter prototype.

112 Building A Better Mousetrap: Taming Iha Mouse In PM

BOOL APIENTRY WinTrackRect (HWND hwnd,
HPS hps,
PTRACKINFO pti) ;

Figure 4.28 The WlnTrackRect prototype.

tracking rectangle for moving and sizing a frame window with a sizeable
border.

Figure 4.28 shows the prototype for WinTrackRect.

• The hwnd parameter specifies the window that the user can use for the
tracking. If this parameter is set to HWNDJ>ESKTOP, the user can move
the tracking pointer anywhere on the desktop.

• The hps parameter specifies the presentation space handle of the area that
is to be tracked. If this parameter is a NULLHAND LE then the hwnd
parameter will be used to determine the presentation space required for
tracking.

• The pti parameter represents a pointer to the tracking information struc­
ture called TRACKINFO, that is used to create the tracking rectangle.

The TRACKINFO structure is shown in Figure 4.29.

• The cxBorder element is used to specify the border width of the left and
right sides of the tracking rectangle.

• The cyBorder element is used to specify the border height of the top and
bottom sides of the tracking rectangle.

• The cxGrid element is used to specify the horizontal boundary for track
movement.

typedef struct _TRACKINFO If trackinfo
(

LONG cxBorder;
LONG cyBorder;
LONG cxGrid;
LONG cyGrid;
LONG cxKeyboard;
LONG cyKeyboard;
RECTL rclTrack;
RECTL rclBoundary;
POINTL ptlMinTrackSize;
POINTL ptlMaxTrackSize;
ULONG fs;

} TRACKINFO;
typedef TRACKINFO *PTRACKINFQ;

Figure 4.29 The TRACKINFO structure.

Using the WM..MOUSEMOVE Message 113

• The cyGrid element is used to specify the vertical boundary for track move­
ment.

• The cxK.eyboard element allows the user to use the keyboard arrow keys to
move the tracking rectangle. This element specifies the horizontal width
that the rectangle will move.

• The cyKeyboard element allows the user to use the keyboard arrow keys to
move the tracking rectangle. This element specifies the vertical length that
the rectangle will move.

• The rclTrack element represents a RECTL structure that contains the rect­
angle coordinates corresponding to the user 's movement of the tracking
rectangle.

• The re/Boundary element specifies the bounding rectangle that the tracking
rectangle cannot exceed. This element is used in conjunction with the
TF ...ALLINBOUNDARY flag.

• The ptlMinTrackSize element specifies the minimum tracking size.
• The ptlMaxTrackSize element specifies the maximum tracking size.
• The fs element contains the tracking flags which are shown in Figure 4.30.

Figure 4.30 shows the tracking rectangle flags.

• The TF ..LEFT flag is used to track the left side of the rectangle.
• The TF _TOP flag is used to track the top of the rectangle.
• The TF--RIGHT flag is used to track the right side of the rectangle.
• The TF _BOTTOM flag is used to track the bottom of the rectangle.
• The TF ..MOVE flag is used to allow all of the rectangle sides to be tracked.
• The TF_SETPOINTERPOS flag is used in conjunction with the direction

tracking flags to determine how the pointer will be positioned.

If no additional direction flag is used, the pointer will be positioned in the
center of the tracking rectangle.
If used with the TF ..MOVE flag, the pointer will also be positioned in the
center of the tracking rectangle.

TF_LEFT
TF_TOP
TF_RIGHT
TF_BOTTOM
TF_MOVE
TF_SETPOINTERPOS
TF_GRID
TF _STANDARD
TF_ALLINBOUNDARY
TF_VALIDATETRACKRECT

OxOOOl
Ox0002
Ox0004
OxOOOB
OxOOOF
OxOO l O
Ox0020
Ox0040
Ox0080
OxOlOO

Figure 4.30 The tracking flags.

116 Building A Better Mousetrap: Taming the Mouse In PM

SYSVALUES GetSysValues(VOID)
{

)

SYSVALUES sysvalues;

sysvalues.lcxscreen = WinQuerySysValue (HWND_DESKTOP, SV_CXSCREEN);
sysvalues.lcyScreen = WinQuerySysValue (HWND_DESKTOP, SV_CYSCREEN);
sysvalues.lcxFullScreen = WinQuerySysValue (HWND_DESKTOP, SV_CXFULLSCREEN) ;
sysvalues.lcyFullScreen = WinQuerySysValue (HWND_DESKTOP, SV_CYFULLSCREEN);
sysvalues.lcxPointer = WinQuerySysValue (HWND_DESKTOP, SV_CXPOINTER);
sysvalues.lcyPointer = WinQuerySysValue (HWND_DESKTOP, SV_CYPOINTER);
sysvalues.lcxDlgFrame = WinQuerySysValue (HWND_DESKTOP, SV_CXDLGFRAME);
sysvalues.lcyDlgFrame = WinQuerySysValue (HWND_DESKTOP, SV_CYDLGFRAME);
return sysvalues;

Figure 4.32 The GetSysValues function.

Using the Clipboard
The CLKDRAW sample program is a very basic drawing utility. Most graphics
programs provide a mechanism to exchange the graphical data with other
applications, as well as provide the ability to import graphical data from these
applications. The PM clipboard is the facility provided by the Presentation
Manager to process the exchange of the data. The clipboard is a simple
one-time data transfer mechanism, as oppossed to the Dynamic Data Ex­
change (DDE) facility discussed in Chapter 9, which allows for multiple, non­
interactive data exchanges.

The clipboard manager uses the cut, copy, and paste metaphors to corre­
spond to the functionality of the clipboard. The cut and copy features allow
an application to place data in the clipboard. The difference between cut and
copy is simple. Cut deletes the data from an application perspective once the
data is copied to the clipboard, while a copy operation leaves the data intact.
The paste feature allows an application to retrieve data from the clipboard. All
of these clipboard operations must be specifically initiated by the user.

Programming the PM clipboard is a relatively simple task, so we don't
spend too much time covering it in this book. However, since the sample
program for this chapter is a simple drawing and capture utility, it makes
sense to provide the user, the ability to exchange the graphical images created
by this program with other programs via the clipboard.

There are essentially three different types of data that the clipboard can
support by default: text, bitmaps, and metafiles. An application may choose to
copy the same data in multiple data formats so that the application receiving
the data can determine which form it requires when it processes the paste
operation. Aside from the standard clipboard formats, an application may
choose to process data in the clipboard that does not fit into any of the public

Using the WM_MOUSEMOVE Message 117

clipboard data types. In these cases an application may define a private data
format to allow other applications the ability to obtain specific data other than
the types covered by the public clipboard data types.

In order for an application to use a private clipboard format it must register
the format in the system atom table. Once it is registered, the application
uses a unique format identification number that identifies the private format.
Applications that wish to make use of the private clipboard format must be
able to identify the format, either by the format identification number or by
querying the system atom table with the private format name.

Figure 4.33 shows the public clipboard data formats.

• The CF_TEXT format is the simplest of all the data formats . It is used
to represent an array of characters. A single '\O' character is used to
terminate the text and the newline character '\n' can be used to put a line
break in the text.

• The CF..BITMAP format is the one used in the sample program. It is used
to represent bitmap data.

• The CF ..DSPTEXT format is used by the acting clipboard viewer to repre­
sent a private data format for text data.

• The CF ..DSPBITMAP format is used by the acting clipboard viewer to
represent a private data format for bitmap data.

• The CF .METAFILE format is used to represent a metafile.
• The CF ..DSPMETAFILE format is used to by the acting clipboard viewer

to represent a private data format for metafile data.

Placlng Blbnap Data in the Clipboard
The process of putting our bitmap data in the clipboard is a relatively straight­
forward task since most of the clipboard APis only take an anchor block handle
as a parameter. To gain access to the clipboard, an application needs to first
open the clipboard by calling the WinOpenClipbrd APL The purpose of this
API is to block all other threads in the system from modifying the contents
of the data in the clipboard. The function will return TRUE for success and
FALSE if an error occurred opening the clipboard as a result of another ap­
plication having the clipboard open. Also, the API cannot be called twice from
the same thread. The function works by simply obtaining access to a special
clipboard semaphore.

CF_TEXT
CF_BITMAP
CF_DSPTEX'r
CF_DSPBITMAP
CF METAFILE
CF_DSPMETAFILE

1
2
3
4
5
6

Flgn 4.33 The public clipboard data formats.

118 Building A Better Mousetrap: Taming the Mouse In PM

BOOL APIENTRY WinOpenClipbrd(HAB hab};

FllUl8 4.34 Opening the clipboard.

BOOL APIENTRY WinEmptyClipbrd(HAB hab) ;

Figure 4.35 Emptying the contents of the clipboard.

The prototype for WlnOpenCllpbrd is listed in Figure 4.34.
Once the clipboard is opened by the application, the current contents of the

clipboard can be emptied by calling the WlnEmptyClipbrd APL The prototype
for WlnEmptyCllpbrd is shown in Figure 4.35.

The purpose of the WlnEmptyCllpbrd API is to clear the contents of the
clipboard and free all of the handles representing data for the clipboard. The
function will return TRUE for success and FALSE if an error occurred as a
result of the clipboard not being opened or the call being made from a different
thread. The function will send a WM_DESTROYCLIPBOARD message to the
owner of the clipboard to indicate that it free any CFLOWNERFREE data.
The function works by enumerating through all of the clipboard formats and
freeing all of the resources used, like ATOMS, the memory for the clipboard
structure, and finally the actual data in the clipboard.

Once the clipboard is emptied, an application can place data in the clip­
board by calling the WinSetClipbrdData API. The prototype is shown in Figure
4.36.

• The hab parameter represents the anchor block handle.
• The ulData parameter is used to represent the generic handle of the object

that is to be placed in the clipboard.
• The fmt parameter represents the clipboard data format.
• The rgfFmtlnfo parameter is used to identify the type of data that is repre­

sented by the ulData parameter.

The routine PutBltmaplnCllpboard is used to put the bitmap created by
the tracking rectangle into the clipboard. The function will return TRUE for
success or FALSE if an error is returned by one of the clipboard API's. The
code for this function is shown in Figure 4.37.

BOOL APIENTRY WinSetClipbrdData(HAB hab,
ULONG ulData ,
ULONG fmt,
ULONG rgfFmtlnfo) ;

Figure 4.36 The WinSetClipbrdData prototype.

BOOL PutBitmapinClipboard{HBITMAP hbmClipboardJ
(

HAB habTemp;
BOOL re;

II Obtain anchor block handle
habTemp = WinQueryAnchorBl ock(HWND_DESKTOP);

II Attempt t o open the Clipboar d
re= WinOpenCl ipbrd(habTemp);

Using the WMMUSEMOVE Massage 119

if (re !=TRUE) II If we get an error opening, return FALSE and post message
(
DisplayMessages(NULLHANDLE, "Error Opening Clipboard•, MSG_ERROR};
return re;

}

II OK, no error so l et' s empty the clipboard and
II place our bitmap i n there!
else

(
re= WinEmptyClipbrd{habTempJ;
if (re ! = TRUE)

(

Displ ayMessages(NULLHANDLE, "Error Emptying Dat a In Clipboard•, MSG_ERRORJ ;
return re;

}

re = WinSetCl ipbrdData(habTemp ,
hbmClipboard,
CF_BITMAP,
CFI_HANDLE) ;

if (re != TRUE)
(

II anchor block handle
11 bitmap handle
II clipboard data format
II format information

DisplayMessages(NULLHANDLE, "Error Placing Data In Clipboard•, MSG_ERRORJ;
r eturn re;

}

re = Wi nCl oseCl ipbrd(habTemp};
if {re != TRUE)

(

}

DisplayMessages(NULLHANDLE, 'Error Closi ng Clipboard", MSG_ERROR);
return re;

return TRUE;

Flg11re 4.37 Punlng a bitmap in the clipboard.

-

120 Building A Better Mousetrap: Taming the Mouse in PM

SUMMARY
This chapter demonstrates how to capture and utilize the mouse pointer, mouse
pointer position, and pointer resources. The CLKDRAW sample program is a
very simplistic drawing tool designed to illustrate various pointer program­
ming techniques. The processing of the mouse button and mouse movement
messages along with the pointer manipulation APis are discussed throughout
the chapter. This chapter makes use of the mouse movement and the pointer
position concepts by integrating these elements into a fun yet somewhat practi­
cal graphics program. The CLKDRAW sample program uses some simple and
advanced GPI drawing techniques to illustrate the effective use of the pointer.
Learning how to conquer the pointing device issues covered in this chapter is
essential to creating well-designed and well-written graphical applications.

CHAPTER

SOS for PM Developers:
Help Management through
the Information
Presentation Facility

I n the not too distant past, computer users considered extensive, on-line,
context-sensitive help a luxury. Now these features have become a neces­
sity. If programmers were forced to build their own help systems from the

ground up, the time and expense required to build applications would increase
significantly. Fortunately for OS/2 developers, this is not the case-the oper­
ating system provides an internal system for managing on-line help data, the
Information Presentation Facility, IPF.

Since many of the Presentation Manager applications and utilities for OS/2
utilize IPF to display on-line help, users of the operating system already know
how to access help using the IPF facilities. Applications that also use the IPF
API to access help provide a consistent user interface which helps give the
user a sense of unity and security knowing that help is almost always available
and accessible.

For programmers, IPF simplifies the task of providing the proper text based
on the context from which the user requests help. For simple applications, the
only program code modifications required are three API calls and a set of
tables that define the text to be displayed for each element of the application.
IPF automatically handles the user's request for help, the display of the help
windows, the processing of messages sent to these windows, and the formatting
of the text displayed in the windows.

121

tr

122 SOS for PM Developers

DESIGNING HELP TEXT
The purpose of on-line help is to assist the user in determinin? ~ow t~ properly
operate an application. Users of an application tend. to exhibit a ~ide r~nge
of experience, so the on-line help system must be design~d to pr~v1~e van~us
levels of detail. Experienced users may need only a bnef ~escnpt1~.n to JO~
their memory while a novice may require lengthy explanations and how to
information. .

IPF meets these needs by organizing the help text into pane.ls of mforma-
tion. A properly designed system gives the user access t~ a basic, or ?eneral,
help panel which describes the application. Hypei:ext h~ from this panel
lead the novice user to more detailed how-to type mformat1on. General help
panels can be created for each window of the appl~c~tion to explain the ?ur­
pose and general functionality of the window. In this mstance, hyperte~t lmks
can lead to additional information about the various elements of the wmdow,
such as menus and controls. The text can also be organized such that e~ch
element of the window has its own help panel which is immediately accessi~le
when the user is working with that element. Typically, these panels provide
concise, expert-level information describing the particular element, and con-
tain a hypertext link to more detailed information when nece~s~ry. .

Thus the task of the help text designer is twofold: determmmg the organ~­
zation of the panels, and determining the text to be displayed ~n the panel. This
second item, the actual text, is largely outside the scope of this book; however,
we will describe the tagging necessary to define and link panels.

Organization of Panels
The organization of on-line help into panels is largely deter_mi~ed by the struc­
ture of the application itself. The main window of t.he apph~atton should have
a panel, referred to as the general help panel, which prov1~es an overall. de­
scription of the application. If desired, this panel can con~~un hypert.ext lmks
to additional information; for example, panels that descnbe the ma1or fun~­
tional areas of the application and/or how-to panels. The general help p.ane.l 1s
displayed when the user requests help via the Fl key and no other apphc~tton
element is currently in use, or when the user selects the General Help item
from the Help menu.

Applications that define special uses for the keyboard ke~s, such as accel-
erator keys, should provide one or more keys help panels to hst th~se keys and
their functions. If appropriate, the keys help panel(s} can c~nt~m hypertext
links to the panels associated with menu items or othe~ ap?hcat1on elements
to which the special use keys are mapped. This panel ts displayed when the
user selects the Keys Help item from the Help menu.

Constructing the IPF Source Fiie 123

Next, panels should be defined for each element of the main window. These
elements include menu items, pushbuttons, and other controls. The panels for
primary menu items like File should describe the type of actions performed by
the submenu items and contain hypertext links to the panels defined for the
submenu items. Panels for the submenu items should describe the action that
is taken when that item is selected. If the item causes a secondary window,
such as a dialog box to be displayed, a hypertext link to the general help panel
for the secondary window should be provided.

After the help panels for the main application window have been defined,
help panels for the secondary windows-dialog boxes, message boxes, and so
on- should be defined. Panels for these windows are defined similarly to those
for the main window: A general help panel is defined to explain the function
of the window, and additional panels are defined as required for each control
or menu item associated with the window.

While observing the preceding will provide good context-sensitive help for
the application, the designer should remember that IPF also generates a table
of contents for the panels. Since the table of contents is accessible by the user
when a help panel is displayed, some care must be taken to ensure that a
logical representation of the panels in the help file is shown. The IPF table of
contents is essentially an outline of the help file, organized in the same order as
the panels are defined in the help file source and using the title of the panel as
the table of contents entry. Panels may be defined with various heading levels,
the highest level being level 1. The practice of defining all panels in a help file
at level 1, while common, significantly reduces the usefulness of the table of
contents. A scheme that defines the general help panels for each window at
heading level 1 and the menu and control panels at level 2 or below provides
a logical, easy-to-navigate organization. The keys help panel should be defined
at level 1. A single how-to panel should be defined at level 1 or, if several are
available, define a summary panel at level 1 and the actual help panels below
this at level 2.

IPF also allows indexes to be defined which provide access to all panels
that reference a particular topic. Indexes should be defined as needed. If no
index entries are available, IPF will disable the help index item in the menu
of the help window-the application is responsible for removing or disabling
this item in its Help menu.

CONSTRUCTING THE IPF SOURCE FILE

Help files are created by constructing a tagged ASCII file containing the help
text. Special tags are used to split the text into panels, describe how the text
should be formatted, establish links between panels, and so forth. This file is
then used as the source for the IPFC compiler, provided in the OS/2 Devel-

124 sos for PM Developers

:userdoc.
:hl.Title
Word
:euserdoc.

Flgn 5.1 A minimal help script.

oper's Toolkit, which produces the help library file used by IPF at runtime.
Construction of the help source file can proceed in two phases. In the first
phase, the application developer constructs a templ~te ~le whic~ defines the
panels and hypertext links that represent the apphcation architecture. The
panel text in this file merely indicates the subject of the help text for the p~el.
The actual text is added in phase 2 by technical writers or others responsible
for this task. As our main concern is the task of the application program­
mer, let's examine how the template file would be constructed for a sample
application, a text editor.

Figure 5.1 shows a basic help source file which consists of three ta~s and
one word of text. This file can be used as the initial template from which to
build a full help file for an application. Note that IPF tags begin with a colon
and end with a period. The :userdoc. tag must be the first tag of the source file
and indicates to IPFC that this is the beginning of the document. The :euserdoc.
tag must be the last tag in the file; text beyond this tag is ignored. The :hl. tag
defines a level 1 panel which will include all text until another :hx. tag or the
:euserdoc. tag is encountered. "Title" is the text to be displayed in the title bar
of the help window when this panel is displayed and is also used to represent
this panel in the table of contents. "Word" is the text that will be displayed in
body of the help window. . . .

Using this basic file, we begin adding panels as descnbed m .the previous
section. The first step is defining the general help panel for the mam window of
the application. Figure 5.2 shows the basic help source file modified to defi~e
the general help panel for an application named Editor. In this figure, the basic
help file has been modified to include a valid help panel title, and the text of
the panel has been changed to a placeholder to be filled in later .. Also, the :h!.
tag now contains a res= attribute which provides the panel with a numenc
resource ID. This ID is required for IPF to automatically access the appropriate
panel when help is requested and must be unique within the help file. ~en
the application coding language permits, the panel IDs can be defined m a

:userdoc.
:hl res=lOOO.Help for Editor
:p.Insert Editor "General Hel p• t ext here.
:euserdoc.

Flglll'I 5.2 Basic help script for Editor.

Constnlctlng the IPF Source Fiia 125

separate header file which is used by both the application code and the IPF
source file. With this technique, the IPF source file is first passed through the
coding language's precompiler and then compiled with IPFC. Be forewarned,
however, that IPFC does not perform any arithmetic operations-the definition
in the header file must use an explicit numeric value, not a calculation. The
sample program accompanying this chapter uses this technique and should be
referenced if more detailed information is required.

Now the help panels for the primary menu items and controls associated
with the main window need to be defined. Figure 5.3 shows the IPF source file
for Editor which defines three primary menu items, File, Edit, and Help, and
does not have any embedded controls. Level 2 panels have been added for each
of the main menu items using an :h2. tag. When the table of contents for this
file is displayed, these panels will be displayed under the entry for the main
application window general help. In addition, :link. and :elink. tags have been
added to the general help panel. These tags are used to define a hypertext link
allowing the user to jump from one panel to another. The text between the two
tags is displayed with hypertext highlighting. When the user clicks on this text,
the panel defined by the hypertext link is displayed. The :link. tag contains two
attributes, reftype=, which indicates the type of link, and res=, which indicates
the resource ID of the linked heading. Reftype hd indicates that the link is to
another help panel. Note that a :p., or paragraph, tag is used to cause the text
and each of the links to be displayed on a separate line.

Next, panels for the submenu items of each of the main menu selections are
defined. Figure 5.4 illustrates the file following the addition of panels for the
File menu. These panels are defined with :h3. tags and will thus be displayed
under the Help for File Menu entry in the table of contents. The Help for Open
Menu panel contains two additional links. The first link references the Level
1 panel for the dialog window used to select a file . By following this link, the
user will be able to determine all the information required to actually open the
file just by selecting help on the Open menu item. The second link references

:userdoc.
:hl res=lOOO.Help for Editor
:p.Insert Editor "General Help• text here .
:p.: link reftype=hd res=llOO.File :elink .
:p. :link reftype=hd res=1200 .Edit :elink.
:p.:link reftype=hd res•1300.Help:elink .
:h2 res=llOO .Help for File Menu.
:p. Insert FILE menu help here .
:h2 res=1200.Help for Edit Menu .
:p.Insert EDIT menu help here .
:h2 res=1300.Help for Help Menu .
:p.Insert HELP menu help here .
:euserdoc .

Figure 5.3 Adding Editor's menu items.

-

126 SOS tor PM Developers

:userdoc.
:hl res=lOOO.Help for Editor
:p.Insert Editor "Extended Help" text here .
:p.:link reftype=hd res=llOO.File :elink .
:p. : link reftype=hd res=1200 .Edit :elink.
:p.:link reftype=hd res=1300.Help:elink.
:h2 res=llOO.Help for File Menu
:p.Insert FILE menu help here.
:p .: link reftype=hd res=lllO.New:elink .
:p.:link reftype=hd res=1120.0pen .. . :elink.
:p . :link reftype=hd res=1130.Save:elink . .
:p.:link reftype=hd res=1140.Save as ... :el1nk.
:p.: link reftype=hd res=1150.Exit :elink.
:hJ res=lllO .Help for New Menu
:p. Insert FILE NEW menu help here.
:hJ res=1120 .Help for Open Menu
:p .Insert FILE OPEN menu help ~ere. . . .
:p . :link reftype=hd res=2000.F1le Open Dialog W1ndow:el1nk.
:p.Additional Information .
:p.:link reftype=hd res=20010.File Management Concepts:el1nk.
:h3 res=1130.Help for Save Menu
:p. Insert FILE SAVE menu help here .
:h3 res=1140 .Help for Save As Menu
:p. Insert FILE SAVE AS menu help here .
:h3 res=1150.Help for Exit Menu
:p. Insert FILE EXIT menu help here .
:h2 res=1200.Help for Edit Menu
:p . Insert EDIT menu help here.
:h2 res=1300 .Help for Help Menu
:p.Insert HELP menu help here .
:hl res=2000 .Help for File Open Dialog Window
:p .Insert extended help for the file open dialog box here .
:hl res=20000 .User ' s Guide
Insert User ' s Guide introduction here .
:h2 res=20010 .File Management
Insert File Management Concepts section here .
:euserdoc.

Figure 5.4 Adding Editor's Ille menu help.

a Level 2 panel which provides the novice user with additional information
on general file management concepts. Links similar. to these two should also
be provided as appropriate for the other file menu items-the Help for ~ave
as panel should contain a link to the general help panel for th~ Save. as dialog
window and all the panels except Help for Exit should provide a hnk to the
file management concepts panel. .

When the panels for the Edit and Help submenu items h~ve been added
to Figure S.4, the main application window's help template will be complete.
The same process should then be followed to complete the template for other

Mappl119 ..,,llcatl• Elemuts to Help Pmels 127

application windows such as the File Open dialog window. Additional general
information or how-to panels should be added to the User's Guide section
as needed or desired. Finally, a Keys help panel should be provided if the
application assigns special functions to the keyboard keys. A link to this panel
should be provided from the Keys help submenu item of the Help menu.

The template help source file is now complete. After compilation, the file
can be used as is during application development and tested while the actual
text is being developed. The file is compiled by invoking the IPFC compiler
with the name of the source file as a parameter. Assuming the name of the
source file is editor.ipf, the following command line would be used to compile
the file:

IPFC editor

The ipf extension is the default expected by the IPFC compiler; however, other
extensions can be used if the file name and extension are both specified on the
command line.

The IPFC compiler can also be used to generate on-line documents which
are displayed using the OS/2 View utility by adding the /INF parameter to
the command line. Generating a viewable document from a help source file is
often useful to verify the contents of the file during the development phases.

MAPPING APPLICATION ELEMENTS TO HELP PANELS

In order to provide the correct on-line help panel for each window, control,
menu item, dialog box, and so on, IPF requires the application to define a set
of tables that map these elements to the proper help panel. Two table types are
used: A help table maps help panels to frame windows and help subtables map
help panels to control and menu windows within frame windows.

The help table is an array which normally contains one element for each
frame window in the application. Each element of the array is a structure of
type HELPTABLE which defines the general help panel for the frame window
and identifies the help subtable for the nonframe child windows of the frame.
The final element of the array must contain a structure whose elements are all
set to either zero or NULL. The HELPTABLE structure is defined as shown in
Figure S.S.

typedef struct _HELPTABLE (
USHORT idAppWindow;
PHELPSUBTABLE phstHelpSubTable;
USHORT idExtPanel ;

) HELPTABLE ;

Figure 5.5 The HELPTABLE structure.

128 SOS for PM Developers

• The idAppWindow element is the window ID of the frame window whose

help is mapped with this structure.
• The phstHelpSubTable element is a pointer to the first element of the sub­

table which maps the frame window's children to their proper help panel.

• The id.ExtPanel element is the resource ID of the help panel to display

when general help is requested for the frame window. This value should

match one of the res= IDs defined in the help source file.

A help subtable is an array of 16-bit values which define the mapping

between nonframe child windows and help panels. The first element indicates

the number of array elements that are used to represent each entry in the table

and is normally set to the value 2. The remainder of the array comprises a

number of mapping entries each consisting of the specified number of array

elements. Each entry contains at least two 16-bit values: the first is the window

ID of a child window, and the second is the resource ID of the help panel to

be displayed when help is requested for the child window. Additional 16-bit

values may be included in each entry; if so, these values are not used by IPF

and are available for application defined use.

Defining Help Tables
The help tables and subtables may be variables within the application's code

but normally are defined in the application's resources. The OS/2 Resource

Compiler has defined keywords and resource types specifically for generating

the help mapping information. The generic syntax for defining a help table is

given in Figure 5 .6.
The HELPTABLE keyword indicates that the Resource Compiler is to cre­

ate a HELPTABLE resource. The helptableid is the number that the compiler

will assign to the HELPTABLE resource and which applications use to refer­

ence the resource. The BEGIN and END keywords are required to signal the

start and finish of the individual elements of the help table. Each HELPITEM

statement defines one entry. The windowid is the ID assigned to a frame win­

dow. The subtable.id is the resource number assigned to the help subtable

which defines the help panel mapping for the nonframe children of the spec­

ified frame window. The extended.Jzelp_paneUd is the help panel resource ID

assigned to the panel containing the general help for this window.

HELPTABLE helpt able_id
BEGIN
HELPITEM window_id, subtabl e_id, ext ended_help_panel_id
END

Figure 5.6 Resource file HELPTABLE syntax.

HELPTABLE APP_HELPTABLE_ID
BEGIN

END

HELPITEM
HELP ITEM
HELP ITEM
HELP ITEM

APP_WINDOW_ID,
OPEN_DLG,
SAVEAS_DLG,
MSGBOX_IO,

Mapping Appllcatlon Elements to Help Panels 129

APP SUBHELP ID, 1000
OPEN_SUBHELP_ID, 2000
SAVEAS_SUBHELP_ID, 3000
0, 4000

Figure 5.7 The HELPTABLE tor Editor.

. Fi~re 5.7 shows the help table definition statements for the Editor ap­

phcat1on. The HELPTABLE ID, window IDs, and HELP SUBTABLE IDs are

arbitrary and should be defined in a header file for use by the application and

the resource compiler. The resource compiler's preprocessor will substitute

the actual numeric values at compile time. This technique may also be used

for the ~tendedJzel!'_paneU~ if a preprocessor is available for substituting the

appropnate numeric values mto the help source prior to compilation by IPFC.

In the example, this technique is not used-the panel resource IDs from Figure
5.4 are explicitly specified.

Examining the figure more closely, the HELPTABLE resource is identified

"':s .Af P JIELP~ABLEJD. The table contains one entry for each of the applica­

tion s frame wmdows. The first entry is for the main application window which

is created with window ID APP_WJNDOW JD. A HELPSUBTABLE will be used

to provide context-sensitive help for this window's menus; the ID of the sub­

table will be APP..SUBHELP JD. The help panel with r esource ID 1000 will be

displayed when the user requests general help for the window. The second en­

try in the table is for the dialog used to open files. OPEN J)JALOG specifies the

ID with which the window is created, and OPEN..SUBHELP JD identifies the

help subtable that maps the dialog's controls to the correct context-sensitive

help panel. Help panel 2000 is displayed when general help is requested for

the dialog. The third entry is for the dialog used to save the edited file under a

new file name. The fourth entry is for a message box. Note that the help sub­

table entry for this window is set to zero, indicating that no subtable exists and

that specific context-sensitive help is not available. If the user requests help on

one of the message box buttons, the general help panel for the message box is
displayed.

One further note that can help in organizing help tables: Since the HELP­

TABLE, window, and HELPSUBTABLES are all different types of entities,

they may all be assigned the same ID; for example, APP_WJNDOWJD could

be used as the helptable.id and as the window_id and subtable.id for the first
HELP ITEM.

Defining Help Subtables

HELPSUBTABLES must now be defined for each frame window to map the

controls, menus, and other nonframe child windows to the appropriate help

130 SOS for PM Developers

HELPSUBTABLE helpsubtable_id
SUBITEMSIZE subitem_size
BEGIN

HELPSUBITEM subwindow_id, help_panel_id
END

Figure 5.8 Resource me HELPSUBTABLE syntax.

panels. The resource compiler syntax for defining a help subtable is given
in Figure 5.8. The HELPSUBTABLE keyword indicates that th~ Resource
Compiler is to create a HELPSUBTABLE resource. ~he re~ource . is to b~ as­
signed helpsubtable_id. The SUBITEMSIZE phrase is optional; if specified,
subitem...size determines the number of 16-bit values to assign to each HELP·
SUBITEM entry in the table-the minimum, and default, val~e is 2: ~~ BE­
GIN and END keywords signal the beginning and end of the hst of mdlVldual
elements in the table. Each HELPSUBITEM statement maps a child element
of the frame window to a help panel. The subwindow_id field is the ID of the
child element to be mapped, and the help.panel.id field identifies the resource
ID of the help panel to be displayed when help is requested for the child el·
ement. If subitem...size has been specified, additional values may be added at
the end of the line for use as defined by the application.

Figure 5.9 shows the help subtable coding used to provide context-s~nsitive
help for the Editor application's main window. The I~ of the subtable ~s ~et to
APP ..SUBHELP JD. Each el.ement of the table is a pair of values specifying a

HELPSUBTABLE APP_SUBHELP_ID
BEGIN

HELPSUBITEM MENUID_FILE, 1100
HELPSUBITEM MENUID_FILENEW, 1110
HELPSUBITEM MENUID_FILEOPEN, 1120
HELPSUBITEM MENUID_FILESAVE, 1130
HELPSUBITEM MENUID FILESAVEAS, 1140
HELPSUBITEM MENUID_FILEEXIT, 1150
HELPSUBITEM MENUID_EDIT, 1200
HELPSUBITEM MENUID_EDITCOPY, 1210
HELPSUBITEM MENUID_EDITCUT, 1220
HELPSUBITEM MENUID EDITPASTE, 1230
HELPSUBITEM MENUID_HELP, 1300
HELPSUBITEM MENUID_HELPINDEX, 1310
HELPSUBITEM MENUID_HELPGENERAL, 1320
HELPSUBITEM MENUID_HELPUSING, 1330
HELPSUBITEM MENUID_HELPKEYS, 1340
HELPSUBITEM MENUID_HELPTUTOR, 1350
HELPSUBITEM MENUID_PRODINFO, 1360

END

Figure 5.9 The Editor main window help subtable.

Adding Help to Your Source Code 131

menu item ID and the help panel resource ID from the help source file . For
example, the first entry specifies the menu ID for the FILE item on the main
menu, and help panel resource ID, 1100, for the panel describing the use of
the File menu. The second entry specifies the menu ID of the New submenu
item under the File menu, and the ID of the help panel describing the function
of the new submenu item. Similar subtables would be defined for the dialog
boxes used by the editor application.

MENU SUPPORT FOR ON-LINE HELP

Help index

Applications that use the IPF feature normally add a Help item to the main
menu of the primary application window. The Help menu should normally be
added to any frame window or popup menu defined for the application, and it
typically contains the following subitems:

displays a help window that contains the index entries for the help library.
Do not include this subitem if the library does not contain any index entries.

General help displays the general help panel for the application, typically the general help

Using help
Keys help

Tutorial

panel for the primary application window.
displays the OS/2 panel that describes the user .interface to IPF.
displays a panel that describes special keys defined by the application. This
entry should not be included if the panel is not defined or if the application
does not use any special keys.
executes the tutorial for the application. Note that this is an executable file
provided with the application. If no such executable exists, do not add this
menu item.

Product information
displays an application-defined window that identifies the application and
provides other pertinent information. Note that this function is not related
to IPF; however, CUA guidelines specify that this subitem be placed with the
Help menu.

ADDING HELP TO YOUR SOURCE CODE

We have now seen how the help source file is generated and how the help
panels are mapped to the application elements via tables defined in the appli­
cation's resource script. Before IPF will actually provide help, the application
must provide IPF with the information required to access the help file and
the mapping tables. This information is provided by establishing an instance
of IPF for the application and then associating this instance with the applica­
tion's windows. When the Help menu is provided, code must be added to the
application's WM_COMMAND message processing to support the menu items.

132 SOS for PM Developers

HWND APIENTRY WinCreateHelpinstance(
HAB hab,
PHELPINIT phinitHMinitStructure) ;

Figure 5.10 The WlnCreateHelplnstance prototype.

Creating an Instance of IPF
An instance of IPF is an object window with which the user and the application
communicate to control the display of help information. This object window
is called a help instance and is created using the WlnCreateHelplnstance API.
This API is prototyped as shown in Figure 5.10.

• The hab parameter is the thread's anchor block handle obtained from the
Wlnlnltlallze APL

• The phlnitHMinltStructure parameter is a pointer to a HELPINIT struc·
ture which provides the information that IPF needs to locate and display
help for the application. The structure is defined in Figure 5.11.

• The cb element specifies the number of bytes contained in the structure.
This element should be set to sizeof(HELP/N/T).

• The ulReturnCode element contains the error code for any error encoun­
tered by IPF during creation of the help instance.

• The pszTutorial name element is a pointer to a zero-terminated ASCII string
containing the name of the executable file that executes the application's
tutorial. If this element is non-NULL, IPF will automatically add a Tutorial
item to the Help menu of the help windows. If no tutorial is provided, this
element should be set to NULL.

• The phtHelpTable element can contain either a pointer to a HELPTABLE,
which has been constructed in memory, or the ID of the HELPTABLE
resource in an executable module. In the latter instance, the high word of
phtHelpTable is set to OxFFFF and the low order word is set to the resource

typedef struct _HELPINIT {
ULONG cb;
ULONG ulReturnCode;
PSZ pszTutorialName;
PHELPTABLE phtHelpTable;
HMODULE hmodHelpTableModule;
HMOOULE hmodAccelActionBarModule;
ULONG idAccelTable ;
ULONG idActionBar;
PSZ pszHelpWindowTitle;
ULONG fShowPanelid;
PSZ pszHelpLibraryName;

HELPINIT;

Figure 5.11 The HELPINIT structure.

Adding Help to Your Source Code 133

ID-set the element to the value (PHELPTABLE)MAKEULONG(resource_
id,OxFFFF). Note that element hmodHelpTable must also be set when using
resources.

• The hmodHelpTable module element specifies the module handle of the ex­
ecutable module whose resources contain the help table. Setting this field
to ~U~LHANDLE indicates that the resources are contained in the appli·
cations .EXE file. If the resources are contained in a separate DLL, this
element should be set to the module handle returned from DosLoadModule
when the DLL was loaded.

• The hmodAccelActionBar module element specifies the module handle of
the executable module whose resources contain a customized accelerator
table and/or action bar menu. Setting this field to NULLHANDLE indi­
cates that the resources are contained in the application's .EXE file. If
the resources are contained in a separate DLL, this element should be set
to the module handle returned from DosLoadModule when the DLL was
loaded. This element should be set to NULLHANDLE if the application
does not specify a customized accelerator table or menu.

• The idAccelTable element specifies the ID of the accelerator table in the
resource file. This element should be set to zero if the application does not
specify a custom accelerator table.

• The idActionBar element specifies the ID of the customized action bar
menu in the resource file. This element should be set to zero if the appli­
cation does not specify a custom menu.

• The pszHelpWindowTitle element is a pointer to a zero-terminated ASCII
string which IPF uses as the title for the window in which help information
is displayed.

• The fShowPanelld element is a flag that is used to cause IPF to display the
help panel ID in the title bar of each help panel window. Normally this
element is set to CMIC..HIDE.PANELID so that the IDs are not displayed.
Setting this element to CMIC.SHOW .PANELJD can often be helpful dur­
ing debugging.

• The pszHelpLibraryName element is a pointer to a zero-terminated ASCII
string that contains the name(s) of the file(s) where the help panel informa­
tion is stored. If multiple file names are specified, they should be separated
by the space character. Help library files are created from help source files
by the IPFC compiler contained in the OS/2 Developer's Toolkit.

. The ~inCreateHelplnstance API returns the handle of the created object
wmdow if successful; NULLHANDLE is returned if the API fails . In this in­
stance, the error code for the failure is stored in the ulReturnCode element
of the HELPINIT structure. The call to WlnCreateHelplnstance is normally
placed in either the main routine of the application or in the routine tha t pro­
cesses the WM_CREATE message for the application's main window. Figure

134 SOS for PM Developers

HELPINIT hi ;

/ * Fill in the help manager initi alization structure */
hi .Cb= sizeof (HELPINIT);
hi .ulRet urnCode = 01;
hi .pszTut orialName =NULL;
hi.phtHelpTable = (PHELPTABLE) MAKEULONG(APP_HELPTAB_ID, Oxf fff) i
hi.hmodHel pTableModule = NULLHANDLE;
h1.hmodAccelActionBarModule = NULLHANDLE;
hi.idAccelTable = 01;
hi. idActionBar = 01;
hi .pszHelpWindowTitle = "Hel p for Editor";
hi. fShowPanelld = CMIC_HIDE_PANEL_ID;
hi. pszHelpLibraryName = "EDITOR.HLP";

/ * initialize an instance of the help manager for this applicat ion • /
hwndHelpinstance = WinCreateHelpinstance (WinQueryAnchorBlock (hwnd) ,

&hi);
if (hwndHelpinstance == NULLHANDLE)

ShowError(hi.ul ReturnCode) ;
I / * endif */

Figure 5.12 Creating a help instance.

5.12 shows code that the Editor application (discussed earlier) could use to
create its help instance. .

The application first initializes the HELPINIT structure. Element cb is ~et
to the size of the structure, and ulReturnCode is initialized to zero. No tutonal
application is available, so pszTutorialName is set to NULL. Since the help ta­
ble is contained in the executable's attached resources, the low-order worq. of
phtHelpTable is set to APP JIELPTABJD, the val~e specified for the help table
in the resource script; and the high-order word is set to Oxffff. Element hmod­
HelpTableModule is set to NULLHANDLE, indicating that IPF should search
the executable for the HELPTABLE resource. The application does not define a
custom accelerator table or help window menu, so elements idAccelTable and
idActionBar are both set to zero, and element hmodAccelActionBarModule is
set to NULLHANDLE. The help window title bar text is specified by setting
element psU/elpWindowTitle to a pointer to the string "Help for Editor." Ele­
ment -{ShowPanel!d is set to CMICJUDE_pANELID to prevent ~e resource
IDs of the help panels from being displayed. Fmally, the ps'l}lelpLibrary!f ame
is set to point to the string "EDITOR.HLP," the name given to the help library
produced from the help source file. . . .

After the structure is initialized, the help mstance is created by callmg Win-
CreateHelplnstance. The hab parameter is o?tained b~ queryin~ the ~nchor
block for the current window; or, if this code is placed m the mam routine, to
the handle returned for Winlnitialize. The phlnitHMlnitStructure parameter
points to the HELPINIT structure just initialized. If the help instance handle

Adding Help to Your Source Code 135

BOOL APIENTRY WinAssociateHel plnstance (HWND hwndHelpinstance,
HWND hwndApp) ;

Figure 5.13 The WlnAssoclateHelplnstance prototype.

returned is NULLHANDLE, an error processing routine is called with the er­
ror code passed back to the application in the ulReturnCode element of the
HELPINIT structure.

Once the help instance has been created, the WlnAssociateHelplnstance
API is called to attach the help instance to the window chain. The prototype
for this API is shown in Figure 5.13.

• The hwndHelplnstance parameter is the help instance handle returned by
WinCreateHelplnstance.

• The hwnd.App parameter is the window handle of the frame window with
which the help instance is to be associated. IPF provides help services
for this window, all windows descended from this window, and windows
owned, either directly or indirectly, by this window. Normally, the help
instance is associated with the main frame window of the application,
enabling IPF to service all windows of the application that are descended
from this window. Passing NULLHANDLE for the parameter removes the
association between the window chain and the help instance.

WinAssociateHelplnstance returns TRUE if the association was successful,
and FALSE if the association failed . Figure 5.14 provides example code for
calling WinAssociateHelplnstance. In this example, the hwndHelplnstance
parameter is set to the handle returned from WinCreateHelplnstance. The
code is assumed to be within the message processing for the WM_CREATE
message, so the hwnd.App parameter is set to the frame window handle which
is the parent of the current window, the application's client window. If an error
occurs, a routine is called to obtain and process the current PM error code.

When the help instance has been successfully associated with the window
chain, IPF will automatically display help panels as defined in the help tables
when the user requests help by pressing the Fl key or by clicking a pushbutton
control with the BS-1iELP style.

I * associ ate the help instance with the frame wi ndow */
i f l !WinAssociateHelpinstance(hwndHelpl nstance,

ShowWinError (} ;
} / * endif */

WinQueryWindow(hwnd, QW_PARENT)))

Figure 5.14 Associating help with a window.

136 SOS for PM Developers

PROCESSING THE HELP MENU COMMANDS

Most applications that use the IPF facilities add a Help item to the menus of

their frame windows. Typical menu items associated with the Help menu were

discussed previously; however, IPF does not provide any automated processing

for these menu items. The application must handle the menu items when a

WM_COMMAND message specifying the menu ID of the menu item is received.

This section describes the typical processing used to process the menu items.

The Help Index menu item displays the index window for the application's

help library. The WM_COMMAND message processing for this item should

send a HM..HELP _INDEX message to the application's help instance. Figure

5.15 shows the WM_COMMAND case statement to accomplish this function.

In the figure, WinQueryHelplnstance is called to obtain the handle of the

help instance window associated with the window that received the message.

WinSendMsg is then called to send the HM..HELP-1NDEX message to the

help instance window. Parameters mpl and mp2 of this message are both

reserved and set to zero. IPF displays a window listing the index entries for

the current help library when this message is received. If no index entries are

contained in the help library, HMERIUNDEX...NOT ..FOUND is returned from

the WlnSendMsg call.
The General help menu item is used to display the general help panel

for the currently active window, normally the window from which the menu

item was chosen. The application should respond to this command by sending

an HM_GENERAL..HELP message to the help instance associated with the

window. Figure 5.16 shows how this is accomplished.

As before, WlnQueryHelplnstance is called to obtain the current help in­

stance window handle. WfnSendMsg is then called to send the HM-GENERAL

HELP message to the help instance. The parameters to this message are both

reserved and should be set to zero. When IPF receives this message, it searches

the help tables to find the ID of the general help panel for the current win­

dow and then displays the panel if found. If the current window does not

case MENUID_HELPINDEX:
{

HWND hwndHelp;

hwndHelp = Wi nQueryHelpinstance(hwnd) ;
if (hwndHelp != NULLHANDLE) {

WinSendMsg l hwndHelp, HM_HELP_INDEX, OL, OL };

} / * endif * /
1
break;

figure 5.15 Processing the Help Index menu Item.

case MENUID_GENERALHELP:
{

HWND hwndHelp;

Processing the Help Menu Commands 137

hwndHelp = Wi nQueryHelpi nstance (hwnd) ;
i f (hwndHelp ! = NULLHANDLE) {

WinSendMsg (hwndHelp, HM_GENERAL_HELP, 01 , OL) ;
} / * endif */

)

break;

flgu19 5.16 Processing the General help menu Item.

have a general help panel, IPF searches the parent and owner chains until a

frame window with a general help panel is found. If no general help panel

is found, IPF sends an HM_GENERALHELP_UNDEFINED message back to

~e .application which may either ignore the message, in which case no panel

is displayed, or take steps to display an alternate panel or otherwise notify the

user of the failure.

The Using help menu item normally displays an !PF-supplied panel that

des.cribes how on-line help is used. When this command is received, the appli­

~ation sho~ld respond by ~ending an HM_DISPLAY..HELP message to the help

mstance. Figure ~.17 provides an example of the required code. After obtaining

the current help mstance, the HM_DISPLAY_HELP message is sent by calling

WinSendMsg. In this instance, both parameters to the HM..DISPLAY ..HELP

message are set to zero. This particular combination of parameters causes

IPF to display either its own Using help panel or an application-defined panel

that has bee? specified by sending the HM...REPLACE-USING_HELP message

to t~e help mstance. The low-order word of this message's mpl parameter

specifies the help resource ID to be displayed when the Using help panel is

requested via the preceding special instance of the HM DISPLAY..HELP mes­

sage or when the user selects the Using help menu item for the help display

case MENUID_USINGHELP:
{

HWND hwndHel p;

~wndHelp = WinQueryHelpinstance (hwnd) ;
i f (hwndHelp != NULLHANDLE} {

WinSendMsg{ hwndHelp, HM_DISPLAY_HELP,
MPFROMLONG (OLI, MPFROMLONG(OL));

) / * endif */

break;

Figure 5.17 Processing the Using help menu item.

138 SOS for PM Developers

window. The high-order word of mpl and parameter mp2 are reserved and
should be set to zero.

The Keys help menu item should display a help panel that describes any
special uses that the application defines for the keyboard. The processing
required when this menu item is selected is a bit more complex than that
previously discussed. Unlike Using help, IPF does not provide a default panel
for Keys help, but does provide a Keys help menu item in the Help window's
menu. Therefore, IPF must send a message to the application to determine
which panel to display whenever a request for keys help arrives, whether
from the application or from the Help window menu. From the application
standpoint, when the Keys help menu item is selected, an HM..KEYSJIELP
message is sent to the help instance. When IPF receives this message, it sends
an HM_QUERY..KEYSJIELP message to the application. The application must
then return either the help resource ID for the panel to be displayed or zero to
inform IPF that no panel should be displayed. Figure 5.18 shows a section of
the window procedure code to perform these functions, ultimately returning
the HID.KEYSHELP panel ID for display.

The Tutorial menu item is used to execute an application-defined tutorial.
When this command is received, the application does not communicate with
IPF but processes the request independently, normally by executing another
program using either the WinStartApp API or the DosExecPgm API-the C
Library system function is not recommended as it can prevent the applica­
tion from processing messages until the started program completes execution.
If the user selects the Tutorial on the Help window's menu, IPF sends an
HM.TUTORIAL message to the application. Parameter mpl of this message
is a pointer to a string that specifies the name of the tutorial to be executed.
The name will be either the name passed in the pszTutorial element of the
HELPINIT structure or a panel-specific name, added to the panel using the
tutorial attribute of the :hx. tags.

switch (msg) {
case HM_QUERY_KEYS_HELP :

return (MRESULT)HID_KEYSHELP;
case WM_COMMAND :

switch (SHORTlFROMMP(mpl)) {
case MID_KEYSHELP : {

hwndHelp = WinQueryHelpinstance(hwnd);
if (hwndHelp != NULLHANDLE) {

WinSendMsg(hwndHelp, HM_KEYS_HELP,
MPFROMLONG(OL), MPFROMLONG(OL));

) I* endif *I
break;

) / * endswitch */
/ * endswitch */

Figure 5.18 Processing the Keys help menu Item.

Multiple Frame Window Considerations 139

. The Product information menu item is not related to IPF and its processi
is entirely up to the application. Typically, an application will respond to t~~
men.u it~m by d~splaying ~ dialog box th~t . names the application, provides
version mformation, and displays any additional information that the autho
of the application deems appropriate. r

MULTIPLE FRAME WINDOW CONSIDERATIONS

IPF's mapping of help panels to window elements is based on the activation
states ~fan application's windows. When IPF receives a help request, it first
determmes the currently active window using the WinQueryActiveWindow
API. IPF then searches the parent and owner chains for this window to find a
~rune wi?dow that is associated with a help instance. The help table for this
mstance 1s then searched for a window ID that matches the active window
If a match is found, IPF then searches the help subtable to find a match fo;
~e ID of the element that generated the help request. If a subtable match
is found, the panel mapped by that subtable is displayed. If IPF cannot find
~ matching subtab.le ~ntry, :1n HMJIELPSUBITEM...NOT..FOUND message
is sent to the application wmdow associated with the help instance. If the
application responds to this message by returning FALSE, the general help
panel for the matched help table entry is displayed; if the response is TRUE,
no help is shown.

Normally, the association of a herp instance with the main application
frame window is sufficient to allow IPF to map the help panels for all of the
~pplication's win?ows. However, there are two instances that require addi­
tional programmmg for the mapping to function properly. The first instance
occurs when the application creates multiple, independent frame windows
w.indows that are children of the desktop and have no owner relationship'.
Smee these windows do not share a common parent or owner chain with
the. initial windo-:V, IPF will not be able to find a help instance. The appli­
cation must proVIde a separate association for each window through one of
two methods. A relatively simple method is to merely create an additional
h.elp. instance to be ass~ciated with each window. This, however, may consume
s1gmficant resources, smce IPF must duplicate all of the internal information
used to track and display help. The second method involves processing the
~~..A~TIVAT~ ~essage. ~henever ~ne of the windows receives this message
md1c~ting that 1~ 1s .becoming ~e active window, it reassociates a single global
help mst~nce with itself.by calhng WinAssoclateHelplnstance. Since only one
of these mdependent wmdows can be active at any given time, this method
ensures that help is always available.

The .sec?nd instance where application assistance is required occurs when
an apphcation creates one or more additional frame windows that are chil­
dren of the window with which the help instance is associated; for example,

n

140 SOS for PM Developers

a word processor that allows the user to open and view multiple documents.
With this arrangement, both the parent frame and a child frame may be ac­
tive at the same time, and IPF's query for the active window will find the
parent frame preventing the child frame's help subtable from being searched.
IPF provides the HM_SET...ACTIVE_WINDOW message to allow the appli­
cation to handle this situation by specifying which window to consider the
active window and therefore which help subtable to search when help is re­
quested. Parameter mpl of this message specifies the handle of the windo~
for IPF to use as the active window. If mpl is set to NULLHANDLE, IPF s
active window is cleared and IPF again queries PM for the active window.
Parameter mp2 specifies the handle of the window IPF should use for posi­
tioning the help window. The application's child windows should process the
WM...ACTIVATE message. If the child window is being activated, it should send
the HM_SET...ACTIVE_WINDOW message, specifying that its frame window is
the active window. When the child window is deactivated, it should send the
HM_SET...ACTIVE_WINDOW message to restore the active window to the de­
fault. Both the parent and child windows should process the WM.INITMENU
message and set the associated frame window as the IPF active window. Figure
5 .1 9 shows the coding for the messages.

MULTIPLE THREAD CONSIDERATIONS
While most applications employ a single thread for all displayable win?ows,
sometimes an application will create additional threads that can also display
windows. If the application intends to use the IPF features for displaying
help for these windows, a new help instance must be created a~d as~ociated
with the threads' window chain. This should come as no surprise, smce the
secondary threads must also initialize their own PM environment and create
their own message queue. If the secondary threads' windows are identical to
the that of the primary thread, the same help tables and other resources may
be used when the help instance is created. If the windows are not identical,
new help tables and resources may be used for the secondary threads, or the
appropriate information may be embedded into the tables and resources used
by the primary thread.

SUMMARY
OS/2's Information Presentation Facility is a powerful, yet easy-to-implement
means of providing context-sensitive, on-line help for application users. ~his
chapter has examined the basic features of IPF, and it has shown how applica­
tions gain access to these features. IPF also provides many additional features
that are beyond the scope of this book. These include application control and

Summary 141

MRESULT child_wm_activate(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)
f

HWND hwndHelpinstance ;
HWND hwndParent;

hwndHelpinstance = WinQueryHelpi nstance{ hwnd);
hwndParent = WinQueryWindow(hwnd, QW_PARENT);
i f {SHORT!FROMMP (mpl)) (

I * Activating - set the active window to the frame */
re = Wi nSendMsg{ hwndHel pinstance, HM_SET_ACTIVE_WINOOW,

(MPARAM)hwndParent , (MPARAM)hwndParent) ;
else {

I * Deactivating - cl ear the active window * /
re = WinSendMsg (hwndHelpinstance , HM_SET_ACTIVE_WINDOW,

NULLHANDLE, NULLHANDLE) ;
l / * endif "/
r eturn WinDef WindowProc (hwnd, msg, rnpt, mp2) ;

MRESULT wm_ini tmenu (HWND hwnd, ULONG msg , MPARAM mp! , MPARAM rnp2 I
{

HWND hwndHelpinstance;
HWND hwndParent;

hwndHel pinstance = WinQueryHelpinstance (hwnd) ;
hwndParent = WinQueryWindow (hwnd, QW_PARENT) ;

WinSendMsg(hwndHelpi nstance, HM_SET_ACTIVE_WINOOW,
(MPARAM)hwndParent, (MPARAM)hwndParent);

re turn Wi nDefWindowProc(hwnd, msg, mpl, rnp2 I;

Figure 5.19 Setting the active help window.

customization of the IPF windows; dynamic data formatting, which allows
the application to specify the contents of help panels rather than having the
contents read from help libraries; and on-line books, viewable independent
of the application. To learn more about these advanced features, see the IPF
reference material included in the Developer 's Toolkit documentation.

CHAPTER

Getting More Power for
Your Program: Using OS/2's
Multithreading
Capabilities

M
any Presentation Manager applications suffer from a common malady­
failure to always process messages in a timely fashion. The failure
becomes apparent to the end user when an operation like a database

search, which requires a few moments to complete, is requested. The system
stops processing input for the duration of the operation such that the work­
place shell (and therefore the system) appears to be "hung." In extreme cases,
this condition may last for several minutes such that the user hits Ctrl + Esc and
terminates the application or, even worse, resets or powers off the computer.

This failure occurs because the application program ignores the manner in
which PM handles input from the keyboard and pointing device. Without going
into great detail, input events are, in essence, posted to the message queue of
the window that holds the input focus. But messages are normally retrieved
from the message queue one at a time and sent to the window procedure by the
WinDispatchMsg API. No further messages are retrieved from the queue until
the window procedure completes its processing for this message. Thus, input
messages that would cause the focus to change are not processed until previous
messages have completed their processing. To maintain system responsiveness,
all messages should process in a short period of time.

Failing applications typically receive a WM_COMMAND message to trigger
some long-running operation and run the operation to its completion before

143

-----·

144 Getting More Power for Your Program: Using OS!l's Multithreadlng Capabilities

returning from the WM_COMMAND message processing. In this chapter, a
program of this type is examined, and then three methods to diminish or avoid
the problem are introduced.

A TYPICAL SINGLE THREADED APPLICATION

Applications that exhibit the hung system malady typically provide some type
of functionality that requires a significant amount of file access, such as a
database or directory search. Other causes include waiting for event or mutex
semaphores when the desired event or resource is not immediately available or
merely getting stuck in a loop due to bad user parameter specification. The ap­
plication used as an example provides functionality for initializing the contents
of a 1 Megabyte file to zeroes. For demonstration purposes, the initialization
function is implemented in less than optimal fashion, performing a separate
1/0 operation for each byte to be written. Let's examine this application in
detail.

The main routine for the application is the typical template: initializing
the PM environment, creating a message queue, registering the client window
class, creating the application's primary window, and then retrieving and dis­
patching messages from the application's queue. The client window procedure
is shown in Figure 6.1. As usual, this routine is a switch statement that calls
worker routines to process the messages. At this stage, only two messages are

MRESULT APIENTRY AppWndProc(HWND hwnd, ULONG msg, MPARAM mpl , MPARAM rnp2 }
{

}

switch (rnsg) {
case WM_COMMAND :
case WM_PAINT:
default :
} / * endswitch */

ret urn wmCommand(hwnd, rnsg, rnpl , mp2) ;
return wmPaint(hwnd, msg, rnpl, rnp2) ;
return WinOefWindowProc (hwnd, msg, mpl , mp2);

static MRESULT wmPaint(HWND hwnd, ULONG rnsg, MPARAM rnpl , MPARAM rnp2 I
{

HPS hps ;
RECTL rectl;

hps = WinBeginPaint(hwnd, NULLHANDLE, &rectl);
if (hps != NULLHANDLE) {

WinFillRect(hps, &rectl, CLR_BACKGROUND);
WinEndPaint(hps);

} / • endif •I
return (MRESULT)OL;

Figure 6.1 Basic client window procedures.

A Typical Single Threaded Appllcatlon 145

static MRESULT wmcommand (HWND hwnd, ULONG msg, MPARAM rnpl, MPARAM mp2)
{

char szFileName [_MAJ{_PATH J ;

switch (SHORTlFROMMP(mpl)) (
case MID_FILEINITIALIZE:

if (GetFileName (hwnd, szFileName))
Ini tial izeFile(hwnd, s zFileName);

break ;
case MID_FILEDELETE:

i f (GetFileName (hwnd, szFileName))
DeleteFi le (szFil eName) ;

break;
case MID_FILEEXIT:

WinSendMsg(hwnd, WM_CLOSE, MPFROMLONG(OL), MPFROMLONG (OL) I;
break;

) / * endswit ch */
return MRFROMLONG (DL) ;

Figure &.2 The WM.COMMAND worker function.

processed, WM.PAINT and WM_COMMAND; as additional messages are pro­
cessed throughout the chapter, they will be added in similar fashion . Figure
6.1 also shows the worker routine for the WM.PAINT message, wmPaint. This
routine fills the client window rectangle with the system background color; no
other painting is performed by this application.

The worker routine for the WM_COMMAND message, wm_command, is
shown in Figure 6.2. This routine is a switch statement based on the menu
item selected by the user. When the user selects the File/Initialize menu item,
routine GetFileName retrieves the name of the file to be initialized. If a file
name is entered, routine InitializeFile is called to perform the initialization
function. Similarly, the File/Delete menu item causes GetFileName to be called
to select the file to be deleted, and routine DeleteFile is called to delete the
file. The File/Exit menu item causes a WM-CLOSE message to be posted to the
application's message queue to terminate the application.

Routine GetFileName is shown in Figure 6.3. This routine uses the Win­
FileDlg API to invoke the standard file dialog and retrieve a file name for the
user. After filling the FILEDLG structure with zeroes, the cbsize element is
set to the size of the structure. The fl. element is set to FDS_OPEN_DIALOG,
allowing the user to select a name from the displayed list of file names, and
the dialog title is specified as Select File by setting the pszTitle element. The
szFullFile element is initialized to the * wildcard character, causing all file
names in the current directory to be displayed when the dialog box is ini­
tialized, and a unique window ID for the dialog is specified in the usDlgld
element. WlnFileDlg is then called to display and process the dialog. After the

146 Getting More Power for Your Program: Using OS/2's Multithreadlng Capabilities

s t atic BOOL GetFileName(HWND hwnd, PSZ pszFi leName)
{

FILEDLG fd;

memset((PVOID)&fd, 0, sizeof (FILEDLG)J;
fd.cbSize - sizeof(FILEDLGJ;
fd.fl = FDS_OPEN_DIALOG;
fd .pszTitle = ' Select File';
strcpy(fd.szFullFile, ' *') ;
fd .usDlgid = SELECTFILE_ID;

if ((BOOL) (WinFil eDlg (HWND_DESKTOP, hwnd, &fd)I i&
fd. lReturn == DID_OK) (

strcpy(pszFil eName, fd.szFullFile I ;
) else (

strcpy(pszFil eName, ••);
) / * endif * /
return (strlen(pszFileNarne) != 0);

figure 6.3 Using WlnfileDlg lo select a file.

API call returns, the return value is checked to determine if the user actually
selected a file. If the return value is DID_OK, a file name was selected and the
file name returned in the szFullFile element is copied into the supplied buffer.
If the return value is not DID-OK, the user did not select a file and the buffer
is set to a NULL string. The function then returns FALSE if the buffer contains
a NULL or zero-length string, or TRUE if the buffer contains a valid file name.

Routine InitializeFile, shown in Figure 6.4, performs the actual file ini­
tialization. The routine first opens the file in write mode causing the file to be
created if it does not already exist and setting the file pointer to the beginning
of the file. If the file is successfully opened, a dialog containing a progress
indicator slider is loaded as a modeless dialog, the title of the dialog is set to
the name of the file being initialized, the OK button is temporarily disabled,
and the dialog box is made visible. A nested loop is then used to perform
the actual initialization. The outer loop executes once for each record in the
file, and the inner loop executes once for each byte of an individual record.
Each iteration of the inner loop writes one byte of the record to the file. After
an entire record is written, the outer loop sends an SLM-5ETSLIDERINFO
message to the progress indicator slider, updating the shaded portion of the
slider bar to reflect the percentage of the initialization operation that has been
completed. After all records have been initialized, the file is closed and the OK
button in the dialog is enabled providing the user with a positive indication
that the operation is complete.

The behavior of the system with this method may be seen by running
the sample program, selecting single thread mode, and then initializing a file.
While the initialization operation is in progress, no user input is processed and

Peeking at the Message Queue 147

void Initial izeFile(HWND hwnd, PSZ pszFileName)
(

FILE *file;
ULONG record;
char buffer= '\0';
int i;
HWND hwndProgress;

file= fopen(pszFileName, •w•);
if (fil e != (FILE •)NULL) (

hwndProgress = WinLoadDlg(HWND_DESKTOP, hwnd, ProgDl gProc, NULLHANDLE,
PROGRESS_ID, NULL) ;

WinSetWindowText (WinWindowFromID(hwndProgress, DID_FILENAME),
pszFileName J ;

WinEnableWindow(WinWindowFromID(hwndProgress, DID OK) , FALSE);
WinShowWindow(hwndProgress, TRUE); -

for (record = O; record < MAX_RECORD; record++)
for (i = 0; i < RECORD_SIZE; i++)

fwrite (&buffer, 1, 1, file);
WinSendDl gitemMsg(hwndProgress, DID PROGRESS, SLM SETSLIDERINFO

MPFROM2SHORT(SMA_SLIDERARMPOSITION, •
SMA_INCREMENTVALUE) ,

MPFROMLONG ((record* 100) I (MAX_RECORD - 1)));
) / * endfor */
fclose (file l ;
WinEnableWindow(WinWindowFromID (hwndProgress,

/ * endif • /

Figure &.4 The incorrect way lo initialize a lile.

DID_OK) , TRUE);

the only indication that the system is not hung is the update of the progress in­
dicator. Sjnce no user input is processed, no other windows can be selected and
the multitasking advantages of OS/2 are essentially nullified for the duration
of the operation.

PEEKING AT THE MESSAGE QUEUE

One method of circumventing this problem is to periodically take a peek at the
message queue using the WinPeekMsg API, which performs the same function
as WinGetMsg, but does not wait when no message is available. If a message is
waiting in the application's message queue, the message is returned and then
dispatched to the proper window procedure with the WinDispatchMsg APL
This allows user input to be processed so that other windows may be selected
and prevents the hung system scenario in most cases.

148 Getting More Power for Your Program: Using OS/2's Multlthreading Capabilities

Figure 6.5 shows the previous lnitializeFile function with a call to the
WinPeekMsg API (shown in boldface type) added to the outer loop. The API
is called once for each record written to the file. If TRUE is returned, the
retrieved message is sent to the appropriate window procedure using the
WinDispatchMsg API.

The results of using this method can be seen by selecting peek loop mode
in the sample program before initializing a file. Note that the user is now free
to switch away to another task while the initialization function is processing.
The user can also select the File/Initialize menu item again; however, the first
initialization operation is suspended until the new one finishes. To prevent
real or apparent conflicts such as this, many applications that use a peek loop
disable the menu items that would result in conflict while an operation is in
progress.

void InitializeFile(HWND hwnd, PSZ pszFileName)
(

FILE *file;
ULONG record ;
char buffer= '\0';
int i;
HWND hwndProgress;
HAB hab = WinQueryAnchorBlock (hwnd) ;
QMSG qmsg;

file= fopen(pszFileName, •w•);
if (file != (FILE *)NULL) (

hwndProgress = WinLoadDlg(HWND_DESKTOP, hwnd, ProgDlgProc, NULLHANDLE,
PROGRESS_ID, NULL) ;

WinSetWindowText(WinWindowFromID(hwndProgress, DID_FILENAME),
pszFileName) ;

WinEnableWindow(WinWindowFromID(hwndProgress , DID_OK), FALSE);
WinShowWindow(hwndProgress, TRUE) ;
for (record = O; record < MAX_RECORD; record++) {

for (i = 0; i < RECORD_SIZE; i++)
fwrite(&buffer, 1, l, file J;

WinSendDlgitemMsg(hwndProgress , DID_PROGRESS, SLM_SETSLIDERINFO,
MPPROM2SHORT(SMA_SLIDERARMPOSITION,

SMA_INCREMENTVALUE) I
MPFROMLONG((record* 100) I (MAX_RECORD - l))) ;

if ~(hab, (418g, RllUWUB, OL, OL, ffLIEDIE)) {
~(hab, &qlllg);

} /* emdif */
} /* endfor *I
fclose (file) ;
WinEnableWindow(WinWindowFromID(hwndProgress , DID_OK), TRUE);

/ * endif */

Figure 6.5 lnltlallzing with a peek message.

Creating a New Thread 149

The peek method works well as long as the operation can be divided
into reasonable intervals at which to call WinPeekMsg. However, situations
can arise where this method is ineffective. In this example, if the file write
operation involves a LAN file and problems on the LAN cause delays, the
process will be blocked until the write operation is complete. During this time,
WinPeekMsg will not be called, and the system will again be nonfunctional
from the user's viewpoint.

CREATING A NEW THREAD

The only way to ensure that the message processing loop is not interrupted due
to an external resource is to place all operations that access these resources
in one or more separate threads. This will allow the initial thread to continue
operating when external events block the new threads from running. Routine
lnitializeFile is limited to creating the progress indicator dialog and starting
the new thread. The actual file operations have been moved to a new thread
function, lnitThread. This thread has been implemented as a non-PM thread
since it does not create windows or require a message queue. The only PM API
used by the thread is WinPostMsg which does not require a PM environment.

Function lnitializeFile first allocates a block of memory to hold the pa­
rameters that will be passed to the new thread and then creates and initializes
the progress indicator dialog as before. The format of the thread parameters
memory block is defined by the structure shown in Figure 6.6 .

• The hwnd element is the handle of the main application window. This
handle will be used to notify the main window of the completion status of
the initialization operation.

• The hwndSlider element is the handle of the progress indicator dialog's
slider. This window handle is used to update the slider with the current
progress of the operation.

• The sz.File element is the name of the file to be initialized. Note that the
actual name and not a pointer to the name is passed in the structure. If
a pointer is used and the memory is on the program's stack or is globally
accessible, it can be overwritten and affect the operation of the new thread.
If a pointer is used to pass information to a new thread, the memory should
typically be allocated specifically for this purpose.

typedef struct ~thread_param~ (
HWND hwnd;
HWND hwndSlider;
char szFile [_MAX_PATH];

} TPARM, *PTPARM;

Figure 6.6 The TPARM structure.

b

150 Getting More Power for Your Program: Using OS/2's Multithreadlng Capabilities

void Initial izeFile (HWND hwnd, PSZ pszFileName)
(

HWND hwndProgress;
PTPARM ptp;

ptp = (PTPARM)malloc(sizeof{TPARM));
if {ptp != (PTPARM)NULL) (

hwndProgress = WinLoad.Dlg(HWND_DESKTOP, hwnd , ProgDlgProc ,
NULLHANDLE, PROGRESS_ID, NULL) ;

WinSetWindowText(WinWindowFromID(hwndProgress , DID_FILENAME),
pszFileName) ;

WinEnabl eWindow (WinWindowFromID(hwndProgress, DID OK) , FALSE);
WinShowWindow{ hwndProgress , TRUE >;

ptp->hwndSlider = WinWindowFromID(hwndProgress, DID_PROGRESS);
ptp->hwnd = hwnd;
strcpy (ptp->szFile, pszFil eName) ;
_beginthread(InitThread, 0, Ox2000, (PVOID) ptp) ;

/ * endif */

Figure 8.7 Multiple thread tile lnltiallzatlon.

After JnitializeFlle, shown in Figure 6.7, establishes appropriate values for

each element of the structure, the C library function _begtnthread is called

to create and start the new thread. It is used in lieu of the DosCreateThread

API to ensure that the C runtime environment for the new thread is properly

established. After this call completes, the main thread returns to processing

messages as normal. Note that the allocated memory is not freed as would

normally be the case with interprocess communication. Memory is a process­

wide resource and can thus be freed by the new thread when no longer needed.

Function lnitThread, shown in Figure 6.8, first opens the file named by el­

ement sz.File of the TPARM structure. If this operation is successful, the nested

loop from the previous examples is used to perform the file initialization. How­

ever, instead of using WinSendMsg to update the progress indicator slider

position, the WinPostMsg API is called to place the SLM_SETSLIDERINFO

message on the message queue of the main thread. As the main thread pro­

cesses messages, the SLM.SETSLIDERINFO message will be dispatched to

the slider. The return code from WinPostMsg is not checked when the API is

called within the file initialization loop since missing one of the many posi­

tioning messages will not pose a serious problem. After the initialization loop

completes, one final SLM.SETSLIDERINFO message is posted. In this case,

the return code from WinPostMsg is checked to ensure that the final position

of the slider reflects 100 percent completion of the operation. After the slider

message is successfully posted, a user-defined message, UM..DONE, is posted

to the application's main window with the handle of the progress indicator

void InitThread(void *param) {
PTPARM ptp = (PTPARM)par am;
HWND hwndProgress = ptp->hwndSlider ;
FILE *file;
ULONG record ;
char buffer = '\O';
i nt i;
ULONG status = INIT_ERROR;

fi l e = fopen{ ptp->szFile, 'w');
if (file != (FILE *)NULL) (

Creatfng a New Thread 151

for (record = O; record < MAX_RECORD; record++) {
for (i = 0; i < RECORD_SIZE; i ++) (

fwri t e (&buffer , l , l, file) ;
) I * endfor *I
WinPostMsg (hwndProgress , SLH_SETSLIDERINFO,

MPFROM2SHORT(SMA_SLIDERARMPOSITION, SMA_INCREMENTVALUE) ,
MPFROMLONG((record* 100) I (MAX_RECORD - 1)));

) / * endfor *I
fclose (file);
whi le (! (BOOL)WinPostMsg(hwndProgress, SLM_SETSLIDERINFO,

MPFROM2SHORT(SMA._SLIDERARMPOSITION, SMA_I NCREMENTVALUE),
MPFROMLONG((record* 100) I (MAX_RECORD - !))));

status = INIT_COMPLETE;
) / * endif */
while(! (BOOL)WinPostMsg (ptp->hwnd, UM_DONE,

MPFROMHWND (hwndProgress), MPFROMLONG(status)));
free (param) ;

Figure 6.8 Secondary thread routine to initialize a file.

slider in parameter mp 1 and the completion status of the operation in param­

eter mp2. The thread parameter structure memory is then freed and the thread
terminates.

Back in the main. application thread, receipt of the UM..DONE message

causes a worker routme umDone to be called. This function first examines

parameter mp2 of the UM..DONE message to determine if an error occurred.

If there was no error, the function implements the final piece of the old Jnitial­

izeFile function by enabling the OK button in the progress indicator dialog. If
there was an error, an appropriate message box is displayed with the WinMs·

gBox API and then the progress indicator dialog is destroyed.

The ~esults o~ this method can be seen when running the sample program

by selectmg mult1t~read mode and then initializing a file. The user may switch

away to another wmdow while the initialization is in progress and additional

initialization operations can be performed in parallel. Unlike the peek loop

method, messages continue to be processed even if the initialization thread

becomes blocked due to a delay or failure in the 1/0 process.

152 Getting More Power for Your Program: Using OS/2's Multlthreadlng Capabilities

Be aware that more complicated operations may require access to common
resources when multiple threads are executing. The application may need to
either synchronize access to these resources or prevent multiple access by
disabling some of its functionality for a period of time to prevent concurrent
access to resources.

USING AN OBJECT WINDOW
The separate thread method just shown is sufficient for operations like file
initialization which do not require any real interaction with PM or the ap­
plication window. But suppose the operation required that each record be
formatted based on information retrieved from a container control. At first
glance, one might suppose the application could allocate a larg~ buffer, re­
trieve the information from the container, and format the records m the buffer
before starting the second thread. But this formatting o~eration it:"elf co~ld
take considerable time and qualify as the type of long-runmng operation which
blocks the processing of input messages.

An alternative method is the use of an object window. An object window is a
window that is a descendent of the system-defined HWND_OBJECT. Windows
of this type are never displayed and cannot receive the input focus, so ~
object window created in a separate thread with its own message queu~ is
not constrained by the time required to process messages. Note that an object
window that shares a thread, and therefore a message queue, with windows
descended from HWND.DESKTOP can block the processing of input messages
posted to the message queue. .

For iterative operations of the type discussed in this chapter, the mam
application would normally allocate a control structure that tracks the current
state of the operation. This structure is passed back and forth as a message
parameter between the application window and the object window as .the
operation proceeds. First the application window posts a mess~ge to .the object
window to initiate the operation and perhaps perform the first iteration. When
this is complete, the object window posts a message back to the applica~ion. ~he
application window then updates the control structure for the next iteration
and posts a message back to the object window. The object wind?w ~erfo~s
the next iteration and again posts a message back to the application. This
continues until the entire operation is complete. If necessary, the application
can post a final message to the object window to terminate the operation and
clean up any resources. If no termination is needed, the application posts no
message and goes on about its business. The object window remains idle until
another initiation message .is posted.

Figure 6.9 shows how the object window and its thread are created during
the WM_CREATE processing for the main application window. The wmCreate
function calls the C library function _beginthread to initiate a second thread

Using an Object Window 153

MRESULT wmCreate (HWND hwnd, ULONG msg, MPARAM mpl, MPARAM JrP2
(

_beginthread(InitObjwnd, 0, Ox2000 , (PVOID)hwnd) ;
return MRFROMLONG(FALSE);

void InitObjWnd(void *param) {
HAB hab = (HAB)NULLHANDLE ;
HMQ hmq = (HMQ)NULLHANDLE;
QMSG qmsg;
HWND hwndObject = (HWND)NULLHANDLE ;
HWND hwndMain = (HWND)param;

do C
if ((hab = Wininitialize(0 J == NULLHANDLE) break;
if ((hmq = WinCreateMsgQueue(hab, 0) == NULLHANDLE) break;
if (!WinRegisterClass(hab, 'APPOBJECT ' , ObjWndProc ,OL, OL)) break;
hat:bject = ~(IHE_CBl!X:."l', "~, RJU.,

OL, OL, OL, OL, OL, RJ'l'PRJ'£,
ME_'tt.P, OL, RJU., !IIU.) ;

if (!Nd:bject {~)RJWWllU) !:reek;
~(J:HdlWl.. 1>I.,JBlt&7,

MPPKMIH>(biat:bject) ,~(OL)) 1
while (WinGetMsg(hab, &qmsg, NULLHANDLE, 0, 0)} {

WinDispatchMsg(hab, &qmsg) ;
I I* endwhile *I

I while (false); /* enddo */
if (hmq ! = IHMQ)NULLHANDLE) WinDestroyMsgQueue(hmq };
if (hab != IHABJNULLHANDLE) WinTerrni nat e(hab);

Figure 6.9 Creating the object window.

executing function InitObjWnd. Since this thread creates a window and re­
quires a message queue, the thread needs a PM environment and goes through
the normal sequence for the main routine of a PM application. The only dif­
ferences, shown in boldface type, are that the object window is created with a
call to the WinCreateWindow API rather than WinCreateStdWindow, and that
a message is posted to the main application window to notify it of the object
window handle.

Figure 6.10 shows the lnitializeFile routine for this method. First, the
object window handle is retrieved from the window data, where it was placed
when the UM_SETOBJ message was posted by the object window. The routine
then loads and initializes the progress indicator dialog in the same manner
as before and allocates memory for the control parameters structure. The
layout of this structure is shown in Figure 6.11 along with the content and
initialization of its elements.

154 Getting More Power for Your Program: Using OS/2's Multithreadlng Capablllties

void Initi alizeFile (HWND hwnd, PSZ pszFi l eName l
(

HWND hwndProgress ;
POBJPARM objp;
FILE *file;
HWND hwndObj = WinQueryWindowULong(hwnd, APP_HWNDOBJ);

objp = (POBJPARM)malloc(si zeof(OBJPARM));
if (objp != (POBJPARM)NULL) (

hwndProgress = WinLoadDlg(HWND_DESKTOP, hwnd, ProgDlgProc,
NULLHANDLE, PROGRESS_ID, NULL) ;

WinSetwindowText(WinWindowFromID(hwndProgress, DID_FILENAME) ,
pszFileName l ;

WinEnableWindow(WinWindowFromID(hwndProgress , DID_OK) , FALSE) ;
WinShowWindow(hwndProgress, TRUE) ;

objp->hwndProgress = hwndProgress;
objp->hwnd = hwnd;
strcpy (objp->szFileName, pszFileName) ;
objp->ulRecord = O;
objp->cbRecord = RECORD_SIZE;
memset(obj p->record, 0, RECORD_SIZE);
WinPostMsg(hwndObj, UM_INIT, MPFROMP(objp), MPFROMLONG(OL)};

/ * endif */

Figure 6.10 Main thread routine to start lnltlalizatlon.

• The hwnd element is the window handle of the main application window.
The object window will use this handle for communicating with the main
thread.

• The hwndProgress element is set to the handle of the progress. indic~tor
dialog window. This allows the proper indicator to be updated if multiple
initialize operations are running concurrently.

• The szFileName element is filled with the name of the file to be 1mt1ahzed.
• The file parameter is a pointer to a 'C' FILE control structure. This field is

filled by the object window when the output file is opened.

t ypedef struct _objwnd__param_ (
HWND hwnd;
HWND hwndProgress;
char szFileName(_MAX_PATH l ;
FILE *file;
ULONG ulRecord;
ULONG cbRecord;
char record(RECORD_SIZE);

OBJPARM, *POBJPARM;

Figure 6.11 The OBJPARM structure.

Using an Object Window 155

• The u!Record element is the record number to be written, and it is initial­
ized to zero.

• The record element is the data to be written to the file, and in this case is
initialized to zeroes. The record could be filled with data retrieved from a
container control or other source at this point.

• The cbRecord element specifies the number of bytes contained in the record
element.

Once this structure has been initialized, user-defined message UM_INIT is
sent to the object window to open the file and begin the operation. Parameter
mp! of this message contains a pointer to the control parameters structure.

Figure 6.12 shows the window procedure for the object window. When
the object window receives the UM.INIT message posted by the InitializeFile
routine, it attempts to open the specified file. If successful, the handle of the file
is stored in the control parameters structure. A UM_WRITE message is then

MRESULT APIENTRY ObjWndProc(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)
{

POBJPARM pObj;
int i;

switch(msg)
case UM_INIT:

pObj = (POBJPARM)mpl;
pObj->file = fopen(pObj->szFileName, •w•);
if (pObj->file != (FILE *)NULL) {

WinPostMsg(hwnd, UM_WRITE, mpl, mp2);
) else (

WinPostMsg(pObj->hwnd, UM_READY, mpl, MPFROMLONG(READY_ERROR));
) /* endif */
return OL;

case UM_WRITE:
pObj = (POBJPARM) mpl;
for (i = 0; i < pObj->cbRecord; i++

fwrite(&(pObj->record(i]) , l, l, pObj->file);
WinPostMsg(pObj->hwnd, UM_REAOY, mpl, MPFROMLONG(READY_OK));
return OL;

case UM_CLOSE:
pObj = (POBJPARM)mpl;
fclose(pObj->file);
free (pObj);
return OL;

default:
return WinDefWindowProc(hwnd, msg, mpl, mp2 J;

Figure 6.12 Object window procedure to lnillallze file.

156 Getting More Power for Your Program: Using OS/2's Multithreadlng Capabilities

posted back to the object window to write the first record. Another approach
would be to post a message back to the main application window to cause
the initial record to be filled. The main application window would then fill the
record and post the UM_WRITE message back to the object window.

When the object window receives the UM WRITE message, it executes the
inner loop from our old InitiallzeFile function to write the contents on the
record to the file one byte at a time. Once the record has been completely
written, a UM...READY message is posted back to the application to indicate
that the object window is ready to write the next record.

Figure 6.13 shows the main window processing for the UM..READY mes­
sage. The routine first verifies the success of the previous write operation,
and if there are more records to process, the ulRecord element of the control
parameters structure is updated to reflect the next record number to write. If
the application were actually loading data into the records, the new record
data would be inserted into the record element at this point. The position of
the progress indicator slider is then updated and a UM.WRITE message is
posted back to the object window to cause the new record to be processed.
This interchange of the UM.WRITE and UM...READY messages will continue
until all records have been processed.

When the main window determines that the final record has been written,
the OK button in the progress indicator dialog is enabled and a UM_CLOSE
message is sent to the object window. Back in Figure 6.12, the object window
processes the UM.CLOSE message by closing the file and deallocating the
memory allocated for the control parameters structure.

static MRESULT umReady(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM rnp2)
(

POBJPARM
HWND

pObj = (POBJPARM)mpl;
hwndObject = WinQueryWindowULong(hwnd, APP_HWNDOBJ) ;

if (LONGFROMMP(mp2) == READY_OK && pObj->ulRecord < MAX_RECORD)
pObj->ulRecord++;
WinSendDlgitemMsg(pObj->hwndProgress, DID_PROGRESS, SLM_SETSLIDERINFO.

MPFROM2SHORT(SMA_SLIDERARMPOSITION,
SMA_INCREMENTVALUE) ,

MPFROMLONG((pObj->ulRecord * 100) I
(MAX_RECORD - 1)));

WinPostMsg(hwndObject, UM_WRITE, mpl, MPFROMLONG(OL));
else {
WinEnableWindow(WinWindowFromID(pObj->hwndProgress, DID_OK), TRUE);
WinPostMsg(hwndObject, UM_CLOSE, MPFROMP(pObj), MPFROMLONG(OL));

) /* endif */
return (MRESULT)OL;

Figure &.13 Main thread routine to complete initialization.

Summary 157

. The re.suits of. usin~ this method can be observed in the sample applica­
~1~~ ~s~1ated with ~s chapter by selecting object window mode and then
m1t1ahzmg a file. Agam, the user may perform other functions while the in·_
tialization operation is in progress, including starting another initializatio~
operation. JJO delays or failures only affect the progress of the initialization
not the responsiveness of the system. '

This method also tends to be less likely to cause resource conflicts since
each step of the .ope:ation is an inte~ated whole and the data required to per­
form the operation is allocated specifically for each instance of the operation.

SUMMARY

This. chapter has shown several methods of performing time-consuming op­
er.ataons. The first tw~ methods leave open the possibility that the application
will cease to ~rocess mput messages for some period of time, preventing the
user from domg further work, and perhaps leading to the impression that
the application or system is completely hung. The latter two methods employ
~eparate threads to prevent this from occurring. The first of these creates an
mdependent thread capable of performing the complete operation without
further intervention and is appropriate when the application does not need to
supply data to complete the operation. The last method uses an object window
t? allow. the appli~ation window to supply data at various stages of the opera­
tion. This method is more appropriate in many cases since it allows for control
of the flow of data.

-

CHAPTER

She Sells Sea Shells:
Programming the
Workplace Shell

0
S/2 Version 1 provided the user with a graphical user interface, or GUI,
built on the Presentation Manager API. This interface removed the user 's
dependence on the keyboard by allowing the user to navigate the system's

storage devices and start programs using the mouse. The user interface con­
sisted of a desktop, a Program Manager, and Program Groups. The desktop
was basically a blank background upon which icons would be painted. They
represented running programs that the user had requested to be minimized,
or hidden. When the system was started, the Program Manager was auto­
matically started as the base application. This application allowed the user to
select a Program Group, an application that displayed a list of programs that
the user could execute. Thus the Version 1 GUI was a simple two-level hier­
archy allowing the user a relatively limited ability to organize and customize
the system. Some additional flexibility was provided by the File Manager ap­
plication which allowed the user to graphically display the directories on the
system's storage devices and to manipulate files and execute programs.

The current user interface, the Workplace Shell, was introduced with OS/2
Version 2. The Workplace Shell is an object-oriented graphical user interface,
based on PM and a new technology, SOM, the System Object Model. In this
new shell, the distinction between Program Groups, Programs, and Data Files
is removed and all types of files are represented as objects. The blank desktop
is replaced by the desktop object which is a derivation of a folder object, an
object that holds, or contains, an homogenous set of objects such as programs,
data, and even other folders. Since folders, and therefore the desktop, can

159

160 She Sells Sea Shells: Programming the Workplace Shell

contain other folders, the two-tiered hierarchy of the Version 1 Program Man­
ager/Program Group is replaced by the multitiered hierarchy of folders. This
also means that the desktop can contain a mixture of folders, programs, and
data files, all of which can be started or opened by clicking the mouse. This
organization along with a host of other new features provides the user with an
easy-to-operate and highly customizable system.

One of the key concepts of the Workplace Shell is the ability to actually
move and otherwise manipulate objects using the mouse. For example, rather
than typing a command to copy a file, the user selects the icon representing the
file with the mouse and then moves the mouse to the desired folder, dragging
the file along. When the user releases the mouse button, the file itself is copied
to the new location. Data files can also be dragged in this manner and dropped
on an application, causing the application object or program to open and
process the dragged file. Workplace Shell aware applications should support
these direct manipulation features.

Another important feature of the Workplace Shell is its ability to maintain
the state of the desktop through an IPL, or reboot, of the system. The Shell
assumes responsibility for opening the objects that were open at the time the
system was shut down (this feature depends on a user-initiated safe shutdown
procedure-if the system is simply powered off, the results are unpredictable
and sometimes catastrophic). The objects themselves, for example, folders, ap­
plication objects, and data files, are responsible for saving and restoring the
elements of their internal state, such as window size, presentation parame­
ters, and processing state. Application programmers do not have to design
their own individual methods for storing restart data; binary data files, called
initialization files, and APls to manipulate them are provided by the system
for this purpose. We will discuss how Workplace Shell aware applications can
take advantage of initialization files later in this chapter.

Finally, a brief overview of SOM and the object hierarchy of the Workplace
Shell is given to provide a better understanding of how the Workplace Shell
works and to assist in the design and implementation of Workplace Shell aware
applications.

DIRECT MANIPULATION

Direct manipulation is the Workplace Shell's feature that allows users to ma­
nipulate files or other objects using the mouse. The most commonly known
direct manipulation operation is called drag and drop. The user selects and
drags an object by placing the mouse pointer over the object, pressing and
holding the appropriate mouse button, then moving the mouse. As the mouse
moves, an icon representing the object or objects being dragged moves along
with the mouse, indicating the current drop location. When the mouse button
is released, the object is dropped. The application over which the object is

Drag-and-Drop Data Structures 161

dropped determines what action will be taken-for example, dropping a file
on a folder causes the file to be moved or copied to that folder; dropping the
same file on a printer object causes the file to be printed.

OS/2 Warp introduced a second direct manipulation operation known as
lazy drag or pickup and drop. The drag-and-drop operation is modal-<mce
the user begins dragging objects, the operation must be completed or can­
celled before any other operations can be accomplished. Pickup and drop is
a nonmodal operation. After the user has started the operation by picking up
an object, other operations may be performed, such as moving a window or
opening an application. The picked objects remain available until dropped or
the operation is explicitly cancelled. This capability is extremely useful when
the source and target of the direct manipulation operation cannot easily be
displayed simultaneously.

The low-level activities of direct manipulation are handled by the Presen­
tation Manager. These activities include notifying an application when a direct
manipulation operation is requested, moving and painting the icon represent­
ing the dragged object and notifying an application when an object has been
dropped. Applications are responsible for responding to a direct manipula­
tion request by initiating the operation, notifying PM when they are able to
receive a drop, and conversing among themselves using predefined protocols
to properly transfer dropped objects.

These application responsibilities can be divided into those performed
by source applications and those performed by target applications. A source
application is an application that understands PM's notification that a drag
operation has been requested and performs the actions necessary to start
the operation. An application that performs the actions required to accept a
dropped object is a target application. An application that does both can serve
as a source application, a target application, or both simultaneously. Before
discussing the details of this processing, a grasp of the data structures used to
communicate between the source application, PM, and the target application
is necessary.

DRAG-AND-DROP DATA STRUCTURES

Four data structures are used during the processing of direct manipulation
operations. The DRAGINFO structure is the base structure that contains the
controlling information for the operation. Linked to the DRAG INFO structure
are DRAGITEM structures that provide detailed information about each object
being dragged. The DRAGIMAGE structure is used by the source application
to inform PM which image or images are to be used to represent the dragged
objects during a drag and drop operation. The DRAGTRANSFER structure is
used for communication between the source and target applications after a
drop has occurred and objects are being rendered. Except for DRAGIMAGE,

162 She Sells Sea Shells: Programming the Wort<place Shell

these structures must be accessible by multiple applications running as differ­
ent processes and thus must be allocated in shared memory. Rather than have
the applications manage the memory themselves, PM provides APls for allo­
cating, accessing, and freeing the memory associated with these structures. In
the following sections, we will examine the elements of the structures and the
APis provided for manipulation.

The DRAGINFO Structure
The DRAGINFO structure is the basic, controlling entity for the drag operation
and contains generic information about the operation as a whole. The format
of the structure is shown in Figure 7 .1.

• The cbDraginfo element specifies the length of the DRAGINFO structure
in bytes. The element is initialized by PM and must not be modified by the
application.

• The cbDragitem element specifies the length of the DRAGITEM structures
associated with this DRAGINFO structure. This element is initialized by
PM and must not be modified by the application.

• The usOperation element specifies the default function to be performed
when the dragged objects are dropped. PM initializes this field to DO_
DEFAULT. The application may modify this element to specify DO_COPY,
DO.LINK, DO.MOVE or another application-defined operation. This is
the only element of the DRAG INFO structure that the application should
modify.

• The hwndSource element specifies the handle of the window that is the
source window for the drag-and-drop operation. PM initializes this element
to the window over which the mouse pointer was positioned when the
drag-and-drop operation was initiated.

• The xDrop element contains an unspecified value at initialization. This
element contains the x coordinate of the mouse pointer position after a
drop occurs. This element should not be modified by the application.

typedef struct _DRAGINFO
ULONG cbDraginfo;
USHORT cbDragi tem;
USHORT usOperation;
HWND hwndSource;
SHORT xDrop;
SHORT yDrop;
USHORT cditem;
USHORT usReserved;

DRAG INFO;

Figure 7 .1 The DRAG INFO slructure.

Drag-and-Drop Data Structures 163

PDRAGINFO APIENTRY DrgAllocDraginfo(ULONG cdite;n);

figure 7.2 The DrgAllocDraginfo prototype.

• The yDrop element contains an unspecified value at initialization. This
element contains the y coordinate of the mouse pointer position after a
drop occurs. This element should not be modified by the application.

• The cditem element specifies the number of DRAG ITEM structures that are
associated with this DRAGINFO structure. The number of DRAGITEM
structures indicates the number of objects being dragged. This field is
initialized to the value specified in the cDitem parameter of the DrgAJloc­
Draginfo APL This element should not be modified by the application.

• The usReserved element is reserved and should not be modified by the
application.

Five APis are provided for managing the DRAGINFO structure. These
APis allow an application to allocate the structure, resize the structure, free
the structure, give another application access to the structure, and obtain
access to the structure.

The source application uses the DrgAJlocDraginfo API to allocate and
initialize the structure. PM responds to this API by allocating the DRAG INFO
structure and the specified number of DRAGITEM structures within shared
memory. The prototype for this API is shown in Figure 7.2.

• The cditem parameter is the number of objects to be dragged and is used to
allocate space for the DRAG ITEM structures associated with the allocated
DRAGINFO structure.

The API returns a pointer to the allocated DRAGINFO structure if successful;
otherwise, NULL is returned.

When a pickup-and-drag operation is in progress, additional objects can
be added to the set of objects being dragged after the initial call to DrgAIIoc­
Draginfo. In this instance, additional space for DRAGITEM structures will be
required so the DRAGINFO structure must be reallocated. The DrgRealloc­
Draginfo API accomplishes this function. The prototype of the API is in Figure
7.3.

• The pdinfoOld parameter is the address of the current DRAG INFO struc­
ture obtained from a prior call to DrgAllocDraginfo or DrgReallocDrag­
Info.

PDRAGI~ APIENTRY DrgReallocDrginto (PDRAGINFO pdinfoOld,
ULONG cditem) ;

Figure 7 .3 The DrgReallocDrglnfo prototype.

164 She Sells Sea Shells: Programming the Workplace Shell

BOOL APIENTRY DrgAccessDraginfo(PDRAGINFO pdinfo);

Figure 7 .4 The DrgAccessDraginfo prototype.

• The cdltem parameter is the total number of DRAG ITEM structures to be
associated with the new DRAGINFO structure.

DrgReallocDraglnfo returns a pointer to the newly allocated DRAG INFO
structure. The memory for the previous DRAGINFO structure is freed and
should not be accessed further. The application is responsible for maintaining
the DRAGITEMs. DrgReallocDraglnfo makes no attempt to save the existing
structures.

When PM sends a notification message to a potential target application, a
pointer to the DRAG INFO structure is sent as one of the parameters. However,
the application is not automatically given access to the memory containing the
structure. The DrgAccessDraginfo API must be called to gain access to the
DRAG INFO structure. The prototype of this API is in Figure 7.4.

• The pdinfo parameter is a pointer to the DRAGINFO structure to be ac­
cessed.

The API returns TRUE if access is granted or FALSE if an error occurs.
The DrgFreeDraginfo API must be called to release an application's ac­

cess to the DRAGINFO memory when the application has finished using the
DRAGINFO structure. When the structure has been freed by all applications,
it is deallocated. The DrgFreeDraginfo API is prototyped as shown in Figure
7.5.

• The pdlnfo parameter is a pointer to the DRAGINFO structure to be freed.

The API returns TRUE if the structure was successfully freed and FALSE if an
error occurs. If the source and target applications are the same application
and the DrgDrag API is still active, the DRAGINFO structure will not be freed
and DrgFreeDraginfo will return FALSE. In this instance, the PM error code
wiU be set to PMERR_SQURCE_SAME...AS_TARGET. This prevents accidental
deallocation of the structure while it is still in use.

The DrgPushDraginfo API is used to directly give access to the DRAGINFO
structure to another process. This API should be used with caution. If the
process receiving access is unaware that access has been given and does not

BOOL APIENTRY DrgFreeDraginfo(PDRAGINFO pdinfo);

Figure 7 .5 The DrgfreeDraglnfo prototype.

Drag-and-Drop Data Structures 165

DOOL APIENTRY DrgPushDr aginfo(PDRAGINFO pdinfo ,
HWND hwndDest) ;

Figure 7 .6 The DrgPushDraglnfo prototype.

release its access with the DrgFreeDraginfo API, the memory will never be
released until the process terminates. This type of behavior results in a loss of
system memory and can eventually cause the system to cease operating due
to a lack of resources. The prototype of the DrgPushDraginfo API is in Figure
7.6.

• The pdinfo parameter is a pointer to the DRAGINFO structure to be given.
• The hwndDest parameter is the handle of a window whose process is to

receive access to the DRAGINFO structure.

DrgPushDraginfo returns TRUE if access is successfully granted and FALSE
if an error occurs.

The DRAGITEM Structure

The DRAGITEM structure is used to convey information about the individual
objects involved in a direct manipulation operation. The source and target
applications use this information to negotiate the transfer of the object. The
format of the structure is given in Figure 7.7.

• The hwndltem element is the handle of the source window for this item.
This element is typically initialized to a value equal to the hwndSource

element of the DRAGINFO structure. Source applications that require
a DM RENDERPREPARE message from the target may use a different

typedef struct _DRAGITEM (
HWND hwnditem;
ULONG ul itemID;
HSTR hstrType;
HSTR hstrRMF;
HSTR hstrContainerName;
HSTR hstrSourceName;
HSTR hstrTargetName;
SHORT cxOffset;
SHORT cyOffset ;
USHORT fsControl ;
USHORT fsSupportedOps ;

DRAG ITEM;

Figure 7.7 The DRAGITEM structure.

-

166 She Sells Sea Shells: Programming the Workplace Shell

window to perform the rendering operation and will modify this element
so that the target can establish a conversation with the new window.

• The ulltemlD element is a 32-bit value used by the source application to
identify the object to which this DRAGITEM structure pertains.

• The hstrType element is a handle to a string that specifies the type, or
format, of the object; for example, plain text, executable, or metafile. A
set of predefined types are included in the Developer's Toolkit header
and include files as DRT. constants; additional types may be defined by
applications. Some objects may correctly be defined as having multiple
types; for instance, a C program source file could be defined as C Code
and Plain Text. All possible types should be listed, separated by commas.
The first type in the list should be the type that best describes the object.
This type is known as the true type of the object. In the example, C Code
would be the true type.

• The hstrRMF element is a handle to a string that specifies the mecha­
nism(s) and format(s) that may be used to transfer the object between the
source and target applications. The mechanism is the manner in which the
object is transferred; for example, DRM OS2FILE indicates that the object
is stored as a file and thus may be transferred with the file system API func­
tions used to manipulate files while DRM-1>DE indicates that the Dynamic
Data Exchange (DDE) protocol may be used to transfer the data. Format
refers to the structure of the data, for example, a bitmap structure or plain
text. These items are formatted in the string as pairs, either explicitly as
a mechanism/format pair enclosed in angle brackets (< >) or as a cross
product of one or more mechanisms and one or more formats separated
by an (x) and enclosed in parentheses (). Multiple pairs or multiple items
in a cross product are separated by commas. In order for a transfer to
take place, both the source and target applications must agree on both the
transfer mechanism and format. As an example, suppose a source appli­
cation supports transfer of a graphical object in both bitmap format and
metafile format; however, it can only render the bitmap format via a DDE
interchange and the metafile format through an external data file. If the
target can only accept a bitmap format but does not support DDE, then no
transfer can occur. An example of an RMF string is:

(DRM_OS2FILE x DRF_METAFILE, DRF_BITMAP) , <DRM_DDE,DRF_BITMAP>

The first pair, either explicit or formed by a cross product, must be
the native, or natural, mechanism and format for the object. In the ex­
ample, the native mechanism is DRM_OS2FILE and the native format is
DRF...METAFILE. In general, the native format provides the truest repre­
sentation of the object. Thus a graphical drawing program would be likely
to specify DRFMETAFILE as the native format over DRF_BITMAP since
the metafile format retains the lines and other graphical elements, whereas

DC-OPEN
DC.REF
DC.GROUP

Drag-and-Drop Data Structures 167

the bitmap format only provides the visual image of the graphic. The native
mechanism generally provides the most natural means of transferring the
data.

Since most programmers are familiar with file manipulation, DRM_
OS2FILE is likely to be a common native mechanism and should gen­
erally be supported by all applications that provide direct manipulation
capability. Additional formats and/or mechanisms may also be provided
and may be desirable when direct manipulation is provided between a set
of interrelated applications.

• The hstrContainerName element is a handle to a string that provides the
location of the object. For objects transferred as files this might be a di­
rectory; for objects that are parts of a file, say a range of cells in a spread­
sheet, a full path (directory and file name) to the spreadsheet file might be
specified; for an object transferred through interprocess communications,
this might be the name of a shared memory area. Note that this latter
method is not one of the predefined mechanisms but could perhaps be an
application-defined extension.

• The hstrSourceName element is a handle to a string that identifies the
object to be transferred; for example, the file name for objects transferred
as a file, or the cell range for a portion of a spreadsheet. hstrSourceName
may be passed as NULLHANDLE by the source when the source wishes
to be notified of the transfer before rendering occurs, or wishes to handle
the rendering itself.

• The hstrTargetName element is a handle to a string provided by the source
application to suggest the identity of the object after the transfer. This
might be the name of the file after the transfer or the range into which
spreadsheet cells are to be transferred. This element is optional; the target
can always decide the name for itself.

• The cxOffset element is the offset in the direction of the x axis from the
pointer's hotspot to the origin of the image used to represent this object.
This element is used when the spatial representation of the dragged objects
is to be maintained at the target and is copied from the DRAGIMAGE
structure which provides the representation of the object.

• The cyOffset element is the offset in the direction of the y axis from the
pointer's hotspot to the origin of the image used to represent this object.
This element is used when the spatial representation of the dragged objects
is to be maintained at the target and is copied from the DRAGIMAGE
structure which provides the representation of the object.

• The fsControl element is a set of flags that specify various attributes of the
object being dragged. These flags are defined as:

OxOOO 1 the object is currently open.
Ox0002 the dragged object is a reference to another object.

Ox0004 the dragged object is a group of objects.

168 She Sells Sea Shells: Programming the Workplace Shell

oc_coNTAINER

oc_PREPARE

Ox0008 the dragged object is a container of other objects, for
example, a directory.

Ox0010 a DM_RENDERPREPARE message must be sent to
the source application before the transfer begins in
order to ready the object for transfer; for example, a
text editor might set this flag so that it could copy a
selected block of text to a file.

DC_REMOVABLEMEDIA Ox0020 the dragged object is either on removable media or
cannot be recovered at the source following a move
operation.

• The fsSupportedOps element is a set of flags that indicate the operations
allowed by the source. These flags are:

DO_COPYABLE OxOOO 1 indicates that the object may be copied. A new object is created
at the target. The source object is not affected.

DO.MOVEABLE Ox0002 indicates that the object may be moved. The object is trans­
ferred to the target and is no longer available at the source.

DO__LINKABLE Ox0004 indicates that the object may be linked. A new object is created
at the target and a connection to the original object at the
source is established, typically so that both copies of the object
may be kept synchronized.

Three APis are provided for managing and accessing DRAGITEM struc­
tures. These APls allow an application to copy a local DRAGITEM structure
to the shared memory associated with the DRAGINFO structure, to fill a local
DRAGITEM structure from the shared memory, and to obtain a pointer to a
DRAGITEM structure in the shared memory.

The DrgSetDragitem API is used to copy the contents of a DRAGITEM
structure provided by the application into one of the DRAGITEM structures
associated with the DRAG INFO structure. The prototype of this API is shown
in Figure 7.8.

• The pdlnfo parameter is a pointer to the DRAGINFO structure associated
with the shared memory to which the DRAG ITEM structure will be copied.

BOOL APIENTRY DrgSetDragitem(PDRAGINFO pdinfo,
PDRAGITEM pditem,
ULONG cbBuffer,
ULONG iitem) ;

Figure 7 .a The DrgSetDragitem prototype.

Drag-and-Drop Data Structures 169

BOOL APIENTRY DrgQueryDragitem(PDRAGINFO pdinfo,
ULONG cbBuffer,
PDRAGITEM pditem,
ULONG iitem);

Figura 7 .9 The DrgQueryDragltem prototype.

• The pdltem parameter is a local pointer to the DRAG ITEM structure to be
copied.

• The cbBuffer parameter is the length in bytes of the DRAGITEM structure
pointed to by pdltem.

• The Htem parameter is the zero-based index within the array of DRAGITEM
structures allocated with pdlnfo to which pdltem should be copied.

DrgSetDragitem returns TRUE if successful and FALSE if an error occurred.
The DrgQueryDragitem API is used to copy all or part of a DRAGITEM

structure from the shared memory associated with a DRAGINFO structure.
The prototype for this call is in Figure 7. 9.

• The pdinfo parameter is a pointer to the DRAG INFO structure which iden­
tifies the shared memory area containing the desired DRAGITEM struc­
ture.

• The cbBuffer parameter is the length in bytes of the structure pointed to
by pditem. This may be less than the length of the DRAGITEM structure if
the entire structure is not desired.

• The pditem parameter is a pointer to the location in local memory to which
the desired DRAGITEM structure is copied.

• The iltem parameter identifies the zero-based index of the desired
DRAGITEM structure within the array of DRAGITEM structures allo­
cated to pdinfo.

DrgQueryDragitem returns TRUE if successful or FALSE if an error occurred.
DrgQueryDragitemPtr is used to obtain a pointer to a drag item within the

shared memory area. Unlike DrgQueryDragitem, which makes a local copy of
the structure, this API allows the application to modify the actual structure in
DRAGINFO. The syntax of the API call is in Figure 7.10.

PDRAGITEM APIENTRY DrgQueryDragitemPt r (PDRAGINFO pdinfo,
ULONG ul!ndex) ;

Figure 7 .1 O The DrgQu eryDragllemPlr prototype.

170 She Sells Sea Shells: Programming the Workplace Shell

• The pdlnfo parameter is a pointer to the DRAG INFO structure which iden­
tifies the shared memory area containing the desired DRAGITEM struc­
ture.

• The ullndex parameter is the zero-based index of the desired DRAG ITEM
structure within the array of DRAGITEM structures allocated with pdlnfo.

This function returns a pointer to the DRAGITEM structure indicated by pa·
rameter ullndex.

The DrgQueryDragitemCount API returns the number of DRAGITEM
structures allocated for a given DRAGINFO structure. The API is defined as
shown in Figure 7 .11.

• The pdinfo parameter is a pointer to the DRAGINFO structure for which
the number of DRAG ITEM structures is desired.

The function returns the number of DRAGITEM structures allocated for the
DRAG INFO structure identified by pdinfo.

The DRAGIMAGE Structure
The DRAGIMAGE structure is used to describe the graphic image used to
represent one or more of the objects being dragged during a drag-and-drop
operation. For compatibility, DRAGIMAGE structures may be specified for
pickup-and-drop operations, but are ignored. An application may associate
one or more DRAG IMAGE structures with a DRAGINFO structure. If the to­
tal number of DRAGIMAGEs is less than the number of dragged objects or
DRAGITEM structures, then the first n DRAGIMAGE structures are used to
represent the first n DRAGITEM structures; DRAGIMAGE structure n is then
used to represent the remaining DRAGITEM structures. The DRAGIMAGE
structure may also be used to convey spatial information to the target applica­
tion so that objects may retain their original orientation to one another when
dropped. The DRAGIMAGE structure is defined as shown in Figure 7.12.

• The cb element is the length of the DRAGIMAGE structure in bytes.
• The cptl element is the number of points in the array pointed to by hlmage

when the image is a polygon (see fl); otherwise, this element is ignored.
• The hlmage element identifies the image to be drawn. The fl element de­

termines how this element is interpreted.

ULONG APIENTRY DrgQueryDragi t emCount(PDRAGINFO pdinfo);

Figure 7.11 The DrgQueryDragltemCount prototype.

DRG.ICON

typedef struct _DRAGIMAGE
(

USHORT cb;
USHORT cptl ;
LHANDLE hlmage;
SIZEL sizlStretch;
ULONG fl;
SHORT cxOffset;
SHORT cyOffset;

DRAGIMAGE;

Figure 7.12 The DRAGIMAGE structure.

Drag·and·Drop Data Structures 171

• The sizlStretch element is a SIZEL structure that defines the size of the
image. If the appropriate flag is set in fl., the image will be stretched or
compressed to match this size; if the fl flag is not set, this field is not used.

• The fl. element is a set of flags that define the type of image and how the
image will be displayed. The valid flags are:

Ox0001

DRG...BITMAP Ox0002

specifies that a graphic pointer is used to represent the as­
sociated object. hlmage is interpreted as an HPOINTER.
specifies that a bitmap is used to represent the associated
object. hlmage is interpreted as an HBITMAP.

DRG.POLYGON Ox0004

DRG_STRETCH Ox0008

DRG.TRANSPARENT Ox0010

DRG_CLOSED Ox0020

specifies that a polygon (or series of connected points) is
used to represent the associated object. hlmage is inter­
preted as a pointer to an array containing at least cptl
POINTL structures.
when ORed with either DRG_ICON or DRG...BITMAP,
causes the image to be stretched or compressed as neces­
sary to match the size specified in siz./Stretch .
when ORed with DRG.ICON, causes an outline of the
pointer to be created and displayed instead of the actual
pointer.
when ORed with DRG_POLYGON causes the first and
last points of the hlmage array to be connected so that
the image is a closed polygon.

• The cxOffset element specifies the position of the image's origin in relation
to the pointer hotspot measured as the distance between the two points
along the x axis. This element is copied to the cxOffset element of the
associated DRAGITEM before the target application is notified of a drop.

• The cyOffset element specifies the position of the image's origin in relation
to the pointer hotspot measured as the distance between the two points

172 She Sells Sea Shells: Programming the Workplace Shell

along the y axis. This element is copied to the cyOffs~t e~em~nt of. the
associated DRAGITEM structure before the target apphcat1on is notified
of a drop.

An array of one or more DRAG IMAGE structures is passed as a parameter
to the DrgDrag API to define the default images that represent the dragged
objects. As the objects are dragged over a potential target, the target may use
the DrgSetDraglmage API to cause a different image or set of images to ~e
displayed while the pointer is located over its window. The prototype for this
API is given in Figure 7 .13.

• The pdinfo parameter is a pointer to the DRAGINFO structure for the
current drag and drop operation. This value is normally passed to the
target application as one of the MPARAM parameters of a message.

• The pdimg parameter is a pointer to an array of DRAGIMAGE structures
which define the graphical images to display while the pointer is over this
target window.

• The cdimg parameter specifies the number of structures in the array
pointed to by pdimg.

• The pRsvd parameter is a reserved parameter and must be set to NULL.

The API returns TRUE if successful and FALSE if an error occurred.

The DRAGTRANSFER Structure
The DRAGTRANSFER structure is used to pass information during the ensuing
conversation between the source and target applications after a drop occurs.
The definition of the structure is given in Figure 7 .14.

• The cb element is the length of the structure in bytes.
• The hwndCLient element is the handle of the target application window

with which the source application communicates.
• The pditem element is a pointer to the DRAG ITEM structure that describes

the object being rendered. The DRAGITEM structure pointed to by this
element must exist within the shared memory identified by the DRAG­
INFO structure for the direct manipulation operation. This pointer should
normally be obtained by calling the DrgQueryDragitemPtr APL

BOOL APIENTRY DrgSetDraglmage(PDRAGINFO pdinfo,
PDRAGIMAGE pdimg,
ULONG cdimg,
PVOID pRsvd) ;

Figure 7.13 The DrgSetDraglmage prototype.

typedef struct _DRAGTRANSFER
(

ULONG cb;
HWND hwndClient;
PDRAGITEM pditem;
HSTR hstrSelectedRMF;
HSTR hstrRenderToNarne;
ULONG ulTargetlnfo;
USHORT usOperation;
USHORT fsReply;

DRAGTRANSFER;

Figure 7.14 The DRAGTRANSFER structure.

Drag·and·Drop Data Structures 173

• The hstrSelectedRMF element is a handle to a string that specifies the ren­
dering mechanism and format that the target has selected for the operation.
Note that this string must be formatted as a single mechanism/format pair
enclosed in angle brackets (< >).

• The hstrRenderToName element is a handle to a string that identifies the
location where the source should store the rendered object. If this item is
a file name, the full path should be specified.

• The u/Targetlnfo element is a 32-bit value reserved for use by the target
application.

• The usOperation element defines the rendering operation to be performed.
The standard, predefined values for this field are:

DO_COPY OxOO 10 creates a new instance of the object and passes to the target.
DO.MOVE Ox0020 passes the object to the target; the object is no longer available to

the source.
D0-1.INK Ox0018 provides the target with a means of accessing the existing copy of

the object.

Additional operations may be defined by applications; however, the op­
eration will not be performed unless both the source and target understand
the operation.

• The fsReply element is a set of flags that the source application uses to
communicate its success or failure in performing the rendering operation.
The valid flags are:

DMFL..NATIVERENDER Ox0004 indicates that the source will not render this object
and that the target should use the native mechanism
and format to render the data.

DMFL..RENDERRETRY Ox0008 indicates that the source is able to render the object
but does not support the selected mechanism and for­
mat. The target may retry with a different mechanism
and format if desired.

17 4 She Sells Sea Shells: Programming the Workplace Shell

PDRAGTRANSFER APIENTRY DrgAllocDragtransfer(ULONG cdxfer) ;

Figure 7.15 The DrgAllocDragtransfer prototype.

Two APis are provided for managing DRAGTRANSFER structures; one
API is used to allocate one or more structures in an array, the other is used
to free an allocated array of structures. While the structures may be allocated
as an array, they are passed to the source application individually. Therefore,
DrgFreeDragtransfer allows the structures to be freed on an individual basis
and does not free the shared memory until all structures have been freed.

The DrgAllocDragtransfer API must be called by the target application
to allocate DRAGTRANSFER structures in shared memory so that they can
be properly accessed by both the source and target applications. The API is
prototyped as in Figure 7 .15.

• The cdxfer parameter specifies the number of DRAGTRANSFER structures
to be allocated.

The API returns a pointer to an array containing cdxfer DRAGTRANSFER
structures. Again, while multiple DRAGTRANSFER structures may be allo­
cated, the drag-and-drop protocols process the array one element at a time.

The DrgFreeDragtransfer API frees the memory allocated by the DrgAl­
locDragtransfer API. This API must be called by both the source and target
applications since the memory allocated for the DRAGTRA1:1S.FE1:l structure
is given to the source application. The prototype for the API ism Figure 7.16.

• The pdxfer parameter is a pointer to the DRAGTRANSFER structure to
free. When all structures allocated by a call to DrgAllocDragtransfer have
been freed, the memory is freed.

The API returns TRUE if successful and FALSE if an error occurred.

STRING HANDLES
Like most of the memory used during a direct manipulation operation, the
text needed to complete the operation must be accessible to multiple pr~ce~ses
and cannot therefore be allocated in the local memory of any one apphcat1on.
Rather than require the applications to allocate and manage memory for the

BOOL APIENTRY DrgFreeDragtrans fer(PDRAGTRANSFER pdxfer);

Figure 7 .16 The Drgfreeorautransfer prototype.

String Handles 175

HSTR APIENTRY DrgAddStrHandle (PSZ psz);

Figure 7.17 The DrgAddStrHandle prototype.

strings, an API is provided, which copies the text into memory managed by
PM and returns a unique handle with which applications can identify the
string. Another API is provided, which copies the string associated with a
given handle from PM's memory back into the local memory of an application.
Of course, an API is provided to remove the string from PM's memory and free
the handle. These string handles are stored in the direct manipulation data
structures instead of the strings themselves.

The API used to copy the text into PM's memory and assign the string
handle is DrgAddStrHandle. The prototype for this function is in Figure 7 .1 7.

• The psz parameter is a pointer to the NULL-terminated string for which a
handle is desired.

DrgAddStrHandle returns NULLHANDLE if an error occurs or the handle
assigned to the text string if successful.

The DrgQueryStrName API copies the text associated with a string handle
into a buffer in the application's local memory. The prototype for the API is in
Figure 7.18.

• The hstr parameter specifies the string handle representing the desired
string.

• The cbBuffer parameter is the length of the local buffer in bytes. The num­
ber of bytes required to accommodate the entire string may be obtained
with the DrgQueryStrNameLen API (upcoming).

• The pBuffer parameter is a pointer to the local memory to which the string
should be copied.

DrgQueryStrName returns the number of bytes copied to pBuffer. If hstr is
invalid, zero is returned.

The length of the string associated with a given string handle may be
obtained by calling the DrgQueryStrNameLen API, which is prototyped as in
Figure 7 .1 9.

ULONG APIENTRY DrgQueryStrName (HSTR hstr,
ULONG cbBuffer,
PSZ pBuffer l ;

Figure 7.18 The DrgQueryStrName prototype.

176 She Sells Sea Shells: Programming the Workplace Shell

ULONG APIENTRY DrgQueryStrNameLen(HSTR hstr);

Figure 7.19 The DrgQueryStrNamelen prototype.

• The hstr parameter is the handle to the string whose length is desired.

The API returns the number of bytes in the string associated with hstr, but
does not include the NULL character terminating the string.

The DrgDeleteStrHandle API frees the resources associated with a string
handle obtained via the DrgAddStrHandle API and invalidates the handle. The
prototype for this API is shown in Figure 7.20.

• The hstr parameter is the handle that identifies the string to delete.

The API returns TRUE if successful and FALSE if an error occurred.
String handles may also be removed with the DrgDeleteDraginfoStrHan­

dles API. This API provides a shortcut for the programmer by deleting all
the string handles referenced in the DRAGITEM structures associated with a
DRAG INFO structure. The prototype for this API is in Figure 7 .21 .

• The pdinfo parameter is a pointer to the DRAGINFO structure associated
with the DRAGITEM structures whose string handles are to be freed.

The API returns TRUE is successful or FALSE if an error occurred.

DIRECT MANIPULATION CODING
Now that you have at least a basic understanding of the data structures used
for direct manipulation, we can turn our attention to the coding required
for an application to support direct manipulation. In order to clearly see the
complete flow of the operation, we will begin with the coding required for a
window to act as the source of a drag-and-drop operation and then proceed to
the coding that allows a window to be a target. After examining the drag-and­
drop programming, we will examine the additional code required to also act
as the source or target of a pickup-and-drop operation.

The application used for the examples provides direct manipulation capa­
bility for a listbox control that displays a list of the file names in a directory.
The application creates the listbox control as the client window of a standard

BOOL APIENTRY DrgDeleteStrHandle(HSTR hstr);

Figure 7.20 The DrgDeleteStrHandle prototype.

Direct Manipulation Coding 177

BOOL APIENTRY DrgDel eteDraginfoSt rHandles(PDRAGINFO pdinfo);

Figure 7.21 The DrgDeleteDraglnfoStrHandles prototype.

frame and then subclasses the control to provide menu support and direct
manipulation functionality. See Chapter 10 for additional information on sub­
classing.

Starting the Drag and Drop Operation
The source application in a drag-and-drop operation is the application that
controls the window from which objects are dragged. This application is re­
sponsible for initiating the drag operation, informing the system which objects
are being dragged, specifying the graphical image(s) used to represent the
object(s) during the operation, specifying the rendering mechanism(s) and for­
mat(s) that it supports, and rendering the object(s) using the mechanism and
in the format selected by the target application.

A drag-and-drop operation is initiated when the user presses and holds
the drag-and-drop button on the pointing device and then moves the pointing
device. PM responds to the user action by sending a WM_BEGINDRAG mes­
sage to the window over which the mouse pointer is positioned. An application
capable of acting as a source application responds to this message by allocat­
ing and initializing the data structures for the operation and then calling the
DrgDrag API function.

Figure 7 .22 provides an example of the code for processing the WM.BEGIN
DRAG message. First the number of items being dragged must be determined
so that the correct number of DRAGITEM structures can be allocated along
with the DRAGINFO structure. The application determines this number by
calling a utility function, QuerySelectionCount, to scan the items in the listbox
and determine how many are selected. Once the number of selected items is
known, DrgAllocDraginfo is called to allocate the DRAGINFO structure and
the proper number of DRAGITEM structures. If this function is successful,
another utility function, SetDragltems, is called to initialize a DRAGITEM
structure for each selected element of the listbox.

Next, one or more DRAGIMAGE structures must be initialized to inform
PM how to graphically represent the dragged objects during the drag opera­
tion. This application displays a single image no matter how many objects are
dragged, but the image varies depending on whether there is one object or mul­
tiple objects. First the DRAGIMAGE structure is cleared, then the size of the
structure is stored in the ch element. Next, the fl flag for the type of graphical
representation is set; in this instance, a pointer is used so the DRG.ICON flag is
set. The hlmage element is set to a system-defined pointer handle obtained via
a call to the WinQuerySysPointer API. The handle to the SPTR._FILE pointer

178 She Sells Saa Shells: Programming the Workplace Shell

static MRESULT wm_begindrag (HWND hwnd, ULONG rnsg , MPARAM mpl, MPARAM mp2)
{

ULONG
DRAG IMAGE
PDRAGINFO
SHORT
HWND

do (

cFiles;
dimage;
pDinfo = NULL;
sitem = LIT_FIRST;
hwndTarget;

if ((cFiles = QuerySelectionCount(hwnd)) == 0) break;
if llpDinfo = DrgAl l ocDraginfo(cFiles)) == (PDRAGINFO) (NULL))

break;
SetDragitems(pDinfo, hwnd, cFiles);
memset (&dimage, 0, sizeof(DRAGIMAGE)) ;
dirnage.cb = sizeof (DRAGIMAGE);
dimage.fl = DRG_ICON;
dimage.himage = (LHANDLE)WinQuerySysPointer(HWND_DESKTOP,

gpSrcDinfo = pDinf o
gulSrcCount = cFiles;

cFiles == 1 ? SPTR_FILE : SPTR_MULTFILE,
FALSE);

hwndTarget = DrgDrag(hwnd, pDinfo , &dirnage, 1. VK_ENDDRAG, NULL };
if (hwndTarget == NULLHANDLE) (

DrgDeleteDraginfoStrHandles(pDinfo);
DrgFreeDraginfo(pDinfo };

} /* endif */
} while (false }; /* enddo */
return IMRESULT)TRUE;

Figure 7.22 Handling the WM_BEGINDRAG message.

is used if a single listbox item is selected; the handle to the SPTR._MULTFILE

pointer is used if multiple listbox items are selected. The remaining elements

of the structure remain at their default values since the program does not wish

to modify the size of the pointer, and no spatial orientation is possible with

only one image.
After initializing the DRAGIMAGE structure, the application saves the

DRAG INFO pointer and the number of dragged items in global variables. These

values are used after a drop occurs to determine when the target application

has completed its processing of all items so that the source application may

release its access to the DRAGINFO structure.
The DrgDrag API is then called to initiate PM's processing of the drag

operation. The prototype for the DrgDrag API is shown in Figure 7.23.

• The hwndSource parameter is the window handle of the source window for

the operation, normally the window that received the WM..BEGINDRAG

message.

HWND APIENTRY DrgDrag(HWND hwndSource,
PDRAGINFO pdinfo ,
PDRAGIMAGE pdirng,
ULONG cdirng,
LONG vkTerrninate,
PVOID pRsvd);

Fl1ure 7.23 The DrgDrag prototype.

Direct ManJpulallon Coding 179

• The pd.info parameter is the pointer to the DRAGINFO structure and

associated DRAGIMAGE structures that convey the information necessary
to complete the drag-and-drop operation.

• The pdlmg parameter is a pointer to the DRAG IMAGE structure or array

of DRAGIMAGE structures that inform PM how to graphically represent
the dragged objects during the drag portion of the operation.

• The cdimg parameter indicates the number of DRAG IMAGE structures in
the array pointed to by pdimg.

• The vkTenninate parameter indicates the pointing device button whose

release will terminate the drag-and-drop operation. Possible values for
this parameter are:

VK_ENDDRAG Ox0038 indicates that the system-defined button must be released. vkTer­
minate should normally be set to this value.

VK..BUTTONl OxOOOl indicates that releasing button 1 of the pointing device terminates
the operation.

VK..BUTTON2 Ox0002 indicates that releasing button 2 of the pointing device terminates
the operation.

VK..BUTTON3 Ox0003 indicates that releasing button 3 of the pointing device terminates
the operation.

• The pRsvd parameter is reserved and must be set to NULL.

The DrgDrag API returns the handle to the window on which the objects

were dropped, or NULLHANDLE if the operation was cancelled or an error

occurred. Note that this API starts a modal operation and does not return until

the objects are dropped or the operation is cancelled. PM handles processing of

the message queue in the same manner as when the WinDlgBox API is called.

When the drag operation ends by dropping the objects, a DMJ>ROP message is

sent to the target window before the DrgDrag API returns. If DrgDrag returns

NULLHANDLE, the DRAG INFO structure is freed immediately by calling the
Drg~eleteDraginfoStrHandles and DrgFreeDraginfo APls. The wm_begtndrag

function then returns TRUE to indicate that the WM..BEGINDRAG message
was processed.

180 She Sells Sea Shells: Programming the Workplace Shell

Figure 7 .24 shows the code for routine SetDragltems which was mentioned

earlier. This routine is responsible for initializing the DRAGITEM structures

with the required information to identify the objects being dragged. A pro­

totype DRAGITEM structure is allocated in the routine's local memory as a

stack variable. After the prototype structure is cleared, the elements of the

structure that remain constant for every object are set to appropriate values.

Then a loop is executed which scans the selected items in the listbox, storing

appropriate values in the varying elements of the DRAGITEM structure and

copying the completed DRAGITEM structure to the shared memory allocated

for the operation's DRAGINFO structure.
The constant elements of the DRAGITEM structure in this example are

the string handle for the rendering mechanism and format, the supported

operations flags, and the source window handle. This application only sup­

ports transferring objects as files, thus the rendering mechanism is set to

DRM_OS2FILE. Since this application does not concern itself with the format

in which files are stored and does no translation of the file format, the render­

ing format is set to DRF_UNKNOWN. These two selections are merged into the

RMF string u<DRM OS2FILE,DRF_UNKNOWN>" for which a string handle

is allocated and stored in the hstrRMF element of the DRAG ITEM structure.

The application will allow files to be moved or copied, but does not support

linking; therefore, the DO_COPYABLE and DO.MOVEABLE flags are set in

the fsSupportedOps element.
The loop in SetDragltems scans the listbox for selected items. When an

item is found, the text of the item is retrieved from the listbox. A string handle

is allocated for this text and stored in the hstrSourceName element of the

DRAGITEM structure. Since the application expects the name to remain the

same when transferred to the target, the hstrTargetName element is also set

to this handle (the target name is a suggestion, the target application may

change the name). Next, routine Query'fype is called to obtain the type of the

file from the extended attributes associated with the file. The routine sets this

value as the native type of the file and appends the ORT-UNKNOWN type for

applications that are not concerned about the actual file type. A string handle

is allocated for the resulting string and stored in element hstrType. Finally, the

name of the current directory is obtained and a string handle allocated for

the text. This handle is then stored in the hstrContainerName element. At this

point, the prototype structure has been filled and DragSetDragltem is called

to copy the prototype to the operation's shared memory area.

We will return to the source application later to examine how the rendering

operation is handled, but first, let's examine how target applications handle

the messages received during the drag portion of the operation.

Responding to the Drag Operation
After DrgDrag is called, PM assumes control of the drag operation and modifies

the mouse pointer to include the graphic image or images that represent the

Direct Manlpulatlon Coding 181

static void SetDragitems(PDRAGINFO pDinfo, HWND hwnd, ULONG cFiles)
{

SHORT
SHORT
PSZ
PSZ
PSZ

sitem;
cbitem;
pszFil eName;
pszType;
pszContainer;
ditem; DRAG ITEM

memset(&ditem, 0, sizeof(DRAGITEM));
d!tem.hstrRMF = DrgAddStrHandle('<DRM_OS2FILE,DRF UNKNOWN>');
ditem. fsSupportedOps = DO_COPYABLE I DO_MOVEABLE: -
ditem.hwnd!tem = hwnd;

sitem = LIT_FIRST;
whi le ((sitem = SHORTlFROMMR(WinSendMsg(hwnd, LM_QUERYSELECTION,

MPFROMSHORT(s!tem), OL))) != LIT_NONE)

cb!tem = SHORTlFROMMR(WinSendMsg(hwnd, LM_QUERYITEMTEXTLENGTH,
MPFROMSHORT(s!tem), OL)) + 1·

if (!pszFileName = (PSZ)malloc(cb!tem)) != (PSZ)NULLi {
W1nSendMsg (hwnd, LM_QUERYITEMTEXT,

MPFROM2SHORT(sitem, cbitem), pszFileName);
d!tem.hstrSourceName = d!tem.hstrTargetName =
. DrgAddStrHandle(pszFileName);
if ((pszType = QueryType(pszFileName)) !=NULL) {

ditem.hstrType = DrgAddStrHandle(pszType);
free (pszType) ;

} else {
ditem.hstrType = NULLHANDLE;

) / * endif */
if ((pszContainer = QueryCurrentDirectory()) !=NULL) (

ditem.hstrContainerName = DrgAddStrHandle(psi container) ;
free(pszContainer);

else {
ditem.hstrContainerName = NULLHANDLE·

/* endif */ '

DrgSetDragitem(pDinfo, &ditem, sizeof (DRAGITEM), --cFiles);

free(pszFileName) ;
/ * endif */

/ * endwhile */
return;

figure 7.24 Initializing the DRAGITEM structures.

182 She Sells Sea Shells: Programming the Workplace Shell

DOR..DROP

dragged objects. As the pointer moves over a window, PM sends messages to
the window to notify it of the drag operation. Windows that are capable of
being targets of the drag operation must respond to these messages.

One of these messages is the DM..DRAGOVER message. This message in­
forms a window that it is the current target of a direct manipulation operation
and is sent as the pointer moves into and within the window, allowing a win­
dow with multiple target areas, such as a container, to respond based on the
capabilities of the area under the pointer. Parameter mpl of the message is a
pointer to the DRAGINFO structure for the operation. Parameter mp2 contains
the current location of the pointer in desktop coordinates; the x coordinate is
in the low-order 16 bits of the parameter and the y coordinate is in the high­
order 16 bits. The application's response to the message depends on the ability
of the application to act as a target for the current drag operation and set of
dragged objects.

When an application receives the DM.DRAGOVER message, it should pro-
vide some type of emphasis indicating that the current window is the current
target. While this emphasis can take many forms, a thin border is normally
drawn around the inner edge of the window; or, if the window supports mul­
tiple target areas, the portion of the window that is the current target. After
emphasis is provided, the application obtains access to the DRAGINFO struc­
ture and determines if the current operation is supported for all elements of the
set of dragged objects. In making this determination, the application should
examine the type of operation in the usOperation field of the DRAGINFO
structure and the object type, rendering mechanism, and format in each of the
DRAGITEM structures associated with the DRAGINFO structure. In order to
accept a drop of the current set of objects, the application should be able to
support all of these· items. Once this determination is made, the application
should release its access to the DRAGINFO structure and prepare a response
to the message.

The return code for the DM..DRAGOVER message consists of two fields.
The lower-order 16 bits, usDrop, indicate the application's ability to accept the
dragged objects; and the high-order 16 bits, usDefaultOp, indicate the default
operation that the application will perform. usDefaultOp is only necessary
when the drop can be accepted and the usOperation field of the DRAG INFO
structure is set to DO..DEFAULT or DO.UNKNOWN. Field usDrop may be set
to the following values:

OxOOO 1 indicates that the application is capable of supporting a
drop of the current set of objects.

DOR.NODROP OxOOOO indicates that the application is capable of supporting a
drop of the current set of objects, but is not able to do so
at this time; possibly because the application is busy with
some other operation.

Direct Manlpulation Coding 183

DOlLNODROPOP Ox0002 indicates that the application is capable of supporting a
dro~ of the objects, but does not support the requested op­
eration.

DOR.NEVERDROP Ox0003 indicates that the application cannot accept a drop of the
objects.

The usDefaultOp field may be assigned the following values:

DO_COPY OxOOlO indicates that a copy operation will be perlonned.
DO.MOVE Ox0020 indicates that a move operation will be perlonned.
DO_LINK OxOO 18 indicates that a link operation will be perlormed.
other indicates that an application-defined operation will be perlonned.

Application-defined operations should be assigned a value greater
than DO_UNKNOWN (OxBFFF).

Figure 7.25 shows the code our example application uses to process the
~M..DRAGOVER message. The application can serve as the target for drop­
pmg OS/2 files of any type in any format. If not already applied by a prior
D~..DRAGOVER message, the routine first establishes target emphasis for the
wmdow and then determines if the current drag operation and objects are
supported.

If checking the window data determines that target emphasis is needed the
emphasis is supplied by drawing a border around the interior of the windo~. To
ac~omplish this, a presentation space is obtained by calling the DrgGetPS APL
This API takes one parameter, the handle of the window in which drawing will
occur, and returns a handle to the presentation space. WinQueryWindowRect
is then called to obtain the area occupied by the window and the coordinates
are adjusted to account for scroll bar controls and the size of the border to
be drawn. Next, WinDrawBorder is called to draw the actual border and
the window data is updated to indicate that emphasis has been applied. The
presentation space is then released by calling DrgReleasePS and by passing
the handle to the presentation space obtained earlier. The prototype for the
WinDrawBorder API is shown in Figure 7.26.

• !he hps parameter is the handle of the presentation space where drawing
is to occur.

• The prcl parameter is a pointer to a rectangle describing the area around
which the border is to be drawn.

• The ex parameter specifies the width of the border.
• The cy parameter specifies the height of the border.
• The clrFore parameter specifies the foreground color for the border.
• The clrBack parameter specifies the background color for the border.

-

static MRESULT dm_dragover(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)
{

PDRAGINFO
USHORT
USHORT
PDRAGITEM
ULONG

pdinfo = (PDRAGINFO)NULL;
usDrop = DOR_NEVERDROP;
usDefaultOp;
pditem = NULL;
1Item = O;

HPS hps;
REC TL rclRect;

do {
if (!WinQueryWindowULong(WinQueryWindow(hwnd,QW_OWNER) ,WL_EMPHASIZED)){

hps = DrgGetPS(hwnd);
if {hps == NULLHANDLE) break;
WinQueryWindowRect{ hwnd, &rclRect);
rclRect .xLeft += WinQuerySysValue{HWND_DESKTOP, SV_CXBORDER);
rclRect .yTop -= WinQuerySysValue(HWND_DESKTOP, SV_CYBORDER);
rclRect.xRight -= WinQuerySysValue{HWND_DESKTOP, SV_CXVSCROLL);
rclRect.yBottom += winQuerySysValue(HWND_DESKTOP, SV_CYBORDER) + l;
WinDrawBorder{hps,&rclRect,l,l,01,01,DB_DESTINVERT DB_STANDARD);
WinSetWindowULong(WinQueryWindow{ hwnd, QW OWNER),

WL_EMPHASIZED, {LONG) TRUE) ;
DrgReleasePS(hps);

) /* endif *I
pdinfo = (PDRAGINFO)mpl;
if (!DrgAccessDraginfo(pdinfo)) pdinfo = {PDRAGINFO)NULL; break;
usDrop = DOR_DROP;
switch(pdinfo->usOperation){
case DO_COPY: usDefaultOp = DO_COPY; break;
case DO_MOVE: usDefaultOp = DO_MOVE: break;
case DO_DEFAULT: usDefaultOp = DO_MOVE; break;
case DO_UNKNOWN: usDefaultOp = DO_MOVE; break;
default: usDrop = DOR_NODROPOP;
)
for(litem = O; litem < pdinfo->cditem; lltem++) {

if{ (pditem = DrgQueryDragitemPtr(pdinfo, litem)) !=NULL l {
if(!DrgVerifyRMF{ pdltem, "DRM_OS2FILE", NULL)) {

}

)

usDrop = DOR_NEVERDROP; /* can't handle this object */
break;

/* do type here if necessary - bad type = DOR_NEVERDROP */
if(usDefaultOp == DO_COPY &&

! (pditem->fsSupportedOps & DO_COPYABLE)) {
usorop = DOR_NODROPOP;

) else if(usOefaultOp == DO_MOVE &&
! {pditem->fsSupportedOps & DO_MOVEABLE)) {

usDrop = DOR_NODROPOP;

) while (false); I* enddo */
if (pdinfo != {PDRAGINFO)NULL) DrgFreeDraginfo(pdinfo);
return MRFROM2SHORT(usDrop, usDefaultOp);

Figure 7 .25 Handling the DM_DRAGOVER message.

184

Direct Manipulation Coding 185

BOOL APIENTRY WinDrawBorder{HPS hps,
PRECTL prcl,
LONG ex,
LONG cy,
LONG clrFore,
LONG clrBack,
ULONG flcmd);

Figure 7 .26 Tha WlnDrawBorder prototype.

• The ftCmd parameter is a set of flags that modify the operation of the
function. These are defined as:

DB_pATCOPY
DB_pATINVERT

DBJ>ESTINVERT

OxOOOO
Ox0001

Ox0002

uses the current pattern to draw the border.
exclusive ORs the current pattern with the existing
presentation space data.
inverts the destination.

DB..AREAMIXMODE Ox0003 uses the current mix mode for drawing the border
area.

Note that the above four flags are collectively known as DB_ROP and
are mutually exclusive. The remaining flags may be ORed with one of these.

DB-INTERIOR Ox0008 causes the area within the pre/ rectangle that is not part
of the border specified by ex and cy to be drawn.

DB.AREAATTRS Ox0010 causes the current area attributes to be used rather than
the specified foreground and background colors.

DB-STANDARD OXOlOO specifies that the ex and cy parameters are to be multi-
plied by SV_C:XBORDER and SV_CYBORDER to obtain
the width and height of the border.

DB-DLGBORDER Ox0200 specifies that a dialog border is to be drawn. The border is
drawn in the active title bar color if DB_PATCOPY is spec­
ified and in the inactive title bar color if DB_pATINVERT
is specified. If DB_INTERIOR is specified, the interior
is drawn using the clrFore and clrBack parameters; the
DB...ROP and DB..AREAATTRS parameters are ignored
for interior drawing.

WinDrawBorder returns TRUE if successful and FALSE if an error occurs. In
the example code, the API is used to show emphasis by inverting a narrow
border around the inside edge of the window.

After the emphasis has been applied, the application obtains access to
the shared memory containing the DRAGINFO and DRAGITEM structures
by calling the DrgAccessDraginfo API with the pointer passed as mpl of the

186 Sha Salls Saa Shells: Programming the Workplace Shall

DM-1>RAGOVER message. The application then verifies that tJ:ie operation
specified in the usOperation element of the DRAG INFO structure is supported.
A switch statement is used to handle this verification and to set the usDefaultOp
variable if the operation is supported. Copy and move operations are supported
and merely assign DO_COPY or DO.MOVE to usDefaultOp. The default and
unknown operations are also supported and set us Def aultOp to the defa~t
for this application, DO.MOVE. All other operations are not supported by this
application, so the default case sets the usDrop variable.to DOR:N~DROPOP.
Assuming that the objects themselves are supported, this value mdicates that
the application does not support the current op~ra~ion.

After the operation type is verified, the application scan~ th~ ~RAGIT~Ms
connected to the DRAGINFO structure to verify that the individual objects
can be rendered. In order to make this determination, the application calls
the DrgVerifyRMF API to ensure that the objects can be rendere~ using the
DRM_OS2FILE mechanism- this application is not concerned with the file
format, so the format string parameter is set to NULL. If an object does not sup­
port the OS/2 file mechanism, the usDrop variable is set to DO~EVERDROP
to indicate that the application cannot support a drop of the current set of ob­
jects, and the loop to check the dragged objects is terminated. The prototype
for the DrgVerifyRMF API is given in Figure 7.27.

• The pdltem parameter is a pointer to the DRAGIT~M to be ~ested.
• The pszMech parameter is a pointer to a zero-terminated stx:m~ of charac­

ters representing the mechanism for which to search. Specifymg a NULL
pointer will match any mechanism. . .

• The pszFmt parameter is a pointer to a zero-terminate~ stnng of char~cter
representing the format for which to search. Specifying a NULL pomter
will match any format .

The DrgVerifyRMF API returns TRUE if the desired mechanism and f~rmat
are supported for the object and FALSE if the mechanism and format pair are
not supported. The API obtains the string represented by element hstrRMF of
the DRAG ITEM structure and expands any cross products into their individual
pairs. The resulting set of paired mechanisms and formats are tested for the
desired pair.

Normally, an application that processes the object's c~nten~ w~uld ver-
ify the type passed in hstrType at this stage; but, since this application does

BOOL APIENTRY DrgVerifyRMF (PDRAGITEM pdi tem,
PSZ pszMech,
PSZ pszFmt) ;

Figure 7 .27 The DrgVerifyRMF prototype.

Direct Manlpulatlon Coding 187

not. interpret the contents of the file, the file type is unimportant and is not
verifie~. T?e final step for verifying the objects is to ensure that the current
operation 1s supported for the object . This is accomplished by testing the fs­
SupportOps element ~f the DRAG ITEM structure for the bit that corresponds
to the current operation. If the corresponding bit is not set, usDrop is set to
DOILNODROPOP, once again indicating that transfer of the objects may be
supported, but not using the current operation. When all objects have been
checked, the application releases its access to the DRAGINFO structure and
returns usDrop and usDefaultOp to PM.

?nee .a DM-1>RAGOVER message has been received, the application will
receive either a DM-1>RAGLEAVE message or a DM-1>ROP message. The
DM-1>RAGLEAVE message indicates that eitherthe pointer has left the window
?r the ?irect manipulation operation has been cancelled. When this message
is received, the target emphasis applied to the window should be removed.
Parameter mpl of the DM-1>RAGLEAVE message is a pointer to the DRAG­
INFO structure, allowing the application to query information about the op­
eration or the dragged objects if necessary. The target application will receive
a DM-1>ROPHELP message in addition to the DM-1>RAGLEAVE message if
a drag-and~drop _operation is cancelled as the result of the user pressing the
Help .key, Fl. This message allows the application to display help explaining
how it handles a drop operation and/or why it cannot accept a drop for the
currently dragged objects.

The DM-1>ROP message indicates that the user has requested that the
dragged objects be dropped on the window that receives the message. When the
appli'::ation recei~es this message, it should remove the target emphasis from
the wmdow, obtain access to the DRAGINFO structure pointed to by parameter
mpl of the message, and take steps to initiate the rendering of the objects;
for example, by posting a message to itself to perform the rendering. The
application should not wait until the objects have actually been rendered before
responding to the DM DROP message. After the target application returns from
DM-1>ROP, the DrgDrag API will retum to the source application.

Figure 7.28 provides an example of the target application processing of
the DM-1>ROP message. In this example, the target first obtains access to
the DRAGINFO structure using the DrgAccessDraginfo APL An application­
defi~ed ~essage is then posted to an object window associated with the target
application to handle the task of communicating with the source window to
render the objects. This method allows the rendering to occur on a separate
thread so that the application's user interface remains active. After posting the
~essage, the eml?hasis set in the processing for the DM-1>RAGOVER message
1s remo~ed by usmg the same code to again invert the border around the edge
of the wmdow. The emphasis flag in the window instance data is then cleared
so that future DM-1>RAGOVER messages from another drag operation will be
able to establish the emphasis. The function then returns and PM allows the
source application to return from the DrgDrag API call.

188 She Sells Sea Shells: Programming the Workplace Shell

static MRESULT dm_drop (HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2 l
{

HPS
PDRAGINFO
RECTL
HWND

hps;
pdinfo = (PDRAGINFO)mpl;
rclRect;
hwndMain = (HWND)WinQueryWindow{ hwnd, QW_OWNER) ;

HWND hwndObj = {HWND)NULLHANDLE;

if (DrgAccessDraginfo(pdinfo)) {
hwndObj = {HWND)WinQueryWindowULong{ hwndMain, WL_HWNDOBJECT l;
WinPostMsg{ hwndObj,UM_RECEIVEDROP,MPFROMHWND(hwnd),MPFROMP(pdinfo));

} /* endif */

if {WinQueryWindowULong{ hwndMain, WL_EMPHASIZED))
hps = DrgGetPS(hwnd);
if (hps != NULLHANDLE) {

winQueryWindowRect{ hwnd, &rclRect);
rclRect.xLeft += WinQuerySysValue (HWND_DESKTOP, SV_CXBORDER);
rclRect.yTop -= WinQuerySysValue{HWND_DESKTOP, SV_CYBORDER);
rclRect.xRight -= WinQuerySysValue(HWND_DESKTOP, SV_CXVSCROLL);
rclRect.yBottom += WinQuerySysValue(HWND_DESKTOP, SV_CYBORDER) + 1;
WinDrawBorder(hps ,&rclRect,l,1,01,01,DB_DESTINVERTIDB_STANDARD);
WinSetWindowULong{ WinQueryWindow(hwnd, QW_OWNER),

WL_EMPHASIZED, (LONG) FALSE) ;
DrgReleasePS(hps);

} /* endif *I
!* endif */

return MRPROMLONG{ OL);

Figure 7 .28 Handling the DM_DROP message.

RENDERING OBJECTS
When the application-defined message posted durin_g OM.DROP processing is
received by the target's object window, the rendering ~tag~ of the drag-and­
drop operation begins. During this stage, the target a~phcat10n pro.cesses each
of the dragged objects, determines which of the available rendermg formats
to use and performs the rendering operation according to the protocol for
the seiected mechanism. The DRM_OS2FILE mechanism protocol uses estab­
lished direct manipulation messages to converse with the source and perform
rendering. This mechanism is discussed in detail next. The DRMJ>DE me~ha­
nism uses the standard ODE messages and protocol to perform the rendenng.
See Chapter 9 for a complete description of the ODE protocol. When the
DRM_FRINT mechanism is selected, the target sends a DM_FRINT01:3JECT
message to the source after filling a PRINTDEST structure. The source is then

Rendering Objects 189

expected to complete the rendering operation by printing the object or by di­
recting the target to print the object. A target that supports the ORM.DELETE
mechanism sends a DM..DELETEOBJECT message to the source. The source
may either delete the object or request that the target perform the deletion.
These are the predefined mechanisms-applications may define additional pro­
tocols; however, these will not be selected unless both the source and target
applications are capable of supporting the mechanism.

Our examples have specified the DRM.OS2FILE mechanism. This mecha­
nism allows objects to be rendered as common OS/2 file system files, a concept
understood by most programmers. When this mechanism is used, the conver­
sation between the source and target applications is conducted using messages
native to the direct manipulation support. While the actual conversation varies
depending on the exact actions required, the general flow of the conversation
is:

l. If requested by the source application, the target sends a DM_RENDER
PREPARE message to the source window. This allows the source to per­
form actions to prepare for the rendering operation. For example, the
source may wish to create an object window to perform the operation; or,
in the case of an editor, it may need to save a portion of the text to a file.

2. The target sends a OM.RENDER message to request that the source per­
form the rendering operation.

3. The source sends a DM.RENDERCOMPLETE message to the target to
indicate that the rendering operation has been completed.

4. The target sends a DM.ENDCONVERSATION message to the source to
indicate that no further action is necessary for the current object and
that the source may release any resources it has allocated to perform the
rendering of the object.

When the target application chooses DRM_OS2FILE as the rendering
mechanism for a particular dropped object and DRM_OS2FILE is the na­
tive mechanism, it may choose to render the object itself without involvement
from the source. This is possible if the source has provided all information
necessary to complete the rendering operation. The primary requirement is
that the source has provided both the hstrContainerName and hstrSourceName
elements of the DRAGITEM structure for the object. Additionally, the target
must be able to understand the native format and true type of the object.
When these conditions are met, the target may perform the rendering opera­
tion and then send the DM.ENDCONVERSATION message without sending
the OM.RENDER message.

If the conditions for target rendering are not met, or if the target chooses,
a DM..RENDER message is sent to the source application to request that the
source render the object. The source responds to this message indicating that:

b

190 Sha Sells Sea Shells: Programming the Workplace Shell

it will perform the rendering; rendering cannot be performed; or the target

should either perform the rendering or retry the operation. Since the source

can elect the third option, the easiest course for a target application is to first

request that the source render objects, and then if the source cannot perform

the rendering, attempt to render the objects itself.
Figure 7.29 shows an example of the processing that a target applica­

tion performs in response to the message to begin rendering of objects.

The example application supports the DRM_OS2FILE mechanism. The rou­

tine first stores the DRAGINFO pointer in a global variable for later use.

Normally, the DrgQueryDraginfoPtrFromHwnd or DrgQueryDraginfoPtr­

FromDragitem API could be used to obtain the DRAGINFO pointer, but

unfortunately, the original release of WARP has a nasty bug in the latter

API, so a global variable is used instead. The routine allocates a counter and

initializes it to the number of objects dropped. This counter will be decre­

mented each time an object is rendered. When the count reaches zero, all of

the objects have been rendered and the application can release its access to

the DRAGINFO structure. A for loop is used to process each of the objects

dragged. As each object is processed, the DrgQueryDragitemPtr API is used to

obtain a pointer to the DRAGITEM structure for the object. A utility routine,

MakeXfer, is then called to allocate and fill the DRAGTRANSFER structure

for rendering the object.
After the DRAGTRANSFER structure is allocated and initialized, an at­

tempt is made to allow the source to render the object. If the source has

indicated that it needs to prepare for the rendering, a DM-RENDERPREPARE

message is sent to the source and the conversation window handle is set to the

value returned from the source as the hwndltem element of the DRAGITEM

structure. A DM__RENDER message is then sent to the source using the

DrgSendTransferMsg API. In addition to sending the message, this API gives

the source access to the DRAGTRANSFER structure. If the response to

DM RENDER indicates that the source will perform the rendering operation,

the target suspends processing of the current object until notified that the

source has finished its processing.
The prototype of the DrgSendTransferMsg API is shown in Figure 7 .30.

• The hwnd parameter specifies the handle of the window that is to receive

the message.
• The msg parameter is the message to be sent.
• The mpl parameter is a value defined by the message being sent.
• The mp2 parameter is a value defined by the message being sent.

DragSendTransferMsg returns FALSE if the message could not be sent to

hwnd; otherwise, the MRESULT response from hwnd is returned. This API

specifically addresses the requirements for sending messages involving DRAG-

HWND
HWND
PDRAGINFO
PDRAGITEM
tlSHORT
PU SHORT
PDRAGTRANSFER

hwndTarget = HWNDFROMMP (mpl) ;
hwndRender;
pDraginfo = (PDRAGINFO)mp2 ;
pDragitem = (PDRAGITEM)NULL;
usDragi tem = O;
pusToDo;
pDragXfer = (PDRAGTRANSFER)NULL;

gpDraginfo ; pDraginfo;
pusToDo = (PUSHORT)malloc(sizeof (USHORT));
*pusToDo = pDraginfo->cditem;

Rendering Obfects 191

for (uso7agitem = 0; usDrag~tern < pDraginfo-> cditern; usDragitem++) (
pDrag1tem = DrgQueryDrag1t ernPt r (pDraginfo, (ULONGJusDragitern) ;
pDragXfer - Makexf7r(hwnd, pDragitem, pDraginfo->usOperati on , pusToDo) ;
hwndRender = pDrag1nfo->hwndSource;
if(pDragitem->fsControl & DC_PREPARE) (

if (!DrgSendTransferMsg (pDraginfo->hwndSource, DM_RENDERPREPARE,

KillXfer(pDragXfer
-- f*pusToDo) ;
continue;

} / * endif *I

MPFROMP(pDragXfer), MPFROMLONG (01)))
) ;

hwndRender = pDragitern->hwnditem;
} / * endif */
if (DrgSendTransferMsg

continue;
} / * endif */

(hwndRender, DM_RENDER,
MPFROMP(pDragXfer) , MPFROMLONG(01))) (

if(pDragXfer->fsReply & OMFL_RENDERRETRY) (
I * no different ops supported - try target render */

} / * endif */
if (RenderFil e(pDragXfer)) (

DrgSendTransferMsg(hwndRender, DM_ENDCONVERSATION,
MPFROMSHORT(usDragitem), MPFROMSHORT (DMFL_TARGETSUCCESSFUL));

} else (
DrgSendTransferMsg(hwndRender, DM_ENDCONVERSATION,

MPFROMSHORT(usDragitem), MPFROMSHORT(DMFL_TARGETFAIL));
} / * endif *I
KillXfer(pDragXfer);
-- (*pusToDo) ;

} / * endfor *I
if (*pusToDo == 0) (

free (pusToDo) ;
DrgDeleteDraginfoStrHandles(pDraginfo);
DrgFreeDraginfo(pDraginfo);

/ * endif */

figure 7 .29 Target process to render objects.

192 She Sells Sea Shells: Programming the Workplace Shell

MRESULT APIENTRY DrgSendTransferMsg(HWND hwnd,
ULONG msg,
MPI\RAM mpl ,
MPARAM mp2) ;

Flgn 7 .30 The DrgSendTransferMsg prototype.

TRANSFER structures between applications by setting the fsReply element of
the DRAGTRANSFER structure to zero and by giving access to the DRAG­
TRANSFER structure to the source application when a DM_RENDER message
is sent.

Continuing with Figure 7.29, if the source did not perform the rendering,
the target application attempts to either retry the operation or render the object
itself. If, following the DM..RENDER message, the DMFLRENDERRETRY
flag of the fsReply element of the DRAGTRANSFER structure is set, the
target can change the rendering mechanism/format pair and then resend
the DM..RENDER message. The application in the example opts to ignore
the DMFL..RETRY flag and perform the rendering itself. Normally, this pro­
cessing would only occur if the source had set the DMFL..NATIVERENDER
flag in fsReply ; however, some applications, most notably, the Workplace
Shell, do not set this flag even when target rendering is possible. Thus
the application ignores the fsReply field and calls a utility routine Render­
File to perform the operation. If the rendering operation was successful, a
DM_ENDCONVERSATION message is sent to the source, indicating that the
rendering for this object is complete and allowing the source to release any
resources dedicated to rendering the specified object. The DRAGTRANSFER
structure is then released by routine KlllXfer and the next object is processed.
When all objects have been processed through the loop, if the current count
of objects being rendered is zero, the counter itself is freed along with the
DRAGINFO structures. If the count is not zero, the source is still in the pro­
cess of rendering objects, so none of the items associated with the DRAG INFO
structure is freed.

Routine MakeXfer is shown in Figure 7.31. This routine is responsible for
allocating and initializing a DRAGTRANSFER structure for use in render­
ing an object. The routine uses the DrgAllocDragtransfer API to obtain the
DRAGTRANSFER structure, which is then initialized to all zero values using
the memset library function. Element cb is set to the size of the structure.
Element hwnd is set to the handle of the object window which serves as the
target window for the rendering conversation. A pointer to the DRAGITEM
structure is stored in element pditem. The hstrSelectedRMF element is ini­
tialized to a string handle representing the DRM_OS2FILE mechanism and
ORF _UNKNOWN file format, indicating that this application will accept any
OS/2 file. The routine then obtains the name of the source file by querying the

static PDRAGTRANSFER MakeXfer(HWND hwnd, PDRAGITEM pdi ,
USHORT usOp, PUSHORT pusToDo)

PDRAGTRANSFER
ULONG
PSZ
PSZ

pXfer ;
len;
pszSource;
pszTarget;

pXfer = DrgAllocDragtransfer(1) ·
if(pXfer ! = (PDRAGTRANSFER)NULL ; {

memset(pXfer, 0, sizeof(DRAGTRANSFER)) ·
pXfer->cb = sizeof(DRAGTRANSFER); ,
pXfer->hwndClient = hwnd;
pXfer->pditem = pdi;

Rendering Objects 193

pXfer ->hstrSelectedRMF = DrgAddStrHandle ("<DRM_OS2FILE ,DRF UNKNOWN>").
len = DrgQueryStrNameLen (pdi->hstrSourceName) + 1; - '
pszSource = (PSZ)rnalloc(len);
DrgQueryStrName(pdi->hstrSourceName, len, pszSource);
pszTarget = _fullpath(NULL, pszSource, _MAX_PATH);
pXfer->hstrRenderToName = DrgAddStrHandle(pszTarget);
free(pszsource);
free(pszTarget);
pXfer->ulTargetinfo = (ULONG)pusToDo;
pXfer->usOperation = usOp;
J t• endif •/

return pXfer;

f igure 7.31 lnllializing the DRAGTRANSFER structure.

string associated with hstrSourcename in the DRAG ITEM structure and calling
the 1ullpath function to append the name to the current directory, forming
the full path name of the target file. This string is then converted to a string
handle and stored in the hstrRenderToName element of the DRAGTRANSFER
structure. The memory allocated to hold the source and target names is then
freed. The u!Targetlnfo element is set to a pointer to the count of items to ren­
der, allowing the DM_RENDERCOMPLETE message processing to access this
element and free the resources used for the drag operation when the render
count goes to zero. The initialization is completed by setting the usOperation
element to the current drag operation. The function returns a pointer to the
DRAGTRANSFER structure.
. W~en the applic~tio~ is finished with the DRAGTRANSFER structure, rou­
tJ~e KillXfer, shown m Figure 7.32, is called to release the resources associated
with .the transfer operation. The routine first uses the DrgDeleteStrHandle
function to free the string handles stored in the hstrSelectedRMF and hstrRen­
derToName elements. The DRAGTRANSFER structure is then freed by calling
the DrgFreeDragtransfer API.

194 She Sells Sea Shells: Programming the Workplace Shell

static void KillXfer(PDRAGTRANSFER pDragXfer)
{

if (pDragXfer->hstrSelectedRMF != (HSTR)NULLl
DrgDeleteStrHandle(pDragXfer->hstrSelectedRMF);

if (pDragXfer->hstrRenderToNarne != (HSTR)NULL)
DrgDeleteStrHandle(pDragXfer->hstrRenderToName) ;

DrgFreeDragtransfer(pDragXfer);

Figure 7.32 Releasing the DRAGTRANSFER structure.

When the rendering is performed by the source, the target must wait to
complete the rendering operation and free the resources ~ntil a DM~~DER
COMPLETE message is received from the source. If this message indicates
that the source failed to render the object, the target may attempt to .ret1?' the
operation, provided the source indicates _retrie~ are allowe~. Otherwise, if the
target chooses not to retry a failed operation or if the operation was successful,
the target should perform any additional processing required to complete the
rendering, send a DM_ENDCONVERSATION message to the source, _and the.n
free any resources it has allocated to handle t~e ren~eri~g o_f the object. This
processing is shown in Figure 7.33. Since this apphcat10n is not concerned
about retries the function first posts the DM_ENDCONVERSATION message
to the sourc~. A pointer to the count of items to render is then obtained

MRESULT dm_rendercomplete(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2
{

PDRAGTRANSFER
USHORT
PU SHORT
PDRAGINFO

pDragXfer = (PDRAGTRANSFER)PVOIDFROMMP(mpl);
usFlags = SHORTlFROMMP(mp2);
pusToDo;
pDraginfo;

WinPostMsg(pDragXfer->pditem->hwndltem, DM_ENDCONVERSATION,
MPFROMLONG(pDragXfer->pditem->ulitemID),
MPFROMSHORT(DMFL_TARGETSUCCESSFUL));

pusToDo = (PUSHORT)pDragXfer->ulTargetinfo;
KillXfer(pDragXfer);
if(--(*pusToDo) == 0) {

free (pusToDo) ; .
pDraginfo = DrgQueryDraginfoPtrFromDragitem(pDragXfer->pd1tem);
DrgDeleteDraginfoStrHandles(pDraginfo);
DrgFreeDraginfo(pDraginfo);

) /* endif *I
return (MRESULT)OL;

Figure 7.33 Handling the DM_RENDERCOMPLETE message.

Rendering Obfects 195

from the ulTargetlnfo element of the DRAGTRANSFER structure before that
structure is freed by calling KillXfer. The number of items is decremented,
and if this item was the last item, a pointer to the DRAGINFO structure for
the entire drag operation is obtained. The DrgDeleteDraginfoStrHandles API
is called to release all string handles associated with the operation, and then
DrgFreeDraginfo is called to release the DRAG INFO structure, completing the
target's processing of the direct manipulation operation.

The source application processing to handle the rendering operation is
shown in Figure 7.34. As shown by this routine, the source application's pro­
cessing should determine if the requested rendering can be performed. If not,
the fsReply element of the DRAGTRANSFER structure is set to an appropriate
value and FALSE is returned. If the source can handle the rendering, it returns
TRUE after initiating the operation-the rendering operation is not performed
while processing the DM_RENDER message from the target application.

The routine in Figure 7.34 first presets the fsReply element to zero to
indicate that if the rendering operation cannot be performed, the target is not
allowed to retry the operation. The routine then verifies that a target file name

static MRESULT dm_render(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)
(

HWND
HWND
PDRAGTRANSFER
MRESULT
ULONG
PSZ

do {

hwndMain = WinQueryWindow (hwnd, QW_OWNER) ;
hwndObj = WinQueryWindowULong(hwndMain, WL_HWNOOBJECT);
pDT;
mrRetVal = (MRESULT) FALSE;
cRMF;
pszRMF;

pDT->fsReply = O;
if (pDT->hstrRenderToNarne == (HSTR)NULLHANDLE) break;
if (pDT->hstrSelectedRMF == (HSTR)NULLHANDLE) break;
if (pDT->usOperation != DO_COPY && pDT->usOperation != DO_MOVE) break ;
pDT->fsReply = DMFL_RENDERRETRY;
if ((cRMF = DrgQueryStrNameLen(pDT->hstrSelectedRMF)) == 0) break;
if ((pszRMF = (PSZ)malloc(++cRMF)) == (PSZ)NULL) break;
if (DrgQueryStrName(pDT->hstrSelectedRMF, cRMF, pszRMF) == 0) break;
if (!strstr(pszRMF, "DRM_OS2FILE" I I !strstr (pszRMF, "DRF_UNKNOWN"))

break;
WinPostMsg(hwndObj , UM_RENDER, mpl, mp2);
pDT->fsReply = O;
mrRetVal = (MRESULT)TRUE;

) while (FALSE); /* enddo */
if(!mrRetVal) DrgFreeDragtransfer(pDT);
return mrRetVal;

Figure 7 .34 Handling the DM_RENDER message.

196 She Sells Sea Shells: Programming the Workplace Shell

and RMF value are specified and that the rendering operation is supported.

If not, the function immediately returns-the operation cannot be performed.

Otherwise, fsReply is preset to indicate that the target can either perform native

rendering itself or retry the operation-indicating that the source does not

support the requested rendering mechanism or format. The string associated

with the hstrSelectedRMF element of the DRAGTRANSFER structure is then

obtained and checked for the DRM_OS2FILE rendering mechanism since this

application only deals with files. The RMF string is then checked to ensure that

the rendering format is ORF _UNKNOWN-this application does not know and

cannot change the internal format of the file; thus, ORF _UNKNOWN is the only

supported format. If the RMF is supported, the routine posts a message to an

object window to actually perform the rendering. The fsReply field is set to

zero-since no target rendering is necessary-and the result code is set to

TRUE. As the routine exits, if the result code is. FALSE, the DRAGTRANSFER

structure is freed as it will no longer be used. If the result code is TRUE, access

to the DRAGTRANSFER structure is maintained for use by the object window

procedure.
Figure 7 .35 shows the processing that the object window uses to perform

the actual rendering operation. As an alternative to the normal method of

allocating string handle string buffers, this function preallocates fixed-length

character buffers then verifies that the string handle strings will fit in the

buffers. The function first obtains the string associated with the hstrRender­

ToName element of the DRAGTRANSFER structure as the target name of the

file and then obtains the source file directory and name from the hstrCon­

tainerName and hstrSourceName elements of the DRAG ITEM structure. These

two are concatenated to form the full path name of the source file. The func­

tion then uses the DosCopy API to copy the source file to the target file. If

the rendering operation was a move, DosDelete is called to delete the source

file. Note that the DosMove API is not used, because it does not allow move­

ment between different drives. If no errors have occurred, the return value is

changed from its preset value of DMFLRENDERFAIL to DMFL..RENDEROK,

and the DMFLRENDERRETRY flag is set so that the target can try again if it

cannot complete the rendering. A DM..RENDERCOMPLETE message is then

posted to the target with the return value and the DRAGTRANSFER structure

is released.
When the target application receives the DM..RENDERCOMPLETE mes­

sage, it should respond with a DM..ENDCONVERSATION message. This mes­

sage informs the source that the rendering operation for a given target is

complete and any resources allocated to support the rendering can be re­

leased. For example, a word processor might store a portion of a document in

a temporary file during the rendering. When the DM..ENDCONVERSATION

message is received, the temporary file can be deleted. Figure 7.36 shows the

code used by the example application we have been studying. This function

Rendering Objects 197

~tatic MRESULT dm_render(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)

PDRAGTRANSFER pDT = (PDRAGTRANSFER)PVOIDFROMMP(mpl);
char pszSource[CCHMAXPATH];
char pszTarget{ CCHMAXPATH];
char pszSourceDir[CCHMAXPATHCOMP];
char pszSourceFile[CCHMAXPATHCOMP]·
ULONG cString; '

USHORT usRetVal = DMFL_RENDERFAIL;

do {
if ((cString = DrgQueryStrNameLen(pDT->hstrRenderToName)) >=

CCHMAXPATH) break;
?rgQueryS~rName(pDT->hstrRenderToName, ++cString, pszTarget);

if ((cStr1ng = DrgQueryStrNameLen(pDT->pditem->hstrContainerName)) >=
CCHMAXPATHCOMP) break;

DrgQueryStrName(pDT->pditem->hstrContainerName, ++cString,
pszSourceDir) ;

if ((cString = DrgQueryStrNameLen(pDT->pditem->hstrSourceName)) >=
CCHMAXPATHCOMP) break;

DrgQueryStrName(.pDT->pditem->hstrSourceName, ++cString,
pszSourceF1le);

if (strlen(pszSourceFile) + strlen(pszSourceFile) + 1 > CCHMAXPATH)
break;

strcpy(pszSource, pszSourceDir);
strcat(pszSource, pszSourceFile)·
~f (DosCopy(pszsource, pszTarget,

1

DCPY_EXISTING)
if ~pDT->usOperation == DO_MOVE)

if (DosDelete(pszsource) != NO_ERROR) break;

usRetVal = DMFL_RENDEROK I DMFL RENDERRETRY·
} while (FALSE); /* enddo */ - '

!= NO_ERROR) break;

DrgPostTransferMsg(pDT->hwndClient, DM_RENDERCOMPLETE, pDT,
(ULONG)usRetVal, OL, TRUE);

DrgFreeDragtransfer(pDT);
return (MRESULT)OL;

Figura 7.35 Source application object rendering.

static MRESULT dm_endconversation(HWND hwnd, ULONG msg,
MPARAM mpl, MPARAM mp2

if(--gulDragCount == O) {
DrgFreeDraginfo(gpSrcDinfo) ·

}
I

return MRFROMLONG(OL);

Figure 7.3& Handling the DM_ENDCONVERSATION message.

198 She Sells Sea Shells: Programming the Workplace Shell

decrements the global count established when the drag operation was initiated.
When the count reaches zero, indicating that all items have been rendered,
DrgFreeDraginfo is called to release the source application's access to the
structure pointed to by the global pointer stored when the direct manipulation
operation was started. Deletion of the associated string handles is left to the
target application.

This completes the coding for the drag-and-drop direct manipulation func-
tion. In the next section we will see how to modify this code to include support
for the pickup-and-drop, or lazy drag operation.

SUPPORTING PICKUP AND DROP
While the new OS/2 WARP pickup-and-drop direct manipulation uses the same
basic structure as drag and drop, some modifications are required due to the
new APis that are provided to implement this feature. This section details
the additions and changes necessary to add pickup-and-drop support to the
examples used in our discussion of drag and drop.

Pickup-and-drop operations can be initiated by pointing device button
clicks or by menu selection, which will be discussed later. When the proper
pointing device click is received, PM sends a WM_pJCKUP message to the
application window. Parameter mpl provides the pointing device coordinates
at the time of the click. Parameter mp2 is not used. This message corresponds
to the WM..BEGINDRAG message of the drag-and-drop operation. Rather
than coding a whole new routine to initiate an operation when WM_pJCKUP
is received, the initiation code can be moved to a separate function which is
called by both the WM..BEGINDRAG and WM..PICKUP message processing.
The new message processing routines are shown in Figure 7 .3 7. Each routine
calls the initiation routine passing the window handle, and a flag that is set to
TRUE if a pickup-and-drop operation has been requested.

MRESULT wm_begindrag(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2
(

StartDragOp(hwnd, FALSE);
return (MRESULT)TRUE;

MRESULT wm_pickup(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)
(

StartDragOp(hwnd, TRUE);
return (MRESULT)TRUE;

Figure 7.37 Handling the WM.PICKUP message.

Supporting Pickup and Drop 199

The StartDragOp function is the original WM..BEGINDRAG processing
function modified to support pickup-and-drop, or lazy drag, operations. Only
two major changes are required. First, if a lazy drag has been requested, the
DrgLazyDrag API must be called to initiate the operation. Second, additional
objects can be added to a lazy drag object set after the operation is initiated.
When this occurs, the DRAGINFO structure must first be reallocated and then
DrgLazyDrag must again be called to restart the operation with the new set of
objects.
. Fi~re 7.38 shows the StartDragOp function with the major changes high­

lighted m boldface type. The first change is the inclusion of a new Boolean
variable that indicates when the DRAG INFO structure must be updated to add
new objects during a pickup-and-drop operation. The second change occurs
at the point where the DRAGINFO structure is normally allocated. Now, if
the request is for a pickup-and-drop operation and an operation is already in
progress, the existing DRAGINFO structure is queried. If the structure belongs
to a different window, the operation is cancelled since pickup from multiple
windows is not currently allowed. Otherwise, the reallocation flag is set to indi­
cate that an item is being added to the current set. If no operation is currently
in progress, the code follows the previous path and allocates a new DRAG­
INFO structure. The next change involves modifications to the SetDragltems
function call. The first parameter has been changed to a pointer to the loca­
tion where the DRAGINFO structure pointer is stored, allowing the routine to
reallocate the structure as necessary and pass back the new value; an addi­
tional parameter has been added to indicate to the function when reallocation
is required. The final change in StartDragOp occurs at the point where the
operation is initiated. If a lazy drag has been requested, DrgLazyDrag is called
instead of DrgDrag.

The prototype for the DrgLazyDrag API is shown in Figure 7.39.

• The hwndSource parameter is the window handle of the source window
for the operation, normally the window that received the WM_pJCKUP
message.

• The pdinfo parameter is a pointer to the DRAGINFO structure and asso­
ciated DRAGITEM structures which convey the information necessary to
complete the drag-and-drop operation.

• The pdimg parameter is a pointer to a DRAGIMAGE structure or array of
DRAGIMAGE structures. This parameter is provided to maintain compat­
ibility with the DrgDrag API but is not used for image display during lazy
drag operations.

• The cdimg parameter indicates the number of DRAG IMAGE structures in
the array pointed to by pdimg.

• The pRsvd parameter is reserved and must be set to NULL.

200 She Sells Sea Shells: Programming the Workplace Shell

void StartDragOp(HWND hwnd, BOOL £Lazy)
{

ULONG
DRAG IMAGE
PD RAG INFO
HWND
SHORT
:a::a.

cFiles;
dimage;
pDinfo = NULL;
hwndDest;
sitem = LIT_FIRST;
f[azyReal.kx: .. l'AUB1

do {
if ({cFiles = QuerySelectionCount(hwnd)) == 0) break;
if ca.v a~<> - ms~> <

pDlnfo - (ha!);
if UOlnfo C:I :tlJU,) trmk;
f[azyReal.kx: .. 'DllBJ

else (/* do drag and drop */
if ((pDinfo = DrgAllocDraginfo(cFiles)) == (PDRAGINFO} (NULL)}

break;
} /* enlif */
setDmg'l'talll (fl)Dlnfo, bu!, d".i.1.-, fIAu;yR8all.oc) 1
memset(&dimage, 0, sizeof(DRAGIMAGE)} ;
dimage.cb = sizeof(DRAGIMAGE);
dimage.fl = DRG_ICON;
dimage .himage = (LHANDLE)WinQuerySysPointer(HWND_DESKTOP,

cFiles == 1 ? SPTR_FILE : SPTR_MULTFILE,
FALSE) ;

gulDragCount = pDinfo->cditem;
gpSrcDinfo = pDinfo;
if (ftal;y) {
~(baS, pDlnfo, "'""""' 1, m.) ;

} .i- {
hwndDest = DrgDrag(hwnd, pDinfo, &dimage, l, VK_ENDDRAG , NULL);
if (hwndDest == NULLHANDLE) {

DrgDeleteDraginfoStrHandles(pDinfo);
DrgFreeDraginfo(pDinfo);

} /* endif */
) /* endif */

while (false) ; /* enddo */

Figura 7 .38 The StartDragOp function.

BOOL APIENTRY DrgLazyDrag(HWND hwndSource,
PDRAGINFO pdinfo,
PDRAGIMAGE pdimg,
ULONG cdimg,
PVOID pRsvd) ;

Figura 7.39 The DrglazyDrag prototype.

Supporting Pickup and Drop 201

The DrgLazyDrag API returns TRUE if the drag operation is successfully
initiated and FALSE if an error occurs. Unlike the DrgDrag API, which ini­
tiates a modal operation and does not return until the dragged objects are
dropped, DrgLazyDrag returns immediately after starting the drag as a mod­
eless operation.

The new SetDragltems routine is shown in Figure 7.40. As noted, the
parameters to the routine have changed to pass a pointer to the location of the
pointer to the DRAG INFO structure and a flag, which indicates that a lazy drag
is in progress and reallocation of the DRAG INFO structure may be necessary.
Three internal changes are necessary. First, when a lazy drag is in progress,
routine GetltemForFile is called to determine if the new object is already in
the drag set; and, if so, the object is skipped- no need to drag the same object
twice. Later, before the object is added to the drag set, if a lazy drag is already
in progress, routine ReallocDraglnfo is called to reallocate the DRAGINFO
structure and maintain the set of DRAGITEM structures. The final change is
the addition of the litem variable. This value is used to track the actual item
number to be inserted into the DRAG INFO structure since the object count in
cFiles is no longer directly related to the number of DRAGITEMs associated
with the DRAGINFO structure.

The code for routine GetltemForFile is shown in Figure 7 .41. This function
scans the DRAGITEMs associated with a DRAGINFO structure to determine
if a particular object is a member of the set of dragged objects. Within the
loop that enumerates each item, a pointer to the current item is obtained
by calling DrgQueryDragitemPtr. DrgQueryStrNameLen and DrgQueryStr­
Name are then called to retrieve the name of the object associated with the
DRAGITEM. The C library function strcmp is used to determine if the object
name matches the requested name; if so, the loop exits. When the loop termi­
nates, a check is made to determine if a valid item was found; if so, the item
number is returned; if not, the value - 1 is returned.

The code for routine ReallocDraginfo is shown in Figure 7.42. This routine
is used to perform reallocation of the DRAGINFO structure when items are
added to the dragged set during a pickup-and-drop operation. Unfortunately,
PM does not automatically copy the DRAGITEM set when reallocating the
structure, so the application must either maintain a separate list of the objects
comprising the drag set or, as shown here, retrieve the DRAGITEM struc­
tures before reallocating the DRAG INFO structure. ReallocDraginfo first allo­
cates sufficient memory to hold the DRAGITEMs currently associated with the
DRAGINFO structure, and then copies them from the DRAGINFO using the
DrgQueryDragitem APL When all the items have been retrieved, DrgRealloc­
Draginfo is called to associate an additional DRAGITEM with the DRAGINFO
structure. The saved DRAGITEMs are then reassociated with the DRAGINFO
structure by calling DrgSetDragitem. After freeing the memory, the function
returns.

202 She Sells Sea Shells: Programming the Workplace Shell

void SetDragltems (~ ~nfo, HWND hwnd, ULONG cFiles, ECCL f[aey)
{

SHORT
SHORT
PSZ
PSZ
PSZ
DRAG ITEM
ULONG
PIJUlmNl!O

sitem;
cbltem;
pszFileName;
pszType;
pszContainer;
ditem;
!item;
~ .. *ppDlnfo;

memset(&dltem, 0, sizeof (DRAGITEM));
ditem.hstrRMF = DrgAddStrHandle(SUPPORTED_RMF);
ditem.hwndltem = hwnd;
ditem.fsSupportedOps = DO_COPYABLE I DO_MOVEABLE;
littm = O;
sitem = LIT_FIRST;
while ((sltem = SHORTlFROMMR (WinSendMsg (hwnd, LM_QUERYSELECTION,

MPFROMSHORT(sitem), OL))} != LIT_NONE) {
cbltem = SHORTlFROMMR(WinSendMsg(hwnd, LM_QUERYITEMTEXTLENGTH,

MPFROMSHORT (sitem) , OL)) ;
cbitem++;
if ((pszFileName = (PSZ)malloc(cbitem)) != (PSZ)NULL) (

WinSendMsg (hwnd, LM_QUERYITOOEXT,
MPFROM2SHORT (sltem, cbitem), pszFileName) ;

if <tf[azy 11 ~< ~. pszFileHlllB) ..,,. -1> <
ditem.hstrsourceName = ditem.hstrTargetName =

DrgAddStrHandle(pszFileName) ;
if ((pszType = QueryType(pszFileName)) !=NULL) (

ditem.hstrType = DrgAddStrHandle(pszType) ;
free(pszType);

} else (
ditem.hstrType = NULLHANDLE;

} /* endif */
if ((pszContainer = QueryCurrentDirectory()) !=NULL) {

ditem.hstrContainerName = DrgAddStrHandle (pszContainer);
free (pszContainer);

} else (
ditem.hstrContainerName = NULLHANDLE;

} /* endif *I
if (~) { "'"°'nfo 1:1 ~ .. Real.l.ocD:agin(~) ;

littm = ~xxlit:an - 11
) /* EUlif */
DrgSetDragitem(pDinfo, &ditem, sizeof(DRAGITEM), litan++);

) /* .mif */
free(pszFileName J;

/ * endif */
-~;

/* endwhile *I
return;

figure 7 .40 Modified SetDragltems routine.

SHORT GetltemForPile(PDRAGINPO pDinfo, PSZ pszFileName)
{

SHORT
PSZ
ULONG
PDRAGITEM

item;
pszSource ;
cbSource;
pDitem;

for (item = O; item < pDinfo->cditem; item++) (
pDitem = DrgQueryDragitemPt r (pDinfo, i tem);

Supporting Pickup and Drop 203

cbSource = DrgQueryStrNameLen (pDitem->hstrSourceName);
pszSource = (PSZ)malloc(++cbSource) ;
DrgQueryStrName(pDitem->hstrSourceName, cbSource, pszSource);
if(!strcmp(pszFileName, pszSource)) break;

} /* endfor */
i f(item== pDinfo->cditem) item= -1;
return item;

Figura 7.41 Determining presence of a file in a drag set.

Post-Drop Notification
When a pickup-and-drop operation is in progress and the objects are dropped
or the operation is cancelled, the source application receives a DM_DROPNOTI­
FY message. Parameter mpl of this message is the DRAG INFO pointer for the
drag operation, and parameter mp2 is the handle of the target window. The
OS/2 documentation indicates that the application should free the DRAG INFO
structure when this message is received. The apparent intent is that the Drg­
QueryDraginfoPtrFromHwnd and DrgQueryDragfnfoPtrFromDragitem APls

PDRAGINPO ReallocDraginfo{ PDRAGINPO pDinfo
{

PDRAGITEM
ULONG
UL ONG

pditem;
cditem = pDi nfo->cdi tem;
iitem;

pditem = (PDRAGITEM)malloc(cdltem * sizeof (DRAGITEM));
for (iitem = O; iitem < cditem; iitem++)

DrgQueryDragitem(pDinfo, sizeof (DRAGITEM), &pditem[iitemJ, i item I ;
pDinfo = DrgReallocDraginfo(pDinfo, cdltem + 1);
for (iltem = O; iitem < cdltem; i i tem++)

DrgSetDragitem(pDinfo , &pdit em[ii tem] , si zeof (DRAGITEM), iitem);
free (pditem);
return pDinfo;

Figure 7.42 Reallocating the DRAGINFO structure.

204 She Sells Sea Shells: Programming the Workplace Shell

should be used to obtain the address of the DRAG INFO structure during the
rendering operations. Unfortunately, the bug in the latter of these APis makes
this impossible. The method shown earlier of storing the object count and re­
leasing the DRAGINFO structure when DM..ENDCONVERSATION messages
have been received for all objects should be used until this bug is resolved.
However, if the DM...DROPNOTIFY message is received with parameter mp2
set to NULLHANDLE, the DRAG INFO structure should be released by calling
DrgFreeDraginfo since no post-drop conversation will occur. Note that neither
the target application drop procedures nor the rendering operations require
any changes for pickup-and-drop support.

Menu Support for Pickup and Drop
As mentioned at the beginning of this section, a pickup-and-drop operation
can also be initiated from a menu choice. Applications that provide this choice
normally include additional items to support dropping objects and cancelling
the operation. Figure 7.43 shows the WM_COMMAND message routine which

MRESULT wm_command (HWND hwnd, ULONG msg, MPARAM mpl , MPARAM mp2)
{

POINTL ptl = {0,0);
PDRAGINFO pdi;

swi tch (SHORTlFROMMP(mpl))
case MID_PICKUP :

WinSendMsg (hwnd, WM_PICKUP, MPFROMP(&ptl), MPFROMLONG(OL));
break;

case MID DROPCOPY:
if (!Pai= DrgQueryDraginfoPtr(NULL)) !=NULL)

DrgAccessDraginfo(pdi);
DrgLazyDrop(hwnd, DO_COPY, &ptl);

) / * endif *I
break;

case MID_DROPMOVE:
if ({pdi = DrgQueryDraginfoPtr(NULL)) !=NULL) (

DrgAccessDraginfo(pdi) ;
DrgLazyDrop(hwnd, DO_MOVE, &ptl) ;

/ * endif * I
break;

case MID_CANCEL:
DrgCancelLazyDrag ();
break;

} / * endswitch */
return MRFROMLONG IOL);

Figure 7 .43 Handling pickup-and-drop menu items.

Supporting Pickup and Drop 205

supports these menu items for the listbox application we have been using for
a sample.

The MID_pJCKUP menu emulates the pointing device click to initiate the
lazy drag operation by sending a wM_pICKUP message. Since the position
is not important, parameter mpl points to a POINTL structure containing
coordinates (0, 0).

The MID DROPCOPY and MID...DROPMOVE items indicate that the user
is requesting that the current set of objects be dropped. MID...DROPCOPY in­
dicates that a copy operation is desired, and MID_DROPMOVE indicates that
a move operation is desired. The processing for these items first queries the
current DRAG INFO structure. If one exists, indicating that a drag operation is
in progress, access to the DRAGINFO structure is obtained and API DrgLazy­
Drop is called to perform the drop operation. The prototype for this API is
given in Figure 7.44.

• The hwndTarget parameter is the handle of the window that is to serve
as the target of the drag operation, normally the client window of the
application.

• The ulOperation parameter indicates the operation to be performed. Valid
values for this parameter are the same as those for the usOperation element
of the DRAGINFO structure.

• The pptlDrop parameter is a pointer to a PO INTL structure indicating the
desired drop coordinates.

DrgLazyDrop returns TRUE if the drop is successful or FALSE if an er ror
occurs. Be sure to access the DRAGINFO structure before calling this API;
otherwise a trap will occur if the source and target windows are not part of
the same application.

The MID CANCEL item indicates that the user wishes to cancel the current
pickup-and-drop operation. This request is fulfilled by calling the DrgCancel­
LazyDrag APL This API requires no parameters, returns TRUE if the operation
is successfully cancelled, and returns FALSE if an error occurs.

Direct Manipulation Summary
This completes the discussion of the direct manipulation features. These fea­
tures provide the user with a powerful, yet easy-to-use means of manipulating

BOOL APIENTRY DrgLazyDrop(HWND hwndTarget,
ULONG ulOperation,
PPOINTL pptlDrop) ;

Figure 7 .44 The DrglazyDrop prototype.

206 She Sells Sea Shells: Programming the Workplace Shell

objects, and they are applicable to most applications. The programming re­
quirements may initially seem quite complex; but the effoX: to un~ers~~md and
implement these features will be handsomely rewarded with applications that
are easy to use and that integrate well with the standard operations of the OS/2
Workplace Shell.

INITIALIZATION FILES
Another of the important features of the Workplace Shell, which applications
should provide, is its ability to maintain the state of applications and the en­
tire system between invocations, including a complete sh.utdowi:i of the syste~.
Contrary to what many think, very little of the work requir~d to i~plex_nent ~1s
feature is actually performed by the Workplace Shell, which pnmanly mam­
tains a list of the objects that were open at the time of shutdown, and restarts
or reopens these objects when the system is rebooted. The data required f?r
an object or application to restore its size and position on the scr~en .and, m
some instances, other aspects of its termination state, must be mamtamed by
the object or application.

There are a number of avenues open to applications for storing the neces-
sary information. Applications that process private data file formats may store
the required information within the data file. Word processors an~ s~read­
sheets often use this technique to return the user to the same location m the
file and reestablish options when a file is opened. Applications that process
common format files, such as ASCII text, can accomplish this same type of
functionality by storing the required information in the data file's extended at­
tributes. Private configuration files can also be used by applications for storing
global options and other restart information. This method wo_uld not norm~lly
be used for storing information about individual data files since the applica­
tion would need to provide functionality for removing information for data
files that are no longer available.

OS/2, PM, and the Workplace Shell, along with the Workplace Shell objects
and many OS/2 applications, use configuration files of a specific type called
initialization, or INI, files to store their internal state information. These files
have a defined structure for storing and organizing variable length data, and a
set of APis is provided that allow applications to store and retrieve specific data
records. Internally, OS/2 uses two INI files, known as the USER and SYSTEM
INI files. The names of the files are established in the system CONFIG.SYS
file by setting the environment variables USERJNI for the USER file and
SYSTEM_INI for the SYSTEM file. Applications may use either of these files
or create private INI files of their own, though, as a rule, applications should
use the USER INI file, not the SYSTEM INI file, for private variables.

Data in the initialization files is organized into named sections. The section
name is referred to as the application name since an application will normally,

lnltlallzallon Flies 207

but not necessarily, store all of its data within one section. The records within
each section are stored as tuples in the form name '"' value. The name portion
of the tuple, known as the key name, is an ASCII string that the application
must specify when accessing the record. Key names are unique; when the
application stores data and specifies a key name that already exists, the value
portion of the tuple is overwritten with the new data. The value portion of the
tuple may be in the form of either an ASCII string or binary data.

In this section we will examine the code required to use initialization files
to save and restore an application's primary window size and position. We will
also see how the application can store and retrieve additional data to restore
its internal state.

Restoring the Window State
PM provides two specific API's for saving and restoring the size and position
of a window. These APis also store and retrieve the presentation parameters
associated with the window, allowing an application to easily maintain its fonts
and colors. These APls access the USER initialization file .

The WinStoreWindowPos API is used to store the window state. In many
cases this API is called during an application's WM_CLOSE processing to
save the final state of the window for restoration when the application is next
invoked. Another popular method is to provide a menu item that allows the
user to specify when the window state should be saved. The prototype for the
API is given in Figure 7.45.

• The pszAppName parameter is the name of the application key under
which the window state information is to be stored.

• The pszKeyName parameter is the name of the key under which the win­
dow state information is to be stored.

• The hwnd parameter is the handle of the window whose state is to be
saved.

WinStoreWindowPos returns TRUE if successful or FALSE if an error oc­
curred.

Figure 7.46 shows the WM.CLOSE message processing for the example
program from the direct manjpulation discussion. This application uses Win­
CreateStdWindow to create a frame window and a listbox window in the client

BOOL APIENTRY WinStoreWindowPos (PSZ pszAppName ,
PSZ ps zKeyName,
HWND hwnd) ;

Figure 7.45 The WlnStoreWlndowPos prototype.

208 She Sells Sea Shells: Programming the Workplace Shell

#define INIAPPNAME "SAMPLE"
ldefine INIFRMPOSKEY "FRAMEPOS"
#define INILBXPOSKEY 'LISBOXPOS"

MRESULT wm_close(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2 }
{

HWND hwndParent = WinQueryWindow(hwnd, QW_PARENTJ;

WinStoreWindowPos(INIAPPNAME, INIFRMPOSKEY, hwndParent);
WinStoreWindowPos(INIAPPNAME, INILBXPOSKEY, hwnd);
return pLBDefProc(hwnd. msg. mpl, mp2);

Fl91re 7.46 Saving the window size and position.

area of the frame. The sample code saves the positioning and presentation pa­

rameters of each of these windows. The initialization file application and key

names are predefined so that they may be easily reused when the window

positions are restored. The wm_close function is called when the WM_CLOSE

message is received by the client area listbox. The function first obtains the

window handle of the frame window by querying the list box window's par­

ent. The position and presentation parameters of the frame window and its

controls are then stored with the key name defined by INIFRMPOSKEY. The

data for the listbox and its controls are stored under the key name defined

by INILBXPOSKEY. The normal listbox window procedure is then called to

complete the WM_CLOSE processing.
After the window data has been saved, the application can call the Win­

RestoreWindowPos API to return the window to the saved state. This function

is normally called at application startup to restore the state of the window

when the application was last terminated. Some applications also provide

menu items or other input mechanisms that allow the user to specifically re­

quest that the window be returned to its saved state. The prototype of the

WinRestoreWindowPos API is defined as shown in Figure 7.47.

• The pszAppName parameter is a pointer to a zero-terminated array of

characters containing the application name under which the window state

was saved.
• The pszKeyName parameter is a pointer to a zero-terninated array of

characters containing the key under which the window state was saved.

BOOL APIENTRY WinRestoreWindowPos (PSZ pszAppName,
PSZ pszKeyName,
HWND hwnd) ;

Figure 7.47 The WlnRestoreWlndowPos prototype.

lnltlallzatlon Flies 209

• The hwnd parameter is a handle to the window whose state is to be
restored.

WinRes~oreWindowPos returns TRUE if the state is successfully restored or
FALSE 1f an error occurs.

. ~oding th~t can be .use? to restore the window position when the applica­
tion 1s started 1s shown m Figure 7.48. This code is a segment of the applic t•

d . d . . . 1. . d a ion
~ wm ow 1mtia 1zat1on co e normally found in the application's main rou-

tme. ~he WinCreateStdWindow call is the usual, except that the WS_VISIBLE

style is 1:1ot set to prevent the window from being displayed prior to the state

restoration. After the frame and client windows have been created, WlnRe­

ston:WindowPos is ~ailed to restore the state of the frame window and then

the h~tbox control wmdow that acts as this application's client area. The win­

dows states are then changed to visible using the WinShowWindow APL Last

the system's active window is set to the frame window by calling WinSetAc~
tiveWindow. If this last step is not executed, focus will not be given to the

application when it is started from a Workplace Shell icon.

Accessing lnitlalization Files

~Pis are also available that allow applications to store additional information

m ~h~ .U~E~, the SYSTEM, or private initialization files. In order to access

an 1mt1ahzation file, an application must have a handle for the file. The stan­

dard INI files have predefined constant handles; HINI USERPROFILE is the

handle to the USER initialization file, HINI SYSTEMPROFILE is the handle

to the SYSTEM initialization file, and HINLPROFILE is a pseudo handle that

accesses both the USER and SYSTEM files when reading, and accesses the

USER file .when writing. Applications obtain a handle to a private initialization

file by callmg the PrfOpen APL This API is prototyped as shown in Figure 7.49.

hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
OL,
&flStyle,
WC_LISTBOX,
"Sample Application",
LS_MULTIPLESEL I LS_EXTENDEDSEL,
NULLHANDLE,
RID_APPLICATION,
&hwndClient) ;

if (hwndFrame == NULLHANDLEJ break·
WinRestoreWindowPos(INIAPPNAME, INIFRMPOSKEY hwndFrame);
W~nRestoreWindowPos (INIAPPNAME, INILBXPOSKEY: hwndClient);
W1nShowWindow(hwndFrame, TRUE) ;
WinSetActiveWindow(HWND_DESKTOP, hwndFrame);

Figure 7.48 Restoring the window size and position.

210 She Sells Sea Shells: Programming the Workplace Shell

HINI APIENTRY PrfOpenProfile(HAB hab,
PSZ pszFileName) ;

Figure 7.49 The PrfOpenProflle prototype.

• The hab parameter is the anchor block handle for the application. This

handle is provided by the Winlnitialize API or may be queried with the

WinQueryAnchorBlock API.
• The pszFlleName parameter is the name of the initialization file to open.

If this file does not already exist, it is created.

PrfOpenProfile returns the handle to the initialization file if successful and

returns NULLHANDLE if a failure occurs.
1\vo APis are provided to allow an application to write data to initialization

files . Both of these APis require that the application supply an application name

and a key name with which to associate the data. Depending on which API is

chosen, the data may be presented in the form of an ASCII string or as binary

data. The PrfWriteProfileString API is used to store data in the form of an

ASCII string. The prototype for this API is given in Figure 7 .50.

• The hini parameter is the handle of the initialization file to receive the

data.
• The pszApp parameter is a pointer to a zero-terminated array of characters

that specify the application name under which the data is to be stored.

The content of the string is defined by the application; however, names

beginning with PM- are reserved for system use.
• The pszKey parameter is a pointer to a zero-terminated array of characters

that specify the key name with which the data is to be associated.

• The pszData parameter is a pointer to a zero-terminated array of charac­

ters to be associated with application name pszApp and key name pszKey.

PrfWritePro.fileString returns TRUE if successful or FALSE if an error oc­

curred.
Blocks of binary data may be written to initialization file records using the

PrfWritePro.fileData API. The prototype for this API is in Figure 7.51 .

• The hini parameter is the handle of the initialization file to receive the

data.

BOOL APIENTRY PrfWriteProfileStri ng (HIN! hini,
PSZ pszApp,
PSZ pszKey,
PSZ pszData);

Figure 7.50 The PrfWriteProfileStrlng prototype.

BOOL APIENTRY PrfWriteProfileData (HINI hini ,
PSZ pszApp,
PSZ pszKey,
PVOID pData ,
ULONG cchDataLen);

Figure 7 .51 The PrfWrlteProflleOata prototype.

lnltlallzatlon Flies 211

• The pszApp parameter is a pointer to a zero-terminated array of characters

that specify the application name under which the data is to be stored.

The content of the string is defined by the application; however names
beginning with PM. are reserved for system use. '

• The psz~y parameter is a pointer to a zero-terminated array of characters

that specify the key name with which the data is to be associated.

• The pData parameter is a pointer to the binary data to be associated with
application name pszApp and key name pszKey.

• The cchDataLen parameter is the number of bytes of data to write from
the location pointed to by pData.

PrfWriteProfileData returns TRUE if successful or FALSE if an error occurred.

Both of these APis first perform a case-sensitive search of the initialization

file to dete~ine if a re:o~d with the ~pecified application name/key name pair

already exists. If an ex1stmg record 1s found, the value portion of the record

!uple is updated with the new data specified in the API call. If an existing record

1s not fo~nd, a new record is added with the specified application name/key

name pair and the data specified by the function call.

These APis may also be used to remove records from an initialization file.

If the pszData parameter or pData parameter is specified as a NULL pointer

and a record matching the values in pszApp and pszKey is found, the record is

deleted. All records associated with a given application name may be deleted

by passing the pszKey parameter as a NULL pointer.

Four APis are available for application use when reading initialization file

records. The first of these, PrfQueryPro.fileSize, is a utility function that re­

turns the .len~h of the valu~ ~ortion of an INI file record or the length of an

enumeration hst. The remammg three APis allow the application to retrieve

the value from an initialization fi le record as an integer value, PrfQueryPro­

filelnt; an ASCII string, PrfQueryProfileString; or a block of binary data,

PrfQueryProfileData. The latter two APis also allow the application to receive

an enumerated list of the application names in an initialization file or the key
names associated with an application name.

The PrfQueryProfileSize API provides an application with the size of the

~alue portion of an initialization file record or the total length of an enumera·

t10n buffer. If. both an application name and a key name are provided, and a

record matchmg these parameters is found, the function returns the length of

~~-~~~~~------------------....... --___j

>

212 She Sells Sea Shells: Programming the Workplace Shell

the value portion of the record in bytes. If the key name or application name
is NULL, the length of an enumerated list of key names or application names
is returned. Note that the value returned for an enumeration list is the total
length of the buffer, including the final NULL character terminator, which is
not included in the length returned by the APls that perform the enumeration.
Typical uses for this API include determining the number of bytes of memory
to allocate for buffers, verifying that an initialization value will fit in a local
buffer, and avoiding corrupted data by verifying that a value is of the expected
size. The prototype for the API is shown in Figure 7.52.

• The hini parameter is the handle of the INI file where the data is stored.
• The szApp parameter is a pointer to a zero-terminated array of characters

specifying the application name for which to search. Set this parameter to
NULL to determine the length of an enumeration of all application names.

• The szKey parameter is a pointer to a zero-terminated array of characters
specifying the key name for which to search. Set this parameter to NULL
to determine the length of an enumeration of all key names for the given
application name.

• The pulReqLen parameter is a pointer to a ULONG where the length of the
profile data is stored. This value includes the zero-termination character
for data stored as an ASCII string.

PrfQueryProfileSize returns TRUE if successful or FALSE if an error occurs,
including not finding a match for the supplied pszApp and pszKey. The length
of the data is returned in the location pointed to by pulReqLen.

When retrieving data from an initialization file, it is important to remember
that the internal representation of the data in the initialization file is always
binary. Thus, a record written with PrfWriteProfileString may be retrieved
as binary data, and data written with PrfWriteProfileData may be retrieved
with PrfReadProfileString. In fact, PrfQueryProfileData and PrfQueryPro­
fileString always return identical data for any given initialization file record,
but PrfQueryProfileString allows the application to supply a default value if
the requested initialization file record does not exist.

The PrfQueryProfileData API is normally used to retrieve the value portion
of an initialization file record as a block of binary data. The API may also be
used to enumerate the key names associated with an application by passing

BOOL APIENTRY PrfQueryProfileSize ~ HIN! hini,
PSZ szApp,
PSZ szKey,
PULONG pulReqLen) ;

Figure 7 .52 The PrfQueryProflleSlze prototype.

Initialization Flies 213

~e ke~ i:i~m~ fi~ld as a NULL pointer or to enumerate the application names
m an imt1:111zat1on file by passing the application name as a NULL pointer.
Enumerations are returned as a set of variable length, zero-terminated ASCII
strings followed by a final zero character (the end of the buffer is signaled by
a double NULL character). The returned length of the enumeration does not
include the final NULL terminator. If the return buffer size is not sufficient
to contain the entire enumeration, the list is truncated at the buffer size. No
effort is made to ensure that a NULL termination character is provided so the
application must rely on the returned buffer length. '

The prototype for the PrfQueryProfileData API is given in Figure 7.53.

• The hini parameter is the handle of the INI file where the data is stored.
• The pszApp parameter is a pointer to a zero-terminated array of characters

specifying the application name for which to search. Set this parameter to
NULL to retrieve a list of all application names contained in the initializa­
tion file.

• The pszKey parameter is a pointer to a zero-terminated array of characters
specifying the key name for which to search. Set this parameter to NULL
to retrieve a list of all key names for the application name specified by
pszApp.

• The pBuffer parameter is a pointer to the location where the retrieved
data is to be stored. This buffer should contain at least the number of bytes
indicated by pulBufil.en.

• The pulBuffLen parameter is a pointer to a location that on input contains
a value specifying the maximum number of bytes to retrieve. The number
of bytes actually copied to pBufTer is stored in this location when the
function returns.

PrfQueryProfileData returns TRUE if the function is successful and returns
FALSE if an error occurs.

The PrfQueryProfileString API performs essentially the same function as
PrfQueryProfileData but allows the specification of a default value to return
if the specified application name or key name is not found in the initialization
file. Since the function is designed to primarily return a zero-terminated ASCII
string, the value specified for the default value must be zero-terminated. At­
tempting to specify binary data for this parameter that is not zero-terminated

BOOL APIENTRY PrfQueryProfileData(HINI hini,
PSZ pszApp,
PSZ pszKey,
PVOID pBuffer,
PULONG pulBuffLen);

Figure 7 .53 The PrfQueryProllleData prototype.

214 She Sells Sea Shells: Programming the Workplace Shell

UL-ONG APIENTRY PrfQueryProfileString(HINI hini ,
PSZ pszApp,
PSZ pszKey,
PSZ pszDefault,
PVOID pBuffer,
ULONG cchBufferMax) ;

flglre 7.54 The PrfQueryProflleStrlng prototype.

can lead to catastrophic results. Like PrfQueryProfileData, this function will

return an enumerated list if the application name parameter or the key name

parameter is specified as a NULL pointer.
The prototype for PrfQueryProfileString() is shown in Figure 7.54.

• The hini parameter is the handle of the INI file where the data is stored.

• The pszApp parameter is a pointer to a zero-terminated array of characters

specifying the application name for which to search. Set this parameter to

NULL to retrieve a list of all application names contained in the initializa­

tion file.
• The pszKey parameter is a pointer to a zero-terminated array of characters

specifying the key name for which to search. Set this parameter to NULL

to retrieve a list of all key names for the application name specified by

pszApp.
• The pszDefault parameter is a pointer to a zero-terminated ASCII string

to return in pBuffer if the name specified in pszApp or pszKey cannot be

found.
• The pBuffer parameter is a pointer to the location where the retrieved

data is to be stored. This buffer should contain at least the number of bytes

indicated by cchBufferMax.
• The cchBufferMax parameter specifies the maximum number of bytes to

store into pBuffer.

PrfQueryProfileString returns the number of bytes copied into pBuffer, or

zero if an error occurs.
The final API for retrieving initialization file record data is PrfQueryPro­

filelnt. This API interprets the value portion of the record as a numeric ASCII

string and converts the string to an integer. The first non-numeric character

in the data terminates the conversion. Like the PrfQueryProfileString API,

a default value is returned if the specified application name and key name

combination is not found in the initialization file.
PrfQueryProfilelnt is prototyped as shown in Figure 7.55.

• The hinl parameter is the handle of the INI file where the data is stored.

• The pszApp parameter is a pointer to a zero-terminated array of characters

specifying the application name for which to search.

LONG APIENTRY PrfQueryProfileint(HINI hini,
PSZ pszApp,
PSZ pszKey,
LONG sDefault) ;

figure 7.55 The PrfQueryProfllelnt prototype.

lnlllallzallon Flies 215

• The ~s~.Key parameter is a pointer to a zero-terminated array of characters

specifying the key name for which to search.

• 'I_'he sDefault parameter.specifies the default value to return if the applica-

t10n name or key name is not contained in the initialization file.

PrfQueryPr_-ofilelnt returns the converted value of the initialization file data

correspondmg to pszApp and pszKey or the value passed in sDefault if pszApp
or psz.Key cannot be found.

When an application no longer requires access to a private initialization

file, the PrfCJoseProfile API should be called to release the file. This API is
prototyped as in Figure 7.56.

• The hini parameter is the handle of the private initialization file to close.

PrfCloseProfile returns TRUE if the function was successful and FALSE if an

error occurred. Note that this API cannot be used to close the system-defined

initialization files, thus the constants HINLUSERPROFILE, HINLSYSTEM

PROFILE, and HINLPROFILE are not valid when this API is called.

~gure 7.57. shows two routines used by our example program to maintain

the displayed directory between applications. Routine lniToDir resets the cur­

ren_t disk drive and directory to the directory that was displayed when the appli­

cation was last closed. The routine first queries the current drive and directory

for use as the defaults should the initialization file records not be present as

would occur on the first invocation of the program. PrfQueryProfilelnt is then

caU~d to obta~n the saved disk number, and PrfQueryProfileString is called to

retneve the directory. Note that the pBuffer parameter is set to point to the

second character of the output string. This allows the backslash character to

be placed in front of the directory so that DosSetCurrentDir will set the new

current directory relative to the root directory of the drive rather than to the

curr~nt directory. Once the initialization file data, or appropriate defaults, are

obtamed, the DOS API functions to set the default drive and current directory
are called.

BOOL APIENTRY PrfCloseProfile(HINI hini);

Figure 7 .56 The PrfCloseProlile prototype.

216 She Sells Sea Shells: Programming the Workplace Shell

#define INIAPPNAME 'CHAPT6'
#define INiCURDSKKEY 'CURRENT DISK'
#define INICURDIRKEY "CURRENT DIR'

MRESULT IniToDir(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)

l
UL ONG
UL ONG
char
char
ULONG

ulDiskNum;
ulDiskMap;
szCurDir[_MAX_PATH];
sziniDir[_MAX_PATH];
cbCurDir = _MAX_PATH;

DosQueryCurrentDisk(&ulDiskNum, &ulD~skMap); .
DosQueryCurrentDir(ulDiskNum, szCurD1r, &cbCurD1r I;
ulDiskNum = PrfQueryProfileint(HINI_USERPROFILE, INIAPPNAME, I NICURDSKKEY,

ulDiskNum l ;
PrfQueryProfileString(HINI_USERPROFILE, INIAPPNAME, INICURDIRKEY ,

szCurDir, &sziniDir(l], _MAX_PATH);
sziniDir! 0 I = '\\';
DosSetDefaultDisk(ulDiskNum) ;
DosSetCurrentDir(sziniDir);

MRESULT DirToini(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)
{

ULONG
ULONG
char
char
char
UL ONG

ulDiskNum;
ulDiskMap;
szCurDir(_MAX_PATH];
sziniDir[_MAX_PATH];
szDisk[3 l;
cbCurDir = _MAX_PATH;

DosQueryCurrentDisk(&ulDiskNum, &ulDiskMap);
szDisk[O] = {CHAR) (ulDiskNum/10) + Ox30;
szDisk[1 J = {CHAR) {ulDiskNum % 10) + Ox30;
szDisk[2 I= '\0';
PrfWriteProfileString(HINI_USERPROFILE, INIAPPNAME, INICURDSKKEY,

szDisk);
DosQueryCurrentDir(ulDiskNum, szCurDir, &cbCurDir);
PrfWriteProfileString(HINI_USERPROFILE, INIAPPNAME, INICURDIRKEY,

szCurDir) ;
return MRFROMLONG(OL);

figure 7 .57 Saving and restoring application data.

SOM

SOM 217

Routine DlrTolni saves the default drive and current directory to the initial­
ization file. DosQueryCurrentDisk returns the default drive as an integer num­
ber. This value is then converted to a zero-terminated ASCII string and saved
into the initialization file with the PrfWrlteProfileString APL DosQueryCur­
rentDir is then called to obtain the current directory and the resulting string
is written to the initialization file by again calling PrfWriteProfileString.

Routine IniToDir is called during the startup of the program prior to the
initial filling of the listbox. In many applications, these types of values would be
retrieved from within the WM_CREATE message processing or from inside the
main routine. Routine DirTolni is called from within the WM_CLOSE message
processing, which is the normal routine for saving this type of information.
In some instances, it may be more convenient to store the information to the
initialization file when the values are changed rather than waiting for the
application to terminate.

SOM, an acronym for System Object Model, is an architecture and method­
ology for implementing language-independent, extendable systems of classes
and objects. Unlike systems built by most object-oriented programming lan­
guages, object classes that conform to this model may be implemented as
separate units of executable code, possibly developed using different high-level
languages. SOM defines the manner in which interactions between classes are
resolved, such as when a method in a parent class is called via an object of a
derived class. When using C++ and other object-oriented programming lan­
guages, this type of interaction is often resolved statically when the executable
module is linked. The SOM model allows this interaction to be resolved dy­
namically at runtime. This requires some additional overhead, but provides
significant flexibility in the construction of object classes.

OS/2 provides functionality for run-time resolution of the interfaces be­
tween SOM-compatible objects and also provides a base set of SOM classes
from which programmers can derive their own SOM-compatible classes. The
OS/2 Developer's Toolkit provides the SOM Compiler, which converts source
files containing class definitions written in IDL, Interface Definition Language,
into language-specific headers and source files. The source files contain stubs
for each object method, which the programmer can then expand to implement
the object functionality. The Toolkit also provides the language headers and
IDL specifications for the SOM base classes so that additional classes may be
derived by the programmer.

The base classes provided with OS/2 are SOMObject, a class that defines
the basic functionality of a SOM-compatible object; SOMClass, a class derived
from SOMObject that provides the basic functionality of a SOM metaclass;

218 She Sells Sea Shells: Programming the Wort<place Shell

SOMObtect

SOM Class

and SOMClassMgr, a class that provides registration functions for classes and
objects within a process.

Class SOMObject is the base class from which all SOM-compliant classes
must be descended. This class defines and implements the basic functional­
ity required for SOM compliance. Methods are provided to manage instance
data, to retrieve information about an object's class, to determine the type
and derivation of an object's class, to dump debug information, and most
important, to dynamically access methods of the class.

Three methods are provided for managing object data; sominit, somUninit,
and somFree. Since SOMObject does not define any data, these methods do
nothing for the base object. The sominit method should normally be overrid­
den by classes that define instance data in order to ensure that the data is in
a known state after the object is created. The somUninit method should be
overridden by classes that define instance data requiring cleanup when the ob­
ject is destroyed; for instance, a pointer to allocated memory. Method somFree
releases the memory used by the object and should not normally require an
overriding method.

Four additional methods are provided for dynamically accessing meth-
ods of the class; somDispatchA, somDispatchD, somDispatchL, and somDis­
patch V. The method called depends on the return value of the accessed method:
somDispatchA is used to access methods that return a pointer; somDispatchD
is used to access methods that return a floating point number; somDispatchL
is used to access methods that return an integer; and somDispatchV is used to
access methods that return void, or no value. These routines locate and call a
stub routine for the target method, which parses a variable length argument list
and then calls the actual target method with these parameters. These methods
define OS/2's standard methodology for dynamically accessing the methods of
a given object and are not normally overridden; however, the methods may be
overridden if a different access method is desired.

Within the SOM model, a method must operate on an established instance of
a class, that is, an existing object. Thus, object constructor methods cannot be
defined in the class whose objects are being instantiated. Rather, the construc­
tor method must be defined in some class for which an object already exists.
In SOM terminology, the class defining the constructor method is known as
the metaclass of a class, and an instantiation of this class is known as a class
object. A class's metaclass may either be explicitly defined or inherited from its
parent class. The root metaclass is SOMClass, which by definition is its own
metaclass and is also the metaclass for SOMObject, from which it is derived.

Distributed SOM 219

Since SOMClass is derived from SOMObject, it inherits all the methods of
SOM?bject. It also defines a number of new methods used in the construction
of O~J~C!-5· . Four metho~s are defined for creating objects: somNew constructs
an~ m1tiahzes a new object by invoking sominit; somNewNoinit constructs a
object. but _does not perfo~ initialization; somRenew constructs and initialize~
an object m memory provided by its caller; and somRenewNoinit constructs
an obj:ct in caller-provided memory without invoking the initialization method
somimt. These methods may be overridden to perform special initialization or
construction as required for a particular class.

Metaclasses derived from SOMClass may also define additional data and/or
methods for use by all objects of a given class.

SOMClassMgr
~las~ SOMClassMgr is derived from SOMObject to provide methods for reg-
1s~enn~ ne~ classes and, in OS/2, for loading and unloading the Dynamic
Lmk L1branes (DLLs) that contain the classes. Only one instance of SOM­
ClassMgr or a class derived from SOMClassMgr is allowed per process. If a
derived class is used, it should invoke the somMergeinto method to replace
the SOMClassMgr object created during SOM initialization.

DISTRIBUTED SOM

The version of SOM pr~>Vi~ed with OS/2 version 2.0 was limited to a single
process. Thus, an application was not allowed to directly access the data
or methods of a Workplace Shell object. OS/2 Warp contains a workstation
implementation of the Distributed System Object Model. This model allows
an application to create and access objects that are defined and supported by
another process. In general, this allows applications to create and manipulate
Workplace Shell objects without themselves being part of the shell.

Workplace Classes
The Workplace Shell is an object-oriented environment implemented as a hi­
erarchy of SOM-compliant classes. The Workplace class hierarchy begins with
class WPObject, which is derived from SOMObject, to define the basic behav­
ior of all Workplace objects. Next in the hierarchy are the three Workplace
storage classes: WPTransient, WPAbstract, and WPFileSystem. In general, all
Workplace objects must be derived from one of these three storage classes.

Hierarchy

Class WPObject, itself derived from SOM Object, is the root class from which all
Workplace Shell classes are derived. This class defines the "normal" behavior

>

220 Sha Sells Sea Shells: Programming the Workplace Shell

for a Workplace object. As might be expected, WPObject defines a large num­
ber of methods. These methods implement functionality that includes man­
aging the settings notebook, saving and restoring an object's state, or data,
displaying and handling popup menus, modifying and querying object data,
handling errors, managing memory, and direct manipulation of objects. Be­
cause this functionality is provided by WPObject, new Workplace classes may
be developed without a great deal of concern for the Workplace environment.
Typically, new classes will override the methods that provide appearance or
configuration information, such as title text, icons, or help information, but
the functional behavior methods are typically inherited.

Immediately below WPObject in the Workplace class hierarchy are the
storage classes. These are so named because they provide different methods of
saving an object's state or data. New Workplace classes must be derived from
a storage class, and while additional storage classes can be developed, the
three provided with OS/2-WPTransient, WPAbstract, and WPFilesystem-are
normally used for deriving new classes.

The first of the storage classes, WPTransient, is used to derive classes that
represent objects that are temporary in nature and do not require their state
to be saved. Objects instantiated from these classes are not automatically re­
created when the system is booted, but in some instances will be reinstantiated
from data available on the system. A good example of a class derived from
WPTransient is the class that is used to represent a print job, WPJob. As
output is sent to a printer, a pair of files are created on the system storage
device to retain the data untU it can actually be output. The printer object
representing this printer creates objects of class WPJob to represent the files
that are waiting to be sent to the printer. When a file has been completely
processed, it is deleted along with its object. If the system is restarted while
spool files are still present on the storage device, the WPJob objects must
be re-created by the printer object- they are not automatically generated by
the Workplace startup procedure. Another good use for a class derived from
WPTransient would be a class used to represent records in a database. In most
instances, objects representing these records can be easily re-created from
the data in the record and therefore should not require additional storage in
the initialization files, as provided by WPAbstract. Also, since the records are
not individual files on the disk, objects derived from WPFileSystem are not
appropriate.

The second storage class provided with OS/2 is WPAbstract. Classes are
derived from WPAbstract in order to create objects that must be re-created
after the system is booted but which are not properly represented by a single
file (or directory) on the system storage device(s). WPAbstract provides meth­
ods that save the state of the object in the USER initialization file, normally,
OS2.INI. WPProgram, which is used to represent a reference to a program
(not the program executable file), is an example of such a class. Objects created
from WPProgram represent a particular state of the referenced program. For

SUMMARY

Summary 221

in~tance, one WPProgr~m object might be used to perform a backup function
usmg XCOPY.EXE, while another WPProgram object, which also references
XCOPY.EXE, performs a restore function. Thus the WPProgram object repre­
sents more than just the executable file; it represents the program performing
a funct~on. All the information necessary to cause the executable to perform
the desired function is stored in the initialization file.

The final storage class provided with OS/2 is WPFileSystem. Classes de­
rived from this class are used to represent files (including directories) stored on
the system storage device(s). The state of objects created from these classes is
stored with the files, typically in the directory entry and extended attributes for
the. file. An example of a class derived from WPFileSystem is WPProgramFile,
which represents an executable file on the disk. Unlike the WPProgram class
just discussed, whose title is not necessarily related to the executable program,
the title for WPProgramFile objects is the name of the executable-changing
the object's title changes the executable file name. Also, when a WPProgram
object is moved or copied, the executable file is not touched; when a WPPro­
gramFile object is moved or copied, the file itself is moved or copied. Thus
objects created from dasses derived from WPFileSystem directly represent
files on the storage device, and manipulating these objects manipulates the
file.

Programmers may use these classes, or the specific classes derived from
them, to produce new Workplace Shell classes that perform application func­
tions. In time, many popular types of applications may be implemented as
one or more Workplace Shell objects, rather than as separate executable pro·
grams. The details of how to implement these classes is beyond the scope of
this book, but the information presented here should serve as a starting point
to understand how the Workplace Shell is implemented.

This chapter has described OS/2's object-oriented, graphical user interface,
the Workplace Shell. Drag-and-drop manipulation and initialization files, es­
sential functionality required for Workplace-aware PM applications, have been
described in detail. A brief introduction to SOM and the object hierarchy of
the Workplace Shell has been provided.

CHAPTER

Mastering Dialogs, Menus,
and Other PM Resources

T he intent of the graphical user interface is to provide the user with a clear,
concise, and consistent way of navigating through the application to ac­
complish a desired function. Unfortunately, because of the overwhelming

power and complexity of the Presentation Manager, it is all too easy to design
applications that confuse the user due to poor resource management. For in­
stance, application menus that do not flow logically or dialogs cluttered with
controls can frustrate the user who only wants to create a simple text file. Ap­
plications that make poor use of the simplicity of the graphical user interface
will probably not succeed in the marketplace. Today's computer user demands
complex functionality with a simple look and feel. The software development
community is keenly aware of this desire, and thus it has become increasingly
important to master the art of using PM resources. This chapter will focus on
making the best use of menus, dialogs, and other simple PM resources.

THE PURPOSE OF THE SAMPLE PROGRAM

The sample program for this chapter may seem similar to the OS/2 System
Editor, E.EXE. The sample program PMEDIT.EXE, like the E Editor, also
draws an MLE control within the client area that acts as the editor window.
The MLE control was introduced in Chapter 2.

The sample is intended to demonstrate the proper use of menus, dialogs,
and various other PM resources, such as string tables and accelerators. The
program uses a combination of menus and dialog boxes along with various
other PM resources.

223

224 Mastering Dialogs, Menus, and Other PM Resources

APPLICATION MENUS

Virtually any application that requires some sort of user input will require an
application menu; therefore, designing the menu is an extremely important
element of a successful PM program. Menus that make sense can have a
great impact on the learning curve that the user will have to endure when
initially using the application. Menus should be grouped in a scheme that
makes sense functionally. A menu that contains file operations-for example,
open, save, and search functions- should not contain clipboard operations
as well. Users should be able to visualize the groupings in their head. This
becomes increasingly important the more menuitems there are on a menu.
The associations between a submenu, menuitem, and menu function should
be distinguishable. For example, a submenu labeled File would be the log.ic~l
place to find an Open Ftle menuitem, which would signify to users that this is
where they need to click to be able to open a text file. . . .

Developers should be cognizant of the user learmng curve, and envision
themselves using the application for the first time. Menuitems that contain
similar or identical functionality are useless because they impede the user's
ability to associate a function with a menuitem selection. Thus, the next time
the user is confronted with finding the option he or she needs, it will again be
necessary to evaluate which menuitem will perform the necessary function.

The purpose of the Presentation Manager is to provide a common interface
to the user. So, to some extent, every single application designed and developed
for PM should share a common look and feel. In the programmer's best of all
possible worlds, every PM application would look so similar to tI:ie next that
the user would automatically know exactly what to do next. In reality, complex
menu interfaces can destroy the usability of any application.

A menu is a control window that provides the user with the ability to make
a selection that will perform some type of function or operation. There are
three types of application menus that appear on virtually every main window
of an application. The most primitive form of a menu is the minimize and
maximize buttons, located in the upper right-hand comer of the main frame
window. These two bitmapped windows are menus by definition because they
allow the user to modify the appearance of the entire frame window by mini­
mizing, maximizing, or restoring the window coordinates for the window. The
programming functionality of these control windows is limited: the program­
mer can choose via frame control flags whether to display one or both of these
windows or remove them entirely from the frame window. The implementation
of these control windows corresponds direcdy to their equivalent menuitems
on the system menu. The other two types of application menus are the system
menu and the action bar menu. Before we discuss these two types, however, it
is important to understand the composition of the menu window.

Appttcatlon Menus 225

Menu Messages
There are several menu control messages designed to allow the developer to
alter the appearance of a particular menu window. Once an application starts,
it is usually initialized with an action bar menu and a system menu through the
frame control flags FCF..MENU and FCF_SYSMENU, respectively. However,
there may be times that the application will have to change the contents of a
particular menu based on input from the user. For example, if you examine
the sample program PMEDIT, you will notice that the clipboard options in the
Edit submenu will either be enabled or disabled based on the data contained
in the clipboard. It makes sense that if a menuitem is not functional, that the
menuitem is disabled, preventing the user from selecting it. Also, menuitems
that will never be used should be deleted entirely, and menuitems that illustrate
some kind of a default selection should have a check mark associated with
them. All of these menu characteristics are known as menu item attributes. The
menu control messages provide the vehicle to change the attributes associated
with a particular menuitem.

Figure 8.1 lists the menu control messages. It is extremely important to
understand the message parameters associated with each of the menu control
messages. The message parameters mp1 and mp2 are actually a 4-byte area
of storage that can be used to hold various pieces of information based on

MM_INSERTITEM
MM_DELETEITEM
MM_ QUERY ITEM
MM_SETITEM
MM_QUERYITEMCOUNT
MM_STARTMENUMODE
MM_ENDMENUMODE
MM_ REMOVE ITEM
MM_SELECTITEM
MM_QUERYSELITEMID
MM_QUERYITEMTEXT
MM_QUERYITEMTEXTLENGTH
MM_SETITEMHANDLE
MM_SETITEMTEXT
MM_ITEMPOSITIONFROMID
MM_ITEMIDFROMPOSITION
MM_QUERYITEMATTR
MM_SETITEMATTR
M!{_ISITEMVALID
M!{_QUERYITEMRECT
MM_QUERYDEFAULTITEMID
MM_SB1'DEFAULTITEMIO

Ox0180
Ox0181
Ox0182
Ox0183
Ox0184
Ox0185
Ox0186
Ox0188
Ox0189
Ox018a
Ox018b
Ox018c
Ox018d
Ox018e
Ox018f
Ox0190
Ox0191
Ox0192
Ox0193
Ox0194
Ox0431
Ox0432

Figura 8.1 Menu control messages.

n

226 Mastering Dialogs, Menus, and Other PM Resources

the message type. Most of the menu control messages do not use the entire
4-byte storage area and actually may use both the low word and high word
for storage. The storage is divided based on the data type that is stored in the
message parameters. For example:

• If the data type is NULL, then all four bytes are equal to zero.
• If the data type is a SHORT variable, then the value of the message param­

eter is stored in the low word, and the sign is placed in the high word.
• If the data type is a BOOL or USHORT variable, then the value of the

message parameter is stored in the low word, and the high word equals
zero.

We already know that a menu is a control window in its purest form,
therefore, menus contain characteristics of other windows, including window
sty~es and attributes. Figure 8.2 is a chart indicating the different menu control
styles that can be used to define a menu window. A definition of their usage
is provided, along with their hexadecimal values defined in PMWIN.H. The
menu control styles can be used to create different types of menu controls,
each with their own distinct behavior.

MS.ACTIONBAR

MS-TITLEBUTTON

MS_VERTICALFLIP

OxOOOOOOO 1 L Used to implement the Action Bar Sub­
menu concept, this style displays menu­
items side by side. Although menus with
this style may be used to perform some
function, they are usually used to display
the actual pull-down menu that is associ­
ated with the submenu.

Ox00000002L Used to implement menus that may be
drawn within the title bar. This menu
style needs to be used in conjunction with
MS.ACTIONBAR.

Ox00000004L Used when a submenu's pull-down win­
dow cannot be entirely displayed within
the desktop's presentation space.

MS-CONDITIONALCASCADE Ox00000040L This style was introduced with OS/2 2.0.
It is used to implement a conditional cas-

Figure 8.2 Menu control styles.

cade menu. A conditional cascade menu
is a menu that is only revealed when the
user selects the cascade via a bitmap ar­
row on the menuitem with the conditional
cascade.

Appllcatlon Menus 227

The conditional cascade menu, like a regular cascade menu, is designed
to show the user a selection of similar menuitems that correspond to a single
menuitem choice. The difference is that the user must press the arrow button
located to the right of the menuitem to display the pull-down menuitems'.
One of the menuitems in the pull-down may be selected as a default choice.
The default menuitem option is marked by a check mark. An example of this
men~ ~tyle is illustrated in Figure 8.3. The PMEDIT sample program uses a
cond1t1onal cascade menu to allow the user to select color choices for the edit
window.

The best example of the difference between a cascade menu and a con­
ditional cascade menu is found in OS/2's desktop popup menu. This menu
contains a typical example of the cascade and conditional cascade menu us­
age. In Figure 8.3, the Open menuitem uses the conditional cascade control
style. As you can see, the menuitem contains an arrow within a button that
when selected, will reveal the different views of the container for the deskto~
folder. When the user selects this item, an additional popup menu is revealed.
This popup menu contains a default selection identified by a check mark. A
standard cascade menu is used for the Select menuitem. When this menuitem
is selected, it reveals two choices, Select all or Deselect all, in its popup menu.
If there is no default choice in a menu, you should use the Cascade menu. If
a default choice is required, use the conditional cascade. Creating the condi­
tional cascade is simple. The first step is to create a simple cascade menu. The

~eftfngs
Open parent
flefresh now
Help

Create shado~ ...

l,.,oc::kup now
Shut si_own .. _
System setup

find ...
s~aect -.
Sort
Arran e

Figure 8.3 The condltlonal cascade menu.

228 Mastering Dialogs, Menus, and Other PM Resources

SUBMENU ·-Options •,
(

)
}

MENUITEM •change Font Selection• ,
sUBMENU •change Foreground Color•,
{

MENUITEM "Red",
MENUITEM "Blue• .
MENUITEM 'Green• ,
MENUITEM "Yellow•,

Figure 8.4 Defining a cascade menu.

ID_OPTIONSMENU

IDM_EDITFONT
ID_COLORMENU

IDM_RED
IDM_BLUE
IDM_GREEN
IDM_YELLOW

code fragment in Figure 8.4 is from the resource script file ~nd it represen~
the Options submenu. Within this submenu, a cascade menu is created that is
used to change the foreground color of the editor.

The cascade is essentially a submenu embedded within another submenu,
in this case, the Change Foreground Color submenu within the ~ptions
submenu. The master submenu is the Options submenu. It contams one
menuitem, IDM..EDITFONT, and the embedded submenu represented by
ID_COLORMENU. The ID_COLORMENU submenu contains several menu­
items that represent the individual foreground color selections.

Be very careful not to embed too many cascade menus, as it becom~s v~ry
difficult to follow the flow of multiple cascades. The goal of any apphcat1on
menu is to get the application to perform the task that the user wants to initiate
as quickly and easily as possible. When you start to embed too many cascade
windows, it works against that goal.

The code fragment in Figure 8.5 converts the cascade menu by using
the conditional cascade control style. The function CreateConditionalCascade­
Menu takes three parameters. The first parameter hwndMenu is the windo~
handle of the menu that contains the cascade menu. The second parameter is
a SHORT variable, sSubMenu, that represents the identifier of the submenu
that is to be converted to the conditional cascade. The final parameter is an­
other SHORT. sDefault, that is used to identify the default selection within
the conditional cascade menu. The default selection is represented by a check
mark next to the menuitem.

The function first sends a MM_QUERYITEM message to the menu win­
dow represented by hwndMenu. The first message parameter, mpl , contains
the identifier of the submenu, which in the preceeding sample would be
ID_COLORMENU. The second message parameter returns a valid MENU­
ITEM structure.

The MENUITEM structure is shown in Figure 8.6.

Appllcatlon Menus 229

BOOL CreateConditi onalCascadeMenu(HWND hwndMenu, SHORT sSubMenu, SHORT sDefault)
{

HWND hwndSubMenu;
ULONG ulSubMenuStyle;
MENUITEM menuitem;

WinSendMsg (hwndMenu,
MM_QUERYITEM,
MPFROM2SHORT(sSubMenu, TRUEI,
MPFROMP (&menuitem)) ;

hwndSubMenu - menuitem.hwndSubMenu;
ulSubMenuStyle = WinQueryWindowULong(hwndSubMenu, QWL_STYLE};

WinSetWindowULong(hwndSubMenu,
QWL_STYLE,
ulSubMenuStyle I MS_CONDITIONALCASCADEI;

WinSendMsg(hwndSubMenu,
MM_SETDEFAULTITEMID,
MPFROMSHORT(sDefault),
NULL);

return FALSE;

Figure 8.5 The CreateConditionalCascadeMenu function.

• The iPosition element is used to indicate the position of the menuitem.
• afStyle represents the menu style flags. The menu style flags are listed in

Figure 8.7, and are prefixed by MIS_.
• af Attribute represents the menu attribute flags. The menu attribute flags

are listed in Figure 8.8, and are prefixed by MIA_.
• id is the window identifier.
• hwndSubMenu is the window handle of the submenu.
• hltem is the item handle.

typedef struct _MENUITEM // 1:1i
(

SHORT iPosition;
USHORT afStyle;
USHORT afAttribute;
USHORT id;
HWND hwndSubMenu;
ULONG hltem;

} MENUITEM;
typedef MENUITEM *PMENUITEM;

Figure 8.6 The MENUITEM structure.

MIS_TEXT OxOOO

MIS..BITMAP Ox0002

MIS_SEPARATOR Ox0004

MIS_OWNERDRAW Ox0008

MIS_SUBMENU OxOOlO

MIS_SYSCOMMAND Ox0040

MIS..HELP Ox0080

MIS_STATIC Ox0100

MIS..BUITONSEPARATOR Ox0200

MIS_BREAK Ox0400

MIS..BREAKSEPARATOR Ox0800

Figure 8. 7 The menultem styles.

230

>

The simplest of menuitem styles, this is used for all
menuitems that display a simple ASCII text string.

This menuitem should only be used when a graph­
ical image is needed to simplify the explanation of
the menuitem. It is used to display a bitmapped im­
age within a menuitem.

This menuitem can only be used within a SUB­
MENU pull-down. Its purpose is to graphically rep­
resent a change in the contextual flow of the menu.
This menuitem serves no functional purpose other
than to display the horizontal separator line. The
keyword SEPARATOR, when used in a resource
script file, signifies this menuitem style.

This menuitem style is left to the developer to cus­
tomize. Notification messages are sent to the owner
for manipulating the item's appearance.

This menuitem is used to draw SUBMENUs. A SUB­
MENU is a menuitem that usually does not perform
a function on its own other than reveal a pull-down
menu with additional menuitem options. The key­
word SUBMENU, when used in a resource script
file, signifies this menuitem style.

This menuitem style is used when the menu window
needs to send a WM.SYSCOMMAND to its owner.
It is used primarily in the system menu context.

When this menuitem style is used, a WM..HELP
message is posted to the owner when the item is
selected.
This menuitem is used to indicate that a given menu­
item cannot be selected.

This item is used to simulate a button. When used,
the user cannot move to the item via the keyboard,
but can use an accelerator key or pointing device to
make the selection. The item can be used to display
the HELP SUBMENU, and is drawn with a vertical
separator bar.

This menuitem style is used to denote the start of a
new column or row.

This item is the functional equivalent of the MIS_
BREAK menuitem style, except it also physically
draws a separator bar. It is used in the context of
the action bar submenu.

MIA-.NODISMISS Ox0020

MIA.FRAMED OxlOOO

Appllcallon Menus 231

If this menuitem attribute is used, the specified item's sub­

menu pull-down is not dismissed until the user explicitly dis-

misses the menu via a selection using the keyboard or mouse
or by pressing the Esc key. '

When this attribute is used, a visible frame is drawn around
the item.

MIA_CHECKED Ox0004 When this attribute is set, a check mark appears to the left

of the menuitem. This menuitem attribute is used to indicate

the current selection in a cascade or multiple-choice menu.

MIA_j)ISABLED Ox4000 When this attribute is used, the menuitem is disabled and

therefore cannot be selected by the user.

MIA..HILITED Ox8000 This attribute is used to highlight the menuitem when it is
selected.

Figure 8.8 The menultem attributes.

The function then stores the hwndSubMenu element of the structure in the
variable hwndSubMenu through the foJlowing assignment:

hwndSubMenu = menui tern.hwndSubMenu;

The next step is to obtain the style flags that are stored in the window words

of the submenu window. The style flags are obtained by calling the WinQuery­

WindowULong function with the QWL STYLE index value. The resulting style

flags for the window are returned in the ULONG variable ulSubMenuStyle.

Conversely, the style flags are set by calling the function WinSetWindowULong

with the QWLSTYLE index value. The following code fragment sets the style

flags by ORing the current style flags with the MS_CQNDITIONALCASCADE

menu style flag. This is the code that actually creates the conditional cascade
menu:

WinSetWindowULong (hwndSubMenu,
QWL_STYLE,
ulSubMenuStyle I MS_CONDITIONALCASCADE);

The final step in the function is to set the default selection in the condi­

tional cascade menu. This is done by sending an MM_SETDEFAULTITEMID

message and passing the sDefault value that was passed to the function. The

CreateConditionalCascadeMenu function will return FALSE if it can success­

fully create the conditional cascade menu. If the function encounters an error

along the way, like an invalid hwnd passed in hwndMenu, the function will

return TRUE representing an error that occurred.

232 Mastering Dialogs, Menus, and Other PM Resources

Altering the System Menu

The System menu, which is located in the upper left-hand comer of the frame

window by default, contains a drop-down that perfonns system operations

that manipulate the frame window's appearance or identity. The System menu

contains menuitems that can maximize, minimize, restore, hide, move, size,

or close the frame window. The System menu menuitems can be manipulated

based on the functionality of the frame window. For example, frame windows

that should not be closed can have the close menuitem removed from the

System menu.
The menuitem text for the Close option can be altered or removed entirely

along with any other menuitem in the list. Also, if the frame window requires

some additional function, menuitems can be added to the System menu. A

routine in the PMEDIT sample program called SetTheSysMenu is used to

remove the menuitems that are redundant for the given window. This routine

also shows how to change a system menuitem by modifying the Close option.

But take care when changing system menuitems, because foreign language

versions of OS/2 use the SC.CLOSE menuitem to correspond to the language

equivalent of the word close.

The Composition of the System Menu

The actual System menu as we know it, is composed of two distinct windows.

The first is the small window located in the upper left-hand comer of a frame

window. This window contains a small bitmapped image that denotes that it

can reveal a pull-down menu. This window receives a WM-BUITON 1 DOWN

message to indicate that it should display another window with the pull-down

menuitems. The second window is the pull-down window itself, revealing the

System menu items. The combination of both of these windows form the basis

for the System menu functionality.
The frame identifier for the system menu is defined in PMWIN.H as

FID.SYSMENU:

#define FID SYSMENU Ox8002

The goal of the SetTheSysMenu function is to remove all unnecessary menu­

items in the System menu. Since the Search dialog box does not have sizing

capabilities, the restore, minimize, and maximize options are useless in the

System menu. The function first obtains the handle of the System menu window

from the frame window identifier representing the system menu by calling the

WinWindowFromID API and specifying the FID.SYSMENU frame identifier.

The handle to the System menu is then stored in the hwndSysMenu variable

and subsequently will be used to send messages to the System menu window.

The first message sent is the MM.QUERYITEM message, whose purpose

is to obtain a valid MENUITEM structure for the System menu pull-down

Application Menus 233

window. The first message parameter, mpt , contains the System menu con­

stant SC.SYSMENU and a TRUE indicating that it is not necessary to sea h

all submenus. The MENUITEM structure is returned in the second mess~c e

parameter, mp2. Once we have obtained the valid MENUITEM stru 1
g

· th c ure rep-
resen~mg e system menu, we can query information regarding the current

menmtems, or change the menuitems by sending additional menu messages

The next message sent to the System menu submenu window :

MM_ Ol!ERYITEMCOUNT. This message is used to determine the numb:s

of me~u1tem.s contained within the submenu for the System menu. The num~
ber of items is returned and stored in the sNumltems variable Then c0
"t · h" th b · , i1 r every
1 e~ w1~ m . e su menu, the code enters a while loop to determine the me-

nmtem 1den~1fiers for each item by sending the MM__.ITEMIDFROMPOSITION

messa~e. Thi~ ~essage returns the menuitem identifiers based on the position

of the item w1thm the System menu.

The code that removes unnecessary system menu items is shown in F' _
ure 8.9. ig

. Figur~ 8 .10 lists ~e overall layout of the System menu including the posi­

tsons, which should give you a better understanding of how the System menu
works.

VOID SetTheSysMenu (HWND hwnd PCH szCloseitem}
(,

HWND
MENU ITEM
ULONG
SHORT
SHORT
BOOL

hwndSysMenu;
menu item;
ulMenuID;
sNumitems;
sindex = O;
bDontChangeClose = FALSE;

if (!szCloseitemJ
(

)
bDontChangeClose ~ TRUE;

II Obtai~ the system menu window handle from the identifier
II and find out how many items exist in the menu.

hwndSysMenu = WinWindowFromID(hwnd, FID_SYSMENU);

WinSendMsg(hwndSysMenu,
MM_QUERYITEM,
MPFROM2SHORT(SC_SYSMENU, FALSE),
MPFROMP((PCH) &menuitem));

sNumitems = SHORTlFROMMR(WinSendMsg(menuitem.hwndSubMenu,
MM_QUERYITEMCOUNT,

Figure 8.9 The SetTheSysMenu lunctlon. continued

234 Mastering Dlalogs, Manus, and Other PM Resources

while (sNumitems--}
{

(MPARAM)NULL,
(MPARAM)NULL));

WinSendMsg(menuitem.hwndSubMenu, ulMenuID = (ULONG)
MM ITEMIDFROMPOSITION,
MPFROM2SHORT(sindex, TRUE) ,

(MPARAM)NULL);

switch (SHORTlFROMMP(ulMenuID))
(
case SC_MOVE:
case SC_CLOSE:

slndex++;

II DO NOT REMOVE THE MOVE MENUI TEM
II DO NOT REMOVE THE CLOSE MENUITEM

break;

default: II DELETE ALL OTHER MENUITEMS
WinSendMsg(menuitem.hwndSubMenu,

MM DELETEITEM,
MPFROM2SHORT(u1MenuID, TRUE),

(MPARAM)NULL);

if (bDontChangeClose != TRUE)
{
winSendMsg(hwndSysMenu,

MM_SETITEMTEXT,
(MPARAM)SC_CLOSE,
MPFROMP(szCloseitem));

figure 8.9 The SetTheSysMenu function.

SC_SYSMENU
SC_RESTORE
sc_MOVE
SC_SIZE
SC_MINIMIZE
SC_MAXIMIZE
sc_HIDE

SysMenu Bitmap Window
SysMenu Pulldown Restore
SysMenu Pulldown Move
SysMenu Pulldown Size
SysMenu Pulldown Minimize
SysMenu Pulldown Maximize
SysMenu Pulldown Hide
SysMenu Pulldown Separator
SysMenu Pulldown Close SC_CLOSE
SysMenu Pulldown Separator
SysMenu Pulldown WindowList SC_TASKMANAGER

Figura 8.10 The composition of the system menu.

Ox8007
Ox8008
Ox8001
Ox8000
Ox8002
Ox8003
Ox802a
-2
Ox8004
-3
Ox8011

MIS_SUBMF.NU
MIS_TEXT
MIS_TEXT
MIS_TEXT
MIS_TEXT
MIS_TEXT
MIS_TEXT
MIS_SEPARATOR
MIS_ TEXT
MIS_SEPARATOR
MIS_TEXT

MIS_BITMAP
MIS_SYSCOMMAND
MIS_SYSCOMMAND
MIS_SYSCOMMAND
MIS_SYSCOMMAND
MIS_SYSCOMMAND
MIS_SYSCOMMAND

I MIS_SYSCOMMAND

I MIS_SYSCOMMAND

Appllcatlon Menus 235

After we have all of the System menu identifiers, we enter a switch state­
ment to filter out those menuitems that we want to remove and identify those
we want to keep. Since we want to keep the Move and Close menuitems, we
increment the sindex counter and break out of the switch statement. All other
menuitem identifiers are handled by the default case statement, which sends
an MM..DELETEITEM message indicating that those menuitem options are to
be removed from the System menu.

The final step in this routine involves changing the Close menuitem text.
The caller of this function can pass a string containing the text to replace the
standard Close menuitem. The code works by sending a MM_SETITEMTEXr
message for the SC_CLOSE identifier, to change the menuitem text of the
System menu Close option. If a valid value is passed in to the routine in the
szCloseltem variable, we will set the Close item text to reflect the user-passed
string. If the value passed into the routine is NULL, then we will not modify
the Close menuitem option.

Removing the System Menu Separators
The system menu contains two menuitem separators, one before the Close
menuitem and one after. The identifiers for these separators are shown in Fig­
ure 8.10. The code fragment shown in Figure 8.11 removes the separators from
the system menu. The code works by sending a MM_QUERYITEM message to
the System menu window to obtain the MENUITEM structure for the system
menu. The MENUITEM structure is needed to obtain the window handle of
the submenu. The last step involves sending two MM..DELETEITEM messages
to the submenu specifying the separator identifiers, - 2 and - 3.

Replacing the System Menu Entirely
The PMEDIT sample program also contains a routine called ReplaceTheSys­
temMenu that is used to replace the default System menu bitmap with the
old-fashioned System menu bitmap, which was a straight horizontal bar. Those

hwndSysMenu = WinWindowFromID (hwnd, FID_SYSMENU) ;
WinSendMsg(hwndSysMenu,

MM_QUERYITEM,
MPFROM2SHORT(SC_SYSMENU, FALSE) ,
MPFROMP(&menuitem)} ;

I I Window Handle
II Message
II Message Parameter 1
II Message Parameter 2

WinSendMsg (menuitem .hwndSubMenu, MM_DELETEITEM. MPFROM2SHORT(-2 , TRUE), (MPARAM)NULL) ;
WinSendMsg (menuitem.hwndSubMenu, MM_DELETEITEM, MPFROM2SHORT(-3, TRUE), (MPARAM)NULL);

Figura 8.11 Removing the system menu separators.

236 Mastering Dlalogs, Menus, and Other PM Resoun:es

of you familiar with the OS/2 l .x PM or Windows 3 .x graphical user interface

will remember this System menu. The OS/2 2.x Presentation Manager keeps

this bitmap around for compatability with previous versions.

This routine not only changes the actual System menu bitmap, but also

does pretty much the same thing as the SetTheSysMenu routine by removing

all unnecessary System menu items. It accomplishes the same goal through a

totally different route; it starts with no System menu, then adds values for the

Move and Close menuitems, SC.MOVE and SC_CLOSE respectively.

The routine starts by obtaining an object window through a call to Win­

QueryObjectWtndow. We need to have an object window to set the actual

System menu pull-down's parent, since the System menu pull-down is not a

child of the frame, but is owned by the System menu. It is important to under­

stand the window relationship in the entire System menu. The System menu

bitmap window is owned by and is a child of the frame window. The system

menu puU-down window is owned by the System menu bitmap window and

is a child of our object window that we obtain from the desktop. The System

menu bitmap window has a sibling window, the title bar window. The handle

of the tide bar window is obtained by calling WinWindowFromID with the

frame identifier FIO_TITLEBAR; the handle is stored in the HWND variable

hwndSibling.
For backward compatibility, the current versions of PM still maintain all

of the older system bitmaps. They can be found in the PMWIN.H header file,

prefixed SBMP, along with all of the current System bitmaps. To implement

our 1.x system menu bitmap, we obtain the handle to the bitmap by calling

WinGetSysBitmap with the SBMP _OLD-SYSMENU value.

The next steps involve actually populating the MENUITEM data struc­

tures and adding them to our newly created menu windows via calls to

MM-1NSERTITEM. The code for this is given in Figure 8.12.

VOID ReplaceTheSystemMenu(HWND hwnd.Framel

(
HWND hwndSysMenu;
HWND hwndPullDown;
HWND hwndObject;
HWND hwndSibling;
HBITMAP hbm;
MENUITEM menuitem;
CHAR szMoveText(] = "-Move\tAlt+F7";

CHAR szCloseText(] = ·-close Product Information\tAlt+F4';

hwndObject = WinQueryObjectWindow(HWND_DESKTOP);

hwndSibling - WinWindowFromID(hwndFrame, FID_TITLEBAR);

hbm • WinGetSysBitmap(HWND_DESKTOP, SBMP_OLD_SYSMENU);

Figure 8.12 The ReplaceTheSystemMenu function. continued

hwndSysMenu - WinCreateWindow(hwndFrame,
WC_MENU,
NULL,
MS_ACTIONBAR
o, 0, 0, 0,
hwndFrame,
hwndSibling,
FID_SYSMENU I
NULL,
NULL) ;

I MS_TITLEBUTTON,

hwndPul lDown = WinCreateWindow (hwndob· t Jee ,
WC_MENU,
NULL,
NULLHANDLE,
0, 0, o, o.
hwndSysMenu,
HWND_BO'I'TOM,
FID_SYSMENUPOP,
NULL,
NULL)

II Populate MENUITEM structure
menuitem. iPosition - MIT END·

menu~tem.afStyle = MIS=BI~ I MIS_SUBMENU;

menu7tem . ~fAttribute = NULLHANDLE;

menu1tem.1d = SC SYSMENU·

menuitem.hwndSubMenu _ h~dPullDo~ ·

menuitem.hitem = hbm; '

WinSendMsg(hwndSysMenu, II .
MM_INSERTITEM, Window Handle to send message to

II Menu Message
&menuitem, II mpl = MENUITEM struct ure

NULL); II mp2 - Text f M ·
menuitem.iPosition =MIT END· - or enu1tem

menu~tem.afStyle = MIS=TEXT I MIS SYSCOMMAND·

menu1tem.afAttribute = NULLHANDLE· - '

menuitem.id = SC MOVE· '

rnenu~tem.hwndSubMenu = NULLHANDLE;
rnenu1tem.hitem = NULLHANDLE;

WinSendMsg(hwndPullDown,
MM_INSERTITEM,
&menuitem,
szMoveText) ;

II Window Handle to send message to
I I Menu Message
II mpl = MENUITEM structure
II mp2 =Text for Menuitem

menuitem.id = SC CLOSE·
WinSendMsg (hwndPullDown - / i .

MM INSER ' Window Handle to send message to
- . TITEM, I I Menu Message

&rnenu1 tern, I I mpl - MENUITEM t - s ructure
szCloseTextJ ; II mp2 =Text for Menui tem

figure 8.12 The ReplaceTheSystemMenu function.

Application Menus 237

238 Mastering Dialogs, Menus, and Other PM Resources

The Action Bar Menu
The most important type of menu in an application is the action bar menu.
It provides the user with choices that will execute the functionality of the
program. Each option on the menu corresponds to a WM.COMMAND message
that contains the instructions that the menu item will perform when selected.
Figure 8.13 is the action bar menu for the PMEDIT sample program, where you
can see that the File submenu has been selected, thus revealing the pull-down
list of menuitems.

The sample application shown in this figure contains several submenus,
including File and Edit. The submenu is generally not used to perform an
application function, but rather to display additional menu item choices that
will associate with a given function. The File submenu in this figure contains
six menuitems that perform functions that are related to file operations such
as opening a file and saving a file.

An action bar menu is usually defined as a resource in the resource script
file and then built into the executable. A menu is identified in the resource file
by the MENU keyword. Figure 8.14 is a sample of the action bar menu used
in the PMEDIT sample. The action bar menu is included as part of the frame
window by including the FCF .MENU frame creation flag when creating the
frame window. The identifier specified in the MENU template in the resource
file should correspond to the frame window identifier.

An application can choose to selectively create and load a menu by dy­
namically creating a menu by populating a MENUTEMPLATE(MT) structure
in memory, and then create a window of the WC.MENU class.

f'ctlmriOPnlilmriWflLE•DIR /A /S /8 $•
DOSKEY EDIT•QBASIC/ EDITOR $•
1rem SET DIRCMD•/A
@SET ETC•e:,tcpip'dos,etc
SET BI.ASTER•A220 15 Dl HS P330 T6
SET SOUND•E:,BI.ASTER
SET MIDI •SYNlli: l MAP :E
rem E:'1ll.ASTER'DIAGNOSE /S
E :'BI.ASTER'5B16SET / P / Q
@SET ETC•e:,tcpip'dos'9tc

Figure 8.13 A sample action bar menu.

Application Menus 239

MENU ID_MAINWINDOW PRELOAD

SUBMENU "·File', ID_FILEMENU, MIS_TEXT
{
MENUITEM •create a -New File•,
MENUITEM 'Open a File .. . \tF5",
MENUITEM SEPARATOR
MENUITEM ·-save\tF7",
MENUITEM "Save -as ... \tFB",
MENUITEM SEPARATOR
MENUITEM "Search ... \tF9",
MENUITEM "Exit PMEdit\tFJ" } ,

SUBMENU • -Edit. I
{

MENUITEM ·-undo\tAlt+Backspace•,
MENUITEM SEPARATOR
MENUITEM 'CU·t\tShift+Delete•
MENUITEM •-copy\tCtrl+Insert•'.
MENUITEM "-Paste\tShift+Insert•,
MENUITEM SEPARATOR
MENUITEM "Cl-ear\tDelete• } ,

IDM_FILENEW
IDM_FILEOPEN

IDM_FILESAVE
IDM_FILESAVEAS

IDM_FILESEARCH
IDM_EXIT

ID_EDITMENU, MIS_TEXT

IDM_EDITUNDO

IDM_EDITCUT
IDM_EDITCOPY
IDM_EDITPASTE

IDM_EDITCLEAR

Figure 8.14 Sample of PMEDIT's action bar menu definition.

typedef struct mt // mt
{ -

ULONG ulLength;
USHORT usCodepage;
USHORT reserved;
USHORT cMti ;
MTI rgMti (l] ;

} MT;
typedef MT *LPMT;

II Length of template in bytes
11 Codepage
II Reserved
II Count of template items
II Array of template items

Figure 8.15 The menu template structure MT.

. The MENUTEMPLATE structure that is defined in PMWIN His sh ·
Figure 8.15. . own m

• u!Length is the length of the menu template in bytes.
• usCodepage represents the code page used for the menu
• reserved is reserved. ·
• cMti is the total number of items in the template.

240 Mastering Dialogs, Manus, and Other PM Resources

• rgMti[l] is an array of template items based on a menu template item
structure MTI.

When a menu window is created by calling WlnCreateWindow with the
WC.MENU window class, the control data structure, specified by the pCtlData
parameter of WinCreateWlndow, should contain the menu template. Although
using this method for creating a menu is not as simple as using the menu
resource, it does provide more control for maintaining multiple menus.

The menu can be loaded dynamically by calling the WinLoadMenu API and
sending menu messages to the window to change the menuitems. Menuit~m
messages are signified in PM by the prefix MM_. The ToggleMenultem routme
uses several of these messages to dynamically update the menuitems for the
PMEDIT action bar menu. The format of the WlnLoadMenu API is given in
Figure 8.16.

The actual menu window code processes most messages needed for the
menu so that maintaining a menu is relatively simple; the developer does not
have to send paint messages to the frame for handling menu code. There are
instances when creating or loading a menu window may require updating the
frame window. This can be done by sending a WM_UPDATEFRAME message
to force the frame to update the menu, after the menu has been modified.

Adding an Action Bar Menu to a Dialog Box
The purist PM programmer views the dialog box as a functional frame window
that automates several of the complexities involved in frame window process­
ing. Most dialogs are used as a simple user input mechanism, or as a vehicle
to display information to the user. If complex drawing is required within the
window, a dialog does not offer the flexibility of a frame window.

Therefore, most applications will create their own frame window by call­
ing the function WinCreateStdWindow, and since most applications do not
require additional action bar menus, there is usually no need to add one to
a dialog window. Many purists believe that to add a menu to a dialog win­
dow contradicts the purpose and functionality of the dialog box because it is
not intended to provide that type of interface. However, if you are writing a
simple utility program that really doesn't do much, it may be easier to use a
dialog window instead of a frame because of the various advantages offered
by the dialog manager code within PMWIN (the code for which resides in
PMMERGE.DLL in OS/2 WARP). Fortunately, adding an action bar menu to

HWND APIENTRY WinLoadMenu(HWND hwndFrame ,
HMODULE hmod ,
ULONG idMenu) ;

Figure 8.16 The WinLoadMenu API.

MENU ID_DIALOOMENU
{
SUBMENU "~File•,

{

}

MENUITEM •Run Chkdsk • ,
MENUITEM "Exit This Dialog',

ID_FILEMENU

IDM_CHKDSK
IDM_EXITDLG

Figura 8.17 The menu template for a dla log box.

Appllcatlon Menus 241

a dialog is a relatively p~inless task. Besides, the differences between a dialog
and a standard frame wmdow are transparent to the application user.

To add an action bar menu to a dialog, define a MENU template in the
resource script file as you would for any action bar menu. For this menu, do
not use the same resource identifier as the frame window. The code is given in
Figure 8.17.

The dialog procedure for the dialog box has to explicitly load the menu
by calling the WinLoadMenu function, specifying the identifier for the di­
alog menu, which in this case is ID_DIALOGMENU. The procedure loads
the menu as part of the initialization of the dialog, during the processing
of the WMJNITDLG message. Once the menu is loaded, you must send a
WM_UPDATEFRAME message to notify the frame window that the menu is
added. The code fragment in Figure 8.18 is a dialog procedure that loads the
action bar menu.

MRESULT EXPENTRY Di alogMenuDlgProc (HWND hwnd, ULONG msg, MPARAM mpl , MPARAM mp2)
(
switch (msg)

{

}

case WM_INITDLG:
WinLoadMenu (hwnd, NULLHANDLE, ID_DIALOGMENU);
WinSendMsg (hwnd, WM_UPDATEFRAME, 0,0);
break;

case WM_COMMAND :
switch (COMMANDMSG(&msg)->cmd)

{

case DID_OK:
WinDismissDlg (hwnd, TRUE)
break;

break ;

return WinDefDlgProc (hwnd, msg, mpl , mp2) ;
}

Flglll8 8.18 Adding an action bar menu to a dialog window.

D

242 Mastering Dialogs, Menus, and Other PM Resources

MENU ID_MAINWINOOW PRELOAD
(

PRESPARAMS PP_MENUFOREGROUNDCOLORINDEX, CLR_RED

SUBMENU ·-classes•,

MENUITEM "-Math . . . \ tF5",
MENUITEM · -science . . . \ tF6',
MENUITEM · ~Reading . . . \ tF7',

}

Figure 8.19 Changing the colors of a menu.

Using Presentation Parameters In Menu Templates

ID_OPTIONS, MIS_TEXT

IDM_MATH
IDM_SCIENCE
IDM_READING

It is possible to change the presentation parameters for a menu window like
if an application ever has a need to change the colors of an action bar menu.
However, changing the presentation parameters for a menu window is not
advisable, and contradicts CUA interface guidelines. The action bar menu,
should be consistent among all PM applications, and the user should be re­
sponsible for configuring the appearance of the action bar menu. However,
if the environment that you are developing the application for is specific to a
defined set of users, it may be acceptable to change the menu colors to provide
a simple customized interface. For example, if you are writing an application
that will be the only application a user will ever run on their machine, like a
machine used to control a plant-floor environment, the user will likely never
use the workplace shell or any other application. So if you absolutely must,
here is how it is done. The code fragment shown in Figure 8.19 changes the
foreground color of the action bar menu and all of the menuitems.

POPUP MENUS

There are times that your application may need additional menu functionality
outside the context of the action bar menu. For example, applications that cre­
ate workplace objects that will interface with other objects will require a menu
specific to that object. In this case, a popup menu provides the functionaHty
for a particular object, since the menu is specific to that object. The popup
menu is an integral part of the Workplace Shell paradigm, as it allows every
object to have a unique menu. The format of the WinPopupMenu function is
given in Figure 8.20.

BOOL APIENTRY WinPopupMenu(HWND
HWND
HWND
LONG
LONG
LONG
ULONG

hwndParent,
hwndOwner,
hwndMenu,
lx,
ly,
idrtem,
usOptions) ;

Figure 8.20 The WlnPopupMenu prototype.

Popup Menus 243

• ~e hwndParent parameter is the window handle representing the parent
wmdow.

• ~e hwndOwner parameter is the window handle representing the owner
wmdow.

• The hwndMe~u is the window handle representing the popup menu. The
popup menu Is typically created through the use of the WlnLoadMenu
A~I. The window handle returned by WinLoadMenu corresponds to this
wmdow handle.

• The Ix ?arame~er is the x coordinate representing the position of the popup
menu m the window based on the origin of its parent window.

• The ly ?ararne~er is the y coordinate representing the position of the popup
men~ m the wmdow based on the origin of its parent window.

• The 1dltem parameter represents a menuitem identifier within the popup
menu that can be selected based on whether the PU_POSITIONITEM flag
or the PU.SELECTITEM flag is set in the usOptlons parameter.

• The us?J>tions parameter contains a series of flags that are combined to
determm~ or set the position of the popup, the initial popup menu state,
the selection state, as well as the horizontal or vertical constraints of the
popup. There are also flags that determine the user input method that can
be used to control the popup menu.

The WlnPopupMenu function returns TRUE if the function is successful
and FALSE if an error occurred. Figure 8.21 lists the valid option flags for
usOptions.

Creating the Popup Menu

Adding a popu~ menu to your application is extremely simple. For the most
part, the menu Is constructed the same way as a standard action bar menu in

the_ resour~e script file. The code fragment in Figure 8.22 from the resource
scnpt file is used to create the popup menu and the code fragment in Figure
8.23 loads the popup menu.

244 Mastering Dialogs, Menus, and Other PM Resources

II Popup Menu position flag
PU_POSITIONONITEM

JI Popup Menu constraint flags
PU_HCONSTRAIN
PU_VCONSTRAIN

/I Popup Menu initial state flags
PU_NONE
PU MOUSEBUTTONlDOWN
PU-MOUSEBUTTON2DOWN
PU=MOUSEBUTTON3DOWN

II Popup Menu selection flags
PU_SELECTITEM

II Popup Menu user input method flags
PU MOUSEBUTTONl
PU-MOUSEBUTTON2
PU=MOUSEBUTTON3
PU_KEYBOARD

figure 8.21 The WinPopupMenu option flags.

MENU ID_POPUPMENU
{

SUBMENU "Change -Attributes",
{

)

MENUITEM "-Normal",
MENUITEM "-Bold",
MENUITEM "-Italic" ,
MENUITEM "-Underline",

SUBMENU "Change Text -Colors ' ,

)

{
MENUITEM 'Default",
MENUITEM "Red' ,
MENUITEM ' Blue•,
MENUITEM 'Green•,
MENUITEM "Yellow•,

)

MENUITEM SEPARATOR
MENUITEM ·-settings ... •,
MENUITEM "-Exit PMEDIT",

Figure 8.22 Defining the popup menu.

OxOOOl

Ox0002
Ox0004.

OxOOOO
OxOOOB
Ox0010
Ox0018

Ox0020

Ox004.0
Ox0080
Ox0100
Ox0200

ID_ATTRIBS,,MIA_NODISMISS

IDM_NORMAL,,MIA_CHECKED
IDM_BOLD
IDM_ITALIC
IDM_UNDERLINE

ID_COLORS,

IDM_DEFAULT
IDM_RED
IDM_BLUE
IDM_GREEN
IDM_YELLOW

IDM_SETTINGS
IDM_EXIT

Popup Menus 245

MRESULT EXPENTRY MLESubclassProc (HWND hwnd, ULONG msg, MPARAM mpl, MPARM mp2)
{

MRESULT re;
ULONG ulOptions;
POINTL ptlCurrent;
CHAR szFont[30J;

static HWND hwndPopup;

II if the user presses the first mouse button anywhere in the MLE obtain
II the position of the cursor and update the line numbers.
if (msg == WM_BUTTONlDOWNJ

{

re= ((*OldMLEProcJ (hwnd, msg, mpl, mp2)J ;
UpdateLineNumbers(J;
return re;

)

else if (msg == WM_BUTTON2DOWN)
{

WinQueryPointerPos(HWND_DESKTOP, &ptlCurrentJ ;
WinMapWindowPoints(HWND_DESKTOP, hwnd, &ptlCurrent , lJ ;

if (hwndPopupJ
{

WinDestroyWindow(hwndPopupJ;
)

hwndPopup = WinLoadMenu (hwnd, NULLHANDLE, ID_POPUPMENUJ ;

ulOptions = PU_NONE I PU_MOUSEBUTTONl I PU_KEYBOARD I PU_HCONSTRAIN I PU_VCONSTRAIN;

II set the font of the popup menu
strcpy(szFont, '8.Courier");
WinSetPresParam(hwndPopup, PP_FONTNAMESIZE, sizeof(szFont + l, szFontJ;

~~
n...rtient,
~.
ptlOD:raE.x_
ptl.On:nat.y,
0,
ulcpti01S);

11 Pma1t WiDtbr is JU:
11 omsr is Climt wlDbr
11 'Nlnbr hmdl.e Qf 11qq> Mem.
11 x ooontimt=e
II y coordinate
II Itan~ty
II~ 1"lags

return ((*OldMLEProcJ (hwnd, msg, mpl, mp2)J;
J

else

)

{

return ((*OldMLEProc) (hwnd, msg, mpl, mp2));
)

Figure 8.23 Using the WinPopupMenu API.

24& Mastering Dialogs, Menus, and Other PM Resources

ACCELTABLE ID_MAINWINDOW PRELOAD
{
VK_F2 , IDM_ABOUT , VIRTUALKEY
VK_F3, IDM_EXIT, VIRTUALKEY
VK F5, IDM_FILEOPEN, VIRTUALKEY
VK_F7, IDM_FILESAVE, VIRTIJALKEY
VK_F8 , IDM_FILESAVEAS, VIRTIJALKEY
VK_F9, IDM_FILESEARCH, VIRTUALKEY

Figure 8.24 The Accelerator Table.

KEYBOARD ACCELERATORS
Making an application menu cooperate with the keyboard is an i.mportan.t part
of designing a successful user interface. End users .often associate part~cular
functions with keys more easily than they can. navigate thro.ugh menmtems.
Therefore, it is critical to provide a corresponding keyboard interface to your
application menu. This functionality is known as the keyboard accelerator
table. Essentially a keyboard accelerator is a shortcut key that allows the user
quick access to the function of a particular menuitem. Since the accelerator
represents a particular menuitem, it is important that the accelerator key make
sense to the user selection.

It has become programming commonplace ~o. reserve the.Fl ~nd F3 func-
tion keys for the specific functions Help and Exiting the application. (Consult
the Common User Access (CUA) guidelines for complete keystroke recommen-
dations.) . The easiest way to use keyboard accelerators is. to specify th~ keyboard
accelerator table as a resource in the resource script file, then mclude the
resource when creating the frame window by using the frame control flag
FCF.ACCELTABLE. Figure 8.24 is a sample ACCELERATOR table from the
PMEDIT resource script file .

MENU MNEMONICS
OK this is definitely a tongue twister. Try saying menu mnemonics five ti~es
reaiiy fast. Trust me, Menu Mnemonics are far easier to implement than having
to say menu mnemonics. Although they are often ta~en for gran~ed, and some
users don't know what they provide, menu mnemonics offer a simpl~ me~hod
for obtaining access to menuitem functions. The mnemonic keys are identified
by an underscore character in one letter of the menu. The user ca~ use make
a selection with the keyboard quicker by pressing the mnemomc k~y as a
shortcut. A mnemonic key on an action bar menu is accessed by pressmg the

MENUITEM · -save\tF7" ,
MENUITEM 'Save -as ... \tFS',

Figure 8.25 MenuMnemonlcs.

IDM_FILESAVE
IDM_FILESAVEAS

Standard Dialogs 247

key in conjunction with the Alt key. From a pulldown menu the user only
n~eds to press the mnemonic key to make the selection from the keyboard.
Like the accelerator keys, mnemonics need to make sense to the user. The
mnemonic keys are defined by using a tilde character before the key to be
used as a mnemonic in the menu. For example, the fragment shown in Figure
8.25 defines the mnemonic key "s" for the File/Save and "a" for File/Save as
menuitems.

STANDARD DIALOGS

Virtually every PM application will somehow manipulate a file to perform
some function within the application. The need to open and save files to a
fixed disk prompted the development of a common user interface so that
users could immediately become familiar with the opening and saving of files
without be_ing _dependent on the application to provide the interface. Similarly,
most apphcatlons that make heavy use of text or graphics need to provide
an interface to the user to change fonts. Because of these demands, OS/2 2.0
introduced two new standard dialog windows, the standard file dialog, and the
standard font dialog. We will focus primarily on the standard file dialog here.
The standard font dialog is covered in detail in Chapter 16.

The Standard File Dlalog
In previous versions of the Presentation Manager, it was up to the programmer
to provide the interface for manipulating files to the user. In order to do this,
the developer had to manually create dialog boxes with listbox and pushbutton
controls, and then call file system functions such as DosQu.eryCurrentDisk,
DosQu.eryCurrentDir, and DosFindFirst to fill the listboxes with the proper
drive, directory, and file information. Therefore, almost every PM application
available to the user had a different look and feel for opening and saving files.
~I though many file dialogs were elaborate, it took a great deal of programming
time and effort on the part of the developer to provide a simple interface to
the user.

The standard file dialog requires little coding on the part of the developer,
and it is also simple to use. To create the standard file dialog, the developer
simply calls one API, WinFileDlg, and passes a pointer to a structure called
FILEDLG, which contains all of the options available for the standard file
dialog. The programmer also specifies the parent and owner windows, when

248 Mastering Dialogs, Menus, and Other PM Resources

calling WinFileDlg. The standard file dialog (SFD) can be used for either

opening or saving a nonnamed file . These functions usually correspond to an

Open or Save As option within a File submenu. The PMEDIT program uses

the standard file dialog for both the Open and Save As functions.

The SFD is an extremely powerful dialog window, since it can be cus­

tomized to accommodate the needs of the user. It may contain a help pushbut­

ton, include extended attribute information, and it can even allow for multiple

file selections. An example of the standard file dialog is shown in Figure 8.26.

The routine StandardFikDialog is called from within both the FileOpen

and FileSaveAs routines, based on the specific type of dialog required for

either opening or saving a nonnamed file. This routine takes parameters that

coordinate the appearance of the standard file dialog by filling in the important

elements of the FILED LG structure.

The routine initially sets all of the elements of the structure to zero by

calling the memset function, then calls WinFileDlg to draw the file dialog.

The important elements of the FILEDLG structure that are specific to the

appearance of our file dialog are filled in based on the parameters passed to

StandardFileDialog. Specifically, we are interested in the title bar text of the

dialog, the OK pushbutton text, and the flags that indicate whether an Open

or Save As dialog is required. The final parameter is the filter parameter that

tells the file dialog with which filetype extensions to filter the file listbox. This

is useful when programs that only work with a specific filetype only want

the user to see files of this type. For example, a graphics program may only

want to fill the file listbox with .BMP files, rather than every single file in a

l'l·IEDI I - Op e 11 ;i r ex t File

Open filename:

!ELVIS.TXT

Type of file: Drive:

!r-< Al-1 F-11-es->-------.....-.l ~ ll_D: _____ ~l~I

File: Directory:
.--~~

~~~~
~~~~

..,.
.--,

DORl.TXT a O:\

HYMAN.TXT
STAN.TXT

a book
a chap98
a FILES

u

~U~R_l.T_X_T~~~~~~--.·J....-r
-~~~~~~~~~J

-

Qpen 11 Cancel I

Figure 8.2& The Open File standard file dialog.

L ' ~

Standard Dialogs 249

HWND APIENTRY WinFil eDlg (HWND hwndParent ,

HWND hwndOwner,
PFILEDLG pfil edlg) ;

Figure 8.27 The WlnFlleDlg prototype.

given directory; this makes sense since onl BMP fi .

program. Figure 8.27 has the function y . £ les will be read by the

the PMSTDDLG.H header file. prototype or WinFileDlg as defined in

: z:;f'arent ~s the w~ndow handle of the parent window.

• ~er is. the window handle of the owner window

pfiledlg is a pomter to a file dialog structure FILEDLG . .

The WlnFileDlg API will return a val·d . d

standard file dialog if the FDS..MODELES~ ~m ow han~le repre~en~ing the

the dialog is to be modeless. If the FDS...MOg;~ spec1fie~, md1catmg that

then the function will return TRUE 'ft ESS flag is not specified,

less of whether the FDS...MODELE~S ~ ca~l completes successfully. Regard­

NULLHANDLE if th d' 1
ag ts set, the function will return a

. e ia og cannot be created successfulJ

. FiThe file dialog structure FILEDLG is defined in PMs'frioLG H h

m 1gure 8.28.
. as s own

typedef struct FILEDLG
{ - // filedlg

ULONG cbSize;
ULONG fl ;
ULONG ul user;
LONG !Return;
LONG lSRC;
PSZ pszTitle;
PSZ pszOKButton;
PFNWP pfnDl gProc;
PSZ pszIType;
PAPSZ papszITypeList;
PSZ pszIDrive;
PAPSZ papszIOriveList;
HMODULE hMod;
CHAR szFullFi~e{CCHMAXPATH];
PAPSZ papszFQF1lename;
ULONG ul FQFCount;
USHORT usDlgid;
SHORT x;
SHORT y;
SHORT sEAType;

} FILEDLG;
typedef FILEDLG FAR *PFILEDLG;

Figure 8.28 The FILEDLG structure.

250 Mastering Dialogs, Menus, and Other PM Resources

• cbSize is the size of the FI~E~teGd~:ct~::~. The flags are used to control
• The -fl. element represents ~i~r of the :tandard file dialog. There are two

the appearance and beha . 0 en SFD and the Save As SFD.
basic types of standard file dialogs, t?e . 1 th FDS OPEN DIALOG or
Therefore, this parameteflr muy,st contai~ :pite~rfy a~ least- one of these flags,
FDS_SAVEAS...DIALOG ag. ou mus
but you cannot specify both.

All of the file dialog flags are listed here:

OxOOOOOOOlL The use of this flag indicates that the di.a-
FDS_CENTER 1 will be positioned in the center of its

;:rent window. The use of this flag ~ill su­
percede any specified x and y coordinates.

Ox00000002L This flag is used to override the default
FDS_CUSTOM appearance of the SFD by all~wing the

application to define a custom dialog tem­
plate that wiU be used to replace the SFD.
If this flag is used, the bMod and ~DlgID
fields of the structure must be vahd.

Ox00000004L This flag is used to control the filtering of
FDS_FILTERUNION the FILES listbox. If this flag is set, the

SFD uses a "unionn of the EA type filter
specified by pszlType and the string filter,
which can be specified in the szFullflle

FDSJIELPBUTTON Ox00000008L

FDS...APPLYBUTION OxOOOOOOlOL

character array.
This flag is used to add a Help pushbut­
ton to the SFD. The pushbutton is created
using the BS-HELP 1 BS..NOPOINTER
FOCUS button styles by default, and a
WMJIELP message is sent to the ~wner
window specified by hwndOwner, m t~e
call to WlnFileDlg. The Help pushbutton s
identifier is defined as DID_HELP _pB.
This flag is used to add an Apply button to
the dialog. The purpose of the Apply but­
ton is to allow the user to view the change.s
made through the use of the standard di­
alog without actually dismissing the stan­
dard file dialog. Essentially, it performs
the same functionality that ~he ?~ push­
button performs, without d1sm1~smg the
dialog. This button is typically desig~ed .for
the modeless SFD, since the apphcat1on

FDS_pRELOAD.VOLINFO Ox00000020L

FDS-.MODELESS Ox00000040L

FDS-1NCLUDE_EAS Ox00000080L

FDS_OPEN_DIALOG OxOOOOOlOOL

FDS_SA VEAS...DIALOG Ox00000200L

FDS-.MULTIPLESEL Ox00000400L

FDS_ENABLEFILELB Ox00000800L

Standard Dialogs 251

input is not tied to the standard file dialog
when using a modeless window; therefore,
the user can move back and forth between
the SFD and the window.
The use of this flag allows the SFD to
preload the volume information for the
drives, and also to set the current default
directory for every drive.
This flag is used to make the standard file
dialog a modeless dialog window.
This flag is used to force the dialog to
search for extended attribute information
every time it populates the FILES listbox.
This flag is used to indicate that the SFD
is an Open dialog.
This flag is used to indicate that the SFD
is a Save As dialog.
This flag is used to give the user the abil­
ity to select multiple files from the FILES
listbox.
This flag is used to allow the FILES listbox
on a Save As SFD to be enabled.

• The ulUser element is reserved for use by the application. This field is
useful for applications that will end up subclassing the file dialog.

• The /Return element is the actual value returned when the dialog is dis­
missed. If an error occurs during the processing of the dialog, this field is
set to zero. Otherwise, the pushbutton identifier used to dismiss the dialog
is returned.

• The ISRC element is the system return code. This element is used to provide
more detailed information with regard to why the SFD failed. Figure 8.29
lists the return codes defined in PMSTDDLG.H.

• The psi.Title element is used to set the title of the standard file dialog
window.

• The pszOKButton element is used to set the pushbutton text for the DID _OK
pushbutton.

• The pfnDlgProc value represents a dialog window procedure that is to be
used if the application is subclassing the standard file dialog. If this element
contains a value, then the value should point to the dialog procedure that
will handle the standard file dialog; otherwise, this value is set to NULL
to indicate that the defualt standard file dialog procedure will do all of the
dialog processing.

,-
~

252 Mastering Dialogs, Menus, and Other PM Resources

FDS SUCCESSFUL
FDS=ERR_DEALLOCATE_MEMORY
FDS ERR FILTER_TRUNC
FDS-ERR=INVALID_DIALOG
FDS=ERR_INVALID_DRIVE
FDS_ERR_INVALID_FILTER
FDS ERR INVALID_PATHFILE
FDS-ERR=OUT_OF_MEMORY
FDS- ERR PATH_TOO_LONG
FDS=ERR=TOO_MANY_FILE_TYPES
FDS ERR INVALID_VERSION
FDS-E~INVALID_CUSTOM_HANDLE
FDS=ERR_DIALOG_LOAD_ERROR
FDS_ERR_DRIVE_ERROR

0
1
2
3
4
5
6
7
8
9
10
11
12
13

flture 8.29 The standard file dialog system retum codes.

. · t r to the EA type filter.
• The psdfype element con~~uns a pomh:t complex element. It is actually a
• The papszlTypeList valu~ is a :mew esent the extended attribute types.

pointer to a table of pomters at repr d "ffi rent EA type and is actually a
Every pointer in the ~ableT~pre~f n!-5 a n'cl~ded with a NULL pointer. The
NULL-terminated st~mg. ~~a e ~co. the 'fype of file combobox.
EA types are sorted m as~en mg .0 er m tring that represents the initial

• The pszlDrive value contains a pomter to a s

drive. . . . ointer to a table of pointers repre-
• The papszlDnveList element _cont~m~ p table is a NULL-terminated string

senting the drives. Ealv"edrydp.mnt;,rh: dri:e table specified will be sorted in that represents a v 1 nve.
d. d ·0 the "Drive" combobox. d" 1 ascen mg or er 1 th DLL odule containing the ia og

• The hMod p~ramete~ repre!:~: if t~e FDS~USTOM flag has been spec-
resource. This value is only

1
. d" t that the dialog resource is to be ified. A NULLHANDLE va ue m tea es

extracted from the executab~e. of CCMMAXPATH size. Prior to
• The szFullFile element specifies an .array t . containing the file filter ex­

calling WinFileDlg this valu~ ~ontams a s :~1T only need to search for files
tension. For exampl~, a grap ichs prfuogr~.m completes this value contains

'th BMP extens10n. After t e nc ion '. wi a · h d fil me of the user selection.
the fully qualified pat an . e na t table of pointers leading to fully-

• papszFQFilename is th~ pomte~ o a d t SFD's that provide for mul­
qualified file names. This value ~s retu~e o ce allocated by the file
tiple selections. This table of po~n~e~s is stor~!: :a saving all of the files,
dialog. When the application msh es;p~FtleDlgLlst API to free the
the calling application must ~se t e m

memory allo~ated by thbe filef~1tl~~at the user selected. Obviously, a single
• ulFQFCount is the num er o e f

selection standard file dialog will return a value o 1.

Dlalog Boxes 253

• usDlgID is used only if a custom dialog template is requried for the stan­
dard file dialog. If the FDS_CUSTOM file dialog style is set, this value
contains the window identifier of the representing the customized dialog
template.

• x; is the horizontal position coordinate. The FDS_CENTER flag overrides
this position and will automatically center the dialog in its parent.

• y; is the vertical position corrdinate. The FDS_CENTER flag overrides this
position and will automatically center the dialog in its parent.

• sEAfype is the extended-attribute type and is only used for the Save As
standard file dialog. This element will contain a - 1 value for an Open
standard file d ialog.

DIALOG BOXES

As a PM developer, you should already be familiar with many of the intricacies
involved in creating and processing a dialog box. Therefore, since you already
know how to display dialog boxes and process messages in a dialog window
procedure, we will only review some of the more in teresting dialog box issues.
A dialog box is a special type of defined frame window, designed to provide the
user with most of the functionality of a frame window, while being far easier
to create. The dialog box itself is used to display information to the user or
obtain information from the user. On occasion, it may be more practical to use
a dialog window rather than create a frame window via WinCreateStdWindow
as the main window of your program. This depends entirely on what the main
window must do. After all, dialogs provide a tremendous benefit to application
programming, since they automate much of the window processing code.

The dialog box will generally contain other control windows drawn within
its client area. This is where much of the benefit of the dialog box can be
obtained, as the complex control window processing is virtually eliminated.
The control windows used within the dialog box are created through the use
of the dialog template, and most of the processing for the controls is done au­
tomatically. The dialog manager code within the window manager (PMWIN)
is responsible for creating, sizing, and setting the position of the control win­
dows. The dialog box template is created in the resource script file via the
DLGTEMPLATE keyword.

Processing the WMJNITDLG Message
The WM_INITDLG message is the dialog window equivalent of WM_CREATE.
The first message parameter, mp 1 contains the window handle of the control
window that will initially receive the input focus within the dialog. Typically,
this window handle corresponds to the first control window that specifies the
WS_TABSTOP window style. If an application needs to modify the focus win-

254 Mastering Dialogs, Menus, and Other PM Resources

. another control window within the dialog, it c~ change dow to change 1t to WMJNITDLG message. However, 1f the fo­
the focus within t~e .context of the. f the WMJNITDLG, the message must
cus is changed w1thm the procfes~~i ~s used to indicate that the default focus
return TRUE. A retu~ value o T l f FALSE indicates that the focus was
has been changed while a ~etum v~l~:~t occur unless the processing of the
not changed. The focus c ange ;UE The second message parameter, mp2
WM-INITDLG message r~tu~s .. c data that can be passed in the pCre­
contains a pointer to application specififu . WinLoadDlg WinCreateDlg,

f th d . 1 gbox nctions: • ateParams parameter o e ~a o . lo tern late.
and WinDlgBox. Figure 8.30 1~lu~~tes a ~a~~l~i~:g :ox in~tead of creating a

Another of the benefits ~enve om usm vides a comprehensive keyboard
frame window is that the d1al?j ma:ager p~~e ability to navigate through the
interface. This interface ~rovi e~ t e us~r e b usin the Tab key and the
various controls on the dialog w1thh:e~::,:~oea;r d~es no~ have to implement
cursor movement (ai:o.w) kefysh. Tk b d ·~put focus when the user presses code to handle the sh1ftmg o t e ey oar 1

a key on the keyboard.

Understanding TabStops and Groups
. d fr m usin a dialog box instead of creat­One of the biggest benefits denve 0 g d · PMWIN provides a

ing a frame window is t~at the dialo~ ~~~:fa~e c~o:i~:s the user the ability
comprehensive keyboard mt~rface. T~~l: on the dialog with relative ease by
to navigate through the vanous con t (arrow) keys The developer does using the Tab key and the cursor movemen .

DLGTEMPLATE ID_SEARCH LOADONCALL MOVEABLE DISCARDABLE
{

75 250 100 FS NOBYTEALIGN I WS_VISIBLE, DI1'LOG ' PMEDIT - Text Search Facility', ID_SEARCH, 75 • ' ' ' FCF_SYSMENU I FCF_TITLEBAR

}

LTEXT
ENTRYFIELD

LTEXT
ENTRYFIELD

•Search For: '

'Replace with:'

AIJTOCHECKBOX •case sensitive',
DEFPUSHBUTl'ON "·Find'
PUSHBUTl'ON ' -Replace•
PUSHBUTI'ON • -Cancel.

}

flpre 8.30 sample dialog box template.

- 1, 25, 70, 55, 8
IDE_SEARCHTEXT, 95, 70, 60. 8, ES.)IARGIN

-1, 25 , so, 55, 8
IDE_REPLACETEXT' 95' SO' 60 ' 8' ES_MARGIN

IDC_CASECHECK,
IOO_FIND,
IDD_REPLACE,
DID_ OK,

90, 30, 90, 10. ws_GROUP
40 , 8, 45, 15 , ws_GROUP
90, 8, 45, 15,

140, e. 45, 15,

Dialog Boxes 255

not have to implement code to handle the shifting of the keyboard input focus
when the user presses a key on the keyboard.

A tabstop is specified with the WS_TABSTOP window style. It is used to
determine the order in which the input focus will be changed when the user
presses the Tab key. As a result of the user pressing the Tab key on a dia­
log window, the input focus is switched to the next control window that has
specified the WS_TABSTOP style. Once the last tabstop is reached, the tabstop
processing wraps around to the first tabstop window again. The button control
windows defined by the DEFPUSHBUTTON, PUSHBUTTON, AUTOCHECK­
BOX, and CHECKBOX specifiers are declared with the WM_TABSTOP style
by default. Other control window specifiers like LISTBOX and ENTRYFIELD
use the tabstop style as well.

The tabstop window style can be removed from within the context of a
program by using the WinSetWlndowBits API, specifying the QWLSTYLE
index to modify the value stored in the window words. The code fragment
shown in Figure 8.31 removes the tabstop style from three checkbox buttons.
The code uses a for loop to scan through each of the checkboxes. The checkbox
identifiers are defined in numeric order beginning with IDC_SUPLOGO. The
ulcounter variable is used to index each of the individual button identifiers.
For each button identifier, the WinWindowFromID API is used to set each
member of the hwndCheckbox array to the corresponding window handle for
the checkboxes.

A group is similar to a tabstop, except it defines how the input focus
will be changed when the user manipulates the cursor movement keys on
the keyboard. The group itself is identified by the first control window that
specifies the WS_GROUP window style, until the next control that specifies
the WS_GROUP style. All control windows between are part of the group,
meaning that the user can move the arrow keys to cycle through all of the
controls declared within the group.

Sizing a Dialog Window
A dialog procedure handles the sizing of a window a little bit differently
from a client window procedure. A dialog window procedure will not get a
WM_SIZE message, so if your dialog procedure contains a WM_SIZE message
it will never be received and thus never processed. The WM_SIZE message

for (ulCounter = O; ulCounter < 3; ulCounter++)
(

}

hwndCheckBox[ulCounter) = WinWindowFromID(hwnd, II:X:_SUPLOGO + ulCounter);
WinSetWindowBits(hwndCheckBox(ulCounter], QWL_STYLE, 0, WS_TABSTOP);

Figure 8.31 Using the WlnSetWindowBits API.

256 Mastering Dialogs, Menus, and Other PM Resources

that is sent to a client window procedure originates from the default win­

dow procedure as a result of a WM_WINDOWPOSCHANGED message being

received. A dialog window procedure will not get this message because the

frame window processing for the dialog does not pass the message along

to the window procedure. Therefore, a dialog procedure should process the

WM_WINDOWPOSCHANGED message directly if it requires the window to

be sized. It is important to note; however, that a typical dialog window should

not be sizeable because the FCF-.DLGBORDER frame control flag, which is

typically used by dialog boxes, does not allow for sizing.

Avoiding a Common Error
The MLE control provides the foundation for the editor. Essentially, the sample

program draws an MLE within the contents of the client area. Therefore, since

the MLE is the primary source of input, it is expected and desired that the

MLE contain the edit control cursor-the vertical I beam cursor-when the

program is started, so that the user can immediately start entering text via

the keyboard, rather than having to explicitly give the MLE control input

focus.
The quick and dirty solution would be to simply add a call to theWlnSet­

Focus API to modify the focus chain by setting the MLE control window to

the primary focus window when the application is started. For example, in

the routine CreateEditWindow you could add the code in Figure 8.32 after the

WinCreateWindow function has successfully returned the hwndMLE handle.

At first glance, this resolution seems to work without a flaw. However, you

must proceed with caution anytime you explicitly modify the focus window,

since it can alter the focus chain for other situations. This solution is flawed,

as it forces the input focus to the MLE window every time the application is

started and the MLE control window is created. What if the user did not want

the application to start in the foreground? For example, the user could use the

START command to invoke the editor in the background as shown here:

[C: \PMEDIT] START PMEDIT. EXE / B

Although the session manager will attempt to start the session in the back­

ground, the call to WinSetFocus will force the focus to the MLE window every

time the application is started. This effectively changes the behavior that the

user was attempting to accomplish.
A better solution is to not directly modify the current focus window, but in­

stead modify the focus chain so that the child windows of the frame window are

WinSetFocus(HWND_DESKTOP, hwndMLE);

figure 8.32 Setting the focus to the MLE window.

SUMMARY

Summary 257

WinSetWindowULong (hwndFrame, QWL_HWNDFOCUSSAVE, hwndMLEJ;

Figure 8.33 Altering the child window locus for a frame window.

cha~ged to indicate that the MLE window is the next window that should et

~e mput focus. In. order to accomplish this, use the QWLHWNDFOCUSSAk

ag ~o alter tI:ie wmdow words as shown in Figure 8.33.

th JL~hangmglthi~ value in the window words, you are telling the frame that

the . contro .wmdow was the last child window of hwndFrame to have

all:~;;:~ ~~~ pnor tf the frame ~indow being deactivated. In effect this will

. . . contro to have the mput cursor without forcing it to have £

rery t~~ I~ IS ':i.eated, since the MLE window is the first chiJd window i:~~=
ocus ~ ai~ or at frame. Now, if you use the START command again to start

~e edit~{n :;ie backgr~und, you will notice that with this code the editor can

uccess . Y e started m the background because the MLE wi d d
automatically steal the input focus. n ow oes not

The application interface is the most important part of an E
the t t h · 11 d Y program. ven

mos ~c nica Y a vanced software package will not succeed if it offers a

f0~.use~ mterf~ce . . ~aking the best use of PM resources like those described

n is c .apter is cntical to developing an easy-to-use piece of software Th

::esent~·tlo~ Manager provides powerful resource functionality, but it is ~p t~
. e app 1~at10n development community to ensure that the a 1· 1·

mterface 1s easy to use. PP tea ion user

CHAPTER

Communication Between
Applications Using
PM's Dynamic Data
Exchange Protocol

I n the age of the information superhighway and other powerful networking
systems, the need for applications to communicate effectively and efficiently
with one another is paramount to the success of any operating system. The

ability for independent processes to share resources has become known as
Interprocess Communication or !PC. The purpose of Interprocess Communi­
cation is to allow multiple independent programs to share information with
one another. OS/2 provides several methods of Interprocess Communication
within the operating system. Of the various methods of Interprocess Com­
munication supported by OS/2, only one provides a robust set of features for
the Presentation Manager environment; it is known as the Dynamic Data Ex­
change, or DDE for short. Dynamic Data Exchange is actually a message-based
protocol that operates on a window granular basis, meaning that information
is exchanged between one window called the DDE server and another window
called the DDE client.

Through the use of DDE, unrelated programs that run within the Presenta­
tion Manager screen group can effectively share information with one another.
Because this communication is dynamic, unlike that of the PM Clipboard, the
information sharing is totally transparent to the user since the user is not re­
sponsible for processing the communication transaction. This means that as
long as two or more applications provide for the communication within the

259

260 Communication Between Applications Using PM's Dynamic Data Exchange Protocol

program code by using the DDE protocol, they can obtain information from
one another without any user interaction. .

DDE has long been a powerful, yet often misunderstood programming
concept. Unfortunately, few software development companies h~ve reali~ed
the true potential of DDE and how it can assist in making multiple apphc~­
tions cooperate with one another. One huge benefit of the power of DDE is
demonstrated in this chapter's sample program. The sample program shows
how DDE can be used to bridge the application porting gap, by allowing one
large software vendor with a new 32-bit PM application to commun~cate with
an existing Windows-based application running in the WIN-OS/2 e~vtr?nment.
DDE can provide the powerful link between PM and Windows apphcat1ons, ~e­
cause the DDE message protocol is essentially the same in both programming

environments.
The DDE protocol was designed to provide the PM devel~pment co~-

munity with an architected data exchange process. In and of itself, DDE .1s
not a complete interprocess communications layer. The DDE protoc.ol still
requires the use of shared memory and pipes internally to accomplish the
goal of exchanging information between the communicating processes. The
actual information exchange occurs through the use of shared memory. One of
the communicating processes will be responsible for giving the other process
access to the memory via a pointer to the memory. This ensures that the com­
municating processes can freely exchange information through this common
piece of memory. . . .

The actual DDE protocol is nothing more than a senes of wmdow functions
and messages designed to help the communicating processes talk to ~ne ?n­
other. Through the use of the pre-defined DDE messages, the commumcatmg
processes can decide how, when, and where the information will be exchanged.
A single window within each of the processes is responsible for h~dling ~e
communication. The window that initiates the exchange by requesting data ts
known as the DDE client. The window that provides the information to the
client is known as the DDE server.

IMPLEMENTING THE ODE COMMUNICATION ARCHITECTURE
If the seamless Windows concept was to be a success for IBM, the seam­
less development and design phases would have to ensure that a~y ~indows
application be able to communicate effectively with an~ other apphcat1~n run­
ning within the Presentation Manager screen group. Smee the Dynamic Dat~
Exchange protocol is extremely similar between the Windows and PM envi­
ronments, DDE would provide a powerful communications link to application
developers to allow applications within different user-interface platforms to
share information. To fulfill the common Dynamic Data Exchange philosophy,
an intermediary component would have to bridge the gap between the PM

Tiie Purpose of the Sample Program 261

and Windows DDE implementations; therefore, the Windows DDE Agent
created. was

There were two limitations that the Windows DDE agent was created t
a?dress . . The first was the obvious desire for Windows applications to commu~
mcate with PM applications through the use of the Dynamic Data Exchange.
The second was.to allow Wind~ws applications that run in independent Vir­
tual .no~ Machme (VDM) sessions to communicate with each other· since
apphcattons running within different VDMs do not share resources, th~ stan­
dard Wi~dows D~E protocol would not allow these Windows applications
to shar~ mformatton. The Windows DDE agent, named WINSDDE.DLL, acts
as the mterface to resolve both limitations. On the PM side, a module called
PMDDE.DLL contains the c~de for the. super agent code. Among other things,
the supe~ a~ent code contams a routme that is responsible for spawning a
commumcation thread that will communicate with each VDM. The actual
code for the DDE API functions is contained within the window manager
PMWIN.DLL. '

THE PURPOSE OF THE SAMPLE PROGRAM

Just when you ~hought you would never have to look at Windows code again,
along co~es this chapter and the programming example. For those of you who
are entenn.g the PM .devel?pm~nt enviro~ment without the benefit of previous
prog~ammmg expenence m Wmdows, this chapter will provide you the ability
to bn~fly evaluate some of the similarities and differences between the two
graphical programming interfaces.

This chapt~r a~tually ~ontains two sample programs. The first is a simple
PM_-bas_ed application which fu~ctionally resembles a spreadsheet. The appli­
~at1on ts. called P~STATS and 1s used to track customer satisfaction survey
mformatton. As with any spreadsheet, PMSTATS is used to collect numerical
d~ta from t~e u~e~. The numerical data is entered via the spreadsheet dialog
wmdow, which ts mvoked by selecting an option from the application menu.

The spread~heet dialog window contains various entryfield control win­
dows representmg monthly customer satisfaction percentages. The user can
enter the ~onthl~ statistic.al information for a product by filling in the en­
tryfields with the mformation for the corresponding month. The data can be
ente~ed only~ numeric characters 1 through 100, since it is percentage based.
The .mfo.rmatJon enter~d is based on a complete calendar year. Once the infor­
mation ts co~pleted, it can b~ saved to a file or sent to a charting program
to create a visual. representati.on of the numeric data. For the purposes of
our sample, we will create a simple Windows-based program that will chart
customer satisfaction.

The entryfields used to enter the monthly sales information are subclassed
so that only numeric information will be accepted, thereby preventing the

262 Communication Between Appllcatlons Using PM's Dynamic Data Exchange Protocol

user from entering any character other than a whole number. The process of
filtering out all non-numeric characters other than a space is done through the
FilterEntryfieldProc window procedure. The code is in Figure 9.1.

The purpose of this routine is to evaluate all WM_CHAR messages that
are sent to the entryfield windows. The C library macro isdigit can be used to
determine whether the character just entered by the user is a number. If the
character entered is a valid number, then the function will return a pointer to
the original subclassed entryfield procedure, so that the processing of this char­
acter can continue through the entryfield default window procedure as normal.
If the character is not a number, then the user will get the beloved raspberry
tone generated by calling the WinAlarm function with the WA...ERROR beep
tone. Subclassing is explained in further detail in Chapter 10.

The second sample program is a 16-bit Windows-based application called
WINCHART. The source code was built using the WATCOM compiler for Win­
dows. If you do not have a DOS-based compiler and the Windows Software
Development Kit (SDK), don't worry, you will at least be able to see the DDE
interaction by using the WINCHART executable; that is, you will be able to
see how the communication works between the PM and WIN-OS/2 applica­
tion, assuming that you have WIN-OS/2 support installed and that your video
adapter can support seamless windows.

The purpose of these sample programs is to show how effectively DDE
can be used to communicate between PM and Windows. The WINCHART
executable, based on the information provided by PMSTATS (see Figure 9.2),
will draw a chart illustrating the customer information.

MRESULT EXPENTRY FilterEntryFieldProc(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)

{
if (msg == WM_CHAR)

{
if (! (CHARMSG(&msg)->fs & KC_VIRTUALKEY)}

}

if (CHARMSG(&rnsg)->fs & KC_CHAR)
if (isdigit(CHARMSG(&rnsg)->chr))

)

{
return ((*OldEntryFieldProc) (hwnd, msg, mpl , mp2)1 ;

}

else
{
WinAlarm(HWND_DESKTOP, WA_ERROR);
return FALSE;

) /* endif WM_CHAR */
return (*OldEntryFieldProc) (hwnd, msg, mpl , mp2) ;

Ffgure 9.1 Subclass Ing the entryllelds.

The Purpose of the Sample Program 263

I I i' • It,: 'i 11 ' •'>lllP < U\lo r111 r •,.i l P-1 .11 11n11 a

~ Producl Name los12 Warpj l•I Dale 11- 82·!15

Customer S8tisf21ctlon Survey Percentages

January ~ April ~ July ~ Dclol>er [!01
February IE] May IE] August m:::J November ~J March IE] June [![] Sepl amber ~ !!I] December

DDE MESSAGE MONITOP

u
RECEfVEDo'Mol.DDE..NTl"TE"'"NVO..,.,_.,._
WM_OOUl"'TA•-._ •uoceostllyo.,. loOOE Oio111

::r::=
I I l!K I I I ..ll.J

kancel

. .
Figure 9.2 The PMSTATS data entry fac1hty .

Understanding the Cllent and Server Interaction
~ny 1:>DE server can send data to multiple DDE clients simultaneously and
hkew1se, any DDE client can actually get data from multiple DDE '
In the case of th l servers. . . e~e s.amp e programs, the Windows application WINCHART
is the chent application, si.nce ~t is requesting the monthly numbers that it
need.s t~ draw a chart .to v1suahze the statistical information. The PM-based
~p[hcatl?n PMSTAT~ 1s the server since it will be providing the numerical
m o~atlon to the Wmdows program. The actual user will only be enterin
data 1~ t?e PMS~ATS application. The WINCHART program will obtain th;
numeric mformatton from PMSTATS via the data exchange; therefore, the user
does not actually have to enter any numbers in WINCHART. It · · note th t th . . d . is important to
. ~ e .commumcat1on o~s not have to terminate with just the single
mteractI~n with the server and chent. Once it receives its data, The DDE client
ca~ now m turn act as a server by passing its information on to another window
which would be t~e new client. For example, the sample program WINCHART
~~n tak: the entire chart that it composed and save the information as a
it~ap image. The bitmap could then be transferred to a word processor

which, when combined with other text, can create a document In this case
the WINCHART program would then be providing the info~ation to th~
word pr~ces?or. The word processor would be the one that initiated the ODE
communication to WINCHART. making the WINCHART h d h ' program t e server
an t e word processor the client. Figure 9.3 illustrates this communication.

264 communication Between Applications Using PM's Dynamic Data Exchange Protocol

PM Stats

DOE Server

The PM Stah program provides data to

the Win Chart program , therefore, PM Stats is

the DOE Server. If the WinCharl program

were to provide the data to another DD E
enabled application , then W inChart becomes

the ODE Server.

Win Chart

DOE Client

WlnChart

DOE Server

figure 9.3 Undemanding the DDE client/server communication process.

Understanding the Data Transfer Hierarchy

Another ODE

Enabled

Application

As discussed, DDE is a method enabling two ~ndependent applications to
th Th DDE I ent is the application that is share information with one ano er. e c 1

requesting data from another appli.cation, while the DDE server is the applica­
tion that is providing the information. The DDE client usually knows the type
of information that is needed to complete the transaction, along with which
applications the data can be requested fr~m. _Therefore, the DDE communi­
cation starts with an application link, which is the process of using a string
name to represent an application that is used by the DDE client to identify
from which DDE server information is needed.

The application name string is a NULL-terminated ASCII string used to
identify the ODE server; therefore, the application name string can usually
be the same as the application itself. Each DDE client application that wants
to communicate with any DDE server must typically know the name of the
application string, although, as you will soon find out, it is possible for the DDE

'th DDE owered application by not specifying client to communicate w1 any -emp
an application name string.

DBE Messages 265

ODE MESSABES

There are currently 12 DDE messages defined in PMWIN.H. Of the 12 only
10 are commonly used. The other two DDE messages, WM_Dde..FIRST and
WM_DDE..LAST, are used internally by the WinDdePostMsg function to val­
idate that you are actually passing 1 of 10 messages numerically between
WM.DDE..FIRST and WM_DDE..LAST. If you have the debug version of
PMWIN and attempt to pass any other message, you will get an invalid param­
eter message returned from WinDDEPostMsg. The DDE messages are defined
in PMWIN.H as shown in Figure 9.4.

Initiating a DDE Conversation Using WMJJDEJNITIATE
WM_DDE.INITIATE is used to establish the communication link between the
client and server windows. It is sent by the DDE client window to the server.
In WINCHART.C, it is used to establish the connection to the data contained in
the spreadsheet window for PMSTATS. It can be done from almost anywhere
within the window's client window procedure. For example, for dynamic con­
nection, it can be done whenever a window is created by sending the message
in the WM.CREATE or WM_INITDLG messages. The problem with doing the
communication this way is that if the server window is not started, then the
initiation will fail. You can circumvent this by setting a timer and continuously
sending the WM_DDE.INITIATE message until the proper connection with the
server is established. If the server is still not started, then at some time interval
you can alert the user that the DDE connection cannot be established, prompt­
ing the user to start the DDE server application or the client application can
start the server by calling DosStartSession. The easiest way to establish the
DDE communication link is by sending the WM_DDE_INITIATE message as a
result of receving a WM_COMMAND message.

WM_DDE_FIRST
WM_DDE_INITIATE
WM_DDE_REQUEST
WM_DDE_ACK
WM_DDE_DATA
WM_DDE_ADVISE
WM_DDE_UNADVISE
WM_DDE_POKE
WM_DDE_EXECUTE
WM_DDE_TERMINATE
WM_DDE_INITIATEACK
WM_DDE_LAST

Figure 9.4 The DDE messages.

OxOOAO
OxOOAO
OxOOAl
Ox00A2
OxOOAJ
OxOOA4
Ox00A5
Ox00A6
Ox00A7
OxOOAB
Ox00A9
OxOOAF

266 Communication Between Applications Using PM's Dynamic Data Exchange Protocol

if (szApplication && szTopic)
{
SendMessage (HWND_BROADCAST,

WM_DDE_INITIATE,
(WORD)hwnd,
MAKELONG(szApplication,

szTopicl);

II Broadcast to all
I I Message
II DDE client window
II Appnarne and Topic

fllllfl 9.5 Sending a WM_DDEJNITIATE message to the DOE server.

In the window procedure DrawChartDlgProc (see WINCHART.C), DDE
communication is requested through the following processing of the DID_OK
identifier. This WM-COMMAND message is processed when the user clicks on
the Connect pushbutton. The code is shown in Figure 9.5.

In this code sample, we are actually using the SendMessage API, which
is the Windows equivalent of WinSendMsg, to send a WM__DDE-1NITIATE
message to the DDE server PMSTATS to request a DDE conversation. This is
not the way to initiate a DDE conversation in the PM environment, but it does
the trick for the purposes of our demonstration program. In PM, an application
initiates a DDE data conversation by using the WinDdelnitiate APL

Although the SendMessage function differs slightly from its PM counter­
part, the parameters used to send the message are similar. The first parameter
is the window to which the message is being sent. In our case, the constant
HWND...BROADCAST with a value of -1 decimal or OxFFFF hexadecimal is
the window handle we are sending the message to, which means that the mes­
sage is going to be broadcast to all top-level frame windows. A top-level frame
window is simply any frame window whose parent is the desktop window. All
top-level windows are registered with the class style of CS-FRAME.

PM will enumerate all children of the desktop looking for windows that
are registered with the frame class style. The first message parameter sent
in the message is the window handle of the DDE client window. The second
message parameter contains two strings which were created as ATOMS. The
strings szApplication and szTopic contain the application name and topic
name of the DDE server with which our DDE client window is attempting to
communicate. In our case, the application name is PM.Stats and the topic that
we are interested in is called ChartTopic.

Using WinDdelnitiate to Initiate the ODE Conversation
For the purposes of illustrating how effective DDE can be to communicate
between the PM and Windows environments, the DDE client in our sample
program is a Windows application. Therefore, we are forced to manually send

ODE Messages 267

an initiation message. Other DDE client applications written for PM c 11
the WinDdelnitiate API instead of sending the WM__DDE.JNITI "''TE an ca F t" all · th "" message. unc ion y, usmg e ~inDd~Inltia~e function is the same as sending the
message from the DDE client smce this function will also initiate a DDE ti b d" con-versa on Y. sen mg the WM__DDE.INITIATE message. Using this functio
any D~E chent application can initiate a DDE conversation with a spec~~
fied national conversation context, thereby supporting multiple language data
exchanges.

The format of the WinDdeinitiate function is given in Figure 9.6.

• T~e hwndDDEClient parameter is the window handle of the DDE r t wmdow. c ien
• !he ~szAppname parameter is the application name string which is used to

id~nt1fy the DDE server that the DDE client is attempting to communicate
with. Under the current PM implementation, this string cannot contain
slas~es ~r backslashes. A zero-length string signifies that any DDE server
application can respond to the initiation.

• ~e ps.zTopicName parameter specifies the name of the topic that DDE
client .is seeking support for. A zero-length string signifies that each re­
spon~mg DDE server application will respond once for every topic name
that it knows how to support.

• The pConvContext parameter is a pointer to a DDE Conversation Context
structure.

Using Unn•ed Application and Topic Name Strings
~he actual .DDE data e~ch~nge revolves around the communicating applica­
tions knowing the application name string and the topic name string for the
i:>Df: data conversation. As the parameters from the WinDdelnitlate func­
tlo~ illustrate, the pszAp~Na~e and ~szTopicName strings can be zero-length
strmgs. ~zero l.ength strmg simply implies that the DDE client is willing to
coi:nmumcate with any 1:>DE server and using multiple topics of conversation.
This allows the D~E .client to communicate with DDE servers that it does
not know the apphcati?n n~me string for, since it can identify all active DDE
servers, and can also identify all the topics supported by a particular DDE
server.

BOOL APIENTRY WinDdeinitiate(HWND hwndDDEClient,
PSZ pszAppName,
PSZ pszTopicName,
PCONVCONTEXT pConVContext) ;

Figure 9.6 The WinDdelnltiate API.

b

268 Communication Between Applications Using PM's Dynamic Data Exchange Protocol

Using the System Topics
Since the DDE protocol is public domain, it makes sense that there is a global
system topic and associated topic name strings. It makes good programming
practice to use these predefined items, since it allows the DDE client to ini­
tiate the DDE conversation based on an existing topic name string, thereby
potentially saving the time needed for DDE initiation. The reason for this
is that the DDE server will not have to acknowledge the initiation with a
WM...DDE-INITIATEACK message for each and every topic it supports, as it
must do with a DOE client that specifies an unnamed topic name string in
pszToplcName. The pre-defined system topic and item name strings are listed
in Figure 9.7.

A Dynamic Data Exchange conversation can be initiated through the use
of the WinDdelnltlate function or, as was done in WINCHART, through the
sending of the WM...DDE-INITIATE message. Regardless of the method of
DOE initiation, a ODE initiation structure (DDEINIT) is populated for the
application initiating the communication. All the caller needs to specify is the
ODE client that will be requesting the initiation along with the application
and topic name strings for which the DOE client application will be seeking
support.

When the DOE server application responds positively to an initiation re-
quest, the worker routine for WlnDdeRespond calls another routine that ini­
tializes the initiation data appropriate for the response and then sends an
acknowledgement message in the fonn of WM...DDE_INITIATEACK back to
the DDE client. When the message is received by the DDE client, the message
contains the handle of the DDE server window along with a pointer to the ac­
tual populated DDEINIT structure. The DDE client application can determine
whether to begin a data conversation based on the pszTopic name string in the
DDEINIT structure.

Most applications do not need to explicitly fill in the DDEINIT structure
since it is done automatically by the initiation process, although applications

ldefine SZDDESYS_TOPIC
l def ine SZDDESYS_ITEM_TOPICS
#define SZDDESYS_ITEM_SYSITEMS
ldef ine SZDDESYS_ITEM_RTNMSG
#define SZDDESYS_ITEM_STATUS
ldefine SZDDESYS_ITEM_FORMATS
ldefine SZDDESYS_ITEM_SECURITY
#define SZDDESYS_ITEM_ITEMFORMATS
#define SZDDESYS_ITEM_HELP
ldefine SZDDESYS_ITEM_PROTOCOLS
ldefine SZDDESYS_ITEM_RESTART

"System•
"Topics•
•sysiterns•
"ReturnMessage'
•status'
' Formats'
•security'
'ItemForrnats'
'Help'
' Protocols'
"Rest art•

Figure 9.7 The standard system topic and Item name strings.

ODE Messages 269

should ~ aware of the structure since they can obtain the application and to ic
name stnngs from the structure when receiving either a WM...DDE-1NITIA~E
or WM...DDE-1NITIATEACK message in their client window procedure.

The Reason for a Common ODE Protocol
Before an established DDE protocol was complete and understood by pro­
grammers, DD~ messages could actually be used outside of the context of a
DDE conversat10n. In other words, applications could initiate the DDE "th · th process w1. out usmg e DDE protocol. As a result, any two applications that had a
pnvate protocol and had ac~ess to the other applications window handle could
exchange DDE messages with one another, since the only place that the DDE
?1~~sages are validated is in the WlnDdePostMsg API. Using this method to
m1t1ate data excha~ges and send DDE messages is bad news, because the DDE
structures are subject to change, and although elements of the structures ma
change, the structures' support will always be backward-compatible through
the use of. the DDE APis and messages. But applications that explicitly rely
on values m the structure may not work in future releases of the Presentation
Manager.

DDElllT Structure
The DDEINIT structure is defined within PMWIN.H as shown in Figure 9.8.

• The cb element is the size of the entire DDEINIT structure.
• !he P_SzAppname element is the application name string, which is used to

1d~ntrfy the DDE server that the DDE client is attempting to communicate
with. Under the current 2.x PM implementation, this string cannot contain
slashes or backslashes.

• The_Ps~Topic ele~ent is a pointer to a NULL-terminated string that is used
to s1gmfy the topic of communication.

• !he offConvContext element is a ULONG value, which represents the offset
mto a CONVCONTEXT structure.

typedef struct _DDEINIT / * ddei */
{
ULONG cb; /* sizeof(DDEINIT) */
PSZ pszAppName;
PSZ pszTopic;
ULONG offConvCont ext;

) DDEINIT;
typedef DDEINIT *PDDEINIT;

Figure 9.8 The DOE Initiation structu,e.

270 Communication Between Appllcations Using PM's Dynamic Data Exchange Protocol

typedef struct _CONVCONTEXT
{

/ * cctxt * /

ULONG cb; /* sizeof(CONVCONTEXT) *I
ULONG fsContext;
ULONG idCountry;
ULONG usCodepage;
ULONG usLangID;
ULONG usSubLangID;

) CONVCONTEXT;
typedef CONVCONTEXT *PCONVCONTEXT;

Figure 9.9 The DDE conversation context structure.

A CONVCONTEXT structure contains language-specific information so
that developers can build applications based on National Language Support
(NLS). The information within this structure identifies country and code page
information. The format of the structure is given in Figure 9.9.

• The cb element is the size of the structure.
• The fsContext element is a ULONG containing the conversation con­

text flags. This flag field can contain the following constant defined in
PMWIN.H:

DDECTXLCASESENSITIVE OxOOOl This is used to indicate that the strings in this
conversation are case-sensitive.

• The idCountry element is a ULONG containing the country code.
• The usCodepage element is actually defined as a ULONG, but it only con­

tains the code page information for the country.
• The usLang/D element is the language identifier. If this element is zero,

then no language information is present.
• The usSubLangID element is the sublanguage identifier. If this element is

zero, then no sublanguage information is present.

The WinDdelnitiate function will also automatically broadcast a
WM_DDE-1NITIATE message to all top-level windows, looking for a DDE
server that can support the requested application name and topic name
strings. In WINCHART, we used the Windows API SendMessage to send the
WM_DDE-INITIATE message. The worker routine for WinDdelnitiate also
sends the message to the DDE server. Therefore, since the message is sent and
not posted to the DDE server, all DDE server window procedures that choose
to process the WM..DDE_INITIATE message must respond to the message
before returning control to the requesting DDE client.

Since the WM_DDE_INITIATE message is broadcast to all top-level frame
windows (all windows that are registered with the class style CS_FRAME), this

ODE Messages 271

means that the receipient DDE server should be the main PMSTATS window.
Therefore, the WM..DDE_INITIATE message should be processed with" th
conte.xt of ~e client window p~ocedure ClientWndProc in PMSTATS.C, ;~the~
~~ 1°: a dialo~ proc~dure. This is why the code to handle the DDE messages
ts w1thm the chent wmdow procedure not the spreadsheet dialog procedure

~n the PMSTATS sample program, the WM..DDE-1NITIATE message is
received and processed by the client window procedure. When the message
~s received, mpl contains the window handle of the DDE client window that
is m~ing th~ request to initiate the DDE conversation. The mp2 parameter
coi:tams a po1~ter to a DDEINIT structure which contains the application and
topic name strmgs.

~M~TATS will process ~e ~M_J)DE..INITIATE message by checking the
apphcatton name. If the appl~cation name is correct, then it will send a positive
response back to the DDE client. The relevent code is given in Figure 9.10.

Using WlnDdeRespond

Once the DDE server processes the conversation inititation, it can send an
ackn~wle.dgment to the DDE client by using the WinDdeRespond API. This
fu_nctton is used to respond to the DDE client by informing the DDE client
wmdow that the server can support the specified topic names. Using this call is
th.e same as r~s~onding with a WM_J)DE_INITIATEACK message to the DDE
chent that ongmally requested the initiation through aWM..DDE_INITIATE
message.

The format of WinDdeRespond is as shown in Figure 9 .11.

• The hwndDDEClient parameter is the window handle of the DDE client
window, which is the window that is receiving the response.

case WM_DDE_INITIATE:
if (! (strcmp(((PDDEINIT)mp2)->pszAppName, APPNAME)))

{
hwndDDEClient = (HWND)mpl;
sprintf(szBuffer,"RECEIVED a WM_DDE_INITIATE message from hwnd = %8.sx•,

hwndDDEClient) ;
SendTextToMLE(szBuffer);

WinDdeRespond(hwndDDECl ient,
hwnd,
APPLICATION,
TOPIC,

(PCONVCONTEXT)O);

break;

II DDE Cl i ent Wi ndow Handle
II DDE Server Wi ndow Handle (our cl i ent window)
II Appl icati on name
II Topic name
II Conversation Context

Figure 9.10 Processing the WM..DDEJNITIATE message.

272 Communication Between Appllcatlons Using PM's Dynamic Data Exchange Protocol

MRESULT APIENTRY WinDdeRespond (HWND hwndDDEClient,
HWND hwndDDEServer,
PSZ pszAppName,
PSZ pszTopicName,
PCONVCONTEXT pcctxt);

Figure 9.11 The WlnDdeRespond APL

• The hwndDDEServer parameter is the window handle of the DOE server
window which is the window that is sending the response. If the DDE
server i~ responding to more than one topic, a unique window must be
used for each topic that will be responded to. . . .

• The pszAppName parameter is the applicati?n n~e string: which ts used
to identify the DDE server that the DDE chent is ~ttemp?ng ~o commu­
nicate with. Under the current 2.x PM implementation, this string cannot
contain slashes or backslashes. This parameter cannot contain a zero-
length string. .

• The pszToplcName parameter specifies the name of the.topic that the ~DE
server can support. Like the pszAppname parameter, it cannot contain a
zero-length string. .

• The pcctxt parameter is a pointer to a DDE conversation context structure.

In PMSTATS, this function is called inside the WM_DDE.INITIATE mes­
sage processing to tell the WINCHART application that the PMSTATS DD~
server can handle the communication of information based on the ChartTop1c

topic name.
If the DDEINIT structure used in the DDE mitiate contains a zero-length

application name string in the pszAppName field, then any DDE se.rver can
respond to the request. If the pszTopic field contains a zero-length strmg, th~n
each supporting DDE server would respond one time for every supported topic.
In the two sample programs, we use a single application name PM-5tats, so
that only the DOE client knows how to connect to the PMSTATS sen:er. Also,
since we are only interested in obtaining one specific type of infor~ation from
the DDE server'. then we are only interested in processing one topic name. If
the PMSTATS ~pplication actually wanted to process different types of top~cs
for the DOE client, then the application would respond for each of the topics
that PMSTATS would support.

WM..DDEJNITIATEACK
In our sample, we use only a single topic for communication be~een the
DDE server and the DOE client, but what if we wanted to share mforma­
tion based on multiple topics? The answer is that the ODE server can send a
WM_DDE-1NITIATEACK message for each topic that the ODE server can sup-

,
DOE Messages 273

port. So, if the WIN CHART program requested different information based on
the type of chart it would draw, we could use a different topic name to get the
different information. For example, let's assume that the spreadsheet window
in PMSTATS contained more entryfields with different types of information
like models sold and color. The criteria for drawing the charts is different'.
For example, you may only need a subset of the numbers to draw a pie chart,
whereas a bar would require that different numerical data be plotted. The ap­
plications could use different topic names to get different pieces of information
from the DDE server.

Unlike the WM.INITIATE message, you cannot pass zero-length strings
for the pszAppName and pszToplc fields respectively, since these fields are
needed to validate the data. This message is sent by the server so the mpl
parameter will contain the window handle of the DDE server window. The
mp2 parameter contains a pointer to a DDEINIT structure, which has the
valid pszAppName and pszTuplc information. The DDEINIT structure must
be in a shareable memory segment, and this memory must be freed after the
DDE client processes this information.

Using Window Words to Store Transaction-specific Data
It is important that the DOE server application provide a unique window
handle for every response to an initiation message. An application can use the
window words of the window to store a pointer to the DDEINIT structure,
assuming that the DDE server does not free the memory object that contains
the DDEINIT structure after it finishes processing the WM.ODE.INITIATE
message. This allows the communicating application to obtain the topic of
conversation from the DDEINIT structure via the window words.

The ODE Communication Process
The DOE communication process consists of three steps: the initiation, the data
conversation, and finally the termination of the communication. The DOE ini­
tiation process is the term used to describe how the DDE client establishes
the communications link with the DDE server. The initiation consists of two
parts: the initiate itself followed by the response or initiate acknowledgment.
After the initiation is complete and the specified DDE server has agreed to
communicate with the DDE client, the DOE client and DDE server applica­
tions each know the topic of communication and the window handle of the
corresponding communicating window.

Once the DDE conversation is initiated by the DDE client and acknowl­
edged by the DOE server, the data conversation can begin. The data conversa­
tion denotes how the information from the ODE server will be communicated
to the DDE client. It is the responsibility of the DDE client to terminate all data
conversations that it does not want to take part in, since terminating the DDE

274 Communication Between Applications Using PM's Dynamic Data Exchange Protocol

server will prevent all other DDE clients from communicating to that server

until the data connection is reestablished through the DDE initiation process.

For example, think of a DDE conversation as several people talking over a

telephone-a miniature conference call. Imagine one person, your boss, pro­

viding information regarding the state of your department and what everyone

will be doing for the next week. The provider of the information, your boss, is

the DDE server, and the rest of the department are DDE clients. Once enough

information is obtained about what you will be doing or if you just get really

bored, you can hang up the telephone, thereby terminating the conversation.

If your boss decided to hang up the phone without telling everyone about what

they would be doing, then the connection would be lost and nobody would

know what was going on. The connection to all other DDE clients would be

terminated and they would have to initiate a new conversation by calling your

boss again. Although as far as PM is concerned, the data conversation does

not end automatically when the server goes away.

Terminating the DOE Conversation
The DDE data conversation may be terminated at any time either by the DDE

client or DDE server by simply posting a WM.DDE_TERMINATE message.

Either communicating window can receive the termination message at any

time during message processing. Under normal circumstances, the termina­

tion should not occur until the data recipient has received all of the informa­

tion required by this data exchange. For example, in the case of the sample

programs, we would not want to terminate the data conversation until the

WIN CHART program had all of the numbers needed from PMSTATS to build

the graph within its window. Using this message terminates all transactions

for the current data exchange and signals to the other communicating window

that since no more data will be passed, it can do its cleanup and terminate its

window when ready. The other communicating window that receives the mes­

sage can only respond to this message with a WM_DDE_TERMINATE message

of its own.
When both the DDE server and DDE client process the termination mes­

sages, the DDE communication is complete. If the window that posted the

original termination message receives any other DDE message from the other

communicating window before the other communicating window responds

with a WM.DDE_TERMINATE message of its own, care must be taken to en­

sure that the window handle of the window is still valid before responding to

the message, since the sender of the message may have already destroyed the

window as a result of the termination.
The responsibility of terminating a DDE conversation is left with the com­

municating applications. The Dynamic Data Exchange code does not maintain

a list of all of the communicating processes; therefore, the Presentation Man­

ager is unaware that any two applications are exchanging information via the

Providing for the Cllant/Sener Data Exchange 275

DDE prot~ol: The DDE code is not magic; it is only designed to establish

a comm~mcat10~ pro~ocol that allows the communicating applications to ex­

~hange 1~formation hke the handle of the windows that will be exchanging
information.

Well-designed applications that make use of DDE must ensure that the

communication link is terminated properly if an application abends or exits

prematu~ely .. For.ex~mple, if one of the communicating application traps, the

c~m~umcation.hnk 1s not terminated; hence, as far as PM is aware, the two ap­

plications are st~ll communicating. The WM_DDE_TERMINATE message is not

~osted automatically when the process terminates. Since exit list processing

is called as a result of normal or abnormal process termination, applications

can use an exit list routine to determine whether the termination occurred

normally or abnormally and terminate the data conversation if required.

Building a ODE Message Spr Window

T?e spreadsheet dialog window used by PMSTATS contains a simple Multi­

Lme Entry field control window that is used to display the important DDE

messag~ processing between the DDE server and DDE client. Although this

MLE wmdow would not be practical in a real-time application design it is

h~lpful in unders~anding the flo~ of messages between the communidating

wmdows. Every time a message IS processed, an update is made to the MLE

showing what just occurred and where it came from. The MLE code is similar

to that used in the Chapter 8 PMEDIT sample program, except that the MLE is

created via a dialog template in the resource script file. To send a text message

to the MLE, we created the routine SendTextToMLE(). This routine is used

simply by passing the text string to be displayed. In WM_DDE.INITIATE we

will print the DDE client window handle in the MLE using this routine. '

PROVIDING FOR THE CLIENT/SERVER DATA EXCHANGE

The actual data excha~ge between the client and server is accomplished

th~ou?h ~e use of_ a giveable shared memory object. The DDE server ap­

plication is responsible for allocating the memory that will be needed for the

data transfe~, and is al~o responsible for ensuring that the memory is available

to all potential DDE clients. Each of the DDE client applications must be able

to access this memory to receive the data from the DDE server.

A DDE st~ct~re co_ntai.ning all of the information that is to be provided

to the DDE chent is copied mto the shared memory object, allowing the client

to access the information in the structure. The format of the DDE structure is
shown in Figure 9.12.

The cb~at.a parameter is the actual size of the data that is to be exchanged.

If no data IS to be exchanged, this parameter should be set to zero.

276 Communication Between Appllcatlons Using PM's Dynamic Data Exchange Protocol

DOE.FACK

typedef struct _DDESTRUCT / * dde */
{

ULONG cbData;
USHORT fsStatus;
USHORT usFormat;
USHORT offszitemName;
USHORT of fabData;

} DDESTRUCT;
typedef DDESTRUCT *PDDESTRUCT;

Figure 9.12 The Dynamic Data Exchange structure.

The fsStatus parameter contains flags that are used to indicate. th~ status
of the data exchange. The purpose of these flags is to allow apphcat1ons to
query the state of the flag, and then, depending o~ the current state, .take some
action. The predefined status flags along with their defined hexadecimal value
are listed in Figure 9.13. Note: The upper 8 bi~ of the fsS~tus para.meter a~e
not used and may actually be used by applicabons to store mformat1on that is
specific to the application. .

The usFormat parameter is the format of the data being exchanged; m
other words, it is the type of information that we will be sending from the J?DE
server to the ODE client. For the most part, exchanging text will be sufficient;
however there will be times that other exchange formats may be needed
to transfer binary data between applications. PMWIN allows applications to

OxOOOl
DDE_FBUSY Ox0002

This flag is used to indicate a positive acknowledgment.
This flag is set to indicate that the communicating ap­
plication is currently busy.

DDE_FNODATA Ox0004

DDE..FACKREQ Ox0008

DDE..FRESPONSE OxOOlO

DDE.NOTPROCESSED Ox0020

DDE-FRESERVED OxOOCO
DDE..FAPPSTATUS OxFFOO

Flg1re 9.13 The ODE status flags.

This flag is used to indicate that no actual data has been
exchanged.
This flag is used to indicate to the communicating ap­
plications that an acknowledgment is being requested.
This flag is used to respond to a WM_DDE..REQUEST
message.
This flag is used to indicate that the ODE message was
not handled.
This flag is reserved for application-defined use.
This is a single byte bit field that can be used by appli­
cations for specific return information.

Providing for tlle CllentlServer Data Exchange 277

register their own unique data formats. To register a unique data format for
?n a~plica~ion, the system atom table can be used, since it will return a unique
identificat10n number for the atom name string that represents the unique data
format name. This ensures that all applications that use the same data can use
the same atom to represent the unique format. The defined data exchange
formats are shown below.

Valid predefined data exchange formats include:

DDEFMLTEXT
SZFMT_TEXT

SZFMLBITMAP
SZFMT..DSPTEXT
SZFMT ..DSPBITMAP
SZFMT METAFILE
SZFMT ..DSPMETAFILE

SZFMLPALETTE
SZFMT_SYLK

SZFMT..DIF

SZFMLTIFF

SZFMT_OEMTEXT

SZFMT..DIB
SZFMT _CPTEXT

Simple text exchange format. This value is defined as OxOOO 1.
This exchange format is used to pass an array of characters,
which can include the newline ('\n') character. The NULL char­
acter ('\O') signifies the end of the text.
The OS/2 bitmap file exchange format.
This exchange format is a private format that is used for text.
This exchange format is a private format that is used for bitmaps.
The OS/2 metafile exchange format.
This data exchange format is a private format that is used for
metafile information.
This exchange format is used for palette information.
This exchange format signifies that the data is in the synchronous
link file format.
This exchange format signifies that the data is in the data image
file format.
This exchange format signifies that the data is in the tag image
file format.
This exchange format signifies that the data is in the OEM text
format.
This exchange format is for a device independent bitmap.
This data exchange format is the code page text format and is
only used by applications that need to handle multiple language
text strings without changing the conversation context.

The offszltemName element is a USHORT value that is simply the offset to
the item name from the start of the DDESTRUCT structure. The item name
must always be a NULL-terminated string, meaning that if no item name is
used, the string must at least contain a single NULL character.

The offabData element is a USHORT value that represents the offset to the
actual data block. This offset will need to be calculated whether or not actual
data exists. The developer can add a check for valid data, since if we have valid
data, the cbData field will be non-zero.

278 Communication Between Applications Using PM's Dynamic Data Exchange Protocol

The DBE Shared Memory Object
Since the DOE memory object must reside within the shared arena, it must
be allocated with a call to the DosAllocSharedMem API. The size of the object
must be large enough to hold the entire DDESTRUCT structure, along with
the item name string and the actual data that will be transferred to the DOE
recipient.

The usage of the shared memory object is the most important part of
the data transfer since it is the method whereby the information will be ex­
changed. Unfortunately, it is often the most difficult to understand since the
DOE participants are responsible for its maintenance, and the offsets to the
information are left to the user to calculate. In the windows implementation
of DOE, memory management is quite different.

Once the ODE conversation is initiated, the DOE client and servers com­
municate with one another via DOE transactions. The ODE client can start the
transaction process by allocating a shared memory object to hold information
regarding the type of information that will be needed from the DOE server.
Once the given information is copied into the shared memory, the DOE client
can call WlnDdePostMsg to post a transaction message to the respective DOE
server, thereby signaling the DOE server to perform some kind of an action
based on the information from the DOE client. Along with the message, the
DOE server receives the handle of the window for the DOE client along with
a pointer to the shared memory containing the information. The DOE server
can use this pointer to obtain the information.

Once the DOE server deciphers what the DOE client requires, it can re­
spond to the transaction process by also allocating a shared memory object of
its own, copying its response data to the memory and posting a ODE response
message back to the DDE client with which it is communicating.

Since the applications are responsible for allocating the shared memory
and populating the DOE structure that will reside in the memory, a worker
function should be created to handle the task of creating a DOE shared memory
object. The routine BuildDDEDataStructure within PMSTATS does exactly
that by allocating a shared giveable memory object, populating a DDESTRUCT
structure and returning a pointer to the DOE structure. The pointer to the
structure is then given to the WINCHART program through subsequent calls
to WinDdePostMsg.

The prototype for the BuildDDEDataStructure routine has the format
shown in Figure 9 .14.

• The usDataFonnat parameter is the DOE data format that is to be used.
In the case of being called from within PMSTATS, this format will be set
to the standard text format DDEFMLTEXT.

• The pszTopicName parameter is the actual topic name string based upon
which the DOE server and DOE client will be communicating information.

Providing for the CllentJSener Data Exchange 279

PDDESTRUCT EXPENTRY BuildDDEDataStructure (USHORT usDataFonnat ,

Figure 9.14 Bulldlng the DDE data object.

PSZ pszTopicName,
PVOID pvData,
USHORT usData,
USHORT usStatusFlags);

• The pvData parameter is declared as a pointer to VOID. This pointer will
actually point to the start of the data that will be sent to the ODE client
application.

• The usData parameter is actually the length of the data that will be com­
municated to the DOE client.

• The usStatusFlags parameter is used to fill the fsStatus field of the DDE­
STRUCT structure. This field is used to indicate the type of acknowledg­
ment.

The routine will return a pointer to the DDESTRUCT structure that it will
populate based on the information that was passed to it. If an error occurs
during the processing of this routine, then the function will return FALSE to
the caller.

The first thing that this routine must do is allocate the giveable shared
memory object that will be used for the ODE data transfer. The code for
allocating the DOE shared memory object is given in Figure 9. 15. The first step
was to allocate the unnamed memory object. The size of the object is equal to
the length of the topic name string plus one. The memory must be committed
before we can write to it, so we use the PAG_COMMIT flag on the allocation.
You could alternatively choose not to commit the memory at allocation time
in which case you could use the DosSetMem function to commit the memory'.
In any case, the memory must be committed before we write to the memory

ulObjectSize = (USHORT) (strlen(pszDDETopicName)
re= DosAllocSharedMem(((PPVOID)&pulSharedObj),

(PSZ)O,
ulObj ectSize,

+ 1);

PAG COMMIT I PAG READ I
PAG_WRITE OBJ_GIVEABLE) ;

if (re != NULLHANDLE)
(

II Pointer to Base Address
II Un-Named Shared Memory
II Size of the Object
II Memory Flags

DisplayMessages(NULLHANDLE , "Error Allocating the DOE Memory•, MSG_ERROR);
return (PDDESTRUCT) FALSE;

}

Figure 9.15 Allocating the DDE memory object.

280 Communication Between Applications Using PM's Dynamic Data Exchange Protocol

to avoid a page fault. The OBJ _GIVEABLE flag tells the memory manager that
the memory can be given to other processes in the system.

The contents of the shared memory object should include the populated
DDESTRUCT structure, the topic name string, and the actual data that is going
to be passed to the communicator process. It is extremely impo~ant to ensu~e
that the offset fields in the DDESTRUCT structure correctly pomt to the vahd
application name string and the beginning of the data block.

Using the Same Memory Object for a Response
An application can choose to create a new shared memory object for a tr~ns­
action and the resulting response, or attempt to reuse the same memory object
to hold the DDESTRUCT structure. For example, if one application processes
the transaction, it gets a DDESTRUCT structure that was passed to it via ~~n­
DdePostMsg. The receiving application will in turn have to return a positive
acknowledgment by specifying the DOE-FACK flag in the fsS~tus ~eld of. the
DDESTRUCT structure, which implies that a new memory object ts requtred
to post the WMJ)DE...ACK message. At this point, the application~~ crea~e a
new shared memory object to hold the structure or reuse the ex1stmg object
by updating only the ODE-FACK flag of the structure. .

Using the same memory object makes sense in most cases, espec1a~ly on
a WMJ)DE..EXECUTE, since the positive acknowledgment must contam the
command strings for this message. It is far easier to just reuse the data structure
then repopulate it for the same information. Ultimately, regardless of whether
the object is re-created or reused, the application that receives the memo1?'
object containing the structure is responsible for freeing th.e memo~ when it
is done with it. As you will see, the WinDdePostMsg function contains a flag
that can be used to indicate if the structure should be automatically freed.
This is extremely important since the function can free the memo~ tha~ ~as
used for the DDESTRUCT on the responding WMJ)DE...ACK. It ts cnt1cal
that applications understand the responsibility associated with f~eeing the
memory object. It is a common mistake for applications to not free this memory
properly, resulting in shared memory growth eventually causing abnormal
swapper growth.

THE ODE COMMUNICATION MESSAGES
Once the DOE initiation process is complete, the actual data conversation
can begin. The data conversation is composed of a series of transaction mes­
sages initiated by the ODE client, followed by subsequent response messages
from the DOE server. These messages form the basis for the data communi­
cation; therefore, the combination of both transaction and response messages
is known as the communication messages. The format of both of these mes-

Tbe ODE Communication Messages 281

sage types is essentially the same. The first message parameter, mpl, contains
the handle of the window that generated the message. The second message
parameter contains a pointer to the DOE shared memory object.

One of the major differences between the Windows ODE convention and
the PM implementation is in regard to the contents of the second message
parameter. In Windows, the second message parameter is dependant on the
message being posted, while in PM the second message parameter is always
a pointer to the DDE shared memory object containing a DDE structure. The
first message parameter in both environments is the window handle of the
communicating application.

There are several specific types of transactions that the DDE client will use
to obtain information from the ODE server. All of the transaction messages are
posted from the DOE client to the ODE server's message queue. The various
types of transaction messages are described in the next sections.

WMJIDEJIEQUEST
This message is used by the ODE client to request that data be provided by
the DDE server. The DOE server will then respond to this message by post­
ing a WMJ)DEJ)ATA message if there is data to communicate. If the DOE
server cannot provide data to the client, it should respond with a negative ac­
knowledgment using the WM_DDE...ACK message. Assuming the ODE server
has data to transfer, the data is communicated one time for every data re­
quest. The process of this single, one-time exchange is known as the cold link
exchange.

• mpl is the DDE server's window handle.
• mp2 contains the pointer to the DDESTRUCT structure. The offszltem­

Name element of the structure is used to identify the type of data that is
being requested. The usFonnat element is important since it represents the
type of format for the data.

It is important to note that in the context of the WMJ)DE_REQUEST mes­
sage, the data contained in the DDESTRUCT structure, represented by offab­
Data, is undefined. Therefore, both the cbData and offabData elements should
contain zero. Also, if your application will be communicating with a Windows­
based ODE-enabled application, OS/2 will not fill in the data elements of the
structure since there is no data area associated with the WMJ)DE-REQUEST
message.

It is possible to calculate where the data will start even if there is no
valid data to begin with. Therefore, even if this element contains a value,
there may still be no data. The cbData element is used to verify that data
exists since it contains the actual size of the data. The purpose of doing this
calculation, regardless of whether valid data exists, is to safeguard an ill-

h

282 Communication Between Appllcatlons Using PM's Dynamic Data Exchange Protocol

behaved application from corrupting a portion of the DDESTRUCT structure
in memory. This ugly scenario is possible if the application does not properly
validate the data, since it operates under the assumption that the actual offset
to the data starts at zero.

WMJJDE_DATA
This message is used by the communicating applications to handle unsolicited
data. When the client window receives the WM_DDE_DATA message to fulfill
the request, it can then process the data.

• mpl is the window handle of the communicating application.
• mp2 contains the pointer to the DDESTRUCT structure.

The important element of the structure is the usStatus field since it con­
tains the status word that determines whether an acknowledgment message is
needed. If the DDE_FACKREQ bit is set to TRUE, the DOE client is expected
to respond with a positive WM_DDE...ACK. If the bit is FALSE, then no ac­
knowledgment is required. The DDE..FRESPONSE bit is used to determine
exactly for which message the data is being processed. If this bit is TRUE, then
the data originates from a WM_DDE_REQUEST message. If this bit is FALSE,
then the data originates from a WM..DDE...ADVISE message. Remember, the
offszltemName element of the structure is used to identify the type of data that
is registered in the format represented by the usFonnat element.

WMJJDE-'OKE
This message is used by the communicating applications to handle unsolicited
data or data that the DOE application may not have requested. As with the
other messages listed, this message is always posted using WtnDdePostMsg.
The parameters of the message are:

• mp I is the window handle of the window that posted the message.
• mp2 contains the pointer to the DDESTRUCT structure.

The offsz[temName element of the struture is the topic of the ODE conver­
sation while the actual data starts at the offabData element of the structure.
The format type that identifies the data is represented by the usFormat field of
the structure. The window procedure that processes this message can choose
to accept the data for further processing. If the window procedure accepts
the data, it should post a positive acknowledgment back to the other com­
municating window via the WM..DDE...ACK message. It can send a negative
acknowledgment if it does not want the data.

'
)

)

,

l

The DDE Communication Massages 283

WM..DDE..ADVISE

~is message is used to tell th~ DOE server to dynamically notify the DOE
chent wheneve~ the corr~spondm~ data has changed. This allows for dynamic
updates to the mformat1on an~ gives the DOE client application the ability
to detect the changes automatically, rather than having to determine if the
communicated data has changed, and then once again request the data. The
parameters of the message are:

• mpl is the window handle of the window that posted the message.
• mp2 contains the pointer to the DDESTRUCT structure.

The easiest way to visualize the use of this transaction is to imagine a
spreadsheet as the DOE server and a chart drawing program as the ODE
client, much like the sample programs, PMSTATS and WINCHART. If the
user changes some of the numbers in the entry fields in PMSTATS, through
the use of the WM_DDE...ADVISE message, the chart drawn in WINCHART
could automatically be updated instantly without the user having to initiate
any further communication.

Hot Data Link vs. Warm Data Link

The process of this automatic transfer of data is also known as a hot link.
The hot link is viewed as a permanent method of communicating between the
DOE server and DOE client, since the link is valid until the link is explicitly
broken. The hot link is designed to allow small pieces of data to be transferred
~uickly and automatically. During the processing of the hot link, actual data
is transferred from the DOE server to the DOE client. The WM_DDE...ADVISE
message can also be used to alert the ODE client application that the data has
changed, without actually transferring the data from the ODE server to the
ODE client. This notification process is known as a wann link. The warm link
is designed for larger pieces of data which would be too tedious to continually
transfer. Functionally, the only real difference between a warm link and a hot
link is that no actual data is transferred with the warm link.

The DOE server replies to the WM..DDE...ADVISE message with a positive
acknowledgment if it can supply the data, or a negative acknowledgement if it
cannot, using the WM DDE...ACK message. If the server responds postively, it
will "advise" the DOE client that the data is changing by continually posting the
WM..DDE_DATA message with the data object. The ODE client will continue
to receive the data until the hot link is broken or the data conversation is ter­
minated. Therefore, the WM_DDE_DATA message that the ODE client receives
will contain the data object as part of the DDESTRUCT structure in mp2. If the
structure received contains no actual data, then the WM DDE_DATA message

284 Communication Between Applications Using PM's Dynamic Data Exchange Protocol

is being used for a warm link rather than a hot link. The cbData element of the
DDESTRUCT structure can be used to determine the size of the data.

The DOE client application requests that a warm data link be provided by
setting the DDE_FNODATA status flag, set within the fsStatus element within
the DDESTRUCT structure that will be passed on the WM..DDE...ADVISE mes­
sage. When the DOE server application processes this request, it does not send
any data, but does post a WM_DDE..DATA message back to the DOE client
with zero bytes of data and the DDE_FNODATA status flag also set. Once the
DOE client gets the warm link notification, it can choose to not obtain the
information since it may not be necessary at this time, or it can request the in­
formation from the server by posting a WM..DDE_REQUEST message. Figure
9 .16 is an illustration of the hot data link process, and Figure 9 .1 7 shows the
warm data link process.

Controlllng the Flow of Data Messages

If an application is making use of the hot data link to transfer data repeti­
tiously, it is possible to fill the application message queue, since the DOE client
may not have had an opportunity to process all of the WM..DDE..DATA mes­
sages. In order to safeguard the overflow of WM..DDE..DATA messages to the
DOE client, the DOE protocol provides the DDE_FACKREQ status flag. The
DDE_FACKREQ flag is set in the fsStatus element of the DDESTRUCT for the
WM..DDE...ADVISE message. If the DDE_FACKREQ flag is set, the application
receiving the WM..DDE...ADVISE message should in tum set the flag on the
corresponding WM..DDE..DATA message. Basically, the purpose of this flag is
to allow an application to wait until it receives a WM.DDE...ACK message as an
acknowledgment before posting another WM..DDE_DATA message containing
the data, thus controlling the flow of the data.

WM_DDE_UNADVISE
This message is used by the DOE client to notify the DOE server that the in­
formation that was being dynamically updated by the advise message should
no longer be updated. This message as its name implies, effectively reverses
the WM..DDE...ADVISE message. The DOE server replies to this message with
either a positive or negative acknowledgment using the WM_DDE...ACK mes­
sage.

Posting DOE Messages

All transaction and response messages are posted to the receiver's message
queue. Since the purpose of these messages is to facilitate the data transfer,
a special PM API is used to post the message to the communicating applica-

DDE CHa MP01l1 a WM_DDE_AO VISE

DOE Server

DOE S a N ar rHponda with po1ffiv1 WM _OOE_ACK

Afte r the dat a has been c han g e d o r updated ...

DOE S a rva r po•I• WM_ODE.OATA m e u aga , whloh oon1a lns Iha

ODESTRUCT arruolu r• oon1a lnln g the ohonga d dota •... ,
DOE C lient DOE Server

1111
DOE C Ua nt n•pond a wNh poolliva WM.DO E_ACK

figure 9.16 The hot data link.

DOE Client p ost s a WM_DDE_AOV ISE message.

ODE Client

DOE Serv er res ponds with a positive WM _DO E_ACK.

After the data has been c han ged or updated ••.

DOE Server posts a WM_DDE_ADVISE message with no data . ju st lo indicate the change.

I DOE Client J
I
DOE Client evaluates whel her it wants the data. II M does. i1 postsi a

W M_OOE_R EQUEST lo request it.

DOE Server posts a W M_D DE_DATA meu age which contains the
DDESTRUCT s lructu re containing lhe changed dala.

ODE Client
1

DOE Server

DOE Client responds wilh a positive W M_DDE_A CK .

figure 9.17 The warm data link.

285

286 Communication Between Applications Using PM's Dynamic Data Exchange Protocol

BOOL APIENTRY WinDdePostMsg(HWND hwndTo,
HWND hwndFrom,
ULONG wm,
PDDESTRUCT pddest ,
ULONG ulOptions);

Figure 9.18 The WinDdaPostMsg API.

tion, along with a pointer to the shared memory object that will contain the
information to be transferred. WinDdePostMsg is the API used to post these
messages. Its format is shown in Figure 9.18.

• The hwndTo parameter is the window handle of the window whose mes·
sage queue the message will be posted to. . .

• The hwndFrom parameter is the window handle of the wmdow that is
attempting to post the DDE message. .

• The wm parameter is the actual transaction or response message that is
being posted. .

• The pddest parameter is the pointer to the DDESTRUCT structure that is
being passed to the receiving application. This parameter is always passed
as a 16-bit address.

• The ulOptions parameter is used to tell the Presentation Manager code
what to do if the posted message cannot be received by the Windows mes­
sage queue. Like the regular API used for posting a message, WinPostMsg,
the WinDdePostMsg function will fail if the message queue associated with
the window is full . The developer can specify the behavior that PM should
take if the function fails by passing one of two parameters.

The DDEPM.RETRY option is used to specify whether the message should
be continually posted until it finally reaches the destination message queue
(see Figure 9.19). The DDE message will be posted in one-second intervals
until it finally is successfully posted. The DDE code safeguards the message
processing by establishing a message loop of its own to prevent deadlocks.

The worker routine for WinDdePostMsg first checks to see if the retry flag
is set. If the retry flag was not specified, then it immediately exists. OtheIWise,
the code checks to ensure that the only error it will continue processing for is
PMERR.QUEUE..FULL, which indicates that the receipient's message queue is
full. For all other errors that can cause the function to fail, the WinDdePostMsg

DDEPM_RETRY
DDEPM_NOFREE

OxOOOOOOOlL
Ox00000002L

Figure 9.19 The WinDdePostMsg retry options.

The DOE Co .. unlcatlon Messages 287

function will return FALSE. Once the check for the retry flag is complete, the
sender is thrown into a modal message loop to avoid a deadlock situation.
The receiver of the DDE message may actually be waiting on the sender to
receive a DDE message. Also, a deadlock may arise if two applications have
full message queues and post a DDE message to each other while using the
retry option. The code then calls the WinCallMsgFilter API, and specifies
the MSGF..DDEPOSTMSG option, which allows those applications that filter
messages prior to the WinPeekMsg function to use the WinSetHook function
to detect whether the code has entered this message loop processing.

The modal loop is a simple WinPeekMsglWinDispatchMsg loop. The loop
is designed to allow messages from other applications to be received. In other
words, the application can receive Dynamic Data Exchange messages, or any
other messages for that matter, while the application continues to post the
DDE message through WinDdePostMsg. The WinPeekMsg function actually
specifies the PM.REMOVE parameter to ensure that the message is removed
from the queue. If a WM.QUIT message is received while inside this loop, the
message is posted back to the application's message queue for processing by
the main message loop, and this loop is exited.

The DDEPM..NOFREE option is used to allow the caller to free the shared
memory object rather than the worker code for WinDdePostMsg. If this param­
eter is not used, the default behavior ensures that the memory is automatically
freed. The purpose of using this parameter is performance; for example, if sev­
eral calls to WinDdePostMsg will occur, the same shared memory object can
be used for each of the calls to the function. Once the processing is complete,
the application code will have to free the memory object.

The code fragment in Figure 9.20 first obtains a pointer to the DDESTRUCT
structure containing the data that will be trasferred to the WINCHART appli­
cation. The structure is then passed to the application through the use of the
WinDdePostMsg API. The DDEPM..RETRY option is specified to continually
post the message if the WINCHART application's message queue is full.

WM_DDE.ACK

The final message in the DDE protocol is the acknowledgment message,
WM.DDE...ACK. This message is used to synchronize the communication mes­
sages and provide information for the communicating applications with regard
to when a particular message was received and whether it was actually pro­
cessed. This message is extremely important because it provides the signal to
the DDE client or DDE server to either continue processing the data exchange
or take some other action like waiting for another event. Like the communica­
tion messages, this message is posted using WinDdePostMsg. In the processing
of this message, the first message parameter, mpl , contains the handle of the
window that initiated the message, while the second message parameter, mp2,
contains a pointer to the DDESTRUCT structure.

288 Communication Between Applications Using PM's Dynamic Data Exchange Protocol

pddes = BuildDDEDataStructure(DDEFMT_TEXT, 11 Format
TOPIC,

(PVOID)pszSendString,
sizeof(pszSendString),
0);

II Topic Name String
II Data to be exchanged
II Size of Data

if (pddes = 0)
{
SendTextToMLE("DDEERROR: DDE Structure is empty");

)

bSuccess = WinDdePostMsg(hwndDDEClient,
hwndClient,
WM_DDE_DATA,
pddes,
DDEPM_RETRY) ;

II DDE Client Window Handle
II DDE Server Window Handle
II DDE message
II Pointer to DDE structure
II Retry Post

SendTextToMLE('Posting WM_DDE_DATA message to DOE Client');

if (bSuccess ==TRUE) II No Error
{
SendTextToMLE('WM_DDE_DATA - Message successfully sent to WINOS2 session ... ');

)

else
{
WinAlarm(HWND_DESKTOP, WA_ERROR);
SendTextToMLE('DDEERROR: Error Sending WM_DDE_DATA');

}

Figure 9.20 Using WlnDdePostMsg.

The acknowledgment comes in the form of the fsStatus field of the DDE­
STRUCT structure. The communicating application that wants to acknowledge
a particular message uses this field as the source of the notification by modify­
ing the field to reflect the state of the acknowledgment when the particular mes­
sage is received. The receiving window procedure can check the value of this
field to determine whether the other communicating application has actually
posted valid data. In the Windows DDE implementation of the DDE protocol,
the status flags are stored in the low order byte of the DDEACK structure. Also,
unlike its PM counterpart, the Windows implementation uses this message to
respond to a WM.l)DE_INITIATE request since the WM_DDE_INITIATEACK
message is undefined for Windows.

Back on the PM side, the DOK.FACK flag is used to indicate whether
the acknowledgement is positive, while the DDE_FBUSY flag indicates that
the communicating application is currently busy processing something else
indicating that the request should be retried.

The DDE Halper Macros 289

I I DDE helper macros

#define DDES_PSZITEMNAME (pddes) \
(((PSZ)pddes) + ((PDDESTRUCT)pddes)->offsz l t emName)

#define DDES_PABDATA(pddes) \
(((PBYTE)pddes) + ((PDDESTRUCT)pddes)->offabData)

#define DDEI_PCONVCONTEXT{pddei) \
((PCONVCONTEXT) ((PBYTE)pddei + pddei->offConvcontext))

Figure 9.21 The DOE helper macros.

The WM.l)DE.ACK message is ineffective by itself, its only purpose is to
respond to other DDE messages in either a positive or negative manner and to
alert the other application to take some appropriate action. The acknowledg­
ment is based on the offsz/temName element of the DDESTRUCT structure, so
acknowledgments are based on what is being communicated.

THE DOE HELPER MACROS

PMWIN.H defines three macros that are used to help calculate offsets into the
various DDE structures. The first two macros are used to calculate offsets into
the DDESTRUCT structure. The third macro is used to calculate an offset into
a DDEINIT structure. Using these macros you can easily obtain the offset by
knowing the pointer to the structure. The macros are given in Figure 9.21.

The DDEs_pszITEMNAME macro is used to calculate the offset for the
item name from the start of the DDESTRUCT structure pointed to by pddes.
Through the use of this macro you can easily copy the topic name string into
the offszltemName element of the DDESTRUCT structure. The macro works
by first obtaining the address of the beginning of the DDESTRUCT structure
and then adding the offset to the item name string. Finally, the resulting address
is returned. PMSTATS uses this macro in the BuildDDEDataStructure routine
to place the topic name string within the DDESTRUCT structure.

The topic name string is passed into the function and then copied within
the structure through the use of the strcpy function, as you can see in Figure
9.22.

pdde->offszitemName = (USHORT)sizeof(DDESTRUCT);
st rcpy(DDES_PSZITEMN.l\ME (pdde) , psz ltemName);

Figure 9.22 Using the DDES_PSZITEMNAME macro.

290 Communication Between Applications Using PM's Dynamic Data Exchange Protocol

The value returned is a pointer to a string. The pointer is only valid if the
offszltemName element of the DDESTRUCT structure contains a valid non­
zero value. It is important to note that a non-zero string is very much different
from a zero-length string, which is actually valid, although not commonly
expected.

The DDES_pABDATA macro is used to calculate the offset for the actual
data block from the start of the DDESTRUCT structure pointed to by pddes.
This macro provides easy access to the offset for the data that will be ex­
changed. The macro works by first obtaining the address to the start of the
DDESTRUCT structure and adding the offset to the data. The pointer returned
by this macro is only valid if within the DDESTRUCT structure the cbData
element contains a non-zero value. If the value is zero, then no actual data
exists and the pointer returned is invalid.

The DDEJ_pcONVCONTEXT macro is used to calculate the offset for
the national language conversation context. This macro, unlike the other two
DDE helper macros, calculates the offset into the CONVCONTEXT structure
and takes a pointer to a DDEINIT structure as input to the macro.

The source code fragment shown in Figure 9 .23 is used to post the
WM_DDE_DATA message containing the data to the WINCHART DDE client
sample.

case WM_COMMAND:
switch (SHORTlFROMMP(mpl))
{
case DID_OK:

cbText = 0;
for (uscounter = IDE_MONTHOl ; usCounter < IDE_MONTH13 ; usCounter++)

{

cbText += WinQueryDlgitemTextLength(hwnd, (ULONG)usCounter);
cbText++; II room for separator - terminator

II allocate string
pszSendStr i ng = rnalloc(cbText + l);
pszSendString[O) = '\0';

for (usCount er = IDE_MONTHOl ; usCounter < IDE_MONTH13; usCounter++l
{

WinQueryDlgltemText(hwnd, usCounter, sizeof(szTextFromEF), szTextFromEF);

II OK, since our sample program deals with satisfaction percent ages,
II we can only have the user enter a number up to 100 percent . So
II we will validate the number the user ent ered in the entryfield.
II If the number is above 100, sound the error tone, put an error message
II in the status window, and finally reset the focus to the entryfield
II that is in er ror.

Figure 9.23 Transferring the data from the DDE server. continued

usNumber = atoi(szTextFromEF);
if (usNumber > 100)

{
WinAlarm(HWND_DESKTOP, WA_ERROR) i

The DOE Helper Macros 291

SendTextToMLE ("ERROR: Number in Entryfield must be percentage up to 100%");
hwndEntryfield = WinWindowFrornl D(hwnd, usCounter);
WinSetFocus(HWND_DESKTOP, hwndEntryfield);
return FALSE;

)

strcat(pszSendString, szTextFromEF);

II pass one big conuna delimited string over to the
II DDE client containing all of the data
if(usCounter != IDE_MONTH12)

{
strcat(pszSendString, • , ');

)

if (pszSendString[OJl
{
pDDEStruct = BuildDDEDataStructure (DDEFMT_TEXT,

TOPIC,
(PVOID)pszSendString,
sizeof ('pszSendString) ,
DDE_FACK) ;

bSuccess = WinDdePostMsg (hwndDDEClient,
hwndClient ,
WM_DDE_DATA,
pDDEStruct ,
DDEPM_RETRY);

if (bSuccess ==TRUE) II No Error
(

II DDE Client Window Handle
II DDE Server Window Handle
II DDE message to be post ed
II Pointer to DDE structure
II Options

SendTextToMLE('WM_DDE_DATA - Message successfully posted . . . ') ;
)

else
(
WinAlarm(HWND_DESKTOP, WA_ERROR);
SendTextToMLE(' DDEERROR: Error posting WM_DDE_DATA message•);

)
)

free(pszSendString);
return FALSE;

Figure 9.23 Transferring the data from the DOE server.

292 Communication Between Appllcatlons Using PM's Dynamic Data Exchange Protocol

EXCHANGING THE SAMPLE PROGRAM DATA

The code shown in Figure 9.23 is the actual code used to transfer the monthly

percentage data from the PMSTATS program to the WINCHART program.

The data is transferred when the user clicks the OK pushbutton; therefore,

the processing of the data exchange occurs within the context of the DID_OK

pushbutton. The PMSTATS application will transfer the numeric data as one

large comma delimited string, with the comma separating each of the monthly

numbers. Applications should use caution when transferring text data using

the DDEFMT _TEXT data exchange format between a PM application and a

Windows application. For some strange reason, a worker routine in PMDDE

that is used to translate the codepage information between PM and Windows,

truncates a text buffer at the first NULL character. So if your PM application

passes strings that are NULL delimited only the first string would be passed

on to the Windows side.
The first for loop in the code is used to obtain the length of the string that

will be transferred. The code then uses the C runtime call malloc to allocate

storage for the string. The code then loops through each of the entryfields

in the spreadsheet dialog by using the WinQueryDlgltemText API with the

identifier of the entryfield. If any of the entryfields contains a number that

is greater than 100, an error tone will sound and the cursor will be placed

on the entryfield containing the invalid number. Remember, the entryfields

are subclassed to only take numbers in the FilterEntryFieldProc subclass

procedure. The C runtime function strcat is used to insert the commas into

the string. The next step is to create the shared memory object and obtain

a pointer to the DDESTRUCT structure containing the data to be exchanged

within the memory. The final step in this code is to actually transfer the data

by posting a WM..DDE..DATA message to the DDE client, passing the pointer

to the DDESTRUCT structure. The code fragement uses the DDEPM..RETRY

option to continue posting if the first time was not successful. If an error

occurs, the user will hear a beep and see the error in the MLE window. The

processing of the DID-OK pushbutton concludes by freeing the memory for

the string using the free function.
The code fragment shown in Figure 9.24 contains the previously discussed

routine used to create the shared memory object and return a pointer to the

populated DDESTRUCT structure containing the data.

PDDESTRUCT EXPENTRY BuildDDBDataStruc ture(USHORT usFormat, PSZ pszi temName, PVOID pvData,

USHORT cbData, USHORT fsStatus)

APIRET
ULONG
PVOID

re;
ulObjSize = O;
pvBuffer;

Ft1ure 9.24 The BuildDDEDataStructure routine. continued

PCllAR szBuf fer - NULL;
POOESTRUC'I' pDDBStruct = NULL;

II Allocate shared memory and ensure i ts gi veabl e
ulObjSize = strlen (pszltemNa.me) + 11

re = DosAl locSharedMem(&pvBuffer,
NULL,
ulObjSize,

if (re I• NULLHANDLE)
{

PAG_COMMIT I PAG_READ I PAG_WRITE j OBJ_GIVEABLE};

DisplayMessageslNULLHANDLE, ·Error Al l ocat ing Shared Memory for DOB Dat a• , MSC_ERRORli

return (PDDESTRUCTJNULL;
I

II Populate the DDESTRUCT
pDDEStruct = (PDDESTRUCT)pvBuffer ;
pDDEStruct · >usFormat • usFormat ;
pDDEStruct•>OffszitemName = (USHORT)sizeof (DDESTRUCT);

II Copy the item name into the structure

strcpy fDDES_PSZITEMNAME(pDDEStruct) , pszltemNa.meJ;

pDDEStruct->cbData
pDDEStruct->offabData
pDDEStruct ->fssta tus

• cbData;
pODBStruct->offszltemNa!Jle + strlen (pszl t emNllllle) + l ;

• fsStatus ;

if (usFormat == DDEFMT_TEXT)

' i f (pvData • =NULL I I cbData == 0)
{

)

II Thi s wil l only happen if the cal l er of the routine

II for whatever reason passed us no data

DisplayMessages lNULLHANDLE, ' No data t o exchange' , MSG~OR);

return (PDDBSTRUCTINULL;

else

szeuf fer = pvData;
strcpy (DDES_PABDATA (pODESt ruct) , s zBuffer) ;

I

else

DisplayMessages (NULLHANDLE, ' Thi s routi ne currently only supports the DDBFHT_TEXT fol"llAt ' ,

MSG~OR) ;

return pDDEStruct ;
J

Figure 9.24 The BuildDDEDataStructure routine.
293

294 Communication Between Appllcatlons Using PM's Dynamic Data Exchange Protocol

The code fragment listed in Figure 9.25 shows the processing of the
WM_DDE_DATA message by the WINCHART application.

case WM_DDE_DATA:
hMsgMem = (HANDLE)LOWORD(lParam);
pdde = (DDEDATA FAR *)GlobalLock(hMsgMem);
GlobalUnlock(hMsgMem);

II Received data from our DDE Server, show the data
II string in the static text window
SetDlgitemText(hwnd, ID_DATA, pdde->Value);

II Parse out the fields in the data string
for (nMonth = O; nMonth < 12; nMonth++)

{
if (nMonth)

{
pszToken = strtok(NULL, •,•);

}

else
(
pszToken = strtok(pdde->Value, ",');

}

if (pszToken == NULL)
{
break;

}

nChartData[nMonth) = atoi(pszToken);

II Now send an acknowledgement back to the PM side
pdde = (DDEDATA FAR *)GlobalLock(hMem);
pdde->cfFormat = CF_TEXT;

strcpy(pdde->Value, "\tWINCHART received data');
GlobalUnlock(hMem);

II Post a WM_DDE_DATA message back to DOE Server
PostMessage(hwndDDEServer,

WM_DDE_DATA,
hwnd,
MAKELONG(hMem, altem));

break;

Figure 9.25 The DDE client receiving the data.

Charting the Data 295

CHARTING THE DATA

The code shown in Figure 9.26 illustrates how the DDE client application
makes use of the WM_DDE..DATA message. The data string received from the
DDE server is displayed in a static text window via the SetDlgltemText routine.
Once the string is displayed in the window, the code then strips the commas
out of the passed string and converts each string separated by a comma into
an integer. The numeric information is then stored in an array that will be
used to draw the chart. The painting of the chart is done within the context of
the WM_pAJNT message.

The logic used to draw the chart is relatively simple. The code used to paint
the window simply draws colorful rectangles to create the chart. The rectangles
are drawn by using the Windows Rectangle APL The text information used to

case WM_PAINT:
hdc = BeginPaint(hwnd, &ps);
hpen = SelectObject (hdc, CreatePen(PS_SOLID, 1, OL))

xOrigin = (LONG)cxClient I lOL;
xDelta = ((LONG)cxClient - (xOrigin * 2L))l12L;
yOrigin = (LONG)cyClient - ((LONG)cyClient I lOL);
yDelta = [(LONG)cyClient I 10) * 81;

for (nMonth = O; nMonth < 12; nMonth++)
{

)

hbrush = CreateSol idBrush(clrTable [nMonth%6));
Select Object(hdc, hbrush);
xLeft = xOrigin;
xRight = xOrigin + xDelta;
yBottom = yOrigin;
yTop = yOrigin - ((yDelta * nchartData[nMonth)))llOOL;
Rectangle (hdc, (int)xLeft , (int)yTop, (int)xRight , (int)yBottom) ;
itoa(nChartData[nMonthJ, szpct , 10);
rect .left = (int)xLeft;
rect.right = (int)xRight;
rect.bottom = (int) (yOrigin - yDelta);
rect.top = rect.bottom - 20;
DrawText(hdc, szpct, strlen(szpct), &rect, DT_CENTER);
rect.top = (int)yOrigin + S;
rect.bottom = rect.top + 20;
DrawText(hdc , szMonth(nMonth), 3, &rect , DT_CENTER) ;
xOrigin += xDelta;

EndPai nt (hwnd, &ps) ;
return FALSE;

Figure 9.26 Drawing the chart.

29& Communication Between Applications Using PM's Dynamic Data Exchange Protocol

WINCHART- Sample Charting Pro.gram

80 94 87 78 34 89 95 71 55 77 85 61

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Flgn 9.27 Tiie chart showing the data.

show the percentages and the months is drawn by calling the Windows API
DrawText. The illustration in Figure 9.27 shows the final product, the bar chart
showing the data.

SUMMARY

Dynamic Data Exchange is not an automated data transfer facility. It is, how­
ever, a powerful message-based protocol that allows developers to share in­
formation with other DOE-enabled applications. The DDE protocol enables
unrelated applications to communicate effectively providing more power to
the user since any enabled application that runs in the context of the Presenta­
tion Manager can transfer data to another DOE-enabled application. With all
of the PM- and Windows-based applications that exist in today's software com­
munity, many applications provide a method for data to be exchanged via DDE.
Applications that effectively use the Dynamic Data Exchange protocol enable
their application to communicate with several popular vendor applications,
thereby creating a wealth of information to be shared by the user. Creating a
DOE-enabled application provides the user with a powerful communication
interface that is totally transparent to them. Few users truly appreciate the
benefits of DDE, while few developers can deny the benefits that DDE brings
to the user.

CHAPTER

Getting to the Head
of the Class:
Understanding Subclassing

P M programmers seem to have an unreasonable fear of using subclass­
ing in their programs. Even highly talented and experienced individuals
have expressed their ignorance of the methods of subclassing. This fear

probably stems from the belief that a methodology as powerful as subclassing
must inherently be extremely complicated. In many instances, however, sub­
classing is an extremely simple task. This chapter will explain the subclassing
concept and, hopefully, ease many of the associated fears so that you can take
full advantage of this concept in your programs.

Subclassing is a mechanism that allows an application to intercept mes­
sages intended for a particular window or a class of windows for the purpose
of modifying or extending the behavior of the window or class. This mecha­
nism is similar to the inheritance property of object-oriented systems. In fact,
PM may be considered as a rudimentary object-oriented programming envi­
ronment. Applications register object classes and then create instances of the
classes known as windows. The instance data associated with each window
is the object data. Object methods are invoked by sending messages to the
object. In this light, the window procedure is merely the mechanism used to
invoke methods. PM defines an implied base class whose data is the system­
defined window data accessible through WlnQueryWindowShort, WinQuery·
WindowLong, and WinQueryWindowPtr. The methods of the base class are
invoked by calling the WinDelWindowProc API. Thus, every application that
invokes WinDelWindowProc to provide default message processing is actually

297

298 Getting to the Head of the Class: Understanding Subclassing

subclassing the PM base window class, and most PM programmers employ
subclassing without being aware of the action.

This chapter examines two forms of subclassing commonly used in PM
programs. The simpler form merely replaces the window procedure of an ex­
isting window and allows the application to override the methods, or message
processing functions, of the original class. This method was used in Chapter
7 to allow a listbox control to function as an application client window and
to provide direct manipulation support for the listbox. The second form of
subclassing is very similar to the derivation of classes in object-oriented pro­
gramming languages and allows an application to extend both the data and
methods of an existing class to form a new class. As simple as this sounds,
there are complications due to the fact that class derivation was not a major
concern in the implementation and documentation of the PM-defined classes.

REPLACING A WINDOW'S WINDOW PROCEDURE

The simplest and most commonly used form of subclassing replaces the win­
dow procedure of an existing window in order to modify the behavior of the
window. This section describes two examples where this method is used. In the
first, the existing window class is specifically designed to allow a subclassing
procedure to modify its behavior. In the second, a message normally processed
by the existing class is intercepted in order to modify the functionality of the
existing class.

The WinSubClassWindow API replaces the current function that PM calls
for processing a window's messages and returns the address of the current
function. The prototype for this API is given in Figure 10.1.

• The hwnd parameter specifies the window whose window procedure is to
be replaced.

• The pfnwp parameter specifies the address of the new window procedure
to be called when hwnd receives a message.

The new window procedure should normally call the old procedure to per­
form the window class's normal processing for any unprocessed messages or
for messages that only modify but do not replace the original functionality. This
is identical to the subclassing of the base window class wherein application
window procedures call the WinDefWindowProc APL

PFNWP APIENTRY WinSubclasswindow(HWND hwnd,
PFNWP pfnwpl i

Figure 10.1 The WlnSubclassWlndow API.

Raplaclng a Window's Window Procedure 299

The first example subclasses the container control in order to modify the
background of the control. The container explicitly supports this subclassing
function by sending itself a CM_pAINTBACKGROUND message whenever the
background requires updating and the CA_OWNERPAINTBACKGROUND at­
tribute is set (see Chapter 12 for a detailed discussion of the container window).
If the container has not been subclassed, it returns FALSE when this message
is received, causing the background to be drawn in the normal manner. If the
container has been subclassed and the new window procedure processes the
message, TRUE is returned to indicate that the new window procedure has
drawn the background. This return value prevents the container control from
redrawing the background and erasing the work of the application.

Parameter mpl of the CM_pAINTBACKGROUND message contains a
pointer to an OWNERBACKGROUND structure which contains the informa­
tion required to draw the background. Parameter mp2 is reserved and should
not be used by the application. The definition of the OWNERBACKGROUND
structure is given in Figure 10.2.

• The hwnd element is the handle of the container window.
• The hps element is a handle to a presentation space established by the

container for drawing the background.
• The rc[Background element is a RECTL structure that specifies the area to

be drawn.
• The it/Window element is the window identifier for the container window

and allows the application to identify the window being painted.

Figure 10.3 shows coding that can be used to draw a bitmap onto the
background of the container control. After the container is created, WinSub­
classWindow is called to replace the container's normal window procedure
with routine cnrSubclassProc. The address of the original routine is stored in
a global variable, pfnCnrProc.

After the WinSubclassWindow call, all messages for the container are first
processed by cnrSubclassProc. The routine casts the value in parameter mpl
to a pointer to an OWNERBACKGROUND structure for use if the incoming
message is CM_PAINTBACKGROUND. If this is indeed the message, the func-

typodef struct _OWNERBACKGROUND
{

HWND hwnd;
HPS hps;
RECTL rclBackground;
LONG idWindow;

} OWNERBACKGROUND;

I* ownbckg * /

Figure 10.2 The OWNERBACKGROUND structure.

300 Getting to the Head of the Class: Understanding Subclassing

/************** From window creation processing ************/
hwndCnr = WinCreateWindow(hwnd, WC_CONTAINER, 'Just a test',

CCS_AUTOPOSITION I WS_VISIBLE,
0, 0, 0, 0, hwnd, HWND_TOP,
CID REGISTER, NULL, NULL) ;

pfnCnrProc = winSubclassWindow(hwndcnr, cnrSubclassProc);
/************** End from window creation processing ************/

MRESULT APIENTRY cnrSubclassProc(HWND hwnd,ULONG msg,MPARAM mpl,MPARAM mp2)
{

POWNERBACKGROUND
static HBITMAP
RECTL

pob = (POWNERBACKGROUND)mpl;
hbm = NULLHANDLE;
rectl;
ptl;
re;

PO INTL
MRESULT

if (msg == CM_PAINI'BACKGROUND)
if(pob->idWindow != CID_REGISTER &&

pob->idWindow != CID_LEFTDVWND &&
pob->idWindow != CID_RIGHTDVWND)

return MRFROMLONG(FALSE);
if(hbm == NULLHANDLE) {

winQueryWindowRect(hwnd, &rectl);
hbm = LoadBitmap(pob->hps, &rectll;

)
ptl.x = pob->rclBackground.xLeft;
ptl.y = pob->rclBackground.yBottom;
WinDrawBitmap(pob->hps, hbm, &(pob->rclBackground), &ptl,

01, 01, DBM_NORMAL) ;
return MRFROMLONG(TRUE);

}
if (msg == WM_VSCROLL II msg == WM_HSCROLL) (

WinLockWindoWUpdate(HWND_DESKTOP, hwnd);

}

re= (*pfnCnrProc) (hwnd, msg, mpl, mp2);
WinLockwindowUpdate(HWND_DESKTOP, NULLHANDLE);
return re;

if (msg == WM_SIZE) (
GpiDeleteBitmap(hbm);
hbm = NULLHANDLE;

)
return (*pfnCnrProc) (hwnd, msg, mpl, mp2);

Figure 10.3 Subclassing the Container.

Replaclng a Window's Window Procedure 301

tion examines the idWindow element of the OWNERBACKGROUND structure
to determine if the background being drawn is either the background of the
container window itself or one of the data windows of the details view (the
container child window IDs are defined in pmstddlg.h). If the background is
not for one of these windows, FALSE is returned to allow the container to paint
the background. Otherwise, if the bitmap has not already been loaded, Load­
Bitmap is called to establish a bitmap sized to fill the window. (See Chapter 15
for additional bitmap programming information.) When the bitmap is avail­
able, a point structure is initialized to indicate the starting point of the drawing
operation, and WinDrawBitmap is called to repaint the requested portion of
the window background. After the drawing is complete, the function returns
TRUE to prevent the container from redrawing the background.

Three additional messages are processed by the container subclass pro­
cedure. The WM_VSCROLL message and WMJISCROLL message must be
processed to prevent the background from becoming corrupted due to the
use of the WinScrollWtndow API by the container. The processing for these
messages uses the WinLockWlndowUpdate API to prevent output to the win­
dow while the container is performing the scrolling operation. The standard
container window procedure is then called to perform the scrolling opera­
tion. When the scrolling is complete, WlnLockWlndowUpdate is again called
to allow output to the window. The WM_SIZE message is processed so that
the bitmap can be resized to fit the window. When the message is received,
the function deletes the bitmap so that it will be reloaded and resized when
another background drawing request is received. WM_SIZE and all other un­
processed messages are passed to the standard container window procedure
for normal processing.

The ability to subclass the container control and paint its background is
this easy because the control provides the CM_pAJNTBACKGROUND mes­
sage. If this message were not available, this functionality would be impossible
since there would be no way to prevent the container from drawing the back­
ground during its WM_pAINT processing short of completely rewriting the
paint function. Even with the message, the functionality is not as straightfor­
ward as it might first appear, as evidenced by the need to process the scrolling
and sizing messages. Since this type of message is not universally available,
subclassing is more commonly used to either prevent certain messages from
being processed by the standard window procedure for a class or to process
additional messages that are not normally processed by a class's standard
window procedure.

The second example shows how an entry field can be subclassed to prevent
the standard window procedure from receiving WM_CHAR messages repre­
senting non-numeric characters, resulting in a numeric-only entry field. Figure
10.4 shows code that can be used to accomplish this function for an entry field
in a dialog box. Routine SubentryDlgProc is the dialog procedure for the dia-

302 Getting to the Head of the Class: Understanding Subclasslng

MRESULT APIENTRY SubentryDlgProc(HWND hwnd,ULONG msg,MPARAM mpl,MPARAM mp2}
{

HWND hwndEntry;

switch (msg) {
case WM_INITDLG:

hwndEntry = WinWindowFromID(hwnd, ID_ENTRYFIELD);
pfnEntry = winSubciassWindow(hwndEntry, entrySubProc);
return MRFROMLONG (FALSE) ;
break;

default:
return WinDefDlgProc(hwnd, msg, mpl, mp2);

break;
} /* endswitch */

MRESULT APIENTRY entrySubProc(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2
{

if (msg == WM_CHARJ {
if ((SHORTlFROMMP(mpl} & (KC_CHARIKC_VIRTUALKEY)} == KC_CHAR}

if {CHAR1FROMMP(mp2} < '0' I I CHAR1FROMMP(mp2) > '9') {
return MRFROMLONG{FALSE);

} /* endif *I
} /* endif *I

} /* endif *I
return {*pfnEntry} (hwnd, msg, mpl, mp2 };

Figure 10.4 Subclasslng the entry field.

log box. The WM_INITDLG processing for this dialog first obtains the window
handle of the entry field, then calls WinSubclassWindow to replace the stan­
dard entry field window procedure with routine entrySubProc. The stand~d
window procedure is stored in a global variable for use by the subclassmg
procedure.

Routine entrySuhProc forwards all messages except WM_CHA~ to the
standard entry field window procedure. If the WM_CHA~ m~ssage is for a
keystroke that produces a nonvirtual keystroke, a comparison 1s made. to de­
termine if the character falls into the numeric range. If not, the routme re­
turns without forwarding the message to the standard entry field procedure.
WM_CHAR messages that represent virtual keys or numeric characters are
forwarded to the standard entry field procedure for normal processing.

CREATING A NEW CLASS
So far we have discussed examples where only one window is subclassed. When
many windows require the same subclass functionality, subclassing through

Creating a law Class 303

BOOL APIENTRY WinQueryClassinfo (HAB hab,
PSZ pszClassName,
PCLASSINFO pCl assinfo) ;

Figure 10.5 The WlnQueryClasslnfo API.

the creation of a whole new class may prove beneficial. In addition, a new
class is necessary if the subclass functionality requires additions to the window
instance data defined for the existing class. The new class retains the overall
behavior of the existing class, but adds its own enhanced functionality or data.
When this method is used, windows are created as instances of the new class
and the WinSubclassWindow API is not required.

This approach to subclassing is very similar to what occurs in object­
oriented environments when a new object class is derived from an existing
class. The methods and data of the original class are maintained but the new
class typically adds or replaces some methods and extends the object data.
When a window class subclasses, or is derived from, an existing class, the
new class must maintain a link to the methods of the existing class and must
maintain the window instance data required by the existing class. The new class
obtains this information by calling the WinQueryClasslnfo APL The prototype
of this function is shown in Figure 10.5.

• The hah parameter is the handle to the process's or thread's anchor block.
• The pszClassName parameter specifies the class for which information

is desired. The parameter is specified in the same manner as the class
name of the WinCreateWindow API, which is a class name constant to
obtain information for the OS/2 system-defined classes or a pointer to a
zero-terminated string for application-defined classes.

• The pClasslnfo parameter is a pointer to a CLASSINFO structure in which
the class definition information is returned.

WinQueryClasslnfo returns TRUE if successful or FALSE if the class does
not exist.

The CLASSINFO structure returned by WinQueryClasslnfo is defined as
in Figure 10.6.

typedef struct _CLASSINFO
{

ULONG flCl assStyle;
PFNWP pfnWindowPr oc;
ULONG cbWindowData ;

} CLASSINFO;

Figure 10.6 The CLASSINFO structure.

304 Getting to the Head of the Class: Understanding Subclassing

• Element fl.ClassStyle is the defined class style used for creating windows of
the class.

• The pfrzWindowProc element is the window procedure that implements the
methods for the class. The window procedures of derived classes normally
call this procedure rather than WinDefWlndowProc for messages that are
not completely processed by the derived class.

• Element cbWindowData specifies the number of bytes of window instance
data reserved for the class. Derived classes must specify the reservation of
at least this many bytes of window instance data.

To see how this form of subclassing is performed, let's examine the coding
required to implement a static text field, which may be edited under special
conditions (similar to the icon text of Workplace Shell objects). This type of
control might be used in a WYSIWYG forms editor in which the field labels are
normally displayed as static text. When the user wishes to modify the label text,
the label is changed to an entry field. When the modifications are complete,
the entry field returns to a static text control. All of this could be accomplished
within the application code, but isolating the control functionality in a derived ·
class reduces application complexity and allows the control functionality to be
easily included in other applications.

Before the new class can be used to create a window, it must be registered.
To avoid complications in the main application, a function is provided to
accomplish this task. This function is shown in Figure 10.7. The new control
class is actually implemented using two derived classes: the class derived
from the entry field, which is known to the application; and a class derived
from the static text control, which is used internally by the derived entry
field class. Function RegisterMyClass first calls WinQueryClasslnfo to obtain
the class specifications for both the entry field and the static text control.
WinRegisterClass is then called to register the new entry field class. A new

void RegisterMyClass(HAB hab }
{

WinQueryClassinfo(hab, WC_STATIC, &ciStatic);
WinQueryClassinfo(hab, WC_ENTRYFIELD, &ciEntry);
Wi nRegisterClass(hab, "MYCLASS" ,

MyClassWndProc, (ULONG) (ciEntry.flClassStyle) & -cs_PUBLIC,
ciEntry.cbWindowData + SIZE_WINIX>W_DATA};

WinRegisterClass(hab, "MYCLASSSTATIC",
MyClassStaticWndProc,
(ULONG) {ciStatic . flClassStyle)&-CS_PUBLIC,
ci St atic.cbWindowData);

Figure 10.7 Registering a new class.

Creatlng a law Class 305

window procedure, MyClassWndProc, is specified as the window procedure
for the class; the class style is set to the style of the entry field, less the
CS_FUBLIC style. The number of bytes of window instance data is set to
the amount required by the base entry field class plus room for two additional
ULONG values required by the new class. The new static text field class is
then registered. The window procedure is set to MyClassStaticWndProc; the
style is set to the base static text control style, less the CS_FUBLIC style. The
number of bytes of reserved instance data is set equal to the number of bytes
required by the base class; no additional window instance data is required. The
CS_FUBLIC style is removed since the derived classes are not global classes.

After the new class has been registered and the application creates win­
dows of this class, MyClassWndProc begins to receive messages sent to the
new control windows. The first message that the new class processes is the
WM_CREATE message. The code that processes this message is shown in Fig­
ure 10.8. The primary function of this routine is the creation of the static text
control associated with the new window. The function first converts parameter
mp2 to a CREATESTRUCT pointer. The style of the new window is then ex­
tracted and used to compile the style flags for the static text control. The style
of the entry field control is then modified. The ES...MARGIN style is set to draw
a border around the entry field, and the ES-READONLY style is reset-the
static text field now provides this functionality. The static text window is then

case WM_CREATE:
pCS = (PCREATESTRUCT)PVOIDFROMMP(mp2) ;
if (! (pCS->flStyle & (MC_CENTER I MC_RIGHT)}) flStaticStyle I= DT_LEFT;
if (pCS->flSt yle & MC_CENTER) flStaticStyle I= DT_CENTER ;
if (pCS->flStyl e & MC_RIGHT) flStaticStyle /= DT_RIGHT;
if (pCS->flStyle & MC_AUTOSIZE) f lStaticStyl e /= SS_AUTOSIZE;

flEntryStyle = WinQueryWindowULong (hwnd, QWL_STYLE) ;
flEntryStyle I= ES_MARGIN;
flEntryStyl e &= -ES_READONLY;
WinSetWindowULong(hwnd, QWL_STYLE, flEntryStyle };

hwndStatic = WinCreateWi ndow(pCS->hwndParent, "MYCLASSSTATIC" ,
pCS->pszText , f l StaticStyle,
pCS->x, pCS->y + 2, pCS->cx, pCS->cy,
hwnd, pCS->hwndinsertBehind,
pCS->id / Ox8000L , NULL,
pCS->pPresParams);

WinSetWindowULong(hwnd, WD_HWNDSTATIC, hwndStatic);
WinSetWindowULong(hwnd, WD_HWNDPARENT, pCS->hwndParent };
WinPostMsg(hwnd, MC_ALLOWEDIT, MPFROMLONG(FALSE}, 0) ;
ret urn (*(ciEntry.pfnWindowProc)) (hwnd, msg, rnpl, rnp2 };

Figure 10.8 Processing the WM_CREATE message for the new class.

...

30& Getting to the Head of the Class: Understanding Subclasslng

created. The parent window is set to the parent of the new entry field control
and the owner window is set to the new control. The ID is set equal to the ID
used to create the entry field control with the top bit set (hopefully moving the
ID out of the range normally used by applications). After the static text window
is created, the handles of the static text window and the parent window are
stored in the new fields of the entry field's window instance data. Finally, an
MC.ALLOWEDIT message is posted back to the new entry field to cause the
initial state to be read-only, thereby causing the static field text to be displayed
in the application window. Note that this message is actually a redefinition of
the base entry field EM.SETREADONLY message. Again, there is no need to
make the entry field itself read-only since the static text field is used to display
the text in this mode.

The entry field's processing of the MC.ALLOWEDIT message, shown in
Figure 10.9, handles the switch from the static text control to the entry field
control and back. Parameter mpl of the message is a Boolean value that
indicates if editing is allowed. The code first obtains the handle of the associated
static text control and then checks the value of mpl. If mp1 indicates that
editing is allowed, the static text control is hidden, the entry field control is
enabled and displayed, and focus is set to the entry field control. If mpl is
FALSE, the current text of the entry field is retrieved and used to change the
text in the static text control. The entry field is then disabled and hidden and
the static text field is made visible.

While the application can send the MC.ALLOWEDIT message, the con­
trol itself defines functionality which switches between the static text con­
trol and the entry field. The window procedure for the static text control
sends an MC...ALLOWEDIT message with mpl set to TRUE when it receives a
WM-8UTION2DOWN message. Thus the user can enter edit mode by press-

case MC_ALLOWEDIT:
hwndStatic = WinQueryWindowULong(hwnd, WD_HWNDSTATIC);
if ((BOOL)mpl) (

WinShowWindow(hwndStatic, FALSE);
WinEnableWindow(hwnd, TRUE);
WinShowWindow(hwnd, TRUE) ;
WinSetFocus (HWND_DESKTOP, hwnd) ;

else (
WinQueryWindowText(hwnd, 256, szText);
WinSetWindowText(hwndStatic, szText);
WinShowWindow(hwnd, FALSE);
WinEnableWindow(hwnd, FALSE);
WinShowWindow(hwndStatic, TRUE);

/* endif *I
return (MRESULT)TRUE;

figure 10.9 Processing the MC.ALLOWEDIT message .

Sunanary 307

MRESULT APIENTRY MyClassStaticWndProc(HWND hwnd, ULONG msg,
MPARAM mpl, MPARAM mp2) ;

HWND hwndEntry = WinQueryWindow(hwnd, QW_OWNER);

switch (msg) (
case WM_BUTTON2DOWN:

WinSendMsg(hwndEntry, MC_ALLOWEDIT, (MPARAM)TRUE, 01) ;
return (MRESULT)TRUE;

default:
return (*(ciStatic .pfnwindowProc)) (hwnd, msg, mpl, mp2);

} /* endswitch */

figure 10.10 The MyClassStatlcWndProc window procedure.

~ng ~ouse button 2 over the static text field. MyClassStatlcWndProc is shown
m Figure 10.10. If the received message is not WM-8UTION2DOWN the
message is forwarded to the window procedure of the base static text co~trol.

SUMMARY

When the entry field control has been enabled to allow editing of the text
and then loses the input focus, read-only mode is resumed. As shown in Figure
10:11, M~lassWndProc processes the WM SETFOCUS message to perform
this function. If parameter mp2 is set to FALSE, the control is losing the focus
and an MC.ALLOWEDIT message is sent with mpl set to FALSE to disable the
entry field and display the associated static text control. The WM_SETFOCUS
message is then forwarded to the base entry field window procedure in order
to allow proper functioning of the input cursor.

Subclassin.g of windo~~ and classes allows new features to be added to existing
controls w1thou~ requmng a complete rewrite of the basic control functionality.
Though often misunderstood, this mechanism is relatively easy to use. In many
cases, the new features can be implemented by merely intercepting messages
sent to the base control. In more complicated cases, a new control class is

case WM_SETFOCUS:
if (! (BOOL)mp2) (

WinSendMsg(hwnd, MC_ALLOWEDIT, (MPARAM)FALSE, 0) i
} /* endif *I
return(*(ciEntry.pfnWindowProc)) (hwnd, msg, mpl, mp2 J;

Figure 10.11 Processing the WM.SETFOCUS massage.

308 Getting to the Head of the Class: Understanding Subclasslng

derived from an existing class. The primary difficulties encountered when
subclassing are the determination of which features may b~ subclassed ~d
overcoming any side effects that may be caused b~ subclassmg, as we saw m
the container control example. In most cases, a httle forethought and some
intelligent experimentation allow these difficulties to be successfully managed.

CHAPTER

Improving Your Control:
Using the Advanced OS/2
Controls

0
S/2 2.0 and later versions have introduced a number of new controls
into the PM library. Among these are the notebook, the value set, and the
linear and circular sliders. The notebook control provides a convenient

mechanism for presenting multiple pages of information to the user. The value
set provides the ability to display a set of mutually exclusive choices to the
user in graphic form. The sliders enable the user to select a value based on its
relative location within a range of acceptable values. This chapter discusses
each of these controls in detail.

NOTEBOOKS
From an application standpoint, the notebook control provides a means of pre­
senting the user with multiple pages of information and/or dialog without the
hassle of controlling the user's manipulation of the pages to find the desired
information. From the user's standpoint, the notebook control is a computer­
ized version of a physical notebook, providing an easy means of accessing any
portion of a large set of data. The value of the control from both the user and
application standpoints can be easily seen by comparing the notebook repre­
sentation of a set of dialogs with the old method of presenting the dialogs one
at a time and closing each dialog before another is opened. With the notebook,
the application opens all the dialogs at once and the user simply pages through
the various bits of information without requiring further support from the ap­
plication code until a change in the data occurs. Of course, the application

309

310 Improving Your Control: Using the Advanced OS/2 Controls

must take action at this time to validate the change and update its internal
copy of the information.

The notebook control is different from most other controls in one important
respect. Other controls, like the static text control and the entry field, are used
to display data or to obtain input from the user. The notebook does not directly
provide this type of functionality. Its intended and normal purpose is to provide
a means of organizing other windows for the display of data or dialog. The
notebook is similar to the dialog box in this respect, but, by providing multiple,
easily accessible pages, it overcomes the limitations inherent in the normal
usage of the dialog box.

Several examples of using notebook controls are readily available in OS/2 's
Workplace Shell. The most common example is the settings notebook associ­
ated with Workplace objects. The pages of these notebooks are dialogs that
allow the user to configure the object. Tabs allow quick access to the section
of the notebook that addresses the desired options. Another example is the
Master Help Index. This notebook provides a listbox that displays the various
topics comprising the help index. Separate pages are used to provide tabs,
which allow the user to quickly move to the first index entry for each letter
of the alphabet. Unlike most notebooks, the Master Help Index displays the
same data on every page-the pages and tabs merely allow the user to move
to different locations in the displayed data.

The graphical representation of the notebook is a picture of a real-world
notebook, without covers; it has a binding along one edge; optional section, or
major, tabs opposite the binding; and optional subsection, or minor, tabs on
one of the other unbound edges. Two arrow buttons are displayed in one comer
of the notebook. When enabled, these buttons allow the user to move back and
forth through the pages. Optional status text may be displayed in the area
horizontally adjacent to the arrow buttons. The three-dimensional appearance
of the notebook is achieved by recessing two of the edges of the upper pages
to reveal the back pages. These two page edges are always adjacent, and
their intersection, known as the back page intersection, defines the overall
appearance of the control.

Just as the appearance and functionality of the notebook mimic its real­
world counterpart, so too do the operations that an application performs to
present the notebook to the user. First, an empty notebook must be obtained by
creating the notebook window. Then, blank pages are added to the notebook
by sending messages to insert new pages. Finally, the empty pages are scribed
with information by indicating which window to display on the page. The
following discussion describes each of these operations in detail.

Selecting a Notebook Style
The available styles for the notebook control allow the programmer to control
six aspects of the control's appearance: the back page intersection location,

Notebooks 311

the tab and binding positions, the binding type, the tab appearance, the jus­
tification of text within the tabs, and the justification of the status text. The
complete appearance of the notebook may be specified by the logical OR of
one flag chosen from the set available for each aspect.

Four style flags are provided for specifying the location of the back page
intersection:

BKS..BACKPAGESBR OxOOOl indicates that the back page edges are to intersect at the
bottom right corner.

BKS..BACKPAGESBL Ox0002 indicates that the back page edges are to intersect at the
bottom left comer.

BKS_BACKPAGESTR Ox0004 indicates that the back page edges are to intersect at the
top right comer.

BKS..BACKPAGESTL Ox0008 indicates that the back page edges are to intersect at the
top left corner.

Four style flags are available for specifying the location of the major tabs;
however, since the major tabs must always be placed on a edge adjacent to
the back page intersection, only two flags are valid for any given back page
intersection style flag specified. If an invalid combination is specified, the major
tab style is ignored and the major tabs are placed on the nearest edge clockwise
from the intersection point. Minor tabs are displayed along the remaining edge
adjacent to the back page intersection, and the binding is always displayed on
the edge opposite the major tabs. The major tab location flags are:

BKS..MAJORTABRIGHT

BKS.MAJORTABLEFf
BKS.MAJORTABTOP

OxOO 10 places the major tabs on the right edge of the note­
book.

Ox0020
Ox0040

BKS.MAJORTABBOTTOM Ox0080

places the major tabs on the left edge of the notebook.
places the major tabs on the top edge of the notebook.
places the major tabs on the bottom edge of the note­
book.

The notebook binding may be displayed as a solid binding or a spiral
binding. The chosen style is specified by one of the following style flags:

BKS_SOLIDBIND OxOOOO causes the binding to display as a solid cover binding.
BKS_SPIRALBIND Ox0400 causes the binding to display as a spiral binding.

The tab appearance is specified by one of the following three style flags.

BKS_SQUARETABS OxOOOO causes the ends of the tabs to be square.
BKS_ROUNDEDTABS Ox0100 causes the ends of the tabs to taper off and appear

rounded.

-

312 Improving Your Control: Using the Advanced OS/2 Controls

BKS.POLYGONTABS Ox0200 is similar to the rounded style, causing the ends of the
tabs to taper off, but flattens the end of the tab.

The tab text may be left- or right-justified or centered in the tab. The
following three flags are used to specify the tab text justification:

BKS.TABTEXICENTER Ox8000 centers the text within the tab.
BKS_TABTEXILEFf OxOOOO left-justifies the text within the tab.
BKS_TABTEXIRIGHT Ox4000 right-justifies the text within the tab.

The status line text is left-justified, right-justified, or centered based on the
specification of one of the following three style flags:

BKS_STATUSTEXILEFf
BKS_STATUSTEXIRIGHT
BKS_STATUSTEXICENTER

OxOOOO left-justifies the text on the status line.
OxlOOO right-justifies the text on the status line.
Ox2000 centers the text on the status line.

While an application is free to explicitly specify each aspect of the control's
appearance, only those styles that vary from the default nee~ be specified. :11e
defaults supplied by the control are defined by the following programmmg
construct:

BKS_BACKPAGESBR I BKS_MAJORTABRIGHT I BKS_SOLIDBIND I
BKS_SQUARETABS I BKS_TABTEXTLEFT I BKS_STATUSTEXTLEFT

This produces a notebook with a solid binding on the left-hand sid~, major
tabs on the right-hand side, and minor tabs on the bottom. Tabs are displayed
with square ends and centered text, and the status line text is left-justified.

Creating the Notebook
The notebook control may be created as an element of a dialog box or as
an independent control, depending on the needs o~ the application_ and the
preferences of the programmer. Since the control is used. to o~gamze other
controls, dialogs, and windows, it will often occupy 1!1e entire che.nt area of ~
surrounding frame or dialog window. If the control is part of a dialog b~x.' it
might share the client area with pushbuttons that allow the user to exphc1tly
inform the application when to read the information back from the windows
controlled by the notebook. . .

The resource script statement for including a notebook control m a dialog
template is shown in Figure 11 .1.

NOTEBOOK id, x, y, ex, cy, styl e

Figure 11.1 Notebook control resource script statement.

Notebooks 313

• id is the numeric identifier assigned to the dialog element.
• x specifies the x coordinate of the origin of the notebook relative to the

origin of the dialog window. The value is expressed in dialog units.
• y specifies the y coordinate of the origin of the notebook relative to the

origin of the dialog window. The value is expressed in dialog units.
• ex specifies the width of the control in dialog units.
• cy specifies the height of the control in dialog units.
• style specifies the style of the control composed of the style flags discussed

previously and the standard ws_ window styles.

The coding required to create a notebook as an independent control is
shown in Figure 11.2. This example shows one method of filling the client area
of an application frame window with a control. Function wmCreate is called
when the client window procedure receives the WM_CREATE message. The
function creates the notebook control window by calling the WlnCreateWfn­
dow APL No notebook styles are specified in the Ostyle parameter so the default
notebook styles are used. The WS.VISIBLE flag is set so that the window will
be displayed when the client becomes visible. The size of the client is unknown
during WM.CREATE processing, therefore the size and position parameters
are set to zero. The remainder of the function contains code to customize the
notebook appearance and initialize the notebook pages; the details of these
functions are discussed next.

When the application window size is established later in the creation pro­
cess, a WM_SIZE message is sent to the client window. When this message
is received, function wmSize is called to resize the notebook control to be
the same size as the client window. The function retrieves the handle of the
notebook window based on its ID and then calls the WinSetWindowPos API
to set the position of the notebook to the origin of the client window, (0, 0),
and the width and height of the notebook to the new size of the client window.
Parameter mp2 of the WM.SIZE message contains the width of the window in
its low-order word, and the height of the window in its high-order word.

Customizing the Notebook
When the notebook is initially created, the tab sizes are set to a height and width
that is approximately the size required to display one character in the currently
selected font for the notebook's presentation space. Applications that display
multiple characters in the tabs must modify the tab dimensions if all characters
are to be visible. This is accomplished by sending a BKM_SETDIMENSIONS
message to the notebook control window. This message allows the application
to modify the dimensions of the major tabs, minor tabs, or page arrow buttons.
Parameter mp1 specifies the new dimensions: the low-order word specifies
the width and the high-order word specifies the height. These dimensions are
specified in world coordinates. If both the width and height are set to zero,
the specified notebook element will be hidden. Parameter mp2 of the message

h

314 Improving Your Control: Using the Advanced OS/2 Controls

#define NOTEBOOK_ID 100

MRESULT APIENTRY wCreate(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)
{

HWND hwndNote;

hwndNote = WinCreateWindow(hwnd,
WC_NOTEBOOK, ..

' WS_VISIBLE,
o, o, 0, o,
hwnd, HWND_TOP,
NOTEBOOK_ID, NULL, NULL) ;

SetTabLen(hwndNote);
AdjustNotebookColors(hwndNote);
DoSamplePages(hwndNote);
AddNotebookPages(hwndNote);
CreateVSintro(hwndNote, pgData[PGI_MLEl].ulPageID);
CreateCalen{ hwndNote, pgData[PGI_VSl] .ulPageID);
CreateClrEdit{ hwndNote, pgData[PGI_VS2).ulPageID);
CreateSampDlg{ hwndNote, pgData[PGI_SAMPDLG) .ulPageID);
hwndPage = CreateAppWnd(hwndNote);
if (hwndPage != NULLHANDLE) {

WinSendMsg(hwndNote, BKM_SETPAGEWINDOWHWND,
MPFROMLONG(pgData[PGI_APPWNDl].ulPageID),
MPFROMLONG(hwndPage));

WinSendMsg(hwndNote, BKM_SETPAGEWINDOWHWND,
MPFROMLONG (pgData [PGI_APPWND2). ulPageID) ,
MPFROMLONG{ hwndPage));

return {MRESULT)FALSE;

MRESULT wSize(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2
{

HWND hwndNote = WinWindowFromID (hwnd, NOTEBOOK_ID } ;

WinSetWindowPos{ hwndNote, NULLHANDLE, 0, 0,
SHORTlFROMMP(mp2), SHORT2FROMMP{ mp2),
SWP _SIZE I SWP _MOVE) ;

return WinDefWindowProe(hwnd, msg, mpl, mp2);

Figura 11.2 Creating a notebook control.

specifies the notebook element to change and may contain one of the following
values:

BKA.MAJORTAB
BKA...MINORTAB

OxOOOl
Ox0002

BKA_PAGEBUTTON OxOlOO

changes the dimensions of the major tabs.
changes the dimensions of the minor tabs.
changes the dimensions of the page arrow buttons.

Notebooks 315

Figure 11.3 provides example coding for adjusting the size of a tab to fit the
text to be displayed. The WinDrawText API is used to determine the required
dimensions-see Chapter 16 for a detailed description of this API. Function
SetTabSize takes three parameters: the handle to the notebook window, a
pointer to an array of strings, and the type of tab, either BKA.MAJORTAB
or BKA...MINORTAB. The function first obtains the handle to the presentation
space for the notebook and then establishes a rectangle the size of the screen
for use with WinDrawText. A loop is then entered to scan each of the strings
passed in the array. Within the loop, a copy of the screen rectangle is passed
to WinDrawText. On return from the API, this rectangle is modified to reflect
the area required to just surround the text. If either the height or width of the
current string is greater than the previous maximum, the maximum is changed
to the value for the current string. The loop terminates when a NULL pointer
is encountered, signaling the end of the array of strings. Both the height and
width are then adjusted to leave space for the tab border and the selection
cursor. The minimum factor of 7 indicated in the operating system documen­
tation is sometimes insufficient. A factor of 8 should be added to the height

void SetTabSize{ HWND hwndNote, PSZ *pszText, ULONG ulType)
(

RPS hps ;
SHORT ex = 0, ey = O;
RECTL rel , rell;

hps = WinGetPS(hwndNote);
if fhps != NULLHANDLE) (

memset{ (PVOID)&rcll , 0 , sizeof(RECTL));
rell.xRight = WinQuerySysValue(HWND_DESKTOP, SV_CXSCREEN) ;
rell. yTop = WinQuerySysValue { HWND_DESKTOP, SV _CYSCREEN) ;
while(*pszText != NULL) {

rel = rcll ;
WinDrawText(hps, strlen (pgData[i).pszTabText) ,

pgData[i) .pszTabText, &rel , 0, 0,
DT_LEFT I DT_BOTTOM I DT_QUERYEXTENT) i

if{ {SHORT) {rcl.xRi ght) >ex) ex= {SHORT) {rel .xRight);
if{ {SHORT) {rel.yTop) > ey) ey = (SHORT) {rel.yTop);

pszText++;

ex += 24 ;
ey += 8;
WinSendMsg{ hwndNote, BKM_SETDIMENSIONS,

MPFROM2SHORT(ex , ey) , (MPARAM)ul Type) ;
WinReleasePS { hps) ;

/* endif *I
return;

Figura 11.3 Modifying the notebook tab size.

316 Improving Your Control: Using the Advanced OSfl Controls

NOTEBOOK ELEMENT DEFAULT COLOR PRESENTATION PARAMETERS

Border SYSCLR_WINDOWFRAME PP_BORDERCOLOR
PP_BORDERCOLORINDEX

Window background SYSCLR_FIELDBACKGROUND PP_BACKGROUNDCOLOR
PP_BACKGROUNDCOLORINDEX

Selection cursor SYSCLR_HILITEBACKGROUND PP_HILITEBACKGROUNDCOLOR
PP_HILITEBACKGROUNDCOLORINDEX

Status text SYSCLR_WINDOWTEXT PP_FOREGROUNDCOLOR
PP_FOREGROUNDCOLORINDEX

Figure 11.4 Notebook colors changed with WinSetPresParam.

of top and bottom tabs to prevent clipping when the BKS..ROUNDEDTABS
style is specified. The factor to be added to the width of left and right tabs
is dependent on the tab style. Use a factor of 8 for the BKS_SQUARETABS
style, a factor of 14 for the BKS..ROUNDEDTABS style, and a factor of 21
for the BKSYOLYGONTABS style. After these adjustments have been made,
WinSendMsg is called to send the BKM_SETDIMENSIONS message to the
notebook. Parameter mpl is set to the combined width and height values, and
parameter mp2 is set to the tab type parameter passed to SetTabSize. The
presentation space is then released and the function returns.

The color used to paint various elements of the notebook control can also
be controlled by the application. These elements may be organized into two
groups based on the method the application uses to modify the color. The
first group is modified by calling the WinSetPresParam API. The notebook
elements comprising this group are listed in Figure 11.4 along with the default
color of the element and the presentation parameters that are used to modify
the color of the element. The BKM_SETNOTEBOOKCOLORS message is used
to modify the color of the elements in the second group. Figure 11 .5 lists these
elements, their default colors, and the color identifiers that will change the

NOTEBOOK ELEMENT

Major tab
background
Major tab text

Minor tab
background
Minor tab text

Page background

DEFAULT COLOR BKM_SETNOTEBOOKCOLORS mp2

SYSCLR_PAGEBACKGROUND BKA_BACKGROUNDMAJORCOLOR
BKA_BACKGROUNDMAJORCOLORINDEX

SYSCLR_WINDOWTEXT BKA_FOREGROUNDMAJORCOLOR
BKA_FOREGROUNDMAJORCOLORINDEX

SYSCLR_PAGEBACKGROUND BKA_BACKGROUNDMINORCOLOR
BKA_BACKGROUNDMINORCOLORINDEX

SYSCLR_WINDOWTEXT BKA_FOREGROUNDMINORCOLOR
BKA_FOREGROUNDMINORCOLORINDEX

SYSCLR_PAGEBACKGROUND BKA_BACKGROUNDPAGECOLOR
BKA_BACKGROUNDPAGECOLORINDEX

Figure 11.5 Notebook colors changed with BKM_SETNOTEBOOKCOLORS.

lotabooks 317

element color. Parameter mpl of the BKM_SETNOTEBOOKCOLORS message
specifies either an RGB color or a color index value depending on the value of
mp2, the color identifier.

Figure 11.6 provides sample code for changing the color of notebook
areas. This example first calls WinSetPresParam to set the border color to
the RGB value OxOOFFOOOO. This value sets the red component of the color
to its maximum value and the green and blue components to their mini­
mum value; thus the notebook border will be red. Next, WinSetPresParam
is called to set the notebook background to a color index. The index value
is CLR_GREEN which is green in the default palette; however, this could be
any color if the palette has been changed. The first call to WinSendMsg sends
the BKM_SETNOTEBOOKCOLORS message to set the background of the ma­
jor tabs to the RGB color OxOOOOOOFF producing a blue background color
since the blue component is set to its maximum value and the red and green
components are set to their minimum value. The second call to WinSendMsg
sets the minor tab background color to the value specified by the color index
CLR_YELLOW. If the palette has not been modified, the color is yellow.

Adding Pages to the Notebook

Like a newly acquired three-ring binder, the notebook is empty when first cre­
ated. Before the notebook can be used to display information to the user, pages
must be inserted. The application sends one or more BKMJNSERTPAGE mes­
sages to the notebook control window to accomplish this function. Parameter
mpl of this message is the identifier assigned for an existing page and is used
when the new page is to be inserted before or after the given page. Parameter
mp2 is composed of two fields : the low-order word specifies the style of the

ulParam = OxOOffOOOO;
WinSetPresParam(hwndNote, PP_BORDERCOLOR, sizeof (ULONG),

(PVOID *)&ulParam);

ulParam = CLR_GREEN;
WinSetPresParam(hwndNote , PP_BACKGROUNDCOLORINDEX, sizeof (ULONG) ,

(PVOID *)&ulParam);

ulParam = OxOOOOOOff; / * blue */
WinSendMsg(hwndNote, BKM_SETNOTEBOOKCOLORS, (MPARAM)ul Param,

(MPARAM) BKA_BACKGROUNDMAJORCOLOR) ;

ulParam = CLR_YELLOW;
WinSendMsg(hwndNote , BKM_SE'I'NOTEBOOKCOLORS, (MPARAM)ul Param,

(MPARAM) BKA_BACKGROUNDMINORCOLORINDEX) ;

Figure 11.6 Changing notebook colors.

318 Improving Your Control: Using the Advanced OS/2 Controls

page, and the high-order word specifies the location in which the new page is
inserted. The style in the low-order word may specify the following flags:

BKA...MAJOR Ox0040

BKA...MINOR Ox0080

BKA-STATUSTEXTON OxOOOl

BKA..AUTOPAGESIZE OxOlOO

indicates that the new page should be given a major tab.
Note that only one type of tab may be specified per page-.
do not set both the BKA_MAfOR and BKA...MINOR flags.
The BKM_SETTABTEXT message is used to set the text
displayed on the tab.
indicates that the new page should be given a minor tab.
Do not set both BKA_MAfOR and BKA...MINOR for a
single page. The BKM_SETTABTEXT message is used to
set the text displayed on the tab.
indicates that the status line field should be turned on
for the page. The field remains blank until filled by the
BKM_SETSTATUSLINETEXT message.
indicates that the notebook control automatically main­
tains the size and position of the window that is eventu­
ally assigned to the page.

The location of the new page is specified by setting one of the following
four flags in the high-order word of mp2:

BKA..FIRST Ox0004 indicates that the new page should be inserted as the first page in
the notebook. Parameter mpl is ignored.

BKA_PREV OxOOlO indicates that the new page should be inserted in front of the page
specified by parameter mp 1.

BKA...NEXT Ox0008 indicates that the new page should be inserted behind the page
specified by parameter mpl .

BKA_LAST Ox0002 indicates that the new page should be inserted as the last page in
the notebook. Parameter mpl is ignored.

The return value from the BKM_INSERTPAGE message is the unique page
ID assigned to the new page, or zero if an error occurred and the page could
not be inserted. This value should be stored for later use when accessing the
page.

The BKM_SETTABTEXT message is sent to the notebook control to as­
sign text to the tab associated with a page that was inserted with either
the BKA...MAJOR or SKA.MINOR style. Parameter mpl identifies the page
whose tab text is to be set; the page identifier is the value returned by
BKM-1NSERTPAGE when the page was inserted. Parameter mp2 is a pointer
to a zero-terminated array of characters to be displayed on the tab.

Instead of displaying text, an application can display a bitmap on the
tab by sending the BKM_SETTABBITMAP message to the notebook control.

lotaboob 319

Parameter mpl again specifies the page ID of the page whose tab bitmap is to
be set. Parameter mp2 is a handle to the bitmap to be displayed.

Message BKM_SETSTATUSLINETEXT may be sent to a page inserted with
the BKA_STATUSTEXTON style to specify the text to display on the status line.
Parameter mpl is the page ID of the page whose status line text is to be set.
Parameter mp2 is a pointer to the text to be displayed.

Figure 11. 7 shows one approach for inserting pages and setting the appro­
priate tab and status text. In this example, an array of structures defines how
each page is created and reserves room to store the page ID for newly inserted
pages. Each element of the array is processed by a loop. The first action in the
loop sends a BKM_INSERTPAGE message to the notebook to insert a new last
page into the notebook. Parameter mp2 specifies the page style from the cur­
rent array structure and the BKA-1.AST flag. Parameter mpl is not used when
the BKA-1.AST flag is set and is assigned the value zero. The return value from
the message is saved back into the array structure for later use. If the page
was successfully inserted, a check is made to see if tab text has been defined
for the page; if so, a BKM_SETTABTEXT message is sent to indicate the text to
be displayed. Parameter mpl specifies the stored page ID from the structure,
and parameter mp2 is set to the pszTabText element of the current structure. If
status line text has been defined for this page, a BKM_SETSTATUSLINETEXT
message is sent to the notebook. Parameter mpl is again set to the stored page
ID. Parameter mp2 is set to the pszStatusText element of the current array
structure.

Presenting Information on the Pages

When pages have been added to the notebook, the basic structure of the note­
book is complete. The application must now present information to the user
on these pages. This is accomplished by sending a message to the notebook
control to associate a window with each page. Windows associated with note·
book pages become children of the notebook page window; a child of the
notebook control window that defines the area in which the page information
is displayed. The owner of the associated window is not affected, allowing the
application to establish whatever notification hierarchy is required. When the
page is displayed at the top of the notebook, the associated window is displayed
and receives activation and the input focus. The examples following illustrate
the manner in which various types of windows may be associated with the
notebook control and processed.

The most common window type associated with notebook pages may well
be the dialog box. Figure 11.8 illustrates the coding requirements for creating a
dialog and associating it with a notebook page. Routine CreateClrEdit is passed
the handle of the notebook window and the identifier of the page where the
dialog is to be shown. The routine first creates a modeless dialog box using the
WinLoadDlg API. The routine then sends a BKM_SETPAGEWINDOWHWND

320 Improving Your Control: Using the Advanced OSfl Controls

typedef struct _NPAGE_DATA_ {
ULONG ulPageID;
ULONG ulPageStyle ;
PFNWP pfnWP;
char *pszTabText;
char *pszStatusText;

} NPAGE, *PNPAGE;

NPAGE pgData[] = {

} ;

0, BKA MAJOR I BKA STATUSTEXTON,
0, BKA_MINOR BKA_STATUSTEXTON,
0, BKA_MINOR BKA_STATUSTEXTON,
0, BKA_MAJOR,
0, BKA_MAJOR I BKA_STATUSTEXTON,
0, BKA_STATUSTEXTON,
o, BKA_MINOR I BKA_STATUSTEXTON,
0, BKA_STATUSTEXTON,
0, BKA_MINOR I BKA_STATUSTEXTON,

NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,

•section l", "Page 1 of 3",
"Subsection A", "Page 2 of 3',
"Subsection a•, 'Page 3 of 3',
'Section 2', • •,
"Section 3", "Page 1 of s• ,
• • , •Page 2 of 5 • ,
'Subsection a•, 'Page 3 of 5',
• • , •Page 4 of 5 • ,
'Subsection b', 'The l ast page•

ldefine NUM_PAGES (sizeof(pgData) / sizeof(NPAGE))

void AddPages(HWND hwndNote
{

int i;

for (i=O; i<NUM_PAGES; i++) {
pgData(i].ulPageID = (ULONG)WinSendMSg(hwndNote, BKM_INSERTPAGE, OL,

MPFROM2SHORT(pgData(i).ulPageStyle, BKA_LAST)) ;
if (pgData(i].ulPageID) {

if (strlen(pgoata(i] .pszTabText))
WinSendMsg(hwndNote, BKM_SETTABTEXT,

(MPARAM)pgData(i] .ulPageID,
(MPARAM)pgData[i).pszTabText);

if (strlen(pgData(iJ .pszStatusText))
Wi nSendMsg(hwndNote, BKM_SETSTATUSLINETEXT,

(MPARAM)pgData(i] .ulPageID,
(MPARAM)pgData[i] .pszStatusText);

} / * endif */
I* endfor */

Figure 11 .7 Adding pages to a notebook.

void CreateClrEdit(HWND hwndNotebook, ULONG ul PageID)
{

HWND hwndPage;

/* Creat e the dialog for editing colors */
hwndPage = WinLoadDlg(hwndNotebook, hwndNotebook, Cl rEditDlgProc,

NULLHANDLE, ID_CLREDIT, NULL) ;

/* Associate the dial og window with a notebook page */
if(hwndPage != NULLHANDLE) {

WinSendMsg(hwndNotebook, BKM_SETPAGEWI NDOWHWND,
MPFROMLONG(ulPageID),
MPFROMLONG(hwndPage));

/ * endif *I

Figure 11 .8 Associating a dialog window with a notebook page.

Notebooks 321

message to associate the dialog box with the specified notebook page. Pa­
rameter mpl of this message specifies the page ID for the association, and
parameter mp2 specifies the window handle to be associated. The resource file
dialog template is modified to remove the FS..DLGBORDER style. This pre­
vents the normal dialog frame border from being displayed on the notebook
page. This is not absolutely necessary but it is common practice.

Dialog boxes associated with notebook pages in this manner must be mod­
eless and require slightly different processing from the modal dialog boxes
normally used by applications. Applications normally create modal dialog
boxes with the WlnDlgBox API. These dialogs block execution of the main
application until the dialog box is closed. The main application is notified by
the return from WinDlgBox that the user has finished the dialog and that the
user's input can be processed.

Modeless dialogs must be used with the notebook. These dialogs allow
the main application to continue processing, so the dialog must alert the main
application when significant events occur. In some instances, the dialog merely
updates a data structure provided by the main application, and the changes
in data values are reflected when the main application next uses the data.
Alternately, the dialog may send a user-defined message to the application
when changes occur or when ·the user takes a specific action, such as pressing
a Save pushbutton.

Single controls can also be associated with notebook pages. Figure 11 .9
shows how this is accomplished by associating a multiline edit, or MLE,
control with a notebook page. Routine Createlntro is passed the notebook
control window handle and the notebook page ID as parameters. The rou­
tine first obtains the client window handle by querying the parent of the
notebook control. The MLE is then created using the WlnCreateWindow
APL The parent window is the notebook control, and the owner window

322 Improving Your Control: Using the Advanced OSJ2 Controls

void Createintro(HWND hwndNote, ULONG ulPageID)
{

HWND
HWND

hwndPage;
hwndOwner = WinQueryWindow (hwndNote, QW_PARENT) ;

hwndPage = WinCreateWindow(hwndNote, WC_MLE,
"This is a sample MLE on a notebook control page.\nThis section contains•
•examples of value sets and sliders.•, MLS_WORDWRAP I MLS_READONLY,
0, 0, 0, 0, hwndOwner, HWND_TOP, ID_MLEl, NULL, NULL);

if (hwndPage != NULLHANDLE) {
WinSendMsg (hwndNote, BKM_SETPAGEWINDOWHWND,

MPFROMLONG(ulPageID),
MPFROMLONG(hwndPage));

/* endif *I

Figure 11.9 Associating a control window with a notebook page.

is the application client window. Since the page to which this item is as­
signed was inserted with the BKA..AUTOPAGESIZE style, the size and posi­
tion parameters of the WinCreateWindow call are set to zero. The notebook
will adjust the size and position of the control to match the notebook page.
Once the control is created, it is associated with the specified notebook page
via the BKM_SETPAGEWINDOWHWND message. Since the client window
is the owner, it will receive any notifications from the control and should
normally process these messages in the same manner as it would a control
associated directly with the client window without the intervening notebook.

The next example shows how a window of an application-defined class is
associated with a notebook page. This example also demonstrates how a win­
dow may be associated with multiple notebook pages and how the processing
can be varied depending on which of the associated pages is the top page of
the notebook. Routine CreateAppWnd is shown in Figure 11 .10. The function
takes three parameters: the notebook window handle and two notebook page
identifiers. After retrieving the anchor block handle for the current thread and
the notebook's parent window, the application client window, the class for the
new application window is registered. Next, assuming the page was inserted
without the BKA..AUTOPAGESIZE style, the required size of the new window
is determined by first obtaining the window rectangle for the notebook window
and then sending a BKM_CALCPAGERECT message to convert the notebook
rectangle to the notebook page rectangle. The resulting rectangle is used to
compute the width and height of the new window.

The BKM_CALCPAGERECT message may be used as shown to determine
the page rectangle from the notebook rectangle and may also be used to
obtain the size of the notebook window when the page rectangle is known.
Parameter mp 1 is a pointer to the rectangle to be converted. Parameter mp2

HWND CreateAppWnd(HWND hwndNote, ULONG ulPagel , ULONG u1Page2)
{

HAB hab;
HWND hwndPage;
RECTL rectl;

do {
if((hab = WinQueryAnchorBlock(hwndNote)) == NULLHANDLE) break;
if (!WinRegisterClass(hab, "APPLICATIONl" , ApplwndProc ,

CS_SYNCPAINT I CS_CLIPSIBLINGS I CS_CLIPCHILDREN,
APPl_WINDOW_DATA_SIZE)) break;

WinQueryWindowRect(hwndNote , &rectl);

Notebooks 323

WinSendMsg(hwndNote, BKM_CALCPAGERECT, (MPARAM)&rectl , (MPARAM)TRUE) ;
hwndPage = WinCreateWindow (hwndNote,

"APPLICATION!" ,
"SAMPLE TEXT",
WS_VISIBLE,
0, 0,
rectl.xRi ght - rectl .xLeft,
rectl.yTop - rect l. yBottom,
WinQueryWindow(hwndNote ,QW_PARENT),
HWND_TOP,
APPWND_ID, NULL, NULL) ;

WinSendMsg(hwndNote, BKM_SETPAGEWINDOWHWND,
MPFROMLONG(ulPagel),
MPFROMLONG(hwndPage));

WinSendMsg(hwndNote , BKM_SETPAGEWINDOWHWND,
MPFROMLONG(u1Page2),
MPFROMLONG(hwndPage));

} while (false) ; / * endwhile */

return hwndPage;

Figure 11.10 Associating an application-defined window with a notebook page.

indicates which conversion to perform; if set to TRUE, the notebook rectangle
is converted to the page rectangle; if set to FALSE, the page rectangle is
converted to the notebook rectangle.

After the required size of the new window is obtained, WinCreateWfndow is
called to create the window. The parent is set to the notebook and the owner to
the application client window. The window is positioned at location (0, O) of its
eventual parent window, the page rectangle. The width is set to the difference in
the x coordinates of the page rectangle, and the height is set to the difference in
they coordinates. After successful creation, BKM_SETPAGEWINDOWHWND
messages are sent to associate the window with the specified notebook pages.

In instances like this where BKA..AUTOPAGESIZE is not specified, if the
application wishes to adjust the size of the window when the notebook size

324 Improving Your Control: Using the Advanced OS/2 Controls

changes, the BKN....NEWPAGESIZE notification must be processed. Figure
11.11 shows the WM_CONTROL processing of the application client window
that accomplishes this function. The function first verifies that the proper no­
tification code was received and that the sender was the notebook control.
The window handle of the notebook is then queried by its ID, and the ap­
plication window to be sized is obtained from the notebook by sending a
BKM_QUERYPAGEWINDOWHWND message. Parameter mpl of this mes­
sage is the page identifier of the page whose window handle is to be returned;
parameter mpl is reserved and set to zero. The new notebook size is then
queried and converted to the page rectangle. The resulting rectangle is used to
compute the new width and height of the application window associated with
the notebook page, and the WinSetWindowPos API is used to resize the ap­
plication window. Since the application window was associated with multiple
pages, any of these pages could have been used when obtaining the window
handle.

Association of a window with multiple pages normally indicates that the
information in the window will vary in some manner depending on which of
the associated pages is the top page of the notebook. There are several ways
to determine which page is currently displayed and thereby what inform~tion
to display in the application window associated with the page. First, when a
new page is selected, the notebook sends a BKN_pAGESELECTEDPENDING

MRESULT APIENTRY wmControl(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)
{

RECTL rectl;
HWND hwndNote;
HWND hwndPage;

if (SHORT2FROMMP(mpl) == BKN_NEWPAGESIZE &&
SHORTlFROMMP(mpl) == NOTEBOOK_ID) {

hwndNote = WinWindowFromID(hwnd, NOTEBOOK_ID);
hwndPage = (HWND)WinSendMsg(hwndNote, BKM_QUERYPAGEWINOOWHWND,

(MPARAM) (ulAppWndPagel),
(MPARAM)Ol);

WinQueryWindowRect(hwndNote, &rectl);
WinSendMsg(hwndNote, BKM_CALCPAGERECT, {MPARAM)&rectl, (MPARAM)TRUE);
WinSetWindowPos(hwndPage, NULLHANDLE, 0, 0,

) /* endif *I
return (MRESULT)O;

rectl.xRight - rectl.xLeft,
rectl.yTop - rectl.yBottom,
SWP_SIZE I SWP_MOVE) ;

Figure 11.11 Processing notebook size changes.

typedef struct _PAGESELECTNOTIFY
HWND hwndBook;
ULONG ulPageidCUr
ULONG ulPageidNew

PAGESELECTNOTIFY;

Figure 11.12 The PAGESELECTNOTIFY structure.

loteboab 325

notification. Parameter mp2 of this message is a pointer to a PAGESELECT­
NOTIFY structure. This structure is defined as shown in Figure 11.12.

• The hwndBook element is the handle of the notebook window.
• The ulPageldCur element is the page identifier of the current top page of

the notebook.
• The ulPagel dNew element is the page identifier of the page that is becoming

the top page of the notebook.

If the application sets the ulPageldNew element of this structure to zero before
responding to the message, the new page will not be selected.

After the new page has been brought to the top of the notebook, a
BKN_PAGESELECTED notification is sent. This message also passes a pointer
to a PAGESELECTNOTIFY structure as parameter mp2. The application can
use the ulPageldNew element from either of these messages to establish a de­
terminate state for drawing information when the notebook causes the window
to be updated. Alternately, the window procedure of the associated window
can determine the current top page and draw the proper information when an
update request is received in the form of a WM_PAINT message. The page iden­
tifier of the current top page is obtained by sending a BKM_QUERYPAGEID
message to the notebook with the low-order word of parameter mp2 set to
BKA_TOP.

Figure 11.13 shows application coding that implements the latter method
within the procedure for handling the WM_PAINT message. This routine first
obtains the notebook window handle that is the parent of the page window,
which is the parent of this window-the window associated with the page.
WinBeginPaint is then called to obtain the presentation space for drawing,
and WinQueryWindowRect is called to obtain the window rectangle. The
BKM_QUERYPAGEID message is sent to the notebook window to obtain the
page identifier of the current top page. This value is passed to a local routine
that scans the page information structures used earlier to determine which
ordinal page number in the section this page identifier represents. The result­
ing value is formatted into a string that is then drawn in the center of the
window with the WinDrawText API. The presentation space is released with
the WinEndPaint API, and the function exits.

326 Improving Your Control: Using the Advanced OS/2 Controls

static MRESULT wm_paint(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)
{

HPS hps;
HWND hwndNote;
RECTL rectl;
ULONG ulPageID;
ULONG ulPageNum;
char szText[50) ;

hwndNote = WinQueryWindow (hwnd, QW_PARENT l ;
hwndNote = WinQueryWindow (hwndNote, QW_PARENT) ;
hps = WinBeginPaint(hwnd, NULLHANDLE, &rectl I;
if (hps != NULLHANDLE) (

WinQueryWindowRect(hwnd, &rectl);
ulPageID = (ULONG)WinSendMsg(hwndNote,

BKM_QUERYPAGEID,
(MPARAM) OL,
MPFROM2SHORT(BKA_TOP,0));

ulPageNum = QueryPgNumFromID(ulPageID);
sprintf(szText, •sample - Page %ld', ulPageNum);
WinDrawText(hps, -lL, szText, &rectl, 0, 0,

DT_ERASERECT I DT_CENTER I OT_VCENTER DT_TEXTATTRS);
WinEndPaint(hps);

) /* endif *I
return (MRESULT)Ol;

Figure 11.13 Drawing to the same window on multiple notebook pages.

The Modular Approach

The approach taken above for initializing the notebook pages, while perfectly
acceptable and particularly useful for illustrating the required steps, can be
difficult to maintain since the portions of the code that deal with a particular
page are scattered. A modular approach, which gathers the initialization steps
for each section and page into functional units, allows the programmer to
easily perform modifications for a given page and/or add pages or sections as
required. In this section, we will examine the resulting code to reimplement
the preceding examples. The new code also uses a new message introduced
with OS/2 WARP. which performs most of the page initialization in one easy
step.

Let's first examine how the WM_CREATE message processing code has
changed. The original code was shown in Figure 11.2 and the new routine
is shown in Figure 11.14. The new code creates the notebook window, cus­
tomizes the notebook colors, and then calls three functions that handle the
initialization of the three sections of the notebook. The functionality to estab­
lish the dimensions of the tabs is now called from within the page initialization
routines.

MRESULT APIENTRY wmCreate(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)
(

HWND hwndNote;

hwndNote = WinCreateWindow(hwnd,
WC_NOTEBOOK,
'SAMPLE TEXT' ,
WS_VISIBLE,
0, 0, 0, 0,
hwnd, HWND_TOP,
NOTEBOOK_ID, NULL , NULL) ;

AdjustNotebookColors(hwndNot e);
AddValueSetSection(hwndNote);
AddSampleSection(hwndNote);
AddAppWndSection(hwndNote);
return (MRESULT)FALSE;

Fl1urt 11.14 Creating a notebook using the modular approach.

Notebooks 327

The routines that.handle initialization of the notebook sections are shown
in Figure 11.1 S. These routines are shown together for convenience; in the
actual code, the routines would normally be placed into individual source files
that contain code related to the specific section. Routine AddValueSetSection

void AddVal ueSetSection(HWND hwndNote
(

Createintro(hwndNote);
CreateCalen(hwndNote);
CreateClrEdit (hwndNote);

void AddSampleSection(HWND hwndNote
{

CreateSarnpDlg(hwndNote);

void AddAppWndSection (HWND hwndNote
(

hwndAppWnd = CreateAppWnd(hwndNote);

AddAppWndPage (hwndNote, hwndAppWnd,
AddAppwndPage(hwndNote, hwndAppWnd ,
AddAppWndPage(hwndNote , hwndAppWnd,
AddAppWndPage(hwndNote , hwndAppWnd,
AddAppWndPage (hwndNote, hwndAppWnd,

Figure 11.15 Creating sections of the notebook.

'App. Window•,
NULL , 2, 5);
•Subsection A" ,
NULL, 4, 5) ;
"Subsection a· I

1, 5) ;

3, 5);

5, 5) ;

328 Improving Your Control: Using the Advanced OS/2 Controls

calls three more routines, one for each of the pages in the section. AddSample­
Section only calls one other routine because the section consists of only one
page. This is a bit of overkill, but allows additional pages to be added later
without modifying the structure of the program. Routine AddAppWndSection
is slightly different since a single window is associated with all the pages in
this section. The routine first creates the application window and then for each
page of the section calls a routine to add the page and associate the created
window with the page.

The new CreateClrEdit routine, which replaces the one shown in Figure
11.8, is shown in Figure 11.16. This routine first adds a page to the note­
book with styles for displaying a minor tab, displaying status text, and au­
tomatic resizing of the window. The function then initializes a structure for
the BKM_SETNOTEBOOKINFO message. This message, new to OS/2 WARP,
allows an application to set the page data, the associated window, the status
text, and the tab text, all with one WlnSendMsg API call. Parameter mpl of
the message is the identifier of the page whose information is modified. Pa­
rameter mp2 is a pointer to a BOOKPAGEINFO structure which indicates the

void CreateClrEdit(HWND hwndNotebook)
{

ULONG
USHORT
HWND
BOOKPAGEINFO
char
char

ulPageID;
usStyle=BKA_MINOR I BKA_STATUSTBXTON I BKA_AUTOPAGESIZE ;
hwndPage;
bpi;
szStatusText[] = "Page 3 of J•;
szTabText[) = 0 Edit Col ors• ;

ulPageID = LONGFROMMR(WinSendMsg(hwndNotebook, BKM_INSERTPAGE,
MPFROMLONG(OL) I

MPFROM2SHORT(usStyle, BKA_LAST)));
memset((PVOID)&bpi, 0, sizeof(BOOKPAGEINFO));
bpi.cb = sizeof(BOOKPAGEINFO);
bpi.fl = BFA_PAGEFROMDLGRES I BFA_STATUSLINE I BFA_MINORTABTEXT;
bpi.bLoadDlg = FALSE;
bpi.pfnPageDlgProc = (PFN)ClrEditDlgProc;
bpi.idPageDlg = ID_CLREDIT;
bpi.hmodPageDlg = NULLHANDLE;
bpi.cbStatusLine = strlen(szStatusText);
bpi.pszStatusLine = szStatusText;
bpi.cbMinorTab = strlen(szTabText);
bpi .pszMinorTab = szTabText;
WinSendMsg(hwndNotebook, BKM_SETPAGEINFO,

MPFROMLONG(ulPageID),
MPFROMP(&bpi));

SetTabLen(hwndNotebook, szTabText, FALSE);

Figure 11.1& Adding a page for a dialog window.

Notebooks 329

information to be changed and the new values to be assigned. Note that the
original OS/2 WARP documentation incorrectly indicates that this is a PAGE­
INFO structure that is used by the Workplace Shell to specify information
for object settings pages. The BOOKPAGEINFO structure can be found in the
header files and its layout is described next. After CreateClrEdit establishes the
page parameters with the BKM_SETPAGEINFO message, routine SetTabLen
is called to ensure that the tab text for this page will fit in the displayed tabs.

This routine also illustrates another new feature of the OS/2 WARP note­
book, which is available when the BKM_SETPAGEINFO message is used to
associate windows with notebook pages. This feature allows the application
to associate dialog boxes with pages by specifying the resource ID of a dialog
template or a pointer to a dialog template in memory. PM then handles the
creation of the dialog box and can actually delay the dialog creation until the
page associated with the dialog is brought to the top of the notebook. This
can significantly decrease the load time of a notebook which displays several
dialogs, giving the impression of significantly improved performance.

The BOOKPAGEINFO structure is defined as shown in Figure 11.17.

• The cb element is the size of the structure in bytes and should be set to
sizeof(BOOKPAGEINFO).

• The fl element is a set of flags that indicate which of the structure elements
should actually be used to update the information for the notebook page.
The valid flags are:

typedef struct _BOOKPAGEINFO
{

ULONG cb;
ULONG fl ;
BOOL bLoadDlg;
ULONG ulPageData;
HWND hwndPage;
PFN pfnPageDlgProc;
ULONG idPageDlg;
HMODULE hmodPageDlg;
PVOID pPageDlgCreateParams;
PDLGTEMPLATE pdlgtPage;
ULONG cbStatusLine;
PSZ pszStatusLine;
HBITMAP hbmMajorTab;
HBITMAP hbmMinorTab;
ULONG cbMajorTab;
PSZ pszMajorTab;
ULONG cbMinorTab;
PSZ pszMinorTab;
PVOID pBidiinfo;

} BOOKPAGEINFO;

Figure 11.17 The BOOKPAGEINFO structure.

330 Improving Your Control: Using the Advanced OS/'2 Controls

BFA_pAGEDATA OxOOOl

BFA_pAGEFROMHWND Ox0002

BFA_pAGEFROMDLGTEMPLATE Ox0004

BFA_pAGEFROMDLGRES Ox0008

BFA_STATUSLINE Ox0010

BFA..MAJORTABBITMAP Ox0020

BFA..MINORTABBITMAP Ox0040

BFA..MAJORTABTEXT Ox0080

indicates that the u/PageData element
should be used to update the page's user
data information. This replaces the func­
tionality of the BKM_SETPAGEDATA
message.
indicates that the window handle to as­
sociate with the page is contained in
the hwndPage element. This replaces the
functionality of the BKM_SETPAGEWIN­
DOWHWND message.
indicates that the window to associate
with the page is a dialog window whose
template is stored in memory. Element
pdlgtPage contains a pointer to the dialog
template. This replaces the BKM_SET
PAGEWINDOWHWND message func­
tionality.
indicates that the window to associate
with the page is a dialog window whose
template is stored in an executable mod­
ule's resources. Element idPageDlg con­
tains the resource ID, and hmodPageDlg
contains the module handle where the
resource is located. This replaces the
BKM_SETPAGEWINDOWHWND mes­
sage functionality.
replaces the BKM_SETSTATUSLINETEXT
message functionality. Element cbSta­
tusLine is expected to contain the num­
ber of characters in the text, and element
pszStatusLine is expected to contain a
pointer to an array of characters to dis­
play on the page's status line.
replaces the BKM_SETTABBITMAP func­
tionality. Element hbmMajorTab should
contain the handle of the bitmap to dis­
play on the page's major tab.
replaces the BKM_SETTABBITMAP func­
tionality. Element hbmMinorTab should
contain the handle of the bitmap to dis­
play on the page's minor tab.
replaces the BKM_SETTABTEXT func­
tionality for pages with BKA..MAJOR

BFA..MINORTABTEXT

BFA..BIDIINFO

loteltooks 331

style. Element cbMajorTab specifies the
number of characters in the tab text, and
element pszMajorTab contains a pointer
to the array of characters to display on
the page's major tab.

OxO 100 replaces the BKM_SETIABTEXT func­
tionality for pages with BKA..MINOR
style. Element cbMinorTab specifies the
number of characters in the tab text, and
element pszMinorTab contains a pointer
to the array of characters to display on
the page's minor tab.

Ox0200 specifies that bidirectional language sup­
port information is set in element pBidi­
Info. Programmers interested in BIDI
should consult the OS/2 Bidirectional
Language Support Development Guide.

• Element bLoadDlg is a flag that controls the loading of dialog boxes when
BFA_pAGEFROMDLGRES or BFA_pAGEFROMDLGTEMPLATE is spec­
ified. If the flag is set to FALSE, the dialog window will not be created
until the page is brought to the top of the notebook. If the flag is TRUE,
the dialog window is created when the BKM_SETPAGEINFO message is
received.

• Element ulPageData specifies the value to store in the page's data area
reserved for application use. This element is ignored if the BKA_pAGEDATA
flag is not set in element fi. The application data area may also be modified
using the BKM_SETPAGEDATA message.

• The hwndPage element specifies the handle of the window to be associated
with the page, but is ignored if the BKA_PAGEFROMHWND flag is not set.
Message BKM_SETPAGEWINDOWHWND may also be called to associate
a window with a page.

• Element pfnPageDlgProc is used to specify the window procedure for
the created dialog box when the BKA_PAGEFROMDLGTEMPLATE or
BKA_pAGEFROMDLGRES flag is set.

• The idPageDlg element specifies the resource identifier for the template
used to create the dialog box when the BFA_pAGEFROMDLGRES flag is
set.

• The hmodPageDlg element specifies the module handle of
the executable containing the dialog template resource when the
BFA_pAGEFROMDLGRES flag is set.

• Element pPageDlgCreateParams specifies a pointer to the dialog creation
parameters when the BFA_PAGEFROMDLGTEMPLATE or BFA_pAGE

332 Improving Your Control: Using the Advanced OS/2 Controls

FROMDLGRES flag is set. This value is used as the pCreateParams
parameter for the WinLoadDlg function.

• Element pdlgtPage is a pointer to the memory resident dialog template used
to create the dialog window when the BFA_pAGEFROMDLGTEMPLATE
flag is set.

• The cbStatusLine element specifies the number of characters pointed to by
the pszStatusLine element and is used when the BFA_STATUSLINE flag is
set.

• The pszStatusLine element is a pointer to the characters to display on the
status line. The element is ignored unless the BFA_STATUSLINE flag is
set.

• Element hbmMajorTab specifies the bitmap handle to display on the major
tab for the page. This element is ignored if the BFA_MAIORTABBITMAP
flag is not set.

• The hbmMinorTab element specifies the bitmap handle to display on the mi­
nor tab for the page. This element is ignored if the BFA..MINORTABBITMAP
flag is not set.

• Element cbMajorTab specifies the number of characters pointed to by psz­
MajorTab when the BFA_MAfORTABTEXT flag is specified.

• ElementpszMajorTab is a pointer to the characters to display on the page's
major tab when the BFA_MAIORTABTEXT flag is set.

• The cbMinorTab element specifies the number of characters pointed to by
pszMinorTab when the BFA..MINORTABTEXT flag is specified.

• The pszMinorTab element is a pointer to the characters to display on the
page's minor tab when the BFA..MINORTABTEXT flag is set.

• Element pBidilnfo is reserved for use by bidirectional language support.
Interested programmers should reference the OS/2 Bidirectional Language
Support Development Guide for more information.

CreateClrEdlt provides a good example of how this structure is initialized
and used by an application. The page that this function creates is used to
display a dialog box and has the style flags set to show status text and a minor
tab. The routine first clears the BOOKPAGEINFO structure using the C library
memset function. The cb element is then set to the size of the structure. The
fl element is set to indicate that the structure contains status line text, minor
tab text, and information to associate a dialog template from a resource file
with the page. The bLoadDlg function is set to FALSE to delay creation of the
dialog until the page is displayed. Element pfnPageDlgProc is set to point to
the dialog window procedure; element idPageDlg is set to the dialog template's
resource ID; and element hmodPageDlg is set to NULLHANDLE to indicate
that the resource is located in the application's executable. The cbStatusLine
element is set to the length of the status line text as determined by the C library
strlen function (note that the terminating zero is not included in the count).

Notebooks 333

Element pszStatusLine is set to point to the status line text. In similar fashion,
elements cbMinorTab and pszMinorTab are specified for the minor tab text.

The new routine for creating an MLE control and associating it with a
notebook page is shown in Figure 11.18. This routine replaces the original
Createlntro shown in Figure 11. 9. This function follows the same basic flow
as CreateClrEdit. First, a page is inserted into the notebook. Then the handle
of the notebook's parent, the application client area, is obtained. This window
will be set as the owner of the control so that notification messages can be
received and processed. Next, the control window itself is created since only
dialogs may be created automatically. The BOOKPAGEINFO structure is then
cleared and initialized. The cb element is again set to the size of the structure,
and the fl element flags are set to specify association of an existing window
with the page, setting of the status line text, and setting of the major tab text.

void Createintro(HWND hwndNote
(

ULONG
HWND
HWND
US HORT
BOOKPAGEINFO
char
char

ulPageID;
hwndPage;
hwndOwner;
usStyle = BKA_MAJOR I BKA_STATUSTEXTON I BKA_AUTOPAGESIZE;
bpi;
szStatusText [) = "Page 1 of 3";
szTabText [) = "Value Set•;

ulPageID = LONGFROMMR(WinSendMsg (hwndNote, BKM_INSERTPAGE,
MPFROMLONG(OL),
MPFROM2SHORT (usStyle , BKA_LAST))) ;

hwndOwner = WinQueryWindow (hwndNote, QW_PARENT) ;
hwndPage = WinCreateWindow{hwndNote, WC_MLE, "This is a sample MLE on a •

•notebook control page.\nThis section contains•
•examples of value sets and s l iders. • ,
MLS_WORDWRAP I MLS_READONLY,
0, 0, 0, 0, hwndOwner , HWND_TOP,
ID_MLEl , NULL, NULL) ;

memset((PVOID)&bpi, 0, sizeof (BOOKPAGEINFO});
bpi.ch= sizeof(BOOKPAGEINFO);
bpi.fl = BFA_PAGEFROMHWND I BFA_STATUSLINE I BFA_MAJORTABTEXT;
bpi.hwndPage = hwndPage;
bpi.cbStatusLine = strlen(szStatusText};
bpi. pszStatusLine = szStatusText;
bpi.cbMajorTab = strlen(szTabText};
bpi.pszMajorTab = szTabText;
WinSendMsg(hwndNote, BKM_SETPAGEINFO, MPFROMLONG(ulPageID},

MPFROMP (&bpi}) ;
SetTabLen(hwndNote, szTabText , TRUE};

Figure 11.18 Adding a page for a control window.

'

334 Improving Your Control: Using the Advanced OS/2 Controls

The hwndPage element is set to the handle of the control just created, and the
elements associated with the status line and major tab text are set in same
manner as seen in CreateClrEdit. The BKM_SETPAGEINFO message is then
sent to transfer the information to the notebook, and SetTubLen is called to
ensure the proper sizing for the tabs.

The routine for adding windows of an application-defined class is shown
in Figure 11.19. Remember from Figure 11.15 that the window is created in
a separate routine. This routine, CreateAppWnd, is the same as the original
shown in Figure 11.10 except that the BKM-SETPAGEWINDOWHWND mes­
sages have been removed. Routine AddAppWndPage is a bit different from the

void AddAppWndPage(HWND hwndNote, HWND hwndApp, PSZ pszTab,
ULONG ulPage, ULONG ulOf Page)

ULONG
USHORT
BOOKPAGEINFO
char

ulPageID;
usStyle = BKA_STATUSTEXTON;
bpi;
szStatusText(128);

sprintf(szStatusText, •page %ld of %ld•, ulPage, ulOfPage);
if(pszTab != NULL)

usStyle I= (ulPage == 1 ? BKA_MAJOR: BKA_MINOR) ;
ulPageID = LONGFROMMR(WinSendMsg(hwndNote, BKM_INSERTPAGE,

MPFROMLONG(OL) ,
MPFROM2SHORT(usStyle, BKA_LAST)));

memset((PVOID)&bpi, o, sizeof(BOOKPAGEINFO));
bpi .Cb= sizeof(BOOKPAGEINFO);
bpi . fl = BFA_PAGEFROMHWND I BFA_STATUSLINE I BFA_PAGEDATA;
bpi .bLoadDlg = TRUE;
bpi .ulPageData = ulPage;
bpi .hwndPage = hwndApp;
bpi.cbStatusLine = strlen(szStatusText);
bpi.pszStatusLine = szStatusText ;
if(usStyle & BKA_MAJOR] {

bpi . fl I= BFA_MAJORTABTEXT;
bpi .cbMajorTab = strlen(pszTab);
bpi .pszMajorTab = pszTab;
SetTabLen(hwndNote, pszTab, TRUE) ;

else if(usStyle & BKA_MINOR) {
bpi.fl I= BFA_MINORTABTEXT;
bpi.cbMinorTab = strlen(pszTab);
bpi.pszMinorTab = pszTab;
SetTabLen(hwndNote, pszTab, FALSE);

} /* endif *I
WinSendMsg(hwndNote, BKM_SETPAGEINFO, MPFROMLONG(ulPageID),

MPFROMP(&bpi));

Figure 11.19 Adding a page for an appllcatlon-dellned window.

Value Sets 335

previous two functions discussed in that the same window is being associated
with several pages. If only one page were associated with the window, the
flow of the function would be identical to that shown for the MLE control. In
this instance, however, some additional parameters are passed to the routine.
These parameters specify the window handle of the application window, the
tab text-if any-to associate with the page, the current page number within
the section, and the total number of pages within the section. The latter two
parameters are used to build the status line text and to determine the type of
tab to associate with the page; a major tab is associated with the first page
of the section and minor tabs are associated with any subsequent pages for
which tab text is specified. A new page is then added to the notebook with
the appropriate tab style. Next the BOOKPAGEINFO structure is initialized.
Again, this operation is basically the same as that used for the MLE control,
though some additional complexity has been added to build the tab text and
fl elements of the structure depending on the tab type. After the structure is
initialized, the BKM_SETPAGEINFO message is sent and the function returns.

The function SetTabLen is shown in Figure 11 .20 and replaces the SetTab­
Size function shown in Figure 11.3. The new version of the function has been
rewritten to maintain the current size of the tabs in global variables and to
determine if a new tab size is needed as each page is added to the notebook.
The function takes three parameters: the notebook window handle, the tab
text to be tested, and a flag that indicates when the text is associated with a
major tab. After obtaining a presentation space for the window, the function
initializes a rectangle, which covers the entire area of the screen and then calls
the WlnDrawText API to determine the actual size of the rectangle required
to surround the text. The resulting rectangle is then adjusted by the appro­
priate factors for the tab style. This rectangle is compared to the appropriate
global variables for the tab type and if the current rectangle is larger, the new
width and height are formatted into an MPARAM value, mpDims. This value
is then passed to the notebook with a BKM.SETDIMENSIONS message. The
presentation space is released before the function returns.

VALUE SETS

The value set control, like the radio button, provides the user with the ability
to select one choice from a set of available options. Unlike the radio button,
which only displays textual choices, the value set presents the available options
to the user in a graphical format. This makes the value set particularly useful
for displaying graphics-related choices, such as colors, patterns, or line styles.
The value set also allows display of textual information, but this use should be
limited to short strings such as those that might be used to select a CD track
or a day of the month. Longer textual choices should normally be displayed
with the radio button.

334 Improving Your Control: Using the Advanced OS/2 Controls

The hwndPage element is set to the handle of the control just created, and the
elements associated with the status line and major tab text are set in same
manner as seen in CreateClrEdlt. The BKM_SETPAGEINFO message is then
sent to transfer the information to the notebook, and SetTabLen is called to
ensure the proper sizing for the tabs.

The routine for adding windows of an application-defined class is shown
in Figure 11.19. Remember from Figure 11.15 that the window is created in
a separate routine. This routine, CreateAppWnd, is the same as the original
shown in Figure 11.10 except that the BKM-SETPAGEWINDOWHWND mes­
sages have been removed. Routine AddAppWndPage is a bit different from the

void AddAppWndPage(HWND hwndNote, HWND hwndApp, PSZ pszTab,
ULONG ulPage, ULONG ulOf Page)

ULONG
US HORT
BOOKPAGEINFO
char

ulPageID;
usStyle = BKA_STATUSTEXTON;
bpi;
szStatusText(128);

sprintf(szStatusText, "Page %ld of %ld", ulPage, ulOfPage);
if(pszTab !=NULL)

usStyle I= (ulPage == 1? BKA_MAJOR: BKA_MINOR);
ulPageID = LONGFROMMR(WinSendMsg(hwndNote, BKM_INSERTPAGE,

MPFROMLONG(OL),
MPFROM2SHORT{ usStyle, BKA_LAST)));

memset{ (PVOID)&bpi, 0, sizeof(BOOKPAGEINFO));
bpi.ch= sizeof(BOOKPAGEINFO);
bpi.fl = BFA_PAGEFROMHWND I BFA_STATUSLINE I BFA_PAGEDATA;
bpi.bLoadDlg = TRUE;
bpi.ulPageData = ulPage;
bpi.hwndPage = hwndApp;
bpi.cbStatusLine = strlen(szStatusText);
bpi.pszStatusLine = szStatusText;
if(usStyle & BKA_MAJOR) {

bpi.fl I= BFA_MAJORTABTEXT;
bpi.cbMajorTab = strlen(pszTab);
bpi.pszMajorTab = pszTab;
SetTabLen{ hwndNote, pszTab, TRUE);

else if{ usStyle & BKA_MINOR) {
bpi.fl I= BFA_MINORTABTEXT;
bpi.cbMinorTab = strlen(pszTab);
bpi.pszMinorTab = pszTab;
SetTabLen(hwndNote, pszTab, FALSE);

} /* endif */
WinSendMsg{ hwndNote, BKM_SETPAGEINFO, MPFROMLONG(ulPageID),

MPFROMP (&bpi)) ;

Fl1ure 11.19 Adding a page for an appllcatlon-daflned window.

Value Sets 335

previous two functions discussed in that the same window is being associated
with several pages. If only one page were associated with the window, the
flow of the function would be identical to that shown for the MLE control. In
this instance, however, some additional parameters are passed to the routine.
These parameters specify the window handle of the application window, the
tab text-if any-to associate with the page, the current page number within
the section, and the total number of pages within the section. The latter two
parameters are used to build the status line text and to determine the type of
tab to associate with the page; a major tab is associated with the first page
of the section and minor tabs are associated with any subsequent pages for
which tab text is specified. A new page is then added to the notebook with
the appropriate tab style. Next the BOOK.PAGEINFO structure is initialized.
Again, this operation is basically the same as that used for the MLE control,
though some additional complexity has been added to build the tab text and
fl elements of the structure depending on the tab type. After the structure is
initialized, the BKM-5ETPAGEINFO message is sent and the function returns.

The function SetTabLen is shown in Figure 11 .20 and replaces the SetTub­
Size function shown in Figure 11 .3. The new version of the function has been
rewritten to maintain the current size of the tabs in global variables and to
determine if a new tab size is needed as each page is added to the notebook.
The function takes three parameters: the notebook window handle, the tab
text to be tested, and a flag that indicates when the text is associated with a
major tab. After obtaining a presentation space for the window, the function
initializes a rectangle, which covers the entire area of the screen and then calls
the WlnDrawText API to determine the actual size of the rectangle required
to surround the text. The resulting rectangle is then adjusted by the appro­
priate factors for the tab style. This rectangle is compared to the appropriate
global variables for the tab type and if the current rectangle is larger, the new
width and height are formatted into an MPARAM value, mpDims. This value
is then passed to the notebook with a BKM_SETDIMENSIONS message. The
presentation space is released before the function returns.

VALUE SETS

The value set control. like the radio button, provides the user with the ability
to select one choice from a set of available options. Unlike the radio button,
which only displays textual choices, the value set presents the available options
to the user in a graphical format. This makes the value set particularly useful
for displaying graphics-related choices, such as colors, patterns, or line styles.
The value set also allows display of textual information, but this use should be
limited to short strings such as those that might be used to select a CD track
or a day of the month. Longer textual choices should normally be displayed
with the radio button.

336 Improving Your Control: Using the Advanced OSfl Controls

void SetTabLen(HWND hwndNote, PSZ pszText, BOOL fMajor)
{

HPS
MPARAM
RECTL
INT

bps;
mpDims = MPFROMLONG(OL);
rel, rcll;
i;

hps = WinGetPS(hwndNote);
if (hps != NULLHANDLE) {

memset((PVOID)&rcll, 0, sizeof(RECTL)) ;
rcll.xRight = WinQuerySysValue(HWND_DESKTOP, SV_CXSCREEN);
rcll. yTop = WinQuerySysValue (HWND_DESKTOP, SV _CYSCREEN) ;
rel = rcll;
WinDrawText(hps, strlen(pszText), pszText, &rel, 0, 0,

DT_LEFT I DT_BOTTOM I DT_QUERYEXTENT) i
rcl .xRight += 21;
rcl.yTop += B;

if (fMajor) {
if ((USHORT)rcl .xRight > usMajorWidth) usMajorWidth = r cl.xRight ;
if ((USHORT)rcl.yTop > usMajorHeight) usMajorHeight = rcl .yTop;
mpDims = MPFROM2SHORT(usMajorWidth, usMajorHeight);

else {
if ((USHORT)rcl.xRight > usMinorWidth) usMinorWidth = rcl.xRight;
if ((USHORTJrcl.yTop > usMinorHeight) usMinorHeight = rcl.yTop;
mpDims = MPFROM2SHORT(usMinorWidth, usMinorHeight);

) /* endif */
WinSendMsg(hwndNote, BKM_SETDIMENSIONS, mpDims,

MPFROMLONG (fMaj or ? BKA_MAJORTAB : BKA_MINORTAB)) i
WinReleasePS(bps);

/* endif */

Fl1ure 11.20 Alternate metllod for setting notebook tab sizes.

The choices depicted by a value set are arranged into rows and columns
and may display bitmaps, icons, text, RGB colors, or index-based colors from
a color palette. If desired, each choice may display a different type of object;
thus, bitmaps, icons, text, and colors may all be displayed in the same value
set. The value set also supports disabling of individual items and automatic
resizing of the items to fit within the size of the value set. However, some items
will be clipped if the size of the value set window is reduced such that all items
do not fit.

Creating and Initializing the Value Set
Value set controls may be included as items in a dialog template or explicitly
created using the WinCreateWindow APL In the latter case, the pCtlData pa­
rameter must point to a VSCDATA structure initialized to indicate the number

Value Sets 337

of rows and columns to be displayed in the window. This structure is defined
as shown in Figure 11 .21.

• The cbSize element is the number of bytes in the structure and should be
set to sizeof(VCSDATA).

• Element usRowCount is a 16-bit, unsigned integer indicating the number
of rows of items to display.

• The usColumnCount is a 16-bit, unsigned integer indicating the number of
items to display in each row.

The fIStyle parameter to WlnCreateWindow may specify a combination of
the WS_ style flags and/or the value set style flags. The value set style flags are:

VS-130RDER Ox0020 causes a thin border to be drawn around the control and
is most often used to delineate the area occupied by the
control.

VS-1TEMBORDER Ox0040 causes a thin border to be drawn around each individual
item in the control. This style is often used to enhance
items that are otherwise difficult to distinguish.

VS..RIGHTTOLEFI' Ox0100 causes the treatment of column numbers to be reversed.
Normally, column one is the leftmost column, and the num­
bers increase moving to the right. When this style is set,
the rightmost column is column one, and the numbers
increase moving to the left. The columns selected by the
home and end keys are also affected by this flag.

VS_SCALEBITMAPS Ox0080 causes the bitmap displayed for items with the VIA BITMAP
or VIA.ICON attributes to be scaled rather than centered
(for bitmaps smaller than the item) or clipped (for bitmaps

vs_OWNERDRAW
larger than the item).

Ox0200 causes a WM_DRAWITEM message to be sent to the owner
window whenever the background of the control requires
painting.

One of the following flags may be set to indicate the type of data that the
application intends to provide for each item in the control. Note that this flag

typedef struct _VSCDATA
{

ULONG
US HORT
US HORT

) VSCDATA;

cbSize;
usRowCount;
usColumnCount;

figure 11.21 The VSCDATA structure.

338 Improving Your Control: Using the Advanced OS/'l Controls

VSJUTMAP

vs_rcoN

VS_TEXT

vs_RGB

sets the default data type for all items; individual items may be set to a different
type with the WM..SETITEMATTR message.

OxOOOl

Ox0002

Ox0004

Ox0008

sets the VIA-13ITMAP attribute for each item in the control.
The control expects each item to be set to a bitmap handle.
sets the VIA_ICON attribute for each item in the control. The
control expects each item to be set to a pointer handle.
sets the VJA_TEXT attribute for each item in the control. The
control expects each item to be set to a pointer to a zero­
terminated array of characters.

VS_COLORINDEX OxOOlO

sets the VIA_RGB attribute for each item in the control. The
control expects each item to be set to an RGB color value.
The default value, zero, causes a black box to be displayed.
sets the VIA_COLORINDEX attribute for each item in the
control. The control expects each item to be set to an index
value for the current color palette. The default value, zero,
causes a white box to be displayed when the default palette
is used.

Figure 11.22 shows an example of the code used to create a value set
control with the WinCreateWindow APL In this example, the value set is used
to represent a month on a calendar. First, the VSCDATA structure is initialized
with the size of the structure-six rows for the possible weeks in a month and
seven columns to represent the days in each week. Next, the desired style of
the value set is initialized. VS_TEXT is set to indicate that the data for each

VSCDATA
ULONG

vscd;
ulStyle;

vscd.cbSize = sizeof(VSCDATA);
vscd.usRowCount = 6; /*possible weeks in month */
vscd.usColumnCount = 7; /* days per week */
ulStyle = VS_TEXT I VS_BORDER I VS_OWNERDRAW;
hwndVS = WinCreateWindow(hwndNote,

WC_VALUESET,
(PSZ)NULL,
ulStyle,
0, 0, 100, 100,
WinQueryWindow(hwndNote, QW_PARENT) ,
HWND_TOP,
201,
&vscd,
(PVOID)NULL) ;

Figure 11.22 Creating a value set control.

Value Sets 339

item should be interpreted as a pointer to a text string. VS..BORDER is set
to draw a border around the entire control, and VS_OWNERDRAW is set to
allow the application to paint the control background. WinCreateWindow is
then called to create the control.

Following creation, the value set displays as an empty box with the item
in the upper left position selected. Before the control is useful, the application
must assign a graphical object to each item. This is accomplished by sending
a VM_SETITEM message to the control. Parameter mpl passed with this mes­
sage contains the row number of the item in the low-order 16 bits, and the
column number of the item in the high-order 16 bits. Parameter mp2 speci­
fies the graphical object to associate with the item. The content of mp2 varies
depending on the style selected; for example, a pointer to a character string is
expected when the VS_TEXT style is specified, and a bitmap handle is expected
when the VS..BITMAP style is specified.

Figure l l .23 shows example code for filling in the calendar value set
created earlier. The sample code uses C library functions to determine the
current date. Utility function mkwkday determines the weekday of the first
day of the month, and getnumdays returns the number of days in the month.
The weekday number is used to determine the column number of the item
in the value set that represents the first day of the month. The row number
is normally set to two to center the month in the calendar; however, months

t ime(&curTime);
cur'l'M = *l ocaltime(&curTime);
wkday = mkwkday{ cur'l'M. tm_mon, curTM .tm_year + 1900 I;
scolumn = wkday + 1;
srow - 2;
if (getnumdays(cur'l'M. tm_mon) -= 31 && wkday >= 5) srow = l ;
if (getnumdays (curTM.tm_mon) -- 30 && wkday == 6) srow = 1;
row = sr ow, col umn = scolumn;

for (day - O; day < get numdays (curTM.tm_mon); day++) (
WinSendMsg(hwndVS , VM_SETITEM,

MPFROM2SHORT(row, column),
MPFROMP(daytext [day]));

if (column++ == 7) (
col umn = 1;
row++ ;

} / • endif *I
/ * endfor */

WinSendMsg(hwndVS, VM_SELECTITEM,
MPFROM2SHORT(srow, scolumn),
(MPARAM) 0) ;

Figure 11.23 lnlllallzlng the value sat control.

340 Improving Your Control: Using the Advanced OS/2 Controls

that start on Friday or Saturday may span all six rows. Where this occurs, the
initial row value is set to one. Once the starting position has been determined,
a loop is entered to send a VM_SETITEM message for each day of the month.
The message parameters specify the current row and column and a pointer to
a text string containing the numeric digits for the current day. Following the
message, the column and row values are updated as necessary. At the end of
the loop, a VM_SELECTITEM message is sent to the value set to select the item
at the row and column representing the first day of the month. Parameter mpl
of this message specifies the row and column number of the item to select; the
row number is contained in the low-order 16 bits, and the column number is
contained in the high-order 16 bits. Parameter mp2 is reserved and should be
set to zero.

Now our calendar actually contains the days of the month. The items that
are blank can still be selected by the user. The VM_SETITEMATTR message
may be used to prevent selection of these items and to change the graphic
display of the item so that the user is aware that the items are unselectable. The
VM_SETITEMATTR message allows the application to customize individual
value set items by changing the global attributes assigned when the value set
was created. Thus individual items may be enabled or disabled or display
different data types. Parameter mp 1 contains the item row number in the low­
order 16 bits, and the column number in the high-order 16 bits. Parameter
mp2 contains the attribute(s) to be changed in the low-order 16 bits and a flag
indicating whether to set or clear the attribute in the high-order 16 bits. One
of the following attributes may be used to specify the data type:

VIA.J3ITMAP OxOOO 1 data associated with the item is interpreted as a bitmap
handle.

VJA_COLORINDEX OxOOlO data associated with the item is interpreted as a color index
value.

VJA_ICON

VIA_RGB

VIA_ TEXT

Ox0002 data associated with the item is interpreted as a pointer
handle.

Ox0008 data associated with the item is interpreted as an RGB color
value.

Ox0004 data associated with the item is interpreted as a pointer to
a zero-terminated text string.

Specifying one of these attributes to be set causes the other attributes in
the group to be cleared. Clearing all attributes causes the default attribute,
VIA.J3ITMAP, to be set. Additionally, one or more of the following attributes
may be set or cleared:

VIA-DISABLED Ox0040 prevents the item from being set to the selected state. The
selection cursor may still be moved to the object, but no

Value Sets 341

YN-SELECT notification is sent to the owner. If the Fl key
is pressed, however, a VN..HELP notification is sent.

VIA..DRAGGABLE Ox0080
VIA..DROPONABLE OxOlOO

indicates that the application supports dragging of the item.
indicates that the application accepts data being dropped
on the item.

VIA_OWNERDRAW Ox0020 indicates that the application should be notified when the
item needs to be painted.

In ~igure 11.24, code h~ been added to the calendar example to modify
~e . a~butes of th~ blank items to prevent selection and to display an icon
m~1~atmg that the items are unavailable. The new code is placed around the
ongmal loop that scanned the days of the month. Preceding the original loop

r ow = column = 1;
while (row < s row II colUllUl < scolUllUl) {

Wi nSendMsg(hwndVS , VM_SETITEMA'M'R,
MPFROM2SHORT (row, column) ,

. MPFROM2SHORT(VIA_ICON I VIA_DISABLED, TRUE)) ;
WmSendMsg (hwndVS, VM_SETITBM,

MPFROM2SHORT(row, colUllUl),
(MPARAM) hptr) ;

if (column++ == 7) {
colUllUl = 1, row++;

} /* endif */
/* endwhile *I

for (day= O; day< getnumdays(curTM. tm mon); day++) {
WinSendMsg (hwndVS, VM_SETITEM, -

MPFROM2SHORT(row, column) ,
MPFROMP(daytext [day)));

i f (colUllUl++ == 7) {
column = 1, row++;

} /* endif */
I* endfor */

while(row < 7) {
WinSendMsg (hwndVS, VM_SETITEMA'M'R,

MPFROM2SHORT(row, column) ,
MPFROM2SHORT(VIA_ICON I VIA_DISABLED, TRUE));

WinSendMsg(hwndVS, VM_SETITEM,
MPFROM2SHORT(row, column) ,
(MPARAM)hptr } ;

if (column++ == 7) {
colUllUl = l, row++;

} / * endif */
/ * while *I

Figure 11.24 Modifying value set items.

342 Improving Your Control: Using the Advanced OSfl Controls

is another loop that scans the value set items that precede the first day of the
month. For each item, the VM_SETITEMATIR message is sent to change the
state of the item to disable and the type of element displayed by the item to
an icon graphic. This message is followed by a VM_SETITEM message, which
assigns a pointer handle to the item. After the day number items are set by the
original loop, another loop scans the remaining items in the value set. Like the
first loop, this one disables each item and assigns a pointer to be displayed.

Processing Value Set Input
The previous section dealt with initializing a value set control to display a
set of choices to the user. In most applications, this is just the beginning of
the problem. Once the choices are displayed, the application must accept and
process the user's selections. The value set's functionality provides a variety
of methods for the application to recognize user input. In some methods,
selections by the user are processed immediately, either as the selected item
changes or when the user indicates that the currently selected choice should
be used by either double-clicking the choice or pressing the Enter key. In other
cases, the application does not process the selection immediately, but waits for
some other event, such as a focus change or pressing the OK button in a dialog.
This section will examine the mechanisms that are available for recognizing
the user's selection and the code required to access these mechanisms.

Let's look first at an example dialog that acts as a miniature color palette
and processes user input to the value set immediately as it occurs. The dialog
is placed on a notebook page and contains a 16-item value set and three slider
controls. The value set items display colors. When an item is selected, the RGB
components of the item's color are reflected in the sliders, which may then be
used to modify the color of the item. If the user double-clicks an item or presses
the Enter key while the value set has focus, the color from the selected value
set item is used to change the color of the notebook control's background.

The coding required to implement this functionality is shown in Figure
11 .25. The dialog box procedure receives notification of the value set events
by way of the WM_CONTROL message. When the notification code in the
message is VN_SELECT, a different value set item has been selected and the
sliders must be updated to reflect the RGB color represented by the new item.
The row and column of the selected item are passed to the dialog procedure
in parameter mp2 of the WM_CONTROL message. The row is contained in the
low-order 16 bits, and the column is contained in the high-order 16 bits. In this
instance, however, there is no need to split these values out of mp2 since the
same construct is used when sending messages to the value set to obtain data.
A VM_QUERYITEMATTR message is first sent to the value set to determine the
type of data stored in the selected item. Parameter mpl of this message is the
row and column of the desired item, and parameter mp2 is reserved and set to

Value Sets 343

MRESULT APIENTRY Cl rEditDlgProc(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM llq)2)
(

ULONG rgb;
ULONG ul At trs;
HWND hwndNot e;

swi tch (msg) {
case WM_CONTROL:

if (SHORT2FROMMP(mpl) == VN_SELECT) {
usAt trs = SHORTlFROMMR(WinSendDlg!ternMsg(hwnd, ID_VSCOLORS,

VM_QUERYITEMATTR, mp2, MPFROMLONG(OL)));
if(usAttrs & VIA_RGB) {

rgb = LONGFROMMR(WinSendDlg!ternMsg (hwnd, IO_VSCOLORS,
VM_QUERYITEM, llq)2 , MPFROMLONG(OL)));

UpdateSliders(hwnd, rgb);
} /* endif */

else if (SHORT2FROMMP(mpl) == VN_ENTER) {
hwndNote = WinQueryWindow (hwnd, QW_PARENT) ;
hwndNote = WinQueryWindow (hwndNote, QW_PARENT) ;
usAttrs = SHORTlFROMMR(WinSendDlgiternMsg(hwnd , ID_VSCOLORS,

VM_QUERYITEMATTR, mp2, MPFROMLONG (OL)));
i f(usAttrs & VIA_RGB l {

rgb = LONGFROMMR(WinSendDlg!ternMsg(hwnd, ID_VSCOLORS,
VM_QUERYITEM, rnp2, MPFROMLONG(OL)));

WinSet PresParam(hwndNote, PP_BACKGROUNDCOLOR , sizeof (ULONG),
(PVOID *) &rgb) ;

l /* endif * /
} / * endif */
return MRFROMLONG(OL) ;

/* endswitch */
return WinDefDlgProc(hwnd, msg, rnpl , mp2);

Flgare 11.25 Processing value set notifications.
zero. The low-order word of the value returned by the message is a set of flags
indicating the attributes of the value set item. These flags are interpreted in the
same manner as described for the VM_SETITEMATIR message. (Note that in
this example, all items have the same, known attributes so that this message
is not really required-the code is shown here for illustrative purposes.) If the
value in the item is an RGB color, a VM_QUERYITEM message is sent to the
value set to retrieve the color value. Parameter mp 1 of this message is again
the row and column of the desired item. If the item attribute is VIA_TEXT,
parameter mp2 is a pointer to a VSTEXT structure; otherwise this value is
not used and should be set to zero. The VSTEXT structure is defined in Figure
11.26.

• The psz/temText element is a pointer to the location to store the text of the
item's value.

344 Improving Your Control: Using the Advanced 0812 Controls

typedef struct _VSTEXT
(

PSZ
ULONG

) VSTEXT;

pszitemText;
ulBufLen;

Figure 11.2& The VSTEXT structure.

• The ulBufLen element is the length of the buffer pointed to by pszltem­
Text. If this value is set to zero, the required buffer length is returned
by the VM_QUERYITEM message. The returned length excludes the null
termination character.

The value returned from VM_QUERYITEM depends on the type of data
stored in the item. If the item contains text, the number of bytes copied to the
pszltemText element of the VSTEXT structure is returned. If the item contains
a bitmap, the bitmap handle is returned. In the example, the item contains
an RGB color value and this value is returned. The RGB color is then sent to
routine UpdateSliders to split out the red, green, and blue components and to
set the values of the sliders representing these colors.

When the user presses the Enter key while the value set has focus, or
double-clicks one of the value set items with the mouse, a WM_CONTROL
message is sent to the dialog procedure with the VN..ENTER notification.
Receipt of this message indicates that the background of the notebook should
be changed to the color of the item whose row and column are passed in
parameter mp2 of the message. The dialog procedure first obtains the window
handle of the notebook window by querying the parent of the dialog to obtain
the notebook page window and then querying the parent of the page win­
dow. The value of the value set item is then queried in the same manner as
with the VN_SELECT notification code. This value is then used to change
the value of the PP JJACKGROUNDCOLOR presentation parameter for the
notebook window.

If the application knows the row and column of a value set item, the code
from the previous example can be used to retrieve the data from the selection.
Thus, an application that does not process selections immediately but waits
for some external event also uses this code. The primary difference between
immediate and delayed handling is in the event that triggers the request for the
data and the method of obtaining the item number to retrieve. For example,
an application may not immediately process each selection but wait until the
user leaves the value set before determining what the final selection was. In
this instance, the application would process WM_CQNTROL messages with
the VN_KILLFOCUS notification code. Parameter mp2 of this message is the
handle of the value set window. As shown in Figure 11.27, the application
processes the message by first querying the currently selected item using the
VM_QUERYSELECTEDITEM message. The mpl and mp2 parameters of this

Value Sais 345

MRESULT APIENTRY ClrEditDlgProc(HWND hwnd, UWNG msg, MPARAM mpl, MPARAM mp2)
{

UWNG rgb;
ULONG ulAttrs;
HWND hwndNote;

switch (msg) {
case WM_CONTROL:

i f (SHORT2FROMMP(mpl) == VN_KILLFOCUS) {
hwndNote = WinQueryWindow(hwnd, QW_PARENT) ;
hwndNote = WinQueryWindow(hwndNote, QW_PARENT) ;
vsitem = LONGFROMMR(WinSendMsg (HWNDFROMMP (mp2) ,VM_QUERYSELECTEDITEM,

MPFROMLONG(OL), MPFROMLONG (OL))) ;
usAttrs = SHORTlFROMMR (WinSendDlg! temMsg (hwnd , ID_VSCOLORS,

VM_QUERYITEMATTR, vsitem, MPFROMLONG(OL)));
if (usAttrs & VIA_RGB) (

rgb = (ULONG)WinSendDlgitemMsg(hwnd, ID_VSCOLORS ,
VM_QUERYITEM, (MPARAM)vsitem, (MPARAM)OL) ;

WinSetPresPararn(hwndNote, PP_BACKGROUNDCOLOR , sizeof (ULONG),
(PVOID *)&rgb) ;

/* endif */
return MRFROMLONG (OL);

) /* endswitch */
return WinDefDlgProc (hwnd , msg, mpl, mp2);

Figure 11.27 Processing a value set selection when focus changes.

message are both reserved values and must be set to zero. The return value
from this message is the item ID of the currently selected item in the usual
row/column format. This item ID is then used to query the item data in the
same manner as shown earlier.

Applications may also obtain the value set data based on some event ex­
ternal to the value set, such as clicking the OK button in a dialog. In this case,
if the value of the currently selected item is required, the code would be same
as shown for the VNJGLLFOCUS notification message. An application might
also need to process the data in all the items when the external event occurs.
For example, in the previous color editor example, the current values of all the
colors might be retrieved and stored in an initialization file as a small color
palette for the application. In this case, the code could contain two loops simi­
lar to those used to create and initialize the value set in the calendar example.
The current row and column of the loop is used to form the item ID, and the
value is queried in the same manner as always.

Direct Manipulation of Value Set Items
The value set control class supports drag-and-drop direct manipulation op­
erations by notifying its owner whenever it receives a direct manipulation

34& Improving Your Control: Using the Advanced OS/2 Controls

message. The pickup-and-drop operation is not supported in this manner in
the original OS/2 WARP release.

Initiation of a drag operation by receipt of the WM_BEGINDRAG message
is reported to the owner window via the WM_CONTROL message with a
VN..INITDRAG notification code when the pointing device is located over an
item that has the VIA_DRAGGABLE attribute. Parameter mpl of the message
contains the control ID and notification code as usual. Parameter mpl contains
a pointer to a VSDRAGINIT structure, which is defined as shown in Figure
11.28.

• The hwnd element is the handle of the value set window.
• The x element is the x coordinate of the mouse pointer on the desktop.
• The y element is the y coordinate of the mouse pointer on the desktop.
• The ex element is the horizontal distance from the mouse pointer hotspot to

the origin of the item that is the object of the direct manipulation operation.
• The cy element is the vertical distance from the mouse pointer hotspot to

the origin of the item that is the object of the direct manipulation operation.
• Element usRow is the row number containing the object of the direct

manipulation operation.
• Element usColumn is the column number containing the object of the

direct manipulation operation.

The value set control also notifies its owner when objects are dragged
over the value set window. The VN_DRAGOVER notification is sent when
the value set receives a DM_DRAGOVER message; the VN_DRAGLEAVE no­
tification is sent when the value set receives the DM_DRAGLEAVE message;
and the VN_DRAGHELP notification is sent when the value set receives the
DM_DRAGHELP message. If the value set receives a DM_DROP message and
the pointing device is over an item that has the VIA_DROPONABLE attribute
set, a VN_DROP notification is sent to the owner window. All of these notifica­
tions are sent via the WM_CONTROL message. Parameter mp2 of the message
contains a pointer to a VSDRAG INFO structure, defined as shown in Figure
11.29.

typedef struct _VSDRAGINIT
{

HWND hwnd;
LONG x;
LONG y;
LONG ex;
LONG cy;
USHORT usRow;
USHORT usColumn;

) VSDRAGINIT;

Figura 11.28 The VSDRAGINIT structure.

typedef struct _VSDRAGINFO
{

PDRAGINFO pDraginfo ;
USHORT usRow;
USHORT usCol umn;

} VSDRAGINFO;

Figure 11.29 The VSDRAGINFO structure.

Valua Sets 347

• ElementpDraglnfo is a pointer to the DRAG INFO structure for the current
drag operation.

• The usRow element identifies the row containing the item under the mouse
pointer.

• The usColumn element identifies the column containing the item under
the mouse pointer.

For additional information on direct manipulation programming, see Chap­
ter 7.

Owner Draw and the Value Set
The value set control provides for application drawing of the value set
background and various components of the items that comprise the se­
lection set. Drawing of the control background is enabled by setting the
VS_QWNERDRAW style flag, and drawing of individual items is enabled by
setting the VIA_OWNERDRAW attribute of the item. When an enabled compo­
nent requires painting, a WM_DRAWITEM message is forwarded to the value
set control window's owner. Parameter mpl of this message is the window ID
of the value set window, and parameter mp2 is a pointer to an OWNERDRAW
structure. The idltem element of this structure indicates which component is
to be painted. The valid values are:

VDA_BACKGROUND Ox0004 indicates that the background of the value set needs
to be painted.

VDA_SURROUNDING Ox0003 indicates that the area surrounding an item needs to
be redrawn.

VDA_ITEMBACKGROUND Ox0002 indicates that the background of an item needs to be
painted.

VDA_ITEM OxOOOl indicates that the value set item must be repainted.

The hltem element contains the item identifier with the row number in the
low-order 16 bits and the column number in the high-order 16 bits.

348 Improving Your Control: Using the Advanced OSJ2 Controls

SLIDERS

The slider control class provides a graphical mechanism for representing and
choosing a specific value within a range of values. By definition, the slider is
kin to the scroll bar, but to avoid confusion, the latter should only be used for
its intended purpose, manipulating the data displayed in a window. The slider
control, with features such as tick marks, detents, and annotation, provides
a much better facility for obtaining user input, and in its read-only form, is
an excellent mechanism for reporting progress toward a goal, such as the
completion percentage of a print operation or installation procedure.

There are two types of slider controls, the linear slider and the circular
slider. The linear slider resembles the scroll bar control, having a slider that
moves along a bar or shaft. The circular slider resembles the control knobs on
stereo equipment and is useful when screen space is limited. In this section,
we will examine both types of slider control, beginning with the linear slider.

The Linear Slider
The basic linear slider consists of a bar or shaft, a slide arm that moves along
the bar, and two directional buttons. Annotated tick marks may be displayed at
fixed intervals along the bar as helpful references for determining the current
value of the slider. Detent marks can also be displayed and allow the user to
quickly select a specific value for the slider by clicking on the detent mark. The
ribbon strip, the area of the slider shaft between the origin and the current
value, may be drawn with a different color than the normal background. A
read-only slider removes the slide arm and directional buttons and is often
used for display of values that tend to vary within a given range.

Creating Linear Sllders

Linear sliders may be created as stand-alone controls or as elements of a dialog
in a dialog template. When creating stand-alone sliders, the application must
specify the style of the control and must provide a SLDCDATA structure as the
pCtlData parameter of the WinCreateWindow APL The pszClass parameter of
the API call must be set to wc_sLIDER.

The SLDCDATA structure determines the range of values that the slider
represents and the overall size of the slider. The structure is defined as shown
in Figure 11 .30.

• Element cbSize is the length of the structure in bytes and should be set to
sizeof(SLDCDATA).

• The usScalel Increments element specifies the number of incremental val­
ues along the default scale. Since the home, or lowest, value reported back

SUiien 349

typedef struct _SLDCDATA
{

ULONG cbSize;
USHORT usScalelincrements;
USHORT usScalelSpacing;
USHORT usScale2Increments;
USHORT usscale2Spacing;

SLDCDATA;

figure 11.30 The SLDCDATA structure.

to the application is zero, the maximum incremental value that the slider
reports is one less than this value.

• The usScalel Spacing element specifies the number of pixels between each
increment. If a value of zero is specified, the slider control automatically
calculates the spacing based on the number of increments and the size of
the control window.

• Element usScale2Increments specifies the number of incremental values
along the alternate scale.

• Element usScale2Spacing specifies the number of pixels between each
incremental value along the alternate scale.

A number of predefined constants are available for specifying the bits
comprising the control-specific style flags for the slider. Those constants that
have a defined value of zero are the default styles for the control. The primary
style flag constants are:

SLS...HORIZONTAL
SLS_VERTICAL
SLS_pRJMARYSCALEl

SLS_pRJMARYSCALE2

OxOOOO specifies that the slider shaft is parallel to the x axis.
OxOOO 1 specifies that the slider shaft is parallel to the y axis.
OxOOOO indicates that the usScalel Increments and usS-

calel Spacing elements of the SLDCDATA structure
are to be used, and that tick marks, annotation, and
detent marks are to be displayed above horizontal
sliders or to the right of vertical sliders.

Ox0400 indicates that the usScale2Increments and usS­
cale2Spacing elements of the SLDCDATA structure
are to be used, and that tick marks, annotation, and
detent marks are to be displayed below horizontal
sliders or to the left of vertical sliders.

SLS_SNAPTOINCREMENT Ox0008 causes the slider arm to be moved to the nearest
incremental value if it is placed at a pixel position
that is between increments.

SLS..READONLY Ox0080 causes a read-only slider to be created. This type
of slider may be used to indicate progress toward

350 Improving Your Control: Using the Advanced OSJ2 Controls

SLSJUBBONSTRIP

SLS_OWNERDRAW

some goal and does not allow user input. When this
style is specified, the slider arm is not displayed.

Ox0100 specifies that a ribbon strip is to be drawn along the
shaft between the home position and the current
value of the slider. The ribbon strip is merely a shaft
of a different color than the normal shaft. This style
is especially useful for indicating the current value
of read-only sliders, since no slider arm is drawn.

Ox0040 specifies that the slider's owner window is to be no­
tified via a WM..DRAWITEM message whenever the
shaft, ribbon strip, slider arm, or slider background
is to be drawn.

The remaining style flags each have a dual constant definition. The defined
constant normally used is dependent on the orientation of the slider, horizontal
or vertical. The style constant definitions for horizontal sliders are:

SLS_CENTER

SLS..BOTIOM

SLS_TOP

SLS..HOMELEFf

SLS..HOMERIGHT

SLS..BUTTONSLEFT

SLS..BUTTONSRIGHT

OxOOOO

Ox0002

Ox0004

OxOOOO

Ox0200

OxOOlO

Ox0020

indicates that the slider shaft is drawn in the center of
the area defined for the control window.
indicates that the slider shaft is drawn at the bottom of
the area defined for the control window.
indicates that the slider shaft is drawn at the top of the
area defined for the control window.
specifies that the left end of the shaft is the home, or zero
value, position.
specifies that the right end of the shaft is the home, or
zero value, position.
indicates that the directional movement buttons are to
be drawn and placed to the left of the slider shaft.
indicates that the directional movement buttons are to
be drawn and placed to the right of the slider shaft.

The style constant definitions for vertical sliders are:

SLS_CENTER

SLS_LEFT

SLSJUGHT

SLS_HOMEBOTTOM

OxOOOO indicates that the slider shaft is drawn in the center of
the area defined for the control window.

Ox0002 indicates that the slider shaft is drawn at the left side
of the area defined for the control window.

Ox0004 indicates that the slider shaft is drawn at the right side
of the area defined for the control window.

OxOOOO specifies that the bottom end of the shaft is the home,
or zero value, position.

Slltlers 351

SLS..HOMETOP Ox0200 specifies that the top end of the shaft is the home, or
zero value, position.

SLS..BUTTONSBOTTOM OxOOlO

SLS..BUTIONSTOP Ox0020

indicates that the directional movement buttons are to
be drawn and placed at the bottom of the slider shaft.
indicates that the directional movement buttons are to
be drawn and placed at the top of the slider shaft.

As an example of creating the linear slider, let's look at a slider that rep­
resents degrees Centigrade between the freezing point (0 degrees) and boiling
point (100 degrees) of water. Since both endpoints are included in the range,
the total number of degrees, and therefore increments, displayed on the slider
is 101. Initially, each increment will be one pixel, so the spacing will be set
to 1. Figure 11.31 shows the code for creating this slider. The SLDCDATA
structure is initialized to set scale 1 to the number of increments and spacing
described. The structure is then passed to the WinCreateWindow API. The
tlStyle parameter sets the slider styles SLS_VERTICAL to display a vertical
slider, SLS..BUTIONSBOTTOM to place the directional buttons at the bottom
of the slider, and SLS_LEFf to place the bar at the left of the control window
leaving room for tick marks and annotation to the right along scale 1. The
width of the window is set to SO pixels, or screen coordinates, allowing for the
width of the slider and for the tick marks and annotation, which will be added
later. The height of the window is set to 130 pixels, 100 pixels for the slide bar
and 30 pixels for the buttons.

HWND hwndSlider;
SLDCDATA cData;

cData.cbSize = sizeof(SLDCDATA);
cData.usScalelincrements = 101;
cData.usScalelSpacing = l ;
cData.usScale2Increments = O;
cData.usScale2Spaci ng = 0;

hwndSl ider = WinCreateWindow(hwndParent,
WC_ SLIDER,
NULL,
SLS_BUTTONSBO'M'OM I SLS_VERTICAL I SLS_LEFT,
0, 0, 100, 40 ,
hwndOwner,
HWND_TOP,
500,
&cDat a ,
NULL) ;

Figura 11.31 Creating a linear slider.

352 Improving Your Control: Using the Advanced OS!l Controls

Customizing the Linear Slider

Notice that the WS_VISIBLE style was not set when the slider was created in
Figure 11.31. Before showing the slider to the user, tick marks and annotation
will be added so that the range and current value of the slider can be easily
determined. Figure 11.32 shows the basic code used for the thermometer
slider created in Figure 11.31. lick marks are added every two degrees, and a
longer tick mark and degree value text are placed every 10 degrees. Since the
spacing between slider increments is one, which places an increment at every
pixel, if a tick were placed at every degree, or pixel, the tick marks would be
indistinguishable and a solid black rectangle would be drawn. The for loop in
Figure 11.32 scans every other increment of the slider, starting with value zero.
If the increment value is not a multiple of 10, the SLM_SETTICKSIZE message
is sent to change the tick size from the default of zero to five pixels. Parameter
mpl of this message contains two fields; the low-order 16 bits specify the slider
increment whose tick size is to be modified; the high-order 16 bits specify the
length of tick in pixels. Parameter mp2 is reserved and must be set to zero.
For increment values that are a multiple of 10, the tick size is set to 10 pixels
and an SLM_SETSCALETEXT message is sent to annotate the tick mark. The
low-order 16 bits of parameter mpl specify the slider increment to annotate.
Parameter mp2 is a pointer to a zero-terminated array of characters to display
as the annotation for the increment.

The code in Figure 11.32 causes annotation to be drawn every 10 pixels.
While there is no overlap in this particular case, the resulting text appears
rather crowded. The overall appearance of the slider can be improved by
drawing the ticks on both sides of the slider and alternating the text from side
to side. This is accomplished by drawing the ticks and text for one of the slider
scales, then modifying the style of the slider and drawing the ticks and text
for the other side of the slider. Note that this requires that the increment and
spacing for both scales be initialized in the SLDCDATA structure when the

for(i = O; i <= cData.usScalelincrements; i += 2) {
if (i % 10) {

WinSendMsg(hwndSlider, SLM_SETTICKSIZE,
MPFROM2SHORT(i, 5), MPFROMLONG (O)) ;

} else {
WinSendMsg(hwndSlider, SLM_SETTICKSIZE,

MPFROM2SHORT(i, 10), MPFROMLONG(OL));
_itoa(i, szScaleText, 10);
WinSendMsg(hwndSlider, SLM_SETSCALETEXT,

MPFROMSHORT(i), MPFROMP(szScal eText));

/* endfor */

Figure 11.32 Annotating the linear slider.

Sllders 353

window is created. Figure 11.33 shows the code to create and annotate the
temperature slider in this manner.

The first portion of Figure 11.33 is a slightly modified version of the code
from Figure 11.31. Note that the values for both slider scales are now specified.
In this case, both scales are the same since the only reason for two scales is to
improve the appearance of the annotation. The width of the slider is increased,
and the SLS_LEFf style is removed in the WlnCreateWindow call to center the
slider and make room for the additional tick marks and annotation. The code
from Figure 11.32 follows the WlnCreateWlndow call. The only modification
to this initial loop is an if statement to determine if an even or odd multiple
of 1 O increments has been encountered. Only the odd multiples are drawn on
scale one. Following this loop, the style of the slider is modified such that scale
two becomes the primary scale. This is accomplished by querying the current
style from the window data for the slider, ORing in the SLS_pRJMARYSCALE2
style, and then storing the new value back into the window words. A for loop
similar to that for annotating scale one is then executed to annotate scale
two. This loop only specifies annotation for increment values that are even
multiples of 10. When this loop completes, the slider is ready for display, and
WlnShowWindow is called to make the slider visible.

Additional customization of the slider may also be performed. Common or
frequently selected increment values may be represented with detents, allowing
these values to be selected with a single pointing device click. Detent marks are
added to the slider by sending an SLM..ADDDETENT message to the control.
The low-order 16 bits of parameter mpl specify the number of pixels from the
home position to place the detent. Parameter mp2 is reserved and should be
set to zero. The return value of the message is a unique detent identifier, which
must be passed as parameter mpl of the SLM_REMOVEDETENT message to
remove the detent from the slider. This identifier is also passed as parameter
mpl of the SLM_QUERYDETENTPOS message used by the application to
determine the location of the detent. The return value from this message
contains the position of the detent as the number of pixels from the slider home
position in the low-order 16 bits and the scale on which the detent is positioned
in the upper 16 bits. The scale value is SMA_SCALEl or SMA.SCALE2. These
last two messages are not required in typical applications since movement of
the slider arm to a detent position is reported back to the application in the
same manner as any other value.

The size and position of the slide bar and the slide arm may be modified
with the SLM_SETSLIDERINFO message. This functionality is discussed later
in the section on using the slider as a progress indicator.

Obtaining Infonnatlon with the Slider

The application may obtain the current value of the slider by processing no­
tifications from the slider or by directly querying the value via a message to

HWND CreateSliderWnd{ HWND hwnd)
{

HWND hwndSlider = NULLHANDLE;
SLDCOATA cData;
char szScaleText[33J;
int i;

do {
cData.cbSize = sizeof{SLDCDATA);
cOata.usScalelincrements = cData.usScale2Increments = 101;
cOata.usScalelSpacing = cData.usScale2Spacing = l;
hwndSlider = WinCreateWindow{ hwnd,

wc_SLIDER,
NULL,
SLS_BUTTONSBOTTOM I SLS_VERTICAL,
0, o, 90, 130,
hwnd,
HWND_TOP,
500,
&cData,
NULL);

for{ i = O; i <= cData.usScalelincrements; i += 2) {
if (i % 10) {

WinSendMsg{ hwndSlider , SLM_SETTICKSIZE,
MPFROM2SHORT(i, 5), MPFROMLONG{O));

else {
WinSendMsg(hwndSlider, SLM_SETTICKSIZE,

MPFROM2SHORT(i, 10), MPFROMLONG(OL));
if{ (i/10)%2) {

_itoa(i, szScaleText, 10);
WinSendMsg(hwndSlider, SLM_SETSCALETEXT,

MPFROMSHORT(i), MPFROMP{szScaleText));
} } } /* endfor */
ulStyle = WinQueryWindowULong(hwndSlider, QWL_STYLE);
ulStyle I= SLS_PRIMARYSCALE2;
WinSetWindowULong{ hwndSlider, QWL_STYLE, ulStyle);
for(i = O; i <= cData.usScale2Increments; i += 2) {

if (i % 10) {
WinSendMsg(hwndSlider, SLM_SETTICKSIZE,

MPFROM2SHORT(i, 5 J, MPFROMLONG{O));
} else {

WinSendMsg(hwndSlider, SLM_SETTICKSIZE,
MPFROM2SHORT(i, 10), MPFROMLONG(OL));

if (!((i/10)%2)) {
_itoa{ i, szScaleText, 10);
WinSendMsg(hwndSlider, SLM_SETSCALETEXT,

MPFROMSHORT(i), MPFROMP(szScaleText));
} } } /* endfor */
WinShowWindow(hwndSlider, TRUE);

} while (false); /* endwhile */
return hwndSlider;

Figure 11.33 Annotating both sllder scales.

354

Slldars 355

the slider. As with all controls, notifications are sent via the WM_CONTROL
message with the notification code in the high-order 16 bits of mpl. Two
notification codes are of particular interest when retrieving values from the
slider:

• The SLN_CHANGE notification is sent to the application whenever the
value of the slider changes (but not while the slider is being dragged). The
current value of the slider, expressed as the number of pixels from the home
location to the current position of the slider, is contained in parameter
mp2. This notification would normally be processed by an application that
provides immediate feedback of the effects of slider value changes.

• The SLN_SLIDERTRACK notification allows the application to provide
feedback while the slide arm is being dragged along the bar. The value of
the current position of the slider is given in parameter mp2.

Applications that do not provide any form of immediate feedback but are
only interested in the current value of the slider when some event occurs­
for example, when the user clicks the OK button in a dialog-can retrieve the
current value by sending an SLM_QUERYSLIDERINFO message to the control
window. For this operation, the low-order 16 bits of parameter mp1 should
be set to SMA_SLIDERARMPOSITION, and the high-order 16 bits should
be set to either SMA..RANGEVALUE to query the number of pixels from the
home position or to SMAJNCREMENT to determine the tick mark where the
arm is positioned. In the first instance, SMA..RANGEVALUE, the return value
contains the current position of the slider arm in the low-order 16 bits, and
the total pixels for the bar in the high-order 16 bits. If SMAJNCREMENT
is specified, the low-order 16 bits of the return value contain the tick mark,
or increment value, where the arm is positioned, and the high-order 16 bits
are not used. If the slide arm is located between increment values, the value
returned is rounded to the nearest increment value.

As an example, consider how an application might process changes to the
temperature slider. In this instance, changing the slider value might cause
an 1/0 operation to occur that changes the setting of a thermostat. Since
temperature changes do not normally occur instantaneously, there is no need
to process the SLN_SLIDERTRACK notification. Instead, the SLN_CHANGE
notification is processed to change the thermostat each time a change is made
in the slider value. Figure 11 .34 shows the coding used to implement this
functionality.

The wmControl function is called by the window procedure of the slider's
owner window when the WM_CQNTROL message is received. If the message is
a notification from the slider, the slider's WM_cQNTROL processing function,
wmControlSlider, is called. The routine first checks to see if the message is an
SLN_CHANGE notification. If so, two methods of obtaining the current value
of the slider are shown. The first method merely obtains the pixel value of

356 Improving Your Control: Using the Advanced OS,12 Controls

MRESULT APIENTRY wmControl(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2
(

if (SHORTlFROMMP(mpl) == 500)
wmControlSlider(hwnd, msg, mpl, mp2);

return (MRESULT)O;

void wmControlSlider(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)
(

SHORT pixTemp;
SHORT incrTemp;
MRESULT ulValue;

if (SHORT2FROMMP{ mp!) == SLN_CHANGE) {
pixTemp = SHORTlFROMMP (mp2) ;
ulValue = WinSendMsg{ hwndSlider, SLM_QUERYSLIDERINFO,

MPFROM2SHORT(SMA_SLIDERARMPOSITION, SMA_INCREMENTVALUE),
MPFROMLONG(Ol));

incrTemp = SHORTlFROMHR(ulValue) ;
SetTemp(incrTemp);

/* endif */

voi d SetTemp(USHORT usNewTemp)
{

printf("Changing temperature to %d degrees \n", usNewTemp);

Figure 11.34 Processing slider value changes.

the slider by examining the low-order 16 bits of parameter mp2. In cases like
this one, where the increment spacing is one pixel, this value is equal to the
increment value. In other cases, the pixel value may need to be converted to an
increment. This could be accomplished by using a mathematical calculation, or
as shown in the example, by querying the increment value from the slider. The
value is retrieved by sending an SLM_QUERYSLIDERINFO message to the
slider. Parameter mp1 is set to query the slider arm position, the current value
of the slider, as an increment value. The low-order 16 bits of the return value
from the message is the current increment value of the slider. This value is then
passed to routine SetTemp to change the thermostat. For the purposes of this
example, SetTemp merely prints the value to the standard output device. This
output can be seen by redirecting standard output to a file when the program
is invoked.

Using Read-Only Linear Slldars

Linear sliders are also commonly used to display the current value of a datum
that tends to vary within some fixed range. Examples of this usage include

SlldllS 357

a temperature or pressure gauge, or an audio device volume meter. Another
common usage is a progress meter, in which the slider displays the percent
achievement of some goal, such as formatting a diskette or installing a pro­
gram. To demonstrate this use of the slider, we will examine code that imple­
ments a read-only slider to display the seconds component of the current time.
As an added benefit, the OWNERDRAW features of the slider will be used to
display a bitmap in the ribbon strip of the slider.

Figure 11.35 shows the code used to create the slider window. The
SLDCDATA structure is initialized to create a slider with 60 increments
having two pixels per increment. Several style flags are passed to WlnCre­
ateWtndow to create a slider with the desired appearance and behavior. The
SLS-READONLY style prevents user input and hides the slide arm, replacing
it with a narrow line across the breadth of the slider to indicate the current
value. Style SLS_RIBBONSTRIP causes the slider to display the area between
the home position of the slider and the current value in a different color.
The SLS.OWNERDRAW style causes the slider to send a WM..DRAWITEM
message to its owner when the slider's background, slide bar, slide arm,
or ribbon strip require painting. This example uses the WM..DRAWITEM
message to paint a bitmap in the ribbon strip rather than just changing the
color. WM..DRAWITEM messages for the other portions of the slider are not
processed, allowing the slider to draw these elements as normal.

After the slider window is created, a for loop is used to set the tick mark
sizes and to annotate the slider at every 10th tick mark. An SLM.SETSLIDER
INFO message is then sent to modify the breadth of the slider to match the
size of the bitmap that is drawn into the ribbon strip. Parameter mpt of this
message specifies the slider component to be modified. The following values
are valid:

SMA.SHAFIDIMENSIONS OxOOOO

SMA.SHAFIPOSITION OxOOOl

SMA_SLIDERARMDIMENSIONS Ox0002

sets the breadth of the slider. This is the width
of vertical sliders or the height of horizontal
sliders. The low-order 16 bits of parameter
mp2 specify the breadth in pixels.
sets the x and y coordinates of the lower left
corner of the slide bar. This allows the appli­
cation to move the slide bar to a nonstandard
location within the slider window. The low­
order 16 bits of parameter mp2 specify the x
coordinate, and the high-order 16 bits spec­
ify the y coordinate. The coordinates must be
specified as window coordinates.
modifies the size of the slide arm. The low­
order 16 bits of parameter mp2 specify the
length of the arm; the arm width for hori­
zontal sliders and the arm height for vertical

358 Improving Your Control: Using Iha Advanced OS/2 Controls

HWND CreateClockWindow(HWND hwndNote)
{

HWND hwndSlider = NULLHANDLE;
SLOCDATA cData;
char szScaleText[33);
int i;

cData.cbSize = sizeof(SLOCDATA);
cData.usScalelincrements = 60;
cData.usScalelSpacing = 2;
cData.usScale2Increments = O;
cData.usScale2Spacing = O;
hwndSlider = WinCreateWindow(hwndNote,

WC_SLIDER,
NULL,
SLS_READONLY I SLS_RIBBONSTRIP I
SLS_BOTTOM I SLS_OWNERDRAW,
0, o, 130, 70,
WinQueryWindow(hwndNote,QW_PARENT) ,
HWND_TOP,
600,
&cData,
NULL) ;

for(i = O; i <= 60; i += 2) {
if (i % 10) {

WinSendMsg(hwndSlider, SLM_SETTICKSIZE,
MPFROM2SHORT(i, 5), MPFROMLONG(O));

else {
WinSendMsg(hwndSlider, SLM_SETTICKSIZE,

MPFROM2SHORT(i, 10), MPFROMLONG(OL));
_itoa(i, szScaleText, 10);
WinSendMsg(hwndSlider, SLM_SETSCALETEXT,

MPFROMSHORT(i), MPFROMP(szScaleText));

J /* endfor */
WinSendMsg(hwndSlider, SLM_SETSLIDERINFO,

MPFROMSHORT(SMA_SHAFTDIMENSIONS), MPFROMSHORT(32)) ;
WinStartTimer(WinQueryAnchorBlock(hwndSlider),

WinQueryWindow(hwndNote,QW_PARENT),
TID_USERMAX - l, 1000);

return hwndSlider;

Figura 11.35 Creating a read·only slider.

Sl\1A_SLIDERARMPOSITION

SMA..RANGEVALUE

Slldars 359

sliders. The high-order 16 bits specify the
breadth of the arm; the arm height for hori­
zontal sliders and the arm width for vertical
sliders. All measurements are expressed as
pixels.

Ox0003 modifies the position of the slider arm, which
equates to the value of the slider. The low­
order 16 bits of parameter mp2 specify the
new value of the slider. The value is expressed
as either the number of pixels from the home
position or as an increment value, depend­
ing on the value in the high-order 16 bits of
parameter mpl, which may be set to:

OxOOOO indicates that the new value is expressed as the number
of pixels from the home position.

SMAJNCREMEN1VALUE OxOOOl indicates that the new value is expressed as an increment
value.

Once the slider size has been adjusted, API WinStartTimer is called to
create a timer that will be used for updating the slider value. This timer sends
a WM_TIMER message to the slider's owner once per second. The owner
window then calls routine AppWndTimer, shown in Figure 11.36, to set the
slider value to the seconds component of the current time.

Routine AppWndTimer first verifies that the WM_TIMER message is from
the timer created by routine CreateClockWlndow. If so, the routine calls the
WinGetCurrentTime API to retrieve the millisecond counter from the system
clock. This value is then converted to a seconds value between 1 and 60 which
is used to update the slider position with the SLM_SETSLIDERINFO message.
Parameter mpl of the message indicates that the slider component to update

MRESULT AppWndTimer(HWND hwnd, ULONG msg, MPARAM mpl , MPARAM mp2)
{

ULONG ulMs;
USHORT usS;

i f(SHORTl FROMMP(mpl) == TID_USERMAX - 1) {
ulMs = Wi nGet Current Time (WinQueryAnchorBlock(hwnd));

usS = (USHORT) ((ulMs I 1000) % 60);
WinSendMsg(hwndClock, SLM_SETSLIDERINFO ,

} / * endif *I

MPFROM2SHORT(SMA_SLIDERARMPOSITION, SMA_INCREMENTVALUE) ,
MPFROMSHORT(usS)) ;

return MRFROMLONG (OL) ;

Figura 11.36 Modifying the sllder value.

360 Improving Your Control: Using the Advanced OS/2 Controls

is the arm position and that the new position is specified as an increment
value.

Under most circumstances, this would be the end of the code for this slider;
however, changing the slider position causes the ribbon strip to be redrawn.
Since the SLS_OWNERDRAW style was specified, the slider's owner window
receives a WM_DRA WITEM message when the slide arm position changes. The
owner window calls routine AppWndDrawClock, shown in Figure 11.37, to
handle this message. Parameter mp2 of the WM_DRAWITEM message, which
is forwarded to this routine, is an OWNERITEM structure that provides the
application with information about the item to be drawn. The definition of this
structure as it relates to drawing slider components is shown in Figure 11.38.

• Element hwnd is the window handle of the slider window.
• Element hps is the handle of a presentation space that allows drawing in the

area that requires painting. Any drawing outside this area is clipped. The
coordinates used for drawing are based on the origin of the presentation
space.

• The fsState element contains the slider style flags.

MRESULT AppWndDrawClock(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)
{

POWNERITEM
HBITMAP
MRESULT
PO INTL
US HORT

pOD = (POWNERITEM) PVOIDFROMMP(mp2);
hbm = NULLHANDLE;
ulinfo;
ptl;
usS!Width;

if(pOD->iditem == SDA_RIBBONSTRIP)
hbm = GpiLoadBitmap(pOD->hps,

NULLHANDLE,
IDB_CLOCK,
32, 32);

u linfo = WinSendMsg (pOD-> hwnd, SLM_QUERYSLIDERINFO,
MPFROM2SHORT(SMA_SLIDERARMPOSITION, SMA_RANGEVALUE),
MPFROMLONG(OL));

usSlWidth = SHORTlFROMMR(ulinfo);
ptl.x = pOD->rclitem . .xLeft; ptl.y = pOD->rclitem.yBottom;
do {

WinDrawBitmap(pOD->hps, hbm, NULL, &ptl, 0, 0, DBM_NORMAL);
ptl.x += 32;
usSlWidth -= (usSlWidth > 32 l ? 32 : usSlWidth;

} while(usSlWidth != 0) ;
GpiDeleteBitmap(hbm);
return MRFROMLONG(lL);

return MRFROMLONG(OL);

Figure 11.37 Drawing the slider background.

typedef struct _OWNERITEM
{

HWND hwnd;
HPS hps;
ULONG fsState;
ULONG fsAttribute;
ULONG fsStateOld;
ULONG fsAttributeOld;
RECTL rclitem;
LONG iditem;
ULONG hitem;

} OWNERITEM;

Figure 11.38 The OWNERITEM structure.

Sliders 361

• The fsAttribute element is reserved and not used for the slider.
• Element fsStateOld is reserved and not used for the slider.
• Element fsAttributeOld is reserved and not used for the slider.
• The rclltem element is a rectangle that defines the area of the item requiring

update. The coordinates are specified in window coordinates. Note that this
rectangle identifies the entire area of the item, not just the region being
updated, in coordinates relative to the origin of the presentation space.

• The id.Item element identifies which portion of the slider is being updated.
Valid values for this element are:

SDA_SLIDERSHAFf Ox0002 the slider shaft is being updated.
SDA..RIBBONSTRIP OxOOOl the ribbon strip is being updated.
SDA_SLJDERARM Ox0004 the slider arm is being updated.
SDA__BACKGROUND Ox0003 the background of the slider window is being updated.

• The hltem element is reserved and not used for the slider.

Routine AppWndDrawClock is only capable of painting the ribbon strip,
so it first checks the id.Item element of the OWNERDRAW structure to ensure
that this component of the slider is being updated. If not, the routine returns
zero to allow the slider to update whichever other portion of the window is
being drawn. When the ribbon strip is being updated, the function first loads
the bitmap used to fill the ribbon strip from the application's resources. An
SLM_QUERYSLIDERINFO message is then sent to the slider to obtain the
current slider arm position. This represents the maximum x coordinate to be
drawn. A POINTL structure is then filled with the x and y coordinates of the
lower left comer of the ribbon strip as indicated by the rcUtem element of
the OWNERITEM structure. A loop is then entered to draw multiple copies
of the bitmap using the WlnDrawBltmap API. As each copy is drawn, the

362 Improving Your Control: Using the Advanced OS/2 Controls

POINTL structure, which acts as the origin for drawing the bitmap, is updated
to place the next copy adjacent to the previous copy. When the entire ribbon
strip area has been filled, the loop terminates, the bitmap is deleted, and a
nonzero value is returned to indicate that the ribbon strip has been updated.

Note that this routine could be optimized by calculating the portions of
one or more copies of the bitmap that actually fall into the area requiring
update and then only drawing these portions. However, in this and many
instances, the performance gain is relatively small and typically not worth
the additional code complexity that extends the initial development time and
hampers maintenance efforts.

Circular Sliders
The circular slider provides the same basic functionality as its partner, the
linear slider. The circular slider's graphic representation resembles a rotating
control knob like that found on most modern stereo equipment. Like the
physical knob, the circular slider typically requires less room than its linear
counterpart. This makes the control well suited to situations where several
sliders are required. Unlike the linear slider, the presentation options for the
circular slider are somewhat limited, making it less well suited for use in
display-only situations or where annotation is required.

The graphic representation of the slider consists of the round slider, op­
tional value text within the slider, optional tick marks around the slider, op­
tional directional buttons on each side of the slider, optional text to label the
slider, and an indicator that marks the current value of the slider.

The circular slider was originally part of the Multimedia Developer's
Toolkit, but in OS/2 WARP it has been moved into the mainstream of the
Presentation Manager and enhanced to provide more flexibility. The reference
documentation for the slider can now be found in the Presentation Manager
Guide and Reference, and the definitions and declarations used to program the
slider have been moved to pmstddlg.h. If you are maintaining code written
for earlier versions of the operating system and using circular sliders, the
programs must be modified to point to the new header before recompiling.

Creatlag Circular Sliders

The circular slider can be included as an item in a dialog template or created
using the WinCreateWindow or WinCreateStdWindow APls. Several control­
specific styles are available for modifying the appearance and behavior of the
slider. These styles are defined as:

CSS..NOTEXT Ox0002 removes the text that is otherwise displayed below
the slider to label the slider.

Sliders 363

CSS..NONUMBER Ox0004 removes the text that is otherwise displayed in the
center of the slider to indicate the current value of
the slider.

CSS..NOBUTION OxOOOl removes the directional buttons that are otherwise
displayed on each side of the slider.

CSS..360 Ox0010 allows the slider to rotate through a full 360 de­
grees rather than the default 180 degrees.

CSS.MIDPOINT Ox0020 causes the tick marks at the endpoints and the
midpoint of the slider's range to be elongated.

CSS.POINTSELECT Ox0008

css_CIRCULARVALUE OxOlOO

CSS.PROPORTIONALTICKS Ox0040

CSS..NOTICKS Ox0080

modifies the scrolling movement of the slider
when values are selected with the mouse. If this
style is not specified, the slider is moved to the lo­
cation clicked with the mouse in a smooth motion.
When this style is set, using the mouse to select a
value causes the value to be immediately selected.
changes the value indicator for the slider from its
normal radius line to a small circular indention
near the edge of the slider dial.
causes the length of the tick marks to be a per­
centage of the size of the slider radius rather than
a constant value. This can be particularly useful
for small sliders by allowing the size of the slider
itself to occupy additional space within the area
allocated for the slider control window.
prevents the tick marks from being displayed.

Unless the CSS..NOTEXT flag is set, the window text (the pszTitle or psz­
Name parameters of the APis) is displayed as a label below the dial portion of
the slider window. When creating the slider with the WinCreateWindow API,
the control data for the slider, CSBITMAPDATA, should not be passed as the
pCtlData parameter since it does not conform to the documented requirement
that the first two bytes of the structure specify the length of the data. If non­
default button bitmaps are required, use the CSM_SETBITMAPDATA message
to specify the new bitmaps after the window is created.

CustomlzJng the Clreular Sllder

Figure 11.39 shows an example of the code needed to create and customize
a circular slider for use as a volume control dial. The slider value will vary
between 0 and 100, representing the percent of maximum volume, and cus­
tom bitmaps are used for the slider buttons to demonstrate the use of the
CSBITMAP structure.

364 Improving Your Control: Using the Advanced OS/2 Controls

HWND CreateDialWindow(HWND hwndNote)
{

CSBITMAPDATA cData;
HPS bps;

hwndDial = WinCreateWindow(hwndNote,
WC_CIRCULARSLIDER,
•volume•,

bps= WinGetPS(hwndDial);

WS_VISIBLE I CSS_CIRCULARVALUE,
0, 0, 130, 130,
WinQueryWindow(hwndNote,QW_PARENT),
HWND_TOP, 600, NULL, NULL);

cData.hbrnRightUp = GpiLoadBitmap(hps, NULLHANDLE, IDB_UP, 10, 10);
cData.hbrnRightDown = GpiLoadBitmap(hps , NULLHANDLE, IDB_UPl, 10, 10);
cData.hbmLeftUp = GpiLoadBitmap(hps , NULLHANDLE, IDB_DOWN, 10, 10);
cData.hbmLeftDown = GpiLoadBitmap(hps , NULLHANDLE, IDB_DOWNl 10, 10);
WinReleasePS(bps);
WinSendMsg(hwndDial , CSM SETBITMAPDATA, MPFROMP(&cData), MPFROMLONG(Ol));
WinSendMsg(hwndDial, CSM-SETRANGE, MPFROMSHORT(O), MPFROMSHORT(lOO)) ;
WinSendMsg(hwndDial, CSM-SETVALUE, MPFROMSHORT(50), MPFROMLONG(Ol));
WinSendMsg(hwndDial, CSM=SETINCREMENT, MPFROMSHORT(l), MPFROMSHORT(l0)) ;
return hwndDial;

Figura 11.39 Creating a circular slider.

The routine creates the slider by calling the WinCreateWlndow APL The
pszClass parameter is set to WC_CJRCULARSLIDER, the constant identifying
the circular slider class; pszName is set to a pointer to "Volume," which will
be displayed as a label below the slider dial. The flStyle parameter specifies
that the control will be visible and that the value indicator will appear as a
circular indention rather than a radius. The created slider will thus display
the label text, tick marks which are uniform in length, the value text, and the
directional buttons. When the user directly selects a new value on the slider, the
slider scrolls rather than jumping immediately. This prevents equipment, and
possibly eardrum, damage which might occur if the volume were to suddenly
snap from minimum to maximum. Other applications might require a rapid
change, which can be easily accomplished by setting the css_pOJNTSELECT
style when the window is created.

After the window is created, the application modifies the bitmaps that are
displayed to allow the user to increment and decrement the value of the slider.
A presentation space handle is obtained by calling the WinGetPS APL Four
bitmaps are then loaded from the application's resource file, and the handles
for the bitmaps are stored in the appropriate elements of the CSBITMAP
structure. The screen area occupied by the bitmaps is 10 pixels by 10 pixels;
bitmaps of other sizes are stretched or compressed to fill this area. After the

typedef struct _CSBITMAPDATA
{

HBITMAP hbmLeftUp;
HBITMAP hbmLeftDown ;
HBITMAP hbmRightUp;
HBITMAP hbmRightDown;

} CSBITMAPDATA;

Figura 11.48 The CSBITMAPDATA structure.

Sliders 365

bitmaps are loaded, the presentation space is released. The definition of the
CSBITMAP structure is given in Figure 11.40.

• The hbm.LeftUp element specifies the bitmap to use when the button to the
left of the slider is in the up position.

• The hbmLeftDown element specifies the bitmap to use when the button to
the left of the slider is in the down position.

• The hbmRightUp element specifies the handle of the bitmap to use when
the button to the right of the slider is in the up position.

• The hbmRightDown element specifies the handle of the bitmap to use when
the button to the right of the slider is in the down position.

After the bitmap structure is initialized, a CSM_SETBITMAPDATA message
is sent to the slider to change the displayed bitmaps. Parameter mpt of this
message specifies a pointer to the initialized CSBITMAPDATA structure. Pa­
rameter mp2 is reserved and set to the value zero. Note that though the default
bitmaps appear to be buttons, they are merely bitmaps. Application-defined
bitmaps should normally maintain this appearance. Also, if either the up or
down bitmap is specified as NULLHANDLE, only one bitmap is displayed; the
default is no longer used after the CSM_SETBITMAPDATA message is received
by the slider.

After the bitmaps have been specified, the range of values represented by
the slider is changed to begin at 0 and end at 100. This allows the application
to use the value of the slider as a percent of the maximum volume. The slider
range is set by sending a CSM_SETRANGE message. The low-order 16 bits of
parameter mpt specify the minimum value that the slider can assume, and the
low-order 16 bits of parameter mp2 specify the maximum value of the slider.
If this message is not sent, the default range of the slider is from 0 to 30.

The initial value of the slider is established by sending a CSM_SETVALUE
message. The new value is passed as the low-order 16 bits of parameter mpt.
If this message is not sent, the default initial value is 15. In many applications,
the initial value will be set to either a stored value or the current value of the
entity controlled by the slider. In this example, we have arbitrarily chosen the
midpoint of the slider range as the initial value. The CSM.SETV ALUE message

CHAPTER

Containing Your
Excitement:
Making Use of the
Container Control

T he container is one of the newest and most visually complex controls
provided by PM. Though the control is typically touted as a means of dis­
playing and manipulating sets of objects, the internal design of the control

is similar to a small database manager. Records in the database are composed
of predefined elements, which describe the graphical representation(s) of the
record, and application-defined elements, which may be displayed in the DE­
TAIL view of the database. Because of this design, the container is an effective
tool for displaying and manipulating almost every type of data.

The container control provides functionality for displaying the set of data
records in various formats or views. The DETAIL view allows the application to
format and display the contents of the data records. The remaining three views
provide a single graphical and/or textual representation of each data record
and allow an hierarchical display of the relationship between the records. The
container also allows user editing of the textual fields of the data records and
supports direct manipulation of the records.

Common examples of container usage are the folder objects of the Work­
place Shell. The implementation of folders uses the container to display and
manipulate a variety of object types including directories, data files, abstract
objects, and transient objects. Any application that processes data records is a
candidate for using the container and, as familiarity with the control grows,
its usage will also expand.

369

370 Containing Your Excitement: Making Use of the Container Control

This chapter discusses the various container views, the primary data struc­
tures used with the container and the application coding required to use the
container.

CONTAINER VIEWS
The container provides four different views, or representations, of the data
records associated with the control. The ICON and NAME views provide an
annotated graphical representation of each data record, while the TEXT view
uses a single text string to represent each record. In DETAIL view, the elements
of each data record are represented as a row in a multiple-column display.

Depending on the view chosen, three additional modes may be available.
In MINI mode, the ICON and NAME views display an alternate, typically
smaller, version of the icon or bitmap, allowing more objects to be displayed
in a given space. FLOW mode is used with either the NAME or TEXT views
to display objects in multiple columns. TREE mode is used with the NAME,
ICON, or TEXT modes to display a hierarchical view of the objects.

The ICON view represents objects, or data records, by displaying an icon
or bitmap above a text string. Positioning of the objects is normally determined
by the application and is not restricted. The CCS.AUTOPOSITION style causes
the container to determine the position of the objects as they are added to
the container. Sending a CM.ARRANGE message to the container causes the
objects to be positioned in multiple rows such that no two objects overlay each
other. The MINI mode is supported for this view in order to display a smaller
icon or bitmap. In TREE mode, the ICON view represents objects by displaying
them vertically on the page with an expanded/collapsed icon displayed to the
left of the object's icon or bitmap, and the object's text displayed to the right
of the object's icon.

The NAME view representation of objects is similar to that of the ICON
view except that the text is displayed to the right of the object's icon or bitmap.
NAME view automatically positions the representations in a single vertical
column in the window, adding a vertical scroll bar when required. The MINI
mode is supported for this view in order to display a smaller icon or bitmap.

This view may also be displayed in FLOW mode. In this mode, the object
representations are arranged in multiple vertical columns, and a horizontal
scroll bar is added if needed. In TREE mode, the normal expanded/collapsed
graphic is not used; instead, parent objects may be displayed with a different
graphic which can vary depending on whether the object is expanded or
collapsed; objects with no children are displayed using the normal graphic.

In TEXT view, objects are represented with text only, there is no graphic
associated. Like the NAME view, the objects are automatically positioned in
a single vertical column, and a vertical scroll bar is displayed when needed.
When FLOW mode is selected, the text representing objects is arranged in

Container Data Stnlcblres 371

multiple vertical columns, and a horizontal scroll bar is added as required. In
TREE mode, the expanded/collapsed icon is displayed to the left of the text
string for the object.
. The DETAIL view displays each object as a row of horizontal data arranged
m column~ defi~ed by the application. Each column may be defined to display
data contained m the core record structure provided by the container or data
contained in an application-defined extension to this basic structure. This view
is typica!ly used to display data from a homogenous set of objects, such as the
records ma database or the entries in a file directory; however, the view can
also be used to display common data from a heterogeneous set of objects.

CONTAINER DATA STRUCTURES

CNRINFO

The container control utilizes four primary data structures to control the ap­
pearance and function of the container and to store the data records that the
container m~nipulates. The CNRINFO structure contains elements that apply
to the contamer as a whole. These items include information such as the title
of the container, the view to be displayed, and the type of graphical object
used to represent data records. The RECORDCORE structure and its smaller
counterpart, the MINIRECORDCORE structure, are used to store the data
records for the container; the FIELDINFO structure is used to describe and
f~rmat the columns of information when the container displays the DETAIL
view.

The control data for the container is defined by the CNRINFO structure. The
contents of.this structure control many aspects of the container's appearance
and operat10n, and most applications will need to specify the value of at
!east some elements. Because of the size and complexity of the structure, it
is not normally passed with the WinCreateWindow API, but is allowed to
assume default values when the control is created and then modified with the
CM.SETCNRINFO message. Parameter mp2 of this message contains a set
of flags indicating which elements are being modified. The description of the
structure in Figure 12.1 indicates the flag which modifies each element.

• The cb element specifies the size of the structure in bytes. This element is
read-only and cannot be modified with the CM.SETCNRINFO message.

• The pSortRecord element is a pointer to the comparison function used
when records in the container are sorted. This value is modified by setting
the CMA.PSORTRECORD (Ox0020) flag in mp2 of the CM.SETCNRINFO
message. The function identified by this element should be of the form:

372 Containing Your Excitement: Making Use of the Container Control

typedef struct _CNRINFO
{

ULONG
PVOID
PFIELDINFO
PFIELDINFO
PSZ
UL ONG
PO INTL
ULONG
UL ONG
SIZEL
SIZEL
HBITMAP
HBITMAP
HPOINTER
HPOINTER
LONG
LONG
LONG
ULONG
LONG

} CNRINFO;

cb;
pSortRecord;
pFieldinfoLast;
pFieldinfoObject;
pszCnrTitle ;
flWindowAttr;
ptlOrigin;
cDelta;
cRecords;
slBitmapOricon;
slTreeBitmapOricon;
hbmExpanded;
hbmCollapsed;
hptrExpanded;
hptrCollapsed;
cyLineSpacing;
cxTreeindent;
cxTreeLine;
cFields;
xVertSplitbar;

Flgun112.1 The CNRINFO structun1.

SHORT EXPENTRY function(PRECORDCORE pl,
PRECORDCORE p2, PVOID pStorage);

and returns a negative number if pl is less than p2, zero if pl equals p2, a
positive number if pl is greater than p2.

• Element pFieldlnfoLast is a pointer to the FIELDINFO structure which
describes the last column to be displayed in the left side of a split DETAIL
view. By default, the value is NULL and the view is not split. This value is
modified by setting the CMA_pFJELDINFOLAST (OxOO 10) flag in mp2 of
the CM_SETCNRINFO message.

• Element pFieldlnfoObject is a pointer to the FIELD INFO structure which
describes the column of the DETAIL view, which will show "in use" em­
phasis. The specified column must contain icon or bitmap data. By default,
the leftmost column is used. Set the CMA_pFJELDINFOOBJECT (Ox200)
flag in mp2 of the CM_SETCNRINFO message to modify this value.

• The pszCnrTitle element is a pointer to a zero-terminated array of char­
acters to display as the container's title. If the value is NULL, no ti­
tle is displayed . Set the CMA_CNRTITLE (OxOOOl) flag in mp2 of the
CM_SETCNRINFO message to modify this value.

• The flWindowAttr element is a set of flag bits that determine various at­
tributes of the container including the view displayed, the type of graphic

Container Data Structures 373

displayed, and the appearance of the title. This value is modified by setting
the CMA_FLWINDOWATTR (Ox0004) flag in mp2 of the CM_SETCNRINFO
message. The valid attribute flags are listed here:

• CV_ICON (Ox00000004) displays the container's ICON view. Records
are depicted in rows of icons or bitmaps paired with text that is dis­
played below the graphical element.

• CV -NAME (Ox00000002) displays the container's NAME view. Records
are depicted as a column of icons or bitmaps paired with text that is
displayed beside the graphic element. If the CV _FLOW flag is also set,
the record representations are displayed in multiple columns.

• CV_TEXT (OxOOOOOOOl) displays the container's TEXT view. Records
are depicted as a column of text. If the CV _FLOW flag is also set, the
record representations are displayed in multiple columns.

• CV _.DETAIL (Ox00000008) displays the container's DETAIL view. Each
record is displayed as a single row of multicolumnar data. The content
and format of the data displayed in the columns is defined by the
FIELDINFO structures passed to the container.

• CV _MINI (Ox00000020) is used with the ICON and NAME views to
cause the graphical elements to be displayed in a normally smaller
size, based on the SV _CYMENU system value. This flag is ignored if
the CV _TREE attribute flag or the CCS_MINIRECORDCORE style bit
is set.

• CV ..FLOW (OxOOOOOO 10) causes the NAME and TEXT views to be dis­
played as multiple columns. Normally, these views are displayed in a
single column.

• CV_TREE (Ox00000040) causes the ICON, NAME, and TEXT views to
be displayed in a TREE format. In this format, the hierarchy of the
records is displayed, with each level of the hierarchy indented by the
value contained in the cxTreelndent element of CNRINFO. Records at
lower levels are only displayed when their parent record is expanded.
Note that CV _TREE can be specified without the other view attributes.
In this event, the ICON view is used. This flag cannot be used with the
CV _MINI and CV FLOW attributes.

• CA_.DRAWICON (Ox00040000) causes the container to use the hptr
elements of the record for the graphic representation, and the hptr ele­
ments of CNRINFO for the TREE mode expand and collapse graphics.

• CA_.DRAWBITMAP (Ox00020000) causes the container to use the hbm
elements of the record for the graphic representation, and the hbm
elements of CNRINFO for the TREE mode expand and collapse graph­
ics.

• CA_ORDEREDTARGETEMPH (OxOOlOOOOO) causes the container to
indicate that a drop is permitted by underlining a record's represen­
tation when in NAME, TEXT. or DETAIL view, indicating that a new
drop may occur between records but not on a record. This attribute

374 Containing Your Excitement: Making Use ol the Container Control

might be used when a drop would insert a new record in a database,
but could not be used to change the values in an existing record. If
neither CA-ORDERTARGETEMPH nor CA...MIXEDTARGETEMPH is
specified, then drops occur on records and would normally be expected
to modify the contents of the records.

• CA...MIXEDTARGETEMPH (Ox00200000) allows a drop to occur ei­
ther on a record or between two records. The container draws a
line between two objects when the drop would occur between the
objects and draws a line around the object representation when the
drop would occur on a data record. If neither CA_ORDERTARGET­
EMPH nor CA...MIXEDTARGETEMPH is specified, then drops occur
on records and would normally be expected to modify the contents of
the records.

• CA.TREELINE (Ox00400000) causes lines to be drawn showing the
relationship between records in TREE view.

• CA.OWNERDRAW (Ox00004000) indicates that the application will
draw the container records. When a record requires painting, the con­
tainer sends a WM_DRAWITEM message to the container window's
owner.

• CA.OWNERPAINTBACKGROUND (Ox00100000) indicates that the
application is subclassing the container in order to paint the back­
ground. When set, the container sends a CM.PAINTBACKGROUND
message to itself and thereby the subclass procedure.

• CA.CONTAINERTITLE (Ox00000200) when set, indicates that the ap­
plication is providing a title for the container.

• CA.TITLEREADONLY (Ox00080000) causes the title of the container
to be read-only. By default, the user can edit the container title.

• CA_TITLESEPARATOR (Ox00000400) causes a line to be drawn sepa­
rating the title and the representations of the container's records.

• CA.TITLECENTER (Ox00002000) when set, causes the title to be hor­
izontally centered in the container window.

• CA.TITLELEFI' (Ox00000800) when set, causes the title to be drawn
at the left of the container.

• CA.TITLERIGHT (OxOOOOlOOO) when set, causes the title to be drawn
at the right of the container.

• CA.DETAILSVIEWTITLES (Ox00008000) causes column headings to
be displayed in DETAIL view.

• Element pt/Origin is a POINTL structure that describes the origin location
of the viewable area within the total area of the container when in ICON
view. This value is modified when the CMA.PTLORIGIN (Ox0040) flag is
set in mp2 of the CM.SETCNRINFO message.

• The cDelta element specifies a number of records from either end of the
container's linked list of records. When either of the records at this delta
position is scrolled into view in all but the ICON view, the container

Container Data Structl1'81 375

sends a CN.QUERYDELTA notification, allowing the application to remove
records at the opposite end of the list and then append additional records
at the end near the delta record. This field is typically used when the total
number of records to be displayed cannot reasonably be held in memory
simultaneously. Pass the CMA.DELTA (Ox0002) flag with the CM.SETCNR­
INFO message to modify this value.

• Element cRecords is the number of records currently held in the con­
tainer. This element is read-only and cannot be modified with the
CM.SETCNRINFO message.

• Element slBitmapOr/con is a SIZEL structure that specifies the size
of the graphical elements used to represent the container's records.
The structure contains the ex and cy delta values in pels. Set the
CMA.SLBITMAPORICON (Ox0080) flag in mp2 of the CM.SETCNRINFO
message to modify this value.

• The slTreeBitmapOrlcon element is a SIZEL structure that specifies the
display size in pels of the expanded/collapsed graphical element in TREE
mode. This value is modified by setting the CMA.SLTREEBITMAPORICON
(Ox4000) flag in mp2 of the CM.SETCNRINFO message.

• Element hbm.Expanded specifies the handle for a bitmap to be used to
represent expanded items in TREE mode. The default if neither this el­
ement nor hptrExpanded is set is a bitmap minus sign. This value is
modified by setting the CMA.TREEBITMAP (Ox0800) flag in mp2 of the
CM.SETCNRINFO message.

• The hbmCollapsed element specifies the handle for a bitmap to be used to
represent collapsed items in TREE mode. The default if neither this element
nor hptrCollapsed is set is a bitmap plus sign. Set the CMA.TREEBITMAP
(Ox0800) flag in mp2 of the CM.SETCNRINFO message to modify this
value.

• Element hptrExpanded specifies the handle for the icon to be used to rep­
resent expanded items in TREE mode. The default if neither this element
nor hbmExpanded is set is a bitmap minus sign. Set the CMA.TREEICON
(Ox0400) flag in mp2 of the CM.SETCNRINFO message to modify this
value.

• The hptrCollapsed element specifies the handle for the icon to be used to
represent collapsed items in TREE mode. If neither this element nor hbm­
Collapsed is set, the default is a bitmap plus sign. Set the CMA.TREEICON
(Ox0400) flag in mp2 of the CM_SETCNRINFO message to modify this
value.

• The cyLineSpacing element specifies the number of pels used to vertically
separate records. This value is modified by setting the CMA..LINESPACING
(Ox0008) flag in mp2 of the CM.SETCNRINFO message.

• Element cxTreelndent specifies the number of pels to indent each level of the
TREE mode. This value is modified by setting the CMA.CX'I'REEINDENT
(OxlOOO) flag in mp2 of the CM.SETCNRINFO message.

376 Containing Your Excitement: Making Use of the Container Control

• Element cxTreeLine specifies the width of the lines drawn to show the
relationship between elements in TREE mode. Set the CMA_CXTREE­
LINE (Ox2000) flag in mp2 of the CM_SETCNRINFO message to modify
this value.

• The cFields element specifies the number of columns (FIELDINFO struc­
tures) displayed in DETAIL view. This element is read-only and cannot be
modified with the CM_SETCNRINFO message.

• Element xVertSplitBar specifies the position of the vertical bar that sepa­
rates the left and right windows in DETAIL view. Set the CMA...XVERT­
SPLITBAR (OxO 100) flag in mp2 of the CM_SETCNRINFO message to
modify this value.

Messages may be sent to the container to obtain the current CNRINFO
structure contents and to modify the contents. The CM_QUERYCNRINFO mes­
sage is used to obtain the current value of the structure elements. Parameter
mp 1 of this message is a pointer to the location where the structure contents
are to be stored. Parameter mp2 indicates how many bytes of storage are re­
served at this location. Normally, mp2 is set to the size of the structure but
may be less if the entire structure is not to be retrieved. The message returns
the number of bytes copied to the buffer.

The CM_SETCNRINFO message is used to modify the contents of the
container's internal copy of the structure. Parameter mpt of this message is
a pointer to a CNRINFO structure containing the desired values. Parameter
mp2 is a set of flags that indicate which elements of the structure are to be
modified.

Figure 12.2 provides sample code that causes the container to display the
NAME view. The current structure is retrieved using the CM_QUERYCNR­
INFO message. The flWindowAttr element is then modified by first clearing all
the view flags and then setting the CV ..NAME flag. The structure is copied back
to the container with the CM_SETCNRINFO message. Parameter mp2 is set to
CMA_FLWINDOWATTR so that only the window attribute flags are modified.

RECORDCORE and MINIRECORDCORE
Data records added to the container must be composed of a core structure
followed by optional application-defined data. The core structures define the

WinSendMsg(hwndCnr, CM_QUERYCNRINFO,
MPFROMP(&cnrinfo), MPFROMLONG(sizeof(CNRINFO))) ;

cnrinfo.flWindowAttr &= -(CV_ICON I CV_NAME I CV_TEXT I CV_DETAIL);
cnrinfo.flWindowAttr I= CV_NAME;
WinSendMsg(hwndCnr, CM_SETCNRINFO,

MPFROMP(&cnrinfo), MPFROMLONG(CMA_FLWINDOWATl'R));

Flgme 12.2 Modifying CNRINFO.

Container Data Structures 377

information required to represent the records in all but the DETAIL view.
Depending on the application requirements, the structure used for the core
portion of the data record may be either a RECORDCORE structure or a
MINIRECORDCORE structure.

The RECORDCORE structure allows the application to vary the represen­
tation of the data record in the various views. The structure allows both normal
and MINI mode icons and bitmaps to be defined and provides for different text
in each of the ICON, NAME, and TEXT views. The MINIRECORDCORE struc­
ture is a subset of the RECORDCORE structure. When this structure is used,
the graphic representation of the data record is limited to a normal size icon
and the same text is used in ICON, NAME, and TEXT views. Both structures
define a set of record attribute flags and the position of the record's represen­
tation in ICON view. The container determines which structure is in use based
on the setting of the CCS..MINIRECORDCORE style flag. The MINIRECORD­
CORE structure is normally used when the flexibility of the RECORDCORE
structure is not required and/or memory usage is a significant consideration.
The RECORDCORE structure is defined as shown in Figure 12.3.

• The cb element is the size of the structure in bytes, including any data
appended by the application. This value is supplied by the container control
when the record is allocated and should not be modified by the application.

• The flRecord.Attr element is a set of flag bits which specify various attributes
for the individual record such as whether the record is selected. The valid
flags are listed here:

CRA_SELECTED

CRA_TARGET

(OxOOOOOOO 1) indicates that selected state emphasis is
applied to the record.

(Ox00000002) indicates that target emphasis is applied
to the record.

typedef struct _RECORDCORE
{

ULONG cb;
ULONG flRecordAttr;
POINTL ptlicon;
struct _RECORDCORE *preccNextRecord;
PSZ pszicon;
HPOINTER hptricon;
HPOINTER hptrMiniicon;
HBITMAP hbmBitmap;
HBITMAP hbmMiniBitmap;
PTREEITEMDESC pTreeitemDesc;
PSZ pszText ;
PSZ pszName;
PSZ pszTree;

RECORDCORE;

Figure 12.3 The RECOROCDRE structure.

378 Containing Your Excitement: Making Use of the Container Control

CRA_CURSORED

CRA_INUSE

CRA-FILTERED

CRA-1>ROPONABLE

CRA_RECORDREADONLY

CRA_EXPANDED

CRA_COLLAPSED

CRA_pICKED

CRA_SOURCE

CRA_DISABLED

(Ox00000004)

(Ox00000008)

(OxOOOOOO 10)

(Ox00000020)

(Ox00000040)

(Ox00000080)

(OxOOOOOlOO)

(Ox00000200)

(Ox00004000)

(OxOOOOlOOO)

indicates that the keyboard cursor empha­
sis is applied to the record.
indicates that in-use emphasis is applied
to the record.
indicates that the record is filtered and
therefore not displayed.
indicates that the record may be the target
of a direct manipulation operation.
indicates that the record text may not be
edited.
indicates, in tree mode, that the children
of the record are displayed.
indicates, in tree mode, that the children
of the record are hidden.
indicates that picked emphasis is applied
to the record.
indicates that source menu emphasis is
applied to the record.
indicates that disabled emphasis is ap­
plied to the record.

• The ptllcon element is a PO INTL structure that contains the coordinates
at which the representation of the record is displayed in ICON view. The
location can be specified by the application or supplied by the container
when an arrange operation occurs.

• The preccNextRecord element is a pointer to the next record in a linked
list of records and is normally used by the application to access the next
record when multiple records are allocated with one CM...ALLOCRECORD
message.

• Element psz]con is a pointer to a null-terminated array of characters,
which are displayed beneath the icon that represents the record when the
container is in ICON view.

• Element hptrlcon is a pointer handle that specifies the icon to be displayed
for this record in the ICON and NAME views when the CA_DRAWICON
flag is set in element flWindowAttr of the CNRINFO structure.

• The hptrMinilcon element is a pointer handle that specifies the icon to
be displayed for this record in the ICON and NAME views when the
CA_DRAWICON and CV ..MINI flags are set in the fl.WindowAttr element of
the CNRINFO structure.

• Element hbmBitmap is a bitmap handle that specifies the bitmap to
be displayed for this record in the ICON and NAME views when the
CA-1>RAWBITMAP flag is set in the -flWindowAttr element of the CN­
RINFO structure.

Container Data Structures 379

• The hbmMiniBitmap element is a bitmap handle that specifies the bitmap
to be displayed for this record in the ICON and NAME views when the
CA_DRAWBITMAP and CV ..MINI flags are set in element flWindowAttr of
the CNRINFO structure.

• The pTreeltemDesc element is a pointer to a TREEITEMDESC structure
that is used when the container displays the NAME view in TREE mode.
The elements of this structure specify the icons and bitmaps displayed
to indicate when a record is in expanded or collapsed mode. The icons
specifications are used when the container is in ICON mode, and the
bitmaps are used when the container is in BITMAP mode. If this element
is NULL, the bitmap or icon normally used for records is used for parent
as well as child records.

• Element pszText is a pointer to a null-terminated array of characters that
are used to represent the record in TEXT view.

• The pszName element is a pointer to a null-terminated array of characters
that are displayed beside the graphical representation of the record in
NAME view.

• The pszTree element is a pointer to a null-terminated array of characters
that are displayed beside the graphical representation of the record in
TREE mode.

The TREEITEMDESC structure pointed to by element pTreeltemDesc is
defined in Figure 12 .4.

• Element hbmExpanded is the handle for the bitmap used to represent
a parent record when its children are displayed and the container's
CV-1>RAWBITMAP window attribute flag is set.

• Element hbmCollapsed is the handle for the bitmap used to represent a
parent record when its children are not displayed and the container's
CV _DRA WBITMAP window attribute flag is set.

• Element hptrExpanded is the handle for the icon used to represent a parent
record when its children are displayed and the container's CV .D RA WICO N
window attribute flag is set.

• Element hptrCollapsed is the handle for the icon used to represent a
parent record when its children are not displayed and the container's
CV_DRAWICON window attribute flag is set.

typedef struct _TREEITEMDESC
(

HBITMAP
HBITMAP
HPOINTER
HPOINTER

} TREEITEMDESC;

hbmExpanded;
hbmCollapsed;
hptrExpanded;
hptrCollapsed;

Flgul'812.4 The TREEITEMDESC structure.

380 Containing Your Excitement: Making Use of the Container Control

typedef struct _MINIRECORDCORE
{

ULONG cb;
ULONG flRecordAttr;
POINTL ptllcon;
struct _MINIRECORDCORE •preccNextRecord;
PSZ pszicon;
HPOINTER hptrlcon;

} MINIRECORDCORE;

Figure 12.5 The MINIRECORDCODE structure.

The definition of the alternate core record, the MINIRECORDCORE struc­
ture, is shown in Figure 12.5.

• The cb element indicates the length of the structure in bytes. This value is
set by the container and should not be modified by the application.

• The flRecordAttr element is a set of flag bits specifying various attributes of
the record. See the description of this element under the RECORDCORE
structure for details.

• Element ptllcon is a POINTL structure that contains the coordinates at
which the representation of the record is displayed in ICON view.

• The preccNextRecord element is a pointer to the next record in a linked list
of records.

• Element pszicon is a pointer to a null-terminated array of characters used
as the text for the record representation in the ICON, NAME, and TEXT
views.

• Element hptrlcon is a pointer handle for the icon used to represent the
record in the ICON and NAME views.

The core records must be allocated by the container on behalf of the
application. This is accomplished by sending a CM.ALLOCRECORD message
to the container. Parameter mp 1 of this message indicates the number of bytes
of application data to allocate for each record. Parameter mp2 indicates the
number of records to allocate. The return value from the message is a pointer
to the allocated record or to the first record in a linked list of records if multiple
records were requested. This pointer is NULL if an error occurred.

After the records are allocated, the application must fill in the data and
then add the record to the container by sending either CM_INSERTRECORD
or CM_INSERTRECORDARRAY messages to the container. The CM_INSERT­
RECORD message inserts a linked list of records while the CM_INSERT­
RECORDARRAY message uses an array of pointers to records. Parameter mpl
of the CM_INSERTRECORD message is a pointer to the first or only record
in the linked list. Additional records are accessed via the preccNextRecord

Contalner Data Stnlctlres 381

element of the core structure. Parameter mpl of the CM-1NSERTRECORD­
ARRAY message is a pointer to an array in which each element is a pointer
to a record structure to be inserted. The mp2 parameter of both messages is
a pointer to a RECORDINSERT structure, which describes the relationship
of the new records to records that may already exist in the container. The
definition of this structure is given in Figure 12.6.

• Element cb is the length of the structure in bytes and should be set to
sizeof(RECORDINSERT).

• The pRecordOrder element specifies the placement of the records within
the container's linked list of records. If this element is set to a pointer to a
record currently in the container's list, the new records are inserted follow­
ing this record. Setting this element to CMA..FIRST causes the record(s) to
be inserted at the beginning of the list of children of the record specified by
pRecordParent, or at the beginning of the container's list if pRecordParent
is set to NULL. Likewise, when this element is given the value CMA.END,
the record or list of records is inserted at the end of the children of pRe­
cordParent or at the end of the container's list. CAUTION: Do not confuse
CMA_END and CMA-1..AST-if this element is set to CMA-1..AST, your ap­
plication will not receive an error message; a trap will occur.

• Element pRecordParent specifies the parent record of the records to be
inserted. This field is only valid when pRecordOrder is set to CMA..FIRST
or CMA_END. This field is used to establish the record hierarchy for TREE
mode. Records inserted as children will not be visible if TREE mode is not
selected.

• Element flnvalidateRecord is used to indicate whether the container is
updated after the record or list of records is inserted. When set to TRUE, the
container display is automatically updated when the records are inserted.
When set to FALSE, the application must explicitly inform the container
to perform the update with the CMJNVALIDATE message.

• The zOrder element specifies the record's z-order position with respect to
records already inserted into the container. The value CMA_TQP places the

typedef struct _RECORDINSERT
{

ULONG cb;
PRECORDCORE pRecordOrder;
PRECORDCORE pRecordParent ;
ULONG finvalidateRecord;
ULONG zOrder ;
ULONG cRecordsinsert;

RECORDINSERT;

Figure 12.6 The RECORDINSERT structure.

382 Containing Your Excitement: Making Use of the Container Control

record(s) at the top of the z-order, and the value C~OTTOM places the
record(s) at the bottom of the z-order.

• Element cRecordslnsert specifies the number of records pointed to by the
mpl parameter.

Figure 12.7 shows a sample for inserting a container record. In this sam­
ple, the icons used to represent records are declared as global variables. The
TREEITEMDESC structure is also a preinitialized global variable. The parent
record and the text to be associated with the new record are supplied by the
application.

The function first initializes the cb element of the RECORD INSERT struc­
ture and determines the length of the text supplied by the application. The
CM...ALLOCRECORD message is then sent to obtain the record buffer from the
container. Parameter mpl is passed as the length of the text in order to obtain
enough extra storage to maintain the text in the record. This memory could
be allocated independently; however, using this method allows the container
to completely manage the storage and does not require additional memory

TREEITEMDESC tid;

PRECORDCORE AddCnrRecord(HWND hwndCnr, PSZ pszText, PRECORDCORE pPRec)
{

PRECORDCORE pRec;
RECORDINSERT ri;
ULONG cbText;

ri.cb = sizeof(RECORDINSERT);
cbText = strlen(pszText) + l;
pRec = WinSendMsg(hwndCnr, CM_ALLOCRECORD,

MPFROMLONG(cbText), MPFROMLONG(lL));
pRec->pszicon = (PSZ) (pRec + l);
strcpy(pRec->pszicon, pszText);
pRec->hptricon = hpt ricon;
pRec->hptrMiniicon = hptrMiniicon;
pRec->pTreeitemDesc = &tid;
pRec->pszText = pRec->pszName = pRec->pszTree = pRec->pszicon;
ri.pRecordOrder = (PRECORDCORE)CMA_END;
ri.pRecordParent = pPRec;
ri.finvalidateRecord = TRUE;
ri.zOrder = CMA_TOP;
ri.cRecordsinsert = l;

WinSendMsg(hwndCnr, CM_INSERTRECORD, MPFROMP(pRec), MPFROMP(&ri));
return pRec;

Figure 12.7 Adding records to a container.

Contal11r Data Structures 383

management code in the application. Note that items to which the container
record points should be either global or allocated, not a stack variable. The
container does not maintain an internal copy of the data but uses the pointer
to reference the data.

After allocation, the record structure is initialized. The psz[con element is
set to point to the text string that is copied into the record buffer. The hptrlcon
and hptrMinilcon elements are copied from the appropriate global variables,
and the pTreeltemDesc element is set to point to the global tree item description
structure. The remaining text elements are then set to point to the text string
stored in the record buffer.

The RECORD INSERT structure is then initialized. The pRecordOrder ele­
ment is set to CMA_END, forcing the record to the end of its parent's children
or to the end of the container. The pRecordParent element is set to the parent
record pointer provided by the application. Element ff nvalidateRecord is set to
TRUE to cause a repaint after the record is inserted, allowing the user to see
the progress of the container being filled. The setting of this element during
initial loading will depend on the application. In some instances, repainting
will cause significant performance degradation and should be postponed until
after the container is completely filled. The zOrder element is set to place the
new record at the top of the z-order, and cRecordslnsert is set to the number
of records being inserted-one. A CM_INSERTRECORD message is then sent
to the container to add the record into the container's contents. The pointer to
the record is then returned to the application.

The CM..REMOVERECORD message is used to delete a record from the
container's list. Parameter mpl is a pointer to an array of pointers to one
or more record structures to remove from the container's list of records. If a
parent record is specified in the array, its children are also removed. Parameter
mp2 is composed of two 16-bit values. The low-order 16 bits specify the number
of elements in the array pointed to by mpl ; in other words, the number of
records to be removed. If this value is set to zero, parameter mpl is ignored
and all records are removed. The high-order 16 bits contain the following two
flags:

CMA...FREE OxOOO 1 causes the records to be free after removal.

CMA_INV ALI DATE Ox0002 causes the container to be redrawn after the operation.

If the CMA_FREE flag is not set when records are removed from the
container, the message CM_FREERECORD must be sent to the container to
deallocate the memory associated with the records. Parameter mpl is a pointer
to an array of pointers to the records that are to be freed. The low-order 16 bits
of mp2 contain the number of records to be deallocated. NOTE: The application
is responsible for deallocating memory that is referenced by pointers in the
record structure.

384 Con1alnlng Your Excitement: Making Use ol the Conlalner Control

FIELDINFO
The FIELDINFO structure is only required when the application displays the
container's DETAIL view. The structure describes the content and format of
the data displayed in each column. The definition of this structure is shown in
Figure 12.8.

• Element cb specifies the length of the structl.~re in bytes. Thi~ el~ment is
filled by the container and should not be mo~ified ~y the application:

• The flData element is a set of flags that specify attnbutes to be apphed to
the column data. The valid flags are listed here:

• CFA-BITMAPORICON specifies that the data in the column is a bitmap
or an icon.

• CFA_STRING specifies that the column data is a pointer to a zero­
terminated array of characters.

• CFA_ULONG specifies that the column data is an unsigned long integer.
• CFA_DATE specifies that the column data is a date in the form of a

COATE structure.
• CFA_TIME specifies that the column data is a time in the form of a

CTIME structure.
• CFA..HORZSEPARATOR, if set, indicates that a line is drawn between

the column heading and the column data.
• CFA_SEPARATOR, if set, indicates that this column and the next should

be separated by a vertical line.
• CFA_OWNER. if set, specifies that the data is OWNERDRAWN. A

WM_DRAWITEM message is sent to the owner whenever the column
data requires repainting.

• CFAJNVISIBLE, if set, specifies that the column is hidden.
• CFA..READONLY indicates that the column data cannot be edited. This

flag is only used if the CFA_STRING flag is set. Other data types are
read-only by definition.

typedef struct _FIELDINFO
{

ULONG cb;
ULONG flData;
ULONG fl Title;
PVOID pTitleData ;
ULONG offStruct;
PVOID pUserData;
struct _FIELDINFO *pNextFieldinfo;
ULONG cxWidth;

} FIELDINFO;

Flgn 12.8 The FIELDINFO structure.

Colltalner Data Stnlcblres 385

• CFA_TQP indicates that the column data is drawn at the top of the
vertical area reserved for displaying the data record.

• Cf A-BOTTOM indicates that the column data is drawn at the bottom
of the vertical area reserved for displaying the data record.

• CFA_VCENTER indicates that the column data is drawn in the center
of the vertical area reserved for displaying the data record.

• CFA_CENTER indicates that the column data is drawn in the center of
the horizontal area reserved for the column data.

• CFA_LEFT indicates that the column data is drawn at the left of the
area reserved for displaying the column data.

• CFA_RIGHT indicates that the column data is drawn at the right of the
area reserved for displaying the column data.

• The flTitle element is a set of flags that specify attributes to be applied to
the title for the column. The valid flags are listed here:

• CFA-BITMAPORICON specifies that the title is a bitmap or an icon.
• CFA_TITLEREADONLY indicates that the title data cannot be edited.
• CFATOP indicates that the title is drawn at the top of the vertical area

reserved for displaying the column titles.
• CFA-BOTTOM indicates that the title is drawn at the bottom of the

vertical area reserved for displaying the column titles.
• CFA_ VCENTER indicates that the title is drawn in the center of the

vertical area reserved for displaying the column titles.
• CFA_CENTER indicates that the title is drawn in the center of the

horizontal area reserved for the column.
• CFA_LEFf indicates that the title is drawn at the left of the area re­

served for displaying the column.
• CFA_RIGHT indicates that the title data is drawn at the right of the

area reserved for displaying the column.
• The pTitleData element contains the data to be displayed in the title area

of the column. If the CFA_BITMAPORICON flag is set in flTitle, then this
element should contain a handle to a bitmap if the CA_DRAWBITMAP flag
is set in the flWtndowAttr element of the CNRINFO structure, or a handle
to an icon if the CA_DRAWICON flag is set in the flWindowAttr element of
the CNRINFO structure. If CFA_BITMAPORICON is not set, this element
should contain a pointer to a null-terminated string to be displayed as the
column heading.

• Element of{Struct specifies the offset into the data record at which
the data may be found. The offset may be within the RECORDCORE
or MINIRECORDCORE structure of the data record or within the
application-defined area appended to the core structures.

• ElementpUserData is a 4-byte data area reserved for use by the application.
• The pNextFieldlnfo element is a pointer to the next FIELDINFO structure

in a linked list of structures.

386 Containing Your Excitement: Making Use of the Container Control

• The cxWidth element specifies the width of the column. If this field is set
to zero, the column dynamically changes size to match the width of the
widest data.

As with the RECORDCORE structures, several messages are provided
for the application to allocate and manage FIELDINFO structures. The
CM.ALLOCDETAILFIELDINFO message is used to allocate FIELDINFO
structures. CM-1NSERTDETAILFIELDINFO is used to place FIELDINFO
structures into the container's active list. Message CM..REMOVEDETAIL­
FIELDINFO is used to remove structures from the container's active list,
and CM_FREEDETAILFIELDINFO is used to deallocate FIELDINFO struc­
tures. CM.INVALIDATEFIELDINFO is used to repaint the container view
when a FIELDINFO structure has been inserted, modified, or removed; and
CM.QUERYDETAILFIELDINFO is used to scan the container's list of active
FIELDINFO structures.

Message CM.ALLOCDETAILFIELDINFO is sent to the container to allo­
cate a list of one or more FIELDINFO structures. The low-order 16 bits of
parameter mp 1 should contain an unsigned integer indicating the number of
FIELD INFO structures to be allocated. Parameter mp2 is reserved and should
be set to zero. The container's response to the message is either zero, indi­
cating that an error occurred, or a pointer to the first FIELDINFO structure
in the list of allocated structures. The additional structures are linked via the
pNextFieldlnfo element of the structure.

Once the application has allocated and filled the FIELDINFO structure(s),
message CM-1NSERTDETAILFIELDINFO is sent to the container to add the
structure(s) to the container's active list. Parameter mpl is a pointer to the
FIELDINFO structure to be inserted or to the first in a list of FIELDINFO
structures when more than one is being inserted. Parameter mp2 is a pointer
to a FIELDINFOINSERT structure that describes where the insertion is to
occur. The elements of this structure are given in Figure 12.9.

• The cb element specifies the length of the structure in bytes.
• Element pField/nfoOrder specifies where the insertion occurs. Setting this

field to CMA_FIRST causes the structure(s) to be inserted at the beginning

typedef s t ruct _FIELDINFOINSERT
{

ULONG cb;
PFIELDINFO pFieldinfoOrder;
ULONG finvalidateFieldinfo;
ULONG cFieldinfoinsert ;

FIELDINFOINSERT;

Figure 12.9 The FIELDINFOINSERT structure.

Container Data Structuras 387

of the container's list of FIELDINFO structures so that the columns are
displayed at the left of the container. If this element is set to CMA..END,
the structure(s) is/are inserted at the end of the container's list and the
columns are displayed at the right of the container. When this element is
filled with a pointer to a FIELDINFO structure that is currently in the
container's list, the new structure(s) is/are inserted into the list following
this structure.

• The flnvalidateField/nfo is a flag that, when set to TRUE, causes the con­
tainer to be refreshed following the insertion. If this flag is set to FALSE,
then the CM.INVALIDATEDETAILFIELDINFO message must be sent to
the container to force the refresh and display the new columns.

• Element cField/nfolnsert is a 32-bit unsigned integer that specifies the
number of structures in the list to which parameter mpl points.

Figure 12.10 is an example of the code required to allocate and insert a
FIELDINFO structure into the container's active list. As the example shows,
filling the FIELDINFO structures can be- and usually is-a tedious process
since most of the effort involves assigning constant values to the various el­
ements of the structure. The programming burden can be eased somewhat
by predefining FIELDINFO structures in the application's data area and then
copying the predefined structures into those allocated by the container. Be
careful when using this method to preserve the cb and pNextField/nfo ele­
ments of the structures provided by the container.

Message CM.REMOVEDETAILFIELDINFO is sent to the container to re­
move FIELDINFO structures from the container's active list. The mpl pa­
rameter for this message is a pointer to an array of one or more pointers to
FIELDINFO structures to be removed. Parameter mp2 is composed of two
16-bit fields. The low-order 16 bits are an unsigned integer identifying the
number of pointers in the array pointed to by mpl. If set to zero, all FIELD­
INFO structures are removed from the container's list and parameter mp 1
is ignored. The high-order 16 bits contain two flags that affect the removal
process; flag CMA_FREE causes the FIELDINFO structures to be freed after
they are removed; flag CMA.INV ALI DATE causes the container to refreshed
following the remove operation. The container's response to this message is
the number of structures actually removed from the list. If the response is zero,
then an error occurred and no structures were removed.

The CM.FREEDETAILFIELDINFO tells the container to deallocate one
or more FIELDINFO structures. Parameter mpl is a pointer to an array of
pointers to the FIELDINFO structures to be deallocated. Parameter mp2 is
the number of structures that are to be deallocated. Note that if a structure
still resides in the container's active list, an error response is returned and the
structure is not deallocated. The container's response to this message is the
number of structures that were deallocated, or zero if an error occurred.

388 Containing Your Excitement: Making Use of the Container Control

typedef struct {
RECORDCORE core ;
struct {

char *psz;
} data;

} APP_REC;
void AddColumn() {

PFIELDINFO
PFIELDINFO
PFIELDINFO
FIELDINFOINSERT

pFieldinfo = NULL;
pField = NULL;
pFieldNext ;
fii;

pFieldinfo = WinSendMsg(hwndCnr, CM_ALLOCDETAILFIELDINFO,
MPFROMSHORT(N_FIELDS) ,
MPFROMLONG(01)) ;

if (pFieldinfo != (PFIELDINFO)NULL) {
pFi eld = pFieldinfo;
pFi eld->fl Data = CFA_STRING I CFA_HORZSEPARATOR I CFA_SEPARATOR;
pField->flTitle = CFA_FITITLEREADONLY;
pField->pTitleData =•column 1• ;
pField->offStruct = (ULONG)FIELDOFFSET(APP_REC, data .psz) ;
pField->cxWidth = O;

pField = pField->pNextFieldinfo;
fii.cb = sizeof(FIELDINFOINSERT);
fii.pFieldinfoOrder = (PFIELDINFO)CMA_FIRST;
fii.finvalidateFieldinfo =TRUE;
fii.cFieldinfoinsert = N_FIELDS;

WinSendMsg(hwndCnr , CM_INSERTDETAILFIELDINFO, pFieldinfo, &fi i);
I* endif */

Figure 12.10 Defining detail view columns.

Message CM_INVALIDATEDETAILFIELDINFO causes the container to
be refreshed. Both mpl and mp2 should be set to zero when this message
is sent. While CM_INVALIDATEDETAILFIELDINFO is normally sent when a
FIELD INFO structure is inserted, removed, or modified, it may be sent at any
time to force a refresh of the container's display.

The application uses the CM_QUERYDETAILFIELDINFO to traverse the
container's linked list. Parameter mpl is a pointer to a FIELDINFO structure.
Parameter mp2 is a value that specifies the traversal action to perform. Valid
values for mpl are:

CMA_FIRST OxOOIO returns a pointer to the first FIELDINFO structure in the con­
tainer's list. mpl is ignored.

Creating Containers 389

CMA-1.AST Ox0020 returns a pointer to the last FIELD INFO structure in the container's
list. mpl is ignored.

CMA_NEXT OxO 100 returns a pointer to the FIELD INFO structure following the FIELD­
INFO structure pointed to by mpl .

CMA_pREv Ox0080 returns a pointer to the FIELDINFO structure preceding the
FIELD INFO structure pointed to by mp I.

The container's response to this message is a pointer to a FIELDINFO
structure if no errors occurred, a NULL pointer if no structure was available
(for example, when specifying a pointer to the last structure in the list and
CMA_NEXT), or a negative one (Oxffffffft) if an error occurred.

CREATING CONTAINERS

As usual, the container control may be included as an item in a dialog template.
The control may also be created using the WinCreateWindow API. In either
case, the only control-specific information required is the setting of the window
style. The container control defines the following styles:

CCS..AUTOPOSITION Ox0008

CCS..MINIRECORDCORE Ox0040

CCS..READONLY Ox0020

CCS_ VERIFYPOINTERS OxOOlO

specifies that objects displayed in the ICON view
will be automatically positioned by the container
when required; for example, when objects are in­
serted or deleted or when the size of the window
changes. If this attribute is not set, the application
must provide the positioning either by setting the
pt/Icon element of the record structure or by issuing
the CM.ARRANGE message.
specifies that objects added to the container are
represented with the MINIRECORDCORE structure
rather than the RECORDCORE structure.
specifies that none of the text fields in the container
may be edited. Additional field-specific flags are
available to specify read-only status for the individ­
ual parts of the container. These are contained in the
various field-specific structures.
specifies that the container should check all point­
ers provided by the application to ensure that they
have been added to the container's internal linked
list. This attribute should normally be used only dur­
ing development and then removed from the final
product.

390 Containing Your Excitement: Making Use of the Container Control

ccs_SINGLESEL

ccs_EXTENDEDSEL

CCS_MULTIPLESEL

Ox0004 forces one and only one container object to be se­
lected. This is the default value if none of the selection
attributes is explicitly set.

OxOOOl forces at least one container object to be selected, but
allows multiple objects to be selected.

Ox0002 allows no objects or multiple objects to be selected.

While an initialized CNRINFO structure may be passed as a parameter
when creating a container control, the normal practice is to pass a NULL
pointer, allowing the container to establish default values, and then modify
specific elements using the procedures outlined earlier in the section dealing
with the CNRINFO data structure.

Figure 12.11 shows how an application might create the container con­
trol and then modify the CNRINFO structure to display bitmaps, the NAME
view, and a title. WinCreateWindow is called to create a window of class
wc_coNTAINER. Since this window does not support window text, the psz­
Name parameter is set to NULL. The flStyle parameter indicates that the
control will be visible and will automatically handle positioning of the data
record representation in ICON view. After the window has been created,
CM_QUERYCNRINFO is sent to obtain the default CNRINFO structure. The
flWindowAttr element is masked to remove the undesired view attributes and
the CA__DRAWICON attribute. Attributes for displaying NAME view, bitmaps,
and a title are then set. The pszCnrTitle element is set to point to the text to dis­
play as the container title. Note that like pointers in the data records, the text

hwndCnr = WinCreateWindow(hwnd,
WC_ CONTAINER,
NULL,
CCS_AUTOPOSITION WS_VISIBLE
x, y, ex, cy,
hwnd,
HWND_TOP,
CID_REGISTER,
NULL,
NULL);

WinSendMsg(hwndCnr, CM_QUERYCNRINFO,
MPFROMP(&cnrinfo), MPFROMLONG(sizeof (CNRI NFO})};

cnrinfo.flWindowAttr &= -(CV_ICON I CV_TEXT I CV_DETAIL);
cnrinfo.flWindowAttr &= -CA_DRAWICON;
cnrinfo.flWindowAttr I= CV_NAME I CA_DRAWBITMAP I CA_CONTAINERTITLE;
cnrinfo.pszCnrTitle = 'Title Text•;
WinSendMsg(hwndCnr, CM_SETCNRINFO,

MPFROMP(&cnrinfo), MPFROMLONG(CMA_FLWINDOWATTR));

Figure 12.11 Creating a container control.

Processing User Input 391

pointed to by pszCnrTitle, should be in a constant area like allocated memory,
a global variable, or a constant. The CNRINFO structure is then passed back
to the container with the CM_SETCNRINFO message with parameter mp2 set
to update the internal copy of the flWindowAttr element and the pointer for the
title text.

LOADING CONTAINER DATA

After creating the container, the application will normally fill the container
with data records. Figure 12.7 showed a basic function for allocating and
inserting data records that is completely adequate for many applications. When
designing the portion of the application that utilizes this code, the programmer
should be aware of the time required to load the container. In most instances,
the data for the records must be read from a file or other device and then
inserted into the container. In cases of even a few records, this type of operation
will normally require more time than allowed for processing a single message.
The programmer should consider the methods described in Chapter 6 and/or
posting a message to the application window for loading each container record.
This will allow the system to remain responsive even when loading large
numbers of records. If the application uses the DETAIL view, the FIELDINFO
structures must also be inserted into the container. The code required for this
function was shown in Figure 12.10.

PROCESSING USER INPUT

Once the container has been created and loaded with data, the application must
respond to the user's interactions with the control. These interactions include
selecting records, editing text, requesting menus, expanding and collapsing
parent items in TREE mode, scrolling, and direct manipulation. This section
will examine how the application is notified of these interactions and some
typical responses.

Record Emphasis
Emphasis is the graphical effect that the container uses to indicate the state
of a particular record to the user. The container provides emphasis for many
states of the record; for example, the change of graphic that occurs when
a record is expanded or collapsed in TREE mode is a form of emphasis, as
are the borders and underlines that accompany an object being dragged over
container items. Emphasis is also available to show when an object has been
added to a direct manipulation pickup set, when an object is in use, or when an
object is affected by a popup menu. The container also automatically provides

392 Containing Your Excitement: Making Use of the Container Control

emphasis to indicate which record or records have been selected and which
record is the current target of keyboard interaction.

Except for changes in the direct manipulation and expanded/collapsed em­
phasis, the container sends a WM_CONTROL message with the CN..EMPHASIS
notification whenever a record's emphasis changes. Applications normally use
this message to handle any processing required when a record is selected or
when the keyboard cursor moves to a different record, though processing can
also be included for other types of emphasis. Parameter mp2 of the message
is a pointer to a NOTIFYRECORDEMPHASIS structure that indicates the
record and type or types of emphasis that changed. This structure is defined
in Figure 12.12.

• Element hwndCnr is the handle of the container window sending the mes­
sage.

• The pRecord element is a pointer to the record whose emphasis has
changed.

• The fEmphasisMask element contains flags that indicate which emphasis
attributes have changed. The defined flags are:

CRA_CURSORED (Ox0004) changes when a record gains or loses the keyboard focus.

CRA_SELECTED (OxOOO 1) changes when a record is selected or deselected.
CRA_INUSE (Ox0008) changes when the application modifies the in-use em-

CRA_SOURCE

CRA_pICKED

phasis, typically when processing of a record begins or
ends.

(Ox4000) changes when the application modifies the source em­
phasis, typically when a popup menu is displayed or
hidden.

(Ox0200) changes when the application modifies the picked-up
emphasis, typically in response to a WM_pICKUP mes­
sage or when a pickup-and-drop operation is completed
or cancelled.

Note that the fEmphasisMask settings indicate which emphasis attributes
have changed, not the current state of the attribute. The attribute state must be
examined via the flRecordAttr element of the record. To ensure that the current
attributes are reflected in this element when records have been inserted into

typedef struct _NOTIFYRECORDEMPHASIS
{

HWND hwndCnr;
PRECORDCORE pRecord;
ULONG fEmphasisMask;

} NOTIFYRECORDEMPHASIS;

Fl1ure 12.12 NOTIFYRECORDEMPHASIS structure.

Precessing User Input 393

case CN_EMPHASIS:
{

PNOTIFYRECORDEMPHASIS pEmphasis = (PNOTIFYRECORDEMPHASIS)ll'p2;

WinSendMsg(pErnphasis->hwndCnr, CM_QUERYRECORDINFO,
MPFROMP(&(pErnphasis->pRecord)}, MPFROMSHORT(l});

/* If this record is selected - save i t */
if (pEmphasis->fEmphasisMask & CRA_SELECTED &&

pEmphasis->pRecord->flRecordAttr & CRA_SELECTED) {
WinSetWindowPtr(hwnd,WP_SELRECORD, (PVOID} (pEmphasis->pRecord) };

} / * endif */

break;

Figure 12.13 CN..EMPHASIS processing.

multiple containers, the application must send a CN_QUERYRECORDINFO
message to the container window to allow it to update the state of the record
accessible by the application. Parameter mp 1 of this message is a pointer
to an array of pointers to records, and the low-order 16 bits of parameter
mp2 indicate the number of records in the array. Figure 12.13 shows how an
application might process the CN_EMPHASIS notification to handle changes
in the selection state.

This figure shows the case statement for the CN_EMPHASIS notification
code of the WM_CONTROL message. A pointer to the NOTIFYRECORD­
EMPHASIS structure is obtained from the message's mp2 parameter. Then
the record attributes are updated with the CM_QUERYRECORDINFO mes­
sage. Parameter mpt of this message is set to a pointer to the pointer to the
record in the NOTIFYRECORDEMPHASIS structure to simulate a pointer to
an array of pointers. After the record has been updated, fEmphasisMask is
checked to see if the selection state has changed, and flRecordAttr is checked
to see if the state has been set. If so, a pointer to the record is stored in the
instance data for the container's owner window. Note from this example that
the application always has access to the record data once it has been allocated.
Inserting the record into a container does not remove the application's access
to the data. Changes in the other emphasis states may be processed in the same
manner.

The application may also defer its processing of the emphasis states un­
til some other event such as an OK button click occurs. The application can
then determine which record or records is set to a particular state by sending
a CM_QUERYRECORDEMPHASIS message to the container. This message
causes the container to scan its records until a record with the desired empha­
sis has been found. Parameter mp 1 of the message is a pointer to the record
after which the search is to begin. This parameter may be set to CMA_FIRST
to begin the search with the first record in the container. Parameter mp2 is a
set of flags that indicate the emphasis state or states that constitute a match.

394 Containing Your Excitement: Making Use of the Container Control

The return value from the message is NULL if no records satisfy the search
criteria, or a pointer to the next record in the container that does match the
criteria, or (Oxffffffff) if an error occurred.

While the container is generally allowed to automatically handle the selec­
tion and keyboard cursor attributes, the in-use, source, and picked attributes
must be established by the application. These emphasis attributes are changed
by sending a CM_SETRECORDEMPHASIS message to the container. Param­
eter mpl of this message is a pointer to the record whose emphasis attributes
are to be changed. The low-order 16 bits of parameter mp2 are set to TRUE
if the attributes are to be set or to FALSE if the attributes are to be cleared.
The high-order 16 bits of mp2 indicate which attribute to modify. An example
that manages the CMA_SOURCE attribute is shown in the upcoming section
on processing context menus.

Field Editing
Another important feature of the container control is the user's ability to edit
text fields displayed within the container. However, this capability relies on
the application to process the edited data; if the application does not update
the data pointed to by the record, then no modification occurs. In order to
accomplish useful editing, the application must respond to three notification
messages from the container.

Message CN_BEGINEDIT informs the application that the user has started
to edit a field. When this message is received, the application should no longer
send any message to the container window until a CN..ENDEDIT message
has been received. Receipt of any other messages may cause unpredictable
results. Parameter mp2 of the CN..BEGINEDIT message is a pointer to a
CNREDITDATA structure.

The CN_REALLOCPSZ notification message is sent to the application when
the edit operation has been completed, but before the text has been copied back
to the memory area pointed to by the RECORDCORE structure. This message
allows the application to allocate sufficient space to hold the edited version of
the text and modify the pointer in the record if necessary. Again, a pointer to
a CNREDITDATA structure is passed to the application as parameter mp2 of
the message.

The CN _END ED IT notification indicates that direct editing of the container
text has ended and that the application can once again send messages to
the container. Parameter mp2 is once again a pointer to a CNREDITDATA
structure.

Container text editing is normally triggered by a user mouse click, but
the application can also programmatically control the editing feature. The ap­
plication starts an edit operation by sending a CM_OPENEDIT message to the
container and terminates the edit operation by sending a CM_CLOSEEDIT
message. Parameter mpl of the CM OPENEDIT message is pointer to a

Processing User Input 395

CNREDITDATA structure; parameter mp2 is reserved and must be set to zero.
Both parameters of the CM_CLOSEEDIT message are reserved and should be
set to zero.

The CNREDITDATA structure used by all of these messages is defined in
Figure 12.14.

• The cb element is the length of the structure in bytes and should be set to
sizeof(CNRED ITDATA).

• Element hwndCnr is the window handle of the container window that
contains the text field.

• Element pRecord is a pointer to the record containing the edited field.
• The pFieldlnfo element is a pointer to the FIELDINFO structure for the

edited column. This field is only used when the container is in DETAIL
view and the container title is not being edited. Otherwise the element
should be set to NULL.

• Element ppszText is a pointer to a pointer to the text string being edited.
This element is not used for the CM_OPENEDIT message and should be
set to NULL.

• The cbText element is the number of bytes in the new text string for the
CN..REALLOCPSZ and CN..ENDEDIT messages. Otherwise, this element
should be set to zero.

• The id element is the window ID of the container subwindow that contains
the text. This element may be one of the following values:

CID_CNRTITLEWND
CID.LEFTDVWND
CID_RJGHTDVWND
CID.LEFTCOLTITLEWND
CID..RIGHTCOLTITLEWND

(Ox7ff5) for the container title window.
(Ox7ff7) for the left DETAIL view data window.
(Ox7ff8) for the right DETAIL view data window.
(Ox7ff0) for the left DETAIL view column title window.
(Ox7ffl) for the right DETAIL view column title win-

dow.

Other values indicate that the window is the container window itself.

typedef struct _CNREDITDATA
{

UL ONG
HWND
PRECORDCORE
PFIELDINFO
PSZ
ULONG
ULONG

CNREDITDATA;

ch;
hwndCnr;
pRecord;
pFieldinfo;
*ppszText;
cbText;
id;

Figure 12.14 The CNREDITDATA structure.

396 Containing Your Excitement: Making Use of the Container Control

case CN_BEGINEDIT:
flnEdit = TRUE;
break;

case CN_REALLOCPSZ:
{

PCNREDITDATA peed= (PCNREDITDATA)PVOIDFROMMP(mp2);
PSZ newpsz = NULL;

free(*(pced->ppszText));
newpsz = (PSZ)malloc (pced->cbText);
*(pced->ppszText) = newpsz ;
return MRFROMLONG(TRUE);

case CN_ENDEDIT:
finEdit = FALSE;
break;

figure 12.15 Editing container text.

Figure 12.15 shows how an application might process an edit operation
involving the container text. The CN..BEGINEDIT message processing merely
sets a flag that informs the application that an edit operation is in progress.
The application should not receive additional messages from the container
until the edit operation is complete, but this flag should be checked prior to
sending messages to the container during the processing of keyboard, mouse,
or other events that might otherwise require sending messages to the container.
The processing for the CN..REALLOCPSZ notification first frees the existing
text buffer and then allocates a new buffer. The address of the new buffer is
then stored back into the CNREDITDATA structure, and TRUE is returned to
indicate that the container should copy the edited text back to the new buffer.
Finally, the CN_ENDEDIT processing clears the flag that indicates that an edit
is in progress.

Context Menus
The container provides support for handling the WM_CONTEXTMENU mes­
sage in order to allow the application to pop up a context-sensitive menu.
When the context menu mouse click or keyboard key is received, PM sends
a WM_CQNTEXTMENU message to the window over which the mouse click
occurred or to the window that has the keyboard focus. If this window is a con­
tainer control. a WM_CONTROL message containing the CN_CONTEXTMENU
notification code is sent to the container's owner. Parameter mp2 of the
WM_CONTROL message is a pointer to the record that either has cursored
emphasis when the WM_CONTEXTMENU is sent as the result of a keyboard
event, or that the mouse pointer is over when the WM_CONTEXTMENU is

Processing User Input 397

sent as the result of a mouse event. If the mouse pointer is not over an object,
the pointer value is NULL.

Figure 12.16 provides an example of how an application can process the
CN_CONTEXTMENU notification to raise a popup menu. Note that an appli­
cation can display a menu related to the container as a whole if the menu
is requested by clicking the mouse over the container's white space. In this
example, however, a menu is only displayed if the request is related to a data
record. Thus the application first checks mp2 to ensure that a data record
pointer was received. If so, the application saves the pointer to the record in
its window instance data for later use. A message is then sent to set the source
emphasis on the record. Then, if not already available, the menu is loaded from
the application's resources. Next, the current position of the mouse pointer is
obtained and converted to the coordinates of the current window. The menu
is then raised at the location of the pointer.

Once the menu is raised, the application will later receive a
WM...MENUEND message. If the menu window handle passed with this
message matches the menu window handle for the popup menu, the source
emphasis for the record should be removed. If the user actually selected one
of the menu items, a WM-COMMAND message will then be received with the
menu identifier of the selected menu item. In the example, the WM_COMMAND

case CN_CONTEXTMENU:
{

PRECORDCORE
HWND

prec = (PRECORDCORE)mp2;
hwndMenu;

PO INTL pt;

if (prec != (PRECORDCORE)NULL) {
WinSetWindowPtr(hwnd, WP_MENURECORD, (PVOID)prec);
WinSendMsg(WinWindowFromID(hwnd,SHORTlFROMMP(mpl)),

CM_SETRECORDEMPHASIS, MPFROMP(mp2),
MPFROM2SHORT{ TRUE, CRA_SOURCE));

hwndMenu = (HWND)WinQueryWindowULong(hwnd, WL_MENUHWND);
if (hwndMenu == NULLHANDLE) {

hwndMenu = WinLoadMenu (hwnd, NULLHANDLE, MID_POPUP) ;
WinSetWindowULong(hwnd, WL_MENUHWND, hwndMenu) ;

} /* endif */
WinQueryPointerPos(HWND_DESKTOP, &pt);
WinMapWindowPoints(HWND_DESKTOP, hwnd, &pt, 1);
WinPopupMenu(hwnd, hwnd, hwndMenu, pt.x, pt.y, O,

PU_KEYBOARD J PU_MOUSEBUTTONl) ;
/* endif */

}
break;

Figure 12.16 Raising a context menu.

398 Containing Your Excitement: Making Use ot the Container Control

TREE Mode

Scrolling

processing would take action on the data record stored in the window instance
data. Other applications might use the CM_QUERYRECORDEMPHASIS mes­
sage to perform some action on all selected records.

When the container is displaying the TREE mode, notifications are sent to the
application whenever the user expands or collapses items in the tree, allowing
the application to take any necessary action. These noti~cati~ns are se.nt to
the application via the WM_CONTROL message. The notification code is set
to CN_COLLAPSETREE when a record is collapsed or to CN_EXPANDTREE
when a record is expanded. The mp2 parameter is a pointer to the affected
data record.

The application may also programmatically expand and collapse recor~s
by sending messages to the container. The CM_COLLAPSETREE message is
used to hide the children of a record, and the CM..EXPANDTREE message
is used to display a record's children. Parameter mp2 of these messages is
a pointer to the parent record that is to be expanded or collapsed. If set to
NULL, all parent records are set to the desired state.

The container control automatically handles the window operations needed
to scroll through the set of data records inserted into the container. However,
in cases where there are more records than can be reasonably added to the
container record simultaneously, the container sends a WM_CQNTROL mes­
sage with notification code CN_QUERYDELTA to allow the application to add
records to the end of the container near the currently displayed data and re­
move records from the opposite end of the container's list. Parameter mp2
of this message is a pointer to a NOTIFYDELTA structure. This structure is
defined in Figure 12 .1 7.

• The hwndCnr element is the handle of the affected container window.
• The (Delta element indicates the type of scrolling operation and where new

records should be inserted. The valid flags are:

typedef struct _NOTIFYDELTA
{

HWND hwndCnr;
ULONG fDelta;

) NOTIFYDELTA;

Figure 12.17 The NOTIFYSCROLL structure.

Processl1g User lnpllt 399

CMA..DELTATOP (OxOOOl) indicates that records should be added at the beginning of
the current container list.

CMA..DELTABOT (Ox0002) indicates that records should be added at the end of the

CMA..DELTAHOME (Ox0004)

CMA..DELTAEND (Ox0008)

Drag and Drop

current container list.
indicates that the container has been scrolled to the home
position and that records should be added such that the
first record is visible.
indicates that the container has been scrolled to the end
position of the container and that records should be added
such that the last record is visible.

The container provides full support for direct manipulation operations by
intercepting the messages associated with the initiation of the operation and
the manipulation of objects and sending these messages to the application in
the form of WM_CONTROL notifications.

The WM_plCKUP and WMJNITDRAG messages are reflected in the
CN_pICKUP and CN_INITDRAG notifications. Parameter mp2 of the WM_CON­
TROL message containing these notification codes contains a pointer to a
CNRINITDRAG data structure. This structure is defined in Figure 12.1 B.

• The hwndCnr element is the handle of the container window that received
the direct manipulation initiation message.

• Element pRecord is a pointer to the record associated with the direct
manipulation operation. If NULL, the operation was initiated with the
mouse over a white space area of the container.

• The x and y elements provide the coordinates of the mouse pointer at the
time the operation was initiated.

• Element ex and cy provide the offset from the mouse pointer to the origin
of the representation of the record.

t ypedef struct _CNRDRAGINIT
{

HWND hwndCnr ;
PRECORDCORE pRecord;
LONG x;
LONG y;
LONG ex;
LONG cy;

CNRDRAGINIT;

Figure 12.18 The CNRINITDRAG structure.

400 Containing Your Excitement: Making Use of the Container Control

typedef struct _CNRDRAGINFO
{

PDRAGINFO pDraginfo;
PRECORDCORE pRecord;

} CNRDRAGINFO;

Figure 12.19 The CNRDRAGINFO structure.

The DM_DRAGLEAVE and DM..DRAGHELP messages are sent
as notification codes CN..DRAGLEAVE and CN_DRAGHELP. The
DM..DRAGOVER message may be reflected as either a CN..DRAGAFI'ER
or CN_DRAGOVER notification. The CN..DRAGAFI'ER notification is sent
when the drop point is placed between two records. The CN..DRAGOVER
message is sent when the drop point is placed on a record. The placement of
the drop point depends on the target emphasis attribute in the flWindowAttr
element of the CNRINFO structure. The container sends the CN..DROP notifi­
cation when the DM..DROP message is received. The mpl parameter of these
WM_CONTROL messages is a pointer to a CNRDRAGINFO structure which
is defined in Figure 12 .19.

• The pDraglnfo element is a pointer to the DRAGINFO structure for the
operation.

• The pRecord element is a pointer to the affected record. This element is set
to NULL for the CN..DRAGLEAVE notification and to the record preceding
the insertion point for the CN_DRAGAFI'ER notification.

For complete information on direct manipulation programming, see Chap­
ter 7.

SUMMARY

The container control is a powerful tool for displaying and manipulating sets of
objects that may be defined as data records. Since much of the data processed
by computer programs falls into this category, the container control is finding
wide acceptance as new applications are developed. In fact, the rich set of
display modes and the functionality provided by the control make it destined
to be one of the most prevalent classes used in PM programming. Become
familiar with this control and, in many cases, the PM portion of application
development will be greatly simplified.

CHAPTER

What's New with OS/2:
Getting a Look at the
Multimedia Controls

The Multimedia Presentation Manager, or MMPM, code and tools were
originally a separate add-on product for OS/2, but with the release of
Version 2.1, though still separate, the MMPM code was shipped with the

OS/2 product and the development tools were added to the OS/2 Developer's
Toolkit. With OS/2 WARP. the MMPM code has been completely integrated into
the operating system code and the development tools are an integral part of
the toolkit.

The MMPM components can now be used with confidence by developers;
they provide features that can often be quite beneficial. The graphic button
control provides the functionality of a pushbutton with significantly enhanced
visual features, including animation. Secondary windows provide the conve­
nience of dialog boxes in addition to the freedom of normal frame windows.
and secondary message boxes (as provided by MMPM or the WlnMessageBox2
API) provide a more flexible presentation of information to the user than the
original message box.

GRAPHIC BUTIONS

The graphic button control was originally designed for use in windows that
serve as control panels for multimedia devices and is thus particularly well
suited to this type of functionality. Since the controls for most audio and

401

402 What's New with OS/2: Getting a Look at the Multimedia Controls

video devices in the real world use symbols to indicate the functionality of
their controls, application designers needed to emulate these symbols on the
computerized controls for these devices. The graphic pu~hb~tton allo~s both
text and graphical symbols to be displayed; thus an apphcat1on can display a
fast forward button with the commonly recognized double arrow symbol and,
if desired, also display text, such as FF or Fast Forward, both of which indicate
the functionality of the button.

The buttons used by most real-world devices also provide several types
of functionality that the graphic button has been designed to emulate. A Play
button, for example, usually starts the device when pushed and then does
nothing until the device is stopped. A Pause button, on the o~er hand, togg~es
between pausing the action of the device and starting the action of the device
each time it is depressed. A third type of button, such as a Cue button, cau~es
the device to play only while the button is depressed and stops the _dev.ice
when the button is released. The graphic button control allows an apphcat1on
to easily emulate all three types of button functionality.

Of course, the computerized versions of the device control buttons do n~t
merely emulate the real-world buttons but improve upon them. The grap~1c
button control allows different graphic information to be displayed dependmg
on the state of the button. Thus a Pause button could display one bitmap
graphic when the device is playing normally and a differen~ bitmap when. t?e
device is in the paused state. Furthermore, the control .prov.ides the capab1~ity
to sequence through a set of bitmaps to produce an ammat1on effect allowmg
the double arrows of a Fast Forward button to appear to move across the face
of the button when the device is fast forwarding.

Normal PM applications that have nothing to do with multimedia devices
can also take advantage of these features to improve their ow.n appearance a~d
functionality. For example, graphic buttons can be used to ~mpl~ment the m­
creasingly popular button bars, which supplement the functtonahty of menus.
Graphic buttons can also replace checkboxes, radio buttons, and pushbuttons
to give a better visual representation of the selection's functionality.

REGISTERING THE GRAPHIC BUTION CLASS
The graphic button class, WC_GRAPHICBUTTON, is not a part of the .standard
PM control class library and must be registered before any graphic button
windows can be created. Registration of the class is accomplished by calling
the WinRegisteri;raphlcButton APL This function, which takes no parameters,
handles all the work necessary to register the WC_GRAPHICBUTTON class
for the application. Normally a call to this API is i~sued from wi~in ~e
application's main routine when the other classes required by the apphcat1on
are being registered.

Creating Graphic Buttons 403

CREATING GRAPHIC amoNS

Like other controls, graphic buttons may be created explicitly by an application
or may be defined in a resource file, typically as an element of a dialog template.
In either case, the programmer must make some preliminary decisions as to
how the button will appear and behave before creating the window. The style of
the button must be determined based on the desired appearance and behavior
of the control. Depending on the style(s) chosen, the button control data must
be defined to support this style.

The first two style flags affect the states that the button may assume.
By default, graphic buttons have one steady state, known as the UP state.
A temporary state, known as HILITE state, is assumed when the pointing
device cursor is placed over the control and the selection button is pressed.
When the selection button is released or the mouse cursor is moved off the
button, the button returns to the steady state. The HILITE state is also assumed
when a graphic button has the input focus and the Spacebar is pressed on the
keyboard. The button will remain in the HILITE state until the Spacebar is
released. The graphic button may assume another steady state, known as the
DOWN state, if either of the following two style flags are set:

GBS_TWOSTATE OxlOOO

GBS.AUTOTWOSTATE Ox2000

allows the application to set the button to the DOWN
state. If the state is being set in response to user in­
put, the application should process the WM_COMMAND
message for the button and toggle the state as necessary.
In normal practice, the UP state is associated with inac­
tive or idle functionality, while the DOWN state indicates
active functionality.
enables the DOWN state for the button but causes
the state of the button to toggle when pressed. Thus,
when the button is pressed, the state changes from
UP to DOWN when the button is in the UP state and
from DOWN to UP when the button is in the DOWN
state. With this style, the application can process the
WM_CONTROL message to determine when the state of
the button changes and act appropriately.

Normally, a single bitmap is shown for each state of the graphic button­
different bitmaps may be selected for each state by sending the GBM_SETBIT
MAPINDEX message, but only one static bitmap is displayed per state. The
next two style flags allow a series a bitmaps to be shown, producing the effect
of animated motion.

404 What's New with OS.fl: Getting a Look at the Multimedia Controls

GBS..ANIMATION Ox4000 enables the animation feature of the button. The appli­
cation must explicitly start and stop the animation by
sending the GBM..ANIMATION message to the button
control.

GBS..AUTOANIMATION Ox8000 enables the animation feature but causes the anima­
tion to be automatically toggled whenever the state
changes from UP to DOWN or DOWN to UP. By default,
the button is created in the UP state and animation is
started when the button transitions to the DOWN state.
However, if the application explicitly enables animation
while the button is in the UP state, the animation will
be stopped when the button transitions to the DOWN
state and restarted when the button returns to the UP
state.

The next two style flags allow additional static bitmaps to be displayed
when the button is in the HILITE state or when the button control window is
disabled:

GBS..HILITEBITMAP Ox0020 enables the button to display a specific bitmap when
the button is in HILITE state. The bitmap to display is
selected by sending a GM_SETBITMAPINDEX message
to the button control.

GBS..DISABLEBITMAP OxOO 10 causes the graphic button to display a different bitmap
when the graphic button control window is disabled.
The bitmap to display is selected by sending a GBM_SET
BITMAPINDEX message to the button control window.

The final group of style flags control how the optional text is displayed on
the button. If none of the style bits are set, the text is displayed such that it
appears flat on the face of the button. One of the following two style flags may
be set to modify this appearance:

GBS..3D_TEXTRAISED Ox0080 causes the text to appear raised above the surface of
the button.

GBS-3D_TEXTRECESSED Ox0040 causes the text to appear below the surface of the
button as if engraved.

The final style flag affects the size of the graphic button:

GBS_MINIBUTTON OxOOOl reduces the space occupied by the button borders, resulting
in a smaller button while maintaining the displayed size of
the graphic and text associated with the button.

Creating Graphic Buttons 405

t ypedef struct _GBTNCDATA
{

USHORT usReserved;
PSZ pszText;
HMODULE hmod;
USHORT cBitrnaps;
USHORT aidBitrnap[l];

} GBTNCDATA;

Figure 13.1 Application program control data.

Once the style has been selected, the control data for the graphic button
c~n be defined. The basic contents of the control data are the text, if any, to be
displayed on the button and the resource ID(s) of the bitmap(s) to be displayed.
The actual layout of the control data varies depending on whether the data
is defined in the resource file or as a structure in the application program. If
the control data is defined as a structure within the application program, the
format in Figure 13.1 is used.

• The usReserved element identifies the type of structure and must be set to
GB-STRUCTURE.

• Element pszText may be set to NULL if no text is displayed. Otherwise, this
element points to a zero-terminated array of characters to be displayed as
the button text.

• Element hmod identifies the module handle of the executable that contains
the bitmap resources to be displayed on the button. Setting this field to
NULLHANDLE indicates that the bitmap resources are located in the
application executable.

• The cBitmaps element indicates the number of elements in the aidBitmaps
array.

• Element aidBitmap is a variable-length array whose elements are the re­
source IDs of the bitmaps that the button can display.

When the button is defined as a resource using a CONTROL statement in
the resource definition file, the resource compiler structures the control data
as shown in Figure 13.2.

struct {
USHORT
char
USHORT
USHORT

} i

usReserved;
szText[);
cBitmaps;
aidBitmaps[J ;

Figure 13.2 Resource control data.

406 What's New with OS/2: Getting a Look at the Multimedia Controls

• The usReserved element identifies the type of structure and is set to
GB..RESOURCE.

• Element szText is a zero-terminated, variable-length array of characters to
be displayed as the button text.

• Element cBitmaps indicates the number of elements in the aidBitmaps
array.

• The aid.Bitmaps element is a variable-length array whose elements are the
resource IDs of the bitmaps that the button can display.

Note that in either case, the array of bitmap IDs can contain duplicates-the
cBitmaps element represents the number of elements in the array, not the
number of unique bitmaps.

After the style has been determined and the control data initialized, the
graphic button can be created. In many cases, the graphic button is created
implicitly when a dialog template is loaded. Figures 13.3 and 13.4 show the
coding necessary to create a graphic button as an element of a dialog window.
Figure 13.3 shows the source code for the application, which consists of a
main routine and a dialog procedure. The main routine is typical, initializing

MRESULT EXPENTRY DlgProc{ HWND hwnd, ULONG msg, MPARAM mpl , MPARAM mp2)
{

if {msg == WM_COMMAND) {
return 01 ;

else {
return WinDefDlgProc(hwnd, msg, mpl, mp2);

I* endif *I

main{int argc , char •argv[), char *envp () I
{

HAB hab;
HMQ hmq;

do {
hab = Wininitial ize(OJ;
if (hab == NULLHANDLE) break;
hmq = WinCreateMsgQueue { hab, 0 I ;
if (hmq == NULLHANDLE) break;
WinRegis terGraphicButton ();
Wi nDlgBox(HWND_DESKTOP, HWND_DESKTOP, DlgProc , NULLHANDLE,

DLGID, NULL) ;
} while { 0) ; /* enddo */
if (hmq != {HMQ)NULLHANDLE) WinDestroyMsgQueue(hmq);
if (hab ! = {HAB)NULLHANDLE) WinTermi nate (hab);

Figure 13.3 Graphic button dialog sample.

Creating Graphic Buttons 407

fincl ude "dial og .h'

DLGTEMPLATE DLGID LOADONCALL MOVEABLE OISCARDABLE
BEGIN

END

DIALOG •sample• , DLGID, 12, 37, 239 , 108, WS_VISIBLE,
FCF_SYSMENU I FCF_TITLEBAR

BEGIN
CONTROL

END

•• , 100, 5, 8, 0, 0, WC_GRAPHICBUTTON,
WS_VISI BLE I GBS_AUTOTWOSTATE I GBS_AUTOANIMATION
CTLDATA GB_RESOURCE , "Sample•, 6,

l , 100 , 101, 102, 103, 104, 0

bitmap 1 1.bmp
bitmap 100 apl .bmp
bitmap 101 ap2 .bmp
bitmap 102 ap3. bmp
bitmap 103 ap4.bmp
bi tmap 104 apS.bmp

Figure 13.4 Graphic button dialog template.

the PM environment and creating a message queue. Next, the WinRegister­
GraphicButton API is called to register the graphic button class and enable
button controls to be created. WinDlgBox is then called to create and process
the dialog box. When the API returns, the application is terminated. The dialog
procedure for this application is quite simple, calling WinDefDlgProc for most
of the messages received. The WM_COMMAND message is not forwarded to
WinDefDlgProc to prevent the dialog from closing when the graphic button is
clicked.

Figure 13.4 shows the resource script used to build the dialog template.
The file contains the dialog template and the statements to create the bitmap
resources that will be displayed by the graphic button. The button is de­
fined within the dialog template using the CONTROL statement. Note that
the text portion of the control statement is specified as a NULL string and
the text for the graphic button is specified in the CTLDATA portion of the
statement. The style of the button is set to enable GBS.AUTOTWOSTATE
and GBS.AUTOANIMATION allowing the button to sequence through the de­
fined bitmaps when clicked. The CTLDATA portion of the statement specifies
GB.RESOURCE, indicating that the control data is defined in a resource file,
sets the text to be displayed as "Sample", indicates that six bitmaps are to be
used, and identifies the six bitmap resources. The bitmap ID array is termi­
nated with a zero to indicate to the resource compiler that the list is complete.
If the number of bitmaps contained in the list does not match the number
in the array, the smaller number will actually be used by the button control

408 What's New with OS/2: Getting a Look at the Multimedia Controls

when displaying bitmaps. The dimensions specified for the size and width of
the control, both being zero, are also noteworthy. The minimum width of the
control is determined by the space required to hold the bitmap, and the min­
imum height is determined by the space required to display both the bitmap
and text, if defined. Be sure when creating buttons to allow sufficient space to
display the button with these minimum sizes.

Figure 13.5 shows how this button could be created by specifying the
control data as an application structure and using the WlnCreateWlndow API.
The main routine of the application is unchanged and the resource file is the
same except that the CONTROL statement has been removed from the dialog
template. Instead, the graphic button control is created during the processing
of the WM_INITDLG message. The control data for the control is defined
as global data by specifying a structure that contains the basic control data
structure, GBTNCDATA, followed by an array large enough to hold all but the
first of the bitmap IDs-space for the first ID is reserved in the GBTNCDATA
structure. This structure is then initialized with the data that was previously
specified in the resource file . Note that the value of the usReserved element is
set to GB_STRUCTURE and that the text is now initialized as a pointer to a
string. Since the bitmap resources are located in the application's executable,
the hmod element is set to NULLHANDLE. When the WMJNITDLG message
is received, WinCreateWindow is called to create the graphic button control.
The pszName parameter is set to NULL since the text for the button must be
specified in the control data. The style for the button is passed in the flStyle
parameter.

CONTROLLING THE GRAPHIC BUTTON

Once the button is created, the application can use the button to perform many
different functions. For example, the graphic button can be used like a normal
pushbutton to cause an action to occur when the button is pressed. The button
can also be used to cause some action to occur while the button is depressed
and then stop the action when the button is released. A third use of the graphic
button is as a toggle switch. An action begins when the button is first clicked
and terminates when the button is clicked again. Different graphics are usually
displayed for each state in this instance. A fourth use of the button replaces
the standard checkbox or radio button, allowing the user to provide a graphic
representation of the choices available rather than relying solely on text. This
section will examine the programming required to implement these functions.

To begin, let's enhance the earlier sample to include two buttons, one
labeled Start and one labeled Stop, with appropriate bitmaps. The buttons
will be used to start and stop some abstract operation. The operation could
be playing an audio CD, running a model train, performing a computerized
simulation, or even running an assembly line in an automobile factory. The

HWND gbtnhwnd;

#pragma pack (1 I
struct {

GBTNCDATA bt ndata ;
USHORT bitmaps[S);

} gbtndata = { GB STRUCTURE, "Sample" , NULLHANDLE, 6,
1 , 100, 101, 102 , 103, 104) ;

#pragma pack()

Controlling the Graphic Button 409

MRESULT EXPENTRY DlgProc (HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)
(

if (msg == WM_COMMAND) {
return 01;

else if (msg == WM_INITDLG) {
gbtnhwnd = WinCreateWindow (hwnd,

WC_GRAPHICBUTTON, NULL,
WS_VISIBLE I GBS_AUTOTWOSTATE GBS_AUTOANIMATION,
5, 8, 0, 0, hwnd, HWND TOP, 100 ,
&gbtndata, NULL) ;

WinSetFocus(HWND_DESKTOP, gbtnhwnd) ;
return (MRESULT)FALSE;

else {
return WinDefDlgProc(hwnd, msg, tq>l, mp2);

I * endif */

main (i nt argc , char *argv(J , char •envp[))
(

HAB hab;
HMQ hmq;
QMSG qmsg;

do {
hab = Wininitialize(O);
if (hab =- NULLHANDLE) break;
hrnq = WinCreateMsgQueue(hab, 0) ;
if (hmq == NULLHANDLE) break;
WinRegisterGraphicButton();
W1nDlgBox(HWND_DESKTOP, HWND_DESKTOP, DlgProc, NULLHANDLE,

DLGID , NULL) ;
} whi le (0); t • enddo * /
if (hrnq !• (HMQINULLHANDLE) WinDestroyMsgQueue(hilK;l);
if (hab ! = (HABINULLHANDLE) WinTerminate(hab);

Figure 13.5 Graphic button window creation.

410 What's New with OS/2: Getting a Look at the Multimedia Controls

only requirement is that the operation can be started and stopped. To avoid
confusion, only one button will ever be enabled. If the operation is currently
stopped, the Start button will be enabled; if the operation is running, the Stop
button will be enabled.

The resource file for this example is similar to that shown in Figure 13.4.
A second graphic button control is added, the GBS...AUT01WOSTATE and
GBS...AUTOANIMATION flags are removed, and a GBS...DISABLEBITMAP flag
is added to enable display of a different bitmap when the button is disabled.
Also, the number of bitmaps per button is decreased to two, one for display
when the button is enabled and one for display when the button is disabled.
In this case, the disabled bitmap is the same as the enabled bitmap with less
intense colors.

Figure 13.6 shows the dialog window procedure to implement the desired
functionality. When the WMJNITDLG message is received, a GBM-.SETBIT
MAPINDEX message is sent to each of the buttons to modify the bitmap
that will be displayed when the button is disabled. The low-order 16 bits of
parameter mpl of this message are a set of flags that indicate the state for
which the index is to be set. Here are the valid flags:

MRESULT EXPENTRY DlgProc(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2
{

if {msg == WM_INITDLG) (
WinSendDlgitemMsg(hwnd, DID_START, GBM_SETBITMAPINDEX,

MPFROMSHORTIGB_DISABLE), MPFROMSHORT(l));
WinSendDlgitemMsg(hwnd, DID_STOP, GBM_SETBITMAPINDEX,

MPFROMSHORT{GB_DISABLE) , MPFROMSHORT(l)) ;
WinEnableControl(hwnd, DID_STOP, FALSE) ;
return {MRESULT)OL;

else if {rnsg == WM_COMMAND) {
if {SHORTlFROMMP{mpl) == DID_START) {

WinEnableControl{ hwnd, DID_START, FALSE I ;
WinEnableControl{ hwnd, DID_STOP, TRUE };
Start_Operation();

else if (SHORTlFROMMP(mpl) == DID_STOP l (
WinEnableControl(hwnd, DID_START , TRUE I ;
WinEnableControl{ hwnd, DID_STOP, FALSE);
Stop_Operation{);

return 01;
else {
return WinDefDlgProc(hwnd, msg, mpl, mp2 };

/* endif */

Figure 13.6 Two-button dialog example.

GB_UP

GB...DOWN

Controlling the Graphic Button 411

OxOOO l sets the index of the bitmap to display when the button
is in the UP state.

Ox0002 sets the index of the bitmap to display when the button
is in the DOWN state.

GB-HILITE Ox0004 sets the index of the bitmap to display when the button
is in the HILITE state.

GB_DISABLE Ox0003 sets the index of the bitmap to display when the button
is in the disabled state.

GB...ANIMATIONBEGIN OxOOOc sets the index of the first bitmap to display when the
button is changed to the animation state.

GB...ANIMATIONEND OxOOOd

GB_CURRENTSTATE OxOOOb

sets the index of the last bitmap to display when the
button is in the animation state. This value should be
equal to or greater than the animation begin index. The
animation will cycle through the bitmaps between the
begin animation and end animation indices.
sets the index of the bitmap to display when the button
is in the state that matches the current state.

The low-order 16 bits of parameter mpl of the GBM_SETBITMAPINDEX
message specify the index to be assigned to the button state. The valid values
are:

GB _INDEX..FORWARD - 1 sets the index to the next index beyond the current value.
The value wraps back to index 0 if the current index is the
last bitmap in the bitmap array.

GB_INDEJCBACKWARD - 2 sets the index to the index prior to the current index value.
The value wraps to the last item in the array if the current
index is zero.

GB INDEX_FIRST - 3 sets the index to the first element of the array of bitmaps.
GB_INDEX..LAST - 4 sets the index to the last element of the array of bitmaps.
other sets the index to the indicated index.

In the example, parameter mpl is set to GB...DISABLE to indicate that the
bitmap for the disabled state is being set. Parameter mpl is set to 1 to indicate
that the second bitmap in the array is to be displayed when the button is in
this state. Since the operation is assumed to be stopped when the application
first executes, the Stop button is disabled using the WinEnableControl APL

When a graphic button is clicked, a WM.COMMAND message is sent to
the button window's owner. When the WM_COMMAND message is received,
the appfication determines which button was clicked. If the Start button was
clicked, WinEnableControl is called once to disable the Start button and then

412 What's New wlUt OS/2: Getting a Look at the Multimedia Controls

a second time to enable the Stop button. Function Start_Operation is then
called to perform whatever is necessary to begin the operation. Likewise, if
the Stop button was clicked, WinEnableControl is called to enable the Start
button and disable the Stop button. Function Stop_Operation is called to halt
the operation.

With the exception of setting the disabled bitmap index, this coding is
identical to that which would be used with a normal pushbutton. The primary
advantage of the graphic button is its ability to automatically display different
bitmaps for different states. As we will see shortly, the Start button could
display an animated bitmap to show that the operation runs when the button
is pressed, and the Stop button could be left with a static bitmap to show that
clicking the button stops the operation.

In the second example, a single button is used. Rather than clicking the
button, the user depresses the button by holding down the mouse selection
button or the Spacebar, causing the operation to run. When the mouse button
or Spacebar is released, the operation stops. Operations supported by this type
of button could include cue/review functions for audio or video equipment, an
automotive braking system, or the flippers and shooter in a computerized
pinball game.

In order to implement this functionality, the button's HILITE state will be
used. When the button is depressed, the button is in HILITE state; when the
button is released, it returns to UP state. Depending on the application, the
button style could be set to GBS_HILITEBITMAP to display a different bitmap
when the button is depressed or to GBS.ANIMATION to allow animation when
the button is depressed. In the example, an animated button will be used to
perform the cue/review function. When the button is in the UP state, a single
bitmap depicting an arrow will be displayed. When the button is depressed, the
arrow will move across the face of button to show that the device is in motion.
The resource script, shown in Figure 13.7, has been modified to provide five
bitmaps for the animation. Note that the width of the button has been specified
to accommodate the minimum width needed to display the button text.

Figure 13.8 shows the dialog window procedure used to implement this
button. In this case, the processing for the WM_INITDLG message sends two
GBM_SETBITMAPINDEX messages to the button control. The first message
sets the bitmap index at which animation will start and the second message sets
the bitmap index at which animation will end. A GBM_SETANIMATIONRATE
message is sent to cause the button to change the bitmap every 200 millisec­
onds when animation is enabled. Parameter mpl of this message specifies
the number of milliseconds for the button to delay between bitmap changes.
Parameter mp2 is reserved and must be set to zero.

In this example, the WM_CONTROL message is used to track the chang­
ing state of the graphic button. When the message indicates that the button
is in the HILITE state, a GBM.ANIMATION message is sent to start ani-

Controlling the Graphic Button 413

#incl ude •dialog.h•

DLGTEMPLATE DLGID LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG •sampl e •, DLGID, 12, 37 , 239 , 108, ws_VISIBLE,
FCF_SYSMENU I FCF_TITLEBAR

BEGIN
CONTROL •• , DID_REVIEW, 5, 8, 46, 0, WC_GRAPHICBUTTON,

WS_VISIBLE I WS_TABSTOP I GBS_ANIMATION
CTLDATA GB_RESOURCE, "Review• , 6,

END
ENO

1, 2, 3 , 4 , 5 , 6, 0

bitmap 1 start .bmp
bi tmap 2 pl ayl .bmp
bit map 3 play2.bmp
bitmap 4 play3 .bmp
bitmap 5 pl ay4. hnp
bitmap 6 playS .bmp

Figure 13.7 Press and hold sample resource.

mation on the button. Parameter mpl of this message starts the animation
when set to TRUE and stops animation when set to FALSE. Parameter mp2
is set to TRUE to start animation at the index following the currently dis­
played index or to FALSE to start with the defined animation start index.
In the example, parameter mpl is set to TRUE to indicate that animation
should be started, and parameter mp2 is set to FALSE to indicate that the
animation should start at the GB.ANIMATIONBEGIN bitmap index. When
the end of the animation sequence is reached, the next bitmap shown would
be that designated as the GB.ANIMATIONBEGIN bitmap index. After the an­
imation is started, StarLOperation is called to begin the operation. When the
WM_CONTROL message indicates that the button has returned to the UP state,
a GBM.ANIMATION message is sent to the button with parameter mpl set
to FALSE to stop the animation, and Stop_Operation is called to halt the an­
imation. Since this is the only button in this dialog box, the WM_COMMAND
message is processed by returning a zero result. If this message were forwarded
to the WinDefDialogProc API, the dialog would be dismissed.

The next example uses a two-state button, acting as a toggle switch. When
the button is in the DOWN state, the operation is in progress; when the button is
in the UP state, the operation has been halted. This functionality is very similar
to the previous example except that now the user can click the button, walk

414 What's New with OS/2: Getting a Look at the Multimedia Controls

MRESULT EXPENTRY DlgProc(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2
{

if (msg == WM_INITDLG) {
WinSendDlgitemMsg(hwnd, DID_REVIEW, GBM_SETBITMAPINDEX,

MPFROMSHORT(GB_ANIMATIONBEGIN), MPFROMSHORT(l)) ;
WinSendDlgitemMsg(hwnd, DID_REVIEW, GBM_SETBITMAPINDEX,

MPFROMSHORT(GB_ANIMATIONEND), MPFROMSHORT (S));
WinSendDlgitemMsg(hwnd, DID_REVIEW, GBM_SETANIMATIONRATE,

MPFROMLONG l200L) , MPFROMLONG(OL));
return (MRESULTIOL;

else if (msg == WM_CONTROL) (
if (SHORT2FROMMP(mpl) == GBN_BUTTONHILITE) {

WinSendDlgitemMsg(hwnd, DID_REVIEW, GBM_ANIMATE,
MPFROMSHORT(TRUE), MPFROMSHORT(FALSE) };

Start_Operation ();
else if (SHORT2FROMMP(mpl) == GBN_BUTTONUP) {
WinSendDlgitemMsg(hwnd, DID_REVIEW, GBM_ANIMATE,

MPFROMSHORT(FALSE I , MPFROMSHORT(FALSE));
Stop_Operation{);

return 01;
else i f (msg == WM_COMMAND)
return 01;

} else (
return WinDefDlgProc(hwnd, msg, mpl, mp2);

} / * endif */

Figure 13.8 Press and hold button example.

away, or do some other task while the operation is running, and come back
to stop the operation when desired. Operations of this type include the pause
button used with audio or video equipment; the selection of a font attribute,
such as bold or italic, as seen in word processors; or single button control
of processes, such as a factory floor (as opposed to the two-button approach
discussed in the first example). Rather than starting fresh, let's use the code
from the previous example to create a fast forward button that forwards an
audio device when clicked and stops the device when clicked again. The same
bitmaps and animation will be used, but the resource script has been modified
to add the GBS-1WOSTATE style to the button.

Figure 13. 9 shows the dialog window procedure for controlling the button.
The processing for the WM_JNITD LG message is same as in Figure 13. 8, setting
the bitmap indexes for animation and the animation rate. The processing for
the WM-COMMAND message handles the button state transitions. When the
message is received, a GBM_QUERYSTATE message is sent to the button to
determine the current state. Both mpl and mp2 are reserved and set to zero.

Controlling the Graphic Button 415

MRESULT EXPENTRY DlgProc(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)
{

ULONG ulState;

if (msg == WM_INITDLG) {
WinSendDlgltemMsg(hwnd , DID_FF, GBM_SETBITMAPINDEX,

MPFROMSHORT (GB_ANIMATIONBEGIN) , MPFROMSHORT(l));
WinSendDlgitemMsg(hwnd, DID_FF, GBM_SETBITMAPINDEX,

MPFROMSHORT (GB_ANIMATIONEND) , MPFROMSHORT(5));
WinSendDlgitemMsg (hwnd, DID_FF, GBM_SETANIMATIONRATE,

MPFROMLONG (20 0L}, MPFROMLONG (OL));
return (MRESULT)OL;

else if (msg == WM_COMMAND) {
ulState = LONGFROMMR (WinSendDlgitemMsg(hwnd, DID_FF, GBM_QUERYSTATE,

MPFROMLONG (OL) , MPFROMLONG { OL))) ;
if (ulState == GB_UP) {

WinSendDlgitemMsg(hwnd, DID_FF , GBM_SETSTATE,
MPFROMSHORT(GB_DOWN) , MPFROMSHORT(FALSE}) ;

WinSendDlgitemMsg (hwnd, DID_FF, GBM_ANIMATE,
MPFROMSHORT (TRUE), MPFROMSHORT(FALSE));

St art_Operat ion() ;
else i f (ulStat e == GB_DOWN) {

WinSendDlgitemMsg(hwnd, DID_FF, GBM_ANI MATE,
MPFROMSHORT (FALSE), MPFROMSHORT(FALSE));

WinSendDlgitemMsg(hwnd, DID_FF, GBM_SETSTATE,
MPFROMSHORT(GB_UP), MPFROMSHORT(TRUE));

Stop_Operat ion();

return 01;
el se {
return WinDefDlgProc (hwnd, nsg, mpl, mp2);

I * endif *I

Figure 13.9 Toggle button example.

If the button is in the UP state, a GBM_SETSTATE message is sent to change
the button to the DOWN state. Parameter mpl contains the value for the
new state, in this case, GB-DOWN. Parameter mp2 may be set to TRUE to
cause an immediate repaint of the button or, as in the example, may be set
to FALSE to prevent repainting until a paint message is received. Since the
subsequent animation will repaint the button, mp2 is set to FALSE. Next, a
GBM...ANIMATE message is sent to start the animation, and Start-Operation
is called to start the fast forward operation. If the button is in the DOWN state
when the WM-COMMAND message arrives, a GBM-ANIMATE message is sent
to the button to stop the animation. Then a GBM-SETSTATE message is sent
that changes the button to the UP state by using GB-UP for mpl, and repaints

416 What's New with OS/2: Getting a Look at the Mulllmedia Controls

the button by setting mp2 to TRUE. Stop_Operatlon is called to halt the fast
fmward operation.

Figure 13.10 shows an alternate window procedure for accomplishing this
functionality when the button style contains the GBS...AUTOTWOSTATE and
GBS...AUTOANIMATE styles. Since the button now handles the state transition
and animation, the dialog procedure only needs to recognize changes in the
state when the WM_CONTROL notification message is received. If the notifi­
cation indicates a change to the DOWN state, StarLOperation is called. If the
notification indicates a change to the UP state, Stop_Operatlon is called. The
WM_COMMAND message is still processed to prevent the dialog from being
dismissed.

In the final example, the graphic button is used to replace the functionality
of a set of checkbox controls. This implementation conserves space in the dialog
box and provides a graphic, rather than textual representation of the choices
available. An example of this type of functionality would be the attribute section
of a font selection dialog. Normally, there would be at least three checkboxes,
one each for bold, italic, and underline. Rather than use checkboxes, graphic
buttons could be used that actually depict how a character looks when the
attribute is applied.

MRESULT EXPENTRY DlgProc(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)
{

if (msg == WM_INITDLG) {
WinSendDlgitemMsg{ hwnd, DID_FF, GBM_SETBITMAPINDEX,

MPFROMSHORT{GB_ANIMATIONBEGIN), MPFROMSHORT{l));
WinSendDlgitemMsg{ hwnd, DID_FF, GBM_SETBITMAPINDEX,

MPFROMSHORT{GB_ANIMATIONEND), MPFROMSHORT{5));
WinSendDlgitemMsg(hwnd, DID_FF, GBM_SETANIMATIONRATE,

MPFROMLONG(200L), MPFROMLONG(OL));
return {MRESULT)OL;

else if {msg == WM_CONTROL) {
if {SHORT2FROMMP{mpl) -= GB_DOWN) {

Start_Operation();
) else if (SHORT2FROMMP(mpl) == GB_UP)

Stop_Operation();

return 01;
else if (msg == WM_COMMAND)
return 01;

else {
return WinDefDlgProc(hwnd, msg, mpl, 111p2 I;

! * endif */

Figure 13.10 Toggle button with automatic animation.

Controlling the Graphic Button 417

linclude "dialog.h"

DLGTEMPLATE DLGID LOAIXJNCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "Sample", DLGID, 12 , 37, 239 , 108, WS_VISIBLE,
FCF_SYSMENU I FCF_TITLEBAR

BEGIN
CONTROL "", DID_BOLD, 5, 8, 0, 0, WC_GRAPHICBU'rl'ON,

WS_VISIBLE I WS_TABSTOP I GBS_AUTOTWOSTATE
CTLDATA GB_RESOURCE, •• , 2, 1, 5, 0

END
END

CONTROL

CONTROL

CONTROL

CONTROL

"", DID_ITALIC , 28 , 8, 0, 0, WC_GRAPHICBUTTON,
WS_VISIBLE I WS_TABSTOP I GBS_AUTOTWOSTATE
CTLDATA GB_RESOURCE, ••, 2, 2, 6, O
• •, DID_UNDER, 51 , 8, 0, 0, WC_GRAPHICBUTTON,
WS_VISIBLE I WS_TABSTOP I GBS_AUTO'lWOSTATE
CTLDATA GB_RESOURCE, "" , 2, 3, 7, 0
••, DID_STRIKE, 74, 8, 0, 0, WC_GRAPHICBUTTON,
WS_VISIBLE I WS_TABSTOP I GBS_AUTOTWOSTATE
CTLDATA GB_RESOURCE, ••, 2, 4, 8, 0
"OK", DID_OK, 120, 8, 20, 12 , WC_BUTTON,
WS_VISIBLE I WS_TABSTOP I BS_PUSHBUTTON

bitmap 1 bold.bmp
bitmap 2 italic .bmp
bitmap 3 under.bmp
bitmap 4 strike.bmp
bitmap 5 boldd.bmp
bitmap 6 italicd.bmp
bitmap 7 underd.bmp
bitmap 8 striked.bmp

Fl911re 13.11 Checkbox replacement resource definition.

Figure 13.11 shows the resource script for this example. The script de­
fines the OK pushbutton and four graphic buttons, each of which has the
GBS...AUTOTWOSTATE style flag set and two bitmaps defined. The first bitmap
is used for the UP state. The second bitmap is used for the DOWN state and
reverses the contrast between the foreground and background of the bitmap
image to further inform the user that the button is selected.

The dialog procedure shown in Figure 13.12 shows how a set of graphic
buttons for selecting bold, italic, underline, and strike-through attributes would
be processed. An OK pushbutton has been added to finish the selection. When
the WM_INITDLG message is received, a GBM_SETBITMAPINDEX message
is sent to each of the graphic buttons to establish the bitmap to be displayed

418 What's New with OS/2: Getting a Look at the Multimedia Controls

MRESUL'l' EXPENTRY DlgProc { HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2
{

if lmsg == WM_INITDLG) {
WinSendDlgitemMsg(hwnd, DID_BOLD, GBM_SETBITMAPINDEX,

MPFROMSHORT(GB_DOWN), MPFROMSHORT(l)) ;
WinSendDlgitemMsg(hwnd, DID_ITALIC, GBM_SETBITMAPINDEX,

MPFROMSHORT(GB_DOWN), MPFROMSHORT(l));
WinSendDl gitemMsg(hwnd, DID_UNDER, GBM_SETBITMAPINDEX,

MPFROMSHORT(GB_DOWN), MPFROMSHORT(l));
WinSendDlgitemMsg(hwnd, DID_STRIKE, GBM_SETBITMAPINDEX,

MPFROMSHORT(GB_DOWN), MPFROMSHORT(l));
return IMRESULT)OL;

el se if tmsg == WM_COMMAND) {
if (SHORTlFROMMP(mpl) == DID_OK} {

flAttrs =- 0;

}

if (WinSendDlgitemMsg(hwnd, DID_BOLD, GBM_QUERYSTATE,
MPFROMLONG(OL), MPFROMLONG(OL)))

flAttrs I= FL_BOLD;
if (WinSendDlgitemMsg(hwnd, DID_ITALIC, GBM_QUERYSTATE,

MPFROMLONG(OL}, MPFROMLONG(OL)))
flAttrs I= FL_ITALIC;

if (WinSendDlgitemMsg(hwnd, DID_UNDER, GBM_QUERYSTATE,
MPFROMLONG(OL}, MPFROMLONG(OL)))

flAttrs 1 ~ FL_UNDER;
if (WinSendDlgitemMsg(hwnd, DID_STRIKE, GBM_QUERYSTATE,

MPFROMLONG(OL}, MPFROMLONG(OL)))
f l Attrs I= FL_STRIKE;

WinDismissDlg (hwnd, TRUE);

return fMRESULT)Ol;
else {

return WinDefDlgProc(hwnd, msg, mpl, mp2);
I * endif • /

Figure 13.12 Checkbox replacement example code.

when the button is in the DOWN state. No further processing of the but­
tons is necessary as the GBS..AUTOTWOSTATE style was selected. When the
WM_COMMAND message is sent by the OK pushbutton, the global variable
f/Attrs is initialized to zero. The state of each of the graphic buttons is then
queried by sending a GBM.QUERYSTATE message. If the button is in the
DOWN state, the bit corresponding to that button's attribute is set in f/Attrs.
After all the buttons have been queried, the dialog box is dismissed.

These four examples have shown how different styles and processing can
be combined to produce several types of functionality with the graphic button.

Additional Graphic Button Messages 419

These are by no means the only combinations allowed, but they do serve to
show the power of the graphic button and should provide a good basis for
development of further variations.

ADDITIONAL GRAPHIC BUTION MESSAGES

The previous sections examined the graphic button styles and most of the
messages used to modify or set the various features of the graphic button. The
button also supports messages that query the various settings, and this section
provides an overview of the remaining messages.

The GBM.QUERYANIMATEACTIVE message allows an application to de­
termine if the button is currently animating a series of bitmaps. Both mpl and
mp2 for this message are reserved values and should be set to zero. The return
value is set to TRUE if the button is currently animating a series of bitmaps
and FALSE if no animation is in progress.

The GBM.QUERYANIMATIONRATE message returns the number of mil­
liseconds a bitmap is displayed before the next bitmap in an animation se­
quence is displayed. Parameters mpl and mp2 are both reserved and should
be set to zero.

Message G BM_QUERYB ITMAPIND EX returns the zero-based index value
of the bitmap that will be displayed for a given state. Parameter mpl contains
the state value to be queried in the low-order 16 bits. Valid values are the same
as those specified for the mpl parameter of the GBM_SETBITMAPINDEX
message. Parameter mp2 is reserved and should be set to zero.

Should an application need to change the bitmaps associated with a
graphic button after the button is created, a new control data structure can
be passed to the button by sending the GBM_SETGRAPHICDATA message.
Parameter mpl for this message is a pointer to a GBTNCDATA structure con­
taining the new control data. Note that when this message is sent, the button
is reinitialized, losing all information regarding the current state of the button,
so if only the text of the button is to be changed, the WinSetWindowText API
should be called.

Normally, the text of the graphic button is d isplayed below the bitmap.
Message GBM.SETTEXTPOSITION can be used to move the text to a po­
sition above the bitmap. The low-order 16 bits of parameter mpl are used
to designate the desired position. If set to GB-TEXTBELOW (1), the text
is positioned below the bitmap. If set to GB_TEXTABOVE (2), the text is
displayed above the bitmap. Parameter mp2 is reserved and should be set
to zero. The current position of the text can be determined by sending the
GBM_QUERYTEXTPOSITION message. Both parameter mpl and parameter
mp2 of this message are reserved and should be set to zero. The return value
for the message is GB_TEXTABOVE if the text is displayed above the bitmap
or GB_TEXTBELOW if the text is displayed below the bitmap.

420 What's New with OS/2: Getting a Look at the Multimedia Controls

SECONDARY WINDOWS

Many programmers have found occasion to forgo the standard window for
an application and merely load a dialog box from the main routine. This is a
particularly viable solution when the client window of the application presents
a number of controls; for example, an application that is the control panel for
playing audio CD-ROMs. By using the dialog box, the creation and handling
of the controls is the responsibility of the dialog box manager rather than the
application program. Unfortunately, the standard dialog box does not provide
some features users normally expect of an application window; primarily, the
ability to change the window to a convenient size and then scroll through
the contents as necessary. This type of functionality must be handled by the
application and can be quite complicated.

The Secondary Window Manager provided by the multimedia tools over­
comes this and other limitations of the standard dialog box manager. Sec­
ondary windows automatically handle displaying scroll bars when the size
of the window is reduced below the area specified by the dialog template;
and, when the scroll bars are displayed, the Secondary Window Manager also
handles all processing necessary to scroll the contents of the window. As an
additional feature, the application can request that a menu item be added to
the system menu, which allows the user to easily return the window to its
default size such that all information is visible. After the menu item is added,
the Secondary Window Manager handles the sizing when the menu item is
selected. Finally, the secondary window allows both an icon and a menu to be
associated with the window, thereby providing all the functionality of a normal
application window with the programming ease of a dialog box.

The secondary window accomplishes this dual functionality by creating
a standard frame window with its associated controls. However, rather than
using an application-defined window class as the client area, the secondary
window uses a dialog window with an invisible frame. This implementation
gives the secondary window the characteristics of both the standard frame
window and the dialog frame window. Instead of the normal client window
procedure of most applications, the secondary window procedure is imple­
mented as a dialog procedure since the client window is actually a dialog
window.

Using Secondary Windows
Building the dialog template is the first step in creating a secondary window.
This may be accomplished in the same manner as a normal dialog: by creating
the template as part of the application program, by manually building the
template as part of the application's, or a DLI.'.s, resource script, or by using the
dialog editor to build the template for inclusion in the resource script. In order

Secondary Windows 421

to take advantage of the features of the secondary window, style flags and frame
creation flags must be specified in addition to those normally associated with
a dialog box. The sizing and scrolling functions of the secondary window are
enabled by specifying the FS_SIZEBORDER style and the FCF _ VERTSCROLL
and FCF JiORZSCROLL frame creation flags. Specifying the FCF .JCON and
FCF MENU flags cause the application icon and a menu bar to be displayed.
Note that these latter two flags cannot be set with the dialog editor but must
be added manually. Figure 13 .13 is an example of the resource script for
a secondary window for which sizing and scrolling is enabled and which
displays both an icon and a menu bar. Note that an ICON and MENU whose
IDs match the dialog template ID are also included.

Once the dialog template has been completed, the application can raise a
secondary window using the dialog template. APis are provided that mirror
the functionality for creation and manipulation of dialog boxes. For example,
an application that displays itself as a dialog box would be modified to re­
place the WinDlgBox API call with a call to the WinSecondaryWindow API.
The parameters and functionality are identical except for the type of window
created. This particular API causes the secondary window to be displayed and
processed immediately. The API does not return until the secondary window
is dismissed.

DLGTEMPLATE DLGID LOADONCALL MOVEABLE DISCARDABLE
BEGIN

END

DIALOG 'Secondary Sampl e' , DLGID, 29, 65 , 153 , 87, NOT FS_DLGBORDER I
l"S_JllZl!BEJ!R I WS_VISIBLE, FCF_SYSMENU I FCF_TITLEBAR I
FCF _MINBUTTON FCF _MAXBUTTON I PCP' v.aa:sx:u. I l'CF_~ I
!a'_IO:fi I FCF_TASKLIST I 10!'...JIH1

BEGIN
CTEXT

END

LISTBOX
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON

•secondary Window Exampl e", 101, 8, 72, 137, 8, NOT
WS_GROUP
DID_LB, 7, 26, 137, 40
' OK' , DID_OK, 6, 4, 40, 14
•cancel' , DID_CANCEL, 56 , 4, 40, 14
' Help ' , DID_HELP , 106, 4, 40, 14

ICON DLGID SWl. I CO

MENU DLGID
BEGIN

MENUITEM ' SllMI", MID~VE
ER>

Figure 13.13 Secondary window dialog template.

422 What's New with OS/2: Getting a Look at the Multimedia Controls

BnOL EXPENTRY WininsertDefaultSize(HWND hwnd,
PSZ pszDefaultSize)

Figure 13.14 WinlnsertDefaultSize.

A secondary window may also be processed by calling the WinLoadSec·
ondaryWindow API to create the window, WinProcessSecondaryWindow to
handle the user interaction, and then WinDestroySecondaryWindow to de­
stroy the window after processing is complete. This sequence is analogous to
calling WinLoadDlg, WinProcessDlg, and then WinDestroyWindow for a dia­
log box. The secondary window may also be processed as a modeless window,
in parallel with another application window, by calling WinLoadSecondary­
Window and making the window visible. In this case, there is no need to
call WinProcessSecondaryWindow. If the d ialog template is built in memory
instead of residing in a resource, WinCreateSecondaryWindow is called in­
stead of WinLoadSecondaryWindow. This function is the secondary window
replacement for the WinCreateDlg API. The equivalent of the WinDismissDlg
API for the secondary window is the WinDismissSecondaryWindow API.

The window procedure specified when the secondary window is created
is programmed in the same manner as a dialog window procedure. In fact,
a dialog window procedure can be converted to a secondary window proce­
dure merely by replacing all calls to WinDefDlgProc with calls to WinDefSec­
ondaryWindow Proc, the default window procedure that defines the behavior
of the secondary window. All the normal dialog helper APls and macros, such
as WinSendDlgltemMsg and WinQueryDlgltemText, which access controls as
dialog items may be used in the secondary window procedure.

If an application is intended to enable the default sizing feature of the
secondary window, a call to the WinlnsertDefaultSize API should be issued,
normally from within the WM.INITDLG processing. The prototype for this
API is shown in Figure 13.14.

• The hwnd parameter is the secondary window's frame window handle.
• The pszDefaultSize parameter is a pointer to the text to be displayed on

the menu item.

If this function is called from within the window procedure of the sec­
ondary window, the handle of the frame window can be obtained from the
window procedure's hwnd parameter by calling the WinQuerySecondaryH­
WND API, which is prototyped as shown in Figure 13.15.

HWND EXPENTRY WinQuerySecondaryHWND (HWND hwnd,
ULONG ulFlag> j

Figure 13.15 WinQuerySecondaryHWND.

Secondary Windows 423

• The hwnd parameter is the handle of the source window for the API.
• The ulFlag parameter indicates the type of translation. If this parameter is

set to OS.FRAME, hwnd should be set to the dialog window handle, and
the handle of the secondary window's frame window is returned. If this
parameter is set to OS.DIALOG, hwnd should be set to the frame window,
and the handle of the dialog is returned.

The application may also programmatically set the window to its default size
by calling the WinDefaultSlze API. The prototype for this function is shown in
Figure 13.16.

• The hwnd parameter is the window handle of the secondary window's
frame window.

Figure 13.17 shows the program code that handles the dialog template
from Figure 13.13 as the main window for the application. The only changes
between this secondary window implementation and a normal dialog box
implementation are shown in boldface type.

Secondary Message Boxes
The secondary window tools also provide an enhanced form of the standard
message box called a secondary message box. This message box allows the
programmer to create message boxes with application-defined buttons and a
custom icon. The message box is created by calling the WinSecondaryMes­
sageBox APL This function is prototyped as shown in Figure 13.18.

• Parameter hwndParent is the window handle of the window that will be
the parent of the message box.

• Parameter hwndOwner is the window handle of the window that will be
the owner of the message box.

• The pszText parameter is a pointer to a zero-terminated array of characters
that will be displayed as the text of the message box.

• The pszCaptlon parameter is a pointer to a zero-terminated array of char­
acters that will be displayed in the title bar of the message box.

• The idWindow parameter is the window ID of the message box.
• Parameter psmblnfo is a pointer to a SMBINFO structure that describes

the custom features of the message box.

BOOL EXPENTRY WinDefaultSi ze{HWND hwnd l;

Figura 13.16 WinSetDelaultSize.

424 What's New with OS/2: Getting a Look at the Multimedia Controls

MRESULT EXPEm'RY DlgProc(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)
{

if (msg == WM_INITDLG) (
WinSendOlgitemMsg(hwnd, DID_LB, LM_INSERTITEM,

MPFROMLONG(LIT_END), MPFROMP("Line l')) ;
WinSendOlgitemMsg(hwnd, DID_LB, LM_INSERTITEM,

MPFROHLONG(LIT_END), MPFROMP('Line 2·)) ;
WinSendOlgitemMsg(hwnd, DID_LB, LM_INSERTITEM,

MPFROMLONG(LIT_END), MPFROMP("Line 3'));
/* Bllllhle tba c5afallt 8ize r,rooesaizv */
whmautIWfm1JtSiza(~< !Rd. gs_nwB),

"DllfaJlt Sim") ;
return (MRESULT)OL;

} else if (msg == WM_COMMAND) {
if (SHORTlFROMMP(mpl) == DID_OK)
~(!Rd. '1HJI!!)1

if (SHORTlFROMMP(mpl) == DID_Cl\NCEL)
~(!Rd. nuE);

if (SHORTlFROMMP(mpl) == 10000) (
t• Handle menu collUllaild •/

}
return (MRESULT)Ol;

else (
return WmDafS•"'""''~< !Rd. nag, npl., ~ h

/ * endif *I

main(int argc, char *argv[), char *envp())
{

HAB hab;
HMQ hmq;
QMSG qmsg;

do {
if ((hab = Wininitialize(O)l == NULLHANDLE) break;
if ((hmq = WinCreateMsgQueue(hab, 0 l) == NULLHANDLE) break;
~(IHl)_iWWWte, llH>_IWlU', lllgP%cc, ~.

DLGID, NULL) i
} while (0); /* enddo */
if (hmq != (HMQ)NULLHANDLE) WinDestroyMsgQueue(hmq l;
if (hab != (HAB)NULLHANDLE) WinTerminate(hab);

Figure 13.17 Programming with the secondary window.

Secondary Windows 425

ULONG EXPEm'RY WinSecondaryMessageBox (HWND hwndParent,
HWND hwndOwner,
PSZ pszText,
PSZ pszCaption,
ULONG idWindow,
PSMBINFO psmbinfo);

Figure 13.18 WlnSecondaryMessageBox.

WinSecondaryMessageBox returns a ULONG that identifies the pushbut­
ton that was pressed to dismiss the message box.

The SMBINFO structure is used to describe the customization features of
the message box and contains the items shown in Figure 13.19.

• Element hlcon is an HPOINTER that identifies the custom icon to display
in the message box. This element is only used when the fl.Style element
contains the MB_ICONCUSTOM flag.

• Element cButtons is the number of buttons that have been defined for the
message box. This represents the number of elements in the array pointed
to by element psmbd.

• The fl.Style element is a set of flags that indicate the type of icon to display
in the message box. This can be one of the standard PM message box icons
or the value MB..ICONCUSTOM to display the icon identified by the hlcon
element.

• The hwndNotify element is reserved and should be set to NULLHANDLE.
• Element psmbd is a pointer to an array of SMBD structures that describe

the buttons to be displayed in the message box.

The SMBD structure contains the three elements shown in Figure 13.20.

• The achText element is an array of characters that will be displayed as the
button text. The size of the array and therefore the maximum length of the
text is defined by the constant MAX_SMBTEXT. The portion of the array to
be displayed should be followed by a null character terminator.

typedef struct _SMBINFO
I

HPOINTER hicon;
ULONG cButtons;
ULONG flStyle;
HWND hwndNotify;
PSMBD psmbd;

SMBINFO;

Figure 13.19 The SMBINFO structure.

426 What's New with OS/2: Getting a Look at the Multimedia Controls

typedef struct _SMBD
{

CHAR
ULONG
LONG

SMBD;

achText [MAX_SMBDTEXT + l) ;
idButton ;
flStyle;

Figure 13.20 The SMBD structure.

• The idButton element is the window ID to assign to the button. If this
button is clicked, this window ID will be returned to the application.

• Element fiStyle is a set of flags that define the style of the button. The valid
styles are the normal pushbutton style flags.

Figure 13.21 provides an example of the code required to initialize the
structures, create the message box, and process the return value. An array
of SMBD structures are defined as a global variable and initialized with text,
return value IDs, and styles for the message box. The SMBINFO structure is
also defined as a global variable and is initialized to indicate that the message
box will contain three buttons and a custom icon. The hlcon element of the
SMBINFO structure is initialized in the WM_INITDLG processing for the sec­
ondary window, which raises this message box. Within the WM_COMMAND
processing, the ID_SHOWMESSAGE command causes the WinSecondaryMes­
sageBox API to be called. Upon return from the message box processing, a
switch statement is used to provide handling based on the button used to dis­
miss the message box. If the default size button was pressed, WinDefaultSlze
is called to return the secondary window to its default size. If the exit applica­
tion button was pressed, WinDismissSecondaryWindow is called to close the
secondary window and the application.

SUMMARY

OS/2 Warp added the WinMessageBox2 APL This API provides the same
functionality as the original multimedia secondary message box, which is being
retained for compatibility with existing applications. New programs should use
WinMessageBox2. The SMBINFO structure has been renamed to MB2INFO
and the SMBD structure has been renamed to MB2D; otherwise, the two APis
are identical.

The graphic button control, secondary window class, and secondary message
box provide application programmers with new, more flexible ways to perform
old functions . The graphic button may be used to enhance functionality and
appearance in instances where a pushbutton or checkbox would normally

Summary 427

SMBD smbData[3) = · set Defaul t Size• , ID_DEFAULTSIZE, BS_DEFAULT,
'Exit Appl icat ion•, ID_EXITAPP, 0,
•Return•, ID_RETURN, 0);

SMBINFO smbinfo = { NULLHANDLE, 3, MB_ICONCUSTOM, NULLHANDLE, smbData);

MRESULT EXPENTRY SecwndProc(HWND hwnd, ULONG msg, MPARAM mpl , MPARAM mp2
(

/* Process i nitialization message */
i f (msg == Wll_INITDLG) {

/* Load custom ICON for secondary message box */
smbi nfo.hicon = WinLoadPointer(HWND_DESKTOP, NULLHANDLE, DLGID I;
return (MRESULT)OL;

else if (msg == WM_COMMAND) (
/ * if conunand is r equest t o l oad secondary message box */
if[SHORTlFROMMP [mpl) == ID_SHOWMESSAGE)

/ * Lead and process the secondary message box */
choice = (ULONG)WinSecondaryMessageBox[HWND_DESKTOP,

HWND_DESKTOP,
"What do you want to do? • ,
'Secondary Message Box Sample• ,
ID_MSGBOX, &smbi nfo);

switch (choice) {
case ID_DEFAULTSIZE :

/ * Set secondary window to default size *f
WinDefaultSize (WinQuerySecondaryHWND (hwnd, QS_FRAME));
break;

case ID_EXITAPP:

)

/* Exit the secondary window processing */
WinDi smissSecondaryWi ndow(hwnd, TRUE);
br eak;

return (MRESULT)OL;
)

el se (
r eturn WinDefSecondaryWindowProc(hwnd, msg, mpl , mp2);

Figure 13.21 Secondary message box example.

be used. Additional features and operational modes of the button provide
functionality such as press and hold which are not readily available in other
PM controls. The secondary window is particularly useful for providing the
user interface of a standard frame window for applications or major functions
whose client areas are composed of a set of controls. With the secondary
window, these applications can be structured as dialog boxes and reduce the

428 What's New with OS/2: Getting a Look at the Multimedia Controls

application complexity required to manage the controls while retaining the
full functionality of the standard frame window. The secondary message box
provides the ease of use of a regular message box, but provides functionality
that allows the application to customize the buttons and icon displayed in
the box. Without the secondary message box, an application requiring this
functionality would have to implement a dialog box or other window, a much
more complicated task. Explore the window classes discussed in this chapter.
They can easily add a bit of pizzazz to your applications.

CHAPTER

PM, Your Kingdom Awaits:
Creating Your Own Controls

N ow that we've examined all the controls provided by PM, you're probably
saying to yourself that PM provides everything an application program­
mer could ever desire. Right? No!? You would like to have just one more

control that performs the function you always needed. In that case, you'll just
have to develop the control yourself. And this chapter explains how.

PM control windows are no different than other windows created by an
application, though they are normally more limited in functionality than the
windows that application programmers are accustomed to creating. This chap·
ter will describe the implementation of control classes using an example con­
trol. The TUTORIAL control is intended to provide an application the ability
to easily generate and manipulate simple panels for providing explanatory in­
formation to the user. Since a picture is said to be worth a thousand words,
the tutorial control allows the application to display bitmap graphics, text, or
a combination of the two. The control does not accept any real input, but does
notify the application of keyboard and mouse activity that the application can
use to sequence through a set of panels.

DESIGNING THE CONTROL WINDOW APPLICATION INTERFACE

When designing a control class, bear in mind that the windows of the class
will normally interface with other windows such as a dialog box or applica­
tion client window. This interface consists of the control-specific styles, the
control's externally visible data, control-specific messages that may be sent to
the control, and control notification messages that are sent from the control to
its owner. Certain types of messages and notifications are almost universally

429

430 PM, Your Kingdom Awaits: Creating Your Own Controls

present in the PM controls and should normally ~e i~plemented in. c~stom
controls. For example, most controls provide notifications when gammg or
losing the focus.

Any optional behavior or appearance of the control is normall~ managed
by the class-specific flags of the window style. These flags are locate~ m ~e low­
order 16 bits of the window style and should be defined for the application. The
TUTORIAL control provides the capability to display either one or ~o panels
with each panel capable of displaying either text or a bitmap. If multiple panels
are displayed, the control window may be split eith~r vertica~ly or horiz~nta!ly.
The control also provides functionality to automatically notify the apphcat10n
to change the panel contents after a specified amount of time. This capability
must be enabled with a style flag before the automatic operation is started. The
style flags defined by the control to support these capabilities are:

TS_SPLITHORZ {Ox0001) causes the control to split the window horizontally and
display panel 1 at the top of the window and panel 2 at the
bottom of the window.

TS_SPLITVERT {Ox0002) causes the control to split the window vertically and dis­
play panel 1 in the left side of the window and panel 2
in the right side of the window. This style is ignored if
TS_SPLITHORZ is set.

TS_FANLlBITMAP {Ox0004) causes the control to display a bitmap in panel 1. If this
style is not set, text is displayed. Panel 1 is defined to be the
entire window if the control is not split.

TSJ>ANL2BITMAP {Ox0008) causes the control to display a bitmap in panel 2. If this
style is not set, text is displayed. This style is ignored if the
window is not split.

TS.AUTO {Ox0010) enables the automatic notifications to be sent to the con­
trol's owner. A TM.AUTOMATE message must be sent to
the control to begin the notification process.

The control data for the control typically contains all the information
that the control class needs to handle processing for a window of the class.
Remember that an application may create several instances of a control, which
means that several instances of the control data will exist simultaneously. Thus,
the data cannot be simply stored in a global variable, because the different
control instances would receive the same data area and conflict with each
other. The control data is typically stored in the window instance data for
the control window or alternately in allocated memory. In the second case, a
pointer to the memory is stored in the window instance data.

If the control allows applications to process the control data as an
aggregate- for instance, by passing initial values in the pCtlData parame­
ter of the WlnCreateWindow APl-a control data structure should be defined

Designing tbe Control Wladow Appllcatlon Interface 431

for public consumption. The first element of the structure must be a 16-bit
value that defines the length of the structure in order to meet the requirements
of the pCtlData parameter. The remaining elements are dependent on the
control. The structure defined for the TUTORIAL class is shown in Figure
14.1.

• Element cb specifies the length of the structure in bytes.
• Element hPnll Data specifies the data to be displayed in panel 1 of the

control. This value is interpreted as a bitmap handle if the style flag
TS_pNLl BITMAP is set, or as a pointer to text if the style flag is not set. If
the TS_SPLITHORZ style is active, the data is displayed in the top half of
the control. If the TS--SPLITVERT style is active, the data is displayed in
the left half of the control.

• Element hPnl2Data specifies the data to be displayed in panel 2 of a
split control. This value is interpreted as a bitmap handle if the style flag
TS_pNL2BITMAP is set, or as a pointer to text if the style flag is not set. The
data is displayed in the bottom half of the control if the TS_SPLITHORZ
style is active, or in the right half of the control if the TS_SPLl'IVERT style
is active.

• Element ulTimerMS specifies the number of milliseconds that the control
will delay between TN_ENTER notifications when the TS.AUTO style is
active.

Next, the control-specific messages that the control processes must be de­
fined. These messages are defined with numeric values equal to or greater
than WM_USER. Note that messages in this range may suffer from two po­
tential problems that are not typically encountered by the PM controls whose
messages reside below WM_USER: First, ill-behaved applications may inad­
vertently send these messages to unknown windows by calling the WinBroad­
castMsg API; second, multiple custom controls may define the same message.
Applications that use these controls must be especially careful that the proper
messages are sent to the proper windows. The controls themselves should also
do everything possible to ensure that parameters passed with the messages
carry valid data.

typedef st ruct ~TUTORCDATA~ {
USHORT cb;
PVOID hPnllData;
PVOID hPn12Dat a ;
ULONG ulTimerMS;

} TUTORCDATA, *PTUTORCDATA;

Figure 14.1 TUTORIAL control data.

432 PM, Your Kingdom Awaits: Creating Your Own Controls

When defining the messages for a particular control. avoid duplication
of the functionality provided by the standard Presentation Manager messages
and APis. Duplication is confusing to programmers using the control and can
increase the complexity of the control's coding when attempting to implement
the same or similar functionality for different messages. The control messages
defined for the TUTORIAL control are:

• TM.SETDATA- This message sets the bitmap handle or text pointer for
either of the control's panels. The low-order 16-bits of parameter mpl
indicate the panel whose data is to be set; a value of 1 indicates panel 1,
and a value of 2 indicates panel 2. The high-order 16-bits of mpl are treated
as a Boolean value, which indicates that the control is to be redrawn after
the data is changed. If the value is zero or FALSE, no redrawing occurs.
This allows the application to update both panels before invalidating the
window for repainting. Parameter mp2 is either a bitmap handle or a
pointer to text, depending on the style flags. The return value is TRUE if
the operation is successful or FALSE if an error occurred.

• TM.AUTOMATE-This message is used to start and stop the automation
feature of the control. Parameter mpl is a Boolean value that, when TRUE,
starts automation and, when FALSE, stops automation. Parameter mp2 is
a ULONG value that specifies the number of milliseconds between occur­
rences of the notification message from the control. If zero, the existing
value in the control data is retained. Parameter mp2 is ignored when mpl
is FALSE. The return value is TRUE if the operation is successful or FALSE
if an error occurred.

• TM_QUERYDATA-This message is used to retrieve the current bitmap
handle or text pointer for a specified panel. The low-order 16 bits of pa­
rameter mpl indicate which panel's data is to be retrieved, and is set to 1
for panel 1 and 2 for panel 2. Parameter mp2 is a pointer to the location
to store the retrieved information. The return value from the message is
TF .TEXT if the data is a text pointer, TF JHTMAP if the data is a bitmap
handle, or TF .ERROR if an error occurred.

• TM.QUERYSTATE- This message is used to retrieve the automation state
of the control. Parameters mpl and mp2 are reserved and must be set to
zero. The return value is zero if automation is not currently in progress;
otherwise, the time interval between notifications is returned.

• TM.QUERYERROR-This message is used to retrieve the last error con­
dition reported by the control and should be used in conjunction with
an error return from a control message. This message duplicates the PM
WinGetLastError API functionality because custom controls do not have
access to the PM error reporting mechanism.

Last, but by no means least, the notifications that the control sends to its
owner window must be specified. As you may have noticed, almost every con-

Coding the Custom Control 433

trol sends notifications when it receives or loses the focus. As a rule, custom
controls should also provide these notifications. Custom notifications should
also be provided for any other significant events in the control's processing,
such as receipt of special keys. No special considerations are necessary when
defining the actual numeric value of the notifications. Since the ID of the
window is provided along with the notification code, the application is respon­
sible for determining the actual notification code based on the control type if
conflicts occur. The notifications provided by the tutorial control are:

• TN.SETFOCUS indicates that the control has received the focus .
• TN.KILLFOCUS indicates that the control has lost the focus.
• TN_CLICKED indicates a single click of mouse button I over the window

or the Spacebar being pressed while the control has focus.
• TN.ENTER indicates a double-click of mouse button 1 over the window or

the Enter key being pressed while the control has focus. This notification
is also sent by the control's automation process when the specified time
has elapsed.

These notification codes are sent to the control's owner window as the
high-order 16 bits of parameter mpl of the WM CONTROL message. The con­
trol must pass its ID as the low-order 16 bits of parameter mpl. Additional
notification code-specific information may be passed in parameter mp2. Pa­
rameter mp2 for the TUTORIAL notifications is set to the window handle of
the control to facilitate messages sent from the application during processing
of the notifications.

Custom controls should also send several predefined notification messages
to the owner window. The WM.CONTROLPOINTER message is sent to the
owner when the control receives a WM..MOUSEMOVE message to allow the
owner to specify a change in the mouse pointer if necessary. This can allow
the control to appear as part of the larger window rather than have the pointer
change as it moves over the control. This also permits the application to modify
the pointer to provide special emphasis alerting the user when the pointer
is over a particular control. Controls should also forward WM_COMMAND,
WM.HELP, and WM.SYSCOMMAND messages directly to the owner window.

CODING THE CUSTOM CONTROL

This section examines the code behind the TUTORIAL control. Of course, the
code for any given control will vary depending of the functionality of the
class, but many of the general principles remain the same. The TUTORIAL
control provides a function, RegisterTutorialControl. that applications can
call to register the TUTORIAL class. As shown in Figure 14.2, the TUTORIAl.'.s
function merely calls the WinRegisterClass APl. This is the only public function

434 PM, Your Kingdom Awaits: Creating Your Own Controls

BOOL EXPENTRY RegisterTutorialControl(HAB hab)
{

return WinRegisterClass (hab, •TUTORIAL", TutorWinProc, 0, C_WINWORDS);

Figure 14.2 Registering the TUTORIAL control class.

that the class makes available to applications. All other interaction between
applications and the class occur through normal PM APis or messages.

After the class has been registered, applications can create instances of
the class by calling WinCreateWindow. This causes PM to create the window
and send a WM_CREATE message. The control should handle this message by
retrieving any control data passed to the API and using this data to initialize
its own internal copy of the data. If no control data is passed, the control
should initialize its internal copy of the data to default values. The TUTORIAL
control's processing of this message is shown in Figure 14.3.

The wmCreate function extracts a pointer to the control data from param­
eter mpl of the WM_CREATE message and then the window style from the
window instance data. If control data was passed, the function saves the data
for panel 1 in the window instance data. If the window style indicates that the
window is to be split into two panels, the data for panel 2 is also stored in

MRESULT wmCreate(HWND hwnd, MPARAM mpl, MPARAM mp2)
{

PTUTORCDATA pTCD = (PTUTORCDATA)mpl;
ULONG flStyle = WinQueryWindowULong(hwnd, QWL_STYLE);
MRESULT mr = MRFROMLONG(FALSE);

if (pTCD != NULL) {
if (pTCD->cb == sizeof(TUTORCDATA)) (

WinSetWindowPtr(hwnd, WINWORD_WINlDATA, pTCD->hWinlData);
if (flStyle & (TS_SPLITHORZ I TS_SPLITVERT)) (

WinSetWindowPtr(hwnd, WINWORD_WIN2DATA, pTCD->hWin2Data);
} /* endif *I
if (flStyle & TS_AUTO) {

WinSetWindowULong(hwnd, WINWORD_TIMERMS, pTCD->ulTimerMS) ;
} /* endif */

else {
mr = MRFROMLONG(TRUE);

} /* endif */
/* endif */

return mr;

Figure 14.3 Processing WM_CREATE in a custom control.

Codl•g the Custom Coatrol 435

the window data. Next, if the automation mode has been enabled, the interval
time is stored in the window instance data (note that the animation is not
started). The application must send the TM.AUTOMATE message to start the
notification timer.

Let's next examine how the control paints itself. One of the main differences
between control windows and normal application windows is the need for
the control window to handle the definition and painting of its borders, focus
emphasis, and so on, in addition to its contents. The wmPaint routine in Figure
14.4 shows an abbreviated version of how the TUTORIAL control handles
painting for a control window that displays text and is not split.

The wmPaint routine first loads the style flags from the window instance
data. Painting then begins when the WlnBeginPaint routine is called to obtain a
presentation space for drawing. The invalidated rectangle is then filled with the
background color. The control now retrieves the coordinates of the rectangle,
which define the entire window area so that the following calculations affect
the entire window, not just the invalid area.

With the rectangle available, the control draws its borders. In this case,
the border consists of several bands that vary in intensity and provide a thick,
three-dimensional appearance. Each band is drawn by calling the WlnDraw­
Border API. WinlnflateRect is then called to shrink the drawing rectangle in
preparation for drawing the next band. When the border is complete, Win­
InflateRect is called one final time to compute the drawing rectangle for the
control contents. This final calculation leaves a bit of space between the border
and the text or bitmap to be displayed in the body of the window.

The routine now checks the style flags for the first panel to determine the
type of data to be drawn. If the bitmap flag is not set, then text is drawn into
the window. The pointer to the text is obtained from the window instance data
and validated. If valid, GpiQueryFontMetrics, assuming for the moment that
an image font is in use, is called to make available the vertical space required
for each line of text. The function then begins scanning the text in a nested
loop. The outer loop runs as long as the zero-termination character has not
been found and executes once for each line of text. As the text is drawn, the
top of the drawing rectangle is decremented by the height of the text from
the FONTMETRICS structure. The inner loop scans the text for the newline
character. Each time a new line is found, the characters for the current line
are drawn into the presentation space with the WinDrawText API. After all the
text has been drawn, WinEndPaint is called to release the presentation space
and terminate the paint operation.

Finally, let's take a look at how the control handles the WM_SETFOCUS
message by sending notification messages to the owner window and display­
ing the keyboard cursor. The code for the control's wmSetFocus routine is
shown in Figure 14.5. The routine first obtains the owner window handle and
the window ID assigned to the control from the window instance data. If the

436 PM, Your Kingdom Awaits: Creating Your Own Controls

MRESULT \flll\Paint (HWND hwnd, MPARAM mpl , MPARAM mp2)
{

HPS bps;
RECTL rectl;
PSZ pszText ;
PSZ pszTextl;
ULONG ccbText;
FONTMETRICS fm ;
ULONG flStyle = WinQueryWindowULong(bwnd, QWL_STYLE);

if ((bps=WinBeginPaint(bwnd, NULLHANDLE, &rectl)) != NULLHANDLE) {
WinFil lRect (hps, &rectl, SYSCLR_DIALOGBACKGROUND) ;
winQueryWindowRect(hwnd, &rectl);
WinDrawBorder(hps, &rectl, 1, l, CLR_DARKGRAY, CLR_WHITE, 0) ;
WinlnflateRect(WinQueryAnchorBlock(hwnd) ,&rectl , -1, -1) ;
WinDrawBorder(hps , &rectl , l , 1, CLR_PALEGRAY, CLR_WHITE, 0);
WininflateRect(Wi nQUeryAnchorBlock(hwnd) ,&rectl , - 1, - 1);
WinDrawBorder(hps , &rectl, 1, l , CLR_WHITE, CLR_WHITE, 0);
WininflateRect (WinQUeryAncborBlock(hwnd), &rectl, -1, -1);
WinDrawBorder(hps, &rectl, l, 1, CLR_PALEGRAY, CLR_WHITE, 0 I;
WinlnflateRect(WinQueryAnchorBlock(bwnd) ,&rectl, -1, -1) ;
Wi nDrawBorder(hps, &rectl, 1, 1, CLR_DARKGRAY , CLR_WHITE, 0) ;

winlnflateRect I WinQueryAnchorBlock (hwnd) , &rectl' - 5, -5) ;
if (! (flStyle & TS_PANLlBITMAP)) {

pszText = (PSZ)WinQUeryWindowPtr(hwnd, WINWORD_WINlDATA) ;
if (pszText !- NULL) {

GpiQueryFontMetrics(hps, sizeof(FONTMETRICS), &fm I ;
pszTextl = pszText;
while (*pszTextl && rectl.yTop > 0) {

ccbText = O;
while (*pszTextl && *pszTextl++ != ' \n' l cchText++;
if (cchText) (

WinDrawText(hps , cchText, pszText , &rectl , CLR_BLACK,
CLR_WHITE, DT_TEXTATTRS I DT_WORDBREAK) ;

) /* endif */
rectl.yTop -= fm.lMaxBaselineExt ;
pszText = pszTextl;

J* endwhile */
/ * endif */

) / * endif */
WinEndPaint(bps);

) / * endif *I
return MRFROMLONG(OL);

Figure 14.4 Painting the TUTORIAL control.

Coding the Custom Control 437

MRESULT WlllSetFccus (HWND hwnd, MPARAM mpl , MPARAM rnp2)
{

HWND
US HORT
RECTL

hwndOwner = WinQueryWindow(hwnd, QW_OWNER I ;
usld = WinQueryWindowUSbort(hwnd, QWS_ID) ;
rectl ;

if ISHORT1FROMMP(mp2)) {
if (bwndOwner != NULLHANDLE) (

WinSendMsg(hwndOwner, WM_CONTROL,
MPFROM2SHORT{ usld, TN SETFOCUS) ,
MPFROMHWND (hwnd)) ;

J / * endif */
WinQueryWindowRect (hwnd, &rectl);
WininflateRect(WinQueryAnchorBlock (hwnd), &rectl, -5, -5) ;
WinCreateCursor(hwnd, rectl .xLeft , rectl .yBottorn,

rectl.xRight - rect l.xLeft,
rectl.yTop - rectl. yBottom,
CURSOR_FRAME, NULL) ;

WinShowCursor(hwnd, TRUE) ;
else {
if (hwndOwner != NULLHANDLE) {

WinSendMsg(hwndOwner , WM_CONTROL,
MPFROM2SHORT(usld, TN_KILLFOCUS) ,
MPFROMHWND (hwnd)) ;

} / * endif *I
WinDestroyCursor (hwnd);

) / * endif *I
return MRFROMLONG(OL);

Figure 14.5 The WM.SETFOCUS message.

control is receiving the focus, the low-order 16 bits of mp2 are TRUE, and
the control attempts to notify the owner and establish cursor emphasis. Before
sending the WM-CONTROL message, the control first ensures that an owner
window was provided. If so, the WM_CQNTROL message is sent to the owner
window. The low-order 16 bits of parameter mpl are set to the control's win­
dow ID, and the high-order 16 bits are set to the TN_SETFOCUS notification
code. Parameter mp2 is set to the window handle of the control. When the
owner window completes its processing of the WM_CQNTROL message, the
control creates a keyboard cursor that frames the window contents. The win­
dow rectangle is first queried and then deflated to the area inside the border
with WinlnflateRect. WinCreateCursor is called to establish a frame cursor
around the edge of the resulting rectangle, and WinShowCursor is called to
make the cursor visible.

If parameter mp2 of the WM_SETFOCUS message is FALSE, the con­
trol window is losing focus. After checking the owner window handle, the

438 PM, Your Kingdom Awaits: Creating Your Own Controls

WM-CONTROL message is again formatted, but in this instance uses the
TN_KILLFOCUS notification code. After the owner window finishes with the
WM.CONTROL message, the keyboard cursor is destroyed by calling WinDe-

stroyCursor.

A Few Words of Caution
The previous discussion, while far from giving a complete implementation of
the TUTORIAL control, covers the basics of control design and implementa­
tion. The remaining details can be gleaned from the sample program for this
chapter. We will next see how the control is packaged for efficient reuse in
many applications. But first, let's review a few key points. . .

Remember that an application will often create multiple instances of a
control. Be careful to avoid global data and other situations that can produce
unwanted interaction between controls. Also, since the control is normally
perceived to be an integral part of a larger window, avoid operations that
could affect the overall function of the larger window. For instance, a control
should not normally take or give the keyboard focus but should allow the
owner or parent window to determine which control, if any, has focus.

Also be careful to release any system resources that the control allocates
and to test the control's operation thoroughly. Since a control, once imple­
mented, is likely to find use in many applications, any deficiencies in its oper­
ation can make a whole family of applications appear bad.

Packaging the Control
Once your control is implemented, you will need to package it for use by
applications. If the control is very specific to a particular application, the
source for the control can be included as part of the application source code
and compiled along with the rest of the application. If, on the other hand, the
control is used in several applications, you will want to handle the control
much as you might any other subset of function code modules. This can be
accomplished by providing header files and object modules or libraries, but
this method embeds the control's executable code into each application. To
avoid this duplication, package the control's executable code as a Dynamic
Link Library, providing a header and library to the application developer's
and a DLL module to ship with the application executable.

The header file should provide all the information for using the control,
including the control's class name; constant definitions for the control's styles,
messages, and notifications; the control data structure definition; and any
application entry points into the control's executable code. The header file for
the TUTORIAL class is shown in Figure 14.6 as an example.

SUMMARY

J* Define a class name constant * /
ldefine WC_TUTORIAL ('TUTORIAL')

/ * Define the messages which can be sent to the control */
ldef ine TM SETDATA WM USER
ldefine TH=AUTOMATE (TM_SETDATA + 1)
ldefine TM_QUERYDATA (TM_AUTOMATE + 1)
#define TM_QUERYSTATE (TM_QUERYDATA + 1}
ldefine TM_QUERYERROR (TM_QUERYSTATE + 1

/ • Define the control styles */
#define TS_SPLITHORZ OxOOOOOOOl
ldefine TS_SPLITVERT Ox00000002
ldefine TS_PANLlBITMAP Ox00000004
ldef ine TS_PANL2BITMAP Ox00000008
ldefine TS_AUTO OxOOOOOOlO

/ * Define the WM_CONTROL notification codes */
#define TN_SETFOCUS 1
#define TN_KILLFOCUS 2
#define TN_CLICKED 3
ldef ine TN_ENTER 4

I* Define the control data structure */
typedef struct _TUTORCDATA_ (

USHORT cb;
PVOID hWinlData;
PVOID hWin2Data;
ULONG ulTimerMS;

TUTORCDATA, *PTUTORCDATA;

/ • Prototype callable functions */
BOOL EXPENTRY RegisterTutor i alControl(HAB hab);

Figure 14.6 The public header for control.

Sllmmary 439

!he ~echanics of creating a control class are actually quite simple, requir­
ing httle more eff~rt than the implementation of any PM window. Of course,
control~ ma~ be implemented that provide functionality that makes imple­
mentation difficult-consider the code that must be behind the container
control-but this is a result of the functionality, not the mechanics of con­
trol implementation. This chapter has provided you with the basic information
nee~ed to jo~rney into the wonderful world of control programming, so take
the 1~format1on and go implement that one control you always wished PM had
provided.

CHAPTER

Win, Lose, or Draw:
The Art of Drawing Bitmaps

A large part of the success of any graphical programming environment is
the ability for the developer to master the visual effect. It is imperative
that a strong programming interface exist, so that the developer can

communicate successfully with the operating system and provide a powerful
and simple interface to the user. Several of the early GUis failed because,
although they contained advanced graphical programming capabilities, there
was no architected method to fully exploit the power of the graphics subsystem.

THE PM GRAPHICS SUBSYSTEM

Three OS/2 components form the nucleus of the PM graphics subsystem.
PMGPI.DLL, is the developer interface or Graphical Programming Interface.
It contains all of the code to handle the graphical API layer. All of the code
for the API calls prefixed with Gpi are contained within this library. Through
the use of these APls, the application developer can draw and manipulate
graphical images.

The second component is the window manager or PMWIN.DLL. This li­
brary also contains simplified versions of various APis that are available to
the application developer to manipulate both text and graphic images. Also,
this library contains the code to resolve PM's usage of bitmaps. For example,
the various control windows used throughout PM contain graphical images
stored in bitmap files; PMWIN uses these bitmaps to respond to different user
events and adjust the behavior accordingly. The movement of a scroll bar, the
positioning of a frame window, or the click on the minimize button are all
examples of how PM uses bitmaps to illustrate the effect of a given function.

441

442 Win, Lose, or Draw: The Art of Drawing Bitmaps

Finally, probably the most important graphical component is the graphics
engine, PMGRE.DLL. This library contains no API support, so application de­
velopers have no direct interaction with the functions contained in the engine,
although most of the graphics-related functions resolve to worker functions
contained in the graphics engine. The graphics engine contains the actual
worker routines for bitmap manipulation, including calls to create, load, and
bit block transfer a bitmap, as well as the code required for the presentation
spaces and device contexts.

Since no GRE API exists, all calls into the engine come through a single 16-
and 32-bit entry point. The 16-bit entry point is a routine called Dispatch16,
and the 32-bit entry point is a routine called Dispatch32. If you ever are
debugging a graphical application and want to trace the calls in and out of the
engine, you can use this breakpoint to track entry and exit through the engine

routines.
The 2.1 and 2.11 releases of the operating system contain 32-bit versions

of PMGRE and PMGPI while the PMWIN code is still 16-bit (although the
API layer is 32-bit, the actual worker routines are still 16-bit). OS/2 WARP is
the first release of the operating system to contain a complete 32-bit window
manager. Because of the changes made to PMWIN, many of the limitations
that plagued the 16-bit PMWIN have been fixed. As discussed in Chapter 2,
PMGRE and PMWIN are now contained in PMMERGE.DLL.

The term graphics engine does not even begin to express the complete
functionality of the PM graphics engine component. The engine is probably
one of the most important components to the entire operating system, and it
interacts with virtually all of the graphical subsystem components. The engine
contains a powerful memory subsystem that allocates shared memory on behalf
of virtually every PM process.

THE PURPOSE OF THE SAMPLE PROGRAM
The workplace shell provides the ability to view a bitmap file as the background
of any folder (container), including the desktop. Also, the workplace shell
allows the user the ability to view a bitmap file while the workplace lockup
feature is enabled. Although the usability that the workplace shell provides is
great, using a workplace folder as purely a bitmap viewer is tedious at best.
The sample program SHOWOFF is a simple bitmap viewer that allows the user
to preview bitmap files quickly and easily. It also allows the user the ability to
change the desktop bitmap.

The code for the program also illustrates how to create the memory device
context and required presentation space, along with the necessary code for
painting the client area with the bitmapped image. The program provides the
keys for mastering the display and manipulation of bitmaps along with other
basic graphic file formats and the painting of graphic images.

Examining the Contents of Blbnap Data 443

THE COMPOSITION OF A BITMAP FILE

~ne of theth~ost powerful graphics file formats is inherent to the Presentation
. anager; 1~ file f~rmat is known as the bitmap file. The bitma is uite

literally, a umon .of bmary data (bits), that form the basis of a graphfcal'i!age
~ a r~ter device. In more simplistic terms, a bitmap is a series of bits

at, w en put together, form an image on your screen or printer. Bitmaps
are actually device-de d t · th th · · . . pen en , meanmg at e visual representation of the
image is bas.ed on the type of device upon which the image will be dis la ed
Tthhe~efore, ~1tr~aps use device coordinates rather than world coordinate~ wbe~

e image is displayed.

EXAMINING THE CONTENTS OF BITMAP DATA

To understand what a bitmap l ks l.k 1 ' · b" oo i e, et s create a simple monochrome
·~map from scratch. Each bit in the bitmap corresponds to a pixel or pel
~~l and.pel both mean the same thing, it just depends on which side of the

tennmolo~ t~ack you are on). The bits are stored as a BITE arra . The
?ottom row of bits m the array is stored first in the bitmap; the top row ~f bits
~ sto~ed las.t. The bytes are stored from left to right so that the first byte is the

b~tst e1ghdt p1xel.s from left to right. For example, consider the primitive arrow
l map rawn m the grid in Figure 15 .1.

Iml ll DDDD
DDDDDD

D fll DDDDD
DDllDDDD

DDDDllDDD
DDDDD ll DD
DDDDDD D

Figure 15.1 A simple monochrome bitmap.

444 Win, Lose, or Draw: The Art of Drawing Bitmaps

GJ000GJGJGJ0
00GG0000
GJGC£JG0000
0G000G00
0G0GGJG00
0G0G0000
0G0GGJ0GJGJ

Flgwe 15.2 The bitmap bits.

:a.ottaa row or array

!l'op row or array

b . 8 8 bitmap· nothing magical here. Now,

Figure 15.1 represents a asic x. th id with a 1 to represent black,

if you replace all of the bl~ckthsqua~des I~ : g1" to represe~t white, you have a

and all the white squares m e g~ WI '.
2

series of bits that represents the bitm;p (See:~~;; 1~~ ~~nvert all of the bits

Now, to create our bitmap array or. our i E arra The bottom row of

in the bitmap to hexadecimal and~ s:e\~p~::Ythe arr~~ (See Figure 15.3).

the bitmap actually correspon s 0

The Bitmap File Format Structures .

. rf k £ ent use of the bitmaps

The Presentation Manager user mtethace ma eFsorrethque most part the bitmap

. · tr Is across e screen. '
to simulate movmg con ° ·

1
2 x QS/2 WARP. and

file format is relatively similar between PM versions .x, . , '

BYTE abArrow (l =
Ox02 OxOO OxOO OxOO
Ox04 OxOO OxOO OxOO
Ox08 OxOO OxOO OxOO
Ox90 OxOO OxOO OxOO
OxaO OxOO OxOO OxOO
OxcO OxOO OxOO OxOO
OxfO OxOO OxOO OxOO

figure 15•3 Turning the bitmap into an array.

Eramlnlag the Contents of Bitmap Data 445

even the Microsoft Windows bitmap file format; pointers and icons are also

composed of bitmaps. There are three important structures that all bitmaps

use. The definitions of the bitmap data structures are resolved in PMBITMAP.H.

NOTE: The bitmap structures have changed from previous versions of PM,

but PM still contains support for the old structure formats for compatibility

with 1.x PM applications. The new 2.x bitmap structure formats contain a "2"

at the end of the structure name. Unless you are writing an application that

needs the compatibility, it is beneficial to use the new structure format.

The BltmaplnfoHeader Structure

The BitmaplnfoHeader structure contains the information regarding the phys­

ical composition of the bitmap image. The format of the complete data struc­

ture is given in Figure 15.4. Since the first five parameters of the structure are

the really important elements with regard to the characteristics of the bitmap,

the structure may be truncated after the cBitCount element.

• The cbFix parameter is the size of the stucture.

• The ex element of the structure is the horizontal width of the bitmap in

pels.

• The cy element of the structure is the vertical height of the bitmap in pels.

typedef s truct _BITMAPINFOHEADER2 // bmp2
{

ULONG cbFix;
ULONG ex;
ULONG Cy;

USHORT cPlanes;
USHORT cBitCount;
ULONG ulCompressi on;
ULONG cbirnage;
ULONG cxResolution;
ULONG cyResol ution;
ULONG cclrused;
ULONG cclrimportant;
USHORT usUnits;
USHORT usReserved;
USHORT usRecording;
USHORT usRendering;
ULONG cSizel ;
ULONG cSize2;
ULONG ulColorEncoding;
ULONG ul identifier;

} BITMAPINFOHEADER2;

typedef BITMAPINFOHEADER2 FAR *PBITMAPINFOHEADER2;

figure 15.4 The BllmaplnfoHeader2 data structure.

44& Win, Lose, or Draw: The Art of Drawing Bitmaps

• The cPlanes element of the structure contains the number of bit planes
within the bitmap.

• The cBitCount element contains the number of bitmap bits per pel withm
the bit plane. . .

• The ulCompression element contains the type of compresssion algon~
that can be used to compress the size of the bitmap. The compression
constants are defined in PMBITMAP.H as:

BCA_UNCOMP OL uncompressed.
BCA..HUFFMAN1D 3L a modified form of Huffman compression that is used for a 1-bit

per pel bitmap.
BCA..RLE4 2L represents a 4-bit per pel run-length encoded bitmap.
BCA_RLE8 IL represents an 8-bit per pel run-length encoded bitmap.
BCA_RLE24 4L represents a 24-bit per pel run-length encoded bitmap.

• The cblmage element is the length in bytes of the bitmap storage area. If
no form of bitmap compression is used, this paraI?eter should b~ zero.

• The cxResolution element corresponds to the honzontal resolution of the
output device that the bitmap will be displayed on. The resolution is in the
form of the units specified in the us Units field of the structure.

• The cyResolution element corresponds to the vertical resolution of the
output device that the bitmap will be displayed on.

• The cclrUsed element represents the number of color indexes that will be
used in the bitmap.

• The cclrlmportant element is the smallest number of color indexes that
are required to display the bitmap on the output device. Although more
colors can be in the bitmap, it is overkill to assign them to the palette of
the device.

• The usUnits element represents the unit of measure for the resolution of
the output device that the bitmap will be displayed on. The default value
is the only measurement unit defined in PMBITMAP.H, BRU..METRIC,
which implies the metric unit of measurement. . .

• The usReserved element is reserved and must be zero if this element of the
structure is used.

• The usRecording element specifies the algorithm that is used to record
the bitmap data. The default is BRA BOTTOMUP, which indicates that the
scan lines are actually recorded from the bottom up.

• The usRendering element specifies the algorithm that is used to rec<:>rd
bitmap data that has been altered through digital halftoning. The following
constants are defined for halftoning.

BRH_NOTHALFTONED OL the default value indicating no halftoning.
BRH_ERRORDIFFUSION IL indicates that the error diffusion algorithm has been used

for halftoning.

Examining Illa Contents of Blbnap Data 447

2L represents the Processing Algorithm for Non-Coded Doc­
ument Acquisition.

BRH_SUPERCIRCLE 3L indicates that the super circle algorithm has been used
for halftoning.

• The cSizeJ value is used in conjunction with the halftoning element. If
the usRendering value is either BRH_pANDA or BRH_SUPERCIRCLE,
then this value represents the horizontal size of the pattern in pels. If the
usRendering value is BRH_ERRORDIFFUSION, then this value is used to
represent the error damping percentage.

• The cSize2 value is the vertical size of the pattern in pels if either the
BRH_pANDA or BRH_SUPERCIRCLE halftoning algorithms is applied.
If the BRH_ERRORDIFFUSION halftoning algorithm is used, then this
value is not relevent.

• The ulColorEncoding element specifies the color encoding that is to be
used. The valid values are:

BCE_RGB OL the default value indicating that each element in the color array is
based off an RGB2 structure.

BCE_pALETTE lL indicates that each element in the color array is derived from the
palette.

• The ulldentifier element is not used and is reserved for application use.

There is also a Bitmaplnfo2 structure defined in PMBITMAP.H which is
virtually the same as the BitmaplnfoHeader2 structure except that it contains
an additional element, an RGB2 data structure.

The 32-bit BltmapFlleHeader Structure
The second important bitmap structure is the BitmapFileHeader2 structure
which contains information regarding the format of the actual bitmap file. The
last element of this structure is the BitmaplnfoHeader2 structure. The format
of this structure is shown in Figure 1 S.S.

typedef s truct _BITMAPFILEHEADER2 II bfh2
{

USHORT usType;
ULONG cbSize;
SHORT xHot spot;
SHORT yHotspot;
ULONG offSits;
BITMAPINFOHEADER2 bmp2;

} BI TMAPFILEHEADER2;
typedef BITMAPFILEHEADER2 FAR *PBITMAPFILEHEADER2;

Figura 15.5 The BitmapFilaHaader2 structure.

448 Win, Losa, or Draw: The Art of Drawing Bitmaps

BFTJCON
BFT..BMAP

• The usType element is used to represent the type of bitmap file format. The
valid file type formats include:

Ox4349 // ' IC' Icon File 'fype

Ox4d42 II 'BM' Bitmap File Type

BFT_FOINTER Ox5450 II 'PT' Pointer File 'fype

BFT_COLORICON Ox4943 //'CI' Color Icon File 'fype

BFT .COLORPOINTER Ox5043 II 'CP' Color Pointer File 'fype

BFT ..BITMAPARRAY Ox4142 II 'BA' Bitmap Array File 'fype

• The cbSize element is the size of the structure in bytes. Applications can
query this value to determine if the bitmap file is using the 32-bit format
or the older 16-bit format.

• The xHotSpot is the horizontal coordinate representing the point of action
for an icon or pointer. This field is ignored for bitmaps.

• The yHotspot is the vertical coordinate representing the point of action for
an icon or pointer. This field is ignored for bitmaps.

• The of{Bits element is the offset in bytes from the beginning of the file to
the beginning of the actual bitmap data.

Although there are several different types of bitmap files that were de­
scribed, only two of the six bitmap file types actually end in the .BMP file ex­
tension, indicating that the file is a standard bitmap image file. The BFT ..BMAP
format is composed of a single bitmap file, thus it contains a BitmapFile­
Header2 data structure, the RGB color table structure, and the actual bitmap
data. The BFT.BITMAPARRAY file type is used to store several individual
bitmaps in a single bitmap file. Since bitmaps are device-dependent graphi­
cal images, the bitmap array file type is designed to allow the developer to
store multiple versions of the same image that are modified to provide the best
resolution on multiple video displays or other raster devices. This allow~ a
different bitmap of the same image to be displayed so that a 640 x 480 vers~on
of the image is displayed on VGA video devices, while a 1024 x 768 version
of the image is displayed on a SVGA or XGA display that supports .that reso­
lution. Physically, the only difference between the two file forrna~ is that the
bitmap array file format contains one additional structure-the bitmap array
file header structure. The format of the structure is shown in Figure 15.6.

• The usType element represents the type of bitmap file format.
• The cbSize element is the actual size of the structure in bytes.
• The of{Ne.xt element is the offset to the next bitmap array file header struc·

ture from the start of the file.
• The cxDisplay element represents the horizontal resolution of the the de-

vice that the bitmap is to be displayed on.

Drawing within a PM Wl•dow 449

typedef struct _BITMAPARRAYFILEHEADER2 // bafh2
{

USHORT uSType;
ULONG cbSize;
ULONG offNext ;
USHORT cxDisplay;
USHORT cyDisplay;
BITMAPFILEHEADER2 bfh2 ;

} BITMAPARRAYFILEHEADER2 ;
typedef BITMAPARRAYFILEHEADER2 FAR *PBITMAPARRAYFILEHEADER2;

Figure 15.& The BltmapArrayflleHeader2 structure.

• The cyDisplay element represents the vertical resolution of the device that
the bitmap is to be displayed on.

• The b"fh2 element is a BitmapFileHeader2 structure.

THE COLOR TABLE STRUCTURE

Virtually every color on the face of the earth is derived from some combination
of the colors red, blue, and green. Thus, it is easy to combine different variances
of these colors to form other colors (See Figure 15.7). The first 8 bits correspond
to red, while the second 8 bits correspond to green, and the last 8 bits are blue.

DRAWING WITHIN A PM WINDOW

The presentation space (PS) is the paradigm provided by the Presentation
Manager to allow the application the ability to draw within a window. All
drawing within a PM application is done through the presentation space. Any
PM application can create and maintain multiple presentation spaces; each
PS defines a different environment for drawing. In order to draw within a
presentation space, an application obtains a presentation space handle, or
HPS.

The presentation space is the canvas that is used for drawing within the
PM environment. Any given window that is used to illustrate the drawing may
only be showing a subset of the image that is contained within the presentation
space. A presentation space is associated to a particular device conte.xt (DC)
to represent where the drawing will be displayed. The device context is the
paradigm used to represent the actual physical output device on which the
drawing will occur. The device context can represent either printers or video
devices.

450 Win, Lose, or Draw: The Art of Drawing Bitmaps

Color

Red
Green
Blue

Black
White

Yellow

Cyan

RGBValue

OxFFOOOO
OxOOFFOO
OxOOOOFF

OxOOOOOO
OxFFFFFF

OxFFFFOO

OxOOFFFF

Magenta OxFFOOFF

• All Red, no Green or Blue.
• All Green, no Red or Blue.
• All Blue, no Red or Green.

• Black is the absence of color.

255,0, 0
0,255, 0
0,0, 255

• White is the complete presence of red, green and
blue.
255, 255, 255.

• Yellow is the presence of red and green, but the
absence of blue.
255, 255, 0.

• Cyan is the presence of green and blue, but the
absence of red.
0, 255, 255.

• Magenta is the presence of red and blue, but the
absence of green.
255, 0, 255.

• You can create different colors by varying the RGB values

Orange OxFF7FOO • A form of Orange can be derived from the presence
of red, some green and the absence of blue.
255, 127, 0.

Gray Ox7F7F7F • The color Gray can be derived from half of red, green
and blue.
127, 127, 127.

• The RGB structure looks like this:

typedef struct _RGB2
(
BYTE bBlue;
BYTE bGreen;
BYTE bRed;
BYTE fcOptions;

) RGB2;
typedef RGB2 *PRGB2;

II rgb2

/I Blue component of the color definition
II Green component of the color definition
II Red component of the color definition
II Reserved, must be zero

Standard Bitmap Formats:

Format

2 color bitmap (monochrome)
16 color bitmap
256 color bitmap
16.7 million color bitmap

Figure 15.7 Creating colors.

Bits per pel

1
4
8

24

Drawing within a PM Window 451

The purpose of the device context is to interpret and then translate all
graphics commands used by the presentation space into the visible image that
will appear on the output device. An application must obtain a device context
handle to represent the device context. The device context handle is also known
as the HDC. The PS and DC combination allow the developer the luxury of not
wonying about displaying graphics on individual physical devices, since the
same graphics functions provided by the PM graphical programming interface
(Gpi) can be used for different display types.

The different display drivers contain the necessary code to handle the
translation of the graphical image to the raster device. In reality, a printer
device driver is nothing more than a display driver. Under the 1.x version
of OS/2, the DISPLAY.DLL module contained code specific for the display
adapter. Ironically, under OS/2 version 2.x and higher, no display-specific code
actually exists in DISPLAY.DLL, and its purpose is to provide rasterization for
the printer device. Under the WARP release of OS/2, the print rasterizer has
been renamed to PMPRE.DLL, although the DISPLAY.DLL module that is the
same code still exists for backward compatibility.

There is a third type of device context that is not associated with either a
display or printer; it is called the memory device context. The memory DC is a
powerful tool that can be used to greatly improve the performance of drawing
within an application. The memory DC is designed to simulate a raster device
in function, but since the device context is in memory, the manipulation of the
image through the memory DC is much faster and totally transparent to the
user so that the image can be redrawn and displayed to the user quickly. The
graphics function GpiBitBlt is used to copy the individual bits to or from a
presentation space that is associated with a memory device context.

Figure 15.8 shows the typical usage of the memory device context. The
bitmap is first copied to a memory presentation space within a memory device
context. The image can then be manipulated within the memory device context
before finally being displayed within the display window. The SHOWOFF pro­
gram uses the memory device context to draw the bitmap very quickly within
the client window. This allows for smoother painting of the client window
when sized or updated.

Understanding Presentation Spaces
There are three basic types of presentation spaces designed for drawing in the
PM environment, and each type includes its own benefits and limitations. A
well-written application makes the best use of different types of presentation
spaces based on the requirements of the user. The three types of presentation
spaces that can be used within the PM environment for drawing are the cached
micro, the mirco, and the normal presentation spaces.

The cached-micro PS is the most basic of the presentation space types
since it offers the ability to draw the image only on the screen, within a given

..........

452 Win, Lose, or Draw: The Art of Drawing Bitmaps

Memory
Presentation Space

hpst.4em

bdcMt11n

Memory Device

Context

1111
BitBlt

Figure 15.8 Understanding the memory device context.

Window
Presentation Space

hpsScreen

hdcScr•tm

Window Device

Context

· d Although it is the fastest of the presentation space types, it is also the
:.~Ji:~ provides the least flexibility and functionality. It is also the only ~ne
that offers window manager {WIN) APls to create and destroy the presentation

spa<:;he micro PS is more powerful than the cached-micro p:esent~~ondsp~:
since it offers more of the functionality provid~d by the G_Pt, com. me i:~l
the ability to output to all different types of devices. The micro PS is. typ Y
slower than the cached-micro, but is faster than the normal presentation space

and uses less memory. rful nd com-The normal presentation space is the slowest, yet most powe . a .
plex of the presentation space types. It offers the complete functio~ality ~ro­
vided by the Gpi and, like the micro PS, allows the output to be 1recte to
different types of devices.

Using a cached·Mlcro PS within Regular Paint Processing

The cached-micro PS is very simple to use a.nd. very fas~ to ~~pl~men:i· It ~
be created as part of the normal window pamtmg functio~ ity Y .ca mg e
WinBegtnPaint and WinEndPaint APls. These two functions typically form

Drawing within a PM Window 453

HPS APIENTRY WinBeginPaint (HWND hwnd,
HPS hps,
PRECTL pr clPaint);

Figure 15.9 The WlnBeglnPalnt API.

the nucleus of the painting operations within a PM program. The functions
are called within the context of the window paint message WM_pAJNT. The
purpose of obtaining the presentation space within the paint message is to
allow the application to simply paint the window every time it receives the
WM_pAJNT message. The presentation space is typically obtained each time
the paint message is processed and released as the application returns from
the message. If more complex painting is required by the window, this method
of painting becomes tedious since the application will have to establish the
attributes for the presentation space each time the paint message is processed.
For applications that require the modification of presentation space attributes
such as colors or fonts, using this method of painting becomes difficult to
manage since the presentation space attributes also have to be created every
time the presentation space is obtained within the WM_pAJNT message.

The format of the WinBeginPaint API is given in Figure 15.9.

• The hwnd parameter specifies the handle of the window that is going to
be painted.

• The hps parameter is set to NULLHANDLE to obtain a cached-micro PS.
If another presentation space handle is specified, it effectively sets the
clipping region to the update region of the window specified by the hwnd
parameter.

• The prclPaint parameter specifies a pointer to a RECTL structure that will
be used to return the surrounding rectangle of the paint region.

The function will return NULLHANDLE if an error occurs; otherwise, the func­
tion will return the handle of the newly created presentation space. The mouse
pointer is hidden during the paint operation and is restored with WinEndPaint
when the painting is complete.

Once the painting process is complete, the WinEndPaint function is used
to conclude the painting of the window. Like the WinBegtnPalnt function,
the WinEndPaint function is called within the context of the paint message,
WM_PAINT. The format of the WinEndPaint function is shown in Figure 15.10.

BOOL APIENTRY WinEndPaint(HPS bps);

Figure 15.10 The WlnEndPalnt API prototype.

454 Win, Losa, or Draw: The Art of Drawing Bitmaps

HPS APIENTRY WinGetPS(HWND hwnd};

Figure 15.11 The WlnGetPS API.

• The hps parameter specifies the handle of the presentation space that was
used for the drawing. It is the same PS handle that was returned by the
WinBeginPaint function.

The function will return TRUE if successful and FALSE if an error oc­
cured ending the paint operation. When this function is used to end a cached
presentation space, the PS is once again returned to the cache. Also, all child
windows that use the synchronous window painting style (CS_SYNCPAINT)
with the window associated to the presentation space will be repainted if the
update region contains valid coordinates.

Using a Cached~Mlcro PS outside Regular Paint Processing

The other method of creating and destroying a cached-micro PS is by using the
built-in presentation space functions WinGetPS and WlnReleasePS. Using this
method is more effective for applications that will need to modify their window
drawing process, because the application can explicitly modify elements of the
presentation space that can be used throughout the duration of the program.

The format of the WlnGetPS API is shown in Figure 15 .11.

• The hwnd parameter specifies the handle of the window for which the
cached-micro PS is to be created.

The function will return a valid cached-micro PS handle that can be used
as the second parameter to WinBeginPaint every time the window updates
its client area via a WM_PAINT message. This allows the visible region to
be updated while leaving the presentation space attributes unaltered, so that
every time the window receives a paint message it does not have to re-create
the presentation space attributes along with the presentation space.

USING WINDRAWBITMAP

The PMWIN code provides a simple, yet powerful API to manipulate and
display bitmaps within a specified presentation space. The WinDrawBitmap
function provides an easy method of drawing bitmaps quickly and easily us­
ing the current image colors and mix modes. This function will resolve to
the worker routine in the graphics engine for GpiBitBlt. The purpose of the
function is to draw the contents of a bitmap into a specified rectangle within a
presentation space.

Using WlnDrawBltmap 455

The format of the WinDrawBitmap API is shown in Figure 15.12.

• The hpsDst parameter specifies the handle of the presentation space that
the bitmap is to be drawn on.

• The hbm parameter is the handle of the bitmap that is to be drawn within
the presentation space.

• The prclSrc parameter specifies a pointer to a rectangle structure. The
rectangle is used to determine the part of the bitmap that will be drawn.
If this value is NULL, then the entire bitmap specified by hbm is drawn
withi.n the presentation space. If this value is not NULL, thereby containing
a vahd rectangle, the part of the bitmap specified by the rectangle is the
only part that is actually drawn. Each of the values in this structure must
be within the range of a SHORT.

• The pptlDst parameter specifies the coordinates of the bitmap's destination
in device coordinates.

• The clrFore parameter is simply the foreground color of the bitmap. This
val~e is o~ly used if the bitmap to be drawn is a monochome bitmap. All
Os m the bitmap are drawn using this color.

• The clrBack parameter is simply the background color of the bitmap. This
val~e is on_ly used if the bitmap to be drawn is a monochrome bitmap. All
ls m the bitmap are drawn using this color.

• The fl parameter specifies the flags that are used to determine how the
bitmap will be drawn. These values correspond to the raster operations
flags in GplBitBlt. The valid flags include:

DBM-NORMAL OxOOOO specifies that the bitmap will be drawn normally. Corre-
sponds to ROP_SRCCOPY.

DBM.INVERT OxOOOl specifies that the bitmap will be drawn inverted. Corre-
sponds to ROP _NOTSRCCOPY.

DBM..HALFrONE Ox0002 specifies that the bitmap will be drawn halftoned. It can
be used in conjunction with either the DBM-NORMAL or
DBM_INVERT flags.

DBM_STRETCH Ox0004 specifies that the bitmap will be stretched within the rect­
angle specified by the two points in the POINTL structure
passed in the pptlDst parameter.

BOOL APIENTRY WinDrawBitmap (HPS
HBITMAP
PRECTL
PPOINTL
LONG
LONG
ULONG

Figure 15.12 The WlnDrawBltmap prototype.

hpsDst ,
hbm,
prclSrc,
pptlDst,
clrFore,
clrBack,
fl) i

r-r-

II

I

I

I 1

I

11

I

456 Win, Lose, or Draw: The Art of Drawing Bitmaps

DBM-1MAGEAITRS Ox0008 specifies that the monochrome-to-color-bitmap conversion
will use the image attributes. If this flag is used, the clrFore
and clrBack parameters are ignored.

This function will return TRUE if the call is successful and FALSE if the call
fails.

USING THE BIT BLOCK TRANSFER FUNCTION-GPIBITBLT

TXl , 1Y1
TX2, 1Y2
SX1, SY1

The graphics engine provides a powerful set of functions that are used to
copy bitmaps within memory. The process of copying a bitmap within a given
rectangle from one presentation space to another is known as the bit-block
transfer copy method or bitblt (pronounced bitblit) for short. The PM graphics
programming interface library (PMGPI) contains a function that allows the
developer to access the bit block copy function. The function is called GpiBitBlt
and its format is shown in Figure 15.13.

• The hpsTarget parameter contains the presentation space handle that the
bitmap is being copied to.

• The hpsSource parameter contains the presentation space handle that the
bitmap is being copied from.

• The)Count value is used to specify how many points will be contained in
the point array specified by the aptlPoints parameter. If this value is 3, the
source rectangle is the same size as the target rectangle. If the value is 4,
then the bitmap will be stretched or compressed accordingly, based on the
options specified by the flOptions parameter.

• The aptlPoints parameter is an array of values containing the coordinates
of the target and source rectangles used in the bit block transfer. The values
correspond to the following:

specifies the lower left comer of the target rectangle.

specifies the upper right corner of the target rectangle.

specifies the lower left corner of the source rectangle.

LONG APIENTRY GpiBitBl t(HPS
HPS
LONG
PPOINTL
LONG
ULONG

hpsTarget ,
hpsSource,
! Count ,
aptlPoints,
lRop,
f!Options) :

Figure 15.13 The GplBltBlt function prototype.

Using the Bit Block Transfer Functlon-GplBltBlt 457

Sx2, SY2 specifies the upper right comer of the source rectangle. The SX2 and SY2 values
are only valid if the value passed in ICount contained a 4, indicating that the
bitmap is to be compressed or stretched.

BBO_OR

BBOAND

• The IRop parameter is used to specify the raster operations. These are the
valid ROP flags defined in PMGPI.H.

ROP_SRCCOPY OxOOCCL
ROP_SRCPAINT OxOOEEL
ROP_SRCAND Ox0088L
ROP _SRCINVERT Ox0066L
ROP _SRCERASE Ox0044L
ROP ..NOTSRCCOPY Ox0033L
ROP ..NOTSRCERASE OxOOl lL
ROP ..MERGECOPY OxOOCOL
ROP ..MERGEPAINT OxOOBBL
ROP _pATCOPY OxOOFOL
ROP _pATPAINT OxOOFBL
ROP _pATINVERT OxOOSAL
ROP ..DSTINVERT OxOOSSL
ROP..ZERO OxOOOOL
ROP_ONE OxOOFFL

• The flOptions parameter contains flags that determine how the copied
image is to be compressed. The remaining bits, 15-31, may be used to offer
support for a private raster device. The predefined values are:

OL indicates that a logical OR operation will be performed on
the eliminated rows or columns. This is typically used for
white on black images, and this value is the default.

1 L indicates that a logical AND operation will be performed on
the eliminated rows or columns. This is typically used for
black on white images.

BBO_IGNORE 2L indicates that the eliminated rows or columns are ignored
on compression so the alteration of the image when com­

BBO-PALCOLORS
pressed is dependent on the colors of the bitmap itself.

4L indicates that a palette color table is used for the current
palette, in replacement of actual colors.

The GpiBitBlt function will return GPLOK, which is TRUE, if successful.
The function will return FALSE, which is also GPLERROR, if an error oc­
curred. The function can also return GPL.HITS, which is used to indicate the
number of correlation hits.

456 Win, Losa, or Draw: The Ari of Drawing Bitmaps

DBMJMAGEATTRS Ox0008 specifies that the monochrome-to-color-bitmap conversion
will use the image attributes. If this flag is used, the clrFore
and clrBack parameters are ignored.

This function will return TRUE if the call is successful and FALSE if the call
fails.

USING THE BIT BLOCK TRANSFER FUNCTION-GPIBITBLT

TXl, 1Yl
TX2, 1Y2
SXl, SYl

The graphics engine provides a powerful set of functions that are used to
copy bitmaps within memory. The process of copying a bitmap within a given
rectangle from one presentation space to another is known as the bit-block
transfer copy method or bitblt (pronounced bitblit) for short. The PM graphics
programming interface library (PMGPI) contains a function that allows the
developer to access the bit block copy function. The function is called GpiBitBlt
and its format is shown in Figure 15.13.

• The hpsTarget parameter contains the presentation space handle that the
bitmap is being copied to.

• The hpsSource parameter contains the presentation space handle that the
bitmap is being copied from.

• The (Count value is used to specify how many points will be contained in
the point array specified by the aptlPoints parameter. If this value is 3, the
source rectangle is the same size as the target rectangle. If the value is 4,
then the bitmap will be stretched or compressed accordingly, based on the
options specified by the flOptions parameter.

• The aptlPoints parameter is an array of values containing the coordinates
of the target and source rectangles used in the bit block transfer. The values
correspond to the following:

specifies the lower left comer of the target rectangle.
specifies the upper right comer of the target rectangle.
specifies the lower left comer of the source rectangle.

LONG APIENTRY GpiBitBlt(HPS
HPS
LONG
PPOINTL
LONG
ULONG

hpsTarget,
hpsSource,
I Count,
aptlPoints,
lRop,
flOptions);

Figura 15.13 The GplBltBlt function prototype.

Using the Bit Block Transfer Functlon--lplBltBlt 457

Sx2, SY2 specifies the upper right comer of the source rectangle. The SX2 and SY2 values
are only valid if the value passed in !Count contained a 4, indicating that the
bitmap is to be compressed or stretched.

BBO_OR

BBO...AND

• The lRop parameter is used to specify the raster operations. These are the
valid ROP flags defined in PMGPl.H.

ROP _SRCCOPY OxOOCCL
ROP _SRCPAINT OxOOEEL
ROP_SRCAND Ox0088L
ROP _SRCINVERT Ox0066L
ROP_SRCERASE Ox0044L
ROP..NOTSRCCOPY Ox0033L
ROP ..NOTSRCERASE OxOOl lL
ROP _MERGECOPY OxOOCOL
ROP_MERGEPAINT OxOOBBL
ROP _pATCOPY OxOOFOL
ROP _pATPAINT OxOOFBL
ROP _pATINVERT OxOOSAL
ROP _DSTINVERT OxOOSSL
ROP.ZERO OxOOOOL
ROP_ONE OxOOFFL

• The flOptions parameter contains flags that determine how the copied
image is to be compressed. The remaining bits, 15-31, may be used to offer
support for a private raster device. The predefined values are:

OL indicates that a logical OR operation will be performed on
the eliminated rows or columns. This is typically used for
white on black images, and this value is the default.

1 L indicates that a logical AND operation will be performed on
the eliminated rows or columns. This is typically used for
black on white images.

BBO_IGNORE 2L indicates that the eliminated rows or columns are ignored
on compression so the alteration of the image when com­

BBO_PALCOLORS
pressed is dependent on the colors of the bitmap itself.

4L indicates that a palette color table is used for the current
palette, in replacement of actual colors.

The GpiBitBlt function will return GPLOK, which is TRUE, if successful.
The function will return FALSE, which is also GPLERROR, if an error oc­
curred. The function can also return GPLHITS, which is used to indicate the
number of correlation hits.

458 Win, Lose, or Draw: The Art of Drawing Bitmaps

The bit-block transfer is an effective method of copying bitmaps from one

PS to another quickly and easily. The window manager code makes frequent

use of the bitblt worker routines within the graphics engine to copy bitmaps

across the screen.

CHANGING THE DESKTOP BITMAP

The workplace shell provides a wealth of functionality, including the ability to

customize the background of the container window that is used represent the

folder paradigm. Have you ever strolled by someone else's desk and admired

their desktop bitmap? Through the use of the settings for the folder object, any

user can "jazz up" the background of the folder by displaying a bitmap within

the folder's background. Since the desktop window itself is represented by a

folder, the user can customize the desktop container by adding a bitmap to its

background.
Unfortunately, changing the desktop's bitmap via the Desktop settings is

not exactly the most convenient way to view a bitmap, since it requires opening

the settings notebook and turning to the background page every time you want

to replace the desktop bitmap. Finding a programmatic solution to changing

the desktop bitmap is probably one of the most frequently asked questions

in IBM PM programming forums. Fortunately, changing the desktop bitmap

is a relatively simple task, although it becomes somewhat perplexing if you

actually read the documentation.
The Presentation Manager provides two APis that can be used to query the

desktop information and set the desktop background bitmap. The two APis are

WinQueryDesktopBkgnd and WinSetDesktopBkgnd respectively. The problem

with these APis is that they are designed to work outside the context of the

container control, which means they do nothing for changing the workplace

shell's background. In other words, the purpose of the WinSetDesktopBkgnd

function is to allow an application that replaces the shell to set the appropriate

background information. This function does not allow the caller to change the

workplace shell's desktop background.
In order to change the workplace shell's desktop background bitmap, you

have to actually update the contents of the folder by calling the WinCreateOb­

ject APL The code fragment in Figure 15.14 uses the standard file dialog to ob­

tain a fully qualified path to a bitmap file and then dispatches a worker thread

to update the workplace shell's desktop background. The WinChangeDesktop­

Bitmap function is designed to change the background bitmap. The primary

goal of this function is to build the required OBJECTID string needed for

the call to WinCreateObject. The string that the function will build looks like

this:

"OBJECTID=<WP_DESKTOP>;BACKGROUND=X:\\XXX\\XXX\\BITMAP.BMP",

Clluglng Iba Desktop Bitmap 459

BOOL WinChangeDesktopBitmap(HWND hwndFrame PUCHAR szBitmap)
{

I

static UCHAR szDesktopBuffer[CCHMAXPATH);
UCHAR szPathAndFilename[160);
FILEDLG filedlg;
APIRET re;
TID tid;

if (szBitmap)
{

strcpy (szPathAndFilename, szBitmapJ;
strcpy (szDesktopBuffer, "\"OBJECTID=<WP_DESKTOP>;BACKGROUND=•);

}strncat(szDesktopBuffer, szPathAndFilename, sizeof(szPathAndFilename));

else
(

memset(&filedlg. 0,
filedlg .cbSize
filedlg. fl
filedlg.pszTitle

sizeof(filedlg) J;
= sizeof(filedlg);
= FDS_CENTER I FDS_OPEN_DIALOG;
= "Change Desktop Background Bitmap•;

strcpy(filedlg.szFullFile,•*.BMP"); //File Filter= BMP Files

if (WinFileDlg(HWND_DESKTOP, hwndFrame, &filedlg) && filedlg.lReturn == DID OK)
{ -
strcpy (szPathAndFilename, filedlg.szFullFile);
strcpy (szDesktopBuffer, "\"OBJECTID=<WP_DESKTOP>;BACKGRO!JND=");

}strncat(szDesktopBuffer, szPathAndFilename, sizeof(szPathAndFilename));

re = DosCreateThread(&tid,
(PFNTHREAD)DesktopBackgroundThread,
(ULONG)szDesktopBuffer,

if (re != NULLHANDLE)
(

0,
8192);

DisplayMessages(NULLHANDLE, 'Error Dispatching Worker Thread', MSG_ERRORJ;
return TRUE;

}

return FALSE;
}

Rtunt 15.14 The WlnChangeDesktopBilmap function.

460 Win, Lose, or Draw: The Art of Drawing Bitmaps

where X:\ \XXX\ \XXX\ \BITMAP.BMP is a valid path and file name to a bitmap
file.

If the caller passed a valid path and file name to a bitmap in szBitmap, then
the function will attempt to use that bitmap to set the desktop background.
Otherwise, the function works by first obtaining the path and file name of
the bitmap file from the user through the use of the standard file dialog. The
path and file name returned in the filedlg .szFullFile element are stored in the
szPathAndFilename string. From there, the first part of the OBJECTID string
is copied into szDesktopBuffer.

Finally, the szPathAndFilename string is added to the end of szDesktop­
Buffer, which means that szDesktopBuffer contains the complete OBJECTID
string required for WinCreateObject. The function then dispatches a separate
worker thread by calling DosCreateThread, to complete the processing of the
desktop bitmap change. The use of the separate thread is required to not tie
up system input while the bitmap is being loaded. This handy little API is one
that most developers really wish existed within PMWIN. Like any other PM
API. the function will return FALSE on error, meaning it is unable to dispatch
the worker thread, and will return TRUE if it was successful.

Figure 15.15 shows the code fragment for the worker thread.
This needs to be a PM-based thread to make the appropriate WIN calls;

thus, the thread routine calls Winlnitialize and WinCreateMsgQueue. The
first real thing the routine does is to set the pointer to the WAIT pointer by
calling the WinQuerySysPointer and WinSetPointer APis. The WAIT pointer
is required to indicate to the user that the application is busy doing something.
The most important objective of the routine is to update the desktop folder by
calling WinCreateObject.

static VOID EXPENTRY DesktopBackgroundThread(PUCHAR szDesktopBuffer)
{

HAB habThread;
HMQ hmqThread;

habThread = Wininitialize(NULLHANDLE);
hmqThread = Wi nCreateMsgQueue(habThread, NULLHANDLE) ;

WinSetPointer(HWND_DESKTOP, WinQuerySysPointer(HWND_DESKTOP, SPTR_WAIT, FALSE}};

WinCreateObject('WPFolder•,
"Change Desktop•,
szDesktopBuffer,
'<WP_DESKTOP> ' I

CO_UPDATEIFEXISTS);

II Workplace Object Class
II Object Title
II Setup String
II Location
II Flags

WinSetPointer(HWND_DESKTOP, WinQuerySysPointer(HWND_DBSKTOP, SPTR_ARROW, FALSEI) ;
return;

Figure 15.15 The coda for DasktopBackgroundThraad.

Obtaining the Screen R111lutlon 461

OBTAINING THE SCREEN RESOLUTION

There may be times that an application may need to know the current video
resolution; for instance, if a PM based installation program needs to install
two different versions of a DLL based on the current screen resolution. The
DLI.:s could contain information that is specific to the resolution, for example
different bitmaps. It is important that the install program be able to know
which files to correctly install based on the screen resolution. The code frag­
ment shown in Figure 15.16 obtains the current screen resolution and displays
it in a message box.

VOID QueryDeviceinfoStatus (HWND hwndFrame)
{

LONG lScreenHeight ;
LONG lScreenWidth;
LONG lScreenColors ;
HOC hdcTemp;
LONG lColorsArray(CAPS_COLORS);
CHAR szBuffer (l50) ;
APIRET re;

II First get screen height and Wi dth f rom PM using WinQuerySysValue
lScreenHeight = WinQuerySysValue (HWND_DESKTOP , SV_CYSCREEN};
lScreenWidth = WinQuerySysValue (HWND_DESKTOP, SV_CXSCREEN);

II Get a device context t o obtain device capabil i t i es
hdcTemp = WinOpenWi ndowDC (hwndFrame);

r e = DevQueryCaps (hdcTemp,
CAPS_COLORS,
CAPS_COLORS,
lColorsArray) ;

if (re ! - TRUE)
{

}

sprintf (szBuffer ' DevQueryCaps fail ed wit h RC = %d" , re);
DisplayKessages(NULLHANDLE , szBuf fer, MSZG_INFO);

l ScreenColors = lCol orsArray(OJ;

sprintf(szBuffer
"The current screen resolution i s : \ n %ld x %ld x \ld colors •,
l ScreenWidt h, l ScreenHeight , l ScreenCol ors);

DisplayMessages{NULLHANDLE, szBuf fer , MSG_INFO) ;
return;

Figure 15.16 Determining the screen resolution.

462 Win, Lose, or Draw: The Ari of Drawing Bitmaps

HOC APIENTRY WinOpenWindowDC (HWND hwnd) ;

Figure 15.17 The WlnOpanWindowDC prototype.

The QueryDevicelnfoStatus function takes a single parameter, the frame

window handle. The function works by first getting the height and width of

the screen from the SV _CXSCREEN and SV CYSCREEN system values and

storing the values in the LONG variables lScreenHeight and /Screen Width. The

function then works by calling the WlnOpenWindowDC API to easily obtain a

device context for the frame window. This API will return a valid device context

handle upon success. The hdc is needed to obtain the device capabilities from

the device call, DevQueryCaps.
The DevQueryCaps call is used to obtain the lColorsArray which contains

the number of colors supported at the screen resolution. The first element

of the array is the second parameter to the function. In this case we used

CAPS_COLORS constant, since we were looking for the screen colors. The

third parameter to the call is the count of items to be returned in the array,

lColorsArray. In this case, we also set it to CAPS_COLORS. The number of

colors is therefore extracted from lColor sArray fO). and stored in the lScreen­

Colors variable. Finally, the function will print the screen width, height, and

colors as a single string in a message box using the DisplayMessages function.

DISPLAYING THE BITMAP

Ok, now that we reviewed the composition of bitmap we are finally ready to

play. The routine DisplayBitmap is used to actually load the bitmap file from

disk and display the bitmap file in the presentation space. The function takes

four parameters; the actual filename obtained from the standard file dialog, a

pointer to a memory device context, a pointer to a presentation space handle,

and a pointer to a bitmap handle. The last three parameters will be filled in by

this function. The function will return a ULONG error code that can be used

by the caller to determine the cause of the failure. The error codes are defined

in the header file SHERROR.H.
The function works by first opening the bitmap file passed in as pszFile­

name via a call to DosOpen, specifying the OPEN.ACTION-OPEN-1F-EXISTS

open flag, indicating that the DosOpen API will open the file if the file exists

on the disk and fail if it does not exist. If the call to DosOpen fails, the Dis­

playBltmap routine returns ERROR..OPENING_FILE immediately back to the

caller.
The next step in the function is to allocate enough storage to store the

bitmap in memory. The function DosQueryFilelnfo is used to return the

FILESTATUS3 structure which contains the cbFile element. The cbFile element

represented by flnfoBuf.cbFile is the actual size of the bitmap file . The function

Dlsplaylng Ille Bltmp 463

uses the ~I DosAllocMem to allocate flnfoBuf.cbFile bytes of memory. The

memory ~s committe~ by specifying the PAG_COMMIT flag. The pointer to the

?1-emory is returned m the pvBuffer variable and then the entire file is copied

t~to the memory by using the DosRead APL If any of these three API' s fail the

bitmap file is immediately dosed and an error is returned. '

. The code fragment in Figure 15.18 is from the DisplayBitmap function, it
ts the code used to load the actual bitmapfile from disk.

habRet = WinQueryAnchorBlock(hwndFrame);

/~ Set t~e wait pointer to tel l the user we are busy
W1nSetP01nter(HWND_DESKTOP, Wi nQuerySysPointer (HWND_DESKTOP, SPTR_WAIT, FALSE)) ;

re = DosOpen(pszFi lename,
&hBi tmapFil e,
&ulAction,
o.
0,
OPEN_ACTION_OPEN_IF_EXITS,
OPENMODE_FLAGS ,
0);

if (re != NULLHANDLE)
{

return ERROR_OPENING_FILE;
}

re = DosQueryFil einfo(hBitmapFi le,

if (re ! = NULLHANDLE)
{

l,
IPBYTE)&finfoBuf ,
sizeof(finfoBuf)) ;

DosClose(hBitmapFile);
return ERROR_OPENING_FILE;

}

II Valid Path and Filename
II File handle
II Acti on taken
II Init ial File Size
II Fil e Attributes
II open, fail if file does not exist
II open mode flags
II Ext ended At tributes

I/ File Handle
II Level Information
II Fil e Information Buffer
II Fil e Information Buffer Size

II All ocat e enough storage to hold the file
re = DosAl locMem(&pvBuffer,

finfoBuf .cbFile,
PAG_READ I PAG_WRITE I PAG_COMMIT) ;

if (re != NULLHANDLE)
{

DosClose(hBitmapFile);
return ERROR_ALLOC_MEM;

}

Flg11115.18 Processing the bitmap file. continued

464 Win, Lose, or Draw: The Art of Drawing Bitmaps

re = DosRead (hBitmapFile,
IPVOID)pvBuffer,
finfoBuf.ebFile,
&ulAction};

if (re != NULLHANDLE)
{
DosClose(hBitmapFile);
return ERROR_READING_FILE;

}

Figure 15.18 Processing the bitmap file.

The next few steps comprise the most critical parts of this ro~tine.
The most critical part of the function is obtaining the grap?1cal mem~ry

resources. The function obta ins a memory device context by calhng the device
function DevOpenDC and specifying the OD MEMORY parameter. The han~e
to the memory DC is stored in the pointer phdcMem. The normal presen~t~on
space is obtained through the call to the G~l~reate~S APL By. specifying
the GPIA...ASSOC flag the presentation space is imm~d1ately associated to the
device context. Finally, the bit map is created by callmg the GplCreateBltmap

APL

phdeMem = DevOpenDC(habRet, OD_MEMORY, '' SL, {PDEVOPENDATA)pszDevData, hdeSereen);

*phpsMern - GpiCreatePS(habRet,
*phdeMem,
&sizel,
PU_PELS I GPIT_NORMAL I GPIA_ASSOC);

*phbmMern = GpiCreateBitmap(*phpsMem,
(PBITMAPINFOHEADER2)&pbmfh->bmp,
CBM INIT,
pbmfh + pbmfh->offBits - ulArray,
(PBITMAPINF02)&pbmfh->bmp);

if (*phdeMem && •phpsMem && *phbmMem)
{
GpiSetBitmap(*phpsMem, *phbrnMem);
bmpinfohdr.ebFix = sizeof(bmpinfohdr); .
GpiQueryBitmapinfoHeader(*phbrnMem, &bmp1nfohdr);
usBitCount = bmpinfohdr.eBitCount;
}

else
{
FreeEngineResourees(phdeMem, phpsMem, phbrnMem>;
return ERROR_CREATING_BITMAP;
}

Figure 15.19 Obtaining the resource handles.

II PS Handle
II BitmapinfoHeader2 ptr
II Options
II Buffer Init Data
II Poi nter to Bitmaplnfo2

Dlsplaylng the Blbnap 465

The GplSetBltmap function is used to set the bitmap into the presentation
space. The GplSetBltmap API will return an old bitmap handle if successful.
The function will return HBM_ERROR if an error condition occurs. It is im­
portant to note that HBM_ERROR is defined to be - 1, while GPI_ERROR is
defined to be 0. It is a common mistake for application developers to check for
the wrong return code. The GplQueryBltmaplnfoHeader function is used to
obtain a BITMAPINFOHEADER2 structure from the bitmap. The painting of
the client window is done by the PalntBltmap routine. This function uses the
GplBltBlt API to finally draw the bitmap in the window.

The purpose of the SHOWOFF program is to allow the user to create a
presentation based on bitmap files. Through the use of the Create Presentation
dialog, the user can enter all of bitmaps that they want in the presentation.
The contents of the presentation can be saved to a text based profile. The
File/Preview Presentation menuitem, will use a standard file dialog to allow
the user to select the presentation file. Once a presentation file is selected, the
SHOWOFF program will create a window that will display a miniature version
of each bitmap in the presentation file. The PrevlewWndProc window proce­
dure contains the code that draws the miniature bitmaps. The code fragment
is shown in Figure 15.20.

MRESULT APIENTRY PreviewWndProc(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2}
{

HPS
RECTL
RECTL
LONG
LONG
HOC
HPS
HBITMAP
PSZ
LONG
PPRESENTATION
PPRESENTATION

bps;
rel;
rclBmp;
width;
height;
hdcMem;·
hpsMem;
hbmpMem;
pszTemp;
index - O;
pFirst;
pCurrent;

II On the paint message - clear the window and setup to s t art drawing
if (msg .:.::o WM_PAINTJ

{

WininvalidateReet(hwnd, NULL , FALSE);
hps = W1nBeginPaint (hwnd, NULLHANDLB, &rel);

if (hps ! " NULLHANDLE)
{

II Clear the window
WinFillReet(hps, &rel, CLR_PALEGRAY);

Figure 15.20 The PreviewWndProc window procedure. continued

466 Win, Lose, or Draw: The Art of Drawing Bitmaps

II Set current node to first node
pFirst = WinQueryWindowPtr(hwnd, 0);
WinSetWindowPtr(hwnd, 4, pFirst);

II Start index at first bitmap position
WinSetWindowULong(hwnd, 8, 0);

II Post message to draw a bitmap
WinPostMsg(hwnd, WM_USER, MPFROMLONG (OL}, MPFROMLONG(OL));
WinEndPaint(hps);

} /I endif
return FALSE;

else if (msg == WM_USERl
{
II Get the presentation space
hps = WinGetPS(hwnd);

if (hps != NULLHANDLE)
{
II The first and current node - no drawing if current is NULL
pFirst = WinQueryWindowPtr (hwnd, 0);
pCurrent = WinQueryWindowPtr (hwnd, 4);

if (pCurrentl
{
II Must have a filename
if (pCurrent && pCurrent->pszString[OJ != ' / ')

{
II Get the position to draw the bitmap and compute the rectangle for drawing
index= WinQueryWindowULong(hwnd, 8);

WinQueryWindowRect(hwnd, &rel);

width = (rcl.xRight - rcl .xLeft) I 4;
height = (rcl.yTop - rcl .yBottom) I 4;
rclBmp .xLeft = rcl.xLeft + (width* (index% 4)) ;
rclBmp .xRight = rclBmp.xLeft + width;
rclBmp.yTop = rcl.yTop - (height* (index/4)};
rclBmp.yBottom = rclBmp.yTop - height;

II Blow off any options at the end of the filename
pszTemp = strchr(pCurrent->pszString,);

if (ps zTemp l
{
*pszTemp = '\0' ;

}

Figure 15.20 The PrevlewWndProc window procedure. continued

Dlsplayl119 tU Bitmall 467

}

II Get the bitmap into memory
DisplayBitmap(pCurrent->pszString, &hdcMem, &hpsMem, &hbmpMem) ;

II Draw the bitmap
WinDrawBitmap (hps,

hbmpMem,
NULL,
(PPOINTL)&rclBmp,
CLR_BLACK,
CLR_WIUTE,
DBM_STRETCH I DBM_NORMAL) ;

II Remove the bitmap from memory
FreeEngineResources(&hdcMem, &hpsMem, &hbmpMem) ;

II bump the position index
index++;

} II endif

II update for the next node
pCurrent = pCurrent->pNext;
WinSetWindowPtr (hwnd, 4, pCurrent);
WinSetWindowULong(hwnd, 8, index);

II draw next - unless all drawn
if (pCurrent ! = pFirst)

{
WinPostMsg(hwnd, WM_DRAWBITMAP, MPFROMLONG(OL), MPFROMLONG(OL));

I
I I endi f pCurrent

WinReleasePS (hps);
} II if (bps l= NULLHANDLE)

return FALSE;

else if (msg =- WM_CLOSE)
(

}

WinDestroyWindow(WinQueryWindow(hwnd, QW_PARENT)) ;
return FALSE;

II Clear the bitmap list when window destroyed
else if (msg == WM_DESTROY)

{

}

WinSetWindowPtr(hwnd, 0, NULL);
WinSetWindowPtr(hwnd, 4, NULL);
FreeMemory(WinQueryWindowPtr(hwnd, O));
return FALSE;

Figure 15.20 The PrevlewWndProc window procedure. continued

468 Win, Lose, or Draw: The Art of Drawing Bitmaps

II default is to call WinDefWindowProc
else

{
return WinDefWindowProc(hwnd, msg, mpl , mp2);

} II end else

Figure 15.20 The PreviewWndProc window procedure.

SUMMARY
Most of the common PM performance problems th.at are re~orted and de­
bugged are usually caused by slow painting of the wmdow. This chapte: pro­
vided a general review of the presentation space, device context a~d bitmap
concepts and illustrated how an application can use the memory ~evice context
to speed the display of bitmap drawing within _a given presentation s~ace.

The sample program details several practical ~ses of the Gra~hical Pro­
gramming Interface and uses both the WinD~awB1tmap an~ GplB1tBlt func­
tions. The SHOWOFF program is a fully functional presentation program that
demonstrates how to programmatically use bitmaps. Prograi:nmers that make
good use of drawing techniques and bitmaps can create qmck and powerful
programs that will dazzle any computer user. In today's ~emanding softwa~e
market, it is not enough for an application to be well designed. and wel~ wn~­
ten, it must also be able to wow the user. Using the concepts discussed m this
chapter and the corresponding sample program, you are well on your way to
creating power programs.

FONTS

CHAPTER

Getting It in Print:
Mastering Fonts
and Printing

E ven though one of the popular trends in the world of computers is the
concept of the paperless office, hard copy output still plays a very impor­
tant role in most applications. Printed material is produced to transfer

information (often in the form of correspondence), to present material, to pro­
vide off-line backup, and occasionally for such operations as writing this book.
All of these functions can theoretically be performed without paper, provided
the proper equipment is available; however, until this equipment is almost
universally present, paper will still be important. This chapter discusses two
very important aspects of PM programming related to producing hard copy
output: font manipulation and printing.

Drawing text to the display or a printer requires more than just a set of char­
acters. Applications must also select the font used to draw the characters. A
font is a set of instructions that tell the system how each character should
be drawn. The application can choose to use the default font, select a font
that exhibits a particular set of characteristics, select a specific font, or allow
the user to choose a font from among those available on the system. In gen­
eral, user selection of fonts is preferred, since this allows the user to modify
the appearence of the displayed output as needed or desired. If necessary,
the application can limit the user's choice of fonts to those that match the

469

470 Getting It in Print: Mastering Fonts and Printing

requirements of the application; for example, the simple editor in Chapter 3
only supported monospace fonts. Applications that provide hard copy output
may also wish to limit the selection to the set of fonts supported by the printer.
This section will describe the various types of fonts, user selection of fonts with
the Font Dialog, and drawing text using the Win and Gpi APis.

Font Terminology
When discussing fonts in connection with OS/2, you should be familiar with
the terms used to describe fonts . The term printer font is used to describe a
font that is specifically designed for a particular hard copy device, or printer.
The font may be a permanent, resident font supplied with the printer, a font
supplied on a cartridge or other device that may be physically attached to the
printer, or a font that resides on the computer and is downloaded to the printer.
The terms bitmap font, raster font, and image font all refer to a font defined as
an array of pixels which are used to display characters on the system console.
An outline font is described as a set of graphical strokes and may generally
be used to draw characters on the console or a printer. OS/2 outline fonts are
implemented using the Adobe font specifications and software. System font is
a term used to describe the base fonts supplied with the operating system.
These fonts have been specially tailored for increased performance. ISO Font
describes a bitmap font that causes text to be displayed in accordance with the
ISO Standards.

Knowing this terminology, we can now tum our attention to those fonts
that are of most concern in application development-the bitmap and outline
fonts. Typically, an application will allow the user to specify whichever font
is desired; however, some applications may wish to restrict which set of fonts
is used. For example, drawing with bitmap fonts is much faster than outline
fonts. Thus, applications that are performance-sensitive may be designed to
only use bitmap fonts. Applications that are more concerned with the quality
of output typically use only outline fonts. If an application has a particular
preference between speed and quality, then it should limit the users's font
selection to the appropriate type.

USING FONTS
Many applications are not overly concerned about the font with which their
text is drawn. In fact, many applications only display text inside of the various
controls provided by the system and do not deal directly with fonts. However,
some applications need to draw text into the client area of the window display,
and will typically require at least some knowledge of the font in use, even if just
the height of the font, in order to properly space between lines of text. As the
application's use of text becomes more sophisticated, the application requires

WINAPI

WlnAPI 471

more. kn~wledge _of ~e font i':1 use and may need to change the font to meet
certain display cntena. When implementing these applications, remember that
fonts are selected based on their characteristics, not a specific font or size.

The Win API provides functions for basic text drawing and font manipulation.
The. WlnFontDlg API allows user selection of fonts and character drawing
attributes. The Win~e~resParam and WlnRemovePresParam APis provide a
means for the apphcat1on to change the font used for drawing characters,
and the W~QueryPresParam API allows the application to determine the font
currently m use. Characters are drawn using the current font with the Wln­
Dra~Text APL A~plica~ions ~at require more advanced capabilities should
consider the funct1onal1ty available within the Gpi APL

Determining the Currently Selected Font
When text is drawn using the WlnDrawText API, the system selects the font
~ased on the presentation parameter PP _FONTNAMESIZE. If this presenta­
~1on param~ter has not been set for the current window, a default system font
ts ~sed, typically the SYSTEM PROPORTIONAL font. If a default font is not
bemg us~d, an application can determine the current font by querying the
pres~ntatlon ~ara?1eter using the WlnQueryPresParam APL The syntax of this
API is shown m Figure 16.1.

• Parameter hwnd is the handle of the window whose presentation param­
eters are to be queried.

• The ~dl parameter is the identity of the first presentation parameter to be
quened.

• Para?1eter ld2 is the identity of the second presentation parameter to be
quen ed.

• The pulID parameter is the identity of the actual presentation parameter
found. PM searches the current window and its owners for a presentation

ULONG APIENTRY WinQueryPresParam(HWND hwnd,
ULONG idl,
ULONG id2,
PULONG pulid,
ULONG cbBu f ,
PVOID pbBuf,
ULONG fs) ;

Figure 16.1 llla WlnQuaryPresParam API.

472 Getting It In Print: Mastering Fonts and Printing

parameter of either id.Attr1}'pe1 or i~ttr~2. 1:he type of the actu~l
presentation parameter found is stored m this location. If only one type is
specified, this parameter may be set to NULL to prevent any value from
being returned. . .

• The cbBuf parameter indicates the number of bytes available m .pbB~.
This is the maximum size of the presentation parameter value, which will
be stored in pbPuf. .

• Parameter pbBuf is a buffer in which the value of the presentation param-
eter is stored.

• Parameter fs is a set of flags that modify the behavior of the query. The
valid values are:

QPF ..NO INHERIT

QPF .COLORl INDEX

QPF _COLOR2INDEX

QPF_PURERGBCOLOR

causes only the current window, not the windows along its owner
chain, to be searched.
indicates that idl specifies a color index presentation parameter
and that the color index should be converted to an RGB value for
return.
indicates that ld2 specifies a color index presentation parameter
and that the color index should be converted to an RGB value for
return.
indicates that either ldl or ld2 contains an RGB reference and
that the color must be pure. If necessary, the value is made pure,
or undithered, after being translated to RGB.

WinQueryPresParam returns the length of the returned value in bytes, or
zero if the presentation parameter was not found or an erro~ occu.rred.

Figure 16.2 shows a sample routine, GetCurrentFont, which might be used
to query the current font selected for the window. Unlike many of the APls that
query values, WlnQueryPresParam does not provide a means of returning ~e
length required to store the requested value, so ~etCurrentFo_nt uses a series
of increasing size memory allocations to determine the reqmred length and
retrieve the value. The function begins by allocating a buffer the size of the de·
fined maximum font face name string, FACESIZE. This buffer is then passed to
WinQueryPresParam to retrieve the current value of the PP-FONTNAMESIZE
parameter. If the length returned by WinQueryPresParam is ~qual to th.e length
requested, then the program was either very lucky and specified precisely the
correct length or the returned parameter value was truncated. Since the latter
is the most likely scenario, the original buffer is freed and a new buffer ~f
twice the previous size is allocated. WinQueryPresPar~ is then called ~gam
to retrieve more of the presentation parameter value. This sequence contmues
until the returned length is less than the size of the buffer, indicating that the
entire value was retrieved. A pointer to the allocated string is then returned to
the function's caller. Note that if the PP_FONTNAMESIZE parameter has not

Selecting a Different Font 473

static PSZ GetCurrentFont(HWND hwnd)
(

PSZ pszPresParam;
ULONG ulLength;
ULONG ul LengthReturned;

ulLengthReturned = ulLengt h = FAC.ESIZB;
pszPresParam = mal loc(u!Length) ;

while(ul LengthReturned == ulLength) (
ulLengthReturned = WinQueryPresParami hwnd, PP_FONTNAMESIZE,

NULL, ulLength, pszPresParam,
if (ul LengthReturned == ulLengthJ {

free(pszPresParam) ;
ul LengthReturned = ulLength *= 2;
pszPresParam = mal loc(ulLength);

} /* endif */
I * endwhile *I

return pszPresParam;

Figure 16.2 Obtaining pn1sentatlon parameter fonts.

o,
0) ;

yet been set for hwnd or any of its owners, the initial length returned is zero,
and a pointer to a zero-length string is returned to the caller.

The string returned by WinQueryPresParam for the PP_FONTNAMESIZE
parameter is formatted as a series of fields separated by periods. The first field
is one or more numeric characters that specify the point size of the font. The
second field is the face name of the font and may include the bold and/or italic
attributes. The remaining fields specify additional attributes of the font, which
are generated by the system and are not part of the font itself. These attributes
include strike.out, underscore, and outline, as well as bold and italic when the
latter two are not included as part of the face name.

SELECTING A DIFFERENT FONT

While applications can internally select a particular font for text drawing, the
normal course of action is to allow the user to select the font. If necessary, the
application can limit the user's choices to those fonts whose characteristics
match the application's requirements.

The easiest way of handling font selection from the application developer's
standpoint is to merely allow the user to drag a font from the Font Palette.
This functionality is supported without any intervention by the application;
however, in order to observe the changes, the window must be repainted. This is

47 4 Getting It In Print: Mastering Fonts and Printing

easily accomplished by processing the WM_pRESPARAMCHANGED message
and calling the WinlnvalidateRect API whenever the in:essage is rec~ived.

Most applications also provide an internal .m~chamsm for se.lectmg ~onts.
Many applications define their own method of h~tin~ the font. choices available
to the user; however, in some instances, an application can simply call the PM
WinFontDlg API to perform this chore. This API displays a system-defined
dialog box which allows the user to select a font, a point size, and various
attributes of the font. The syntax of the API is given in Figure 16.3.

• hwndP is the window handle of the window that will be the parent of
the font selection dialog box. This parameter is normally set to either the
current application window or the desktop.

• hwndO is the window handle of the window that will be the owner of the
font selection dialog box. This parameter is normally set to the current
application window. . .

• pfntd is a pointer to a FONTDLG structure. This structure is used to pass
information to the font dialog to determine the initial font selection to be
displayed and any features of the dialog that are being customized by ~e
application. After the font selection dialog is dismissed, this structure is
updated to reflect the font selected by the user.

The return value from WinFontDlg depends on its modality. If the dialog
is raised as a modeless dialog, the handle of the dialog window is returned
if successfully created; otherwise, NULLHANDLE is returned. If the dialog
is raised as modal, the function returns TRUE if the dialog was successfully
created and FALSE if the dialog could not be created. In this case, the /Return
element of the FONTDLG structure contains the ID of the button used to
dismiss the dialog, DID-OK if the OK button was clicked, and DID-CANCEL
if the CANCEL button was pressed.

The FONTDLG structure passed to WinFontDlg consists of elements which
allow the application to control the features and acti~ns of the box •. to speci~
the initial selections, and to retrieve the users selection from the dialog. This
structure is relatively large and contains many elements which are not nor­
mally used by applications. Rather than list the entire struc~ure here, we will
discuss the pertinent elements in the text. One element which finds frequent
use is fl, which contains style flags which can greatly influence the appearance
and behavior of the dialog. The valid flags are:

HWND APIENTRY WinFontDlg (HWND hwndP,
HWND hwndO,
PFOm'DLG pfntd);

Figure 16.3 The WinFontDlg API.

Selecting a Different Font 475

• FNTS...APPLYBUTTON (OxOOlO) adds an "Apply" button to the dialog. This
button is used with modeless dialog boxes to allow the application to
modify its display to match the current selection without dismissing the
dialog.

• FNTSJ3ITMAPONLY (OxOlOO) specifies that the dialog should only list
bitmap fonts for selection.

• FNTS_CENTER (OxOOOl) specifies that the dialog should be centered in its
parent window.

• FNTS-FIXEDWIDTHONLY (Ox0400) specifies that the dialog should only
display monospaced fonts for selection.

• FNTS_CUSTOM (OxOOOl) specifies that the application is supplying a cus­
tom dialog template.

• FNTSJIELPBUTTON (Ox0008) causes the dialog to display a "Help" but­
ton.

• FNTSJNITFROMFATTRS (Ox0080) causes the dialog to initially select a
font based on the attributes found in the fAttrs element.

• FNTS...MODELESS (Ox0040) creates a modeless dialog which must be
shown and destroyed by the application as it would a dialog created with
the WinLoadDlg APL

• FNTS_NOSYNTHESIZEDFONTS (OxlOOO) prevents the dialog from syn­
thesizing certain attributes of the fonts.

• FNTS.OWNERDRAWPREVIEW (Ox0004) causes the dialog to send a
WM..DRAWITEM message to the application to draw the preview string.

• FNTS_pROPORTIONALONLY (Ox0800) limits the fonts available for selec­
tion to proportionally spaced fonts.

• FNTS..RESETBUTTON (Ox0020) causes the dialog to display a reset but­
ton. When the reset button is clicked, the dialog returns its selections to
their initial states.

• FNTS_VECTORONLY (Ox0200) causes the dialog to only display outline
fonts for selection.

Figure 16.4 presents routine SelFont as sample code for using WinFontDlg.
This particular routine determines the currently selected font and initializes
the dialog's selection to based on this font. When the dialog returns, the current
font is changed to the font selected by the user.

The routine first obtains the presentation space handle for the current
window by calling WinGetPS. The characteristics of the current font are then
obtained by calling GetCurrentFont andGpiQueryFontMetrics. As discussed
earlier, GetCurrentFont returns the presentation parameter string which iden­
tifies the size, name, and attributes of the font. GpiQueryFontMetrics retrieves
the specific set of characteristics that define the font and that are used to select
a font. The prototype for this API is shown in Figure 16.5.

476 Getting It In Print: Mastering Fonts and Printing

static MRESULT selFont l HWND hwnd, ULONG msg, MPARAM 111pl, MPARAM mp2)
l

HPS
FONTDLG
FONTMETRICS
PSZ

hps;
fontdlg;
fm;
pszFullFaceName;

hps = WinGetPS(hwnd);
pszFullFaceName = GetCurrentFont(hwnd) ;
GpiQueryFontMetrics(hps, s izeof(FONTMETRICS), &fm }i
memset((PVOIDJ&fontdlg, 0, sizeof(FONTDLG)I ;
fontdlg.cbSize = sizeof(FONTDLG);
fontdlg.hpsScreen = hps;
fontdlg.pszFamilyname = fm.szFamilyname;
fontdlg .usFamilyBufLen = FACESIZE;
fontdlg.clrFore = CLR_BLACK;
fontdlg.clrBack = CLR_WHITE;
fontdlg . fl = FNTS_INITFROMFATTRS;
fontdlg . fAttrs .usRecordLength = sizeof(FATTRSJ;
fontdlg.fAttrs.lMatch = fm.lMatch;
strcpy(fontdlg.fAttrs .szFacename, fm.szFacename J;
if(pszFullFaceName !=NULL && strlen(pszFullFaceName) != 0 l

ParseFaceName(hps, &fontdlg, pszFullPaceName);
) /* end1f */
if(pszFullFaceName !=NULL) free(pszFullFaceName) ;
if(WinFontDlg (HWND_DESKTOP, hwnd, &fontdlg I &&

fontdlg.lReturn == DID_OK) {
SetFontNameSize (hwnd, &fontdlg) ;

l /* endif */
WinReleasePS(hps);
return (MRESULT) OL;

Figure 16.4 Using WlnFontDlg.

• The hps parameter is the handle of the presentation space whose currently
selected font is queried. .

• Parameter lMetricsLength is the number of bytes of the font metnc struc-
ture to be returned.

• Parameter pfmMetrics is a pointer to a FONTMETRICS structure in which
the font characteristics of the currently selected font are returned.

BOOL APIENTRY GpiQueryFontMetrics(HPS hps,
LONG lMetricsLength,
PFONTMETRICS pfmMetrics);

Figure 16.5 The GpiQueryFontMetrics API.

Selecting a Different Font 477

GpiQueryFontMetrlcs returns TRUE if successful or FALSE if an error
occurred.

With the font details in hand, the function clears the FONTDLG structure
and begins the process of initializing the required fields. Element cbsize is set
to the length of the structure. Element hpsScreen is set to the screen presen­
tation space handle. The hps passed in this element is used by the dialog to
obtain a list of the fonts which can be displayed in the presentation space.
Though not used in this function, element hpsPrinter may be set to the handle
of a presentation space associated with a printer device context to obtain a
list of the fonts which may be displayed on the printer. Next, the elements
which specify the family, or generic, name of the font are initialized; element
pszFamily name is a pointer to the family name string which is contained in
the FONTMETRICS structure. Since the dialog returns the family name of
the selected font in this buffer, the size of the buffer must be specified in el­
ement usFamilyBufLen and is set to FACESIZE, the maximum length of the
name and the size of the FONTMETRICS structure element. The colors of the
preview string foreground, element clrFore, and background, element clrBack,
are set to cause the preview text to be drawn with black characters on a white
background. The fl style element is then set to FNTS-1NITFROMFATTRS so
that the dialog will initially select a font based on the characteristics contained
in the f Attrs element which is initialized next.

The f Attrs element is a structure whose elements are the font characteristics
which PM uses to select a font. In the sample function, elements of this struc­
ture which allow the font dialog to initially select the proper font are initialized
from the characteristics of the current font contained in the FONTMETRICS
structure and the attributes of the font found in the PP ..FONTNAMESIZE pre­
sentation parameter string. Element usRecordLength is initialized to the size
of the FATTRS structure. Element !Match is a unique identifier for any given
font on a specific system. The identifier is established when the font is loaded
into the system and is not a part of the font itself. Applications should not
assume that the !Match value for a particular font on one system will select
the same font on a different system. The szFacename element specifies the full
face name of the font. The face name often includes some attributes of the
font; for example, "limes Roman Bold Italic" would specify a font of the limes
Roman family with bold and italic attributes. One other element of the FATTRS
structure, the fsSelection element, is initialized in routine ParseFullFaceName
which is discussed below. This element is used to specify additional attributes
applied to the font. These attributes include the bold and italic attributes when
they are not specified as part of the face name, and the outline, underline, and
strike out attributes.

Before the font dialog is raised, ParseFullFaceName is called to analyze
the presentation parameter string and fill in the fxPointSize element of the
FONTDLG structure and the fsSelection element of the FATTRS structure.
The fxPointSize element specifies the size of the current font and is used by

478 Getting It In Print: Mastering Fonts and Printing

the font dialog to select the proper size from those available for selection. The
fsSelection element was discussed in the preceding paragraph. On. return from
ParseFullFaceName, the string obtained from GetCurrentFont 1s no longer
needed and is freed.

The FONTDLG structure has now been initialized and the routine calls
WlnFontDlg to raise the dialog and obtain the user 's selection. After a se­
]ection has been made, selFont calls routine SetFontNameSlze to convert the
FONTDLG data into a presentation parameter string for the selected font
and to modify the PP ..FONTNAMESIZE parameter for the window. When this
function returns, the presentation space is released and selFont returns.

The code for routine ParseFaceName is shown in Figure 16.6. First, the
point size of the font is extracted and stored in the fxPointSize element of the

void ParseFaceName(PSZ pszFullFaceName, PFONTDLG pfontdlg)
(

PSZ pszParse;
int i;

pszParse = strtok[pszFullFaceName, • . •) ;
pfontdlg->fxPointSize = MAKEFIXED(atoi(pszParseJ, 0) ;
pszParse = strtok(NULL, •.•) ;
while((pszParse = strtok(NULL, • . •J) !=NULL l {

for(i = O;
i <= ATTR_OUTLINE && strcmp[pszParse, &(pszfAttr[i) (1))) ;
i++) i

switch (i) (
case ATTR_BOLD:

pfontdlg->fAttrs . fsSelection = FATTR_SEL_BOLD;
break;

case ATTR_ITALIC:
pfontdlg->fAttrs . fsSelection = FATTR_SEL_ITALIC;
break;

case ATTR UNDERSCORE :
pfontdlg->fAttrs.fsSelection I= FATTR_SEL_UNDERSCORE;
break;

case ATTR_STRIKEOUT:
pfontdlg->fAttrs . fsSelection I= FATTR_SEL_STRIKEOUT;
break;

case ATTR_OUTLINE:
pfontdlg->fAttrs . fsSelection I= FATTR_SEL_OUTLINE;
break;

default :
break;

} / * endswitch •/
/ * endwhile *I

return;

Figure 16.6 Parsing the FACENAME string.

Selecting a Different Font 479

FONTDLG structure. This element is defined to be a fixed-point number, thus
the MAKEFIXED macro is called to place the value in the proper format. Note
that all screen fonts are an integral point size, thus the fractional portion of
CxPolntSlze is always zero-printer fonts do not follow this convention as we
will see later. Next the face name is extracted from the PP _FONTNAMESIZE
string. Since this string was assigned from the FONTMETRICS structure, it
is simply discarded here. The additional attributes are then extracted and
matched with constant strings which contain the valid attribute names. For
each attribute matched, the appropriate bit is set in the fsSelection element of
the fAttrs element of the FONTDLG structure.

Routine SetFontNameSlze, shown in Figure 16.7, extracts information
from the returned FONTDLG structure to format the presentation parameter
string and then calls WlnSetPresParam to establish the new font. Formatting
the PP ..FONTNAMESIZE string is the opposite of the parsing operation seen
in ParseFullFaceName. The function first determines the overall length of the
string. The initial length of six reserves space for the size and following period.
The length of the basic face name string is then added. Each attribute flag is
then tested, and if set, an amount is added for the string naming the attribute.
After the total number of characters is determined, space is allocated to hold
the FACENAME string. The integer portion of CxPolntSize and the szFaceName
string from the FATTRS structure are then passed through sprint{ to generate
the base portion of the string. Next, an attribute name string is concatenated to
the face name string for each requested attribute. When the full face name has
been built, WinSetPresParam is called to change the presentation parameter.
The syntax of this function is shown in Figure 16.8.

• hwnd is the handle of the window whose presentation parameter is to be
modified.

• idAttr1}'pe is the presentation parameter to be set.
• cbAttrVaueLen is the number of bytes in the attribute value. NOTE: Include

a byte for the terminating zero when determining the length of a parameter
whose value is passed as a zero-terminated string, i.e. use strlen(string) +
1, not strlen(string).

• pAttrValue is a pointer to the value to be associated with the presentation
parameter idAttr1}'pe.

The function returns TRUE if the presentation parameter was successfully
modified or FALSE if an error occurred.

Though not used in this sample, an application can restore the font to its
default value by calling the WinRemovePresParam APL The syntax for calling
this function is shown in Figure 16.9.

• hwnd is the handle of the window whose presentation parameter is to be
removed.

480 Getting It in Print: Mastering Fonts and Printing

void SetFont NameSize{ HWND hwnd, PFONTDLG pfontdlq l
{

USHORT
ULONG
PSZ

ptSize;
ulLenqth;
pszFullFaceName;

ptSize = FIXEDINT(pfontdlg->fxPointSize) ;
ulLength = 6;
ul Length += strl en(pfontdlg-> fAttrs.szFacename) ;
if {pfontdlg->fl Style & FATTR_SEL_BOLD)

ul Length += strlen(pszfAttr[ATTR_BOLD]);
i f (pfontdl g->flStyle & FATTR_SEL_ITALIC)

ulLength += strlen(pszfAttr{ATTR_ITALIC]);
i f (pfontdlg->flStyle & FATTR_SEL_UNDERSCORE)

ulLength += strlen{pszfAttr[ATTR_UNDERSCORE]) ;
if (pfontdlg->f lStyle & FATTR_SEL_STRIKEOUT)

ulLength += strlen(pszfAttr(ATTR_STRIKEOUT]);
i f (pfontdlg->flStyle & FATTR_SEL_OUTLINE)

ul Length += strlen{pszfAttr (ATTR_OUTLINE) J;
ul Length++ ;
pszFul lFaceName = malloc(ulLength);
i f(pszFul l FaceName != NULL) {

sprintf(pszFullFaceName, ' %d.%s', ptSize, pfontdlg->fAttrs . szFacename) ;
if (pfontdlg->flStyle & FATTR_SEL_BOLD)

strcat(pszFullFaceName, pszfAttr(ATTR_BOLD]);
if (pfontdlg->flStyle & FATTR_SEL_ITALIC)

strcat(pszFullFaceName,pszfAttr[ATTR_ITALIC]);
if (pfontdlg->flStyl e & FATTR_SEL_UNDERSCORE)

strcat !pszFul lFaceName,pszfAttr[ATTR_UNDERSCORE]);
if (pfontdlg->fl Style & FATTR_SEL_STRIKEOUT)

strcat(pszFullFaceName,pszfAttr[ATTR_STRIKEOUT]);
if (pfontdlg->flStyle & FATTR_SEL_OUTLINEI

st rcat(pszFullFaceName,pszfAttr[ATTR_OUTLINE]);
WinSetPresParam{ hwnd, PP_FONTNAMESIZE, strlen{pszFullFaceName) + 1,

pszFullFaceName);
fr ee{pszFullFaceName);

/ * endif * /
return;

Figure 16.7 Building the FACENAME string.

BOOL APIENTRY WinSetPresParam(HWND hwnd,
ULONG i d,
ULONG cbParam,
PVOID pbParam)

Figure 16.8 The WinSetPresParam APL

BOOL APIENTRY WinRemovePresParam (HWND hwnd,
ULONG id);

Figure 16.9 The WlnRemovePresParam APL

Drawing Text 481

• idAttr'JYpe is the identifier for the presentation parameter to be removed. In
the case of removing the font presentation parameter, PP ..FONTNAMESIZE
is used.

The function returns TRUE if successful and FALSE if an error occurs. If
successful, the function removes the presentation parameter associated with
a window resulting in a return to the default font if the PP ..FONTNAMESIZE
parameter is removed.

DRAWING TEXT

Now that a font has been selected, how is text actually drawn into a window?
The WlnDrawText API provides this functionality. The API also allows an appli­
cation to query the area that a given string will occupy. The query functionality
helps an application to determine the precise coordinates at which text should
be drawn in order to be placed at a particular location within the window. For
instance, the height of the font is important in order to provide proper spacing
between lines when multiple lines of text are displayed. The prototype for the
WinDrawText API is displayed in Figure 16.10.

• Parameter hps is the handle to the presentation space where the text is to
be drawn.

• Parameter cchText is a 32-bit signed integer specifying the number of
characters to be drawn. If this value is set to negative one (- 1), parameter
lpchText is assumed to point to a zero-terminated array of characters.

• The lpchText parameter is a pointer to the character or array of characters
to be drawn.

APIENTRY WinDrawText (HPS hps,
LONG cchText,
PCH lpchText,
PRECTL prcl ,
LONG clrFore,
LONG clrBack,
ULONG flCmd);

Figure 16.10 The WinDrawText APL

482 Getting It in Print: Mastering Fonts and Printing

• Parameter prcl is a pointer to a RECTL structure containing the coordi­
nates of the rectangle in which the text is to be drawn. If DLOUERY­
EXTENT of parameter flCmd is set, WinDrawText returns the coordinates
of a rectangle that will just enclose the text to be drawn.

• The clrFore parameter is a signed, 32-bit integer that specifies the color
index to be used for the drawing the actual characters. This value is ignored
if flCmd flag DT _TEXTATTRS is specified. .

• Parameter clrBack is a signed, 32-bit integer that specifies the color mdex
to be used for the background of the characters. This value is ignored if
flCmd flag DT_TEXTATTRS is specified.

• Parameter ftCmd is an unsigned, 32-bit integer that is used as a set of flags
indicating the actions which the API should take. The flags that may be
specified are:
DT J.EFf (OxOOOO) specifies that the text is to be left-justified, that is, the
x coordinate of the origin of the text is the leftmost coordinate of the
rectangle.
OT.RIGHT (Ox0200) specifies that the text is to be right-justified, that is,
the x coordinate of the origin of the text is the rightmost coordinate of the
rectangle.
DLCENTER (OxO 100) specifies that the center of the text is located mid·
way between the leftmost and rightmost coordinates of the rectangle.
DLTOP (OxOOOO) specifies that the top of the text is to be drawn at the
topmost y coordinate of the rectangle. .
DLVCENTER (Ox0400) specifies that the vertical center of the text is
located midway between the topmost and bottommost coordinates of the
rectangle.
DT _.BOTTOM (Ox0800) specifies that the bottom of the text is to be drawn
at the bottommost y coordinate of the rectangle.
DT.HALFfONE (OxlOOO) specifies that the text is to be drawn halftoned.
Halftoning is a photographic process which exposes an image through
a screen such that higher intensity areas of a picture have a higher dot
density than lower-intensity areas. Halftone text appears to be "grayed"
or lighter in intensity than normal text when drawn.
OT.MNEMONIC (Ox2000) specifies that when a mnemonic character is
encountered, the mnemonic character is not drawn and the following
character is drawn with mnemonic emphasis. In OS/2, this typically
means that the tilde character (-) causes the following character to be
underlined.
DT_QUERYEXTENT (Ox0002) specifies that, instead of actual drawing
text, PM is to determine the rectangle that would surround the text and
return its coordinates in the structure pointed to by prcl.
DL WORDBREAK (Ox4000) specifies that only words which fit entirely
within the given rectangle are drawn. At least one word is always drawn,
whether it fits within the rectangle or not.

Drawing Text 483

DLEXTERNALLEADING (Ox0080) specifies that the current font's ex­
ternal leading space is to be included in the rectangle returned by
DT.QUERYEXTENT. This flag is ignored unless both DT.QUERYEXTENT
and OT.TOP are also specified.
DT _TEXTATTRS (Ox0040) specifies that the foreground and background
colors of the presentation space are used rather than parameters clrFore
and clrBack.
DT.ERASERECT (Ox8000) specifies that the rectangle should be erased
before drawing occurs. If not specified, the character background is
drawn based on the background mix attribute of the presentation space.
OT .UNDERSCORE (OxOOlO) specifies that the characters are to be drawn
underlined.
OT _STRIKEOUT (Ox0020) specifies that the characters are to be drawn
with overstrike, typically by drawing a line through the horizontal center
of the characters.

Figure 16.11 provides an example of code which uses WlnDrawText to
vertically fill an application's client window with a constant string during

static MRESULT wmPaint (HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)
(

HPS hps;
RECTL rectl ;
RECTL rectlText;
RECTL rectlDraw;

Wininval idateRect(hwnd, NULL, TRUE);
hps = WinBeginPaint(hwnd, NULLHANDLE, &rectl);
if (hps != NULLHANDLE) (

WinFillRect(hps , &rectl, CLR_WHITE I ;
rectlText=rectl;
WinDrawText(bps , strlen(szText),szText,&rectlText,

0, 0, rYI'_BOTTOM I rYI'_LEFT rYI'_QUERYEXTENT) ;
rectlDraw.yTop = rectl.yTop;
rectlDraw.xLeft - rectl .xLeft;
rectlDraw.xRight = rectlDraw.xLeft + rectlText .xRight;
rectlDraw.yBottom • rectlDraw.yTop - rectlText.yTop;
while(rectlDraw.yBottom >= 0) (

}

WinDrawText(hps, strlen(szText),szText,&rectlDraw,0,0,
rYI'_BO'rI'OM I rYI'_LEFT I rYI'_ TEXTATl'RS) ;

rect l Draw.yTop -- rectlText . yTop;
rectlDraw.yBottom -= rectlText.yTop;

WinEndPaint (hps);
I / * endif */
r eturn (MRESULT)Ol ;

Figure 16.11 Drawing with WinDrawText.

484 Getting It In Print: Mastering Fonts and Printing

GPI API

processing of the WM PAINT message. Since changing the size of the window
can sometimes result in left over characters at the bottom of the window,
this routine calls WlnlnvalidateRect to ensure that the entire client window
area is included in the rectangle to be painted. WinBeglnPaint is then called
to initialize the drawing operation and obtain the portion of the window in
which drawing will occur and WlnFillRect is called to clear the client area in
preparation for text drawing.

Next, the height and width of the text are calculated. Initially, the text
rectangle is set to match the area to be painted and WinDrawText is called
with the DLQUERYEXTENT bit of flCmd set to obtain the rectangle that the
text will occupy. Since the DT.BOTTOM and DTiEFrbits are set, the bottom
left coordinates of the rectangle are unchanged and the top right coordinates
are adjusted to match the area required by the text. In general, the coordinates
matching the justification flags will remain unchanged and the other pair of
coordinates will be adjusted. Since the entire window is being painted, the
bottom left corner of the rectangle is located at (0,0) and the returned top right
coordinates provide the height and width of the text. The initial rectangle is
then set such that the top of the rectangle matches the top of the window, the
left of the rectangle matches the left of the window, the bottom of the rectangle
is one character height below the top of the rectangle, and the right of the
rectangle is the width of the text from the left of the rectangle.

A loop is now entered that fills the window with text. In a real applica­
tion, code would probably be inserted at the top of the loop to pull the text
from within a buffer before drawing; however, since this example uses a con­
stant string, WinDrawText is called with a pointer to the constant text. The
DLTEXTATTRS flCmd bit tells PM to use the current foreground and back­
ground colors rather than those passed in the function call. After the text is
drawn, the drawing rectangle is recalculated for the next line of text. Both the
top and bottom coordinates of the rectangle are adjusted down by the height
of a line of text. The left and right coordinates are left unchanged since all
drawing in this example starts at the left edge of the window. If the bottom
coordinate of the rectangle is now below the bottom of the window, the loop
exits, preventing any partial lines of text from being displayed, WinEndPaint
is called to release the presentation space, and the function returns.

WinDrawText uses the currently selected font for drawing. When a paint
operation is started with WinBeglnPaint and the PP _FONTNAMESIZE pre­
sentation parameter is present, the PP FONTNAMESIZE font is selected into
the presentation space as the current font.

Programmers of applications that require additional text drawing capabilities
such as justification or angular drawing will find that the WinDrawText API

Gpl API 485

is too limited to be of practical value. Fortunately, the Graphics Programming
Interface or Gpi, provides additional functionality to assist the programmer.
The APis provided by this interface allow an application to manage multiple
fonts, to query the font definition details, to change the attributes with which
text is drawn, to determine and/or set the exact position that each character
in a line of text will occupy, and, of course, to draw the text to a presentation
space. Unlike the WinDrawText API, the Gpi functions may be performed on
any graphics device, not just the screen.

As an introduction to the Gpi functions, let's examine the program from the
previous section modified to use a Gpi function instead of WinDrawText. The
required changes are isolated to the function that processes the WM_pAINT
message, which is shown in Figure 16.12. This routine follows the same logical
flow as before. First, the entire window is invalidated and then the paint
operation is started with a call to WinBeglnPaint. Next, the height of the
text is queried using the GpiQueryCharBox API in place of the preliminary
call to WinDrawText. This API returns the size of the rectangle within which
characters of the currently selected font, in this case, the default font, are
drawn. The prototype of the API is shown in Figure 16. 13.

static MRESULT wmPai nt(HWND hwnd, ULONG msg, MPARAM mpl, KPARAM mp2 }
{

HPS
RECTL
IOlNlI.
flaa
me
um

hps;
rectl ;
pobE;
aimf;
ld::;
leaps[2];

Wi ninval idateRect(hwnd, NULL, TRUE) ;
hps = WinBeginPaint (hwnd, NULLHANDLE, &rectl);
if (hps != NULLHANDLEJ {
~(Ip, &:sizef);
~(i.;., &rectl., CUUlll'lE) ;
pahE.x • rectl.lll.eft;
p:d.at.y .. rectl .Y'ltlp - PlDIIIRl'(sbaf. cy);
mile(PQint.y >=- rect:l.:yb:tan) {

}

~(l:p, &poi.nt;, strl.m(~). m!l'eHI:);
pcdnt.y - F.I:XmINr(aimf.cy);

WinEndPaint(hps);
/ * endif * I

return (MRESULT)Ol;

figure 16.12 Drawing text with GPI.

48& Getting It In Print: Mastering Fonts and Printing

BOOL APIENTRY GpiQueryCharBoxf HPS hps,
PSIZEF psizfxSize) ;

Figure 16.13 The GplQueryCharBox API.

• Parameter hps is the handle of the presentation space whose character box

size is to be returned.
• Parameter pslzfxSlze is a pointer to a SIZEF structure that is filled with

the width and height of the character box when the function returns. This

structure contains a ex value for the width and a cy value for the height,

both in world coordinates in the form of a fixed point number.

The function returns TRUE if successful and FALSE if an error occurs.

After the font height is obtained, the location of the bottom, left corner of

the first character is calculated. Since drawing begins at the top of the window,

they coordinate is computed as the top of the drawing rectangle less the height

of the font. The x coordinate is set to the left edge of the window. This usage

is valid if the text alignment has not been modified from the default, bottom

left. Using the calculated point, the GplCharStrlngAt API is called to draw

text beginning at the calculated location. The prototype of this API is given in

Figure J 6.14.

• Parameter bps is the handle to the presentation space into which the

characters will be drawn.
• Parameter pptlPoint is a pointer to a POINTL structure that contains an x

and a y coordinate specified as long values in world coordinates.

• Parameter !Count is the number of characters to be drawn from the buffer

pointed to by pchString.
• Parameter pchString is a pointer to a buffer containing the characters to

be drawn. Note that the actual number of characters is determined by

!Count so that no null-termination character is required.

The function returns GPLERROR if an error occurs and may return

GPLOK or GPLHITS if successful. The GPLHITS return code only occurs

when correlation is enabled and the drawn string intersects a specified rect·

angle.

LONG APIENTRY GpiCharStri ngAt { HPS hps ,
PPOINTL pptl Point,
LONG lCount ,
PCH pchString) ;

Figure 16.14 The GplCharStrlngAt API.

GplAPI 487

After the text is drawn, the starting point is adjusted to point to the start

of t~e next line ~y subtracting the height of the text. The loop then continues

until the screen 1s filled, at which time, the paint operation is terminated and
the function returns.

This example, like that shown for WinDrawText, uses the default font es­

tabli~hed by WinB~gi~Pa.int. Unfortunately, most text processing applications

require more so~h1strcation than this method allows. For example, suppose

the second wo~d m the three-word string used in the previous examples were

to be drawn usmg a boldface font. The WM_pAINT processing to select and use

the boldface font is shown in Figure 16.15. This routine follows the same basic

flow as the previous two WM_pAJNT routines, but creates a logical font with

the bold attribute before entering the text drawing loop. A logical font is PM's

method of mapping a physical font along with any synthesized attributes into

an application. Application routine CreateAlternateFont is called to create the

s t atic MRESULT wmPaint(HWND hwnd, ULONG msg, MPARAM mpl , MPARAM mp2 I
{

HPS
RECTL
PO INTL
SIZEF
BOOL

hps;
rect l ;
point;
sizef;
bBold ;

WininvalidateRect(hwnd, NULL, TRUE);
hps = WinBeginPai nt(hwnd, NULLHANDLE &rectl I;
i f (hps != NULLHANDLE) ('

Wi nFillRect (hps, &rectl, CLR_WHITE);
bB~ld = CreateAl ternateFont(hwnd, hps, &sizef, 1);
Gp1SetCharSet (hps, LCID_DEFAULT);
point .x = rectl.xLeft ;
point .y = rectl .yTop - FIXEDINT(sizef.cy);
while (point .y >= rectl.yBottom) {

)

GpiCharStringAt (hps , &point , strlen (szTextl), szTextl);
if (bBold) {

Gpi SetCharset (hps , 1 I;
}

GpiCharStri ng(hps, strl en (szText 2), szText2);
if (bBol d) {

GpiSetCharSet (hps, LCID_DEFAULT);
)

GpiCharString (hps, strlen (szText3) , szText3);
point.y -= FIXEDINT(sizef .cy);

WinEndPaint(hps);
I * endif •1

r eturn (MRESULT)Ol;

Figure 16.15 Drawing with different attributes.

~~~~~~~~~---------•--------------------------------~--~----~--------~ 



488 Getting II in Print: Mastering Fonts and Printing 

logical font and then GpiSetCharSet is called to restore the current font to the 

default. Processing then continues as normal until the text drawing loop is en­

tered. Inside the loop, GplCharStringAt is called to draw the first word of the 

text. The application then selects the boldface logical font as the current font 

and then calls GplCharString to draw the second word of the text. Note that 

this new API takes the same parameters as GplCharStringAt without the start 

coordinates. GPI internally maintains a current location which is initialized 

by the coordinates passed to GpiCharStringAt. When the API finishes drawing 

the text, the current location is left at the point when the next character would 

be drawn. This location is then used as the starting point for the text drawn 

by GpiCharString. After the second word is drawn, the original, non-boldface 

font is again selected and GplCharString is used to draw the remaining word. 

The loop then continues as normal to fill the window with text. 

The code in the previous example was somewhat simplified by the inclu­

sion of the font selection code into a subroutine. Since this can be a somewhat 

arduous task, we will examine this routine more closely. The code for CreateAl­

ternateFont, which attempts to create a logical font with the bold attribute, is 

shown in Figure 16.16. After clearing a FATTRS structure, the routine obtains 

the presentation parameter string and the FONTMETRICS structure for the 

current font. If the presentation parameter existed, ParseFaceAttrs is called 

to extract the face name and font attributes and store them in the FATTRS 

structure. If no presentation parameter was available, the face name is copied 

from the FONTMETRICS structure. The remainder of the processing varies 

depending on the type of font, outline or bitmap. 

If an outline font is encountered, routine GpiQueryCharBox is called to 

obtain the size of the characters in the font. Now if the current font is already 

bold face, there is no need to continue. Otherwise, the FATTRS structure is 

initialized to select a boldface, outline font. Note however, that outline fonts 

typically are packaged as four separate fonts, one for each combination of the 

boldface and italic attributes and that the system does not synthesize these 

fonts . Rather, the application must specify the proper face name containing 

the attributes in order for the font to be selected. To avoid naming convention 

problems, this routine calls a function, GetBoldFont, that enumerates all the 

fonts in the system and then checks each font for the proper family and com­

bination of boldface and italic fonts. If the correct font is found, the !Match 

value, a unique identifier, for the font is returned. Next, since the system does 

not synthesize the attributes, the boldface and italic flags are removed from the 

FATTRS fsSelection field. Function GpiCreateLogFont is then called to estab­

lish a logical font for the physical font with the !Match value from GetBoldFont, 

or the font which most closely matches the required font. If a match is not 

found, the return value is set to FALSE to prevent the calling routine from 

attempting to use the requested font. The prototype for the GpiCreateLogFont 

API is shown in Figure 16 .1 7. 

BOOL CreateAlternateFont( HWND hwnd, HPS hps, PSIZEF psizef, ULONG lcid ) 
{ 

FATTRS fa; 
FONTMETRICS fm; 
PSZ pszFullFaceName; 
BOOL bBold = TRUE; 

memset( &fa, 0, sizeof( FATTRS )); 
fa.usRecordLength = sizeof( FATTRS ); 
pszFullFaceName = GetCUrrentFont( hwnd )· 
?PiQueryFontMetrics( hps, sizeof(FONTMETRICS), &fm ); 
if( pszFullFaceName !=NULL && strlen(pszFullFaceName)) 

ParseFaceAttrs( pszFullFaceName, &fa ) ; 
else strcpy( fa.szFacename, fm.szFacename ); 
if( fm.fsDefn & FM_DEFN_OUTLINE ) { 

GpiQueryCharBox( hps, psizef ); 
if( fa.fsSelection & FATTR_SEL_BOLD ) bBold = FALSE; 
else { 

) 

fa.fsFontUse = FATTR FONTUSE OUTLINE· 
fa.fsSelection I= FATTR_SEL_BoLD; ' 
fa.!Match = GetBoldFont( hps, fa.fsSelection, fm.szFamilyname, 

fa.szFacename ); 
~a.fss7lection &= ~(FATTR_SEL_BOLD I FATTR_SEL_ITALIC); 
lf( Gp1CreateLogFont(hps, NULL, lcid, &fa ) != FONT MATCH ) 

bBold = FALSE; -

} else { 
ps~zef->cx = MAKEFIXED( fm.lAvecharWidth, O ); 
~s1zef->cy = MAKEFIXED( fm.lMaxBaselineExt, o ); 
if( fa.fsSelection & FATTR_SEL_BOLD ) bBold =FALSE; 
else { 

fa.fsSelection I= FATTR_SEL_BOLD; 
fa . lAvecharWidth = fm.lAveCharWidth; 
fa.lMaxBaselineExt = fm.lMaxBaselineExt· 
if( GpiCreateLogFont(hps, NULL, lcid, &fa ) != FONT_MATCH ) { 

fa.lMatch = GetBoldFont( hps, fa.fsSelection, fm.szFamilyname, 
fa . szFacename ); 

if( fa.lMatch != O ) 
if( GpiCreateLogFont(hps, NULL, lcid, &fa ) != FONT_MATCH ) 

bBold = FALSE; 

return bBold; 

figure 16.16 Creating a logical font. 

LONG APIENTRY GpiCreateLogFont(HPS hps, 
PSTR8 pName, 
LONG !Leid, 
PFATTRS pfatAttrs); 

Figure 1&.17 The GplCreatelogFont API. 

489 



490 Getting It in Print: Mastering Fonts and Printing 

• Parameter hps is the handle to the presentation space in which the logical 
font is to be created. 

• Parameter pName is an application defined name for the font. This value 
is stored when a font is created in a metafile and may be useful to the 
application when files are transported between systems.. . . 

• Parameter !Leid is the logical font identifier the application wishes to 

create. h. h 
• The pfatAttrs parameter is a pointer to the FATTRS structure w ic con-

tains the specifications for the desired font. 

Routine CreateAltemateFont's processing for bitmap fonts is similar. Sin:e 
bitmap fonts have specific sizes, GpiQueryCharBox cannot be used to obtam 
the size of the font. Instead the width and height of the font are set to the aver­
age character width and maximum character height from the ~O~TMETRICS 
for the font. Again, if the font is already bold, no further action is ~ecessary. 
Otherwise, the FATTRS structure is initialized with the boldface attnbute ~nd 
the font size and GplCreateLogFont is called to find a m~tch. for the :equtre­
ments. If this call fails, GetBoldFont is called to determme if a specific font 
exists for the boldface attribute. This is basically the reverse of the procedure 
for the outline fonts since there is normally only one definition for a particular 
size bitmap font and the system synthesizes the boldface and it~lic a~tributes. 
If a match value is found by GetBoldFont, GpiCreateLogFont is agam called 
to create a logical font which matches the !Match value. If this also fails, the 
return value is set to FALSE to prevent the caller from attempting to use the 
font. 

The Gpi API provides a number of other attributes that ca~ be used to rn?d-
ify the appearance of drawn characters and functions for s~ttmg an~ querymg 
these attributes either individually or as a group. The available attnbutes are 
all contained in the CHARBUNDLE structure and may be set in aggregate 
by calling the GpiSetAttrs APL The prototype of this API is shown in Figure 
16.18. 

• Parameter hps is the handle for the presentation space whose attributes 
are to be set. 

• Parameter lPrimType specifies the graphic element type to which the at-
tributes apply. Text attributes are set by specifying PRIM.CHAR (2). 

BOOL APIENTRY GpiSetAttrs lHPS hps, 
LONG lPrimType, 
ULONG flAttrMask, 
ULONG flDefMask, 
PBUNDLE ppbunllttrs) ; 

Figure 16.18 The GpiSetAttrs API. 

GplAPI 491 

• Parameter flAttrMask contains a set of flags which indicate the attributes 
which are to be modified. See below for the appropriate flag for each 
attribute. · 

• Parameter flDefMask contains a set of flags which when set indicate that 
the corresponding attribute should be set to its default value. 

• Parameter ppbunAttrs is a pointer to a structure containing the attributes. 
The type of the structure is interpreted based on the lPrim'l)'pe parameter. 
For text attributes, the structure is the CHARBUNDLE structure defined 
below. 

A similar function, GplQueryAttrs, is used to obtain the setting of a group 
of attributes. The CHARBUNDLE structure used to set or query text drawing 
attributes with these functions is defined as follows in Figure 16.19. 

• Element !Color is the foreground color used for drawing text. This may 
be either a color index or an RGB value depending on the mode of the 
presentation space. This attribute is set or queried when the CBS.COLOR 
(OxOOOl) mask flag is set. GplSetColor and GplQueryColor may be used to 
change or query this individual attribute. 

• Element lBackColor is the background color used for drawing charac­
ters. This may be either a color index or an RGB value depending on the 
mode of the presentation space. This attribute is set or queried when the 
CBS.BACK.COLOR (Ox0002) mask flag is set. GplSetBackColor and Gpi· 
QueryBackColor may be used to change or query this individual attribute. 

• Element lMixMode identifies the current mix mode for character drawing. 
The mix mode determines how the drawn characters interact with other 
text or graphics already drawn in the area of the text. This attribute is 

typedef struct _CHARBUNDLE 
{ 

LONG lColor; 
LONG lBackColor; 
USHORT lMixMode; 
USHORT usBackMixMode; 
USHORT usSet; 
USHORT usPrecision; 
SIZEF sizfxCell; 
POINTL ptlAngle; 
POINTL ptlShear; 
USHORT usDirection; 
USHORT usTextAlign; 
FIXED fxExtra; 
FIXED fxBreakExtra ; 

CHARBUNDLE; 

Figure 16.19 The CHARBUNDLE structure. 



492 Getting It In Print: Mastering Fonts and Printing 

set or queried when the CBB...MIX...MODE (Ox0004) mask flag is set. This 
value may be set or queried individually by calling the GpiSetMix and 
GpiQueryMix APls. 

• Element usBackMixMode identifies the current mix mode for the back­
ground of drawn characters. The mix mode determines how the back­
ground of the characters interacts with text or other graphics already 
drawn in the area occupied by the text. This attribute is set or queried 
when the CBB..BACK-MIX...MODE (Ox0008) mask flag is set. This attribute 
may be set or queried individually with the GpiSetBack.Mix and GpiQuery­
Back.Mix APis. 

• Element usSet is the LCID of the currently selected font. This attribute is 
set or queried when the CBB.SET (OxOO 10) mask flag is set. This attribute 
may be set or queried using the GpiSetCharSet and GpiQueryCharSet 
AP Is. 

• Element usPrecision specifies which attributes affect the drawing of bitmap 
fonts. Depending on this attribute, all attributes are used, only the direction 
attribute is used, or drawing with bitmap fonts is illegal and considered 
an error. This attribute is set or queried when the CBB...MODE (Ox0020) 
mask flag is set. This attribute must be set or queried using the GpiSetAttrs 
and GpiQueryAttrs APls as there are no APis that deal with the individual 
attribute. 

• Element sizfxCell specifies the width and height of the character box used 
for drawing outline fonts as FIXED values. This attribute is set or queried 
when the CBB..BOX (Ox0040) mask flag is set. The GpiSetCharBox and 
GpiQueryCharBox APls are used to set and query this attribute on an 
individual basis. 

• Element pt/Angle specifies an x and y coordinate that are used to determine 
the angle at which a character string is drawn. The actual appearance of 
the characters depends on the character mode and the type of font. This 
attribute is set or queried when the CBB-ANGLE (Ox0080) mask flag is 
set. This attribute is individually set or queried using the GpiSetCharAngle 
and GpiQueryCharAngle APis. 

• Element pt/Shear specifies x and y coordinates that are used to determine 
an angle that is applied to the vertical component of character vectors in 
an outline font. Shear produces an effect similar in appearance to an italic 
font. This attribute is set or queried when the CBB_SHEAR (OxO 100) mask 
flag is set. The character shear may be set and queried individually using 
the GpiSetCharShear and GpiQueryCharShear APls. 

• Element usDirection indicates the direction in which characters of a string 
are drawn within the rectangle defined by the string. Normally, characters 
are drawn with the first character at the left of the rectangle and the last 
character toward the right of the rectangle. Other options include the first 
character drawn at the right and the last character toward the left; the 
first character at the top and the last character at the bottom; and the first 

Printing 493 

character at the bottom and the last character at the top of the rectangle. 
This attribute is set or queried when the CBB_DIRECTION (Ox0200) mask 
flag is set. This attribute may be individually set and queried using the 
GpiSetCharDirection and GpiQueryCharDirection APis. 

• Element usTextAlign specifies the alignment of characters with respect to 
the current drawing location when the characters are drawn. This attribute 
contains a number of flags that indicate the horizontal and vertical align­
ment. Typical values might cause the text to be centered both vertically and 
horizontally with respect to the current drawing location. This attribute is 
set or queried when the CBB_TEXLALIGN (Ox0400) mask flag is set. This 
attribute may be set or queried individually using the GplSetTextAllgnment 
and GplQueryTextAlignment APis. 

• Element fxExtra specifies the amount of extra space to place between 
each character as a fixed point number. An example use of this attribute is 
adding additional space between characters to effect text justification. This 
attribute is set or queried when the CBR.EXTRA (Ox0800) mask flag is set. 
This attribute may be set or queried individually using the GplSetCharEx­
tra and GpiQueryCharExtra APis. 

• Element fxBreakExtra specifies the amount of extra space to be given to 
the break character as a fixed point number. This character is defined by 
the font but would normally be the space character. This attribute is set or 
queried when the CBB_BREAK..EXTRA (OxlOOO) mask flag is set. This at­
tribute may be set or queried individually using the GpiSetCharBreakExtra 
and GpiQueryCharBreakExtra APis. 

FONT SUMMARY 

PRINTING 

This section has discussed the various types of fonts, how fonts are selected, 
and both the Win and Gpi APis for manipulating text attributes and drawing 
text. The knowledge should make working with fonts an easier task. In the 
next section, we will see that all of the information discussed so far applies not 
only to drawing text on the display, but also to sending text to the printer. 

While PM programs can send data to printers in a device dependent man­
ner using printer specific control codes, the OS/2 printing subsystem allows 
the program to generate output in a device independent manner by draw­
ing to a presentation space through the Gpi APls. This section describes the 
OS/2 printing subsystem and the programming required to perform output to 
devices other than the system console. 



494 Getting It in Print: Mastering Fonts and Printing 

At the center of the printing subsystem is the spooler. Practically all hard 
copy output flows through the spooler. The spooler gathers all the data for 
a particular print job into a spool file. When the job is complete, the spooler 
routes the data to the printer or other output device. This allows multiple appli­
cations to simultaneously send information to the printer without interfering 
with each other. Note however, that applications can send output directly to 
the hard copy device, bypassing the spooler. When this happens, multiple jobs 
may be intermixed at the printer or one application may have to wait until 
all output from another application has been completed. This option should 
only be used in special circumstances such as when an application requires a 
dedicated printer, say for printing checks. This option should never be used for 
general printing. . 

Once the spooler has compiled the print job into a spool file, the file is 
passed to a queue driver. This driver determines the type of data in the file. 
If the file contains raw printer-specific data, it is transferred directly to the 
printer device driver. If the file contains PM graphic information in the form 
of a metafile, the queue driver uses PM to play the metafile to the printer driver. 
The printer driver then formats the data and sends the information to the low 
level OS/2 driver for the 1/0 port to which the printer is attached. 

Preparing to Print 
The actual drawing of output to a printer is often one of the easier parts 
of an application. The difficult part of the operation is bringing together all 
the information required to place the output on the correct device and in 
the desired format. A typical application allows the user to select the output 
device, the type and size of the paper, the area of the paper on which printing 
will occur, and in the case of textual output, the font to be used. The following 
sections describe the application coding necessary to perform these functions. 

Selecting the Printer 

In general, PM applications do not send output to physical printers but to 
printer queues. While there is usually a one-to-one correspondence between 
queues and printers, many system environments assign multiple physical print­
ers to a single queue and others assign multiple queues to a single printer. If 
the user interface leads the user to believe that output is being directed to a 
particular physical printer, confusion and misunderstanding are sure to oc­
cur. PM applications should make the distinction between printers and queues 
patently clear and should always indicate to the user that a queue is being 
selected, not a printer. 

With this in mind, the first application task in the printing process is to 
determine the queue to which output will be directed. This queue may be: 

Printing 495 

1. The default print queue as established by the user via a Workplace Shell 
printer object. 

2 . A saved queue from a previous invocation of the application. 
3. A specific queue selected by the user from within the applica tion. 

The name of the Workplace Shell's default print queue is stored in the system's 
initialization files and may be queried using the PrfQueryProfileStrlng API 
with application name PM_SPOOLER and key name QUEUE. This is the only 
queue/printer information that an application should directly query from the 
initialization files. While additional information about the available printer ob­
jects, queues, and printers is stored in the initialization files, the definition and 
usage of this information is not publically documented and is therefore subject 
to change and cannot be relied upon for future releases. Instead, the SPL API 
functions should be used to obtain any additional information required. Once 
the name of the default queue is known, the SplQueryQueue API may be called 
to obtain the pertinent information for the queue. This information is returned 
in a PRQINF03 structure. Since this structure provides a large part of the 
data needed to create a print job, we have chosen to make it a part of our data 
structure. Figure 16.20 shows the code for obtaining the information for the 
default queue. 

stati c BOOL QueryDefaul tPrinter( PPRQINF03 *pppqi ) 
I 

PSZ pszVal ue ; 
ULONG cbValue; 
PSZ pszSemi ; 
ULONG cbPqi ; 
BOOL bSuccess = FALSE; 

do { 
i f (!PrfQueryProfileSize ( HINI_PROFILE, DEFAULT_PRINTER_APP, 

DEFAULT_PRINTER_KEY , &cbValue)) break; 
i f (cbValue++ == 0) break; 
i f ((pszValue = (PSZ)malloc( cbValue )) == NULL )break; 
if (! PrfQueryProf ileStri ng( HINI_PROFILE, DEFAULT_PRINTER_APP, 

DEFAULT_PRINTER_KEY, •• , pszValue, 
cbValue)) break; 

i f ( (pszSemi = strchr ( pszValue, ';' ) ) == NULL) break; 
*pszSemi = '\0'; 
SplQueryQueue( NULL, ps zValue, 3, NULL, 0, &cbPqi ); 
i f (( *pppqi = (PPRQINF03)mal loc( cbPqi )) == NULL) break; 
SplQueryQueue ( NULL, pszValue, 3, *pppqi, cbPqi, &cbPqi ); 
bSuccess = TRUE; 

while ( false ); /* enddo */ 

Figure 16.20 Determining default queue information. 



49& Getting It in Print: Mastering Fonts and Printing 

The first portion of this routine uses standard Prf API calls to obtain 
the size and content of the initialization file entry for the default queue. The 
function then removes the semi-colon which terminates the queue name and 
calls SplQueryQueue to obtain the setup information for the queue. The first 
call to SplQueryQueue passes a NULL pointer to the information pointer to 
obtain the length required to hold all of the information. Memory is then 
allocated for the buffer and SplQueryQueue is called again to actually obtain 
the information. The function then returns with a pointer to the data stored in 
the location supplied by the caller. 

The SplQueryQueue API is prototyped as shown in Figure 16.21. 

• Parameter pszComputerName is a pointer to the name of the com~uter 
whose queue is to be queried. This parameter is used in network environ­
ments and should be set to NULL to specify the local workstation or a 
standalone computer. 

• Parameter pszQueryName is a pointer to the name of the queue to query. 
• Parameter ulLevel specifies the level of information to be retrieved. Level 

3 returns the basic queue definition information for local queues in a 
PRQINF03 structure. Level 4 returns this information plus an array of 
PRJINF02 structures which describe the print jobs currently waiting in 
the queue. Level 5 returns the queue name and level 6 returns the def­
inition information in a PRQINF06 structure which is the same as the 
PRQINF03 structure plus information about the remote system where the 
queue resides in a network environment. 

• Parameter pBuf is a pointer to the location in which the information i.s to 
be returned. If this parameter is NULL, the total number of bytes reqmred 
is returned in pcbNeeded. 

• Parameter cbBuf specifies the length of pBuf. 
• Parameter pcbNeeded is a pointer to a location in which the API stores the 

number of bytes required to return the queue information. 

SplQueryQueue returns NO_ERROR if successful. 
The PRQINF03 structure contains various information describing the def­

inition and current status of the queue. Since some of this information is 
irrelevant to the current discussion, the structure will not be described in 
detail. The information in the structure that is relevant is used to open the 

SPLERR APIENTRY SplQueryQueue(PSZ pszComputerName, 
PSZ pszQueueName, 
ULONG ulLevel, 
PVOID pBuf, 
ULONG cbBuf, 
PULONG pcbNeeded); 

Figure 16.21 The SplQueryQueue API. 

Printing 497 

display context in which the drawing for printing occurs and will be described 
as needed. 

If the application saves the current printer selection between invocations­
for example, in an initialization file-the application can restore the PRQINF03 
structure on startup (as an alternative, store the queue name in the initial­
ization file and then call SplQueryQueue to obtain the queue information). 
The application should then use the SplQueryQueue API to ensure that the 
queue configuration has not changed since the last invocation. If the selected 
queue no longer exists, the application can select the default queue or request 
that the user select a queue. One element of the PRQINF03 structure that 
is relevant at this juncture is the pDriverData element. This element contains 
driver specific information which specifies print job properties such as output 
orientation and quality which the application may wish to preserve across 
invocations. The application may wish to save this information before calling 
SplQueryQueue and then restore the information if the driver attached to the 
queue has not been changed. 

The third option is to allow the user to select a queue. A typical printer 
selection dialog is provided in the sample code for this chapter. We will not 
indulge in what would be a rather long-winded discussion of the dialog, which 
basically obtains the user's choice and then calls SplQueryQueue as in the 
example above. However, the dialog initialization code shown in Figure 16.22 
is of interest and shows how an application obtains a list of the print queues 

Sta.tic MRESULT wmini tDlg( HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2 ) 
( 

PSELPRTDATA pspd = (PSELPRTDATA)mp2; 
ULONG cPrinters; 
ULONG cTotal; 
ULONG cbNeeded; 

WinSetWindoWULong( hwnd, QWL_USER, (LONG)pspd ); 
SplEnumQueue( NULL, 3, NULL, 0, &cPrinters, &cTotal, &cbNeeded, NULL); 
pqi = (PPRQINF03)malloc( cbNeeded ) i 
SplEnumQueue(NULL, 3, pqi, cbNeeded, &cPrinters, &cTotal,&cbNeeded, NULL); 
for (cPrinters = O; cPrinters < cTotal; cPrinters++) { 

WinSendDlgitemMsg( hwnd, CID_PRINTERLB, LM_INSERTITEM, 
(MPARAM)LIT_END, (MPARAM) (pqi (cPrinters).pszComrnent)); 

if (!strcmp( pqi(cPrinters).pszName, pspd->ppqi->pszName)) { 
WinSendDlgitemMsg( hwnd, CID_PRINTERLB, LM_SELECTITEM, 

MPFROMLONG(cPrinters), MPFROMLONG(TRUE) ); 
} /* endif */ 

/* endif *I 
I* endfor */ 

return (MRESULT)TRUE; 

Figure 16.22 Obtaining a list of available print queues. 



498 Getting It in Print: Mastering Fonts and Printing 

defined on a system. This example uses the SplEnumQueue API to obtain the 
names of the print queues available. . 

The code makes two calls to SplEnumQueue. The first call determines 
the amount of space required to return the queue informa~ion. After sufficient 
memory is allocated to contain this information, the ~~I is called th~ second 
time to retrieve the information into the buffer. In this mstance, the mforma­
tion consists of an array of PRQINF03 structures with an element for each 
printer queue defined in the system. A loop is then used to fill the conte.nts of 
the dialog's selection listbox with the description of each queue found m the 
pszComment field of the PRQINF03 structure. The content of ~his field is. t_}ie 
name used as the printer object title by the Workplace Shell and is thus fam1har 
to the user. A check is then made to determine if the queue name matches the 
name of the currently selected printer. If so, the listbox item is selected. ~he 
loop then continues until all available print queues have been added to the hst. 
The prototype for the SplEnumQueue API is shown in Figure 16.23. 

• Parameter pszComputerName is a pointer to the name of. th_e comp~ter 
whose queues are to be enumerated. Specify NULL to obtam mformat1on 
for the local workstation or a standalone computer. 

• Parameter ulLevel indicates the level of information to retrieve. See 
SplQueryQueue for details on the values to which this parameter may be 

set. . r: 
• Parameter pBuf is a pointer to the location to store the retrieved m1orma-

tion. Set this parameter to NULL to retrieve the required length. 
• Parameter cbBuf specifies the length of pBuf and should be set to zero 

when retrieving the required length. 
• Parameter pcReturned is a pointer to the location where the API stores 

the number of entries returned in the array at location pBuf. 
• Parameter pcTotal is a pointer to the location where the API stores the 

total number of entries available. 
• Parameter pcbNeeded is a pointer to the location in which the API stores 

the number of bytes required to return information on all queues. 
• Parameter pReserved should be set to NULL. 

SplEnumQueue returns NO..ERROR if successful. 

SPLERR APIENTRY SplEnumQueue (PSZ pszComputerName, 
ULONG ulLevel , 
PVOID pBuf, 
ULONG cbBuf, 
PULONG pcReturned, 
PULONG pcTotal, 
PULONG pcbNeeded , 
PVOID pReserved); 

Figure 16.23 The SplEnumQueue APL 

Printing 499 

Selecting the FORM (paper size) 

Next the user must be able to specify the form on which output is to be gener­
ated. By default, the form specifies the size of the paper and thus the overall 
area into which the application can draw. However, the user can define addi­
tional forms which are used to indicate paper which may contain pre-printed 
information. Printing to a specific form insures that the user has indicated that 
the form is in the printer before the spooler releases the job. 

The simplest way of selecting a form is to display the Job Properties Dialog 
via the DevPostDeviceModes APL This API is an entry point into a routine 
supplied by the printer driver which allows the user to specify device specific 
information such as the form and other characteristics of the print job; page 
orientation, resolution, etc. Initial characteristics are passed in via the pdriv­
DriverData parameter which is updated with the new selections on output. If 
this parameter is set to the value of the pDriverData element of the PRQINF03 
structure obtained when the printer queue is queried, the new information is 
stored back into the application and is embedded into the print job when 
created. The prototype for DevPostDeviceModes is shown in Figure 16.24. 

• The hab parameter is the anchor block handle for the calling thread. 
• The pdrivDriverData parameter is a pointer to a device specific structure 

which contains the initial configuration for the device and in which the 
results of the call are returned. If this parameter is set to NULL, the 
required length of the structure is returned. 

• Parameter pszDriverName points to the name of the printer driver whose 
characteristics are to be retrieved and/or changed. 

• Parameter pszDeviceName is the pointer to the name of the device type 
for which information is to be changed and/or retrieved. 

• Parameter pszName is the name of the specific printer for which current 
information is to be retrieved. If the information is being posted for user 
modification, this field can be set to NULL. 

• The flOptions field indicates the type of operation to be performed. If 
set to DPDM_QUERYJOBPROP, the API returns the default information 
for the specified queue but does not interact with the user. If set to 
DPDM.POSTJOBPROP, the API uses the information in the pdrivDriver­
Data parameter to initialize a dialog box in which the user can modify 

LONG APIENTRY DevPostDeviceModes(HAB hab, 
PDRIVDATA pdrivDriverData , 
PSZ pszDriverName, 
PSZ pszDeviceName , 
PSZ pszName , 
ULONG f lOpt ions ) ; 

Figure 16.24 The DevPostDeviceModes API. 



500 Getting It in Print: Mastering Fonts and Printing 

the device properties. When the dialog box is dismissed, the information 

pointed to by pdrivDriverData has been updated with the user's selections. 

DevPostDeviceModes returns the number of bytes of information stored at 

location pdrlvDrlverData, or the number of bytes of information available if 

pdrivDriverData is NULL. 
An alternative method is to call the DevQueryHardcopyCaps API to retrieve 

a list of the available forms. The user is then presented with this list and allowed 

to select a form. The application saves the name of the selected form and passes 

the information to the print job in the DevOpenDC call. A form name chosen 

in this fashion overrides the selection in the PDRIVDATA structure passed to 

DevOpenDC. 

Establishing Margins 

Applications typically provide a dialog or other means by which the user may 

modify the printable area of the selected form. In most cases, the user is 

allowed to specify the distance from the edge of the form within which no 

drawing will occur. This area is known as the margin. 

Most printers also have hardware limitations which prevent the entire page 

from being printed. These hardware margins are available to the application in 

the HCINFO structure which may be retrieved using the DevQueryHardcopy­

Caps APL The origin of presentation spaces created for the device is located 

at the lower left point defined by the hardware margins. Thus, when sending 

output to a printer, coordinate (O,O) is not at the corner of the paper but at 

the point defined by the hardware limitation. Be careful when computing the 

printable area based on user-defined margins that the calculations are from 

the edge of the paper, not the origin of the presentation space. 

Selectl1g a Font 

Text output to a hard copy device requires that some font be selected (even if it 

is the default font). Each device may have built-in or device fonts available, the 

use of which will increase performance and reduce the size of the spool file. 

System fonts may also be specified for the printer and will generate a series of 

graphic commands to actually draw the characters. The standard font dialog 

may be used to select the appropriate font by specifying a printer presentation 

space in element hpsPrinter of the FONTDLG structure. 

Creating the Print Job 

Now that all the setup data has been obtained, the application can actually 

generate output to the print queue. This operation can be divided into six 

convenient steps: 

Printing 501 

1. Opening the device context 
2. Associating the presentation space 
3. Starting the print job 
4. Establishing job characteristics 
5. Drawing the output 
6. Ending the print job 

Opening the Device Context 

!he first step in generating output is to open a device context When out ut 

;Mdrawn to the system di~pla~ scre~n, the step is automatically. performelby 

th d ~en f:be ou~ut device is a pnnter, the application must explicitly open 

in eFi;;~el~.~;.ca to the DevOpenDC API. The prototype for this API is listed 

• Parameter hab is the anchor block handle for the current thread 

• P~ameter l~ is the type of context to open. For printin . u oses 

this parameter is normally set to OD QUEUED to ·fy g p 11! h ' 
I o spec1 output via t e 

spoo er. . D-DIRECT may be specified to bypass the spooler and send 

:tput directly to the printer. 01;>. l!'lFO is frequently used during setup 

d ~SI~G ?Peration to obtam mformation about the printer without 
creatmg a pnnt Job. 

• Para~eter p~zTok~n is no.t ~~e~ by OS/2. This parameter is a pointer to 

a stnng t~at identifies an m1haltzation file token from which DEVOPEN­

STR~C (discussed sho~ly) data ~ay be obtained. For compatibility, specify 

~ P?mter to a m~U-~ermmat~d string containing a single asterisk (*) which 

md1cates that this mformat10n should be obtained from th pd D 
rameter. e op ata pa-

• Parameter !Count i~ the number of elements of pdopData which are bein 

passed. pdopData is treated as an array of pointers and th· g 
specifies h w 1 • is parameter 

0 many e ements are in the array. In most instances this 

~arameter s.hould bes.et to the size of DEVOPENSTRUC, divided b~ the 

size of a pomter to v01d. This indicates that the entire structure is bein 

passed and allows for future growth of the structure. g 

HOC APIENTRY DeVOpenDC( HAB hah, 
LONG !Type, 
PSZ pszToken, 
LONG !Count, 
PDEVOPENDATA pdopData, 
HOC hdcComp); 

Figure 16.25 The DevOpenDC API. 



502 Getting It in Print: Mastering Fonts and Printing 

• Parameter pdopData is a pointer to an array of pointers to strings. This 

parameter is typically passed by casting a pointer to a DEVOPENSTRUC 

structure, which specifies the appropriate pointers (see next for a definition 

of this structure). These pointers identify the device to be opened and its 

characteristics. 
• Parameter hdcComp is used when l'IYPe is set to OD.MEMORY and spec­

ifies the handle to a device context from which the memory DC draws its 

characteristics. This allows bitmaps associated with the memory DC to be 

compatible with the device. 

If successful, DevOpenDC returns a handle to the display context. If un­

successful, the API returns NULLHANDLE. 
The pdopData parameter is normally obtained by casting a pointer to a 

DEVOPENSTRUC structure. The elements of this structure, and thus the array 

elements of pdopData, are given in Figure 16.26. 

• Element pszLogAddress is a pointer to a string that identifies the queue (for 

an OD.QUEUED DC) or device (for an OD..DIRECT DC), which the device 

context represents. For an OD.QUEUED device context, the queue name 

is specified. The name may be obtained from the pszName element of the 

PRQINF03 structure. For an OD.DIRECT device context, the name of the 

logical device for the port to which the printer is attached is specified; for 

example, LPT l. 
• Element psl.f)riverName is a pointer to a string that identifies the name 

of the printer driver to associate with the device context; for example, 

IBMNULL. This name may be obtained from the pszDriverName field of 

the PRQINF03 structure, which contains the driver name and device type 

separated by a period. The driver name should be extracted and passed as 

pszDriverName. 

t ypedef struct _DEVOPENSTRUC 
{ 

PSZ pszLogAddress ; 
PSZ pszDriverNarne; 
PDRIVDATA pdriv; 
PSZ pszDataType; 
PSZ pszCormnent; 
PSZ pszQueueProcNarne; 
PSZ pszQueueProcPararns; 
PSZ pszSpooler Params; 
PSZ pszNetworkParams; 

DEVOPENSTRUC; 

figure 16.26 The DEVOPENSTRUC structure. 

Printing 503 

• Element pdriv is a pointer to driver-specific data. This information may 

be obtained from element pDriverData of the PRQINF03 structure or by 
calling the DevPostDeviceModes APL 

• Element psVJataType specifies how the data will be stored in the spool 

file. Specifying PM_Q.RAW causes the data to be stored in printer spe­

cific format. Specifying PM_Q_STD causes the data to be stored as a meta­

file. PM_Q_STD should normally be used to reduce the size of the spool 

file and the time required to generate the spool file. In circumstances 

where the PM_Q_RAW format is required, the user can select this option 

through the printer object settings notebook which will override this pa­
rameter. 

• Element pszComment is a pointer to a string that is stored in the spool file 

and displayed in the settings notebook for the print job. This element has 
no real effect on the printed output and is optional. 

• Element pszQueueProcName is a pointer to a string that specifies the queue 
processor name, typically either PMPRINT or PMPLOT. The default name 

associated with the queue is typically used and may be obtained from 
element pszPrProc in the PRQINF03 structure. 

• Element pszQueueProcParams is a pointer to a string which specifies pa­

rameters to be passed to the queue processor. These parameters are specific 

to the actual queue processor; however, a common parameter which might 

be passed to the PMPRINT or PMPLOT processor is COP-nnn where nnn 

is 1 to 3 decimal digits that specify the number of copies of the job to be 
printed. 

• Element pszSpoo/erParams is a pointer to a string that specifies para­

menters to be passed to the spooler. This string can be used to specify the 

form name for the job and the priority at which the spooler dispatches 
the job, higher priority jobs being dispatched first. Note: specification of 

a form name with the FORM= parameter overrides any form specifica­

tion contained in element pdriv; so if DevPostDeviceModes is used, do not 
specify a form name here. 

• Element pszNet.vorkParams is a pointer to a string which specifies various 

parameters for jobs direct across a network. The available parameters are 
dependent on the network. 

Figure 16.27 shows a code fragment which fills in the DEVOPENSTRUC 

data from a PRQINF03 structure and then opens the device context. The code 
first extracts the name of the printer driver from element psVJriverName of 

the PRQINF03 structure. The number of characters before the period in the 

name is obtained and used to allocate a buffer for the driver name. The name 

is then copied from psVJriverName. The DEVOPENSTRUC is then initialized 
and DevOpenDC is called. 



504 Getting It in Print: Mastering Fonts and Printing 

PPRQINF03 ppqi ; 
DEVOPENSTRUC devopen; 
PSZ pszDriver; 
ULONG cbDriver ; 

cbDriver = st rcspn( ppqi->pszDri verName, '. · " ); . . 
if (cbDriver __ 0) cbDriver = strl en ( ppq1->pszDr1verName ), 
if ({pszDriver = ( PSZJmall~c( cbDriver + 1 )) !=.NULL ~ ( 

strncpy( pszDriver, ppq1->pszDriverName, cbDr1ver ) , 
pszDriver [ cbDriver l = '\0'; 

} / * endif *I 
devopen.pszLogAddress = ppqi-~pszName ; 
devopen .pszDr iverName = pszDr1ver ; 
devopen.pdriv - ppqi->pDriverData ; 
devopen.pszDataType = "PM_Q_STD"; 
devopen.pszComment = NULL; 
devopen.pszQueueProcNarne = ppqi->pszPrProc ; 
devopen.pszQueueProcParams = NULL; 
devopen. pszSpoolerParams = NULL; 
devopen.pszNetworkParams = NULL; 
hdc = DevOpenDC( hab, OD_QUEUED, •• • , 

sizeof( DEVOPENSTRUC )/sizeof (PVOID) , 
(PSZ *)&devopen, NULLHANDLE ) ; 

Figure 16.27 Opening the device context. 

Associating the Presentation Space 
Once the device context has been opened, a presentati~n space must ~e ~­
sociated with the device before drawing can occur. This. can be a~ ex1stmg 
presentation space or a new one can be created and ~ssoc1ated .specifically ~or 
the print job. Assuming the latter case, the. pr~sentation space is created with 
the GpiCreatePS AP! which is prototyped m Figure 16.28. 

• The hab parameter is the anchor block handle for the thread. 
• Parameter hdc is the device context handle returned by the DevOpenDC 

call discussed previously. 'fi h 
• Parameter psizlSize is a pointer to a SIZEL sti:ucture that ~pec1 es t e 

width and height of the presentation space. Specify zero for either or b~th 
the width and height to set the presentation page to the default page size 
for the device. 

HPS APIENTRY GpiCreatePS I HAB hab, 
HOC hdc, 
PSIZEL psi zlSize, 
ULONG flOptions ) ; 

Figure 16.28 The GpiCreatePS API. 

Printing 505 

sizel. cx = s i zel .cy = OL; 
hps = GpiCreatePS ( hab, hdc , &si zel , 

PU_LOMETRIC I GPIT_NORMAL I GPIA_ASSOC ) ; 

Figure 16.29 Creating a presentation space. 

• Parameter fiOptions is a 32-bit value divided into bit fields that specify 
the units of measurement, the coordinate format, the presentation space 
type, and whether the presentation space is automatically associated with 
the device context. In the following example, the coordinate format is left 
at the default, the units of measurement are set to PU..LOMETRIC (.1 
millimeter) for easy conversion of the values returned by DevQueryHard­
copyCaps, a normal presentation space is used, and the presentation space 
is automatically associated with the device context. 

GpiCreatePS returns a presentation space handle if successful, or NULLHAN­
DLE if an error occurs. 

Figure 16.29 shows a brief code fragment used to create a presentation 
space associated with the device context opened in Figure 16.27. The ex and cy 
elements of a SIZEL structure are initialized to zero to cause the presentation 
space to match the output device size. GpiCreatePS is then called, passing the 
anchor block handle and the device context handle. The flOptlons parameter 
specifies that the presentation space coordinates are measured in one tenth 
millimeter units, that the presentation space will be a "normal" PS and space 
should be associated with the specified device context. 

Starting the Job 
The next step in creating the print job is to actually start the job by calling the 
DevEscape API with the DEVESC_STARTDOC escape code. This call opens 
the metafile for OD_QUEUED device contexts and must be called before any 
drawing occurs or before establishing any job characteristics such as fonts. 
Characteristics established before the DEVESLSTARTDOC code is sent will 
not be stored in the metafile and, therefore, will not be present when the job 
is actually sent to the printer. The parameters for the DevEscape call are in 
Figure 16.30. 

LOt>G APIENTRY DevEscape ( HOC hdc, 
LONG !Code, 
LONG l inCount, 
PBYTE pbinDat a, 
PLONG plOutCount, 
PBYTE pbOutData); 

Figure 16.30 The DevEscape API. 



506 Getting It in Print: Mastering Fonts and Printing 

• Parameter hdc is the handle of the device context obtained from the Dev· 
OpenDC call. 

• Parameter ICode is the escape code; in this instance, DEVESC.STARTDOC. 
• Parameter llnCount is the length of the input data; for DEVESC.START­

DOC, this is the length of the string passed in as the job name. 
• Parameter pblnData is a pointer to the input data; for DEVESLSTARTDOC, 

a pointer to a string containing the name of the job. 
• Parameter lOutCount is a pointer to a 32-bit integer specifying the length 

of the output buffer. Since no output is expected for DEVESC.STARTDOC, 
set this pointer to zero. 

• Parameter pbOutData is a pointer to a buffer to store the ?utp~t data. 
Since no output is expected for DEVESLSTARTDOC, set this pointer to 
NULL. 

DevEscape returns DEV OK if successful; otherwise an error code is re­
turned. 

Setting Characteristics 
Once the metafile for the job has been opened, various characteristics for the 
output that must be stored in the metafile can be specified, such as s.calin~ and 
rotation factors or the selection of the logical font to be used for the JOb. Figure 
16.31 provides an example of establishing the font for a text printing job. 

A logical font is created using the GpiCreateLogFont APL The FAT­
TRS structure that was passed to the routine was saved when the user 
selected a font. The font is then selected as the current character set using 
the GpiSetCharSet APL Next, in case an outline font was selected, the point 
size is used to establish the character rectangle via the GpiSetCharBox API. 
Notice that the point size is first converted to presentation space units, .1 
millimeter. Finally, the text alignment is set using the GpiSetTextAlignment 
APL The selected alignment is top-left since we want to start drawing from 
the top, left comer of the page. Other Gpi functions will tell us the height of 
the actual text so that the next line can be computed. 

GpiCreateLogFont( hps, &"PRINTFN", LCID_PRINTER, &fattrs ); 
GpiSetCharSet( hps, LCID_PRINTER ) ; 
PointsToPUs( fixedPoints, &sizef, PU_LOMETRIC ); 
sizef.cy = sizef.cx; 
Gpi SetCharBox( hps, &sizef ); 
GpiSetTextAli gnment( hps, TA_LEFT, TA_TOP ) ; 

Figura 16.31 Setting print job characteristics. 

Printing Summary 507 

Drawing the Output 
This phase of print job creation is no different than drawing output to the 
screen except that all drawing should occur using the Gpi API' s since API' s 
like WinDrawText only output to presentation spaces associated with display 
screen device contexts. Be careful when drawing not to exceed the space lim­
itation imposed by user selected margins. Also, unlike drawing to the screen, 
when the bottom of the page is reached drawing does not stop. Instead, the 
application should call DevEscape with the DEVESC_NEWFRAME to eject the 
current page and begin a new page. Remember to reset any variables which 
track the current drawing location back to the start of the page. 

Ending the Job 
Once all the output is complete, DevEscape is called with escape code 
DEVESC..ENDDOC to close the metafile. Any resources- memory, presen­
tation space, device context-allocated for the job should then be deallocated. 
If the job needs to be terminated without any output going to the printer, 
DevEscape may be called with escape code DEVESC..ABORTDOC. This will 
close the metafile and delete the spool file. 

USING A NEW THREAD FOR PRINTING 

Since generating print output is typically a relatively time-consuming opera­
tion, it should normally be performed in a separate thread. Basically, all the 
user-specified data needed to perform the print operation is gathered into a 
single structure and a pointer to this structure is passed as a parameter to 
the new thread. The new thread then performs the print operation while the 
application and user are free to perform other tasks. Make certain however, 
that the data needed by the print thread cannot be modified by the main ap­
plication while printing is in progress. For example, if the data being printed 
is stored in a buffer, take care that the main application does not modify or 
destroy the buffer until the print operation is complete. Likewise, be sure that 
the print thread does not inadvertently modify data that the main application 
needs. Corruption caused by multiple threads accessing common resources is 
a frequent cause of malfunctions, including traps. 

PRINTING SUMMARY 

Drawing output to a printer is a relatively simple task; the hard part is getting 
everything set up to do the drawing. The programmer must first decide how 
the printing will take place, either directly to the printer or via a print queue. 



508 Getting II in Print: Mastering Fonts and Printing 

Next, options exist that allow the programmer to print using printer control 
codes and sending a raw printer-specific data stream to the p~nter. Nonn~lly, 
the output is drawn in a device-indep~nd~nt fashi~n as a. senes of graphical 
primitives using the Gpi API set. Apphca~ons typicall~ give ~e user the op­
tion of determining the print queue to which output will be directed and the 
characteristics of the printout, such as paper size, orientation on the pag~, etc. 
Optionally, the user may be given the opportunity to specify the margms ~t 
which the output will be drawn and, if text is to be presented, the font that will 
be used. 

CHAPTER 

Captain Hook Lives: 
Mastering PM Hooks 

A hook is a method of capturing a user event or keystroke. The purpose of 
using a hook is to allow the developer the ability to display or modify the 
event before passing the event down to the user interface. Hooks provide 

a method of communication between the developer and the functionality of 
the Presentation Manager subsystem by allowing the developer to intercede 
on behalf of the application user. Essentially, hooks provide a powerful PM 
wide control over the user interface. Since hooks primarily involve message 
processing, they are exclusive to the PM screen group. 

There are times that the default behavior of a particular message, function, 
or event does not achieve the effect that the developer is looking to accom­
plish. Since changing the default behavior for every request is unrealistic, the 
Presentation Management code within the operating system needs to make 
provisions for the developer to add or change functionality. Hooks give the 
developer the ability to provide this functionality. The worker routines for the 
API layer provide functions that will call the given hook procedure if a specific 
hook is installed. 

For every hook type that is installed by an application, there is a prototype 
for the hook procedure. The hook procedure is simply the function that will 
execute when the event that is being hooked actually occurs. The intent of 
the hook process is to ensure that the hook procedure gets an opportunity to 
handle the event before PM passes the event on to the rest of the system for 
default processing. 

One basic example of common hook usage is within a macro recorder. This 
functionality is common among several large spreadsheet or word processing 
applications. The macro recorder allows the user to record a sequence of 
keystrokes that can be played back at some other time. These macro utilities use 

509 



510 Captain Hook lives: Mastering PM Hooks 

a certain type of hook called the journal record hook to capture or recor~ user 
keystrokes. Then at some later point, the recorded keystrokes are automatically 
executed when the user runs the macro. The hook that is used to play back the 
keystrokes is called the Journal Playback hook. The entire hook sequence is 
transparent to the user; all the user is responsible for is entering the keystrokes. 

Understanding how hooks work requires understanding exactly how mes­
sages are processed. One of the most important structures with regard to hooks 
is the queue message structure or QMSG. . . 

The format of the QMSG structure is defined in PMWIN.H shown m Figure 
17.1. 

• The hwnd parameter is the receiving window handle. 
• The msg parameter is the message in the queue. 
• The mp 1 parameter is the first message parameter. 
• The mp2 parameter is the second message parameter. 
• The time parameter is the time the message was received. 
• The ptl parameter is the pointer position at the time the message was 

generated. 

The most common type of hook is known as the input hook. This hook 
can be used to filter keystrokes from the system message queue, so that if 
the user hits a certain key, the interpretation of the WM.CHAR message can 
be modified or thrown away entirely. For example, think of a simple screen 
capture utility. A screen capture utility must be able to run even when it does 
not have the keyboard input focus, so that it can allow the user to capture any 
window on the desktop by simply pressing a key. In general, screen capt.ure 
utilities use the Print Screen key to initiate the capture since it makes logical 
sense. The default behavior of the Print Screen key is to send the output to a 
printer device not to a bitmap; therefore, it is up to the screen capture program 
to change the default behavior of the Print Screen key. 

The purpose of a screen capture program is to allow the user to capture 
the contents of a particular window by translating the window into a graphical 

typedef s truct _QMSG 
( 

HWND 
ULONG 
MPARAM 
MPARAM 
ULONG 
PO INTL 
ULONG 

l QMSG; 

hwnd; 
msg; 
mpl ; 
mp2 ; 
time ; 
pt l; 
reserved; 

typedef QMSG *PQMSG; 

f I qmsg 

Figure 17 .1 The QMSG structure. 

The Purpose of tlle Sample Program 511 

image that the user can save in various graphical file formats, like bitmaps. 
From there, the user can copy the image into some other program like a word­
processor or spreadsheet that supports the file format that the image was saved 
as. A well written screen capture program should provide an interface to the 
PM clipboard as well. 

Given all of this, think about what it would take to code a screen capture 
program. There are two basic obstacles to programatically overcome: 

• Changing the default behavior of the Print Screen key. 
• The need for the application to work without input focus. 

There are several shareware and commercial screen capture software pro­
grams available for OS/2. These applications make use of the input hook to 
capture the Print Screen keystroke, but rather than pass the key along to per­
form the default function, the key is changed to capture a given region of the 
screen to some other type of output, like a graphical image. The PMSCREEN 
sample program outlined in this chapter implements this use, by capturing a 
snapshot of the active window and storing the contents as a bitmap, when the 
Print Screen key is selected. 

THE PURPOSE OF THE SAMPLE PROGRAM 

The purpose of the sample program for Chapter 1 7 is to demonstrate the 
power of the Presentation Manager hooks. This chapter's sample program is 
called PMSCREEN. The sample source code provided on Wiley's FTP site (see 
Appendix A for details) builds two different modules. The first module is the 
actual executable, PMSCREEN which contains all of the regular PM appli­
cation code. The second module is a dynamic link library called PMHOOKS, 
which actually contains the hook procedures that illustrate and perform most 
of the important hook concepts. 

The PMSCREEN sample program is a simple screen capture utility that 
allows the user to capture the active window at the time the Print Screen 
key is depressed. The captured window is converted to a PM bitmap that can 
be copied to the PM clipboard; thereby allowing the bitmap to be pasted into 
another application. All of the graphics figures used throughout this book were 
captured using this program. The goal of the sample program is to illustrate 
how hooks can be implemented in a practical programming example. The 
chapter text and corresponding source code will also attempt to explain the 
usage of most of the defined PM hooks. 

The PMSCREEN sample program uses several different types of hooks to 
illustrate the power that the PM developer has to alter messages on behalf of 
the user. Each hook used provides a different set of information or modifies a 
different event so that the behavior that the user sees is different. 



512 Captain Hook Livas: Mastering PM Hooks 

The input hook is used to filter the Print Screen key allowing the program 
to capture the active window as a bitmap. The lockup hook is used to intercept 
the workplace shell's lockup utility so that we can use our own routines in 
place of the lockup code that displays a bitmap. This allows the PMSCREEN 
to display a customized version of lockup. Like the standard workplace lockup, 
all keyboard and mouse input is locked, and the reboot facility is disabled by 
issuing the correct device IOCTL. 

The lockup code itself is essentially left intact, even with an installed lockup 
hook. All the lockup hook provides is the ability to alter the appearance of 
lockup. The code for locking the keyboard and mouse is still done by the 
workplace shell lockup code. The code basically works by issuing a category 
4, function 56 device IOCTL. Consult the physical device driver reference for 
additional information. This IOCTL disables the Ctrl-Alt-Del reboot service to 
prevent the user from rebooting the machine while input is locked. 

The lockup dialog box displayed by the workplace shell is made system 
modal by calling the WinSetSysModalWindow APL By making this dialog 
window system modal, all input is disabled except for the WM.CHAR character 
messages, that are received to unlock the keyboard and mouse. The system also 
restricts the Ctrl-Esc and Alt-Esc key sequences. In order to demonstrate how 
to write your own lockup code, the PMSCREEN program contains a similar 
routine that uses the specified IOCTL to restrict the Ctrl-Alt-Del reboot service. 
The routine is called what else, DisableThreeFingerSalute, and is shown in 
Figure 17.2. 

VOID DisableThreeFingerSalute (VOIDI 
I 

HF ILE 
USHORT 
USHORT 
ULONG 
ULONG 
ULONG 

hfFile; 
re; 
usCounter; 
ulAction; 
ulParmLength; 
ulFileSize = O; 

ldef ine KBD "KBD$" II Open Keyboard Device 
#define KBDCATEGORY 
#define KBDFUNCTION 
#define TRY_AGAIN 
ldefine OPEN_FLAGS 

Ox04 II Device Category 
Ox56 II Device Function 
1000 II Maximum Device Retry 
OPEN_ACTION CREATE_IF_NEW j OPEN ACTION_OPEN_IF_EXISTS 

for (usCounter = O; usCounter < TRY_AGAIN; usCounter++) 
{ 

re = DosOpen(KBD, 
&hfFile, 
&ulAction, 

Figure 17.2 The DlsablaThreaflngerSalute function. 

II File Name - Keyboard Device 
II Fi le Handle 
II Action Taken 

continued 

if (re ! - 0) 
{ 

ulFileSize, 
FILE_ SYSTEM, 
OPEN_FLAGS, 
OPEN_SHARE_DENYNONE, 
NULL); 

The Purpose of tlle Sample Program 513 

II File Size 
II File Attributes 
II Open Flags 
II Open Mode 
11 EA Buffer 

DisplayMessages(NULLHANDLE, •oosOpen Failed• , MSG_ERRORJ; 
} 

break; 
} 

for (uscounter = 0; usCounter < TRY_AGAIN; usCounter++I 
( 

Parm_Packet.KeyState 
Parm_Packet .MakeCode 
Parm_Packet . BreakCode 
Parm_Packet.KeyID 

= O; II This is the structure we pass into DosDevIOCtl 
- O; II for changing the keyboard hotkeys . See pmscreen.h 
= O; II for structure definition . The keyID with a value 
= -1; II of -1 acts as a toggle, setting and 

II removing the hotkeys. See Category 4 Function 56H. 

ulPannLength - sizeof (Parm_Packet); 

re = DosDevIOCtl (hfFile, 
KBDCATEGORY, 
KBDFUNCTION, 
&Parm_Packet, 
ulParmLength, 
&ulParmLength, 
NULL, 

if (re != 01 
{ 

0, 
0) ; 

II Device Handle 
II Device Category 
II Device Function 
II Command Arguments List 
II Conunand Arguments MAX Length 
II Cormnand Arguments Length 
I I Data Area 
II Data Area MAX Length 
II Data Area Length 

DisplayMessages(NULLHANDLE, "DosDevIOCtl Failed", MSG_ERROR) ; 
} 

break; 

re= DosClose (hfFile) ; 

if (re != 0) 
{ 

DisplayMessages (NULLHANDLE, "DosClose Failed", MSG_ERROR) ; 
} 

return; 

Figure 17.2 The DisableThreeflngerSalute function. 



514 Captain Hook Lives: Mastering PM Hooks 

INSTALLING A HOOK 

The process of installing a hook involves registering your hook with the Pre­

sentation Manager so that it can be added to the hook list. All hooks that are 

installed by an application are registered through the use of the WinSetHook 

APL The purpose of registering the hook is to provide the type of hook that 

is to be installed, along with the address of the hook procedure that is to be 

executed when the event occurs. 
The prototype for the WinSetHook API is given in Figure 17.3. 

• The hab parameter is the handle to the anchor block. 
• The hmq parameter is the handle to the message queue that is to be hooked. 

If this parameter is set to NULLHANDLE, then the hook will be installed 

in the system hook chain to monitor the system message queue. If this 

parameter is set to the constant value HMQ CURRENT, then the hook is 

installed in the application message queue for the current thread. 
• The lHookJYpe parameter is the type of hook that is to be installed. The 

hook type represents the purpose of the hook that the programmer wishes 
to use. 

• The pfnHookProc parameter is the address of the hook function, which is 

the routine that is to be run when the hook is installed. The hook function 

will contain the code that can modify the message that the hook is intended 
to monitor or change. 

• The hMod parameter is the module handle that contains the application 

hook function. The valid module handle can be returned from a call to 

the API's DosLoadModule or DosGetModHandle. An application that is 

installing a hook to monitor its own application message queue can set 

this value to NULLHANDLE. If an application intends to hook the system 

message queue, this value must contain a valid module handle. 

If the WinSetHook API returns TRUE, then the attempt to install the hook 

succeeded. The function will return FALSE if an error occurred setting the 

hook. All hook routines that are installed to monitor the system message queue 

will be used by every application. The hook routines that are used to monitor 

the message queue of a particular thread are only available within that thread. 

BOOL APIENTRY WinSetHook(HAB 
HMQ 
LONG 
PFN 
HMODULE 

Figure 17 .3 The WinSetHook APL 

hab, 
hmq, 
l HookType, 
pfnHookProc , 
hmod}; 

Types 1f Hooks 515 

~n othe~ words, if you set a hook to monitor a particular message, but the hook 

is only mstalled for the application message queue, only messages received 

by your application message queue are valid for the hook. Hooks that are 

intended to monitor the application message queue are called before hooks 
that are used to monitor the system message queue. 

After the hook has been registered, it is added to an internal linked list 

maintained by PM. The hook list is used to reference the addresses of the hook 

functions. Typically, the addresses of the hook routines are linked together to 

form what is called the hook chain. Separate hook chains are maintained for 
the application message queue and system message queue. 

The functionality of the WinSetHook API ensures that the hook is installed 
at the head node of the system message queue hook chain or application 

message queue hook chain on a most recently installed basis. Ultimately. this 

means that the most recently installed hook will be called first. In theory, the 

messages processed by the queue are passed down from one hook function to 

the next, until the chain is complete. Every hook routine has the capability to 

~top the message or modify its purpose, thereby altering the message before 
it reaches the window it was intended for and stopping the hook chain from 
completing its processing. 

The hook procedures themselves should be declared with the EXPENTRY 

keyword. T~e EXPENTRY keyword is used to indicate that the System link­

age convention should be used. The default linkage convention for the IBM 

CSET/2 compiler family is known as Optlink. The linkage convention affects 

h_ow pa~ameters are placed on the stack. Refer to the documentation pro­

vide? with your compiler for additional information regarding linkage con­
ventions. 

TYPES OF HOOKS 

There are several different types of hooks, each with its own purpose. Some 

hooks are designed to monitor either an application message queue or the 

system message queue. Some hooks are even designed to monitor both the 

system ~essage que~e and an application's message queue. The hook types, 
along with the function prototypes for the hook procedures, can be found in 
PMWIN.H. They are listed in Figure 17.4. 

The numbers following the hook types shown in Figure 17.4 are the values 

of the hooks in decimal. You may have already noticed that there are several 

numbers missing from this rist between 0 and 24. No, it's not another IBM 

numbering scheme that doesn't make sense. Most of the missing numbers 

correspond to hook types not defined publicly in PMWIN; therefore these 

missing hook types are undocumented. However, as you can see from the list, 

there are many more public hooks available than are usually documented. 



516 Caplain Hook Lives: Mastering PM Hooks 

HK_SENDMSG 
HK_INPUT 
HK_MSGFILTER 
HK_JOURNALRECORD 
HK_JOURNALPLAYBACK 
HK_HELP 
HK_LOADER 
HK_REGISTERUSERMSG 
HK_MSGCONTROL 
HK_PLIST_ENTRY 
HK_PLIST_EXIT 
HK_FINDWORD 
HK_CODEPAGECHANGED 
HK_WINDOWDC 
HK_DESTROYWINDOW 
HK_CHECKMSGFILTER 
HK_MSGINPUT 
HK_LOCKUP 
HK_FLUSHBUF 

O The Send Message Hook 
1 The Input Hook 
2 The Message Filter Hook 
3 The Journal Record Hook 
4 The Journal Playback Hook 
5 The Help Hook 
6 The Loader Hook 
7 The Register User Hook 
8 The Message Control Hook 
9 The Program List Entry Hook 

10 The Program List Exit Hook 
11 The Find Word Hook 
12 The Code Page Hook 
15 The Window Device Cont ext Hook 
16 The Destroy Window Hook 
20 The Check Message Filter Hook 
21 The Message Input Hook 
23 The Lockup Hook 
24 The Flush Buffer Hook 

Figura 17 .4 Publicly d eflned hook types. 

There were several new hooks introduced with the release of the 2.1 version 
of OS/2. This chapter will attempt to provide an explanation for some of the 
most important of the documented PM hooks, along with the benefits of using 
the hook. 

The Message Filter Hook--HK_MSGFILTER 
As an OS/2 PM developer, you should already be familiar with the standard 
while loop that is used to get and dispatch messages. PM maintains its own 
message loop for processing modal messages. This loop is used for exclu­
sive message processing for such events as drawing dialog or message boxes, 
processing the tracking rectangle, or performing a drag-and-drop operation. 
During the processing of these events, the system enters a modal message loop 
so that these important messages are dispatched as quickly as possible. 

The purpose of the message filter hook is to allow an application to enter 
into this loop and thus gain access to the messages as they are processed. PM 
will call the hook function between the calls to get and dispatch the messages. 
Figure 17.S shows a standard message loop. 

The message filter hook gives any application the ability to filter a message 
between the time the message is retrieved from the queue and the time the 

while(WinGetMsg(hab, &qmsg, (HWND)NULL, 0, 0 )l 
WinDispatchMsg(hab, &qmsg) ; 

Figura 17.5 The message loop. 

Types of Hooks 517 

BOOL EXPENTRY MsgFilterHook (HAB hab, 
PQMSG pqmsg, 
ULONG ulMsgFlag); 

Figura 17.6 The message filler hook prototype. 

message is actually dispatched, thereby allowing the application to process the 
message differently if desired. 

The format of the message filter hook is given in Figure 17 .6. 

• The hab parameter is the handle to the anchor block. 
• The pqmsg parameter is a pointer to a QMSG structure. The QMSG struc­

ture contains information regarding the message, and is shown in Fig­
ure 17.1. 

• The ulMsgFlag parameter is a ULONG variable that contains the type of 
message that is to be filtered by the message filter hook. 

Valid message filter hook flags, along with their decimal values, are listed 
in Figure 17.7. 

The message filter hook function can return a value indicating whether the 
event should be passed down the hook chain to the next procedure or back 
to the application. If the function returns TRUE, then the message will not be 
passed to the next hook in the hook chain. If the function returns FALSE, then 
the message will be passed on. PM will even pass the WM.QUIT message to 
this hook if it happens to occur within one of the modal loops. 

MSGF _DIALOG BOX 1 
MSGF ..MESSAGEBOX 2 
MSGF _TRACK 8 

MSGF _DDEPOSTMSG 3 

NOTE: 

This flag is used to filter the dialog box message loop. 
This flag is used to filter the message box message loop. 
This flag is used to filter messages out of the tracking rect­
angle message loop. The tracking rectangle is the term used 
to describe a window while it is being moved or sized. When 
this hook is used, the fs and rclTrack elements of the TRACK­
INFO structure are updated to provide the current position 
prior to the hook. 
This flag is used to filter messages from the Dynamic Data 
Exchange message loop. 
There is one additional flag that is not defined in PMWIN.H. 
This flag is also used for the message filter hook, but is defined 
in the header file PMSTDDLG.H: 

MSGF_DRAG 10 This flag is defined for the standard file dialog to aUow access 
to the drag-and-drop message loop. 

Figura 17.7 The message filter hook flags. 



518 Captain Hook Lives: Mastering PM Hooks 

The Input Hook-HKJNPUT 
The most common type of hook is the input hook, which can be used to monitor 
either the system message queue or an application message queue. The input 
hook is provided to the developer to interpret all messages processed by the 
WinGetMsg or WinPeekMsg APis. The input hook routine is called whenever 
either function is ready to return a message. The input hook is effective in 
monitoring virtually all input received from either the mouse or keyboard 
along with other messages posted to a message queue. 

The input hook uses the prototype shown in Figure 17.8. 

• The hab parameter is the handle to the anchor block. 
• The pqmsg parameter is a pointer to a QMSG structure. The QMSG struc­

ture contains information regarding the message. 
• The fs parameter is a ULONG variable that represents whether the message 

is to be removed from the message queue. 

The fs parameter flags are actually the same constants defined for 
WinPeekMsg. 

PM.REMOVE OxOOOl 

PM...NOREMOVE OxOOOO 

This flag is used to indicate that the message is being removed 
from the message queue. 
This flag is used to indicate that the message is not being 
removed from the message queue. 

The input hook allows an application to modify the message information 
by examining the contents of the QMSG structure and modifying the message 
information. For instance, an application can use the input hook to examine the 
message queue for WM.CHAR messages, allowing any particular character to 
be changed. If the hook function returns TRUE, the message will not be passed 
on to the next hook in the hook chain. If the hook function returns FALSE then 
the message will be passed on to the next hook in the hook chain. 

Using the Input Hook 

As discussed previously in this chapter, the input hook is used to filter messages 
from the system message queue. The PMSCREEN program uses the input hook 
to allow the capture to occur without the PMSCREEN window having input 

BOOL EXPENTRY InputHook (HAB hab, 

Figure 17 .8 The input hook. 

PQMSG pqmsg, 
ULONG fs); 

Types of Hooks 519 

focus. The window capture occurs as a result of the user pressing the Print 
Screen key. The process of changing the default functionality of the Print 
Screen key is actually accomplished in two steps. The first step is to actually 
disable the default behavior of the Print Screen key. The second step is to 
reassign the Print Screen key a new functionality to correspond to capturing 
the contents of a particular window as a bitmap. 

The PMSCREEN sample program calls a routine within the PMHOOKS 
library called SetlnputHook which is the routine responsible for setting the 
Input hook that will be used to trap the Print Screen key. This function is ex­
tremely simple; it does not take any parameters and will return the value of the 
WinSetHook APL All this code really does is attempt to set the hook. It is shown 
in Figure 17.9. All of the hook functions used in the PMHOOKS library are set 
by a worker function called SetlUnctionHook; where Rtnction represents the 
type of hook that is to be registered with WinSetHook. Consequently, all of the 
hooks are released with a worker function called ReleaselUnctionHook. The 
release functions are responsible for freeing whatever resources were used by 
the hook function and for unloading the hook module via DosFreeModule. Fi­
nally, the last step in the ReleaseFunctionHook routines is to release the hook 
by calling the WinReleaseHook APL Figure 17.9 contains the routine used to 
set the input hook. 

The second parameter being set to NULLHANDLE tells PM that this hook 
is being used to monitor the system message queue. Remember this is im­
portant since the goal of using the input hook within PMSCREEN is to trap 
all requests whenever the user hits the Print Screen key. The plnputHook 
parameter points to the address of the hook procedure that will execute 
when the input hook event occurs. The hMod parameter is the module handle 
where the hook procedure exists. Both of these values are obtained from the 
DLLinitRoutine function. 

The actual hook procedure is called lnputHook. This is the routine that will 
get executed every time the WinGetMsg or WinPeekMsg functions are about to 

BOOL EXPENTRY SetinputHook(VOID) 
{ 

BOOL re ; 

re = WinSetHook (hab, 
NULLHANDLE, 
HK_INPUT, 
pfnlnputHook, 
hModl; 

ret urn r e; 
} 

Figure 17.9 Setting the Input hook. 

II Handle Anchor Block 
II Hook Syst em MsgQueue 
II Hook Type 
II Hook Handler 
II DLL Needed for Hook 



520 Captain Hook Lives: Mastering PM Hooks 

return a message. Once we get a message, we are only interested in handling 
messages received from the keyboard, so we will check only WM.CHAR mes­
sages. Since we are only interested in processing the Print Screen key, we need 
only check for the virtual key VI<-PRINTSCRN along with the KC.KEYUP and 
KC.VIRTUALKEY codes. 

The code for the Input Hook is shown in Figure 17 .10. 
The first if conditional checks for all WM_CHAR messages in the QMSG 

structure and then checks to see if the virtual key VK....PRINTSCRN is contained 
within the mp2 element of the structure. The macro CHAR3FROMMP is used 
to extract the message parameter containing the virtual key flag. 

The next step is to actually disable the function of the Print Screen key. By 
default, PM contains an undocumented routine called WinPrintScreen which 
is the code responsible for creating the metafile that is sent to the printer 
everytime the user presses the Print Screen key. This code is not within the 
context of the hook, so it will be called regardless of whether or not we do 
anything with the VK....PRINTSCRN key. Therefore, the screen capture program 
needs to disable the functionality provided by pressing the Print Screen key. 
Disabling the Print Screen function requires modifying a system value called 

BOOL EXPENTRY InputHook(HAB hab, PQMSG pqmsg , ULONG fs) 
{ 

CHAR pEnabledState[2J ; 
HWND hwndClient; 
BOOL bValid; 

if ((pqmsg->msg == WM_CHAR) && (CHAR3FROMMP(pqmsg->mp2) == VK_PRINTSCRN) && 
! (SHORTlFROMMP(pqmsg->mpl) & KC_KEYUP) && (SHORTlFROMMP(pqmsg->mpl) & KC_VIRTUALKEY I) 
{ 
DosBeep (500,500); 

PrfQueryProfileString{HINI_USER, 
INI_APPNAME, 
INI_KEYNAME, 
INI_DEFAULT, 
(PVOID) &pEnabledState, 
2L); 

if (*pEnabledState == 'l') 
{ 
DisablePrintScreenKey(TRUE); 

} 

II If the Print Screen function is enabled, 
II then we need to disable it by calling the 
II DisablePrintScreenKey function . 

WinSendMsg(hwndGlobal, WM_UPDATEBITMAP, NULL, NULL); 

return FALSE; 

Figura 17.10 The Input Hook procedure. 

ldefine INI_APPNAME "PM_ControlPanel • 
ldefine INI_KEYNAME "PrintScreen• 
#define INI_DEFAULT ·1 · 

Figura 17.11 The definitions for the INlflle. 

lJpes of Hooks 521 

SV ..PRINTSCREEN. It is good coding practice to ensure that you only disable 
the Print Screen function if it is currently enabled. The enable state is stored 
within the OS2.INI profile under the application name PM.ControlPanel and 
the keyname PrintScreen. 

The PMHOOKS.H header file defines the values in Figure 17 .11 which are 
used to check whether the default Print Screen function is currently enabled. 
The code that actually checks the current state of the key is shown in Figure 
17.12. 

The INLDEFAULT value is used to take into consideration if the pszApp or 
pszKey information is missing from the OS2.INI, usually a result of a corrupt 
INI file. If the information is not available, assume that the Print Screen 
functionality has not been disabled. 

The If conditional checks to see if the value of the enabled state stored in 
the pEnabledState pointer is set to a 1, which indicates that the Print Screen 
function is currently enabled. If the Print Screen function is enabled, then 
the InputHook procedure calls a routine named DisablePrintScreenKey with 
a value of TRUE. The code for the DisablePrlntScreenKey will then set the 
appropriate system value to disable the default Print Screen functionali ty. The 
DisablePrintScreenKey function is shown in Figure 17.13. 

The caller of this function passes a single BOOL parameter bState, which 
is used to indicate whether the default Print Screen functionality should be 
enabled or disabled. If the value is TRUE, the Print Screen functionality will 
be disabled by calling the WlnSetSysValue API with a FALSE value indicating 
that the enable state of the Print Screen key will be disabled. Conversely, 

PrfQueryProfileStr i ng (HINI_USER, 
INI_APPNAME, 
INI_KEYNAME, 
INI_DEFAULT, 

(PVOID} &pEnabledState, 
sizeof (pEnabledState)) ; 

II Use the OS2.INI Profil e 
II pszApp "PM_ControlPanel" 
I I pszKey "PrintScreen• 
II pszDefault •1• 
II The actual data string 
II The size of the data stri ng 

if {*pEnabledState -= '1 ') 
{ 

DisablePrintScreenKey{TRUE) ; 
} 

II If the Print Screen function i s enabled 
II then we need t o disable it by calling the 
II DisablePrintScreenKey function. 

Figure 17 .12 Checking II the Print Screen function is enabled. 



522 Captain Hook lives: Mastering PM Hooks 

BOOL DisablePrintScreenKey(bState) 
{ 

BOOL re ; 

II This conditional will disable the default 
II function of the Print Screen key. 
if (bState) 

{ 
re = WinSetSysValue (HWND_DESKTOP, 

SV_PRINTSCREEN , 
FALSE); 

JI Desktop window handle 
II System value identifier 
II System val ue - FALSE disables 

II This conditional will enable the defaul t 
II function of the Print Screen key . 
el se 

( 
re E WinSetSysValue(HWND_DESKTOP, 

SV _PRINTSCREEN, 
TRUE) ; 

II Desktop window handle 
II System value i dentifier 
II System value - TRUE enables 

II If either call to WinSetSysValue returns a TRUE, then the 
II enable state has changod, so we will broadcast a message 
/I to tell others that the state has been changed by this call . 
if (re) 

{ 

) 

WinBroadcastMsg(HWND_DESKTOP, 
WM_SYSVALUECHANGED, 
(MPARAM) SV_PRINTSCREEN, 
(MPARAM) SV_PRINTSCREEN, 
BMSG_POST I BMSG_FRAMEONLY) ; 

/I I f this function returns TRUE, then the enabl e state of the 
II Print Screen key has been toggl ed by this function. 
return TRUE; 

else 
( 

} 

II A FALSE return value tells the caller that the enable state 
II of the Print Screen key could not be modified by this funct ion . 
II This is highly unlikely ... . 
return FALSE; 

Figure 17 .13 Modifying the Print Screen enable state. 

Capturing the Active Window 523 

if the value is FALSE, the default Print Screen functionality is enabled by 
calling the WinSetSysValue API with a TRUE. In either case, if the Print 
Screen system value was successfully changed, the WlnSetSysValue API will 
return TRUE. The API will return FALSE if an error occurred and the system 
value was not modified. If the system value was successfully modified by the 
DisablePrintScreenKey function, a WM_SYSVALUECHANGED message will 
be broadcast to all top level frame windows to alert them of the change. In the 
unlikely event that this function was unable to modify the Print Screen system 
value, the function will return FALSE, indicating no change in the system 
value occurred. 

CAPTURING THE ACTIVE WINDOW 

Obviously, the main purpose of a screen capture program is to capture a 
window that the user wants to incorporate into some other program. There­
fore, the screen capture program must be able to render the window's image 
into some graphical format that the receiving application can understand and 
display. The source code for the PMHOOKS dynamic link library, contains a 
routine called PrintScreenToBltmap that performs the window capture for the 
program. The function works by capturing the contents of the active window 
and saving it as a PM bitmap. 

The function does not take any parameters and is called from the context of 
the input hook procedure as a result of the WM.UPDATEBITMAP processing 
in PMSCREEN.C. The function will return a valid bitmap handle created 
by the GpiCreateBitmap API upon success. If an error occurs creating the 
bitmap from the active window, GPLERROR, which is also the equivalent of 
a NULLHANDLE will be returned. 

The PrintScreenToBitmap function starts by creating a memory device 
context by calling the DevOpenDC device function. A memory presentation 
space is created by the subsequent call to the GpiCreatePS API. From there, 
the active window is queried and its handle is stored in the hwnd.Active variable. 
Based on this window, a cached micro presentation space is created, and is 
represented by the hpsScreen variable. The rectangle coordinates for the active 
window are stored in the rectangle structure represented by rclActive. The 
xRight and yTop coordinates of the rectangle structure are set as the bitmap 
size coordinates brnp.cx and brnp.cy. Ultimately, the bitmap is then created by 
calling the GpiCreateBitmap API. If the bitmap was successfully created, it is 
set into the memory presentation space, hpsMernory that is associated to the 
memory device context hdcMernory. Finally, the bitmap is ready to be displayed 
by calling the GpiBitBlt API and returning the bitmap handle to indicate that 
the bitmap can be painted in the client window. 

The code fragment shown in Figure 17 .1 4 creates the bitmap when the 
Print Screen key is hit. 



524 Captain Hook Lives: Mastering PM Hooks 

HBITMAP PrintScreenToBitmap(VOID) 
( 
BITMAPINFOHEADER2 bmp; 
HBITMAP hbmWindow; 
HDC hdcMemory; 
HPS hpsMemory; 
HPS hpsScreen; 
LONG alBitmapFormats[2); 
POINTL aptl[3]; 
SIZEL sizl; 
HWND hwndActive; 
RECTL rclActive ; 

II Get a memory device context 
hdcMemory = DevOpenDC (hab, OD_MEMORY, "* ', OL, NULL, NULLHANDLE ); 

sizl. cx = sizl.cy = O; 

II Get a memory presentation space 
hpsMemory = GpiCreatePS (hab, 

hdcMemory, 
&sizl, 
PU_PELS 
GPIT_MICRO I GPIF_DEFAULT I 

GPIA_ASSOC) ; 

JI anchor block handle 
II device context handle 
II PS page size 
II Options 

II Capture the active window, get its presentation space, 
II and rect angle coordinates 
hwndActive - WinQueryActiveWindow(HWND_DESKTOP); 
hpsScreen - WinGetPS(hwndActive); 
WinQueryWindowRect(hwndActive , &rclActive) ; 

GpiQueryDeviceBitmapFormats (hpsMemory, 2L , alBitmapFo:nnats); 

II Populate the bitmap info header structure 
fl and create the bitmap by calling GpiCreateBitmap 
bmp .cbFix = s izeof bmp ; 
bmp .cPl anes = alBi tmapFo:nnats [OJ; 
bmp .cBi tCount = al BitmapFormats[ l ); 
bmp . cx = rclActive.xRight; 
bmp.cy = rclActive.yTop; 

hbmWindow - GpiCreateBitmap (hpsMemory, &bmp , OL, NULL , NULL); 

if (hbrnWindow ! = GPI_ERROR) 
( 
II Set Bitmap into memory PS 
GpiSetBitmap (hpsMemory, hbmWindow); 

Figure 17 .14 Capturing the Active Window as a Bitmap. continued 

} 

aptl (OJ.x = O; 
aptl lo I . y = o; 
aptl (l ] .x = rclAct i ve.xRight ; 
aptl (l ] .y = rcl Act ive .yTop; 
aptl (2] .x = O; 
aptl [2] .y = O; 

WinLockVisRegions (hwndActive, TRUE); 

Capturing t111 Actln Window 525 

GpiBitBlt (hpsMemory, hpsScreen , 3L, aptl , ROP_SRCCOPY, BBO_IGNORE) ; 
WinLockVi sRegi ons (hwndActive , FALSE); 

WinReleasePS [hpsScreen); 
GpiDestroyPS (hpsMemory) ; 
DevCloseDC (hdcMemory) ; 

II If we have a val id bitmap, ret urn it 
r eturn hbnWindow; 

el se 
{ 

} 

II I f we got an error creating t he bitmap, 
return GPI_ERROR; 

r eturn GPI_ERROR 

Figure 17.14 Capturing the active window as a bitmap. 

The Send Message Hook-HILSENDMSG 
The send message hook is designed to trap those messages that are sent rather 
than posted to a message queue. This hook can be used to obtain messages 
before the message is received by the window that the message was sent to, be­
cause the hook function is called from within the context of the WlnSendMsg 
code. Any application that wishes to monitor all messages can use a combina­
tion of the send message hook along with the input hook. The format of the 
send message hook is similar to that of the input hook, except a send message 
structure is used instead of the QMSG structure. The send message hook func­
tion always calls the next hook in the chain, and the function does not return 
a value. The prototype of the function is given in Figure 17 .15. 

VOID EXPENTRY SendMsgHook (HAB 
PSMHSTRUCT 
BOOL 

hab , 
psmh, 
fint erTask) ; 

Flg1re 17.15 The send message hoolc prototype. 



526 Captain Hook Lives: Mastering PM Hooks 

typedef struct _SMHSTRUCT II smhs 
{ 

MPARAM mp2 ; 
MPARAM mpl; 
ULONG msg; 
HWND hwnd; 
ULONG model ; 
SMHSTRUCT; 

Figure 17.16 The SMHSTRUCTstructure. 

• The bah parameter is the handle to the anchor block. 
• The psmh parameter is a pointer to a SMHSTRUCT structure. The SMH­

STRUCT structure contains information regarding the message. 
• The flnterTusk parameter is a BOOL variable that is used to determine 

whether the message is being sent within the same thread or two different 
threads. If this value is TRUE, then the message is being sent between two 
different threads (INTERTASK). If the value is FALSE, then the message 
is being sent within the same thread (INTRATASK). 

The send message structure provides information about the message being 
sent, including all of the parameters that were passed to the call to Win­
SendMsg. The format of the SMHSTRUCT structure is as shown in Figure 
17.16. 

The Journal Record Hook-ffK_JOURNALRECORD 
This hook provides the developer the ability to monitor the system message 
queue with the purpose of recording the user's input. The purpose of the 
journal record hook is to allow the developer to capture a sequence of mouse 
and keyboard input. The events or keystrokes can be simulated again at some 
later point through the use of the commensurate hook, the journal playback 
hook. The hook is called after the input actually becomes a message. The 
prototype for the journal record hook is given in Figure 17 .17. 

• The hab parameter is the handle to the anchor block. 
• The pqmsg parameter is a pointer to a QMSG structure. The QMSG struc­

ture contains information regarding the message. 

VOID EXPENTRY JournalRecordHook (HAB hab, 
PQMSG pqmsg} ; 

Figure 17.17 The JournalRecordHook prototype. 

ULONG ul Time - JournalPlaybackHook (HAB 
BOOL 
PQMSG 

Flg1re 17.18 The JournalPlaybackHook prototype. 

Capturing the Active Window 527 

bah, 
fSkip, 
pqmsg) ; 

The journal record hook function always calls the next hook in the chain 
and the function does not return a value. Along with the WM.CHAR messag~ 
for keyboard input, several mouse input messages are passed to the journal 
record hook as well. The mouse messages include the WM..MOUSEMOVE, the 
WM..BUITONnUP, and WM..BUITONnDOWN• messages. 

The Journal Playback Hook-HK_JOURNALPLAYBACK 

The journal playback hook allows the developer to insert the input messages 
that were recorded by the journal record hook back into the system message 
queue. All standard mouse and keyboard input is disabled while the journal 
playback hook routine is running, because the messages are being inserted into 
the system message queue. It is extremely important that developers realize 
the consequences of suspending the regular message queue processing, and 
e~sure that the journal playback hook is used carefully and only when required 
smce overuse can cause system performance to degrade. 

The prototype for the Journal Playback hook function is shown on Figure 
17.18. 

• The hab parameter is the handle to the anchor block. 
• The fSkip parameter is a BOOL variable that is used to identify whether 

the next message is to be played back. If this parameter is TRUE, then the 
PQMSG parameter is NULL and the next hook in the hook chain is not 
called. If the parameter is FALSE, then the hook returns the next message 
repetitively until this parameter is TRUE. 

• The pqmsg parameter is a pointer to a QMSG structure. The QMSG struc­
ture contains information regarding the message. The time element of the 
QMSG structure is a ULONG value that stores the current time prior to 
the journal playback hook actually being called. The hook function can 
use this value to monitor the the amount of time between messages or the 
delay time between the messages. 

The journal playback hook returns a ULONG value that represents the 
amount of time in milliseconds that it will take before the current message is 
processed. The return value allows the hook to control the amount of time for 
the playback events. 

•where n represents the mouse button number. 



528 Captain Hook Lives: Mastering PM Hooks 

BOOL EXPENTRY HelpHook(HAB 
ULONG 
UL ONG 
ULONG 
PRECTL 

Figure 17.19 The HalpHook. 

The Help Hook-ffK_HELP 

hab, 
usMode, 
idTopic, 
idSubTopic, 
prcPosi ti on) ; 

The help hook is designed to allow application developers to provide additional 
help information in their applications. The Presentation Manager will call 
the help hook function during the default processing of the help message 
WM_HELP. The prototype for the help hook function is shown in Figure 17 .19. 

The WM..HELP message is typically generated when the user depresses 
the Fl key. The virtual key Fl generates a WM_CHAR message, which the 
default accelerator table translates via an ACCEL structure into a WM-1-IELP 
message. The WM.HELP message is then passed to the current focus window, 
which can either be the client window or a control window like a pushbutton 
or menu. 

The WM..HELP message can also be generated when the developer in­
cludes the MIS..HELP menuitem style on an application menu item. In this 
case, the WM..HELP message is posted to the window that currently has input 
focus. A help message can also occur from a pushbutton window that is created 
with the BS_HELP button style. The resulting WM..HELP message is posted to 
the owner window of the button, which is typically the dialog box window if 
the button was created within a dialog template. Finally, a WM HELP message 
can come as a result of the MB.HELP message box style, in which case the 
help message is posted to the message box. 

The code for the default window procedure, WinDefWindowProc, passes 
the WM HELP and WM_TRANSLATEACCEL messages to the parent window. 
If the messages get passed to the client window, they can be processed in the 
client window procedure; but if the message makes its way up to the default 
frame window procedure WinFrameWndProc, the help hook will be called 
if the parent's frame identifier is FID_CLIENT or if there is no parent. The 
help hook is also called if the help message originated while the user made a 
selection from the application menu. 

The Lockup Hook-HKJ.OCKUP 
The lockup hook is relatively new to PM. It was introduced with the release of 
OS/2 2 .1 based on requests from application developers. The lockup hook gives 
developers the opportunity to alter what users will see when they select the 

C&pturlng t111 Actln Window 521 

BOOL EXPENTRY LockupHook(HAB hab, HWND hwndLockup) 
( 

WinSetWindowPos(hwndGlobal, HWND_TOP, 0, 0, O, O, 
SWP.)fAXIMIZE ' SWP~OVE I SWP_SIZE I SWP_ZORDER); 

WinSetWindowPos(hwndLockup, 
NULLHANDLE, 
0, 
0, 
0, 
0, 
SWP_HIDE I SWP_MOVE I SWP_SIZE}; 

WininvalidateRect(hwndGlobal, NULL, FALSE) ; 
return TRUE; 

Flgn 17.20 The LockupHook. 

workplace shell's lockup facility. This allows developers to either perform some 
alternate function or install another utility to block input from the keyboard 
and mouse. The code fragment shown in Figure 17 .20 illustrates a simple 
LockupHook procedure. 

The Message Input Hook--HK..MSGINPUT 

The message input hook is another of the new hooks that was introduced with 
the release of OS/2 2.1. The purpose of this hook is similar to the journal 
playback hook in that, it will allow the application installing the hook to insert 
messages into the input queue, thereby simulating input from a user. The 
format of the input hook is given in Figure 17 .21. 

• The hab parameter is the handle to the anchor block. 
• The pqmsg parameter is a pointer to a QMSG structure. The QMSG struc· 

ture contains information regarding the message. The QMSG structure is 
to be filled in by the hook procedure with the mouse or keyboard message 
that is to be inserted into the message queue. 

BOOL bReturn = MsginputHook(HAB 
PQMSG 
BOOL 
PBOOL 

hab, 
pqmsg, 
fSkip, 
pfNoRecord) ; 

Figure 17 .21 The MsglnputHook prototype. 



530 Captain Hook Lives: Mastering PM Hooks 

• The fSklp parameter is a BOOL variable that is used to identify whether 
to advance to the next message. If this parameter is set to TRUE, then the 
PQMSG structure is NULL and the hook will continue to advance to the 
next message. If the PQMSG structure is NULL, then there is obviously 
no message to process. In this case, the hook should be terminated using 
WinReleaseHook. If this parameter is FALSE then the hook returns the 
same message repetitively until this parameter is TRUE. 

• The ptNoRecord parameter is a pointer to a BOOL variable. The developer 
can use this parameter to prevent the journal record hook from record­
ing the message that was inserted into the message queue via the msg 
parameter of the QMSG structure. If this value is set to TRUE, then the 
message cannot be recorded by the journal record hook. If this value is set 
to FALSE, then the message can be recorded by the journal record hook. 

If the MsglnputHook routine returns TRUE, then the QMSG structure will 
contain the current message information that is to be processed. If the function 
returns FALSE, then the QMSG structure is empty and no messages are to be 
processed by the hook. 

The Find Word Hook-HK_FINDWORD 
The title of this hook is probably a little deceiving. It might be more aptly 
termed the draw text hook since it is designed specifically to determine where 
the API WinDrawText will divide a character string that does not fit within the 
bounds of the drawing rectangle. This hook was developed for foreign language 
applications based on the National Language Support (NLS) requirements. 
It allows applications that use code page information with the double byte 
character set (DBCS) to control where the line of text will end to help avoid 
unsightly line-breaks. The hook will be called from within the context of the 
WinDrawText API if the DLWORDBREAK flag is set. The prototype for the 
FindWordHook is shown in Figure 17.22. 

• The usCodepage parameter represents the code page of the string that is 
to be drawn. 

BOOL EXPENTRY FindWordHook(USHORT usCodepage, 
PSZ pszText, 
ULONG cb, 
ULONG ich, 
PULONG pichStart, 
PULONG pi chEnd, 
PULONG pichNext); 

Figure 17.22 The FlndWordHook prototype. 

capturing the Active Wl•dow 531 

• The pszText parameter represents a pointer to the string that is to be 
drawn. 

• The ch parameter represents the number of bytes in the string. 
• The ich parameter is used to represent a character index into the string 

that intersects the right boundary of the rectangle used for drawing the 
text. 

• The pichStart parameter is the r eturned index of the first character of the 
word. 

• The pichEnd parameter is the returned index of the last character of the 
word. 

• The pichNext parameter is the returned index of the first character of the 
next word in the string. 

If the hook procedure returns FALSE, the text will be drawn normally. 
Otherwise, if the hook procedure returns TRUE, the WinDrawText API will 
draw the string until the word break. 

The Code Page Changed Hook-HILCODEPAGECHANGED 
The purpose of this hook is to provide an application with a notification 
whenever another application attempts to change the code page. The hook 
is designed for applications with multiple-language support to check whether 
another application is altering the code page information. The fonnat of the 
code page changed hook is found in Figure 17 .23. 

• The hmq parameter is the hand1e to the message queue that is changing 
its code page information. 

• The ulOldCodePage parameter is the number that represents the code page 
that is being changed. 

• The ulNewCodePage parameter is the number that represents the code 
page that will replace the current code page. 

The CodePageChangedHook function does not return a value, which 
means that all code page hooks represented by HK_CODEPAGECHANGE 
within the hook chain will get the notification of the code page change. The 
hook function is called after the new code page is set. The hook is called from 
within the context of the WinSetCp APL 

VOID EXPENTRY CodePageChangedHook (HMQ 
ULONG 
ULONG 

hmq, 
ulOldCodePage, 
ulNeWCodePage) ; 

Figure 17.23 The CodePageChangedHook prototype. 



532 Captain Hook Lives: Mastering PM Hooks 

BOOL EXPENTRY FlushBufHook {HAB hab) 

Figure 17.24 The FlushBufHook prototype. 

The Flush Buffer Hook--HK_flUSHBUF 

The Flush buffer hook is used to filter the Ctrl-Alt-Del reboot sequence. The 
hook is designed to allow applications to receive notification that a reboot is 
about to occur and take an appropriate action, like saving critical data to the 
fixed disk instead of the data being lost as a result of a reboot. The hook is 
used internally by the workplace shell to flush the lazy write cache prior to 
rebooting. An application should not do too much within this hook procedure. 
The hook procedure should be used solely to save application critical data. 
Also, since the hook is called in the context of the reboot occurring, the PM 
API sub-systems may not be callable; therefore, an application should avoid 
calling Win and Gpi APls. The prototype for the FlushButllook procedure is 
shown in Figure 17.24. The flush buffer hook procedure takes only a single 
parameter, the anchor block handle. 

The code fragment shown in Figure 17.25 from the PMSCREEN program 
demonstrates the use of the FlushButllook function by creating a log file in 
the root directory of the user's boot drive. The log file contains the date and 
time that the machine was rebooted via Ctrl-Alt-Del. This allows a machine 
administrator to monitor when the last reboot occurred. This code will be 
executed if the user presses Ctrl-Alt-Del while the PMSCREEN program is 

running. 

RELEASING THE HOOK 

Once an application is finished using the hook, the resources used by the 
hook procedure should be released and the address of the hook procedure 
should be removed from the appropriate hook list. The WinReleaseHook API 
is designed to remove the hook once the purpose of the hook has completed. 
The WinReleaseHook code works by looping through the linked list of hooks 
and removing the specified hook from the list. The prototype for the WinRe­
leaseHook API is shown in Figure 17 .26. The parameters to this function are 
identical to WinSetHook. 

• The hab parameter is the handle to the anchor block. 
• The hmq parameter is the handle of the message queue from which the 

hook will be released. If this parameter contains the HMQ_CURRENT 
constant, then the hook will be released from the context of the current 
thread. A NULLHANDLE value is used to release the hook from the system 
hook chain. 

} 

BOOL EXPENTRY FlushBufHook (HAB hab) 
{ 

HF ILE 
ULONG 
ULONG 
Ulong 
CHAR 
DATETIME 
APIRET 
CHAR 
PSZ 

hf File; 
ulAction; 
ulWritten; 
ulLength; 
szDateTime(CCHMAXPATH]; 
datetime; 
re; 
*szLogFile() = {'?:\\REBOOT.LOG'}; 
pszTemp; 

Releasing Ille Hook 533 

static CHAR 
static CHAR 

*szDayName ll = { •sun•, 'Mon•, 'Tue ' , 'Wed", 'Thu', 'Fri', •sat• }; 
szFormat II = 'The machine was rebooted on %s %d-%d-%d at %d:%d:%d %cM'; 

DosGetDateTime {&datetime); 
datetime.year %= 100; 

pszLogFile - SubstituteBootDrive(szLogFile!O]); 

II Open our logfile in the root directory of the boot drive 
DosOpen (pszLogPile, II File Name 

&hfFile, II File Handle 
&ulAction, II Action returned 
OL, II Initial FileSize 
FILE_ARCHIVED, II File Attributes 
OPEN_FLAGS, II Open Flags 
OPEN_MODE' I I Open Mode 
OL); II Extended Attribute Info 

II Copy the date and time i nto our format string and write the 
II ~ta to the logfile to indicate when the machine was rebooted. 
spr1ntf (szDateTime, 

szFormat, 
szDayName (datetime.weekday), 
datetime.month, 
datetime.day, 
datetime.year, 
(datetime.hours + 11) % 12 + l, 
datetime .minutes, 
datetime.seconds, 
datetime.hours I 12 ? 'P' : 'A') ; 

DosWrite lhfFile, szDateTime, strlen(szDateTime), &ulWritten) ; 
DosWrite {hfFile, '\r\n•, 2, &ulWri ttenJ; 
DosClose{hfFile); 

II Beep so we know this worked! 
DosBeep(lOOO, 1000) ; 
return TRUE; 

flg111117.25 Using the flush buffer hook. 



534 Captain Hook Lives: Mastering PM Hooks 

BOOL APIENTRY Wi nRel easeHook {HAB hab, 
HMQ hmq, 
LONG l HookType, 
PFN pfnHookProc, 
HMODULE hmod} ; 

Figure 17.26 The WlnReleaseHook prototype. 

• The lHook'JYpe parameter is the type of hook that was installed and is 
about to be released. 

• The pfnHookProc parameter is the address of the hook procedure to be 
removed. 

• The hmod parameter is the module handle that contains the application 
hook function. A NULLHANDLE used in this parameter indicates that the 
hook procedure was stored in the application's executable rather than a 
separate dynamic link library. 

The code fragment shown in Figure 17.27 is the wrapper function used 
in PMHOOKS to release the input hook. The wrapper function is called 
ReleaselnputHook. The function is very simple. It is responsible for releas­
ing the input hook by calling WlnReleaseHook and unloading the dynamic 

BOOL EXPENTRY ReleaseinputHook{VOID} 
{ 

BOOL re; 

re = WinReleaseHook{hab 
NULLHANDLE, 
HK_INPUT, 
pfninputHook, 
hModl; 

II Handle Anchor Block 
II Hook System MsgQueue 
II Hook Type 
11 Hook Handler 
II DLL Needed for Hook 

II If the input hook can be released, then we need 
II to re-enable the default Print Screen functionality 
//and unload the module. 
if (re) 

{ 
DisablePrintScreenKey(FALSE}; // Enable PrintScreen 
DosFreeModule{hMod}; 

} 

II Return the returned value of WinReleaseHook back to the caller 
return re; 

Figure 17 .27 Releasing the Input hook. 

SUMMARY 

Summary 535 

link library via DosFreeModule. The function also ensures that the default 
Print Screen key functionality is restored by calling the DisablePrintScreenKey 
function with a value of FALSE. 

Hoo~ provide an.extremely powerful, built-in mechanism for applications to 
modify the behavior of certain system defaults. In order to use a hook an 
application defines a simple hook procedure that will be dispatched withid the 
context .of a particular system function; thereby, providing the application a 
defi~ed mt~rface to the API layer. The Presentation Manager sub-systems, offer 
a wide variety of hooks that can be used by applications. Unfortunately, most 
of the defined hooks have been poorly documented. This chapter, along with 
the sample programs provided on the Wiley FfP site attempt to document the 
usage of some of these hooks. The PMSCREEN sample program attempts to 
demonstrate the practicality of using some of these hooks in the context of an 
application. 



APPENDIX 

Sample Programs on 
Wiley's FTP Site 

This book comes with a set of sample programs that correspond to the chapter 
text. There are sixteen useful sample programs in all, that are designed to 
illustrate the various programming topics covered in each chapter. 

Having the complete source code for the sample programs is essential to 
understanding the concepts discussed throughout the book. The companion 
programs, along with the complete and documented source code can be ob­
tained via anonymous FTP from the John Wiley & Sons FTP site. The FTP 
address for this site is ftp.wiley.com. The directory for the software in this 
book is /public/computer _books/OS2. 

The following sample programs are included in the package: 

Chapter 2: BUTTONS A program launcher that makes use of the standard PM con­
trols. This chapter focuses on basic control concepts and 
shows some of the enhancements made to the basic control 
classes in OS/2 Warp. 

Chapter 3 PMED A fully functional text editor designed to demonstrate how to 
handle keyboard input and scrolling within a PM program. 

Chapter 4: CLKDRAW A graphical drawing program that demonstrates how to pro­
grammatically handle the pointing device, the PM clipboard 
and advanced GPI concepts. 

Chapter 5: HELPME A template program that shows how to implement context 
sensitive help using the Information Presentation Facility. 

Chapter 6: THREADS A program designed to demonstrate several effective multi· 
threading techniques. 

537 



538 Sample Programs on Wiley's FTP Site 

Chapter 7: 
Chapter 9: 

DRAGEM 
PMEDIT 

Chapter 10: SUBCLASS 

Chapter 11 : CARDFILE 

Chapter 12: CHKREG 

Chapter 13: MATCH 

Chapter 14: TUTOR 

Chapter 15: SHOWOFF 

Chapter 16: PRINTIT 

Chapter 17: PMSCREEN 

A workplace shell compliant drag and drop file manager. 
A simple text editor that uses a multi-line entryfield as its edit 
window. This program concentrates on teaching the effective 
use of dialog windows and menus and implements a button 
bar. 
A program that demonstrates the power of subclassing a 
control. 
A handy little address book program designed to show the 
practical use of the advanced OS/2 controls including, the 
notebook, value set, and slider. 
This applet makes use of the powerful container control to 
create a simple check register program. 
If you have the multimedia Presentation Manager that comes 
with OS/2 Warp installed, you'll appreciate this fun little game. 
MATCH is a simple match game that makes use of the ani­
mated buttons found in MMPM. 
This sample program focuses on the principles involved in de­
signing and developing your own control windows. The tutor 
program is a simple button control implementation using half 
text and half button to create a control that is ideal for creating 
tutorial presentations. 
This utility allows the user to create presentations using 
bitmap files. 
A simple utility that allows the user to print a text file. This pro­
gram demonstrates the various concepts involved in printing 
from a Presentation Manager application. 
A screen capture utility that allows the user to capture the 
contents of the active window on the desktop to bitmap. The 
bitmap can be copied to another program via the PM clip­
board. The code demonstrates how to use PM hooks, and 
makes use of several of the most powerful and least docu­
mented PM hooks; including, the Input hook, FlushBuf hook, 
and Lockup hook. 

INDEX 

_beginthread. 10, 150, 152 
..fullpath, 193 

Accelerator table, 245 
Action bar (adding to dialog), 241 
Anchor block handle (HAB), 3 
AUTOCHECKBOX keyword, 255 

Bad application dialog, 11 
BBQ.AND, 457 
BBO.JGNORE, 458 
BBO_OR, 457 
BBO_PAL_cOLORS, 458 
BCA-HUFFMANID, 446 
BCAJU.E24, 446 
BCAJU.E4, 446 
BCAJU.E8, 446 
BCA UNCOMP, 446 
BCE.PALETIE, 447 
BCE..RGB, 447 
BFA-BIDIINFO, 331 
BFA.MAJORTABBITMAP, 330, 332 
BFA.MAJORTABTEXT, 330, 332 
BFA.MINORTABBITMAP, 330, 332 
BFA.MINORTABTEXT. 331. 332 
BfA_pAGEDATA, 330, 331 
BFA_pAGEFROMDLGRES, 330, 331 
BFA PAGEFROMDLGTEMPLATE, 330-332 
BfA_pAGEFROMHWND, 330, 331 
BFA_STATUSLINE, 330, 332 
BFT-131TMAPARRAY. 448-449 
BFT_BMAP, 448-449 
BFT-COLORICON, 448 
BFLCOLORPOINTER, 448 
BFT-ICON, 448 
BfT_pQINTER, 448 
BITMAPARRAYFILEHEADER2 structure, 449 
BITMAPFILEHEADER structure, 448 
BITMAPFILEHEADER2 structure, 448-449 
BITMAPINF02 structure, 448 
BITMAPINFOHEADER structure, 448 

BITMAPINFOHEADER2 structure, 445-446 
Bitmap color support, 450 
Bitmap file, 443 
Bitmap font, 470 
BKA.AUTOPAGESIZE, 318, 322, 323 
BKA..FIRST, 318 
BKA..LAST, 318, 319 
BKA-MAJOR, 318, 330 
BKA-MA.JORTAB,314,315 
BKA.MINOR, 318, 331 
BKA-MINORTAB, 314, 315 
BKA..NEXT, 318 
BKA_pAGEBUTION, 314 
BKA_pREV. 318 
BKA..STATUSTEXTON, 318, 319 
BKM_CALCPAGERECT, 322 
BKM INSBRTPAGE, 317-319 
BKM.QlJERYPAGEID, 325 
BKM_QUERYPAGEWINDOWHWND, 324 
BKM_SETDIMENSIONS, 313, 316, 335 
BKM_SETNOTEBOOKCOLORS, 316, 317 
BKM_SETPAGEDATA, 330, 331 
BKM_SETPAGEINFO, 328, 329, 331 , 335 
BKM..SETPAGEWINDOWHWND, 319, 322, 

323, 330, 331 , 334 
BKM_SETSTATUSLINETEXT, 3 19, 330 
BKM..SETIABBITMAP, 318, 330 
BKM..SETTABTEXT. 318, 319, 330, 331 
BKN...NEWPAGESIZE, 324 
BKN_PAGESELECTED, 325 
BKN_pAGESELECTEDPENDING, 324 
BKS_BACKPAGESBL, 311 
BKS..BACKPAGESBR, 311, 312 
BKS-8ACKPAGESTL, 311 
BKS-BACKPAGESTR, 311 
BKS.MAJORTABBOTTOM, 311 
BKS.MAJORTABLEFT, 311 
BKS.MAJORTABRIGHT, 311. 3 12 
BKS.MAJORTABTOP. 311 
BKS_pQLYGONTABS, 312, 31 6 
BKS..ROUNDEDTABS, 311, 316 

539 



540 Index 

BKS-80LIDBIND, 311. 312 
BKS-8PIRALBIND, 311 
BKS-8QUARETABS, 311, 312, 316 
BKS-8TATUSTEXfCENTER, 312 
BKS.STATUSTEXI'l.EFT, 312 
BKS.STATUSTEXTRIGHT, 312 
BKS.TABTEXTCENTER, 312 
BKS.TABTEXTLEFf, 312 
BKS.TABTEXTRIGHT, 312 
BM.CLICK message, 33 
BM.QUERYCHECK message, 33, 34 
BM.QUERYCHECKINDEX message, 33 
BM.QUERYHILITE message, 33 
BM.SETCHECK message, 33, 34, 49 
BM.SETDEFAULT message, 34 
BM.SETHILITE message, 33, 34 
BMSG..DESCENDANTS flag, 8 
BMSG.FRAMEONLY flag, 8 
BMSG_pOST flag, 8 
BMSG_pOSTQUEUE flag, 8 
BMSG-8END flag, 8 
SN.CLICKED notification, 35 
BN..DBLCLICKED notification, 35 
BN_pAINT notification, 26, 35 
BOOKPAGEINFO, 328-335 
BRH.ERRORDIFFUSION, 447 
BRH.NOTHALFTONED, 447 
BRH..PANDA, 447 
BRH.SUPERCIRCLE, 447 
BRU...METRIC, 447 
BS-3STATE, 26, 34 
BS...AUT03STATE, 26, 34 
BS...AUTOCHECKBOX. 25 
BS...AUTORADIOBUTTON, 25 
BS-8ITMAP, 28 
BS.CHECKBOX, 25 
BS..DEFAULT, 27, 35 
BS.HELP, 28, 36, 135, 250 
BS.ICON, 28 
BS...MINIICON, 28 
BS.NOBORDER, 27 
BS.NOPOINTERFOCUS, 250 
BS.PUSHBUTION, 25, 28, 33, 35 
BS.RADIOBUTION, 25 
BS.SYSCOMMAND, 28, 36 
BS.USERBUTION, 25, 27, 35, 36 
BTNCDATA structure, 23, 29, 51 
BuildDDEDataStructure, 278 
BUTTONS, profile, 43 
BUTTONS, sample program, 19, 24, 30, 36, 56 
Button styles, 27 
Button window class, 25 
BYTE, 443 

CA.CONTAINERTITLE, 374 
CA..DETAILSVIEWfITLES, 374 
CA..DRAWBITMAP, 373, 378, 379, 385 
CA..DRAWICON, 373, 378, 379, 385, 390 
CA...MIXEDTARGETEMPH, 374 
CA.ORDEREDTARGETEMPH, 373, 374 
CA.OWNERDRAW, 374 
CA.OWNERPAINTBACKGROUND, 299, 374 
CA.TITLECENTER, 374 
CA.TITLELEFT, 374 
CA.TITLEREADONLY. 374 
CA.TITLERIGHT, 374 
CA.TITI.ESEPARATOR, 374 
CA.TREELINE, 374 
CAPS.COLORS, 462 
Cascade menu, 227 
CBB...ANGLE, 492 
CBS.BACK.COLOR, 491 
CBB.BACK...MIX...MODE, 492 
CBS.BOX, 492 
CBS.BREAK.EXTRA, 493 
CBS.COLOR, 491 
CBB..DIRECTION, 493 
CBB.EXTRA, 493 
CBB...MIX...MODE, 492 
CBB...MODE, 492 
CBS.SET. 492 
CBS.SHEAR, 492 
CBB.TEXT...ALIGN, 493 
CCHMAXPATH, 252 
CCS.AUTOPOSITION, 370, 389 
CCS.EXTENDEDSEL, 390 
CCS...MINIRECORDCORE, 377. 389 
CCS...MULTIPLESEL, 390 
CCS.READONLY, 389 
CCS-8INGLESEL, 390 
CCS. VERIFYPOINTERS, 389 
CF_BITMAP, 117 
CF.DSPBITMAP, 117 
CF..DSPMETAFILE, 117 
CF ..DSPTEXT, 117 
CF.METAFILE, 117 
CF TEXT, 117 
CFA-81TMAPORICON, 384, 385 
CFA.BOTIOM, 385 
CPA.CENTER, 385 
CFA..DATE, 384 
CFA.HORZSEPARATOR, 384 
CFA-1NVISIBLE, 384 
CPA.LEFT, 385 
CPA.OWNER, 384 
CFA..READONLY. 384 
CFA_R.IGHT, 385 

CFA..SEPARATOR, 384 
CFA.STRING, 384 
CPA.TIME, 384 
CFA.TITLEREADONLY, 385 
CFA.TOP. 385 
CFA.ULONG, 384 
CFA.VCENTER, 385 
CFI.HANDLE, 119 
CFI.OWNERFREE, 118 
Chmgelcon function, 52, 53 
CHAR3FROMMP. 518 
CHARBUNDLE, 490, 491 
CHECKBOX keyword, 255 
Checkboxes, 25 
CID.CNRTITLEWND, 395 
CID..LEFTCOLTITLEWND, 395 
CID..LEFTDVWND, 395 
CID_R.IGHTCOLTITLEWND, 395 
CID.RIGHIDVWND, 395 
Circular slider control, see Slider control 
CLASSINFO, 303 
Clipboard: 

formats, 11 7 
using, 116 

CLKDRAW sample program, 92, 101. 104, 
116, 120 

CM...ALLOCDETAILFIELDINFO, 386 
CM...ALLOCRECORD, 378, 380, 382 
CM...ARRANGE, 370, 389 
CM.CLOSEEDIT, 394, 395 
CM.COLl.APSETREE, 398 
CM.EXPANDTREE, 398 
CM.FREEDETAILFIELDINFO, 386, 387 
CM.FREERECORD, 383 
CM.INSERTDETAILFIELDINFO, 386 
CM-1NSERTRECORD, 380, 383 
CM.INSERTRECORDARRAY, 380, 381 
CM.INVALIDATE, 381 
CM-1NVALIDATEDETAILFIELDINFO, 

386-388 
CM.OPENEDIT. 394, 395 
CM_pAINTBACKGROUND, 299, 301. 374 
CM.QUERYCNRINFO, 376, 390 
CM.QUERYDETAILFIELDINFO, 386, 388 
CM.QUERYRECORDEMPHASIS, 393, 398 
CM.QUERYRECORDINFO, 393 
CM..REMOVEDETAILFIELDINFO, 386, 387 
CM..REMOVERECORD, 383 
CM.SETCNRINFO, 371- 376, 391 
CM.SETRECORDEMPHASIS, 394 
CMA-80TIOM, 382 
CMA.CNRTITLE, 372 
CMA.CXTREEINDENT, 3 75 

CMA.CXTREELINE, 376 
CMA..DELTA, 375 
CMA..DELTABOT, 398 
CMA..DELTAEND, 398 
CMA..DELTAHOME, 398 
CMA..DELTATOP, 398 

Index 541 

CMA.END, 381, 383, 386 
CMA.FIRST, 38 1. 386, 388, 393 
CMA.FLWINDOWATIR, 373, 376 
CMA.FREE, 383, 387 
CMA..INVALIDATE, 383, 387 
CMA..LAST, 381 , 389 
CMA-1.INESPACING, 375 
CMA..NEXT, 389 
CMA_pFIELDINFOLAST, 372 
CMA.PFIELDINFOOBJECT, 372 
CMA_pREv; 389 
CMA_pSORTRECORD, 371 
CMA-PTLORIGIN, 374 
CMA-8LBITMAPORICON, 375 
CMA.SLTREEBITMAPORICON, 375 
CMA.TOP. 381 
CMA.TREEBITMAP. 375 
CMA.TREEICON, 375 
CMA.XVERTSPLITBAR, 376 
CMDSRC...ACCELERATOR, 36 
CMDSRC.COLORDLG, 36 
CMDSRC.FILEDLG, 36 
CMDSRC.FONTDLG, 36 
CMDSRC...MENU, 36 
CMDSRC.OTHER, 36 
CMDSRC.PRINTDLG, 36 
CMDSRc_pusHBUTION, 36 
CMIC.HIDE_pANEL.lD, 133, 134 
CMIC-8HOW_pANEL-1D, 133 
CN-8EGINEDIT. 394, 396 
CN.COLLAPSETREE. 398 
CN.CONTEXTMENU, 396, 397 
CN..DRAGAFTER, 400 
CN..DRAGHELP, 400 
CN..DRAGLEAVE, 400 
CN..DRAGOVER, 400 
CN..DROP, 400 
CN.EMPHASIS, 392, 393 
CN..ENDEDIT, 394-396 
CN.EXPANDTREE, 398 
CN-1NITDRAG, 399 
CN_pJCKUP. 399 
CN.QUERYDELTA, 375, 398 
CN..REALLOCPSZ, 394-396 
CNRDRAGINFO, 400 
CNRDRAGINIT, 400 
CN REDIIDATA, 394-396 



542 Index 

CNRINFO, 371- 376, 378, 390, 391, 400 
color table, 459-450 
CONVCONTEXT structure, 267, 269, 270, 290 
Compilers, 3 
Conditional cascade menu, 226, 227 
Container control: 

changing background bitmap, 458 
creating, 389- 391 
data structures, 371- 389 
description, 369 
detail view, 369, 371- 374, 376, 377, 384, 

391, 395 
direct manipulation, 399-400 
field editing, 394-396 
flow mode, 370, 373 
icon view, 370, 373, 374, 377- 379, 390 
menus, context, 39~398 
mini mode, 370, 373, 377 
name view, 370, 373, 37~379, 390 
painting background, 299- 302 
record emphasis, 391- 394 
scrolling, 398, 399 
text view, 370, 373, 379 
tree mode, 370, 373 376, 378, 379, 381 , 39 1, 

398 
Control data, 24 
Control windows, 1 7 

creation, 429-439 
design of. 21 
in dialogs, 18 
messages, 24 
types of, 20 

Converting coordinates, 102 
CRA-COLLAPSED, 378 
CRA_CURSORED, 378, 392 
CRA..DISABLED, 378 
CRA..DROPONABLE, 378 
CRA..EXPANDED, 378 
CRA...FILTERED, 378 
CRA_INUSE, 378, 392 
cRA_prcKEo, 378, 392 
CRAJlECORDREADONLY, 378 
CRA_SELECTED, 377, 392 
CRA_SOURCE, 378, 392, 393 
CRA-TARGET, 377 
CreateConditionalCasc;adeMenu, 228 
CreateEditWindow function, 256 
CREATESTRUCT, 305 
CS...FRAME, 8, 266, 270 
cs_puauc. 30s 
cs_SYNCPAINT. 454 
CSBITMAPDATA, 363 365 
CSM_QUERYBACKGROUNDCOLOR, 367 

CSM_QUERYVALUE, 367 
CSM-SETBITMAPDATA, 363, 365 
CSM_SETINCREMENT. 366 
CSM_SETRANGE, 365 
CSM_SE1VALUE, 365 
CSN_CHANGED, 366 
CSN_TRACKING, 366 
CSS..360, 363 
css_CIRCULARVALUE, 363 
CSS..MIDPOINT. 363 
CSS_NOBUTTON, 363 
CSS_NONUMBER, 363 
CSS_NOTEXI; 362 
CSS_NOTICKS, 363 
css_POJNTSELECT, 363, 364, 366 
css_PROPORTIONALTICKS, 363 
CURSOR FLASH, 67 
CURSOR.FRAME, 66 
CURSOR..HALFfONE, 66 
Cursor/keyboard input, 65, 69 
CURSOR . ..SETPOS, 67, 70, 81 
CURSOR-SOLID, 66 
CV..DETAIL, 373 
CV...FLOW, 373 
CV-1CON, 373 
CV..MINI,373,378,379 
CV_NAME, 373 
CV TEXT, 373 
CV.TREE. 373 

DATETIME structure, 531 
DB-AREAATTRS, 185 
DB-AREAMIXMODE, 185 
DB-DESINVERT, 185 
DB..DLGBORDER, 185 
DB-INTERIOR, 185 
oa_pATCOPY, 185 
DB.PATINVERT, 185 
DB STANDARD, 185 
DBCS characters, 528 
DBM..HALFfONE, 456 
DBM-1MAGEATTRS, 456 
DBM-INVERT, 455-456 
DBM-NORMAL, 455-456 
DBM. STRETCH, 456 
DC.CONTAINER, 168 
DC.GROUP, 167 
DC.OPEN, 167 
DC PREPARE, 168 
DCJlEF, 167 
DC.REMOVABLEMEDIA, 168 
DDE...FACK, 276, 280, 288 
DDE...FACKREQ, 276, 282, 284 

DDE...FAPPSTATUS, 276 
DDE...FBUSY, 276, 288 
DDE...FNODATA, 276, 284 
DDE...FRESERVED, 276 
DDE...FRESPONSE, 276, 282 
DDE_NOTPROCESSED, 276 
DDEACK structure, Windows, 288 
DDECTXT_CASESENSmVE, 270 
DDEFMT.TEXT, 277, 278, 292 
DDEJ_pCONVCONTEXT macro, 290 
DDEINITstructure, 268, 269, 271, 272, 273, 

290 
DDEPM_NOFREE, 286 
DDEPMJlETRY, 286, 287, 292 
DDES_pABDATA macro, 290 
DDES_pszITEMNAME macro, 289 
DDESTRUCT structure, 27~282, 284 
DEFPUSHBUTTON keyword, 27, 255 
DEVESC-ABORTDOC, 507 
DEVESC-ENDDOC, 507 
DEVESC_NEWFRAME, 507 
DEVESC STARTDOC, 505, 506 
DEVOPENSTRUC, 501- 503 
Debugging PM Applications, 13 
DevEscape,505-507 
DevOpcnDC, 463, 500-504, 506, 523 
DevPostDeviceModes, 499, 500, 503 
DevQueryCaps, 462 
DevQueryHardcopyCaps, 500, 505 
Dialog boxes, purpose, 253 
DID..HELP _pa, 250 
DID.OK, 266 
Direct manipulation, 160-206 
DisablePrintSc:reenKey function, 521, 522, 

523, 534, 535 
DisableThreeFingerSalute function, 512 
DisplayBibnap function, 463 
DisplayMessages function, 53-55, 462, 463 
DISPLAY.DLL, 451 
DLGTEMPLATE keyword, 254 
DM..DELETEOBJECT, 189 
DM.DRAGLEAVE, 187, 346, 400 
DM.DRAGOVER, 182, l83, 186, 187, 400 
DM..DROP. 187, 188, 346 
DM..DROPHELP, 187, 346, 400 
DM.DROPNOTIFY, 203, 204 
DM-ENDCONVERSATION, 189, 192, 194, 

196, 204 
DM_pRJNTOBJECT, 188 
DMJlENDER, 189, 190, 192, 195 
OM RENDERCOMPLETE, 189, 193, 194, 196 
OM..RENDERPREPARE, 165, 189, 190 
DMFL...NATIVERENDER, 173, 192 

Index 543 

DMFLJlENDERFAIL, 196 
DMFLJlENDEROK, 196 
DMFLJlENDERRETRY, 173, 192, 196 
oo_COPY, 162, 173, 183, 186 
DO-COPYABLE, 1, 68, 180 
DO.DEFAULT, 162, 182 
DO.LINK, 162, 173, 183 
DO.LINKABLE, 168 
DO.MOVE, 162, 173, 183, 186 
DO.MOVEABLE, 168, 180 
DO-UNKNOWN, 182, 183 
DOR.DROP. 182 
DOR_NEVERDROP. 183, 186 
DOR_NODROP, 182 
DO~ODROPOP, 183, 186, 187 
DosAllocMem, 463 
DosAllocSharedMem, 278, 279 
DosBeep, 54, 533 
DosClose, 513, 533 
DosCopy, 196 
DosCreateThread, lO, 150, 459 
DosDelete, 196 
DosDcvIOCtl, 513 
DosExecPgm, 10, 138 
DosFindFirst, 247 
DosFreeModule, 519, 534, 535 
DosGetDateTime, 533 
DosGetModHandle, 514 
DosLoadModule, 133, 514 
DosMove, 196 
DosOpen,463, 512,533 
DosQueryCurrentDir, 217, 247 
DosQueryCurrentDisk, 217, 247 
DosQueryFilelnfo, 463 
DosRead, 463 
DosSetCurrentDir, 215 
DosSetMem, 279 
DosStartSession, 10, 42, 44 
DosWrite, 533 
DPDM_pOSTJOBPROP, 499 
DPDM.QUERYJOBPROP. 499 
drag and drop, 160-198 
DRAGIMAGE, 161. 167, 170-172, 177 179 
DRAGINFO, 161- 165, 168-170, 172, l 7~180, 

182, 187, 189, 192, 195, 199, 201, 
203-205,347 

DRAGITEM, 161- 172, 176, 177, 180, 182, 
185-187, 189, 190, 193, 196, 201 

DRAGTRANSFER, 161, 172- 174, 190, 192. 
193, 195, 196 

DrawChartDJgProc:, 266 
Drawing spirographs. 106 
ORF.BITMAP, 166 



544 Index 

ORF.METAFILE, 166 
ORF .UNKNOWN, 180, 192, 196 
DrgAccessOraglnfo, 164, 185, 187 
DrgAddStrHandle, 175, 176 
DrgAllocDraginfo, 163, 177 
DrgAllocDragtransfer, 174, 192 
ORG-BITMAP, 171 
DrgCancelLazyOrag, 205 
ORG.CLOSEO, 171 
OrgOeleteOraginfoStrHandles, 176, 179, 195 
OrgOeleteStrHandle, 176, 195 
OrgOrag, 164, 177- 180, 187, 199,201 
OrgFreeOraginfo, 164, 179, 195, 198, 204 
OrgFreeOragtransfer, 174, 193 
OrgGetPS, 183 
ORG.ICON, 171 
OrgLazyOrag, 199,201 
OrgLazyOrop, 205 
ORG.POLYGON, 171 
OrgPushOraglnfo, 164, 165 
OrgQueryOragltemCount, 170 
OrgQueryDraginfoPtrFromOragitem, 190, 203 
OrgQueryOraginfoPtrFromHwnd, 190, 203 
OrgQueryOragitem, 169, 201 
OrgOueryOragitemPtr, 169, 172, 190, 201 
OrgOueryStrName, 175, 201 
DrgQueryStrNameLen, 175, 201 
OrgReallocOraglnfo, 163, 164, 201 
OrgReleasePS, 183 
OrgSendTransferMsg, 190 
OrgSetOraglmage, 172 
DrgSetOragitem, 168, 180, 201 
ORG.STRETCH, 171 
ORG.TRANSPARENT, 171 
DrgVerifyRMF, 186 
ORM.DOE, 166, 188 
ORM.DELETE, 189 
ORM.OS2FILE, 168, 169, 180, 186, 188-190, 

192, 196 
ORM.PRINT, 188 
ORT.UNKNOWN, 180 
OT.BOTTOM, 482, 484 
OT.CENTER, 482 
DT .ERASERECT, 483 
DT .EXTERNALLEADING, 483 
DT .HALFTONE, 482 
OT ..LEFT, 482, 484 
OT.MNEMONIC, 482 
DLQUERYEXTENT, 482-484 
DT..RIGHT, 482 
OT .STRIKEOUT, 483 
DT.TEXTATTRS, 482-484 
OT.TOP. 482, 483 

OT.UNDERSCORE, 483 
DT.VCENTER, 482 
DT .WORDBREAK flag, 530 
OT WORKBREAK, 482 
Dynamic Data Exchange transfer hier, 264 

DDE Client/ODE Server, 263 
Cold data link, 281 
Communication process, 273 
Data exchange formats, 277 
helper macros, 289 
hot data link, 283, 285 
initiating, 266 
messages, 265 
proto, 260 
status flags, 276 
terminating, 274 
topic name, 266 
Unnamed app and topic strings, 267 
using the system topics. 268 
using wwords to store, 273 
warm data link, 283, 285 

EM.SETREADONLY. 306 
EN_KILLFOCUS, SO 
ENTRYFIELD keyword, 255 
Entryfield, navigation, 46 
ERRORID data type, 14 
Error Severities, 14 
ES.MARGIN, 305 
ES..READONLY, 305 
ES.UNREADABLE, 46, 48 
Etch-a-sketch, 92 

FATTRS. 477,479, 488, 490 
FCF .ACCELTABLE, 246 
FCF...DLGBORDER, 256 
FCF..HORZSCROLL, 72, 421 
FCF.ICON, 421 
FCF.MENU, 225, 421 
FCF.SIZEBORDER, 421 
FCF.SYSMENU, 225 
FCF_VERTSCROLL, 72, 421 
FDS.APPLYBUTTON, 251 
FDS.CENTER, 249, 253 
FDS.CUSTOM, 250, 252 
FOS..ENABLEFILELB, 251 
FDS..ERR...DEALLOCATE.MEMORY, 252 
FDS..ERR...DIALOG..LOAD..ERROR, 252 
FDS..ERR...DRIVE..ERROR, 252 
FDS..ERR..FILTER..TRUNC, 252 
FDS..ERR-1NVALID.CUSTOM..HANDLE, 252 
FDS..ERR.INV ALID...DIALOG, 252 
FDS..ERR._INVALIO...DRIVE, 252 

FDS..ERR.INVALID..FILTER, 252 
FDS..ERR._INVALID.PATHFILE, 252 
FDS..ERR._INVALID.VERSION, 252 
FDS..ERR.OULOF .MEMORY, 252 
FDS..ERR..PATH.TOO..LONG, 252 
FOS..ERR.TOO..MANY..FILE.lYPES, 252 
FDS..FILTERUNION, 250 
FDS..HELPBUTTON, 250 
FDS-1NCLUDE..EAS, 251 
FDS.MODELESS, 249, 251 
FDS.MULTIPLESEL, 251 
FDS.OPEN...DIALOG, 145, 249, 251 
FDS.PRELOAD.VOLINFO, 251 
FOS.SAVEAS-DIALOG, 249, 251 
FDS.SUCCESSFUL, 252 
FID.CLIENT, 528 
FID.SYSMENU, 232, 233, 236 
FID.TITLEBAR, 56, 236 
FIELDINFO. 371-373, 384-389, 391 
File dialog flags, 249 
FILEDLG structure, 248, 249, 250 
FilterEnhyfieldProc, 262, 292 
Flat memory model, 9 
FNTS.APPLYBUTTON, 475 
FNTS-BITMAPONLY, 475 
FNTS.CENTER, 475 
FNTS.CUSTOM, 475 
FNTS..FIXEDWIDTHONLY, 475 
FNTS..HELPBUTTON, 475 
FNTS-1NITFROMFATTRS, 475, 477 
FNTS.MODELESS, 475 
FNTS.NOSYNTHESIZEDFONTS, 475 
FNTS.OWNERDRAWPREVIEW, 475 
FNTS.PROPORTIONALONLY, 475 
FNTS..RESETBUTTON, 4 75 
FNTS.VECTORONLY. 475 
FONTDLG, 474, 477-479, 500 
FONTMETRICS, 476, 477, 478, 488, 490 
Fonts: 

current, 471-473 
description, 4 70 
drawing text, 481-493 
selection. 473-481 

Frame Controls , removing, 56 
Free, 292 
FS...DLGBORDER, 321 

GB.ANIMATIONBEGIN, 41 1, 412 
GB.ANIMATIONEND, 411 
GB.CURRENTSTATE, 411 
GB.DISABLE, 411 
GB.DOWN, 411 , 415 
GB..HILITE, 411 

GB-1NDEX...BACKWARD, 411 
GB-1NDEX.FIRST, 411 
GB-1NDEX.FORWARD, 411 
GB-1NDEX..LAST, 411 
GB.RESOURCE, 406, 407 
GB.STRUCTURE, 405, 408 
GB.TEXTABOVE, 419 
GB.TEXTBELOW, 419 
GB.UP, 41 1, 415 

Index 545 

GBM.ANIMATE, 404, 41 2, 413, 415 
GBM.QUERYANIMATEACTIVE, 419 
GBM.QUERYANIMATIONRATE, 419 
GBM. QUERYBITMAPINDEX. 419 
GBM.QUERYSTATE, 414, 418 
GBM.QUERYTEXTPOSITION, 419 
GBM.SETANIMATIONRATE, 412 
GBM.SETBITMAPINDEX. 403, 404, 410-412, 

417, 41 9 
GBM_SETGRAPHICDATA, 419 
GBM.SETSTATE, 415 
GBM. SETTIDITPOSITION, 41 9 
GBS-30.TEXTRAISED, 404 
GBS-30.TEXTRECESSEO, 404 
GBS.ANIMATION, 404, 412 
GBS.AUTOANIMATION, 404, 407, 410, 416 
GBS.AUTOTWOSTATE, 403, 407, 410, 

416-41 8 
GBS-DISABLEBITMAP, 404, 410 
GBS..HILITEBITMAP, 404, 412 
GBS.MINIBUTTON, 404 
GBS.TWOSTATE, 403, 414 
GBTNCDATA, 40S, 408, 419 
General help menu item, 122, 136, 137 
GetQueuelnformation function, 7 
GetSysValues function, 114, 116 
GpiBitBlt, 451, 455-456, 458, 523 
GpiBox, 107 
GpiCharString, 488 
GpiCharStringAt, 486, 488 
GpiCreateBitmap, 463, 523-524 
GpiCreateLogFont, 488, 490, 506 
GpiCreatePS, 463, 504-505, 523- 524 
GPI..ERROR, 458, 523 
GPI..HITS, 458 
GpiLine, 101 
GPLOK, 458 
GpiQueryAttrs, 491, 492 
GpiQueryBackColor, 491 
GpiQueryBackMix, 492 
GpiQueryBitmaplnfoHeader, 463 
GpiOueryCharAngle, 492 
GpiQueryCharBox, 485, 488, 490, 492 
GpiQueryCharBreakExtra, 493 



546 Index 

GpiQueryCharDirection, 493 
GpiQueryCharutra, 493 
GpiQueryCharSet, 492 
GpiQueryCharShear, 492 
GpiQueryCharStringPos, 70 
GpiQueryColor, 491 
GpiQueryDeviceBitmapFormats, 524 
GpiQueryFontMetrics, 435, 475, 477 
GpiQueryMix, 492 
GpiQueryModelTransformMatrix, 107 
GpiQueryTextAlignment, 493 
GpiRotate, 107 
GpiSetAttrs, 490, 492 
GpiSetBackColor, 491 
GpiSetBackMix, 492 
GpiSetBitmap, 463, 524 
GpiSetCharAngle, 492 
GpiSetCharBox, 492, 506 
GpiSetCharBreakExtra, 493 
GpiSetCharDirection, 493 
GpiSetCharExtra, 493 
GpiSetCharSet, 488, 492, 506 
GpiSetCharShear, 492 
GpiSetColor, 106, 491 
GpiSetCurrentPosition, 107 
GpiSetMix, 492 
GpiSetModelTrans£ormMatrix. 107 
GpiSetTextAlignment, 493, 506 
Graphic button control: 

creating, 403-408 
description, 401-402 
registering, 402 
using, 408-419 

Graphical User Interface (GUI), 1, 91 
graphics engine, 442 
Groupboxes, 39 
Groups, 255 

HAPP data type, 43 
Help index menu item, 131, 136 
HELPINIT, 132- 134, 138 
HELPITEM, 127- 129 
Help menu: 

Help index, 131, 136 
General help, 122, 136, 137 
Keys help, 122, 127, 138 
Processing commands, 136-139 
Product information, 131. 139 
Tutorial, 13 1. 13 8 
Using help, 131, 137 

HELPSUBITEM, 130 
HELPSUBTABLE, 127- 130 
HELPTABLE, 127- 129, 132 

HideConb'ols function, 56, 57 
HINLPROFILE. 209 
HINI..SYSTEMPROFILE, 209 
HINLUSERPROFILE, 209 
HK..CHECKMSGFILTER, 516 
HK..CODEPAGECHANGED, 516, 531 
HK..DESTROYWINDOW, 516 
HK..FINDWORD, 516, 530 
HK..FLUSHBUF, 516, 532 
HK.HELP, 516, 528 
HK.INPUT, 516 
HKJOURNALPLAYBACK, 516, 527 
HKJOURNALRECORD, 516, 526 
HK.LOADER, 516 
HK.LOCKUP. 516, 528 
HK..MSGCONTROL, 516 
HK..MSGFILTER, 516 
HK..MSGINPUT. 516, 529 
HK..PLIST .ENTRY. 516 
HK..PLIST .EXIT, 5 16 
HICREGISTERUSERMSG, 516 
HK..SENDMSG, 516. 525 
HK..WINDOWDC, 516 
HM_DISPLAYJIELP, 137 
HM_GENERALJIELP, 136 
HM_GENERALJIELP~UNDEFINED, 137 
HMJIELP .INDEX, 136 
HMJIELP ..SUBITEM..NOT ...FOUND. 139 
HM..KEYSJIELP. 13 8 
HM.QUERY..KEYSJIELP, 138 
HM..REPLACE.USINGJIELP. 137 
HM.SET .ACTIVE_ WINDOW, 140 
HMO.CURRENT constant, 6, 532 
Hooks, 509 

CodePageChangedHook, 531 
FindWordHook, 530 
FlushBufHook, 532 
HelpHook, 528 
hook list, 515 
hook types, 516 
lnputHook, 518, 520 
JoumalPlaybackHook, 527 
JoumalRecordHook, 526 
LockupHook, 528, 529 
MsgFilterHook, 517 
MsginputHook, 529, 530 
procedures, 509 
SendMsgHook, 525 

Hung system, 143 
HWND..BOTTOM, 23 
HWND..BROADCAST. 266 
HWND.OBJECT, 21, 56, 57 
HWND.TOP. 23 

IBM Thinkpad, 93 
ICON, keyword in resource file, 29 
ICONINFO structure, 52 
Icon Editor (ICONEDIT.EXE), 109 
Image font, 470 
Information Presentation Facility: 

constructing help panels, 123-127 
designing text, 122, 123 
HELPITEM, 127- 129 
HELPINIT, 132- 134, 138 
help menu processing, 136-139 
HELPSUBITEM, 130 
HELPSUBTABLE, 127-130 
HELPTABLE, 127- 129, 132 
multiple window applications, 139, 

140 
SUBITEMSIZE, 130 

Information superhighway, 259 
INI, see Initialization files 
Initialization files, 160, 206-217 

saving and restoring window state, 
207- 209 

Input focus, 13 
Input hook, 512 
Interprocess communication, 259 
IPF, see Information Presentation Facility 
IPFC, 123- 127 
IPMD debugger, 14 
isdigit, 262 
ISO font, 470 

KC.ALT. 62, 64, 81, 83 
KC.CHAR, 61 , 62 
KC-COMPOSITE, 62 
KC_CTRL,61,62,64, 81, 83 
KC_DEADKEY, 62 
KC.INVALIDCHAR, 62 
KC.INVALIDCOMP. 62 
KC..KEYUP, 61, 518 
KC...LONEKEY. 61 
KC.PREVDOWN, 61 
KC.SCANCODE, 60, 61 
KC.SHIFT. 62, 64, 81, 83 
KC.TOGGLE, 61 
KC VIRTUALKEY, 60--62, 64, 518 
Keys help menu item, 122, 127, 138 
Keyboard: 

display update, 69-72 
input cursor, 65~9 
input processing, 60--65 
scan code, 59 
scrolling with, 81-87 

Keypad, numeric, 84 

Lazy drag, 161, 198--205 
LBOXINFO structure, 41 
Linkers, 3 
LISTBOX keyword, 255 
Listbox: 

item restriction, 9 
updates to, in OS/2 Warp, 41 

Index 547 

LIT..NONE constant, 41 
LM.INSERTMULTITEMS message, 40, 41 
Loading icons on buttons, 29 
Lockup,510,526 
Linear slider control, see Slider control, linear 

malloc, 292 
MAJU.MBTEXT. 425 
MAXNAMEL, 58 
Maximize button, 224 
MB2D, 426 
MB2INFO, 426 
MB.ICONCUSTOM, 425 
Memory Device Context, 451 
Memory Errors, 10 
memset function, 248 
Menu control styles, 226 
Menu control window, 224 
MENU keyword, 239, 241 
Menu messages, 225 
Menu mnemonics, 246 
Menuitem attributes, 225 
MENUITEM structure, 228. 229, 233, 235, 236 
Message based architechture, 4 
Message queue system, 59 
Metaclass, 218, 219 
MIA-CHECKED, 231 
MIA_DISABLED, 231 
MIA...FRAMED, 231 
MIAJIILITED, 231 
MIA..NODISMISS, 231 
Mickey Mouse, 91 
Mighty Mouse, 91 
Minimize button, 224 
MINIRECORDCORE, 371. 376, 377. 380 
Minnie Mouse, 91 
MIS.BITMAP, 230 
MIS.BREAK, 230 
MIS..BREAKSEPARATOR, 231 
MIS..BUTTONSEPARATOR, 230 
MISJIELP, 230 
MIS.OWNERDRAW, 230 
MIS..SEPARATOR, 230 
MIS..STATIC, 230 
MIS.SUBMENU, 230 
MIS.SYSCOMMAND, 230 



548 Index 

MIS-TEXT. 230 
MLE control, 223 

setting focus, 256 
MM-DELETEITEM, 225, 234, 235 
MM-ENDMENUMODE, 225 
MM-1NSERTITEM, 225, 236 
MM-1SITEMVALID, 225 
MM-1TEMIDFROMPOSITION, 225, 233, 234 
MM-1TEMPOSITIONFROMID, 225 
MM_QUERYDEFAULTITEMID, 225 
MM_QUERYITEM, 225, 228, 233, 234, 235 
MM-OUERYITEMATTR, 225 
MM_QUERYITEMCOUNT, 225, 233 
MM_QUERYITEMREC't 225 
MM_QUERYITEMTEXT, 225 
MM_QUERYITEMTEXTLENGTH, 225 
MM_QUERYSELITEMID, 225 
MM-REMOVEITEM, 225 
MM_SELECTITEM, 225 
MM..SETDEFAULTITEMID, 225, 232 
MM..SETITEM, 225 
MM..SETITEMATTR, 225 
MM..SETITEMHANDLE, 225 
MM_SETITEMTEXT. 225, 234, 235 
MM_STARTMENUMODE, 225 
MMPM, 401 
Mouse buttons, determining number, 96 
Mouse pointer, 93-96 

changing, 108 
hotspot, 94 

MOUSEMSG macro, 104, 105 
MQINFO structure, 5, 6 
MS.ACTIONBAR, 226 
MS-CONDITIONALCASCADE, 226, 231 
MS_TITLEBUTTON, 226 
MS_VERTICALFLIP. 226 
MSEMSG structure, l 04 
MSGF-DDEPOSTMSG, 287, 517 
MSGF-DIALOGBOX, 517 
MSGF_DRAG, 517 
MSGF..MESSAGEBOX, 517 
MSGF_TRACK, 517 
MT structure, 239, 240 
Multimedia Presentation Manager, 401 
Multiple thread application, 149-157 

Notebook control 
adding pages, 317-319, 326-335 
creating, 312-313 
customizing, 313-317 
description, 309, 310 
displaying information, 319-325, 326-335 
styles, 310-312 

NOTIFYDELTA, 398 
NOTIFYRECORDEMPHASIS, 392, 393 

Object window, 152- 157 
Objects: 

SOM, 217- 221 
Workplace Shell, 219-221 
windows as, 297, 298 

OBJ~GIVEABLE flag, 280 
OD-DIRECT, 501. 502 
OD-1NFO, 501 
OD.MEMORY, 502 
OD_QUEUED, 501, 502, 505 
UlO rule, the, 12 
Optlink linkage convention, 5 l 5 
OS2DEF.H, 14 
OS/2 dump formatter, 14 
OS/2 kernel debugger, 13 
OS/2 system editor {E.EXE), 223 
0 $/2 trace formatter, 14 
outline font, 470 
OWNERBACKGROUND, 299, 301 
OWNERITEM, 347, 359 
Owner window, 22, 23 

PAG.COMMIT flag, 279 
PAGEINFO, 328 
PAGESELECTNOTIFY, 325 
Painting: 

after scrolling, 87-89 
keyboard input, 6 ').. 72 

Parent window, 21- 24 
Pickup and drop, see Lazy drag 
PM input mechanism, 12, 13 
PM_NOREMOVE, 518 
PM.Q.RAW, 501 
PM.O-STD, 501 
PM-REMOVE, 287, 518 
PM-SPOOLER, 495 
PMBITMAP.H, 445, 448 
PMDD device driver, 13 
PMDDE.DLL, 261. 292 
PMEDIT sample program, 223, 225, 232, 238, 

248 
PMERR.H, 14 
PMERR._QUEUE..FULL, 286 
PMGPI.DLL, 441 
PMGRE.DLL, 18 
PMMERGE.DLL, 11 , 18, 241 
PMMLE.DLL, 18 
PMPRE.DLL, 451 
PMSCREEN sample program, 51l , 51 8, 519, 

532, 535 

PMSHAPI, 18, 44 
PMSHL.H, 44 
PMSTATS sample program, 261, 263, 27 1. 

272,289 
PMSTDDLG.H, 249, 251 
PMWIN, 18, 241 
PMWIN.H, 8, 22, 34, 36, 41, 94, 226, 232, 265, 

269,441 
PMWP.DLL, 31 
POINTERINFO structure, 99, 100, 101 
POINTL structure, 101 , 456 
PopulateListBox function, 41 
Popup menus, 242 
Popup menus (flags), 243 
PP ..FONTNAMESIZE, 47 1-473, 478, 479, 481, 

484 
Presentation parameters, 23 

in menus, 242, 243 
Presentation spaces, 450-45 l 

Cached Micro PS, 452 
Micro PS, 452 
Normal PS, 452 

PrfCloseProfile, 215 
PrfOpenProfile, 209, 2 10 
PrfQueryProfileData, 2 11-214 
PrfQueryProfilelnt, 211, 2 14, 2 15 
PrfQueryProfileSize, 211 , 212 
PrfQueryProfi leString, 211-2 15, 2 17, 495, 521 
PrfWriteProfileData, 210-2 12 
PrfWriteProfileString:. 2 10, 2 12 
PrintScreenToBitmap, 523, 524 
Printer font, 4 70 
Printing: 

creating a print job, 500-506 
drawing output, 506-507 
ending a print job, 507 
form selection, 499-500 
obtaining a device context, 501-504 
obtaining a presentation space, 504-505 
queue selection, 494-498 
starting a print job, 505- 506 

PRJINF02, 496 
Proce$s Identifier (PID), 3, 6 
ProcessTrackingRectangle, 110, 114 
Product information menu item, 131, 139 
Profile functions (Prf}, 30 
PROGDETAILS structure, 41, 43, 45 
progress indicator slider, 146 
PRQINF03, 495-499, 502, 503 
PRQINF06, 494 
PUJiCONSTRAIN, 244 
PU.KEYBOARD, 244 
PU..MOUSEBUTTONI, 244 

Index 549 

PU..MOUSEBUTTONlDOWN, 244 
PU..MOUSEBUTTON2, 244 
PU-MOUSEBUTTON2DOWN, 244 
PU..MOUSEBUTTON3, 244 
PU..MOUSEBUTTON3DOWN, 244 
PU_NONE, 244 
p u _posITIONITEM .. 243, 244 
PU..SELECTITEM, 243, 244 
PUSHBUTTON keyword, 255 
PutBitmaplnQipboard function, 119, 120 
PU.VCONSTRAIN, 244 

QMSG structure, 5, 5 10, 517-520, 525-529 
QPF_COLORllNDEX, 472 
QPF_COLOR2INDEX, 472 
QPF_NOINHERIT. 472 
QPF_pURERGBCOLOR, 472 
OS-DIALOG, 423 
QS..FRAME, 423 
QueryDeviceinfoStatus function, 46 1, 462 
QWLJiWNDFOCUSSAVE, 257 
QWLS'IYLE, 229, 231, 255 

Radiobuttons, 25 
Raster font, 4 70 
RECORDCORE, 371, 376-380 
RECORDINSERT. 381-383 
RECTL structure, 108, 453 
ReleaseinputHook function, 532 
ReplaceTheSyetemMenu function, 236, 237 
RGB2 structure, 449-450 
RGN-COMPLEX, 80 
RGN.ERROR, 80 
RGN_NULL, 79 
RGN-RECT, 79 
ROP -DSTINVE RT, 457 
ROP ..MERGECOPY, 457 
ROP ..MERGEPAINT, 457 
ROP _NOTS RCCOPY, 455, 457 
ROP _NOTSRCERASE, 457 
ROP.ONE, 457 
ROP PATCOPY. 457 
ROP _pATINVERT, 457 
ROP-PATPAINT, 457 
ROP-S RCAND, 457 
ROP ..SRCCOPY, 455, 457 
ROP-SRCERASE, 457 
ROP .SRCINVERT. 457 
ROP.SRCPAINT. 457 
ROP..ZERO, 4.57 

SAF-8ACKGROUND, 44 
SAP.INSTALLEDCMDLINE. 44 



550 Index 

SAF...MAXIMIZED, 44 
SAF ..MINIMIZED, 44 
SAF .STARTCHILDAPP. 44 
SB..ENDSCROLL, 74 
SB..LINEDOWN, 74, 77, 85 
SB..LINELEFT. 74, 85 
SB..LINERIGHT, 74, 85 
SB.LINEUP, 74, 77, 84 
SB_FAGEDOWN, 74, 77, 86 
SB_FAGELEFT. 74, 81 
SB_FAGERIGHT, 74, 81 
SB_PAGEUP, 74, 77, 85 
SB_SLIDERPOSITION, 73, 74, 77 
SB.SLIDERTRACK, 73, 74, 81, 82, 86 
SBCDATA stn.icture, 23 
SBM_QUERYPOS, 77 
SBM_SETPOS, 78 
SBM.SETSCROLLBAR, 75 
SBM.SETTHUMBSIZE, 75 
SBMP_OLD....SYSMENU, 236 
SBS.AUTOSIZE, 73 
SBS.AUTOTRACK, 73 
SBS..HORZ, 72 
SBS_THUMBSIZE, 73 
SBS_VERT, 73 
sc_CLOSE, 234, 235 
SC_CLOSE identifier, 232 
SC.MOVE, 234 
SC.SYSMENU identifier, 233 
Screen resolution, determining, 461 
Scroll bar control: 

managing, 75, 78 
styles, 72, 73 
usage, 72 

SDA-8ACKGROUND, 361 
SDA..RIBBONSTRIP. 361 
SDA_SLIDERARM, 361 
SDA.SLIDERSHAFT, 361 
secondary message box, 401, 

423-426 
secondary window: 

description, 401. 420 
usage, 420-423 

Segmented architecture, 9 
Semaphore handling, 9 
SendMessage function, 266, 270 
SendTextToMLE function, 275 
SEPARATOR keyword, 230 
SetlnputHook function, 519 
SetTheSysMenu function, 232, 233 
SHOWOFF sample program, 442, 451 
Sibling window, 236 
SLDCDATA, 348, 351, 352, 357 

Slider control, circular: 
creating, 362, 363 
customizing, 363- 366, 367 
description, 309, 348 
notifications, 366, 36 7 

Slider control. linear: 
creating, 348- 351 
customizing, 352, 353 
description,309,348 
notifications, 353-356 
read-only, 356-362 

SLM.ADDDETENT, 353 
SLM.QUERYDETENTPOS, 353 
SLM_QUERYSLIDERINFO, 355, 356, 361 
SLM-REMOVEDETENT, 353 
SLM.SETSCALETEXT, 352 
SLM....SETSLIDERINFO, 146, 150, 353, 357, 

359 
SLM.SETTICKSIZE, 352 
SLN_CHANGE, 355 
SLN....SLIDERTRACK, 355 
SLS-80TTOM, 350 
SLS-8UTTONSBOTTOM, 351 
SLS-8UTTONSLEFT. 350 
SLS-8UTTONSRIGHT, 350 
SLS-8UTTONSTOP, 351 
SLS.CENTER. 350 
SLS..HOMEBOTTOM, 350 
SLS_HOMELEFT. 350 
SLS_HOMERIGHT, 350 
SLS..HOMETOP, 351 
$LS.HORIZONTAL, 349 
SLS..LEFT. 350, 351. 353 
SLS_QWNERDRAW, 350, 357, 359 
SLS.PRIMARYSCALEl, 349 
SLS.PRIMARYSCALE2, 349, 353 
SLS-READONLY. 349, 357 
SLS. RIBBONSTRIP. 350, 357 
SLS_RJGHT. 350 
SLS.SNAPTOINCREMENT, 349 
SLS.TOP, 350 
SLS.VERTICAL, 349 
SM.SETHANDLE message, 37 
SMA..INCREMENTVALUE, 355, 359 
SMA_RANGEVALUE, 355, 359 
SMA.SCALEl, 353 
SMA.SCALE2, 353 
SMA.SHAFTDIMENSIONS, 357 
SMA.SHAFTPOSITION, 357 
SMA.SLIDERARMDIMENSIONS, 357 
SMA.SLIDERARMPOSITION, 355, 359 
SMBD. 425, 426 
SMBINFO, 423, 425, 426 

SMHSTRUCT structure, 526 
SOM, see System Object Model 
SOMClass, 2 17- 219 
SOMClassMgr, 217, 219 
somDispatchA, 218 
somDispatchD, 218 
somDispatchL, 218 
somDispatch V. 218 
somFree, 218 
somlnit, 218 
somMergelnto, 219 
somNew, 219 
somNewNolnit, 219 
SOMObject, 217- 219 
somRenew, 219 
somRenewNoinit, 219 
somUninit, 218 
SPTR..FILE, 177 
SPTR..MULTFILE, 178 
Speedy Gonzalez, 91 
SpiroGraphBox function, 103, 105, 106 
Spirograph, 92 
SplEnumQueue, 498 
SplQueryQueue, 495-498 
sprintf function, 103 
SS.AUTOSIZE style, 39, 40 
SS.BITMAP style, 40 
SS.BKGNDFRAME style, 40 
SS.BKGNDRECT style, 40 
SS-FGNDFRAME style, 40 
SS-FGNDRECT style, 40 
SS-GROUPBOX style. 40 
SS.HALFTONEFRAME style, 40 
SS..HALFTONERECT style, 40 
SS-ICON style. 39, 40 
SS.SYSICON style, 40 
SS.TEXf style, 40 
Standard file dialog, 145, 247 

return codes, 252 
StandardFileDialog function, 248, 249 
Start Application Flags, 44 
StartApplkation function, 45 
STARTDATA stnicture, 42, 45 
Static control windows, 38 
strcat, 292 
String handles, 174-176 
Subclassing, windows, 297- 308 
SUBITEMSIZE, 130 
SUBMENU keyword, 230 
SubstituteBootDrive function, 533 
SY-CMOUSEBUTTONS, 94, 95 
SV-CPOINTERBUTTONS, 94, 95 
SV.CXDBLCLK. 94, 95 

SV .CXMOTIONSTART, 95 
sv _CXPOINTER. 94, 95 
SV _CXSCREEN, 462 
sv_CYDBLCLK, 94, 95 
SV_CYMOTIONSTART, 95 
sv_CYPOINTER, 94, 95 
SV .CYSCREEN. 462 
SV ..DBLCLKTIME, 94 

Index 551 

SV ..MOUSEPRESENT, 94, 95 
SV_FOINTERLEVEL, 94, 95, 98 
SV_FRINTSCREEN, 521 
SV.SWAPBUTTON, 94 
SW..INVALIDATEREGION, 79, 80 
SW ....SCROLLCHILDREN, 80 
SWAPPER.DAT, 10 
SYS0008, 10 
SYSTEM..INI, 206 
System bitmaps, 236 
System font, 4 70 
System function, 10 
System Initialization fi le, 206, 209 
System Input Queue, 4 
System linkage convention, 5 l 5 
System menu: 

composition of, 235 
removing separators, 235 
replacing, 236 

System Object Model (SOM), 2, 159, 
217 

Tabstops, 255 
TF.ALLINBOUNDARY, 113. lr4 
TF-80TTOM, 113, 114 
TF.GRID, 113, 114 
TF..LEFT, 113, 114 
TF..MOVE, 113 
TF..RIGHT, 113, 114 
TF .SETPOINTERPOS, 113 
TF_STANDARD, 113, 114 
TF_TOP, 113, 114 
TF_VALIDATETRACKRECT, 113, 114 
Thread Identifier (TID), 3, 6 
ntlebar, changing text, 56 
ToggleMenultem function, 240 
TRACKINFO structure, 112, 114, lJ S 
Tracking flags, 113 
TREEITEMDESC, 379, 382 
Tutorial menu item, 13 1, 138 

UpdateBtnlcon function, 51 
Updatelcon function, 37, 38, 49 
USER..INI, 206 
USERBUTTON stn.icture, 35 



552 Index 

User initialization file, 206, 207, 209, 220 
Using help menu item, 131. 13 7 

Value set control: 
creating. 336-339 
description, 309, 335, 336 
direct manipulation, 345- 347 
drawing, 34 7 
initializing, 339-342 
processing notifications, 342- 345 

VDA..BACKGROUND, 347 
VOA.ITEM, 347 
VDA-1TEMBACKGROUND, 347 
VDA_SURROUNDING, 347 
VIA..BITMAP, 337, 340 
VIA_COLORINDEX, 340 
VIA_DISABLED, 340 
VIA_DRAGGABLll:., 341, 346 
VIA_DROPONABLE, 341. 346 
VIA..lCON, 337, 340 
VIA_QWNERDRAW, 341, 347 
VIA..RGB, 340 
VIA_TEXT, 340, 343 
virtual keys, 60, 81-87 
VK..BUTTONl, 179 
VK..BUTTON2, 179 
VK..BUTTON3, 179 
VK-ENDDRAG, 179 
VIU>RINTSCRN, 520 
VM_QUERYITEM, 343, 344 
VM_QUERYITEMATTR. 342 
VM_QUERYSELECTEDITEM, 344 
VM_SELECTITEM, 340 
VM.SETITEM, 339, 340, 342 
VM.SETITEMATTR, 338, 340, 342, 343 
VN_DRAGLEAVE, 346 
VN_DRAGOVER. 346 
VN_DROP, 346 
VN..ENTER, 344 
VNJIELP, 341 
VN_INITDRAG, 346 
VN..KILLFOCUS, 344, 345 
VN-SELECT, 341, 342 
VS..BITMAP, 338, 339 
VS..BORDER. 337, 339 
vs_COLORINDEX. 338 
VS.ICON, 338 
VS.ITEMBORDER, 337 
vs_OWNERDRAW, 337, 339, 347 
VS..RGB, 338 
VS..RIGHTTOLEFI; 337 
VS-SCALEBITMAPS, 337 
vs_TEXT, 338. 339 

VSCDATA, 336-338 
VSDRAGINFO, 346 
VSDRAGINIT, 346 
VSTEXT, 343, 344 

WA.ERROR, 262 
WC..BUTTON, 18, 24 
WC.COMBOBOX, 18 
WC.CONTAINER, 19 
WC..ENTRYFIELD, 18 
WC..l.ISTBOX, 18 
WC-MENU class, 239 
WC_MLE, 18 
WC...NOTEBOOK, 19 
WC.SCROLLBAR, 18 
WC.SLIDER, 19 
WC.SPINBUTTON, 19 
WC.STATIC, 18 
WC_ VALUESET. 19 
WinAlarm, 262 
WinAssociateHelpinstance, 135, 139 
WinBeginPaint, 325, 435, 453-454, 484, 485, 

487 
WinBroadcastMsg, 8, 431, 484 
WinCallMsgFilter, 287 
WinCance!Shutdown, 7 
WinChangeDesktopBitmap function, 459 
WINCHART (charting data), 295 
WINCHART sample program, 262, 263, 272 
WinCheckButton, 34 
WinCloseClipbrd, 119 
WinCreateCursor, 66-68, 70, 81. 437 
WinCreateDlg, 254, 422 
WinCreateHelplnstance, 132-135 
WinCreateMsgQueue, 5, 6, 13, 459, 461 
WinCreoteObject, 459, 461 
WinCreatePointer, 111 
WinCreateSecondaryWindow, 422 
WinCreateStdWindow, 153, 208, 209, 241, 253, 

362 
WinCreateWindow, 21, 23, 24, 28, 29, 240, 

256, 153,303,313, 321- 323,336-339, 
348,351,353,357, 362,363,371,389, 
390,408,430,434 

WinDdelnitiate, 266, 267, 268, 270 
WinDdePostMsg, 265, 269, 278, 280, 282, 286, 

287 
WinDdeRespond, 268, 271. 272 
WinDefaultSize, 423, 426 
WinDefDlgProc, 407, 422 
WinDefSecondaryWindowProc, 422 
WinDetwindowProc, 297, 298, 304, 528 
WinDestroyCursor, 68, 69, 438 

WinDestroyPointer, 32, 110 
WinDestroySecondaryWindow, 422 
WinDestroyWindow, 422 
WinDismissDlg. 422 
WinDismissSecondaryWindow, 422, 426 
WinDispatchMsg, 143, 147, 148, 287 
WinDlgBox, 179, 254, 321, 407, 421 
WinDrawBitmap, 301, 361, 454-455 
WinDrawBorder, 56, 183, 185, 435 
WinDrawText, 70, 89, 315, 325, 335, 435, 471 , 

481,483-485,487, 530-531 
Window handle limits, 11 
Window manager heap, 11 
window state (save/restore), 207-209 
window subclassing, 297-308 
Window words, 46, 257 
WinEmptyClipbrd, 118, 119 
WinEnableControl. 394, 411-412 
WinEndPaint, 325, 435, 453-454, 484 
WinFileD\g, 145, 248, 249, 252 
WinFillRect, 484 
WinFocusChange, 65 
WinFontDlg,471,474-476,478 
WinFrameWindowProc, 528 
WinFreeFileDlgList, 253 
WinFreeFilelcon, 31 
WinGetCurrentlime, 359 
WinGetLastError, 14, 15, 432 
WinGetMessage, 60, 147 
WinGetMsg,51 8,519 
WinGetPS, 69, 70, 106, 364, 454, 475, 524 
WinGetSysBitmap. 237 
WinlnflateRect, 435, 437 
Winlnitialize, 3, 5, 13, 132, 134, 459, 461 
WinlnsertDefaultSize, 422 
WinlnvalidateRect, 69, 78, 367, 474, 484 
WinLoadDlg, 254, 319, 422 
WinLoadFilelcon, 30, 31, 37, 52 
WinLoadMenu, 240, 241. 243 
WinLoadPointer, 109 
WinLoadSecondaryWindow. 422 
WinLoadString, 54 
WinLockVisRegions, 525 
WinLockWindowUpdate, 301 
WinMapDlgPoints, 102 
WinMapWindowPoints, 102 
WinMessageBox, 54 
WinMessageBox2, 401, 426 
WinMsgBox, 151 
WinOpenClipbrd, 117, 118, 119 
WinOpenWindowDC, 462 
WinPeekMsg, 60, 147, 148, 287, 518, 519 
WinPopupMenu, 243, 244 

Index 553 

WinPostMsg,4,5, 149-150,286 
WinPostQueueMsg, 4, 5 
WinPrintScreen, 5 18 
WinProcessDlg, 422 
WinProcessSecondaryWindow, 422 
WinPtlnRect, 105 
WinOueryActiveWindow, 139, 524 
WinOueryAnchorBlock, 4 
WinQuery ButtonCheckState, 34 
WinQueryCapture, 98 
WinQueryClasslnfo, 303, 304 
WinQueryDesktopBkgnd, 458 
WinQueryDlgltemText, 292, 422 
WinQueryHelplnstance, 136 
WinQueryMsgPos, 101, 102 
WinOueryObjectWindow, 236 
WinQueryPointer, 100 
WinQueryPointer Info, 100 
Win.QueryPointerPos, 101, 102, 103, 105, J 15 
WinQueryPresParam, 471-473 
WinQueryQueueinfo, 5, 6, 7 
WinQuerySecondaryHWND, 422 
WinQuerySysPointer, 37, 177, 459 
WinQuerySysValue, 94, 98, 114, 462 
WinQueryWindowPtr, 297 
WinQueryWindowRect, 183, 325, 524 
WinQueryWindowText, 48 
WinQueryWindowULong, 48, 229, 231. 297 
WinQueryWindowUShort, 297 
WinRegisterClass, 22, 304, 433 
WinRegisterGraphicButlon, 402, 407 
WinReleaseHook, 519, 530, 532, 534 
WinReleasePS, 69, 70, 454 
WinRemovePresParam, 4 71, 4 79 
WinRestoreWindowPos, 208, 209 
WinScrollWindow, 78-80, 87, 301 
WINSDDE.DLL, 261 
WinSecondaryMessageBox, 423, 425, 426 
WinSecondaryWindow, 421 
WinSendDlgltemMsg, 34, 422 
WinSendMsg, 4, 24, 136-137, 150,266, 316, 

317, 525, 526 
WinSetActiveWindow, 209 
WinSetCapture, 97, 98 
WinSetClipbrdData, 118, 11 9 
WinSetCp, 531 
WinSetDesktopBkgnd, 458-459 
WinSetDlgltemText, 40 
WinSetErrorlnfo, 14 
WinSetFilelcon, 52 
WinSetFocus, 65, 256, 257 
WinSetHook, 287, 514, 515, 532 
WinSetParent, 56, 57 



For the advanced OS/2 developer 
who wasn't born yesterday: a total guide 

to using Presentation Manager's 
advanced features 

dares to cover the advanced subject matter that is rarely documented in 
PM programming references. Written by a pair of IBM insiders from 
Boca's OS/2 team, this gold mine of practical tips and techniques empha­
sizes powerful programming methods and stresses structured code, optimal 
resource management, and numerous other OS/2 pe1formance benefits. 
You'll gain deep insight into the design and development of the complete 
Presentation Manager environment, including the new 32-bit Warp 
window manager. Clear, concise programming samples and thorough 
descriptions with actual source code provided on Wiley's FTP site 
(ftp.wiley.com) take you step-by-step through each concept on the way 
to building your application. The authors cover a wide range of advanced 
programming topics, including: 

Programming the OS/2 J.vorkplace Shell and SOM 

Dynamic Data Exchange 

Multimedia Controls 

Printing from the Presentation Manager 

Bitmaps and Graphics 

Hooks 

And more 

In this unparalleled volume, you will find the answers to the most 
frequently asked PM questions and learn how to avoid common 
programming mistakes while you master the skills necessary to harness 
the power of the OS/2 Presentation Manager. 


	Cover
	Internal Cover
	DEDICATION
	CONTENTS
	PREFACE
	ACKNOWLEDGMENTS
	INTRODUCTION
	Chapter 1
	Chapter 2
	Chapter 3: Mastering the Keyboard Interface and Scrolling Functionality
	Chapter 4: Building A Better Mousetrap: Taming the Mouse in PM
	Chapter 5: SOS for PM Developers: Help Management through the Information Presentation Facility
	Chapter 6: Getting More Power forYour Program: Using OS/2'sMultithreadingCapabilities
	Chapter 7: She Sells Sea Shells:Programming theWorkplace Shell
	Chapter 8: Mastering Dialogs, Menus,and Other PM Resources
	Chapter 9: Communication BetweenApplications UsingPM's Dynamic DataExchange Protocol
	Chapter 10: Getting to the Headof the Class: Understanding Subclassing
	Chapter 11: Improving Your Control: Using the Advanced OS/2 Controls
	Chapter 12: Containing YourExcitement:Making Use of theContainer Control
	Chapter 13: What's New with OS/2:Getting a Look at theMultimedia Controls
	Chapter 14:PM, Your Kingdom Awaits:Creating Your Own Controls
	Chapter 15: Win, Lose, or Draw:The Art of Drawing Bitmaps
	Chapter 16: Getting It in Print:Mastering Fontsand Printing
	Chapter 17: Captain Hook Lives:Mastering PM Hooks
	Appendix A: Sample Programs onWiley's FTP Site
	INDEX
	BackCover

