
Osborne ~AcGraw+lill

OS/2™ PROGRAMMING:
AN INTRODUCTION

Herbert Schildt

Osborne McGraw-Hill
Berkeley, California

Osborne McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the U.S.A.,
please write to Osborne McGraw-Hill at the above address.

A complete list of trademarks appears on page 371.

05/2™ PROGRAMMING: AN INTRODUCTION

Copyright © 1988 by McGraw-Hill, Inc. All rights reserved . Printed in the Uni
ted States of America. Except as permitted under the Copyright Act of 1976,
no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a databa se or retrieval system, without the prior writ
ten permission of the publisher, with the exception that the program listings
may be entered, stored, and executed in a computer system, but they may not
be reproduced for publication.

1234567890 DODO 898

ISBN 0-07-881427-8

Information has been obtained by Osborne McGraw-Hill from sources believed to be reliable. However,
because of the possibility of human or mechanical errors by our sources, Osborne McGraw-Hill, or others,
Osborne McGraw-Hill does not gua rantee the accuracy, adequacy, or completeness of any information and
is not respons ible for any errors or omissions or the results obtained from use of such information.

CONTENTS

Preface xiii

Part I Introduction to 05/2 Programming 1

1 05/2: An Overview 3

The Heritage of OS/2 3
The 80286 and OS/2: A Family Affair 7
OS/2 Essentials 18
The Application Program Interface 22
Dynamic Linking 22
The Presentation Manager 23
The DOS-OS/2 Tug-of-War 23
The OS/2 Philosophy 24

2 05/2 Interfacing Fundamentals 25

The OS/2 Call-Based Interface 25
An Assembly Code Example 27
A C Program Example 30
C and the API Parameters 31
A Short Word About .DEF Files 33
Code Constraints 33
Another Simple Example 34
The API Services 37
API Service Description Conventions 41

Part II Programming 05/2 API Services 43

3 The Screen Output Services 45

Video Adapters and Modes of Operation 47·

Screen Virtualization and Logical Video Buffers 50
The Video Buffer Organization so
VIO Handles 50
The VioWrtTTy Service 51
VIO Services Versus 1/0 Redirection 52
The VIO Screen Output Services 53
Cursor Positioning 57
Screen Scrolling Functions 58
Examining and Changing the Video Mode 61
Requesting Video Adapter Characteristics 64
Reading Characters from the Screen 66
Accessing the Logical Video Buffer 69
Cursor and Fonts 71
VioPopUp and VioEndPopUp 74

4 The Keyboard Services 79
Scan and Character Codes 79
Keyboard Serialization 83
Keyboard Handles and Logical Keyboards 83
Cooked Versus Raw Keyboard Input Modes 83
KbdCharln 84
Using KbdPeek 91
Clearing the Keyboard Buffer 93
Using KbdGetStatus and KbdSetStatus 93
Reading a String Using KbdStringln 98

5 Using the Mouse 101
The Mouse 102
Mouse Basics 103
Opening the Mouse 104
Displaying the Mouse Pointer 105
Positioning the Mouse Pointer 105
Creating a Mouse Intialization Function 106
Sensing Mouse Movement and Button Presses 107
Some Custom Functions to Interrogate the Mouse 110
Changing the Scaling Factors 113
Determining the Number of Buttons 119
Flushing the Queue 120
A Simple Mouse Menu Example 120
A Variation on the Ping-Pong Video Game 124

6 File 110 129

File Handles 131
File Pointers 131
DosOpen and DosClose 131
Dos Write 135
A Simple First Example 135
Dos Read 138
Random Access 139
Appending to a File 142
Reading and Writing Other Data Types 143
Reading and Writing to a Device 144
The OS/2 Standard Devices 146
Displaying the Directory 147
Accessing Information About the Disk System 150
Examining and Changing the Directory 152

7 An Introduction to Multitasking 155
A Word of Warning 156
Processes Versus Threads 157
Multiple Processes 157
Creating New Sessions 167
Threads 170

8 Serialization and Interprocess Communication 187
The Serialization Problem 187
dS/2 Semaphores 189
Sharing a Resource: An Example 195
Using DosEnterCritSec and DosExitCritSec 199
Interprocess Communication 203
Just a Scratch on the Surface 211

9 Device Monitors 213
Device Monitor Theory of Operation 214
Opening and Registering a Device Monitor 216
Monitor Buffers 219
DosMonRead and Dos Mon Write 219
Device Monitor Packets 220
DosMonClose 222
A Word About Efficiency 222

A Pop-Up Application Skeleton 225
A Pop-Up Calculator 229
A Simple Keyboard Macro Program 234
A Key Translator Monitor 238
A Mouse Device Monitor 241

10 Creating and Using Dynamic Link Libraries 247
What Is Dynamic Linking? 247
Dynlink Advantages 248
Five Important Files 249
Creating a Simple Dynlink Library 249
The Definition File 253
Another Dynlink Example 258
Run-Time Dynamic Linking 261
Dynamic Linking Implications 268

Part III Programming Presentation Manager 271

11 Presentation Manager: An Overview 273
What Is the Presentation Manager? 273
Stormy Cs 276
General Operation of a Presentation Manager

Application 276
A Closer Look at a Window 278
Obtaining an Anchor Block Using Winlnitialize 280
Creating a Message Queue 280
Registering a Window Class 281
Creating a Standard Window 282
The Message Loop 283
Program Termination 284
The Window Function 285
Putting Together the Pieces: A Presentation

Manager Skeleton Program 286
Presentation Manager Versus Core Services 291

12 Some Presentation Manager Examples 293
Outputting Text 293
Reading Keystrokes 303
A Graphics Example 312
A Quick Introduction to Menus 316
Conclusion 322

Appendixes

A 80286's Memory Models 325
Tiny Model 325

.Small Model 326
Medium Model 326
Compact Model 326
Large Model 326
Huge Model 327
Overriding a Memory Model in C 327

B Function Prototypes 329
Classic Versus Modern Parameter Declarations 330

c A Review of Turbo C 333
The Origins of C 333
C as a Structured Language 334
A Review of C 336
Variables-Types and Declaration 336
Operators 342
Functions 351
Statement Summary 355
The C Preprocessor 366
The C Standard Library 369

Index 373

ACKNOWLEDGMENTS

Quite a few 05/2 macro names, type names, structure names, and
union names have been presented and discussed in this book. These
names originate from the 05/2 Developer's Toolkit manuals and disk
files and are used with permission of Microsoft Corporation.

Special thanks to William H. Murray III and Chris H. Pappas for
allowing me to adapt two assembly language programs in their book
Assembly Language Programming Under 0512 (Osborne/McGraw-Hill, 1989).

-H.5.

PREFACE

The purpose of this book is to give you a "jump start" into the world of
OS/2 programming. OS/2 is a big program, and the ways that you, the
programmer, can interact with it are numerous and varied. This book
will help you understand quickly the essence of OS/2.

The impact of OS/2 is not to be underestimated. 05/2 has done for
microcomputer operating systems what the original IBM PC did for
microcomputers: in one bold stroke it has defined a new, more power
ful computing environment. What makes OS/2 so exciting is that it is
the first multitasking operating system designed specifically for the
personal, single-user computer. Although microcomputers have been
able to run multitasking operating systems such as UNIX for several
years, the results have never been entirely satisfactory, partly because
the porting of a multi.:.user, multitasking operating system to a single
user, highly interactive environment generally produced the worst of
both worlds: slow response time combined with an old, TTY-based
interface. 05/2 maintains the highly interactive nature of the personal
computing environment while allowing greater through-put by means
of multitasking. In the first part of this book you will see how this
near-magical combination is achieved.

xiii

•

xiv 05/2 Programming: An Introduction

OS/2 opens the doors to a whole new world for programmers. Fully

harnessing OS/2's capabilities will allow you to create highly efficient

and powerful programs, the likes of which could never be seen in either

a DOS or UNIX-like environment. Frankly, from my point of view,

OS/2 is the platform on which the next generation of applications will

be built.
As you will see in this book, there is little in OS/2 that is difficult to

grasp or use. However, OS/2 is so large that it is sometimes hard to see

the larger view. (For example, version 1.1 of OS/2 contains several

hundred different system services!) As you begin to learn to program

for OS/2, it may seem h ard to pull all the pieces together, but as you

become more experienced, the logical design of OS/2 will become

apparent. This book can help you achieve that "view from a height."

Part One of this book gives you an overview of OS/2's design philos

ophy. Part Two covers the most important core system services pro

vided by OS/2. As you may know, OS/2 actually consists of two

"pieces": the core (sometimes called the kernel) and the Presentation

Manager. Most of this book deals with the core of OS/2 because it

forms the logical starting point. A firm knowledge of the core services

is necessary before progressing to the Presentation Manager, which is

introduced in Part Three.
I used Microsoft C 5.1 to compile and test all the C examples in this

book. (I compiled the two assembly code examples using Microsoft's

MASM 5.1.) Although Microsoft C 5.1 is certainly a fine compiler, I

used it out of necessity: it was the only compiler available for OS/2

when this book was being written. However, the code in this book con

forms to the proposed ANSI standard and should be able to be com

piled by virtually any OS/2-compatible compiler. (Keep in mind that

certain Microsoft supplied typedefs may be given different names by

other manufacturers.)
This book assumes that you have some experience as a programmer

and a basic understanding of the PC hardware environment. Most of

the examples are in C. If you are not as proficient in C as you would

like, Appendix C presents an overview of the C language, which should

be sufficient to help you understand this book. With few exceptions, C

is and will be the high-level language of choice for OS/2 development.

Preface xv

This book includes many useful and interesting example programs.
If you're like me, you probably would like to use them, but hate typing
them into the computer. When I key in routines from a book, it always
seems that I type something wrong and spend hours trying to get the
program to work. For this reason, I am offering the source code on
diskette for all the functions and programs contained in this book for
$24.95. Just fill in the order blank on the next page and mail it, along
with your payment, to the address shown. Or, if you're in a hurry, just
call (217) 586-4021 to place your order by telephone. (VISA and Master
Card accepted.)

HS
Mahomef, Illinois
June 1988

•

ORDER FORM

Please send me copy(ies), at $24.95 each, of the source code for the

programs in 05/2 Programming: An Introduction. (Foreign orders , please add $5

shipping and handling.)

Name

Address

City ---------- ---- State ____ ZIP ------

Telephone (____ _

Diskette size (check one): 5 1/4" --- 31/2" ---

Amount of payment: $ ___ _

Method of payment: check __ _ VISA _ _ _ MC _ _ _

Credit card number:

Expiration date: -------------- ----- - - ----

Signature:

Send to: Herbert Schildt
RR 1, Box 130
Mahomet, IL 61853

or phone: (217) 586-4021

Osborne/McGraw-Hill assumes NO responsibility for th is offer. This is solely an offer of Herbert Schildt,

,rnd not of Osborne/McGraw-Hill .

I
INTRODUCTION TO 05/2

PROGRAMMING

Part One presents some necessary background information on
05/2 and discusses the special 80286 features that 05/2 takes advan
tage of. You will learn about 05/2's design philosophy and be intro
duced to 05/2's call-based interface.

1

1
05/2: AN OVERVIEW

05/2 is a very large program that consists of many subsystems.
Although no single part of 05/2 is difficult to understand or use, it can
be difficult to grasp the totality of the operating system. To help ease
the problem, this chapter presents an overview of 05/2, including its
design philosophy, operation, and basis in the 80286 processor. Many
of the topics discussed in this chapter will be fully explored in subse
quent chapters .

The chapter begins with a brief description of the origins of 05/2,
followed by a discussion of the 80286 CPU, whose operation is so
important to an understanding of 05/2 programming. The chapter
concludes with a brief tour of the OS/2 programming environment.
Several new terms that have been coined or popularized as a result of
05/2 are introduced along the way. If you already have a good basic
understanding of the 80286 and OS/2's operation, you can skip to
Chapter 2.

THE HERITAGE OF 05/2

Although 05/2 was created new from the ground up, it owes much to
the operating systems that preceded it . To understand why certain
things in 05/2 are the way they are requires that you understand
OS/2's heritage. Those of you who participated in the microcomputer
revolution of the late seventies already know much of the story. If you
are new to microcomputers, however, many of the bits and pieces of
OS/2 make the most sense when you understand where they came
from.

3

4 05/2 Programming: An Introduction

Real microcomputer operating systems began with Digital Re
search's CP/M, which was designed for the Intel 8080 CPU, an 8-bit
processor. (The 8080 was the forerunner to the 8086.) In the early days
of microcomputing, each computer manufacturer supplied its own
operating system, which usually consisted of little more than a primi
tive set of disk file 1/0 functions. In addition to being very crude, these
operating systems suffered from the fact that they were different from
each other. The differences between the systems prevented software
developers from developing programs that could be mass marketed to
the full range of microcomputers. When Gary Kildall, the founder of
Digital Research, created CP/M it was with the goal of providing a
common operating system for all microcomputers. To a great extent he
succeeded in this goal. CP/M is a compact yet highly adaptive single
tasking operating system that was nothing short of perfect for the fi rst
8-bit microcomputers.

The CP/M system is so important because it made all the various
microcomputers' software compatible. Compatibility was a crucial,
necessary ingredient for the future success of the microcomputer
because it allowed software developers to invest large amounts of time
and money in creating products that ran under CP/M. Without the uni
fying force of CP/M the software market would have been fragmented,
and the cost-effective development of excellent software would have
been impossible. As you will soon see, the issue of compatibility plays
an important role in the development of OS/2.

When IBM began developing its first personal computer, the
designers chose to base its architecture on the next generation of Intel
microprocessors. These processors included the 16-bit 8086 and its
close relative, the 8088. (IBM actually used the 8088 because it pro
vided a cost-effective way to access a 16-bit processor using 8-bit inter
face chips. Hereafter in this book, a reference to the 8086 implies both
the 8086 and the 8088.) Before the PC was released, experts speculated
that it would use a new version of CP/M as its operating system. How
ever, for reasons that are still unclear, Digital Research and IBM did
not come to an agreement to use CP/M. Instead, IBM asked Microsoft,
which was already working on languages for the PC, to develop a new
operating system. The operating system was called PC DOS when first
released. Now it is generally called DOS.

Because IBM and Microsoft knew that literally thousands of pro
grams originally written for CP/M would be converted to run under
DOS, DOS was designed to be highly compatible with the original

05/2: An Overview 5

CP/M. In fact the basis for the file system and its system interface was
CP/M. Like CP/M, DOS is a single-tasking, highly adaptive operating
system that could fully control the new 16-bit microcomputers. Since
its release in 1981, DOS has become the world's most popular operat
ing system, with well over ten million users worldwide. Some analysts
suggest that DOS will still be in common use into the twenty-first
century.

As good as DOS is, it does suffer from two major shortcomings.

I. Because it was originally designed for use with the 8086, DOS
can directly access only 1 megabyte of RAM. Within this mega
byte, only 640K can effectively be used because of the way the
ROM and video RAM of the original PC were located. Although
640K of program memory space still sounds like a lot when
viewed from the perspective of many existing DOS applications, it
is far too little for the next generation of "smart" (AI-based) soft
ware or for large database or spreadsheet programs. And 640K is
not a lot of memory when it is used in a multitasking environ
ment.

2. DOS is single-tasking. Without multitasking capabilities it is
impossible to make the most efficient use of the computer. As you
will see later in this chapter, much of the CPU's time is spent
waiting for things to happen. During these "dead" moments, a
multitasking operating system can run another task. In a single
tasking system, this time is simply lost.

T he memory restriction found in DOS is based on the architecture
of the 8086 processor and is not easily removed. Although it is possible
to multitask the 8086, it is not a good idea because the 8086 provides
no way to protect one task from another. That is, if two programs are
executed simultaneously using an 8086 processor, one program could
adversely affect the execution of the second. Thus DOS continues to
limit application memory to 640K and to remain single-tasking. It was
clear that any efforts to remove these restrictions would come about
because of an advance in CPU design.

The next processor released by Intel was the 80186, which was
really just a faster 8086 and n ot important otherwise. However, in 1984
Intel released the 80286. The 80286 CPU could run all programs writ
ten for the 8086 but included several new instructions and a second

6 05/2 Programming: An Introduction

mode of operation. When the 80286 was running in this second mode,
it can address 16 megabytes of RAM and isolate concurrently executing
programs from each other. The 80286 included two modes of operation
for the sake of compatibility with software written for the 8086. How
ever, both modes of operation are more or less mutually incompatible.
These two modes are the cause of numerous problems as they relate to
the creation of OS/2.

The 80286 is the processor t hat IBM chose to use in the PC AT.
However, because no software existed to make use of the 80286's
second mode of operation, it was run by DOS as simply a faster 8086,
with all of its limitations.

The newest Intel processor in common use is the 80386, which is an
improved version of the 80286. The 80386 includes three basic modes
of operation: 8086 emulation, 80286 emulation, and its own 80386
operation . Actually, because of the way the 80386 is designed it does
not truly have an 80286 emulation mode. More accurately, the 80386
automatically acts like an 80286 when presented with 80286 instruc
tions. At the time of this writing, OS/2 runs the 80386 as if it were an
80286. However, an 80386 version of OS/2 is expected soon.

In 1987 IBM released its PS/2 line of personal computers. Although
the low end of these systems is based on the older 8086 processor, the
models SO and 60 use Intel 80286, and the model 80 uses the 80386
processor. To take full advantage of these machines, a new operating
system was required. Three of the most important goals in designing
the new system were to eliminate the 640K memory barrier, to support
multitasking, and, for better or worse, to provide an upward compati
bility path from DOS. Toward these ends Microsoft and IBM launched
a joint development project headed by Gordon Letwin on the Microsoft
side and Ed Iacobucci on the IBM side. The result of their efforts is, of
course, OS/2.

Simply st ated, OS/2 is very likely the largest, most complex piece of
software ever written for a m icrocomput er. It is also one of the most
fascinating. To get an idea of its complexity, consider this: It took
Microsoft about four months to d evelop DOS version 1.0; OS/2 has
already taken three and a half years! The specifications for DOS 1.0
were about 100 pages long; it takes over 1500 pages to describe OS/2!

From this historical perspective, let's see what OS/2 is all about.

OS/2: An Overview 7

THE 80286 AND 05/2:
A FAMILY AFFAIR

First and foremost, 05/2 is an 80286-based operating system. (Al
though 05/2 can also use the 80386, it does so as if the 80386 were an
80286.) In many ways 05/2 is the actualization of the imaginary operat
ing system for which the designers created the 80286. The Intel
designers created the 80286 for a multitasking environment. The fact
that it could emulate its forerunner, the 8086, was a necessary but
uninteresting dead end. What the designers created was a processor
that could provide a solid base for the next generation of microcomput
er operating systems. Toward this goal they implemented several
important features that essentially defined what that operating system
would be like. In fact, many of 05/2's features are closely linked with
related features of the 80286. Hence the programmer's understanding
of 05/2 really begins with an understanding of the 80286 processor.

Because of its heritage and attempts to maintain software compati
bility with its ancestors, the 80286 is a somewhat "quirky" chip. This
section will discuss some aspects of the 80286 that relate specifically t o
05/2 programming.

Note: Nothing in the sections that follow assumes that you h ave signif
icant familiarity with 80286 assembly language programming. How
ever, implicit in 05/2 programming are the concepts of subroutines
(both calling and returning from them), the stack, and stack operations.
You should have at least a general understanding of how a computer
goes about its business.

The Architecture of the 80286

The 80286 contains 14 registers into which information is placed for
processing or program control. The registers fall into the following
categories:

• General-purpose registers

• Base pointer and index registers

8 05/2 Programming: An Introduction

• Segment registers

• Special-purpose registers

All the registers in the 80286 CPU are 16 bits (2 bytes) wide.
T he general-purpose registers are the "workhorse" register s of the CPU.

It is into t hese registers that values are placed for processing, including
arithmetic operations such as adding or multiplying; comparisons su ch
as equality, less than, and greater than; and branch (jump) instructions.
Each of the general-purpose registers can be accessed either as a 16-bit
register or as two 8-bit registers.

The base pointer and index registers provide support for such things as
relative addressing, the stack pointer, and block move instructions.

The segment registers support the 80286's segmented memory scheme.
(The segmented architecture of the 80286 is discussed later in this
chapter.) The CS register holds the current code segm ent, the DS
holds the current data segmen t, the ES holds the extra segment, and
the SS holds the stack segment.

Finally, the special-purpose registers include the flag r egister, w h ich
holds the statu s of the CPU, and the instruction pointer, which points
to the next instruction for the CPU to execute.

Figure 1-1 sh ows the layout of the 80286 registers.

The Segmented Memory Model

The entire Intel CPU line is based on the original 8086, which views
the memory of the system as if it were organized into 64K chunks
called segments. Although we will examine more fully how the 80286
calculates the actual linear address of a specific byte in RAM, loosely
speaking, what happens is that the content s of a segment register are
com bined with the contents of another register (or imm ediate value).
T his second value is called the offset, and the entire scheme is often
called the segment:offset form of memory addressing.

Like most things, the segment:offset memory model has its good
and bad points. In the plus column, the segmented scheme m akes it
easy to write relocatable code and makes it easier to develop virtual
memory techniques. (OS/2 puts these features to good u se, and you
w ill read more about them later.) If used correctly, segmentation can
also make some types of programs execute very quickly because the

05/2: An Overview 9

General Purpose

AH AL CH CL

AX I ex I
BH BL DH DL

BX I DX

Base Pointer and Index

SP I SI I

BP I DI I

Segment

cs! SS I

Dsl ES

Special Purpose

Flag I IP I

Figure 1-1. The 80286 CPU registers

segment registers can be loaded once and thereafter only the offset
values need to be used to access memory, saving the time it takes to
load a segment register repeatedly. In the minus column, the seg
mented approach tends to complicate what is essentially a nearly intui
tive concept: memory. Most programmers, even long-time 80286 pro
grammers, think of memory as strictly linear. This is the most natural
view. However, the segmentation model requires that you think of
memory abstractly, as disjointed pieces, a somewhat unnatural process.

10 OS/2 Programming: An In troduction

On a more practical side, the segment:offset approach makes it sig
nificantly more difficult to create and access objects that require more
space than is available in a single segment. The debate over the seg
mentation memory model has raged for years and will probably con
tinue to do so. However, since this is the processor you have to work
with, there is little use in worrying about its approach to memory. (In
fact, because of the work that OS/2 does for you, you w ill not need t?
worry too much about where your programs execute in memory or
how that memory is organized.)

One further complication concerns the segmented architectu re of
the 80286: The interpretation of the values contained in th e segment
registers varies between two 80286 m:odes of operation. These modes
and the differences between them are the subjects of the next section.

The Two 80286 Modes of Operation

As you may already know, to maintain software compatibility with its
ancestors, the 80286 has to be able to execute 8086 programs. To pro
vide for this the 80286 CPU can operate in two distinctly different
ways. In fact, the modes of operation are so different in some respects
that it may be easier t o think of the 80286 as t wo CPUs in one package.
It is important to understand th e differences between these modes of
operation to grasp some of the subtleties of OS/2 .

T he two 80286 modes of operation are called real and protected. When
the 80286 begins execution, it uses real mode by default. Real mode is
es sentially the 80286's 8086 emulation mode. When the 80286 is run
ning in r eal mode, its address space is the same a s the 8086's and is
limited to 1 megabyte. Since the 8086 was not designed with multitask
ing in mind, any piece of code can issue any instruction and access any
part of memory. Put in somewhat simple terms, in real mode what your
program sees is w hat it gets. The name real mode is der ived from the fact
that a program is actually using real memory addresses w hen it
accesses memory. T hat is, the values of the segment and offset regis
ters actually contain the physical address that will be the tar get of a
load, store, call, or jump operation. T his is the mode for which D OS
was designed.

When the 80286 is running in protected mode several n ew inst ructions
becom e available, and the way the system memory and resources are
accessed changes. Perh aps the most significant difference is how physi
cai memory addresses are calculated. Because of the way addresses are

OS/2: An Overview 11

calculated in protected mode, the 80286 can directly access up to 16
megabytes of system RAM and up to 1 gigabyte of virtual address
space. In protected mode, programs are assigned a privilege level. Only
the most privileged programs have access to certain instructions, such
as interrupt and 110 instructions. In protected mode it is also possible
for the CPU to prevent one program from accidentally interfering with
another that is concurrently executing. (This feature gave protected
mode its name.) Finally, protected-mode operation allows the 80286 to
u-se some special instructions that make multitasking easier to implement.

As far as the programmer is concerned the most important differ
ence between real and protected modes is the way memory addresses
are calculated. The next two sections explain both ways.

Address Calculation in Real Mode To access a megabyte of RAM
requires at least a 20-bit address. However, in the 80286 no register is
larger than 16 bits . This means that the 20-bit address must be divided
between two registers. Unfortunately, the way the 20 bits are divided is
a little more complex than one might assume.

In real mode, all addresses consist of a segment and an offset. A
segment is a 64K region of RAM that must start on an even multiple
of 16. In 80286 jargon, 16 bytes is called a paragraph: you will sometimes
see the term paragraph boundary used to reference these even multiples of
16 bytes. The 8086 has four segments: one for code, one for data, one
for stack, and one extra. The location of any byte within a segment is
called the offset. The actual 20-bit address of any specific byte within
the computer is the combination of the segment and the offset.

To calculate the actual byte referred to by the combination of the
segment and offset, first shift the value in the segment register to the
left four bit positions and add this value to the offset. This makes a
20-bit address. For example, if the segment register holds the value
FFH and the offset holds AH, the following sequence shows how the
actual address is derived. The absolute 20-bit address is 300H.

segment register: 0000 0000 1111 1111

segment shifted: 0000 0000 1111 1111

offset: 0000 0000 0000 1010

segment +offset: 0000 0000 1111 1111 1010

r

12 OS/2 Programming: An Introduction

The resulting 20-bit address is FFAH. However, you will almost never
see a real-mode address referred to in this form. Instead, the segment:
offset form is used. In this case the address would be written
OOFF:OOOA. Many segment:offset addresses can describe the same byte
because the segments may overlap each other. For example, 0000:0010
is the same as 0001:0000.

Address Calculation in Protected Mode When the 80286 is running in
protected mode, memory addresses are computed in a fundamentally
different way from that used by real mode . Although memory is still
accessed via the segment:offset combination, the meaning of the 80286
segment registers has been altered. In protected mode the segment
registers hold an index into a table, which holds the physical address of
an object in memory. In 80286 jargon, this table is called a segment de
scriptor table or descriptor table for short. To repeat, in protected mode the
value of a segment register no longer refers to a physical memory
address. Rather, its value is used as an index into a descriptor table. For
this reason, when the 80286 is running in protected mode, the segment
registers are sometimes called selectors.

Each entry in a descriptor table contains at least three items of
information. The first is a 24-bit value that is the base address of the
segment in question. T his value points to the start of a segment in
much the same way that the value of a segment register does when the
CPU is executing in real mode. However, since 24 bits are provided, it is
possible to access up to 16 megabytes of memory directly, which sur
passes the single megabyte limit found in real mode.

The second item of interest stored in the table entry is the size of
the segment. This is a 16-bit value, which means that segments can be
up to 64K in length. In protected mode the size of a segment may vary;
in real mode it is fixed at 64K. The length information is used to pre
vent one program from accessing memory that it shouldn't. If an
attempt is made to access memory outside a program's allocated
memory, the 80286 generates a general protection fault that returns
control to 05/2.

Finally, the table includes an 8-bit access rights entry. These rights
include read/write access, execute only access, present or absent indica
tion, and a privilege level. It is possible to mark a memory segment for
read only access if it is a data segment or for execute only access if it is
a code segment. The 80286 allows programs to be given different privi-

OS/2: An Overview 13

lege levels, going from most trusted (level 0) to least trusted (level 3).
OS/2 uses all the information stored in the access rights field to sup
port multitasking and virtual memory.

When the 80286 calculates an address in protected mode, it uses the
value of a segment register as an index into a descriptor table. It then
adds the base segment address to the offset to provide the final physi
cal address. This process is depicted in Figure 1 -2. As the address is
being calculated, the access information is being checked. If your pro
gram attempts to reference memory t hat it shouldn't, a general protec
tion fault will be generated.

Remember that the resolution of a memory address is done for you
by the CPU and requires nothing on your part.

The 80286 maintains three types of descriptor tables: the global de
scriptor table (GDTJ, the local descriptor table (LDTJ, and the interrupt descriptor
table (IDT). In general, the GOT holds address information that is avail
able to all tasks in the system; the LDT holds address information that

Segment Register

I selector

e of the Yalu
segm
is u
into
tab I

ent register
sed to index
descriptor

e

I

--

Descriptor offset

Table

segme·

actual segment .. + - offset

'

actual physical address

Figure 1-2. Address calculation in protected mode

14 OS/2 Programming: An Introduction

is local to each t ask; and the IDT holds address information related to
the interrupt service routines. As stated, OS/2 maintains these tables
automatically. As a rule you don't need to worry about them while
programming, but knowing their functions is important for a clear
understanding of how OS/2 handles multiple tasks.

The Advantages of Protected-Mode
Addressing

Aside from the fact that a larger amount of memory can be accessed in
protected-mode operation, the use of descriptor tables and the change
in the meaning of the segment registers have several positive effects
that OS/2 capitalizes on to provide a stable and efficient multitasking
environment.

• Because the segment register holds an index rather than an address,
the operating system can move segments about in memory at will by
changing the base segment address in the descriptor table entry.
This is accomplished completely invisibly to the application program
because the program does not "know" what part of memory it is
using. Thus, even while the program is executing, it can be moved
about in memory. This feature is important because it allows tasks
to be swapped in and out of memory. T hus it is possible for OS/2 to
overcommit memory by moving tasks in and out of RAM and storing
them temporarily on disk. This means that you can run programs
that require more RAM than the system has or to run more pro
grams simultaneously than would normally fit in the system RAM.

• T h e fact that the size of a segment is stored in the descriptor t able
prevents programs from interfering with each •other. Although it is
certainly possible to multi task in real mode, it is very dangerous to do
so because programs can access any location in memory. To be stable,
a multitasking environment must h ave a means of preventing one
program from destroying another program's code or data. The seg
ment size entry helps accomplish this.

• T he fact that various access rights, including privilege levels, are n ow
linked with a memory location allows OS/2 to control access both to
itself and to other system resources. Essentially, for code to access
memory it must have equal or higher access privileges. The effect of
privilege levels will be discussed further a little later in this chapter.

OS/2: An Overview 15

Call Gates

In the foregoing discussion of memory access under protected-mode
operation it may have occurred to you that a CALL is also affected by
the change in the way the segment register is used. There are two basic
types of CALL instructions: NEAR and FAR. A NEAR CALL is one
that calls code in the same segment as the caller. A FAR CALL calls
code that lies in a different segment from the caller. Whenever FAR
calls are made, there must be some way to determine the actual
address of the routine. This is accomplished by using a call gate, which is
a special type of entry in either the global or local descriptor tables .

A call gate entry contains, among other things, the segment selec
tor and offset of the called routine. This means that no offset informa
tion need be known by the calling routine . The only information the
calling routine needs to know to execute a FAR CALL is the index of
the call gate in the descriptor table. As you can probably imagine, this
makes it easy t o relocate code inside the memory of the computer, even
while a program is executing. 05/2 simply needs to move a routine and
update its address in the table . Since the index in the table remains the
same, your program never knows that the target routine has been
moved. As is the case with other memory accesses, the calculation of
the actual physical address is performed by the CPU and is invisible to
the programmer.

As was explained in the previous section, accesses to memory are
controlled by privilege level. In a similar fashion, calls to a subroutine
are executed only if the called routine is at the same or a lower privi
lege level than the caller. This feature is included in the 80286's pro
tected-mode operation to prevent one program from interfering with
another. However, a problem arises when a less-privileged routine
needs to call a more-privileged one for legitimate purposes . The 80286
implements a solution to this problem by using call gates. A call gate
can be used to allow a less-privileged routine access to more-privileged
ones. As you will see, this is a very important feature as far as 05/2 is
concerned.

One field in the call gate's descriptor table entry is its privilege level.
A call gate may be called only by a program that is at least as privileg ed
as the gate. However, the gate can "pass along" a call to a more
privileged routine. (Exactly how this is accomplished by the 80286 is a
bit complicated and not important to programming for 05/2. The
interested reader should refer to the various 80286-related publications

16 OS/2 Programming: An Introduction

CALL XXX:FAR

Segment Register

I selector I

Figure 1-3. Using a call gate

Descriptor
Table

XXX segment ,_____

+
offset

physical address of
routine XXX

by the Intel Corporation.) Essentially, the use of a call gate allows a
more-privileged piece of code to be accessed in a carefully restricted
way by a less-privileged program.

The function of a call gate is illustrated in Figure 1 - 3 .

1/0 Privileges

Another feature of the 80286 is its 1/0 protection. Because the
protected-mode operation of the 80286 was designed for a multitasking
en vironment, it h ad to have some way of controlling access to certain
instructions, including input and output instructions. (With out this
control, several different applications could-and probably wou ld
write to the same devices at the same time, resulting in ch aos .) C~trol

is achieved via a program's I!O privilege level (IOPL for short). Although

If

05/2: An Overview 17

the details are not important for the purposes of this book, the basic

IOPL concept works as follows. The only routines that have access to

IN and OUT instructions-and to the various interrupt instructions

are the routines that have been granted I/0 access. (OS/2 has a facility

that allows your programs to perform I/0 operations directly, instead

of using an OS/2 system call, in the few cases where it is really

necessary.)

05/2 and the Two 80286
Operational Modes

The 80286 mode of operation designed for a multitasking environment

is the protected mode. Hence OS/2 uses this mode and requires all

programs that execute under its control to do likewise. There is, how

ever, one annoying exception: the DOS emulator.

Although OS/2 is a protected-mode operating system, the 05/2

designers needed to provide what is sometimes called a compatibility path

from the older DOS to OS/2. Toward this end they needed to create a

DOS emulator to run more or less under the control of 05/2. How

ever, DOS is a real-mode operating system. Real mode and protected

mode are mutually exclusive; they can't both be active at the same

time. Here is the solution the OS/2 developers chose: When running a

DOS program, use real mode; when running an OS/2 program, use

protected mode. Although this solution sounds benign on the surface,

it was devilishly difficult to implement, as you will see.

The first problem: Not only are real and protected modes incompat

ible, but also no instruction exists to switch from protected to real

mode! When the 80286 is first turned on, it is in real mode. This

approach is used to maintain compatibility with the 8086. There is a

way to switch the 80286 into protected mode, but when it was

designed no one thought that, once in protected mode, there would

ever be a reason to switch back to real mode. As it turns out, the only

way to switch from protected mode to real mode is by executing what

amounts to a full system reset!
The second problem: A real-mode program can take full control of

t he system, bypassing any operating system that is present in the sys

tem. As you will soon see, 05/2 must control all system devices if it is

to keep multiple tasks from trying to use the same device at the same

t ime. This control is achieved largely through the use of the protected

mode's privilege and I/O protection levels, which do not exist in real

18 05/2 Programming: An Introduction

mode. Although 05/2 can prevent some types of device request colli
sions, it cannot stop them all. As part of its solution to this problem,
05/2 fundamentally treats real-mode programs differently from
protected-mode ones. In fact, the DOS emulator and the programs that
execute under the emulator are given the lower 640K of RAM in the
system. 05/2 and its applications use RAM from 1 megabyte up. In
this way, no real-mode application can access any protected-mode appli
cation's code or data because the largest address reachable by a real
mode application is 1 megabyte. (It is possible to configure 05/2 so
that no real-mode applications are allowed. In this case the first mega
byte of RAM is also usable by 05/2.)

OS/2 ESSENTIALS

From a programming perspective, the most important attribute of
05/2 is its multitasking capabilities. Virtually all differences between
DOS and 05/2, for example, are due either directly or indirectly to
OS/2's support of multitasking.

Threads, Processes, and Tasks

The OS/2 design team did multitasking right! OS/2's tasking model is
based on the simultaneous execution of pieces of code rather than on
the simultaneous execution of programs. In 05/2 terminology, the
smallest unit of execution is called a th read. All programs consist of at
least one thread and may con tain several. Hence, it is possib'fe for a
single program to have two or more parts of itself executing at the
same time. This means that not only can 05/2 execute two or more
programs at the same time, but that it can also execute two or more
parts of a single program concurrently.

In OS/2 terminology a process and a task are the same and they are
very loosely synonymous to the term program. A process owns various
resources, including such things as memory, files, and threads.

The OS/2 Multitasking Model

As 05/2 is currently implemented, if is designed to share a single
80286 among several threads. It does this by granting each thread a
short amount of CPU time, called a time slice. Although technically
speaking only one thread actually executes at a time, the time slicing is

OS/2: An Overview 19

so rapid that the threads in the system appear to be running at the

same time.
05/2 controls multitasking by using a preemptive, priority-based

scheduler. 05/2 associates a priority with each thread. Higher priority

threads are granted access to the CPU before lower priority ones.

There are three main priority categories. In order of highest to lowest,

they are

•Time-critical

•Regular

•Idle

Time-critical tasks are tasks that must respond immediately to

some event, such as communication programs. There are 32 priority

levels within the time-critical category.

There are really two kinds of regular tasks. When a program is on

the screen, 05/2 gives its threads a foreground priority, which is the

highest priority a regular task can have. This is done to ensure that

interactive sessions ~!ways take place without jerky or sluggish

responses. Other regular threads in the system are given background

priority when they are not displayed on the screen. Within this level

there are 32 priority levels. 05/2 dynamically changes the priority of

nonforeground threads at this level to use the CPU most efficiently.

The lowest priority tasks are given idle priority. This level executes

only when there are no higher priority tasks capable of executing.

There are 32 priority levels within this group.

05/2 always runs the highest priority thread capable of executing.

When two or more threads shar e the same priority level, they are

granted CPU time slices in a round-robin fashion. You may think that a

high-priority thread will dominate the CPU, but this is not the case

because most programs, even time-critical ones, spend much of their

time waiting for an event to occur. When a thread is waiting, 05/2

stops executing it and runs another. 05/2 also has certain parameters

that determine the longest amount of time a process can be suspended.

A thread inside a process is in one of three mutually exclusive

states: blocked, ready-to-run, or running. Any time a thread is waiting

for something, its execution is said to be blocked. For example, a thread

that is part of an interactive program may be waiting for keyboard

input. Until that input is achieved, the thread can execute no further,

20 05/2 Programming: An Introduction

and the execution of that thread is blocked. Blocked threads are not
given CPU time until the event they are waiting for occurs. Once this
happens, the thread is in a ready-to-run state, but it is still not execut
ing. It resumes execution only when 05/2's scheduler grants it a slice
of CPU time. If the unblocked thread is of higher priority than the
thread currently being executed, the currently executing thread is
preempted and the unblocked thread is allowed to run. Otherwise, it
must wait until all higher priority tasks are blocked.

The single most advantageous attribute of a thread-based multitask
ing system is that it allows greater throughput because independent
pieces of your program can execute concurrently. For example, a word
processing program could simultaneously format text for output and
take input from the user. Later in this book, substantial space will be
given to multithread programs.

Interprocess Communication

05/2 supports several forms of interprocess communication (IPC). These
include pipes, queues, semaphores, signals, and shared memory. Many
devices are sequential in nature; that is, they cannot be used by two or
more threads at the same time. Whenever two or more threads need to
use one of these devices, they must coordinate their activity. The part
of a program that accesses such a device is called a critical section. Before
entering a critical section a thread must make sure that the device
accessed by that section is not already being used by another thread.
This is accomplished by using IPC, and the process is called synchroniza
tion. You will see several examples of this.

OS/2's Protection Strategy

As mentioned earlier during the discussion of the 80286, a successful
multitasking operating s.ystem must prevent programs running under it
from adversely affecting each other or the operating system itself. In
essence, the operating system must protect programs and itself from
harm. 05/2 achieves this protection by using the 80286's privilege level
mechanism and protected-mode addressing scheme.

The 80286 supports four privilege levels: level 0 is the most trusted
and level 3 is the least trusted. In 05/2, the core routines, usually called

05/2: An Overview 21

the kernel, are at level 0. Level 1 is unused at this time. Level 2 contains

the system services, and application programs run at level 3. The only

way to access routines at a more trusted level is through a call gate.

This is the method used by OS/2 to give your programs access to the

various OS/2 ser vices. OS/2 uses this scheme to prevent a program

from accessing any part of OS/2 in an uncontrolled manner.

If a program attempts to access memory outside its currently

defined segments, a general protection fault is generated. OS/2 inter

cepts this fault and terminates the process that caused it. In this way

one program cannot destroy another's code or data areas. (Keep in

mind that it is possible for two or more programs to share memory

when that is desirable.)
Because OS/2 controls the descriptor tables, it can mark certain

segments as read only, which means that programs can read the data in

that segment but not change it. OS/2 can also mark a segment as exe

cute only, which allows system routines to be used but not modified.

Finally, OS/2 has control of all 1/0 devices. This means that, in

general, an application program cannot execute an IN or OUT instruc

tion or turn interrupts on or off. (In a multitasking operating system

a ll I/O is interrupt driven; hence a program cannot be allowed to alter

the state of the interrupts.) By denying the use of I/O instructions,

OS/2 prevents two or more programs from accessing the same device

at the same time. (OS/2 can grant a program the ability to perform 1/0
in some special situations.)

Virtual Memory

OS/2 takes advantage of the 80286's virtual memory capabilities. OS/2

can overcommit the memory of the system by swapping unused seg

ments to disk until they are needed. Although excessive swapping can

bring a multitasking system to a crawl, a small amount of swapping is

hardly noticeable because most programs contain code that is seldom

executed. When a request for memory is made and none is available,

OS /2 e xamines each segment and swaps to disk the one least recently

used. Should this memory be needed, a memory fault is generated and

OS/2 swaps the segment back in, perhaps removing a different seg

ment in the process. What is particularly nice about OS/2's virtual

memory capabilities is that they are performed automatically and do

not require any additional effort on your part.

22 OS/2 Programming: An Introduction

THE APPLICATION PROGRAM
INTERFACE

A program accesses OS/2's system services via the Application Pro
gram Interface (API). Unlike its forerunner, DOS, OS/2 does not use a
software interrupt scheme to use a system service. Instead the API is a
call-based interface. In this approach, each OS/2 service is associated with
the name that is used to call it. To use this method any necessary
parameters are pushed onto the stack and the appropriate OS/2 func
tion is called. For example, the OS/2 function DosSleep is used to sus
pend the execution of the thread that calls it for a specified number of
milliseconds. Shown in pseudoassembly, this is how DosSleep is called
so that the calling thread suspends for 100 milliseconds:

PUSH 100
CALL DosSleep

Most OS/2 functions return 0 in the AX register if successful.
If you are programming in a high-level language like C, the compiler

puts the parameters to a call on the stack for you. However, if you are
programming in assembler, your programs must do this explicitly.

It is possible to create programs that will execute in both DOS and
OS/2 environments. However, these programs must use only those
system calls that are part of the Family Application Program Interface
(FAPI). This is a very restricted set of functions that are common to
both DOS and OS/2.

DYNAMIC LINKING

T he API is implemented in OS/2 by using a procedure called dynamic
linking. Here is how it works. All the functions in the API are stored in a
relocatable format called a dynamic link library (DLL). When your pro
gram calls an API function, the linker does not add the code for that
function to the executable version of your program. Instead, it adds
loading instructions for that function, such as what DLL it resides in.
When your program is execut ed, the necessary API routines are also
loaded by the OS/2 loader. {It is also possible to load routines after the
program has started execution.) A dynamic link routine is called a dyn
link.

F

05/2: An Overview 23

Dynlinks have some very important benefits. First, since virtually
all programs designed for use with OS/2 will use OS/2 functions, the
use of dynlinks prevents disk space from being wasted by the signif
icant amount of duplicated object code that would be created if the
OS/2 function code were actually added to each program's executable
file. Second, updates and enhancements to OS/2 can be accomplished
by changing the dynlink libraries. Thus existing programs automati
cally make use of the improved or expanded functions . Finally, it is
possible for you to create your own dynlink libraries and let your pro
grams receive the preceding advantages.

THE PRESENTATION MANAGER

Although not included in OS/2 version 1.0, the Presentation Manager
is a standard part of OS/2 beginning with version 1.1, and all users
with 1.0 received upgrades that included the Presentation Manager.
The Presentation Manager is a top-level graphical interface that resem
bles Microsoft Windows version 2.0 . It supports such things as multiple
overlapping windows, various character fonts, menu selections, and the
mouse. The Presentation Manager will be introduced later in this book,
after you have mastered the basics of OS/2 programming.

THE DOS-05/2 TUG-OF-WAR

As you have probably gathered from reading this chapter, DOS-and
the DOS emulator - are at odds with OS/2. The resolution of their
incompatibility was not 100 percent achieved. Consider this: High
performance DOS programs gain that performance by bypassing DOS.
This clearly violates the basic philosophy behind OS/2, in which the
operating system musf be in control. Therefore, some DOS programs
simply will not run under the OS/2 DOS emulator.

Because of the fact that DOS programs typically perform direct
device 1/0, OS/2 allows DOS programs to run only when they are on
the screen (foreground mode). This means that when you are running
a DOS program and an OS/2 application and you have the OS/2 applica
tion on the screen, the execution of the DOS program is suspended.
OS/2 allows only one DOS emulator to be active in the system, and it
can run only one DOS program at a time.

-
24 OS/2 Programming: An Introduction

As was mentioned in the API discussion, a subset of the API, called
the FAPI (Family Application Program Interface) can be used to cr eate
progra ms that execute under both DOS a nd OS/2. Although this is
convenient for a small group of applications, it will probably not be
very important in general because the FAPI supports such a restrict ed
set of OS/2 functions. More likely, separate DOS and 05/2 ver sions of
progra ms will continue t o exist.

As you have seen, it is possible to insulate DOS applications from
OS/2 applications to a great extent, but not 100 percent. For this rea
son it is possible for a DOS application to crash the computer it is
running on. (OS/2 is supposed to be crash proof because of the pro
tected memory scheme, although any bugs in OS/2 could, of course,
cause a system crash.) Because of these types of basic incompatibilities,
the use of the DOS emulator will decline rapidly once new OS/2-
specific versions of programs begin appearing.

As the title implies, this book is about 05/2 programming. T he
main emphasis will be on the 05/2 protected-mode environment, the
API, and the Presentation Manager.

THE 05/2 PHILOSOPHY

Embodied in the functional aspects of 05/2 is the 05/2 philosophy:
05/2 should provide a st able multita sking environment that is both
flexible and ex tensible. As you have seen, the 80286 supplies the raw
material t o support a stable multi tasking e nvironment in which one
program cannot destroy another. Its protected-mode addressing scheme
allows 05/2 to support dyn amic linking, which allows easy modification
of most of 05/2's code. It also allows new OS/2 system services to be
added by either Microsoft, IBM, or a third party.

From the programmer's point of view OS/2 is a giant toolkit. In the
rest of thi s book you w ill learn h ow to access those tools to create
05/2 programs.

F

2
05/2 INTERFACING

FUNDAMENTALS

~\}Sil~~

.<1' ~ <P~
This chapte' will examine in significa~~<i!~. ~ail seven! key
points relating to the use of 05/2's Applica · · am Interface (API)
services. The API services are your program's gateway to 05/2. Before
you can begin to write programs that run under 05/2, you need to
understand exactly how to work with the APL

This chapter begins with a discussion of the 05/2 call-based inter
face. You will see how to compile (or assemble) and link 05/2-
compatible programs. Along the way two sample programs illustrate
several important 05/2 interfacing concepts. Finally, you will be intro
duced to the API dynlink library routines by category.

Although the rest of the examples in this book are in C, the exam
ples in this chapter are shown in both C and assembly code. The rea
son for the assembly code examples is that they illustrate the process of
interfacing to 0512 on the actual machine instruction level. Even if you
will never program for 05/2 using assembler, it is still valuable to
understand exactly what the interfacing process is.

THE 05/2 CALL-BASED
INTERFACE

Your program interacts with 05/2 by using the API dynlink functions.
Chapter 1 mentioned that 05/2's API functions are accessed via a
CALL instruction , and a very general explanation of the procedure was
given. Here, you will learn in detail h ow to call the API routines .

25

26 OS/2 Programming: An Introduction

The Call Format

Routines in the API (or any dynlink library, for that matter) must be
reached by issuing a FAR call instruction. Remember that a FAR call
instruction is used when the called routine is in a different segment
from the calling routine. (The opposite of a FAR call is a NEAR call,
which is used for intrasegment CALL instructions.) Before issuing the
CALL instruction, however, your program must push onto the stack, in
the proper order, the parameters used by the AP! service you will be
calling. The 0512 AP! interface supports four different types of
parameters:

1. byte

2. word

3. double word

4 . pointer (address)

Before discussing the se further, let's take a short detour and review the
difference between call-by-reference and call-by-value parameter-pass
ing conventions.

Call-by-Value There are essentially two ways in which a subroutine
can be passed its parameters. The first is call-by-value. Using this method
the subroutine is passed copies of the actual information (values) it
needs. Any modifications the subroutine makes to a parameter's value
do not affect the calling routine's copy of the parameter; the subroutine
is always operating on a copy of the original value .

Call-by-Reference Parameters can also be passed to a subroutine
through call-by-reference. In this approach the calling routine passes to
the subroutine the address of (in C terms, a pointer to) each parameter.
Whe n this method is used, the subroutine indirectly accesses and
manipulates the origin al data found in the calling routine . Hence
changes to the parameter affect the caller's copy because the subrou
tine is actually operating on the caller's data.

The OS/2 API services require the use of both call-by-value and
call-by-reference. All byte values have only their addresses passed to
the APL A word or double word can be passed either by value or by
reference. If the API service does not need to return information to the

OS/2 Interfacing Fundamentals 27

caller via a word or double word value, call-by-value is used; otherwise,
the parameters are passed by reference. Any complex or variable
length data structures must be passed by reference. Several of the API
services operate on conglomerate data types that are the equivalent of a
C structure. OS/2 does not pass these on the stack; it passes only a
pointer.

Some API services use what is called an ASCIIZ string; which is
simply a null-terminated (ASCII 0) string. When a string of this sort is
required, only its address is passed, not the entire string.

Error Return

As stated in the preceding section, the OS/2 API functions re t urn
information to the calling routine through call-by-reference parame
ters. However, most of the API services return a success/error code in
the AX register. When an API service is called from a C program, the
value returned in the AX register automatically becomes the return
value of the API routine. In general all the functions return zero when
successful. A nonzero return implies an error.

AN ASSEMBLY CODE EXAMPLE

This short assembly language program illustrates how the two API
services, DosBeep and DosExit, are called. The DosBeep service beeps
the speaker at a given frequency for a given duration. Both parameters
are word values; the frequency is pushed first, followed by the dura
tion. DosExit is the standard OS/2 program termination function.
Generally speaking, all OS/2 programs must end by calling DosExit. Its
two-word parameters represent an action code a nd a result code. The
action code is pushed first. If the action code is 0, only the current
thread is terminated. If it is 1, the entire process is terminated . The
value of the result code is returned to OS/2.

The program shown here uses DosBeep to produce a "whooping"
sound by varying the frequency used to call DosBeep from low to high .
T he process repeats five times.

A First OS/2 protected mode p r ogram ,

This program c auses a "who o p ing" type sound using
the sp eaker.

PAGE ,132 set page dimensions

28 OS/2 Programming: An Introduc tion

Set up 16-bit segments
DOSSEG Microsoft segment co nventions

for OS/2 protected mode
programs

.MOD EL SMALL set model size for program

.286 use 80286 inst ructions

.STACK 300 H set up 768 byte stack

.DATA
DUR DW 1
FREQ DW 0
TIMES DW 5

• CODE
START: ; beg inning of code

EXT RN DOSBEEP :FA R, DOS EX IT : FAR
SPROC PRO C FAR declare the main proced ur e

MORE: MOV FREQ,100 starting fr equency
AGAIN: ADD FREQ,50 frequency increment

PUSH FREQ DOSBEEP function parameters
PUSH DUR
CALL DOSBEEP ca LL it

CMP FREQ,2500 upper frequency yet?
J LE AGAIN if not, do it again
DEC TIMES dec rease count on repeats
JGE MOR E if not zero, make sound again

PUSH 0 setup for exit
PUSH 0
CALL DOSEXIT ca L L AP ! exit function

S PRO C ENDP end

END START

To assemble this file you will need an OS/2-based assembler and
linker. One that will work is the Microsoft Macro Assembler version
5.1 (or later). Beginning with version 5.1, Microsoft has included OS/2
support and compatibility in its standard assembler package. If you use
this package, the following commands will assemble and link the pro
gram. (Assume the program is called WHOOP.ASM.)

MASM WHOOP;
LINK WHOOP,,,DOSCAL LS .LIB;

The file DOSCALLS.LIB is the library that contains references to the
dynlink code for the API functions used in the program. (More about
DOSCALLS.LIB in a moment.) No matter whose assembler and linker
you are using, several assembler and linker options m ay be applicable to

F

OS/2 Interfacing Fu ndamentals 29

some of the programs you write, so you must study your user manuals
carefully.

Let's look closely at this program. Firs t, the DOSSEG command is
used to set up the program 's segments in a manner consistent with
OS/2's needs. The .MODEL directive tells the assembler the memory
model you are using to compile your program. In this case the small
model is used. The .286 directive le ts the assembler know that 80286
instructions should be accepted. Notice that both DosBeep and DosExit
are declared as FAR external procedures. Since both reside in a dynlink
library and not in the program 's source file, the assembler must be told
to generate an external reference for them. Keep in mind that the
EXTRN s tatement is used when a rou tine is found in a dynlink library,
a regular librar y, or a separately compiled file. In this case, DosBeep
and DosExit happen to be dynlink API services. Remember that all
dynlink routines require a FAR call.

All OS/2 programs must define their own stack. This program
creates one that is 300H bytes long. Although it was possible for
sloppy programs to use the DOS sys tem stack on many occasions, this
is not the case with OS/2. Each thread must have its own. stack to
support multitasking . Keep in mind, however, that when you are using
a high-level language, such as C, the compiler will automatically se t up
a stack for you.

In this simple program, the functio n DosBeep was assumed to be
successful and its error return code is not examined. DosExit does not.
return a code to the program for obvious reasons . As you will see,
many of the API services will either always work or always work if you
supply correct input. For this reason the error code is often ignored in
the interest of speed. As you will see in subsequent examples, however,
certain API services should always have their return codes examined.

The API functions DosBeep and DosExit a re found in dynamic link
libraries. However, to add the correct dynlink loading information for
those services, the linker needs to have the file DOSCALLS.LIB speci
fied on the link line. DOSCALLS.LIB is a special type of librar y that
cont ains information about how to load a dynlink routine rather than
the actual code for the rout ine. This information includes the name of
the routine plus the name of the file in which it is stored. (Remember
that all d ynamic link fi les end with the extension .DLL.) This informa
tion is put into your .EXE file, and the API services used by your pro-

30 05/2 Programming: An Introduction

gram are loaded when needed. Later in this book you w ill learn how to
create your own dynlink libraries.

Because 05/2 is a new operating system, it is going through a
period of frequent revisions and upgrades. Thus it is possible (but not
likely) that certain filenames or function names could be changed in
subsequent versions. For example, a later version of 05/2 might call
D05CALL5.LIB something else. Be sure to check your user manuals.

In assembly language programs, the names of the API services must
appear in uppercase.

A C PROGRAM EXAMPLE

The C program that follows sh ows a slightly improved version of the
WHOOP program. In this case, the program continues to make sounds
until a key is pressed. To compile this program you must have a C
compiler that runs under 05/2. Beginning with Microsoft version 5.1,
the M icrosoft C compiler can be run under 05/2. To compile the pro
gram use this command:

CL -Lp WHOOP.C

This causes the program to be compiled and linked, including the
necessary dynlink libraries. The -Lp directive tells the compiler to pro
duce a protected-mode program capable of being executed under 0512.
No matte r whose C compiler you are using, several compiler and linker
options may be applicable to some of the programs you write, so study
your user manuals carefully.

I* C Language demonstration program using OosBeep */

#include <os2.h>

ma in()
{

}

register int i ;

for< ; ;) {

}

for(i =10 0; i<2500; i+=50) {

}

OosBeep(i, 1) ; /* sound the speaker */
if(kbh it ()) break;/* Look for keypress */

if(kbhit()) break;/* Look for keypress here, too*/

getch(); /* read and discard th e keypress */

OS/2 Interfacing Fundamentals 31

Because C is a high-level language, you call many of OS/2's func
tions only indirectly. For example, the DosExit function is called auto
matically when a C program terminates; you don't have to call it explic
itly. Also notice that C's standard functions like kbhit() and getch() can
be used. These functions in turn access the necessary API services. As
you will see, there are some API services that you will not usually call
directly, because they have direct parallels in the C standard library.
However, there are circumstances in which you may want to call an API
service even when a high-level-language function can perform the same
action because they often allow greater flex ibility and control.

In the C environment, the API services are called using their mixed
case version, such as DosBeep. In assembly language, however, the
names must appear only in uppercase.

The header file 052.H must be included with each C program or
module. This file adds to your program all the information required to
use the API services . (Your compiler may call this file someth ing else,
so check your user's manual.)

C AND THE API PARAMETERS

The following table shows the correspondence between the API data
types and the C data types:

API

byte
word
double word
address

c
char
unsigned
unsigned long
(type far *)

Because all calls to the API are FAR calls, any address parameters used
in an API call must also be FAR. In C this is accomplished in one of
three ways.

I. You can explicitly define a pointer type as FAR by using the far C
keyword. For example, this creates a FAR character pointer called
ptr:

char far *ptr ;

32 05/2 Programming: An Introduction

2. You can employ a type cast. This method is especially useful in con
nection with the & operator. For example, this expression generates
a FAR address:

(char far *) &count

3. You can simply compile your program using one of the large code
memory models. If you do this, all addresses are FAR by default.

This book will explicitly declare or cast all pointers to be FAR so that
the code will run correctly under any memory model.

Pascal Versus C
Calling Formats

A high-level language has two ways to push the arguments to a func
tion on the stack. Pascal, for example, pushes the arguments on the
stack in order from left to right. C normally pushes the arguments in
order from right to left. All the AP! services must be called using the
Pascal convention. For this reason, Microsoft C (and any other C com
piler that supports OSI 2) includes the function type modifier pascal.
When pascal precedes a function's definition, the C compiler automati
cally uses the Pascal calling convention, thus matching with the API
interface . All of the API services are declared as pascal in a C header
file, and this file must be included with each program. In the C pro
gram just show n , the header OS2.H automatically includes all API
declarations.

Since all calls to the API are FAR calls, each API service must also
be declared to be FAR. Therefore, each API routine must be declared to
be both pascal and far in the header file. For example, the DosBeep
function can be declared like this:

unsigned pascal far DosBeep(unsigned, unsigned);

The API functions are often declared by using user-defined types. For
example, the DosBeep function is declared by Microsoft like this:

USHORT APIENTRY DosBeep(USHORT, USHORTl;

r
OS/2 Interfacing Fundamentals 33

In the Microsoft header files USHORT is defined as unsigned and
APIENTRY is defined as pascal far. Both forms mean the same; do not
be confused by the type differences.

The fact that the API routines use the Pascal calling convention
does not imply that Pascal is the best language to use for OS/2 pro
gramming. Indeed, it is quite the contrary! OS/2 is highly compatible
with C. In fact, C is expected to be the dominant language for OS/2
development because it allows the greatest control and closest interac
tion with the APL C is also the most popular hig}i.-level language for
PC software development. (Indeed, this is why it is used for the exam
ples in this book.) However, for somewhat complex reasons, it was bet
ter to use the Pascal calling format for the API routines.

One final point has meaning mostly for assembly language pro
grammers. In the Pascal calling convention, the called routine is
responsible for removing the parameters from the stack. Since the API
services use the Pascal convention, your routines need not remove the
arguments that they pushed onto the stack.

A SHORT WORD ABOUT
.DEF FILES

If you already know something about 05/2 programming, you may
have heard about .DEF files. Essentially, a .DEF file is a text file that
contains information about a source code file that you will be assem
bling or compiling. The .DEF files are used mainly to allow the creation
of dynamic link (dynlink) libraries. Their use with nonlibrar y code is
optional, and no .DEF files are needed to assemble and run the sample
programs just shown. Also, you do not need a .DEF file to use an exist
ing dynlink library. You will learn more about .DEF fi les in the discus
sion of dynlink libraries.

CODE CONSTRAINTS

Code that is to be run under OS/2 is subject to a few constraints that
did not apply to the old DOS environment.

• First and foremost, your code must be reentrant. A routine is said to
be reentrant when it can be interrupted and executed by a thread

34 OS/2 Programming: An Introduction

while it is being used by another thread. In essence, reentran t code
is capable of being used by several threads at the same time.

• Your program cannot enable or disable interrupts, and it must not
issue an INT instruction.

• Your programs must not attempt to alter the con tent s of a segment
regist er or to perform segment "manipulations" as was commonly
done when writing DOS programs. Basically, your program should
let OS/2 manage memory.

ANOTHER SIMPLE EXAMPLE

For another example of interfacing to OS/2 via the API call-based
interface, let's use the VioWrtTTy function to write a string of charac
ters to the console. The VioWrtTTy function takes three parameters,
which are pushed in this order: the address of the first ch aracter in the
string, a word value containing the length of the string, and a word
value that is the handle that identifies the screen. In this case the han
dle is 0.

When you pass the address of an object on the stack, you push the
segment selector (which will almost always be the OS register) first
and then the offset of the object. In a high-level language like C, this is
done automatically. However, if you are using assembly la nguage you
will have to do it explicitly.

This assembly language program writes the string "Hello OS/2
World" to the console:

; Th is program writes the string "Hel l o OS/2 World" on
; the screen using the VIO WRTTTY API s e rvice .

PAGE , 132

; Set up 16-bit
DOSSEG
.model
.286
.STACK

.DATA
MESS DB

.CODE

segments

SMA LL

300H

' Hel lo OS/2 World'

set page dimensions

Microsoft segment conventions
set model s i ze for program

set up 768 byte stack

START :
EXT RN

SPROC PROC

PUSH
MOV
PUSH
PUSH
PUSH
CALL

PUSH
PUSH
CALL

SPROC ENDP

END

05/2 Interfacing Fundamentals 35

; beginning of code
VIOWRTTTY:FAR, DOSEXIT:FAR
FAR declare t he main procedure

push address o f MESS
OS push segment selec t o r
AX, OFFSET MESS get o ff set
AX push it
16 pusn Length of MESS
0 hand le of screen: 0
VIOWRTTTY call it

0 setup f o r exit
0
DOS EXIT call API exit functio n

end

START

The same program is shown here using C:

I*

•I

Write the message "Hello OS / 2 World" to the screen
us ing th e VioWrtTTy API s e r vic e.

#defi ne INCL SUB
#in clude <os"Z.h>

char mess(17J "' "Hello OS/2 World";
main()
{

VioWrtTTy((char fa r •) mess, 16 , 0);
}

Notice that the cast char far * is used to ensure that the pointer
mess is passed as a FAR address . If your knowledge of C is a bit rust y,
remember that the name of an array is evaluated by C t o be the
address of the first byte of that array. Hence mess is, indeed, a pointer.

Because there are many API services, the header files that contain
their definition s are large and it takes the compiler a long time to read
and process them. For this reason, by defa ult the Microsoft compiler
does not include all parts of the header files. Instead it uses a series of
#ifdef statements to include many of the API service declarations con
ditionally. The #ifdefs are controlled with these symbols:

36 OS/2 Programming: An Introduction

Symbol

INCL_BASE
INCL_ DOS
INCL_ SUB
INCL_ OOSERRORS

Meaning

Include all APT declarations
Include OS/2 kernel functions
Include OS/2 subsystems
Include OS/2 errors

Therefore, the symbol INCL_SUB is defined to have the VioWrtTTy
declaration (which is a subsystem service) included in the program. The
reason a symbol did not have to be defined in the first C program
example is that some services, including DosBeep and DosExit, are
always included automatically. In the chapters that follow you will learn
which services require which symbol to be defined . (If you are using a
non-Microsoft C compiler, you w ill have to determine how to include
the API service declarations in your program .)

Keep in mind that a functionally similar C program can be writ ten
by using one of C's various standard library functions, such as printf(),
instead of calling the API directly. This will be the case w ith many of
the API services . In something as simple as the preceding program,
using printf() would probably have been a better idea. Most of the
examples in the book are in C because it provides a better means than
assembly programs of presenting and illustrating the API services.
Most programmers will use C to develop OS/2 applications, so it makes
sense to show examples in the language that will actually be used . This
means that API services that overlap parallel standard library functions
will often be used to illustrate those API servic~s. However, it may be
more efficient to access an API service directly even if a similar C stan
dard library function exists.

High-performance DOS software traditionally bypassed the C
standard library functions, as well as DOS itself, in the quest for
greater performance. A similar situation will exist for OS/2 programs.
In several areas you will want to bypass C's standard libra ry functions
and call the API routines directly to achieve faster run- time execution.
When you call a standard C function that is paralleled by OS/2, your
call to the standard function is generally simply passed along to the
corresponding API service. This means that two calls (one to the stan
dard function, one to the API) are generated rather than one. When
you call the API directly, however, only one call to the API service rou
tine is generated . Since calling a routine t akes time, for the fastest pos
sible programs you should call the API directly. Keep in mind, howeve r,
that if several sections of your programs are not time critical, it makes

OS/2 In terfacing Fundamentals 37

more sense to call the standard functions because they are more port
able between operating systems and are occasionally easier to use .

THE API SERVICES

Part Two of this book covers the core API services and their use. This
section w ill int roduce the various categories of functions and the spe
cial subset of the API called the Family API (FAPI) services. The FAPI
routines are the services that are common to DOS and OS/2.

The Major API Categories

T he API services can be separated into five broad categorie s: the basic
OS/2 kernel, the video subsyst em, the mouse subsystem, th e keyboard

DosAllocHuge Dos Exit OosGetSeg
OosAllocSeg DosExitCritSec DosGetShrSeg
DosAlloc ShrSeg DosExitLi st Dos Get Version
Dos Beep Dos File Lock DosGiveSeg
DosBufReset Dos Find Close DosHoldSignal
DosCaseMap DosFindFirst DoslnsMessage
DosChdir DosFindNext DosKil!Process
Dos Chg File Ptr DosFlagProcess Dos Load Module
DosCLIAccess DosFreeModule DosLockSeg
DosClose DosFreeSeg Dos Make Pipe
OosCloseQueue Dos GetCollate DosMemAvail
DosCloseSem DosGetCP DosMkdir
DosCreateCSAlias DosGetCtrylnfo Dos Mon Close
DosCreateQueue Dos Get DateTime DosMonOpen
OosCreateSem DosGetDBCSEv DosMonRead
Dos Create Thread DosGetEnv DosMonReg
DosCWait Dos GetHugeShift DosMon Write
Dos Delete DosGetlnfoSeg Dos Move
DosDevConfig DosGetMachineMode DosMuxSemWait
DosOevIOCtl DosGetMessage DosNewSize
DosDupHandle DosGetModHandle Dos Ope n
DosEnterCritSec DosGetModName Dos Open Queue
Dos Err Class DosGetProcAddr DosOpe nSem
Dos Error DosGetPrty DosPeekQueue
DosExecPgm DosGetResource Dos PF S Ac ti va te

Figure 2-1. The OS/2 kernel AP! services

38 OS/2 Programming: An Introduction

DosPFSClose User DosReAllocHuge DosSetSession
DosPFSlnit DosReAllocSeg DosSetSigHandler
DosPFSQuery Act Dos Resume Thread Dos Set Vee
DosPFSVerifyFont DosRmdir Dos Set Verify
DosPh ysicalDisk DosScanEnv Dos Sleep
DosPortAccess DosSearchPath DosStartSession
DosPTrace Dos Select Disk DosStopSession
DosPurgeQueue DosSelectSession DosSubAlloc
DosPutMessage DosSemClear DosSubFree
DosQCurDir DosSemRequest DosSubSet
DosQCurDisk DosSemSet Dos Suspend Thread

DosQFHandState DosSemSetWai t Dos Sys tern Service
DosQFilelnfo DosSemWait DosTirnerAsync
DosQFileMode DosSetCP DosTimerStart
DosQFSinfo Dos Set Date Time DosTimerStop
DosQHa nd Type DosSetFHandState DosUnlockSeg
DosQueryQueue DosSetFileinfo Dos Write
DosQVerify Dos SetFile Mode DosWriteAsync
Dos Read DosSetFSinfo Dos WriteQueue
DosReadAsync DosSetMaxFH
Dos Re ad Queue DosSetPrty

Figure 2-1. The OS/2 kernel API services (continued)

KbdCharlnKbdClose
KbdCustCP
KbdDe Register
KbdFlushBuffer
KbdFreeFocus
Kbd GetFocu s
KbdGetStatus
KbdGetXt
KbdOpen

KbdPeek
KbdRegister
KbdSetFgnd
KbdSetStatus
KbdSetXt
KbdShelllnit
KbdStringln
KbdSynch
KbdXlate

Figure 2-2. T he keyboard subsystem services

r
OS/2 Interfacing Fundamentals 39

Mou Close
MouDeRegister
MouOrawPtr
MouFlushQue
Mou GetDevStatus
MouGetEventMask
MouGetHotKey
MouGetNumButtons
Mou GetNumMickeys
MouGetNumQueEl
MouGetPtrPos
MouGetPtrShape
MouGetScaleFact

Mouln iReal
Mou Open
MouReadEventQue
MouRegister
MouRemovePtr
MouSetOevStatus
MouSetEventMask
MouSetHotKey
MouSetPtrPos
MouSetPtrShape
MouSetScaleFact
MouShelllnit
Mou Synch

Figure 2-3. The mouse subsystem services

VioDeRegister VioPrtSc
VioEndPopUp VioPrtScToggle
VioGetAnsi VioReadCellStr
VioGetBuf VioRead CharSt r
VioGetConfig VioRegister
VioGetCP VioSavReDrawUndo
VioGetCurPos VioSavReDrawWait
VioGetCurType VioScrLock
VioGetFont VioScrollD n
VioGetMode VioScrollLf
VioGetPhysBuf VioScrollRt
VioGet State VioScroll Up
VioModeUndo VioScrUnlock
VioModeWait VioSetAnsi
VioPopUp VioSetCP

Figure 2 - 4. T he video subsystem services

VioSet CurPos
VioSetCurType
VioSetFont
VioSetMode
VioSetState
VioShowBuf
VioWrtCellStr
Vio Wr tCharStr
Vio WrtCharStr Att
VioWrtNAttr
VioWrtNCell
VioWrtNChar
VioWrtTTy

/

40 OS/2 Programming: An Introduction

subsystem, and the Presentation Manager services. The second part of
this book covers the non-Presentation Manager API services; the t h ird
part introduces the Presentation Manager. The reason for this is sim
ple: The non-Presentation Manager services r epresent the core 05/2
functions. You cannot write program s that effectively u se the Presenta
tion Manager services until yo u understand the fundamenta l 05/2
routines.

There are 225 API services, not counting the Presentation Manager
routines. These services are shown in Figures 2-1 through 2-4. All the
API function names should be considered reserved and not used for
any other purpose by your program.

Dos Beep DosQFileMode VioGetMode
DosChdir DosQVerify VioGetPhysBuf
DosChgFilePtr Dos Read VioRead CellStr
Dos Close DosRmdir VioReadCharStr
Dos Delete Dos Select D isk VioScrLock
DosDevConfig DosSetFHandState VioScrUn Lock
DosDevIOCtl DosSetFSinfo VioScrollDn
DosOupHa ndl e DosSetFilelnfo VioScrollLf
Dos Error DosSetFileMode VioScrollRt
Dos File Locks Dos Set Vee VioScrollUp
DosFindClose Dos Set Verify VioSetCurPos ·
DosFindFirst Dos Write YioSetCurType
Dos Find Next KbdCharln YioSetMode
DosMkdir KbdFlu shBuffer VioShowBuf
Dos Move KbdGe t Status VioWrtCellStr
Dos New Size KbdPeek Vio WrtCharStr
DosOpen KbdRegister VioWrtCharStrAtt
DosQCurDir KbdSetStatus VioWrtNAttr
DosQCurDisk KbdSt ringln VioWrtNCell
DosQFHandState YioGetBuf VioWrtNCh ar
DosQFSlnfo VioGetCurPos VioWrtTTy
DosQFilelnfo VioGetCurType

Figure 2-5. The API services

OS/2 Interfacing Fundamentals 41

The Family API Services

To enable the writing of programs that will run under both DOS and
OS/2, Microsoft has identified 65 API services that are applicable to
both environments. These services are called the Family API, or FAPI
for short. If your program uses only these services, you can run the
same program under both DOS and 05/2. The FAPI functions are
shown in Figure 2-5.

API SERVICE DESCRIPTION
CONVENTIONS

The proper way to call an API service is shown using C function proto
type notation. In fact, from a C program, the API services look like any
other C library function. For example, using C prototype declarations,
the proper way to call the DosBeep function is

unsigned pascal far DosBeep(unsigned freq, unsigned duration)

From an assembly code point of view, this declaration tells you to push
the frequency first and then the duration. If you are unfamiliar with C
prototypes, refer to Appendix B.

As you will see in subsequent chapters, some of the API services
require that the address to a data structure be passed. Although
neither the name of the structure nor the names of the fields that
comprise the structure are important to OS/2-it has no knowledge of
them - they are very important to the C programmer. Because each C
compiler that runs under 05/2 must declare the API services and
define any structures they require, it must name the structures and the
fields. The trouble is that there is no reason why two different com
piler manufacturers must use the same names when describing the
same structures. (Remember that the API services never "see" the
names, only the data.) The question is which compiler's naming con
ventions you choose to follow. At the time of this writing only one C
compiler is available for 05/2: Microsoft C 5.10. Hence this book is
written from the point of view of the Microsoft compiler. References to
structure names and fields will follow the Microsoft naming conven
tions by default. Your compiler may use different names, but the con
tent of the structure will be the same. (You can define your own data

42 05/2 Programming: An Introduction

structures, but doing so will result in annoying compile-time warning
messages.) /

One final point: The Microsoft 05/2 header files define several
new type names, using the typedef statement, which are used in the
declarations for the API services. For example, the name USHORT is
another name for unsigned. However, this book shows all type declara
tions in their native C base types for the sake of generality and the
ability to compile programs successfully with any 05/2-compatible C
compiler.

F

II
PROGRAMMING OS/2

API SERVICES

In this section the most important core (non-Presentation Manager)
05/2 API services are discussed. Several example programs are
included in each chapter. A solid understanding of the core services is
important for several reasons, not the least of which is to provide sup
port for such things as device monitors, interprocess communication,
and dynamic link libraries .

43

\ 3
THE SCREEN OUTPUT

SERVICES

Since it is rare to create a useful program that does not display infor
mation on the screen, it seems logical to begin your tour of the 05/2
API services with those that relate to the screen. These services are
commonly called the Video 110 subsystem (VIO for short) and are used to
display text on the screen and to control the screen environment.
(Graphics output is handled by the Presentation Manager services.)
The names of all the functions in this subsystem begin with the prefix
Via. Table 3-1 lists the 43 VIO system services and gives a short de
scription of each. This chapter covers the most important and com
monly needed of these screen functions.

You might be wondering at this point why something as conceptu
ally simple as writing output to the screen requires so many different
services. Part of the answer is that 0512 gives you a wide range of
options and approaches for writing to the screen. In addition, because
05/2 is a multitasking system, it needs some VIO services to demand
or control access to the screen. ·

As you know, the C standard library contains several functions that
perform console output, including print£(). For the most part, when
your program is performing "generic" screen output, it is easier to use
these standard library functions than to call a VIO service. However,
the VIO services allow significantly greater flexibility in the way text is
written to the screen, including such things as displaying text in color
and positioning the cursor. When your program needs to display output
in a special way, you will want to use the VIO services . And, of course,
several VIO functions are not paralleled by the C standard library.

45

46 05/2 Programming: An Introduction

Note: It is possible to bypass OS/2's built-in screen services and
access the video hardware directly. The direct control of the video
hardware is not only quite complicated but also seldom necessary or
even desirable. The direct video hardware accessing capabilities were
included in OS/2 because OS/2 has to be "all things to all pro
grammers." But their use is not recommended for the vast majority of
programming applications. This chapter deals with the screen services
you w ill use for most (if not all) of your programming, not with the
ones that allow you to manipulate the video hardware directly.

/

Table 3-1. The Video Subsystem Services

Service Function

VioDeRegister
VioEndPopUp

VioGetAnsi
VioGetBuf
VioGetConfig

VioGetCP
VioGetCurPos
VioGetCurType
VioGetFont
VioGetMode
VioGetPhysBuf
VioGetState

VioMode Undo
VioModeWait

VioPopUp
VioPrtSc
VioPrtScToggle
VioReadCel!Str

Deactivates an a lternate set of VIO services
Releases control of the screen at the end of a
VioPopUp
Returns the status of the ANSI flag
Returns the address of the logical video buffer
Returns the configuration of the video hard
ware components
Returns the current code page
Returns the coordinates of the cursor
Returns the dimensions of the cursor
Returns the current font or font table
Returns the current video mode
Returns a selector to a video display buffer
Returns information about the current video
settings
Cancels a VioModeWait
Tells graphics applications when to restore its
video mode
Requests control of the screen
Prints the screen
Toggles continuous screen printing
Reads character and attribute information
from the screen

VioReadCharStr Reads characters from the screen
VioRegister Activates an alternate set of VIO services
VioSavReDrawUndo Cancels a VioSavReDrawWait

, I

The Screen Output Services 47

Table 3 -1. The Video Subsystem Services (continued)

VioSav Re Draw Wait

VioScrLock
VioScrollDn
VioScrollLf
VioScrollRt
VioScrollUp
VioScrUnlock
VioSetAnsi
VioSetCP
VioSetCurPos

VioSetCurType
VioSetFont
VioSetMode
VioSetState
VioShowBuf
Vio WrtCellStr

Vio WrtCharStr
Vio WrtCharStr Att
VioWrtNAttr
VioWrtNCell

VioWrtNChar
VioWrtTTy

Notifies a process when it is necessary to save
or restore the screen
Prevents o ther processes from using the screen
Scrolls part of the screen down
Scrolls part of the screen left
Scrolls part of the screen right
~crolls part of the screen up
U'illocks the screen
Sets the status of the ANSI flag
Sets the current code page
Positions the cursor at the specified coordi
nates
Sets the cursor dimensions
Sets the current font
Sets the video mode
Sets various display parameters
Displays the logical video buffer
Writes character and attribute information to
the screen
Writes characters to the screen
Writes characters and attributes to the screen
Writes attributes to the scree n
Writes the same character and attribute to the
screen
Writes the same character to the screen
Writes a string to the screen

VIDEO ADAPTERS AND MODES
OF OPERATION

Before approaching the screen services, you need to understand the
various ways in which the video display hardware can function. Several
different types of video adapters are currently available for the PC line
of computers. The most common are the Monochrome Adapter, the
CGA (Color/Graphics Adapter), PCjr, and the EGA (Enhanced Graph
ics Adapter). The PS/2 line of computers introduced the VGA (Video
Graphics Array) adapter. Together these adapters support 19 different
modes of video operation. The current video mode determines how

48 05/2 Programming: An Introduction

information is displayed on the screen. These video modes are synop
sized in Table 3-2. As you can see by looking at the table, some modes
are for text and some are for graphics. In a text mode only text can be
displayed. The smallest user-addressable part of the screen in a text
mode is one character. The smallest user-addressable part of the screen
in a graphics mode is one pel. (Apel is the smallest individually accessi
ble unit for a given graphics mode.)

In all PC, AT, and PS/2 computers, the display hardware uses a
memory-mapped approach to displaying text. In this method a region
of memory is reserved for the screen's use, and whatever this memory
contains is shown on the screen. This region of memory is commonly
called the video buffer or the video RAM. Exactly how this memory is
organized and where it is physically located depends in part on the cur
rent video mode. However, unless you decide to bypass OS/2's screen
services in favor of direct memory access of the video RAM, you will
not need to worry about where the video buffer is located. Since the
screen API services work only in text mode, the organization of the
video RAM is always the same.

Table 3-2. The Video Modes for the Various IBM Video Adapters

Mode Type Dimensions Adapters

0 Text, b/w 40X25 CGA, EGA, VGA
1 Text, 16 colors 40X25 CGA,EGA,VGA
2 Text, b/w 80X25 CGA, EGA, VGA
3 Text, 16 colors 80X25 CGA,EGA, VGA
4 Graphics, 4 colors 320X200 CGA,EGA, VGA
5 Graphics, 4 gray tones 320X200 CGA, EGA, VGA
6 Graphics, b/w 640X200 CGA, EGA, VGA
7 Text, b/w 80X25 Monochrome
8 Graphics, 16 colors 160X200 PCjr
9 Graphics, 16 colors 320X200 PCjr
13 Graphics, 16 colors 320X200 EGA, VGA
14 Graphics, 16 colors 640X200 EGA, VGA
15 Graphics, 2 colors 640X350 EGA, VGA
16 Graphics, 16 colors 640X350 EGA, VGA
17 Graphics, 2 colors 640X480 VGA
18 Graphics, 16 colors 640X 480 VGA
19 Graphics, 256 colors 620X200 VGA

The Attribute Byte
in Text Mode

The Screen Outpu-t Services 49

In all text modes each character displayed on the screen is associated

with an attribute byte that defines the way the character is displayed.

The attribute byte associated with each character determines the color

of the character, the background color, the intensity of the character,

and whether it is blinking or nonblinking. The attribute byte is orga

nized as shown in Table 3-3.
Bits 0, I, and 2 of the attribute byte determine the foreground color

component of the character associated with the attribute. For example,

setting bit 0 causes the character to appear in blue. If all bits are off,

the character is not displayed . Keep in mind that the colors are additive.

When all three bits are on, the character is displayed in white. If you

set two of the bits, either magenta or cyan is produced. The same ap

plies to the background colors. When bits 4 through 6 are off, the

background is black. Otherwise the background appears in the color

specified.
The attribute value for normal text is 7, the combination of blue,

green, and red. For reverse video, the value of the attribute is 70H, the

combination of background blue, green, and red .
In the early days of microcomputers, the default operation of the

video system displayed characters in full intensity, and you had the

option to display in low intensity. However, when the IBM PC was

released, it worked the other way around. The default video operation

of the PC line is in "normal" intensity and you have the option to dis-

Table 3-3. The Attribute Byte Organization

Bit Meaning When Set

0 Foreground blue
1 Foreground green
2 Foreground red
3 High intensity
4 Background blue
5 Background green
6 Background red
7 Blinking character

50 05/2 Programming: An Introduction

play characters in high intensity by setting the high-intensity bit.
Finally, you can cause the character to blink by setting bit 7.

As you will see, many of the VIO functions that actually output
characters to the screen also manipulate the att ribute byte.

SCREEN VIRTUALIZATION
AND LOGICAL VIDEO BUFFERS

In the 05/2 environment, the screen is virtualized. When you call a VIO
service that writes output to the screen, the information you want dis
played does not get put directly into the video RAM. Instead it is writ
ten to a logical video buffer (LVB), which is owned by the process that
performs the call to a VIO service . When the process is in the fore
ground, 05/2 automatically maps the contents of the LVB into the
physical video buffer. However, when the process is in the background,
output is simply held in the LVB until that process has access to the
screen. In this way 05/2 is able to prevent background processes from
writing to the screen when they are not supposed to.

Each process is assigned an LVB when it begins executing. Each
buffer is separate from other LVBs in the system. Since the VIO screen
services apply only to text mode operation, the LVB is applicable only
to text mode. If you want to use a graphics mode, you should use the
Presentation Manager routines. Keep in mind that the LVB is structur
ally equivalent to the physical video buffer.

In the rest of this book, when a function is said to "write to the
screen," remember that in most cases it is technically writing to its
LVB.

\.)~ Co11q(_>.
THE VIDEO BUHE~ ~II\
ORGANIZATION . ~ ;r' ~
The text screen video e er flll:ysical or logical) is organized in
pairs of bytes . The eve · .,. prere~'o/tes hold the character informa-
tion, and the odd-numbere old the attribute values.

VIO HANDLES

Each VIO service requires that the number of the device it is to operate
on be passed. This number is called a handle. As 05/2 is currently
implemented, all VIO device handles must be 0 . However, the handle

t

The Screen Output Services 51

must be passed to all VIO routines to allow for possible future
enhancements of OS/2.

Note: In OS/2 many handles are represented by 16-bit quantities. For
most OS/2-compatible C compilers at this time, an unsigned integer is
16 bits wide. However, it is conceivable that future C compilers specifi
cally designed for the 80386 processor will use 32-bit unsigned inte
gers. For this reason you may want to declare all handles as unsigned short
(as is done in this book), which will ensure that a 16-bit integer is
generated. (It is remotely possible that your C compiler will generate
an 8-bit variable when the short modifier is used. In that case you
would not want to use the short modifier, so check your user manual.
If your compiler complies with the draft ANSI standard, you will have
no trouble.)

THE VioWrtTTy SERVICE

By far the simplest, if least powerful, VIO service is VioWrtTTy, which
outputs a string to the screen at the current cursor position. You saw a
brief example of it in Chapter 2. Let's look at it in some detail here.
The prototype for VioWrtTTy is

unsigned VioWrtTTy(char far * str, unsigned len, unsigned short
handle);

where str is a pointer to the first byte of the string to be displayed, len is
the length of the string, and hatidle is the device handle for the screen,
which must be zero.

VioWrtTTy writes the specified string beginning at the current cur
sor position and positions the cursor after the last character written.
(VioWrtTTy is the only screen function that updates the cursor posi
tion.) It recognizes such things as carriage returns, linefeeds, and tabs.
Keep in mind that when you want VioWrtTTy to perform a carriage
return-linefeed operation you must imbed those characters into the
string. You cannot simply use the newline character as you would if
you were using print£(), for example. The following program illustrates
how to use VioWrtTTy:

52 05/2 Programming: An Introduction

/* ~emonstration of VioWrtTTy, *I

#define INCL SUB

#include <os2,h>

main()
{

}

char sC80J;

strcpyCs, "this is a ") •
VioWrtTTyCCchar far *> ~, strlen<s>, O> ;

strcpyCs, "test\n">;
VioWrtTTyCCchar far •) s, strlenCs>, O>;

strcpyCs, "this is a second test\r\n");
VioWrtTT yCCc har far •> s, strlen<s>, O>;

strcpyCs, "this is a third test\r\n">;
ViowrtTTyCCchar far *) s, strlen<s>, O>;

The output from this program will look lik~ this:

this is a test
this is a se co nd test

this is a third test

If you are programming in· C, you will probably want to use print£()
rather than VioWrtTTy because it is easier to use and VioWrtTTy does
not add any greater functionality. However, there may be an exception
to this rule, as described in the next section.

Note: As was mentioned in Chapter 2, because of the way the Micro
soft version 5.10 C compiler has organized its 05/2 header files, you
must define INCL_SUB at the start of each program for the VIO sub
system prototypes and types to be read into your program. If you are
using a different type of C compiler, this statement may not be
necessary.

VIO SERVICES VERSUS
lfO REDIRECTION

You must understand one very important point about the VIO ser
vices: The o utput from them cannot be redirected. For example, if the
program in the preceding section is called TEST, this command line will

The Screen Output Services 53

not function as expected.

TEST >OUT

The file OUT will be created, but it will contain nothing. The program

still writes its output to the screen. If you want to create redirectable

output, you must use a file system service such as DosWrite, which

will be described in Chapter 6.

THE VIO SCREEN OUTPUT
SERVICES

Aside from VioWrtTTy there are six VIO services that write text to

the screen. Let's take a look at each of them.

Vio WrtCellStr

Although the VIO screen services are not hierarchical, VioWrtCellStr
can be thought of as the lowest-level screen output function . VioWrt
CellStr writes a string of character-attribute pairs to the screen at the

specified location. 05/2 refers to a character-attribute pair as a cell.

Keep in mind that a string of cells is not the equivalent of a C character

string. A cell string is not null terminated, for example. A cell string is

illustrated in Figure 3-1.

Note: Remember that when the video hardware is in text mode, the

video display buffer (and each process's logical video buffer) is orga

nized in the sa me fashion as the cell string: Even-numbered addresses

hold the character, odd-numbered addresses contain the attribute.

T he prototype for VioWrtCellStr is

unsigned VioWrtCellStr(char far* cell_str, unsigned !en, unsigned

row, unsigned col, unsigned short handle);

w here ce/l _ sfr is the array of cells to be displayed, and len is the length

of the string in bytes. The parameters row and col specify the row and

column coordinates of the location at which the s tring will be written.

The handle parameter must be 0.

54 OS/2 Programming: An Introduction

attributes

H 7 E 7 L 7 L 7 0 7

characters

Figure 3-1. A cell string containing the word HELLO using normal video
attributes

The sample program shown h ere outputs a very small cell string
that contains the letter A. It is displayed first in normal video and then
in reverse video.

I* This program demonstrates the VioWrtCellStr, */

#define INCL BA SE
#include <os2. h>

ma in 0
{

}

cha r c[4J ;

/*w r ite an A in normal and reverse video */
c[OJ 'A';
c[1J = 7; I* no rma l video */
c[2J ='A';
c[3J = Ox70; I* reverse video */
VioWrtCe ll Str(c, 4, 10, 10, Ol;

It is important to understand that VioWrtCellStr neither cares
about nor modifies the current cursor location. In fact, of all the VIO
screen output services, only VioWrtTTy updates the cursor. The rea
son for this is simple . Updating the cursor takes time. Since the API
services are designed to be as fast as possible, the designers of OS/2
decided t o decouple the cursor position from most of the output rou
tines and let the programmer move the cursor about manually. This

The Screen Output Services 55

makes a lot of sense because most applications display information over
a large area of the screen but don't generally need to move the cursor
very often. (One of the examples in this chapter shows how to position
the cursor manually.)

If you have programmed in a DOS environment, you will really
appreciate how fast the OS/2 screen services are. The DOS character
screen output routines are notoriously slow. However, the OS/2 ser
vices are nearly as fast as direct hardware-accessing methods.

One final point: OS/2 does not have a VIO function that simply
outputs one character (or cell). To do this, you must call VioWrtCellStr
(or one of the other screen output services) with a string consisting of
one character attribute, which, of course, works fine.

VioWrtCharStr

You will often want to display characters on the screen using the exist
ing screen attributes. For example, the default attribute is normal video
(7) and for a great many applications, this is the attribute desired. So
that you may display characters using the existing display attributes,
OS/2 supplies the VioWrtCharStr service. Its prototype is

unsigned VioWrtCharStr(char far* str, unsigned len, unsigned row,
unsigned col, unsigned short handle);

where str is the string to write and len is the length of the string. The
string is written to the location specified by row and col. The value of
handle must be 0. Although str does not need to be null terminated, it
can be . This means that you can call VioWrtCharStr using standard C
strings if you like .

This short program uses VioWrtCharStr to write a string at loca
tion 3,5:

I* This program demonstrates the VioWrtCharStr . */
#define INCL BASE
#include <os2.h>

char s[80J = "this is a test";

main()
{

}

I• write a string to the screen •I
VioWrtCharStr((char far•) s, strlen(s), 3, 5, 0);

56 OS/2 Programming: An Introduction

Vio WrtCharStr Att

You often need to output text with a constant attribute. For example,
you might want to prompt a user in blue text or show negative
numbers in red. To accomplish this task OS/2 includes VioWrtChar
StrAtt, which works just like VioWrtCharStr except that it allows you
to specify a common attribute. Its prototype is

unsigned VioWrtCharStrAtt(char far *str, unsigned len, unsigned
row, unsigned col, char far *attr, unsigned short handle);

where str is the string to write and Jen is the length of the string . The
string is written to the location specified by row and col. The value
pointed to · by attr is the attribute that will be associated with each
character in the string. The value of handle must be 0.

The following sample program displays its message in red le tters on
a blue background. The number 20 is derived from Table 3-3. (Red uses
bit 2, which is the decimal value 4; blue background uses bit 4, which is
the decimal value 16.)

/* Th is program demonstrates the VioWrtCharStrAtt . */

#define INCL BASE
#include <os2.h>

ma in ()
{

}

char s[80J;
char attr;

s trcpy<s , "this will be pri nted in red on blue");

attr = 20;
Vi oWrtCharStrAtt<<char far •) s, strlen(s), 10, O,

<char far*) &attr, Ol ;

VioWrtNCell, VioWrtNChar,
and VioWrtNAttr

Sometimes you want to write the same cell, character, or attribute sev
eral times. 05/2 uses VioWrtNCell, VioWrtNChar, and VioWrtNAttr
to accomplish these types of operations . Their prototypes are

unsigned VioWrtNCell(char far *cell, unsigned count, unsigned row,
· unsigned col, unsigned short handle);

f
The Screen Output Services 57

unsigned VioWrtNChar (char far *ch, unsigned count, unsigned
row, unsigned col, unsigned short handle);

unsigned VioWrtNAttr(char far *attr, unsigned count, unsigned
row, unsigned col, unsigned short handle);

Both ch and attr are byte values, but cell is a 2-byte character-attribute
combination. In each case, count is the number of times the cell, charac
ter, or attribute is to be written, beginning at location row, col. As
always, handle must be 0.

This program demonstrates how to call these services. The
VioWrtNCell call writes ten Qs in reverse video. The VioWrtNChar
call writes ten #s using the existing video attribute. Finally, VioWrt
NAttr changes the attribute of ten characters to reverse video.

I* This program demonstrates the VioWrtNCell,
VioWrtNChar, and VioWrtNAttr.

•I

#define INCL BASE
#include <os2.h>

main()
{

)

char cel l[2J ;
char attr;
char ch;

at tr = Ox70;
ch = • #';
cell[OJ = IQ I;

cell[1J = 1;

I*

/*

VioWrtNCellCCchar
VioWrtNChar((char
VioWrtNAttr((char

reverse

blue *I

far *)
far •)
far •)

CURSOR POSITIONING

video •I

cell, 10 , 10, o, 0);
&ch, 10, 11, o, O>;
&attr, 10 , 12, 0, 0);

05/2 supplies two services that operate on the cursor. The first, called
VioSetCurPos, is used to set the current cursor location. The second,
called VioGetCurPos, is used to return the coordinates of the current
cursor position. Their prototypes are

unsigned VioSetCurPos(unsigned row, unsigned col, unsigned short
handle);

58 05/2 Programming: An Introduction

unsigned VioGetCurPos(unsigned far *row, unsigned far *col,
unsigned short handle);

For VioSetCurPos, the parameters row and col specify the location of
the cursor. For VioGetCurPos, row and col are pointers to variables that
will contain the current location of the cursor when the call returns. In
both cases handle must be 0.

This short program demonstrates VioSetCurPos and VioGetCur
Pos. It first prints diagonal Xs across the screen and then reports the
cursor's final position.

I* This program demonstrates the cur sor position serv i ce. */

#define INCL SUB

#include <os2.h>

main()
{

}

unsigned i, j ;

I* print some Xs diagonally on the screen */
for(i=O ; i<24; i++)

for(j=O; j<50 ; j+=5) {
VioSetCurPos(i, j+i, Ol;
printfC"Xc", 'X');

}

I* now, display coordinates of the final cursor position */
VioGetCurPos((un signed far *) &i, (unsigned far *) &j, Ol;
printf("\ncursor is at: Xd, Xd\n", i, j);

SCREEN SCROLLING
FUNCTIONS

OS/2 provides four services that let you scroll all or part of the screen.
VioScrollDn scrolls the screen down, VioScrollLf scrolls the screen
left, VioScrollRt scrolls the screen right, and VioScrollUp scrolls the
screen up . The prototypes for these services are

unsigned VioScrollDn(unsigned toprow, unsigned leftcol, unsigned
bottomrow, unsigned r ightcol, unsigned num, char far *cell,
unsigned short handle);

The Screen Output Services 59

unsigned VioScrollLf(unsigned toprow, unsigned leftcol, unsigned

bottomrow, unsigned rightcol, unsigned num, char far *cell,

unsigned short handle);

unsigned VioScrollRt(unsigned toprow, unsigned leftcol, unsigned

bottomrow, unsigned rightcol, unsigned num, char far *cell,

unsigned short handle);

unsigned VioScrollUp(unsigned toprow, unsigned leftcol, unsigned

bottomrow, unsigned rightcol, unsigned num, char far *cell,

unsigned short handle);

Here, the rectangle to be scrolled is defined by loprow, lef/col and bottom

row, rightco/ . The number of lines (in up and down scrolling) or spaces (in

left and right scrolling), is specified by num. The character and attribute

of the space that is scrolled in are specified by eel/. You generally want

this to be a normal video space character. Finally, handle must be 0.

You can scroll the entire screen by specifying the upper left and

lower right coordinates of the screen. Scrolling only a portion of the

screen leaves untouched the information outside the scrolled area.

You can clear the specified area by calling one of the scrolling func

tions with num having a value of -1.
This sample program demonstrates all the scrolling services. Notice

that the function clrscr() has been created using VioScrollUp. The

program begins by filling the screen with the uppercase alphabet and

digits. It then scrolls the entire screen to the right two places. Next it

scrolls a portion of the screen to the left each time you press a key until

you press Q. This causes the program to scroll the area to the right with

each key press. Each time you press Q, a different direction is used until all

four have been ·tried. Sample output from this program is shown in Figure

3-2.

I* This program demonstrates the scrolling services . •I

#define INCL BASE
#include <os2.h>

void clrscr(voidl;

char sCSOJ = "ABCDEFGHlJKLMNOPQRSTUVWXY'Z0 123456789";

main()
{

register unsigned i;
char space[2J, ch;

60 OS/2 Programming: An Introduction

}

clrscrO;

I* Put some stuff on the screen . */
for(i=O; i<25; i++) {

}

VioWrtCharStr((char far*) s, strlen(s), i, O, 0);
VioWrtCharStr((char far*) s, strlen(s), i, strlen(s), O>;

/* Scroll the entire screen right two spaces, filling
with spaces .

*' spaceCOJ = ' ';
spaceC1J = 7; I* normal char */
VioScroLLRt(O, 0, 24, 79, 2, (char far *) space, O> ;

/* Now , scroll a part of the screen to the Left each time
a key is pressed. Press 'q' to quit .

*I
do {

VioScroLLLf(10, 10, 15, 40, 1, (char far*) space, O>;
ch = getch ();

} while(ch!='q');

I* Now, scroll that part of the screen back to the right
with each keypress. Press ' q ' to quit .

*' do {
VioScroLLRt(10, 10, 15, 40, 1 , (char far *) space, O> ;
ch = get ch();

} while(ch!='q'l ;

I* Now, scroll that part of the screen up
with each keypress . Press 'q' to quit .

*/
do {

VioScroLLUp(10, 10, 15, 40, 1, (char far •) space, 0);
ch = get ch();

} while(ch!='q'l;

/* Now, scroll that part of the screen down
with each keypress. Press ' q' to quit .

*I
do {

VioScroLLDn(10, 10, 15 , 40, 1, (char far •) space, O>;
ch = getchO;

} while(ch! =' q ');

I* A simple way to clear the screen by filling
it with spaces .

*I
void clrscrO
{

}

char spaceC2J;

spaceCOJ = ' ';
spaceC1J = 7 ;
VioScroLLUp(O, O, 24, 79, -1, (char far *) space, 0);

The Screen Output Services 61

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGH IJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGH DEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGH DEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGH QRSTUVWXYZ0123456789ABC DEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGH QRSTUVWXYZ0123456789ABC DEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGH QRSTUVWXYZ0123456789ABC DEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGH DEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789

Figure 3-2. Sample output from the scrolling program

EXAMINING AND CHANGING
THE VIDEO MODE

Up to this point, you have been using the default text mode of the
system. In fact, the preceding sample programs simply as sumed that
the computer was currently using an 80 by 25 text mode. However, in
actual programming situations you will probably want to know pre
cisely what video mode is being used or to have your program explicit ly
set the mode it requires. To satisfy these operations 05/2 supplies the
VioGetMode and VioSetMode services. Their prototypes are

unsigned VioGetMode(VIOMODEINFO far *data, unsigned short
handle);

unsigned VioSetMode(VIOMODEINFO far *data, unsigned short
handle);

Here data is a pointer to a structure that contains information about the

62 OS/2 Programming: An Introduction

video mode. VIOMODEINFO is .the name of the structure type
defined by Microsoft, as shown here:

typedef struct_ VIOMODEINFO {
unsigned cb;
unsigned char fbType;
unsigned char color;
unsigned col;
unsigned row;
unsigned hres;
unsigned vres;
unsigned char fmt_ID;
unsigned char attrib;

/• number of bytes instruct•/
I• base type •/
I• number of colors•/
/• number of columns •/
/• number of rows •/
/• horizontal resolution •/
/•vertical resolu tion •I
/• format ID •I

JVIOMODEINFO;

The cb field holds the length of the structure and is passed to both
VioGetMode and VioSetMode. The rest of the fields are set by your
program when VioSetMode is called or are set by OS/2 when Vio
GetMode is called. Let's look at these now.

The FbType field is a bit-map of which only the first three bits are
of interest (although later versions of OS/2 can expand this). The bits
are encoded as shown here:

Bit Value Meaning

0 0 A monochrome adapter is installed.
0 1 A color adapter is installed.
1 0 The system is in a text mode.
I 1 The system is in a graphics mode.
2 0 Color burst is enabled.
2 I Color burst is disabled.

The color field contains the number of colors supported by the cur
rent (or requested) mode. This number is specified as a power of two.
For example, if color contains a 1, two colors are suppor ted. If it con
tains a 4, 16 colors are supported.

The fields row and col are used to set or return the number of text
rows and columns supported.

The fie lds hres and vres are used to set or return the horizontal
and vertical resolution (in pels).

Note: Remember that the structure type name and field names are
show n using the Microsoft naming conventions. Your compiler may
use different names.

The Screen Output Services 63

The most important thing to understand about video modes in
OS/2 is that they have been virtualized by the system. That is, there is
no concept of requesting mode 3, for example, by using a BIOS call. (In
fact, the BIOS call is not usable by 05/2.) Instead, to set the video
mode you load the information about the desired mode into the VIO
MODEINFO structure and call VioSetMode. If OS/2 can set the
screen to the mode you desire, VioSetMode does so and returns 0.

Otherwise it returns an error message. Approaching the video mode in
this way means that your program does not have to deal with mode
numbers. You need think only in terms of general descriptions.

The following program displays the status of the current video
mode, sets the screen to 43-line mode, and finally displays the status of
the 43-line mode. (This program requires an EGA or VGA adapter.)

I• This program displays the current screen mode and
sets the sc r een to 43-line mode.

•I

#define INCL SUB

void s howmode(vo i dl, setmode(voidl;

#include <os2.h>

main()
{

}

showmode ();
set mode();
showmode();

void showmode ()
{

}

VIOMOOEINFO m;

m.cb = sizeot m; I• must pass size of struct •/
VioGetMode((VIOMODEINFO tar •) &m, Ol;
m.tbType & ? printf(" graphics adapter\n">:

printf(" monochrome adapter\n"l;
m.fbType & 2 ? printfC"graphics mode\n") :

printf(" text mode\n " l;
m.fbType & 4 printf("no color burst\n") :

pr i nt f ("color burst\n");
printfC " Xd colors\n", m.color);
printfC"Xd columns Xd rows\n", m.col, m.rowl;
printtC"Xd h-res Xd v-res\n\n", m.hres, m.vres);

void set mode()
{

VIOMODEINFO m;

m.cb = sizeof m; /* must pass size of struct */

64 05/2 Programming: An Introduc tion

)

I* get the current mode setting */
VioGetMode((VIOMODEINFO far•) &m, 0);

/* now, set the mode to 43 Lines *'
m.fbType = 1;
m.row = 43;
m.h re s = 640;
m.vres = 350;
if(VioSetModeCCVIOMODEINFO far *) &m, 0))

pri ntf(" Incompatible mode change attempted.\n");

REQUESTING VIDEO ADAPTER
CHARACTERISTICS

Because of OS/2's virtual screen interface your program will rarely
need to know precisely what type of video hardware is actually
installed in the system. Should the need arise, however, 05/2 provides
VioGetConfig, which returns the hardware configuration of the video
adapter. Its prototype is

unsigned VioGetConfig(unsigned R, VIOCONFIGINFO far *data,
unsigned short handle);

where R is reserved and must be 0. The parameter data is a pointer to a
structure of type VIOCONFIGINFO, which holds the video adapter
configuration when VioGetConfig returns. The VIOCONFIGINFO
structure type is defined as

typedef struct _ VIOCONFIGINFO {

unsigned cb;

unsigned adapter;

unsigned display;

/* size of structure */

/* adapter type */

/* display type *I
unsigned cbMemory; /* size of adapter video RAM */

} VIOCONFIGINFO;

The cb variable must be loaded with the size of the structure prior to
the call to VioGetConfig. The adapter variable holds the type of video
adapter upon return. It is encoded like this:

Adapter Value

0
1
2
3
7

Adapter Type

Monochrome
CGA
EGA
VGA
8514A

The Screen Output Services 65

Upon return from the service the display variable holds a code indicat
ing the type of monitor attached to the system. It is encoded like this:

Display Value

0
1
2
3
4
5

Display Type

Monochrome
Color
Enhanced color
PS/2 8503 monochrome
PS/2 8513 color
PS/2 8514 color

Finally, the cbMemory variable holds the number of bytes of RAM
available on the video adapter.

The handle parameter must be 0.
The following program displays the video hardware configuration of

·your system:

I* Display the video display ~ardware configuration. •/

#define INCL SUB

#include <os2.h>

main()
{

VIOCONFIGINFO c;

c.cb = sizeof c; ·

VioGetConfigCO, CVIOCONFIGINFO far •) &c, 0);

switch(c.adapter) {
case 0 : printf("Monochrome ");

break;
case 1: printf("CGA ");

break;
case 2: printfC "E GA ");

break;
case 3: printf C"VGA ">;

break;

66 OS/2 Programming: An Int roduction

case 7: printf("8514A ");
}

printf ("adapter\n");

switch<c.display) {

}

case 0: printfC"Monochrome ");
break;

case 1 : printfC"Color ") ;
break ;

case 2: printfC"Enhanced color ");
brea k;

case 3: printf("PS/2 8503 monochrome ");
break;

case 4: printf("PS/2 8513 color ");
break ;

case 5: printf("PS/2 8514 color ");

printfC"display\n");

prin tf("X lu bytes of memory on video adapter\n", c.cbMemory);
}

READING CHARACTERS FROM
THE SCREEN

Because the screen is memory mapped, it is possible to read informa
tion from it. 05/2 provides two services for this purpose: VioRead
CellStr and VioReadCharStr. The prototypes of these functions are

unsigned VioReadCel!Str(char far *cellstr, unsigned far *length,
unsigned row, unsigned col, unsigned short handle);

unsigned VioReadCharStr(char far *str, unsigned far *length,
unsigned row, unsigned col, unsigned short handle);

VioReadCellStr reads both character and attribute information from
the screen. VioReadCharStr reads only characters. Here cellstr is a point
er to an array that holds t he cha racter and attribute information . The
sir parameter is a pointer t o a string that holds characters only. For
both functions, length is the leng th of the buffer in bytes. (Remember
that cells require two bytes per entry.) The location of the screen from
which these services begin reading information is specified by row and
col, and, as always, handle must be 0.

Information is read from left to right and top to bottom until the
specified number of screen locations has been read. This means, for
example, that you can read the entire screen using only one VioRead
CharStr call.

r
The Screen Output Services 67

This program uses VioReadCellStr and VioWrtCellStr to move
what is on the top half of the screen to the bottom. It operates by
copying the top half of the screen into a buffer, clearing the screen, and
then copying the contents of the buffer to the bottom half of the
screen. You will be surprised by how fast the VIO services accomplish
their jobs.

I• This program uses VioReadCellStr end VioWrtCellStr to
what is on the top half of the screen to the bottom .
*/

#define INC L SUB

include <os2 . h>

void clrscrO ;

main()
{

unsigned size;
char buH2000J ;

size = 1920 ; /* 80 * 12 * 2 */

move

if(VioReadCellStr(Cchar far •J buf , (unsigned far •J &size,
O, O, OJJ

}

printf("error in VioReadCeLLStr call\n");
clrscrO;
VioWrtCellStrCCchar far •J but, size, 12, O, OJ;

/*A simple way to c l ear the screen by filling
it with spaces .

*/
void clrscrO
{

char space[2J ;

space[OJ = ' ';
space[1J = 7;
VioScrollUpCO, 0, 24, 79 , -1, (char far *) space , OJ;

}

A somewhat more useful program can be created by u sing Vio
ReadCellStr. The program that follows saves or restores the screen to
or from a disk file . It recognizes the two command line paramete rs: 5
and R. Assuming that the program is called SAVE, SAVE S saves the
screen and SAVE R restores it. T he contents of the screen are st ored in
a file called SCREEN. Notice that the program first calls VioGetMode
to determine the dimensions of the screen so that it knows how big to
make the buffer that holds the screen. Because of the virtualization of
the screen interface, you can write programs that operate correctly in a

68 OS/2 Programming: An Introduction

wide variety of video modes. In this case the program automatically
figures out how big to make the buffer by calling VioGetMode and
using the row and column dimensions.

/* This program uses VioReadCellStr and VioWrtCellStr
to save and restore the screen.

*/

#define INCL SUB

#include <os2.h>
#include <stdlib.h>
#include <stdio.h>

void clrscrO ;
void sa ve(char •buf, unsigne d size>;
void restore(char •buf, unsigned size> ;
unsi g ned checkmode(vo id >;

main(int argc, char •argv[J)
{

}

unsigned size ;
char *buf;

if(argc!=2> {
printf("usage: scr save/restore\n") ;
ex it(1> ;

}

size = checkmode(); /* see how big a buffer to get */

if(!(buf = (char•> malloc(size))) {
print f ("allocation error");
exitC1>;

}

if (tolower(•a rg v [1J>=='s ' t {

}

if (VioReadCellStr((char far •> buf, (unsigned far *) &size,
o, o, 0))

p rintf(" er ror in VioReadCellStr call\n">;
saveCbuf, size);

if(tolo we r(• argv [1J)== 'r') {
restore(buf, size);
clrscrO;
VioWrtCellStr((char far *) buf, size, O, O, O> ;

}

I* A simple way to clear t he scr ee n by filling
it with spaces.

* I
void clrscr()
{

c har space[2J;

space [OJ
space [1] 7;

.. ,

The Screen Output Services 69

VioScroLLUp(O, O, 24 , 79, -1, (char far *) space, 0);
}

unsigned checkmode()
{

}

struct VIOMODEINFO m;

m.cb = sizeof m; /* must pass siz e of struct */
VioGetMode((struct VIOMODEINFO fa r *) &m, 0);
re t urn m. col*m.row*2;

/*Save the screen buffer to a disk file called SCREEN.*/
void save(char •buf, unsigned size)
{

}

FILE *fp;

i f(! (fp=fopen("screen", " wb"))) {
printf("cannot open SCREEN file\n") ;
exit(1);

}

fwrite(buf, size, 1 , fp);
fc Lose (fp) ;

I* Restore the previous contents of the screen . */
void restore<char •buf, unsigned size)
{

}

FILE *fp;

if(1 (fp=fopen("screen" , "rb"))) {
printf("cannot open SCREEN file\n");
exit<1l;

}

fread(buf, size, 1, fp);
f close (fp);

ACCESSING THE LOGICAL
VIDEO BUFFER

So far the screen services you h ave been using have been complet ely
under the control of OS/2. When you performed scree n output, OS/2
intercepted your outpu t, placed it into a logical video buffer (LVB), and
actually displayed the contents of the buffer on the screen as n eed ed
and allowable (which is generally what you want to happen) . However,
your program can directly access the logica l video buffer and manually
control when the buffer is displayed on the screen (assuming that the
process that manipulates the LVB is in possession of the screen) . Doing
this still leaves OS/2 in control-just not as completely. To accomplish

70 OS/2 Programming: An Introduction

these operations, 05/2 supplies the functions VioGetBuf and Vio
ShowBuf. Their prototypes are

unsigned VioGetBuf(char far •bufptr, unsigned far • size, unsigned
short handle);

unsigned VioShowBuf(unsigned offset, unsigned size, unsigned
short handle);

VioGetBuf returns a far pointer, in bufptr, to the LVB owned by the
calling process. On return the parameter size holds the size, in bytes, of
the buffer. As always, handle is 0.

VioShowBuf u pdates the physical display buffer with the current
contents of LVB beginning with the offset byte from the beginning of
the buffer and extending for size bytes. The handle parameter must be 0.

The main (perhaps only) reason that you might want to access the
LVB directly and manually control when that buffer is copied t o the
physical video buffer is to allow your program to construct full or par
tial screens in the background, perhaps using a separate thread of exe
cution, and then very rapidly swap them into view. To see how this
process works, this simple program fills the first 1000-character posi
tions in the LVB with Xs, waits for a key press, and then displays the
logical buffer. You will be amazed at how fast the screen is updated.

I• This program demon strates the use of·VioGetBuf and
VioShowBuf. The se services allow you to construct a
screen i n the background and then display it.

•I

#define INCL SUB

#inc lu de <os2.h>

main()
{

uns i gned size, i ;
c har far •p;

I• get the address of the l ogical video buff e r •/
Vi oGetBuf((unsigned l o ng fa r •) &p, (un signed far •) &size, O>;

I• Pu t 1000 Xs into the LV B starting at the upper left
corner . •I

for(i=O; i<1000; i++) {
*P = 'X';
p+=2; I• sk ip pass attri bu te

}
byte •/

}

The Screen Output Services 71

I* wait for keyp res s and then show image •I
getchO;
VioShowBuf<O, size, O>;
getchO;

CURSOR AND FONTS

It is not uncommon for a program to need to know the type and size of
the current text font or cursor. Sometimes it is also desirable to· change
the size and shape of the cursor, perhaps to signal the need for special
input by the user. This section will examine some of the services that
make these types of manipulations possible.

VioGetFont

OS/2 provides two services that can examine and set the current text
font of the system. They are called VioGetFont and VioSetFont,
respectively. While the subject of generating and using custom fonts is
beyond the scope of this book, the VioGetFont service has several
important uses that apply to a wide variety of programming situations.
Its prototype is

unsigned VioGetFont(VIOFONTINFO font, unsigned short han
dle);

The parameter font points to a structure of type VIOFONTINFO,
which holds information about the font upon return from the call. The
handle parameter must be 0.

The structure type VIOFONTINFO is defined as

typedef struct _ VIOFONTINFO {

unsigned cb; /* length of structure */

unsigned type; /* current or ROM font? */

unsigned cxCell; /* number of horizontal pels in a
character cell */

unsigned cyCell; /* number of vertical pels in a
character cell */

char far *pbData; /* pointer to buffer which will
hold the font table */

72 05/2 Programming: An Introduction

unsigned cbData; /* number of bytes in table */

} VIOFONTINFO;

If type is 0, the characteris tics of the current RAM font are obtained. If
it is 1, the information pertaining to the ROM font is returned. The
fields of most interest for general use are cxCell and cyCell because
they describe the dimensions of a character cell. You will soon see how
to put this information to work.

VioGetCurType and
VioSetCurType

As you probably know, most PCs do not have a fixed, predefined cur
sor. Instead the cursor is dynamically created and maintained by the
operating system. In OS/2 you can examine the current size of the
cursor and set its size as you desire. To examine the current dimen
sions of the cursor use VioGetCurType, whose prototype is shown
here:

unsigned VioGetCurType(VIOCURSORINFO far *cdata, unsigned
short handle);

The handle parameter must be 0. The cdata parameter points to a struc
ture of type VIOCURSORINFO that will hold the current cursor
information when the service returns. It is defined like this:

typedef struct _ VIOCURSORINFO {

unsigned yStart; /* top line of cursor * /

unsigned cEnd; /* bottom line of cursor */

unsigned ex; /* width of cursor */

unsigned attr; /* cursor attribute */

} VIOCURSORINFO;

After the call the variable yStart holds the number of the line, from the
top of a cell, where the cursor's top line is located. The top line in a cell
is always 0, the bot tom line is always N- 1, where N is the number of
vertical pels in a cell. The cEnd variable holds the number of the bot
tom line of the cursor. The ex variable holds the width, in columns, of

The Screen Output Services 73

the cursor. For text modes, this value is always 1. The attr variable

holds the cursor attributes. At the time of this writing, the value -I

means that the cursor is hidden. Any other value means that the cursor

is displayed normally.
To set the size and type of a cursor, use VioSetCurType, which has

this prototype:

unsigned VioSetCurType(VIOCURSORINFO far *cdata, unsigned

short handle);

w here the parameters have the same meaning as)ust described for

VioGetCurType. To change the way the cursor looks, simply load new

values into the structure variables pointed to by cdafa and call

VioSetCurType.
The following example .program illustrates how to examine the cur

rent font and set the cursor. Inside the function prompt() it makes use

of the fact that the size of a character cell also limits the size of the text

cursor. It uses this information to construct a special, custom cursor

that is a square block equidistant from the top and bottom of the cell.

This function also illustrates how to update the cursor manually so

that it coincides with the last write operation.

I• This program demonstrates ho w color ca n be used
to highlight a prompting me ssage using a custom cursor.

*/

#define INCL SUB

#include <os2. h>

un signed prompt(char •, unsigned, unsigned, unsi gned char);

I• define macro
#define BLUE
#define GREEN
#define RED
#define INT ENSE
#define B BLUE
#define 8-GREEN
#define 8-RED
#define BLINK

main()
{

names
1
2
4
8
16
32
64
128

unsigned res·u Lt;

for the colors codes *I

result = prompt("Enter a Number: ", 10, D, GREEN I BLINK I B_RED>;

printf("result is Xd\n", result);
}

74 OS/2 Programming: An Introduction

/* Display a p rompt at the specif i ed location using the
specified video attribute and return an integer response.

•I
unsigned prompt(char •s, unsigned row, unsigned col,

unsigned char attr)
{

}

un signed r esu l t;
VIOCURSORINFO c;
VIOFONTI NFO f;
unsigned gap;

I* show the prompt •/
VioWrtCharStrAtt((c har far *) s, strlen(s},

row , col, (unsigned char far *) &attr, O>;
I* move the cursor to the appropriate location •/
VioSetCurPos(row, col+st rlen(s} , 0);

I* see how tall current fon t is •/
f.cb = sizeof (VIOFONTINFO);
f.type = O; I• get current font */
f.pbData = <void far •) O;
f.cbData = O;
VioGetfont((VIOFONTINFO far *) &f, 0) ;
I* now , compute gap •I
gap = f .cy Cell I 3;

/* make a custom cursor whic h is a square block t hat is
situated in t he middle of the cel l */

c.yStart =: gap;
c.cEnd = f.cyCe ll - gap ;
c.cx = 1;
c.attr = O;
VioSetCurType(CVIOC URSORINFO far *) &c, 0) ;

scanf("Xd", &resu l t);
return result;

VioPopUp AND VioEndPopUp

As has been stat ed a few times in this chapter, output is sent to the
physical screen only when the process sending the output is the one
shown on the screen . However, it may have occurred to you that a
background process may sometimes need to access the screen for a
short period of time - to report an error, for example. There must be
some method by which the background process can request access to
the screen. In a related situation, it is possible to detach a program
from the command processor. The program then runs in background
mode . However, should the detached process require the screen, some
means must exist for it to demand temporary use of the screen. To

The Screen Output Services 75

meet these needs 05/2 provides the VioPopUp and VioEndPopUp ser
vices. VioPopUp is used to request temporary access to the screen (and
keyboard). VioEndPopUp releases the console and causes 05/2 to

resume normal operation. Their prototypes are

unsigned VioPopUp(unsigned far *wait, unsigned short handle);

unsigned VioEndPopUp(unsigned short handle);

Here, handle must be 0. The value pointed to by wait determines what
the process issuing the VioPopUp does if the screen is not immediately
available. If bit 0 is set, the process waits until it can access the screen;

if bit 0 is cleared, the process continues without access to the screen.
The rest of the bits in the value pointed to by wait are reserved and
should be set to 0.

It is important to understand that when a VioPopUp call is success
ful in gaining access to the screen, it is actually gaining access to, and is
in complete control of, the screen, the keyboard, and the mouse. That
is, it takes over the entire console environment.

When a background or detached process requires the console, it

first calls VioPopUp. It then does whatever it needs to do and finishes
by calling VioEndPopUp to return control of the console to 05/2. In
principle no pop-up should dominate the screen for very long because it

disrupts the normal operation of the machine.
The following program shows how a program can request the

screen. It begins by sleeping for 5000 milliseconds, using the DosSleep
command, which tells the process to suspend execution for the speci
fied number of milliseconds. (DosSleep will be discussed at greater
length later.) After the specified period of time, the process resumes,
issues the VioPopUp call, prints the message "Hello-press a key," and
then terminates with a call to VioEndPopUp. Assuming the name of
the program is PU, the best way to see this program in action is to

execute it as a detached process using this command line:

DETACH PU

Here is the program:

/*This program illustrates the VioPopUp and
VioEndPopUp services.

*'

76 OS/2 Programming: An Introduction

#define INC L SUB
#define INCL-DOS

#include <os2.h>

main()
{

)

unsigned wa it ;

DosSleep(5000L); I• sleep for a wh ile •/

wa it = 1;

I• demand the screen and wait for it •/
VioPopUp((uns i gned far •) &wait, 0) ;

printfC"he l lo - press a key");
getchO;

I• release the sc r een •/
VioEndPopUp(Q);

VioPopUps are exceptions to the rule when it comes to the way
05/2 handles the console. First, while a pop-up is active, the user can
not switch to another process or to an upper-level shell. The pop-up
owns the screen. Second, only one pop-up can be active at any one
time. A second process requesting a pop-up will be suspended. Third,
when a pop-up activates, the screen is automatically placed into 80 by
25 text mode . When the pop-up ends, the screen is returned to its
previous mode.

When a VioPopUp is active, you can use only the VIO functions
shown here. (The others will not work and will return an error.)

VioEndPopUp

VioGetAnsi

VioGetCurPos

VioGetCurType

VioGetMode

VioScrollDn

VioScrollLf

VioScrollRt

VioScrollUp

VioSetCurPos

Vio WrtCellStr

Vio WrtCharStr

Vio WrtCharStr Attr

VioWrtNAttr

VioWrtNCell

VioWrtNChar

VioWrtTTy

The Screen Outpu t Services 77

As you will see in a later chapter, the VioPopUp and VioEndPopUp
function s are very important in 05/2 because they help support OS/2's
version of the popular DOS Terminate and Stay-Resident utility programs.

4
THE KEYBOARD SERVICES

Because most programs written for personal computers are interactive,
the API keyboard services are very important. This chapter examines
several of OS/2's keyboard input routines. All the keyboard services
begin with the characters Kbd and are sometimes referred to as the
KBD services. The 16 keyboard services are shown and briefly described
in Table 4-1.

Several of the KBD services overlap keyboard input functions pro
vided by high-level languages such as C. For very simple, "generic"
keyboard input, it is fine to use the C standard library functions. To
gain full use of the keyboard, however, you will need to use the OSI 2
services .

This chapter begins with a short discussion of how the keyboard
generates signals and how these signals are processed. It then exa mines
the most common keyboard services.

SCAN AND CHARACTER CODES

You might be surprised to learn that a PC keyboard does not generate
the ASCII codes for the le t ters shown on the keys. The keyboard actu
a lly has no "knowledge" of what characters are displayed on its keys.
Instead, each time a key is pressed, the keyboard generates a value that
corresponds to the key's position on the keyboard. This value is called a
scan code or, occas ionally, a posilion code. The scan codes associated with
each key on the IBM PS/2-compatible enhanced keyboard are shown in
Figure 4-1. Notice that no scan code has the value 0.

You might be wondering why the keyboard generates scan codes
instead of the actual ASCII characters that correspond to the keys. The
answer is that designing a keyboard this way makes it flexible, that is,

79

80 OS/2 Programming: An Introduction

Table 4-1. The Keyboard Services

Service Function

KbdCharln

KbdC!ose
KbdDeRegister
KbdFlushBuffer
KbdFreeFocus
KbdGetFocus
KbdGetStatus
KbdOpen
KbdPeek

KbdRegister
KbdSetFgnd
Kbd SetStatus
KbdShelllnit
Kbd String In
KbdSynch
KbdXlate

Reads a character and scan code from the key
board buffer
Closes the logical keyboard
Deactivates an alternative set of keyboard services
Flushes keyboard input buffer
Releases the keyboard
Acquires the keyboard
Reads keyboard status
Opens a logical keyboard
Examines but doesn't remove a character and
scan code from the keyboard buffer
Activates an alternative set of keyboard services
Sets foreground keyboard priority
Sets keyboard status
Initializes the keyboard shell
Reads a string of characters from the keyboard
Synchronizes access to the keyboard
Translates a scan code into a character code

usable in the widest variety of situations. Many foreign lang uages use
some characters that are different from those used by English, and the
layout of the keyboard in some countries is slightly different from the
U.S. version. Some people prefer a keyboard layout called th e Dvorak
keyboard, which is supposed to increase typing efficie ncy. By generat
ing scan codes instead of ASCII character codes OS/2 can translate
those codes any way it sees fit. In other words, a given scan code can be
mapped ont o the ASCII code equivalent required by the situation.

What Happens When You Press a Key

Each time you press a key, the keyboard generates an interrupt in the
main system unit. When this happens, OS/2 temporarily stops what it
is doing and executes a routine that reads the scan code of the key you
pressed. Each time you release a key, another interrupt is generated
and a special release code is sent to the system unit. The release code is

a sss8 8B88 rssssJ rsssJ
GGGGGGG8888880 888 8888
SBBBBB8888BB8~ 888 8888
EJJ888888888BBC!J 888
r:E:]8B8888B8B8~ 57 ~ 8 8888
8nG~ 81 ~GnG 888 08

Figure 4-1. The keyboard scan codes for the PS/ 2-compatible en hanced keyboard

...,
:r
(!)

:;>'\
(!)

'<
er · o
Ill ...
0...

)f .
...
< ;::;·
(!)

"'
al

82 OS/2 Programming : An Introduction

the scan code plus 128. In some computer literature the key press and
release interrupts are called make and break interrupts.

What 05/2 Does with the Scan Code

As you n ow know, the keyboard sends to the system unit only a scan
code, which is essentially a key position code. 05/2 contains a routine
that translates this scan code into a character code. The input routine
uses an ordered table of character codes that correspond to the scan
codes. For example, the first entry in the table contains the character
code for the ESC key, which generates a scan code of 1. The input routine
searches this table to match the scan code with its proper character code .
This character table is called the character translation table. Once the search is
complete, 05/2 puts the scan code and the ASCII character code into the
keyboard buffer, where it stays until your program requests keyboard
information.

The PC keyboard contains several keys for which there are no ASCII
ch aracter equivalents, for example, the arrow keys and the function keys .
When one of these keys is looked up in the character table, its correspond
ing character value is 0 (or EOH in a few cases), which indicates that a
non-ASCII key has been pressed. When the character code is 0, your pro
gram must examine the scan code to determine which key was pressed.

The only time the character code is EOH is when you press a key
unique to the PS/2 enhanced keyboard. For example, arrow keys not on the
numeric keyboard generate an EOH for their character codes although
their scan codes are the same as those on the numeric keyboard . By leaving
the scan codes the same, but distinguishing among them with the charac
ter codes, your software can tell them apart. The same is true of the
HOME, PGUP, END, PGDN, INS, and DEL keys, which are found on both
the numeric keypad and elsewhere on an enhanced keyboard.

Most high-level language keyboard input functions discard the scan
code and use only the character code. This means that you generally
cannot use these functions to read special keys, such as the function or
arrow keys. You will find the KBD services of 05/2 particularly useful
for this reason. (Remember that when your programs need only char
acter input, it is fine to use a high-level language's standard input func
tions. However, for high-performance, screen-oriented programs, you
will probably want to be able to recognize the various special keys.)

The Keyboard Services 83

KEYBOARD SERIALIZATION

A program can contain multiple threads, but 05/2 cannot automati

cally keep the keyboard requests for separate programs from becoming

mixed and confused when two or more threads in the same program

make simultaneous keyboard requests. It is up to you to prevent the

input for one thread from becoming mixed with input for another

thread. You have to make sure that each thread requesting keyboard

input has sole use of the keyboard. This means that access to the key

board must be serialiud: Each request for the keyboard must wait until

the previous request has released it. 05/2 has several services that

provide for resource serialization, but discussion of these services is

deferred until later in this book when multitasking issues are discussed .

(You need to understand more about 05/2 before we can develop multi

thread programs to illustrate the serialization concepts.)

KEYBOARD HANDLES AND
LOGICAL KEYBOARDS

Each KBD routine has as one of its parameters the handle of the key

board on which it is operating. Unlike the screen services, in which the

handle was always 0 (at least for 05/2 version 1 .0), the keyboard func

tions can operate on logical keyboards with their own keyboard buffers.

This means that the keyboard routines can take handle values other

than 0. These logical keyboards may be connected to the physical key

board for only short periods of time. For example, a multithread pro

cess may have several logical keyboards sharing ~ccess to the physical

keyboard. When a logical keyboard is bound to the physical keyboard, it

is said to be the focus of the physical keyboard.
The physical keyboard is always referred to by using a handle value

of 0. The examples in this chapter use this handle. If your application

does not use multiple threads, you should use 0 for the keyboard

handle.

COOKED VERSUS RAW
KEYBOARD INPUT MODES

OS/2 supports two separate keyboard input modes. The default, and by

far the most common, is called cooked mode. Cooked mode is essentially

84 OS/2 Programming: An Introduction

ASCII mode. In this mode OS/2 recognizes the carriage return charac
ter as an end-of-line character rather than a character to be passed
back from the keyboard, for example. In other words, in cooked mode
OS/2 is free to perform various character translations. The opposite of
cooked is raw mode, in which each character pressed on the keyboard is
actually entered into the keyboard buffer without any modifications.
You will use cooked mode for most applications.

KbdCharln

Perhaps the most important KBD service is KbdCharln, which returns
the character and scan code of the last key pressed, along with some
other information. You may be surprised to see how versatile this ser
vice is. Its prototype is

unsigned KbdCharln(KBDKEYINFO far *key, unsigned nowait,
unsigned handle);

where key is a pointer to a structure of type KBDKEYINFO, which is
defined as follows:

typedef struct - KBDKEYINFO {

unsigned char chChar;

unsigned char chScan;

/* character code */

/* scan code */

unsigned char fbStatus; /* character status */

unsigned char bNlsShift; /* reserved */

unsigned fsState;

unsigned long time;

KBDKEYINFO;

/* shift key status */

/* time when key pressed */

Upon return from the call, the chChar field contains the ASCII
character code from the key pressed, unless it was a non-ASCII key,
such as an arrow key. For special keys, this field will be 0 or EOH. The
chScan field holds the scan code of the key.

The fbStatus field is encoded as follows. If bit 0 is set, the shift
status is returned but no key is returned. Bits 1 through 4 are
reserved . Bit 5 requests immediate conversion. Bits 6 and 7 are
encoded as shown in the following table.

The Keyboard Services 85

Bit 6 Bit 7 Meaning

0 O Undefined
1 O Final character of 2-byte character; no keypress still pending
O 1 Interim character (keypress)
1 1 Final character of 2-byte character; keypress still pending

Do not be confused by this table. Some foreign languages, such as
Japanese, have characters large enough to require 2-byte character
sets. When these sets are in use, your program needs to know whether
it is reading the beginning or ending character of a 2-byte set. However,
for English language use, you do not need to worry about this. For
normal 1-byte character sets, the only bit that is important is 6. When
bit 6 is set, a key is waiting to be read, that is, a key has been pressed.
When bit 6 is cleared, no keys are waiting in the keyboard buffer.

The fsState field returns the states of the various shift keys. In this
context the term shift key refers to any key that changes the state of the
keyboard. The states of the shift keys are encoded into fsState as
shown in Table 4-2.

Table 4-2. The Encoding of the Shift Key Status into the fsState Field

Bit Meaning When Set

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

Right SHIFT key pressed
Left SHIFT key pressed
A CTRL key pressed
An ALT key pressed
SCROLL LOCK on
NUM LOCK on
CAPS LOCK o n
INS on
Left CTRL key pressed
Left ALT key pressed
Right CTRL key pressed
Right ALT key pressed
SCROLL LOCK pressed
NUM LOCK pressed
CAPS LOCK pressed
SYS RQ key pressed

86 OS/2 Programming: An Introduction

The value of the nowait parameter determines whether KbdCharln
waits until a key is pressed (i.e., a key is in the buffer) or returns
immediately. If nowaif is 0, KbdCharln waits until a key is pressed; if
nowait is 1, KbdCharln returns without a character if none are in the
keyboard buffer.

For a simple first example of KbdCharln, this program waits for a
keypress and displays the character plus the time (in milliseconds) at
which it was pressed:

/* Reading a key using KbdCharln. */

#define INCL SUB
#include <os2. h>

main()
{

}

KBDKEYINFO k;

I* call KbdCharln and wait for a keypress •I
KbdCharlnCCKBDKEYINFO far*) &k, O, Ol;
printf C"You pressed: Xc\n", k.chChar);

/* show the time */
printf("at Xld \n", k.time>;

There are a few important points to remember about the
KbdCharln service:

1. It does not echo the characters to the screen. Your program will
have to do this manually if echoing is desired .

2. If you are reading 2-byte character set codes, you will have to call
KbdCharln twice.

3. Remember that when a special key is pressed, the value of chChar is
o (or EoH).

Using KbdCharln to Check
for a Keypress

As was mentioned in the description of KbdCharln, you can determine
if a key has been pressed by examining the fbStatus fie ld of the key
information structure. If bit 6 is set, a key is waiting in the keyboard
buffer. If bit 6 is cleared, no key is waiting; hence, no key has been
pressed. The following program is a modification of the WHOOP pro-

The Keyboard Services 87

gram shown in Chapter 2. Here the standard C function kbhit() has
been replaced by a call to KbdCharln followed by a test on bit 6 of the
fbStatus field . Notice that KbdCharln is called with the nowail parame
ter set to 1, indicating that the service is not to wait for a keypress but
to return the status information at once.

I* Checking for a keypress using KbdCharln. •/

#defi ne INC L SUB
#include <osZ.h>

main()
{

}

KBDKEYINFO k;
char c[2J;
reg i ster int i ;

printfC"Press any key to hear sounds.\n">;

I* wait for a keypress •I
KbdC harlnCCKBDKEYI NFO f ar •) &k, O, Ol;

printf("Press any key to termina t e.\n");
forC;;> {

}

for(i=100; i<2500; i+ =50) {
oosBeepCi, 1);

}

I• don't wait fo r keypress •I
KbdCharlnCCKBDKEYINFO far •) &k, 1, 0) ;
I• see if a key has been pressed •I
ifCk.fbStatus & 64) break; /• stop on keypress •I

ifCk . fbStatus && 64) break; /* stop if key pr esse d •I

T here is another way to see if there is a key waiting to be read from
the keyboard buffer.

Showing the Status of the Shift Keys

The fsState field of the character information structure holds the cur
re nt status of the shift keys. It also indicates the state of the toggle
keys: NUM LOCK, CAPS LOCK, and SCROLL LOCK. The toggle keys control
internal flags that keep their related functions in one state or another,
changing with each keypress. The following program displays the shift keys
that are pressed and the state of the toggle keys. To use the progra m, press
down a shift key and then strike a reg ular key. The program shows which
shift key you pressed.

88 05/2 Programming: An Introduction

I• Display the status of the shift keys. •/

#define INCL SUB
#include <os2.h>

void show_shift status(unsigned s tatu s>;

main()
{

}

KBDKEYINFO k;
char c[2J;

printf("Press ' q to terminate.\n");
for(;;> {

}

I* wait for keypress •I
KbdCharln((KBDKEYINFO far *) &k, O, 0) ;

show_shift_s tatus(k.fsState>;

if(k.chChar=='q') break; /* stop on 'q' •/

I• Display the shift status of the keyboard. •I
void show shift status<unsigned status)
{ -

}

printf ("\n"l;
if(status & 1) printfC"Right sh if t pressed\n ");
if(status & 2) printf("Left shift pressed\n");
if(status & 4) printfC"A control key p re ssed\n");
if(status & 8) printf("An Alt key pressed \n">;
if(status & 16> printf("Scroll Lock on\n"l;
if(status & 32) printfC"Num Loc k on\n");
if(status & 64) printfC"Ca ps Lock on\n");
ifCstatus & 128) printf("lns pressed\n");
if(status & 256) printf("Left Control pressed\n">;
if(status & 512) printf("Left Alt key pressed\n");
if (status & 1024) printf("Right Control key pressed\n"l;
ifCstatus & 2048) printfC"Right Alt key pressed\n");
if (status & 4096) printf("Scroll Lock pressed\n">;
ifCstatus & 8192) printf("Num lock pressed\n");
if(status & 16384) printf("Caps lock pressed\n"l;
if(status & 32768) printf C"SysRq key pressed\n\n"l;

Checking for Scan Codes

If the character code returned by KbdCharln is either 0 or EOH, the
key pressed is not a standard ASCII key but a special key. The following
program illustrates how to check for ASCII and non-ASCII keys. It
waits for a keypress and prints either the character, if the key is ASCII,
or its scan code if the key is non-ASCII. It also tells whether the key is
unique to the enhanced keyboard.

The Keyboard Services 89

/* Display character or scan code fur a key. •I

#define INCL SUB
#include <os2.h>

main()
{

}

KBDKEYINFO k;
char c[2J;

/* wait for a keypress •I
KbdCharln((KBDKEYINFO far *) &k, 0 , Ol;

ifC!k.chChar)
printf("Special key; scan code is Xd", k.chScan>;

else if (k.chChar==OxEO>
printf("Enhance KB specia l key; scan code is Xd", k.chScan>;

else printf("Key is ASCII cha r Xe", k.chChar>;

You can use this program to determine the scan codes of the special
keys.

You can use the scan codes returned by the arrow keys (and their
diagonal neighbors on the numeric keypad) to control the movement of
the cursor in your programs. For example, you might use the arrow
keys to move between menu entries. A short program in this section
illustrates some of the basic concepts behind controlling the cursor
with the arrow keys. The program allows you to "drive" the cursor
around on the screen using the arrow keys and the keys on the diagonal
of the numeric keypad. The scan codes of the keys on the keypad are
shown here with the direction they will move the cursor.

71 72 73

~t/
75- na ---77

/i~
79 80 81

The program creates and initializes two variables, r and c, which
hold the current row and column coordinates of the cursor. Each time
you press an arrow key, these counters are updated and the cursor is
moved to its new position. Notice that out-of-range conditions are
tested and corrected before the cursor is moved. Also, this program
assumes that the computer is in the default text mode 80 by 25.

90 05/2 Programming: An Introduction

I* This program uses the arrow keys to "drive" the cursor
around on the screen.

*I

#define INCL SUS
#include <os~.h>

void clrscr(void);

main()
<

}

KSDKEYINFO k;
signed r, c;

r " O; c = O;
c l rscrO;

VioSetCurPos<12, 30, O>;
printf("Press 'q' to quit">;

VioSetCurPos<O, O, O>;
do <

I• wait for a keypress •/
KbdCharln((KBDKEYINFO far *) &k, O, O>;

switchCk.chScan> {

}

case 72: r -= 1; /• up •/
break;

case 80: r += 1 ; I• down •/
break;

case 77: c += 1 ; I• right •/
break;

case 75: c -= 1; I• left •I
break;

case 71: r 1; I• up , left •/
c -= 1;
break;

case 73: r -= 1; I• up, right •/
c += 1 ;
break;

case 79: r += 1; I• down, lef t •/
c -= 1;
break;

case 81: r += 1; /* down, ri ght •/
c += 1;

I* disallow out-of-range coo rdinate s •/
if(c < 0) c = O;
if (c > 79) c = 79;
if(r < 0) r = O;
if(r > 24) r = 24;

I• move the cursor •I
VioS etCurPos<r, c, O>;

} while(k.chChar != 'q');

I• A simple way to c l ear the screen by filling
it with spaces.

•I

void clrscrO
{

char space[2J;

space[OJ = ' ' ;
space[1J = 7;

The Keyboard Services 91

VioScroLLUp(O, O, 24, 79, -1, (char far *) space, O>;
}

USING KbdPeek

In the previous section you saw how KbdCharln could be used to
return information about the keyboard and the status of the keyboard
buffer. For example, it was used to determine whether a 'key had been
pressed. However, there is one drawback to using KbdCharln to inter
rogate the status of the keyboard: In the process of determining the
keyboard status it also reads any key waiting in the buffer. This is fine
if you want that key read, but it is a problem when all you want to do is
determine the status of the keyboard. To solve this problem OS/2 sup
plies the function KbdPeek, which returns the same status information
as KbdCharln but does not remove the character or scan code from the
keyboard buffer. The prototype for KbdPeek is

unsigned KbdPeek(KBDKEYINFO far *key, unsigned handle);

(See the description of KbdCharln for a complete description of the
KBDKEYINFO structure.)

You can use KbdPeek to construct various functions that describe
the state of the keyboard. One obviously useful function is called key
press(). It returns true if a key is waiting in the buffer and false other
w ise. The keypress() function is shown here:

I* Return 1 it key pressed; 0 otherwise. */
keypress ()
{

}

KBDKEYINFO k;

I* check for keypress */
KbdPeek((KBDKEYINFO tar *) &k, O>;
return k.tbStatus & 64;

By using keypress() you can rewrite the WHOOP program to use this
function rather than calling KbdCharln to see when a key is pressed.

92 OS/2 Programming: An Introduction

The new version is shown here:

I• Checking for a keypress using KbdPeek. */

#define INC L SUB
#inc l ude <os2.h>

int keypress(void);

main()
{

}

KBDKEYINFO k;
reg i ster int i ;

printf("Press any key to hear sounds.\n");

I* wait for a keypress and discard character */
KbdCharln(CKBOKEYINFO far*) &k, O, 0);

printfC"Press any key to terminate.\n");
tor<;;> {

}

for(i =100; i<2500; i+=50) {
DosBeepCi, 1l;
i f Ckeypress()) break;

}

if(keypress()) break; I* stop if key pressed */

/* Return 1 i f keypressed; 0 otherwise. •I
keypressO
{

}

KBDKEYINFO k;
I* check for keypress */

KbdPeek((KBDKEYINFO far *) &k, 0);
return k.fbStatus & 64;

Notice that in the main() function, the KbdCharln service is still used
to read the initial keypress. Why? The reason is that KbdPeek does not
remove the character from the key buffer or reset the buffer in any
way. Once a key is pressed (if it is not removed), repeated calls to
KbdPeek will return that a character is pending in the keyboard buffer.
Had the character not been read, the calls to keypress() later in main()
would have returned true, and the program would have terminated
immediately.

Although most C compilers support the more-or-less standard
function kbhit(), the advantage of using KbdPeek to determine key
board status is that it returns additional information about the state of
the keyboard buffer.

CLEARING THE KEYBOARD
BUFFER

The Keyboard Services 93

Your program will sometimes want to ignore the existing contents of
the keyboard buffer and start fresh. For example, an error condition
may require the user to enter a response. lf the error occurs in the
middle of some other interactive operation, there may be characters
already waiting in the keyboard buffer. For the user to respond cor
rectly to the error condition, the contents of the keyboard buffer must
be cleared. And it is sometimes a good idea to clear any characters that
may be in the keyboard buffer before highly critical input is t o be read
to ensure that no "garbage" characters (caused by the user absent
mindedly tapping on the keyboard) are accidentally read. The act of
clearing the keyboard buffer (or just about any type of buffer, for that
matter) is called flushing the buffer. To accomplish this 05/2 provides
the KbdFlushBuffer service. Its prototype is

unsigned KbdFlushBuffer(unsigned handle);

A call to KbdFlushBuffer clears the keyboard buffer and resets the
appropriate status flags to indicate this fact.

For example, it is not a bad idea to clear the keyboard buffer when a
program begins execution. This fragment shows how this can be done
by using KbdFlushBuffer:

.
main()

{

KbdFLushBuffer(Q);

USING KbdGetStatus AND
KbdSetStatus

Both KbdCharln and KbdPeek return status information about the
state of the keyboard buffer. However, your program might need to
know other pieces of information that are not returned by these ser
vices. For example, your program may need to operate d ifferently when

94 OS/2 Programming: An Introduction

the keyboard is in raw rather than cooked mode. To fill this need, OS/2
supplies the KbdGetStatus service, which returns a complete status
packet . Its prototype is

unsigned KbdGetStatus(KBDINFO ~ar *info, unsigned handle);

where info is a pointer to a structure of t ype KBDINFO, which is
defined like this:

typedef struct - KBDINFO {

unsigned cb; /* size of structure */

unsigned fsMask; /* modified states */

unsigned chTurnAround; /* EOL char */

unsigned fslnterim; /* interim char flags */

unsigned fsState; /* shift key states */

J KBDINFO;

The cb field must hold the size of the structure before the call to
KbdGetStatus is made. The fsMask shows the cur rent input mode
(cooked or raw) and whether keystrokes are automatically echoed to
the screen. It also shows which KBD subsystem settings are to be
changed by a subsequent KbdSetStatus call. (More on KbdSetStatus in
a moment.) This information is encoded into fsMask as shown here:

Bit Meaning When Set

O Echo on
1 Echo off
2 Raw mode
3 Cooked mode
4 Shift state to be changed
S Interim flags to be changed
6 Turnaround character to be changed
7 Length of turnaround character

The chTurnAround character is used to terminate a line of input. By
default this is the carriage return character, but it can be any character.
Bit 7 indicates the length of the turnaround character. If bit 7 is set , the

The Keyboard Services 95

character is 2 bytes long. Otherw ise it is 1 byte long. The rest of the
bytes in this variable are reserved.

The fslnterim field indicates the state of the keyboard buffer as de
scribed in KbdCharln. The fsState field holds the status of the shift
keys. The bit s are encoded like this:

Bit Meaning When Set

0 Right SHIFT key pressed
1 Left SHIFT key pressed
2 CTRL key pressed
3 ALT key pressed
4 SCROLL LOCK mode on
5 NUM LOCK mode on
6 CAPS LOCK mode on
7 INS mode on
8 - 15 Reserved

In KbdGetStatus the handle parameter must be 0.

This program uses KbdGetStatus to report the status of the input
mode and whether keystrokes are au tomatically echoed to the scr een. It
then reports the current shift status.

I * Us ing Kbd GetStatus. */

#define INC L SUB

#includ e <os2 .h>

void showm ask<u nsigned>;
void s how_shift_ stat us(uns igned);

main()
{

}

KBDINFO ki;

ki.c b = sizeo f ki;

KbdGet Status ((KBOINFO fa r *) &k i , 0) ;

sh owmaskC ki .fsMask>;
show_shift_stat u sC k i.fsState>;

void show ma s k(u nsi gned mask)
{

f(mask & 1) pr ntf("echo enabled\n");
f (mask & 2) pr ntf ("echo di s abled\n");
f(mas k & 4) p r n tf("m ode is raw\n");

96 OS/2 Programming: An Introduction

if(mask & 8) printf("mode is cooked\n");
}

I* Display the shift status of the keyboard . •I
void show shift status(unsigned status)
{

}

printf C"\n");
if(status & 1) printf("Right shift pressed\n");
if(status & 2) printfC"Left shift pressed\n">;
if(status & 4) printf("A control key pressed\n"l;
ifCstatus & 8l printf("An Alt key pressed \n"l;
ifCstatus & 16) printf("Scroll Lock on\n"l;
if(status & 32) printf("Num Lock on\n"l;
if (status & 64) printf C"Caps Lock on\n"l;
if(status & 128) printf C"Ins pressed\n"l;
if(status & 256) printf("Left Control pressed\n"l;
if <status & 512) printf("Left Alt key pressed\n"l;
if(status & 1024) printfC"Right Control key pressed\n"l ;
if(status & 2048) printf("Right Alt key pressed\n"l;
if(status & 4096) printfC"Scroll Lock pressed\n"l;
if (status & 8192) printf("Num Lock pressed\n"l;
if (status & 16384) printf C"Caps lock pressed\n"l;
if(status & 32768) printf("SysRq key pressed\n\n"l;

You can set the status of the keyboard system using KbdSetStatus,
whose prototype is

unsigned KbdGetStatus(KBDINFO far *info, unsigned handle);

where info points to a structure of type KBDINFO, which is the same
as that defined for KbdGetStatus. In this service, handle must be 0.

Setting the status of most of the keyboard subsystem is a two-step
process.

I . You set the proper bit in the fsMask variable of the info parameter.
This tells 05/2 which type of function is going to be changed.

2. You set the value of the related parameter. For example, to turn
Caps Lock on, first set bit 4 of fsMask to I , then set bit 6 of fsState.
When KbdSetStatus is called, the keyboard will be in Caps Lock
mode .

The only exceptions to the two-step rule are switching bet ween
raw and cooked modes and switching between echo and no echo
modes. For these you need only set the proper bits in the fsMask
variable.

The Keyboard Services 97

It is important to understand that a change in the status of the
keyboard subsystem is local to the process that makes the change. For
example, when the process terminates and the 05/2 command process
resumes, the original default values are used .

The example that follows changes the turnaround character to a
period and turns on Caps Lock mode. When this program ends, the
carriage return automatically becomes the turnaround character again.
Notice that the program first reads the status of the keyboard subsys
tem and then alters the value of the turnaround character before call
ing KbdSetStatus. The reason for this is that you need to preserve the
state of the other KBD subsystem functions.

/* Using KbdSetStatus to change the turnaround character
to a period and puts the keyboard into Caps Lock mode.

•I

#define INCL SUB

#include <os2.h>

main()
{

KBDINFO ki;
char str[80l; /* input buffer •I
STRINGINBUF l;

ki.cb = sizeof ki;

I* change the turnaround char to a period. •I
KbdGetStatusCCKBDINFO far •) &ki, 0);
ki.chTurnAround = '.';
I• Signal that a change to the turn around char is

going to take place.
*I
ki.fsMask ki.fsMask I 64;

ki.fsMask ki.fsMask I 16; /* signal shift status change •/
ki.fsState = ki.fsState 64 ; /* turn on Caps Lo~k •/

KbdSetStatusCCKBDINFO far*) &ki, O>;

I• demonstrate that new turnaround char is, indeed, active */
prjntfC"\nEnter a string; terminate with a period: ");
l . cb = 80;
KbdStringln((char far •) str, CSTRINGINBUF far •) &l,

O, O>;
str[l . cchinl = '\O'; I* null terminate the string•/
printfC"Xd characters read, string is\nXs", l.cchin, str>;

}

98 OS/2 Programming: An Introduc tion

READING A STRING USING
KbdStringln

Until now you have been reading only one character or scan code at a
time from the keyboard. This is very useful, but 05/2 also provides a
service that allows you to read a string of characters (withou t their
associated scan codes). This service is called KbdStringln, and its proto
type is

unsigned KbdStringln(char far *buf, STRINGINBUF far *len,
unsigned wait, unsigned handle);

where buf is a pointer to the character array that will hold the string
read from the keyboard. The /en parameter is a structure of type
STRINGINBUF, which takes this form:

typedef struct _STRINGINBUF {

unsigned ch; /* length of buffer */

unsigned cchln; /* number of chars actually read */

} STRINGINBUF;

The cb field must hold the length of the array pointed to by buf prior to
the call to KbdStringln. The largest buffer you can use is 255 charac
ters. Upon return cchln holds the number of characters actually read
from the keyboard.

The waif parameter determines what KbdStringln does if no charac
ters are present in the keyboard buffer. The effect is different in
cooked and raw modes. In cooked mode (the default), the only allowed
value of wait is 0, and KbdStringln waits and reads characters until the
user enters a carriage return. In raw mode, if wait is 0, KbdStringln
reads characters until the buffer pointed to by buf is completely full . If
wait is 1, KbdStringln reads however many characters are in the key
board buffer (including zero characters) and returns immediately.

The following short program reads a string from the keyboard. It
assumes that the default, cooked mode input is in use.

The Keyboard Services 99

I* Reading a string from the keyboard using KbdStringin. */

#define INCL_SUB

#include <os2.h>

main()
{

}

char str[80J; /* inpu~ buffer *'
STRINGINBUF l;

l.cb = 80;

KbdStringln((char far *) str, (STRINGI NBUF far *) &l,
O, 0) ;

str[l.cchin] = '\0' ; I* null terminate the string*/

printf<" Zd characters read, string is\n Zs" , l . cchln, str);

One advantage to using KbdStringln in cooked mode is that you can
use the standard editing keys to correct your entry before you press
RETURN. Also, in cooked mode the characters you enter are automatically
echoed to the screen.

5

There is no doubt that in the OS/2 environment the mouse will
become a common, perhaps even an indispensible, accessory, partly
because the Presentation Manager supports a graphics interface that
lends itse lf to mouse opera tion. In the very near future, it will be the
rare OS/2-compatible program that does not support mouse input.

There are really two complete sets of mouse interfacing services:
those found in the core API and those defined by the Presentation
Manager routines. You will use the Presentati on Manager mouse ser
vices for most programming situations because they are designed to
make menu selec tion and the like very easy. In a few types of applica
tions, however, you may want to use the core mouse services. For
example, if you a re wri ting with a word processor that uses the entire
scree n and you simpl y want to provide mouse support for moving text
around, the core API mouse services will require less overhead than
the Presentation Manager equivalents. This chapter presents an over
view of the core API mouse services. (The Presentation Manager is
introduced in Part Three.)

All the core mouse services begin with the lette rs Mou. These ser
vices are listed and brie fly described in Table 5 -1.

Note: If you have programmed for the mouse in a DOS environment
using Microsoft's MOUSE.LIB library, you may be surprised to learn
that OS/2 uses a fundamenta lly different approach to mouse interfac
ing . In fac t, except for the most general concepts, what you learned

101

102 OS/2 Programming: An Introduction

Table 5-1. The Core Mouse Services

Service Function

MouClose Closes the m ouse
MouDeRegister
MouDrawPtr
MouFlushQue
MouGetDevStatus
MouGetEventMask
MouGetHotKey
MouGetNumButtons
MouGetNumMickeys
MouGetNumQueEI

MouGetPtrPos
MouGetPtrShape
Mou GetScaleFact
MoulnitReal
Mou Open
MouReadEventQue

Mou Register
MouRemovePtr
MouSetDevStatus
MouSetEventMask
MouSetHotKey
MouSetPtrPos
MouSetPtrShape
Mou Set Scale Fact
Mou Synch

Deactivates an alternative mouse service
Displays the mouse pointer
Flushes the mouse information queue
Returns mous e status
Returns m ouse event mask
Returns system ho t key button
Returns the number of buttons on the mouse
Returns the number of mickeys per centimeter
Returns the number of information packets cur
rently in the mouse queue
Returns the current location of the m ouse pointer
Returns the shape of the mouse pointer
Re turns the mouse movement scaling factors
Ini tializes the real-mode mouse system
Opens the mouse
Returns the next information packet in the mou se
queue
Activates an alternative mo use function
Removes the mouse pointer from the screen
Sets mouse device driver status information
Sets the mouse event mask
Sets the system hot key
Sets the mouse pointer's screen position
Sets the shape of the mouse pointer
Sets the mouse movement scale factor
Synchronizes mouse access

about interfacing to the mouse under DOS has little applicability to the
OS/2 mouse interface.

THE MOUSE

Before your programs can use the mouse services, OS/2 must have
loaded two device drivers called MOUSEBos.SYS and POINTDD.SYS.
The OS/2 setup program automatically makes the proper entries in
your CONFIG.SYS file that cause these device drivers to be loaded.

Using the Mouse 103

However, if these device drivers are not specified in the CONFIG.5Y5
file, add the following lines to your CONFIG.5Y5 file:

DEVICE=C: \052 \POINTDD.SY5
DEVICE=C: \052 \MOU5EB05.5Y5

MOUSE BASICS

Unlike the screen and keyboard services, the mouse services cannot use
the default handle 0. The first thing your program must do to support
the mouse is to open the mouse by a means of a call .to MouOpen,
which returns a valid mouse handle. You must then use this handle
with all other mouse services.

For various reasons, most of which have to do with the fact that
05/2 is a multitasking system, information about the mouse is kept in
a queue until it is read by your program. The mouse queues are firs t
in, first-out. Each time you press a button or move the mouse, a hard
ware interrupt transfers control to the mouse device driver. The device
driver determines what has happened and generates an information
packet that is put in the queue. The packet includes such things as the
current 'position of the mouse and which buttons are pressed. The
queue is not very long, so if a large number of packets are generated
before your program reads them, some of the packets may be overwrit
ten. A queue overrun generally causes no real harm.

Although the mouse and the screen are fundamentally separate
devices, the 05/2 core mouse services can provide the appearance of a
strong link between the two. For example, the mouse pointer is auto
matically moved about the screen when you move the mouse. (The
mouse pointer is the symbol on the screen that shows the mouse's
current screen position.) In essence, you think of the mouse as being
on the screen rather than on the desk. In the default mode of opera
tion, the mouse services also return the row and column position of
the mouse pointer.

In text mode, the mouse pointer is a solid block. It is possible to
change the shape of the pointer if the screen is in a graphics m ode .
However, since 05/2 most easily supports graphics through the Presen
tation Manager, you will probably never u se the core mouse services in
a graphics mode.

104 05/2 Programming: An Introduction

The mouse services can r eturn position information about the
mouse in one of two ways:

1. In the default mode of operation the mouse services return the row
and column coordinates of the pointer. The pointer is always moved
in screen units. For text modes, this means a character position. In a
graphics mode it means a pel. There is no concept, for example, of
the pointer being "between" two screen units. All coordinates are
relative to the upper left corner of the screen, which is 0,0 . All the
examples in this chapter use this mode because it is by far the
easiest to work with for text mode applications.

2. The services can also return position information in mickey counts .
The mickey is the basic unit of mouse movement and commonly
equals approximately 1/120 inch. Two mickey counts are retu rned:
one for the x and one for the y coordinate. If the y-coordinate
mickey count is negative, the mouse has moved forward (away from
you) on the desk and the pointer has moved up the screen that
number of mickeys. A positive y-coordinate value indicates that the
mouse has moved toward you and the pointer has moved down the
screen. A negative x-coordinate value means that the mouse and
pointer have moved to the left; a positive value means that they have
moved to the right.

The standard IBM/Microsoft mouse has two buttons. However, it is
possible to have mice connected to the system that have either one or
three buttons instead . T he mouse subsystem can operate with one-,
two-, or three-button mice. However, your program may have to make
explicit provisions for such possibilities. The leftmost button is always
button number one.

OPENING THE MOUSE

Before the mouse can be used, it must be opened using MouOpen. The
prototype for MouOpen is

signed MouOpen(char far •driver, unsigned short far *mhandle)

w h ere driver is a pointer to a null-terminated string that contains the
name of the mouse pointer device driver. You can cause the mouse

Using the Mouse 105

system to use its default pointer driver by passing a null in this
parameter. This is useful when the name of the device driver is not
known. The default driver will be used in all examples in this chapter.
On return the variable pointed to by rnhandle contains the current
mouse handle.

The call to MouOpen essentially intializes the mouse system for
use. It does not display the mouse pointer or return any status informa
tion about the mouse.

DISPLAYING THE
MOUSE POINTER

Once the mouse is opened for use, on e of the first things you w ill
probably want to do is have the pointer displayed on the screen. To do
this you use the MouDrawPtr service, which has the prototype

unsigned MouDrawPtr(unsigned short mhandle);

where rnhandle is a valid handle returned by MouOpen. In text modes
the pointer is a solid block.

POSITIONING THE
MOUSE POINTER

T he mouse system automatically moves the pointer around on the
screen w hen you move the mouse on your desk. Your program does
not need to move the pointer explicitly unless you want it to. For sev
eral reasons you may w ish to reposition the mouse pointer on the
screen. For example, you may need to move the pointer to the top of a
pop-up menu. When you explicitly move the mouse pointer, the mouse
subsystem automatically updates all of its location and status informa
tion so that the next time you move the mouse, the pointer is moved
r elative to its new screen position. The core mouse service that posi
tions the mouse pointer is called MouSetPtrPos, and its prototype is

unsigned MouSetPtrPos((PTRLOC far *) loc,
unsigned short mhandle);

Pointer loc points to a structure of type PTRLOC, which is defined as

106 05/2 Programming: An Introduction

typedef strict _PTRLOC {
unsigned row;
unsigned col;

} PTRLOC;

The values of row and col must be within the range defined by the
current video mode . For the default 80 by 25 text mode, the range for
row is 0 through 24; the range for col is 0 through 79.

CREATING A MOUSE
INITIALIZATION FUNCTION

Before going further with our discussion of the mouse, let's create a
mo use initialization function that opens the mouse, positions the
mouse pointer at the upper left corner (location 0 ,0), and draws the
pointer. The function also returns the mouse ha ndle to the calling rou
tine. The function is called initmouse() and is shown here :

I• Open t he mouse, draw the pointer, and pos iti o n
t he mou se at the upper left c o rn er .

un sign ed short initmous e <>
{

}

unsigned short mhandle;
unsigned s ho rt err;
PTRLOC p;

err = MouOp en((c har far •) O, (unsigned short far •) &mhandl e) ;
if(err) {

}

printf(" ;(d error in opening mouse\n", err);
return O;

I• posi t ion th e mo use po i n t er i n t he uppe r left cor ner */
p.r ow = O;
p.col = O;
MouSetPtrPos((P TRL OC far •) &p, mha ndlel;

I* ma ke the pointer vis ib le •/
MouO rawPt r (mhandlel;

r eturn mhan dl e;

The initmouse() function is u sed in all the example progra m s in
this chapter to facilitate the initia li zation of the mouse driver. For your
own applications you m ay need to change the initial location of the
mouse pointer.

SENSING MOUSE MOVEMENT
AND BUTTON PRESSES

Using the Mouse 107

Each time you move the mouse or press a button, an event information
packet is put on the end of the mouse queue. Your program reads
information from the queue using the MouReadEventQue function,
which has the prototype

unsigned MouReadEventQue(MOUEVENTINFO far *s tatus,
unsigned far *wait, unsigned short mhandle);

where status points to an event structure of type MOUEVENTINFO,
which is defined as

typedef struct _MOUEVENTINFO {
unsigned fs; /* encoded state of the mouse */
unsigned long Time; /* time when event occurred */
unsigned row; /* row position of mouse pointer */
unsigned col; /* col position of mouse pointer */

MOUEVENTINFO;

The structure pointed to by status holds event information about the
mouse when MouReadEventQue returns.

On return from the call, the fs field is eneoded like this*:

Bit Meaning When Set

0 Mouse moved, no buttons pressed
1 Mouse moved, button 1 pressed
2 Button 1 pressed, no movement
3 Mouse moved, button 2 pressed
4 Bu tton 2 pressed, no movement
5 Mouse moved, button 3 pressed
6 Button 3 pressed, no movemen t
7 Reserved, always 0

As you can see, by examining this field it is possible to detect whe ther
the mouse has moved and if a button is depressed. (Remember that the
standard IBM/Microsoft mouse has two buttons, but other types of

• The following t.1ble is adapted from tables in Oprrnfing Sysltnr/2 Progrnmmrr's Rrfm11cr Mn11unl, with
permission of Microsoft Corporation.

108 05/2 Programming: An Introduction

mice can be connected to the system. Later you w ill learn how to detect
the number of buttons a given mouse has.) If fs is 0, no event has
occurred.

The Time field represents the system time at which the event
occurred; the value is in milliseconds. The row and col fields hold the
screen location of the mouse pointer. By default these values are in
screen units, but you can set the mouse subsystem to report the value
in mickeys.

The value of the wait parameter to MouReadEventQue determines
whether the service waits for an event packet if one is not waiting in
the queue. If waif is 0, the function returns immediately if nothing is in
the queue, filling the information structure with zeros . If wait is 1, the
service waits until a mouse event is generated.

The mhandle parameter must be a valid mouse handle.
You can use the MouReadEventQue service to write a short pro

gram that displays the mouse event packet. First you need a routin.e
that decodes the event information and displays it on the screen. The
function show_ mouse_state() shown here accomplishes this:

/* Show the current location of the mouse and which
buttons are pressed.

*I
void show mouse state(MOUEVENTINFO state)
{

}

char cel l [2J;

VioSetCurPos(10, O, 0);

/* clear a small part of the screen */
cell(OJ = ' '; ce ll (1J 7;
Vi o ScrollOnC10, O, 12, 79, 3, (char far *l cell, 0);

I* decode button press information */
if((state.fs & 2) I I (state .ts & 4))

printf ("button one is down\n") ;
itc<state.fs & 8l 11 (state.ts & 16))

printf("button two is down\n " l;
if<Cstate.fs & 32) 11 (state.ts & 64ll

printf("button three is down\n");

/* see if the mouse has moved */
if((state.ts & 1l 11 (s tate.ts & 2) 11 (state.ts & 8l 11

(state.ts & 32))
print f("th e mouse has moved");

/* display cur rent position and time of event */
VioSetCurPos(15, O, Ol ;
printf{" ");
VioSetCurPosC 15, 0, Ol;
pri n tt(" %d %d time: Xld", state.row, state .c ol, sta t e .Time);

Using the Mouse 109

Using the show_mouse_state() function, the program that follows
displays the information packet generated by each mouse event. Notice
that it waits for a packet if one is not already waiting in the queue.

I* Demonstrate how t o access the mouse and decode th e
sta tu s information returned by it.

*'
#define INCL SUB

#include <os2. h>

un si gned sho r t in i tmouse(vo id) •
vo id show mouse state(MOUEVENTINFO>;
void c lrscr(void) ;

main()
{

}

unsigned shor t mhandl e;
un si gned sta te;
un signe d wait;
MOUEVENTI NFO info;

clrsc r();

mha ndle i n itmouse();

do {
wait = 1 ;
MouReadEventQue((MOUEVENTlNFO fa r *) &info,

<unsigned far *) &wait, mhandle>;
s h ow_mouse_state (i nfo);

} while <!kbhitO>;
MouClo se(mhandle>;

I* Open the mouse, draw the po in t e r , an d posi ti on
the mous e at the up pe r left co rn er.

*' un s i g ned sho rt i ni tmo use ()
{

}

unsigned short mhandle ;
unsigned short err ;
PTRLOC p;

err = MouOpen((char far *) O, (u nsig ned sh ort far *) &mhandle);
if(err) {

printf(" ;(d error in opening mou se\ n", err>;
return O;

}

p.row = O;
p . col = O;
Mo uSetPtrPos((PTRLOC fa r •) &p, mhandle);
MouDrawPtr(mhandle);
return mhandle;

110 OS/2 Programming: An Introduction

/* Show the current Location of the mouse and which
buttons are pressed.

void show mouse stateCMOU EVENT INFO state)
{

}

char cell [2J;

VioSetCurPos(10, O, 0);

/* clear a small part of the screen */
cell[OJ = ' '; cell[1J 7;
VioScroLLDn(10, 0, 12 , 79, 3, (cha r far *l cell, Ol;

I* decode button press info r mation */
if«state . fs & 2l II (state.ts & 4ll

printf("button one is down\n"l;
if<Cstate.fs & 8) II (state . ts & 16ll

printf ("button two is down\n ") ;
if C(state . fs & 32) I I (state.ts & 64ll

printf(" button three is down\n"l;

I* see if the mouse has moved */
ifCCstate.fs & 1) II (state.fs & 2> II (state.ts & 8) I I

<state.ts & 32l.l
printf("the mouse has moved");

/* display current positio n and time of event */
VioSetCurPos(15, O, Ol;
p r ; n t f (II II) ;

VioSetCurPos(15, 0, Ol;
printf(" %d %d time: Y. Ld", state.row, state . col, state.Time);

I* A simple way to clear the screen by f i lling
i t with spaces.

*/
void clr sc r()
{

}

char space[2J;

space[OJ = ' ';
space [1J = 7;
VioScroLLUpCO, O, 24, 79 , - 1, (char far *) space, Ol;

To stop the program, press any key on the keyboard. The program
ends when the next mouse event occurs.

SOME CUSTOM FUNCTIONS TO
INTERROGATE THE MOUSE

You can create some simple functions to facilitate checking for mouse
movement or button presses. These functions are shown here . (They
assume that a standard two-button mouse is installed in the system .

Using the Mouse 111

You can easily change this as required by your system.)

I* Return true if left but ton is pressed. •I
leftbutton (MOU EVENTIN FO info)
{

re tu rnCCinfo.fs & 2l II Cin f o.fs & 4»;
}

/ * Return true if right butt on is pressed. •/
rightbutton (MOUEVENTINFO info)
{

returnCCinfo.fs & 8l I I (in f o.ts & 16));
}

/* Return t rue if mouse has mov ed. •/
mo us e moved(M OUEVENTINFO in f o)
{

}

return ((info . fs & 1l 11 (info.ts & 2) 11 Cin fo .f s & 8) 11
(info.ts & 32)) ;

The functions are passed an information packet returned by Mou

ReadEventQue elsewhe re in any program that uses them.

This program illustrates how to make use of the custom functions

to show when the mouse is moved or a button is pressed.

I• This p r og r am illustrates how you can create custom mouse
functi ons which can make your application programs easier
to writ e.

#define INCL SUB

#in cl ude <os2.h>

unsigned short initmouse(vo id>;
in t lef tbut to nCMOUEVENTINFO);
int r i gh t buttonCMOUEVEN TINFO);
in t mousemoved(MOUEVENTINFO);
void clrscrCvoid>;

main()
{

unsigned short mhandle;
unsigned state ;
MOUEV ENTINF O info;
unsig ned wait;

clrscrO;
I• open t he mo u se, show the pointer, and position

the mouse a t t he upp e r Left co r ner
•I
mhan d le = initmo u se<>;
if(!m ha ndle> exit(1); I• error opening mous e • /

112 OS/2 Programming: An Introduction

}

I• monitor the mouse and report any activity •/
do {

wait = O;
MouReadEventQue((MOUEVENT!NFO far •) &info,

(unsign ed far •> &wait, mhandle>;
if (l eftbutton(info)) printf ("left button\n");
if(ri g htb utton(in fo)) printf("right button \ n");
ifCmousemo vedCinfo)) printf ("mouse moved \ n">;

} while C!kbhit());
MouC lose Cmhandle>;

I* Open the mouse, draw the pointer, and posit i on
the mouse at the upper left corne r .

*' unsigned short initmouse()
{

}

unsi gne d s hort mhandl e;
unsigned short err;
PTRLOC p;

err = MouOpen((char far •) 0 , (unsigned short far *) &mhandl e l;
if(err) {

}

printf ("error in opening mouse\ n"); ·
return O;

p.row = O;
p.col = O;
MouSetPtrPos((PTRLOC f ar *) &p, mhandle);
MouDrawPtr(mhandle>;
return mhandle;

I• Return true if left button is pressed . •I
lef t buttonCMOUEVENTINFO info)
{

returnCCinfo.fs & 2) I I (info.fs & 4>>;
}

/* Re turn t r ue i f right button i s pressed. •I
rightbutton<MOUEVENTINFO info)
{

ret urn ((info.fs & 8) I I Ci nf o .fs & 16));
}

I* Return true i f mouse ha s moved. •/
mou s emovedCMOUEVENT!NFO info)
{

}

r et urn<Cinfo.fs & 1> II Cinfo.fs & 2> II Cinfo.f s & 8) II
Cinfo.fs & 32));

I* A simple way to c lear th e scr een by fil li ng
it with spaces.

*/
void clrscr()
{

char spa ce[2J;

space COJ = ' I• ,

Using the Mouse 113

s p ace[1) = 7;
VioScroll UpCO, O, 24, 79, -1 , (char far *) space, O>;

}

CHANGING THE SCALING
FACTORS

Each time you m~ve the mouse, an absolute amount of distance is dis

placed. However, how the physical distance you move the mouse on the

desk is transformed into movement of the pointer is controlled by the

value of the row and column coordinate scaling factors. The scaling

factors determine how many mickeys the mouse must be moved in

order to change the screen location of the mouse pointer by one unit.

That is, a scaling factor of I means that for each mickey the mouse is

moved, the mouse pointer moves one screen unit. If the scaling factor is

2, the mouse poin ter is moved one screen unit for every 2 mickeys that

the mouse is moved. The greater the scaling factor, the more the mouse

has to be physically moved on the desk to move the pointer to the next

screen unit. What values of scaling units make the best conversion ratio

is subject to intense debate. To some ex tent, the choice of a scaling

factor is governed more by the amount of free desk space than by

preference! The larger the scaling factor, the more space is needed.

You can determine the current scaling factors by using the Mou

GetScaleFact service, which has the prototype

unsigned MouGetScaleFact(SCALEFACT far *fact,
unsigned short mhandle);

The fact parameter is a pointer to a structure of type SCALEFACT,
which is defined

typedef struct _ SCALEFACT {
unsigned rowScale; I* row scaling factor */
unsigned colScale; /* column scaling factor *I

} SCALEFACT;

The fields rowScale and colScale hold the current row and column scal

ing factors of the mouse subsystem.
The mhandle parameter is the handle returned by MouOpen.

114 OS/2 Programming: An Introduction

To set the scaling factors, use MouSetScalefact, whose prototype is

unsigned MouSetScaleFact(SCALEFACT far *fact,
unsigned short mhandle);

The structure pointed to by fact is as previously defined. The valid scal
ing factors for both row and column directions are 1 through 32,767.
However, a practical range is loosely 1 through 24.

Although this is not directly related to scaling factors, it is some
times interesting to know how many centimeters the mouse has
moved. To determine thi s, you must first call MouGetNumMickeys)
which returns the number of mickeys in a centimeter. Although gener
ally a mickey is about 1/120 inch, it is not an absolute value . If your

.application must know how far the mouse has actually moved, you
must call MouGetNumMickeys to know for sure. The prototype for
MouGetNumMickeys is

unsigned MouGetNumMickeys(unsigned far *mickeys,
unsigned short mhandle);

On return the integer pointed to by mickeys holds the number of mick
eys per centimeter.

The demonstrati on program shown here displays the number of
mickeys per centimeter followed by the default row and column scaling
factors. Next the scaling factors are set to their lowest value : 1 . After
that each time you press the left button, the row factor increases; each
time you press the right button, the column factor increases. In this
way, you can experiment with different scaling factors t o see which
combination provides the most pleasing effects.

I* Demonstrate sca l i ng factors.
*/

#define INCL SUB

#include <os2. h>

unsi gned s hort initmouse (void);
unsi gne d getmick eys(un s ign ed s hort>;
int l eftb utton Cuns i gned s ho rt, MOUEVENTINFO);
int rightbutton(unsigned s ho r t, MOUEVENTINFO);
void cl r scr(void);

main()
{

}

unsigned short mhandle;
unsigned state;
unsigned wait;
MOUEVENTINFO info;
SCALEFACT sf;
unsigned rsca l e, cscale;
char changed;

clrscrO;

mhandle = initmouse<l;
if(!mhandle) ex i t(1); I• error opening mouse •/

VioSetCurPosCO, O, Ol;

Using the Mouse 115

I• show mickeys per centimeter •/
printf("mickeys per centimeter : Xd\n", getmi ckeysCm handle)l;
MouGetScaleFact<<SCALEFACT far •> &sf, mhandlel;
printf("default row factor : Xd column factor : Xd \n",

sf,rowScale, sf.coLScalel;

rscale = cscale = 1; /* start scaling at Lowest ratio •/
sf.rowScale = rscale; sf.coLScale = cscale;
MouSetScaleFactCCSCALEFACT far •) &sf, mhandlel;

do {
changed = O;
wait = 1;
MouReadEventQueCCMOUEVENTINFO far •) &info,

(unsigned far •> &wait, mhandlel;

I• Press Left button to increase the row scale factor.
Press right button to increase the column scale factor.

•I
if(Leftbutton(mhandle, info)) {

rscale++;
changed = 1;

}

if(rightbutton(mhandle, info)) {
c s ca le++;
changed = 1;

}

if(changed) {

}

sf.rowScale = rscale; sf.coLScale = cscale;
MouSetScaleFact((SCALEFACT far •) &sf, mhandle);
VioSetCurPosC2, O, Ol;
printf C"row scale: Xd column scale: Xd", rscale, cscalel;

} while C!kbhitOl;
MouCLose(mhandlel;

I• Open the mouse, draw the pointer, and posi tion
the mouse at the upper Left corner.

•I
unsigned short initmouse()
{

unsign e d short mhandle;
unsigned short err;
PTRLOC p;

116 OS/2 Programming: An Introduction

}

err = MouOpen((char far *) 0, (unsigned short far *) &mhandle>;
if(err) {

}

printf<"error in opening mouse\n") ;
return O;

p.row = O;
p.co l = O;
MouSetPtrPos<CPTRLOC far *) &p, mhandle);
MouDrawPtr(mhandle);
return mhandle;

/* Return the number of mickeys per centimeter. */
unsigned ge tm ickeys(unsigned short mhandle)
{

}

unsigned mick ;

MouGetNumMickeys((unsigned far *) &mick, mhandle);
return mi ck;

/* Return true i f Left button is pressed. */
Leftbutton(unsigned short mhandle, MOUEVENTINFO info)
{

return((info. ts & 2) 11 (info.fs & 4));
}

I* Return true if right button is pressed. */
rightbutton(unsigned short mhandle, MOUEVENTIN FO info)
{

return((info.fs & 8) II (info.ts & 16));
}

I* A simple way to clear the screen by filling
it with spaces .

*I
void clrscrO
{

}

char space[2J;

space[O] = ' ';
space[1J = 7;
VioScroLLUp(O, O, 24, 79, -1 , <char far *) space, 0);

Measuring Distance with the Mouse

Because you can know the number of mickeys per centimeter, you can
use the mouse to measure distance, on a map for example, by multiply
ing the number of mickeys per centimeter by the scaling factor and by
the number of screen units the mouse pointer moves. Expressed in
mathematical notation, the formula is

.distance (mickeys/centimeter) * scale factor * screen units

Using the Mouse 117

When the scaling factor is 1, the formula is simply mickeys per centi
meter times the number of screen units. The following program uses
this formula to compute the number of centimeters the mouse h as
moved in a vertical direction. To use the program, locate the mouse at
the start of the d istance you wish to measure and press the left button.
Next, move the mouse to the e nd of the distance and press the right
button. The number of centimeters covered by the mouse will be
displayed.

I* This prog ram use s the mo use to measure distance. */

#define IN CL SUB

#inclu de <os2.h>

unsigned short initmouse(void);
un signed getmickeys(unsigned s hort);
int l eftbutt on(unsigne d short, MOU EVE NTI NF O>;
int rightbutton(unsigned short, MOUEV ENTINFO);
void clrscr(vo id l;

main()
{

unsigned short mha nd le;
u nsigned s t at e ;
un signed wa it;
MOUEVENTINFO info;
SCALEFA CT sf;
unsigned s tartr ow, en dr ow, rscale , cscale;

c lr scrO;
/* open the mouse, show the pointer, and pos itio n

the mouse at the up p .- r left corner
*I

printf("press L.-ft bu tt on to s tar t measuring\n");
pr i nt f (" press right butt on t o s top measu r ing">;

mhand l e = i ni t mo use <>;
if(!mhandle) exi t< 1>; /* error openi ng mouse •I

VioSetCu rP os<O, O, O>;

rscale = cscale = 1; /* start s ca ling at lowest r at io • /
sf.rowScale = r s cale; s f .co lSc ale = cscale;
MouSetScale Fa ct((S CALEFACT far •) &sf, mhandle);

wait = 1;
do {

MouReadEventQue((MOUEVENTINFO far •) &inf o,
(unsigned far •) &wait, mhandle>;

I• sta rt reading distance */
if(le f tbutton(mhandle, i n f o)) {

start row = info.row;
}

118 OS/2 Programming: An Introduction

}

I• stop read ing distance •/
if(rightbutton(mh and l e, i nf o)) {

endrow = info.row;

}

printfC" Xd ce ntime ters moved\n",
(endrow-start r ow)•getm ick eys(mhand l e>>;

} whi l e C!kbhitO);
MouC lo seCmha nd le> ;

/* Open t he mous e , draw t he po int er, and position
the mouse at the upper left corner .

*I
uns i gned short i nitmouse()
{

}

unsigned sho rt mhand l e;
uns i gned short e r r;
PTR LOC p;

err = MouOpenCCchar far *) O, (un signed shor t fa r •) &mhandle) ;
ifCerr) {

}

printf("er ror i n opening mouse\n">;
return O;

p . row = O;
p . col = O;
MouSetPtrPosCC PT RL OC fa r *) &p, mhand le);
Mo uDr aw Ptr(mhand l el;
return mhandle;

/* Return the numbe r of mickeys pe r centimeter. •I
unsigned getm i ckey s Cunsigned short mhandle)
{

}

un s igned mi ck;

MouGetNumM i ckeys(C u ns i gne d far •) &mick, mhandle>;
return mi c k;

I• Return t rue if lef t butto n i s pr essed. */
leftbut t on(un signed s hort mhandle, MOUEVENTINFO info)
{

r eturnCCinfo.fs & 2) II Cinfo.fs & 4));
}

I* Return true if ri ght button is pressed. •I
rightbutton(uns i g ned short mhandle, MOUEVENTINFO i nfo)
{

r e turnCCinfo.fs & 8) II (info . ts & 16));
}

I* A simp l e way to cl ear the sc r een by fi l ling
it with spaces.

*' void clrscr()
{

char space [2J ;

space[OJ = ' ';
space[1J = 7;

Using the Mouse 119

VioScrol lUpCO , o, 24, 79, -1, (char far *) spa ce , O>;
}

DETERMINING THE NUMBER
OF BUTTONS

Your program can find out how many buttons are on the mouse con
nected to the system by using the MouGetNumButtons service, which
has the prototype

unsigned MouGetNumButtons(unsigned far *b,
unsigned short mhandle);

On return from the call, the integer pointed to by b contains a value
equal to the number of buttons on the mouse. The following program
demonstrates this service's use:

I* Di s pl ay the number of buttons on the mouse. •I

#def i ne INCL SUB

#include <os2. h>

uns ig ned shor t i ni tmouse(void);

main()
{

}

unsign ed short mhandle;
un sig ned button;

mhandle = initmouse<>;
if(!mhandle) exit<1>; I• er ro r opening mouse*/

MouGetNumButtons((unsigned fa r •) &but t o n , mh a nd le >;
pr intf("Your mouse has Xd bu t tons . \ n" , bu t ton>;
MouCl ose (mh andle>;

I* Open the mous e , d ra w t he pointer, and position
the mouse at the upper left co r ner.

*I
unsigned s ho rt initmouse()
{

120 05/2 Programming: An Introduction

}

uns i g ned short mh andle ;
unsigned short err;
PTRLOC p;

err = MouOpen ((char fa r *) O, (unsigned short far *) &mhand l el;
if Cerr) {

}

pri nt f C"e r ro r in openi ng mo us e\n ");
return O;

p.r ow = O;
p .c ol = O;
MouSetPtrPosC<PTRLOC fa r *) &p, mhandlel;
Mouo r awPtr<mhandle);
return mhandle;

FLUSHING THE QUEUE

You may need to clear the contents of the queue. For example, if the
u ser request s that the mouse be u sed for a new purpose, any current
contents of the queue need to be cleared. To accomplish this task 05/2
provides the MouFlushQue service, which has the prototype

unsigned MouFlushQue(unsigned short mhandle);

Although none of the examples in this chapter use this service, it is
available if your programs need it.

A SIMPLE MOUSE MENU
EXAMPLE

The mouse is commonly used as an input device for menu selection.
Although you will generally use the Presentation Manager mouse ser
vices when working with menus, the following example illustrates how
you can accomplish men u selection by using only the core mouse
services.

The key to using the mouse for menu selection is to convert the
mouse's position into an integer that represents a menu item. For
example, if a menu has three selections, the fir st could be identified
with the number 0 , the second with 1, and the third with 2 . The trick,
of course, is to transform the mouse's position into one of these
numbers. One easy way to do this is to display all menu entries verti
cally (in a list) and then simply use the current row position of the

Using the Mouse 121

mouse pointer (less an appropriate offset from 0) to identify the menu
selection. For example, if the menu begins on line 10 and the mouse is
on line 11 when the selection is made, the second menu item is chosen
because 11 - 10 is 1. Here 10 is the offset used to normalize the row
position. The offset is always the row number of the first entry in the
menu.

The way menu selections are generally made with the mouse is by
pressing a button. In the example developed here, the left button is
used.

Th e function get_menu_select() is passed the upper left coordi
nate of the first entry in the m.enu, the number of items in the menu,
the width in characters of the longest entry in the menu, and the acti
vate mouse handle. It then positions the mouse at the top of the menu
and waits for a selection to be made. Notice that it does not allow the
mouse to leave the area defined by the menu until a selection is made.
This sort of restriction is not mandatory, but it is very common
because it simplifies your application program.

/* This function positions the mouse pointer at t he top

*/

of the specified area and keeps the mouse confined to
those rows that have menu entries . The parameters x and y
specify the upper Left corner of the menu, the Len pa r ameter
speci fies the number of menu entries, and the width
parameter specifies the width of the Lo ng est menu entry.

get menu seLectCunsigned x, unsigned y, int Len, int wi dth,

{

}

- - unsigned short mhandLe)

MOUEV ENTINFO info;
uns igned wait;
PTRLOC p;

p.row = y; p.coL = x;

MouSetPtrPos<<PTRLOC far *) &p, mhandLel ;
f orC;;l {

}

wait = 1;
MouReadEventQue((MOUEVENTINFO far *) &info,

<unsigned f~r *) &wait, mhandlel;
ifCinfo . row<y) MouSetPtr Pos<<P TRLOC far*) &p, mhandLel;
if(i n fo.row> =y+Len) MouSetPtrPos((PTRLOC far*) &p, mhandLel;
if<info,col<x) MouSet Pt rPosCCPTRLOC far *) &p, mha ndLel;
if(info.coL>=x+width) MouSetPtrPos((PTRLOC far*) &p, mhandLel ;
if((info.fs & 2) 11 Cinfo.fs & 4))

return info.row-y;

122 OS/2 Programming: An Introduction

The following program demonstrates how the get_menu_ select()
function can be used:

/*This program illustrates how to use the mouse to make a
menu selection.

*'
#define INCL SUB

#include <os2.h>

unsigned short initmouse(void);
void clrscrCvoid), display_menu(void);
int get_menu selectCunsigned, unsigned, int, int, unsigned short>;

main()
{

)

unsigned short mhandle;
unsigned state;
unsigned wait;
MO UE VENTINFO info ;

clrscrO;

mhand le = initmouse();
ifC!mhandle) exit(1); /* error op e ning mouse •I

di splay_menuO;

printf("You chose item number Xd",
get_menu_selectCO, 5, 3, 7, mhandle));

MouCLose(mhandle);

I* Open the mo us e, draw the pointer, and position
the mouse at the upper Left corner.

•I
unsigned short initmouse()
{

)

unsigned short mhandle;
unsigned short e rr;
PTRLOC p;

err = MouOpen((char far •) 0, (uns i gned short far *) &mhandle);
if(err> {

)

printf("error in opening mouse\n");
ret urn O;

p.row=O;
p.col = O;
MouSetPtrPosCCPTRLOC far •) &p, mhandle>;
MouOrawPtr(mhandle);
return mhandle;

Using the Mouse 123

I* Th is function positions the mouse pointer at the top
of t he specified area and keeps the mouse confined to
thos e rows that ha ve menu entries. The paramete rs x and y
specify the upper left corner of the menu and the Len parameter
specif ies the number of menu en t ries.

*' get menu select(unsigned x, unsigned y, int Len, int width,
- - un signed short mhand le)

{

}

MOUEVENTINFO i nfo;
unsigned wait;
PTRLOC p;

p . ro w = y; p.col = x;

MouSetPtrPos((PTRLOC far •) &p, mhandle);
for(;;> {

}

wa i t = 1;
MouReadEventQue((MOUEVENTINFO far *) &info,

(unsigned f ar *) &wait, mhandle);
if (info . row<y) MouSetPtrPos((PTRLOC far •) &p, mhandle);
if(info. r ow>=y+len) MouSetPtrPos((PTR LOC far *) &p, mha nd le);
i f(info.col<x) MouSetPtrPos((PTRLOC far •> &p, mhandle>;
if(info.col>=x+w id th) MouSetPtrPos((PTRLOC far *) &p, mhandle>;
if << in fo.ts & 2> I I <info.ts & 4>>

return info.row-y;

I• A simple way to clear the screen by filling
it with spaces.

•I
void clrscrO
{

}

char space[2J;

space CO] = ' ';
space[1] = 7;
VioScrollUp(O, O, 24, 79, -1, (char f ar •> space, O>;

I* Dis play a menu. •/
void disp lay menu()
{ -

}

VioSetCurPos<S, O, O>;
pr intf ("Apples\n">;
printf("Oranges\n">;
printf("Grapes\n");
printf("\nMake a selection\n");

The approach to the menu and the menu selection process used in
this example is simple but effective. If you are interested in such things

•

124 OS/2 Programming: An Introduction

as pop-up and pull-down menus, however, you will want to consult
C: Power User's Guide by Herbert Schildt (Osborne/McGraw-Hill, 1987),

which covers this subject and several other interesting and difficult
programming issues.

A VARIATION ON THE
PING-PONG VIDEO GAME

You probably remember the very first video games . Very crude by
today's standards, they were essentially games of ping-pong. This chap
ter on the core mouse services ends with a variation of the old ping
pong game that use s the mouse to control the "paddle" (the mouse's
pointer). The game works like this. A ball, represented by an asterisk,
bounces around the screen moving left to right. When the ball hits the
top or the bottom of the screen it reverses its vertical direction. If the
paddle hits the ball, the ball also reverses its vertical direction. The
computer scores a point each time the ball hits the bottom of the
screen. You score a point each time the ball hits the center of the top of
the screen. Only character positions 40 through 60 score points for
you. (This limitation is added to balance the game between you and the
computer.) The positions at the top of the screen that do not score
points are shown by a dashed line. The unmarked area is the goal. The
computer's score is shown in the lower left corner; yours is shown in
the lower right. The game runs continuously until you press a key on
the keyboard.

Although the program is fairly straightforward, a few key points
are worth mentioning. First, the cursor (not the mouse pointer) is hid
den so that it won't detract from the playing action. The ball is moved
only once each 20 times the main loop executes . The toggle variable is
used to control this value, which slows the ball down enough for a
human to "hit" it. Depending on your computer's speed, you may need
to change this value. To give the appearance of movement, the ball is
erased from its current position before being moved to the next screen
unit. Finally, the values of deltax and deltay control the angle of the
ball as it moves about the screen .

The program is presented here for your amusement, without
further comment:

•

Using the Mouse 125

I* A simple version of the old Ping-Pong video game.

*'
#define INCL SUB
#define INCL=OOS

#include <os2.h>

unsigned short initmouse(void);
void mo vemouse(MQUEVENTINFO, unsigned short);
voi d clrscr(void), moveballCvoid>, display scoreC void);

unsigned row = 0, col = O;
unsigned ball x, bally ;
int deltax, deltay ;
int comp~ter=O, user=O , oldcomputer=-1 ; olduser=-1;
main<>
{

unsigned short mhandle;
unsigned state;
unsigned wait;
MOUEVENTlNFQ info;
SCALEFACT sf;
in t theta;
VIOCURSORlNFO c;
unsigned toggle;
PTRLOC p;

clrscrO;

mhandle = initmouse<>;
if(!mhandle) exitC1>; /• error opening mouse */

sf.rowScale = sf.coLScale = 2;
MouSetScaleFactCCSCALEFACT far •) &sf, mhan dle);

I• hide the cursor •I
VioGetCurTypeCCVlOCURSORINFO far •) &c, O>;
c.attr = -1;
VioSetCurType((VlOCURSORlNFO far•) &c, O>;

ballx = 10; tally = 1;
delta x = 1; deltay = 1 ;
toggle = O;
theta = 2;

I• Draw goal Line •/
VioSetCurPosCO, O, O>;
prin tf("---- -------------------------- 0' >;
VioSetCurPosCO, 50, O>;
printf (" - --------- - -------------------">;
wait = O;
VioSetCurPosCbally, ballx, O>; printf("•");

do {
MouReadEventQueCCMOUEVENTINFO far •> &info,

(unsigned far •) &wait, mhandle>;

126 0512 Programming: An Introduction

}

I* If there has been a cha nge i n the mouse's position,
update the counters.

*' if(info.fs) {

}

row info.row;
col = info.col;

I* If mouse pointe r intersects the ball, r everse vertica l
direction.

*/
if Cballx==col && bally==row) {

)

p.r o w =row; p.col = col+1;
MouSet PtrP os<C PTRL OC far *) &p, mhandle>;
deltay = -deltay;
moveba LL();
DosBeepCSOO, 50);

if(! (toggle:'.20)) moveba LL O;
toggle++;

display sco re() ;
} while <T kbhitO);
MouCLoseCmhand l e>;

I• restore the cursor */
c.att r = O;
VioSetCurTypeCCVIOCURSORINFO far *) &c, 0);

I* Open the mouse, draw the pointer, and position
the mouse at the upper Left corner.

*I
unsigned short initmouse()
{

}

unsigned short mhandle;
unsigned short err;
PTRLOC p;

err = MouOpen ((c har tar •) O, (unsigned short far •) &mhandle);
if(err > {

printf(" e r ror in opening mo use\ n") ;
return O;

}

p.row =1 ;
p.col = O;
MouSet PtrPos((PTRLOC tar •) &p, mhand l e);
MouDrawPtr(mhandle);
return mhandle;

I• Move the Ball. •/
void moveball()
{

static int toggle2=0;
int i;

VioSetCurPos(bally, ball x, 0); printf(" ") ;
if(togg l e2) ball x += deltax;

}

bally += deltay;
if(bal lx == 80l ballx
i f(bally >= 24l {

O;

-delta y;

Using the Mouse 127

if(deltay>Ol deltay
computer++; /* gi ve
DosBeep(300, 50l;

a point to the comp uter •/

}

if(bally == 1l {

}

i f(deltay< Ol deltay = -delta y ;
if (ballx >30 && ballx <50) {

}

us er ++ ; /* give a poin t to the user •/
for(i=O; i<5 ; i++) DosBeep(300+(i•100l, 50l;

else DosBeep(300, 50);

togg le2 = ! togg le2;
VioSetCurPos(bally, ballx, Ol ; printf("•"l;

I* Disp lay the score. •/
void disp lay score()
{ -

}

/* don't waste time redispl a y in g unchanged sco re •I
if (compute r ==old compute r && user==olduser) return;

VioSetCurPos(24, O, Ol;
printf(" "l;
VioSetCurPosC24, 0, Ol;
printf(" Y.d", computer);
VioSetCurPos(24, 76, Ol;
printf(" ");
VioSetCurPosC24, 76, Ol;
printf("Y.d", user);
oldcomputer = computer;
o lduser = user;

I* A simple way to clea r the screen by filling
it with spaces.

*' vo id clrs crO
{

}

char space[2J;

space [OJ = ' ';
space[1J = 7;
VioScro l lUpCO, O, 24, 79, -1, (char far *) space, Ol ;

6
FILE I/O

The OS/2 file 1/0 subsystem is an amazingly straightforward and effi
cient way to access disk files and other devices. At its core are four
services: DosOpen, DosRead, DosWrite, and DosClose. If you are fa
miliar with C's unbuffered 1/0 system, you will be pleased to learn that
these services parallel open(), read(), write(), and close(). In fact, many
of the file services are similar to C's 1/0 functions. Even if you are
unfamili!lr with these C functions, the 05/2 file system is very easy to
learn and use.

The OS/2 file 1/0 services are shown and briefly described in Table
6 -1. Notice that all the functions begin with the prefix Dos.

As has been the case with many of the OS/2 services, the OS/2 file
system is closely paralleled by the C file system. For most low
performance applications you will probably use the C file 1/0 functions
because they are more portable and, in a few cases, slightly easier to
use. However, for high-performance or multithread applications
(depending on the actual implementation of your C compiler) you
should rely on the OS/2 file services.

One final point: OS/2 allows you to bypass the logical structure of
the disk and access the disk directly. Direct control of the disk hard
ware is beyond the scope of this book, however, and generally you will
access the disk directly only when creating special disk utility programs,
such as a file recovery program.

129

130 05/2 Programming: An Introduction

Table 6-1. The File 1/0 Subsystem Services

Service Function

DosBufReset
DosChdir
DosChgFilePtr
DosClose
DosDelete
DosDupHandle
DosFileLock
DosFindClose
DosFindFirst

DosFindNext

DosMkdir
Dos Move
DosNewSize
DosOpen
DosPhysica!Disk
DosQCurDir -
DosQCurDisk
DosQFHandState
DosQFilelnfo
DosQFileMode
DosQFSinfo
DosQHandType
DosQVerify
Dos Read
DosReadAsync
DosRmdir
DosScanEnv
Dos SearchPat h
DosSelectDisk
DosSetFHandState
DosSetFileinfo
DosSetFileMode
DosSetFSlnfo
DosSetMaxFH
Dos Set Verify
Dos Write
Dos WriteAsync

Flushes the buffers associated with a file
Changes the current directory
Changes the location of the file pointer
Closes a file
Deletes a file
Duplicates a file handle
Locks a file
Closes a directory search file handle
Finds the first file in the directory that matches
the specified file name
Finds the next file in the directory that
matches the specified file name
Makes a subdirectory
Renames a file
Resizes a file
Opens a file
Returns information about the disk system
Returns information about the current directory
Returns information about the current disk
Returns information about a file 's handle
Returns information about a file
Returns information about a file's mode
Returns information about the fi le system
Returns a handle's type
Returns the state of the verify flag
Reads data from a file
Reads data from a file but returns immediately
Removes a subdirectory
Looks for a specified environmental variable
Searches for a file name given a path
Changes the default drive
Sets a fi le handle's s tate
Changes information associated wi th a file
Changes a file's mode
C hanges the file system information
Sets the maximum number of file handles
Changes the s tate of the verify flag
Writes data to a file
Writes data to a file but returns immediately

File 1/0 131

FILE HANDLES

The 05/2 file subsystem operates on files through a file's handle,
which is obtained when the file is first opened. Like all other OS/2
handles, a fi le handle is a 16-bit unsigned integer. You must obtain a
valid file handle before attempting to use any of the file I/O services.
You obtain the handle either by making a successful call to DosOpen or
by using one of the built-in handles discussed later.

FILE POINTERS

All open disk files have associated with them a file pointer, which is used
to keep track of the location in the file that is currently being accessed.
OS/2 automatically maintains the file pointer during read or write
operations. The file pointer is an unsigned long integer. For example, if
a file is 100 bytes long and your program has just read the first 50
bytes, the value of the file pointer is 50. You can also set the value of
the file pointer to reach a specific point in the f ile.

DosOpen AND DosClose

Before you can access a file you must obtain a handle to it. To do this
you use the DosOpen service, which has the prototype

unsigned DosOpen(char far *filename,
unsigned short far •fhandle,
unsigned far *action, unsigned long size,
unsigned attr, unsigned openflags,
unsigned mode, unsigned long reserved);

where filename must be a null-terminated string that contains a valid
path and file name for the file to be opened. The [handle parameter
points to the integer that contains the file 's handle on return from a
successful call.

The action parameter points to a set of flags encoded into an integer,
which holds the action taken by a successful DosOpen. If the call fails,
the value pointed to by action has no meaning. The action value will be
one of the following.

132 OS/2 Programming: An Introduction

Value

1
2
3

Meaning

File existed
File was created
File existed and its length was truncated

The size parameter specifies an initial length in bytes for a new or
truncated file. T he value can be 0. This parameter has no effect on a
file that is opened for read operations.

The value of the attr parameter determines a file's attributes. It ap
plies only to newly created files. The value of attr can be any valid (i.e.,

not mutually exclusive) combination of the following:

Value Type of File

0 Normal
1 Read-only
2 Hidden
4 System
20H Archive

The value of the openflags parameter determines what action Dos
Open takes depending on whether the specified file exists. Its value can
be a combination of these values:

Value

0

1

2

Action

Returns error if the specified file already exists; otherwise,
opens the file and returns success

Opens the file if it exists and returns success; otherwise,
returns error
Opens an existing file, but truncates it; otherwise, returns
error

IOH If specified file does not exist, creates it and returns success;
if the file does exist, returns error

For example, if you wish to open a fil e that exists or create it if it does
not, you would use a value of llH (1 plus lOH).

The value of the mode parameter must specify both the access and
the share mode of a file that is being created. All files can be accessed in
one of three different ways: read-only, write-only, or read-write. For a
single-tasking operating system, these access codes fully describe how
access to the file is allowed. In OS/2, a multitasking system, the access

File l/O 133

mode of a file is not sufficient to describe the file fully because it does
not take into account the possibility of two or more processes attempt
ing to access the file at the same time. To handle this situation all 0$/2
files also have associated with them a share attribute, which is one of the
following:

Share Attribute

Deny wri te sharing

Deny read sharing

Deny read-write sharing

Deny none

Meaning

Only the process that opened the file can
write to it, but other processes can read
from it.

Only the process that opened the file can
read from it, but other processes can write
to it.
O nly the process that opened the fi le can
read or write to the file; all other processes
are barred access.
Any process can access the file at a ny ti me,
in any way.

In addition to the access and file-sharing specifics, 05/2 lets you
cont rol a few other aspects of the file system. You can control the set
t ing of the inheritance flag, which determines whether a child process
inherits a file handle from the parent. You can tell the fil e system to
return all I/O errors to the ca lling routine rather than the system
critical e rror routine. You can tell 05/2 that you do no t want write
operations to return until the information being written is actually put
on the physical device (not simply written to a buffer). Finally you can
specify that the drive is being accessed directly on a sector-by-sector
basis, bypassing the disk's logical structure.

The values for the access, file -sharing, and miscellaneous flag set
tings are shown in Table 6-2. You combine the attributes you want to
create the value desired for the mode parameter. (To combine the values,
you simply add them togethe r.) For example, to open a file for read
write operation s with n o sharing, use 12H.

The reserved parameter must be 0.
When the file is first opened, the file pointer is set to the beginning

of the file and has the value 0.
Unless the write-to-device flag has been set, the 05/2 file system

writ es output to a buffer, not the actual physical file, until the buffer is
full. Virtua lly all operating systems buffer disk input and output by

134 0 5/2 Programming: An Introduction

Table 6-2. File Mode Values

Type

Access

Share

Inheritance

Error
Write-to-device

Direct-access

Value

0
1
2
lOH
20H
30H
40H
BOH

2000H
4000H

soooH

Meaning When Specified

Read-only file.
Write-only file.
Read-write file .
Deny r ead-wri te shar ing .
Deny write sharing.
Deny read sharing.
No access denied.
File handles not passed on to child
process.
Immediate return to caller on error.
Services that per form write opera
tio ns do not return until informa
tion is written to the specified
physical device.
Signals the system that direct de
vice access will take place .

even multiples o f a sector. When your program requests information,

for example, the file system automatically reads a full sector even if

only a partial one is needed. Subsequent sequential read req uests can

then obta in information from the buffer without waiting for a slow

di sk access . Output data is also buffered until a full sector can be writ

ten to disk, thus bypassing a number of time-consuming disk opera

tions, each writing jus t a few bytes. Using the buffered approach to

improve performance is not unique to 05/2. However, you must ensure

that the contents of the buffer h ave been written to the file before

your program terminates or before the h andle associated with that file

is destroyed. Because of the finite number of file handles availa ble in

the file system (20 by defa ult), you also need some way to release a file

h andle for reuse when you are done with a file. To accomplish t hese

goals 05/2 provides the DosClose service, whose proto type is

unsigned DosClose(unsigned short fhandle);

where [handle must be a previously acquired file handle.

File 1/0 135

Before you can develop any meaningful examples using DosOpen
and DosClose, you need to learn about DosWrite, the subject of the
next section .

Dos Write

To writ e information to a file use the DosWrite service, which has the
prototype

unsigned DosWrite(unsigned short fhandle, void far *buf,
unsigned count,
unsigned far •num_ bytes_written);

T he fhandle parameter must be a valid, previously obtained, file handle.
The region pointed to by buf holds the information to be written to the
file. The count parameter specifies the length of the buffer, or more
properly the number of bytes in the buffer that should be written to
the file. Finally, the num_bytes_written parameter point s to an integer
that contains the number of bytes actually wri tten on return from the
call . If an error occurs and it is not possible to write all the bytes
req uested, the value returned in the integer poin ted to by num_bytes_
written is different from the number requested.

OS/2 file operations are binary in nature and no character transla
tions take place. (What you write is what you get!) The file system
performs no formatting and is byte oriented by nature. That is, if you
wish to write data other than characters, you must treat the data as a
group of bytes. There is no OS/2 service that writes floating point
numbers directly, for exam ple. (You will see how to write other types
of data later in this chapter.)

Each time you write to a file, its pointer is automatically advanced
by the number of bytes written.

A SIMPLE FIRST EXAMPLE

To see how OosOpen, DosWrite, and DosClose work togethe r, exam
ine the following program that creates a new disk file ca lled T EST.TST
and writes the line "Hello OS/2 World!" to it. (The file must not exist.
If it does, the ca ll to OosOpen will fail.)

136 OS/2 Programming: An Introduction

I* This programs wri tes output to a disk file. */

#define INCL DOS

#include <os2 . h>

main()
{

}

unsigned short fh;
unsigned a ction;
unsigned co unt;
char buf[80J;

strcpyCbuf, " Hello OS/2 World!");

/* create the ti le , no file sharing */
i f(DosOpen((char far*) "test.tst", /*filename*/

(unsigned short tar *) &fh, /* pointer to hand le */
(unsigned far *) &action, /* poin ter to result */

{

}

OL, /* 0 le ngth •/
0, I* normal ·ti le */
Ox10, /* create */
Ox11, /*write-only, no-share */
OL)) /* reserved */

printf("error in opening file");
exitC1>;

I* write a short message to it */
if(DosWrite(fh, (void far *) but, (unsigned) strlen(but),

(unsigned fa r *) &count))
printf("error in write operati on");

/* close the file */
itCDosClose(fh)) printt("error closing file");

The first time you run this program, it creates the file called TEST.TST
and writes output to it. If you try to run the program a second time,
however, 05/2 displays an "error in opening fi le" message, because the
value of the openflags parameter specifies that the file will be created
only if it does not exist.

Notice that this program checks for error returns from DosOpen,
DosWrite, and DosClose . Errors are very common when you are deal
ing with files. One frequent error is failure to put a diskette into the
drive. Another is running out of space on a disk. You must check for
errors whenever you open a file or write to it . (Remember that closing
a fi le may involve a write operation if a buffer must be written to disk.
Hence DosClose must a lso be checked.) Unlike the screen or keyboard
services, in which most of the functions are more-or-less guarant eed
successful- and error checking can generally be ignored-many of the
file system services have a significant likelihood of failure due to

File 1/0 137

uncontrollable circumstances. You simply must check for errors and
take appropriate action if one occurs.

A Variation

As mentioned, the program just shown works only if the file does not
already exist. You can change the value of the openflags parameter so
that the file will be opened if it a lready exists or created if it doesn ' t .
This can be accomplished by using the value 1 lH. This version of the
program is shown here:

I* This program opens or creates a file and then
writes output to it.

•I
#def ine INCL DOS

#inc lude <os2.h>
main()
{

unsigned short fh ;
unsigned action;
unsigned count;
char buf[80J;

strcpy(buf, "Hello OS/2 World, again!");

I* open or create the file, no file
if(DosOpen«char far •) "test.tst",

(unsigned short far •) &fh,
(unsigned far •> &action,
OL, /* 0 length •I
O, I• normal file•/
Ox11, /• open or create •/

sharing •/
I• ti lename •/
I• pointer to handle •/
I• pointer to result •I

Ox11, /•write-only, no - share •/

{

}

OL)) /• reserved •/

printf ("error in opening file">;
e xit CO;

I• write a short message to it •/
if(DosWrite(fh, (void far ··> buf, (unsigned) strlen(buf),

(unsigned far •) &count))
printf ("error in write operation">;

I• close the file •/
if CDosCloseCfh)) pr intf("error c los ing file");

}

When you run this program, it opens an existing T EST.TST file and
writes the new message to it, overwriting any existing contents. (Later
you will see how to append information to a fil e.) If TEST.TST does not
exist , it is created.

138 OS/2 Programming: An Introduction

Buffer Lengths

As stated earlier, 05/2 buffers file information. At the time of this
writing, its internal buffers are in even multiples of 512. For DosWrite
to be as efficient as possible, it is best to call it with your own data
buffers also in even multiples of 512 . Of course if your application does
not make this feasible, you can call DosWrite w ith data buffers of any
value between 1 and 65,536.

DosRead

To read information from a file you use the DosRead service, which has
the prototype

unsigned DosRead(unsigned short fhandle, void far *buf,
unsigned count, unsigned far *num_read);

The [handle parameter is a valid, previously obtained file handle asso
ciated with the file from which you wish to read. The region pointed to
by buf receives the information read. The value of count determines how
many bytes are read from the file. The buffer receiving them must be
at least count bytes long. The value pointed to by num_read will contain
the number of bytes actually read after the call returns. The number
of bytes requested and the number of bytes actually read may differ
either because the end of the file has been reached or because an error
ha s occurred.

05/2 automatically updates the file pointer after each read
operation.

The following program reads and displays the contents of a text file.
You must specify the name of the file on the command line .

I* This program displays an entire file. */

#define INCL DOS

#include <os2.h>

main(int argc , char •argv[J)
{

unsigned short fh;
unsigned action ;

}

unsigned num bytes;
char butC513J;

ifCargc!=2) {
printf("Usage: read <filename>\n">;
exitC1>;

}

/* open the file, no fi Le sharing •I
if(DosOpen((char far•) argvC1J, /*filename*/

File I/O 139

(unsigned short far •) &fh, /* pointer to handle •I
(unsigned far •) &action, /* pointer to result */

{

}

OL, /* 0 Length •/
O, I* normal file•/
Ox1 , /* open •/
Ox10, I• read -on ly, no-share •/
OL)) /* reserved •I

printf ("error in opening file");
exitl1l;

do {
if IDosRead(fh, (char far •) buf, 512,

(unsigned far •) &num bytes)) {
printf("error reading file"); -
exitl1l;

}

bufCnum bytesJ = '\0'; I• null terminate the buffer•/
printf lbufl;

} wh ilelnum_bytesl ;

iflDosCLoselfh)) printf("error closing file");

As this program illustrates, the easiest way to know when you have
reached the end of the file is when the value of the num_ bytes
parameter is zero. The DosRead function does not return an EOF
characte r.

One thing to notice about this program is that the buffer used to
hold the data is one byte longer than the number of bytes reques ted to
be read. In this situation the buffer must be transformed into a null
terminated string so that it can be used as a parameter to printf(). Not
every application requires this step, of course.

One final point: As was the case with DosWrite, the DosRead ser
vice is most efficient when used with buffer lengths of even multiples
of 512, although other values are perfectly valid .

RANDOM ACCESS

The OS/2 file system supports byte-addressable random access
through the DosChgfilePtr service, which has the prototype

140 OS/2 Programming: An Introduction

unsigned DosChgFilePtr(unsigned short fhandle,
long distance, unsigned origin,
unsigned long far *loc);

The /handle parameter must contain a valid, previously obtained file han
dle . The DosChgFilePtr service works only on actual disk files and
cannot be used with other devices . The value of distance determines how
far, in bytes, the file pointer is to be moved relative to the origin. This is
a signed value and may be either positive or negative. The value of
ongm determines how the value of distance is interpreted, as shown
here:

Origin

0

1

2

Effect

Moves specified number of bytes from the start of the fi le

Moves specified number of bytes from the current location
Moves specified number of bytes from the end of the file

The value pointed to by loc holds the current value of the file point
er on return.

The following program uses th e DosChgFilePtr service to let you
scan a text file both forward and backward. You must specify the name
of the file on the command line. The program support s these
commands:

Command

s
E
B
F
Q

Meaning

Go to beginning of the file.
Go to the end of the file.
Go back 512 bytes.
Go forward 512 bytes.
Quit.

When the program begins execution, the first 512 bytes of the file are
shown.

I* A file browse program . •I

#define INC L DOS

#include <os2. h>

File 1/0 141

•ainCint argc, char •argv[])
{

}

unsigned short fh ;
unsigned action;
unsigned num bytes;
long pos, p;
char buf[513l, ch;

ifCargc!=2) {

}

printf("Usage: read <filename>\n");
exitC1>;

I* open the file, no file sharing •/
ifCDosOpen((char far•) argv[1], I• filename•/

{

}

Cunsigned short far •) &fh, /• pointer to handle */
(unsigned far •) &action, I • pointer to result •/
OL, / * O length •/
O, I* nor ma l file•/
Ox1, I• open •/
Ox10, /* read-only, no-shar e •I
OL>> I • reserved •/

printfC"error i n opening file");
exitC1>;

I* main loop •/
pos = OL;
do {

if(DosReadCfh, (char far •) buf, 512,
(unsigned far •) &num bytes)) {

printfC"error reading file"); -
exitC1>;

}

buf[num bytes]= 1 \0 1 ; /* null terminate the buffer*/
printf(buf>; /* display the buffer */

I* see what to do next */
ch = tolower(getch());
switchCch) {

}

case 'e': I* move to end •I
DosChgFilePtrCfh , -512L, 2 , <unsigned long far •l &pos);
break;

case 's': /* move to start •/
DosChgFilePtrCfh, OL , O, <unsigned long far • > &pos>;
break;

case 'f ': I* move forward •I
I• forward is automatic, so no change is required •/
pos = pos + num bytes;
break; -

case 'b' : I* move bac kward•/
pos = pos - 512;
ifCpos<OLl pos = OL ;
DosChgFilePtr(fh, pos, O, (un s igned long far*) &pl ;

} whileCch != 'q');

if(DosCloseCfh)) printf(" error closing file");

142 OS/2 Programming: An Introduction

APPENDING TO A FILE

The way to add information to the end of a file is to advance the file
pointer to the end of the file and then begin writing the new data. To
accomplish this you could open the file for read-wri te operations and
read to the end of the file. But this method is very inefficient. The best
way to get to the end of the file is to use DosChgFilePtr in a statement
like this:

DosChgfilePtrCfh, OL, 2, (unsigned lo ng far•) &pos) ;

This tells OS/2 to move the file pointer to the end of the file. The 2 in
the origin parameter and the OL in the distance parameter ensure that the
file pointer will be at the physical end of the file.

The following program uses this method to add lines of t ext
entered at the keyboard to the file TEST.TST. To stop inputting lines,
enter the word quit when prompted for the next line.

I• This program opens a ti le, reads lines from the keyboard
and appends each line to the end of the file .

•I
#define INCL DOS

#include <os2;h>

main()
{

unsig ned short th ;
unsigned action;
long pos;
unsigned count;
char bufC80l;

I• open or create the file, no file
if(DosOpen((char far•) "test.tst",

(unsigned short far •) &th,
(unsigned far •> &action,
OL, /* 0 length •I
O, I• normal ti le •I
Ox11, I• open or create •I

sharing •/
I• filename •/
I* po int er to handle •/
I• pointer to result */

Ox11, /* write-only, no-share •I

{

}

OL)) /• r es erved •I

printf("error in opening file");
exitC1l;

I• go to the end of the file •/
oosChgFilePtrCfh, OL, 2, (unsigned long far*) &posl;

I* continue adding to the file until the word "quit" is
entered

•I

File 1/0 143

do {
printf ("enter message (<80 chars> message: ") ;
getsCbuf);
if(DosWrite(fh, <void far •) buf, <unsigned) strlen(buf>,

(unsigned far •> &count))
printf ("error fn write operati on");

} while(strcmpC"quit", but>>;
I* close the file •I
ifCDosCloseCfh)) printf("error closing file");

}

READING AND WRITING
OTHER DATA TYPES

You can use the OS/2 file system services to read and write data t ypes
other than characters (bytes) by treating a variable of a different type
as a buffe r and using it s address and length in the calls to DosRead and
Dos Write. (Remember that you can obtain the size of any data type by
using the sizeof compile time operator.) For example, the following
program first writes a double value to the file TEST.TST and then
reads it back, displaying the value to the screen for verification:

I• This program illustrates how to wri te a double value to
a file and read it back.

•I
#d ef ine INCL DOS

#include <os2.h>

main()
{

unsigned short fh;
unsigned action;
unsigned count;
f Loat dbl;
unsigned long pos;

dbl = 101.125;

I* open or create the file, no file
if (Dos 0 pen ((-ch a r far *) "test • ts t ",

(unsigned short far *) &fh,
(unsigned far •) &action,
OL, /* 0 len gth •/
O, /* normal file */
Ox11, /• open or create •/

sharing •I
I* filename •I
I* pointer to hand le •/
I* pointer t o result •/

Ox1 2, /* read-write, no-share */
OL>> /* reserved •I

}

{

printf("error in opening fi Le");
exitC1>;

I* write a double valu e to it •/

144 OS/2 Programming: An Introduction

}

if(DosWrite(fh, (double far •> &dbl, sizeof(dbl),
(unsigned far *) &count))

printf("error in write operation");

I* clear the dbl variable •/
dbl = 0.0;

I• reset the file pointer to start of file*/
DosChgFilePtr(fh, OL, O, (unsigned Long far*) &pos>;

ifCOosReadCfh, (double far •> &dbl, sizeofCdbl),
(unsigned far *) &count))

{

}

printf("error reading file");
exit(1>;

printf C"Zf" , dbl>; /* verify that info read correctly */

I* close the file*/
ifCDosClose(fh)) printfC"error closing file"> ;

You can use this same basic approach on more complex data types
such as arrays, unions, and structures. Just be sure that you are passing
the variable's address, not its value, to DosRead or DosWrite.

READING AND WRITING
TO A DEVICE

The OS/2 file system lets you access certain devices as if they were
files. For example, you can open the console (screen and keyboard) and
then read and write to it. To open a device, use the device's name in
place of a file name in the DosOpen call. The devices supported by
OS/2 are

clock$ con mouse$
coml kbd$ nul
com2 lptl pointer$
com3 lpt2 pm
com4 lpt3 screen$

The most interesting of these are coml through com4 (the serial com
munication ports) and lptl through lpt3 and prn (the printer ports).

One thing to keep in mind is that not all devices support all modes
of operation. For example, if you open screen$, you may write to the
screen but not read from it. As you will see, disk files also support
random access operations, but devices do not.

File I/O 145

This program opens the keyboard, reads a line of text, and displays
the contents of the buffer:

/* This program reads input from the keyboa rd . •/

#def ine INCL DOS

#include <os2.h>

main 0
{

}

unsigned short fh;
unsigned action;
unsigned count;
char buf[80J;

I• open the keyboard •/
if(DosOpen<Cchar far •) "kbd$", /* keyboard •I

}

{

(u n signed short far ' •) &fh, I• poi nter to hand le •I
(unsigned far •) &action, /* poin t er to result •/
OL, /* 0 Length */
O, I* normal "file" •/
Ox11, /* open or create */
Ox10, /* write-only, no-share •I
OL>> /* reserved •I

printf ("error accessing the key board");
exit<1>;

if(DosRead(fh, (void far •) buf, 80,
(unsigned tar •) &count))

printf("error in read operation");

printf(but>;

if(DosCLose(fh)) printf("error clo s ing the keyboard");

The following program opens lptl and writes a message to it:

I* This program writes output to the printer. •/

#define INCL DOS

#include <os2 . h>
main()
{

unsigned short fh;
unsigned action;
unsigned count ;
char bufC80J;

strcpy(buf , "Hello OS/2 World!");

I• open or create the file, no file sharing •/
if(DosOpen((char far •) "Lpt1", /* printer */

146 OS/2 Programming: An Introduction

}

{

}

(unsigned short far •) &fh, '* pointer
(unsigned far *) &action, '* pointer
OL, I* 0 Length *' o, I* normal "f i le" *'
Ox11, I* open or create *I
Ox 11, '* wr ite-only, no-share */
QL)) I* reser ved *'

printf C"error accessing the printer");
exit(1);

to handle
to result

if(DosWrite(fh, <void far •) buf, (unsigned) st~Len(buf),
(unsigned far *) &count))

printf ("error in write operation") ;

if(DosCLose(fh)) printf("error closing the printer");

*I
*'

Generally speaking, you will not use the 05/2 file system to write
to the screen, read the keyboard or the mouse, or access the system
clock . The 05/2 dedicated services that perform these functions will
generally be faster than going through the file system. However, you
should use the file system to access the printer ports because 05/2 can
automatically route output to the proper port without your program
needing intimate knowledge of the system's configuration.

THE OS/2 STANDARD DEVICES

05/2 has three built-in file handles, which are associated with three
standard devices. These handles are created when your program begins
executing. T he handles and their meaning are

Handle

0
1
2

Meaning

Standard input
Standard output
Standard error (output)

By default standard input is associated with the keyboard, and standard
output and standard error are associated with the screen. However,
because 0512 supports 1/0 redirection of its standard devices, input
and output can be routed to disk files or other devices.

The following program writes a message to standard output:

I* This program wr it es output to Standard Output. •/
#define INCL DOS

#include <os2.h>

main 0
{

unsigned count;
char bufCSOJ;

File 1/0 147

strcpy(buf, "Hello OS/2 World!");

/* write a short message to it •/
if(OosWriteC1, (void far •) buf, (unsigned) strlenCbuf>,

(unsigned far •) &count))
printf ("error in write operation") ;

}

Notice that the program does not have to open standard output
because OS/2 does so automatically when the program begins. The
program does not close standard output because this, too, is performed
automatically. If this program were called STDOUT, executing it using
this command line causes the message to be written to the screen:

STOOUT

However, using the following command line causes the message output
by the program to be written to a file called MESS.

STDOUT >MESS

DISPLAYING THE DIRECTORY

Application programs commonly need to display the contents of a
directory so that the user can make a file selection. OS/2 makes this
very easy to do through its Dosfindfirst and DosFindNext services.
Their prototypes are

unsigned DosFindFirst(char far *mask, unsigned short *handle,
unsigned attr,
FILEFINDBUF far *info,
unsigned buflength,
unsigned far *count,
unsigned long reserved);

unsigned DosFindNext(unsigned short handle,
FILEFINDBUF far* info,
unsigned buflength,
unsigned far *count);

148 OS/2 Programming: An Introduction

For DosFindFirst, the mask parameter is a null-terminated string
that holds the file name you are looking for. This string can include the
* and ? wild card characters. A directory handle is returned in the vari
able pointed to by handle. This handle is used in subsequent calls to
DosFileNext. Prior to the call to DosFindFirst handle must contain the
value 1 or FFFFH. If its value is 1, OS/2 supplies a default handle.
However, if you will be searching for more than one specific file, use
FFFFH, which causes OS/2 to return a handle that can be used in sub
sequent calls to DosFindNext. The attr parameter specifies the type of
file you are looking for. It can be any valid (not mutually exclusive)
combination of the following values:

Value File Type

0 Normal
1 Read-only
2 Hidden
4 System
IOH Subdirectories
20H Archive

The structure of type FILEFINDBUF pointed to by info receives infor
mation about the fi le if a match is found. This structure type is defined
as

typedef struct _ FILEFINDBUF {
FDATE fdateCreation; /* creation date */
FTIME ftimeCreation; /* creation time */
FDATE fdateLastAccess; /* last access date */
FTIME ftimeLastAccess; /* last access time */
FDATE fdateLastWrite; /* last write date */
FTIME ftimeLastWrite; /* last write time */
unsigned long cbFile; /* file length */
unsigned long cbFileAlloc; /* total space allocated */
unsigned attrFile; /* file attribute */
unsigned char cchName; /* fil ename length */
char achName[13]; /* filename */

} FILEFINDBUF;

File l/O 149

The types FDATE and FTIME are defined by Microsoft as

typedef struct _ FTIME {
unsigned twosecs : S;
unsign ed minutes: 6;
unsigned hours 5;

l FTIME;

typedef struct _fOATE {
unsigned day 5;
unsigned mon th 4;

unsigned year 7;

l FDATE;

The buflength parameter specifies the length of the FILEFINDBUF
structure. The integer pointed to by count specifies the n umber of
matches to find and holds the number of matches found on return . It is
generally best to give count a value of 1. If no match is found, 0 is
returned . The reserved parameter m ust be 0.

The parameters for DosFindNext have the same meaning as those
for DosFindFirst.

If you are looking for only one specific file and fully specify that
file 's name (no w ild cards) in the call to DosFindFirst, you w ill not need
to use DosFindNext . If you are searching for (potentially) several
match es, however, the basic method is to call DosFindFirst to obtain the
first match (if any) and a directory handle to use in subsequent call s to
DosFindNext.

There are two ways to de termine wh en the las t match has been
found:

1. Both DosFindFirst and DosFindNext fa il and return an error code if
no m atch is found.

2. The count parameter is zero when no (more) matches are found.

The following program lists the current working directory. It dis
plays the file's name and length .

150 05/2 Programming: An Introduction

/*This program lists the directory . */

#define INCL DOS

#include <os2. h>

void show_dir(void);

main()
{

show_ di r ();
}

I* Display the directory. */
void s how dirO
{ -

}

FILEFINDBUF f;
unsigned short hd ir;
un signed count;

hdir = Oxffff ; /* cause a new handle to be ret urned */
count = 1 ; /* find the first match */
Dosf indfirst((char far*) "*·*", (unsigned short far *) &hdir,

OxO, CFILEFINDBUF far *) &f, sizeof Cfl,
(unsigned far *) &count, OL);

do {
p rintf(" X-13s Xd\n", f.achName, f.cbfile>;
oosfi ndNe xtC hdir, CFILEFINDBUF far *) &f, sizeo f (f),

(unsigned far *) &count) ;
}while(count>;
DosfindC los e(hdirl;

ACCESSING INFORMATION
ABOUT THE DISK SYSTEM

It is not un common for an application to need to h ave knowledge of
various pieces of information about the disk system, including such
things as the tota l free storage, the number of bytes per sector, or the
number of sec tors per cluster. To o btain this information, OS/2 sup
plies the DosQFSinfo service, which has the prototype

unsigned DosQFSinfo(unsigned drive, unsigned info-type,
char far *info, unsigned buflength);

where drive specifies the number of the drive you want to receive
information about . If it is 0, the default drive is used. O therwise, u se 1
for drive A, 2 for drive B, and so on. The info-type parameter specifies
what type of information will be returned. If it is l, on return info

File 1/0 151

points to a structure of type FSALLOCATE, which is defined as

typedef struct _fSALLOCATE {
unsigned long idFileSystem; /* system identifier */
unsigned long cSectorUnit; /* sectors per cluster */
unsigned long cUnit; /* total number of sectors */
unsigned long cUni tAvail; /* available sectors */
unsigned cbSector; /* bytes per sector */

} FSALLOCATE;

In some 05/2 literature, a cluster is called a unit, but this book w ill
continue to use the term cluster because it is more common.

If info-type is 2, info points to a structure of this type:

type struct _fSALLOCATE2 {
FDATE fdateCreation; /* creation date of volume label */
FTIME ftimeCreation; /* creation time of volume label *I
char cchName;
char achName[14];

} FSALLOCATE2;

/* length of volume name */
/* volume name */

Note: FSALLOCATE2 is not defined in any header files provided by
Microsoft and must be defined explicitly by your program. (This situa
tion could change. If you are using a different compiler, this structure
cou ld also be defined in a header file provided with your compiler.)

This program displays the number of bytes per sector, the number
of sectors per cluster, the total disk space, and the total free disk space
for the default drive. The total disk space is computed by multiplying
the number of bytes per sector by the number of sectors per cluster by
the number of clusters on the disk. The free space is computed by
multiplying the number of bytes per sector by the number of sectors
per cluster by the number of clusters available.

I• Demonstrate the DosQFSinfo service and display the number
of bytes per sector, sectors per c lus ter, total di sk space,
and available disk space.

*/

#define INCL DOS

152 05/2 Progra mming: An Introduction

#include <os2,h>

inainO
{

}

FSALLOCATE f;

DosQFSlnfoCO , 1, (char far •) &f,
sizeof fl;

printfC"By t e s per sector: Xld\n", f .cbSector> ;
printf("Sectors per cluster: Xld\ n" , f , cS ec torUnit) ;
printf C"Total disk space : Xld\n",

f , cbSector * f,cSectorUnit * f.cUnit);
printfC"Total avai l ab l e disk space: Xl d\n" ,

f,cbSect o r * f ,cSectorUnit * f.cUnitAvail>;

EXAMINING AND CHANGING
THE DIRECTORY

OS/2 provides two important directory services called DosQCurDir

and DosChgDir, which are used to return the path name of the cur

rent directory and to change th e cu rrent directory. Their prototypes

are shown here:

unsigned DosQCurDir(unsigned drive, ch ar far *path,

unsigned far *size);

unsigned DosChDir(char far *path, unsigned long reserved);

For DosQCurDir the drive parameter specifies the drive to be operated

on. To use the default drive, use 0 for drive. For drive A, use 1, for drive

B use 2, and so on. Upon return the character array pointed to by path

hold s the path name of the directory. The integer pointed to by size

must hold the length of the array pointed to by path prior to the ca ll,

and it returns the length of the path name.

For DosChDir, path points to the character that holds the new direc

tor y path name. The reserved parameter must be OL.
This program displays the current directory name, switches to the

root directory, and then switches back to the original directory:

I * Di s p l aying and changing the director y . •/

#define INCL DOS

#include <os2.h>

main 0

{

}

char olddirname[64J, newdirname[64J;
unsigned size;

size = 63;

File 1/0 153

DosQCurDirCO, (char far •> olddirname, <unsigned far •> &size>;
printf("current directory: Xs\n", olddirname>;
DosChdi rC"\\", OU;
DosQCurDirCO, (char far•) newdirname, <unsigned far•> &size);
printf ("current di rectory: Xs\n", new di rname>;
DosChdirColddirname, OLl;
DosQCurDirCO, (char far•) newdirname, <unsigned far•> &size);
printf("current directory: Xs\n", newdirname);

7
AN INTRODUCTION

TO MULTITASKING

The preceding chapters in this book have covered some very important
OS/2 API services. If you are moving from DOS or another single
tasking system to 05/2, the material in the previous chapters, although
necessary, is nothing especially new or exciting. However, this chapter
introduces you to OS/2's multitasking capabilities, in which much of its
power lies. If you are new to a multitasking environment, this is where
the real fun begins!

The use of multitasking can dramatically increase the efficiency of
most applications. For example, in a software development situation
multitasking allows you to edit, compile, and test simultaneously. Part
of a word processor program can be inputting text, while another part
is formatting it for printing, and yet another part is actually printing
the document. The entire point of a multitasking, single-user system
like OS/2 is to help the user achieve greater throughput by minimizing
needless idle time.

This chapter covers some of the basic 05/2 multitasking services.
The next chapter builds on the material presented here and discusses
interprocess and interthread communication and synchronization
issues. The time you invest in understanding the concepts presented
here will really pay off later.

155

156 OS/2 Programming: An Introduction

As you will recall, OS/2 implements multitasking on both a process

and a thread level. Hence, OS/2 provides two sets of multitasking ser

vices: one to create and support processes and one to create and sup

port threads. This chapter looks at both, beginning with processes.

A WORD OF WARNING

Before we begin it is important to emphasize one important point: You

must never make any assumptions about the way multitasking routines

will be executed by OS/2. You must never assume that one routine will

execute before another or that it will execute for a given number of

milliseconds. For example, if you need one multitasked routine to exe

cute before another, perhaps to initialize some thing, you must explic

itly design this into your program. If you find, through experimen ta

tion, that one multitasked routine always executes before another, it is

not acceptable to use this "fact" in your program, for th ree important

reasons:

1. Future versions of OS/2 may schedule tasks differently. (Actually,

nothing in the OS/2 documentation says that you can assume any

thing about the way OS/2 schedules tasks even within the same

version.)

2. In the future, OS/2 may be designed to run on a multiple-CPU

computer, thus allowing true concurrent execution of multiple

tasks. In that case two tasks that might have been sequenced in a

single CPU system will be run simultaneously.

3. Future versions of OS/2 may change the way time slices are allo

cated, causing the "first" routine to begin execution but not fini sh

before the "second" begins.

Remember that when you are dealing with multitasked routines there

is no valid concept of which routine is executed "first," unless you have

explicitly provided for this in your program.

To write solid multitasked code you must assume that all multi

tasked routines are actually executed simultaneously, whether they are

in you r current environment or not. Most of the troubles you will

experience when you use multitasking inside your programs will be

caused by forgetting this important point.

An Introduction to Multitasking 157

PROCESSES VERSUS THREADS

The distinction between a process and a thread, covered earlier in this
book, is summarized here. A thread is a dispatchable piece of code; that
is, the OS/2 scheduler executes threads. A thread does not own
resources. A process consists of at least one thread and may have sev
eral. A process owns resources. Very loosely, a process is a program
and a thread is like a subroutine in that program.

MULTIPLE PROCESSES

05/2 has nine services (shown in Table 7-1) that are used to oversee
the creation and operation of multiple processes. As you can probably
tell by looking at Table 7-1, OS/2 lets your program begin the concur
rent execution of another program. The program that initiates the
second program is called the parent and the program that it causes to be
executed is called the child. A parent can create a child in two different
ways:

1. It can simply cause the child to be run in the parent's session using
DosExecPgm.

2. It can create another session and run the child under that session, in
either an autonomous or a controlled mode, using DosStartSession.

Table 7-1. OS/2 Multiple Process Services

Service Function

DosCWait
DosExecPgm
Dos Exit
DosExitList

DosGetPid
DosSelectSession
DosSetSession
Dos Start Session
DosStopSession

Waits for a child process to terminate
Loads and executes another process
Terminates the current process
Registers functions to be called when the process
terminates
Returns a process's identification code
Makes specified session foreground
Sets a session's status
Starts a new session
Stops a session

158 OS/2 Programming: An Introduction

Most of the time when you want one program to cause the execu
tion of another, related program, you use DosExecPgm. The main use

for DosStartSession is at system initialization, when you might want to
begin several sessions automatically.

We will begin with a look at DosExecPgm and its support functions.

DosExecPgm

To execute a second process from a currently executing program, use

DosExecPgm, which has the prototype

unsigned DosExecPgm(char far *failbuf, unsigned failbuf _size,
unsigned exec_ mode,
char far *args,
char far *env,
RESULTCODES far *result,
char far *filename);

The buffer pointed to by failbuf receives a message that helps explain
the cause of any failure to execute the specified program successfully.

The failbuf _ size parameter specifies the size of the fail buffer. The exec_

mode parameter specifies how the child program will be executed and

must be one of these values:

Value

0
1
2
3
4

Meaning

Execute synchronously
Execute asynchronously and d iscard child 's termination code
Execute asynchronously and save child's termination code
Execute in debug mode
Detach child

When the child program is executed synchronously, the parent sus
pends execution until the child has terminated, at which time the par
ent resumes. In a DOS environment, this is the only way that one
program can run another. However, in OS/2's multitasking environ

ment, synchronous execution is seldom used and is not of much inter
est. When the child is run asynchronously, the parent and the child
execute concurrently. If the parent needs extensive information about
how the child terminated, call DosExecPgm with the exec_ mode set to 2;

An Introduction to Multitasking 159
0

if not, use the value 1. The debug mode is used for tracing. If you want
to detach the child, use the value 4.

The parameters args and env point, respectively, to arrays that hold
any command line arguments and environment variables required by
the ch ild process. Either or both may be null. The array pointed to by
args begins with the null-terminated name of the program followed by a
double-null-terminated list of the arguments. For example, if the child
program's name is TEST and you want to pass it the argument
"HELLO THERE", call DosExecPgm with args pointing to this string:

"TEST\OHE LL O TH ERE \0\0"

The environment variables are passed to the ch ild as null-terminated
strings with the last being a double-null-terminated string.

T he structure pointed to by result receives information about t he
termination of the child process. The s tructure is defined like this:

typedef struct _ RESULTCODES {
unsigned codeTerminate;
unsigned codeResult;

} RESULTCODES;

If the child is executed asynchronously, codeTerminate holds the pro
cess identifier (PIO) associated with the child process. For asynchro
nous executi on, the codeResult field is not used. If the child is execu ted
synchronously, codeTerminate will be O for normal termination, 1 for
hardware error, 2 for system trap, and 3 if the process was killed . For
synchronous execution, codeResult holds the child's exit code.

The array pointed to by filename contains the drive, path, and name
of the program to be execut ed.

As w ith all the API services, DosExecPgm returns zero if successful
and non zero otherwise.

For example, this program first asynchronously executes a program
called TEST.EXE and then begins printing Js on the screen, sleeping a
lit tle each time through the loop, until you press a key.

I* This p rogram asynchronously exe cutes another. •/
#de f i ne INC L DOS

#include <os2.h>

160 OS/2 Programming: An Introduction

main()
{

}

char fail[128J ;
RESULTCODES result ;

if(DosExecPgmCCchar far•) fail , 128,
1, /* run asynchronous •/
(char fa r •) '"', I• no command l ine args */
(char far *) '"', /* no environment args */
(RESULTCODES far *) &result, /* result */
"TEST . EXE")) /* name of program */

printf("exec error");

do {
printf("1 "> ;
DosSLeepC100U;

} whileC!kbhitC)) ;

Use this for the TEST.EXE program:

/* This is the TEST program used by se ve ral of the example
mu l titasking programs in this chap t er.

*' #define INCL DOS

#include <os2 . h>

ma in()
{

}

do {
printf("2 "> ;
DosSLeep(11Ll;

} whil e(!kbh it ()) ;

When both programs are executing you see a series of Is and 2s
d isplayed on the screen. Beca u se of the difference in the DosSleep
parameter, about four times as many 2s are shown as 1s. (You might
want to try varying the sleep parameters to see the effect. This will
give you insight into how the OS/2 scheduler works.) Notice th at b oth
programs check for a keystroke prior to termination. Since the key is
not read by either program, the keybuffer is not cleared. Therefore, a
single keypress terminates both programs. However, in real applications
you n eed to make sure that input meant for one program is not acci
dentally routed to another program.
· When the child begins executing, it inhe rits the paren t's environ
m ent , including all open file ha ndles (except th ose with the inheritance
fla g set to 0). The child can access these files w ithout opening them. Of

An Introduction to Multitasking 161

course the parent's environment can be overridden or augmented by
the contents of the environment array passed at the time of the
DosExecPgm call.

With a slight modification to the DosExecPgm call in the parent
program, the command line argument "HI" can be passed to the
TEST.EXE program, as shown here:

if(DosExecPgm(Cchar far*) fa i l, 128,
1, /* run asynchronous */
(char far *) "TEST\OHI\0\0", /* <== pass arg *I
(char far*) "",/*no environment args */
(RESULTCODES far *) &result, /* result */
"TEST1. EXE")) /* name of program *I

pr i ntfC"exec fai Led");

This version of TEST.EXE prints the argument before proceeding:

#define INCL DOS

i nclude <os2.h>

I* This time, show the command Line argument */
main(i nt argc, char *a r gv[J)
{

}

pr i ntf<"Xs", argv [1J >;
do {

prin tf ("2 ">;
DosSLeep C11U;

} w h iL e < ! k bh it ()) ;

Two important points to remember:

1. A parent can execute more than one child process .

2. A child process can execute its own child processes .

Waiting for a Child to Terminate
When Using DosCWait

In multitasking environments it is not uncommon for the parent pro
cess at some point to wait until an asynchronous child process has fin
ished. For example, a database program may initiate a sort process and
then continue processing user input. However, the parent will have to
wait until the sort is complete before processing a request to print the

162 05/2 Programming: An Introduction

database. In other words, it is very common for a parent and an asyn
chronously executing child process to execute concurrently until some
special event causes the parent to wait for the child to fi nish. This

differs from simple synchronous execution in which the pa rent and
child never execute concurrently. To allow the parent to wait for a

child, OS/2 includes the DosCWait service, whose prototype is

unsigned DosCWait(unsigned descendants,
unsigned wait,
RESULTCODES far *results,
unsigned far *Tpid,
unsigned pid);

The descendants parameter specifies whether DosCWait shou ld wait
for the termination of just the specified process or of the specified pro
cess and all (if any) of its child processes. If descendants is 0, the parent

waits only for the specified process. If it is 1, the parent waits for the
specified process and any of its children .

The wait parameter specifies whe ther DosCWait actually waits for
the specified process to terminate or simply re turns immediately. If its
value is 0, the parent wa its for the process to terminate. If it is l, the
parent returns immediately w ith the result codes of an already termi
nated process . (However, if the specified process is still executing when
DosCWait is called with the no-wait option, it returns an error
message.)

The structure pointed to by result is of type RESULTCODES and is
the same as that described earlier in the discussion of DosExecPgm.

The variable pointed to by Tpid w ill hold the process iden tifier of

the terminating process as set by DosCWait.
The pid parameter specifies the process identifie r of the process to

wait for. If it is null, the first child process to terminate causes a return
and the process identifier of this child is loaded into the Tpid parameter.
O therwise, DosCWait wait s only for the specified process. If the speci
fied process does not exist, DosCWait returns an error message .

The following program executes the TEST.EXE program shown ear
lier and waits for it to end. (To end the TEST.EXE program, press any
key.)

I• This program demonstrates th e DosCWait service. •I
#defi ne INCL DOS

An In troduction to Multitasking 163

#include <os2.h>

main()
{

}

char fail[128J;
RESULTCOOES result, waitresult;
un signed proc;

ifCOosExecPgm((char far•) fail, 128 ,
1, /* run asynchronous */
(char far •) '"', I* no command l ine args •I
(char far •) "", I* no environment args •I
(RESULTCODES far *) &result, /* result •/
"TEST.EXE"))/* name of program •I

printf("e xec error " >;

OosCWaitCO, I• wait for specified proces s only •I
O, I• wait for termination •I
CRESULTCOOES far •) &waitresult , /• result •/
(unsigned far •) &proc, I• PIO •I
result.codeTerminate); /* PIO to wait on •I

printfC"child process termi nat ed\n">;

Notice how the process identifier of TEST.EXE is first returned in the
result.codeTerminate field by DosExecPgm and then used by DosC
Wait to specify the specific process to wait for.

It is important to understand that when DosCWait is called using
its wait mode, the calling process is suspended, thus freeing the CPU.

Killing a Process

The parent can terminate a child process. To understand why this is
necessary, imagine that you have created a large relational database sys
tem. The main (parent) process includes all the user input and query
functionality. To achieve uninterrupted use, however, you allocate time
consuming tasks such as printing, sorting, mail merges, and backups to
separate child processes that are executed only when needed. In such a
system, it is very likely that from time to time you will need to termi
nate one or more child processes because they are no longer needed. To
accomplish this task 05/2 provides DosKillProcess, which has the
prototype

unsigned DosKillProcess(unsigned descendah ts,
unsigned pid);

If the descendants parameter is 0, the specified process and any descen-

164 05/2 Programming: An Introduction

dants are killed. If it is 1, only the specified process is terminated . The
pid parameter is the process identifier for the process to be stopped.

DosKillProcess can fail and return nonzero only if the specified
process does not exist.

To see DosKillProcess in action, try this program, which executes
the TEST.EXE program, waits 5000 milliseconds, and then kills it. Try
the program two ways:

I. Simply do nothing, letting it kill TEST.EXE. In this case, OS/2 prints
the message "child process terminated."

2. After TEST.EXE begins execution but before it is killed by its par
ent, press any key. (Remember, TEST.EXE terminates if you press a
key.) In this case, when the parent tries to kill it with the DosKill
Process, it fails and the message "child process already terminated"
appears.

I• This program executes a second program, waits a while and
then ki l ls the second prog ra m.

#define INCL DOS

#include <os2.h>

main()
{

}

char fai l[128J;
RESULTCODES result, waitresult;
unsigned proc;

if CDosExecPgmCCchar far •) fail, 128,
1, /• run asy nchronous •/
(char far •) "", I• no command line a r gs •/
<cha r far •) "", I• no environment args •I
(RESULTCODES far •) &result, /* re s ult */
"TEST.EXE")) /* name of program •I

printf("exec error">;

DosSleepCSOOOU;

I• kill child•/
if(DosKillProcessC1, result.codeTerminat e))

printf("child process a lr ea dy terminated">;
else

printf ("child process terminated\n"l;

An Int roduction to Multitasking 165

Creating an Exit function List

Since a parent function can terminate a child process unexpectedly, it
may be advisable to ensure that the child has some means o f dying a
clean death . For exa mple, you will want the child program to flush any
disk buffers and close all files. Special hardwa re devices may need t o be
rese t, and it may even be appropriate to notify the user that the process
is being killed. To enable the child to perform these tasks, OS/2 ca lls a
specia l list of funct ions whenever a process (child o r parent) termi
nates . The fu nctions that comprise this list are called exit functions. Col
lectively they are called the exit function list. OS/2 provides the DosExit
List service to support the exi t function list. Its prototype is

u nsigned DosEx itList(unsigned operation,
void far *exfunc(unsigned term_ code));

T he value of operation determines what DosExitlist does. T he valid
values are shown here*:

Value

1

2
3

Meaning

Add a fu nction to the exi t list
Remove a function from the exit list
Current exit function is done; move on to the next
function in the exit list

To add or remove a function from the lis t, you must pass a pointer to
the function in the exfunc parameter. The function m ust be declared as
follows:

void far func(unsigned term_ code);

The function will be passed a terminat ion code in the term_code param
eter, which will be one of the se values*:

Value

0
1
2
3

Meaning

Normal term ination
Unrecoverable e rror
System t rap error
Process killed

•These table's were adapted from tables in Oprmti11g Systrm/ 2 Progmmmrr's R.rfrrrnrr Mnnunl, wi th permission
of Microsoft Corporat ion.

166 OS/2 Programming: An Introduction

Your exit function can take different actions based on the termination

code if so desired.
The basic approach to establishing an exit function is first to call

DosExitlist to add the function to the list. At termination the last

thing your function must do is call DosExitList with the operation

parameter set to 3, to move to the n ext function in the list. If for some

reason you want to remove a function that you previously added to the

list, call DosExitList with operation set to 2.
There is one very important thing to reme mber about an exit func

tion: It cannot be terminated by 05/2. This means that your exit func

tions should be very short and never, under any circumstances, delay

the termination of the process more than a few milliseconds. Because

the environment surrounding the exit functions is dying, it is impera

tive that your function does what it needs to do as quickly as possible.

An incorrectly constructed exit function cannot crash 05/2, but it can

make it impossible for 05/2 to complete its termination of the process

and thereby degrade system performance.

Another important point: You cannot assume that two or more exit

functions w ill always be called in the same order. 05/2 guarantees to

call them, but not in any special sequence.
As a simple example, this program puts the function exfunc() into

the exit list and then prints 1000 numbers. On termination, the

exfunc() function displays whether the process terminated normally or

was killed by your pressing CTRL-C.

/* This program creates an exit function, exfunc(), which
is called when th e program terminates.

*I

#define INCL DOS

#include <os2.h>

void far exfunc(unsigned);

main()
{

int i;

DosExit Li st(1, exfunc);

}
for(i=O; i<1000; i++) printf("Xd ">;

I* This function is automatically called at termination. •I

An Introduction to Multitasking 167

void tar extunc(unsigned term code)
{ -

}

if(term code==O)
printf("program terminating normally");

else
printf("program terminating abnormally");

/* done with this exit function, move on */
DosExi tL istC3, (void far •) OJ ;

Error Checking

A wide variety of errors can occur when you create or manipulate pro
cesses. For example, in a given situation 05/2 may not be able to create
a new process because all process identifiers are already allocated. It is
important to watch for errors in your applications and take appropriate
action if one occurs.

CREATING NEW SESSIONS

When you used DosExecPgm to start new processes, these new pro
cesses ran in the same session (sometimes called a screen group) as the
parent. Although this is very useful for related processes that interact
with each other to form a unit, it is not very desirable when the pro
cesses are not related. However, 05/2 allows you to s tart a process in
its own session by using the DosStartSession service, whose prototype
is

unsigned Dos5tart5ession(5TARTDATA far *sdata,
unsigned far *sid,
unsigned far *pid);

The s tructure pointed to by sdata is defined like this:

typedef struct _5TARTDATA {
unsigned cb; /* size of struct */
unsigned Related; /* session related to parent */
unsigned FgBg; /* foreground or background */
unsigned TraceOpt; /* trace active? */
char far *PgmTitle; /* session title */

168 OS/2 Programming: An Introduction

char far *Pgm Name; /* name of program to execute */
char far *Pgmlnputs; /* command line args */
char far *TermQ; /* termination queue or null */

STARTDATA;

The cb field must hold the length of the STARTDATA structure. If
Related is 0, the n ew session is completely independent of the parent.
If it is 1, the new session is a child of the parent. If fgBg is 0, the new
session becomes the foreground task; if it is 1, the new session
becomes a background task. The new session can become a foreground
task on ly if the parent is in foreground when it creates th e session. If
TraceOpt is 0, the new session is not set up for tracing; if it is 1, the
new session can be traced. The string pointed to by PgmTitle is the
n ame of the session and may be null. The string pointed to by
PgmName is the name of the program that will begin running in the
new session. The string pointed to by Pgmlnputs contains any com
mand line argu me n ts needed by th e program and may be null. The
string pointed to by TermQ is the name of the termination queue and
may be null.

T he sid parameter points to a variable that receives the session iden
tifier when the call returns. The pid parameter points to a variable that
receives the process identifier of the process run in the newly created
session.

This program begins a new session called "my session" and starts
running the TEST.EXE program. When you try this program,
remember that you need to have TEST.EXE in the current working
directory.

/* Start a new session and run the TE ST.EXE program. */

#define IN~L DOS

i nclude <os2.h>

main()
{

STARTDATA d;
unsigned sid, pid;

d . cb = sizeof(d); /* size of struct */
d .Related = O; /* not re l a ted */
d.FgBg = O; /* foreground */
d. TraceOpt O; /* no trac i ng */
d.PgmTit le = (char far *) "my sess i on " ; /* session name */

}

An Introduction to Multitasking 169

d.PgmName = (char far *)"c:\\pm\\test.exe"; /* name */
d.Pgmlnputs = (c har far •) '"'; /* no command Line args •I
d.TermQ = (void far •> O; /* no queue */

DosStartSession((STARTDATA far *) &d, /* session data •I
(unsigned far •) &sid, I• session id */
(unsigned far •) &pidl;/* process id •I

In this program the new session is not a child of the parent and
becomes the foreground task.

Although this trivial program doesn't check for errors in the Dos
StartSession call, your program will need to in actual practice because
the service is susceptible to a wide variety of errors. For example, 05/2
may not be able to start another session because all its session identifi
ers may be allocated.

When you terminate the TEST.EXE program by pressing a key, you
also terminate the session.

Selecting and Stopping a Session

If your program starts a child session, your program can switch to that
session using DosSelectSession, whose prototype is

unsigned DosSelectSession(unsigned sid,
unsigned long reserved);

where sid is the session identification number of the session to switch
to and reserved must be 0.

You can use DosSelectSession only to switch to a child session or
back to the parent. You cannot select an independent session. To switch
to the parent, call DosSelectSession with sid having a value of 0 .

The parent session can stop a child session using the DosStopSes
sion service, which has the prototype

unsigned DosStopSession(unsigned descendants,
unsigned sid,
unsigned long reserved);

If the descendants parameter is 0, only the specified session is terminated;
if it is l , the specified session plus any children of that session are

170 05/2 Programming: An Introduction

termin ate d . The sid parameter holds the session identification code.
The reserved parameter must be 0.

To illustrate how DosSelectSession and DosStopSession work, this
program creates a second session and begins running the TEST.EXE
program. Next it switches back and forth between the two sessions ten
times. Finally the parent session terminates the child, and the program
exits.

I• Th i s program creates a new session and uses DosSelectSessi on
to switch back and forth between the t wo sessions .

*I

#defin e INCL DOS

#include <os2.h>
#include <stdli b.h>

ma i n{)
{

}

STARTDATA d;
unsigned s id, pid ;
char f lag, c h;

d. cb = sizeof(d); /* siz e of struct •I
d.Related = 1; I* related •I
d.FgBg = O; I• foreground •I
d.TraceOpt = O; I• no t r acing • I
d.PgmTit le = (char far •) "m y session"; I• sessi on name •I
d.PgmName = (char far •)"c:\\pm\\test.exe"; I* name •I
d.Pgmlnputs = (char far •) '"' ; I• no command line args •I
d.TermQ = (void far •) O; I* no queu e • I

DosStartSession((STARTDATA far •) &d, I• session data •I
(unsigned far •) &sid, I• sessi on id •/
(unsigned far •> &pid);/* pr ocess id •/

flag = O;
f or(ch=O; ch< 10 ; ch++) {

DosSleep(1000U; I* wait a whi Le •I
flag = !flag;

i f (f la g) DosSelectSessionCsid, OL>; I• s wi tch to child •/
else DosSe le ctSessionCO, OL >; I• swi t ch to parent •/

}

I* r et u rn t o parent sess io n if not t here already •I
DosSelectSessionCO, OL) ;

I• kill the child s e ssio n •I
oosS topS ession CO, s id , OL> ;

THREADS

The single most important thing to understand about OS/2's multitask
ing model is that it is thread (rather than process) based. A thread is

An Introduction to Multitasking 171

the unit of code dispatched by the scheduler. All the programs you have
seen up to this point have consisted of a single thread; that is, the
entire program was one thread of execution. This need not always be
the case, however, because 05/2 lets the programmer define threads of
execution within a program. This allows a single program to create
concurrently executing routines, which can, if used correctly, greatly
enhance the efficiency of your program. In fact 0512 also allows you to
set the priority of the threads within a program so that you can choose
what routines get the greatest access to the CPU. The thread-based
services are listed in Table 7-2.

In the first half of this chapter you saw how to create concurrently
executing processes. While multitasking processes is a wonderful
improvement over single-tasking them and allows a number of diver
gent applications to share CPU time, it is not generally the approach to
take when you want to multitask pieces of a single application. Instead
you should use multiple threads within the application.

Another important point about threads and processes is that each
process can have up to 255 separate threads, but there can be on ly
about 12 (depending on how your system is configured) separate pro
cesses. So when you want to have many paths of execution, use multi
ple threads rather than multiple processes .

Each thread inherits the environment of the process of which it is a
part. This includes open files and environmental strings. If one thread
in a process opens a file, for example, other threads can use that file
handle. All threads in a program share the same code and data seg
ments, so access to global data and routines is unrestricted.

The thread that begins a process's execution is called either the main
thread or thread I. It is a little special, as you will soon see.

Table 7-2. OS/2 Thread-Based Services

Service function

DosCreate Thread
DosGetPrty
Dos Resume Thread
DosSetPrty
Dos Suspend Thread

Creates a thread of execution
Returns a thread's priority
Restarts a suspended thread
Sets a thread's priority
Suspends a thread's execution

172 05/2 Programming: An Introduction

Creating Threads with
Dos Create Thread

To create a thread of execution 05/2 uses the DosCreateThread ser
vice, whose prototype is

unsigned DosCreateThread(void far *func(void),
unsigned far *tid,
char far *stack);

where func is a pointer to a function that is the entry point into the
thread. The function must be declared as void far w ith no parameters.
Upon return from the call, tid will point to the thread's identifier. The
region pointed to by stack is used as the thread's stack space. The stack
parameter points to the top of the stack. Each thread uses its own
stack. This region must be at least 512 bytes long, but you really
should allow at least 2048 bytes if you will be using any of the API
services inside the thread.

The newly created thread begins to execute immediately after it is
creat ed. You must not call a thread entry function from another
routine.

The following short program uses DosCreateThread to create and
execute two threads. If you are using Microsoft C version 5 .1, you
must use this command to compile the program,

CL - Lp -Gs thread.c

assuming that thread.c is the name you give to the program.

/* Thi s program u ses DosCreateThread to activate two
concurrently executing threads.

•I

If yo u a re usin g Micr osoft C 5.1, use this command
to compile th is program :

CL -Lp -Gs thread.c

#define INCL SUB
#defin e INCL-DOS

#include <os 2.h >

void far thd1C>, far thd2C>;

char s tac k1[4096J, stack2[4096J;
unsigned thd_id1, thd_id2;

main()
{

An Introduction to Multitasking 173

OosCreateThread(thd1,

}

(unsigned far *) &t hd id1 ,
<void far•) &stack1[~095Jl;

OosCreateThread(thd2,
(unsigned far •) &thd id2,
<void far•) &stack2[4095Jl;

VioWrtTTy<Cchar far*) "this is the main thread\n\r", 25, Ol;

void far thd1 ()
{

VioWrtTTy((char far*) "this is thread 1\n\r", 18 , Ol;
}

void far thd20
{

VioWrtTTy((char far •> "this i s t hread 2\n\r", 18, Ol;
}

Notice that DosCreateThread is called with the last byte of the stack
arrays. The 80286 stacks grow from high to low, so it is necessary to
pass the last address.

Each thread, including the main program thread, terminates when it
reaches the end of the function. However, you can terminate a thread
explicitly by calling DosExit, whose prototype is

void DosExit(unsigned mode, unsigned term-code);

If mode is 0, only the current thread terminates. If it is 1, the entire
process t erminates. The value of term_code is passed to the calling
process.

If the main thread terminates, it terminates the process even if
other threads in the process are still active . Keep this in mind when
designing your multithread applications.

There are two problems with using DosCreateThread directly with
high-level languages:

1. It is possible that not all high-level language library functions will be
reentrant. If a library function is not reentrant, it cannot be called
by two different threads at the same time without causing t rouble .
Although all the API services are reentrant, language run-time
libr.aries may not be. This is the reason that VioWrtTTy was used in
the sample program rather than printf(). Microsoft's standard C
library does not work w ith multiple threads. (Microsoft does, how-

174 OS/2 Programming: An Introduction

ever, provide a special multithread library, which will be discussed in
a moment.)

2. Because each thread has its own stack, a high-level language that
performs run-time stack overflow checking will report false stack
overflow errors. Generally you can work around this problem by
using a compiler option to turn off run-time stack checking. With
the Microsoft compiler use the -Gs compiler directive. However, you
do lose the advantage of run-time stack overflow checking .

These two problems can make multithread application tedious to
develop. However, all is not lost. Most high-level languages have a spe
cial function that creates new threads, and provide special run-time
libraries that support multiple threads of execution. In Microsoft C the
thread creation function is called _ beginthread() and has the proto
type

int cdecl far _beginthread(void far •func(void far *),
void far *stack_end,
unsigned stack_size,
void far *a rgs);

The func parameter points to the entry function, which must be
declared as void far. However, the s/ack_end parameter is a pointer to
the last byte in the stack, unlike the stack parameter in DosCreate
Thread. The slack_ size parameter must hold the length of the stack in
bytes. The args parameter points to any information you need to pass
to the thread and may be null. The prototype for _beginthread() is in
PROCESS.H, and you must include this header in any program that
uses the function.

Keep in mind that _begin thread() does eventually call Dos
Create Thread.

The rest of the examples in this chapter use _ beginthread()
because it is designed to help avoid the problems discussed earlier. If
you are using a different compiler, consult your user manual for
instructions.

Microsoft C version 5.1 (or greater) supplies a multithread set of
library functions as well as a multithread version of all the standard C
header files. If you have installed the compiler on your computer in the
suggested way, the multi thread header files are in the MT \INCLUDE

An Introduction to Multitasking 175

directory. However/fv1icrosoft C automatically supplies the \INCLUDE,
so you need add only the MT\. If your program needs STDIO.H, for
example, you will use this #inc~ude statement:

#inc lude <mt\stdio.h>

To gain access to the multithread libraries and to reset some compiler
options to accommodate multithread applications, use this batch com
mand to compile and link your multithread programs:

cl -A l fw X1 .c /link / NOD l libcmt doscalls

This command tells the linker to avoid using the default libraries and
substitute the LLIBCMT.LIB (the multithread version of the standard
C library) and the DOSCALLS.LIB API services library. (Remember, it
is possible that DOSCALLS.LIB will be called something else in your
version of 05/2.)

The _beginthread() function returns the thread's identifier
number if it is successful or - 1 if it is not.

If you have a different compiler, remember that you must consult
your user's manual for specific instructions on alternative multithread
libraries and header files.

The code shown here uses _beginthread() and the multi thread
libraries t o create a program that parallels the one just shown.

/* This program uses beg i nt hread() to activate two
concurrent ly executing threads.

*I
#define INCL SUB
#defin e INCL-DOS

#include <mt\os2. h>
#include <mt\process. h >
inc lud e <mt\stdio.h>

void far t hd10;
void far thd2Cl;

char st ack1[4096J, stack2[4096J;

main()
{

beginthread(thd1,
(void far•) stack1,
4096,
(void far *) 0);

176 05/2 Programming: An Introduction

}

beginthread(thd2,
(void tar *l stack2 ,
4096,
(void tar *l Ol;

printf ("this i s the ma i n thread\n"l;

void far thd1 ()
{

printf("this is thread 1\n"l;
}

void far thd2()
{

printt("this is thread 2\n");
}

Microsoft C also includes a special thread-termination function
called _end thread(), which has the prototype

void cdecl far _endthread(void);

However, you w ill probably find DosExit more useful since it returns a
termination code.

As stated earlier, when the main process thread terminates, all
threads in the process terminate. To see an example, run this
program:

I* This program prints 1000 numbers on the screen using

*'
a thread. However, it you pr ess a key, t he main thread
terminates, which stops t he entire process.

#define INCL SUB
#define INC L-DOS

#include <mt\os2.h>
#inc lu de <mt\process . h>
#include <mt\stdio.h>

void far thd1(voidl, far thd2(voidl;

cha r stack1[4096J , stack2 [4096J ;
unsigned thd id1, thd id2;

main()
{

beginthread(thd1,
- Cvoid far *l &stackH4094J,

4096,

getchO;
}

void tar thd1 ()
{

<void tar *) OJ;

An In troduction to Multitasking 177

int i ;

for(i =O; i<1000 ; i++) printf(" 7. d ", i l;
}

T he program begins a thread and then waits for a keypress inside the
main thread. If you press a key before thdl terminates, the program
will terminate. However, if thdl finishes, the program will wait until
the main thread terminates before exiting.

Unless you specify otherwise, all threads in your program are at the
same priority level and are given equal time slices. To illustrate this,
watch the output of this program. Both thdl and thd2 print the same
number of messages on the screen.

I• This program gi ves you an idea ho w CPU time is shared
between two concurrently e xecuting threads .

*' #define INCL SUB
#define INCL-DOS

#include <mt\os2.h>
#include <mt\process . h >
#include <mt\stdio . h>
void tar thd1Cvoid) ;
void far thd2(voidl;

char sta ck1[4096J, stack2[4096J ;

main()
{

}

_begi n threadCt hd1,
Cvoid fa r *) stack1,
4096,
Cvoi d far *) 0) ;

beginthread(thd2,
- <vo id far *) stack2,

4094,
<void far *) Ol; .

getchO;

void far t hd10
{

}

in t i;

forCi=O; i<1000; i++)
printf ("thread 1 - ");

void far thd2()
{

}

i nt i ;

for(i:O; i<1000; i++)
prin tf ("thread 2 - ");

178 05/2 Programming: An Introduction

The comment at the start of the program refers to two threads.
The program actually consists of three threads: the main thread,
thdl, and thd2. So why does the comment refer to two threads? The
answer is that the main thread is suspended until a key is pressed.
Remember that all 1/0 in OS/2 is interrupt driven. When getch() is
called, the main thread suspends until you press a key, meaning that
CPU time is spent only on the remaining two threads (plus any other
processes in the system, of course).

Waiting for Threads to Finish

Since the entire process dies when the main thread dies, it is important
to keep the main thread alive until all desired program activity has
finished. More generally, it is important for your program to know
when the various threads of execution have either completed or are at
least in a safe state so that the program can terminate. Although the
next chapter covers OS/2 interprocess and interthread communication
and synchronization services that provide a solution to this problem,
we still need a solution (if only temporarily) for our examples. The one
shown here can safely be used in many applications, but should not be
construed as a general solution. (The reasons will be made clear in the
next chapter.)

The approach and examples developed here have two purposes:

1. They introduce the basic notion of thread synchronization and
communication and will make the concept of the semaphore, OS/2's
standard synchronization method, easier to understand and appreciate.

2. They are excellent illustrations of some key multitasking concepts.

When you need to wait until a thread finishes you generally estab
lish a flag, which the thread sets when it is finished executing. Another
thread examines this flag to see whether the other thread is executing.
For example, you can rewri te the previous example so that it automati
cally terminates when both threads have terminated, as shown here:

/* This program uses beginthread() to activate two
concurrent ly executing threads and the n waits for
th e m to end.

*/
#define INCL SUB
#define INCL-DOS

nclude <mt\os2.h>
nclude <mt\process.h>
nclude <mt\stdio.h>

void far thd1(void);
void far thd2Cvoid);

char stack1[4096l, stack2(4096l;

An Introduction to Multitasking 179

I• These flags will be set to 1 when the two threads terminate •I
char term_flag1=0, term~flag2=0;

main()
{

}

beginthread(thd1,
- <void far •> stack1,

4096,
<void far •> O>;

beginthreadCthd2,
- Cvoi d far •) stack2,

4094,
(void far •> O>;

printf("this is the main program thread\n">;

while<!term_flag1 II !ter~_f lag2) ; I• wait •/

void far thd10
{

int i;

for(i=O; i<100; i++)
printf("thread 1CXd)\n", i);

term_flag1 = 1;
}

voi d far thd20
{

int i;

forCi•O; i<100; i++)
printf("thread 2CXd)\n", i>;

term_flag2 = 1;
}

As you can see, the program waits for the other threads to terminate
with this wait loop:

whileC!term_fl ag1 I I !term_flag2) DosSleepCSOL>; I• wait •/

However, this leaves much to be desired for two reasons.

180 OS/2 Programming: An Introduction

1. It keeps the main thread active - and soaking up CPU time - while
doing no productive work.

2. Perhaps more important, the while loop is computer-bound. Rather
than waiting for a keypress, which causes the thread to suspend, the
while loop keeps the thread constantly ready to run. Remember, a
suspended thread demands no CPU cycles. However, a thread that is
compute-bound is always able to run and is therefore given CPU
cycles . T his fact makes the program run much slower than you
might think. The next section introduces a solution to this problem.

Dos Sleep

Throughout this book the DosSleep service has been used withou t
much explanation. Now is the time for you to learn how important
DosSleep ca n be. The DosSieep function ca uses the thread that calls it
to suspend for a specified number of milliseconds. DosSleep is not
simply a time-delay loop that eats up CPU time; it actually instructs the
OS/2 scheduler to suspend the calling thread for the specified time.

To understand how valuable a service DosSleep can be, substitute
this while loop in the previous program and watch how much faster
the program runs.

whi Le (! term_f Lag1 11 ! term_ f Lag2) ; I* wa it •/

Each time through the loop the flags are checked and, if the conditions
are not met, the thread sleeps for SO milliseconds, allowing the other
threads greater access to the CPU.

The cent ral issue here is that DosSleep is not simply a delay func
tion. Careful use of DosSleep allows you to increase the efficiency of
your applications. Whenever your program enters a polling loop that is
not extremely time critical, you should insert a call to DosSleep so that
other threads can have more CPU cycles.

Thread Priorities

As you may recall, OS/2 has three categories of execution priorities:
idle, regular, and time-critical. Within each category, there are 32 prior
ity levels, 0 through 31. By default all threads within a process have the

An Introduction to Multitasking 181

same priority: regular, level 0. However, you can alter a thread's prior

ity using the DosSetPrty service, which has the prototype

unsigned DosSetPrty(unsigned descendants, unsigned class,
int p_ change, unsigned tid);

If the descendants parameter is 0, all the threads within the calling pro

cess have their priority altered . If descendants is 1, all the threads in the

calling process plus any child processes are affected. If descendants is 2,

only the specified thread's priority is ch anged.
The class parameter de termines which priority class the specified

thread becomes. It can take these values:

Value Priority Class

0 No change
1 Idle
2 Regular
3 Time-critical

The p_ change parame ter is a signed integer in the range - 31 to 31,

which w ill be added to the current priority set ting. For example, if

p_change is 5 and the current priority setting is 7, after the call the new

priority will be 12.

The tid parame ter specifies t he process or thread that will have its

priority cha nged.
You can find out a th read's priority using t he DosGetPrty service,

which h as the prototype

unsigned DosGetPrty(unsigned mode, unsigned fa r *prty,
unsigned tid);

If mode is 0, the priority of the main thread is r eturned. If mode is 2, the

specified thread is r eturned. The val ue pointed to by prty h olds the

thread's priority after the call returns. The thread whose priority is

desired is specified in tid.
The thread's priority is returned with the high-order word holding

the general priority class and the low-order word holding the thread's

priority within that class. The priority class of a thread is determined

by bit s 8 and 9 (counting from 0) of the value pointed to by prty, as

182 05/2 Programming: An Introduction

shown here:

Bit
9

0

1
1

Bit
8

1
0
1

Meaning

Idle class
Regular class
Time-critical class

The following function displays the priority class and level plus the
thread's identifier number when passed the priority code returned by
DosGetPrty. Since the priority class is encoded into the high-order
byte of the priority code, when the low-order byte is cleared, the value
256 corresponds to idle, 512 to regular, and 768 to time-critical.

void show priority(unsigned priority, unsigned tid)
{ -

}

unsigned class, level;

VioSetCurPos(10, O, O>;
class = priority & OxFFOO; /• clear low-order byte •/

printf("Thread Xd: Priority class: ", tid>;
switch(class) {

}

case 256: printf("Idle\n">;
break;

case 512: printfC"Regular\n");
break;

case 768: printf("Time-critical\n"l;
break;

level = priority & OxFF; I• clear high-order byt e •I

printf ("Priority Leve L is: Xd\n", Level);

T he following program uses the show_priority() function to dis
play the priorities of two threads of execution and increases the prior
ity of thd2. Although each thread performs the same function
displaying 1000 numbers on the screen-because thd2 has a higher
priority, it completes first because it is given greater access to the CPU.

/* This program uses beginthread() to activate two
concurrently executing threads.

*/
#define INCL SUB
#define INCL- DOS

An Introduction to Multitasking 183

#include <mt\os2.h>
#inc lud e <mt\process.h>
#include <mt\stdio.h>

void far thd1C void>;
void far thd2(void) ;
void clrscr(void);

char stack1[4096J, stack2(4096J;

I* These fla gs will be set to 1 when the two threads terminate */
char term flag1=0, term flag2=0;
unsigned tid1, tid2; -
int thdwait = 1; /* synchronize the beginning of the threads •/

void show_priority(unsigned, unsigned);

main()
{

unsigned priority1, priority2;

clrscrO;

tid1 = beginthread(thd1,
- (vo i d far •) stack1,

4096,
(void far •) 0);

tid2 beginthread<thd2,
- (void far *) stack2,

4094,
(void far *) 0);

I• display current priority and class */
if(DosGetPrty(2, (unsigned far *) &priority1, tid1))

printf("error getting priority") ;
if(DosGetPrty(2, (unsigned far *) &priority2, tid2))

printf("error getting priority");

s how priority(priority1, tid1); getc h< >;
s how=prio r ity(priority2, tid2); getch();

I* now, up the priority of thread 2 by 1 */
if(OosSetPrty(2, O, 1, tid2))

printf("error setting priority") ;
if(OosGetPrty(2, (unsigned far •> &priority2, tid2))

printf("error setting priority");

show_priority(prior it y2, tid2>; getch<l;

I* start the threads •/
thdwait = O;

while(!term_flag1 II !term_flag2) DosSleep(10U; /*wait•/
}

void far thd1 ()
{

int i;

while(thdwait> DosSleep(10L);

184 05/2 Programming: An Introduction

tor(i=D; i<1000; i++) {
VioSetCurPo s (1, 0, 0);
printf("thread 1 (7.d)\n", i>;

}

term_f lag1 = 1;
}

void far thd2()
{

}

int i;

whileCthdwait> DosSleep(10Ll;

forCi=O; i<1000; i++> {
VioSetCurPosC1, 60, O>;
printf(" t hread 2(7.d)\n", i>;

}

term_flag2 = 1;

void show p r iorityCunsigned priority, unsigned tid)
{ -

}

unsigned class, level;

VioSetCurPosC10, O, 01;
c l ass = priority & OxFFOO; I• clear low-order byte •I

printf("Thread Xd : Priority class:", tid>;
switchCclass) {

}

case 256: printfC"!dle\n">;
break;

case 512 : printfC"Regu l ar\n"I ;
break;

case 768: printf("Time-critical\n");
break;

l e vel = priority & Ox FF; /* clear high-order byte •I

printf("Priority level is: 7.d\n", l evel.I;

I• A simple wa y t o clear the screen by filling
it with spaces.

*/
void clrscr()
{

)

char space[2J;

space[OJ =' ' ;
space(1J = 7;
VioScrolLUpCO, O, 24, 79, -1, (char far •> space, 0);

One interesting aspect of this program is that it uses the thdwait vari

able to synchronize the beginning of the two threads. You will learn a

better way to synchronize threads in the next chapter.

An Introduction to Multitasking 185

Suspending Threads

A thread's execution can be suspended by using DosSuspendThread,
which has the prototype

unsigned DosSuspendThread(unsigned tid);

where tid is the identifier of the thread to be suspended. When a thread
is suspended, the scheduler does not grant it access to the CPU. You
can suspend only the threads that are within the same process.

A thread suspended by DosSuspendThread stays suspended until it
is restarted by a call to DosResumeThread, which has the prototype

unsigned DosResumeThread(unsigned tid);

where tid is the thread's identifier. DosResumeThread can only restart
a thread that was previously stopped by a call to DosSuspendThread.

To see how these services work, try this program in which thdl
alternately stops and restarts thd2 each time through its main loop.

I* This program illustrates DosSuspen dThread and
Dos ResumeThread.

*' #defin e INCL SUB
#define INCL-DOS

#include <mt\os2.h>
#include <mt\ process . h> I* included for beginthread() •/
#include <mt \stdio . h> /* in c luded for printf() •/

voi d far thd1<void);
voi d far thd2(voi d) ;
un signed thd_id1, thd_i d2;

cha r stack1[4096 J , sta ck2[4096J ;

/* These flags wi l l be set to 1 when th e two threads te rminate•/
char term_flag1=0, term_flag2=0 ;

main()
{

t hd id1 be ginth read(t hd1 ,
- (v oid fa r *) stack1,

4096,
<void far •) 0) ;

thd id2 beginthread(thd2,
<void far *) stack2,
4094,
(void far •) 0) ;

186 05/2 Programming: An Introduction

whileC!term_flag1 I I !term_flag2)
}

void far thd1 ()
{

int i;
char flag;

flag = O;
OosSleepC1000L>;
forCi=O; i<100; i++) <

printfC"thread 1CXd) - \n", i) ;
flag = ! flag;

ifCflag) {

I* wait *'

}

ifCDosSuspendThreadCthd id2)) printfC"error in suspend">;
else printf C"suspending-thread 2\n");

}

}

else ifCDosResumeThreadCthd id2)) printfC"error in restart">;
else printfC"restartini thread 2\n">;

term_flag1 = 1;

void far thd20
{

}

int i;

forCi=O; i <3 0000 && !term flag1; i++) DosSleepC10L> ;
printf C"thread 2 reached Xd\n", i);
term_flag2 = 1;

8
SERIALIZATION AND

INTERPROCESS
COMMUNICATION

Now that you know the basics of OS/2's multitasking capabilities, it is
time to learn about some important concepts and API services that
allow you to control multiple-executing processes and threads. As you
will see in this chapter, two major issues must be addressed in a multi
tasking environment:

1. There must be some way to serialize access to certain resources so
that only one task has access to the resource at any one time.

2. There must be some way for one process to communicate with
another.

The purpose of this chapter is to explore OS/2's solutions to these
problems.

THE SERIALIZATION PROBLEM

05/2 must provide special services that serialize access to a shared
resource because, without help from the operating system, a program
or thread has no way of knowing that it has sole access to a resource.
Imagine writing programs for a multitasking operating system that
does not provide any serialization support. Imagine further that you
have two multiple-executing processes, A and B, both of which require
access from time to time to some resource R (such as a disk drive) that
must be accessed by only one task at a time. To prevent one program

187

188 OS/2 Programming: An Introduction

from accessing R while the other is using it, you try the following solu

tion. First establish a variable called flag, which can be accessed by both

programs. Your programs initialize flag to 0. Then, before a piece of

code can access R, it must wait for the flag to be cleared (0) if it is not

already cleared. When the flag is cleared, the code sets the flag,

accesses R, and when done with R, the program clears the flag . That is,

before either program accesses R, it executes this piece of code:

while Cf lag)
flag = 1 ;

I• wait for flag to be zero •I
I• set flag so another pro cess knows

that yo u are us ing R
•I

The idea behind this code is that neither process accesses R if flag is set.

Conceptually this approach is in the spirit of the correct solution. In

actual fact, however, it leaves much to be desired for one simple reason:

It doesn't always work! Let's see why.
Using the code just given, it is possible for both processes to access

R at the same time. In essence, the while loop performs repeated load

and compare instructions on flag; in other words, it repeatedly tests

flag's value. The next line of code sets flag's value. The trouble is that

these two operations could occur in two separate time slices. Between

the two time slices, the value of flag might have been changed by a

different process, thus allowing R to be accessed by both processes at

the same time. To understand this, imagine that process A enters the

while loop and finds that flag is 0, which is the green light to access R.

However, before it can set flag to 1, its time slice expires and process B

resumes execution . If B executes its while loop, it too finds that flag is

not set and assumes that it is safe to access R. However, when A

resumes it also begins accessing R. The crucial point of the problem is

that the testing of flag and the setting of flag do not comprise one unin

terruptible operation. They are two separate operations and, as just

illustrated, can be separated by a time slice of the other process. No

matter how you try, there is no way, using only application-level code,

to guarantee that only one process will access R at a time.

The solution to the serialization problem is as elegant as it is simple:

The operating system, in this case 05/2, provides a routine that in one,

uninterruptible operation, tests and, if possible, sets a flag. In the lan

guage of operating systems engineers, this is called a lest and set opera-

Serialization and Interprocess Communication 189

tion. For hi storica l reasons, the flag s u sed to control serialization are
called semaphores. The OS/2 services that allow you to use them are
discussed in the next section.

OS/2 SEMAPHORES

OS/2 provides nine services to create and access semaphores. These
functions are shown in Table· 8-1. T he most important use of these
services is to allow separate processes or threads to synch ronize their
activity. As described in the previous section, one important use of
semaphores is to control access to a shared resource. T hey have other
uses, however, such as all owing one task to sig nal another that an event
has occurred.

RAM vs. System Semaphores

OS/2 le t s you use semaphores to synchronize the action of threads
within a process or the action of separate processes. Toward this end,
OS/2 supports two different types of semaphores: RAM and system.

The RAM semaphore is used by threads within the same process
and is simply a variable of type unsigned long. All RAM semaphores

Table 8-1. T he O S/2 Semaphore Services

Service Function

DosC!oseSe m

DosCreateSem
Dos MuxSem Wait
DosOpenSem
OosSemWait
OosSemRequest

OosSem Set
DosSemSetWait
OosSemWait

Close a system semaphore
Create a system semaphore
Wait for one of severa l semaphores to be clea red
O pen a system semaphore
Wait for a semaphore to be cleared
Wait for a semaphore to be cleared, then set it in
one uninterruptible operation (Test and Set)
Set a semaphore
Set a semaphore and wait for it to be clea red
Wait for a semaphore to be cleared

190 OS/2 Programming: An Introduction

must be initialized to 0 before they are used . A RAM semaphore in one
process has no relationship to a RAM semaphore in another process.

To synchronize activity between two processes, use a system sema
phore. To obtain a system semaphore one process must use the
DosCreateSem service, which returns a handle to the semaphore. The
DosCreateSem service also initia lizes the semaphore when it creates it .
Other processes access the system semaphore by first calling Dos
OpenSem. To discard a system semaphore, call the DosCloseSem
service.

Aside from the DosCreateSem, DosOpenSem, and DosCloseSem
services, the rest of the semaphore services operate in the same
fashion on both RAM and system semaphores .

The main difference between RAM and system semaphores is that
RAM semaphores are much faster, so if you only need to synchroni ze
threads within a process, use RAM semaphores.

DosSemSet, DosSem Wait,
and DosSemClear

One of the first things you learn about the 05/2 semaphore serv ices is
that you can't use just one! T he semaphore routines work in conjunc
tion with each other so you need to learn about a few of them before
you can understand any examples.

To set a semaphore, use the DosSemSet service, which has the
prototype

unsigned DosSemSet(void far *sem);

where sem is a pointer to the variable that is the semaphore. It is
declared as a void pointer so that it will work with both RAM and sys
tem semaphores without generating compiler e rrors. Remember that a
RAM semaphore is simply an unsigned long variable, but a system
semaphor e is a pointer to a semaphore handle, which in turn is a
pointer.

To ca use a thread t o suspend execution until a specified semaphore
is cleared, use DosSem Wait, whose prototype is

unsigned DosSem Wait(void far *sem, long timeout);

Serialization and Interprocess Communication 191

The sem parameter must point to the semaphore to wait for. The timeout
parameter determines how long, in milliseconds, the calling thread sus
pends if the semaphore is not cleared first. If the value is - 1, the ser
vice will wait indefinitely.

To clear a semaphore use DosSemClear, whose prototype is

unsigned DosSemClear(void far *sem);

The semaphore pointed to by sem will be cleared.
The next few sections show how to u se these services to synchro

nize program activity.

A RAM Semaphore Example

As you learned in the previous chapter, one trouble with multithread
programs is that the main thread must stay alive and wait for the other
threads in the process to terminate. A temporary solution offered in
that chapter was that the main thread looped and waited for flags to be
set by the other threads. However, although this solution worked in the
specific situation, it should not be generalized. A major problem is that
it wastes CPU cycles. A better solution is to use semaphores because,
when a thread waits for a semaphore, it suspends until that semaphore
is cleared. When the thread is suspended, it does not consume any CPU
cycles.

This program uses RAM semaphores to signal the termination of
the two threads:

/* The main prog ram thread waits for the two RAM semaphores
to be cleared before termina ti ng .

*/
#define INCL SUB
#defi n e INCL-DOS

#include <m t\os2 .h>
#include <mt\process.h>
#include <mt\stdio.h>

void far thd 1 (void);
void far thd2Cvoid);

char stack1(4096J , stack2(4096J;

I* RAM semaphores must be init ialized to 0 •I
unsigned Long sem1=0, sem2 =0;

•

192 OS/2 Programming: An Introduction

ma in()
{

}

RESULTCODES waitresult;
u nsig ned p;
i nt tid1;

I* set the semaphores */
if (DosSemSet<&sem1)) {

}

print f (" cannot set s emapho re 1 ");
exit<1>;

if(DosSemSe t (&sem2)) {

}

printf ("cannot set semaphore 2");
ex it(1> ;

tid1 = begi nt h read (thd1,
(void fa r *) stack1,
4096,
(void far *) 0);

beginthread(thd 2 ,
- <vo i d far *) stack2,

4094,
(void f a r *) 0);

/* wait fo r the se maphores to be cleared by the t hreads */
DosSemWait(&s e m1 , -1L l ; /*wait indefin itely*/
DosSemW aitC&sem2 , - 1 Ll; /*wait inde fini t ely*/

void far thd1 ()
{

}

in t i;

f orCi=O; i< 100 ; i ++)
printf("t hread 1CZdl\n", i);

I• clear the semaphore */
DosSem ClearC&sem1);

void far t hd20
{

}

int i;

f o r (i =O; i<100; i ++)
print f (" thread 2C Zdl\n", il;

I* clear the semaphore •/
DosSemClearC&sem 2l ;

T he program es tablishes two RAM semaphores, seml and sem2, and
ini tia li zes the m to 0. Th e main thread se ts the semaphores before
creating the child threads . Next, the program creates the child threads
and wa its for the semaph ores to be cleared.

Serialization and Interprocess Communication 193

You might find it interesting to try a time-out value, such as 100, to
see the effect. The program runs for a short while and then terminates
when the time-out limit is reached.

Remember that any thread within the same process can access a
RAM semaphore. For example, you can modify thd2 as shown here. In
this version thd2 waits until thdl has finished.

void far thd2()
{

}

int i;

/* wait for thd1 to finish */
OosSemWait(&sem1, -1 L> ;

for(i=O; i<100; i++)
printf("thread 2(%d)\n", i> ;

/* clear the semaphore •I
DosSemClearC&sem2) ;

Using System Semaphores

When you need to synchronize the actions of two processes, you must
use a system semaphore. To obtain a system semaphore, call Dos
CreateSem, which has the prototype

unsigned DosCreateSem (unsigned exclusive,
void far **sem_ handle,
char far *sem_name);

If the exclusive parameter is 0, the semaphore being created can be modi
fied only by the process that creates it. If the exclusive parameter is 1,

any process can set or clear the semaphore. The variable pointed to by
sem_handle receives a pointer to the system semaphore if the call is
successful. The name you give to the semaphore is a string pointed to
by sem_name. All system semaphores use a filename-like naming con
vention, which takes the general form

\sem \sem_ name

where sem_name is the name of the semaphore. For example,

194 OS/2 Programming: An Introduction

\sem \filelock

defines a system semaphore called filelock. However, in C, you must
use \ \ inside a string to generate a single \ because C uses the \ as an
escape code. So the previous semaphore name in C string format looks
like this:

"\ \sem \ \filelock "

For a second process to access a system semaphore, it must fi rst
open it using DosOpenSem, which has the prototype

unsigned DosOpenSem(void far **sem, char far *sem-name);

Here, sem is a pointer to the pointer that will receive the address of the
system semaphore. The string pointed to by sem_name specifies which
system semaphore is to be opened.

The following program creates a system semaphore called handle,
executes a child process called TEST, and waits for the child process to
end. The TEST program clears the semaphore just before it terminates.

I* This program asynchronously executes another and
uses a system semaphore to wait until the chi Ld
process erids. •I

#define INCL BASE

#include <os2.h>

main()
{

char fail[128J;
RESULTCODES result;
void far •sem;

I• create a system semaphore •/
it(DosCreateSemC1, /* non-exclusive •/

{

}

(void tar **) &sem, /* pointe r to system se m */
"\\sem\\MySem")) /* semaphore name */

printtC"error creat in g system semaphore");
exitC1>;

DosSemSet(sem);

it COosExecPgm(Cchar far •> tail, 1 28,
1, /* run asynchronous •I
(char tar •> /* no command Line args •I
(char far *) , I* no environment args •I
(RESU LT CODES tar *) &result, /* result */

}

Serialization and Interprocess Communication 195

"TEST.EXE")) /*name of pro-gram •I
printf("exec failed");

DosSemWaitCsem, -1LJ; /• wait •/

The TEST program is shown here:

#define INCL DOS

#include <os2.h>

main()
{

}

vo id far •sem;

if(DosOpenSemCCvoid far••) &sem, "\\sem\\MySem")) {
printf("TEST cannot open system semaphore">;
exitC1J;

}

do {
printf("lnside TEST process\n"J;

} while C!kbhit());
DosSemClear(sem);

The process that creates a system semaphore is said to own it.
When the process that owns a semaphore terminates, the system sema
phore is automatically closed. However, your program can explicitly
close a system semaphore by using DosCloseSem, whose prototype is

unsigned DosCloseSem(void far *sem);

where sem is a pointer to the system semaphore that is to be closed.

SHARING A RESOURCE:
AN EXAMPLE

Now that you know how semaphores are maintained, it is time to learn
how to use one to serialize access to a shared resource. The example
developed in this section illustrates a very common situation found in
multitasking programs: One task produces something that a second
task consumes. This is often called a producer-consumer relationship. The
key point to tasks that have this relationship is that the consumer must
wait until the producer has finished producing whatever it produces

196 05/2 Programming: An Introduction

before the consumer takes it. That is, you do not want the consumer
taking a half-created object. This synchronization is achieved through
the use of a semaphore.

DosSemRequest

As was discussed at the start of this chapter, one of the key aspects of
semaphore use is that some means of te sting and setting a semaphore
in one uninterruptible operation must be provided. In the examples
given so far, this operation was not needed because the semaphores
simply signaled the conclusion of some event. However, to use a sema
phore to serialize access to a shared resource, the program needs a way
to wait until a semaphore is cleared and then set the semaphore in one
operation. To accomplish this, 05/2 provides the DosSemRequest ser
vice, which has the prototype

unsigned DosSemRequest (void far *sem, long timeout);

where sem is a pointer to the semaphore that is being requested and
timeout is the number of milliseconds to wait for the semaphore . If
timeout is negative, the service waits indefinitely.

When your program calls DosSemRequest, it waits (if necessary)
for the specified semaphore to be cleared. When this happens, it then
sets the semaphore . At no time will two calls to DosSemRequest suc
ceed simultaneously.

It is DosSemRequest that enables a program to sequence access to a
shared resource. The basic method of operation is to put a call to Dos
SemRequest at the beginning of any code that accesses a shared
resource. This way the code executes only when it has control of the
resource. At the end of this code put a call to DosSemClear to release
the semaphore . The code that lies between the call to DosSemRequest
and DosSemClear is often ca lled a critical section. The general approach
is shown here:

Task A

DosSemRequest(...)
I• critical section •/

DosSemClear(...)

Task B

DosSemRequest(...)
I• critical section •/

DosSemClear(...)

Serialization and Interprocess Communication 197

The Producer-Consumer Program

To illustrate the producer-consumer situation, the following short pro
gram creates two threads called, appropriately, producer and consumer.
The producer generates random numbers and stores them in a global
variable called rnd. The consumer draws horizontal lines on the screen
based on the value of rnd. The central issue here is that rnd is a shared
resource and you want to ensure that only one task at a time is access
ing it.

The program shown here uses a RAM semaphore called sem to
control access to rnd. Notice that the program source code is indented a
level between the calls to DosSemRequest and DosSemClear. When
you use DosSemRequest to control access to a resource, you are implic
itly defining a block of code, so indentation is a good idea .

I• This program creates two threads: a producer and a consumer.

•I

The producer generates random numbers and the co nsumer uses
these numbers to d raw Li nes o n the screen .

#define INCL SUB
#define INCL- DOS

#inc l ude <mt\os2.h>
#include <mt\ process.h>
#include <mt\stdio.h>
#include <mt\stdlib.h>

void tar produce r (v oid);
void tar consumer<void);
void clrsc r(void);

char stack 1C4096J, stack2(4096];

/*this is a shared r esou r ce •I
int rnd;

I• RAM semaphore •/
unsigned long sem =OL;

main()
{

clrs c r O;

beginthread(producer,
- (void t ar •) stack1,

4096,
<void tar •> O>;

beginthread(consumer,
- Cvoi d tar •> st ack2,

4094,
<void tar •> O>;

198 0512 Programming: An Introduction

while (! kbhi t ()) DosSleep(500L) I• wait •/
}

I• This thread produces numbers. •/
void far producer()
{

tor<;;> {
DosSemRequest((unsigned long far •) &sem, - 1Ll ;

rnd = rand();
DosSemClear((unsigned long far *) &seml;

}

}

I* This thread draws lines based upon the nu mbers produced
by the producer thread .

•I
void far consumer()
{

}

int i;

forC ; ;l {
DosSemRequest((unsigned long far*) &sem, -1Ll;

I* clear the previous line •/
VioSetCurPos (10 , O, Ol;

}

for(i=O; i<BO; i++)
printf(" "l;

I* transform the va lue in rnd into a number in
the range 0 through 79 so that the Line
will fit on the screen

•I
i = rnd r. 80;

I• display the new line •/
VioSetCurPosC10, O, Ol ;
for(; i; i--)

printf ("•");
DosSleepC1000L); /* just pause a little•/

DosSemClear((unsigned long far *) &seml ;

I• A simple way to clear the screen by filling
it wit h spaces.

•I
void clrscrO
{

}

char space(2J;

spa ce [OJ = • ';
space[1J = 7;
VioScrollUpCO, O, 24, 79, - 1, (char far*) space, Ol;

You might find it interesting to try this program without using the
semaphore.

Serialization and Interprocess Communication 199

In this simple example, no serious harm is done if access to the
shared resource is not serialized. In almost all real-world applications,
however, lack of serialization spells disaster. For example, fai lure to
serialize access to the printer correctly will intermix the output of sev
eral tasks.

USING DosEnterCritSec
AND DosExitCritSec

OS/2 also provides a second, different method of synchronizing multi
ple threads within a single process. In this second approach, your pro
gram temporarily nalts the execution of all but one thread within the
process, thus preventing a shared resource from being accessed by two
different threads at the same time. The OS/2 services DosEnterCritSec
and DosExitCritSec are used to stop and restart, respectively, all
threads in a process except the one that calls these services. Their
prototypes are

void DosEnterCritSec(void);
void DosExitCritSec(void);

Neither service takes a parameter or returns a value.
The best use of these services is when there is a short critical sec

tion of code that accesses some shared resource . To ensure that the
critical section is safe from interruption, DosEnterCritSec is called at
the beginning of the code, suspending all other t hreads. When the criti
cal section has ended, DosExitCritSec is called, restarting all other
threads. The general approach is

DosEnterCritSec();
/* critical section code is put here */

DosExitCritSec();

Keep in mind that DosEnterCritSec can be called at several places in
your program. Because it suspends the execution of all threads except
the caller, there is no chance that a second thread will call DosEnter
CritSec when the first is in a critical section.

This program shows how DosEnterCritSec and DosExitCritSec
work. Here thdl suspends the execution of thd2 until it has completed.

200 OS/2 Programming: An Introduction

This effectively serializes the execution of thdl and thd2, and the
advantages of multitasking are lost.

I• This program demonstrates the OosEnterCritSec and
OosExitCritSec services. Thd1 will complete before Thd2
bec a use Thd 1 halts the execution of the othe r threads
in the program.

•!
#define INCL SUB
#define INCL- DOS

#inc lude <mt\os2.h>
#i nclude <mt\process.h>
#include <mt\stdio.h>

void far thd1Cvoid);
void far thd2C vo id >;

ch ar s ta ck 1[4096J , stack2[4096J;

I • RAM sema pho res must be i nitialized to 0 •I
unsigned Long sem1=0, sem2=0;

ma i n()
{

}

RE SULT CO DES waitres u l t;
unsi gned p;
in t tid 1;

I• set the semaphores •/
if(OosSemSet C&sem1)) {

printfC"cannot set semaphor e 1");
exitC1>;

}

if(DosSemSet C& s em2> > {
p rintf(" cannot set semaphore 2");
ex itC1>;

}

tid1 = beginthrea dC th d1,
- (vo id far • > stack1,

4096,
(voi d f a r •) 0) ;

beg i nthrea dCth d2,
- (voi d fa r •> stack2,

4094 ,
Cvo i d fa r •> 0) ;

I• wait for the s e map ho r e s to be cleared by the threads •/
Do sSemWa it C&sem1, - 1L>; /* wait indefinitel y •/
oosS emWaitC&sem2 , -1L) ; /•wait indefinitely •/

void far thd1 ()
{

int i;

Serialization and Interprocess Communication 201

DosEnterCri tSec ();
for(i=O; i< 100; i++)

printf("thread 1 (Xd)\n", i);
DosEx i tCritSec();

}

I• c l ea r t he semaphore •I
DosSemClear(&sem1>;

void far t hd2()
{

}

int i;

for(i=O; i<100; i++)
printfC"thread 2CXd)\n", i);

I• clear the semaphore •/
DosSemClearC&sem2>;

A somewhat more interesting example using DosEnterCritSec is a
modification of the producer-consumer program developed earlier.
Instead of using semaphores to control access to the shared variable
rnd, the modified program shown here uses DosEnterCritSec and
DosExitCritSec.

I• This program creates two threads: a producer and a consume r .

*/

The producer generates random numbers and t he cons umer uses
these numbers to d r aw lines on the screen.

It uses DosEnterCritSec and DosExitCritSec to serialize
access to the rnd variable.

#define INCL SUB
#define INCL-DOS

#include <mt\os2.h>
#include <mt\process.h>
inc lude <mt\stdio.h>
i nclude <mt\s t dlib.h>

void far producer(void);
void far consumer(void>;
void clrscr(void>;

char stack1(4096J, stack2(4096J;

I• this is a shared resource •/
int rnd;

main()
{

clrscr();

beginthreadCproducer,
- Cvoid far •) stack1,

202 05/2 Programming: An Introduction

}

4096,
Cvoi d far *) 0);

beginthrea d (consumer ,
- (void far *) stack2 ,

4094,
(void far *) 0) ;

whileC!kbhit()) DosSleep(100L) ; /*wait */

f* This thread produces · numbers . *I
void far producer()
{

for(;;) rnd = rand();
}

I* This thread draws li nes based upon the numbers produced
by the producer thread.

*' void far consumer()
{

}

int i;

forC ; ;> {

}

DosEnterCritSec() ;
I* clear the previous line */
VioSetCurPosC1D, O, D>;
forCi=O; i<80; · i++>

pri ntf (" ");

/* transform the number into somethi ng that wi l l
fit on the scree n

*' i = rnd r. 80;

f* displ ay t he new li ne •/
VioSetCur PosC10 , O, Ol;
for(; i; i--)

printf ("*");
Do sExitC ritSec();
Doss leepC100U;

I • A simp l e way to clear the s c reen by fillin g
it wi th spaces .

*' voi d cl rscr O
{

}

char space [2J;

space[O] = ' ';
space[1] = 7;
VioScrollUpCO, O, 24, 79, -1 , (char far*) sp a ce, Ol;

You generally want the critical section code to be as short as possible so
the rest of the threads do not remain idle for extended periods of time.

Serialization and Interprocess Communication 203

Note: For the vast majority of situations, you should use semaphores
to synchronize multiple tasks, not DosEnterCritSec. The reason for
this is quite simple: DosEnterCritSec stops all threads in the process
whether they need to be stopped or not. This degrades the total per
formance of your program. The critical section services are in 05/2 for
those special situations in which you want to stop the execution of all
other threads for a reason, such as a catastrophic error. They should
not become your main method of serializing tasks.

INTERPROCESS COMMUNICATION

As you saw earlier in this chapter, system semaphores allow one pro
cess to communicate with another process, mostly to achieve some
form of synchronized activity. However, 05/2 supports three other
forms of interprocess communication: shared memory, pipes, and
queues. This section takes a look at shared memory and pipes. 05/2
queues are a more advanced concept and are beyond the scope of this
book.

Shared Memory

By default the memory used by one process is logically separate from
that used by another. (05/2 might actually use the sam e piece of
memory for two or more processes because of swapping, but from a
logical point of view neither program can actually touch another's
memory). However, you can create a shared block of memory that two
or more processes can access and use to exchange information . Of all
the 05/2 interprocess communication methods, shared memory is the
most flexible because it gives you total control of both form and con
tent of the information being shared. However, this freedom comes at a
price: Your programs have to handle the data interchanges manually.

To allocate a segment of shared memory, use the DosAllocShrSeg
service, whose prototype is

unsigned DosAlloc5hrSeg(unsigned size,
char far *name,
unsigned short selector);

The value of size specifies the size of the block in bytes. It must be

204 OS/2 Programming: An Introduction

between I and 65,535. The name of the shared segment is specified by
name, which must take this general form:

\sharemem \seg_name

The variable pointed to by selector receives a selector to the allocated
segment. For example, this call requests a segment 10 bytes long with
the name MySeg.

DosAllocShrSeg(10, (ch ar far *) "\\sharemem\\MySeg",
(unsigned short far *) &selecto r> ;

For a process to obtain a selector to shared memory allocated by
another process it must call DosGetShrSeg, which has the prototype

unsigned DosGetShrSeg(char far *name,
unsigned short far *selector);

where name is the name of the segment and selector points t o the variable
that will receive the segment selector to the shared memory.

Keep in mind that both DosAllocShrSeg and DosGetShrSeg r eturn
a selector to the shared memory. The selector "points" to the f irst byte
of the shared memory segment. (Selectors are discussed in detail in
Part One of this book.) Although the selector is sufficient t o identify
the segment, a selector is not an address as far as C is concerned . To
convert the selector into an address you need to u se the special
MAKEP macro. (This may be called something different by your com
piler.) The MAKEP macro has the prototype

void far *MAKEP(unsigned short selector, unsigned offset);

where selector is a valid memory selector that is combined with offset to
return a C far pointer. For most purposes, offset is 0.

The following program allocates a shared memory segment called
MyMem, writes a string to it, and then executes a child process called
SHRTEST, which reads the string from the shared memory and dis-

Serialization and In terprocess Comm unication 205

plays it on the screen.

I* This program writes a string into shared memory and
then executes a child process. The child
process re ads the string fr om t he s hared memory
and d i splays it on the screen.

*/
#define I NC L BASE

#incl ude <os2.h>

main()
{

}

r egister i nt i;
char fa il [128 J ;
RESULTCODES result;
unsigned Long sem;
unsig ned short sh r mem ;
uns i gned char far *pshrmem;
char buf[80J , *P;

I* create a s yste m semaphore */
i f(DosCreateSem (1 , /* non-exclusive */

{

}

<void far **) &sem, /* pointer to syste~ sem */
"\\sem\\MySem")) /* semaphore name */

pr intf ("error creating system semaphore");
exitC1l;

Do sSemSetCC void fa r *) semi;

i f(DosALLocS h rSeg(1000, /* s i ze of segment */
" \\sha r e mem\\MyMem " , /* name */
(un signed s hort far *) &shrmem))

printf ("a l lo c ation to shared segment failed\n " l;

/* transform the sele c t or in to a pointer */
pshrmem = <cha r far *) MAKEP<s hr mem, O>.;

I* pu t a s tring int o s hared memory *I
s trcpy(buf, " th is is a test of shared memory");
p = but;
wh i Le(*p) *pshrmem++ *p++;
ps h rmem = '\0'; I null te r minate the s tring*/

if(DosExecPgm C<c har far•> fa il, 128,
1, /* run asynchrono us */
(char far *) , I• no command Li ne args •I
<c ha r far •) " " , I* no env i r on men t a r gs */
(RES ULTCODE S fa r *) &resu lt, /* result •/
"SHRTEST .EX E")) /* na me of program •/

printf("exec fai l ed");

DosS e mWait((void far •) sem, -1 L>; /*Wait */

206 OS/2 Programming: An Introduction

The SHRTEST program is shown here:

#def i ne I NCL DOS

i nclude <os2.h>

main()
{

}

unsigned numread ;
unsigned Long sem;
unsigned short shrmem;
char tar •pshrmem;

if{DosOpenSem((void tar * *) &sem, "\\sem\\MySem")) {
printf{"SHRTEST cannot open system semaphore");
exitC1> ;

}

printf(" Inside the chi Ld process\n"l;
pr i ntf{"\nData read from shared RAM: ");

if(DosGetShrSeg((char tar•) "\\sharemem\\MyMem",
(unsigned short tar *) &shrmem))

printf(" error obtain i ng shared memory selector");

I* transform the selector into a pointer •/
pshrmem = (char far *) MAKEP(shrmem, Ol;

whi Le C•pshrmem) pri ntf ("f.c ", *psh rmem++);

I* clear the semaphore */
DosSemClearCCvoid far *) sem);

Even though these sample programs use shared memory for string
data, you can use shared memory to hold any types of objects you
desire .

There is one very important thing to remember about using shared
memory: You must be sure to allocate enough to hold the largest
object you wish to put into it. If your program tries to write pa st the
end of the segment, a memory protection fault is gene rated, which
terminates the process.

Pipes

OS/2 lets two processes communicate with each other via a pipe, which
is a special type of file maintained by the operating system. Once the
pipe has been created, routines read and write to and from the pipe
using the standard DosRead and DosWrite services.

Serialization and Interprocess Communication 207

To create a pipe, use DosMakePipe, whose prototype is

unsigned DosMakePipe(unsigned short far *read_handle,
unsigned short far *write_ handle,
unsigned size);

Here, the variable pointed to by read_ handle receives the read handle
for the pipe. The variable pointed to by write_ handle receives the write
handle. The length of the pipe is determined by the value of size, which
must be in the range 0 through 65,504. If your program tries to write
data to a full pipe, the writing process suspends until there is room in
the pipe.

Pipes are easy to use for communication, but one little problem
must be overcome. The process that creates the pipe must have some
method of transferring the read or write handle to the second process.
This can be done either by using shared memory or by duplicating the
file handles.

A Pipe Example Using Shared Memory The following program
creates a pipe and allocates a small segment of shared memory to pass
the pipe read handle to the child process called PIPETEST. It then
writes a message to the pipe. The child process examines the shared
memory to obtain the pipe read handle. It then reads the pipe and dis
plays its contents.

I* This program uses a pipe to send information to a
ch ild process. Thi s progr am uses shared memory t o
pass th e pipe's han dle to the chi l d. •I

#define INCL BASE

#include <os2.h>

main()
{

char fa il [128);
RESULTCODES r esul t ;
unsigne d Long sem;
un s igne d sh ort rd, wrt;
unsig ned short child rd;
unsigned wrttn ; -
unsigned short shrmem;
unsigned short far •pshrmem;

/* cr ea te a system semapho r e */
if(DosCreateSem<1, /* non-e xc lu s i ve */

208 OS/2 Programming: An Introduction

}

{

}

(void far ••) &sem, /* po i nte r to system sem •I
"\\sem\\fllySem")) /• semaphore name •I

pr i ntf("e rror creating system semaphore");
exit(1>;

DosSemSet((vo i d far •) sem);

if(DosMakePipe((unsigned short far •) &rd, I• read han d l e */
(unsigned s hort far *) &wrt,/• wri te ha ndle */
10000)) /* 10,000 bytes Long •!

printf("cannot ope n pi pe ") ;

if(DosALLocShrSeg(2, " \\sharemem\\MyMem " ,
(unsigned short far •) &shrmem)J

pr i n t f ("a L Lo cat i on to s hared segment fa i Led\ n") ;

I• pass read handle to child via shared memory •I

pshrmem = MAK EP (shrmem, OJ;
•pshrmem = rd;

if(Dos ExecPgm((c har f a r •> fail, 128,
1 , /• run asynchronous •/
(cha r far •) , I• no command Line args •/
(char fa r *) " ", I• no environment args */
(RESULTCODE S fa r *) &r esult, /• r esult */
"PIPETEST . EXE"J) /* name of program */

printf("exec faile d") ;

Do sWrite(wrt, (void fa r *) " sha r ed segment", 14,
<unsi gn ed far •) &wrttnl;

DosSemWa i t ((v oi d f a r*) sem, -1Ll ; /*Wait •/

The PIPETEST child process is shown here:

#def ine INCL DOS

#include <os2.h>

main()
{

u n signed numread;
unsigned sho rt rd;
char buf[80J;
unsigned Long sem;
unsigned short shrmem, far *pshrmem;

if(Dos OpenSem((void far**) &sem, "\\ sem\\ MySem ")) {
printf("PI PETE ST cannot open system semap hore");
exit(1>;

}

}

Serialization and Interprocess Communicatj on 209

printf("Inside the child process\n");
printf("\nData received from the pipe: ");

if(DosGetShrSeg((char far*) "\\sharemem\\MyMem",
(unsigned short far *) &shrmem))

printf("error obtaining shared memory sele ct or") ;

pshrmem = MAKEP(shrmem, Ol;

rd = *pshrmem;

/* read the p i pe */
DosRead(rd, (char far *) buf, 14, (unsigned far *) & nu mreadl;
buf[14) = '\O'; I* null terminate the string*/

printf(bufl;

/* clear the semaphore */
DosSemClearCCvoid far *) seml;

Using DosDupHandle to Pass a Pipe Handle Another way you can
"pass" a pipe handle to another process is to have the process that
creates the pipe copy the value of a known handle. This can be accom
plished using the DosDupHandle service, which has the prototype

unsigned DosDupHandle(unsigned short old_handle,
unsigned short far *new- handle);

All the information associated with the original handle is copied to the
new handle. After this operation, the handles are interchangeable:
What happens to one will affect the other. The variable pointed to by
new_ handle must either hold a valid file handle or the value FFFFH if
you want OS/2 to choose a handle. For our purposes we will supply a
valid handle. If the handle pointed to by new_handle is currently open,
the file it is associated with is closed and the handle is reopened with
the new information.

Th e general approach for using DosDupHandle to pass a pipe han
dle to another process is as follows. The process that creates the pipe
duplicates the desired handle onto a known handle. The second process
simply assumes that this known h andle is associated with the pipe.
Admittedly, this process feels a bit shaky because the second process
simply assumes something that it cannot verify, but in a tigh tly con
trolled situation it can be used with confidence.

210 O.S/2 Programming: An Introduction

This program uses DosDupHandle to duplicate a pipe handle:

/* This program uses a pipe to send information to
a child process. */

#define INCL BASE

#include <os2.h>

main()
{

}

char fail[128J;
RESULTCODES result ;
unsigned Lo ng sem;
unsigned short rd, wrt;
unsigned short child rd;
unsigned wrttn ;

/* create a system semaphore •/
if CDosCreateSemC1 , /* non-exclusi ve */

{

}

(void far **) &sem, I* pointer to system s em */
"\\sem\\MySem")) /* semapho re name */

printf("error creating system semaphore");
exitC1>;

DosSemSet((void far *) sem);

ifCDosMakePipe((unsigned short far*) &rd,
(unsigned short far •> &wrt,
10000))

printf("cannot open pipe");

chi Ld rd = 4; /* us e handle 4 */
I• dup th e rd handle */
ifCDosDupHandle(rd, (unsigned short far•) & child rd))

printfC"cannot dup handle");

if(DosExecPgm((char far •) fail , 128,
1, /* run asynchronous •I
(ch a r far *) '"', I* no co mm and Line arg s *I
(char far•) "", I• no environment args •/
CRESULTCODES far•) &result, /* result */
"PIPETST2 .EXE"))

printf("exec f ai Led");
I• name of program */

DosW ri te(wrt , (void far•) "this is a test", 14,
(uns i gned far •) &wrttn>;

DosSemWaitCCvoid far *) sem, -1L>; /* Wait */

The child process PIPETST2 is shown here:

#define INCL DOS

#include <os2. h>

Serialization and Interprocess Communication 211

main()
{

}

unsigned rd;
char buf(80];
unsigned Long sem;

if (Dos 0 pen Se m ((v o i d far * *) & s em, "\ \ s em\\ Mys em")) {
printf("PIPETST2 cannot open system semaphore"> ;
exit(1);

}

printf("lnside the chi Ld process\n">;
printf("\nData Received : ");

I• read the pipe
DosRead(4 , Cchar
buf[14J = ' \0';
printf(buf> ;

*I
far *) buf, 14, (unsigned far •) & rd);
/* null terminate the string */

I* clear the semaphore •/
DosSemCLear((void far •) sem);

JUST A SCRATCH ON
THE SURFACE

This and the previous chapters have introduced you to the most impor
tant and fundamental aspects of 05/2's multitasking capabilities. How
ever, you have only scratched the surface of the multitasking environ
ment provided by 05/2. It is not enough just to know how to use the
appropriate 05/2 services to create a multithread or multiprocess
application. You must learn to use multitasking effectively. You will
want to use multitasking to increase performance of your program and
to prevent the user from being idle while the program pe rforms some
lengthy task. While it is beyond the scope of this book to discuss the
various theories and approaches to writing multitasking applications,
you should give much thought to how both data and execution flow
through your program, looking for discrete tasks that can be executed
concurrently. With practice, this process w ill become second nature .

9
DEVICE MONITORS

Some of the most desirable programs written for DOS are in a class
called terminate-and-stay resident (TSR) utilities. These types of programs
load themselves, initialize any necessary data, and then exit with a call
to the DOS TSR function. The program lies dormant in memory until
you press a special hot key, which activates the program and stops what
ever the computer is doing at the time. When the TSR is finished, what
ever the computer was doing is resumed. What made (and makes) TSR
programs so difficult to write for a DOS environment is that DOS was
not designed to accommodate them. As a result several more-or-less
undocumented features and aspects of DOS had to be used, which
made the programs hard to develop and vulnerable to unforeseen cir
cumstances. The designers of OS/2, however, understood the impor
tance of TSR programs and made provisions for them in OS/2.

Two key concepts distinguish a TSR-type program from a regular
application program:

1. The program lies dormant in RAM until needed.

2. You activate the program by pressing a special key.

In OS/2 you can easily realize the first concept by creating a sepa rate
task that simply suspends the program's execution until it is needed
and using a VioPopUp call to request the screen. To handle the second
concept, OSI 2 allows the creation of a device monitor. Through a device
monitor a process can examine the input stream of an 110 device such

213

214 0512 Programming: An Introduction

as the keyboard. If a special value is encountered, the monitor can sig
nal a pop-up application to begin executing.

The term TSR is not used in the 05/2 environment. Instead, TSR
programs are called pop-up programs. Sometimes they may be referred to
as part of the larger class of detachable processes. It is also not uncommon
in OS/2-related literature to see these programs referred to simply as
device monitors, although this term is somewhat misleading since a device
monitor does not need to be associated with a pop-up program. (Pop
ups are sometimes informally called device monitors because the crea
tion of pop-up programs was the most important reason for their
inclusion in OS/2. Hence the dual use of the term.) The OS/2 device
monitor services are shown in Table 9-1.

This chapter covers the creation of device monitors for both the
keyboard and the mouse. Several device monitor programs are devel
oped, including a keystroke translator, a keyboard macro expander, and
a pop-up calculator. While the chapter emphasizes the use of a device
monitor to provide pop-up applications, keep in mind that device moni
tors are not limited to this function.

DEVICE MONITOR THEORY
OF OPERATION

In its simplest form a device monitor consists of three elements: an
input buffer, an output buffer, and a short piece of code that reads
from the input buffer and writes to the output buffer. The device mon
itor is put in between the actual hardware device driver and the applica
tion program. Output from the device driver is put into the device

Table 9-1. The Device Monitor Services

Service Function

Dos Mon Close
DosMonOpen
DosMonRead
DosMonReg
Dos Mon Write

Closes a device monitor
Opens a device monitor
Reads from a device
Registers (activates) a device monitor
Writes to a device

Device Monitors 215

monitor's input buffer. The device monitor reads this information and
(in its simplest form) passes the information along to its output buffer.
From the device monitor's output buffer, the information is passed to
the application program. This situation is depicted in Figure 9-1. It is
important to understand that more than one device monitor can be
associated with any hardware device. In this case the output of one
monitor is passed to the input of the other in a chainlike fashion.

A device monitor is useful because of three special capabilities:

1. A device monitor can examine the input stream from a device and
cause special actions to take place when a specific value is encoun
tered. For example, a keyboard monitor can watch for the F9 key,
which activates a pop-up application.

2. A device monitor can alter the information received from the device,
allowing it to act as a filter, or translator, for certain values.

3. A device monitor can manufacture and transmit output that does
not come from the hardware device. For example, you can create a
keyboard macro program that generates strings when you press
special hot keys. (Such a program might generate "DIR *. *" when
the F9 key is pressed.)

hardware device

interrupt-driven device driver

input buffer

d
. t .

ev1ce monitor
t

output buffer

application program

Figure 9-1. How a device monitor becomes pa rt of a device's 110 chain

l

216 OS/2 Progra mming: An Introduction

The creation of a device monitor is essentially a three-step process:

1. You open the monitor to obtain a monitor handle.

2. You register the monitor. The registration process tells OS/2 to

enter the monitor into the input chain. In other words, it activates

the monitor. After the registration process, the monitor must be

ready to begin processing input.

3. The monitor executes a loop that first reads the input buffer and

then writes to the output buffer, thus passing along the device

information.

In the next sections you will see how to implement this approach.

OPENING AND REGISTERING
A DEVICE MONITOR

To open a monitor use DosMonOpen, which has the prototype

unsigned DosMonOpen((char far *) mon- name,
unsigned short far *mon_ handle;

The mon_name parameter must point to a null-terminated string that

holds the name of the device to be monitored. The variable pointed to

by mon_ handle receives the monitor's handle upon return from a suc

cessful call.
The strings for the devices that can be monitored are shown here:

KBD$ MOUSE$

LPTl LPT2 LPT3 LPT4

The most commonly monitored of these are the keyboard (KBD$) and

the mouse (MOUSE$).
You can open more than one device monitor for each device. Each

monitor is simply placed in the device's input chain.

Before you can use a monitor, you must register it with OS/2 using

the DosMonReg service, whose prototype is as follows:

Device Monitors 217

unsigned DosMonReg(unsigned short mon-handle,
void far *inbuf,
void far *outbuf,
unsigned chain-pos,
unsigned sid);

The mon_handle parameter is the monitor handle returned by a call to
DosMonOpen. The regions pointed to by inbuf and oufbuf are the moni
tor's input and output buffers. The size and description of these
buffers will be discussed shortly.

05/2 can insert the monitor into one of three places in the device
I/O chain: at the front of the chain, at the end of the chain, or any
where in between. The value of the chain_ pos position determines
which position is used, as shown here :

chain_pos Value

0
1
2

Position Inserted

Anywhere in the chain
At the start of the chain
At the end of the chain

Keep in mind that even if you specify the start or the end of the chain,
a subsequent thread could register another monitor that preempts the
earlier one's position.

If you are registering either a keyboard or a mouse monitor, the sid
parameter must contain the session identifier n umber of the session to
be monitored . It is important to remember that each session estab
lishes its own monitor chain. If you are creating a printer monitor, sid
will be 1 for the data chain and 2 for the control chain.

Determining the Session Identifier

When you create a keyboard or mouse monitor, you must call Dos
MonReg with the identifier of the session you want to monitor. There
are two basic methods of determining the value of the session
identifier:

I . You can make use of the fact that the session identifier for the DOS
emulator is 2, the first 05/2 session is 4, the second 05/2 session is
5, and so on. T he trouble with this method is that it more or less
hardcodes the monitor to a specific session.

218 OS/2 Programming: An Introduction

2. Often you will want to link a monitor to the current foreground

session- whatever that session may be. To do this you must first

call DosGetlnfoSeg, which returns selectors to the global and local

information segments. One part of the information found in the

global information segment is the current foreground session identi

fier.

DosGetlnfoSeg has the prototype

unsigned DosGetlnfo5eg(unsigned short far *global-seg,
unsigned short far *local_ seg);

After DosGetlnfoSeg returns, the selectors pointed to by globa /_seg

and local_seg contain the segment selectors of the global and local

information segments.
The information found in the global information segment is

arranged like a structure of type GINFOSEG, defined by Microsoft.

Most of the information it contains is obtainable by other 05/2 ser

vices. However, the field sgCurrent contains the current session identi

fier number. You can use this value in a call to DosMonReg to associate

the monitor with the current session. (Refer to an 05/2 reference for a

complete description of the information contained in the global or local

information segments.)
Remember that the selector returned by DosGetlnfoSeg is a selec

tor, not an address as C understands it. You must use the MAKEP

macro to convert the selector into a pointer. (The MAKEP macro is

defined in the Microsoft C compiler and may be called something else

by different compilers.)
Before going further, let's examine the fragment of code that

generates the current session identifier.

un s igned short gsel, Lsel;
unsigned char si d;

I* get ·the information segme nt selectors */
OosGetinfoSeg((unsigned s hort fa r *) &gsel,

(unsigned short far *) &lsel);
info= MAKEPCgsel, 0); /*make a pointer */
sid = info->sgCurrent; I• current session IO •/

Before you can create a device monitor, you must know the form of

the input and output buffers. These are the subjects of the next

section.

Device Monitors 219

MONITOR BUFFERS

A device monitor must provide input and output buffers. Each time
input is generated, it is put into the input buffer unless that buffer is
full. If the buffer is full, the input device is blocked until there is room
in the buffer. The next link in the chain reads the output buffer unless
it is empty, in which case it waits until there is input. These buffers do
not need to be very large for keyboard use because people cannot type
faster than the computer can process information. In the examples in
this chapter the buffers are only 128 b ytes long. However, larger
buffers will be desirable for the printer and mouse because these de
vices can generate data faster than it can be processed.

All monitor buffers must be defined as

struct buffers {
unsigned bufsize;
char reserved[18];
char buf[SIZE];
inbuf, outbuf;

Here bufsize must hold the size of the entire structure, including itself
and the reserved parameter. You should define SIZE appropriately.

DosMonRead AND DosMon Write

A device monitor reads input from the device by calling DosMonRead,
which has the prototype

unsigned DosMonRead(void far *inbuf, unsigned wait,
void far *packet,
unsigned fa r *length);

The region pointed to by inbuf must be an input buffer as described in
the previous section. If wait is 0 , DosMonRead will wait for data if the
queue is empty. If wait is 1, the call will return immediately. Generally
you will want DosMonRead to wait for data. The structure pointed to
by packet receives the information packet generated by the device. (At no
time does your program actually have to examine the input buffer.) The
exact nature of the packe t will be discussed in the next section. The
length parameter must point to a variable that contains the length of the

220 05/2 Programming: An Introduction

input buffer. On return from the call, length contains the number of

bytes in the information packet. Even though the packet size does not

change for any specific device, a device may generate only part of a

packet when it simply wants to signal some event to the device driver.

To pass along input (or output in the case of a printer monitor) you

must call Dos Mon Write, which has the prototype

unsigned Dos Mon Write(void far *outbuf,
void far *packet,
unsigned length);

The region pointed to by outbuf must be the monitor's output buffer.

The region pointed to by packet must be a valid packet for the device

monitored. The value of length specifies the length of the packet. You

can use the length returned by DosMonRead for this value.

DEVICE MONITOR PACKETS

Each device that can be monitored sends information to the monitor in

a packet. The form of the packet determines what sort of data structure

your program will need when using DosMonRead and DosMonWrite.
The different types of packets are discussed here.

The Keyboard Packet

The keyboard packet can be described by the following structure:

struct keymonbuf {
unsigned monflag;
char ch;
char scan;

/* device flags */
/* character code *I
/* scan code */

char status; /* status code */
char re served;
unsigned shift; /* shift status */
unsigned long time; /* time of keypress */
unsigned kbddriver; /* kbd device driver flags */

} ;

The meanings of ch, scan, status, reserved, shift, and time are exactly the

same as those returned by the KbdCharln service. (Refer to Chapter 4

for details.)

Device Monitors 221

The monflng parame ter con tains information tha.t is generall y appli
cable only to the device driver interrupt handler.

T he kbddriver field is encoded as shown here:

Bit

0-5
6
7
8

9
10-13
14- 15

Meaning When Set

Reserved
Key was r eleased
Preceding sca n code was a prefix
Autorepeat ge nerated keystroke
Acce nt key
Reserved
User definable bit s used for comm un icating between
monitors

For most moni tor applications only bit 6 is of interest. As you may
already k now, the PC keyboard generates two signals for each key
press: a make and a break. T he make sig nal is iss ued when the key is
pressed . The break signal is sent when the key is released . Except for
d evice monitors, you never h ave to worry about the make and break
signa ls . At the device monitor level, however, your routines ofte n need
to know w hen a key is r eleased, as you w ill see in the monitor examples
developed in this chapte r. When bit 6 of kbddriver is 0 , a key h as been
pressed. When it is 1, the key has been released .

The Mouse Packet

The mouse information packe t can be described by this st ructure:

struct mousebuf {
unsigned mouflag;
unsign ed eve nt;
unsigned lo ng time;
unsigned row;
unsigned col;
m ybuf;

•

Here, mouflag is the device-de pendent informatio n used by the device
drive r. The time param e ter contains th e time of t he mouse event, a nd
row and col contain the mouse's current screen position. The event
parame ter is encoded as shown on the followi ng page.

222 OS/2 Programming: An Introduction

Bit Meaning When Set

O Mouse moved
1 Mouse moved; button 1 pressed
2 No movement; button 1 pressed
3 Mouse moved; button 2 pressed
4 No movement; button 2 pressed
5 Mouse moved; button 3 pressed
6 No movement; button 3 pressed
7-15 Reserved

The Printer Packet

A printer monitor is unique in the sense that it must monitor o utput
rather than input. The printer information packet can be described by
the structure

struct printer {

} ;

unsigned prnflag;
unsigned pid;
char data;

The prnflag parameter contains information specific to the printer
device driver. The pid field holds the identifier of the process that sent
output to the printer. Finally, data is the data being transmitted.

Dos Mon Close

To close a monitor, use the DosMonClose service, which has the proto
type

unsigned DosMonClose(unsigned short man- handle);
-,
' -

whhe mon_handle is the handle of the monitor you wish to close.

A WORD ABOUT EFFICIENCY

Because a device monitor inserts itself into the 110 chain of the moni
tored device, the performance of the monitor directly affec ts the effec
tive 110 transfer rate of the device. For this reason a device monitor's
code must be very fast. Perhaps even more important, at no time

Device Monitors 223

should a device monitor suspend it s operation; doing so effectively
breaks the device's 1/0 chain.

Now that you h ave learned the necessary background infor mation ,
it is time to create some device monitors . Most of the examples are
keyboard monitors because they represent the most common u se of a
device monitor.

A First Keyboard Monitor

For an easy firs t keyboard monitor, let's create o ne that simply wait s
for a keyst roke. When a keystroke is received , the monitor issues a
VioPopUp, displays the key and its scan code, wait s for a keystroke, and
then terminates. Th is monitor is sh own here:

I* A very si mpl e ke yboard monitor. •I

#def i ne I NC L SU B
def ine INCL-DOS

#include <os2.h>
#i nclu de <std io . h>

ma in()
{

unsigned wa it ;
uns ig ned short mhand;
struct bu ffers {

unsigned size;
char r ese r ve d [18J;
cha r buf[108J ;

} inbu f, outbuf;

struc t keymo mbu f {
un s ign ed monf lag;
char ch;
cha r scan;
char stat us;
c har rese r ved;
unsigned s h ift;
unsign ed l ong t i me;
unsigned kbddriver;

} mybuf;

unsigned Len;

I• dev ic e flags */
I* characte r co d e •I
I* scan code •/
I* s ta tus code •I

I* s hift s tatus •I
I• t ime o f ke ypress •I
I• kbd device d ri ve r f l ag •I

unsigned shor t gsel , lsel ;
GINFOSEG far •info ;
un s igned c har s i d ;
if(DosMonOpen((c har far *)"KBDS",

{

}

(unsigned short far •) &mhand))

printf ("cannot ope n moni t o r ");
exitC1l;

224 0512 Programming: An Introduction

}

inbuf.size = sizeof(struct buffers>;
outbuf.size = sizeof(struct buffers >;

/* get t he current screen group ID */
DosGetlnfoSeg(Cunsigned short far *) &gsel,

(unsigned short far *) &lseL);
info = MAKEP(gsel, 0);
sid = info->s gCurre nt;
if(DosMonRegCmhand,

{

}

(vo id tar *) &inbuf, /* input buffer */
(void tar *) &outbuf,/* output buffer */
0, /* put the monitor anywhere */
sid)) /*monitor foreground pro cess •/

printf("cannot r egister mon it or" >;
exitC1>;

Len = sizeof(struct butters>;

DosMonRead((void far *) &inbuf,
O, I* wait for i nput */
(void far *) &mybuf,
(unsigned f a r *) &Len>;

OosMonWri te((void far *) &outbuf,
(void far *) &mybuf,
Len>;

oosMonClose(mhand>;

wait = 1; /* non-transparent, wait */

VioPopUp((unsigned far*) &wait, O>

printf("You pressed Y.c\n", mybuf.ch>;
printf("its scan code is Xd", myb uf. scan>;
get ch();
VioEndPopUpCO>;

The code is straightforward and should be easy for you to under

stand. Keep in mind tha't if you are simply waiting for a keypress it

is not technically necessary to follow DosMonRead with a ca ll to

DosMonWrite. However, you must do this if you wish to pass the key

stroke along to the next link in the 11 0 ch ain. Since only one read-write

operation takes place in th is example, only the make-keypress signa l is

detected. However, in the following exa mples it is necessary to process

both the make and break sig nals .
To try this program, first compile it and then execute it as a de

tached process. For example, if you call the program MONTEST, exe-

cute it using this command:

DETACH MONTEST

Next just press a key to activate the pop-up.

A POP-UP APPLICATION
SKELETON

Device Monitors 225

The example in the preceding section is very simple in its operation and
works fine as it is. However, real device monitors must continue to
process device I/0 while an application linked to the monitor, such as a
pop-up program, executes. As stated earlier, device monitors must con
sist of very small pieces of efficient code because they are in the 1/0
chain and any slowing of the 1/0 system slows the performance of the
entire system. You need to do three things to link a monitor to an
application:

1. Put the monitor in its own thread with the application in another.

2. Give the monitor thread a higher priority than the application so
that it will always have access to the CPU when it needs it to pro
cess input on a real-time basis.

3. Have the monitor activate the application by clearing a RAM sema
phore. The application must wait for this semaphore to be cleared
before it executes and it must reset the semaphore when it finishes.

Using these principles, the following program provides a skeleton you
can use to create any type of keyboard monitor pop-up application.

I* A keyboard monitor skeleton. •/

#define INCL SUB
#define INCL- DOS

#include <os2. h>

#include <mt\process.h>
#include <mt\stdio.h>

void far keymon();
void far appO;

226 05/2 Programming: An Introduction

char stack1[4096J, stack2[4096J;

unsigned Long sem = ·OL;
unsigned Long t erm sem OL;
unsigned tid;

main()
{

DosSemSet((unsigned Long far •> &sem);
DosSemSet((unsigned Long far•) &term_sem);

tid = beginthread(keymon,
- (void far •) stack1,

4096,
(void far *) 0);

beginthreadCapp,
- (void far •) stack2,

4096,
(void far •) O>;

DosSemWait((unsigned far•) &term_sem, -1L);
}

voi d far keymon()
{

unsigned char sid;
unsigned shor t mh an d;
st ruct buffers {

unsigned size;
char reserved[18J;
char bufC108J;

} inbuf, outbuf;

st ruct keymombuf {

unsigned monflag;
char ch;
char scan;
char status;
char reserved;
unsigned shift;

I• dev ic e flags •I
I* character code •I
I* scan code •I
I• status code •I

I* shift status *I
unsigned Long time; I* ti me of keypress *I
uns igned kbddriver;

} mybuf;

unsigned Len;
un s igned wait;

I* kbd

unsigned short gse l, Lsel;
GINFOSEG far •info;

device

I• open the monitor •/
if(Do sM onOpen((char far •)"KBDS",

driver flag

(unsigned short far •) &mhand))
{

}

printf("cannot open keyboard monitor");
e~it<1>;

inbuf.size = sizeof(struct buffers);
outbuf.size = sizeof(struct buffers>;

•I

I• get the current screen group ID •/
DosGetlnfoSeg((unsigned short far •) &gsel,

(unsigned short tar *) &Lsel);
in to = MAKEP(gsel, O>;
sid = into->sgCurrent;

I• increase this thread's priority •/
if (DosSetPrtyC2, I• change only th i s thread •/

3 , I• make time-critical •/

Device Monitors 227

O, /* Leave at Lowest priorit y within class •/
tid)) /* thread ID */

printf(" could not make keymon() into a time-critical task");

I* register the monit o r •/
if(OosMonReg(mhand, /* monitor handle •I

{

}

(void far •) &inbuf, /• input buffer •/
Cvoid far •) &outbuf ,/* output bu ffer •/
O, /* put the monitor anywhere •I
sid)) /* monitor foregrou nd process •/

printfC"cannot regis te r keyboard monitor">;
exitC1>;

I• this is the main monitor Loop •I
forC;; > {

}

Len = sizeof(struct buffers);

mybuf.scan = '\0'; I• clea r scan code eac h time*/

I• read and write the monitor buffers •/
DosM on ReadCC void far •) &inbuf,

O, /• wait f or input •/
<void far •> &mybuf,
(unsigned far •) &Len);

DosMonWrite((void far *) &outbuf,
<void far *) &mybuf,
Len> ;

/* examine key only after a break code *I
ifC!Cmybuf.kbddriver & 64)) continue;

I• In this skeleton, the F10 key deact ivates the mon i t o r
and the F9 key pops up the application . Howe ver,
yo u can mo n itor any keys yo u Li ke.

*'
if(mybuf . scan==68> break; I• e xi t if F10 is pressed •/

I* if F9 is p r ess ed, Let popup application run */
ifCmybuf .s can== 67) OosSemCLear((un s igned Long far *) &sem);

wait = 1;
VioPopUp((unsigned far •) &wait, Ol ;
printf("c los ing the keyboard mon it or">;
Do sMonCLose(mhand) ;
Doss LeepC2000U;
VioEndPopUp(Q);
DosSemCLear((unsigned far•) &term_seml;

}

228 OS/2 Programming: An Introduction

I• Popup appl icat i on •/
voi d far app()
{

}

unsigned wait;

for<;;> {

}

I• wait unt il the monitor rec eives the hot key •/
DosSe mWait((uns igned long far •> &sem, -1 L> ;

wait = 1 ; /• non - tr anspa rent , wa it •/
VioPopUp(Cunsigned far •) &wait, 0)

I* put yo ur popup application c ode in here •I

printf("strike a key ••• ") ;
getc h O;

I• reset the semaphore •I
DosSemSet((unsigned far •> &sem);
VioEndPopUp(Q) ;

One of the most important things about this example is the main mon

itor loop, shown here:

I• this is t he mai n mo nit or loop •/
for<;;> {

}

len = si zeo f (st ruct buffe r s);

mybuf.scan = '\0'; I* c le a r sc an code each time•/

I• read and write the monito r buffers •I
DosMonReadCC void far •) &inb uf,

0, I• wai t fo r input •/
(void fa r •> &mybuf ,
(unsigned f ar •) &len);

DosMo nWriteCCvo i d far •> &outbuf,
<void fa r •) &mybuf,
l en >;

I• e xami ne key only after a br ea k code •I
if C! Cmy bu f.kbddriver & 64)) co nti nue;

I• In this skeleton, t he F10 key dea ct i vates the monitor
and th e F9 key pops up the a ppli cation. However,
you can monitor any keys you like.

ifCmybuf.scan==68> brea k; /* e xit if F10 is pres s ed •I

I* if F9 is pressed, let popup app l ication run •I
ifCmybuf . scan==67) Do sSe mClear CCun signed lon g far •) &sem>;

Device Monitors 229

Let's look at this loop line by line. First DosMonRead must be called
with the length parameter set to the length of the buffer. It is reset by
DosMonRead to return the number of bytes actually read. For this
reason, it is necessary to reset the len variable before each call to
DosMonRead. Next come the back-to-back calls to DosMonRead and
DosMonWrite. This is the way input from the keyboard is passed along
to the next link in the input chain.

The next line of code is very important. As s tated earlier, the key
board generates both make and break codes. It is important for a pop
up to take place on only one of these . This line of code waits until the
break bit in the keyboard device driver variable is set before it allows
the key to be examined. This means that the pop-up application acti
vates when the key is released, not when it is pressed. However, you
can change this if you like.

Finally, the keystrokes are checked agains t the predefined hot keys.
As it is written, the pop-up application activates when the F9 key is
pressed. To terminate the monitor, press the Flo key. You can use any
sort of hot key you like. In fact you can have several hot keys and appli
cations linked to one monitor. Just make sure that each application is in
its own thread.

One other thing to notice about the skeleton is that the monitor's
thread is set to time-critical priority, level 0. This is the lowest-level
time-critical setting, and it ensures that the monitor will run before
any application task .

A POP-UP CALCULATOR

Using the basic skeleton developed in the previous section, this program
monitors the keyboard and pops up a four-function stack-based calcula
tor when the F9 key is pressed:

I* A keyboard monitor based popup stack-b ased ca l culator
applicat i on. */

#def in e INCL SUB
#def i ne INC L-DOS

#define STKMAX 100

inc lude <os2.h>

230 05/2 Programming: An Introduction

#include <mt\p rocess . h>
#include <m t\stdio.h>
#include <mt\stdl ib.h>

void far keymonCJ;
void far appO;

char stack1 [4096J, stack2(4096J;

unsigned long sem = OL;
unsigne d l ong term sem OL;
unsigned tid;

double calcstk[STKMAXJ;
int tos;

main()
{

DosS emSet((unsigned l ong far •) &seml;
DosSemSet ((unsigned long far •) &term seml;

tid = beginthread(keymon,
- (void far •) stack1,

4096,
Cvoi d far •l OJ;

beginthreadCapp,
- (void far •) stack2,

4096,
(void fa r •) 0);

DosSemWait((unsigned far •) &te r m_ sem, -1 L);
}

void far keymon()
{

unsigned char sid;
unsigned short mhand;
struct buffers {

unsigned size;
char reserved (1 8J;
char buH108 J ;

} inbuf, outbu f ;

struct keymombuf {
unsigned monflag;
char ch;
char scan;
char status;

I•
I•
I•
I*

I•

device flags •I
character code •I
scan code •I
status code •I

shift status •I
char reserved;
unsigned shift;
unsigned long time;
unsigned kbdd ri ver;

I• time of keypress *I

} mybuf;

unsigned Len;
unsigned wait;

I• kbd

uns igned short gsel, lsel;
GINFOSEG far •info;

device

I• open the monitor •/
i f(DosMonOpe n((char f ar •)"K BD$",

driver flag •I

{

}

<unsigned short far •) &mhand))

printfC"cannot open keyboard monitor">;
exitC1>;

inbuf.size = sizeof(struct buffers);
outbuf.size = sizeofCstruct buffers>;

I• get the current screen gro up ID •I
DosGetlnfoSeg(Cunsigned short far •> &gsel,

(unsigned short far •> &LseL>;
info = MAKEPCgsel, 0);
sid = info->sgCurrent;

I• up this thread's priority •I
if CDosSetPrtyC2, /• change only this thread •/

3, I• make time-critical •/

Device Monitors 231

O, I• Leave at Lowest priority within class •/
tid)) /* thread ID •I

printfC"could not make keymon() into a time-critica l task">;

I* r egister the monitor •/
if CDosMonReg(mhand,

{

)

(void far •) &inb uf, /• input buffer •/
(void far •) &outbuf,/• output buffer •/
O, I• put the monitor anywhere •/
sidll /• monitor foreground process •I

printf("cannot register keyboard mon i tor");

I• this is the main monitor Loop •I
for<;;> {

)

Len = sizeof(struct buffe r s>;

mybuf.scan = '\0'; I• c lea r scan code each time•/

I• read and write the monitor buffers •/
DosMonRead((void far •) &inbuf,

0, I• wait for input •I
(void far •) &mybuf,
(unsigned far •) &Len);

OosMonWrite((void far •) &outbuf,
(vo i d far •) &mybuf,
Len);

I• wait for a break code •/
if(! (mybuf.kbddr i ver & 64))
if(mybuf.scan==68> break;

continue;
I* exit monitor if F10 is pressed •/

I • if F9 is pressed, Let popup application run •/
if(mybuf.scan==67) DosSemCLearCCunsigned Long far •) &sem>;

wait = 1;
VioPopUpCCunsigned far •) &wait, O>;
printfC"closing the keyboard monitor">;
DosMonCLoseCmhandl;
Doss Leep< 2000L);
VioEndPopUpCOl;
DosSemCLearCCunsigned far •) &term_sem>;

}

232 05/2 Programming: An Int roduction

I• Popup calculator application. •I
vo id far app()
{

unsigned wait;
STRING!NBUF strbuf;
double a, b;
char str[80J;
char far •endptr;

strbuf.cb = 8 0;

for< ;;) {
DosSemWait((unsigned long far•) &sem, -1 Ll;

tos = O;
wait = 1; /• non-transparent , wait */
VioPopUp((unsigned far *) &wait, 0)
VioSe t CurPosC2, O, 0);
printf("enter 'q' to quit");

do {
I* c lear entry screen area •I
VioSetCurPos<O, O, 0) ;
pri ntf (" : ");
VioSetC u rPosCO, 2, Ol ;
KbdSt r ingln((char far •) str,

CSTRING!NBUF far *) &s trbuf,
O, Ol;

I* clear answe r screen area *I
VioSetCurPosC1, 0, Ol;
printf(" ");
switchC•str) {

case 1 + 1
:

}

VioSetCurPos<1, O, Ol;
ifC!popC&a) I I !pop(&b))

printfC"stack underflow");
else {
printf("~Lf",a+b>;

push<a+b);

break ;
case •-•:

VioSetCu r Pos(1, O, Ol;
ifC!popC&a) I I !pop<&b>>

p r intf ("stack unde r flow">;
else {

}

printf (" ~L f",b-a);
push<b-a);

break;
case'*' :

VioSetCurPos<1, 0, O> ;
ifC!popC&a> II !pop<&b))

printf ("stack underflow"> ;
else {

}

print f (" r. l f", b *a);
pushCb•a>;

break;
ca se '/' :

}

}

Device Monitors 233

VioSetCurPo~ <1, O, O>;
if(!pop C&a > I I !popC&b))

printf("stack underflow">;
else {

}

if(a==O.O> {
printf("d iv ide by O">;
break;

}

printf<" Xl f",b/a);
push(b/a) ;

break;
case '.': I* display top of stack •I

VioSetCurPosC1, O, 0);
if(!popC&a)) printf("stack underflow");
else {

}

push(a);
printf("Xlf", a);

brea k;
default:

sscanf(str, " Xlf" , &a>;
if(!push(a)) printf("stack overflow") ;

} while(•str!=' q');

DosSemSet((unsi gn ed far •) &sem>;
Vi oEnd Pop Up (0);

} /* for loop */

I• Stack routines for the calculator, •/
push(double f)
{

}

/* r etu rn false if end -o f -s t a ck is r eac hed */
if(tos>=STKMAX> return O;

calcstk[tos] = f;
tos++;
return 1;

pop(double •f)
{

}

tos--;

I* return false if stack underf low occurs */
if (tos<O> {

tos = O;
return O;

}

*f = calcstk[tosJ;

The calculator works with a stack. Each time you enter a number,
its value is pushed onto the st ack. Each time you enter an operator, the
top two values are popped off the stack, the operation is performed,

234 05/2 Programming: An Introduction

and the result is displayed. The result is also pushed back onto the
stack. For example, to perform the series of additions 10+1s+20, you
enter the following:

IO<enter>
lS<enter>
+<enter>
2o<enter>
+<enter>

Press . to see what's on the top of the stack. To quit the calculator,
press Q. You might find it fun to expand the capabilities of the calcula
tor to accommodate your specific needs. (One good enhancement is a
binary-to-hexadecimal con vertor.)

To remove the pop-up calculator, press the Flo key.

A SIMPLE KEYBOARD MACRO
PROGRAM

One of the most popular utility programs is the keyboard macro pro
gram. This type of program associates a string with a special key, such
as a function key, and generates that string each time the special key is
pressed. For example, you might assign the string "main(int argc, char
*argv[])" to the F9 key. Each time you press F9, the string is generated
automatically without your having to type it.

The key to creating such a program is to construct keyboard device
information packets. By far the easiest way to generate a packet is to
use an existing packet, modifying only the fields that you need to
change. In the case of a keyboard macro program, you need to change
the character code and the make and break bit in the device driver
information variable. Keep in mind that when you generate keystrokes,
you must send both a make and a break signal.

The simple keyboard monitor shown here inserts the string con
tained in the global array mess into the input stream each time the F9

key is pressed. You can change the contents of mess by pressing the FB

key. To terminate the program, press Fro.

I• A simple keyboard macro program. *I

#define INCL SUB
#define INCL-D OS

#include <os2 . h>

#include <mt\process.h>
#include <mt\s t dio.h>

voi d far keymonC>;
void far appO;

cha r s tack1[40 96 J, stack2[4096J;

unsigned long sem = OL;
unsigned long term sem OL;
unsign ed t id;

char mess[80]
cha r •st r;

,.DIR *· *" ; I* ke y macro •/

main()
{

}

Do s SemSet((unsig ned l ong far •) &sem>;
DosSemSet((u nsi g ne d long far •) &term_semi;

tid = beginthread(keymon,
- · (void f ar •) stack1 ,

4096 ,
(vo id far •) O>;

beginthread(app,
- (void far •) stack2,

4096,
(void far •) Ol;

DosSe mWa it ((un s ign ed far•) &t erm sem, -1L l;

void far keymon()
{

unsigned char sid ;
uns ig ned s hort mhand;
struct buffers {

unsigned size;
cha r rese r ved[18J;
ch ar bu f[1 08J;

} inbuf, out bu f;

s truct ke ymonbuf {
un signed mo nf Lag;
char ch;
char scan;
c har status;
char reserved ;

I• device flags •/
I• c har acte r code •I
I* scan code • /
I• stat u s code •/

/ * sh ift st a t u s •/
I• ti me of keypress •I

Device Monitors 235

u n s i g n e d s.h i ft;
unsigned Long t ime;
unsigned kbddr iver ; I• kb d dev i ce d ri ver fl ag •/

} myb uf;

unsign ed Le n;
unsigned wait ;
unsigned short gsel, Lsel;
GINFOSEG far • i nfo;

I• open the monitor •/

236 OS/2 Programming: An Introduction

if(DosMonOpeneCchar far *)"KBD$",

{

}

(unsigned short far *) &mhand))

printf("cannot open keyboard monitor");
exit<1>;

inbuf .size = sizeof (struct buffers>;
outbuf.size = sizeof(struct buffers);

I* get the current screen group ID */
DosGetinfoSegeCunsigned short far *) &gsel,

(unsigned short far*) &lsell;
info = MAKEP(gsel, Ol;
sid = info->sgCurrent;

/* up this thread's priority •/
if CDosSetPrtyC2, I• change only this thread •/

3, !• make time-cr itical •/
O, I• leave at lowest priority within class •/
tid)) /• thread ID •/

printf("could not make keymonO into a time-critical task");

I• register the monitor •/
if CDosMonRegemhand, /• monitor handle •/

{

}

(void far •) &inbuf, /• input buffer •I
(void far •) &outbuf,I• output buffer •I
0, /* put the monitor anywh e re •I
sid)) /• monitor foreground process •/

printf ("ca nnot register keyboard monitor");
exitC1l;

I• this is the main monitor loop •/
fore;;> {

l en = sizeof estruct buffers);

mybuf .scan = ' \0 '; !• clear scan code each time•/

I• read and write the monitor buffers •I
DosMonRead((void far •> &inbuf,

0, I• wait for input •/
<void far •) &mybuf,
(unsigned far •) &lenl;

if(emybuf.kbddriver & 64) && (m ybuf.scan==67)) continue;

I• if F9 is pressed, insert key macro •/
if(mybuf.scan==67) {

}

st r = mess;
fore; •str; str++) { /• inser t the ma cro string •/

mybuf.kbddriv er = mybuf.k bddri ve r & 191; I• clear break •I
mybuf.ch = •str;

}

DosMonWriteC(void far •) &outbuf,
(void far •) &mybuf,
le n) ;

mybuf.kbddriver = mybuf .kbddriver I 64; I• set break •I
DosMonWriteCevoid far •) &outbuf,

(void far *) &mybuf,
len);

else
DosMonWrite((void far *) &outbuf,

(void far *) &mybuf,
Len);

/* examine key only after a break code *I
if(!(mybuf.kbddr iver & 64)) continue;

Device Monitors 237

if (mybuf.scan==68) break; /* exit if F10 is pressed */
if(mybuf . scan==66) DosSemCLear<Cunsigned Long far *) &sem);

}

wait = 1; /* wait for screen *I
VioPopUp((unsigned far *) &wait, 0);
printf ("c Los ing the keyboard monitor");
DosMonCLose(mhand);
Doss LeepC2000Ll;
Vi oEndPopUpCO);
DosSemCLear((unsigned far*) &terrn_ seml;

}

I* Change the macro string . */
void far app()
{

}

unsigned wait;
STRINGINBUF strbuf;

st rbuf. cb = 80;
forC;;) {

}

DosSemWaitC<unsigned Lo ng far*) &sem , -1 Ll ;

wait = 1; /* non-transparent, wait */
VioPopUpCCunsigned far *l &wait, 0) ;
printf("enter new keyboard macro: "l;
KbdStringinCCchar far *) mess,

CSTRINGINBUF far *) &strbuf,
0, 0);

mess[strbuf.cchln] = '\0';
DosSemSet((unsigned Long far *l &seml;
VioE nd PopUpCOl;

The most important bit of code in this example is t he part that
inserts the string into the input stream. It is shown here:

if((mybuf.kbddriver & 64) && Cmybuf.scan == 67)) continue;

/* if F9 is pressed, i nsert key macro */
if(mybuf.scan==67l {

str = mess ;
for(; *str; st r++) { /* insert the macro string */

mybuf.kbddriver = mybu f.kbdd riv er & 191; /* clear break */
mybuf.ch = *str;
DosMonWrite((void far *) &outbuf,

(void far *) &rnybuf,
Len);

238 OS/2 Programming: An In troduction

}

}

mybuf .k bddriver = mybuf.kbddriver I 64; I• generate break */

Do sMonW ri teC<void far •) &outbut,
<void t a r •) &mybut,
Len);

else
DosM onW rite((void far *) &outbuf,

(vo id f ar *) &mybuf,
Len);

Notice that, unlike the other e xamples, the code that inserts the

st r ing is acti vated by the pressing- not the re leasing- of the F9 key.

Once the loop is entered, it generates both make and break signals for

each character in the string. In this program, the F9 keystroke is never

passed along. T he first line of this fragment prevents the break signal

from being returned to the input stream. The make signal is not passed

along by the code th at generates the s tring, either. You will have to

determine whether you wa nt to pass along hot keys or not.

A KEY TRANSLATOR MONITOR

Not all keyboard monitors are used to activate a pop-up application.

Some are used to alter the contents of the input s tream. The one

shown here can perform three different key translations. It can convert

all keys into u ppercase or lowercase, or it ca n "encode" each keystroke

by adding 1 to the character code of a key. Each translation fun ction is

activated and deactivated by a func tion key, as shown in the comm ents

that begin the program.

I * A keybo a rd mo nit or that performs va r i ous ch ara cter
trans Lat i ons .

Key Action

f 10 ter mina te
F9 turns o f f
F8 t urns o n
F7 tur ns oft
F6 tur ns on
F5 turns off
f4 turns on

•I
#def in e INCL SUB
#d efin e INC L-D OS

#inc l ude <os 2.h >

monitor
Lowercasing

Lowercas in g
upp e rcasing

uppercasing
e ncryp tion

encr yption

#include <mt\process.h>
#include <mt\stdio.h>

void far keymon<>;

char stack1 [4096J;

unsigned long term sem OL;
unsigned tid;

main<>
{

}

OosSemSet((unsigned long far •) &term_sem>;
tid = beginthread(keymon,

- (vo id far •) stac k1,
4096,
(void far •) O>;

DosSemWait<<uns ig ned far • > &term sem, -1L> ;

void far ke ymon()
{

unsigned char s i d;
unsigned short mhand;
struct buffers {

unsigned size;
char reserved[18J;
char buH108J;

} inbuf, outbuf ;

struc t keymombuf {
unsigned mo nf l ag;
char ch;
char scan;
char status;

I• device flags •I
I• character code •I
I• scan code •I
I• status code •/

I• s hift status •/
I• time of key pre ss •I

Device Monitors 239

ch ar reser ved ;
unsigned shift;
unsigned long time;
unsigned kbddriv e r; I* kbd de v ice dri ve r fla g •/

} mybuf;

unsigned wait;
unsi·gned Len;
char lease;
char ucase;
char codeit;

unsigned short gsel, lsel;
GIN FOSEG far •info;

I• open the monitor •/
if(OosMonOpen((char f ar • >" KBD$" ,

{

}

<unsigned sho rt far •) &mhand))

printf("cannot open keyboard monit o r">;
exit(1);

inbuf.size = si z eofCstruct buffers) ;
outbuf.size = sizeof(stru ct buffers);

240 OS/2 Programming: An Introduction

I* get the cur r ent screen g r ou p ID •/
DosGet i nfoSegCCuns i gned short far *) &gsel,

(unsigned short fa r •) &Lsel);
info = MAK EP(gsel, 0);
sid = info- >sgCur r e nt ;

I• up t hi s t hread 's pri ori t y •/
i f CDosSetPr t y C2, /* cha nge only this thread •/

3, I• make ti me-c r itical •/
O, /* Leave at Lowest priority within c lass •/
t id)) /• th read ID •/

printf("could no t make keymon() in t o a t im e-cr it ica l task" >;

I• register the mo n ito r •I
if(DosMonRegCmhand, /* monitor handle •/

(void tar *) &inbut, /* input buffer •/
<void ta r •) &outbuf,/* output buffer •/
O, I* put the monitor anywhere •/
sidJ) I• monitor foreground process •/

{

printf(" cannot register keyboard monitor") ;
exitC1l;

}

lease = O;
ucase = O;
codeit = O;

/* this is the main monitor Loop•/
fo rC;; J {

Len= s iz eof(st ruct butters>;

mybuf .sc an = '\0'; I• clear scan co de each t im e •/

I• r ead and writ e th e moni to r bu ffers •/
DosMonRead<Cvoid tar •) &i nbuf,

if(Lease)

O, I• wait tor input •/
<void tar *) &mybuf,
<un s igned tar •) &Len);

mybuf.ch = tolowerC mybuf.ch>;
if Cucase)

I* Lowercase all Le tters•/

mybuf.ch toupper(mybuf . ch);
i f<codeitl

mybuf .ch ++ my bu t.ch;

DosMonW r ite(Cvoid far •) &outbuf,
(void ta r •) &mybuf,
Lenl;

I• uppercase all Lette r s */

I• code charac ter s •I

I* examine key only after a b r ea k code •I
if(!(mybut.kbddriver & 64)) continue;

if(my buf.scan==6 8) break; I* press F10 to exit"•/

swi tch(mybuf .sca n) {

case 67: Lease O; / * F9 turns off Low ercasi ng */
break;

case 66: Lease 1 ; !• FB t urn s on Lowercas ing *I
break;

case 65: ucase O; I* F7 t u rns otf uppercasing */
break;

Device Monitors 241

case 64: ucase = 1 ; /* F6 turns on uppercasing •/
break;

case 63 : codeit O; I• FS turns off coding */
break ;

case 62: codeit 1; /* F4 turns on coding */
}

}

wait = 1;
VioPopUpCCunsigned far *> &wait, Ol;
printf("closing the keyboard monitor">;
oosMonCloseCmhand) ;
oosSleepC2000Ll;
Vi oEndPopUp CO) ;
DosSemClearCCunsigned far •> &term_sem);

}

A MOUSE DEVICE MONITOR

To conclude this chapter on device monitors, the four-function calcula
tor monitor program is modified to monitor the mouse rather than the
keyboard. The converted program is shown here:

/* A mouse monitor popup stack-based calculator
application . •/

#define INCL SUB
#define INCL-D OS

#define STKMAX 100

#include <os2.h>

#include <mt\process.h>
in clude <mt\stdio.h>
#include <mt\stdlib.h>

vo i d far keymonC>;
void tar appO;

char stack1[4096J, stack2[4096J;

unsigned long sem = OL;
uns igned long te rm sem = OL;
unsigned tid; -

double calcstk[STKMAXJ;
int tos;

main()
{

DosSemSet((unsigned long far *) &sem);
oosSemSetCCunsigned long far *) &term sem);

tid = beginthread(keymon,
- <void far~> stack1,

4096,
<void tar *) O>;

242 05/2 Programming: An Introduction

}

beginthreadCapp,
- <void far •) stack2,

4096,
<void far •) 0) ;

DosSemWait((unsigned tar•) &term sem, -1L);

void far keymon()
{

unsigned char sid;
un signed short mhand;
str uct buffers {

unsigned size;
char reserved[18J;
char bufC108J;

} inbuf, outbuf;

struct mousebuf {
unsigned mou flag;
unsigned event;
unsigned long ti me;
unsigned row;
unsigned col;

} mybuf;

unsigned Len;
unsigned wait;
unsigned short gsel, lsel;
GINFOSEG far •info;

I* open the monitor •{
i f(OosMonOpenCCchar tar *)"MOUSE$",

{

}

(unsign ed short far •> &mhand))

printf("cannot open mouse monitor");
exit(1);

inbuf.size = sizeof(struct buffers>;
outbut.size = sizeof(struct buffers>;

I• get the current screen group ID •/
Oo sGe tlnfoSeg((unsigned short far *) &gsel,

(unsigned sho rt far •) &lsel);

~nfo = MAKEPCgsel, 0) ;
s i d = info->sgCurrent;

I* up this thread ' s priority •/
if (OosSetPrtyC2, /* change only this thread •/

3, I• make time - critical •/
O, /* leave at lowest priority within class •I
t i d)) /• thread ID •I

printf("could not make keymonO into a time-crit i cal tas k");

I* register the monitor */
if(DosMonReg(mhand,

{

(void far •) &inbuf, /• input buffer •/
(void far •> &outbuf,/• output b~ffer •/
O, I* put the monitor anywhere */
sid)) /• monitor foreground process •I

}
printf("cannot reg iste r keyboard monitor");

I* this is the main monitor loop •/
for(;;> {

Len = sizeof Cstruct buffers>;

I* read and write the monitor buffers •/
DosMonReadCCvoid far •) &inbuf,

o, I• wait for input •/
<void far •> &mybuf,
(unsigned far *) &Len);

DosMonWrite((void far •) &outbuf,
<void far •) &mybuf,
Len>;

Device Monitors 243

I• only recognize calculator popup request if mouse
i s in the upper left corner

}

•I
if((mybuf.row!=O) I I (mybuf.col!=Q)) continue;

if(mybuf.event & 4) break; I• exit ~onitor if F1 is pressed */
if(mybuf.event & 1) printf("mouse moved");
if (mybuf.event & 16) DosSe mCLea rCCunsigned Long far •) &sem);

wait = 1;
VioPopUp((unsigned far •) &wait, 0);
printf("closing the mouse monitor">;
DosMonCLose(mhand);
DosSLeepC2000U;
VioEndPopUpCO);
DosSemCLearCCunsigned far •) &te rm_sem);

}

I* Popup calculator application. •/
void far app()
{

unsigned wait;
STRINGINB UF strbuf;
double a, b;
char str[80J;
char far •endpt r ;

strbuf .cb = 80;

for<;;> {
DosSemWa it((uns ig ned Long far •) &sem, -1 L) ;

tos = O;
wait = 1; /• non-t r ansparent, wait •/
Vio PopUp((unsign ed far *) &wait, 0)

VioSetCurPos(2, 0, Ol;
print f (" enter ' q' to quit") ;

do {
I• clear entry screen area •I
VioSetCurPosCO, O, O>;
printf(": ");
VioSetCurPosCO, 2, 0);

244 OS/2 Programming: An Introduction

KbdStringlnCCchar far *) str ,
<STRlNGlNBUF far *) &strbuf,
O, 0) ;

I* clear a nswer screen area */
VioSetCurPos<1, 0, O>;
printf(" 11

) ;

switch(*str) {

)

case • + •:
Vio SetCurPusC 1, O, 0) ;
if(!popC&a> II ! pop(&b))

printf("stack underflow");
else {

printfC"X lf" ,a+b) ;
push(a+b);

)

break;
case '-':

VioSetCurPosC1, O, O> ;
if(!popC&a> II !pop(&b))

printf("stack underflow");
else {

printfC" Xlf",b- a);
push Cb-a>;

)

break;
case '*':

VioSetCurPosC1, O, O>;
i f(!popC&a) II !pop<&b))

printf("stack underflow") ;
else {

printfC" Xlf",b*a);
push (b* a);

)

brea k;
case '/' :

VioSetCurPosC1, O, 0) ;
ifC!popC&a) II !popC &b))

pri nt f("stack und er flow">;
else {

)

if <a==O.Ol {
printf("divide by 0") ;
break ;

)

prin tfC "Z lf" ,b/a);
push Cb/a);

break;
case '.': /* display top of stack */

VioSetC urPosC 1, O, Ol;
if(' popC&a)) pr intf("stack underflo w" >;
e l se {

)

push (a);
pr intfC"Hf", a);

break;
def a ult:

sscanf(str, "Z l f " , &a >;
if(!push(a)) printf("stack overflow");

) wh i le(•s t r! =' q');

}

DosSemSet((unsigned far *) &sem>;
VioEndPopUp(O);

} /* for Loop */

I* Stack routines for the calculator . */

push(double f)
{

}

I* return false if end-of - stack is reached */
if(tos>=STKMAXl return O;

calcstk[tos] = f;
tos++;
return 1;

pop(double *f)
{

}

tos--;

I* return false if stack under flow occurs */
if(tos<O> {

t os = O;
return O;

}

*f = calcstk[tosJ;

Device Moni tors 245

This monitor requires a mouse application to be running before it
will work . If no application is using the mouse, its in put is being
ignored. Assuming that a mouse application is running and the mo use
is in the upper left corner, pressing the right button activates the calcu
lator. Pressing the left button terminates the monitor.

10
CREATING AND

USING DYNAMIC
LINK LIBRARIES

This chapter examines one of OS/2's most important features: dynamic
link libraries. Using dynamic link libraries will make your programs
more efficient and more maintainable. The chapter begins with an
overview of dynamic linking at both load time and run time and con
cludes with several exa mples. It is possible to create dynamic link librar
ies that have a single thread of execution or multiple threads. However,
this chapter is concerned only with single-thread dynamic link
libraries.

Throughout the remainder of this chapter, the term dynlink is used
interchangeably with dynamic link. Dynlink was coined by the developers
of 05/ 2, and its use seems appropriate .

WHAT IS DYNAMIC LINKING?

Put simply, dynamic linking is the process by which references to
external subroutines or data are resolved when the program is loaded.
Both static and dynamic linkers have two main functions:

247

248 OS/2 Programming: An Introduction

1. They combine separately compiled modules and libraries into an

executable program.

2. They resolve references to external functions or data.

For example, suppose you have a main program file that uses library

functions. When the program is compiled, only place-holding informa

tion is generated when a library function is called because the compiler

has no way of knowing where that function will be in memory. It is the

linker's job to resolve these addresses.
Dynamic linking is different from static linking in one important

way: the t ime when linking takes place. If a program is statically linked,

all functions that it requires are physically bound together in its .EXE

file when it is linked. In a dynamic linking situation, however, parts of a

program reside in one or more dynlink libraries, which are linked to the

main program at load time by the 05/2 loader.
Although final linking is done by the loader, your program still

needs to be linked by the linker. When your program calls a dynlink

routine, it generates an external reference. When the linker encounters

this reference, it generates code that w ill load the appropriate file when

the program is executed. The entire load-time linking process is invisi

ble to the user. To understand just how transparent dynamic linking is,

remember that the 05/2 API services are implemented as dynlinks.

DYNLINK ADVANTAGES

Dynamic linking has several advantages over the more traditional static

linking. First, there is a great saving in disk space because each program

does not contain the code found in the libraries. That is, when several

programs that use the same library functions are statically linked, each

program file contains copies of the library functions. When the same

programs are dynamically linked, there is no duplication of code.

Another important advantage of dynamic linking is that it simplifies

the chore of program maintenance. Because the routines in a dynlink

library are separate from the main program, you can upgrade or repair

a dynlink routine without recompiling the entire program. For exam

ple, an accounting package could be upgraded when tax laws change

simply by changing a dynlink library. When the program executes, it

automatically uses the new routine.

Creating and Using Dynamic Link Libraries 249

FIVE IMPORTANT FILES

Each dynlin~ library is supported by a minimum of five separate files,
two more than a standard program. First is the file that contains the
source code to the dynlink routines. Most likely this will be a C code
file. The compiler transforms this file into a standard .OBJ file.

The th ird file is the definition file associated with the source file.
This definition file should have the same name as the source file but
use the .DEF extension. The definition file contains several pieces of
information that describe the dynlink library. (You will learn more
about definition files a little later.)

The fourth file needed by the dynlink library is its import library,
which is a special type of library file that tells the linker about the
dynamic link library functions. This file takes the same name as the
source file but ends with .LIB, although it is not a library in the normal
sense of the word. You generate this file from the dynlink's definition
file by using the IMPLIB utility program supplied by Microsoft . .

Finally there is the dynlink library itself . All dynlink library files
must use the .DLL extension and must reside in the dynamic link
directory. The .DLL file is created by the same linker used to provide
static linking. It converts the .OBJ file created by the compiler into a
dynlink file.

The creation of the various files is depicted here.

name.c compiler -----name.obj

name.obj]-
linker

name.def
----- name.dll

name.def implib -----name.lib

Here name is the name of the dynlink library. The actual creation of
these files is discussed next.

CREATING A SIMPLE DYNLINK
LIBRARY

A simple dynamic link library is developed in this section. Along the
way you will learn several important requirements that must be met.

250 05/2 Programming: An Introduction

Dynlink Function Declarations

Each dynlink function resides in its own segment, which is separate

from the calling program's code segment. Hence all dynamic link func

tions must be declared as far. However, you must also deal with some

further complications.
A dynlink function's data is not in the same segment as the calling

program. This means that the dynlink function must save the current

value of the OS register on entry and restore it on exit. To accomplish

this, you should put the function type modifier _loadds, defined by

Microsoft, in front of the function name. For example, this code shows

the proper declaration for a dynlink routine called addit():

int far l oadds addit(int a, int b);

If you are using a compiler other than Microsoft's, study your user

manual to see how to declare dynlink functions.

A second thing that you may need to worry about is run-time stack

checking. Since the stack for a dynlink function differs from the stack

used by the main program, run-time stack checking will generate

errors. If you are using the Microsoft compiler, turn off stack checking

by using the -Gs compiler option. (Check your user manuals if you are

using a different compiler.)
Finally you must instruct the Microsoft compiler to use far pointers

and tell it that SS does not equal OS by using the -Alfw compiler

option. (Check your user manuals for instructions if you are using a

different compiler.) Keep in mind that the exact compiler options may

change with future versions of 05/2.

A Simple Dynlink Library

The following code creates a very small dynlink library that contains

only one function: dllwrite(). Assume that this file is called DLL.C:

#defin e INCL SUB
void far loadds dllwrite(char far •s)
{

printf (s);
} ·

Creating and Using Dynamic Link Libraries 251

Before this file can be transformed into a dynlink library, you must
create its definition file. Although the next section examines definition
files in detail, the · one shown here contains the minimum necessary
elements to convert DLL.C into a dynlink library.

LIBRARY dl l
EXPORTS dllwrite

The LIBRARY statement specifies the name of the dyn link library. The
.DLL extension is assumed. The EXPORTS statement lists the func
tions in the dynlink library that are accessible by other programs . (A
dynlink library can contain inte rnal functions that other programs can
not use.) The underscore preceding dllwrite is necessary because the
Microsoft C compiler (and most others) adds the underscore during
compilation. The definition file is case sensitive and must be entered as
shown. Call this file DLL.DEF.

To create the dynlink libra ry, use this series o f commands:

cl -A lfw -Gs -c dl l.c
l ink dll.obj, dl l. d ll/ NOI ,,L libcd ll.l ib doscalls . lib/ NOD, dll.def;

The linker command line instructs the linker to use DLL.OBJ as input
and to create DLL.DLL as output. The /NOi option tells the linker to
be case sensitive . The /NOD option causes the default libraries to be
ignored and only those specified on the link line are used. Note that
different versions of OS/2 and C may call the library DOSCALLS.LIB
some other name. The LLIBCDLL.LIB file contains the single-thread
dynamic link run-time support library. After this command has exe
cuted, you must copy DLL.DLL into the directory specified by the LIB
PATH environmental variable found in the CONFIG .SYS file.

Keep in mind that it.ls not enough just to create the dynlink library.
You must also create an import library file to link the main application
w ith the dynlink routines. The IMPLIB utility program generates this
file by using the dynlink's definition file. It takes the command line

implib filename.lib filename.def

where fi lename is the name of the dynlink library. Therefore, to create

252 05/2 Programming: An Introduction

the import library for DLL.DLL, use this command:

implib dll.Lib dll.def

Accessing Dynlink Functions

Creating the dynlink library and its support files is only half the story.
You must follow a few special steps to allow your application program
to access the dynlink functions. Each dynlink function used in the pro

gram must be declared as an external far function. For example, this
short program uses the dllwrite() function to output a string to the
screen. Assume the name of this program is TEST.

extern void far dllw r ite(char far •>;

main()
{

dllwriteCCchar far•> "dynlink Libraries work");
}

Although not required in this situation, it is a good idea to create a
definition file for the main program that uses a dynlink library. This
file lists the dynlink functions accessed by the program. A valid defini
tion file for this program is shown here:

NAME test
IMPORTS dll. dllwrite

The first line states the name of the program. The second line specifies
which files will be imported from the DLL.DLL dynlink library. (Tech
nically, this line is not needed because the import library created by
IMPLIB supplies this information, but a little redundancy for the sake
of documentation is_not necessarily a bad idea. There are times, how

ever, in which you do need the IMPORTS command.)
When you link the program, you must specify the import library in

the library list and include the applications definition file. For example,
assuming that the main program is called TEST, use these commands

to compile and link it:

cl -c test.c
Link test . obj/NOI,,,dll.Lib slibcep.Lib doscalls.Lib/tlOD,test.def;

Creating and Using D ynamic Link Libraries 253

A Set of Batch Files

To make the creation of applications that use dynlink libraries easier, it
is a good idea to create one batch file that compiles and links the library
and another that compiles and links the main application. The batch file
shown here can be used to create a .DLL library and its import library:

cl -Alfw -G s -c r. 1.c
Link r. 1.ob j, r. 1.dll/NOI,, Llib cdll.Lib doscalls.lib/NOD, r.1.def;
impl ib r. 1.Li b X1.def

A good name for this batch fi le is MAKEDLL.CMD.
This batch file compiles the application, specified as the first argu

ment, with the dynlink library named as specified in the second
argument:

cl -GZ -c X1.c
Link X1. obj/NOI, ,, 7. 2 .Lib s libcep.lib doscalls.Lib/NOD, 7. 1.def;

A good name for thi s batch file is MAKEMAIN.CMD.

THE DEFINITION FILE

You must create a defin ition file for each dynlink library. You may also
need a definition file for programs. As you have seen , a definition file 's
most common use is to specify what functions a dynlink library
exports or what functions an application fil e imports. However, several
other pieces of information can be included in a definition file.

The linker recognizes 12 definition fi le commands. Many of the
commands are optional. When a command is not included in the defini
tion file, the default setting is used. Let's take a look at these now.

CODE Command

The CODE command tells the linker how to handle the code segments
of the associated program or library. It takes the general form

CODE option_ Jist

254 OS/2 Programming: An Int roduction

where option_list can be one or more of the following:

Option

PRELOAD

LOADONCALL

SHARED

NO NS HARED

EXECUTEONLY

EXECUTEREAD

IOPL

DATA Command

Meaning

The code segment is loaded when the program be
gins execution (default).

The code segment is not loaded until it is called by
the program.
The code segment can be shared by other programs.

The code segment cannot be shared by other pro
grams (default).

The code segment can be executed but not read.

The code segment can be executed and read (default).

The code segment has I/O privileges (not the default).

The DATA command tells the linker how to handle the data segments
of the associated program or library. It takes the general form

DATA option-list

where option_ list may be one or more of the following:

Option

PRE LOAD

LOADONCALL

NONE
SINGLE

MULTIPLE

READONLY

READ WRITE

SHARED
NO NS HARED

IOPL

Meaning

The data segment is loaded when the program be
gins execution (default).

The data segment is not loaded until it is called by
the program.

There is no data segment.

The same data segment is used by all executing ver
sions of the module.

Each executing version of the module uses its own
data segment.

The data segment can be read but not written to.

The data segment can be read and written to .

The data segment can be shared by other programs.

The data segment cannot be shared by other pro
grams (defa ult).

The data segment has 1/0 privileges (not the default).

Creating and Using Dynamic Link Libraries 255

DESCRIPTION Command

The DESCRIPTION command imbeds the string that follows it in the
executable file or library. It takes the general form

DESCRIPTION 'string'

Notice that the string must be enclosed between single quotes.
The main use for DESCRIPTION is to add copyright infor mation

to a program or library prepared for distribution.

EXPORTS Command

The EXPORTS command tells the linker what functions of a module
w ill be accessible by other modules. You can specify up to 3072

exported functions, but each must go on a separate line. The
EXPORTS command supports several options, but its simplest form is

EXPORTS func_ namel
func_name2

func _ nameN

where func_ narne is the name of an exported function.
You can allow a function inside a module to be accessed by a differ

ent name by using this form of the EXPORTS command:

EXPORTS external_ name = internal_name

For example, if a function is called sumit() inside a library, but your
program wants to call it addit(), use this EXPORTS s tatement in the
library's definition file.

EXPO RTS addit = sumit

The EXPORTS command supports some additional options, - but
they are for advanced programming situations that are beyond the
scope of this book.

256 OS/2 Programming: An Introduction

HEAPSIZE Command

The HEAPSIZE command determines the number of bytes available
for a module's local heap. By default the local heap size is 0. The com
mand takes the general form

HEAPSIZE numbytes

where numbytes is an integer between 0 and 65,536.

Keep in mind that the local heap is separate from the global heap,
which is accessed via C's standard dynamic allocation functions.

IMPORTS Command

The IMPORTS comman d tells the linker what functions the module
uses and what files these functions are in. This command is mainly
employed when the module calls dynamic link library functions. Its
simplest form is

IMPORTS filename.func-name
filename .func_ n ame

filename .func_name

where filename is the name of the file th at contains the function speci
fied by func _ name. For example, to import the function test() from the
library DLL.DLL, u se this IMPORT statement:

IMPORT DLL . test

The underscore is necessary because it is added by the C compiler. The
linker automatically adds the .DLL extension to the file name.

You can import any number of functions, but each one must be
placed on a separat e line and the total number of bytes need ed to hold
their names must not exceed 65,536.

You can allow a function inside a module to be accessed by a differ-

Creating and Using Dynamic Link Libraries 257

en t name by using this form of the IMPORTS command:

IMPORTS internal_name = filename.external- name

For example, if a function is called sumit() inside the TEST.DLL libra ry
but your program wants to call it addit(), use this IMPORTS statement
in the library's definition file:

IMPORTS addit = TEST. sumit

The IMPORTS command supports some other options, but their
use is beyond the scope of this book.

LIBRARY Command

The LIBRARY command identifies the specified module as a library
rather than an application file . It takes the general form

LIBRARY name

where name is the name of the library. If no name is specified, the name
of the definition file is used.

NAME Command

The NAME command serves two purposes . First, it identifies the asso
ciated source file as a program, rather than a library. Second, it can be
used to specify the name of the file . The command takes the form

NAME name

where name is the name of the application . If no name parameter is pres
ent, OS/2 uses the name of the executable application file.

PROTMODE Command

If the PROTMODE command is found in a definition file, the asso
ciated program can be run only in 80286's protected mode. Otherwise
the program may be run in either mode. (To allow this, however, the

258 OS/2 Programming: An Introduction

program must be processed by the BIND utility and use only the family
API services.),

SEGMENTS Command

The SEGMENTS command allows you to define several attributes
related to segments. In general you are not likely to need this com
mand. For details refer to an OS/2 technical reference.

STACKSIZE Command

The STACKSIZE command specifies the size, in bytes, of a module's
local stack. Generally the size of the local stack is given some value by
default, depending on the compiler you are using. You may need to
change this, if, for example, a stack overflow error occurs. The general
form of the STACKSIZE command is

STACKSIZE num_bytes

where num_bytes must be in the range 0 through 65,536.

STUB Command

The STUB command specifies a DOS-compatible file name that is
inserted into an OS/2 application's executable file. If the program is run
under DOS, the specified file executes, generally to display a message
that the application cannot be run under DOS. The STUB command
takes the general form

STUB dos_filename

where dos_ filename is the name of a valid DOS-compatible program.

ANOTHER DYNLINK EXAMPLE

For a slightly larger and more meaningful example of creating and
using dynlink libraries, several of the screen routines developed in
Chapter 3 are put in a dynlink library that can be accessed by any

Creating and Using Dynamic Link Libraries 259

program you write. The library contains a function to clear the screen,
a function to show the current video mode, and one to display the
video hardware configuration. The library source code is shown here:

I* A dyn l ink library of video functions •/

#define INCL SUB

#include <os2.h>

/*A simple way to clear the screen by fil l ing
it with spaces.

void far loadds clrscr(void)
{

}

char space[2J;

space[OJ = ' ';
space[1J = 7;
VioScrollUpCO, 0, 24, 79, -1, (char far *) space, 0);

void far
{

l oadds showmodeCvoid)

}

VIOMODEINFO m;

m. cb = sizeof m; /* must pass size of struct •/
VioGetModeCCVIOMODEINFO far *) &m, Ol;
m.fbType & 1 printf("graphics adapter\n"):

printf("monochrome adapter\n") ;
m.fbType & 2 printf("graphics mo de\n"):

pr i ntf(" t ext mode\n"l;
m.fbT y pe & 4 pr i ntf("no color burst\n")

pri ntf ("co l or burst\n") ;
printf(" i. d colo r s\n", m. c olor);
pr i ntf(" i.d columns i. d rows\n", m. col, m.row);
p r intf(" i. d h-res i. d v-res\n\n", m.hres, m.v r esl;

I * Display the video dis p lay har dware configuration. * /
void f a r loadds s ho wconfig (vo id)
{

VIOCONFIGINFO c;

c.cb = siz e o f c;

VioGetCo nf ig(O, CVIOCONFIGINFO far *) &c, Ol;

swi t ch(c .adap t er) {
case 0: prin t f("Mon o chrom e ");

br e ak;
case 1: printf("CGA ");

break;
case 2 : printf("EGA ");

break;

260 OS/2 Programming: An Introduction

}

}

case 3 : printf("VGA "l;
break;

case 7: printf("8514A ");

printf("adapter\n") ;

switch(c.display) {

}

case 0: pri ntf ("Monochrome ");
b r eak;

case 1: printf("Color ") ;
break ;

case 2 : printf("Enhanced color ");
break ;

case 3 : printf("PS/2 8503 monochrome");
break ;

case 4 : p r intf("PS/2 85 13 colo r ");
break;

case 5 : printf("PS/2 8 514 col o r");

printf("disp l ay\n");

printf(" Xlu bytes of memory on v ideo adapter\n", c . cbMemo r y). ;

Compile this file by using the MAKEDLL batch file shown earlier in
this chapter. (A good name for this library is SCRN.) To link the file
you need to create its definition file, as shown here, and run it through
IMPLIB.

LIBRARY SCRN
EXPORTS clrscr

showconfig
showm o de

Use this short progra m to tr y the library:

extern void f a r
ex t e rn void far
ext e rn void far
ma i n ()
{

clrscr() ;
showmode () ;
showc on figO ;

}

clrscr(v oid) ;
showmodeCvoidl;
s howconfig(void);

Create this definition file for the program:

NAME sc rntest
IMPORTS s c rn. c lr scr

scrn. showm o d e
sc r n._showconfig

Creating and Using Dynamic Link Libraries 261

Use the batch file MAKEMAIN shown earlier to compile and link the
program.

RUN-TIME DYNAMIC LINKING

As flexible as load-time dynamic linking is, it is not the answer for all
situations because you need to know the name of the module and the
name of the functions within the module at compile time. However,
some applications need to be able to access a dynlink routine that is
defined at run time. For example, a problem-solving Al-based program
may access a collection of problem-solving routines in its attempt to
find a solution to a given problem. Using run-time dynamic linking, the
problem solver could try an arbitrarily long lis t of different problem
solving functions- even new ones added while it is running-in its
attempt to find a solution. In general, run-time dynamic linking allows
your program to handle changing situations easily.

To enable run-time dynamic linking 0512 provides the five services
shown in Table 10-1. This section presents these services and develops
two exa mples .

DosloadModule and DosGetProcAddr

Before your program can access a function that is loaded dynamically at
run t ime, you must load the module containing the function into

Table 10-1. The Run-Time Dynamic Linking Services

Service Function

DosFreeModule Disposes of a dynlink module and frees the
memory used by it

DosGetModHandle Returns a dynlink module handle
DosGe tModName
DosGetProcAddr

Dos Load Module

Returns the name of the module given its handle
Returns the address of a specific function
within a dynlink module
Loads the specified dynlink library

262 OS/2 Programming: An Introduction

memory by using the DosloadModule service, which has the prototype

unsigned DosLoadModule(char far *failbuf,
unsigned failbuf _size,
char far *name,
unsigned far *mhandle);

The region of memory pointed to by failbuf receives information about
the cause of a failure if an error prevents DosloadModule from finish
ing its load operation. The size of the buffer is specified by failbuf _size.
Generally 128 bytes is sufficient. The file name of the dynlink library,
including drive and path information, must be pointed to by name. If
successful, DosloadModule returns a module handle to the variable
pointed to by mhandle.

If the module has already been loaded by another program, it is not
reloaded.

Once you have loaded the module, you must use DosGetProcAddr
to obt ain the address of each function in the library you want to call.
DosGetProcAddr has the prototype

unsigned DosGetProcAddr(unsigned mhandle,
char far *func_name,
type far **(func_ addr)());

The mhandle parameter must be acquired through a call to DosloadMod
ule . The string pointed to by func_name contains the name of the func
tion that you want to call. The pointer to that function is the function
pointer pointed to by func_ addr. You must substitute the correct return
type of the function for the word type shown in the prototype.

To see a simple example of r un-time dynamic linking, try this
program:

I* Th is program assumes t hat the dynlink Li brary DLL.DL L,
developed earlier in this chapter, is avai l able.

*/

If i t is not, you must create it before attempt i ng to
use this program.

#def i ne INCL DOS

#include <os2.h>

Creating and Using Dynamic Link Libraries 263

char failbuf[128 J ;
u nsigned mha ndle;

void (far •tune) (c har far •>;

main 0
{

}

getchO;
i f(DosLoadModuleCCchar far•) failbuf , /*name of fa il b u ffer •I

{

}

sizeof(failbuf>, I• s i ze of fai L buffer •/
(c har far •) "d ll ", I• n ame of -dyn l in k Lib */
(unsigned far •> &mhandle)) /•module hand l e • /

printf("erro r Load ing d ynlink module");
exit(1);

if(DosGetProcAddr(mhandle, (char far •) " dllwrite ",

{

}

(void far ••> &func))

printf("cannot find the specified function ") ;
exitC1>;

funcCCchar f ar •> "runtime dynl in k mod u le Loading works ">;

As the comment at the start of the program suggests, this program
dynamically loads the DLL.DLL d ynlink library developed in the first
part of this chapt er and uses dllwrite() from that library to display a
message. You should pay special att ention t o the declaration of the
function pointer func. Remember that func is the name of a pointer to a
function, not t he name of a function.

DosFreeModule

In the preceding example, the program terminated immediately after
calling the dynlink function. In a real application this will probably not
be the case. Since a program may need to load several different
modules at different times, 05/2 provides the DosFreeModule service,
which removes a module and frees the memory it used for other
modules. The prototype for DosFreeModule is

unsigned DosFreeModule(unsigned mhandle);

where mhandle is the handle of the module that is being removed.

264 OS/2 Programming: An In troduction

Another Run-Time Dynamic
Link Example

To help g ive you a feel for using run-time d ynlink libraries, a short file
utility dynlink library is created here along with a program that uses it.
The file utility libra ry is a collection of functi ons developed in Chapter
6 that allows you to list the director y, display the contents of a file, and
report information about the disk system. Although this example could
have been written without using run-time dynamic linking, it does
illustrate its use. (Programs that actually need run-time dynamic link
ing tend t o be quite long and complex so they are unsuitable for
examples.)

The fil e dynlink functions are shown here:

I* File utility fu nctions.*/

#define INCL DOS

#include <os2. h>

void fa r
void fa r
vo id fa r
voi d far

Loadds show dir(voidl;
Loadds displayfile(char *fna me);
Lo adds browse(char *fnamel;
Loadds d iski nf o(voidl;

I* Th is fun ction dis pl ays an enti re f il e . •I
vo id far Loadds disp l ayfile(char •f namel
{

un signed short fh;
unsign ed act io n;
unsigned num bytes;
char buHS13T;

I* open t he fi le , no f i le sha ring */
if<DosOpen((char tar *) fname, /• fi Lename */

{

}

(unsigned shor t far *) &th, /* p oi nte r to ha ndle */
(unsigned f ar •l &actio n, /* p ointer to result */
OL, I* 0 Lengt h */
O, /* normal file */
Ox1, /* open *I
Ox1 0 , /* read- o n ly , no- s hare •I
Ol ll I• reserved */

p ri ntf (" e rr o r in openi ng file ");
e xit(1l;

do {
if(DosRead(fh, (char far •) buf, 512,

(unsigned tar •l &num byte s)) {
printf("error r eading file"); -
exit(1l;

}

buf[num_ by t esJ = 1 \0 ' ; /*nu ll termi nate the bu f fer* /

Creating and Using Dynamic Link Libraries 265

printf(buO;
} while(num_bytes);

if(DosClose(fh)) prin tf("error closing file");
}

I* A file browse function . •I
void far lo adds browse(char •fname)
{

unsigned short fh;
unsigned action;
unsigned num_bytes;
long pos, p;
char buf[513J, ch;

I• open the file, no file sharing •I
if(DosOpen((char far•) fname, /•filename*/

{

}

(unsigned short far *) &th, I• pointer to handle •/
<unsigned far •> &action, /* pointer to result •/
OL, I• 0 length */
O, /* normal file */
Ox1, /• open •I
Ox10, /• read-only, no-share •I
OL)) I• reserved •/

printfC"error in ope ning file");
ex it C1l ;

I• main loop •/
pos = OL;
do {

if(DosRead(fh, (cha r far •) buf, 512,
(unsigned far•) &num bytes)) {

printf("error reading fi le"); -
exitC1l;

}

buf[num bytes] = '\O'; I• null terminate the buffer•/
printf(buf>; /* display the buffer •/

I• see what to do next •/
ch = tolower(getchCll;
switch(ch> {

case ' e': /* move to end •I
DosChgFilePtr(fh, -51 2L, 2, (unsigned long far *) &pos);
break;

case 's': I• move to sta r t •/
DosChgfilePtrCfh, OL, 0, (unsigned lo ng far*) &pos);
break;

case 'f ' : /* move forward •I
/*forward is automatic, so no change is required •/
pos = pos + num bytes;
break; -

case 'b': /* move backward •/
pos = pos - 512;

}

if Cpos<OU pos = OL;
DosChgFilePtrCfh, pos, O, (unsigned long far •> &pl;

} whileCch != 'q'l;

266 OS/2 Programming: An Introduction

ifCDosClose(fh)} printf("error closing file");
}

I* This routine Lists the d i rectory. */
void far Loadds show dir()
{

}

FILEFINDBUF f;
unsigned short hdir;
unsigned count;

printf("\n"l;
hdir = Oxffff; /* cause a new handle to be returned */
count = 1; /* find the first match */
DosFindFirstCCchar far *) "*·*", (unsigned short far *) &hdi r,

OxO, CFILEFINDBUF far *) &f, sizeof(f),
(unsigned far *) &cou nt, OL>;

do {
printf("X-13s Xd\n", f.achName, f.cbFilel;
DosFindNext(hdir, CFILEFINDBUF far •) &f, sizeof(f),

(unsigned far •> &count);
}whileCcount>;
DosFindClose(hdir);

I• This function displays the number of bytes

*'
per sector, secto rs per cluster, total disk space,
and available disk space.

void far Loadds diskinfo(void)
{

}

FSALLOCATE f;

DosQFSinfoCO, 1, (char far •) &f,
sizeof fl;

printf("Bytes per sector : Xld\n", f.cbSectorl;
printf("Sectors per cluster: Xld\n", f. cSector Unitl;
printf C"Total disk space: Xld\n ",

f.cbSector * f.cSectorUnit * f.cUnitl;
printfC"Total available disk space: Xld\n",

f.cbSector * f.cSectorUnit * f.cUnitAvaill;

Call this file FILE.C. The definition file for the library is shown
here:

LIBRARY FILE
EXPORTS show dir

-di splayfile
-b r owse
-di sk inf o

Compile and link FILE.C by using the MAKEDLL batch file.

Creating and Using Dynamic Link Libraries 267

The program shown here loads FILE.DLL during run time, displays
a menu, and calls from the menu the function chosen by the user.
Notice that the fun ct ion pointer func does not have a prototype
parameter list declared. Since the file functions do not all take the same
number of parameters, it is not possible to use a prototype.

I* A simple menu driven file manager program that uses
a runtime dynl i nk Library.

*'
#define INCL DOS

#include <os2.h>

char fai LbuH128J;
unsigned mhandle;

void (far *func> ();

main()
{

char choice;
char fname[80J;

if CD os Loa dMod u leCCchar far*) failbuf, /*name o f fail buf f er* /

{

}

sizeof(failbuf>, /*size of fail buffer* /
(char far *) "ti Le", /* name of dynlink Li b * /
<unsigned far *) &mhand le)) /* module hand l e * /

printfC"error Loading dynlink module");
exitC 1l;

do {
choice = menu();
switchCchoice) {

case 1:
ifCDosGetProcAddr(mhandle, (char far *) " displa yfi Le ",

<void far **) &func))
{

}

printf(" canno t find the speci f ied function");
ex i tC1>;

printf("\nfilename: ");
getsCfname> ;
f unc((char far *) fname);
break;

case 2:
ifCDosGetProcAddr(mhandle, <ch a r far *) " browse",

<void far **) &tune))
{

}

printf("cannot find t he specif i ed function");
exit<1l;

prin tf("\nfilename : ");
getsCfname);
func(Cchar far *) fn ame);
break;

268 OS/2 Programming: An Introduction

}

}

case 3:
ifCDosGetProcAddrCmhandle, (char tar *) " show di r",

<void far **) &tune)) - -
{

printfC"cannot find the specified function");
exitC1l;

}

tune();
break;

case 4:
if CDosGetProcAddrCmhandle, Cchar far *) " diskinto",

(void far **) &tune))
{

}

printf("cannot find the specified function");
exitC1l ;

tuncO;

} whileCchoice!=Sl;
DosFreeModuleCmhandlel;

I* Disp lay a menu. */
menu()
{

}

char choice;

printf("1, list a file\n"l;
printf("2. browse through a ti le\n");
printfC"3. di rectory\n");
printf("4. disk into\n"l;
printfC"5. quit\n");

do {
printf("Enter your selection:");
choice = getcheCl;
printf("\n");

} while (choice< ' 1' II choice> 'S' l;
return choice - '0';

DYNAMIC LINKING
IMPLICATIONS

The use of dynlink libraries in either their load-time or run-time form
not only expands the options available to you when you create an appli
cation but also implies a fundamental restructuring to the approach of
program design. To take the best advantage of dynlinks you need to
group the various functional elements of your program into separate
dynlink libraries. While this step is fairly obvious, the next is not. You
must decide what parts of your program are more-or-less fixed and

Creating and Using Dynamic Link Libraries 269

what parts may change. Although it is conceivable to have the main
program consist simply of a main() function that issues calls to dynlink
routines, a more likely situation involves a balance between dynlink
code and statically linked program code. The proper mix will vary
between applications, and achieving it requires both thought and exper
imentation. Remember that the flexibility and improved maintainability
of your programs is worth the extra effort that dynamic linking
requires.

III
PROGRAMMING

PRESENTATION
MANAGER

This final part of the book introduces the Presentation Manager. The
Presentation Manager is important for several reasons:

• It provides a windowed environment that can be used quite effec
tively.

• It provides a dynamic data interchange facility that allows one appli
cation to transfer data to another easily.

• It provides graphics services that allow your programs to draw
points, lines, boxes, and circles.

The Presentation Manager is a very complex piece of software con
taining several hundred API services. While it is beyond the scope of
.this book to cover it in depth, the next two chapters present an over
view. The main focus of this section is the basic methodology used to
create Presentation Manager-compatible programs. If you will be creat
ing many programs that make use of the Presentation Manager, how
ever, you will find the book Presentation Manager Programming (by Herb
Schildt, Osborne/McGraw-Hill, 1989) helpful because it provides a thor
ough examination of all the important Presentation Manager features.

271

11
PRESENTATION

MANAGER:
AN OVERVIEW

Beginning with version 1.1, 05/2 includes the Presentation Manager
as the default user interface. The Presentation Manager provides the
user with a windowed, graphical interface that displays the functional
ity of the system on the screen and makes the operation of the com
puter by the user much more intuitive than the traditional command
line interface. As you will see, however, the end user's ease of operation
has a price-at times a fairly high price-which is paid by the pro
grammer in the extra time and effort it takes to create a Presentation
Manager-compatible program. This chapter introduces the fundamen
tal concepts implemented by the Presentation Manager and develops a
Presentation Manager application skeleton that you can use to create
your own programs.

WHAT IS THE PRESENTATION
MANAGER?

What the Presentation Manager is depends to some extent on whether
you are an end user or a programmer. From the user's point of view,
the Presentation Manager is a shell to interact w ith in u sing applica
tions. From the programmer's point of view, however, the Presen tation
Manager is a collection of several hundred additional API services,
coupled with a general application design philosophy. From the pro
grammer's point of view, the Presentation Manager is a giant toolbox
of interrelated functions that, when used correctly, allow the creation
of application programs that share a common interface.

The goal of the Presentation Manager is to enable a person who has
basic familiarity with the system to sit down and run virtually any

273

274 OS/2 Programming: An Introduction

application without prior training. In theory if you can run one Presen
tation Manager program, you can run them all. Of course, in reality
most useful programs still require some sort of user instruction, but at
least this instruction can be restricted to w hat the program does, not
how the user must interact with it.

At this point it is very important for you to understand that not
every Presentation Manager program necessarily presents the user
with a Presentation Manager-style interface. You can override the basic
Presentation Manager philosophy, but you had better have a very good
reason, because the users of your programs will be very disturbed by
the change. If you are writing application programs for OS/2, they
should conform to the general Presentation Manager application inter
face philosophy to be successful in the marketplace.

Let's look at a few of the more important features of the Presenta
tion Manager and the design philosophy behind them.

The Desktop Model

With few exceptions~ the point of a window-based user interface is to
provide on the screen the equivalent of a desktop. On a desk you often
find several different pieces of paper, one on top of another, often with
fragments of different pages visible beneath the top page. The equiv
alent of the desktop in the Presentation Manager is the screen. The
equivalents of the pieces of paper are w indows on the screen. You can
move pieces of paper about on a desk, maybe switching which piece of
paper is on top or how much of another is exposed to view. The Pre
sentation Manager allows the same types of operations on its windows.
By selecting a window you can make it current, which means putting it
on top of all other windows . You can also enlarge or shrink a window
or move it about on the screen . In short, the Presentation Manager lets
you control the surface of the screen the way you control the surface of
your desk.

The Mouse

Unlike DOS and the original version of OS/2, the Pre sentation Man
ager allows you t o use the mouse for almost all control, selection, a nd

Presentation Manager: An Overview 275

drawing operations. Of course, to say that it allows the use of the
mouse is an understatement. The fact is that the Presentation Manager
interface was designed for mouse input; it allows the use of the key
board! Although it is certainly possible for an application program to
ignore the mouse, it does so only in violation of a basic Presentation
Manager design principle.

To activate a feature you generally move the mouse pointer to that
feature and double click the left mouse button. A double click is achieved
by pressing the button twice in rapid succession. The Presentation
Manager allows you to drag objects about by moving the mouse pointer
to the object, pressing and holding the left button, and moving the
mouse pointer and object to a new location.

Icons and Graphics Images

The Presentation Manager allows (but does not require) the use of
icons and bit-mapped graphics images to convey information to the
user. The theory behind the use of icons and graphics images is found
in the adage, "a picture is worth a thousand words."

In 05/2 terminology, an icon is a small symbol representing some
function or program that can be activated by moving the mouse to the
icon and double clicking on it. A graphics image is generally used
simply to convey information quickly to the user.

Menus and Dialog Boxes

Aside from standard windows, the Presentation Manager also provides
special purpose windows. The most common of these are the menu and
dialog boxes. Briefly, a menu is a special window that contains options
from which the user makes a selection. Instead of providing the menu
selection functions in your program, you simply create a standard
menu w indow by using Presentation Manager services .

A dialog box is essentially a special window that allows more complex
interaction with the application than a menu allows. For example, your
application might use a dialog box to input a file name. With few excep
tions, nonmenu input is accomplished in the Presentation Manager via
a dialog box.

276 05/2 Programming: An Introduction

STORMY Cs

Now the bad news. Because the Presentation Manager must control all
input and output, many of the C standard library functions, such as
print£() and scanf() are not usable by any program that is going to run
under the Presentation Manager. In fact one reason that there are so
many Presentation Manager services is that they must replace a large
number of the standard C functions.

GENERAL OPERATION OF
A PRESENTATION MANAGER
APPLICATION

You must fix firmly in your mind one important point: The flow of a
Presentation Manager application program is fundamentally different
from a "normal" application. You need to abandon your preconceived
notions about how information moves in and out of your program and
what constitutes a program's "main loop." Before looking at any con
crete Presentation Manager services or examples, you must under
stand the structure of all Presentation Manager-compatible programs.

An Overview of the Operation of
a Presentation Manager Application

All programs that are compatible with the Presentation Manager share
a common skeleton. In its most straightforward implementation, when
the compatible program begins, it performs the following functions in
the order shown:

1. Initializes the Presentation Manager relative to the program

2. Establishes a message queue

3. Registers a special function called the window function within the
application called by the Presentation Manager

4. Creates a window of the registered class

5. Executes a loop that reads messages from the queue and dispatches
them to the window function

Presentation Manager: An Overview 277

The window function (sometimes called wind-proc or windowproc) is a
special function that is called only by the Presentation Manager, not by
your program. It receives in its parameters a message ~rom the mes
sage queue established in the second step. It then takes different
actions based on the value of each message. The form and content of
these messages, as well as the window function, will be discussed
shortly.

When a Presentation Manager application ends, it must perform the
following three steps:

I. Destroy the window

2. Destroy the message queue

3. Terminate the window environment relative to the application

The Message Loop

Aside from creating and destroying the windows required by your pro
gram, generally the only other thing that the main() function does is
receive and dispatch messages. To accomplish this it uses a loop that
looks something like

while(program is still running) {
get a message;
send the message to the proper window;

Essentially, the Presentation Manager communicates with your pro
gram by putting messages into its message queue. Your program then
extracts a message from the queue and dispatches it to the proper win
dow by calling another Presentation Manager service. This process
continues until the program is terminated. For the most part messages
are the only way in which your program r eceives input. (Remember
that a Presentation Manager program cannot, for example, call scanf()
to read input from the keyboard.) Although the form of a message
varies somewhat depending on what type of message it is, all messages
are integers .

278 OS/2 Programming : An Introduction

A CLOSER LOOK AT A WINDOW

All Presentation Manager windows begin with a frame, which is essen
tially a box. A number of optional but desirable addi tions are made to
this frame. In OS/2 these additional features are actually windows in
their own right. However, it is easier to think of them as options to the
frame. Let's look at these options now.

Two "options" are vitally necessary for all windows. The f irst is the
border. The border is important because it allows t he user to move or
resize the window using the mouse . The second is the system menu. The
system menu is a standard menu that, at a minimum, allows the user to
perform the following operations: restore the w indow to its original
size, move the window, resize the window, m inimize or maximize the
w indow, and close the window. Although the border allows a more
convenient method of moving or resizing the window, these operations
can also be activated from the system menu. When a window is mini
mized, it is shown in its iconic form and is moved to the icon region of
the screen. Your program can specify what the iconic form of a window
will look like or simply let the system decide. When a window is max
imized, it takes over the entire screen. Closing a w indow removes it
from the screen and, if this is the program's top-level window, termi
nates the program.

Most of the time you w ill also want to add three other features to
your windows: the ability to maximize and minimize icons and a title
that identifies the window. Although it is poss ible to maximize and
minimize the window by using the system menu, it is quicker to use
maximize and minimize icons because the user can activate them w ith
the mouse. When the screen holds several windows, titles remind the
user which window is which.

Finally, you w ill add vertical and horizontal scroll bars to the win
dow if your program needs them. By clicking on appropriate points in
these scroll bars the user scrolls the contents of the window up, down,
left, or r ight.

The region enclosed by the frame and used by your application pro
gram is called the client area .

The organization of a standard Presentation Manager w indow
appears in Figure 11-1. (Remember that not all options are necessarily
used for all windows.)

Each Presentation Manager-compatible program creates one or
more main windows. A main window is at the topmost level and is the

Presentation Manager: An Overview 279

System menu icon Minimize icon Ma ximize icon
/

./ • ,,
I

~.-Border

- · I

I TITLE

Client area

Horizontal
scroll bar

I
' '

I ~o C>

t
....:.

Vertical scroll bar-I ~

-
t ·--

Figure 11-11. The layout of a standard window

window that the user associates with the program. Closing the main
window terminates the program.

There are two general categories of windows: parents and children.
When an application begins, it creates one or more main windows. If it
creates more than one main window, they overlap each other. However,
it is possible to create a window inside another window. In this case the
newly created window is a child of the main window and is enclosed by
the parent. A c:hild window can, in turn, cr eate a child of its own, an d
so on up to the limits imposed by the size of the screen.

Each window is associated with a class. There are several built-in
classes, such as menus, frames , scroll bars, and the like. However, w in
dows that you create need to be given class names, and these classes
must be registered with the Presentation Manager.

280 OS/2 Programming: An Introduction

All windows define the lower left corner as location 0,0. The maxi

mum x and y dimensions are dynamically defined as the window

changes size and shape. However, the maximum dimension is deter

mined by the resolution of the screen.
Now that you know some of the theory behind the Presentation

Manager and its windows, let's look at some specifics.

OBTAINING AN ANCHOR
BLOCK USING Wininitialize

One of the first things that you will want your Presentation Manager

application to do is obtain an anchor block handle by calling Winlnitialize,

whose prototype is

void far *Winlnitialize(unsigned short handle);

Here, handle must be NULL. Notice that the function returns a void far

pointer, which points t o the region of memory used by the Presenta

tion Manager to hold various bits of information about the window

environment relative to the application program. This region of

memory is called the anchor block and the pointer to it is called the

anchor block handle. If the system cannot be initialized, a NULL is

returned. The anchor block handle is required as a parameter by many

Presentation Manager services.
Unlike the core API services, which return 0 for success, many of

the Presentation Manager services return 0 (NULL) on failure .

CREATING A MESSAGE QUEUE

After initializing the window system all Presentation Manager applica

tions must create a message queue by using WinCreateMsgQueue,

which has the prototype

void far *WinCreateMsgQueue(void far *anchor_ block, int size);

where anchor_ b/ock is the handle obtained by using Winlnitialize. The

size of the queue is determined by the value of size or, if size is NULL,

the system default is used. Generally the system default queue size is

acceptable.

Presentation Manager: An Overview 281

Each element in the message queue is contained in a structure
(called QMSG by Microsoft) defined as

struct {
void far *hwnd;
unsigned short msg;
void far *mpl;
void far *mp2;
unsigned long time;
POINTL pt!;

} QMSG;

/* handle of the recipient window */
/* the message */
/* additional message info */
/* additional message info *I
/* time message was generated */
/* position of mouse pointer */

The POINTL structure is defined as

struct {
long x;
long y;

} POINTL;

WinCreateMs.gQueue returns a handle to the message queue or
NULL if the request fails .

REGISTERING A WINDOW
CLASS

Before you can actually create a window, you must register its class
using WinRegisterClass, which has the prototype

unsigned short WinRegisterClass(void far *anchor _ block,
char far *classname,
(pascal far * window_ func) (),
unsigned long style,
int storage-bytes);

where anchor _block is a pointer to the anchor block. The string pointed
to by classname is the name of the window class being regis tered. The
address of the window function must be passed as the third parameter.
The style of the window is specified by style. The number of bytes of
additional storage beyond that needed by the window is specified by

282 05/2 Programming: An Introduction

storage_bytes. Your program may use thi s extra storage for its own pur

poses. In the examples in this book, this field will be 0.

The value of style describes the sort of window being registered.

The only style used in this book has the value 4L and is defined as

CS_SIZEREDRAW in the PMWIN.H header file provided by Micro

soft. Using this style causes the Presentation Manager to inform your

program each time the window is resized.
Th~ WinRegisterClass service returns nonzero if successful and

NULL if unsuccessful.

CREATING A STANDARD
WINDOW

Once you have initialized the window system relative to your applica

tion, created a message queue, and registered the class, it is time to

create a window. The easiest way to create a standard window is to use

WinCreateStdWindow, which has the prototype

void far *WinCreateStdWindow(void far *anchor- block,
void far *parent-handle,
unsigned long style;
char far *classname,
char far *title,
unsigned module,
unsigned long client-style,
int resource,
void far **client_handle);

The parent_ ha ndle must be the handle of the parent window. When a

program begins execution, its parent is the screen, which has the han

dle 1. Microsoft defines this value by the macro HWND_ DESKTOP.
This value will be used for the examples in this chapter.

The value of style determines several features of the w indow. It can

be a combination of several values. The most common, along with the

macro names given to them by Microsoft, appear in Table 11-1.

The classname parameter points to the string that identifies the class.

This sh ould be the same string that was u sed in the call to Win
RegisterClass.

The string pointed to by title is used as the title of the window for

Presentation Manager: An Overview 283

Table 11-1. The Most Common Values for the WinCreateStdWindow Style
Parameter

Macro Name

WS_VJSIBLE
WS_MJNIMIZED
WS_ MAXIMIZED
FS_ TITLE BAR
FS_SYSMENU
FS_ VERTSCROLL

FS_HORZSCROLL

FS_ SJZEBORDER
FS_ BORDER
FS_MINBUTTON
FS_MAXBUTTON
FS_MINMAX

identification purposes.

Value

Ox80000000L
OxOlOOOOOOL
Ox00800000L
OxOOOOOOOlL
Ox00000002L
OxOOOOOOlOL

Ox00000020L

Ox00000040L
Ox00000200L
OxOOOOlOOOL
Ox00002000L
Ox00003000L

Meaning

Make window visible
Minimize window
Maximize window
Include ti tle bar
Include system menu
Include vertical scroll
bar
Include horizontal scroll
bar
Include sizing border
Use thin border
Include minimize icon
Include maximize icon
Include both minimize
and maximize icons

For most purposes the clienf_sfyle parameter should be OL, indicat
ing that the client window should be the same style as the window
class.

The resource and module parameters identify a resource module. The
examples in this chapter need no resource modules, so these parame
ters should be NULL and 0 respectively.

The WinCreateStdWindow service returns a handle in clien/_ handle
to the frame if successful and NULL if not.

THE MESSAGE LOOP

To receive messages your program will need to use WinGetMsg, which
has the prototype

284 05/2 Progra mming: An Introduction

unsigned short WinGetMsg(void far *anchor _ block, ·
QMSG far *message,
void far *window,
unsigned short first,
unsigned short last);

The message retrieved from . the queue is put in the queue structure

pointed to by message. If window is not null, it causes WinGetMsg to

retrieve only the messages directed to the specified window. Most of

the time your application will want to receive all messages. In this case

window should be NULL. All messages are integers. The first and lasf

paramet ers determine the range of messages that w ill be accepted by

definin g the e nd points of that range. If you w ish to receive all mes

sages, first and las f should both be 0. The WinGetMsg service returns

true unless a termination message is received, in which case it re turns

false.
In many situations, once a message has been received it is simply

dispatched to the correct window without further processing by your

program w ithin the m essage loop. The service that sends messages

a long their way is WinDispatchMsg, which has the prototype

void far *WinDispatchMsg(void far *anchor- block,
QMSG far *message);

When you call this function the message is automatically routed to the

proper window function. WinDispatchMsg returns the value returned

by the w indow function.

PROGRAM TERMINATION

Before you r program terminates, it must do three things: close any

active windows, close the message queue, and deactivate the window

system interface created by the Winlnitialize service. To accom plish

these things the Presentation Manager provides the services WinDe
stroyWindow, WinDestroyMsgQueue, and WinTerminate, which have

the prototypes

uns igned long WinDestroyWindow(void far •handle_window);

unsigned long WinDestroyMsgQueue(void far •handle_msgQ);

uns igned long Win Terminate(void far *anch or _ block);

.. • "·

Presentation Manager: An Overview 285

Here ha11d/e_wi11daw is the handle of the window to be closed. The
hand/e_msgQ is the handle to the message queue to be destroyed.
Finally the window system is disconnected by calling WinTerminate
with the anchor block handle.

THE WINDOW FUNCTION

As mention ed earlier, all programs that are compatible with the Pre
sentatio n Manager must pass to the Presentation Manager the address
of the window function that will receive messages. This function must
be declared as shown here:

void far * pascal fa r window_ func(void far *handle,
unsigned short message,
void far *paraml,
void far *param2);

The window function receives the Presentation Manager m essages in
its parameters. In essence the Presentation Manager sends your pro
gram a message by calling the window function. The value of handle is
the handle of the window receiving the message. The integer message
contains the message itself . Some messages require further informa
tion, w h ich is put into the pa ram 1 and param2 parameters.

The Prese ntation Manager can generate several different types of
messages. Some of the more common ones appear in Table 11-2 along
with the macro names assigned to them by Microsoft. Some of these
messages will be used in the sample progra ms developed in th is chapter
and the next .

The window function does not need explicitly to process all the
messages that it receives . In fact an application commonly processes
only a few types of messages. What happens, the n, to t he res t of the
m essages received by the window function ? They ar e passed back to
the Presentation Manager for default processing u sing the WinDefWin
dowProc ser~ice which has the prototype

void far *WinDefWindow Proc(void far *handle,
unsigned short message,
void far *paraml ,
void far *param2);

286 05/2 Programming: An Introduction

Table 11-2. Some Common Messages .

Macro Name

WM_ BUTTONIDOWN
WM_ BUTTONIUP
WM_ BUTTONIDBLCLK

WM_ BUTTON2DOWN
WM_ BUTTON2UP
WM_BUTTON2DBLCLK

WM_BUTTON3DOWN
WM_ BUTTON3UP
WM_ BUTTON3DBLCLK

WM_ CHAR
WM_ CREATE
WM_ DESTROY
WM_ ERASEBACK-

GROUND
WM_ HSCROLL
WM_ MOVE
WM_ MQUSEMOVE
WM_ PAINT

WM_SHOW

WM_SJZE

WM_VSCROLL
WM_ QUIT

Value

Ox0071

Ox0072

Ox0073

Ox0074

Ox0075

Ox0076

Ox0077

Ox0078

Ox0079

Ox007A

OxOOOl

Ox0002

Ox004F

Ox0032

Ox0006

Ox0070

Ox0023

OxOOOS

Ox0007

Ox0031

Ox002A

Meaning

Button 1 down
Botton 1 up
Double click on button 1

Button 2 down
Button 2 up
Double click on button 2

Button 3 down

Button 3 up
Double click on button 3
Keystroke occurred
Window has been created
Window is being destroyed

OK to erase background re
quest
Horizontal scroll
Window is being moved
Mouse has moved
Window display needs to
be refreshed
Window is shown or re
moved from the screen
Window is being resized
Vertical scroll
Window is be ing ter mi
nated

As you can probably guess, WinDefWindowProc simply passes back to

the Presentation Manager the parameters with which it was called .

PUTTING TOGETHER THE PIECES:
A PRESENTATION MANAGER SKELETON PROGRAM

Now that you have seen the services needed to initialize and run a

simple windowed application, it is time to see some real code! The fol-

Presentation Manager: An Overview 287

lowing skeleton program creates a w indow that includes a system
menu, a title, a sizing border, and scroll bars. You can move the w indow
about the scr een, minimize or maximize it, change its shape, and ter
minate it - nothing else. For the moment don't worry too much about
the window function window_ func(); it will be explained shortly.

I* A Presentat i on Manager Applicat i on skeleton . */

#defi ne INCL WIN

i n cl ude <os2 . h>
#include <stddef.h> /* get def i nition of NUL L */

.;,
voi d far * pascal far window func< vo id far *, unsigne d short,

vo1d far *, void far *);

char class[] "M y C l ass 11
;

main()
{

}

void far *hand ab ;
void far •hand- mq;
vo id fa r * han d-fr ame , far *hand client ;
QMSG q_mess;

ha nd ab Win I n i t i a l i z e (NULL) ;

hand mq WinCreateMsgQue ue(ha nd ab, 0);

if(!WinReg i sterClass(hand ab,
c l ass,

I* anchor block */
I* class name */

ex it<1J ;

hand f rame

window tune,
CS SIZ"E"RE DRAW,
OJ)

I* address of window function */
I* window style *'
I* no storage reser ve d */

WinCrea t eStdWindow(HWND DESKTOP,
WS VI SIB LE I FS SYSM~NU I
FS-SIZEBORDER 1-F S TITL EBAR I
FS-V ERTSCRO LLI FS ~ORZSCROLL I
FS MINMAX,
(char fa r *) class,
(char tar *J "My Wi ndow ",
OL, /* resource modules */
NULL,
O,
&hand cl i ent); /* client hand l e */

I* message loo p */
whi l e(W i nGe t Msg<hand ab, &q me ss, NULL, O, OJ)

Win Dispat chMsg(h ana_ab, &q_m essJ;

WinD estroyWi ndow<hand frame);

WinD es troyMsgQue ue< han d mqJ ;
WinTerminate(hand ab) ; -

I* This is the window f un ctio n . */
vo id tar* pascal tar window func(vo i d far *handle,

unsigned short mess,
void tar *pa r m1,
void far *parm2)

288 05/2 Programming: An Introduction

{

switch(mess) {
case WM CREATE:

I• Perform any necessa ry in itia li zations here. •/
break;

case WM PAINT:
I• Refresh the window each time the WM PAINT message

is received .

*' break;

case WM ERAS EBACKGROUND:
I• By returning TRUE, the PM automatically erases

the old window each time the window is resized

•I

or moved. Without this, your program must
manually handle erasing t he window when it cha nges
size or location.

return C TRUE);

case WM CHAR:
I* Process keystrokes here. •/

break;

case WM HSCROLL :
I• Process horizontal scro l l request. •/

break;

case WM VSCROLL:
I• Process vertical scroll reques t. */

break;

case WM MOUS EMOVE:
I• -Process a mouse motion message. •I

break;

case WM BUTTON1DOWN:
I• Tst mouse button is pressed. •/

break;

case WM BUTTON2DOWN:
I• 2nd mouse but ton is pressed. •/

break;

case WM BUTTON3DOWN :
I• 3rd mouse button i s p ressed. •/

break;

I* If required by your app l ication, you may a l so need to
process these mouse messages:

•I

WM BUTTON1UP
WM-BUTTON1DB LCLK
WM- BUTTON 2 UP
WM-BUTTON2DBLC LK
WM-BUTTON3UP
WM-BUTTON3DBLCLK

default:
I• All messages not handle d by the window func,

must be passed along to the PM for default
processing.

Presentation Manager: An Overview 289

*' return WinDefWindowProc(handle, mess, parm1, parm2);
}

return OL ;
}

Note that the program defines INCL_WIN. This is necessary to
include the prototypes and definitions for the window system on
OS2.H.

Read the next two sections before you try to compile this program.

The Definition File

Unlike non-Presentation Manager programs, any Presentation Man
ager-compatible program you write needs to include a definition file in
the link line. Other reasons aside, you w ill need to specify more stack
space for the Presentation Manager application than it will receive by
default. The Presentation Manager examples in this book allocate 4096
bytes, but real-world applications may need more space. It is also a
good idea to specify a heap size. The programs in this book allocate
4096 bytes for this purpose, but your programs may need more or le ss .
You must also include an EXPORTS statement in the file that specifies
the name of the window function. The definition file for the skeleton
just shown looks like this:

NAME skeleton
HEAPSIZE 4096
STACKSIZE 4096
EXPORTS window func

Compiling Presentation Manager
Programs

You will need to specify some different compiler options for a Presenta
tion Manager program than for a standard program. You can use this
batch file if you are using the Microsoft C compiler:

CL -c - G2sw 7. 1.c
LINK 7. 1,,, os2, 7. 1. def;
RC 7. 1

The -G2sw option tells the compiler to use 32-bit addresses for all code
and data references, turn off stack checking, assume that the value of

290 05/2 Programming: An Introduction

the DS register is different from the value of the SS register, and
generate 80286 instructions. Since the Presentation Manager requires
at leas t an 80286 processor, there is no harm in generating 80286
instructions.

Note that the link line specifies the library called 052.LIB instead of
DOSCALLS.LIB. This name was introduced with version 1.1 of OS/2.
However, different versions of OS/ 2 may call this something else.

Note: You may have to use a different set of options even if you are
using Microsoft C beca use of futu re changes to the compiler. Be sure
to read your instruction manual carefull y on this point.

Understanding How the Skeleton
Works

The operation of the main() fun ction is straightforward . It initializes
the link between the Presentation Manager and the program, register s
a new w indow class, creates a window, and executes its message loop.
As messages are received, they are dispatched t o the window_func()
by calling WinDispatchMsg. The message loop terminates when the
WM_QUIT message is received. This message is generated by choos
ing the close option in the window's system menu.

The most important single function in a Presentation Manager
application is the window function. It receives the messages sent by the
Presentation Manager and takes appropriate action. The skeleton
shows entries in the switch statement for only the most common of
the several messages that can be generated by the Presen tation Man
ager. (Remember that any message your program does not wish to pro
cess must be passed back to the Presentation Manager via the Win
DefWindowProc service.) Let's look at the mea ning of some of these.

When a window is created, t he WM_CREATE message is sent to
the window function . This allows your program to initialize values or
perform other startup operations.

The Presentation Manager allows the user t o move and resize win
dows and also to cover part of a w indow w ith another. These opera
tions imply that all or part of the window must be redrawn at some
time. The Presentation Manager generates the WM- PAINT message
whenever the contents of the window must be refreshed.

The WM_ERASEBACKGROUND message tells your program that
the window needs to be erased, perhaps beca use the window is being

Presentation Manager: An Overview 291

moved . By returning TRUE, you allow the Presentation Manager to do
this for you. Otherwise, your program must do it.

Each time the user presses a key, the WM_CHAR message is
generated. This message will be discussed further in the next chapter.

Each time the user requests a vertical scroll the WM_ VSCROLL
message is generated. Each time the user requests a horizontal scroll,
the WM_HSCROLL message is generated.

The mouse messages are self-explanatory.
Because this program is a skeleton for future applications, it does

not do anything with the messages. However, you will soon see exam
ples that do. Keep in mind that when your program does not actually
need to worry about a message - if the program does not have scroll
bars, for example - that message can be removed from the switch
statement and the default processing will handle it.

PRESENTATION MANAGER
VERSUS CORE SERVICES

At this point you might be wondering h ow the Presentation Manager
services relate to the core 0512 services. There certainly appears to be
significant overlap in many areas. In general, if you wish to write Pre
sentation Manager-compatible programs that follow the standard Pre
sentation Manager style, you must not use any of the Vio, Kbd, or
Mou services in your program. Instead you must use the comparable
Presen tation Manager services. However, feel free to use the Dos core
services, especially those that support in terprocess communication and
device monitors.

If a program uses a Vio, Kbd, or Mou service, it w ill be run in its
own screen group, not in a Presentation Manager window.

The m ain u se for the Vio, Kbd, or Mou services is for utility pro
grams, especially programmer utilities, that do not need the support of
a windowed environment.

12
SOME PRESENTATION
MANAGER EXAMPLES

This chapt er introduces some of the commoner programming tasks,
such as input, output, and the use of graphics and m enus, as they a re
formulated in a Presentation Ma nager e nvironment. While it is beyond
the scope of this book to go into significant detail about the Presenta
tion Manager, the m aterial presented in this ch apter w ill help you grasp
some of the more important Presentation Manager programming con
cepts and w ill provide a base for further study.

OUTPUTTING TEXT

Outputting text to a client window is not as easy as you might expect
for two reasons:

1. You can 't use any of the C run-time functions such as printf().

2. You can't use any of the VIO API services either!

The reason for these restrictions is that neither the C s tandard o utput
functions nor the VIO functions have a ny knowledge of a windowed
environment.

Beyond the fact that your programs must use special Presentation
Manager output functio ns to display text in a window, it is still not a
tri vial task to o utput t ext because the Presentation Manager maintains
a level of abstraction between your program and the output device.

293

294 OS/2 Programming: An Introduction

Before developing any examples, you need to learn a few new terms

and concepts.

Presentation Space and
Device Context

When your program outputs something to the "screen," it is actually

outputting information to a presentation space (PS), which you can think of

as being a data structure that contains several pieces of information

about the size and form of the "screen ." The reason that the word screen

has been placed in quotes in the foregoing sentences is that a presenta

tion space is not necessarily linked t o the screen; it could be linked

with the printer, for exa mple. The device that the presentation space is

actually linked to is called the device context (DC). For the rest of this

discussion, the device context is assumed to be the screen.

There are three t ypes of presentation spaces: the normal-PS, the

micro-PS, a nd the cached micro-PS. The examples in this chapter use

only the cached micro-PS, but it is important that you understand the

general concept behind all three.
The normal-PS is the mos t flexible of the three presentation spaces.

Your program uses it when it writes to devices other than the screen or

when a screen display is in exist ence a long time without a refresh . A

micro-PS is similar to a normal-PS except that it r equire s less memory

and has fewer capabilities. The cached micro-PS is the simplest presen

tation space to use and requires the least memory. However, the cached

micro-PS operates only with the screen , so it cannot be used to send

output to a ny other device.

Processing the WM- PAINT
Message

As you probably recall from the previou s chapter, each time a window

is moved, resized, or uncovered, the WM-PAINT message is sent to

the window function. Each time thi s message is received, your program

must completely redisplay any output that was in the window. The pro

cess is often called refresh ing the window. Although it is possible to out

put to the window during the processing of other messages, the mos t

common time for thi s to occur is when handling the WM-PAINT

message. For this reason the discussio n of text output begins with how

it relates to the processing of the WM_PAINT message.

Some Presentation Manager Examples 295

Before you can output anything to the screen, you need to obtain a
presentation space handle. There are several ways to do this, but when
processing the WM_PAINT message the easies t way is to use the
WinBeginPaint service to return a micro-PS handle. The prototype for
WinBeginPaint is

void far *WinBeginPaint(void far *handle,
void far *p-space,

. RECTL far *region);

where handle is the handle of the w indow that will be drawn to, and
p_ space is the handle of the presentation space . If this value is NULL, a
micro-PS is automatically allocated and its handle returned by the ser
vice . The structure pointed to by region contains the coordinates of the
region that needs to be updated. This parameter may be NULL in cases
where it is simply easier for the program to update the entire w indow
rather than a portion.

WinBeginPaint has a second important function: It informs the
Presentation Manager that a window refresh is beginning. For this rea
son it is a good idea to call WinBeginPaint immediately after receiving
a WM_PAINT message.

T he simplest way to write a line of text t o a w indow is to use the
GpiCharStringAt service, whose prototype is

long GpiCharStringAt(void far *p-space,
POINTL far *loc,
long size,
char far *string);

where p_ space is the presentation space handle. The s tructure pointed
to by lac contains the coordinates of the location at which the string will
be written. T he size parameter holds the s ize, and string points to the
actual string.

The return value of GpiCharStringAt is somewhat complex and is
not required by the examples in this chapter.

The POINTL structure is defined like this:

struct POINTL {
long x;
long y;

} ;

296 OS/2 Programming: An In troduction

It is critical to keep in mind that the x,y locations in the POINTL struc
ture are specified in pels, not in characters.

Although in its default mode no cursor is seen in a window, each
window does keep track of the position of an invisible "cursor." The
position of this invisible cursor is called the current position. Many of the
output services, including GpiCharStringAt, affect the location of the
current position. After the string has been displayed by using
GpiCharStringAt, the current position is advanced to the pel imme
diately following the last character in the string.

The GpiCharStringAt service does not process carriage returns or
linefeeds, so your program must manually advance to new lines when
needed.

Before the code that processes the WM_PAINT message finishes,
it must issue a call to WinEndPaint, which has the prototype

unsigned short WinEndPaint(void far *p-space);

where p_space is the handle of the presentation space updated by the
program. If WinEndPaint is successful, it returns true; otherwise it
returns false.

Assuming the necessary variable declarations, the following frag
ment outputs "This is a test" on the screen starting at the lower left
corner:

case WM PAINT:
/* get a handle to the presentation space */
p_ space = WinBegin Pa int(hand le, NULL, NULL);

I* output a message that starts at the Lower
Left corner

*I
coords.x = OL;
coords.y = OL;
GpiCharStringAt(p space, (POINTL far *) &coords,

14L,
(ch,ar far*) "T his is a test");

I* close the presentation space */
WinEndPaint(handle);
break ;

Each time the window associated with this code fragment is moved,
resized, or uncovered, the WM_PAINT message is received and the
line of text is redisplayed. An entire program that uses the code frag
ment is shown here:

Some Presentation Manager Examples 297

I* Output a string . */

#define INCL WIN
#define INCL GPI

#include <os2.h>
#include <stddef.h> /* get definition of NULL */

void far * pascal far window func(void far *, unsigned sho r t,
voTd far *, void far *>;

char class(] 0 MyClass";

main()
{

}

void far *hand ab;
void far *hand-mq ;
void far * hand=frame, far * hand_client ;
Ql'ISG q_mess;

hand ab Wininitialize(NULL);

hand_mq WinCreatel'lsgQueue(hand ab, O>;

ifC! WinRegisterC l ass(hand ab, /* anchor block */

exitC1>;

hand frame

class, - I* class name */
window func, /* address of window f unction */
CS SIZiRE~RAW, /* window style */
O>f /* no storage reserved */

WinCreateStdWindowCHWND DESKTOP,
WS VISIBLE I FS SYSMENU I
FS-SIZEBORDER I FS TITLEBAR
FS-MINMAX ,
(char far *) class,
(char far *) "l'ly Window",
OL,
NULL,
0,
&hand_cli ent> ;

whileCWinGetMsg(hand ab, &q mes s , NULL, 0 , O>>
WinDispatchMsg(hana_a b, &q _messl ;

WinOestroyWindowChand frame>;

WinDestroyMsgQueue(hand mq);
WinTerminate(hand_ab); -

/* window function */
vo id far * pascal fa r window func(void far *ha nd l e,

{

void far *P space;
POINTL cooras;

switch (mess) {

- u nsigned short mess,
voi d far *parm1,
void far *parm2)

298) OS/2 Programming: An Introduction

}

case WM PAI NT:
I* get a handle to the presentation space */
p_space = WinBeginPaint(handle , NULL, NULL);

/* output a message t hat starts at the Lower
Left corner

coords .x = OL;
coords . y = OL ;
GpiCha rStringAt(p space, CPOINTL fa r *) &coords ,

17+L,
(char far *) "T his is a tes t");

I* close the presentation space */
Win EndPaint(handle>;
break;

case WM ERASEBACKGROUND :
returnCTRUEl ;

default :
return WinDefW ind owProc(handle, mess, parm1, parm2);

}

r eturn OL;

To compile this program be certain to use the method discussed in
the previous chapter and include a definition file similar to the follow
ing (in fact, be sure to include a similar definition file with all the sam
ple programs in this chapter):

NAME prog name
HEAPSIZE 4096
STACKSIZE 4096
EXPORTS window tune

Displaying Text in Color

You can change both foreground a nd background colors by using
GpiSetColor and GpiSetBackColor, r espectively. Their prototypes are

unsigned short GpiSetColor(void far *p- space,
long color);

unsigned short GpiSetBackColor(void far *p-space,
long color);

Some Presentation Manager Examples 299

Here p_space is the handle to the presentation space and color is the
d esired color, which can be one of these values (shown along with the
macro names given them by M icrosoft):

Macro Name Value

CLR_DEFAULT -3L
CLR_ WHITE -2L
CLR_BLACK -IL
CLR_ BACKGROUND OL
CLR_ BLUE IL
CLR_RED 2L
CLR_PINK 3L
CLR_GREEN 4L
CLR_CYAN SL
CLR_YELLOW 6L
CLR_ NEUTRAL 7L
CLR_ DARKGRAY BL
CLR_ DARKBLUE 9L
CLR_OARKRED lOL
CLR_DARKPINK llL
CLR_ OARKGREEN 12L
CLR_ OARKCYAN 13L
CLR_ BROWN 14L
CLR_ LIGHTGRAY lSL

Keep in m ind that once you set a foreground or background color, or
both, they remain in effect until reset .

In the Presentation Manager's default mode of operation, once the
foreground color is set, a ll s ubsequent screen output operations take
place in that color. This is not the case for the background color, how
ever, because by default the new background color is n ot "mixed" into
the background color of the w indow. In order to mix the color in, you
must call the GpiSetBackMix service, w hose prototype is

unsigned sh ort GpiSetBackMix(void far *p- space,
long mix);

w here p_ space is the presentation space of the w indow and mix is the
value that determines how the background color is mixed with the cur
re nt screen color. The most common values are shown h ere along w ith
the macro names defined by Microsoft.

300 05/2 Programming: An Introduction

Macro Name

BM- DEFAULT

BM_ OVER PAINT

BM_ LEAVEALONE

Value

OL

2L

SL

Meaning

Use system default.

Overwrite current color.

Leave current background color
unchanged.

You use BM_QVERPAINT to have the background color replace the
current screen color.

Although it is not used by the sample programs in this chapter, you
can set the mix of the foreground color by using GpiSetMix, whose
prototype is

unsigned short GpiSetMix(void far *p-space,
long mix);

Here mix specifies how the foreground color will be displayed. The most
common values are

Name

FM_ DEFAULT

FM_ OR

FM_ OVER PAINT

fM_ LEAVEALONE

FM_XOR

FM_ AND

Value

OL

lL

2L

SL

4L

6L

Meaning

Use default.

OR text onto screen .

Overwrite current screen color.

Leave color attributes unchanged .

XOR text onto screen.

AND text onto screen.

You may want to experiment with this service on your own.
The following program uses GpiSetBackColor, GpiSetColor, and

GpiSetBackMix to display a string using blue foreground and red back
ground.

I• Output blue text on red backgro und.
*I
#define INCL WIN
#de fin e INCL-GP!

#include <os2. h>
#include <stddef,h> /* get defin itio n of NULL •/

void far • pascal far window func(void far •, unsigned short,
voTd f a r *, void far *);

Some Presentation Manager Exam ples 301

char class[) "MyClass ";

main()
{

}

void far •hand ab;
void far •hand-mq;
vo id f a r •hand=frame, far •hand_ c li ent ;
QMSG q_mess;

hand ab Wininitiali2e(NULL);

hand_mq WinCreateMsgQueue(hand_ab, 0);

if(!W i nRegisterC la ss(ha nd ab, I• anchor block •/
(cha r f ar•> class, I• class na me •/

exitC1>;

han d fram e

wi ndow tune, I• address of window function •/
CS SIZEREDRAW, I• window sty l e •/
O>T I• no storage res e r ved •/

WinCr eateStdWindo wC HWND DESKTOP,
WS VISI BLE I FS SYSMENU l
FS-S IZE BO RDER 1-F S TITLEB AR I
FS-VERTSCROLLI FS WORZSCR OL L I
FS-MINMAX , -
(char fa r •) class,
(cha r far •) " My Wi ndow",
OL,
NULL,
o,
&ha nd client>; /• client handle •/

while(WinGetMsg(hand ab, &q me ss , NUL L, O, Q))
WinDispatchMsg(hand_ab, &q_mess);

Wi nOestro yWi ndow(ha nd f rame) ;

WinDestroyMsgQueueChand mq);
WinTe rmi nat e<hand_ ab); -

void far* pascal far wi ndow func(void far •handle,
uns ig ned sho rt mess,
void far • pa r m1,
void far •parm2)

{

vo id f ar *P spac e;
POINTL coo rds ;

s witch(mess) {
case WM PAINT :

I• get a presentation space handle •/
p_ space = WinBeginPa i nt(handle, NULL, NULL>;

I• use red background •/
GpiSetBackColor(p s pace, CLR RED>;
I• se t mix t o overwrite •/ -
GpiSetBackMi x(p s pace, BM OVERPAINT);
I• set fore gro und to blue-•/
Gp i SetC o lor Cp_spa c e , CLR_BLUE);

302 OS/2 Programm ing: An Introduction

}

}

coo rd s.x = OL;
coords.y = OL;
Gp iC harStri ngAt(p space, (POI NTL far • > &coords,

14L,
(ch ar far *) "This is a test");

I* c lo s e the presentation space */
Win EndP aint (ha nd le) ;

break;

case WM ERASEBACKGROUND:
/*By re turning TRUE, the PM automatical l y erases

the ol d window each time the window is res iz ed
or moved. Without th is, your program must
manually handle erasing t he wi ndow when it changes
size o r Locati on.

*I
re tur n (TR UE);

default:
/* Al l mes sages not hand le d by the windo w fun c ,

must be passed al ong to the PM for defau lt
processing.

•I
return Wi nD efWindowProc(handle, me ss, pa rm 1 , parm2> ;

r e turn OL;

WinGetPS and WinReleasePS

You can obtain a handle to a cached micro-PS without using Win
BeginPaint by using WinGetPS, whose prototytpe is

void far •WinGetPS(void far *win-handle);

Here, win_handle is the h andle of the window to which you will be
outpu tting. The handle to the presentation space is returned by the
service.

Since you can call WinBeginPaint only when the WM_PAINT mes
sage is received, the WinGetPS service is useful when you wa nt to
output information during the processing of an other message. (An
example of this appears in the next section.)

When your routine has finished outputting, it must call WinRe
leasePS, which has the prototype

unsigned short WinReleasePS(void far *p-space);

w here p_space is the presentation space handle obtained by a ca ll to
WinGetPS.

Some Presentation Manager Examples 303

READING KEYSTROKES

As mentioned in passing in the previous chapter, your Presentation
Manager programs cannot read keyboard input in the traditional
fashion. For example, you r programs cannot call such standard library
func tions as gets() or scanf(). In stead, each time a key is pressed a
WM-CHAR message is sent to the active window.

The keystroke information is encoded in the two message parame
ters as follows. The first 16 bits of the first parameter contain severa l
flags that tell you what type of key was pressed. The flags are encoded,
as shown here (along with their macro names defined by Microsoft):

Macro Name Value Meaning When Set

KC_ CHAR 1 Is character
KC_ VIRTUALKEY 2 Is special key
KC_ SCANCODE 4 Is scan code
KC_ SHIFT 8 Is SHIFT key
KC_CTRL 16 Is CONTROL key
KC_ALT 32 Is ALT key
KC_KEYUP 64 Key is being released
KC_ PREVDOWN 128 Key was down
KC_ LONEKEY 256 Is single key
KC_DEADKEY 512 Is unused key
KC_ COMPOSITE 1024 Is key combination
KC_INVALIDCOMP 2048 Is invalid combination
KC_ TOGGLE 4096 Is toggle key

The next 8 bits of the first parameter give a repetition count. This
indicates how many times the key has been autorepeated. Gen erally
you w ill not need to worry about this.

T he high -order 8 bits of the first parameter hold the key's scan
code . As you probably remember from Ch apter 4, when you press a
key, 05/2 generates a scan code, which, in the case of normal keys, is
associated with a character code. Certain keys, however, such as the
arrow keys, do not have character codes, which means that the scan
code is u sed to identify them. (Refer to Chapter 4 for more informa
tion on scan and ch aracter codes .)

The second parameter associated with the WM- CHAR message
contains two items. The lower 16 bits contain the character code,
assuming that a regular key h as been pressed. That is, if the KC_
CHAR flag is set in the first parameter, a valid character code is found

304 OS/2 Programming: An Introduction

in the lower 16 bits of the second parameter. However, if you press a
special key, the KC_CHAR flag is not set and the character code of the
second parameter is 0. For U.S.-style keyboards only the first 8 bits are
of interest, but for foreign systems the full 16 bits may be needed.

The high-order 16 bits of the second parameter hold the virtual key
code for the key that was pressed. All keystrokes are assigned a virtual
code. For normal keys, however, this code is 0. The virtual key codes,
along with their corresponding macro names (defined by Microsoft) are
shown in Table 12-1. As you can see, some virtual key codes cannot be
generated by the keyboard, but are generated by the Presentation
Manager itself.

Table 12 -1. The Virtual Key Codes

Macro Name Value Key

VK_CANCEL 04 CANCEL

VK_BACK OS BACKSPACE

VK_TAB 06 TAB

VK_CLEAR 07
VK_RETURN 08 ENTER

VK_SHIFT 09 SHIFT

VK_CQNTROL 10 CONTRO L

VK_ ALT 11 ALT

VK_ALTGRAF 12
VK_ PAUSE 13 PAUSE

VK_CAPITAL 14 CAPS LOC K

VK_ ESCAPE 15 ESCAPE

VK_SPACE 16 SPACE

VK_PGUP 17 PAGE UP

VK_ PGDN 18 PAGE DOWN

VK_END 19 END

VK_ HOME 20 HOME

VK_ LEFT 21 LEFT ARROW

VK_ UP 22 UP ARROW

VK_ RIGHT 23 RIGHT ARROW

VK_DOWN 24 DOWN ARROW

VK_ SELECT 25
VK_PRINT 26
VK_EXEC UTE 27
VK_ INSERT 28 INS

Some Presentation Manager Examples 305

Table 12-1. The Virtual Key Codes (continued)

Macro Name Value Key

VK_ DELETE 29 DEL

VK_SCRLLOCK 30 SCROLL LOCK

VK_ NUMLOCK 31 NUM LOCK

VK_ NUMPADO 32 Number pad O
VK_ NUMPADl 33 Number pad 1
VK_NUMPAD2 34 Number pad 2
VK_NUMPAD3 3S Number pad 3
VK_ NUMPAD4 36 Number pad 4
VK_NUMPADS 37 Number pad S
VK_ NUMPAD6 38 Number pad 6
VK_NUMPAD7 39 Number pad 7
VK_ NUMPAD8 40 Number pad 8
VK_NUMPAD9 41 Number pad 9
VK_ ADD 42 Number pad +
VK_ SUBTRACT 43 Number pad -
VK_MULTIPLY 44 Number pad •
VK_DIVIDE 4S Number pad I
VK_DECIMAL 46 Number pad .
VK_ ENTER 47 Number pad enter
VK_Fl 48 Fl
VK_ F2 49 F2
VK_F3 so F3
VK_ F4 Sl F4
VK_ Fs S2 FS

VK_F6 S3 F6

VK_ F7 S4 F7
VK_ F8 SS F8

VK_ F9 S6 F9
VK_Flo S7 FlO

VK_ Fll S8 FU
VK_Fl2 S9 F12

VK_ Fl3 60 Fl3
VK_Fl4 61 Fl4
VK_ Fls 62 FIS
VK_ Fl6 63 Fl6

VK_ HELP 64
VK_SYSREQ 6S SysRq
VK_ MENU 11 Same as VK_ ALT
VK_ INS 28 Same as VK_INSERT
VK_DEL 29 Same as VK_ DELET E

306 OS/2 Programming: An Introduction

As you saw in Chapter 4, each time you press a key, OSI 2 generates
a make signal. Each time you release the key, it sends a break signal.
When processing the WM-CHAR message remember that your pro
gram is receiving both of these signals. Most of the time you want to
take an action only on key press, not on key release. To check for this
you must examine the state of the KC_KEYUP flag in the first
parameter. If it is 0, the key is being pressed; if it is I, the key is being
released.

T he following program reads keys from the keyboard and displays
normal characters on the screen. It processes the make and skips the
break signal. Keep in mind that before the window created by this pro
gram can receive input, you must click on the window to make it active.
(Only when the window is active does it become the focus of the key
board.) Notice that this program uses WinGetPS and WinReleasePS.

I* The program reads keystrokes. */

#define INCL WIN
#define INCL-GP!

#include <os2.h>
#include <stddef . h> /* get definition of NULL */

void far * pascal tar window tunc(void far *, unsigned short,
voTd tar *, void tar *l;

char class[J = "MyClass";

main()
{

void tar •hand ab;
void tar •hand-mq;
void tar *hand=frame, tar •hand_client;
QMSG q_mess;

hand ab Wininitialize(NULLl;

hand_mq WinCreateMsgQueueChand ab, Ol;

if(!WinRegisterClass(hand ab, /• anchor block •I

exitC1l;

hand frame

(char far*) c l ass, /* class name *I
window func, /* address of window function */
CS SIZEREDRAW, /* window style */
arr /* no storage reserved *'

WinCreateStdWindowCHWND DESKTOP,
WS VISIBLE I FS SYSM!'NU I
FS=SIZEBORDER 1-FS TITLEBAR I
FS_VERTSCROLLI FS HORZSCROLL I
FS MINMAX,
Ccnar far *) c l ass,
(char far *) "My Window",

}

Some Presentation Manager Examples 307

OL, /* resource modules •/
NULL,
O,
&hand client>; /* client handle •I

whileCWinGetMsg(hand ab, &q mess , NULL, 0, 0))
WinDispatchf.sg(hand_ab, &q_mess>;

WinDestroyWindowChand_frame>;

WinDestroyMsgQueue(hand mq);
WinTerminate(hand ab); -

I* windo w function */
void far * pascal f ar windo w func(void far •handle,

unsigned short mess,
void far *parm1,
void far *parm2>

{

vo id far *P space;
POINTL cooras;
char ch;

switch(me-ss> {
case WM ERASEBACKGROUND :

/* By returning TRUE, the PM automatically erases
the old wi nd ow each time the wi ndow is resized
or moved. Without this, your program must
manually handle erasing the window when it changes
size or Location.

*I
return(TRIJE);

case WM CHAR: /• Process keystrokes here. •I
I• process only keypresses, not key releases •I
if((long) parm1 & KC_KEYUP) break;

if(Clong) pa rm1 & KC CHAR) {
p_space = Wi nGetPSChandle>;

}

I• use overwrite mode •I
Gp iSe tBackM i x(p_space, BM OVERPAINT);

coords.x
coords . y

20L;
20 L;

I* extract the character */
ch = (char) LOU SHORT (parm2);
I* display the character •I
GpiCharStringAt(p space, (POIN TL tar •) &coords,

1 L, -
(char far •> &ch);

WinReleasePSCp_space);

break;

default:
I* All messages not handled by the window tune,

must be passed along to the PM for default
proces -s i ng.

-----,

308 05/2 Programming: An Introduction

*/
r eturn Win DefWindowProc<handle, mess, parm1, parm2);

}

return OL;
}

Keep in mind that the virtual key code and the scan code are two
separate pieces of information. The scan code more or less relates to a
specific keyboard implementation. However, the virt ual key code is
completely under the control of OS/2 and the Presentation Mananger,
which means that it can map different keys into the virtual codes to
accommodate different situations, such as using foreign languages. To
see the difference between the virtual and scan codes, substitute this
window function in the foregoing program. This version displays the
scan and virtual codes for each key pressed.

/* window funct i on */
void far * pascal t ar wi ndow func(void far *hand l e,

{

vo i d far *P space;
POINTL cooras;
char ch, str[80J;
int i;

switch(mess) {

- unsigned short mess,
vo i d far *parm1,
void far *parm2)

case WM ERASEBACKGROUND:
I* By returning TRUE, the PM automat i cally erases

the old window each time the window is resized

*/

or moved. Without this, your program must
manually handle eras i ng the wi ndow when it changes
size or locat ion .

return(TRUEl;

case WM CHAR: /* Process keystrokes he r e. */
I* process only keypresses, not key releases */
if{{long) parm1 & KC_KEYUP) break;

p space = WinGetPS(handlel;

I* use overwr i te mode */
GpiSetBackMix(p space, BM_ OV ERPAINT);
coords.x ZOL;
coords.y = 20L;

I* extract the scan code * /
ch = (char) ((HIUSHORTCparm1) & OxFFOO) >> 8);
/* d i sp l ay the scan code */
sprintf(str, "scan code %3d", ch);
GpiCharSt ri ngAt(p space, (POIN TL far *) &coords,

CTong) strlen(str),
(char far •) str);

}

}

coords .x = 20L;
coords.y = L;

Some Presentation Manager Examples 309

I * extract virtual code •I
i = HIUSHORTCparm2>;
/*d isp lay the virtual code•/
sp rint f(st r, " vi r tual code Y.3d", i>;
GpiCharStringAt(p space, CPOINTL far *) &coords,

CTong) strlen(strl,
(char far *) strl;

WinReleasePS(p space>;
break;

default :
I* AL L messages not handled by the window t une ,

must be passed along to the PM for default
processing.

*I
return WinDefWindowProc(handle, mess, parm1, parm2l;

return OL;

A Better Approach to
Screen Output

Often the best time for your Presentation Manager-compatible pro
grams to output information to the screen is when a WM_PAINT
message is received. (Keep in mind that it is not technically wrong to
output information to the screen during the processing of other mes
sages, as was done in the previous two examples.) The reason for this
is that the Presentation Manager assumes that it is your program's job
to maintain and update the screen whenever all or part of the window
becomes invalid. A w indow is invalidated when it is uncovered, resized,
or moved. Put another way, when a w indow's size or position is
changed or a previously covered w indow is uncovered, a ll or part of the
information that was displayed in that window needs to be redrawn.
T his is the entire purpose of the WM- PAINT message. Output per
formed during the processing of another message is lost if the w indow
is moved or changed (unless, of course, the routine that processes the
WM_ PAINT message can also refresh this output).

To redraw the window each time a WM_PAINT message is
received the WM_ PAINT code must be capable of completely recon
structing the screen. To give you a taste of what this entails, the follow
ing program rewrites the one that reads a keystroke and displays the
key. In this version the code associated with the WM_CHAR m essage
simply loads the variable ch. It is the code associated with the WM_
PAINT message that actually outputs the character.

310 OS/2 Programming: An Introduction

I* A Second approach to displaying keystrokes on
the screen.

*I
#define INCL WIN
#define INC L-GPI

#include <os2,h>
#include <stddef.h> /* get defi nitio n of NULL •/

void far * pascal far window func(void fa r *, unsigned shor t,
vo1d far •, void far •>;

char class(] = "MyClass";
main()
{

}

void far •hand ab;
void far •hand-mq;
void far •hand=frame, far •hand_cl ient;
QMSG q_mess;

hand ab Wininitialize(NULL);

hand_mq WinCreateMsgQueue(hand_ab, 0);

i fC! Wi nRegisterClassChand ab,
(cha r far•)

I• anchor block •I
cl ass, /• class name */

exit(1);

hand frame

window func,
CS SIZEREDRAW,
0))

I* address of window fu nct ion •I
I* window style •I
I• no storage reserved •I

WinCreateStdWindow(HWND DESKTOP,
WS VISIBLE I FS SYSM~NU I
FS-SIZEBORDER 1-FS TITLEBAR I
FS-V ERTSCROL LI FS RORZSCROL L I
FS- MINMAX,
(char far •) class,
(char far •) "M y Window",
OL,
NULL,
0,
&hand_ c l ient); /* client handle •/

while(WinGetMsg(hand ab, &q mess, NULL, O, 0))
WinDispatchMsg(hand_ab, &q_mess> ;

WinOestroyWindow(hand_frame>;

Win De st r oyMsgQue ue(hand mq);
WinTerminate(hand_ ab); -

I* window function */
void far * pascal far window func(void fa r •ha ndle,

{

void far *P space;
POINTL coords;
static char ch=' \O';

- unsigned short mess,
void far *parm1,
void far •pa rm2)

Some Presentation Manager Examples 311

switch (mess> {
case WM PAI NT:

}

}

/*Refresh th e window each time the WM PAIN T message
is received.

*I
p_s pace = Wi nGetPSChandle);

I• u se overwrite mode •I
GpiSetBackMixCp_space, BM_OV ER PA I NT);

coo r ds.x 20L ;
coo r ds . y 20L ;

I• display the character •/
GpiCha rS tringAt(p space, CPOIN TL far •) &coords,

1 L,-
(cha r f ar •> &ch) ;

WinReleasePS(p space) ;

break;

case WM ER ASEB ACKG ROUND:
I• By r e t u r n i ng TRUE, t he PM automatically er a ses

t he old wi ndow eac h time the window is resized

•I

or moved . Without t his, your program must
manual l y handle e r asing the window when i t changes
size or Location.

r eturn(TRUE>;

case WM CHAR: /• Process keystrokes here. •I
I• p rocess on ly keypresses, no t key releases •/
i f ((Lo ng) parm 1 & KC_ KEY UP) bre ak;

if ((Long) pa rm 1 & KC CHAR> {

}

ch = (char) LOUSHORT (parm2l;
I• update t he wi ndow eac h ti me a key is pressed •I
Win UpdateWindow(hand le >;

break;

default :
I* ALL messages not hand l ed by the window func,

mu s t be pa ss e d a l o ng to t he PM for defau l t
processing.

•I
return Wi nCefWi ndowProc(handle, mess, parm1, parm2 l ;

return OL;

This approach to screen output is very common in Presentation
Manager-compatible programs. In this method all output is directed t o
in terna l buffers, wh ich are written to the screen w hen the WM_
PAINT message is received.

312 OS/2 Programming: An Introduction

A GRAPHICS EXAMPLE

As you should know, it is very difficult to perform graphics output by

using only the core API services. The creators of 05/2 left the task of

graphics display to the Presentation Manager. This section shows a

short example of graphics output.

The Current Position Approach
to Graphics

As discussed ea rlier in this chapter, the Presentation Man ager main

tains a pointer to the currently active screen location. The Presentation

Manager graphics system uses this current location to s treamline many

of it s graphics services, such as those that draw lines and boxes. To

understand how this works, fir st consider the m ore traditiona l ap

proach to the basic graphics functions.

In a traditional graphics system the function th at draws a line is

defin ed something like this:

drawline(startX, star tY, endX, endY)

Here the starting and ending points of the line are both specified explic

itly in the function parameters. In the traditional method all graphics

functions specify both th e beginning and ending points of the object to

be drawn (wh ere applica ble, of course). However, the Presentation

Manager u ses a fundame ntally different approach based on the current

position. In this method the ca ll to the line-drawing function specifies

only the endpoint of the line . The sta rt of the line is the current posi

tion . That is, the line-drawing service found in the Presentation Man

ager draws a line from the current position to the specified endpoint.

The same principle applies to the service that draws a box. You simply

call the box-drawing function w ith the coordinates of the corner oppo

site the cur rent position, and the box is drawn using the current posi

tion and the specified opposite corne r.

The reason that the Presentation Manager uses the current posi

tion approach is speed. Because each parame ter in a call takes time. to

push onto the stack, the fewer the parameters, the faster the call is

exec uted. The most effective graphics are those that can be displayed

very quickly. In many drawing situations the next graphics even t begins

where the last one left off, making the display of graphic information

Some Presentation Manager Examples 313

very fast. Of course the Presentation Manager contains a service that
allows you to set the current position explicitly should the need arise.

The screen coordinates for the graphics subsystem are the same as
for the text routines: The lower left corner is 0,0. The maximum x and
y values are determined by the size of the window and, ult imately, by
the resolution of the screen.

Drawing Lines and Boxes

The Presentation Manager supplies several graphics functions, but this
section explores only three of the most common: GpiSetPel, Gpiline,
and GpiBox. These services draw a point, line, and box, respectively.
Their prototypes are

long GpiSetPel(void far *p-space, POINTL far *loc);
long GpiLine(void far *p-space, POINTL far *loc);
long GpiBox(void far *p-space, long style, POINTL far *loc,

long horiz-round, long vert-round);

where p_space is the handle of the presentation space being written to.
All functions use the current foreground color to draw the object.

For GpiSetPel the structure pointed to by foe contains the coordi
nates of the pel that will be written. The current position is unchanged
by this service.

For Gpiline the struc ture pointed to by foe contains the endpoint of
the desired line. The start of the line is the current position. After the
call to Gpiline, the current position is set to the end of the line speci
fied by foe.

For GpiBox the structure pointed to by loe is the corner opposi te the
current position. A rectangle is drawn through these two corners. The
value of style determines whether the box is outlined, filled, or both.
The valid values, along with their macro names as defined by Microsoft
are shown here. The current position is unchanged by this service.

Macro Name

DRO_FILL
ORO_ OUTLINE
DRO_OUTLINEFILL

Value

IL
2L
3L

Meaning

Fill the box.
Outline the box.
Fill and outline the box.

Outlining and filling are done in the current drawing color.

314 05/2 Programming: An Introduction

If any of these functions is called using invalid coordinates, 0512

returns an error message.

Setting the Current Position

To set the current position explictly use GpiSetCurrentPosition, whose

prototype is

unsigned short GpiSetCurrentPosition(void far *p-space,
POINTL far *Ice);

Here p_space is the handle of the presentation space, and the structure

pointed to by foe contains the coordinates of the pel to make the current

position. If you specify an invalid coordinate, the service returns false.

A Short Graphics Demo Program

The following program demonstrates the graphics services just

discussed:

/* This program demonstrates some graphics services. •/

#define INCL WIN
#define INCL GPI

#include <os2.h>
#include <stddef.h> I• get definition of NULL */

void far * pascal far window func(void far *, unsigne d short,
void far •, void far • >;

char cl ass[J = " MyClass";

main()
{

void fa r •han d ab;
void far •hand-mq;
vo id fa r •hand=frame, far •h and_client;
QMSG q_mess;

hand ab WininitializeCNULL);

hand_mq WinCreateMsgQueue(hand_ab, 0);

if(!WinRegisterCLassChand ab, /*anchor bl ock•/

exi tC1>;

class, /* class name •I
window func, I* address of window function */
CS SIZEREDRAW, /* window style */
arr I• no storage reserved •I

}

hand fram e

Some Presentation Manager Examples 315

WinCreateStdWindow(HWND DESKTOP ,
WS VISIBLE I FS SYSMENU I
FS-SIZEBORDER 1-FS TITLEBAR
FS-MINMAX, -
Ccnar far •) class,
(c ha r far •) "My Window",
OL,
NULL,
0,
&hand_client>;

whi leCW inGetMsg Chand ab, &q mess, NULL, O, 0))
WinDispatchMsg(hand_ab, &q_mess>;

Wi nDes tro yW indo wC han d frame);

Wi nD estr o yMsgQueue (ha nd mq);
WinTerminate(hand_ab); -

I• wi ndow function •/
vo id far * pascal far window fun c (vo id far • hand l e ,

- unsigned short mess ,
void far •parm1,

{ void far *parm2>
vo i d far *P space;
POINTL cooros ;
char ch;

swit ch Cmess) {
case WM PAINT:

p_s pace = WinBeginPaintCh andle, NULL, NULL>;

GpiSetBackColorCp sp ace , CLR RED l ;
GpiSetB ackM i x(p space, BM_ OVERP AI NT);

/* set cu rr ent position */
c oor ds.x = OL;
c oo r ds.y = OL;
Gp iSe tCurrent PositionCp_sp ac e, (POINTL f ar •) &coo r dsl;

I• draw t wo Line s •/
co ords.x = 100L;
coor ds.y = 100 L;
GpiL ine(p space, CPOI NT L far*) &coords>;
coo r ds . x -;- 20 0L ;
coords.y = 100L;
GpiLin e (p s pace, CPOIN TL far *) &c oords l;

I• draw a fil l ed box •/
coo rd s.x = 300L;
coords .y = 200L ;
GpiBo xC p space, ·DRO FILL , CPOIN TL far •) &coords, OL, OL:

I• dr aw a po i nt •/
coords .x = 20L ;
coords .y = 30L;
GpiSetPeLCp_space, CPOIN TL f ar *) &c oor ds);

WinE ndPa in t Chandlel;
break ;

316 05/2 Programming: An Introduction

}

}

case WM ERASEBACKGROUND :
return< TRUE>;

default:
return WinDefWindowProc(handle, mess, parm1, parm2>;

return OL;

You might find it interesting to play with the various settings or
change the drawing color.

A QUICK INTRODUCTION
TO MENUS

One of the best features of the Presentation Manager from a pro
gramming point of view is the ease with which it integrates menus into
a program. Virtually all the work is done for you, including the auto
matic alignment of the menu items, the integration of the mouse and

keyboard into the selection process, and the cancel-selection process.
The final section of this chapter describes how you add menus to your
Pre sen ta ti on Mangager-compatible programs.

Before you can explore menus, you must understand the concepts
that underlie not only them but also other important Presentation

Manager tools. Toward this end this section begins with a discussion of
resources and the resource compiler.

Resources

One of the most important abstractions supported by the Presentation
Manager is the resource. The Presentation Manager is capable of manag
ing several resources, including menus, icons, dialog boxes, bit-mapped
graphics images, mouse pointers, and string tables. Although this book
deals only with menus, OSI 2 handles all resources in basically the same

way.
Essentially a resource is an object that contains information used by

the Presentation Manager. This object is more or less a "black box" as
far as your program is concerned because the object is added t o your
program after the program has been compiled (or assembled) and

nothing in it can be directly accessed by your program. Instead, the
Presentation Manager acts as a link between your program and the
resource.

- Some Presentation Manager Examples 317

The resources used by your program a re defined in a resource source
file (sometimes called a script file). By conve ntion all resource source
files use the .RC extension. The resource source fi le should have the
same file name as the program that uses it. Inside the resource source
file you define the resources your program needs. This file recognizes
various commands that are used to define resources. (Menu commands
will be discussed shortly.) This file is the n compiled into a .RES file by
the resource compiler. (The resource compiler supplied by Microsoft is
called RC.EXE.) The .RES file is added to you r program's .EXE file,
once again by using the resource compiler. The output of this final step
is an .EXE file that contains both your program and its resources.
Microsoft's resource compiler allows you to translate the resource
source fi le and add the ouput to your program's .EXE file in one step if
desired. Using this approach the compilation sequence is

1. Compile your program.

2. Link your program.

3. Use the resource compiler to add resources to you r program.

In practical terms you can use the following batch file to compile, link,
and add resources to your programs. It as sumes that your program, its
definition, and its resource files h ave the sa me file name and the con
ventional exte nsions.

CL -c -G2s w X1 . c
LlNK X1,, , os2, X1 . def;
RC X1

Defining Menus in the
Resource File

The keyword that signals a menu definition w ithin a resource file is
MENU. The MENU statement takes the general form

MENU menu-id {
SUBMENU "entryl", entryl-id {

MENUITEM "iteml", iteml_id
MENUITEM "item2", item2_id

318 OS/2 Programming: An Introduction

SUBMENU "entry2", entry2_id (
MENUITEM "iteml", iteml_id
MENUITEM "item2", item2_id

SUBMENU "entryN", entryN_id {
MENUITEM "iteml", iteml-id
MENUITEM "item2", item2_id

Here the uppercase terms are keywords and the lowercase words

are filled in by you.
The entire menu is started with the MENU command, and the

menu is identified by the value of menu_id, which must be an integer.

This value is its resource identifier, which will be needed by the Presenta

tion Manager. Each m enu option is specified by using the SUBMENU
keyword. The string specified between the quotes will be d isplayed on

the menu bar, which will appear just below the title bar in the window.

The number following each SUBMENU string is its identifier. Each

menu item under a submenu is given a label and associated w ith an

integer using the MENUITEM command. Although technically these

integers do not have to be unique, most of the time you w ill want them

to be. The numbers associated with the m enu items are sent to your

w indow function. To identify a unique selection, the numbers asso

ciated with the items must all be different.
For example, the following is an actual resource source f ile for a

simple, two-entry menu:

MENU 1 {

}

SUBMENU "Advance", 1 {
MENUI TE M "up", 1
MENU ITEM "down", 2

}

SUBMENU "Retreat", 2 {
MENUITEM "up", 3
MENUITEM "dow n", 4

}

Some Presentati on Manager Examples 319

In gene ra l the numbers associated with the various menu items should
be unique because they are used to identify the item select ed by the
user.

Adding the Menu to the Window

To display a menu resource in a window you must add it to the window
by using the WinCreateStdWindow service as follows:

I. Add the FS_ MENU (4L) to the style (second) parameter. This lets
0 5/2 know that you will be using a menu resource.

2. Pass the Presentation Manager the identifier of the menu by using
the resources parameter. For example, this sample call uses re
source number 1, wh ich implies menu number 1:

hand frame WinCreateStdW indow(HWND DESKTOP,
WS VIS IBLE I FS SYSM~N U I
FS-SIZEBORDER 1- FS TITLEBAR I
FS- VER TSCROLLJ FS RORZSC ROLL I
FS-MINMAX I FS MENU, /* includes a menu * /
<ciar tar *) cTass,
(char tar *) " My Window" ,
OL, /* resource modules */
NU LL ,
1, /* resou r ce iden tifier */
&hand client); /* client handle */

When the window is created, a menu bar will appear b eneath the ti tle
bar. In this example, the menu bar wil l contain the selections
"Advance" and "Retreat."

Keep one thing firmly in mind: A resource fi le ca n contain re
sources for several different windows. However, a ll the resources for a
specific window must use the same resource identifie r.

Receiving Menu Messages .
Each time you make a menu selection the Presentation Manager passes
to your program a WM_COMMAND message. The low-order word
of the first parameter contains the iden tifier associated with the item
select ed . For present purposes, you can ignore the o ther information
passed w ith the WM- COMMAND message .

320 OS/2 Programming: An Introduction

A Sample Menu

To see a menu in action create th is resource file:

MENU 1 {

)

SUBMEN U "Test", 1 {
MENUITE·M " Option 1", 1
MENUITEM "Option 2", 2

)

SUBMENU "Samp le " , 2 {
MENUITEM "Option 1" , 3
MENUITEM "Op tion 2" , 4

)

Next enter this program:

I* A me nu exa mp l e . K/

#def i ne INCL WIN
#define INCL-GPI

#incl ude <os2 . h>
#i n cl ude <stddef .h> / * get def i n it i on of NUL L */

void f ar * pascal far window func(vo id far *, unsig ned sho rt,
voT d f a r •, void fa r •);

char cla ss[]

main()
{

"MyC lass 11
;

void far •hand ab;
void far •hand-mq ;
void f ar •hand=frame , fa r • hand_ cl i ent;
QMSG q_mess;
hand ab Wininitialize(NU LL);

hand_mq WinCreateMsgQueue(hand_ab, Ol;

i f (!Wi nRe gisterCl as s(hand ab,
<cha r f ar •l

I• anchor block * /
class, I* class name •/

ex i tC1l;

hand fra me

window func,
CS SIZEREDRAW,
Oll

/* address of window function */
/* window style */
I* no s t orage reserved */

WinC rea teStdW indow(HWND DESKTOP,
WS VISIBLE I FS SYSMtNU I
FS- SIZEBORDER 1- FS TITLE BA R I
FS-VERTSCROLLI FS ~ORZSCROL L I
FS-M INMAX I FS MENU,
<cKar far *) cTass,
(char fa r *) "M y Windo w",
OL, I• reso ur ce mod ul es */
NULL,
1 I
&hand_cl i en tl; /• clien t hand le */

}

Some Presentation Manager Examples 321

whileCWinGetMsgChand ab, &q mess, NULL, O, Q))

WinDispatchMsgChand_ab, &q_mess);

WinDestroyWindow(h~nd_frame>;

WinDestroyMsgQueue(hand mq);
WinTerminate(hand ab); -

void far * pascal far window func(void far •handle,
- unsigned short mess,

void far *parm1,
void far •parm2)

{

vo id far *P space;
POINTL coords ;
static char ch=' \O' ;

switch(mess) {
case WM CREATE :

I* Perform any necessary initializations here. •I

break;

case WM COMMAND:
p_space = WinGetPS(handle>;

I• use overwrite mode •I
GpiSetBackMix(p space, BM OVERPAINT);
I* see what i tern- se Lected *t
switch(LOUSHORT(parm1)) {

}

case 1:
coor ds .x = 20L;
coords.y = 40L;
GpiCharStringAt(p space, (POINTL far *) &coords,

BL,
Ccha r far •) "test one");

break ;
case 2:

coords.x = 110L;
coords.y = 40L;
GpiCharStringAt(p space, (POINTL far *) &coords,

BL, -
(char far *) "test two") ;

break;
case 3:

coords . x = 20L;
coords . y = 40L;
GpiCharStringAt(p space, CPOINTL far *) &coords,

10L, -
(char far •) " sample one");

break ;
case 4:

coords.x = 110L;
coords.y = 40 L;
GpiCharStringAt(p space, CPOINTL far *) &coords,

10L, -
Cc h a r f a r *) " s amp l e t w o") ;

break;

WinReleasePS(p space);
break; -

322 OS/2 Programming: An Introduction

}

}

case WM ERASEBACKGROUND:
I* By returning TRUE, the PM automatically erases

the old window each time the window is resized
or moved. Without this, your program must
manually handle erasing the window when it changes
size or Location.

•I
return(TRUE);

default:
I• ALL messages not handled by the window func,

must be passed along to the PM for default
processi ~ng .

•I
return WinDefWindowProc(handle, mess, parm1, parm2) ;

retur n OL ;

As you can see when you try this program, each menu selection
produces a unique response from the program.

CONCLUSION

You have only scratched the surface of the Presentation Manager pro
gramming environment. As you can see, writing Presentation Man
ager-compatible applications is different from creating a traditional
program. In many ways it is harder. In the years to come, however,
there is little doubt that the graphic interface supported by the Presen
tation Manager will be pervasive, and whatever effort you expend in
learning it now will be returned to you several times in the future.

APPENDIXES

A
80286's MEMORY

MODELS

The 80286 supports six different memory models for which a program
can be compiled or assembled. A memory model is essen tia lly the con
ceptual view your prog ram has of memory. Each model treats the
memor y of the computer differently and gove rn s the size of the code,
the data, or both. The model used ha s a profound effect on your pro
gram's speed of execution and the way it accesses the system re sources,
especially m emory.

Th roughout this discussion keep one fact firmly in mind: The var
ious me mory models a re determined solely by the way you r program
uses the processor's segment registers . They are not differen t CPU
modes.

The six models are ca lled tiny, small, medium, compact, large, and
huge. Let's look at how they differ.

TINY MODEL

In a program that uses the tiny model all segmen t regis ters are set to
the same value and remain more or less fi xed throughout the pro
gram 's life tim e. All address ing is done by using the 16-bit offset. T his
mean s that the code, data, and s tack must all be within the sa m e 64K
segment. This method of compilation produces the smalle s t, fastest
code. The tiny model produces the fastest run times.

325

326 05/2 Programming: An Introduction

SMALL MODEL

In a program compiled for the small model all segment registers are set
to values that stay more or less fixed throughout the lifetime of the
program. All addressing is done by using the 16-bit offset. However, the
code segment is separate from the data, stack, and extra segments,
which are in their own segment. This means that the total size of a
program compiled this way is 128K split between code and data. The
addressing time is the same as for the tiny model, but the program can
be twice as big. Many of your programs will be of this model. The
small model produces run times as fast as those of the tiny model.

MEDIUM MODEL

The medium model is for large programs where the code exceeds the
one-segment restriction of the small model. Here the code can use
multiple segments and requires 32-bit pointers, but the code, data, and
extra segments are in their own segment and use 16-bit addresses.
This is good for large programs that use little data. Your programs will
run more slowly as far as function calls are concerned, but references
to data will be as fast as in the small model.

COMPACT MODEL

T he complement of the medium model is the compact model. In this
version program code is restricted to one segment but data can occupy
several segments. This means that all accesses to data require 32-bit
addresses but the code uses 16-bit addresses. This is good for programs
that require large amounts of data but little code. Such a program will
run as fast as the small model except when referencing data, w hich will
be slower.

LARGE MODEL

The large model allows both code and data to use multiple segments .
However, the largest single item of data, such as an array, is limited to
64K. Use this model when you have large code and data requirements.
It is slower than any of the preceding versions .

80286's Memory Models 327

HUGE MODEL

The huge model is the same as the large model w ith the exception that
individual data items may exceed 64K. This further degrades run time.

OVERRIDING A MEMORY
MODEL INC

During the foregoing discussion you may have been thinking how
unfortunate it is that even a single reference to data in another seg
ment would require you to use the compact rather than small model,
thus slowing the execution of the entire program even though only an
isolated part of it actually needs a 32-bit pointer. In general this sort of
situation can present itself in a variety of ways. For example, it is
necessary to use 32-bit addressing to access an API service routine.
The solution to this and other related problems is the segment override
type modifiers, wh ich are enhancements provided with most 80286-
based C compilers. They are

near far

These modifiers can be applied only to pointers or functions. When
they are applied to pointers, they affect the way data is accessed . When
applied to functions, they affect the way you call and return from the
function.

These modifiers follow the base type and precede the variable
name. For example, this declares a far pointer called f _ pointer:

char far •f_pointer;

Let's look at these modifiers now.

far

By far the most common model override is the far pointer. It is very
common to want to access some region of m emory that is (or may be)
outs ide the program's data segment, such as a data segment returned
by an API service . However, if the program is compiled for one of the

328 OS/2 Programming: An Introduction

large data models, all accesses to data - not just the one outside the
data segment- become very slow. The solution to this problem is
explici tly to declare far poin ters to the memory that is outside the cur
ren t data segment. In this way on ly references to objects actually far
away will incur the additional overhead.

The use of far as a function modifier allows a small model program
to call routines outside its code segment, such as APT services . In such
cases t he use of far ensures th at the proper calling a nd returning
seq uences are used.

near

A near pointer is a 16-bit offset that uses the value of the appropriate
segment to determine the actual memory location. The near modifier
forces C to treat the poin ter as a 16-bit offset to the segment contained
in the DS register. You use a near pointer when you have compiled a
program using either the medium, large, or huge memory model and
wish to reference data within the program's data segment .

Using near on a fun ction causes that function t o be trea ted as if it
were compi led using the small code model. When a fun ction is compiled
with either the t iny, small, or compact model, all calls to the function
place a 16-bit return address on the stack. If a functio n is compiled
w ith t he large code model, a 32-bit address is pushed onto the stack.
Therefore, in programs that are compiled for the large code model, a
high ly recursive function should be declared as near to conserve stack
space and speed execution time.

B
FUNCTION PROTOTYPES

In C a functio~ that returns a value other than int must be declared
prior to its use so that the compiler can generate the proper return
codes. In ANSI standard C you can take this idea one step further by
also declaring the number and types of the function's arguments. This
expanded definition is called a function prototype. Function prototypes are
not part of the original UNIX C but were added by the ANSI standard-

. ization committee. They enable C to provide stronger type checking,
somewhat similar to that provided by languages such as Pascal. Func
tion prototypes also provide a convenient means of documenting the
calling syntax of a function .

In a s trongly typed language the compiler issues error messages if
functions are called with arguments that cause illegal type conversions
or with a different number of arguments. Although C is designed to
be very forgiving, some type conversions are simply not allowed. For
example, it is an error to attempt to convert a pointer into a float.
Using function prototypes w ill catch and prevent this sort of error.

A function prototype takes the general form

type function- name(arg_typel, arg-type2, ... ,arg-typeN);

where type is the type of value returned by the function and arg_ type is
the type of each argument.

329

330 OS/2 Programming: An Introduction

For example, this program will produce an error message because
there is an attempt to call func() with a pointer instead of the float
required:

/* This program uses function prototypes to
enforce strong type checking in the calls
to tune().

*'

The program will not compil~ because of the
mismatch between the type of the arguments
specified in the function's prototype and
the type of arguments used to call the function.

float func(int, float); /* prototype •I

mainO
{

int x, *Yi

x = 10; y 10;
func<x, y); /* type mismatch */

}

float func(int x, floaty)
{

printf(";:(f", y/Ctloat)x);
}

Not only does the use of function prototypes h elp you trap bugs
before they occur, but also they help verify that your program is work
ing correctly by not allowing functions to be called with mismatched
arguments or an incorrect number of arguments . It is generally a good
idea to use prototyping in larger programs or in situations in which
several programmers are working on the same project.

CLASSIC VERSUS MODERN
PARAMETER DECLARATIONS

It is possible to declare parameters to a function in two different
ways: the traditional (sometimes called classic) or the modern. The
traditional method is used b y the earlier C compilers, while the mod
ern form is defined by the ANSI standard. Let's look at both.

In the traditional form only a function parameter's names are
placed between the parentheses following the function's name. Before
the function's opening curly brace, the para.meters are declared using a

Function Prototypes 331

syntax identical to the variable declaration. For example, this code
declares a function with two variables, a and b, of types integer and
real, respectively.

int f1Ca , b)
int a ;
float b;
{

Although there is nothing formally wrong with the traditional method,
the newer ANSI standard offers an alternative approach based on the
prototype syntax.

In the modern approach both the type and the name of the variable
are enclosed in parentheses and placed in the argument list that follows
the function's name. That is , the function parameter declaration takes
a similar form to the prototype declaration except that the name of the
parameter must be included. The modern declaration method takes the
general form

type function_name(type parml, type parm2, . .. , type parmN)
{

body of function

where type is the type of the parameter that follows and parm is the
name of the parameter.

For example, the function func() from the prototype example of the
previous section is written like this using the modern parameter decla
ration method:

float f1 (int a, float b)
{

There is a very fine technical difference between the ways the com
piler handles each form, but for most situations the difference is
academic .

c
A REVIEW OF C

This appendix aids the inexperienced C programmer by clarifying
aspects of the language. It is a reference guide and not a tutorial.

THE ORIGINS OF C

The C language was invented and first implemented by Dennis Ritchie
on a DEC PDP-11 using the UNIX operating system. C is the result of
a process that started with Martin Richards' developn;i.ent of BCPL,
which is still used primarily in Europe. BCPL prompted Ken Thompson
to invent a language called B, which led to the development of C.

For many years, the de facto standard for C was the one supplied
with the UNIX Version 5 operating system and described in The C Pro
gramming Language by Brian Kernighan and Dennis Ritchie (Englewood
Cliffs, N.].: Prentice-Hall, 1978). As the popularity of m icrocomputers
increased, a great number of C implementations were created. Most of
these implementations were highly compatible with each other on the
source-code level. However, because no standard existed, there were
some discrepancies.

To correct this situation, a committee established in the summer of
1983 began work on the creation of an ANSI standard that would
finally define the C language . As of this writing, the proposed standard
is almost complete and its adoption by ANSI is expected soon.

333

334 05/2 Programming: An Introduction

C AS A STRUCTURED
LANGUAGE

C is commo nly considered to be a s tructured language with some sim
ilarities to ALGOL and Pascal. Although the term block-structured language
does n o t strictly apply to C in an academic sense, C is inform ally part
of that language group. The distinguishing feature of a block-structured
lan guage is comparlmentalizafion of code and datn . This means the language
ca n separate and hide from the rest of the program all information and
instructions necessary to perform a specific task . Compartmentaliza
tion is generally achieved by subroutines w ith local variables, which are
temporary. This makes it possible to write subroutines so that the
events occ urring in them have no effect on other parts of the program.
Excessive use of global variables (variables known throughout the
en ti re program) may allow bugs to creep into a program by allowing
unwanted side effects. In C a ll subroutines are discrete functions.

Functions are the building blocks of C in w hich all program activity
occurs. They allow specific tasks in a program to be defin ed an d coded
separately. After debugging a function that uses only local var iables,
you can rely on the function to work properly in various situations
w ithout creating side effects in other part s of the program. All vari
ables d eclared in that particular function w ill be known only to that
function.

Using blocks of code also creates program structure in C. A block of
code is a logica lly connected group of program statements that can be
treated as a unit. It is created by placing lines of code between opening
and closing curly braces, as shown here:

ifCx<10) {

}

printf("lnvalid inpu t • retry");
done = O;

In this example, the two statements after the if (between curly braces)
are both executed if x is less than 10. These two statements and the
braces represen t a block of code. They are linked together: one o f the
s tatements cannot execute without the o ther also executing. In C every
statement can be either a single statement or a block of statemen ts.
T he u se of code blocks creates readable programs with logic that is
easy to follow.

A Review of C 335

C is a programmer's language. Unlike most h igh -level computer lan
guages, C imposes few restrictions on wh at you can do with it . By
using C a programmer can avoid using assembly code for all but the
most demanding situations. In fact one motive for the inventing of C
was to provide an alternative to assembly langu age programming.

Assembly language uses a symbolic representation of the actual
binary code that the computer directly executes. Each assembly lan
guage operation is a single operation for the computer to perform.
Although assembly language gives programmers the potential for
accomplishing tasks w ith maximum flexibility and efficiency, it is
notoriously difficult to work with when developing and debugging a
program. Furthermore, since assembly language is unstructured by its
nature, the final program tends to be "spaghetti code" - a tangle of
jumps, calls, and indexes . This makes assembly language programs dif
ficult to read, enhance, and maintain.

C was initially used for systems programming. A systems program is
part of a large class of programs that form a portion of the operating
system of the computer or its support utilities. For example, the follow
ing a re commonly called systems programs:

• Operating systems

• Interpreters

• Editors

• Assemblers

• Compilers

• Data base managers

As C grew in popular ity, many programmers began to use C to
program all tasks because of its portability a nd efficiency. Since there
are C compilers for virtually all computers, it is easy to compile and
r u n code w ritten for one m achine on another machine with few or no
changes. This portabili ty saves both time and money. C compilers also
tend to produce tight, fast object code -faster and smaller than most
BASIC compilers, for example .

Perhaps the real reason that C is u sed in all t ypes of programming
tasks is because programmers like it . C h as the speed of assembler a nd
the extensibility of FORTH, w ith few of the restrictions of Pascal. AC
programmer can create and m aintain a unique library of functions that

336 05/2 Programming: An Introduction

have been tailored to his or her own personality. Because C allows
indeed encourages -separate compilation, large projects are easy to
manage.

A REVIEW OF C

As defined by the proposed ANSI standard, the 32 keywords shown in
Table C-1, combined with the formal C syntax, form the C program
ming language.

In addition to these keywords, several compilers designed for use on
the 8086 family of processors or multilanguage programming envir
onments have added the following to allow greater control over the way
memory and other system resources are used:

- CS

cdecl
near

_ ds
far
pascal

_ es
huge

- SS

interrupt

All C keywords are in lowercase letters. Uppercase or lowercase
makes a difference in C; that is, else is a keyword, ELSE is not.

VARIABLES- TYPES
AND DECLARATION

Chas five built.,.in data types, as shown in Table C- 2. With the excep
tion of void, all these data types can be modified through the use of the
C type modifiers:

signed
unsigned
short
long

Variable names are strings of letters from 1 to 32 characters in
length. The ANSI standard states that at least six characters will be
significant. For clarity the underscore may also be used as part of the
variable name (for example, first-time). Remember that in C upper
case and lowercase are different-test and TEST are two different
variables.

A Review of C 337

Table C-1. List of Keywords

auto double int struct
break else long switch
case en um register typedef
char extern return union
con st float short unsigned
continue for signed void
default goto size of volatile
do if static while

Table C-2. Data Types and C Keyword Equivalents

Data Type C Keyword Equivalent

character char
integer
floating point
double floating point
value-less

int
float
double
void

All variables must be declared prior to use . The general form of the
declaration is

type variable-name;

For example, to declare x to be a float, y to be an integer, and ch t o be a
character, type

float x;
int y;
char ch;

In addition to the built-in types, you can create combinations of
built-in types by using struct and union. You can also create new
names for variable types by using typedef.

338 OS/2 Programming: An Introduction

A structure is a collection of variables grouped and referenced under
one name. The general form of a structure declaration is

struct struct_name {
element 1;
element 2;

element N;
struct- variable;

For example, the following structure has two elements: name, a char
acter array, and balance, a floating-point number:

struct client {
char name[80J;
float balance;

};

Use the dot operator to reference individual structure elements if
the structure is global or declared in the function referencing it. Use
the arrow operator in all other cases.

Two or more variables sharing the same memory define a union.
The general form for a union is

union union- name {
element 1;

element 2;

element N;
union_ variable;

The elements of a union overlie each other. For example, the following
declares a union t that looks like Figure C-1 in memory:

union tom {
char ch;
int x;

} t ; .

A Review of C 339

x

byte 1 byte 2

ch

figure C-1. The union t in memory

Reference the individual variables that comprise the union by using the

dot operator. Use the arrow operator with pointers to unions.

Another type of variable that can be created, called an enumeration, is

a list of objects or values (depending on how you interpret it). An enu

meration type is a specification of the list of objects that belong to the

enumeration. When you declare a variable to be of an enumeration

type, its values can be only those defined by the enumeration.

To create an enumeration, use the keyword enum. For example, the

following short program defines an enumeration of cities called cities,

and the variable c of type cities. Finally, the program assigns c the value

"Houston. "

enum cities {Houston, Austin, Amarillo};
enum cities c;

main()
{

c=Houston;
}

The general form of an enumeration type is

enum name { list of values };

The Storage-Class Type Modifiers

Use the type modifiers extern, auto, register, const, volatile, and static

to alter the way C creates storage for the variables that follow.

340 OS/2 Programming: An Introduction

If you place the extern modifier before a variable name, the com
piler knows that the variable has been declared elsewhere. The extern
modifier is most commonly used when two or more files share the
same global variables.

An auto variable is created on entry into a block and is destroyed on
exit. For example, all variables defined inside a function are auto by
default. Auto variables can be valuable in specialized or dedicated sys
tems where RAM is in short supply.

You can use the register modifier only on local integer or character
variables. This modifier causes the compiler to attempt to keep that
value in a register of the CPU instead of placing it in memory, which
makes all references to that variable extremely fast. For example, the
following function uses a register loop control:

f1 ()
{

reg;ster int t;

for(t=O;t<10000;++t) {

}

}

Variables of type const cannot be changed during your program's
execution. The compiler is free to place variables of this type into
ROM. For example, the following line

const ;nt a;

creates an integer called a that cannot be modified by your program,
but can be used in other types of expressions. A const variable receives
its value either from an explicit initialization or by some hardware
dependent means. The inclusion of const type variables aids in the devel
opment of applications for ROM.

The volatile modifier tells the compiler that a variable's value can be
changed in ways not explicitly specified by the program. For example, a
global variable's address can be passed to the clock routine of the oper
ating system and used to hold the real time of the system. In this situa
tion the contents of the variable are altered without any explicit

A Review of C 341

assignment statements in the program. To achieve higher performance
some C compilers autom atically optimize certain expressions by assum
ing that the contents of a variable are unch anged ins ide that expres
sion. The volatile modifier prevents this optimization in the rare
instances where this is not true.

You can add the static modifier to any of the previously mentioned
variables. The static modifier instructs the C compiler to keep a local
variable in existence during the lifetime of the program instead of creat
ing and destroying it . Remember that the values of local variables are
discarded when a function finishes and returns. By using static you can
maintain their values between function calls.

Addressing Type Modifiers

Several C compilers designed for the 8086 processor family h ave added
the following modifiers that ca n be applied to pointers so that you can
explicitly control, and override, the default addressing mode used to
compile your program:

_cs _ds _ es _ss

far near huge

Arrays

You can declare arrays on any of the previously mentioned data types.
For example, to declare an integer array x of 100 elements, write

int x[100J;

This creates an array that is 100 ele ments long; the first element is 0

and the las t is 99 . For example, the following loop loads the numbers 0

through 99 into array x:

for(t=O;t<100; t++) x [t]=t;

You declare multidimensional arrays by placing the additional dimen
sions inside additional brackets. For example, to declare a 10 x 20

integer array, you write

--

342 OS/2 Programming: An Introduction

int x[10J[20J;

OPERATORS

C has a rich set of operators that can be divided into the following
classes: arithmetic, relational and logical, bitwise, pointer, assignment, and
miscellaneous.

Arithmetic Operators

C has the seven arithmetic operator s shown in Table C-3.
The precedence of these operators is

Highest ++ - - - (unary minus)

*I%

Lowest + -

Operators on the same precedence level are evaluated left to right.

Relational and Logical Operators

Relational a nd logical operators are used to produce TRUE/FALSE
results and are often used together. In C any nonzero number evalu
ates TRUE; however, a C relational or logical expression produces 1 for
TRUE and 0 for FALSE. Table C- 4 shows the relational and logical
operators.

Th e precedence of these operators is

H ighest

Lowest

>>=<<=
== I=
&&
II
II

For e xample, the following expression evaluates TRUE:

(100 <200J && 10

A Review of C 343

Table C-3. Arithmetic Operators

Operator Action

Subtraction, unary minus
+ Addition

Multiplication
Division

% Modulo division
Decrement

++ Increment

Table C-4. Relational and Logical Operators

Operator

>
>=
<
<=

!=

Operator

&&

Bitwise Operators

Relational Operators

Meaning

Greater than
Greater than or equal
Less than
Less than or equal
Equal
Not equal

Logical Operators

Meaning

AND
OR
NOT

Unlike most other programming languages, C provides bitwise opera
tors that manipulate the actual bits inside a variable. T he bitwise opera
tors can be used only on integers or characters. They are shown in
Table C - 5.

344 OS/2 Programming: An Introduction

Table C-5. Bitwise Operators

Operator Meaning

& AND
OR

A XOR
One's complement

>> Righ t shift
<< Left shift

The truth tables for AND, OR, and XOR are

& 01
000
101

: 0 1
0 0 1
111

These rules are applied to each bit in a byte when the bitwise AND,

OR, and XOR operations are performed. For example,

0100 11 0 1
&0011 1 0 11

0000 100 1

0100 1 1 0 1
: 0011 1011

0 1 11 1 1 11

0100 1 1 0 1
A 0 0 1 1 1 0 1 1

0 111 0 11 0

In a program, you use the &, i, and A like any o ther operators, as shown

here:

main()
{

cha r x,y·,z;

x = 1; y = 2 ; z = 4;

x = x & y; /* x now equa l s zero • I

y = x z; /* y now equals 4 */

}

A Review of C 345

The one's complement operator(-) inverts all the bits in a byte. For
example, if the character variable ch has the bit pattern

0011 1001

then

places the bit pattern

1 1 0 0 0 1 1 0

into ch.
The right shift and left shift operators move all bits in a byte or a

word right or left by some specified number of bits . As bits are shifted,
Os are brought in. The number on the right side of the shift operator
specifies the number of positions to shift. The general forms of the
shift operators are

variable >> number of bit positions
variable<< number of bit positions

For example, given the bit pattern

0 0 1 1 1 1 0 1

a shift right yields

0001 1110

346 OS/2 Programming: An Introduction

while a single shift left produces

0 1 1 1 1 0 1 0

A shift right is effectively a division by 2 and a shift left is a multiplica

tion by 2 . The following code fragment first multiplies and then divides

the value in x by 2:

int x;

x=10;

x=x<<1;

x=x>>1;

Because of the way negative numbers are represented inside the

machine, you must be careful when you try to use a shift for multipli

cation or division. Moving a 1 into the most significant bit position

makes the computer think that the number is a negative number.

Note: You use the bitwise operators to modify the value of a variable.

They differ from the logical and relational operators, which produce a

TRUE or FALSE result.

The precedence of the bitwise operators is

Highest

Lowest

>> <<
&
/\

Pointer ()perators

Pointer operators are important in C: They not only allow strings and

arrays to be passed to functions, but also allow C functions to modify

their calling arguments. The two pointer operators are & and *.

(Unfortunately, these operators are the same as the bitwise AND and

multiply symbols, which are completely unrelated to them.)

A Review of C 347

The & operator returns the address of the variable it precedes. For
example, if the integer x is located at memory address 1000,

Y = &x;

places the value 1000 into y. The & can be read as "the address of." For
example, the previous statement could be read as "Place the address of
x into y."

The * operator uses the value of the variable it precedes as the
address of the information in memory. For example,

Y = &x;

*Y = 100;

places the value 100 into x. The * can be read as "at address." In this
example it could be read as, "Place the value 100 at address y." You can
also use the * operator on the right-hand side of an assignment. For
example,

Y = &x;

*Y = 100;

z = *y/10;

places the value of 10 into z.
These operators are called pointer operators because they are

designed to work on pointer variables. A pointer variable holds the
address of another variable; in essence, it "points" to that variable as
shown in Figure C-2.

Pointers of Type void

A pointer of type void is a generic pointer and can point to any type of
object. This implies that you can assign a pointer of any type to point
ers of type void (and vice versa) if you use the appropriate type casts.
To declare a void pointer you use a declaration similar to the following:

void *Pi

(

348 OS/2 Programming: An Introduction

p x

p=&x; 2000

•p= lO; 2000 10

x=•p+lO; 2000 20

Figure C-2. Pointer operations for character pointer p and integer x, with
x at memory location 2000

The void pointer is particularly useful when manipulating various types
of pointers with a single routine.

Assignment Operators

The assignment operator in C is the single equal sign. However, C
allows a convenient "shorthand" for assignments of the general type

variablel = variablel operator expression;

For example:

x = x+ 10;
Y = y/z;

Assignments of this type can be shortened to the general form

variablel operator = expression;

In the case of the two examples, they can be shortened to

x += 1 0;
y I= z;

A Review of C 349

Experienced C programmers often use the shorthand notation, so
you should become used to it.

The ? Operator

The ? operator is a ternary operator (that is, it takes three operands). It
is used to replace if statements of the general type

if expression! then x=expression2
else x= expression3

The general form of the ? operator is

variable = expression! ? expression2 : expression3;

If expression I is TRUE, the value of expression2 is assigned to variable; other
wise, variable is assigned the value of expression3. For example,

x = (y<10) ? 20 : 40;

assigns to x the value of 20 if y is less than 10 or the value of 40 if y is
not.

The ? operator exists because a C compiler can produce very effi
cient code for this statement-much fas ter than the equivalent if/else
statement.

Miscellaneous Operators

The • (dot) and - (arrow) operators reference individual elements of
structures and unions . Use the dot operator on the structure or union
itself. Use the arrow operator when only a pointer to a structure or a
union is available. For example, consider the following global structure:

struct date time {
char date[16J;
int time;

} t m;

To assign the value "3/12/88" to element date of structure tm, write

J

350 05/2 Programming: An Introduction

strcpy(tm.date, " 3/12/88");

You use the , (comma) operator mostly in the for statement. It
causes a sequence of oper ations to be performed. When you use it on
the right side of an assignment statem ent , the value of the entire
expression is the value of the last expression of the comma-separat ed
list. For example, consider the following:

y=10 ;

x = (y=y-5,25/y);

After execution, x has the value 5 because the original value of y (10) is
reduced by 5, and then 25 is divided by that value, yielding a result of 5.

Although sizeof is also considered a keyword , it is a compile-time
operator used to determine the size of a data type in bytes, including
user-defined str uctures and unions. For example,

in t x;

printf(" Y.d", sizeofCx>>;

prints the number 2 for ma ny com pilers.
Parenth eses are operators that increase the precedence of the oper

ations inside them. Square brackets perform array indexing.
A casf is a special operator that forces the con version of one data

type into another. T he general form is

(type) variable

For example, to use the integer count in a call to sqrt(), which is the
squa re root routine in C's standard library and requires a floating-point
parameter, a cast forces count to be treated as type float:

float y;
int co unt;

coun t = 10 ;

y = sq rt((float)count) ;

A Review of C 351

Figure C- 3 lists the precedence of all C operators . Note that all
operators-except th e unary operators and ?-associate from left to
rig ht. The u nary operators(*,&, - , and?) associate from right to left.

FUNCTIONS

A C program is a collection of one or more user-defined functions.
One of the functions must be main() because execution begins at th is
function . His torically, main() is the first function in a program; how
ever, it could go anywhere.

The general form of a C function is

type function_name(parameter list)
{

body of function

Highest () - .

Lowest,

! - ++ - - - (type) * & sizeof
*I%
+ -
<<>>
<<= >>=
== !=
&
A

&&
II
II

?:
= += - = ·= /= %= >>= <<= &= "= :=

Figure C-3. Precedence of C operators

352 05/2 Programming: An Introduction

If the function has no parameters, no parameter declaration is needed.
The type declaration is optional. If no explicit type declaration is pres
ent, the function defaults to an integer. All functions terminate and
return to the calling procedure automatically when the last brace is
encountered. You can force a return before that by using the return
statement.

All functions-except those declared as void - return a value. The
type of the return value must match the type declaration of the func
tion. If no explicit type declaration has been made, the return value is
defaulted to integer. If a return statement is part of the function, the
value of the function is the value in the return statement. If no return
is present, the fun ction returns an unknown value. For example,

f 1 ()
{

}

int x;

x = 100;
returnCx/10);

returns the value 10, whereas

f2 ()
{

int x;

x = 100 ;
x = x/10;

}

returns a random value because no explicit return state ment is
encountered.

If a function is going to return a value other than a n integer, its
type must reflect this fact . It is a lso necessary to declare the function
prior to any reference to it by another piece of code . This can best be
accomplished by making a function declaration in the global definition
area of the program. The following example shows how the function
fn() is declared to return a floating-point value:

float fnO;

main()
{

i

printfC"Xf", fnC>>;

)

float fn()
{

return 12.23;
}

A Review o f C 353

Because all functions, except those declared as void, have values,
they can be used in any arithmetic statement. For example, beginning C
programmers tend to write code like this:

x = sqrt(y);

z = sinCx>;

whereas a more experienced programmer would write:

z = sinCsqrtCy>>;

Remember that the program must be executed to determine the
value of a func tion. This means that the following code reads key
strokes from the keyboard until a U is pressed:

whileCCch=getcheC>>! ='u' > ;

This code works because getche() must be executed to determine its
value, which is the character typed at the keyboard.

The Scope and Lifetime of Variables

C has two general classes of variables: global and local. A global vari
able is available for use by all functions in the program, while a local
variable is known and used only by the function in which it was
declared. In some C literature global variables are called external variables
and local variables are called dynamic or automatic variables. This appendix
uses the terms global and local because they are more commonplace.

A glo bal variable must be declared outside all functions, including
the main() function. Global variables are usually placed at the top of

l

354 05/2 Programming: An Introduction

the file before main(), because this makes the program easier to read
and because a variable must be declared before it is used. A local vari
able is declared inside a function after the function's opening brace. For
example, the following program declares one global variable, x, and two
local variables, x and y:

int x;

main()
{

}

int y;

y = get value();
x = 1 oo;
printf("%d %d", x, x*y);

f 1 ()
{

}

int x;

scanf("%d", &x>;
return x;

This program multiplies the number entered from the keyboard by
100. Note that the local variable x in fl() has no relationship to the
global variable x, because local variables that have the same name as
global variables always take precedence over the global ones.

Global variables exist during the entire program. Local variables are
created when the function is en tered and are destroyed when the func
tion is exited. This means that local variables do not keep their values
between function calls. However, you can use the static modifier to
preserve values between calls.

Th e formal parameters to a function are also local variables, and,
except for receiving the value of the calling arguments, they behave and
can be used like any other local variable.

The main() Function

All C programs must have a main() function. When execution begins,
main() is the first function called. You must not have more than one
function called main(). When main() terminates, the program is over
and control passes back to the operating system.

A Review of C 355

The only parameters that main() is allowed to have are argc and
argv. The variable argc holds the number of command line arguments.
The variable argv holds a character pointer to those arguments. Com

mand line arguments are the information that you type in after the pro
gram name when you execute a program. For example, when you com
pile a C program, you type something like

CC MYPROG.C

where MYPROG.C is the name of the program you wish to compile.
The value of argc is always at least 1, because C considers the pro

gram name to be the first argument. The variable argv must be
declared as an array of character pointers. This is shown in the follow
ing short program, which prints your name on the screen.

main(argc, argv)
int argc;
char *argv[J;
{

}

if(argc<2)
printf("enter your name on the command Line.\n");

else
printf("hello %s\n",argv[1J);

Notice that argv is declared as a character pointer array of unknown
size. The C compiler automatically determines the size of the array
necessary to handle all the command line arguments.

Command line arguments give your programs a professional look
and feel, and allow you to place them in a batch file for automatic use.

STATEMENT SUMMARY

This section is a brief synopsis of the keywords in C.

auto

The auto keyword creates temporary variables upon entry into a block
and destroys them upon exit. For example, in

356 OS/2 Programming: An Introduction

main()
{

}

for(;;) {
if(getche()=='a ') {

auto int t;

}
}

for(t=O; t<'a'; t++)
printf("%d ", t);

the variable t is created only if you press A. Outside the if block, t is
completely unknown and any reference to it generates a compile-time
syntax error.

break

You use the break keyword to exit from a do, for, or while loop,
bypassing the normal loop condition. You also use it to exit from a
switch statement.

The follow ing is an example of break in a loop:

whi le(x<100) {

}

x =get new xO;
if(keystroke<>> break; /* key hit on

keyboard */
p r oc ess(x);

In this example, if a key is pressed, the loop terminates no matter what
the value of x is.

A break always terminates the innermost for, do, while, or switch
statement, regardless of the way they are nested. In a switch state
ment, break effectively keeps program execution from "falling through"
to the next case. (Refer to the discussion of switch for details.)

case

Refer to the discussion of switch.

cdecl

The cdecl keyword is not part of the ANSI standard. It forces C to
compile a function so that its parameter passing conforms w ith the

A Review of C 357

standard C calling convention. You use cdecl only when compiling an
entire fil e while using the Pascal option and when you want a specific
function to be compatible with C.

con st

The const modifier tells the compiler that the following variable cannot
be modified.

char

The char data type declares character variables. For example, to declare
ch to be character type, wri te

char ch;

continue

You use the continue keyword to bypass portions of code in a loop and
force the conditional test to be performed. For example, the following
while loop simply reads characters from the keyboard until S is
pressed:

while(ch =getche()) {

}

if(ch!='s') continue; /* read another char */
process<ch);

The call to process() will not occur until ch contains the character 5.

default

You use the default keyword in the switch statement to signal a default
block of code to be executed if no matches are found in the switch. (See
the discussion of switch.)

do

The do loop is one of three loop constructs available in C. The general
form of the do loop is

1

358 05/2 Programming: An Introduction

do (
statement block

} while(condition);

If only one statement is in the statement block, the braces are not
necessary, but they do add clarity to the statement.

The do loop is the only loop in C that always has at least one itera
tion, because the condition is tested at the bottom of the loop.

The do loop is commonly used to read disk files. The following code
reads a file until an EOF is encountered:

do {
ch=getc(fp>;
store(ch>;

} whileC!feof(fp>>;

double

The double data -type specifier declares double-precision floating-point
variables. To declare d to be of type double, write

double d;

else

See the discussion of if.

en um

The enum type specifier creates enumeration types. An enumeration is
simply a list of objects, and an enumeration type specifies what that list
of objects is. An enumeration type va riable can only be assigned values
that are part of the enumeration list. For example, the following code
declares an enumeration called color, declares a variable of that type
called c, and performs an assignment and a condition test:

enum color {red, green, yellow};
enum colo r c;

main()
{

A Review of C 359

c=red;
if(c==red) printf("is red\n");

}

extern

The extern data-type modifier tells the compiler that a variable is
declared elsewhere in the program. This modifier is often used in con
junction with separately compiled files that share the same global data
and are linked together. In essence extern n otifies the compiler of a
variable without redeclaring it.

For example, if first were declared in another file as an integer, in
subsequent files you would use the following declaration:

extern int first ;

float

The float data-type specifier declares floating-point variables. To
declare f to be of type float, write

float f ;

for

The for loop allows automatic initialization and incrementing of a coun
ter variable. The general form is

for(initialization; condition; increment) {
statement block

If the statement block is only one statement, the braces are not necessary.
Although the for allows a number of variations, generally the initial

ization is used to set a counter variable to its starting value . The condition
is generally a relational statement that checks the counter variable
against a termination value, and increment increments (or decrements)
the counter value.

The following code prints the message "hello" ten times:

360 05/2 Programming: An Introduction

forCt=O; t<10; t++) printf("hello\n");

The next example waits for a keystroke after printing "hello":

for Ct=O; t<10; t++) {
printfC"hel lo\n");
getcheO;

)

goto

The goto keyword causes program execution to jump to the label speci
fied in the goto statement. The general form of goto is

goto label;

label:

All labels must end in a colon and must not conflict with keywords
or function names. Furthermore, a goto can branch only within the
current function, not from one function to another.

The following example prints the message "right," but not the mes
sage "wrong":

goto lab1;
pri ntf ("wrong");

l ab1 :
printf("right");

if

The general form of the if statement is

if(condition) {
statement block 1

else {
statement block 2

i

A Review of C 361

If single statements are used, the braces are not necessary. The else is
optional.

The condition can be any expression. If that expression evaluates to
any value other than 0, statement block 1 executes; otherwise, statement
block 2 executes.

The following code fragment can be used for keyboard input and to
look for a q, which signifies "quit."

ch=getche<>;
if(ch== ' q') {

}

printf("program terminated");
e _xi t (0) ;

else proceed() ;

int

The int type specifier declares integer variables. For example, to
declare count as an integer, write

int count;

interrupt

The interrupt type specifier is not part of the ANSI standard. It
declares functions that are used as interrupt service routines.

long

The long data-type modifier declares double-length integer variables.
For example, to declare count as a long integer, write

Long int count;

pascal

The pascal keyword is n ot defined by the ANSI standard. It forces C to
compile a function so that its parameter-passing convention is compat
ible with Pascal rather than C.

362 05/2 Programming: An Introduction

register

The register declaration modifier forces an integer or character to be
stored in a register of the CPU instead of being placed in memory. It
can be used only on local variables. To declare i as a register integer,
write

register int i;

return

The return keyword forces a return from a function and can be used to
transfer a value back to the calling routine.

For example, the following function returns the product of its two
integer arguments:

mul (int a, int b>
{

return(a*b);
}

Remember that as soon as a return is encountered, the function
returns and skips any other code in the function .

size of

The sizeof keyword is a compile- time operator that returns the length
of the variable it precedes. For example, the following prints " 2" on
most computers:

printf("%d", sizeof(int));

The principal use of sizeof is in generating portable code when that
code depends on the size of the C built-in data types.

signed

The signed type modifier produces a signed data type.

,

A Review of C 363

short

The short data-type modifier declares 1-byte integers. For example, to
declare sh as a short integer, write

short int sh;

static

The static data-type modifier instructs the compiler to create perma
nent storage for the local variable that it precedes. This enables the
specified variable to maintain its value between function calls . For
example, to declare last_ time as a static integer, write

static in t l as t _time;

struct

The struct keyword creates complex or conglomerate variables (called
structures) that a re made up of one or more elements of the seven basic
data types. The general form of a structure is

struct struct_ name {
type elementl;
type element2;

type elementn;
structure_ variable- name;

You reference the individual elements by using the dot or arrow
operator.

switch

The switch st atement is Cs multiway branch statement . It is used to
route execution one of several different ways. The general form o f t he
st atement is

364 05/2 Programming: An Introduction

switch(variable) {
case (constantl): statement set 1;

break;
case (constant2): statement set 2;

break;

case (constant n): statement set N;
break;

default: default statements;

The length of each statement set can be from one to several statements.
The default portion is optional.

The switch works by checking the variable against all the constants.
As soon as a match is found, that set of statements is executed. If the
break statement is omitted, then execution continues until the end of
the switch. Think of case as a label. Execution continues until a break
statement is found, or the switch ends.

The following example can be used to process a menu selection:

ch = getcheO;

switch (ch) {

}

case 'e': enter();
break;

case 'L': List();
break;

case's': sort();
break;

case 'q': exitCO>;
default: printf("unknown comm and\n");

printf("try again\n");

typedef

The typedef keyword creates a new name for an existing data type. The
data type can be either one of the built-in types or a structure or union
name. The general form of typedef is

typedef type-specifier new_name;

A Review of C 365

For example, to use the word balance in place of float, write

typedef float balance;

union

The union keyword assigns two or more variables to the same memory
location. The form of the definition and the way an element is refer
enced are the same as for struct. The general form is

union union_name {
type elementl;
type element2;

type elementN;
union variable-name;

unsigned

The unsigned data-type modifier tells the compiler to eliminate the
sign bit of an integer and to use all bits for arithmetic. This doubles the
size of the largest integer but restricts it to positive numbers. For
example, to declare big to be an unsigned integer, write

unsigned int big;

void

The void type specifi er is primarily used explicitly to declare functions
that return no meaningful value. It is also used to create void pointers
(pointers to void), which are generic pointers capable of pointing to any
type of object.

volatile

The volatile modifier tells the compiler that a variable may have its
contents altered in ways not explicitly defined by the program. T hese

366 05/2 Programming: An Introduc tion

may include var iables that are changed by hardware, such as real- time

clocks, interrupts, or other inputs.

while

The while loop has the genera l form

while(condition) {
statement block

If a single statement is the object of the while, the braces can be

omitted.
The while tests its condition at the top of the loop. If the condition is

FALSE to begin with, the loop will not execute at all. The condition can

be any expression .
The following example of a while loop reads 100 characters from a

disk file and stores them in a character array:

t = O;

wh ile(t <100) {
s[t)=getc(fp);
t++;

}

THE C PREPROCESSOR

C includes several preprocessor commands that give instructions to the

compiler. These are examined here.

#define

The #define preprocessor command performs macro substitutions of

one piece of text for another throughout the file in which it is used.

The general form of the directive is

#define name string

Notice that no semicolon appears in this statement.

A Review of C 367

For example, if you wish to use TRUE for value 1 and FALSE for
value 0, declare the following two macro #defines:

#define TRUE 1
#define FALSE o

This ca uses the compiler to substitute 1 or 0 each time TRUE or
FALSE is encounte red.

#error

The #error preprocessor directive forces the compiler to stop compila
tion when it is encountered. It is used primarily for debugging. Its
general form is

#error message

When #error is encountered, C displays the message and the line
number.

#include

The #include preprocessor directive instructs the compiler to read and
compile another source file. The source fil e to be read in must be
enclosed between double quotation marks or angle brackets. For exam
ple, the following code instructs the C compiler to read and compile the
header for the disk-file library routines:

#include "stdio.h"

#if, #ifdef, #ifndef, #else,
#elif, #endif

These preprocessor directives selectively compile various portions of a
program. They are most useful to commercial software houses that
provide and maintain many customized versions of one program. The
general idea is that if the expression after an #if, #ifdef, or #ifndef is
TRUE, the code between one of the preceding directives and an #endif
is compiled; otherwise it is skipped. The #endif directive marks the end

368 05/2 Programming: An Introduction

of an #if block. The #else can be used with any of the above in a
manner similar to the else in the C if statement.

The general form of #if is

#if constant expression

If the constant expression is TRUE, the block of code is compiled.
The general form of #ifdef is

#ifdef name

If the name has been defined in a #define statement, the block of code
following the statement is compiled.

The general form of #ifndef is

#ifndef name

If the name is currently undefined by a #define statement, the block of
code is compiled.

For example, here is the way some of the preprocessor directives
work together:

#define ted 10

main ()
{

#ifdef ted
pri ntf ("Hi Ted\n") ;

llendif
printfC"bye bye\n");

llif 10<9
printfC "Hi George\n");

llendif
}

This code prints "Hi Ted" and "bye bye" on the screen, but not "Hi
George."

The #elif directive creates an if/else/if statement. Its general form is

#elif constant-expression

The #elif can be used with the #if, but not the #ifdef or #ifndef
directives.

'1'

A Review of C 369

THE C STANDARD LIBRARY

Unlike most other languages, C does not have built-in functions to
perform disk 1/0, console 110, and a number of other useful proce
dures. The way these things are accomplished in C is by using a set of
predefined library functions supplied with the compiler. This library is
usually called the "C Standard Library." Your program can use library
functions at your discretion. The compiler automatically links the func
tions during the link process.

The C language contains a large number of library functions and
these are fully described in your C user manual. Also, C: The Complete
Reference, by Herbert Schildt (Osborne/McGraw-Hill, 1987) discusses
the library functions in considerable detail.

AT®

Color/Graphics
Adapter™

CP/M®

DEC™ PDP-11"'

IBM®

IBM Monochrome
Adapter™

Intel®

Microsoft®

OS/2™

PCjr'"'

PS/2®

Turbo Pascal®

UNIX®

TRADEMARKS

International Business Machines Corporation

International Business Machines Corporation

Digital Research, Inc.

Digital Equipment Corporation

International Business Machines Corporation

International Business Machines Corporation

Intel Corporation

Microsoft Corporation

International Business Machines Corporation

International Business Machines Corporation

International Business Machines Corporation

Borland International, Inc.

AT&T

A
action parameter, 131-132

adapter variable, 64 - 66

addit() function, 250, 255, 257

anchor _ block parameter, 280,

281, 285

ANSI standard
declaring parameters in,

330-331

defining C language in, 333,

336, 337

function prototypes in,
329 - 330

Pascal keywords and, 361

APIENTRY, 33

Application Program Interface
(API)

call-based interfacing, 25 -27,

34-37

data types, 31

device monitor services,
213-245

dynamic link libraries,
247-269

INDEX

API (continued)

file I/O services, 129-153

interprocess communication
services, 203-211

keyboard (KBD) services,
79-99

mouse services, 101-127

multitasking services,
155-186

parameters, 26, 31- 33

Presentation Manager
services and, 273

routines, 26

serialization services,
187 -203

service description
conventions, 41 - 42

list of categories of services,
37-39

list of family services, 40-41

services, keyboard
subsystem, 38

services, mouse subsystem, 39

373

374 OS/2 Programming: An Introduction

API (continued)
services, OS/2 kernel, 37 -38
services, video subsystem, 39

argc variable, 355
args parameter, 159, 174
argv variable, 355
Arrays, declaring, 341- 342
ASCII

as cooked mode, 83-84
keyboard codes and, 79 - 82,

88-91
ASCIIZ string, 27
Assembly language

attr

compared to C language, 335
example of, 27-30

parameter, 132, 148
variable, 72 - 73

At tribute byt es, 49-50
auto

keyword, 355-356
storage-class type modifier,

339, 340
AX register, 27

B
_ beginthread(), 174-177
BIND utility, 258
BM_QVERPAINT macro, 300
break keyword, 356
buf parameter, 135

length, 149
size, 219

Buffer
for device monitor, 219 - 220
lengths, 138, 139
output, 133 -134

Buffer (contin ued)

c

used with device monitor,
214-215

See also Video buffer

C: The Complete Reference (Schildt),
369

C compiler, 5.10, 41
for C program, 30
future, 51, 156
header files, 35, 52
pascal and, 32

C language
compared to assembly

language, 335
func tions, 351-355
keywords, 337, 355 -366
modifying data types in,

336-342
operators, 342 -351
origins of, 333
in OS/2 development, 33
preprocessor commands,

366-368
standard library, 36-37, 276,

369
structure, 334-336
used in system s programs,

335
variables, 336- 342

C program
calling formats, pascal versus,

32-33
data types, 31
example of, 30-31

C program and API parameters,
31-33

i

C Programming Language, The
(Kernighan and Ritchie), 333

Call format, 26-27
CALL instruction, 26
Call-by-reference parameters,

26-27

Call-by-value parameters, 26
case keyword, 356, 363-364
cb

field, 168

variable, 64-66
cbMemory variable, 64-66
cchln variable, 98-99
cdecl keyword, 356-357
cEnd variable, 72-73
ch parameter, 220
char data type, 357

char far *, 35

Characters
codes for, 79-80, 82, 84-85,

86, 91-92

reading, from screen, 66-69
translation table for, 82

chChar field, 84

Child
as Presentation Manager

window, 279, 282
program, running, 157 -161

program, starting and
stopping, 169-170

program, terminating,
161-164

chTurnAround character, 94-95
classname parameter, 281, 282
client_style parameter, 283
close() function, 129
CODE command, 253-254

codeResu.lt field, 159

Index 375

Codes
blocks of, 334-335
constraints of, 33 - 34

keyboard character, 79-80,
82, 84-85, 86, 91 - 92

keyboard release, 80, 82
keyboard scan, 79 - 80, 81, 82,

84 - 86, 88-92

virtual key, 304-305,
308-309

codeTerminate field, 159
col

field, 62, 108

parameter, 221
value, 106

color
field, 62

parameter, 299
col Scale field, 113

Communication, interprocess.
See Interprocess

communication
CONFIG.SYS file

with dynamic link library,
251

for mouse, 102-103
const storage-class type modifier,

339, 340, 357

continue keyword, 357
count parameter, 135, 138, 149
CS_SJZEREDRAW macro, 282
Cursor

changing size and shape of,
71, 72 -74

positioning, 57-58
variables, 72-73

ex variable, 72-73

cxCELL fie ld, 72

376 OS/2 Programming: An Introduction

cyCELL field, 72

D
.DEF file extension, 33, 249

.DLL file extension, 29 - 30, 256

DATA command, 254

data parameter, 222

Data types
in C language, 336-342

reading and writing, 143-144

specifier, 358

default keyword, 357

deltax value, 124

deltay value, 124

descendants parameter, 162,

163 -164, 169-170 , 181

DESCRIPTION command, 255

Device monitor

buffers for, 219 -220

determining session identifier

for, 217-218

efficiency of, 222 - 223

key translations with,

238 -241

for keyboard, 223 - 225

keyboard macro program

with, 234 - 238

keyboard packet, 220-221

list of services, 214

for mouse, 241-245

mou se packet, 221-222

opening and registering,
216-217

packets, 220 - 222

pop-up application skeleton

with, 225-229

pop-up calculator with,
229-234

printer packet, 222

Device monitor (continued)

theory of operat ion, 214 - 216

Device monitors, 213 - 245

pop-up programs with,
213-214

Devices
reading and writing to,

144 -146

standard, 146-147

display variable, 64-66

distance parameter, 140, 142

DLL.DLL file extension, 256, 263

dllwrite() function, 263

do loop, 356, 357-358

Dos service, 291

DosAJlocShrSeg service, 203- 206

DosBeep service, 27-30, 31, 41

DOSCALLS.LIB file, 28-29, 175,

251

DosChgDir service, 152 -153

DosChgFilePtr service, 139-143

DosC!ose service, 129, 133-134

examples, 135-138

DosC!oseSem service, 190, 195

DosCreateSem service, 190,

193-195

DosCreateThread service,
172-178

DosCWait service, 162-163

DosDupHandle service, 209 - 211

DosEnterCritSec service, 199- 2 03

DosExecPgm service, 157 -161

DosExit service, 27-30, 31, 173,

176

DosExitCritSec service, 199- 202

DosExitLis t service, 165 -167

DosFindFirst service, 147 -150

DosFindNext service, 147-150

DosFreeModule service, 263

DosGetlnfoSeg service, 218
DosGetProcAddr service,

262-263

DosGetPrty service, 181-184
DosGetShrSeg service, 204-206
DosKillProcess service, 163 -164
DosLoadModule service, 262-263
DosMakePipe service, 207
DosMonClose service, 222
DosMonOpen service, 216-217
DosMonRead service, 219-220,

224, 229
DosMonReg service, 216-217, 218
DosMonWrite service, 220, 224,

229
DosOpen service, 129, 131-134

examples, 135-138
reading and writing to

devices with, 144-146
DosOpenSem service, 190, 194
DosQCurDir service, 152-153
DosQUFinfo service, 150-152
DosRead service, 138-139

buffer lengths for, 139
to read data types, 143-144
used by pipes, 206

DosResumeThread service,
185 -186

DOSSCASS.LIB file, 290
DOSSEG command, 29
DosSelectSession service, 169-170
DosSemClear service, 191, 196
DosSemRequest service, 196
DosSemSet service, 190
DosSemWait service, 190-191
DosSetPrty service, 181-184
DosSleep service, 75-76, 160, 180
DosStartSession service, 157-158,

167-169

Index 377

DosStopSession service, 169-170
DosSuspendThread service,

185 -186

DosWrite service, 53, 129, 135
buffer lengths for, 138
examples, 135 -138
to write data types, 143 -144
used by pipes, 206

drive parameter, 150, 152
OS register, 34
Dynamic link libraries, 247-269

.DEF used to create, 33
batch files for, 253
commands for, 253-258
creating, 249-253
definition files for, 252, 253
example, 250-252, 258-261

Dynamic linking
accessing functions of, 252 ,
advantages, 248
at run time, 261-268
described, 247-248
extension, 29-30
file support, 249
function declarations in, 250
implications, 268-269
list of run-time services, 261

Dynlink. See Dynamic linking
Dynlink libraries.

See Dynamic link libraries

E
.EXE file extension, 29-30, 317
_end thread() function, 176
else statement, 358, 360-361
enum keyword, 339, 358-359
Enumeration, 339
env parameter, 159

378 05/2 Programming: An lntroduction

Errors
checking in multitasking, 167

in DosStartSession call, 169

return information for,
27, 29

event parameter, 221-222

exclusive parameter, 193

exec_mode parameter, 158

exfunc() function, 166-167

exfunc parameter, 165

Exit functions, 165

EXPORTS
command, 255

statement, 251, 289

extern storage-class type
modifier, 339, 340, 359

F
failbuf parameter, 158

_size, 158, 262

Family API (FAPI), 40, 41

FAR

far

call address parameters and,

31-32

call instruction, 26

function, 250, 252

keyword, 31, 32

parameter, 204, 327-328

fbStatus field, 84-85, 86-87

fbType field, 62

FDATE structure, 149

fhandle parameter, 131, 134, 135,

138, 140

File handles
built-in, 146-147

releasing, 134-135

File 1/0
accessing disk system

information in, 150-152

appending, 142-143

buffer output, 133-135

displaying directory of,
147-150

Dos Close service in, 129,

133-134

DosOpen service in, 129,

131-134

DosRead service in, 138-139

DosWrite service in, 129, 135

error checking, 136-137

examining and changing
directory in, 152-153

handles, 131

list of services, 130

mode values, 133-134

pointers, 131

random access to, 139-141

reading and writing other
data types in, 143-144

reading and writing to a
device in, 144-146

share attributes in, 133

standard devices associated
with, 146-147

subsystem services, 129-153

FILEFINDBUG structure,
148-150

first parameter, 284

float data -type specifier, 359

Fonts, type and size of, 71-72,

73-74

for
loop, 356, 359-360

statement, 350

fs field, 107-108
FS_MENU structure, 319
FSALLOCATE structure, 151-152
fslnterim field, 95
fsMask variable, 94, 96
fsState field, 85, 87-88, 95, 96
FTIME structure, 149
func parameter, 172, 174, 263

_addr, 262
_name, 262

Functions

G

as C building blocks, 334
form of, 351-353
library, 369
mouse initialization, 106-107
prototypes of, 329-331
segment override modifiers

for, 327

get_menu_ select(), 121-124
getch() function, 31, 178
getche() function, 353
gets() function, 303
GINFOSEG structure, 218
global_seg parameter, 218
goto keyword, 360
GpiBox service, 313-314
GpiCharStringAt service,

295-298
GpiLine service, 313 -314
GpiSetBackColor service,

298-302
GpiSetColor service, 298-302
GpiSetCurrentPosition service,

314
GpiSetMix service, 300 -302
GpiSetPel service, 313- 314

Index 379

Graphics

H

drawing lines and boxes in,
313- 314

example, 314-315
position approach to, 312-313
setting current position in,

314

handle parameter, 285, 295
_ msgQ, 285
_window, 285

Header files
#ifdef statements, 35 -36
C compiler, 35, 52
FSALLOCATE and, 151-152
INCL_SUB in, 52
multithread, 174-175
OS2.H, 31, 32
PMWIN.H, 282
type names defined in, 42

HEAPSIZE command , 256
hres field, 62
HWND_ DESKTOP macro, 279,

282

I
if statement, 360-361
IMPLIB utility program, 249, 252
IMPORTS command, 252,

256-257
inbuf parameter, 217, 219
INCL_BASE symbol, 36
INCL_ DQS symbol, 36
INCL_OQSERRORS symbol, 36
INCL_ SUB symbol, 36, 52
INCL_ WIN symbol, 289
info parameter, 148, 150-151
initmouse() function, 106-107

380 OS/2 Programming: An Introduction

int data-type specifier, 361

Interprocess communication
passing pipe handle in,

209-211

pipe example using shared
memory, 207 - 209

pipes in, 206-207

services, 203-211

shared memory in, 203-206,

207-209

interrupt data-type specifier, 361

K
Kbd

characters, 79

service, 291
KbdCharln service, 84-87, 91,

220
kbddriver field, 221

KbdF!ushBuffer service, 93

KbdGetStatus service, 93-97

KBDINFO structure, 94, 96

KBDKEYINFO structure, 84, 91

KbdPeek, 91-92

KbdSetStatus service, 93 - 97

KbdStringln, 98-99

kbhit() function, 31, 92

KC_CHAR macro, 303-304

KC_KEYUP macro, 306

Kernighan, Brian, 333

Keyboard buffer
clearing, 93-97

keypress() in, 91- 92

state of, 93-97

Keyboard (KBD)
character codes for, 79-80,

82, 84-85, 86, 91-92

Dvorak, 80

handles, 83

Keyboard (continued)
input modes, cooked and

raw, 83-85

keypress status for, 80, 82,

86-87.

logical, 83

macro program with device
monitor, 234-238

reading character string for,
98-99

reading and writing to,
144-156

scan codes for, 79-80, 81, 82,

84-86, 88-92

serialization, 83

services, 79-99

services, listed, 80

shift keys status for, 84-88

Keyboard monitor
key translator, 238-241

macro program, 234-238

pop-up application, 223 - 229

pop-up calculator, 229 - 234

keypress() . function, 91- 92

Keys
hot, for pop - up programs,

213

status of shift and toggle, 85,

87-88

status of special, 88 - 91

translations of, w ith device
monitor, 238 - 241

Keywords in C language, 336,

355-366

L
_loadds function type modifier,

250

-Lp directive, 30

..

last parameter, 284

length parameter, 219-220

LIBRARY
command, 257

statement, 251

LLIBCDLL.LIB file, 251

LLIBCMT.LIB file, 175

loc parameter, 140

locaJ_seg parameter, 218

long data-type modifier, 361

M
.MODEL directive, 29

main() function, 269, 351,

353-355

keypress() in, 92

in Presentation Manager,
277, 290

main thread, 171
MAKEDLL.CMD file, 253, 260,

266

MAKEMAIN.CMD file, 253, 261

MAKEP macro, 204, 218

mask parameter, 148

Memory, shared, 203-206

example, 207 -209

Memory model(s)
for 80286, 325-328

compact, 326
huge, 327

large, 326

medium, 326

overriding, in C, 327-328
small, 326

tiny, 325

MENU command, 317-318

MENUITEM command, 318-319

Index 381

Menus (Presentation Manager)
adding, to window, 319

defining, in resource file,
317-319

example, 320-322

receiving messages from, 319

resources of, 316 - 317

mess array, 234-237
message parameter, 284, 285

mhandle parameter, 108, 262, 263

Microsoft
C compiler. See C compiler
Macro Assembler version

5.1, 28

mix parameter, 300

mode parameter, 132-133, 134,

173, 181

Modifiers, type. See Type
modifiers

module parameter, 283

mon parameter
_handle, 216, 217, 222

I
_ name, 216

monflag parameter, 221

Mou
characters, 101

service, 291
MouDrawPtr service, 105

MOUEVENTINFO structure,
107, 109-110

mouflag parameter, 221

MouFlushQue service, 120

MouGetNumButtons service,
119-120

MouGetNumMickeys service,
114-116

MouGetScaleFact service, 113-116

MouOpen service, 103, 104-105,

113

I
_________,j

382 OS/2 Programming: An Introduction

MouReadEventQue function,

107 -110 I 111-113
Mouse

basics, 103-104
button presses, 104, 107-110
custom functions, 110-113
as desktop in Presentation

Manager, 274 - 275
device monitor for, 241-245

flushing queue of, 120
initialization function,

106-107
installing, 102-103
measuring distance with,

116-119
menu example, 120-124
menu selection with,

120-124
mickey counts, 104
movement, 107 -110
number of buttons on,

119-120
opening, 103, 104-105
with ping-pong video game,

124-127
pointer, displaying, 103, 105
pointer, positioning, 104,

105-106
scaling factors, 113-119

services, 101-127
services, listed, 102
services, MOUSE.LIB and,

101-102
MOUSE.LIB file, 101-102
MOUSEB05.SYS file, 102
MouSetPtrPos service, 105 -106
MouSetScalefact service, 114-116
MT\INCLUDE directory, 174-175

Multitasking, 129-153

N

creating exit function list,
165-167

creating new sessions in,
167-170

creating threads for, 172-178
error checking in, 167

killing process in, 163 -165
list of processes, 157
list of thread-based services,

171
multiple processes of,

157-167
suspending threads in, 180,

185-186
terminating child process in,

161-163
thread priorities, 180-184
threads in, 157, 170-186
waiting for threads to finish

in, 178-180
warning about, 156

NAME command, 257

NEAR call instruction, 26
near pointer, 328
new_handle parameter, 209
NULL, 280, 282, 283, 284, 295
#define preprocessor command,

366-367
#elif preprocessor command,

367-368
#else preprocessor command,

367-368

#endif preprocessor command,
367-368

#error preprocessor command,
367

#if preprocessor command,
367-368

#ifdef

preprocessor command,
367-368

s tatements in header files,
35-36

#ifndef preprocessor command,
367-368

#include
preprocessor command, 367
statement, 175

num_bytes parameter, 139, 258
_written, 135

num_read parameter, 138

0
.OBJ file extension, 249
offset parameter, 204
open() function, 129
openfla gs parameter, 132, 133,

136, 137
operation parameter, 165
Operators, 342 -351

&, 32, 351
?, -349, 351
arithmetic, 342, 343
assignment, 348-349

bitwise, 343-346
compile-time, 350, 362

logical, 342, 343
miscellaneous, 349-351
pointer, 346- 347
precedence of unary, 351
relational, 342, 343

option-lis t parameters, 254

origin parameter, 142
OS2.H header file

Index 383

API declarations in, 32
in C program, 31

OS2.LIB file, 290
outbuf parameter, 217, 220

p

p_change parameter, 181
p_space parameter, 295, 296,

299, 302, 313, 314
packet parameter, 219
Parameters

API, 26, 31-33
call- by-reference, 26-27
call-by-value, 26
declaring, 330-331

Parent

as Presentation Manager
window, 279, 282

program, running, 157 -161

program, starting and
stopping, 169 -170

program, terminating a child
process w ith, 163-164

parent_ handle parameter, 282

pascal
C calling formats versus,

32-33

keyword, 361
path parameter, 152
pid

field, 222

parameter, 168
Pipes, 206-207

example using shared
memory, 207 - 209

passing h andle in, 209-211

J

384 05/2 Programming: An Introduction

POINTDD.SYS, 102

Pointers
checking, in dynamic linking,

250

file, 131

segment override modifie rs
for, 327

of type void, 347-348, 365

variables, 337, 347

POINTL structure, 281, 295-298

Pop-up program, 77, 214

calculator with, 229-234

skeleton with device monitor,
225-229

Ports reading and writing to,
144-156

Presentation Manager, 271-291

C standard library functions
and, 276

compiling programs in,
289 - 290

creating message queue in,
280 - 281

creating standard window in,
282 - 283

definition fi le for, 289, 298

device context in, 294

displaying text in color in,
298-302

features, 273-275

graphics example in, 312-316

icons and graphics images
with, 275

list of common messages in,
286

list of virtual key codes,
304-305

macro names, 313

Presentation Manager (continued)
macros in, 294, 299-300

menus and dialog boxes
with, 275

menus in, 316-322

message loop in, 277,

283-284

mouse and, 101, 103,

274 - 275

obtaining anchor block
handle in, 280

operation of, 276 - 277

outputting text to window

in, 293-302

parent and child windows in,

279, 282

presentation space in, 294,

299

processing WM_PAINT
message in, 294-298

program termination in,
284 - 285

reading keystrokes in,

303-311

registering window class in,

281-282

screen as desktop in, 274

screen output with, 309- 311

skeleton applicat ion program,
286 - 291

understanding how skeleton
works, 290- 291

versus core services, 291

window function in,
276-277, 278-280,

285-286

Presentation Mrmnger Progrnmming
(Schildt), 271

Presentation spaces (PS), 294

print() function
console output with, 45

not usable with Presentation
Manager, 276

writing C program with, 36

prin tf() , 36

DosRead and, 139

multiple threads and, 173

prnflag parameter, 222

PROTMODE command, 257-258

prty parameter, 181-182

PTRLOC structure, 105-106

Q
QMSG structure, 281

R
.RC file extension, 317

.RES fil e extension, 317
read() function, 129

read_ handle parameter, 207

region parameter, 295

register
storage-class type modifier,

339, 340

keyword, 362

reserved parameter, 133, 149,
152, 170, 219, 220

resource parameter, 283

result.codeTerminate field, 163

result parameter, 159, 162

RESULTCODES structure, 159,
162

return
keyword, 362

statement, 352

Richards, Martin, 333

Index 385

Ritchie, Dennis, 333

row
field, 62, 108

parameter, 221

value, 106

rowScale field, 113

s
SCALEFACT structure, 113,

115 -116

scan parameter, 220

scanf() function, 276, 277, 303

Schildt, Herbert, 271, 369

Screen
attributes, 49-50

background process to access,
74 - 77

cursor and, 57-58, 71, 72-74

as desktop in Presentation
Manager, 274

fonts and, 71-72, 73-74

group, 167

logical video buffer (LVB)
and, SO, 69-71

output with Presentation
Manager, 309-311

presentation space (PS) as,
294

reading characters from,
66-69

reading and writing to,
144-156

requesting video adapter
characteristics for, 64-66

routines, using dynamic link
libraries, 258-261

386 OS/2 Programming: An Introduction

Screen (continued)

scrolling functions, 58-61

string output to, 51- 52

video buffer and, 48-50

video mode and, 61-64

VIO output services to,
53-57

virtualization, 50

Scrolling functions, 58-61

SEGMENTS command, 258

selector parameter, 204

sem parameter, 191, 194, 195,
196

_handle, 193

_name, 193, 194

Semaphores
list of services, 189

method, 178-180

producer-consumer program
with, 197-199

RAM, example of, 191-193

RAM versus, 189-190

setting, 190 -191

sharing resource with,
195-199

using system, 193-195

See also Seriali?'.ation
Serialization

with critical section services,
199 - 203

problems of, 187 -189

services, 187-203

See also Semaphores
sgCurrent field, 218

share attribute, 133, 134

shift parameter, 220

short data -type modifier, 363

show function
_mouse-state(), 108-110

_priority(), 182-184

sid parameter, 168, 170

signed data -type modifier, 362

size parameter, 132, 152,

203-204, 207, 280

sizeof keyword, 143, 350, 362

Stack
checking in dynamic linking,

250

defining, 29

stack parameter, 172, 174

_size, 174

STACKSIZE command, 258

stand_end parameter, 174

STARTDATA structure, 167 -169
static

storage-class type modifier,
339, 341,

data-type modifier, 354, 363

status parameter, 220

storage_ bytes parameter, 282

STRINGINBUF structure, 98-99

struct
data-type modifier, 337

keyword, 363

Structure
in C language, 338

of variables, 338

STUB command, 258

style parameter, 281-282, 283

SUBMENU command, 318-319
Subroutines

call -by- reference parameters
for, 26-27

call-by-value parameters for, 26

4

sumit() function, 255, 257
switch statement, 363-364

exiting from, 356
Systems programs, 335

T
term_code parameter, 165-166,

173

Terminate-and-stay-resident
(TSR) programs.

See Pop-up programs
TEST.EXE program, 159-160, 161,

162-163, 164, 170
TEST.TST file, 135-138
TEST.TXT file, 142-144
Thompson, Ken, 333
Threads

creating, in multitasking,
172-178

list of multitasking services,
171

main, 171
in multitasking, 157, 170-186
priorities in multita sking,

180-184
suspending, in multitasking,

180, 185-186
· synchronization of, 178-180

waiting for, to finish in
multitasking, 178-180

tid parameter, 172, 181, 185
Time field, 108

time parameter, 220, 221
title parameter, 282-283
toggle variable, 124
.286 directive, 29

Index 387

Type modifiers
addressing, 341
storage-class, 339-341

typedef

u

data type, 337
keyword, 364 - 365
statement, 42

union
data type, 337, 338-339

keyword, 365
unsigned

data - type modifier, 33, 42,

365
long variable, 189, 190

USHORT, 33, 42

v
Variables

in C language, 336-342
enumeration, 339
global and local, 353-354
pointer, 337, 347
storage-class type modifiers

for, 339-341
structure of, 338
for video adapter, 64-66

Video
adapters, 47-48, 64-66

buffer, 48-50
buffer, logical (LVB), 50,

69 - 71
modes, list of, 48
hardware, 46

1/0 subsystem. See VIO
mode, 47 - 48, 61-64

388 OS/2 Programming: An Introduction

VIO
functions with VioPopUp,

76-77

handles, 50-51

screen output services,
53-57

services, 45-77

services, list of, 46-47

services versus I/O
redirection, 52 - 53

Vio service, 291

VIOCONFIGINFO structure,
64-66

VIOCURSORINFO structure,
72-74

VioEndPopUp service, 74-77

VIOFONTINFO structure, 71-72

VioGetBuf service, 69-71

VioGetConfig service, 64-66

VioGetCurPos service, 57 -58

VioGetCurType service, 72-74

VioGetFont service, 71 -72

VioGetMode service, 61 - 64,

67-69

VIOMODEINFO structure,
62-64

VioPopUp service, 74-77, 213,

223-225

VioReadCellStr service, 66 - 69

VioReadCharStr service, 66-69

VioScrollDn service, 58-61

VioScrollLf service, 58- 61

VioScrollRt service, 58-61

VioScrollUp service, 58-61

VioSetCurPos service, 57-58

VioSetCurType service, 72-74

VioSetFont service, 71 - 72

VioSetMode service, 61-64

VioShowBuf service, 69-71

VioWrtCellStr service, 53-55, 67

VioWrtCharStr service, 55

VioWrtCharStrAtt service, 56

VioWrtNAttr service, 56-57

VioWrtNCell service, 56-57

VioWrtNChar service, 56-57

VioWrtTTy

void

function, 34-37

multiple threads and, 173

service, 51-52

function, 352, 353

pointer, 347-348

void data-type specifier, 336, 365

void far
function, 172, 174

pointer, 280

volatile
storage-class type modifier,

339, 340-341

keyword, 365- 366

vres field, 62

w
wait parameter, 162, 219

while loop, 188, 366

exiting from, 356

finishing threads and, 180

WinBeginPaint service, 295-298,

302

WinCreateMsgQueue service,
280 - 281

WinCreateStdWindow service,
282 - 283, 319

list of style parameter
values, 283

...

WinDefWindowProc service,
285-286

WinDestroyMsgQueue service,
284-285

WinOestroyWindow service,
284-285

WinOispatchMsg service, 284,
290

window parameter, 284
window_ func() function, 287,

290

WinEndPaint service, 296-298

WinGetMsg service, 283-284
WinGetPS service, 302, 306 - 308
Winlnitialize service, 280
WinRegisterClass service,

281-282

WinReleasePS service, 302,
306-308

Index 389

WinTerminate service, 284 - 285
WM_ CHAR message, 291, 303,

306, 309

WM- COMMAND message, 319
WM- CREATE message, 290
WM_ ERASEBACKGROUND

message, 290-291
WM_HSCROLL message, 291

WM-PAINT message, 290,
294-298, 302, 309-311

WM_ QUIT message, 290
WM_ VSCROLL message, 291
wri te() function, 129
write_handle parameter, 207

y
yStart variable, 72-73

_j

The manuscript for this book was prepared and
submitted to Osborne/McGraw-Hill in electronic form.

The acquisitions editor for this project was Jeffrey
Pepper, the technical reviewers were William H.

Murray III and Chris H. Pappas, and the project editor
was Fran Haselsteiner.

Text design by Pamela Webster, using Palatino for text
type and display.

Cover art by Bay Graphics Design Associates. Color
separation by Colour Image. Cover supplier, Phoenix
Color Corporation. Book was printed and bound by

R.R. Donnelley & Sons Company, Crawfordsville,
Indiana.

....

	Cover
	Contents
	Acknowledgments
	Preface
	Order Form
	I - INTRODUCTION TO OS/2 PROGRAMMING
	1 - OS/2: An Overview
	2 - OS/2 Interfacing Fundamentals

	II - PROGRAMMING OS/2 API SERVICES
	3 - The Screen Output Services
	4 The Keyboard Services
	5 - Using the Mouse
	6 - File I/O
	7 - An Introduction To Multitasking
	8 - Serialization and Interprocess Communication
	9 - Device Monitors
	10 - Creating and Using Dynamic Link Libraries

	III - PROGRAMMING PRESENTATION MANAGER
	11 - Presentation Manager: An Overview
	12 - Some Presentation Manager Examples

	APPENDIXES
	A - 80286's MEMORY MODELS
	B - FUNCTION PROTOTYPES
	C - A REVIEW OF C

	Trademarks
	Index
	Back Cover

