OsborneMcGraw-Hill

- PROGRAMMING:

AN INTRODUCTION

Get Up to Speed Fast

7 /Herbert Schlldi 7

(i A 5 ST
7 A ;
A 5
; e g
/ /’.’,r’ <
i

B i M —

0OS/2" PROGRAMMING:
AN INTRODUCTION

Herbert Schildt

Osborne McGraw-Hill
Berkeley, California

Osborne McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the U.5.A.,,
please write to Osborne McGraw-Hill at the above address.

A complete list of trademarks appears on page 371.

05s/2™ PROGRAMMING: AN INTRODUCTION

Copyright © 1988 by McGraw-Hill, Inc. All rights reserved. Printed in the Uni-
ted States of America. Except as permitted under the Copyright Act of 1976,
no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior writ-
ten permission of the publisher, with the exception that the program listings
may be entered, stored, and executed in a computer system, but they may not
be reproduced for publication.

1234567890 DODOQO 898

ISBN 0-07-881427-8

Information has been obtained by Osborne McGraw-Hill from sources believed to be reliable. However,
because of the possibility of human or mechanical errors by our sources, Osborne McGraw-Hill, or others,
Osborne McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information and
is not responsible for any errors or omissions or the results obtained from use of such information.

Part I

Part 1I

CONTENTS

Preface
Introduction to OS5/2 Programming

0S/2: An Overview

The Heritage of OS/2

The 80286 and OS/2: A Family Affair
(OS/2 Essentials

The Application Program Interface
Dynamic Linking

The Presentation Manager

The DOS-0S/2 Tug-of-War

The OS/2 Philosophy

0S/2 Interfacing Fundamentals

The OS/2 Call-Based Interface

An Assembly Code Example

A C Program Example

C and the API Parameters

A Short Word About .DEF Files
Code Constraints

Another Simple Example

The API Services

API Service Description Conventions

Programming OS/2 API Services

The Screen Output Services

Video Adapters and Modes of Operation

Screen Virtualization and Logical Video Buffers 50
The Video Buffer Organization 50
VIO Handles 50
The VioWrtTTy Service 51
VIO Services Versus /O Redirection 52
The VIO Screen Qutput Services 53
Cursor Positioning 5%
Screen Scrolling Functions 58
Examining and Changing the Video Mode 61
Requesting Video Adapter Characteristics 64
Reading Characters from the Screen 66
Accessing the Logical Video Buffer 69
Cursor and Fonts 71
VioPopUp and VioEndPopUp 74
The Keyboard Services 79
Scan and Character Codes 79
Keyboard Serialization 83
Keyboard Handles and Logical Keyboards 83
Cooked Versus Raw Keyboard Input Modes 83
KbdCharlIn 84
Using KbdPeek 91
Clearing the Keyboard Buffer 93
Using KbdGetStatus and KbdSetStatus 93
Reading a String Using KbdStringIn 98
Using the Mouse 101
The Mouse 102
Mouse Basics 103
Opening the Mouse 104
Displaying the Mouse Pointer 105
Positioning the Mouse Pointer 105
Creating a Mouse Intialization Function 106
Sensing Mouse Movement and Button Presses 107
Some Custom Functions to Interrogate the Mouse 110
Changing the Scaling Factors 113
Determining the Number of Buttons 119
Flushing the Queue 120
A Simple Mouse Menu Example 120
A Variation on the Ping-Pong Video Game 124

File I/O

File Handles

File Pointers

DosOpen and DosClose
DosWrite

A Simple First Example
DosRead

Random Access

Appending to a File

Reading and Writing Other Data Types
Reading and Writing to a Device
The OS/2 Standard Devices
Displaying the Directory

Accessing Information About the Disk System

Examining and Changing the Directory

An Introduction to Multitasking
A Word of Warning

Processes Versus Threads
Multiple Processes

Creating New Sessions
Threads

Serialization and Interprocess Communication

The Serialization Problem

OS/2 Semaphores

Sharing a Resource: An Example

Using DosEnterCritSec and DosExitCritSec
Interprocess Communication

Just a Scratch on the Surface

Device Monitors

Device Monitor Theory of Operation
Opening and Registering a Device Monitor
Monitor Buffers

DosMonRead and DosMonWrite

Device Monitor Packets

DosMonClose

A Word About Efficiency

129
131
131
131
135
135
138
139
142
143
144
146
147
150
152

155
156
157
157
167
170

187
187
189
195
199
203
211

213
214
216
219
219
220
222
222

10

Part III
11

12

A Pop-Up Application Skeleton

A Pop-Up Calculator

A Simple Keyboard Macro Program
A Key Translator Monitor

A Mouse Device Monitor

Creating and Using Dynamic Link Libraries
What Is Dynamic Linking?

Dynlink Advantages

Five Important Files

Creating a Simple Dynlink Library

The Definition File

Another Dynlink Example

Run-Time Dynamic Linking

Dynamic Linking Implications

Programming Presentation Manager

Presentation Manager: An Overview

What Is the Presentation Manager?

Stormy Cs

General Operation of a Presentation Manager
Application

A Closer Look at a Window

Obtaining an Anchor Block Using Winlnitialize

Creating a Message Queue

Registering a Window Class

Creating a Standard Window

The Message Loop

Program Termination

The Window Function

Putting Together the Pieces: A Presentation
Manager Skeleton Program

Presentation Manager Versus Core Services

Some Presentation Manager Examples
Outputting Text

Reading Keystrokes

A Graphics Example

A Quick Introduction to Menus
Conclusion

225
229
234
238
241

247
247
248
249
249
253
258
261
268

271

273
273
276

276
278
280
280
281
282
283
284
285

286
291

293
293
303
312
316
322

Appendixes
A

80286’s Memory Madels

Tiny Model

Small Model

Medium Model

Compact Model

Large Model

Huge Model

Overriding a Memory Model in C

Function Prototypes
Classic Versus Modern Parameter Declarations

A Review of Turbo C

The Origins of C

C as a Structured Language

A Review of C

Variables —Types and Declaration
Operators

Functions

Statement Summary

The C Preprocessor

The C Standard Library

Index

325
325
326
326
326
326
327
327

329
330

333
333
334
336
336
342
351
355
366
369

373

ACKNOWLEDGMENTS

Quite a few OS5/2 macro names, type names, structure names, and
union names have been presented and discussed in this book. These
names originate from the OS/2 Developer’s Toolkit manuals and disk
files and are used with permission of Microsoft Corporation.

Special thanks to William H. Murray Il and Chris H. Pappas for
allowing me to adapt two assembly language programs in their book
Assembly Language Programming Under 0S5/2 (Osborne/McGraw-Hill, 1989).

—H.S.

PREFACE

The purpose of this book is to give you a “jump start” into the world of
OS/2 programming. OS/2 is a big program, and the ways that you, the
programmer, can interact with it are numerous and varied. This book
will help you understand quickly the essence of QS/2.

The impact of OS/2 is not to be underestimated. OS/2 has done for
microcomputer operating systems what the original IBM PC did for
microcomputers: in one bold stroke it has defined a new, more power-
ful computing environment. What makes OS/2 so exciting is that it is
the first multitasking operating system designed specifically for the
personal, single-user computer. Although microcomputers have been
able to run multitasking operating systems such as UNIX for several
years, the results have never been entirely satisfactory, partly because
the porting of a multi-user, multitasking operating system to a single-
user, highly interactive environment generally produced the worst of
both worlds: slow response time combined with an old, TTY-based
interface. OS/2 maintains the highly interactive nature of the personal
computing environment while allowing greater through-put by means
of multitasking. In the first part of this book you will see how this
near-magical combination is achieved.

xiii

xiv OS5/2 Programming: An Introduction

0S/2 opens the doors to a whole new world for programmers. Fully
harnessing OS/2’s capabilities will allow you to create highly efficient
and powerful programs, the likes of which could never be seen in either
a DOS or UNIX-like environment. Frankly, from my point of view,
0S/2 is the platform on which the next generation of applications will
be built.

As you will see in this book, there is little in OS/2 that is difficult to
grasp or use. However, OS/2 is so large that it is sometimes hard to see
the larger view. (For example, version 1.1 of OS/2 contains several
hundred different system services!) As you begin to learn to program
for OS/2, it may seem hard to pull all the pieces together, but as you
become more experienced, the logical design of OS/2 will become
apparent. This book can help you achieve that “view from a height.”

Part One of this book gives you an overview of O8/2’s design philos-
ophy. Part Two covers the most important core system services pro-
vided by OS/2. As you may know, OS/2 actually consists of two
“pieces”: the core (sometimes called the kernel) and the Presentation
Manager. Most of this book deals with the core of O5/2 because it
forms the logical starting point. A firm knowledge of the core services
is necessary before progressing to the Presentation Manager, which is
introduced in Part Three.

I used Microsoft C 5.1 to compile and test all the C examples in this
book. (I compiled the two assembly code examples using Microsoft’s
MASM 5.1.) Although Microsoft C 5.1 is certainly a fine compiler, 1
used it out of necessity: it was the only compiler available for OS/2
when this book was being written. However, the code in this book con-
forms to the proposed ANSI standard and should be able to be com-
piled by virtually any OS/2-compatible compiler. (Keep in mind that
certain Microsoft supplied typedefs may be given different names by
other manufacturers.)

This book assumes that you have some experience as a programmer
and a basic understanding of the PC hardware environment. Most of
the examples are in C. If you are not as proficient in C as you would
like, Appendix C presents an overview of the C language, which should
be sufficient to help you understand this book. With few exceptions, C
is and will be the high-level language of choice for OS/2 development.

Preface xv

This book includes many useful and interesting example programs.
If you're like me, you probably would like to use them, but hate typing
them into the computer. When I key in routines from a book, it always
seems that I type something wrong and spend hours trying to get the
program to work. For this reason, I am offering the source code on
diskette for all the functions and programs contained in this book for
$24.95. Just fill in the order blank on the next page and mail it, along
with your payment, to the address shown. Or, if you're in a hurry, just
call (217) 586-4021 to place your order by telephone. (VISA and Master-
Card accepted.)

HS
Mahomet, Illinois
June 1988

ORDER FORM

Please send me _______ copyf(ies), at $24.95 each, of the source code for the
programs in 05/2 Programming: An Introduction. (Foreign orders, please add $5

shipping and handling.)

Name

Address

City

State ZIP

Telephone ()

Diskette size (check one): 5 1/4”7
Amount of payment: $
Method of payment: check

Credit card number:

3 1/2”

VISA MC

Expiration date:

Signature:

Send to: Herbert Schildt
RR 1, Box 130
Mahomet, IL 61853

or phone: (217) 586-4021

Osborne/McGraw-Hill assumes NO responsibility for this offer. This is solely an offer of Herbert Schildt,

and not of Osborne/McGraw-Hill.

I

INTRODUCTION TO OS/2
PROGRAMMING

Part One presents some necessary background information on
OS/2 and discusses the special 80286 features that O5/2 takes advan-
tage of. You will learn about OS/2’s design philosophy and be intro-
duced to O5/2’s call-based interface.

OS/2: AN OVERVIEW

0OS5/2 is a very large program that consists of many subsystems.
Although no single part of O8/2 is difficult to understand or use, it can
be difficult to grasp the totality of the operating system. To help ease
the problem, this chapter presents an overview of OS/2, including its
design philosophy, operation, and basis in the 80286 processor. Many
of the topics discussed in this chapter will be fully explored in subse-
quent chapters.

The chapter begins with a brief description of the origins of 0S/2,
followed by a discussion of the 80286 CPU, whose operation is so
important to an understanding of OS5/2 programming. The chapter
concludes with a brief tour of the OS/2 programming environment.
Several new terms that have been coined or popularized as a result of
0O5/2 are introduced along the way. If you already have a good basic
understanding of the 80286 and OS/2’s operation, you can skip to
Chapter 2.

THE HERITAGE OF OS§/2

Although OS/2 was created new from the ground up, it owes much to
the operating systems that preceded it. To understand why certain
things in OS/2 are the way they are requires that you understand
OS/2’s heritage. Those of you who participated in the microcomputer
revolution of the late seventies already know much of the story. If you
are new to microcomputers, however, many of the bits and pieces of
0OS5/2 make the most sense when you understand where they came
from.

4 OS5/2 Programming: An Introduction

Real microcomputer operating systems began with Digital Re-
search’s CP/M, which was designed for the Intel 8080 CPU, an 8-bit
processor. (The 8080 was the forerunner to the 8086.) In the early days
of microcomputing, each computer manufacturer supplied its own
operating system, which usually consisted of little more than a primi-
tive set of disk file I/O functions. In addition to being very crude, these
operating systems suffered from the fact that they were different from
each other. The differences between the systems prevented software
developers from developing programs that could be mass marketed to
the full range of microcomputers. When Gary Kildall, the founder of
Digital Research, created CP/M it was with the goal of providing a
common operating system for all microcomputers. To a great extent he
succeeded in this goal. CP/M is a compact yet highly adaptive single-
tasking operating system that was nothing short of perfect for the first
8-bit microcomputers.

The CP/M system is so important because it made all the various
microcomputers’ software compatible. Compatibility was a crucial,
necessary ingredient for the future success of the microcomputer
because it allowed software developers to invest large amounts of time
and money in creating products that ran under CP/M. Without the uni-
fying force of CP/M the software market would have been fragmented,
and the cost-effective development of excellent software would have
been impossible. As you will soon see, the issue of compatibility plays
an important role in the development of OS/2.

When IBM began developing its first personal computer, the
designers chose to base its architecture on the next generation of Intel
microprocessors. These processors included the 16-bit 8086 and its
close relative, the 8088. (IBM actually used the 8088 because it pro-
vided a cost-effective way to access a 16-bit processor using 8-bit inter-
face chips. Hereafter in this book, a reference to the 8086 implies both
the 8086 and the 8088.) Before the PC was released, experts speculated
that it would use a new version of CP/M as its operating system. How-
ever, for reasons that are still unclear, Digital Research and IBM did
not come to an agreement to use CP/M. Instead, IBM asked Microsoft,
which was already working on languages for the PC, to develop a new
operating system. The operating system was called PC DOS when first
released. Now it is generally called DOS.

Because IBM and Microsoft knew that literally thousands of pro-
grams originally written for CP/M would be converted to run under
DOS, DOS was designed to be highly compatible with the original

O5/2: An Overview 5

CP/M. In fact the basis for the file system and its system interface was
CP/M. Like CP/M, DOS is a single-tasking, highly adaptive operating
system that could fully control the new 16-bit microcomputers. Since
its release in 1981, DOS has become the world’s most popular operat-
ing system, with well over ten million users worldwide. Some analysts
suggest that DOS will still be in common use into the twenty-first
century.
As good as DOS is, it does suffer from two major shortcomings.

1. Because it was originally designed for use with the 8086, DOS
can directly access only 1 megabyte of RAM. Within this mega-
byte, only 640K can effectively be used because of the way the
ROM and video RAM of the original PC were located. Although
640K of program memory space still sounds like a lot when
viewed from the perspective of many existing DOS applications, it
is far too little for the next generation of “smart” (Al-based) soft-
ware or for large database or spreadsheet programs. And 640K is
not a lot of memory when it is used in a multitasking environ-
ment.

2. DOS is single-tasking. Without multitasking capabilities it is
impossible to make the most efficient use of the computer. As you
will see later in this chapter, much of the CPU’s time is spent
waiting for things to happen. During these “dead” moments, a
multitasking operating system can run another task. In a single-
tasking system, this time is simply lost.

The memory restriction found in DOS is based on the architecture
of the 8086 processor and is not easily removed. Although it is possible
to multitask the 8086, it is not a good idea because the 8086 provides
no way to protect one task from another. That is, if two programs are
executed simultaneously using an 8086 processor, one program could
adversely affect the execution of the second. Thus DOS continues to
limit application memory to 640K and to remain single-tasking. It was
clear that any efforts to remove these restrictions would come about
because of an advance in CPU design.

The next processor released by Intel was the 80186, which was
really just a faster 8086 and not important otherwise. However, in 1984
Intel released the 80286. The 80286 CPU could run all programs writ-
ten for the 8086 but included several new instructions and a second

6 O5/2 Programming: An Introduction

mode of operation. When the 80286 was running in this second mode,
it can address 16 megabytes of RAM and isolate concurrently executing
programs from each other. The 80286 included two modes of operation
for the sake of compatibility with software written for the 8086. How-
ever, both modes of operation are more or less mutually incompatible.
These two modes are the cause of numerous problems as they relate to
the creation of OS/2.

The 80286 is the processor that IBM chose to use in the PC AT
However, because no software existed to make use of the 80286"s
second mode of operation, it was run by DOS as simply a faster 8086,
with all of its limitations.

The newest Intel processor in common use is the 80386, which is an
improved version of the 80286. The 80386 includes three basic modes
of operation: 8086 emulation, 80286 emulation, and its own 80386
operation. Actually, because of the way the 80386 is designed it does
not truly have an 80286 emulation mode. More accurately, the 80386
automatically acts like an 80286 when presented with 80286 instruc-
tions. At the time of this writing, OS/2 runs the 80386 as if it were an
802.86. However, an 80386 version of OS/2 is expected soon.

In 1987 IBM released its PS/2 line of personal computers. Although
the low end of these systems is based on the older 8086 processor, the
models 50 and 60 use Intel 80286, and the model 80 uses the 80386
processor. To take full advantage of these machines, a new operating
system was required. Three of the most important goals in designing
the new system were to eliminate the 640K memory barrier, to support
multitasking, and, for better or worse, to provide an upward compati-
bility path from DOS. Toward these ends Microsoft and IBM launched
a joint development project headed by Gordon Letwin on the Microsoft
side and Ed lacobucci on the IBM side. The result of their efforts is, of
course, OS/2.

Simply stated, OS/2 is very likely the largest, most complex piece of
software ever written for a microcomputer. It is also one of the most
fascinating. To get an idea of its complexity, consider this: It took
Microsoft about four months to develop DOS version 1.0; OS/2 has
already taken three and a half years! The specifications for DOS 1.0
were about 100 pages long; it takes over 1500 pages to describe OS/2!

From this historical perspective, let’s see what OS/2 is all about.

0O5/2: An Overview 7

THE 80286 AND OS/2:
A FAMILY AFFAIR

First and foremost, OS/2 is an 80286-based operating system. (Al-
though OS/2 can also use the 80386, it does so as if the 80386 were an
80286.) In many ways OS/2 is the actualization of the imaginary operat-
ing system for which the designers created the 80286. The Intel
designers created the 80286 for a multitasking environment. The fact
that it could emulate its forerunner, the 8086, was a necessary but
uninteresting dead end. What the designers created was a processor
that could provide a solid base for the next generation of microcomput-
er operating systems. Toward this goal they implemented several
important features that essentially defined what that operating system
would be like. In fact, many of OS/2’s features are closely linked with
related features of the 80286. Hence the programmer’s understanding
of OS/2 really begins with an understanding of the 80286 processor.

Because of its heritage and attempts to maintain software compati-
bility with its ancestors, the 80286 is a somewhat “quirky” chip. This
section will discuss some aspects of the 80286 that relate specifically to
0OS/2 programming.

Note: Nothing in the sections that follow assumes that you have signif-
icant familiarity with 80286 assembly language programming. How-
ever, implicit in O5/2 programming are the concepts of subroutines
(both calling and returning from them), the stack, and stack operations.
You should have at least a general understanding of how a computer
goes about its business.

The Architecture of the 80286

The 80286 contains 14 registers into which information is placed for
processing or program control. The registers fall into the following
categories:

= General-purpose registers

s Base pointer and index registers

8 S/2 Programming: An Introduction

® Segment registers

m Special-purpose registers

All the registers in the 80286 CPU are 16 bits (2 bytes) wide.

The general-purpose registers are the “workhorse” registers of the CPU.
It is into these registers that values are placed for processing, including
arithmetic operations such as adding or multiplying; comparisons such
as equality, less than, and greater than; and branch (jump) instructions.
Each of the general-purpose registers can be accessed either as a 16-bit
register or as two 8-bit registers.

The base pointer and index registers provide support for such things as
relative addressing, the stack pointer, and block move instructions.

The segment registers support the 80286’s segmented memory scheme.
(The segmented architecture of the 80286 is discussed later in this
chapter.) The CS register holds the current code segment, the DS
holds the current data segment, the ES holds the extra segment, and
the SS holds the stack segment.

Finally, the special-purpose registers include the flag register, which
holds the status of the CPU, and the instruction pointer, which points
to the next instruction for the CPU to execute.

Figure 1-1 shows the layout of the 80286 registers.

The Segmented Memory Model

The entire Intel CPU line is based on the original 8086, which views
the memory of the system as if it were organized into 64K chunks
called segments. Although we will examine more fully how the 80286
calculates the actual linear address of a specific byte in RAM, loosely
speaking, what happens is that the contents of a segment register are
combined with the contents of another register (or immediate value).
This second value is called the offset, and the entire scheme is often
called the segment:offset form of memory addressing.

Like most things, the segment:offset memory model has its good
and bad points. In the plus column, the segmented scheme makes it
easy to write relocatable code and makes it easier to develop virtual
memory techniques. (OS/2 puts these features to good use, and you
will read more about them later.) If used correctly, segmentation can
also make some types of programs execute very quickly because the

05/2: An Overview 9

General Purpose
AH AL CH CL

AX CX

:
H

BH BL DH DL

BX DX

:
:

Base Pointer and Index

sP 51

BP DI

Segment

C5 55

I UL
UL

DS ES

Special Purpose

Flag

U
H

IP

Figure 1-1. The 80286 CPU registers

segment registers can be loaded once and thereafter only the offset
values need to be used to access memory, saving the time it takes to
load a segment register repeatedly. In the minus column, the seg-
mented approach tends to complicate what is essentially a nearly intui-
tive concept: memory. Most programmers, even long-time 80286 pro-
grammers, think of memory as strictly linear. This is the most natural
view. However, the segmentation model requires that you think of
memory abstractly, as disjointed pieces, a somewhat unnatural process.

10 OS5/2 Programming: An Introduction

On a more practical side, the segment:offset approach makes it sig-
nificantly more difficult to create and access objects that require more
space than is available in a single segment. The debate over the seg-
mentation memory model has raged for years and will probably con-
tinue to do so. However, since this is the processor you have to work
with, there is little use in worrying about its approach to memory. (In
fact, because of the work that O5/2 does for you, you will not need to
worry too much about where your programs execute in memory or
how that memory is organized.)

One further complication concerns the segmented architecture of
the 80286: The interpretation of the values contained in the segment
registers varies between two 80286 miodes of operation. These modes
and the differences between them are the subjects of the next section.

The Two 80286 Modes of Operation

As you may already know, to maintain software compatibility with its
ancestors, the 80286 has to be able to execute 8086 programs. To pro-
vide for this the 80286 CPU can operate in two distinctly different
ways. In fact, the modes of operation are so different in some respects
that it may be easier to think of the 80286 as two CPUs in one package.
It is important to understand the differences between these modes of
operation to grasp some of the subtleties of OS/2.

The two 80286 modes of operation are called real and protected. When
the 80286 begins execution, it uses real mode by default. Real mode is
essentially the 80286’s 8086 emulation mode. When the 80286 is run-
ning in real mode, its address space is the same as the 8086’s and is
limited to 1 megabyte. Since the 8086 was not designed with multitask-
ing in mind, any piece of code can issue any instruction and access any
part of memory. Put in somewhat simple terms, in real mode what your
program sees is what it gets. The name real mode is derived from the fact
that a program is actually using real memory addresses when it
accesses memory. That is, the values of the segment and offset regis-
ters actually contain the physical address that will be the target of a
load, store, call, or jump operation. This is the mode for which DOS
was designed.

When the 80286 is running in protected mode several new instructions
become available, and the way the system memory and resources are
accessed changes. Perhaps the most significant difference is how physi-
cal memory addresses are calculated. Because of the way addresses are

0S/2: An Overview 11

calculated in protected mode, the 80286 can directly access up to 16
megabytes of system RAM and up to 1 gigabyte of virtual address
space. In protected mode, programs are assigned a privilege level. Only
the most privileged programs have access to certain instructions, such
as interrupt and [/O instructions. In protected mode it is also possible
for the CPU to prevent one program from accidentally interfering with
another that is concurrently executing. (This feature gave protected
mode its name.) Finally, protected-mode operation allows the 80286 to
use some special instructions that make multitasking easier to implement.

As far as the programmer is concerned the most important differ-
ence between real and protected modes is the way memory addresses
are calculated. The next two sections explain both ways.

Address Calculation in Real Mode To access a megabyte of RAM
requires at least a 20-bit address. However, in the 80286 no register is
larger than 16 bits. This means that the 20-bit address must be divided
between two registers. Unfortunately, the way the 20 bits are divided is
a little more complex than one might assume.

In real mode, all addresses consist of a segment and an offset. A
segment is a 64K region of RAM that must start on an even multiple
of 16. In 80286 jargon, 16 bytes is called a paragraph; you will sometimes
see the term paragraph boundary used to reference these even multiples of
16 bytes. The 8086 has four segments: one for code, one for data, one
for stack, and one extra. The location of any byte within a segment is
called the offset. The actual 20-bit address of any specific byte within
the computer is the combination of the segment and the offset.

To calculate the actual byte referred to by the combination of the
segment and offset, first shift the value in the segment register to the
left four bit positions and add this value to the offset. This makes a
20-bit address. For example, if the segment register holds the value
FFH and the offset holds AH, the following sequence shows how the
actual address is derived. The absolute 20-bit address is 300H.

segment register: 0000 0000 1111 1111
segment shifted: 0000 0000 1111 1111
offset: 0000 0000 0000 1010

segmenttoffset: 0000 0000 1111 1111 1010

12 OS/2 Programming: An Introduction

The resulting 20-bit address is FFAH. However, you will almost never
see a real-mode address referred to in this form. Instead, the segment:
offset form is used. In this case the address would be written
00FF:000A. Many segment:offset addresses can describe the same byte
because the segments may overlap each other. For example, 0000:0010
is the same as 0001:0000.

Address Calculation in Protected Mode When the 80286 is running in
protected mode, memory addresses are computed in a fundamentally
different way from that used by real mode. Although memory is still
accessed via the segment:offset combination, the meaning of the 80286
segment registers has been altered. In protected mode the segment
registers hold an index into a table, which holds the physical address of
an object in memory. In 80286 jargon, this table is called a segment de-
scriptor table or descriptor table for short. To repeat, in protected mode the
value of a segment register no longer refers to a physical memory
address. Rather, its value is used as an index into a descriptor table. For
this reason, when the 80286 is running in protected mode, the segment
registers are sometimes called selectors.

Each entry in a descriptor table contains at least three items of
information. The first is a 24-bit value that is the base address of the
segment in question. This value points to the start of a segment in
much the same way that the value of a segment register does when the
CPU is executing in real mode. However, since 24 bits are provided, it is
possible to access up to 16 megabytes of memory directly, which sur-
passes the single megabyte limit found in real mode.

The second item of interest stored in the table entry is the size of
the segment. This is a 16-bit value, which means that segments can be
up to 64K in length. In protected mode the size of a segment may vary;
in real mode it is fixed at 64K. The length information is used to pre-
vent one program from accessing memory that it shouldn’t. If an
attempt is made to access memory outside a program’s allocated
memory, the 80286 generates a general protection fault that returns
control to OS/2.

Finally, the table includes an 8-bit access rights entry. These rights
include read/write access, execute only access, present or absent indica-
tion, and a privilege level. It is possible to mark a memory segment for
read only access if it is a data segment or for execute only access if it is
a code segment. The 80286 allows programs to be given different privi-

0OS/2: An Overview 13

lege levels, going from most trusted (level 0) to least trusted (level 3).
0OS/2 uses all the information stored in the access rights field to sup-
port multitasking and virtual memory.

When the 80286 calculates an address in protected mode, it uses the
value of a segment register as an index into a descriptor table. It then
adds the base segment address to the offset to provide the final physi-
cal address. This process is depicted in Figure 1-2. As the address is
being calculated, the access information is being checked. If your pro-
gram attempts to reference memory that it shouldn’t, a general protec-
tion fault will be generated.

Remember that the resolution of a memory address is done for you
by the CPU and requires nothing on your part.

The 80286 maintains three types of descriptor tables: the global de-
scriptor table (GDT), the local descriptor table (LDT), and the interrupt descriptor
table (IDT). In general, the GDT holds address information that is avail-
able to all tasks in the system; the LDT holds address information that

Segment Register

I selector I Descriptor l offset |
Value of the Table
segment register
is used to index (
into descriptor .
table seg_rre
=lactual segment -
offset

actual physical address

Figure 1-2. Address-calculation in protected mode

14 OS5/2 Programming: An Introduction

is local to each task; and the IDT holds address information related to
the interrupt service routines. As stated, OS/2 maintains these tables
automatically. As a rule you don’t need to worry about them while
programming, but knowing their functions is important for a clear
understanding of how OS/2 handles multiple tasks.

The Advantages of Protected-Mode
Addressing

Aside from the fact that a larger amount of memory can be accessed in
protected-mode operation, the use of descriptor tables and the change
in the meaning of the segment registers have several positive effects
that O5/2 capitalizes on to provide a stable and efficient multitasking
environment.

m Because the segment register holds an index rather than an address,
the operating system can move segments about in memory at will by
changing the base segment address in the descriptor table entry.
This is accomplished completely invisibly to the application program
because the program does not “know” what part of memory it is
using. Thus, even while the program is executing, it can be moved
about in memory. This feature is important because it allows tasks
to be swapped in and out of memory. Thus it is possible for OS/2 to
overcommit memory by moving tasks in and out of RAM and storing
them temporarily on disk. This means that you can run programs
that require more RAM than the system has or to run more pro-
grams simultaneously than would normally fit in the system RAM.

m The fact that the size of a segment is stored in the descriptor table
prevents programs from interfering with each-other. Although it is
certainly possible to multitask in real mode, it is very dangerous to do
s0 because programs can access any location in memory. To be stable,
a multitasking environment must have a means of preventing one
program from destroying another program’s code or data. The seg-
ment size entry helps accomplish this.

m The fact that various access rights, including privilege levels, are now
linked with a memory location allows OS/2 to control access both to
itself and to other system resources. Essentially, for code to access
memory it must have equal or higher access privileges. The effect of
privilege levels will be discussed further a little later in this chapter.

05/2: An Overview 15

Call Gates

In the foregoing discussion of memory access under protected-mode
operation it may have occurred to you that a CALL is also affected by
the change in the way the segment register is used. There are two basic
types of CALL instructions: NEAR and FAR. A NEAR CALL is one
that calls code in the same segment as the caller. A FAR CALL calls
code that lies in a different segment from the caller. Whenever FAR
calls are made, there must be some way to determine the actual
address of the routine. This is accomplished by using a call gate, which is
a special type of entry in either the global or local descriptor tables.

A call gate entry contains, among other things, the segment selec-
tor and offset of the called routine. This means that no offset informa-
tion need be known by the calling routine. The only information the
calling routine needs to know to execute a FAR CALL is the index of
the call gate in the descriptor table. As you can probably imagine, this
makes it easy to relocate code inside the memory of the computer, even
while a program is executing. O5/2 simply needs to move a routine and
update its address in the table. Since the index in the table remains the
same, your program never knows that the target routine has been
moved. As is the case with other memory accesses, the calculation of
the actual physical address is performed by the CPU and is invisible to
the programmer.

As was explained in the previous section, accesses to memory are
controlled by privilege level. In a similar fashion, calls to a subroutine
are executed only if the called routine is at the same or a lower privi-
lege level than the caller. This feature is included in the 80286’s pro-
tected-mode operation to prevent one program from interfering with
another. However, a problem arises when a less-privileged routine
needs to call a more-privileged one for legitimate purposes. The 80286
implements a solution to this problem by using call gates. A call gate
can be used to allow a less-privileged routine access to more-privileged
ones. As you will see, this is a very important feature as far as OS/2 is
concerned. _

One field in the call gate’s descriptor table entry is its privilege level.
A call gate may be called only by a program that is at least as privileged
as the gate. However, the gate can “pass along” a call to a more-
privileged routine. (Exactly how this is accomplished by the 80286 is a
bit complicated and not important to programming for OS/2. The
interested reader should refer to the various 80286-related publications

16 OS5/2 Programming: An Introduction

CALL XXX:FAR
Segment Register

L selector —l

Descriptor
Table

=] XXX segment

+
offset

physical address of
routine XXX

Figure 1-3. Using a call gate

by the Intel Corporation.) Essentially, the use of a call gate allows a
more-privileged piece of code to be accessed in a carefully restricted
way by a less-privileged program.

The function of a call gate is illustrated in Figure 1-3.

I/O Privileges

Another feature of the 80286 is its I/O protection. Because the
protected-mode operation of the 80286 was designed for a multitasking
environment, it had to have some way of controlling access to certain
instructions, including input and output instructions. (Without this
control, several different applications could—and probably would—
write to the same devices at the same time, resulting in chaos.) Comtrol
is achieved via a program’s I/0 privilege level (IOPL for short). Although

05/2: An Overview 17

the details are not important for the purposes of this book, the basic
IOPL concept works as follows. The only routines that have access to
IN and OUT instructions —and to the various interrupt instructions —
are the routines that have been granted I/O access. (OS/2 has a facility
that allows your programs to perform I/O operations directly, instead
of using an OS/2 system call, in the few cases where it is really
necessary.)

0S/2 and the Two 80286
Operational Modes

The 80286 mode of operation designed for a multitasking environment
is the protected mode. Hence OS/2 uses this mode and requires all
programs that execute under its control to do likewise. There is, how-
ever, one annoying exception: the DOS emulator.

Although OS/2 is a protected-mode operating system, the OS/2
designers needed to provide what is sometimes called a compatibility path
from the older DOS to OS/2. Toward this end they needed to create a
DOS emulator to run more or less under the control of OS5/2. How-
ever, DOS is a real-mode operating system. Real mode and protected
mode are mutually exclusive; they can’t both be active at the same
time. Here is the solution the OS/2 developers chose: When running a
DOS program, use real mode; when running an O5/2 program, use
protected mode. Although this solution sounds benign on the surface,
it was devilishly difficult to implement, as you will see.

The first problem: Not only are real and protected modes incompat-
ible, but also no instruction exists to switch from protected to real
mode! When the 80286 is first turned on, it is in real mode. This
approach is used to maintain compatibility with the 8086. There is a
way to switch the 80286 into protected mode, but when it was
designed no one thought that, once in protected mode, there would
ever be a reason to switch back to real mode. As it turns out, the only
way to switch from protected mode to real mode is by executing what
amounts to a full system reset!

The second problem: A real-mode program can take full control of
the system, bypassing any operating system that is present in the sys-
tem. As you will soon see, OS/2 must control all system devices if it is
to keep multiple tasks from trying to use the same device at the same
time. This control is achieved largely through the use of the protected
mode’s privilege and I/O protection levels, which do not exist in real

18 O5/2 Programming: An Introduction

mode. Although OS/2 can prevent some types of device request colli-
sions, it cannot stop them all. As part of its solution to this problem,
OS/2 fundamentally treats real-mode programs differently from
protected-mode ones. In fact, the DOS emulator and the programs that
execute under the emulator are given the lower 640K of RAM in the
system. OS5/2 and its applications use RAM from 1 megabyte up. In
this way, no real-mode application can access any protected-mode appli-
cation’s code or data because the largest address reachable by a real-
mode application is 1 megabyte. (It is possible to configure OS/2 so
that no real-mode applications are allowed. In this case the first mega-
byte of RAM is also usable by OS/2.)

OS/2 ESSENTIALS

From a programming perspective, the most important attribute of
O6/2 is its multitasking capabilities. Virtually all differences between
DOS and OS/2, for example, are due either directly or indirectly to
0O65/2’s support of multitasking.

Threads, Processes, and Tasks

The OS/2 design team did multitasking right! OS/2’s tasking model is
based on the simultaneous execution of pieces of code rather than on
the simultaneous execution of programs. In OS/2 terminology, the
smallest unit of execution is called a thread. All programs consist of at
least one thread and may contain several. Hence, it is possibfe for a
single program to have two or more parts of itself executing at the
same time. This means that not only can OS/2 execute two or more
programs at the same time, but that it can also execute two or more
parts of a single program concurrently.

In O5/2 terminology a process and a task are the same and they are
very loosely synonymous to the term program. A process owns various
resources, including such things as memory, files, and threads.

The OS/2 Multitasking Model

As OS/2 is currently implemented, it is designed to share a single
80286 among several threads. It does this by granting each thread a
short amount of CPU time, called a time slice. Although technically
speaking only one thread actually executes at a time, the time slicing is

OS5/2: An Overview 19

so rapid that the threads in the system appear to be running at the
same time,.

OS/2 controls multitasking by using a preemptive, priority-based
scheduler. OS/2 associates a priority with each thread. Higher priority
threads are granted access to the CPU before lower priority ones.
There are three main priority categories. In order of highest to lowest,
they are

s Time-critical
mRegular
Ildle

Time-critical tasks are tasks that must respond immediately to
some event, such as communication programs. There are 32 priority
levels within the time-critical category.

There are really two kinds of regular tasks. When a program is on
the screen, OS/2 gives its threads a foreground priority, which is the
highest priority a regular task can have. This is done to ensure that
interactive sessions always take place without jerky or sluggish
responses. Other regular threads in the system are given background
priority when they are not displayed on the screen. Within this level
there are 32 priority levels. OS/2 dynamically changes the priority of
nonforeground threads at this level to use the CPU most efficiently.

The lowest priority tasks are given idle priority. This level executes
only when there are no higher priority tasks capable of executing.
There are 32 priority levels within this group.

0S/2 always runs the highest priority thread capable of executing.
When two or more threads share the same priority level, they are
granted CPU time slices in a round-robin fashion. You may think that a
high-priority thread will dominate the CPU, but this is not the case
because most programs, even time-critical ones, spend much of their
time waiting for an event to occur. When a thread is waiting, O5/2
stops executing it and runs another. O5/2 also has certain parameters
that determine the longest amount of time a process can be suspended.

A thread inside a process is in one of three mutually exclusive
states: blocked, ready-to-run, or running. Any time a thread is waiting
for something, its execution is said to be blocked. For example, a thread
that is part of an interactive program may be waiting for keyboard
input. Until that input is achieved, the thread can execute no further,

20 OS5/2 Programming: An Introduction

and the execution of that thread is blocked. Blocked threads are not
given CPU time until the event they are waiting for occurs. Once this
happens, the thread is in a ready-to-run state, but it is still not execut-
ing. It resumes execution only when OS/2’s scheduler grants it a slice
of CPU time. If the unblocked thread is of higher priority than the
thread currently being executed, the currently executing thread is
preempted and the unblocked thread is allowed to run. Otherwise, it
must wait until all higher priority tasks are blocked.

The single most advantageous attribute of a thread-based multitask-
ing system is that it allows greater throughput because independent
pieces of your program can execute concurrently. For example, a word
processing program could simultaneously format text for output and
take input from the user. Later in this book, substantial space will be
given to multithread programs.

Interprocess Communication

OS/2 supports several forms of interprocess communication (IPC). These
include pipes, queues, semaphores, signals, and shared memory. Many
devices are sequential in nature; that is, they cannot be used by two or
more threads at the same time. Whenever two or more threads need to
use one of these devices, they must coordinate their activity. The part
of a program that accesses such a device is called a critical section. Before
entering a critical section a thread must make sure that the device
accessed by that section is not already being used by another thread.
This is accomplished by using IPC, and the process is called synchroniza-
tion. You will see several examples of this.

OS/2’s Protection Strategy

As mentioned earlier during the discussion of the 80286, a successful
multitasking operating system must prevent programs running under it
from adversely affecting each other or the operating system itself. In
essence, the operating system must protect programs and itself from
harm. OS/2 achieves this protection by using the 80286’s privilege level
mechanism and protected-mode addressing scheme.

The 80286 supports four privilege levels: level 0 is the most trusted
and level 3 is the least trusted. In OS/2, the core routines, usually called

|

0S5/2: An Overview 21

the kernel, are at level 0. Level 1 is unused at this time. Level 2 contains
the system services, and application programs run at level 3. The only
way to access routines at a more trusted level is through a call gate.
This is the method used by QS/2 to give your programs access to the
various O8/2 services. OS/2 uses this scheme to prevent a program
from accessing any part of OS/2 in an uncontrolled manner.

If a program attempts to access memory outside its currently
defined segments, a general protection fault is generated. OS/2 inter-
cepts this fault and terminates the process that caused it. In this way
one program cannot destroy another’s code or data areas. (Keep in
mind that it is possible for two or more programs to share memory
when that is desirable.)

Because OS5/2 controls the descriptor tables, it can mark certain
segments as read only, which means that programs can read the data in
that segment but not change it. OS5/2 can also mark a segment as exe-
cute only, which allows system routines to be used but not modified.

Finally, OS/2 has control of all [/O devices. This means that, in
general, an application program cannot execute an IN or OUT instruc-
tion or turn interrupts on or off. (In a multitasking operating system
all I/O is interrupt driven; hence a program cannot be allowed to alter
the state of the interrupts.) By denying the use of I/O instructions,
OS/2 prevents two or more programs from accessing the same device
at the same time. (OS/2 can grant a program the ability to perform I[/O
in some special situations.)

Virtual Memory

08/2 takes advantage of the 80286’s virtual memory capabilities. O5/2
can overcommit the memory of the system by swapping unused seg-
ments to disk until they are needed. Although excessive swapping can
bring a multitasking system to a crawl, a small amount of swapping is
hardly noticeable because most programs contain code that is seldom
executed. When a request for memory is made and none is available,
OS/2 examines each segment and swaps to disk the one least recently
used. Should this memory be needed, a memory fault is generated and
0S/2 swaps the segment back in, perhaps removing a different seg-
ment in the process. What is particularly nice about OS/2’s virtual
memory capabilities is that they are performed automatically and do
not require any additional effort on your part.

22 05/2 Programming: An Introduction

THE APPLICATION PROGRAM
INTERFACE

A program accesses O5/2’s system services via the Application Pro-
gram Interface (API). Unlike its forerunner, DOS, OS/2 does not use a
software interrupt scheme to use a system service. Instead the APl is a
call-based interface. In this approach, each OS/2 service is associated with
the name that is used to call it. To use this method any necessary
parameters are pushed onto the stack and the appropriate OS/2 func-
tion is called. For example, the OS/2 function DosSleep is used to sus-
pend the execution of the thread that calls it for a specified number of
milliseconds. Shown in pseudoassembly, this is how DosSleep is called
so that the calling thread suspends for 100 milliseconds:

PUSH 100
CALL DosSleep

Most OS/2 functions return 0 in the AX register if successful.

If you are programming in a high-level language like C, the compiler
puts the parameters to a call on the stack for you. However, if you are
programming in assembler, your programs must do this explicitly.

It is possible to create programs that will execute in both DOS and
OS/2 environments. However, these programs must use only those
system calls that are part of the Family Application Program Interface
(FAPI). This is a very restricted set of functions that are common to
both DOS and OS/2.

DYNAMIC LINKING

The API is implemented in OS/2 by using a procedure called dynamic
linking. Here is how it works. All the functions in the API are stored in a
relocatable format called a dynamic link library (DLL). When your pro-
gram calls an API function, the linker does not add the code for that
function to the executable version of your program. Instead, it adds
loading instructions for that function, such as what DLL it resides in.
When your program is executed, the necessary API routines are also
loaded by the OS/2 loader. (It is also possible to load routines after the
program has started execution.) A dynamic link routine is called a dyn-

link.

0S5/2: An Overview 23

Dynlinks have some very important benefits. First, since virtually
all programs designed for use with O5/2 will use OS/2 functions, the
use of dynlinks prevents disk space from being wasted by the signif-
icant amount of duplicated object code that would be created if the
(0S/2 function code were actually added to each program’s executable
file. Second, updates and enhancements to OS/2 can be accomplished
by changing the dynlink libraries. Thus existing programs automati-
cally make use of the improved or expanded functions. Finally, it is
possible for you to create your own dynlink libraries and let your pro-
grams receive the preceding advantages.

THE PRESENTATION MANAGER

Although not included in OS/2 version 1.0, the Presentation Manager
is a standard part of OS/2 beginning with version 1.1, and all users
with 1.0 received upgrades that included the Presentation Manager.
The Presentation Manager is a top-level graphical interface that resem-
bles Microsoft Windows version 2.0. It supports such things as multiple
overlapping windows, various character fonts, menu selections, and the
mouse. The Presentation Manager will be introduced later in this book,
after you have mastered the basics of OS/2 programming.

THE DOS-0S/2 TUG-OF-WAR

As you have probably gathered from reading this chapter, DOS—and
the DOS emulator—are at odds with OS/2. The resolution of their
incompatibility was not 100 percent achieved. Consider this: High-
performance DOS programs gain that performance by bypassing DOS.
This clearly violates the basic philosophy behind OS/2, in which the
operating system must be in control. Therefore, some DQOS programs
simply will not run under the OS5/2 DOS emulator.

Because of the fact that DOS programs typically perform direct
device I/O, OS/2 allows DOS programs to run only when they are on
the screen (foreground mode). This means that when you are running
a DOS program and an OS5/2 application and you have the O5/2 applica-
tion on the screen, the execution of the DOS program is suspended.
0S/2 allows only one DOS emulator to be active in the system, and it
can run only one DOS program at a time.

24 0OS5/2 Programming: An Introduction

As was mentioned in the API discussion, a subset of the API, called
the FAPI (Family Application Program Interface) can be used to create
programs that execute under both DOS and OS5/2. Although this is
convenient for a small group of applications, it will probably not be
very important in general because the FAPI supports such a restricted
set of OS/2 functions. More likely, separate DOS and OS/2 versions of
programs will continue to exist.

As you have seen, it is possible to insulate DOS applications from
OS/2 applications to a great extent, but not 100 percent. For this rea-
son it is possible for a DOS application to crash the computer it is
running on. (OS/2 is supposed to be crash proof because of the pro-
tected memory scheme, although any bugs in OS/2 could, of course,
cause a system crash.) Because of these types of basic incompatibilities,
the use of the DOS emulator will decline rapidly once new OS5/2-
specific versions of programs begin appearing.

As the title implies, this book is about O5/2 programming. The
main emphasis will be on the OS/2 protected-mode environment, the
API, and the Presentation Manager.

THE OS/2 PHILOSOPHY

Embodied in the functional aspects of OS/2 is the OS/2 philosophy:
0S/2 should provide a stable multitasking environment that is both
flexible and extensible. As you have seen, the 80286 supplies the raw
material to support a stable multitasking environment in which one
program cannot destroy another. Its protected-mode addressing scheme
allows OS5/2 to support dynamic linking, which allows easy modification
of most of O5/2’s code. It also allows new (O5/2 system services to be
added by either Microsoft, IBM, or a third party.

From the programmer’s point of view OS/2 is a giant toolkit. In the
rest of this book you will learn how to access those tools to create
(OS/2 programs.

OS/2 INTERFACING
FUNDAMENTALS

b

This chapter will examine in significa ’n{ftaﬂ several key
points relating to the use of OS/2’s Applicati am Interface (API)
services. The API services are your program'’s gateway to OS5/2. Before
you can begin to write programs that run under OS/2, you need to
understand exactly how to work with the APL.

This chapter begins with a discussion of the OS/2 call-based inter-
face. You will see how to compile (or assemble) and link OS5/2-
compatible programs. Along the way two sample programs illustrate
several important OS/2 interfacing concepts. Finally, you will be intro-
duced to the API dynlink library routines by category.

Although the rest of the examples in this book are in C, the exam-
ples in this chapter are shown in both C and assembly code. The rea-
son for the assembly code examples is that they illustrate the process of
interfacing to OS/2 on the actual machine instruction level. Even if you
will never program for OS/2 using assembler, it is still valuable to
understand exactly what the interfacing process is.

THE OS/2 CALL-BASED
INTERFACE

Your program interacts with O5/2 by using the API dynlink functions.
Chapter 1 mentioned that OS/2’s API functions are accessed via a
CALL instruction, and a very general explanation of the procedure was
given. Here, you will learn in detail how to call the API routines.

25

26 0OS5/2 Programming: An Introduction

The Call Format

Routines in the API (or any dynlink library, for that matter) must be
reached by issuing a FAR call instruction. Remember that a FAR call
instruction is used when the called routine is in a different segment
from the calling routine. (The opposite of a FAR call is a NEAR call,
which is used for intrasegment CALL instructions.) Before issuing the
CALL instruction, however, your program must push onto the stack, in
the proper order, the parameters used by the API service you will be
calling. The OS5/2 API interface supports four different types of
parameters:

byte
word

double word

Ll A

pointer (address)

Before discussing these further, let’s take a short detour and review the
difference between call-by-reference and call-by-value parameter-pass-
ing conventions.

Call-by-Value There are essentially two ways in which a subroutine
can be passed its parameters. The first is call-by-value. Using this method
the subroutine is passed copies of the actual information (values) it
needs. Any modifications the subroutine makes to a parameter’s value
do not affect the calling routine’s copy of the parameter; the subroutine
is always operating on a copy of the original value.

Call-by-Reference Parameters can also be passed to a subroutine
through call-by-reference. In this approach the calling routine passes to
the subroutine the address of (in C terms, a poinfer to) each parameter.
When this method is used, the subroutine indirectly accesses and
manipulates the original data found in the calling routine. Hence
changes to the parameter affect the caller’s copy because the subrou-
tine is actually operating on the caller’s data.

The OS/2 API services require the use of both call-by-value and
call-by-reference. All byte values have only their addresses passed to
the API. A word or double word can be passed either by value or by
reference. If the API service does not need to return information to the

O65/2 Interfacing Fundamentals 27

caller via a word or double word value, call-by-value is used; otherwise,
the parameters are passed by reference. Any complex or variable
length data structures must be passed by reference. Several of the API
services operate on conglomerate data types that are the equivalent of a
C structure. OS/2 does not pass these on the stack; it passes only a
pointer.

Some API services use what is called an ASCIIZ string, which is
simply a null-terminated (ASCII 0) string. When a string of this sort is
required, only its address is passed, not the entire string.

Error Return

As stated in the preceding section, the OS/2 API functions return
information to the calling routine through call-by-reference parame-
ters. However, most of the API services return a success/error code in
the AX register. When an API service is called from a C program, the
value returned in the AX register automatically becomes the return
value of the API routine. In general all the functions return zero when
successful. A nonzero return implies an error.

AN ASSEMBLY CODE EXAMPLE

This short assembly language program illustrates how the two API
services, DosBeep and DosExit, are called. The DosBeep service beeps
the speaker at a given frequency for a given duration. Both parameters
are word values; the frequency is pushed first, followed by the dura-
tion. DosExit is the standard OS/2 program termination function.
Generally speaking, all OS/2 programs must end by calling DosExit. Its
two-word parameters represent an action code and a result code. The
action code is pushed first. If the action code is 0, only the current
thread is terminated. If it is 1, the entire process is terminated. The
value of the result code is returned to OS/2.

The program shown here uses DosBeep to produce a “whooping”
sound by varying the frequency used to call DosBeep from low to high.
The process repeats five times.

A First 0S/2 protected mode program.

; This program causes a "whooping" type sound using
the speaker.

H
;
;
;

PAGE ,132 ; set page dimensions

28 OS5/2 Programming: An Introduction

Set up 16=-bit segments
DOSSEG ; Microsoft segment conventions
; for 08/2 protected mode
; programs

r

-MODEL SMALL ; set model size for program
.286 ; use 80286 instructions
~STACK 300H ; set up 768 byte stack
.DATA
DUR DW 1
FREQ DW 0
TIMES DW 5
.CODE
START: ; beginning of code
EXTRN DOSBEEP:FAR, DOSEXIT:FAR
SPROC PROC FAR A ; declare the main procedure
MORE: Mov FREQ,100 ; starting frequency
AGAIN: ADD FRE@,50 ; frequency increment
PUSH FREQ ; DOSBEEP function parameters
PUSH DUR
CALL DOSBEEP ; call it
cCMP FREQ@,2500 ; upper frequency yet?
JLE AGAIN ; if not, do it again
DEC TIMES ; decrease count on repeats
JGE MORE ; if not zero, make sound again
PUSH 0 ; setup for exit
PUSH 0
CALL DOSEXIT ; call API exit function
SPROC ENDP ; end
END START

To assemble this file you will need an OS/2-based assembler and
linker. One that will work is the Microsoft Macro Assembler version
5.1 (or later). Beginning with version 5.1, Microsoft has included OS/2
support and compatibility in its standard assembler package. If you use
this package, the following commands will assemble and link the pro-
gram. (Assume the program is called WHOOP.ASM.)

MASM WHOOP;
LINK WHOOP,,,DOSCALLS.LIB;

The file DOSCALLS.LIB is the library that contains references to the
dynlink code for the API functions used in the program. (More about
DOSCALLS.LIB in a moment.) No matter whose assembler and linker
you are using, several assembler and linker options may be applicable to

OS/2 Interfacing Fundamentals 29

some of the programs you write, so you must study your user manuals
carefully.

Let’s look closely at this program. First, the DOSSEG command is
used to set up the program’s segments in a manner consistent with
0S/2’s needs. The .MODEL directive tells the assembler the memory
model you are using to compile your program. In this case the small
model is used. The .286 directive lets the assembler know that 80286
instructions should be accepted. Notice that both DosBeep and DosExit
are declared as FAR external procedures. Since both reside in a dynlink
library and not in the program’s source file, the assembler must be told
to generate an external reference for them. Keep in mind that the
EXTRN statement is used when a routine is found in a dynlink library,
a regular library, or a separately compiled file. In this case, DosBeep
and DosExit happen to be dynlink API services. Remember that all
dynlink routines require a FAR call.

All OS/2 programs must define their own stack. This program
creates one that is 300H bytes long. Although it was possible for
sloppy programs to use the DOS system stack on many occasions, this
is not the case with OS/2. Each thread must have its own stack to
support multitasking. Keep in mind, however, that when you are using
a high-level language, such as C, the compiler will automatically set up
a stack for you.

In this simple program, the function DosBeep was assumed to be
successful and its error return code is not examined. DosExit does not.
return a code to the program for obvious reasons. As you will see,
many of the API services will either always work or always work if you
supply correct input. For this reason the error code is often ignored in
the interest of speed. As you will see in subsequent examples, however,
certain API services should always have their return codes examined.

The API functions DosBeep and DosExit are found in dynamic link
libraries. However, to add the correct dynlink loading information for
those services, the linker needs to have the file DOSCALLS LIB speci-
fied on the link line. DOSCALLS.LIB is a special type of library that
contains information about how to load a dynlink routine rather than
the actual code for the routine. This information includes the name of
the routine plus the name of the file in which it is stored. (Remember
that all dynamic link files end with the extension .DLL.) This informa-
tion is put into your .EXE file, and the API services used by your pro-

30 0OS5/2 Programming: An Introduction

gram are loaded when needed. Later in this book you will learn how to
create your own dynlink libraries.

Because OS5/2 is a new operating system, it is going through a
period of frequent revisions and upgrades. Thus it is possible (but not
likely) that certain filenames or function names could be changed in
subsequent versions. For example, a later version of OS/2 might call
DOSCALLS.LIB something else. Be sure to check your user manuals.

In assembly language programs, the names of the API services must
appear in uppercase.

A C PROGRAM EXAMPLE

The C program that follows shows a slightly improved version of the
WHOOP program. In this case, the program continues to make sounds
until a key is pressed. To compile this program you must have a C
compiler that runs under OS/2. Beginning with Microsoft version 5.1,
the Microsoft C compiler can be run under OS/2. To compile the pro-
gram use this command:

CL =Lp WHOOP.C

This causes the program to be compiled and linked, including the
necessary dynlink libraries. The -Lp directive tells the compiler to pro-
duce a protected-mode program capable of being executed under OS/2.
No matter whose C compiler you are using, several compiler and linker
options may be applicable to some of the programs you write, so study
your user manuals carefully.

/* € language demonstration program using DosBeep */
#include <os2.h>

main()
{
register int 1i;

for(;;) {
for(i=100; i<2500; i+=50) €
DosBeep(i, 1); /* sound the speaker */
if(kbhit()) break; /* lLook for keypress =/
b
if(kbhit()) break; /* lLook for keypress here, too */

getch(); /% read and discard the keypress x/

05/2 Interfacing Fundamentals 31

Because C is a high-level language, you call many of OS/2’s func-
tions only indirectly. For example, the DosExit function is called auto-
matically when a C program terminates; you don’t have to call it explic-
itly. Also notice that C’s standard functions like kbhit() and getch() can
be used. These functions in turn access the necessary APl services. As
you will see, there are some API services that you will not usually call
directly, because they have direct parallels in the C standard library.
However, there are circumstances in which you may want to call an API
service even when a high-level language function can perform the same
action because they often allow greater flexibility and control.

In the C environment, the API services are called using their mixed
case version, such as DosBeep. In assembly language, however, the
names must appear only in uppercase.

The header file O52.H must be included with each C program or
module. This file adds to your program all the information required to
use the API services. (Your compiler may call this file something else,
so check your user’s manual.)

C AND THE API PARAMETERS

The following table shows the correspondence between the API data
types and the C data types:

API C

byte char

word unsigned
double word unsigned long
address (type far #)

Because all calls to the API are FAR calls, any address parameters used
in an API call must also be FAR. In C this is accomplished in one of
three ways.

1. You can explicitly define a pointer type as FAR by using the far C
keyword. For example, this creates a FAR character pointer called
ptr:

char far *ptr;

32 O65/2 Programming: An Introduction

2. You can employ a type cast. This method is especially useful in con-
nection with the & operator. For example, this expression generates
a FAR address:

(char far *) &count

3. You can simply compile your program using one of the large code
memory models. If you do this, all addresses are FAR by default.

This book will explicitly declare or cast all pointers to be FAR so that
the code will run correctly under any memory model.

Pascal Versus C
Calling Formats

A high-level language has two ways to push the arguments to a func-
tion on the stack. Pascal, for example, pushes the arguments on the
stack in order from left to right. C normally pushes the arguments in
order from right to left. All the API services must be called using the
Pascal convention. For this reason, Microsoft C (and any other C com-
piler that supports OS/2) includes the function type modifier pascal.
When pascal precedes a function’s definition, the C compiler automati-
cally uses the Pascal calling convention, thus matching with the API
interface. All of the API services are declared as pascal in a C header
file, and this file must be included with each program. In the C pro-
gram just shown, the header OS2.H automatically includes all API
declarations.

Since all calls to the API are FAR calls, each API service must also
be declared to be FAR. Therefore, each API routine must be declared to
be both pascal and far in the header file. For example, the DasBeep
function can be declared like this:

unsigned pascal far DosBeep(unsigned, unsigned);

The API functions are often declared by using user-defined types. For
example, the DosBeep function is declared by Microsoft like this:

USHORT APIENTRY DosBeep(USHORT, USHORT);

0OS5/2 Interfacing Fundamentals 33

In the Microsoft header files USHORT is defined as unsigned and
APIENTRY is defined as pascal far. Both forms mean the same; do not
be confused by the type differences.

The fact that the API routines use the Pascal calling convention
does not imply that Pascal is the best language to use for OS/2 pro-
gramming. Indeed, it is quite the contrary! OS/2 is highly compatible
with C. In fact, C is expected to be the dominant language for OS5/2
development because it allows the greatest control and closest interac-
tion with the APL. C is also the most popular high-level language for
PC software development. (Indeed, this is why it is used for the exam-
ples in this book.) However, for somewhat complex reasons, it was bet-
ter to use the Pascal calling format for the API routines.

One final point has meaning mostly for assembly language pro-
grammers. In the Pascal calling convention, the called routine is
responsible for removing the parameters from the stack. Since the API
services use the Pascal convention, your routines need not remove the
arguments that they pushed onto the stack.

A SHORT WORD ABOUT
.DEF FILES

If you already know something about OS5/2 programming, you may
have heard about .DEF files. Essentially, a .DEF file is a text file that
contains information about a source code file that you will be assem-
bling or compiling. The .DEF files are used mainly to allow the creation
of dynamic link (dynlink) libraries. Their use with nonlibrary code is
optional, and no .DEF files are needed to assemble and run the sample
programs just shown. Also, you do not need a .DEF file to use an exist-
ing dynlink library. You will learn more about .DEF files in the discus-
sion of dynlink libraries.

CODE CONSTRAINTS

Code that is to be run under OS/2 is subject to a few constraints that
did not apply to the old DOS environment.

= First and foremost, your code must be reentrant. A routine is said to
be reentrant when it can be interrupted and executed by a thread

34 O6S5/2 Programming: An Introduction

while it is being used by another thread. In essence, reentrant code
is capable of being used by several threads at the same time.

= Your program cannot enable or disable interrupts, and it must not
issue an INT instruction.

= Your programs must not attempt to alter the contents of a segment
register or to perform segment “manipulations” as was commonly
done when writing DOS programs. Basically, your program should
let OS/2 manage memory.

ANOTHER SIMPLE EXAMPLE

For another example of interfacing to OS/2 via the API call-based
interface, let’s use the VioWrtTTy function to write a string of charac-
ters to the console. The VioWrtTTy function takes three parameters,
which are pushed in this order: the address of the first character in the
string, a word value containing the length of the string, and a word
value that is the handle that identifies the screen. In this case the han-
dle is 0.

When you pass the address of an object on the stack, you push the
segment selector (which will almost always be the DS register) first
and then the offset of the object. In a high-level language like C, this is
done automatically. However, if you are using assembly language you
will have to do it explicitly.

This assembly language program writes the string “Hello OS/2
World” to the console:

; This program writes the string "Hello 0S/2 World" on
; the screen using the VIOWRTTTY API service.

PAGE ,132 ; set page dimensions

; Set up 16-bit segments

DOSSEG ; Microsoft segment conventions
.model SMALL ; set model size for progranm
.286
«STACK 300H ; set up 768 byte stack
-DATA

MESS DB 'Hello 0S8/2 World'

.CODE

0OS/2 Interfacing Fundamentals 35

START: ; beginning of code
EXTRN VIOWRTTTY:FAR, DOSEXIT:FAR
SPROC PROC FAR ; declare the main procedure

push address of MESS

r

PUSH DS ; push segment selector

mov AX, OFFSET MESS ; get offset

PUSH AX ; push it

PUSH 16 ; push Llength of MESS

PUSH 0 ; handle of screen: O

CALL VIOWRTTTY ; call it

PUSH 0 ; setup for exit

PUSH 0

CALL DOSEXIT s call API exit function
SPROC ENDP : end

END START

The same program is shown here using C:

/%
Write the message "Hello 0S/2 World" to the screen
using the VioWrtTTy API service.

*/

#define INCL SUB
#include <osZ.h>

char mess[C17] = "Hello 05/2 World";
main() '
{

VioWrtTTy((char far) mess, 16, D);
3

Notice that the cast char far * is used to ensure that the pointer
mess is passed as a FAR address. If your knowledge of C is a bit rusty,
remember that the name of an array is evaluated by C to be the
address of the first byte of that array. Hence mess is, indeed, a pointer.

Because there are many API services, the header files that contain
their definitions are large and it takes the compiler a long time to read
and process them. For this reason, by default the Microsoft compiler
does not include all parts of the header files. Instead it uses a series of
#ifdef statements to include many of the API service declarations con-
ditionally. The #ifdefs are controlled with these symbols:

36 (OS/2 Programming: An Introduction

Symbol Meaning

INCL__BASE Include all API declarations
INCL_DOS Include OS/2 kernel functions
INCL_SUB Include O5/2 subsystems

INCL.__DOSERRQORS Include OS/2 errors

Therefore, the symbol INCL__SUB is defined to have the VioWrtTTy
declaration (which is a subsystem service) included in the program. The
reason a symbol did not have to be defined in the first C program
example is that some services, including DosBeep and DosExit, are
always included automatically. In the chapters that follow you will learn
which services require which symbol to be defined. (If you are using a
non-Microsoft C compiler, you will have to determine how to include
the API service declarations in your program.)

Keep in mind that a functionally similar C program can be written
by using one of C’s various standard library functions, such as printf(),
instead of calling the API directly. This will be the case with many of
the API services. In something as simple as the preceding program,
using printf() would probably have been a better idea. Most of the
examples in the book are in C because it provides a better means than
assembly programs of presenting and illustrating the API services.
Most programmers will use C to develop OS/2 applications, so it makes
sense to show examples in the language that will actually be used. This
means that APl services that overlap parallel standard library functions
will often be used to illustrate those API services. However, it may be
more efficient to access an API service directly even if a similar C stan-
dard library function exists.

High-performance DQOS software traditionally bypassed the C
standard library functions, as well as DOS itself, in the quest for
greater performance. A similar situation will exist for OS/2 programs.
In several areas you will want to bypass C’s standard library functions
and call the API routines directly to achieve faster run-time execution.
When you call a standard C function that is paralleled by OS/2, your
call to the standard function is generally simply passed along to the
corresponding API service. This means that two calls (one to the stan-
dard function, one to the API) are generated rather than one. When
you call the API directly, however, only one call to the API service rou-
tine is generated. Since calling a routine takes time, for the fastest pos-
sible programs you should call the API directly. Keep in mind, however,
that if several sections of your programs are not time critical, it makes

Q85/2 Interfacing Fundamentals 37

more sense to call the standard functions because they are more port-
able between operating systems and are occasionally easier to use.

THE API SERVICES

Part Two of this book covers the core API services and their use. This
section will introduce the various categories of functions and the spe-
cial subset of the API called the Family API (FAPI) services. The FAPI
routines are the services that are common to DOS and OS/2.

The Major API Categories

The API services can be separated into five broad categories: the basic
0O65/2 kernel, the video subsystem, the mouse subsystem, the keyboard

DosAllocHuge DosExit DosGetSeg
DosAllocSeg DosExitCritSec DosGetShrSeg
DosAllocShrSeg DosExitList DosGetVersion
DosBeep DosFileLack DosGiveSeg
DosBufReset DosFindClose DosHoldSignal
DosCaseMap DosFindFirst DoslnsMessage
DosChdir DosFindNext DosKillProcess
DosChgFilePtr DosFlagProcess DosLoadModule
DosCLIAccess DosFreeModule DosLockSeg
DosClose DosFreeSeg DosMakePipe
DosCloseQueue DosGetCollate DosMem Avail
DosCloseSem DosGetCP DosMkdir
DosCreateCSAlias DosGetCtryInfo DosMonClose
DosCreateQueue DosGetDateTime DosMonOpen
DosCreateSem DosGetDBCSEv DosMonRead
DosCreateThread DosGetEnv DosMonReg
DosCWait DosGetHugeShift DosMonWrite
DosDelete DosGetInfoSeg DosMove
DosDevConfig DosGetMachineMode DosMuxS5emWait
DosDevIOCt] DosGetMessage DosNewSize
DosDupHandle DosGetModHandle DosOpen
DosEnterCritSec DosGetModName DosOpenQueue
DosErrClass DosGetProcAddr DosOpenSem
DosError DosCetPrty DosPeekQueue
DosExecPgm DosGetResource DosPFSActivate

Figure 2-1,

The OS/2 kernel API services

38 S/2 Programming: An Introduction

DosPFSCloseUser DosReAllocHuge DosSetSession
DosPFSInit DosReAllocSeg DosSetSigHandler
DosPFSQueryAct DosResumeThread DosSetVec
DosPFSVerifyFont DosRmdir DosSetVerify
DosPhysicalDisk DosScanEnv DosSleep
DosPortAccess DosSearchPath DosStartSession
DosPTrace DosSelectDisk DosStopSession
DosPurgeQueue DosSelectSession DosSubAlloc
DosPutMessage DosSemClear DosSubFree
DosQCurDir DosSemRequest DosSubSet
DosQCurDisk DosSemSet DosSuspendThread
DosQFHandState DosSemSetWait DosSystemService
DosQFilelnfo DosSemWait DosTimerAsync
DosQFileMode DosSetCP DosTimerStart
DosQFSInfo DosSetDateTime DosTimerStop
DosQHand Type DosSetFHandState DosUnlockSeg
DosQueryQueue DosSetFileInfo DosWrite
DosQVerify DosSetFileMode DosWriteAsync
DosRead DosSetFSInfo DosWriteQueue
DosReadAsync DosSetMaxFH
DosReadQueue DosSetPrty

Figure 2-1. The OS2 kernel API services {(continued)

KbdCharInKbdClose KbdPeek
KbdCustCP KbdRegister
KbdDeRegister KbdSetFgnd
KbdFlushBuffer KbdSetStatus
KbdFreeFocus KbdSetXt
KbdGetFocus KbdShelllnit
KbdGetStatus KbdStringIn
KbdGetXt KbdSynch
KbdOpen KbdXlate

Figure 2-2. The keyboard subsystem services

OS/2 Interfacing Fundamentals 39

MouClose
MouDeRegister
MouDrawPtr
MouFlushQue
MouGetDevStatus
MouGetEventMask
MouGetHotKey
MouGetNumButtons
MouGetNumMickeys
MouGetNumQuekEl
MouGetPtrPos
MouGetPtrShape
MouGetScaleFact

MoulniReal
MouQOpen
MouReadEventQue
MouRegister
MouRemovePtr
MouSetDevStatus
MouSetEventMask
MouSetHotKey
MouSetPtrPos
MouSetPtrShape
MouSetScaleFact
MouShellInit
MouSynch

Figure 2-3.

The mouse subsystem services

VioDeRegister VioPrtSc VioSetCurPos
VioEndPopUp VioPrtScToggle VioSetCurType
VioGetAnsi VioRead CellStr VioSetFont
VioGetBuf VioReadCharStr VioSetMode
VioGetConfig VioRegister VioSetState
VioGetCP VioSavReDrawUndo VioShowBuf
VioGetCurPos VioSavReDrawWait VioWrtCellStr
VioGetCurType VioScrLock VioWrtCharStr
VioGetFont VioScrollDn VioWrtCharStrAtt
VioGetMode VioScrollLf VioWrtNAttr
VioGetPhysBuf VioScrollRt VioWrtNCell
VioGetState VioScrollUp VioWrtNChar
VioModeUndo VioSerUnlock VioWrtTTy
VioModeWait VioSetAnsi
VioPopUp VioSetCP

Figure 2-4. The video subsystem services

40 (OS/2 Programming: An Introduction

subsystem, and the Presentation Manager services. The second part of
this book covers the non-Presentation Manager API services; the third
part introduces the Presentation Manager. The reason for this is sim-
ple: The non-Presentation Manager services represent the core OS/2
functions. You cannot write programs that effectively use the Presenta-
tion Manager services until you understand the fundamental OS/2
routines.

There are 225 API services, not counting the Presentation Manager
routines. These services are shown in Figures 2-1 through 2-4. All the
API function names should be considered reserved and not used for
any other purpose by your program.

DosBeep DosQFileMode VioGetMode
DosChdir DosQVerify VioGetPhysBuf
DosChgFilePtr DosRead VioRead CellStr
DosClose DosRmdir VioReadCharStr
DosDelete DosSelectDisk VioScrLock
DosDevConfig DosSetFHandState VioScrUnLock
DosDevIOCtl DosSetFSInfo VioScrollDn
DosDupHandle DosSetFilelnfo VioScrollLf
DosError DosSetFileMode VioScrollRt
DosFileLocks DosSet Vec VioSerollUp
DosFindClose DosSet Verify VioSetCurPos’
DosFindFirst DosWrite VioSetCurType
DosFindNext KbdCharln VioSetMode
DosMkdir KbdFlushBuffer VioShowBuf
DosMove KbdGet5Status VioWrtCellStr
DosNewSize KbdPeek VioWrtCharStr
DosOpen KbdRegister VioWrtCharStr Att
DosQCurDir KbdSetStatus VioWrtNAttr
DosQCurDisk KbdStringIn VioWrtNCell
DosQFHandState VioGetBuf VioWrtNChar
DosQFSInfo VioGetCurPos VioWrtTTy
DosQFilelnfo VioGetCurType

Figure 2-5.

The API services

OS/2 Interfacing Fundamentals 41

The Family API Services

To enable the writing of programs that will run under both DOS and
0S5/2, Microsoft has identified 65 AFI services that are applicable to
both environments. These services are called the Family API, or EAPI
for short. If your program uses only these services, you can run the
same program under both DOS and OS/2. The FAPI functions are
shown in Figure 2-5.

API SERVICE DESCRIPTION
CONVENTIONS

The proper way to call an API service is shown using C function proto-
type notation. In fact, from a C program, the API services look like any
other C library function. For example, using C prototype declarations,
the proper way to call the DosBeep function is

unsigned pascal far DosBeep(unsigned freq, unsigned duration)

From an assembly code point of view, this declaration tells you to push
the frequency first and then the duration. If you are unfamiliar with C
prototypes, refer to Appendix B.

As you will see in subsequent chapters, some of the API services
require that the address to a data structure be passed. Although
neither the name of the structure nor the names of the fields that
comprise the structure are important to OS/2 —it has no knowledge of
them —they are very important to the C programmer. Because each C
compiler that runs under OS/2 must declare the API services and
define any structures they require, it must name the structures and the
fields. The trouble is that there is no reason why two different com-
piler manufacturers must use the same names when describing the
same structures. (Remember that the API services never “see” the
names, only the data.) The question is which compiler’s naming con-
ventions you choose to follow. At the time of this writing only one C
compiler is available for OS/2: Microsoft C 5.10. Hence this book is
written from the point of view of the Microsoft compiler. References to
structure names and fields will follow the Microsoft naming conven-
tions by default. Your compiler may use different names, but the con-
tent of the structure will be the same. (You can define your own data

—

42 O5/2 Programming: An Introduction

structures, but doing so will result in annoying compile-time warning
messages.) s

One final point: The Microsoft OS/2 header files define several
new type names, using the typedef statement, which are used in the
declarations for the API services. For example, the name USHORT is
another name for unsigned. However, this book shows all type declara-
tions in their native C base types for the sake of generality and the
ability to compile programs successfully with any OS/2-compatible C
compiler.

PROGRAMMING OS/2
API SERVICES

In this section the most important core (non-Presentation Manager)
0O5/2 API services are discussed. Several example programs are
included in each chapter. A solid understanding of the core services is
important for several reasons, not the least of which is to provide sup-
port for such things as device monitors, interprocess communication,
and dynamic link libraries.

43

\

THE SCREEN OUTPUT
SERVICES

Since it is rare to create a useful program that does not display infor-
mation on the screen, it seems logical to begin your tour of the OS/2
API services with those that relate to the screen. These services are
commonly called the Video I/0 subsystem (VIO for short) and are used to
display text on the screen and to control the screen environment.
(Graphics output is handled by the Presentation Manager services.)
The names of all the functions in this subsystem begin with the prefix
Vio. Table 3-1 lists the 43 VIO system services and gives a short de-
scription of each. This chapter covers the most important and com-
monly needed of these screen functions.

You might be wondering at this point why something as conceptu-
ally simple as writing output to the screen requires so many different
services. Part of the answer is that OS/2 gives you a wide range of
options and approaches for writing to the screen. In addition, because
065/2 is a multitasking system, it needs some VIO services to demand
or control access to the screen. '

As you know, the C standard library contains several functions that
perform console output, including printf(). For the most part, when
your program is performing “generic” screen output, it is easier to use
these standard library functions than to call a VIO service. However,
the VIO services allow significantly greater flexibility in the way text is
written to the screen, including such things as displaying text in color
and positioning the cursor. When your program needs to display output
in a special way, you will want to use the VIO services. And, of course,
several VIO functions are not paralleled by the C standard library.

45

46 (OS2 Programming: An Introduction

Note: It is possible to bypass O5/2’s built-in screen services and
access the video hardware directly. The direct control of the video
hardware is not only quite complicated but also seldom necessary or
even desirable. The direct video hardware accessing capabilities were
included in OS/2 because OS/2 has to be “all things to all pro-
grammers.” But their use is not recommended for the vast majority of
programming applications. This chapter deals with the screen services
you will use for most (if not all) of your programming, not with the
ones that allow you to manipulate the video hardware directly.

Fa

VioReadCellStr

Table 3-1. The Video Subsystem Services

Service Function

VioDeRegister Deactivates an alternate set of VIO services

VicEndPopUp Releases control of the screen at the end of a
VioPopUp

VioGetAnsi Returns the status of the ANSI flag

VioGetBuf Returns the address of the logical video buffer

VioGetConfig Returns the configuration of the video hard-
ware components

VioGetCP Returns the current code page

VioGetCurPos Returns the coordinates of the cursor

VioGetCurType Returns the dimensions of the cursor

VioGetFont Returns the current font or font table

VioGetMode Returns the current video mode

VioGetPhysBuf Returns a selector to a video display buffer

VioGetState Returns information about the current video
settings

VioModeUndo Cancels a VioModeWait

VioMode Wait Tells graphics applications when to restore its
video mode

VioPopUp Requests control of the screen

VioPrtSc Prints the screen

VioPrtScToggle Toggles continuous screen printing

Reads character and attribute information

from the screen

VioReadCharStr Reads characters from the screen
VioRegister Activates an alternate set of VIO services
VioSavReDrawUndoe Cancels a VioSavReDrawWait

r

The Screen Qutput Services

47

Table 3-1. The Video Subsystem Services (continued)

VioSavReDrawWait Notifies a process when it is necessary to save
or restore the screen

VioScrLock Prevents other processes from using the screen

VioScrollDn Scrolls part of the screen down

Vio5ScrollLf Scrolls part of the screen left

VioScrollRt Scrolls part of the screen right

VioScrollUp crolls part of the screen up

VioScrUnlock Unlocks the screen

VioSetAnsi Sets the status of the ANSI flag

Vio5etCP Sets the current code page

VioSetCurPos Positions the cursor at the specified coordi-
nates

VioSetCurType Sets the cursor dimensions

VioSetFont Sets the current font

VioSetMode Sets the video mode

VioSetState Sets various display parameters

VioShowBuf Displays the logical video buffer

VioWrtCellStr Writes character and attribute information to
the screen

VioWrtCharStr Writes characters to the screen

VioWrtCharStrAtt Writes characters and attributes to the screen

VioWrtNAttr Writes attributes to the screen

VioWrtNCell Writes the same character and attribute to the
screen

VioWrtNChar Writes the same character to the screen

VioWrtTTy Writes a string to the screen

VIDEO ADAPTERS AND MODES
OF OPERATION

Before approaching the screen services, you need to understand the
various ways in which the video display hardware can function. Several
different types of video adapters are currently available for the PC line
of computers. The most common are the Monochrome Adapter, the
CGA (Color/Graphics Adapter), PCjr, and the EGA (Enhanced Graph-
ics Adapter). The PS/2 line of computers introduced the VGA (Video
Graphics Array) adapter. Together these adapters support 19 different
modes of video operation. The current video mode determines how

48 O5/2 Programming: An Introduction

N

information is displayed on the screen. These video modes are synop-
sized in Table 3-2. As you can see by looking at the table, some modes
are for text and some are for graphics. In a text mode only text can be
displayed. The smallest user-addressable part of the screen in a text
mode is one character. The smallest user-addressable part of the screen
in a graphics mode is one pel. (A pel is the smallest individually accessi-
ble unit for a given graphics mode.)

In all PC, AT, and PS/2 computers, the display hardware uses a
memory-mapped approach to displaying text. In this method a region
of memory is reserved for the screen’s use, and whatever this memory
contains is shown on the screen. This region of memory is commonly
called the video buffer or the video RAM. Exactly how this memory is
organized and where it is physically located depends in part on the cur-
rent video mode. However, unless you decide to bypass OS/2’s screen
services in favor of direct memory access of the video RAM, you will
not need to worry about where the video buffer is located. Since the
screen APl services work only in text mode, the organization of the
video RAM is always the same.

Table 3-2. The Video Modes for the Various IBM Video Adapters

Mode Type Dimensions Adapters

0 Text, blw 40X25 CGA, EGA, VGA
1 Text, 16 colors 40X25 CGA, EGA, VGA
2 Text, blw 80X25 CGA, EGA, VGA
3 Text, 16 colors 80X25 CCA, EGA, VGA
4 Graphics, 4 colors 320200 CGA, EGA, VGA
5 Graphics, 4 gray tones 320X200 CGA, EGA, VGA
6 Graphics, biw 640X200 CGA, EGA, VGA
7 Text, biw 80X25 Monochrome

8 Graphics, 16 colors 160X200 PCir

9 Graphics, 16 colors 320200 PCjr

13 Graphics, 16 colors 320X200 EGA, VGA

14 Graphics, 16 colors 640X200 EGA, VGA

15 Graphics, 2 colors 640X350 ECA, VGA

16 Graphics, 16 colors 640X350 EGA, VGA

17 Graphics, 2 colors 640X480 VGA

18 Graphics, 16 colors 640X480 VGA

19 Graphics, 256 colors 620X200 VGA

The Screen Output Services 49

The Attribute Byte
in Text Mode

In all text modes each character displayed on the screen is associated
with an attribute byte that defines the way the character is displayed.
The attribute byte associated with each character determines the color
of the character, the background color, the intensity of the character,
and whether it is blinking or nonblinking. The attribute byte is orga-
nized as shown in Table 3-3.

Bits 0, 1, and 2 of the attribute byte determine the foreground color
component of the character associated with the attribute. For example,
setting bit 0 causes the character to appear in blue. If all bits are off,
the character is not displayed. Keep in mind that the colors are additive.
When all three bits are on, the character is displayed in white. If you
set two of the bits, either magenta or cyan is produced. The same ap-
plies to the background colors. When bits 4 through 6 are off, the
background is black. Otherwise the background appears in the color
specified.

The attribute value for normal text is 7, the combination of blue,
green, and red. For reverse video, the value of the attribute is 70H, the
combination of background blue, green, and red.

In the early days of microcomputers, the default operation of the
video system displayed characters in full intensity, and you had the
option to display in low intensity. However, when the IBM PC was
released, it worked the other way around. The default video operation
of the PC line is in “normal” intensity and you have the option to dis-

Table 3-3. The Attribute Byte Organization

=
=

Meaning When Set

Foreground blue
Foreground green
Foreground red
High intensity
Background blue
Background green
Background red
Blinking character

NGOk WM HO

50 OS/2 Programming: An Introduction

play characters in high intensity by setting the high-intensity bit.
Finally, you can cause the character to blink by setting bit 7.

As you will see, many of the VIO functions that actually output
characters to the screen also manipulate the attribute byte.

SCREEN VIRTUALIZATION
AND LOGICAL VIDEO BUFFERS

In the OS/2 environment, the screen is virtualized. When you call a VIO
service that writes output to the screen, the information you want dis-
played does not get put directly into the video RAM. Instead it is writ-
ten to a logical video buffer (LVB), which is owned by the process that
performs the call to a VIO service. When the process is in the fore-
ground, OS5/2 automatically maps the contents of the LVB into the
physical video buffer. However, when the process is in the background,
output is simply held in the LVB until that process has access to the
screen. In this way OS/2 is able to prevent background processes from
writing to the screen when they are not supposed to.

Each process is assigned an LVB when it begins executing. Each
buffer is separate from other LVBs in the system. Since the VIO screen
services apply only to text mode operation, the LVB is applicable only
to text mode. If you want to use a graphics mode, you should use the
Presentation Manager routines. Keep in mind that the LVB is structur-
ally equivalent to the physical video buffer.

In the rest of this book, when a function is said to “write to the
screen,” remember that in most cases it is technically writing to its

LVB.

THE VIDEO BUFFE
ORGANIZATION

The text screen video\k&v ferx(gffher pl;hysma] or logical) is organized in
pairs of bytes. The eve numbered b:ytes hold the character informa-
tion, and the odd- numbere&bﬁeg hold the attribute values.

VIO HANDLES

Each VIO service requires that the number of the device it is to operate
on be passed. This number is called a handle. As OS/2 is currently
implemented, all VIO device handles must be 0. However, the handle

The Screen Qutput Services 51

must be passed to all VIO routines to allow for possible future
enhancements of OS/2.

Note: In OS5/2 many handles are represented by 16-bit quantities. For
most OS/2-compatible C compilers at this time, an unsigned integer is
16 bits wide. However, it is conceivable that future C compilers specifi-
cally designed for the 80386 processor will use 32-bit unsigned inte-
gers. For this reason you may want to declare all handles as unsigned short
(as is done in this book), which will ensure that a 16-bit integer is
generated. (It is remotely possible that your C compiler will generate
an 8-bit variable when the short modifier is used. In that case you
would not want to use the short modifier, so check your user manual.
If your compiler complies with the draft ANSI standard, you will have
no trouble.)

THE VioWrtTTy SERVICE

By far the simplest, if least powerful, VIO service is VioWrtTTy, which
outputs a string to the screen at the current cursor position. You saw a
brief example of it in Chapter 2. Let’s look at it in some detail here.
The prototype for VioWrtTTy is

unsigned VioWrtTTy(char far * str, unsigned len, unsigned short
handle);

where str is a pointer to the first byte of the string to be displayed, len is
the length of the string, and handle is the device handle for the screen,
which must be zero.

VioWrtTTy writes the specified string beginning at the current cur-
sor position and positions the cursor after the last character written.
(VioWrtTTy is the only screen function that updates the cursor posi-
tion.) It recognizes such things as carriage returns, linefeeds, and tabs.
Keep in mind that when you want VioWrtTTy to perform a carriage
return-linefeed operation you must imbed those characters into the
string. You cannot simply use the newline character as you would if
you were using printf(), for example. The following program illustrates
how to use VioWrtTTy:

52 OS/2 Programming: An Introduction

/% Demonstration of VieWrtTTy. */
#define INCL_SUB
#include <os2.h>

main()
€
char sC801;

strepy(s, "this is a ");
VioWrtTTy((char far *) s, strlen(s), 0);

strepy(s, "test\n");
VioWrtTTy{((char far %) s, strlen(s), 0);

strcpy(s, "this is a second test\r\n");
VioWrtTTy((char far *) s, strlen(s), 0});

strcpy(s, "this is a third test\r\n");
VioWrtTTy((char far *) s, strlen(s), 0);

*

The output from this program will look like this:

this is a test
this is a second test
this is a third test

If you are programming in- C, you will probably want to use printf()
rather than VioWrtTTy because it is easier to use and VioWrtTTy does
not add any greater functionality. However, there may be an exception
to this rule, as described in the next section. '

Note: As was mentioned in Chapter 2, because of the way the Micro-
soft version 5.10 C compiler has organized its OS/2 header files, you
must define INCL_SUB at the start of each program for the VIO sub-
system prototypes and types to be read into your program. If you are
using a different type of C compiler, this statement may not be
necessary.

VIO SERVICES VERSUS
I/O REDIRECTION

You must understand one very important point about the VIO ser-
vices: The output from them cannot be redirected. For example, if the
program in the preceding section is called TEST, this command line will

The Screen Qutput Services 53

not function as expected.

TEST >0UT

The file OUT will be created, but it will contain nothing. The program
still writes its output to the screen. If you want to create redirectable
output, you must use a file system service such as DosWrite, which
will be described in Chapter 6.

THE VIO SCREEN OUTPUT
SERVICES

Aside from VioWrtTTy there are six VIO services that write text to
the screen. Let’s take a look at each of them.

VioWrtCellStr

Although the VIO screen services are not hierarchical, VioWrtCellStr
can be thought of as the lowest-level screen output function. VioWrt-
CellStr writes a string of character-attribute pairs to the screen at the
specified location. OS/2 refers to a character-attribute pair as a cell.
Keep in mind that a string of cells is not the equivalent of a C character
string. A cell string is not null terminated, for example. A cell string is
illustrated in Figure 3-1.

Note: Remember that when the video hardware is in text mode, the

video display buffer (and each process’s logical video buffer) is orga-

nized in the same fashion as the cell string: Even-numbered addresses

hold the character, odd-numbered addresses contain the attribute.
The prototype for VioWrtCellStr is

unsigned VioWrtCellStr(char far * cell _str, unsigned len, unsigned
row, unsigned col, unsigned short handle);

where cell__str is the array of cells to be displayed, and len is the length
of the string in bytes. The parameters row and col specify the row and
column coordinates of the location at which the string will be written.
The handle parameter must be 0.

54 OS5/2 Programming: An Introduction

attributes

characters

Figure 3-1. A cell string containing the word HELLO using normal video
attributes

The sample program shown here outputs a very small cell string
that contains the letter A. It is displayed first in normal video and then
in reverse video.

/* This program demonstrates the VicWrtCellStr. #=/

#define INCL_BASE
#include <os2.h>

main()
{
char ¢[4];
/% write an A in normal and reverse video %/
cl0] = "a';
cf11 = 7; /* normal video */
cC2] = '"A';
cC3] = 0x70; /* reverse video */

VioWrtCellstr(c, 4, 10, 10, D);

It is important to understand that VioWrtCellStr neither cares
about nor modifies the current cursor location. In fact, of all the VIO
screen output services, only VioWrtTTy updates the cursor. The rea-
son for this is simple. Updating the cursor takes time. Since the API
services are designed to be as fast as possible, the designers of O5/2
decided to decouple the cursor position from most of the output rou-
tines and let the programmer move the cursor about manually. This

The Screen Output Services 55

makes a lot of sense because most applications display information over
a large area of the screen but don’t generally need to move the cursor
very often. (One of the examples in this chapter shows how to position
the cursor manually.)

If you have programmed in a DOS environment, you will really
appreciate how fast the OS/2 screen services are. The DQS character
screen output routines are notoriously slow. However, the QS/2 ser-
vices are nearly as fast as direct hardware-accessing methods.

One final point: OS/2 does not have a VIO function that simply
outputs one character (or cell). To do this, you must call VioWrtCellStr
(or one of the other screen output services) with a string consisting of
one character attribute, which, of course, works fine.

VioWrtCharStr

You will often want to display characters on the screen using the exist-
ing screen attributes. For example, the default attribute is normal video
(7) and for a great many applications, this is the attribute desired. So
that you may display characters using the existing display attributes,
OS5/2 supplies the VioWrtCharStr service. Its prototype is

unsigned VioWrtCharStr(char far * str, unsigned len, unsigned row,
unsigned col, unsigned short handle);

where st is the string to write and len is the length of the string. The
string is written to the location specified by row and col. The value of
handle must be 0. Although str does not need to be null terminated, it
can be. This means that you can call VioWrtCharStr using standard C
strings if you like.

This short program uses VioWrtCharStr to write a string at loca-
tion 3,5:

/* This program demonstrates the VioWrtCharStr. =/
fidefine INCL_BASE
#include <o0sZ.h>

char sC80] = "this is a test";

main()

{
/* Write a string to the screen */
VioWrtCharStr(C(char far*) s, strlen(s), 3, 5, 0);

56 (S5/2 Programming: An Introduction

VioWrtCharStrAtt

You often need to output text with a constant attribute. For example,
you might want to prompt a user in blue text or show negative
numbers in red. To accomplish this task OS/2 includes VioWrtChar-
StrAtt, which works just like VioWrtCharStr except that it allows you
to specify a common attribute. Its prototype is

unsigned VioWrtCharStrAtt(char far *str, unsigned len, unsigned
row, unsigned col, char far *attr, unsigned short handle);

where str is the string to write and len is the length of the string. The
string is written to the location specified by row and col. The value
pointed to by attr is the attribute that will be associated with each
character in the string. The value of handle must be 0.

The following sample program displays its message in red letters on
a blue background. The number 20 is derived from Table 3-3. (Red uses
bit 2, which is the decimal value 4; blue background uses bit 4, which is
the decimal value 16.)

/* This program demonstrates the VioWrtCharStrAtt. */

#define INCL_BASE
#include <os2.h>

main{)

char sC80];
char attr;

strecpy{(s, "this will be printed in red on blue'");
attr = 20;

VioWrtCharStrAtt((char far *) s, strlen(s), 10, 0,
(char far *) &attr, 0);

VioWrtNCell, VioWrtNChar,
and VioWrtNAttr

Sometimes you want to write the same cell, character, or attribute sev-
eral times. OS/2 uses VioWrtNCell, VioWrtNChar, and VioWrtNAttr
to accomplish these types of operations. Their prototypes are

unsigned VioWrtNCell(char far *cell, unsigned count, unsigned row,
unsigned col, unsigned short handle);

The Screen Qutput Services 57

unsigned VioWrtNChar (char far *ch, unsigned count, unsigned
row, unsigned col, unsigned short handle);

unsigned VioWrtNAttr(char far *attr, unsigned count, unsigned
row, unsigned col, unsigned short handle);

Both ¢k and attr are byte values, but cell is a 2-byte character-attribute
combination. In each case, count is the number of times the cell, charac-
ter, or attribute is to be written, beginning at location row, col. As
always, handle must be 0.

This program demonstrates how to call these services. The
VioWrtNCell call writes ten Qs in reverse video. The VioWrtNChar
call writes ten #s using the existing video attribute. Finally, VioWrt-
NAttr changes the attribute of ten characters to reverse video.

/* This program demonstrates the VioWrtNCell,

VioWrtNChar, and VioWrtNAttr.
*/

f#idefine INCL_BASE
#include <osZ2.h>

main()

{
char celll2];
char attr;

char ch;

attr = Ox70; /* reverse video */
ch = "#';

cellLL[D] = 'q*;

cellC11 = 1; /% blue */

VioWrtNCell((char far %) cell, 10, 10, 0, 0);
VicWrtNChar((char far *) &ch, 10, 11, 0, 0);
VioWrtNAttr({char far *) &attr, 10, 12, 0, 0);

CURSOR POSITIONING

0OS5/2 supplies two services that operate on the cursor. The first, called
VioSetCurPos, is used to set the current cursor location. The second,
called VioGetCurPos, is used to return the coordinates of the current
cursor position. Their prototypes are

unsigned VioSetCurPos(unsigned row, unsigned col, unsigned short
handle);

58 5/2 Programming: An Introduction

unsigned VioGetCurPos(unsigned far *row, unsigned far =col,
unsigned short handle);

For VioSetCurPos, the parameters row and col specify the location of
the cursor. For VioGetCurPos, row and col are pointers to variables that
will contain the current location of the cursor when the call returns. In
both cases handle must be 0.

This short program demonstrates VioSetCurPos and VioGetCur-
Pos. It first prints diagonal Xs across the screen and then reports the
cursor’s final position.

/* This program demonstrates the cursor position service. */
#define INCL_SUB
#include <o0s2.h>

main()
{
unsigned i, j;

/% print some Xs diagonally on the screen */
for(i=0; 9<24; i++)
for(j=0; j<50; j+=5) {
VieSetCurPos(i, j+i, 0);
printf("%c", "X");
b

/* now, display coordinates of the final cursor position #*/
VioGetCurPos((unsigned far *) &i, (unsigned far *) &j, 0);
printf("\ncursor is at: %d, ¥%d\n", i, j);

SCREEN SCROLLING
FUNCTIONS

OS/2 provides four services that let you scroll all or part of the screen.
VioScrollDn scrolls the screen down, VioScrollLf scrolls the screen
left, VioScrollRt scrolls the screen right, and VioeScrollUp scrolls the
screen up. The prototypes for these services are

unsigned VioScrollDn(unsigned toprow, unsigned leftcol, unsigned
bottomrow, unsigned rightcol, unsigned num, char far =cell,
unsigned short handle);

The Screen Qutput Services 59

unsigned VioScrollLf(unsigned toprow, unsigned leftcol, unsigned
bottomrow, unsigned rightcol, unsigned num, char far *cell,
unsigned short handle);

unsigned VioScrollRt(unsigned toprow, unsigned leftcol, unsigned
bottomrow, unsigned rightcol, unsigned num, char far =*cell,
unsigned short handle);

unsigned VioScrollUp(unsigned toprow, unsigned leftcol, unsigned
bottomrow, unsigned rightcol, unsigned num, char far =cell,
unsigned short handle);

Here, the rectangle to be scrolled is defined by toprow, leftcol and bottom-
row, rightcol, The number of lines (in up and down scrolling) or spaces (in
left and right scrolling), is specified by num. The character and attribute
of the space that is scrolled in are specified by cell. You generally want
this to be a normal video space character. Finally, handle must be 0.

You can scroll the entire screen by specifying the upper left and
lower right coordinates of the screen. Scrolling only a portion of the
screen leaves untouched the information outside the scrolled area.

You can clear the specified area by calling one of the scrolling func-
tions with num having a value of -1.

This sample program demonstrates all the scrolling services. Notice
that the function clrscr() has been created using VioScrollUp. The
program begins by filling the screen with the uppercase alphabet and
digits. It then scrolls the entire screen to the right two places. Next it
scrolls a portion of the screen to the left each time you press a key until
you press Q. This causes the program to scroll the area to the right with
each key press. Each time you press Q, a different direction is used until all
four have been tried. Sample output from this program is shown in Figure
3-2.

/* This program demonstrates the scrolling services., */
fidefine INCL BASE

#include <os2.h>

void clrscr(void);

char sC801 = "ABCDEFGHIJKLMNOPQRSTUVWXYZO123456789";

main()

{
register unsigned i;
char spacel2], ch;

60 OS5/2 Programming: An Introduction

clrscr();

/* Put some stuff on the screen. */

for(i=0; i<25; i++) {
VioWrtCharStr((char far*) s, strlen(s), i, 0, 0};
VioWrtCharStr((char far*) s, strlen(s), i, strlen(s), 0);

/* Scroll the entire screen right two spaces, filling
with spaces.

*/

spacel0] = ' ';

spacel1] = 7; /% normal char */

VioScrollRt(0O, 0, 24, 79, 2, (char far *) space, 0);

/* Now, scroll a part of the screen to the Left each time
; a key is pressed. Press 'q' to quit.

*

do {
VioScrollLf(10, 10, 15, 40, 1, (char far *) space, 0);
ch = getch(); .

} while(ch!="qg");

/% Now, scroll that part of the screen back to the right
with each keypress. Press "q" to quit.

*/

do {
VioScrollRt(10, 10, 15, &40, 1, (char far *) space, 0);
ch = getch();

> whileCch!='g");

/* Now, scroll that part of the screen up
with each keypress. Press 'g' to quit.

*/

do {
VioScrollup(C1D, 10, 15, 40, 1, (char far *) space, 0);
ch = getch();

Y while(ch!="q");

/% Now, scroll that part of the screen down
; with each keypress. Press 'q"' to guit.
*
do {
VioScrollon(1D, 10, 15, 40, 1, (char far %) space, 0);
ch = getch();
} whileCch!="q");
b

/* A simple way to clear the screen by filling
it with spaces.

*/
void clrscr()
{

char spacel2];

spacel0] = ' *;

spacel1] T

VioScrollup(0, 0, 24, 79, =1, (char far *) space, 0);
b

The Screen Qutput Services 61

ABCDEFGHIJKLMNOPQRSTUVWXYZ012345678%ABCDEFGHIJELMNOPQRSTUVWXYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWEYZ0123456789
ABCDEFGHIJRLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWEYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWIYZ0123456789
ABCDEFGHIJRLMNOPQRSTUVWIYZ0123456789ABCDEFGHIJEKLMNOPQRSTUVWEYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWIYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWIYZ0123456789
ABCDEFGH DEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGH DEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGH QRSTUVWXIYZ0123456789ABC DEFGHIJKLMNOPQRSTUVWIYZ0123456789
ABCDEFGH QRSTUVWXYZ0123456789ABC DEFGHIJELMNOPQRSTUVWXYZ0123456789
ABCDEFGH QRSTUVWIYZ0123456789ABC DEFGHIJKLMNOPQRSTUVWXIYZ0123456789
ABCDEFGH DEFGHIJKLMNOPQRSTUVWEYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWEYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWIYZ0123456789
ABCDEFGHIJEKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWIYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWIXYZ0123456789
ABCDEFGHIJEKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWIYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWIYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
ABCDEFGHIJRLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWEYZ0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJELMNOPQRSTUVWXYZ0123456789

Figure 3-2. Sample output from the scrolling program

EXAMINING AND CHANGING
THE VIDEO MODE

Up to this point, you have been using the default text mode of the
system. In fact, the preceding sample programs simply assumed that
the computer was currently using an 80 by 25 text mode. However, in
actual programming situations you will probably want to know pre-
cisely what video mode is being used or to have your program explicitly
set the mode it requires. To satisfy these operations OS/2 supplies the
VioGetMode and VioSetMode services. Their prototypes are

unsigned VioGetMode(VIOMODEINFQO far *data, unsigned short
handle);

unsigned VioSetMode(VIOMODEINFO far *data, unsigned short
handle);

Here data is a pointer to a structure that contains information about the

62 5/2 Programming: An Introduction

video mode. VIOMODEINFO is the name of the structure type
defined by Microsoft, as shown here:

typedef struct__VIOMODEINFO {
unsigned cb;
unsigned char fbType;
unsigned char color;
unsigned col;
unsigned row;
unsigned hres;
unsigned vres;
unsigned char fmt__ID;
unsigned char attrib;

VIOMODEINFO;

The cb field holds the length of the structure and is passed to both
VioGetMode and VioSetMode. The rest of the fields are set by your
program when VioSetMode is called or are set by OS/2 when Vio-
GetMode is called. Let’s look at these now.

The FbType field is a bit-map of which only the first three bits are
of interest (although later versions of OS/2 can expand this). The bits
are encoded as shown here:

» number of bytes in struct */
* base type */

* number of colors #/

» number of columns */

» number of rows */

» horizontal resolution */

= vertical resolution */

* format ID #/

Bit Value Meaning

A monochrome adapter is installed.
A color adapter is installed.

The system is in a text mode.

The system is in a graphics mode.
Color burst is enabled.

Color burst is disabled.

NN H OO
HOoOHORO

The color field contains the number of colors supported by the cur-
rent (or requested) mode. This number is specified as a power of two.
For example, if color contains a 1, two colors are supported. If it con-
tains a 4, 16 colors are supported.

The fields row and col are used to set or return the number of text
rows and columns supported.

The fields hres and vres are used to set or return the horizontal
and vertical resolution (in pels).

Note: Remember that the structure type name and field names are
shown using the Microsoft naming conventions. Your compiler may
use different names.

The Screen Qutput Services 63

The most important thing to understand about video modes in
06S/2 is that they have been virtualized by the system. That is, there is
no concept of requesting mode 3, for example, by using a BIOS call. (In
fact, the BIOS call is not usable by OS/2.) Instead, to set the video
mode you load the information about the desired mode into the VIO-
MODEINFO structure and call VioSetMode. If OS/2 can set the
screen to the mode you desire, VioSetMode does so and returns 0.
Otherwise it returns an error message. Approaching the video mode in
this way means that your program does not have to deal with mode
numbers. You need think only in terms of general descriptions.

The following program displays the status of the current video
mode, sets the screen to 43-line mode, and finally displays the status of
the 43-line mode. (This program requires an EGA or VGA adapter.)

/* This program displays the current screen mode and
sets the screen to 43-Line mode.
*/

#define INCL_SUB

void showmode(void), setmode(void);
#include <o0s2.h>

main()

{
showmode () ;
setmode();
showmode () ;

b

void showmode()
{
VIOMODEINFO m;

m.cb = sizeof m; /* must pass size of struct */

VioGetMode (C(VIOMODEINFO far *) &m, 0);

m.fbType & 1 ? printf("graphics adapter\n”):
printf("monochrome adapteri\n');

m.fbType & 2 ? printf("graphics mode\n")
printf("text mode\n™);

m.fbType & & ? printf("no color burst\n")
printf("color burst\n™);

printf("%d colors\n", m.color);

printf("%d columns %d rows\n", m.col, m.row);

printf("%d h=res #%d v-res\n\n", m.hres, m.vres);

b
void setmode ()
{
VIOMODEINFO m;

m.cb = sizeof m; /* must pass size of struct */

64 OS5/2 Programming: An Introduction

/* get the current mode setting */
VicGetMode ((VIOMODEINFO far *) &m, 0);

/* now, set the mode to 43 lines */
m.fbType = 1;

m.row = 43;
m.hres = 640;
m.vres = 350;

if(VioSetMode ((VIOMODEINFO far =) &m, 0))
printf("Incompatible mode change attempted.\n");

REQUESTING VIDEO ADAPTER
CHARACTERISTICS

Because of OS/2’s virtual screen interface your program will rarely
need to know precisely what type of video hardware is actually
installed in the system. Should the need arise, however, OS/2 provides
VioGetConfig, which returns the hardware configuration of the video
adapter. Its prototype is

unsigned VioGetConfig(unsigned R, VIOCONFIGINFO far *data,
unsigned short handle);

where R is reserved and must be 0. The parameter data is a pointer to a
structure of type VIOCONFIGINFO, which holds the video adapter
configuration when VioGetConfig returns. The VIOCONFIGINFO
structure type is defined as

typedef struct — VIOCONFIGINFO {

unsigned cb; |* size of structure */

unsigned adapter; [+ adapter type */

unsigned display; [+ display type */

unsigned cbMemory; [* size of adapter video RAM */
} VIOCONFIGINFO;

The cb variable must be loaded with the size of the structure prior to
the call to VioGetConfig. The adapter variable holds the type of video
adapter upon return. It is encoded like this:

The Screen Output Services 65

Adapter Value Adapter Type

0 Monochrome
1 CGA

2 EGA

3 VGA

7 8514 A

Upon return from the service the display variable holds a code indicat-
ing the type of monitor attached to the system. It is encoded like this:

Display Value Display Type

Monochrome

Color

Enhanced color

PS/2 8503 monochrome
PS/2 8513 color

PS/2 8514 color

G N = O

Finally, the cbMemory variable holds the number of bytes of RAM
available on the video adapter.

The handle parameter must be 0.

The following program displays the video hardware configuration of
‘your system:

/* Display the video display hardware configuration. =*/
#define INCL_SUB
#include <os2.h>
main()
{
VIOCONFIGINFO c;
c.th = sizeof ¢;

VioGetConfig(D, (VIOCONFIGINFO far #*) &c, 0);

sWwitch(c,adapter) {
case 0: printf("Monochrome ");

break;

case 1: printf("CGA ")
break;

case 2: printf("EGA ");
break;

case 3: printf("VGA ");
break;

66 O5/2 Programming: An Introduction

case 7: printf("8514A ");
3

printf("adapter\n");

switch{c.display) {
case 0: printf("Monochrome ");

break;

case 1: printf("Color ");
break;

case 2: printf("Enhanced color ");
break;

case 3: printf("PS/2 8503 monochrome ");
break;

case 4: printf("PS/2 8513 color ");
break;

case 5: printf("P5/2 8514 color ");

T
printf("display\n");

printf("%lu bytes of memory on video adapter\n", c.cbMemory);
3

READING CHARACTERS FROM
THE SCREEN

Because the screen is memory mapped, it is possible to read informa-
tion from it. O5/2 provides two services for this purpose: VioRead-
CellStr and VioReadCharStr. The prototypes of these functions are

unsigned VioReadCellStr(char far *cellstr, unsigned far *length,
unsigned row, unsigned col, unsigned short handle);

unsigned VioReadCharStr(char far *str, unsigned far *length,
unsigned row, unsigned col, unsigned short handle); '

VioReadCellStr reads both character and attribute information from
the screen. VioReadCharStr reads only characters. Here cellstr is a point-
er to an array that holds the character and attribute information. The
str parameter is a pointer to a string that holds characters only. For
both functions, length is the length of the buffer in bytes. (Remember
that cells require two bytes per entry.) The location of the screen from
which these services begin reading information is specified by row and
col, and, as always, handle must be 0.

Information is read from left to right and top to bottom until the
specified number of screen locations has been read. This means, for

example, that you can read the entire screen using only one VioRead-
CharStr call.

The Screen Qutput Services 67

This program uses VioReadCellStr and VioWrtCellStr to move
what is on the top half of the screen to the bottom. It operates by
copying the top half of the screen into a buffer, clearing the screen, and
then copying the contents of the buffer to the bottom half of the
screen. You will be surprised by how fast the VIO services accomplish
their jobs.

/* This program uses VioReadCellStr and VioWrtCellStr to move

u?at is on the top half of the screen to the bottom.
*

#define INCL SUB
#include <os2.h>
void clrscr();

main()

{
unsigned size;
char bufl[20003;

size = 1920; /% 80 % 12 % 2 =*/
if(VioReadCellStr((char far #*) buf, (unsigned far *) &size,

0, 0, 0
printf("error in VioReadCellStr call\n");
clrscr(Q);
VioWrtCellStr((char far *) buf, size, 12, 0, 0);

/* A simple way to clear the screen by filling
it with spaces.
*/
void clrscr()
{
char spacel2];
spacel0] v 1
spacel1] E
VioScrollUupC0, 0, 24, 79, =1, (char far *) space, 0);
>

’

non

A somewhat more useful program can be created by using Vio-
ReadCellStr. The program that follows saves or restores the screen to
or from a disk file. It recognizes the two command line parameters: S
and R. Assuming that the program is called SAVE, SAVE S saves the
screen and SAVE R restores it. The contents of the screen are stored in
a file called SCREEN. Notice that the program first calls VioGetMode
to determine the dimensions of the screen so that it knows how big to
make the buffer that holds the screen. Because of the virtualization of
the screen interface, you can write programs that operate correctly in a

68 (OS/2 Programming: An Introduction

wide variety of video modes. In this case the program automatically
figures out how big to make the buffer by calling VioGetMode and
using the row and column dimensions.

/* This program uses VioReadCellStr and VioWrtCellStr
to save and restore the screen.
*/

#define INCL_SUB

#include <o0s2.h>
#include <stdlib.h>
#include <stdio.h>

void clrser(d;

void save(char *buf, unsigned sizel;
void restore(char *buf, unsigned size);
unsigned checkmode(void);

main(int argc, char *argvl1)

{
unsigned size;
char *buf;
ifCarge!=2) {
printf("usage: scr save/restore\n");
exit(1);
¥
size = checkmode(); /* see how big a buffer to get =*/
if(1(buf = (char *) malloc(size))) {
printf("allocation error™);
exit(1);
¥
if(tolower{*xargvlL1l}=="'s') {
if(VioReadCellStr((char far *) buf, (unsigned far *) &size,
0, 0, 0
printf("error in VioReadCellStr call\n'");
save(buf, size);
if(tolower(*argv[11)=="r") {
restore(buf, size);
clrscr();
VioWrtCellStr((char far *) buf, size, 0, 0, 0);
5
¥

/* A simple way to clear the screen by filling
it with spaces.
*/
void elrscr()
{
char spacel2];

spacel0]
spacel1]

72

The Screen QOutput Services 69

VieScrollUp(O, 0, 24, 79, -1, (char far *) space, 0);

¥

unsigned checkmode ()

{
struct VIOMODEINFO m;
m.cb = sizeof m; /* must pass size of struct =*/
VioGetMode((struct VIOMODEINFC far %) &m, 0);
return m.col*m.row*2;

b

/* Save the screen buffer to a disk file called SCREEN. =/
void save(char *buf, unsigned size)}

FILE *fp;

ifC! (fp=fopen("screen", "wb"))) {
printf("cannot open SCREEN fileln");
exit(1);

b

furite(buf, size, 1, fp);
fclose(fp);
¥

/* Restore the previous contents of the screen. */
void restore(char *buf, unsigned size)
{

FILE *fp;

if(!(fp=fopen{"screen", "rb"))) {
printf('"cannot open SCREEN file\n"};
exit(1);

s

fread(buf, size, 1, fp);
fclose(fp);

ACCESSING THE LOGICAL
VIDEO BUFFER

So far the screen services you have been using have been completely
under the control of OS/2. When you performed screen output, OS/2
intercepted your output, placed it into a logical video buffer (LVB), and
actually displayed the contents of the buffer on the screen as needed
and allowable (which is generally what you want to happen). However,
your program can directly access the logical video buffer and manually
control when the buffer is displayed on the screen (assuming that the
process that manipulates the LVB is in possession of the screen). Doing
this still leaves OS5/2 in control—just not as completely. To accomplish

-

70 OS/2 Programming: An Introduction

these operations, OS/2 supplies the functions VioGetBuf and Vio-
ShowBuf. Their prototypes are

unsigned VioGetBuf(char far *bufptr, unsigned far * size, unsigned
short handle);

unsigned VioShowBuf(unsigned offset, unsigned size, unsigned
short handle);

VioGetBuf returns a far pointer, in bufptr, to the LVB owned by the
calling process. On return the parameter size holds the size, in bytes, of
the buffer. As always, handle is 0.

VioShowBuf updates the physical display buffer with the current
contents of LVB beginning with the offset byte from the beginning of
the buffer and extending for size bytes. The handle parameter must be 0.

The main (perhaps only) reason that you might want to access the
LVB directly and manually control when that buffer is copied to the
physical video buffer is to allow your program to construct full or par-
tial screens in the background, perhaps using a separate thread of exe-
cution, and then very rapidly swap them into view. To see how this
process works, this simple program fills the first 1000-character posi-
tions in the LVB with Xs, waits for a key press, and then displays the
logical buffer. You will be amazed at how fast the screen is updated.

/* This program demonstrates the use of-VioGetBuf and
VioShowBuf. These services allow you to construct a
screen in the background and then display it.

*/

#define INCL_sug

#include <os2.h>

main()

{
unsigned size, i;
char far *p;

/* get the address of the logical video buffer #*/
VioGetBuf((unsigned long far *) &p, (unsigned far *) &size, 0);

/* Put 1000 Xs into the LVB starting at the upper left
corner. */
for(i=0; i<1000; i++) ¢
*p o= X'
p+=2; /* skip pass attribute byte =*/
T

The Screen Qutput Services 71

/* wait for keypress and then show image */
getch();
VioShowBuf(0, size, 0);

getch();

CURSOR AND FONTS

It is not uncommon for a program to need to know the type and size of
the current text font or cursor. Sometimes it is also desirable to change
the size and shape of the cursor, perhaps to signal the need for special
input by the user. This section will examine some of the services that
make these types of manipulations possible.

VioGetFont

OS/2 provides two services that can examine and set the current text
font of the system. They are called VioGetFont and VioSetFont,
respectively. While the subject of generating and using custom fonts is
beyond the scope of this book, the VioGetFont service has several
important uses that apply to a wide variety of programming situations.
Its prototype is

unsigned VioGetFont(VIOFONTINFO font, unsigned short han-
dle); '

The parameter font points to a structure of type VIOFONTINFO,
which holds information about the font upon return from the call. The
handle parameter must be 0.

The structure type VIOFONTINFO is defined as

typedef struct _VIOFONTINFO {
unsigned cb; [* length of structure */
unsigned type; [+ current or ROM font? */

unsigned cxCell; [* number of horizontal pels in a
character cell */

unsigned cyCell; /* number of vertical pels in a
character cell */

char far *pbData; [+ pointer to buffer which will
hold the font table */

72 QS/2 Programming: An Introduction

unsigned cbData; /* number of bytes in table */
t VIOFONTINFO;

If type is 0, the characteristics of the current RAM font are obtained. If
it is 1, the information pertaining to the ROM font is returned. The
fields of most interest for general use are cxCell and cyCell because
they describe the dimensions of a character cell. You will soon see how
to put this information to work.

VioGetCurType and
VioSetCurType

As you probably know, most PCs do not have a fixed, predefined cur-
sor. Instead the cursor is dynamically created and maintained by the
operating system. In OS/2 you can examine the current size of the
cursor and set its size as you desire. To examine the current dimen-
sions of the cursor use VioGetCurType, whose prototype is shown
here:

unsigned VioGetCurType(VIOCURSORINFO far *cdata, unsigned
short handle);

The handle parameter must be 0. The cdata parameter points to a struc-
ture of type VIOCURSORINFO that will hold the current cursor
information when the service returns. It is defined like this:

typedef struct _VIOCURSORINFO {

unsigned yStart; [* top line of cursor */
*®

unsigned cEnd; bottom line of cursor */

unsigned cx; * width of cursor */

/
!
!
/

unsigned attr; * cursor attribute */

} VIOCURSORINFO;

After the call the variable yStart holds the number of the line, from the
top of a cell, where the cursor’s top line is located. The top line in a cell
is always 0, the bottom line is always N—1, where N is the number of
vertical pels in a cell. The cEnd variable holds the number of the bot-
tom line of the cursor. The ¢x variable holds the width, in columns, of

The Screen Qutput Services 73

the cursor. For text modes, this value is always 1. The attr variable
holds the cursor attributes. At the time of this writing, the value —1
means that the cursor is hidden. Any other value means that the cursor
is displayed normally.

To set the size and type of a cursor, use VioSetCurType, which has
this prototype: '

unsigned VioSetCurType(VIOCURSORINFO far *cdata, unsigned
short handle);

where the parameters have the same meaning as just described for
VioGetCurType. To change the way the cursor looks, simply load new
values into the structure variables pointed to by cdata and call
VioSetCurType.

The following example program illustrates how to examine the cur-
rent font and set the cursor. Inside the function prompt() it makes use
of the fact that the size of a character cell also limits the size of the text
cursor. It uses this information to construct a special, custom cursor
that is a square block equidistant from the top and bottom of the cell.
This function also illustrates how to update the cursor manually so
that it coincides with the last write operation.

/* This program demonstrates how color can be used
to highlight a prompting message using a custom cursor.
*/
#define INCL_SUB
#include <osz2.h>

unsigned prompt(char #*, unsigned, unsigned, unsigned char);

/* define macro names for the colors codes #*/

#idefine BLUE 1
#define GREEN 2
fidefine RED A

#define INTENSE 8
fidefine B BLUE 16
#define B GREEN 32
#define B RED 64
#define BLINK 128

main()
{
unsigned result;

result = prompt("Enter a Number: ", 10, 0, GREEN | BLINK | B_RED);

printf("result is %d\n", result);

74 OS5/2 Programming: An Introduction

/* Display a prompt at the specified location using the
specified video attribute and return an integer response.
*/
unsigned prompt(char *s, unsigned row, unsigned col,
unsigned char attr)
{
unsigned result;
VIOCURSORINFO c;
VIOFONTINFO f;
unsigned gap;

/* show the prompt */
VioWrtCharStrAtt((char far *) s, strlen(s),

row, col, (unsigned char far *) &attr, 0);
/* move the cursor to the appropriate location */
VioSetCurPos(row, col+strlen(s), 0);

/* see how tall current font is */
f.cb = sizeof (VIOFONTINFO);

f.type = 0; /% get current font */
f.pbData = (void far *) 0O;

f.cbbata = 0;

VioGetFont ((VIOFONTINFO far *) &f, 0);
/* now, compute gap */

gap = f.cyCell / 3;

/* make a custom curscor which is a square block that is
situated in the middle of the cell */

c.yStart = gap;

c.cEnd = f.cyCell - gap;

c.cx = 1;

c.attr = 0;

VioSetCurType ({(VIOCURSORINFO far *) &c, 0);

scanf("%d", &result);
return result;

VioPopUp AND VioEndPopUp

As has been stated a few times in this chapter, output is sent to the
physical screen only when the process sending the output is the one
shown on the screen. However, it may have occurred to you that a
background process may sometimes need to access the screen for a
short period of time —to report an error, for example. There must be
some method by which the background process can request access to
the screen. In a related situation, it is possible to detach a program
from the command processor. The program then runs in background
mode. However, should the detached process require the screen, some
means must exist for it to demand temporary use of the screen. To

The Screen Output Services 75

meet these needs OS/2 provides the VioPopUp and VioEndPopUp ser-
vices. VioPopUp is used to request temporary access to the screen (and
keyboard). VioEndPopUp releases the console and causes OS/2 to
resume normal operation. Their prototypes are

unsigned VioPopUp(unsigned far *wait, unsigned short handle);
unsigned VioEndPopUp(unsigned short handle);

Here, handle must be 0. The value pointed to by wait determines what
the process issuing the VioPopUp does if the screen is not immediately
available. If bit 0 is set, the process waits until it can access the screen;
if bit 0 is cleared, the process continues without access to the screen.
The rest of the bits in the value pointed to by wait are reserved and
should be set to 0.

It is important to understand that when a VioPopUp call is success-
ful in gaining access to the screen, it is actually gaining access to, and is
in complete control of, the screen, the keyboard, and the mouse. That
is, it takes over the entire console environment.

When a background or detached process requires the console, it
first calls VioPopUp. It then does whatever it needs to do and finishes
by calling VioEndPopUp to return control of the console to OS/2. In
principle no pop-up should dominate the screen for very long because it
disrupts the normal operation of the machine.

The following program shows how a program can request the
screen. It begins by sleeping for 5000 milliseconds, using the DosSleep
command, which tells the process to suspend execution for the speci-
fied number of milliseconds. (DosSleep will be discussed at greater
length later.) After the specified period of time, the process resumes,
issues the VioPopUp call, prints the message “Hello— press a key,” and
then terminates with a call to VioEndPopUp. Assuming the name of
the program is PU, the best way to see this program in action is to
execute it as a detached process using this command line:

DETACH PU

Here is the program:

/* This program illustrates the VioPopUp and
VioEndPopUp services.
*/

76 OS5/2 Programming: An Introduction

#define INCL SUB
#define INCL_DOS

#include <o0s2.h>
main()
{
unsigned wait;
DosSleep(5000L); /* sleep for a while */

wait = 1;

/* demand the screen and wait for it */
VioPopUp({unsigned far *) &wait, 0);

printf("hello - press a key");
getch();

/* release the screen */
ViocEndPopUp(0);

VioPopUps are exceptions to the rule when it comes to the way
OS/2 handles the console. First, while a pop-up is active, the user can-
not switch to another process or to an upper-level shell. The pop-up
owns the screen. Second, only one pop-up can be active at any one
time. A second process requesting a pop-up will be suspended. Third,
when a pop-up activates, the screen is automatically placed into 80 by
25 text mode. When the pop-up ends, the screen is returned to its
previous mode.

When a VioPopUp is active, you can use only the VIO functions
shown here. (The others will not work and will return an error.)

VioEndPopUp
VioGetAnsi
VioGetCurPos
VioGetCurType
VioGetMode
VioScrollDn
VioScrollLf
VioScrollRt
VioScrollUp
VioSetCurPos

The Screen Output Services 77

VioWrtCellStr

VioWrtCharStr

VioWrtCharStrAttr

VioWrtNAttr

VioWrtNCell

VioWrtNChar

VioWrtTTy

As you will see in a later chapter, the VioPopUp and VioEndPopUp

functions are very important in OS/2 because they help support O5/2's
version of the popular DOS Terminate and Stay-Resident utility programs.

4

THE KEYBOARD SERVICES

Because most programs written for personal computers are interactive,
the API keyboard services are very important. This chapter examines
several of OS/2’s keyboard input routines. All the keyboard services
begin with the characters Kbd and are sometimes referred to as the
KBD services. The 16 keyboard services are shown and briefly described
in Table 4-1.

Several of the KBD services overlap keyboard input functions pro-
vided by high-level languages such as C. For very simple, “generic”
keyboard input, it is fine to use the C standard library functions. To
gain full use of the keyboard, however, you will need to use the OS5/2
services.

This chapter begins with a short discussion of how the keyboard
generates signals and how these signals are processed. It then examines
the most common keyboard services.

SCAN AND CHARACTER CODES

You might be surprised to learn that a PC keyboard does not generate
the ASCII codes for the letters shown on the keys. The keyboard actu-
ally has no “knowledge” of what characters are displayed on its keys.
Instead, each time a key is pressed, the keyboard generates a value that
corresponds to the key’s position on the keyboard. This value is called a
scan code or, occasionally, a position code. The scan codes associated with
each key on the IBM PS/2-compatible enhanced keyboard are shown in
Figure 4-1. Notice that no scan code has the value 0.

You might be wondering why the keyboard generates scan codes
instead of the actual ASCII characters that correspond to the keys. The
answer is that designing a keyboard this way makes it flexible, that is,

79

80 O5/2 Programming: An Introduction

Table 4-1. The Keyboard Services

Service Function

KbdCharln Reads a character and scan code from the key-
board buffer

KbdClose Closes the logical keyboard

KbdDeRegister Deactivates an alternative set of keyboard services

KbdFlushBuffer Flushes keyboard input buffer

KbdFreeFocus Releases the keyboard

KbdGetFocus Acquires the keyboard

KbdGetStatus Reads keyboard status

KbdOpen Opens a logical keyboard

KbdPeek Examines but doesn’t remove a character and
scan code from the keyboard buffer

KbdRegister Activates an alternative set of keyboard services

KbdSetFgnd Sets foreground keyboard priority

KbdSetStatus Sets keyboard status

KbdShelllnit Initializes the keyboard shell

KbdStringIn Reads a string of characters from the keyboard

KbdSynch Synchronizes access to the keyboard

KbdXlate Translates a scan code into a character code

usable in the widest variety of situations. Many foreign languages use
some characters that are different from those used by English, and the
layout of the keyboard in some countries is slightly different from the
U.S. version. Some people prefer a keyboard layout called the Dvorak
keyboard, which is supposed to increase typing efficiency. By generat-
ing scan codes instead of ASCII character codes OS/2 can translate
those codes any way it sees fit. In other words, a given scan code can be
mapped onto the ASCII code equivalent required by the situation.

What Happens When You Press a Key

Each time you press a key, the keyboard generates an interrupt in the
main system unit. When this happens, OS/2 temporarily stops what it
is doing and executes a routine that reads the scan code of the key you
pressed. Each time you release a key, another interrupt is generated
and a special release code is sent to the system unit. The release code is

[E)EE]

@@@m

EEEE

EE

BpEoa

=

18

jl@@l@ [=]

30J

E

15

=X

~

'101

43

44

EH@@E

] 57

58

| |

84

mm@ﬁ‘

The keyboard scan codes for the PS/2-compatible enhanced keyboard

I8 seoiAlag pmdq&a)l ayL

82 (OS5/2 Programming: An Introduction

the scan code plus 128. In some computer literature the key press and
release interrupts are called make and break interrupts.

What OS/2 Does with the Scan Code

As you now know, the keyboard sends to the system unit only a scan
code, which is essentially a key position code. OS/2 contains a routine
that translates this scan code into a character code. The input routine
uses an ordered table of character codes that correspond to the scan
codes. For example, the first entry in the table contains the character
code for the ESC key, which generates a scan code of 1. The input routine
searches this table to match the scan code with its proper character code.
This character table is called the character translation table. Once the search is
complete, O5/2 puts the scan code and the ASCII character code into the
keyboard buffer, where it stays until your program requests keyboard
information.

The PC keyboard contains several keys for which there are no ASCII
character equivalents, for example, the arrow keys and the function keys.
When one of these keys is looked up in the character table, its correspond-
ing character value is 0 (or EOH in a few cases), which indicates that a
non-ASCII key has been pressed. When the character code is 0, your pro-
gram must examine the scan code to determine which key was pressed.

The only time the character code is EOH is when you press a key
unique to the PS/2 enhanced keyboard. For example, arrow keys not on the
numeric keyboard generate an EOH for their character codes although
their scan codes are the same as those on the numeric keyboard. By leaving
the scan codes the same, but distinguishing among them with the charac-
ter codes, your software can tell them apart. The same is true of the
HOME, PGUP, END, PGDN, INS, and DEL keys, which are found on both
the numeric keypad and elsewhere on an enhanced keyboard.

Most high-level language keyboard input functions discard the scan
code and use only the character code. This means that you generally
cannot use these functions to read special keys, such as the function or
arrow keys. You will find the KBD services of OS/2 particularly useful
for this reason. (Remember that when your programs need only char-
acter input, it is fine to use a high-level language’s standard input func-
tions. However, for high-performance, screen-oriented programs, you
will probably want to be able to recognize the various special keys.)

The Keyboard Services 83

KEYBOARD SERIALIZATION

A program can contain multiple threads, but OS/2 cannot automati-
cally keep the keyboard requests for separate programs from becoming
mixed and confused when two or more threads in the same program
make simultaneous keyboard requests. It is up to you to prevent the
input for one thread from becoming mixed with input for another
thread. You have to make sure that each thread requesting keyboard
input has sole use of the keyboard. This means that access to the key-
board must be serialized: Each request for the keyboard must wait until
the previous request has released it. OS/2 has several services that
provide for resource serialization, but discussion of these services is
deferred until later in this book when multitasking issues are discussed.
(You need to understand more about OS/2 before we can develop multi-
thread programs to illustrate the serialization concepts.)

KEYBOARD HANDLES AND
LOGICAL KEYBOARDS

Each KBD routine has as one of its parameters the handle of the key-
board on which it is operating. Unlike the screen services, in which the
handle was always 0 (at least for OS/2 version 1.0), the keyboard func-
tions can operate on logical keyboards with their own keyboard buffers.
This means that the keyboard routines can take handle values other
than 0. These logical keyboards may be connected to the physical key-
board for only short periods of time. For example, a multithread pro-
cess may have several logical keyboards sharing access to the physical
keyboard. When a logical keyboard is bound to the physical keyboard, it
is said to be the focus of the physical keyboard.

The physical keyboard is always referred to by using a handle value
of 0. The examples in this chapter use this handle. If your application
does not use multiple threads, you should use 0 for the keyboard
handle.

COOKED VERSUS RAW
KEYBOARD INPUT MODES

OS/2 supports two separate keyboard input modes. The default, and by
far the most common, is called cooked mode. Cooked mode is essentially

84 0OS5/2 Programming: An Introduction

ASCII mode. In this mode OS/2 recognizes the carriage return charac-
ter as an end-of-line character rather than a character to be passed
back from the keyboard, for example. In other words, in cooked mode
OS/2 is free to perform various character translations. The opposite of
cooked is raw mode, in which each character pressed on the keyboard is
actually entered into the keyboard buffer without any modifications.
You will use cooked mode for most applications.

KbdCharIn

Perhaps the most important KBD service is KbdCharln, which returns
the character and scan code of the last key pressed, along with some
other information. You may be surprised to see how versatile this ser-
vice is. Its prototype is

unsigned KbdCharIn(KBDKEYINFO far *key, unsigned nowait,
unsigned handle);

where key is a pointer to a structure of type KBDKEYINFQ, which is
defined as follows:

typedef struct _KBDKEYINFO {
unsigned char chChar; {* character code */
unsigned char chScan; [* scan code */
unsigned char fbStatus; [+ character status */
unsigned char bNIsShift; /* reserved */
unsigned fsState; [* shift key status */

unsigned long time; [+ time when key pressed */
} KBDKEYINFQO;

Upon return from the call, the chChar field contains the ASCII
character code from the key pressed, unless it was a non-ASCII key,
such as an arrow key. For special keys, this field will be 0 or EOH. The
chScan field holds the scan code of the key.

The fbStatus field is encoded as follows. If bit 0 is set, the shift
status is returned but no key is returned. Bits 1 through 4 are
reserved. Bit 5 requests immediate conversion. Bits 6 and 7 are
encoded as shown in the following table.

The Keyboard Services 85

Bit 6 Bit 7 Meaning

Undefined

Final character of 2-byte character; no keypress still pending
Interim character (keypress)

Final character of 2-byte character; keypress still pending

~ o RO
N ol =]

Do not be confused by this table. Some foreign languages, such as
Japanese, have characters large enough to require 2-byte character
sets. When these sets are in use, your program needs to know whether
it is reading the beginning or ending character of a 2-byte set. However,
for English language use, you do not need to worry about this. For
normal 1-byte character sets, the only bit that is important is 6. When
bit 6 is set, a key is waiting to be read, that is, a key has been pressed.
When bit 6 is cleared, no keys are waiting in the keyboard buffer.

The fsState field returns the states of the various shift keys. In this
context the term shift key refers to any key that changes the state of the
keyboard. The states of the shift keys are encoded into fsState as
shown in Table 4-2.

Table 4-2. The Encoding of the Shift Key Status into the fsState Field

Bit Meaning When Set

0 Right SHIFT key pressed

1 Left SHIFT key pressed

2 A CTRL key pressed .

3 An ALT key pressed 2

4 SCROLL LOCK on 3 E

5 NUM LOCK on i

6 CAPS LOCK on »5

7 INS on 7

8 Left CTRL key pressed SE g

9 Left ALT key pressed iS5y
10 Right CTRL key pressed 2 £2
11 Right ALT key pressed ‘; ;;:l d
12 SCROLL LOCK pressed Ewk
13 NUM LOCK pressed 358
14 CAPS LOCK pressed BEES
15 SYS RQ key pressed %

86 OS5/2 Programming: An Introduction

The value of the nownif parameter determines whether KbdCharIn
waits until a key is pressed (i.e.,, a key is in the buffer) or returns
immediately. If nomait is 0, KbdCharIn waits until a key is pressed; if
nowait is 1, KbdCharlIn returns without a character if none are in the
keyboard buffer.

For a simple first example of KbdCharln, this program waits for a
keypress and displays the character plus the time (in milliseconds) at
which it was pressed:

[* Reéding a key using KbdCharln. */

#define INCL_SUB
#include <osz.h>

main()
{
KBDKEYINFO k;

/* call KbdCharIn and wait for a keypress #*/
KbdCharIn((KBDKEYINFO far *) &k, 0, 0);
printf("You pressed: %c\n", k.chChar);

/* show the time */
printf("at %ld\n", k.time);

There are a few important points to remember about the

KbdCharln service:

1. It does not echo the characters to the screen. Your program will
have to do this manually if echoing is desired.

2. If you are reading 2-byte character set codes, you will have to call
KbdCharln twice.

3. Remember that when a special key is pressed, the value of chChar is
0 (or EOH).

Using KbdCharln to Check
for a Keypress

As was mentioned in the description of KbdCharln, you can determine
if a key has been pressed by examining the fbStatus field of the key
information structure. If bit 6 is set, a key is waiting in the keyboard
buffer. If bit 6 is cleared, no key is waiting; hence, no key has been
pressed. The following program is a modification of the WHOOP pro-

The Keyboard Services 87

gram shown in Chapter 2. Here the standard C function kbhit() has
been replaced by a call to KbdCharln followed by a test on bit 6 of the
fbStatus field. Notice that KbdCharln is called with the nowait parame-
ter set to 1, indicating that the service is not to wait for a keypress but
to return the status information at once.

/* Checking for a keypress using KbdCharIn. %/

#define INCL_SUB
#include <osZ2.h>

main()

{
KBDKEYINFO k;
char c[2];
register int i;

printf("Press any key to hear sounds.\n");

/* wait for a keypress */
KbdCharIn((KBDKEYINFO far *) &k, 0, 0);

printf("Press any key to terminate.\n");
for(;;) L
for(i=100; i<2500; i+=50) {
DosBeep(i, 1);
/* don't wait for keypress =/
KbdCharIn((KBDKEYINFO far *) &k, 1, 0);
/% see if a key has been pressed */
if(k.fbStatus & 64) break; /* stop on keypress #*/
3
if(k.fbStatus && 64) break; /* stop if key pressed */
>
3

There is another way to see if there is a key waiting to be read from
the keyboard buffer.

Showing the Status of the Shift Keys

The fsState field of the character information structure holds the cur-
rent status of the shift keys. It also indicates the state of the toggle
keys: NUM LOCK, CAPS LOCK, and SCROLL LOCK. The toggle keys control
internal flags that keep their related functions in one state or another,
changing with each keypress. The following program displays the shift keys
that are pressed and the state of the toggle keys. To use the program, press
down a shift key and then strike a regular key. The program shows which
shift key you pressed.

88 (05/2 Programming: An Introduction

/* Display the status of the shift keys. */

#define INCL_SUB
#include <o0s2.h>

void show _shift_status(unsigned status);

main()

{
KBDKEYINFO k;
char cL[2];

printf("Press "q to terminate.\n");
for(;;) {
/* wait for keypress #*/
KbdCharIn((KBDKEYINFO far *) &k, 0, 0);

show_shift_status(k.fsState);

if(k.chChar=='q') break; /* stop on "g' */
>
¥

/* Display the shift status of the keyboard. */
void show shift status{unsigned status)
¥ _ _

printf("\n");

if(status & 1) printf("Right shift pressed\n");

if(status 2) printf("Left shift pressed\n');
if(status 4) printf("A control key pressed\n");
if(status 8) printf("An Alt key pressed \n");
if{status 16) printf(”Scroll Lock on\n");

&

&

&

g
if(status & 32) printf("Num Lock on\n");
if(status & 64) printf("Caps Lock on\n");
if(status & 128) printf("Ins pressed\n™);
if{(status & 256) printf("Left Control pressedin");
if(status & 512) printf("Left ALt key pressed\n");
if{status & 1024) printf("Right Control key pressedin');
if(status & 2048) printf("Right Alt key pressed\n");
if(status & 4096) printf("Scroll Lock pressed\n");
if(status & 8192) printf("Num Lock pressedin”);
if(status & 16384) printf("Caps Lock pressedin");
if(status & 32768) printf("SysRq key pressed\n\n");

Checking for Scan Codes

If the character code returned by KbdCharln is either 0 or EOH, the
key pressed is not a standard ASCII key but a special key. The following
program illustrates how to check for ASCII and non-ASCII keys. It
waits for a keypress and prints either the character, if the key is ASCII,
or its scan code if the key is non-ASCIL It also tells whether the key is
unique to the enhanced keyboard.

The Keyboard Services 89

/* Display character or scan code for a key. */

#define INCL_SUB
#include <os2.h>

main()

{
KBDKEYINFO k;
char c[2];

/* wait for a keypress */
KbdCharIn((KBDKEYINFO far %) &k, 0, 0);

if(lkachChar)

printf("Special key; scan code is %d", k.chScan);
else if(k.chChar==0xEQ)

printf("Enhance KB special key; scan code is %d", k.chScan);
else printf("Key is ASCII char %c", k.chChar);

You can use this program to determine the scan codes of the special
keys.

You can use the scan codes returned by the arrow keys (and their
diagonal neighbors on the numeric keypad) to control the movement of
the cursor in your programs. For example, you might use the arrow
keys to move between menu entries. A short program in this section
illustrates some of the basic concepts behind controlling the cursor
with the arrow keys. The program allows you to “drive” the cursor
around on the screen using the arrow keys and the keys on the diagonal
of the numeric keypad. The scan codes of the keys on the keypad are
shown here with the direction they will move the cursor.

71 72 73

N

75 —— na —a=77

/1N

79 80 81

The program creates and initializes two variables, r and ¢, which
hold the current row and column coordinates of the cursor. Each time
you press an arrow key, these counters are updated and the cursor is
moved to its new position. Notice that out-of-range conditions are
tested and corrected before the cursor is moved. Also, this program
assumes that the computer is in the default text mode 80 by 25.

90 OS5/2 Programming: An Introduction

/* This program uses the arrow keys to "drive" the cursor
around on the screen.
*/

#define INCL SUB
#include <osZ.h>

void clrscr(void);

main()

€
KBDKEYINFO k;
signed r, c;

r=0; c =0;
clrscr();

VioSetCurPos(12, 30, 0);
printf("Press "q' to quit");

VioSetCurPos(0, 0, 0);
do {

/* wait for a keypress */
KbdCharIn((KBDKEYINFO far %) &k, 0, 0J;

switch(k.chScan) {

case 72: r == 1; /% up */
break;

case 80: r += 1; /% down */
break;)

case 77: ¢ += 1; /% right %/
break;

case 75: ¢ -= 1; /* Left =/
break;

case 71: r == 1; /% up, left */
¢ == 1;
break;

case 73: r == 1; /* up, right */
c += 1;
break; _

case 79: r += 1; /* down, left */
¢ == 1;
break;

case 81: r += 1; /* down, right */
c += 1;

y

/% disallow out=-of=range coordinates */
if(c < 0) ¢ = 0;

if(e > 79) ¢ = 79;

if(r < 0) r = 0;

iflr > 24) r = 264;

/* move the cursor */
VioSetCurPos(r, ¢, 0);

} whileCk.chChar != "q");

/* A simple way to clear the screen by filling
it with spaces.
*/

The Keyboard Services 91

void clrscr()
{

char spacel2];

spacel0] L

spacel1] = 7;

VioScrollup(O, 0, 24, 79, -1, (char far *) space, 0);
>

USING KbdPeek

In the previous section you saw how KbdCharIn could be used to
return information about the keyboard and the status of the keyboard
buffer. For example, it was used to determine whether akey had been
pressed. However, there is one drawback to using KbdCharln to inter-
rogate the status of the keyboard: In the process of determining the
keyboard status it also reads any key waiting in the buffer. This is fine
if you want that key read, but it is a problem when all you want to do is
determine the status of the keyboard. To solve this problem OS/2 sup-
plies the function KbdPeek, which returns the same status information
as KbdCharln but does not remove the character or scan code from the
keyboard buffer. The prototype for KbdPeek is '

unsigned KbdPeek(KBDKEYINFO far *key, unsigned handle);

(See the description of KbdCharln for a complete description of the
KBDKEYINFO structure.)

You can use KbdPeek to construct various functions that describe
the state of the keyboard. One obviously useful function is called key-
press(). It returns true if a key is waiting in the buffer and false other-
wise. The keypress() function is shown here:

/* Return 1 if key pressed; 0 otherwise. */
keypress()
{

KBDKEYINFO k;
/* check for keypress */

KbdPeek ((KBDKEYINFO far %) &k, 0);
return k.fbStatus & 64;

By using keypress() you can rewrite the WHOOP program to use this
function rather than calling KbdCharln to see when a key is pressed.

92 (85/2 Programming: An Introduction

The new version is shown here:

/* Checking for a keypress using KbdPeek. */

#define INCL_SUB
#include <os2.h>

int keypress(void);

main()
{

KBDKEYINFO k;
register int i;

printf("Press any key to hear sounds.\n"J);

/* wait for a keypress and discard character */
KbdCharIn((KBDKEYINFO farx) &k, 0, 0);

printf("Press any key to terminate.\n");
for(;;)
for(i=100; 1i<2500; i+=50) {
DosBeep(i, 1J);
if(keypress(}) break;

if(keypress()) break; /* stop if key pressed */

/* Return 1 if keypressed; 0 otherwise, */
keypress()
{

KBDKEYINFO k;
/* check for keypress =/

KbdPeek ((KBDKEYINFO far #*) &k, 0);
return k.fbStatus & 64;

Notice that in the main() function, the KbdCharln service is still used
to read the initial keypress. Why? The reason is that KbdPeek does not
remove the character from the key buffer or reset the buffer in any
way. Once a key is pressed (if it is not removed), repeated calls to
KbdPeek will return that a character is pending in the keyboard buffer.
Had the character not been read, the calls to keypress() later in main()
would have returned true, and the program would have terminated
immediately.

Although most C compilers support the more-or-less standard
function kbhit(), the advantage of using KbdPeek to determine key-
board status is that it returns additional information about the state of
the keyboard buffer.

The Keyboard Services 93

CLEARING THE KEYBOARD
BUFFER

Your program will sometimes want to ignore the existing contents of
the keyboard buffer and start fresh. For example, an error condition
may require the user to enter a response. If the error occurs in the
middle of some other interactive operation, there may be characters
already waiting in the keyboard buffer. For the user to respond cor-
rectly to the error condition, the contents of the keyboard buffer must
be cleared. And it is sometimes a good idea to clear any characters that
may be in the keyboard buffer before highly critical input is to be read
to ensure that no “garbage” characters (caused by the user absent-
mindedly tapping on the keyboard) are accidentally read. The act of
clearing the keyboard buffer (or just about any type of buffer, for that
matter) is called flushing the buffer. To accomplish this OS/2 provides
the KbdFlushBuffer service. Its prototype is

unsigned KbdFlushBuffer(unsigned handle);

A call to KbdFlushBuffer clears the keyboard buffer and resets the
appropriate status flags to indicate this fact.

For example, it is not a bad idea to clear the keyboard buffer when a
program begins execution. This fragment shows how this can be done

by using KbdFlushBuffer:

main()
£

KbdFlushBuffer<0);

USING KbdGetStatus AND
KbdSetStatus

Both KbdCharIln and KbdPeek return status information about the
state of the keyboard buffer. However, your program might need to
know other pieces of information that are not returned by these ser-
vices. For example, your program may need to operate differently when

94 (OS5/2 Programming: An Introduction

the keyboard is in raw rather than cooked mode. To fill this need, OS/2
supplies the KbdGetStatus service, which returns a complete status
packet. Its prototype is

unsigned KbdGetStatus(KBDINFO far *info, unsigned handle);

where info is a pointer to a structure of type KBDINFO, which is
defined like this:

typedef struct _KBDINFO {

unsigned cb;

—_
*

size of structure */

—_
*

modified states */
unsigned chTurnAround; /* EOL char +/

unsigned fsInterim;

unsigned fsMask;

*

interim char flags =/

—_— =
*

unsigned fsState;
} KBDINFO;

shift key states =/

The ¢b field must hold the size of the structure before the call to
KbdGetStatus is made. The fsMask shows the current input mode
(cooked or raw) and whether keystrokes are automatically echoed to
the screen. It also shows which KBD subsystem settings are to be
changed by a subsequent KbdSetStatus call. (More on KbdSetStatus in
a moment.) This information is encoded into fsMask as shown here:

Bit Meaning When Set

Echo on

Echo off

Raw mode

Cooked mode

Shift state to be changed

Interim flags to be changed
Turnaround character to be changed
Length of turnaround character

SC T NS TS R SRR

The chTurnAround character is used to terminate a line of input. By
default this is the carriage return character, but it can be any character.
Bit 7 indicates the length of the turnaround character. If bit 7 is set, the

The Keyboard Services 95

character is 2 bytes long. Otherwise it is 1 byte long. The rest of the
bytes in this variable are reserved.

The fsInterim field indicates the state of the keyboard buffer as de-
scribed in KbdCharIn. The fsState field holds the status of the shift
keys. The bits are encoded like this:

=
-

Meaning When Set

Right SHIFT key pressed
Left SHIFT key pressed
CTRL key pressed
ALT key pressed
SCROLL LOCK mode on
NUM LOCK mode on
CAPS LOCK mode on
INS mode on

~15 Reserved

L N W= O

In KbdGetStatus the handle parameter must be 0.

This program uses KbdGetStatus to report the status of the input
mode and whether keystrokes are automatically echoed to the screen. It
then reports the current shift status.

/* Using KbdGetStatus. */
#define INCL_SUB
#include <os2.h>

void showmask(unsigned);
void show shift_status(unsigned);

main()
{
KBDINFO ki;

ki.cb = sizeof ki;
KbdGetStatus((KBDINFO far *) &ki, D);

showmask (ki.fsMask);
show_shift_status(ki.fsState);
}

void showmask(unsigned mask)
{

ifimask & 1) printf("echo enabled\n');
jf(mask & 2) printf("echo disabled\n");
if(mask & 4) printf("mode is raw\n");

96 (0OS5/2 Programming: An Introduction

if{mask & 8) printf("mode is cooked\n");

/* Display the shift status of the keyboard. */
void show shift_status(unsigned status)

{

printf("\n");

if(status
if(status
if(status
if(status
if(status
if(status
if{status
ifdstatus
ifl(status
if(status
if(status
if(status
if(status
if(status
if(status
if(status

&

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

1) printf("Right shift pressedin');

2) printf("Left shift pressed\n');

4) printf("A control key pressed\n");

8) printf("An Alt key pressed \n");

16) printf("sScroll Leck on\n");

32) printf("Num Lock en\n™);

64) printf("Caps Lock on\n");

128) printf("Ins pressed\n');

256) printf("Left Control pressedin”);

512) printf("Left Alt key pressed\n');

1024) printf("Right Control key pressed\n');
2048) printf("Right Alt key pressed\n");
4096) printf("Scroll Lock pressed\n");

8192) printf("Num Lock pressed\in");
16384) printf("Caps lock pressed\n")i
32768) printf("SysRq key pressed\n\n");

You can set the status of the keyboard system using KbdSetStatus,
whose prototype is

unsigned KbdGetStatus(KBDINFQO far *info, unsigned handle);

where info points to a structure of type KBDINFO, which is the same
as that defined for KbdGetStatus. In this service, handle must be 0,
Setting the status of most of the keyboard subsystem is a two-step

process.

1. You set the proper bit in the fsMask variable of the info parameter.
This tells OS/2 which type of function is going to be changed.

2. You set the value of the related parameter. For example, to turn
Caps Lock on, first set bit 4 of fsMask to 1, then set bit 6 of fsState.
When KbdSetStatus is called, the keyboard will be in Caps Lock

mode.

The only exceptions to the two-step rule are switching between
raw and cooked modes and switching between echo and no echo
modes. For these you need only set the proper bits in the fsMask

variable.

The Keyboard Services 97

It is important to understand that a change in the status of the
keyboard subsystem is local to the process that makes the change. For
example, when the process terminates and the OS/2 command process
resumes, the original default values are used.

The example that follows changes the turnaround character to a
period and turns on Caps Lock mode. When this program ends, the
carriage return automatically becomes the turnaround character again.
Notice that the program first reads the status of the keyboard subsys-
tem and then alters the value of the turnaround character before call-
ing KbdSetStatus. The reason for this is that you need to preserve the
state of the other KBD subsystem functions.

/* Using KbdSetStatus to change the turnaround character
to a period and puts the keyboard into Caps Lock mode.
*/

#define INCL_SUB

#include <os2.h>

main ()

{
KBDINFO ki;
char strC803; /% input buffer */
STRINGINBUF L;

ki.cb = sizeof ki;

/* change the turnaround char to a period. */

KbdGetStatus ((KBDINFO far *) &ki, 0);

ki.chTurnAround = ".';

/* Signal that a change to the turn around char is
going to take place.

*/

ki.fsMask = ki.fsMask | 64;

ki.fsMask = ki.fsMask | 16; /* signal shift status change */
ki.fsState = ki.fsState | 64; /* turn on Caps Lock */

KbdSetStatus ((KBDINFQ far =) &ki, 0);

/* demonstrate that new turnaround char is, indeed, active */

printf("\nEnter a string; terminate with a period: ");

L.cb = 80;

KbdStringIn((char far =*) str, (STRINGINBUF far %) &L,
0, 0);

strfl.cchInd = "\D'; /% null terminate the string =*/

printf("%d characters read, string is\n¥%s", L.cchln, str);

98 05/2 Programming: An Introduction

READING A STRING USING
KbdStringIn

Until now you have been reading only one character or scan code at a
time from the keyboard. This is very useful, but OS/2 also provides a
service that allows you to read a string of characters (without their
associated scan codes). This service is called KbdStringIn, and its proto-

type is

unsigned KbdStringIn(char far *buf, STRINGINBUF far +len,
unsigned wait, unsigned handle);

where buf is a pointer to the character array that will hold the string
read from the keyboard. The len parameter is a structure of type

STRINGINBUEF, which takes this form:

typedef struct _STRINGINBUF {

unsigned cb; [* length of buffer */

unsigned cchln; [* number of chars actually read */
} STRINGINBUF;

The cb field must hold the length of the array pointed to by buf prior to
the call to KbdStringIn. The largest buffer you can use is 255 charac-
ters. Upon return cchln holds the number of characters actually read
from the keyboard.

The wait parameter determines what KbdStringln does if no charac-
ters are present in the keyboard buffer. The effect is different in
cooked and raw modes. In cooked mode (the default), the only allowed
value of wait is 0, and KbdStringIn waits and reads characters until the
user enters a carriage return. In raw mode, if waif is 0, KbdStringln
reads characters until the buffer pointed to by buf is completely full. If
wait is 1, KbdStringIn reads however many characters are in the key-
board buffer (including zero characters) and returns immediately.

The following short program reads a string from the keyboard. It
assumes that the default, cooked mode input is in use.

The Keyboard Services 99

/* Reading a string from the keyboard using KbdStringIn. */
#define INCL_SUB
#include <os2.h>

main()

{ ‘
char str[80]; /* input buffer =*/
STRINGINBUF L;

L.cb = 80;
KbdstringIn{(char far *) str, (STRINGINBUF far %) &L,

o, 0);
strfl.cchInl = '\0"; /* null terminate the string */

printf("%d characters read, string is\n%s", Ll.cchIn, str);

One advantage to using KbdStringlIn in cooked mode is that you can
use the standard editing keys to correct your entry before you press
RETURN. Also, in cooked mode the characters you enter are automatically
echoed to the screen.

There is no doubt that in the OS/2 environment the mouse will
become a common, perhaps even an indispensible, accessory, partly
because the Presentation Manager supports a graphics interface that
lends itself to mouse operation. In the very near future, it will be the
rare OS5/2-compatible program that does not support mouse input.

There are really two complete sets of mouse interfacing services:
those found in the core API and those defined by the Presentation
Manager routines. You will use the Presentation Manager mouse ser-
vices for most programming situations because they are designed to
make menu selection and the like very easy. In a few types of applica-
tions, however, you may want to use the core mouse services. For
example, if you are writing with a word processor that uses the entire
screen and you simply want to provide mouse support for moving text
around, the core API mouse services will require less overhead than
the Presentation Manager equivalents. This chapter presents an over-
view of the core API mouse services. (The Presentation Manager is
introduced in Part Three.)

All the core mouse services begin with the letters Mou. These ser-
vices are listed and briefly described in Table 5-1.

Note: If you have programmed for the mouse in a DOS environment
using Microsoft’s MOUSE.LIB library, you may be surprised to learn
that OS/2 uses a fundamentally different approach to mouse interfac-
ing. In fact, except for the most general concepts, what you learned

101

102 OS/2 Programming: An Introduction

Table 5-1. The Core Mouse Services

Service Function

MouClose Closes the mouse

MouDeRegister Deactivates an alternative mouse service

MouDrawPtr Displays the mouse pointer

MouFlushQue Flushes the mouse information queue

MouGetDevStatus Returns mouse status

MouGetEventMask Returns mouse event mask

MouGetHotKey Returns system hot key button

MouGetNumButtons Returns the number of buttons on the mouse

MouGetNumMickeys Returns the number of mickeys per centimeter

MouGetNumQueEl Returns the number of information packets cur-
rently in the mouse queue '

MouGetPtrPos Returns the current location of the mouse pointer

MouGetPtrShape Returns the shape of the mouse pointer

MouGetScaleFact Returns the mouse movement scaling factors

MoulnitReal Initializes the real-mode mouse system

MouOpen Opens the mouse

MouReadEventQue Returns the next information packet in the mouse
queue

MouRegister Activates an alternative mouse function

MouRemovePtr Removes the mouse pointer from the screen

MouSetDevStatus Sets mouse device driver status information

MouSetEventMask Sets the mouse event mask

MouSetHotKey Sets the system hot key

MouSetPtrPos Sets the mouse pointer’s screen position

MouSetPtrShape Sets the shape of the mouse pointer

MouSetScaleFact Sets the mouse movement scale factor

MouSynch Synchronizes mouse access

about interfacing to the mouse under DOS has little applicability to the
08S/2 mouse interface.

THE MOUSE

Before your programs can use the mouse services, OS/2 must have
loaded two device drivers called MOUSEB05.SYS and POINTDD.S5YS.
The OS/2 setup program automatically makes the proper entries in
your CONFIG.SYS file that cause these device drivers to be loaded.

Using the Mouse 103

However, if these device drivers are not specified in the CONFIG.5YS
file, add the following lines to your CONFIG.SYS file:

DEVICE=C:\QS2\POINTDD.SYS
DEVICE=C:\O52\MOUSEB05.5Y5

MOUSE BASICS

Unlike the screen and keyboard services, the mouse services cannot use
the default handle 0. The first thing your program must do to support
the mouse is to open the mouse by a means of a call to MouOpen,
which returns a valid mouse handle. You must then use this handle
with all other mouse services.

For various reasons, most of which have to do with the fact that
0S/2 is a multitasking system, information about the mouse is kept in
a queue until it is read by your program. The mouse queues are first-
in, first-out. Each time you press a button or move the mouse, a hard-
ware interrupt transfers control to the mouse device driver. The device
driver determines what has happened and generates an information
packet that is put in the queue. The packet includes such things as the
current position of the mouse and which buttons are pressed. The
queue is not very long, so if a large number of packets are generated
before your program reads them, some of the packets may be overwrit-
ten. A queue overrun generally causes no real harm.

Although the mouse and the screen are fundamentally separate
devices, the OS/2 core mouse services can provide the appearance of a
strong link between the two. For example, the mouse pointer is auto-
matically moved about the screen when you move the mouse. (The
mouse pointer is the symbol on the screen that shows the mouse’s
current screen position.) In essence, you think of the mouse as being
on the screen rather than on the desk. In the default mode of opera-
tion, the mouse services also return the row and column position of
the mouse pointer.

In text mode, the mouse pointer is a solid block. It is possible to
change the shape of the pointer if the screen is in a graphics mode.
However, since OS/2 most easily supports graphics through the Presen-
tation Manager, you will probably never use the core mouse services in
a graphics mode.

104 OS5/2 Programming: An Introduction

The mouse services can return position information about the
mouse in one of two ways:

1. In the default mode of operation the mouse services return the row
and column coordinates of the pointer. The pointer is always moved
in screen units. For text modes, this means a character position. In a
graphics mode it means a pel. There is no concept, for example, of
the pointer being “between” two screen units. All coordinates are
relative to the upper left corner of the screen, which is 0,0. All the
examples in this chapter use this mode because it is by far the
easiest to work with for text mode applications.

2. The services can also return position information in mickey counts.
The mickey is the basic unit of mouse movement and commonly
equals approximately 1/120 inch. Two mickey counts are returned:
one for the x and one for the y coordinate. If the y-coordinate
mickey count is negative, the mouse has moved forward (away from
you) on the desk and the pointer has moved up the screen that
number of mickeys. A positive y-coordinate value indicates that the
mouse has moved toward you and the pointer has moved down the
screen. A negative x-coordinate value means that the mouse and
pointer have moved to the left; a positive value means that they have
moved to the right.

The standard IBM/Microsoft mouse has two buttons. However, it is
possible to have mice connected to the system that have either one or
three buttons instead. The mouse subsystem can operate with one-,
two-, or three-button mice. However, your program may have to make
explicit provisions for such possibilities. The leftmost button is always
button number one.

OPENING THE MOUSE

Before the mouse can be used, it must be opened using MouOpen. The
prototype for MouQOpen is

signed MouOpen(char far *driver, unsigned short far *mhandle)

where driver is a pointer to a null-terminated string that contains the
name of the mouse pointer device driver. You can cause the mouse

Using the Mouse 105

system to use its default pointer driver by passing a null in this
parameter. This is useful when the name of the device driver is not
known. The default driver will be used in all examples in this chapter.
On return the variable pointed to by mhandle contains the current
mouse handle.

The call to MouOpen essentially intializes the mouse system for
use. It does not display the mouse pointer or return any status informa-
tion about the mouse.

DISPLAYING THE
MOUSE POINTER

Once the mouse is opened for use, one of the first things you will
probably want to do is have the pointer displayed on the screen. To do
this you use the MouDrawPtr service, which has the prototype

unsigned MouDrawPtr(unsigned short mhandle);

where mhandle is a valid handle returned by MouOpen. In text modes
the pointer is a solid block.

POSITIONING THE
MOUSE POINTER

The mouse system automatically moves the pointer around on the
screen when you move the mouse on your desk. Your program does
not need to move the pointer explicitly unless you want it to. For sev-
eral reasons you may wish to reposition the mouse pointer on the
screen. For example, you may need to move the pointer to the top of a
pop-up menu. When you explicitly move the mouse pointer, the mouse
subsystem automatically updates all of its location and status informa-
tion so that the next time you move the mouse, the pointer is moved
relative to its new screen position. The core mouse service that posi-
tions the mouse pointer is called MouSetPtrPos, and its prototype is

unsigned MouSetPtrPos((PTRLOC far *) loc,
unsigned short mhandle);

Pointer loc points to a structure of type PTRLOC, which is defined as

106 OS/2 Programming: An Introduction

typedef strict _PTRLOC {
unsigned row;
unsigned col;

} PTRLOC;

The values of row and col must be within the range defined by the
current video mode. For the default 80 by 25 text mode, the range for
row is 0 through 24; the range for col is 0 through 79.

CREATING A MOUSE
INITIALIZATION FUNCTION

Before going further with our discussion of the mouse, let’s create a
mouse initialization function that opens the mouse, positions the
mouse pointer at the upper left corner (location 0,0), and draws the
pointer. The function also returns the mouse handle to the calling rou-
tine. The function is called initmouse() and is shown here:

/* QOpen the mouse, draw the pointer, and pesition
the mouse at the upper left corner.
x/
unsigned short initmouse()
{
unsigned short mhandle;
unsigned short err;
PTRLOC p;

err = MouOpen((char far *) 0, {(unsigned short far *) &mhandle);
ifCerr) {

printf("%d error in opening mouse\n", err);

return 0;

b

/* position the mouse pointer in the upper left corner */
p.row = 0;

p.col = 0;

MouSetPtrPos((PTRLOC far =) &p, mhandle);

/* make the pointer visible */
MouDrawPtr(mhandle);

return mhandle;

The initmouse() function is used in all the example programs in
this chapter to facilitate the initialization of the mouse driver. For your
own applications you may need to change the initial location of the
mouse pointer.

Using the Mouse 107

SENSING MOUSE MOVEMENT
AND BUTTON PRESSES

Each time you move the mouse or press a button, an event information
packet is put on the end of the mouse queue. Your program reads
information from the queue using the MouReadEventQue function,
which has the prototype

unsigned MouReadEventQue(MOUEVENTINFO far =*status,
unsigned far *wait, unsigned short mhandle);

where status points to an event structure of type MOUEVENTINFO,
which is defined as

typedef struct —_MOUEVENTINFO {
unsigned fs; [+ encoded state of the mouse */
unsigned long Time; /* time when event occurred */
unsigned row; /* row position of mouse pointer */
unsigned col; /* col position of mouse pointer */

} MOUEVENTINFO;

The structure pointed to by status holds event information about the
mouse when MouReadEventQue returns.
On return from the call, the fs field is encoded like this*:

Bit Meaning When Set

Mouse moved, no buttons pressed
Mouse moved, button 1 pressed
Button 1 pressed, no movement
Mouse moved, button 2 pressed
Button 2 pressed, no movement
Mouse moved, button 3 pressed
Button 3 pressed, no movement
Reserved, always 0

NOoO kRN O

As you can see, by examining this field it is possible to detect whether
the mouse has moved and if a button is depressed. (Remember that the
standard IBM/Microsoft mouse has two buttons, but other types of

*The following table is adapted from tables in Operating System/2 Programmer’s Reference Manual, with
permission of Microsoft Corporation.

108 OS5/2 Programming: An Introduction

mice can be connected to the system. Later you will learn how to detect
the number of buttons a given mouse has.) If fs is 0, no event has
occurred. '

The Time field represents the system time at which the event
occurred; the value is in milliseconds. The row and col fields hold the
screen location of the mouse pointer. By default these values are in
screen units, but you can set the mouse subsystem to report the value
in mickeys.

The value of the wait parameter to MouReadEventQue determines
whether the service waits for an event packet if one is not waiting in
the queue. If wait is O, the function returns immediately if nothing is in
the queue, filling the information structure with zeros. If wait is 1, the
service waits until a mouse event is generated.

The mhandle parameter must be a valid mouse handle.

You can use the MouReadEventQue service to write a short pro-
gram that displays the mouse event packet. First you need a routine
that decodes the event information and displays it on the screen. The
function show_mouse__state() shown here accomplishes this:

/* Show the current location of the mouse and which
buttons are pressed.

*/

void show_mouse state(MOUEVENTINFO state)

€
char cellC2];

VioSetCurPos(10, 0, 0);

/* clear a small part of the screen */
celll0] = ' ", celll1] = 7;
VioScrollDn(10, 0, 12, 79, 3, (char far *) cell, D);

/* decode button press information */
if((state.fs & 2) || (state.fs & 4))
printf("button one is down\n");
if((state.fs & 8) || (state.fs & 16))
printf("button two is down\n");
if((state.fs & 32) || (state.fs & 64))
printf("button three is down\n");

/* see if the mouse has moved */
if({state.fs & 1) || (state.fs & 2) || (state.fs & 8) ||
(state.fs & 32))
printf("the mouse has moved");

/* display current position and time of event */
VioSetCurPos(15, 0, 0);

printf(" "y

VioSetCurPos(15, 0, 0);

printf("%d %d time: %ld", state.row, state.col, state.Time);

Using the Mouse 109

Using the show__mouse__state() function, the program that follows
displays the information packet generated by each mouse event. Notice
that it waits for a packet if one is not already waiting in the queue.

/* Demonstrate how to access the mouse and decode the
status information returned by it.
*/

#define INCL_SUB
#include <os2.h>

unsigned short initmouse(veoid);
void show_mouse state(MOUEVENTINFO);
void clrscr(void);

main()

£
unsigned short mhandle;
unsigned state;
unsigned wait;
MOUEVENTINFO info;

clrscr();
mhandle = initmouse();

do {
wait = 1;
MouReadEvent@Que ((MOUEVENTINFO far *) &info,
(unsigned far %) &wait, mhandle);

show_mouse_state(info);

> while (lkbhit());
MouClose(mhandle) ;

)

/* Open the mouse, draw the pointer, and position
the mouse at the upper lLeft corner.
*/
unsigned short initmouse()
{
unsigned short mhandle;
unsigned short err;
PTRLOC p;

err = MouOpen((char far *) 0, (unsigned short far *) &mhandle);
ifCerr) {

printf("%d error in opening mouse\n", err);

return 0;

p.row = 0;

p.col = 0;

MouSetPtrPos ((PTRLOC far %) &p, mhandle);
MouDrawPtr(mhandle);

return mhandle;

110 OS/2 Programming: An Introduction

/* Show the current location of the mouse and which
buttons are pressed.

*/

void show_mcuse_state (MOUEVENTINFO state)

4L
char cell[2];

VioSetCurPos(10, 0, 0);

/* clear a small part of the screen */
cellC0] =" "; celll1] = 7;
VioScrollbpn(10, 0, 12, 79, 3, (char far *) cell, 0);

/* decode button press information */
if((state.fs & 2) || (state.fs & 4))
printf("button one is downin");
jf((state.fs & 8) || (state.fs & 16))
printf("button two is downin");
if((state.fs & 32) || (state.fs & 64))
printf("button three is down\n");

/* see if the mouse has moved *x/
if((state.fs & 1) || (state.fs & 2) || (state.fs & 8) ||
(state.fs & 32))
printf('"the mouse has moved");

/* display current position and time of event */

VioSetCurPos(15, 0, 0);

printf (" Y

VioSetCurPos(15, 0, 0);

printf("%d %d time: %ld", state.row, state.col, state.Time);
3

/* A simple way to clear the screen by filling
it Wwith spaces.
*/
void clrserQ
{
char spacel2];

n .
’

spacelD] = '
spacel1] = 7;
VioScrollup(0, 0, 24, 79, -1, (char far *) space, 0);

To stop the program, press any key on the keyboard. The program
ends when the next mouse event occurs.

SOME CUSTOM FUNCTIONS TO
INTERROGATE THE MOUSE

You can create some simple functions to facilitate checking for mouse
movement or button presses. These functions are shown here. (They
assume that a standard two-button mouse is installed in the system.

Using the Mouse 111

You can easily change this as required by your system.)

/% Return true if Left button is pressed. */
leftbutton(MOUEVENTINFO info)
{
return({info.fs & 2) || (info.fs & 4));
¥

/% Return true if right button is pressed. */
rightbutton (MOUEVENTINFO info)
C
return((info.fs & 8) || (info.fs & 16));
>

/% Return true if mouse has moved. */
mousemoved (MOUEVENTINFO info)
{
return((info.fs & 1) || (info.fs & 2) || tinfo.fs & 8) ||
(info.fs & 32));

The functions are passed an information packet returned by Mou-
ReadEventQue elsewhere in any program that uses them.

This program illustrates how to make use of the custom functions
to show when the mouse is moved or a button is pressed.

/* This program illustrates how you can create custom mouse
functions which can make your application programs easier
to write.

*/

#define INCL_SUB

#include <os2.h>

unsigned short initmouse(void);
int Lleftbutton(MOUEVENTINFO);
int rightbutton(MOUEVENTINFO);
int mousemoved (MOUEVENTINFO);
void clrscrlvoid);

main()

{
unsigned short mhandle;
unsigned state;
MOUEVENTINFO info;
unsigned wait;

clrscr();

/* open the mouse, show the pointer, and position
the mouse at the upper left corner

*/

mhandle = initmouse();

if(!mhandle) exit(1); /* error opening mouse */

112 OS5/2 Programming: An Introduction

/* monitor the mouse and report any activity =/

do {
wWwait = 0;
MouReadEvent@Que ((MOUEVENTINFO far *) &info,

(unsigned far *) &wait, mhandle);

if(leftbutton(info)) printf("left button\n");
if(rightbutton(info)) printf("right button\n");
if(mousemoved(infe)) printf("mouse movedin");

} while (lkbhit());

MouClose(mhandle);

>

/* Open the mouse, draw the pointer, and position
the mouse at the upper left corner.
*/
unsigned short initmouse()
{
unsigned short mhandle;
unsigned short err;
PTRLOC p;

err = MouOpen((char far %) 0, (unsigned short far *) Emhandle);

iflerr) {
printf('error in opening mouse\n");’
return 0;

x
p.row = 0;
p.col = 0;

MouSetPtrPos((PTRLOC far *) &p, mhandle);
MouDrawPtr(mhandle);
return mhandle;

¥

/* Return true if left button is pressed. */
leftbutton(MOUEVENTINFO info)
{

return(Cinfo.fs & 2) || Cinfo.fs & 4));
X

/* Return true if right button is pressed. */
rightbutton (MOUEVENTINFO info)
€

return((info.fs & 8) || (info.fs & 16));
X

/* Return true if mouse has moved. */
mousemoved (MOUEVENTINFO info)
{

return((info.fs & 1) || Cinfo.fs & 2) || (info.fs & 8)

(info.fs & 32));

/* A simple way to clear the screen by filling
it with spaces.

*/

void clrscr(Q)

{

char spacel21;

spacelD] = * ';

Using the Mouse 113

spacel1] = 7;
VioScrolluptOo, 0, 24, 79, -1, (char far %) space, 0);
i

CHANGING THE SCALING
FACTORS

Each time you move the mouse, an absolute amount of distance is dis-
placed. However, how the physical distance you move the mouse on the
desk is transformed into movement of the pointer is controlled by the
value of the row and column coordinate scaling factors. The scaling
factors determine how many mickeys the mouse must be moved in
order to change the screen location of the mouse pointer by one unit.
That is, a scaling factor of 1 means that for each mickey the mouse is
moved, the mouse pointer moves one screen unit. If the scaling factor is
2, the mouse pointer is moved one screen unit for every 2 mickeys that
the mouse is moved. The greater the scaling factor, the more the mouse
has to be physically moved on the desk to move the pointer to the next
screen unit. What values of scaling units make the best conversion ratio
is subject to intense debate. To some extent, the choice of a scaling
factor is governed more by the amount of free desk space than by
preference! The larger the scaling factor, the more space is needed.

You can determine the current scaling factors by using the Mou-
GetScaleFact service, which has the prototype

unsigned MouGetScaleFact(SCALEFACT far *fact,
unsigned short mhandle); '

The fact parameter is a pointer to a structure of type SCALEFACT,
which is defined

typedef struct __SCALEFACT {
unsigned rowScale; /* row scaling factor */
unsigned colScale; [* column scaling factor */

} SCALEFACT;

The fields rowScale and colScale hold the current row and column scal-
ing factors of the mouse subsystem.
The mhandle parameter is the handle returned by MouOpen.

114 OS5/2 Programming: An Introduction

To set the scaling factors, use MouSetScaleFact, whose prototype is

unsigned MouSetScaleFact(SCALEFACT far *fact,
unsigned short mhandle);

The structure pointed to by fact is as previously defined. The valid scal-
ing factors for both row and column directions are 1 through 32,767.
However, a practical range is loosely 1 through 24.

Although this is not directly related to scaling factors, it is some-
times interesting to know how many centimeters the mouse has
moved. To determine this, you must first call MouGetNumMickeys)
which returns the number of mickeys in a centimeter. Although gener-
ally a mickey is about 1/120 inch, it is not an absolute value. If your
application must know how far the mouse has actually moved, you
must call MouGetNumMickeys to know for sure. The prototype for
MouGetNumMickeys is

unsigned MouGetNumMickeys(unsigned far *mickeys,
unsigned short mhandle);

On return the integer pointed to by mickeys holds the number of mick-
eys per centimeter.

The demonstration program shown here displays the number of
mickeys per centimeter followed by the default row and column scaling
factors. Next the scaling factors are set to their lowest value: 1. After
that each time you press the left button, the row factor increases; each
time you press the right button, the column factor increases. In this
way, you can experiment with different scaling factors to see which
combination provides the most pleasing effects.

/* Demonstrate scaling factors.
*/

fidefine INCL_suB
#include <os2.h>

unsigned short initmouse(void);

unsigned getmickeys(unsigned short);

int leftbutton{unsigned short, MOUEVENTINFO);
int rightbutton(unsigned short, MOUEVENTINFO);
void clrscr(void);

main()
{

Using the Mouse 115

unsigned short mhandle;
unsigned state;

unsigned wait;
MOUEVENTINFO info;
SCALEFACT sf;

unsigned rscale, cscale;
char changed;

clrscr();

mhandle = initmouse();
if(Imhandle) exit(1); /* error opening mouse */

vioSetCurPos(0, O, 0);

/* show mickeys per centimeter */

printf("mickeys per centimeter: %d\n", getmickeys(mhandle));

MouGetScaleFact((SCALEFACT far *) &sf, mhandle);

printf("default row factor: ¥%d column factor: %d\n",
sf.rowScale, sf.colScale);

rscale = cscale = 1; /* start scaling at lowest ratio */
sf.rowScale = rscale; sf.colScale = cscale;
MouSetScaleFact ((SCALEFACT far *) &sf, mhandle);

do €
changed = 0;
wait = 1;
MouReadEventQue (CMOUEVENTINFO far %) &info,
(unsigned far *) &wait, mhandle);

/* Press left button to increase the row scale factor.
Press right button to dincrease the column scale factor.
*/
if(leftbutton{mhandle, info)) {
rscale++;
changed = 1;

if(rightbutton(mhandle, info)) {
cscale++;
changed = 1;

>

if(changed) {
sf.urowScale = rscale; sf.colScale = cscale;
MouSetScaleFact ((SCALEFACT far *) &sf, mhandle);
VioSetCurPos(2, 0, 0);
printf("row scale: %d column scale: %d", rscale, cscale);
3
} while (!kbhit());
MouClose(mhandle);
b

/* Open the mouse, draw the pointer, and position
the mouse at the upper Lleft corner.
*/
unsigned short initmouse()
{
unsigned short mhandle;
unsigned short err;
PTRLOC p;

116 OS/2 Programming: An Introduction

err = MouOpen((char far *) 0, {(unsigned short far *) &mhandle);
ifCerr) {

printf("error in opening mouse\n");

return 0;

b
p-.row = 0;
p.col = 0;

r
MouSetPtrPos ((PTRLOC far *) &p, mhandle);
MouDrawPtr(mhandle);
return mhandle;
b

/* Return the number of mickeys per centimeter, #*/
unsigned getmickeys(unsigned short mhandle)

unsigned mick;

MouGetNumMickeys({unsigned far *) &mick, mhandle);
return mick;
3

/* Return true if left button is pressed. */ .
LeftbuttonCunsigned short mhandle, MOUEVENTINFO info)

return{(info.fs & 2) || (info.fs & 4));
b

/* Return true if right button is pressed. */)
rightbutton(unsigned short mhandle, MOUEVENTINFO info)
{

return((info.fs & 8) || (info.fs & 16));
3 ;

/* A simple way to clear the screen by filling
it with spaces.
*/
void clrscr()
{
char spacel2];
spacelD] = " ';
spacel1]1 = 7;
VioScrollUp(O, 0, 24, 79, -1, (char far *) space, 0);

Measuring Distance with the Mouse

Because you can know the number of mickeys per centimeter, you can
use the mouse to measure distance, on a map for example, by multiply-
ing the number of mickeys per centimeter by the scaling factor and by
the number of screen units the mouse pointer moves. Expressed in
mathematical notation, the formula is L

distance = (mickeys/centimeter) * scale factor * screen units

Using the Mouse 117

When the scaling factor is 1, the formula is simply mickeys per centi-
meter times the number of screen units. The following program uses
this formula to compute the number of centimeters the mouse has
moved in a vertical direction. To use the program, locate the mouse at
the start of the distance you wish to measure and press the left button.
Next, move the mouse to the end of the distance and press the right
button. The number of centimeters covered by the mouse will be
displayed.

/* This program uses the mouse to measure distance. */
#define INCL_SUB
#include <os2.h>

unsigned short initmcuse(void);

unsigned getmickeys(unsigned short);

int leftbutton(unsigned short, MOUEVENTINFO);
int rightbutton(unsigned short, MOUEVENTINFO);
void clrscr(void);

main()
{
unsigned short mhandle;
unsigned state;
unsigned wait;
MOUEVENTINFO info;
SCALEFACT sf;
unsigned startrow, endrow, rscale, cscale;

clrscrQ);

/* cpen the mouse, show the pointer, and position
the mouse at the upper left corner

*/

printf("press left button to start measuring\n');
printf("press right button to stop measuring");

mhandle = initmouse();
if(!mhandle) exit(1); /* error opening mouse */

VioSetCurPos(0, 0, 0);

rscale = cscale = 1; /% start scaling at lowest ratio */
sf.rowScale = rscale; sf.colScale = cscale;
MouSetScaleFact ((SCALEFACT far *) &sf, mhandle);

wait = 1;
do {
MouReadEventQue ((MOQUEVENTINFQ far %) &info,
(unsigned far *) &wait, mhandle);

/% start reading distance */

if(leftbutton(mhandle, infol)) {
startrow = info.row;

b

118 OS5/2 Programming: An Introduction

/* stop reading distance */
if(rightbutton{mhandle, info)) <{

endrow = info.row;

printf("%d centimeters movedin",
. (endrow-startrow)*getmickeys{mhandle});

} while (!kbhit());
MouClose(mhandle) ;
¥

/* Open the mouse, draw the pointer, and position
the mouse at the upper left corner.
%/
unsigned short initmouse()
€
unsigned short mhandle;
unsigned short err;
PTRLOC p;

err = MouOpen((char far %) 0, (unsigned short far *) &mhandle);

ifCerr) {
printf("error in opening mouse\n");
return 0;

¥

p.row = D;

p.col = 0;

MouSetPtrPos((PTRLOC far #*) &p, mhandle);

MouDrawPtr(mhandle);

return mhandle;

b

/* Return the number of mickeys per centimeter. =/
unsigned getmickeys{(unsigned short mhandle)
{

unsigned mick;

MouGetNumMickeys((unsigned far *) &mick, mhandle);
return mick;
X

/* Return true if left button is pressed. #*/
leftbutton(unsigned short mhandle, MOUEVENTINFO info)
{

return(Cinfo.fs & 2) || (info.fs & 4));
¥

/* Return true if right button is pressed. =*/
rightbutton(unsigned short mhandle, MOUEVENTINFO info)
L

return(Cinfo.fs & 8) || (info.fs & 16));
>

/* A simple way to clear the screen by filling
it with spaces.

*/

void clrscr()

£
char spacel21;

Using the Mouse 119

spacel0] -
spacel1] T
VioScrollup¢0, 0, 24, 79, =1, (char far *) space, 0);

nu

*

DETERMINING THE NUMBER
OF BUTTONS

Your program can find out how many buttons are on the mouse con-
nected to the system by using the MouGetNumButtons service, which
has the prototype

unsigned MouGetNumButtons(unsigned far +b,
unsigned short mhandle);

On return from the call, the integer pointed to by b contains a value
equal to the number of buttons on the mouse. The following program
demonstrates this service’s use:

/% Display the number of buttons on the mouse. */
#define INCL_SUB

#include <os2.h>

unsigned short initmouse(void);

main()

unsigned short mhandle;
unsigned button;

mhandle = initmouse();
ifC!mhandle) exit(1); /* error opening mouse */

MouGetNumButtons((unsigned far *) R&button, mhandle);
printf("Your mouse has #%d buttons.\n", button);
MouClose(mhandle);

b

/* Open the mouse, draw the pointer, and position
the mouse at the upper Left corner.

*/

unsigned short initmouse()

{

120 OS/2 Programming: An Introduction

unsigned short mhandle;
unsigned short err;
PTRLOC p;

err = MouOpen((char far %) 0, (unsigned short far *) &mhandle);
ifCerr) €

printf("error in opening mouse\n");

return 0;

b
p.row = 0;
p.col = 0;

MouSetPtrPos((PTRLOC far *) &p, mhandle);
MouDrawPtr(mhandle);
return mhandle;

FLUSHING THE QUEUE

You may need to clear the contents of the queue. For example, if the
user requests that the mouse be used for a new purpose, any current
contents of the queue need to be cleared. To accomplish this task OS/2
provides the MouFlushQue service, which has the prototype

unsigned MouFlushQue(unsigned short mhandle);

Although none of the examples in this chapter use this service, it is
~ available if your programs need it.

A SIMPLE MOUSE MENU
EXAMPLE

The mouse is commonly used as an input device for menu selection.
Although you will generally use the Presentation Manager mouse ser-
vices when working with menus, the following example illustrates how
you can accomplish menu selection by using only the core mouse
services.

The key to using the mouse for menu selection is to convert the
mouse’s position into an integer that represents a menu item. For
example, if a menu has three selections, the first could be identified
with the number 0, the second with 1, and the third with 2. The trick,
of course, is to transform the mouse’s position into one of these
numbers. One easy way to do this is to display all menu entries verti-
cally {in a list) and then simply use the current row position of the

Using the Mouse 121

mouse pointer (less an appropriate offset from 0) to identify the menu
selection. For example, if the menu begins on line 10 and the mouse is
on line 11 when the selection is made, the second menu item is chosen
because 11 — 10 is 1. Here 10 is the offset used to normalize the row
position. The offset is always the row number of the first entry in the
mentu.

The way menu selections are generally made with the mouse is by
pressing a button. In the example developed here, the left button is
used.

The function get__menu_select() is passed the upper left coordi-
nate of the first entry in the menu, the number of items in the menu,
the width in characters of the longest entry in the menu, and the acti-
vate mouse handle. It then positions the mouse at the top of the menu
and waits for a selection to be made. Notice that it does not allow the
mouse to leave the area defined by the menu until a selection is made.
This sort of restriction is not mandatory, but it is very common
because it simplifies your application program.

/* This function positions the mouse pointer at the top
of the specified area and keeps the mouse confined to
those rows that have menu entries. The parameters x and ¥y
specify the upper Left corner of the menu, the lLen parameter
specifies the number of menu entries, and the width
parameter specifies the width of the longest menu entry.
*/
get_menu_select(unsigned x, unsigned y, int len, int width,
- unsigned short mhandle)
{
MOUEVENTINFO info;
unsigned wait;
PTRLOC p;

p.row = y; p.col = x;

MouSetPtrPos((PTRLOC far #) Bp, mhandle);
for(;;)

wait = 1;

MouReadEventQue ((MOUEVENTINFOQ far %) &info,

(unsigned far *) &wait, mhandle);
ifCinfo.row<y) MouSetPtrPos((PTRLOC far *) &p, mhandle);
if(info.row>=y+len) MouSetPtrPos((PTRLOC far *) &p, mhandle);
if(info,col<x) MouSetPtrPos((PTRLOC far *) &p, mhandle);
ifCinfo.col>=x+width) MouSetPtrPos((PTRLOC far *) &p, mhandle);
if((info.fs & 2) || (info.fs & 4))

return info.row-y;

122 0O6S5/2 Programming: An Introduction

The following program demonstrates how the get_menu_select()
function can be used:

/* This program illustrates how to use the mouse to make a
menu selection.
*/

#define INCL_SUB
#include <os2.h>

unsigned short initmouse(void); .
void clrscr(void), dispLay_menu(vo1d);

int get_menu_select(unsigned, unsigned, int, int, unsigned short);

main()

{
unsigned short mhandle;
unsigned state;
unsigned wait;
MOUEVENTINFO info;

clrser();

mhandle = initmouse();
if(!mhandle) exit(1); /* error opening mouse */

display_menu();

printf("You chose item number %d",
get_menu_select(0, 5, 3, 7, mhandle));

MouClose(mhandle);
>

/* Open the mouse, draw the pointer, and position
the mouse at the upper left corner.

*/

unsigned short initmouse()

{

unsigned short mhandle;
unsigned short err;
PTRLOC p;

err = MouOpen({char far %) 0, (unsigned short far *) &mhandle);
if(err) {

printf("error in opening mouse\n");

return 0;

I
p.row = 0;
p.col = 0;

MouSetPtrPos((PTRLOC far *) &p, mhandle);
MoubrawPtr(mhandle);
return mhandle;

Using the Mouse 123

/* This function positions the mouse pointer at the top
of the specified area and keeps the mouse confined to
those rows that have menu entries. The parameters x and %
specify the upper Left corner of the menu and the len parameter
specifies the number of menu entries.

*/

get_menu_select(unsigned x, unsigned y, int len, int width,

unsigned short mhandle)

{
MOUEVENTINFO info;
unsigned wait;
PTRLOC p;
p.row = y; p.col = x;
MouSetPtrPos((PTRLOC far #*) &p, mhandle);
for(;;) €
wait = 1;
MouReadEventQue ((MOUEVENTINFO far *) &info,

(unsigned far *) &wait, mhandle);
if(info.row<y) MouSetPtrPos((PTRLOC far *) &p, mhandle);
ifCinfo.rouw>=y+len) MouSetPtrPos((PTRLOC far *) &p, mhandle);
ifCinfo.col<x) MouSetPtrPos((PTRLOC far *) &p, mhandle);
ifCinfo.col>=x+width) MouSetPtrPos((PTRLOC far *) &p, mhandle);
if({info.fs & 2) || (info.fs & 4))

return info.row=y;
2}
3

/* A simple way to clear the screen by filling
it with spaces.

*/

void clrscr()

char spacel2];
spacel0] = ' ',

spacel1] = 7;

VioScrollUp(O, 0, 24, 79, =1, (char far *) space, 0);

/* Display a menu. */
void display_menu(}

VioSetCurPos(5, 0, 0);
printf("Applesin™);
printf("0Oranges\n");
printf("Grapes\n');
printf("\nMake a selection\n");

The approach to the menu and the menu selection process used in
this example is simple but effective. If you are interested in such things

124 OS/2 Programming: An Introduction

as pop-up and pull-down menus, however, you will want to consult
C: Power User’s Guide by Herbert Schildt (Osborne/McGraw-Hill, 1987),
which covers this subject and several other interesting and difficult
programming issues.

A VARIATION ON THE
PING-PONG VIDEO GAME

You probably remember the very first video games. Very crude by
today’s standards, they were essentially games of ping-pong. This chap-
ter on the core mouse services ends with a variation of the old ping-
pong game that uses the mouse to control the “paddle” (the mouse’s
pointer). The game works like this. A ball, represented by an asterisk,
bounces around the screen moving left to right. When the ball hits the
top or the bottom of the screen it reverses its vertical direction. If the
paddle hits the ball, the ball also reverses its vertical direction. The
computer scores a point each time the ball hits the bottom of the
screen. You score a point each time the ball hits the center of the top of
the screen. Only character positions 40 through 60 score points for
you. (This limitation is added to balance the game between you and the
computer.) The positions at the top of the screen that do not score
points are shown by a dashed line. The unmarked area is the goal. The
computer’s score is shown in the lower left corner; yours is shown in
the lower right. The game runs continuously until you press a key on
the keyboard.

Although the program is fairly straightforward, a few key points
are worth mentioning. First, the cursor (not the mouse pointer) is hid-
den so that it won’t detract from the playing action. The ball is moved
only once each 20 times the main loop executes. The toggle variable is
used to control this value, which slows the ball down enough for a
human to “hit” it. Depending on your computer’s speed, you may need
to change this value. To give the appearance of movement, the ball is
erased from its current position before being moved to the next screen
unit. Finally, the values of deltax and deltay control the angle of the
ball as it moves about the screen.

The program is presented here for your amusement, without
further comment:

Using the Mouse 125

/* A simple version of the old Ping-Pong video game.
wf

#define INCL_SUB
#define INCL_DQS

#include <os2.h>

unsigned short initmouse(void);
void movemouse (MOUEVENTINFO, unsigned short);
void clrscrivoid), moveball(void), display score(void);

unsigned row = 0, col = 0;
unsigned ballx, bally;
int deltax, deltay;
int computer=0, user=0, oldcomputer=-1; olduser=-1;
main()
{
unsigned short mhandle;
unsigned state;
unsigned wait;
MOUEVENTINFO info;
SCALEFACT sf;
int theta;
VIOCURSORINFO ¢
unsigned toggle;
PTRLOC p;

clrscr(};

mhandle = initmouse();
ifC!mhandle) exit(1); /* error opening mouse */

sf.rowScale = sf.colScale = 2;
MouSetScaleFact ((SCALEFACT far *) &sf, mhandle) ;

/* hide the cursor */

VioGetCurType C(VIOCURSORINFO far *) &c, 0);
c.attr = =1;

VioSetCurType ((VIGCURSORINFO far %) &c, 0);

ballx = 10; bally = 1;
deltax 1; deltay = 1;
toggle 0;
theta = 2;

"o

/* Draw goal Line =%/
VieSetCurPos(0, 0, 0);

pPrintf (Mo e e e~ "y
VioSetCurPos(0, 50, 0);

printf("M—mmee e _ e ");
wait = 0;

’
VioSetCurPos(bally, ballx, 0); printf("*");

do {
MouReadEvent@ue ((MOUEVENTINFO far *) &info,
(unsigned far *) &wait, mhandle);

126 OS/2 Programming: An Introduction

/* If there has been a change in the mouse's position,

update the counters.

*/
if¢info.fs) {
row = info.row;
col = info.col;
b

/* 1f mouse pointer intersects the ball, reverse vertical

direction.

*/

if(ballx==col &B& bally==row) {
p.row = row; p.col = col+1;
MouSetPtrPos({(PTRLOC far *) &p, mhandle);
deltay = -deltay;

moveball ();
DosBeep(500, 50);
3

if(!(toggle%20)) moveball ();
toggle++;

display score();
} while (Tkbhit());
MouClose(mhandle);

/* restore the cursor */

c.attr = 0;

VioSetCurType ((VIOCURSORINFO far *) &c, 0);
X

/* QOpen the mouse, draw the pointer, and position
the mouse at the upper Lleft corner.
*/
unsigned short initmouse()
{
unsigned short mhandle;
unsigned short err;
PTRLOC p;

err = MouOpen((char far *) 0, (unsigned short far %)
ifCerr) {

printf("error in opening mouse\n");

return 0;

3
p.row = 1;
p.col = 0;

MouSetPtrPos ((PTRLOC far *) &p, mhandle);
MouDrawPtr(mhandle);
return mhandle;

>

/* Move the Ball. =*/
void moveball ()
{
static int toggle2=0;
int i;

VioSetCurPos(bally, ballx, 0); printf(" ");
if(toggle2) ballx += deltax;

Emhandle)

=
r

Using the Mouse 127

bally += deltay;
if(ballx == 80) ballx = 0;
if(bally >= 24) {
if(deltay>0) deltay = =-deltay;
computer++; /* give a point to the computer #*/
DosBeep (300, 50);
>
if(bally == 1) {
if(deltay<0) deltay = -deltay;
if(ballx >30 && ballx <50) <
user++; /* give a point to the user */
for(i=0; i<5; i++) DosBeep(300+(i*100), 50);

}

else DosBeep(300, 50);
3
toggle2 = !toggle2;

VioSetCurPos(bally, ballx, 0); printf("*");
¥

/* Display the score. */

void display_score()

{
/* don't waste time redisplaying unchanged score */
if(computer==oldcomputer && user==olduser) return;

VioSetCurPos(24, 0, 0);
printfC" "™);
VioSetCurPos(24, 0, 0);
printf("%d", computer);
VioSetCurPos(24, 76, 0);
printf (" ");
VioSetCurPos(24, 76, 0);
printf("%d", user);
oldcomputer = computer;
olduser = user;

b

/* A simple way to clear the screen by filling
it with spaces.

*/

void clrscrQ)

char spacel2];
spacel0] = ' !
spacel1] = 7;
VioScrollup(0, 0, 24, 79, -1, (char far *) space, 0);

;

FILE 1/O

The OS/2 file /O subsystem is an amazingly straightforward and effi-
cient way to access disk files and other devices. At its core are four
services: DosOpen, DosRead, DosWrite, and DosClose. If you are fa-
miliar with C’s unbuffered I/O system, you will be pleased to learn that
these services parallel open(), read(), write(), and close(). In fact, many
of the file services are similar to C’s I/O functions. Even if you are
unfamiliar with these C functions, the OS/2 file system is very easy to
learn and use. '

The OS5/2 file I/O services are shown and briefly described in Table
6-1. Notice that all the functions begin with the prefix Dos.

As has been the case with many of the OS/2 services, the OS/2 file
system is closely paralleled by the C file system. For most low-
performance applications you will probably use the C file I/O functions
because they are more portable and, in a few cases, slightly easier to
use. However, for high-performance or multithread applications
(depending on the actual implementation of your C compiler) you
should rely on the OS/2 file services.

One final point: OS/2 allows you to bypass the logical structure of
the disk and access the disk directly. Direct control of the disk hard-
ware is beyond the scope of this book, however, and generally you will
access the disk directly only when creating special disk utility programs,
such as a file recovery program.

129

130 OS/2 Programming: An Introduction

DosWrite Async

Table 6-1. The File /O Subsystem Services

Service Function

DosBufReset Flushes the buffers associated with a file

DosChdir Changes the current directory

DosChgFilePtr Changes the location of the file pointer

DosClose Closes a file

DosDelete Deletes a file

DosDupHandle Duplicates a file handle

DosFileLock Locks a file

DosFindClose Closes a directory search file handle

DosFindFirst Finds the first file in the directory that matches
the specified file name

DosFindNext Finds the next file in the directory that
matches the specified file name

DosMkdir Makes a subdirectory

DosMove Renames a file

DosNewSize Resizes a file

DosOpen Opens a file

DosPhysicalDisk Returns information about the disk system

DosQCurDir . Returns information about the current directory

DosQCurDisk Returns information about the current disk

DosQFHandState Returns information about a file’s handle

DosQFilelnfo Returns information about a file

DosQFileMode Returns information about a file’s mode

DosQFSInfo Returns information about the file system

DosQHandType Returns a handle’s type

DosQVerify Returns the state of the verify flag

DosRead Reads data from a file

DosRead Async Reads data from a file but returns immediately

DosRmdir Removes a subdirectory

DosScanEnv Looks for a specified environmental variable

DosSearchPath Searches for a file name given a path

DosSelectDisk Changes the default drive

DosSetFHandState Sets a file handle’s state

DosSetFilelnfo Changes information associated with a file

DosSetFileMode Changes a file’s mode

DosSetFSInfo Changes the file system information

DosSetMaxFH Sets the maximum number of file handles

DosSet Verify Changes the state of the verify flag

DosWrite Writes data to a file

Writes data to a file but returns immediately

File /O 131

FILE HANDLES

The OS/2 file subsystem operates on files through a file’s handle,
which is obtained when the file is first opened. Like all other OS/2
handles, a file handle is a 16-bit unsigned integer. You must obtain a
valid file handle before attempting to use any of the file [/O services.
You obtain the handle either by making a successful call to DosOpen or
by using one of the built-in handles discussed later.

FILE POINTERS

All open disk files have associated with them a file pointer, which is used
to keep track of the location in the file that is currently being accessed.
OS/2 automatically maintains the file pointer during read or write
operations. The file pointer is an unsigned long integer. For example, if
a file is 100 bytes long and your program has just read the first 50
bytes, the value of the file pointer is 50. You can also set the value of
the file pointer to reach a specific point in the file.

DosOpen AND DosClose

Before you can access a file you must obtain a handle to it. To do this
you use the DosOpen service, which has the prototype

unsigned DosOpen(char far *filename,
unsigned short far *fhandle,
unsigned far *action, unsigned long size,
unsigned attr, unsigned openflags,
unsigned mode, unsigned long reserved);

where filename must be a null-terminated string that contains a valid
path and file name for the file to be opened. The fhandle parameter
points to the integer that contains the file’s handle on return from a
successful call.

The action parameter points to a set of flags encoded into an integer,
which holds the action taken by a successful DosOpen. If the call fails,
the value pointed to by action has no meaning. The action value will be
one of the following.

132 OS/2 Programming: An Introduction

Value Meaning

1 File existed
2 File was created
3 File existed and its length was truncated

The size parameter specifies an initial length in bytes for a new or
truncated file. The value can be 0. This parameter has no effect on a
file that is opened for read operations.

The value of the attr parameter determines a file’s attributes. It ap-
plies only to newly created files. The value of affr can be any valid (ie.,
not mutually exclusive) combination of the following:

Value Type of File

0 Normal
1 Read-only
2 Hidden
4 System
20H Archive

The value of the openflags parameter determines what action Dos-
Open takes depending on whether the specified file exists. Its value can
be a combination of these values: '

Value Action

0 Returns error if the specified file already exists; otherwise,
opens the file and returns success

1 Opens the file if it exists and returns success; otherwise,
returns error

2 Opens an existing file, but truncates it; otherwise, returns
error

10H If specified file does not exist, creates it and returns success;

if the file does exist, returns error

For example, if you wish to open a file that exists or create it if it does
not, you would use a value of 11H (1 plus 10H).

The value of the mode parameter must specify both the access and
the share mode of a file that is being created. All files can be accessed in
one of three different ways: read-only, write-only, or read-write. For a
single-tasking operating system, these access codes fully describe how
access to the file is allowed. In OS/2, a multitasking system, the access

File IO 133

mode of a file is not sufficient to describe the file fully because it does
not take into account the possibility of two or more processes attempt-
ing to access the file at the same time. To handle this situation all OS/2
files also have associated with them a share attribute, which is one of the
following:

Share Attribute Meaning

Deny write sharing Only the process that opened the file can
write to it, but other processes can read
from it.

Deny read sharing Only the process that opened the file can
read from it, but other processes can write
to it.

Deny read-write sharing Only the process that opened the file can

read or write to the file; all other processes
are barred access.

Deny none Any process can access the file at any time,
in any way.

In addition to the access and file-sharing specifics, OS/2 lets you
control a few other aspects of the file system. You can control the set-
ting of the inheritance flag, which determines whether a child process
inherits a file handle from the parent. You can tell the file system to
return all /O errors to the calling routine rather than the system-
critical error routine. You can tell OS/2 that you do not want write
operations to return until the information being written is actually put
on the physical device (not simply written to a buffer). Finally you can
specify that the drive is being accessed directly on a sector-by-sector
basis, bypassing the disk’s logical structure.

The values for the access, file-sharing, and miscellaneous flag set-
tings are shown in Table 6-2. You combine the attributes you want to
create the value desired for the mode parameter. (To combine the values,
you simply add them together.) For example, to open a file for read-
write operations with no sharing, use 12H.

The reserved parameter must be 0.

When the file is first opened, the file pointer is set to the beginning
of the file and has the value 0.

Unless the write-to-device flag has been set, the OS/2 file system
writes output to a buffer, not the actual physical file, until the buffer is
full. Virtually all operating systems buffer disk input and output by

134 OS5/2 Programming: An Introduction

Table 6-2. File Mode Values

Type Value Meaning When Specified
Access 0 Read-only file,
1 Write-only file.
2 Read-write file.
Share 10H Deny read-write sharing.
20H Deny write sharing.
30H Deny read sharing.
40H No access denied.
Inheritance 80H File handles not passed on to child
process.
Error 2000H Immediate return to caller on error.
Write-to-device 4000H Services that perform write opera-

tions do not return until informa-
tion is written to the specified
physical device.

Direct-access 8000H Signals the system that direct de-
vice access will take place.

even multiples of a sector. When your program requests information,
for example, the file system automatically reads a full sector even if
only a partial one is needed. Subsequent sequential read requests can
then obtain information from the buffer without waiting for a slow
disk access. Output data is also buffered until a full sector can be writ-
ten to disk, thus bypassing a number of time-consuming disk opera-
tions, each writing just a few bytes. Using the buffered approach to
improve performance is not unique to OS5/2. However, you must ensure
that the contents of the buffer have been written to the file before
your program terminates or before the handle associated with that file
is destroyed. Because of the finite number of file handles available in
the file system (20 by default), you also need some way to release a file
handle for reuse when you are done with a file. To accomplish these
goals OS/2 provides the DosClose service, whose prototype is

unsigned DosClose(unsigned short fhandle);

where fhandle must be a previously acquired file handle.

File 1O 135

Before you can develop any meaningful examples using DosOpen
and DosClose, you need to learn about DosWrite, the subject of the
next section.

DosWrite

To write information to a file use the DosWrite service, which has the
prototype

unsigned DosWrite(unsigned short fhandle, void far *buf,
unsigned count,
unsigned far *num__bytes__written);

The fhandle parameter must be a valid, previously obtained, file handle.
The region pointed to by buf holds the information to be written to the
file. The count parameter specifies the length of the buffer, or more
properly the number of bytes in the buffer that should be written to
the file. Finally, the num__bytes__written parameter points to an integer
that contains the number of bytes actually written on return from the
call. If an error occurs and it is not possible to write all the bytes
requested, the value returned in the integer pointed to by num__bytes
written is different from the number requested.

QS/2 file operations are binary in nature and no character transla-
tions take place. (What you write is what you get!) The file system
performs no formatting and is byte oriented by nature. That is, if you
wish to write data other than characters, you must treat the data as a
group of bytes. There is no OS/2 service that writes floating point
numbers directly, for example. (You will see how to write other types
of data later in this chapter.)

Each time you write to a file, its pointer is automatically advanced
by the number of bytes written.

A SIMPLE FIRST EXAMPLE

To see how DosOpen, DosWrite, and DosClose work together, exam-
ine the following program that creates a new disk file called TEST.TST
and writes the line “Hello OS/2 World!” to it. (The file must not exist.
If it does, the call to DesOpen will fail.)

136 OS/2 Programming: An Introduction

/* This programs writes output to a disk file. */
#define INCL DOS
#include <os2.h>

main()

{
unsigned short fh;
unsigned action;
unsigned count;
char bufC801;

strcpy(buf, "Hello 0S$/2 World!");
/* create the file, no file sharing =*/

if(DosOpen((char far *) "test.tst", /% filename */
(unsigned short far *) &fh, /* pointer to handle */

(unsigned far *) &action, /* pointer to result */
oL, /* 0 Length %/
0, /* normal file =*/

0x10, /[* create */
0x11, /* write-only, no-share */
oLy /% reserved */

{

printf("error in opening file");
exit(1);
X

/% write a short message to it */
if(DosWrite(fh, (void far *) buf, Cunsigned) strlen(buf),
(unsigned far #*) &count))
printf("error in write operation”);

/* close the file =*/
if(bosClose(fh)) printf("error closing file");

The first time you run this program, it creates the file called TEST.TST
and writes output to it. If you try to run the program a second time,
however, OS/2 displays an “error in opening file” message, because the
value of the openflags parameter specifies that the file will be created
only if it does not exist.

Notice that this program checks for error returns from DosOpen,
DosWrite, and DosClose. Errors are very common when you are deal-
ing with files. One frequent error is failure to put a diskette into the
drive. Another is running out of space on a disk. You must check for
errors whenever you open a file or write to it. (Remember that closing
a file may involve a write operation if a buffer must be written to disk.
Hence DosClose must also be checked.) Unlike the screen or keyboard
services, in which most of the functions are more-or-less guaranteed
successful—and error checking can generally be ignored — many of the
file system services have a significant likelihood of failure due to

File 1O 137

uncontrollable circumstances. You simply must check for errors and
take appropriate action if one occurs.

A Variation

As mentioned, the program just shown works only if the file does not
already exist. You can change the value of the openflags parameter so
that the file will be opened if it already exists or created if it doesn’t.
This can be accomplished by using the value 11H. This version of the

program is shown here:

/* This program opens or creates a file and then
Wwrites output to it.

*/

#define INCL_DOS

#include <os2.h>

main(}

{
unsigned short fh;
unsigned action;
unsigned count;
char buff801;

strcpy(buf, "Hello 0S8/2 World, again!");
/* open or create the file, no file sharing */

if(DosOpen((char far *) "test.tst"”, /* filename */
(unsigned short far #*) &fh, /% pointer to handle */

(unsigned far %) &action, /* pointer to result */
oL, /* 0 length */
0 /* normal file */

rd
0x11, /* open or create */
0x11, /* write-only, no-share */
oL) /* reserved */
{
printf("error in opening file");
exit(1);

/* write a short message to it */
if(DosWrite(fh, (void far *) buf, (unsigned) strlen(buf),
(unsigned far *) &count))
printf("error in write operation");

/* close the file =*/
if(DosClose(fh)) printf("error closing file");

When you run this program, it opens an existing TEST.TST file and
writes the new message to it, overwriting any existing contents. (Later
you will see how to append information to a file.) If TEST.TST does not

exist, it is created.

138 OS/2 Programming: An Introduction

Buffer Lengths

As stated earlier, OS/2 buffers file information. At the time of this
writing, its internal buffers are in even multiples of 512. For DosWrite
to be as efficient as possible, it is best to call it with your own data
buffers also in even multiples of 512. Of course if your application does
not make this feasible, you can call DosWrite with data buffers of any
value between 1 and 65,536.

DosRead

To read information from a file you use the DosRead service, which has
the prototype

unsigned DosRead(unsigned short fhandle, void far *buf,
unsigned count, unsigned far *num__read);

The fhandle parameter is a valid, previously obtained file handle asso-
ciated with the file from which you wish to read. The region pointed to
by buf receives the information read. The value of count determines how
many bytes are read from the file. The buffer receiving them must be
at least count bytes long. The value pointed to by rum__read will contain
the number of bytes actually read after the call returns. The number
of bytes requested and the number of bytes actually read may differ
either because the end of the file has been reached or because an error
has occurred.

0OS/2 automatically updates the file pointer after each read
operation.

The following program reads and displays the contents of a text file.
You must specify the name of the file on the command line.

/* This program displays an entire file. */
#define INCL_DOS

#include <os2.h>

main{int argc, char *argv[1)

unsigned short fh;
‘unsigned action;

File /O 139

unsigned num_bytes;
char buf[5131;

ifCargc!=2) {
printf("Usage: read <filename>\n");
exit(1);

3

/* open the file, no file sharing */
if(bosOpen{Cchar far *) argv[C1l, /* filename */
(unsigned short far %) &fh, /* pointer to handle =/

(unsigned far %) &action, f* pointer to result #*/
oL, /* 0 Length =/
0, /* normal file */

0x1, /* open */
0x10, /* read-=only, no=share #/

oLy /* reserved */
{
printf("error in opening file");
exit(1);
b
do {

if(DosRead(fh, {(char far *) buf, 512,
(unsigned far %) &num bytes)) {

printf("error reading file");
exit(1);
b
bufCnum bytes] = *\0"; /* null terminate the buffer =*/

printf(buf);
2 uhiLe(num_bytes);

if(DosClose(fh)) printf("error closing file™);
>

As this program illustrates, the easiest way to know when you have
reached the end of the file is when the value of the num__bytes
parameter is zero. The DosRead function does not return an EOF
character. '

One thing to notice about this program is that the buffer used to
hold the data is one byte longer than the number of bytes requested to
be read. In this situation the buffer must be transformed into a null-
terminated string so that it can be used as a parameter to printf(). Not
every application requires this step, of course.

One final point: As was the case with DosWrite, the DosRead ser-
vice is most efficient when used with buffer lengths of even multiples
of 512, although other values are perfectly valid.

RANDOM ACCESS

The OS/2 file system supports byte-addressable random access
through the DosChgFilePtr service, which has the prototype

140 OS/2 Programming: An Introduction

unsigned DosChgFilePtr(unsigned short fhandle,
long distance, unsigned origin,
unsigned long far *loc);

The fhandle parameter must contain a valid, previously obtained file han-
dle. The DosChgFilePtr service works only on actual disk files and
cannot be used with other devices. The value of distance determines how
far, in bytes, the file pointer is to be moved relative to the origin. This is
a signed value and may be either positive or negative. The value of
origin determines how the value of distance is interpreted, as shown
here:

Origin Effect

0 Moves specified number of bytes from the start of the file
1 Moves specified number of bytes from the current location
2 Moves specified number of bytes from the end of the file

The value pointed to by loc holds the current value of the file point-
er on return.

The following program uses the DosChgFilePtr service to let you
scan a text file both forward and backward. You must specify the name
of the file on the command line. The program supports these
commands:

Command Meaning

Go to beginning of the file.
Go to the end of the file.
Go back 512 bytes.

Go forward 512 bytes.
Quit.

oM@ mn

When the program begins execution, the first 512 bytes of the file are
shown.

/* A file browse program. */
#define INCL_DOS

#include <os2.h>

main (i

unsi
unsi
unsi
Llong
char

if(a
pr
ex
¥

File 11O

nt argc, char *argv[1)

gned short fh;
gned actiong
gned num_bytes;
pos, p;
buf[5131, ch;

rge!=2) {
intf("Usage: read <filename>\n");
it(1);

/* open the file, no file sharing =/
if(bosOpen((char far *) argv[1], /% filename */

(unsigned short far *) &fh, /* pointer to handle =/

(unsigned far *) BRaction, /* pointer to result =/
oL, /* 0 Llength =/
0 /* normal file */

4
0x1, [/* open */
0x10, /* read-only, no-share */
oL)) /% reserved */

141

{
printf("error in opening fite");
exit(1);
/* main loop */
pos = 0OL;
do {
if(DosRead(fh, (char far *) buf, 512,
(unsigned far #*) &num_bytes)) {
printf("error reading file");
exit(1);
b
bufCnum_bytes]l = '\0'; /* null terminate the buffer */
printf(buf); /% display the buffer */
/* see what to do next */
ch = tolowerf{getch());
switch(ch) {
case 'e': /* move to end ¥/
DosChgFilePtr(fh, =512L, 2, (unsigned Llong far *) &pos);
break;
case 's": /* move to start */
bosChgFilePtr(fh, OL, 0, (unsigned long far *) &pos);
break;
case 'f': /* move forward */
/* forward is automatic, so no change is required */
pos = pos + num bytes;
break; -
case 'b': /* move backward */
pos = pos - 512;
if(pos<0OL) pos = 0OL;
posChgFilePtr(fh, pos, 0, (unsigned Long far =*) &pl;
X
} while(ch !'= 'q');

if(DosClose(fh)) printf("error closing file");

}

142 OS5/2 Programming: An Introduction

APPENDING TO A FILE

The way to add information to the end of a file is to advance the file
pointer to the end of the file and then begin writing the new data. To
accomplish this you could open the file for read-write operations and
read to the end of the file. But this method is very inefficient. The best

way to get to the end of the file is to use DosChgFilePtr in a statement
like this:

DosChgFilePtr(fh, OL, 2, (unsigned Llong far *) E&pos);

This tells OS/2 to move the file pointer to the end of the file. The 2 in
the origin parameter and the 0L in the distance parameter ensure that the
file pointer will be at the physical end of the file.

The following program uses this method to add lines of text
entered at the keyboard to the file TEST.TST. To stop inputting lines,
enter the word guit when prompted for the next line.

/* This program opens a file, reads lLines from the keyboard
and appends each line to the end of the file.

*/

#define INCL_DOS

#include <os2.h>

main()

{
unsigned short fh;
unsigned action;
Leng pos;
unsigned count;
char bufC80];

/* open or create the file, no file sharing =*/
if(bosOpen((char far *) "test.tst", /* filename */
unsigned short far %) &fh, /* pointer to handle */
(unsigned far %) &action, /* pointer to result =*/
oL, /* 0 Length =*/
0, /* pnormal file =/
0x11, /* open or create */
0x11, /* write-only, no-share */
¢ o)) /* reserved %/

printf("error in opening file");
exit(1);

/* go to the end of the file */
DosChgFilePtr(fh, OL, 2, (unsigned long far *) &pos);

/* continue adding to the file until the word "quit" is
entered
*/

File /O 143

do €
printf("enter message (<80 chars) message: ");
gets(buf);
if(posWrite{fh, (void far *) buf, (unsigned) strlen(bufl,
(unsigned far *) &count))
printf("error in write operation”);
} whileCstremp("quit", buf));
/* close the file */
if(bosClose(fh)) printf("error closing file");

READING AND WRITING
OTHER DATA TYPES

You can use the OS5/2 file system services to read and write data types
other than characters (bytes) by treating a variable of a different type
as a buffer and using its address and length in the calls to DosRead and
DosWrite. (Remember that you can obtain the size of any data type by
using the sizeof compile time operator.) For example, the following
program first writes a double value to the file TEST.TST and then
reads it back, displaying the value to the screen for verification:

/* This program illustrates how to write a double value to
a file and read it back.

*/

#define INCL_DOS

#include <os2.h>

main()

{
unsigned short fh;
unsigned action;
unsigned count;
float dbl;
unsigned lLong pos;

dbl = 101.125;

/* open or create the file, no file sharing */
if(DosOpen((char far %) "test.tst", /% filename */
(unsigned short far %) &fh, /* pointer to handle =*/
(unsigned far *) Raction, /* pointer to result */
oL, /* D Length =*/
0, /* normal file */
0x11, /* open or create */
0x12, /* read-write, no-share */

oL)) /* reserved */
£
printf("error in cpening file");
exit(1);

/* write a double value to it */

144 OS/2 Programming: An Introduction

if(posWrite(fh, (double far %) &dbl, sizeof(dbl),
(unsigned far *) &count})
printf("error in write operation");

f* clear the dbl variable */
dbl = 0.0;

/* reset the file pointer to start of file */
DosChgFilePtr(fh, OL, 0, (unsigned lLong far *) &pos);

if(bosRead(fh, (double far %) &dbl, sizeof(dbl),
(unsigned far #) &count))
{
printf("error reading file");
exit(1);

printf("%f", dbl); /* verify that info read correctly =*/

/* close the file */
if(DosClose(fh)) printf("error closing file");

You can use this same basic approach on more complex data types
such as arrays, unions, and structures. Just be sure that you are passing
the variable’s address, not its value, to DosRead or DosWrite.

READING AND WRITING
TO A DEVICE

The OS/2 file system lets you access certain devices as if they were
files. For example, you can open the console (screen and keyboard) and
then read and write to it. To open a device, use the device’s name in
place of a file name in the DosOpen call. The devices supported by
O65/2 are

clock$ con mouse$
coml kbd$ nul
com2 lptl pointer$
com3 Ipt2 prn
com4 Ipt3 screen$

The most interesting of these are com1 through com4 (the serial com-
munication ports) and Ipt1l through Ipt3 and prn (the printer ports).

One thing to keep in mind is that not all devices support all modes
of operation. For example, if you open screen$, you may write to the
screen but not read from it. As you will see, disk files also support
random access operations, but devices do not.

File /O 145

This program opens the keyboard, reads a line of text, and displays
the contents of the buffer:

/* This program reads input from the keyboard. */
#define INCL DOS
#include <os2.h>

main()

unsigned short fh;
unsigned action;
unsigned count;
char bufl801;

/* open the keyboard =/
if(bosOpen({char far *) "kbd$", /* keyboard =*/
(unsigned short far *) &fh, /* pointer to handle */
{unsigned far *) &action, /* pointer to result */
oL, /% 0 length */
0, /* normal "file" #*/
0x11, /* open or create */
0x10, /* write-only, no-share */
oL)} /* reserved */
{
printf("error accessing the keyboard");

exit(1);

if(bosRead(fh, {(void far *) buf, B8O,
(unsigned far *) &count))
printf("error in read operation");

printf(buf);

if(bosClose(fh)) printf("error closing the keyboard");

The following program opens Ipt1 and writes a message to it:

/* This program writes oufput to the printer. */
#define INCL_DOS

#include <os2.h>

main()

{
unsigned short fh;
unsigned action;
unsigned count;
char bufC80]1;

strepy(buf, "Hello 08/2 World!");

/* open or create the file, no file sharing */
if(DosOpen((char far *) "Lpti1", /* printer */

146 S5/2 Programming: An Introduction

{unsigned short far %) &fh, /% pointer to handle */
(unsigned far *) &action, /* pointer to result */
oL, /* 0 Length */
0, /* normal "file" =*/
0x11, /* open or create */
0x11, /* write-only, no-share */
oLy /* reserved */
€
printf("error accessing the printer");
exit(1);

if(DosWrite(fh, (void far *) buf, (unsigned) strlen(buf),
(unsigned far *=) &count))
printf("error in write operation');

if(bosClose(fh)) printf("error closing the printer");

Generally speaking, you will not use the OS/2 file system to write
to the screen, read the keyboard or the mouse, or access the system
clock. The OS/2 dedicated services that perform these functions will
generally be faster than going through the file system. However, you
should use the file system to access the printer ports because OS/2 can
automatically route output to the proper port without your program
needing intimate knowledge of the system’s configuration.

THE OS/2 STANDARD DEVICES

(OS/2 has three built-in file handles, which are associated with three
standard devices. These handles are created when your program begins
executing. The handles and their meaning are

Handle Meaning

0 Standard input
1 Standard output
2 Standard error (output)

By default standard input is associated with the keyboard, and standard
output and standard error are associated with the screen. However,
because OS/2 supports /O redirection of its standard devices, input
and output can be routed to disk files or other devices.

The following program writes a message to standard output:

/%* This program writes output to Standard Output. */
#define INCL_DOS

#include <os2.h>

File 1O 147

main()

{
unsigned count;
char bufC801;

strcpy{buf, "Hello 0S/2 World!");

/* write a short message to it *f
if(posWrite(1, (void far *) buf, (unsigned) strlen(buf),
(unsigned far %) &count))
printf("error in write operation”);
b

Notice that the program does not have to open standard output
because OS/2 does so automatically when the program begins. The
program does not close standard output because this, too, is performed
automatically. If this program were called STDOUT, executing it using
this command line causes the message to be written to the screen:

STDOUT

However, using the following command line causes the message output
by the program to be written to a file called MESS.

STDOUT >MESS

DISPLAYING THE DIRECTORY

Application programs commonly need to display the contents of a
directory so that the user can make a file selection. OS/2 makes this
very easy to do through its DosFindFirst and DosFindNext services.
Their prototypes are

unsigned DosFindFirst(char far *mask, unsigned short *handle,
unsigned attr,
FILEFINDBUF far *info,
unsigned buflength,
unsigned far *count,
unsigned long reserved);

unsigned DosFindNext(unsigned short handle,
FILEFINDBUF far* info,
unsigned buflength,
unsigned far *count);

148 OS5/2 Programming: An Introduction

For DosFindFirst, the mask parameter is a null-terminated string
that holds the file name you are looking for. This string can include the
* and ? wild card characters. A directory handle is returned in the vari-
able pointed to by handle. This handle is used in subsequent calls to
DosFileNext. Prior to the call to DosFindFirst handle must contain the
value 1 or FFFFH. If its value is 1, OS/2 supplies a default handle.
However, if you will be searching for more than one specific file, use
FFFFH, which causes OS/2 to return a handle that can be used in sub-
sequent calls to DosFindNext. The attr parameter specifies the type of
file you are looking for. It can be any valid (not mutually exclusive)
combination of the following values:

Value File Type

0 Normal

1 Read-only

2 Hidden

4 System

10H Subdirectories
20H Archive

The structure of type FILEFINDBUF pointed to by info receives infor-
mation about the file if a match is found. This structure type is defined
as

typedef struct — FILEFINDBUF {
FDATE fdateCreation; /+ creation date */
FTIME ftimeCreation; /* creation time */
FDATE fdateLastAccess; [* last access date */
FTIME ftimeLastAccess; [* last access time */
FDATE fdateLastWrite; /* last write date */
FTIME ftimeLastWrite; /* last write time */
unsigned long cbFile; /* file length */
unsigned long cbFileAlloc; [+ total space allocated */
unsigned attrFile; /* file attribute */
unsigned char cchName; [~ filename length */
char achName[13]; /= filename */

} FILEFINDBUF;

File 1O 149

The types FDATE and FTIME are defined by Microsoft as

typedef struct __FTIME {
unsigned twosecs : 5;
unsigned minutes: 6;

unsigned hours : 5;
} FTIME;
typedef struct — FDATE {
unsigned day y 5}
unsigned month : 4;
unsigned year ¥
} FDATE;

The buflength parameter specifies the length of the FILEFINDBUF
structure. The integer pointed to by count specifies the number of
matches to find and holds the number of matches found on return. It is
generally best to give count a value of 1. If no match is found, 0 is
returned. The reserved parameter must be 0.

The parameters for DosFindNext have the same meaning as those
for DosFindFirst.

If you are looking for only one specific file and fully specify that
file’s name (no wild cards) in the call to DosFindFirst, you will not need
to use DosFindNext. If you are searching for (potentially) several
matches, however, the basic method is to call DosFindFirst to obtain the
first match (if any) and a directory handle to use in subsequent calls to
DosFindNext.

There are two ways to determine when the last match has been
found:

1. Both DosFindFirst and DosFindNext fail and return an error code if
no match is found.

2, The count parameter is zero when no (more) matches are found.

The following program lists the current working directory. It dis-
plays the file’s name and length.

150 OS5/2 Programming: An Introduction

/* This program Lists the directory. */
#define INCL_DOS
#include <osz2.h>
void show_dir(void);
main{)
{
show dir();

by i

/* Display the directory. */
void show_dir()

€
FILEFINDBUF f;
unsigned short hdir;
unsigned count;
hdir = Oxffff; /* cause a new handle to be returned */
count = 1; /% find the first match */)
DosFindFirst(Cchar far %) "#.%", (unsigned short far *) &hdir,
Ox0, (FILEFINDBUF far =*) &f, sizeof(f),
(unsigned far *) Rcount, 0OL);
do {
printf("%=13s %d\n", f.achName, f.cbFile);
posFindNext (hdir, (FILEFINDBUF far *) &f, sizeof(f),
(unsigned far *) &count);
YwhileCcount);
DosFindClose(Chdir);
¥

ACCESSING INFORMATION
ABOUT THE DISK SYSTEM

It is not uncommon for an application to need to have knowledge of
various pieces of information about the disk system, including such
things as the total free storage, the number of bytes per sector, or the
number of sectors per cluster. To obtain this information, OS/2 sup-
plies the DosQFSInfo service, which has the prototype

unsigned DosQFSInfo(unsigned drive, unsigned info-type,
char far *info, unsigned buflength);

where drive specifies the number of the drive you want to receive
information about. If it is 0, the default drive is used. Otherwise, use 1
for drive A, 2 for drive B, and so on. The info-type parameter specifies
what type of information will be returned. If it is 1, on return info

File /O 151

points to a structure of type FSALLOCATE, which is defined as

typedef struct _ FSALLOCATE {
unsigned long idFileSystem; /* system identifier */
unsigned long cSectorUnit; /* sectors per cluster */
unsigned long cUnit; /* total number of sectors */
unsigned long cUnitAvail; /* available sectors */

unsigned cbSector; [« bytes per sector #/
} FSALLOCATE;

In some OS/2 literature, a cluster is called a unit, but this book will
continue to use the term cluster because it is more common.
If info-type is 2, info points to a structure of this type:

type struct _FSALLOCATE2 {
FDATE fdateCreation; [* creation date of volume label */
FTIME ftimeCreation; [* creation time of volume label */
char cchName; * length of volume name */
char achName[14]; /* volume name */

} FSALLOCATE2;

—_

Note: FSALLOCATE2 is not defined in any header files provided by
Microsoft and must be defined explicitly by your program. (This situa-
tion could change. If you are using a different compiler, this structure
could also be defined in a header file provided with your compiler.)

This program displays the number of bytes per sector, the number
of sectors per cluster, the total disk space, and the total free disk space
for the default drive. The total disk space is computed by multiplying
the number of bytes per sector by the number of sectors per cluster by
the number of clusters on the disk. The free space is computed by
multiplying the number of bytes per sector by the number of sectors

~ per cluster by the number of clusters available.

/* Demonstrate the DosQFSInfo service and display the number
of bytes per sector, sectors per cluster, total disk space,
and available disk space.

*/

#define INCL DOS

152 0OS5/2 Programming: An Introduction

#include <os2.h>

main()
{
FSALLOCATE *;

DosQFSInfo(D, 1, (char far *) &f,
sizeof f);

printf("Bytes per sector: %Lld\n", f.cbSector);
printf("Sectors per cluster: %ld\n", f.cSectorunit);
printf("Total disk space: %ZLd\n",
f.cbSector * f.cSectorUnit * f.cUnit);
printf("Total available disk space: %Zld\n",
f.cbSector * f.cSectorUnit * f.cUnitAvail);

EXAMINING AND CHANGING
THE DIRECTORY

OS/2 provides two important directory services called DosQCurDir
and DosChgDir, which are used to return the path name of the cur-
rent directory and to change the current directory. Their prototypes
are shown here:

unsignéd DosQCurDir(unsigned drive, char far *path,
unsigned far *size);
unsigned DosChDir(char far *path, unsigned long reserved);

For DosQCurDir the drive parameter specifies the drive to be operated
on. To use the default drive, use 0 for drive. For drive A, use 1, for drive
B use 2, and so on. Upon return the character array pointed to by path
holds the path name of the directory. The integer pointed to by size
must hold the length of the array pointed to by path prior to the call,
and it returns the length of the path name.

For DosChDir, path points to the character that holds the new direc-
tory path name. The reserved parameter must be OL.

This program displays the current directory name, switches to the
root directory, and then switches back to the original directory:

/* Displaying and changing the directory. */
#define INCL_DOS
#include <os2.h>

main()

File /O 153

char olddirnamelé64]1, newdirnamel64];
unsigned size;

size = 63;

Pbos@Curdir(0, (char far *) olddirname, Cunsigned far *) &size);
printf("current directory: %s\n", olddirname);

bosChdir("\\", 0L);

Dos@Curbir(0, (char far *) newdirname, (unsigned far *) &sizel;
printf("current directory: %s\n", newdirname);
bosChdir(olddirname, OL);

DosQCurDir(0, (char far *) newdirname, (unsigned far #*) Esize);
printf("current directory: %s\n", newdirname);

AN INTRODUCTION
TO MULTITASKING

The preceding chapters in this book have covered some very important
OS/2 API services. If you are moving from DOS or another single-
tasking system to OS/2, the material in the previous chapters, although
necessary, is nothing especially new or exciting. However, this chapter
introduces you to O5/2’s multitasking capabilities, in which much of its
power lies. If you are new to a multitasking environment, this is where
the real fun begins!

The use of multitasking can dramatically increase the efficiency of
most applications. For example, in a software development situation
multitasking allows you to edit, compile, and test simultaneously. Part
of a word processor program can be inputting text, while another part
is formatting it for printing, and yet another part is actually printing
the document. The entire point of a multitasking, single-user system
like OS/2 is to help the user achieve greater throughput by minimizing
needless idle time.

This chapter covers some of the basic OS/2 multitasking services.
The next chapter builds on the material presented here and discusses
interprocess and interthread communication and synchronization
issues. The time you invest in understanding the concepts presented
here will really pay off later.

155

—7—

156 OS|2 Programming: An Introduction

As you will recall, O5/2 implements multitasking on both a process
and a thread level, Hence, OS/2 provides two sets of multitasking ser-
vices: one to create and support processes and one to create and sup-
port threads. This chapter looks at both, beginning with processes.

A WORD OF WARNING

Before we begin it is important to emphasize one important point: You
must never make any assumptions about the way multitasking routines
will be executed by OS/2. You must never assume that one routine will
execute before another or that it will execute for a given number of
milliseconds. For example, if you need one multitasked routine to exe-
cute before another, perhaps to initialize something, you must explic-
itly design this into your program. If you find, through experimenta-
tion, that one multitasked routine always executes before another, it is
not acceptable to use this “fact” in your program, for three important
reasons:

1. Future versions of O5/2 may schedule tasks differently. (Actually,
nothing in the OS/2 documentation says that you can assume any-
thing about the way OS/2 schedules tasks even within the same
version.)

5 In the future, OS/2 may be designed to run on a multiple-CPU
computer, thus allowing true concurrent execution of multiple
tasks. In that case two tasks that might have been sequenced in a
single CPU system will be run simultaneously.

3. Future versions of OS/2 may change the way time slices are allo-
cated, causing the “first” routine to begin execution but not finish
before the “second” begins.

Remember that when you are dealing with multitasked routines there
is no valid concept of which routine is executed “first,” unless you have
explicitly provided for this in your program. '

To write solid multitasked code you must assume that all multi-
tasked routines are actually executed simultaneously, whether they are
in your current environment or not. Most of the troubles you will
experience when you use multitasking inside your programs will be
caused by forgetting this important point.

An Introduction to Multitasking 157

PROCESSES VERSUS THREADS

The distinction between a process and a thread, covered earlier in this
book, is summarized here. A thread is a dispatchable piece of code; that
is, the OS/2 scheduler executes threads. A thread does not own
resources. A process consists of at least one thread and may have sev-
eral. A process owns resources. Very loosely, a process is a program
and a thread is like a subroutine in that program.

MULTIPLE PROCESSES

(0S/2 has nine services (shown in Table 7-1) that are used to oversee
the creation and operation of multiple processes. As you can probably
tell by looking at Table 7-1, OS/2 lets your program begin the concur-
rent execution of another program. The program that initiates the
second program is called the parent and the program that it causes to be
executed is called the child. A parent can create a child in two different
ways!:

1. It can simply cause the child to be run in the parent’s session using
DosExecPgm.

2. It can create another session and run the child under that session, in
either an autonomous or a controlled mode, using DosStartSession.

Table 7-1. OS2 Multiple Process Services

Service Function

DosCWait Waits for a child process to terminate

DosExecPgm Loads and executes another process

DosExit Terminates the current process

DosExitList Registers functions to be called when the process
terminates

DosGetPid Returns a process’s identification code

DosSelectSession Makes specified session foreground

DosSetSession Sets a session’s status

DosStartSession Starts a new session

DosStopSession Stops a session

158 OS/2 Programming: An Introduction

Most of the time when you want one program to cause the execu-
tion of another, related program, you use DosExecPgm. The main use
for DosStartSession is at system initialization, when you might want to
begin several sessions automatically.

We will begin with a look at DosExecPgm and its support functions.

DosExecPgm

To execute a second process from a currently executing program, use
DosExecPgm, which has the prototype ‘

unsigned DosExecPgm(char far *failbuf, unsigned failbuf__size,
unsigned exec_mode,
char far *args,
char far *env,
RESULTCQODES far *result,
char far *filename);

The buffer pointed to by failbuf receives a message that helps explain
the cause of any failure to execute the specified program successfully.
The failbuf __size parameter specifies the size of the fail buffer. The exec__
mode parameter specifies how the child program will be executed and
must be one of these values:

Value Meaning

0 Execute synchronously

1 Execute asynchronously and discard child’s termination code
2 Execute asynchronously and save child’s termination code

3 Execute in debug mode

4 Detach child

When the child program is executed synchronously, the parent sus-
pends execution until the child has terminated, at which time the par-
ent resumes. In a DOS environment, this is the only way that one
program can run another. However, in OS/2’s multitasking environ-
ment, synchronous execution is seldom used and is not of much inter-
est. When the child is run asynchronously, the parent and the child
execute concurrently. If the parent needs extensive information about
how the child terminated, call DosExecPgm with the exec__mode set to 2;

An Introduction to Multitasking 159

if not, use the value 1. The debug mode is used for tracing. If you want
to detach the child, use the value 4.

The parameters args and env point, respectively, to arrays that hold
any command line arguments and environment variables required by
the child process. Either or both may be null. The array pointed to by
args begins with the null-terminated name of the program followed by a
double-null-terminated list of the arguments. For example, if the child
program’s name is TEST and you want to pass it the argument
“HELLO THERE”, call DosExecPgm with args pointing to this string:

“TESTNDHELLC THERE\D\OQ"

The environment variables are passed to the child as null-terminated
strings with the last being a double-null-terminated string.

The structure pointed to by result receives information about the
termination of the child process. The structure is defined like this:

typedef struct _RESULTCODES {
unsigned codeTerminate;

unsigned codeResult;
} RESULTCODES;

If the child is executed asynchronously, codeTerminate holds the pro-
cess identifier (PID) associated with the child process. For asynchro-
nous execution, the codeResult field is not used. If the child is executed
synchronously, codeTerminate will be 0 for normal termination, 1 for
hardware error, 2 for system trap, and 3 if the process was killed. For
synchronous execution, codeResult holds the child’s exit code.

The array pointed to by filename contains the drive, path, and name
of the program to be executed.

As with all the API services, DosExecPgm returns zero if successful
and nonzero otherwise.

For example, this program first asynchronously executes a program
called TEST.EXE and then begins printing Is on the screen, sleeping a
little each time through the loop, until you press a key.

/* This program asynchronously executes another. */
Hdefine INCL_DOS

#include <os2.h>

0]

160 (OS/2 Programming: An Introduction

main()

{
char faill128];
RESULTCODES result;

if(DosExecPgm((char far =*) fail, 128,
1, /* run asynchronous */
(char far *) "", /% no command line args */
(char far %) "", /* no environment args */
(RESULTCODES far *) &result, /* result =*/
“"TEST.EXE")) /* name of program %/
printf("exec error");

do {
printf("1 ");
DosSleep(100L);
} whileClkbhit());
T

Use this for the TEST.EXE program:

/* This is the TEST program used by several of the example
multitasking programs in this chapter.

*/

#define INCL_DOS

#include <os2.h>

main{)

do {
printf("2 ");
DosSleep(C11L);

} whileC!kbhit());
iy

When both programs are executing you see a series of Is and 2s
displayed on the screen. Because of the difference in the DosSleep
parameter, about four times as many 2s are shown as Is. (You might
want to try varying the sleep parameters to see the effect. This will
give you insight into how the OS/2 scheduler works.) Notice that both
programs check for a keystroke prior to termination. Since the key is
not read by either program, the keybuffer is not cleared. Therefore, a
single keypress terminates both programs. However, in real applications
you need to make sure that input meant for one program is not acci-
dentally routed to another program.

" When the child begins executing, it inherits the parent’s environ-
ment, including all open file handles (except those with the inheritance
flag set to 0). The child can access these files without opening them. Of

An Introduction to Multitasking 161

course the parent’s environment can be overridden or augmented by
the contents of the environment array passed at the time of the
DosExecPgm call.

With a slight modification to the DosExecPgm call in the parent
program, the command line argument “HI” can be passed to the
TEST.EXE program, as shown here:

if(DosExecPgm((char far *) fail, 128,
1, /* run asynchronous */
(char far #) "TEST\OHI\O\D", /* <== pass arg */
(char far *) "", /% no environment args */
(RESULTCODES far %) &result, /#* result =/
"TEST1.EXE™)) /* name of program */
printf(“exec failed");

This version of TEST.EXE prints the argument before proceeding:

#define INCL_DOS
#include <os2.h>

/* This time, show the command line argument =*/
main(int argc, char *argv[Cl)
{
printf("%s", argv[11);
do {
printf("2 ");
DosSleep(11L);
} whileClkbhit());
b

Two important points to remember:

1. A parent can execute more than one child process.

2. A child process can execute its own child processes.

Waiting for a Child to Terminate
When Using DosCWait

In multitasking environments it is not uncommon for the parent pro-
cess at some point to wait until an asynchronous child process has fin-
ished. For example, a database program may initiate a sort process and
then continue processing user input. However, the parent will have to
wait until the sort is complete before processing a request to print the

162 OS/2 Programming: An [ntroduction

database. In other words, it is very common for a parent and an asyn-
chronously executing child process to execute concurrently until some
special event causes the parent to wait for the child to finish. This
differs from simple synchronous execution in which the parent and
child never execute concurrently. To allow the parent to wait for a
child, OS/2 includes the DosCWait service, whose prototype is

unsigned DosCWait(unsigned descendants,
unsigned wait,
RESULTCODES far *results,
unsigned far *Tpid,
unsigned pid);

The descendants parameter specifies whether DosCWait should wait
for the termination of just the specified process or of the specified pro-
cess and all (if any) of its child processes. If descendants is 0, the parent
waits only for the specified process. If it is 1, the parent waits for the
specified process and any of its children.

The wait parameter specifies whether DosCWait actually waits for
the specified process to terminate or simply returns immediately. If its
value is 0, the parent waits for the process to terminate. If it is 1, the
parent returns immediately with the result codes of an already termi-
nated process. (However, if the specified process is still executing when
DosCWait is called with the no-wait option, it returns an error
message.)

The structure pointed to by result is of type RESULTCODES and is
the same as that described earlier in the discussion of DosExecPgm.

The variable pointed to by Tpid will hold the process identifier of
the terminating process as set by DosCWait.

The pid parameter specifies the process identifier of the process to
wait for. If it is null, the first child process to terminate causes a return
and the process identifier of this child is loaded into the Tpid parameter.
Otherwise, DosCWait waits only for the specified process. If the speci-
fied process does not exist, DosCWait returns an error message.

The following program executes the TEST.EXE program shown ear-
lier and waits for it to end. (To end the TEST.EXE program, press any
key.)

/* This program demonstrates the DosCWait service. */
#define INCL_DOS

An Introduction to Multitasking 163

#include <os2.h>

main()

{
char faill1281;
RESULTCODES result, waitresult;
unsigned proc;

if(DosExecPgm((char far *) fail, 128,
1, /* run asynchronous */
Cchar far %) ™", /% no command line args #*/
(char far *) "", /% no environment args */
(RESULTCODES far %) &result, /* result */
"TEST.EXE")) /* name of program */
printf("exec error");

DosCWait(D, /% wait for specified process cnly =/
0, /* wait for termination */
(RESULTCODES far #) Bwaitresult, /% result %/
(unsigned far %) &proc, /* PID */
resuLt.codeTerminate); /* PID to wait on */

printf("child process terminated\n");

Notice how the process identifier of TEST.EXE is first returned in the
result.codeTerminate field by DosExecPgm and then used by DosC-
Wait to specify the specific process to wait for.

It is important to understand that when DosCWait is called using
its wait mode, the calling process is suspended, thus freeing the CPU.

Killing a Process

The parent can terminate a child process. To understand why this is
necessary, imagine that you have created a large relational database sys-
tem. The main (parent) process includes all the user input and query
functionality. To achieve uninterrupted use, however, you allocate time-
consuming tasks such as printing, sorting, mail merges, and backups to
separate child processes that are executed only when needed. In such a
system, it is very likely that from time to time you will need to termi-
nate one or more child processes because they are no longer needed. To
accomplish this task OS/2 provides DosKillProcess, which has the
prototype

unsigned DosKillProcess(unsigned descendants,
unsigned pid);

If the descendants parameter is 0, the specified process and any descen-

164 OS/2 Programming: An Introduction

dants are killed. If it is 1, only the specified process is terminated. The

pid parameter is the process identifier for the process to be stopped.

DosKillProcess can fail and return nonzero only if the specified
process does not exist.

To see DosKillProcess in action, try this program, which executes
the TEST.EXE program, waits 5000 milliseconds, and then kills it. Try
the program two ways:

1. Simply do nothing, letting it kill TEST.EXE. In this case, OS/2 prints
the message “child process terminated.”

2. After TEST.EXE begins execution but before it is killed by its par-
ent, press any key. (Remember, TEST.EXE terminates if you press a
key.) In this case, when the parent tries to kill it with the DosKill-
Process, it fails and the message “child process already terminated”
appears.

/* This program executes a second program, waits a while and

then kills the second program.
*/

Hdefine INCL_DOS
#include <os2.h>

main()

{
char failL1281];
RESULTCODES result, waitresult;
unsigned proc;

if(DosExecPgm((char far *) fail, 128,
1, /* run asynchronous */
(char far %) "", /% no command line args */
(char far %) "", /* no environment args */
(RESULTCODES far %) &result, /% result */
"TESTL.EXE")) /* name of program */
printf("exec error”);

posSleep(5000L);

/* kill child =/
if(DbosKillProcess(1, result.codeTerminate))
printf("child process already terminated");
else
printf("child process terminated\n");

L

An Introduction to Multitasking 165

Creating an Exit Function List

Since a parent function can terminate a child process unexpectedly, it
may be advisable to ensure that the child has some means of dying a
clean death. For example, you will want the child program to flush any
disk buffers and close all files. Special hardware devices may-need to be
reset, and it may even be appropriate to notify the user that the process
is being killed. To enable the child to perform these tasks, OS/2 calls a
special list of functions whenever a process (child or parent) termi-
nates. The functions that comprise this list are called exif functions. Col-
lectively they are called the exit function list. OS/2 provides the DosExit-
List service to support the exit function list. Its prototype is

unsigned DosExitList(unsigned operation,
void far *exfunc(unsigned term_ code));

The value of operation determines what DosExitList does. The valid
values are shown here*;

Value Meaning

1 Add a function to the exit list

2 Remove a function from the exit list

3 Current exit function is done; move on to the next

function in the exit list

To add or remove a function from the list, you must pass a pointer to
the function in the exfunc parameter. The function must be declared as
follows:

void far func(unsigned term__code);

The function will be passed a termination code in the term__code param-
eter, which will be one of these values*:

Value Meaning

0 Normal termination
1 Unrecoverable error
2 System trap error
3 Process killed

*These table’s were adapted from tables in Operating System/2 Programmer’s Reference Manual, with permission
of Microsoft Corporation.

166 (OS/2 Programming: An Introduction

Your exit function can take different actions based on the termination
code if so desired.

The basic approach to establishing an exit function is first to call
DosExitList to add the function to the list. At termination the last
thing your function must do is call DosExitList with the operation
parameter set to 3, to move to the next function in the list. If for some
reason you want to remove a function that you previously added to the
list, call DosExitList with operation set to 2.

There is one very important thing to remember about an exit func-
tion: It cannot be terminated by OS/2. This means that your exit func-
tions should be very short and never, under any circumstances, delay
the termination of the process more than a few milliseconds. Because
the environment surrounding the exit functions is dying, it is impera-
tive that your function does what it needs to do as quickly as possible.
An incorrectly constructed exit function cannot crash O5/2, but it can
make it impossible for OS/2 to complete its termination of the process
and thereby degrade system performance.

Another important point: You cannot assume that two or more exit
functions will always be called in the same order. O5/2 guarantees to
call them, but not in any special sequence.

As a simple example, this program puts the function exfunc() into
the exit list and then prints 1000 numbers. On termination, the
exfunc() function displays whether the process terminated normally or
was killed by your pressing CTRL-C.

/* This program creates an exit function, exfunc(), which

is called when the program terminates.
*/

#define INCL_DOS
#include <os2.h>
void far exfunc(unsigned);
main()
int i;
DosExitList(1, exfunc);

for(i=0; i<1000; i++) printf("%d ");

/* This function is automatically called at termination. =*/

An Introduction to Multitasking 167

void far exfunc(unsigned term code)
p i
if(term code==0)

Lpr‘int?("program terminating normally™);
else

printf("progrﬁm terminating abnormally");

/* done with this exit function, move on #/
DosExitList (3, (void far *) 0);
¥

Error Checking

A wide variety of errors can occur when you create or manipulate pro-
cesses. For example, in a given situation OS/2 may not be able to create
a new process because all process identifiers are already allocated. It is
important to watch for errors in your applications and take appropriate
action if one occurs.

CREATING NEW SESSIONS

When you used DosExecPgm to start new processes, these new pro-
cesses ran in the same session (sometimes called a screen group) as the
parent. Although this is very useful for related processes that interact
with each other to form a unit, it is not very desirable when the pro-
cesses are not related. However, OS/2 allows you to start a process in
its own session by using the DosStartSession service, whose prototype
is

unsigned DosStartSession(STARTDATA far *sdata,
unsigned far *sid,
unsigned far *pid);

The structure pointed to by sdata is defined like this:

typedef struct — STARTDATA {
unsigned cb; [* size of struct */
unsigned Related; [* session related to parent */
unsigned FgBg; /* foreground or background */
unsigned TraceOpt; [* trace active? */
char far *PgmTitle; [* session title */

168 OS5/2 Programming: An Introduction

char far *PgmName; /* name of program to execute */
char far *PgmiInputs; /* command line args */
char far *TermQ; [* termination queue or null */

1} STARTDATA,;

The cb field must hold the length of the STARTDATA structure. If
Related is 0, the new session is completely independent of the parent.
If it is 1, the new session is a child of the parent. If FgBg is 0, the new
session becomes the foreground task; if it is 1, the new session
becomes a background task. The new session can become a foreground
task only if the parent is in foreground when it creates the session. If
TraceOpt is 0, the new session is not set up for tracing; if it is 1, the
new session can be traced. The string pointed to by PgmTitle is the
name of the session and may be null. The string pointed to by
PgmName is the name of the program that will begin running in the
new session. The string pointed to by Pgmlnputs contains any com-
mand line arguments needed by the program and may be null. The
string pointed to by TermQ is the name of the termination queue and
may be null.

The sid parameter points to a variable that receives the session iden-
tifier when the call returns. The pid parameter points to a variable that
receives the process identifier of the process run in the newly created
session.

This program begins a new session called “my session” and starts
running the TEST.EXE program. When you try this program,
remember that you need to have TEST.EXE in the current working
directory.

/* Start a new session and run the TEST.EXE program. */
#define INCL_DOS

#include <os2.h>

main()

{

STARTDATA d;
unsigned sid, pid;

d.cb = sizeof(d); /* size of struct */
d.Related = 0; /* not related */
d.FgBg = 0; /* foreground =/
d.Trace0Opt 0; /* no tracing */

non

d.PgmTitle (char far *) "my session'; /#* sessicn name =*/

An Introduction to Multitasking 169

d.PgmName = (char far *)"c:\\pm\\test.exe"; /* name */
d.PgmInputs = (char far %) ""; /* no command line args =*/
d.Term@ = (void far *) 0; /* no queue */

DosStartSession((STARTDATA far %) &d, /* session data */
(unsigned far *) &sid, /* session id */
(unsigned far *) &pid);/* process id =*/

In this program the new session is not a child of the parent and
becomes the foreground task.

Although this trivial program doesn’t check for errors in the Dos-
StartSession call, your program will need to in actual practice because
the service is susceptible to a wide variety of errors. For example, OS/2
may not be able to start another session because all its session identifi-
ers may be allocated.

When you terminate the TEST.EXE program by pressing a key, you
also terminate the session.

Selecting and Stopping a Session

If your program starts a child session, your program can switch to that
session using DosSelectSession, whose prototype is

unsigned DosSelectSession(unsigned sid,
unsigned long reserved);

where sid is the session identification number of the session to switch
to and reserved must be 0.

You can use DosSelectSession only to switch to a child session or
back to the parent. You cannot select an independent session. To switch
to the parent, call DosSelectSession with sid having a value of 0.

The parent session can stop a child session using the DosStopSes-
sion service, which has the prototype

unsigned DosStopSession(unsigned descendants,
unsigned sid,
unsigned long reserved);

If the descendants parameter is 0, only the specified session is terminated;
if it is 1, the specified session plus any children of that session are

170 OS5/2 Programming: An Introduction

terminated. The sid parameter holds the session identification code.
The reserved parameter must be 0.

To illustrate how DosSelectSession and DosStopSession work, this
program creates a second session and begins running the TEST.EXE
program. Next it switches back and forth between the two sessions ten
times. Finally the parent session terminates the child, and the program
exits.

/* This program creates a new session and uses DosSelectSession

to switch back and forth between the two sessions.
*/

#define INCL_DOS

#include <os2.h>
#include <stdlib.h>

main()

{
STARTDATA d;
unsigned sid, pid;
char flag, ch;

docb = sizeof(d); /% size of struct =/

d.Related = 1; /* related x/

d.FgBg = 0; /* foreground */

d.Trace0Opt = 0; /* no tracing */

d.PgmTitle = (char far *) "my session'"; /* session name */
d.PgmName = (char far *)"c:\\pm\\test.exe"; /* name */
d.PgmInputs = (char far =) ""; /+ no command Lline args */
d.Term@ = (void far *) 0; /*# no gqueue */

DosStartSession((STARTDATA far *) R&d, /* session data */
(unsigned far %) &sid, /* session id =*/
(unsigned far %) &pid):/* process id */

flag = 0;
for(ch=0; ch<10; ch++) {
DosSleep(1000L); /* wait a while */
flag = !flag;
if(flag) DosSelectSession(sid, OL); /% switch to child */
else DosSelectSession(0, OL); /% switch to parent */
b

/* return to parent session if not there already */
posSelectSession(0, 0OL);

/* kill the child session */
bosStopSession(0, sid, 0OL);

THREADS

The single most important thing to understand about O5/2’s multitask-
ing model is that it is thread (rather than process) based. A thread is

An Introduction to Multitasking 171

the unit of code dispatched by the scheduler. All the programs you have
seen up to this point have consisted of a single thread; that is, the
entire program was one thread of execution. This need not always be
the case, however, because OS5/2 lets the programmer define threads of
execution within a program. This allows a single program to create
concurrently executing routines, which can, if used correctly, greatly
enhance the efficiency of your program. In fact OS/2 also allows you to
set the priority of the threads within a program so that you can choose
what routines get the greatest access to the CPU. The thread-based
services are listed in Table 7-2.

In the first half of this chapter you saw how to create concurrently
executing processes. While multitasking processes is a wonderful
improvement over single-tasking them and allows a number of diver-
gent applications to share CPU time, it is not generally the approach to
take when you want to multitask pieces of a single application. Instead
you should use multiple threads within the application. _

Another important point about threads and processes is that each
process can have up to 255 separate threads, but there can be only
about 12 (depending on how your system is configured) separate pro-
cesses. 50 when you want to have many paths of execution, use multi-
ple threads rather than multiple processes.

Each thread inherits the environment of the process of which it is a
part. This includes open files and environmental strings. If one thread
in a process opens a file, for example, other threads can use that file
handle. All threads in a program share the same code and data seg-
ments, so access to global data and routines is unrestricted.

The thread that begins a process’s execution is called either the main
thread or thread 1. It is a little special, as you will soon see.

Table 7-2. OS/2 Thread-Based Services

Service Function

DosCreate Thread Creates a thread of execution
DosGetPrty Returns a thread’s priority
DosResumeThread Restarts a suspended thread
DosSetPrty Sets a thread’s priority

DosSuspendThread Suspends a thread’s execution

172 0OS/2 Programming: An Introduction

Creating Threads with
DosCreateThread

To create a thread of execution QS/2 uses the DosCreateThread ser-
vice, whose prototype is

unsigned DosCreate Thread(void far *func(void),
unsigned far *tid,
char far *stack);

where func is a pointer to a function that is the entry point into the
thread. The function must be declared as void far with no parameters.
Upon return from the call, tid will point to the thread’s identifier. The
region pointed to by stack is used as the thread’s stack space. The stack
parameter points to the top of the stack. Each thread uses its own
stack. This region must be at least 512 bytes long, but you really
should allow at least 2048 bytes if you will be using any of the AFI
services inside the thread.

The newly created thread begins to execute immediately after it is
created. You must not call a thread entry function from another
routine.

The following short program uses DosCreateThread to create and
execute two threads. If you are using Microsoft C version 5.1, you
must use this command to compile the program,

CL -Lp -Gs thread.c
assuming that thread.c is the name you give to the program.

/* This program uses DosCreateThread to activate two
concurrently executing threads.

If you are using Microsoft € 5.1, use this command
to compile this program:

CL =Lp =Gs thread.c
*/
#define INCL_suB
#define INCL_DOS
#include <oszZ.h>
void far thdi¢(), far thd2(Q);

char stack1[40961, stack2[40961;
unsigned thd_id1, thd_id2;

An Introduction to Multitasking 173

main()
{
DosCreateThread(thd1,
(unsigned far *) &thd id1,
(void far *) &stack1C%0951);

DosCreateThread{(thd2,
(unsigned far *) &thd_idz,
(void far *) Bstack2[%0951);

VioWrtTTy(Cchar far *) "this is the main thread\n\r", 25, 0):
2

void far thd1()
{
VioWrtTTy{((char far *) "this is thread 1\n\r", 18, 0);

void far thd2()
{

VioWrtTTy({(char far %) "this is thread 2\n\r", 18, 0);
X

Notice that DosCreateThread is called with the last byte of the stack
arrays. The 80286 stacks grow from high to low, so it is necessary to
pass the last address.

Each thread, including the main program thread, terminates when it
reaches the end of the function. However, you can terminate a thread
explicitly by calling DosExit, whose prototype is

void DosExit(unsigned mode, unsigned term__code);

If mode is 0, only the current thread terminates. If it is 1, the entire
process terminates. The value of term__code is passed to the calling
process.

If the main thread terminates, it terminates the process even if
other threads in the process are still active. Keep this in mind when
designing your multithread applications.

There are two problems with using DosCreateThread directly with
high-level languages:

1. Itis possible that not all high-level language library functions will be
reentrant. If a library function is not reentrant, it cannot be called
by two different threads at the same time without causing trouble.
Although all the API services are reentrant, language run-time
libraries may not be. This is the reason that VioWrtTTy was used in
the sample program rather than printf(). Microsoft’s standard C
library does not work with multiple threads. (Microsoft does, how-

174 OS5/2 Programming: An Introduction

ever, provide a special multithread library, which will be discussed in
a moment.)

2. Because each thread has its own stack, a high-level language that
performs run-time stack overflow checking will report false stack
overflow errors. Generally you can work around this problem by
using a compiler option to turn off run-time stack checking. With
the Microsoft compiler use the -Gs compiler directive. However, you
do lose the advantage of run-time stack overflow checking.

These two problems can make multithread application tedious to
develop. However, all is not lost. Most high-level languages have a spe-
cial function that creates new threads, and provide special run-time
libraries that support multiple threads of execution. In Microsoft C the
thread creation function is called _beginthread() and has the proto-

type

int cdecl far __beginthread(void far *func(void far *),
void far *stack__end,
unsigned stack__size,
void far *args);

The func parameter points to the entry function, which must be
declared as void far. However, the stack__end parameter is a pointer to
the last byte in the stack, unlike the stack parameter in DosCreate-
Thread. The stack_size parameter must hold the length of the stack in
bytes. The args parameter points to any information you need to pass
to the thread and may be null. The prototype for _beginthread() is in
PROCESS.H, and you must include this header in any program that
uses the function. |

Keep in mind that __beginthread() does eventually call Dos-
CreateThread.

The rest of the examples in this chapter use __beginthread()
because it is designed to help avoid the problems discussed earlier. If
you are using a different compiler, consult your user manual for
instructions.

Microsoft C version 5.1 (or greater) supplies a multithread set of
library functions as well as a multithread version of all the standard C
header files. If you have installed the compiler on your computer in the
suggested way, the multithread header files are in the MT\INCLUDE

An Introduction to Multitasking 175

directory. However, Microsoft C automatically supplies the \INCLUDE,
so you need add only the MT\. If your program needs STDIO.H, for
example, you will use this #include statement:

#include <mt\stdio.h>

To gain access to the multithread libraries and to reset some compiler
options to accommodate multithread applications, use this batch com-
mand to compile and link your multithread programs:

cl =ALfw %1.¢c /Link /NOD Llibemt doscalls

This command tells the linker to avoid using the default libraries and
substitute the LLIBCMT.LIB (the multithread version of the standard
C library) and the DOSCALLS.LIB API services library. (Remember, it
is possible that DOSCALLS.LIB will be called something else in your
version of O5/2.)

The __beginthread() function returns the thread’s identifier
number if it is successful or —1 if it is not.

If you have a different compiler, remember that you must consult
your user’s manual for specific instructions on alternative multithread
libraries and header files.

The code shown here uses __beginthread() and the multithread
libraries to create a program that parallels the one just shown.

/* This program uses _beginthread() to activate two
concurrently executing threads.

*/

#define INCL SuB

#define INCL_DOS

#include <mt\os2.h>
#include <mt\process.h>
#include <mt\stdic.h>

void far thd1();
void far thd2Q);

char stack1L[40961, stack2[40961;

main()
{
_beginthread(thd1,
(void far *) stack1,
4096,
(void far %) 0);

176 (OS5/2 Programming: An Introduction

¥
/
a

beginthread(thd2,
- (void far *) stack2,
4096,
(void far *) 0);

printf("this is the main thread\n");

3
void far thd1()
{
printf("this is thread 1\n");
3
void far thdz()
{ :
~printf("this is thread 2\n");
X

Microsoft C also includes a special thread-termination function
called _endthread(), which has the prototype

void cdecl far _ endthread(void);

However, you will probably find DosExit more useful since it returns a
termination code.

As stated earlier, when the main process thread terminates, all
threads in the process terminate. To see an example, run this
program:

/* This program prints 1000 numbers on the screen using

a thread. However, if you press a key, the main thread
terminates, which stops the entire process.

*/
#define INCL_SUB
#define INCL_DOS

#include <mt\os2.h>
#include <mt\process.h>
#include <mt\stdio.h>

void far thd1(void), far thd2(void);

char stack1L4096]1, stack2[40961;
~unsigned thd_id1, thd_idz;

main()
{
_beginthread(thd1,
(void far *) &stacki1[&094],
4096,
(void far *) 0);
getch();
3

void far thd1()
{

An Introduction to .Multitasking 177

int i;

for(i=0; i<1000; i++) printf("%d ", i);
>

The program begins a thread and then waits for a keypress inside the
main thread. If you press a key before thd1 terminates, the program
will terminate. However, if thd1 finishes, the program will wait until
the main thread terminates before exiting.
Unless you specify otherwise, all threads in your program are at the
' same priority level and are given equal time slices. To illustrate this,
watch the output of this program. Both thd1 and thd2 print the same
number of messages on the screen.

/% This program gives you an idea how CPU time is shared
between two concurrently executing threads.

*/

#define INCL_SUB

#define INCL_DOS

#include <mt\os2.h>
#include <mt\process.h>
#include <mt\stdio.h>
void far thd1(void);
void far thd2(void);

char stack1[40961, stack2[40961;
main()

_beginthread(thd1,
(void far *) stackl,
4096,
(void far *) 0);

_beginthread(thdz,
(void far *) stackz,
4094,
(void far *) 0);

getch();

void far thd1Q)
1
int i;

for(i=0; i<1000; i++)
printf("thread 1 - ");

void far thd2()
{
int i

for(i=D; i<1000; i++)
printf("thread 2 - ");

178 OS5/2 Programming: An Introduction

The comment at the start of the program refers to two threads.
The program actually consists of three threads: the main thread,
thdl, and thd2. So why does the comment refer to two threads? The
answer is that the main thread is suspended until a key is pressed.
Remember that all I/O in OS/2 is interrupt driven. When getch() is
called, the main thread suspends until you press a key, meaning that
CPU time is spent only on the remaining two threads (plus any other
processes in the system, of course).

Waiting for Threads to Finish

Since the entire process dies when the main thread dies, it is important
to keep the main thread alive until all desired program activity has
finished. More generally, it is important for your program to know
when the various threads of execution have either completed or are at
least in a safe state so that the program can terminate. Although the
next chapter covers OS5/2 interprocess and interthread communication
and synchronization services that provide a solution to this problem,
we still need a solution (if only temporarily) for our examples. The one
shown here can safely be used in many applications, but should not be
construed as a general solution. (The reasons will be made clear in the
next chapter.)
The approach and examples developed here have two purposes:

1. They introduce the basic notion of thread synchronization and
communication and will make the concept of the semaphore, OS/2's
standard synchronization method, easier to understand and appreciate.

2. They are excellent illustrations of some key multitasking concepts.

When you need to wait until a thread finishes you generally estab-
lish a flag, which the thread sets when it is finished executing. Another
thread examines this flag to see whether the other thread is executing.
For example, you can rewrite the previous example so that it automati-
cally terminates when both threads have terminated, as shown here:

/* This program uses _beginthread() to activate two
concurrently executing threads and then waits for
them to end.

*/

#define INCL SUB

#define INCL_DOS

#linclude
#include
#include

void far
void far

An Introduction to Multitasking 179

<mt\os2,.h>
<mt\process.h>
<mtistdio.h>

thd1Cvoid);
thd2(void);

char stack1C[40961, stack2[40961;

/* These

flags will be set to 1 when the two threads terminate =%/

char term_flag1=0, term_flag2=0;

main()
{

_beginthread(thdi,

_beginthread(thd2,

(void far *) stacki,
4096,
(void far *) 0);

(void far *) stack2,
4094,
(void far %) 0);

printf("this is the main program thread\n");

whileC!term_flagl || !term_flag2) ; /* wait =/

void far thd1()

for(i=0; i<100; i++)
printf("thread 1(%d)\n", i);

term_flagl = 1;

i
{

int i;
>
void far
£

int i;

thd2Q)

for(i=0; i<100; i++)
printf("thread 2¢(%d)\n", i);

term_flag2 = 1;

As you can see, the program waits for the other threads to terminate
with this wait loop:

whileClterm flagl || !term_flag2) DosSleep(50L); /% wait */

However, this leaves much to be desired for two reasons.

180 OS/2 Programming: An Introduction

1. It keeps the main thread active—and soaking up CPU time —while
doing no productive work.

2. Perhaps more important, the while loop is computer-bound. Rather
than waiting for a keypress, which causes the thread to suspend, the
while loop keeps the thread constantly ready to run. Remember, a
suspended thread demands no CPU cycles. However, a thread that is
compute-bound is always able to run and is therefore given CPU
cycles. This fact makes the program run much slower than you
might think. The next section introduces a solution to this problem.

DosSleep

Throughout this book the DosSleep service has been used without
much explanation. Now is the time for you to learn how important
DosSleep can be. The DosSleep function causes the thread that calls it
to suspend for a specified number of milliseconds. DosSleep is not
simply a time-delay loop that eats up CPU time; it actually instructs the
OS/2 scheduler to suspend the calling thread for the specified time.

To understand how valuable a service DosSleep can be, substitute
this while loop in the previous program and watch how much faster
the program runs.

whileC!term_flagl [| !term_flag2) ; /* wait */

Each time through the loop the flags are checked and, if the conditions
are not met, the thread sleeps for 50 milliseconds, allowing the other
threads greater access to the CPU.

The central issue here is that DosSleep is not simply a delay func-
tion. Careful use of DosSleep allows you to increase the efficiency of
your applications. Whenever your program enters a polling loop that is
not extremely time critical, you should insert a call to DosSleep so that
other threads can have more CPU cycles.

Thread Priorities

As you may recall, OS/2 has three categories of execution priorities:
idle, regular, and time-critical. Within each category, there are 32 prior-
ity levels, 0 through 31. By default all threads within a process have the

An Introduction to Multitasking 181

same priority: regular, level 0. However, you can alter a thread’s prior-
ity using the DosSetPrty service, which has the prototype

unsigned DosSetPrty(unsigned descendants, unsigned class,
int p__change, unsigned tid);

If the descendants parameter is 0, all the threads within the calling pro-
cess have their priority altered. If descendants is 1, all the threads in the
calling process plus any child processes are affected. If descendants is 2,
only the specified thread’s priority is changed.

The class parameter determines which priority class the specified
thread becomes. It can take these values:

Value Priority Class

0 No change

1 Idle

2 Regular

3 Time-critical

The p__change parameter is a signed integer in the range —31 to 31,
which will be added to the current priority setting. For example, if
p_change is 5 and the current priority setting is 7, after the call the new
priority will be 12.

The tid parameter specifies the process or thread that will have its
priority changed.

You can find out a thread’s priority using the DosGetPrty service,
which has the prototype

unsigned DosGetPrty(unsigned mode, unsigned far *prty,
unsigned tid);

If mode is 0, the priority of the main thread is returned. If mode is 2, the
specified thread is returned. The value pointed to by prty holds the
thread’s priority after the call returns. The thread whose priority is
desired is specified in tid.

The thread’s priority is returned with the high-order word holding
the general priority class and the low-order word holding the thread’s
priority within that class. The priority class of a thread is determined
by bits 8 and 9 (counting from 0) of the value pointed to by prty, as

182 (OS5/2 Programming: An Introduction

shown here:

Bit Bit Meaning

9 8

0 1 Idle class

a1 0 Regular class

1 1 Time-critical class

The following function displays the priority class and level plus the
thread’s identifier number when passed the priority code returned by
DosGetPrty. Since the priority class is encoded into the high-order
byte of the priority code, when the low-order byte is cleared, the value
256 corresponds to idle, 512 to regular, and 768 to time-critical.

:oid show_priority(unsigned priority, unsigned tid)
unsigned class, Llevel;

VioSetCurPos{(10, 0, 0J;
class = priority & DxFFOO; /* clear low-order byte %/

printf("Thread %d: Priority class: ", tid);
switch(class) {
case 256: printf("Idle\n");

break;

case 512: printf("Regular\n");
break;

case 768: printf("Time-critical\n");
break;

3

level = priority & OxFF; /% clear high-order byte */

printf("Priority level dis: %d\n", Llevel);

The following program uses the show__priority() function to dis-
play the priorities of two threads of execution and increases the prior-
ity of thd2. Although each thread performs the same function—
displaying 1000 numbers on the screen —because thd2 has a higher
priority, it completes first because it is given greater access to the CPU.

/* This program uses _beginthread() to activate two
concurrently executing threads.

Ly

#define INCL_SUB

#define INCL_DOS

An Introduction to Multitasking 183

Hinclude <mt\os2.h>
#include <mt\process.h>
#include <mt\stdio.h>

void far thd1(void);
void far thd2(void);
void clrscr(void);

char stack1[40961, stack2[40%961;

/* These flags will be set to 1 when the two threads terminate */
char term_flag1=0, term_flag2=0;

unsigned Tid1, tid2;

int thdwait = 1; /* synchronize the beginning of the threads */

void show_priority(unsigned, unsigned);

main()
{
unsigned priorityi, priority2;

clrscr();

tidl = beginthread(thd1,
- (void far %) stacki,
4096,
(void far *) 0);

tid2 = beginthread(thd2,
- (void far %) stack2,
4094,
(void far *) 0);

/* display current priority and class %/

if(DosGetPrty(2, (unsigned far *) &priorityl, tid1))
printf("error getting priority");

if(DosGetPrty(2, (unsigned far *) &priority2, tid2))
printf("error getting priority");

show_priority(priority1, tid1); getch();
show_priority(priority2, tid2); getch();

/* now, up the priority of thread 2 by 1 */
if(DosSetPrty(2, 0, 1, tid2))
printf("error setting priority”);
if(DosGetPrty(2, (unsigned far *) &priority2, tid2))
printf("error setting priority");
show priority(priority2, tid2); getch();

l¥ start the threads =*/
thdwait = 0;

while(lterm_flag? || !term_flag2) DosSleep(10L); /* wait */
3 = =

void far thd1()
{
int i;

while(thdwait) DosSleep(i0L);

184 OS/2 Programming: An Introduction

for(i=0; i1<1000; i++) €
VioSetCurPos(1, 0, 0);
printf("thread 1(%d)\n", i);

¥

term_flagt = 1;

¥
void far thd2{()
{
int i;
while(thdwait) DosSleep(10L);
for(i=0; i<1000; i++) {
VioSetCurPos(1, 60, 0);
printf("thread 2(%dX\n", i);
b
term_flag2 = 1;
>
void show“priority(unsigned priority, unsigned tid)
{
unsigned class, level;
VioSetCurPos(10, 0, 0);
class = priocrity & OxFF0O; /* clear low-order byte */
printf("Thread %d: Priority class: ", tid);
switch(class) {
case 256: printf("Idle\n");
break;
case 512: printf("Regular\n");
break;
case 768: printf("Time=criticalln™);
break;
B
level = priority & OxFF; /% clear high-order byte */
printf("Priority Llevel is: %di\n'", Level);
F

/* A simple way to clear the screen by filling
it with spaces.
*/
void clrscr()
{
char spacel2];
spacel0] = " *;
spacel1] = 7;
VioScrollup(D, 0, 24, 79, -1, (char far *) space, 0);

One interesting aspect of this program is that it uses the thdwait vari-
able to synchronize the beginning of the two threads. You will learn a
better way to synchronize threads in the next chapter.

An Introduction to Multitasking 185

Suspending Threads

A thread’s execution can be suspended by using DosSuspendThread,
which has the prototype

unsigned DosSuspendThread(unsigned tid);

where tid is the identifier of the thread to be suspended. When a thread
is suspended, the scheduler does not grant it access to the CPU. You
can suspend only the threads that are within the same process.

A thread suspended by DosSuspendThread stays suspended until it
is restarted by a call to DosResumeThread, which has the prototype

unsigned DosResume Thread(unsigned tid);

where tid is the thread’s identifier. DosResumeThread can only restart

a thread that was previously stopped by a call to DosSuspendThread.
To see how these services work, try this program in which thd1

alternately stops and restarts thd2 each time through its main loop.

/% This program illustrates DosSuspendThread and
DosResumeThread.

*/

#define INCL SuB

#define INCL_DOS

#include <mt\os2.h>
#include <mt\process.h> /#* included for _beginthread() x/
#include <mt\stdio.h> /* dncluded for printf() */

void far thdl(void);

void far thd2(veid};

unsigned thd_id1, thd_id2;

char stack1[4096], stack2E40963;

/* These flags will be set to 1 when the two threads terminate */
char term_flagl1=0, term_flag2=0;

main{)
{
thd_id1 = beginthread(thd1,
- (void far *) stackl,
4096,

(void far *) 0);

thd id2 = beginthread(thd2,
- - (void far *) stack2,
4094,
(void far %) 0);

186 OS5/2 Programming: An Introduction

while(!term_flagl || 'term_flag2) ; /% wait */

void far thd1()
£

int i;

char flag;

flag = 0;
posSleep(1000L);
for(i=0; i<100; i++) {
printf("thread 1(%d) = \n", i);
flag = !flag;
if(flag)
if(DosSuspendThread(thd_id2)) printf("error in suspend");
else pr1ntf("suspend1ng thread 2\n™);

else if(posResumeThread(thd id2)) printf{“error in restart");
else prlntf("restart1ng thread 2\n");

3
term_flagl = 1;
b

void far thd2()

{
int i;
for(i=0; i<30000 && !term flagl; i++) DosSleep(10L);
printf("thread 2 reached %d\n", id);

term_flag2 = 1;
b;

SERIALIZATION AND
INTERPROCESS
COMMUNICATION

Now that you know the basics of OS/2’s multitasking capabilities, it is
time to learn about some important concepts and API services that
allow you to control multiple-executing processes and threads. As you
will see in this chapter, two major issues must be addressed in a multi-
tasking environment:

1. There must be some way to serialize access to certain resources so
that only one task has access to the resource at any one time.

2. There must be some way for one process to communicate with
another.

The purpose of this chapter is to explore OS/2’s solutions to these
problems.

THE SERIALIZATION PROBLEM

OS/2 must provide special services that serialize access to a shared
resource because, without help from the operating system, a program
or thread has no way of knowing that it has sole access to a resource.
Imagine writing programs for a multitasking operating system that
does not provide any serialization support. Imagine further that you
have two multiple-executing processes, A and B, both of which require
access from time to time to some resource R (such as a disk drive) that
must be accessed by only one task at a time. To prevent one program

187

188 OS/2 Programming: An Introduction

from accessing R while the other is using it, you try the following solu-
tion. First establish a variable called flag, which can be accessed by both
programs. Your programs initialize flag to 0. Then, before a piece of
code can access R, it must wait for the flag to be cleared (0) if it is not
already cleared. When the flag is cleared, the code sets the flag,
accesses R, and when done with R, the program clears the flag. That is,
before either program accesses R, it executes this piece of code:

while(flag) ; /* wait for flag to be zero */
flag = 1; /* set flag so another process knows
that you are using R
*/

The idea behind this code is that neither process accesses R if flag is set.
Conceptually this approach is in the spirit of the correct solution. In
actual fact, however, it leaves much to be desired for one simple reason:
It doesn’t always work! Let’s see why.

Using the code just given, it is possible for both processes to access
R at the same time. In essence, the while loop performs repeated load
and compare instructions on flag; in other words, it repeatedly tests
flag’s value. The next line of code sets flag’s value. The trouble is that
these two operations could occur in two separate time slices. Between
the two time slices, the value of flag might have been changed by a
different process, thus allowing R to be accessed by both processes at
the same time. To understand this, imagine that process A enters the
while loop and finds that flag is 0, which is the green light to access R.
However, before it can set flag to 1, its time slice expires and process B
resumes execution. If B executes its while loop, it too finds that flag is
not set and assumes that it is safe to access R. However, when A
resumes it also begins accessing R. The crucial point of the problem is
that the testing of flag and the setting of flag do not comprise one unin-
terruptible operation. They are two separate operations and, as just
illustrated, can be separated by a time slice of the other process. No
matter how you try, there is no way, using only application-level code,
to guarantee that only one process will access R at a time.

The solution to the serialization problem is as elegant as it is simple:
The operating system, in this case OS/2, provides a routine that in one,
uninterruptible operation, tests and, if possible, sets a flag. In the lan-
guage of operating systems engineers, this is called a fest and set opera-

Serialization and Interprocess Communication 189

tion. For historical reasons, the flags used to control serialization are
called semaphores. The OS/2 services that allow you to use them are
discussed in the next section.

0OS/2 SEMAPHORES

OS/2 provides nine services to create and access semaphores. These
functions are shown in Table 8-1. The most important use of these
services is to allow separate processes or threads to synchronize their
activity. As described in the previous section, one important use of
semaphores is to control access to a shared resource. They have other
uses, however, such as allowing one task to signal another that an event
has occurred.

RAM vs. System Semaphores

05/2 lets you use semaphores to synchronize the action of threads
within a process or the action of separate processes. Toward this end,
O5/2 supports two different types of semaphores: RAM and system.

The RAM semaphore is used by threads within the same process
and is simply a variable of type unsigned long. All RAM semaphores

Table 8-1. The OS/2 Semaphore Services

Service Function

DosCloseSem Close a system semaphore

DosCreateSem Create a system semaphore

DosMux5Sem Wait Wait for one of several semaphores to be cleared

DosOpenSem Open a system semaphore

DosSem Wait Wait for a semaphore to be cleared

DosSemRequest Wait for a semaphore to be cleared, then set it in
one uninterruptible operation (Test and Set)

DosSemb5Set Set a semaphore

DosSemSetWait Set a semaphore and wait for it to be cleared

DosSemWait Wait for a semaphore to be cleared

190 0OS/2 Programming: An Introduction

must be initialized to 0 before they are used. A RAM semaphore in one
process has no relationship to a RAM semaphore in another process.

To synchronize activity between two processes, use a system sema-
phore. To obtain a system semaphore one process must use the
DosCreateSem service, which returns a handle to the semaphore. The
DosCreateSem service also initializes the semaphore when it creates it.
Other processes access the system semaphore by first calling Dos-
OpenSem. To discard a system semaphore, call the DosCloseSem
service.

Aside from the DosCreateSem, DosOpenSem, and DosCloseSem
services, the rest of the semaphore services operate in the same
fashion on both RAM and system semaphores. i

The main difference between RAM and system semaphores is that
RAM semaphores are much faster, so if you only need to synchronize
threads within a process, use RAM semaphores.

DosSemSet, DosSemWait,
and DosSemClear

One of the first things you learn about the O5/2 semaphore services is
that you can’t use just one! The semaphore routines work in conjunc-
tion with each other so you need to learn about a few of them before
you can understand any examples.

To set a semaphore, use the DosSemSet service, which has the
prototype

unsigned DosSemSet(void far *sem);

where sem is a pointer to the variable that is the semaphore. It is
declared as a wid pointer so that it will work with both RAM and sys-
tem semaphores without generating compiler errors. Remember that a
RAM semaphore is simply an unsigned long variable, but a system
semaphore is a pointer to a semaphore handle, which in turn is a
pointer.

To cause a thread to suspend execution until a specified semaphore
is cleared, use DosSemWait, whose prototype is

unsigned DosSemWait(void far *sem, long timeout);

Serialization and Interprocess Communication 191

The sem parameter must point to the semaphore to wait for. The timeout
parameter determines how long, in milliseconds, the calling thread sus-
pends if the semaphore is not cleared first. If the value is —1, the ser-
vice will wait indefinitely.

To clear a semaphore use DosSemClear, whose prototype is

unsigned DosSemClear(void far *sem);

The semaphore pointed to by sem will be cleared.
The next few sections show how to use these services to synchro-
nize program activity.

A RAM Semaphore Example

As you learned in the previous chapter, one trouble with multithread
programs is that the main thread must stay alive and wait for the other
threads in the process to terminate. A temporary solution offered in
that chapter was that the main thread looped and waited for flags to be
set by the other threads. However, although this solution worked in the
specific situation, it should not be generalized. A major problem is that
it wastes CPU cycles. A better solution is to use semaphores because,
when a thread waits for a semaphore, it suspends until that semaphore
is cleared. When the thread is suspended, it does not consume any CPU
cycles, .

This program uses RAM semaphores to signal the termination of
the two threads:

/* The main program thread waits for the two RAM semaphores
to be cleared before terminating.

*/ ;

#define INCL_SUB
f#define INCL_DOS

#include <mt\os2.h>
#include <mt\process.h>
#include <mt\stdio.h>

void far thd1(void);
void far thd2{(void);

char stack1C4096], stack2L[40961;

/* RAM semaphores must be initialized to 0 */
unsigned Long sem1=0, sem2=0;

192 OS$/2 Programming: An Introduction

main()

£
RESULTCODES waitresult;
unsigned p;
int tid1;

/* set the semaphores */

if(DosSemSet (&sem1)) {
printf("cannot set semaphore 1");
exit(1);

>

if(DosSemSet (&sem2)) {
printf("cannot set semaphore 2");
exit(1);

tidl = _beginthread(thd1,
(void far *) stacki,
4096,
(void far *) 0);

_beginthread(thd2,
(void far *) stack2,
4094,
(void far %) 0);

/* wait for the semaphores to be cleared by the threads */
DosSemWait(&seml, =1L); /* wait indefinitely */
bDosSemWait (&sem2, =1L); /* wait indefinitely */

¥
void far thd1()
{

int i;

for(i=0; i<100; i++)
printf("thread 1(%d)\n", i);

/* clear the semaphore */
DosSemClear(&sem1);

¥
void far thdz2Q)
{

int i3

for(i=0; i<100; i++)
printf("thread 2(Zd)\n", 1i);

/* clear the semaphore */
DosSemClear(&sem2);

The program establishes two RAM semaphores, sem1 and sem2, and
initializes them to 0. The main thread sets the semaphores before
creating the child threads. Next, the program creates the child threads
and waits for the semaphores to be cleared.

Serialization and Interprocess Communication 193

You might find it interesting to try a time-out value, such as 100, to
see the effect. The program runs for a short while and then terminates
when the time-out limit is reached.

Remember that any thread within the same process can access a
RAM semaphore. For example, you can modify thd2 as shown here. In
this version thd2 waits until thd1 has finished.
void far thd2()

{
int i

/* wait for thd1l to finish %/
DosSemWait (&sem1, =1L);

for(i=0; 9<100; §++)
printf("thread 2(%d)\n", i);

/* clear the semaphore #*/
DosSemClear(&sem2);

Using System Semaphores

When you need to synchronize the actions of two processes, you must
use a system semaphore. To obtain a system semaphore, call Dos-
CreateSem, which has the prototype

unsigned DosCreateSem (unsigned exclusive,
void far **sem__handle,
char far *sem__name);

If the exclusive parameter is 0, the semaphore being created can be modi-
fied only by the process that creates it. If the exclusive parameter is 1,
any process can set or clear the semaphore. The variable pointed to by
sem__handle receives a pointer to the system semaphore if the call is
successful. The name you give to the semaphore is a string pointed to
by sem__name. All system semaphores use a filename-like naming con-
vention, which takes the general form

\sem \sem__name

where sem__name is the name of the semaphore. For example,

194 OS5/2 Programming: An Introduction

\sem \filelock

defines a system semaphore called filelock. However, in C, you must
use \\ inside a string to generate a single \ because C uses the \ as an

escape code. So the previous semaphore name in C string format looks
like this:

"\ Asem \ \filelock"

For a second process to access a system semaphore, it must first
open it using DosOpenSem, which has the prototype

unsigned DosOpenSem(void far **sem, char far *sem__name);

Here, sem is a pointer to the pointer that will receive the address of the
system semaphore. The string pointed to by sem__name specifies which
system semaphore is to be opened.

The following program creates a system semaphore called handle,
executes a child process called TEST, and waits for the child process to
end. The TEST program clears the semaphore just before it terminates.

/* This program asynchronously executes another and
uses a system semaphore to wait until the child
process ends. */

#define INCL_BASE

#include <os2.h>

main()

€
char faill1281;
RESULTCODES result;
void far *sem;

/* create a system semaphore =*/
if(DosCreateSem(1, /* non-exclusive */
(void far *x) &sem, /* pointer to system sem */
"\\sem\\MySem")) /% semaphore name */
{
printf("error creating system semaphore”);
exit(1);
¥

DosSemSet(sem);

if(bDosExecPgm({(char far *) fail, 128,
1, /* run asynchronous */
(char far *) "", /% no command line args */
(char far *) ", /% no environment args */
(RESULTCODES far *) &result, /* result */

Serialization and Interprocess Communication 195

"TEST.EXE")) /* name of program */
printf('exec failed");

DosSemWait(sem, =1L); /* wait %/

The TEST program is shown here:

#define INCL_DOS
#include <os2.h>

main()
{

void far *sem;

if(DosOpensem((void far **) &sem, “\\sem\\MySem”)) {
printf("TEST cannot open system semaphore');
exit(1);

¥

do {

printf("Inside TEST process\n');
} whileC!kbhit());
DosSemClear(sem);

The process that creates a system semaphore is said to own it.
When the process that owns a semaphore terminates, the system sema-
phore is automatically closed. However, your program can explicitly
close a system semaphore by using DosCloseSem, whose prototype is

unsigned DosCloseSem(void far *sem);

where sem is a pointer to the system semaphore that is to be closed.

SHARING A RESOURCE:
AN EXAMPLE

Now that you know how semaphores are maintained, it is time to learn
how to use one to serialize access to a shared resource. The example
developed in this section illustrates a very common situation found in
multitasking programs: One task produces something that a second
task consumes. This is often called a producer-consumer relationship. The
key point to tasks that have this relationship is that the consumer must
wait until the producer has finished producing whatever it produces

196 (OS/2 Programming: An Introduction

before the consumer takes it. That is, you do not want the consumer
taking a half-created object. This synchronization is achieved through
the use of a semaphore.

DosSemRequest

As was discussed at the start of this chapter, one of the key aspects of
semaphore use is that some means of testing and setting a semaphore
in one uninterruptible operation must be provided. In the examples
given so far, this operation was not needed because the semaphores
simply signaled the conclusion of some event. However, to use a sema-
phore to serialize access to a shared resource, the program needs a way
to wait until a semaphore is cleared and then set the semaphore in one
operation. To accomplish this, OS/2 provides the DosSemRequest ser-
vice, which has the prototype

unsigned DosSemRequest(void far *sem, long timeout);

where sem is a pointer to the semaphore that is being requested and
timeout is the number of milliseconds to wait for the semaphore. If
timeouf is negative, the service waits indefinitely.

When your program calls DosSemRequest, it waits (if necessary)
for the specified semaphore to be cleared. When this happens, it then
sets the semaphore. At no time will two calls to DosSemRequest suc-
ceed simultaneously.

It is DosSemRequest that enables a program to sequence access to a
shared resource. The basic method of operation is to put a call to Dos-
SemRequest at the beginning of any code that accesses a shared
resource. This way the code executes only when it has control of the
resource. At the end of this code put a call to DosSemClear to release
the semaphore. The code that lies between the call to DosSemRequest
and DosSemClear is often called a critical section. The general approach
is shown here:

Task A Task B

DosSemRequest(. . .) DosSemRequest(. . .)
{* critical section */ [+ critical section */
DosSemClear(. ..) DosSemClear(...)

Serialization and Interprocess Communication 197

The Producer-Consumer Program

To illustrate the producer-consumer situation, the following short pro-
gram creates two threads called, appropriately, producer and consumer.
The producer generates random numbers and stores them in a global
variable called rnd. The consumer draws horizontal lines on the screen
based on the value of rnd. The central issue here is that rnd is a shared
resource and you want to ensure that only one task at a time is access-
ing it.

The program shown here uses a RAM semaphore called sem to
control access to rnd. Notice that the program source code is indented a
level between the calls to DosSemRequest and DosSemClear. When
you use DosSemRequest to control access to a resource, you are implic-
itly defining a block of code, so indentation is a good idea.

/* This program creates two threads: a producer and a consumer.
The producer generates random numbers and the consumer uses
these numbers to draw lines on the screen.

*/

#define INCL_SuB

#define INCL_DOS

#include <mt\os2.h>
#include <mt\process.h>
#include <mt\stdio.h>
#include <mt\stdlib.h>

void far producer(void);
void far consumer{void);
void clrscrveid);

char stack1[40961, stack2[40961;

/* this is a shared resource #*/
int rnd;

/* RAM semaphore =*/
unsigned long sem=0L;

main()
{
clrscr();

beginthread(producer,
- (void far *) stack?,
4096,
(veid far *) 0);

beginthread(consumer,
I (void far *) stack2,
4094,
(void far %) 0);

198 OS5/2 Programming: An Introduction

while(l'kbhit()) DosSleep(500L) ; /* wait */
b

/% This thread produces numbers. #*/
void far producer()

{
for(;;) {
posSemRequest((unsigned Long far %) &sem, =1L);
rnd = rand();
DosSemClear((unsigned Long far *) &sem);
b
¥

/* This thread draws lines based upon the numbers produced
by the producer thread.

*/
void far consumer ()
{

int i;

for(;;) €
bosSemRequest ((unsigned Long far *) &sem, -1L);
/* clear the previous Lline */
VioSetCurPos(10, 0, 0);
for(i=0; i<80; i++)
printf(" ");

/% transform the value in rnd into a number in
the range 0O through 79 so that the Lline
will fit on the screen

*/

i = rnd % 80;

/* display the new Line =*/
vioSetCurPos(10, O, 0);
for(; i; i-=)
printf("=");
posSleep(1000L); /% just pause a Little */
posSemClear((unsigned Long far *)} &sem);

>

/% A simple way to clear the screen by filling
it with spaces.

*/

void clrscr()

{
char spacel2];

spacelD] L
spacel1] 7;
vioscrollup(Q, 0, 24, 79, -1, (char far *) space, 0);

You might find it interesting to try this program without using the
semaphore.

Serialization and Interprocess Communication 199

In this simple example, no serious harm is done if access to the
shared resource is not serialized. In almost all real-world applications,
however, lack of serialization spells disaster. For example, failure to
serialize access to the printer correctly will intermix the output of sev-
eral tasks.

USING DosEnterCritSec
AND DosExitCritSec

OS/2 also provides a second, different method of synchronizing multi-
ple threads within a single process. In this second approach, your pro-
gram temporarily halts the execution of all but one thread within the
process, thus preventing a shared resource from being accessed by two
different threads at the same time. The OS/2 services DosEnterCritSec
and DosExitCritSec are used to stop and restart, respectively, all
threads in a process except the one that calls these services. Their
prototypes are

void DosEnterCritSec(void);
void DosExitCritSec(void):

Neither service takes a parameter or returns a value.

The best use of these services is when thete is a short critical sec-
tion of code that accesses some shared resource. To ensure that the
critical section is safe from interruption, DosEnterCritSec is called at
the beginning of the code, suspending all other threads. When the criti-
cal section has ended, DosExitCritSec is called, restarting all other
threads. The general approach is

DosEnterCritSec();
[* critical section code is put here */
DosExitCritSec();

Keep in mind that DosEnterCritSec can be called at several places in
your program. Because it suspends the execution of all threads except
the caller, there is no chance that a second thread will call DosEnter-
CritSec when the first is in a critical section.

This program shows how DosEnterCritSec and DosExitCritSec
work. Here thd1 suspends the execution of thd2 until it has completed.

200 OS/2 Programming: An Introduction

This effectively serializes the execution of thdl and thd2, and the
advantages of multitasking are lost.

/* This program demonstrates the DosEnterCritSec and
DosExitCritSec services. Thd1l will complete before Thd2
because Thd1 halts the execution of the other threads
in the program. .

*/

Hdefine INCL SUB

#define INCL_DOS

#include <mt\os2.h>
#include <mt\process.h>
#include <mt\stdio.h>

void far thd1(void);
void far thd2(void);

char stack1[40961, stack2[40961;

/* RAM semaphores must be initialized to 0 */
unsigned long semi1=0, sem2=0; .

main(}

{
RESULTCODES waitresult;
unsigned p;
int tid1;

/* set the semaphores =/

if(bosSemSet (&sem1)) {
printf("cannot set semaphore 1");
exit(1);

b

if(DosSemSet(&sem2)) {
printf("cannot set semaphore 2");

exit(1);
)
tid] = _beginthread(thd1,
(void far *) stackl,
4096,

(void far %) 0);

beginthread(thd2,
- (void far *) stack2,
4094,
(void far *) 0);

/* wait for the semaphores to be cleared by the threads */
bosSemWait(&seml, -1L); /* wait indefinitely %/
DosSemWait (Bsem2, =1L); /* wait indefinitely */

E

void far thd1()
{
int i

Serialization and Interprocess Communication 201

DosEnterCritSec();
for(i=0; i<100; i++)
printf("thread 1(%d)\n", i);
DosExitCritSec();

/* clear the semaphore =*/
DosSemClear(&sem1);
}

void far thd2()
{
int 4;

for(i=0; i<100; i++)
printf("thread 2(%d)\n", 1i);

/* clear the semaphore #*/
DosSemClear{(&sem2);

A somewhat more interesting example using DosEnterCritSec is a
modification of the producer-consumer program developed earlier.
Instead of using semaphores to control access to the shared variable
rnd, the modified program shown here uses DosEnterCritSec and

DosExitCritSec.

/* This program creates two threads: a producer and a consumer.
The producer generates random numbers and the consumer uses
these numbers to draw Lines on the screen.

It uses DosEnterCritSec and DosExitCritSec to serialize
access to the rnd variable.

*/

#define INCL SuB

#define INCL_DOS

#include <mt\os2.h>
#include <mt\process.h>
#include <mt\stdio.h>
#include <mt\stdlib.h>

void far producer(void);
void far consumer(void);
void clrscr(void);

char stack1[4096], stack2[4096];

/* this is a shared resource */
int rnd;

main()
£
clrscrQ);

_bEQinthread(producer,
(void far %) stackl,

202 OS/2 Programming: An Introduction

4096,
(void far *) 0);

_beginthread(consumer,
(void far *) stack2,
4094,
(void far *) 0);

while(!kbhit()) DosSleep(100L); /* wait =/

/* This thread produces numbers. =/
void far producer()
{
for(;;) rnd = randQ);
X

/* This thread draws lines based upon the numbers produced
by the producer thread.

*/
void far consumer()
{

int i;

for(;;) €
DosEnterCritSec();
/* clear the previous Lline */
VioSetCurPos(10, 0, 0);
for(i=0; 1<80; i++)
printf(" ");

/* transform the number into something that will
fit on the screen

*/

i = rnd % 80;

/* display the new Line */
VioSetCurPos(10, 0, 0);
for(; i; i==)
pr‘intf("*");
DosExitCritSec();
DosSleep(100L);

>

/% A simple way to clear the screen by filling
it with spaces.

*/

veid clrscr()

{
char spacel?2];

spacel0] !N
spacel1]]
VioScrollup(0, 0, 24, 79, -1, (char far *) space, 0);

You generally want the critical section code to be as short as possible so
the rest of the threads do not remain idle for extended periods of time.

Serialization and Interprocess Communication 203

Note: For the vast majority of situations, you should use semaphores
to synchronize multiple tasks, not DosEnterCritSec. The reason for
this is quite simple: DosEnterCritSec stops all threads in the process
whether they need to be stopped or not. This degrades the total per-
formance of your program. The critical section services are in OS/2 for
those special situations in which you want to stop the execution of all
other threads for a reason, such as a catastrophic error. They should
not become your main method of serializing tasks.

INTERPROCESS COMMUNICATION

As you saw earlier in this chapter, system semaphores allow one pro-
cess to communicate with another process, mostly to achieve some
form of synchronized activity. However, OS/2 supports three other
forms of interprocess communication: shared memory, pipes, and
queues. This section takes a look at shared memory and pipes. OS/2
queues are a more advanced concept and are beyond the scope of this

book.

Shared Memory

By default the memory used by one process is logically separate from
that used by another. (OS/2 might actually use the same piece of
memory for two or more processes because of swapping, but from a
logical point of view neither program can actually touch another’s
memory). However, you can create a shared block of memory that two
or more processes can access and use to exchange information. Of all
the OS/2 interprocess communication methods, shared memory is the
most flexible because it gives you total control of both form and con-
tent of the information being shared. However, this freedom comes at a
price: Your programs have to handle the data interchanges manually.

To allocate a segment of shared memory, use the DosAllocShrSeg
service, whose prototype is

unsigned DosAllocShrSeg(unsigned size,
char far *name,

unsigned short selector);

The value of size specifies the size of the block in bytes. It must be

204 OS/2 Programming: An Introduction

between 1 and 65,535. The name of the shared segment is specified by
name, which must take this general form:

\sharemem \seg__name

The variable pointed to by selector receives a selector to the allocated
segment. For example, this call requests a segment 10 bytes long with
the name MySeg.

DosAllocShrSeg(10, (char far *) "\\sharemem\\MySeg",
(unsigned short far *) &selector);

For a process to obtain a selector to shared memory allocated by
another process it must call DosGetShrSeg, which has the prototype

unsigned DosGetShrSeg(char far *name,
unsigned short far *selector);

where name is the name of the segment and selector points to the variable
that will receive the segment selector to the shared memory.

Keep in mind that both DosAllocShrSeg and DosGetShrSeg return
a selector to the shared memory. The selector “points” to the first byte
of the shared memory segment. (Selectors are discussed in detail in
Part One of this book.) Although the selector is sufficient to identify
the segment, a selector is not an address as far as C is concerned. To
convert the selector into an address you need to use the special
MAKEP macro. (This may be called something different by your com-
piler.) The MAKEP macro has the prototype

void far *MAKEP(unsigned short selector, unsigned offset);

- where selector is a valid memory selector that is combined with offsef to
return a C far pointer. For most purposes, offset is 0.

The following program allocates a shared memory segment called
MyMem, writes a string to it, and then executes a child process called
SHRTEST, which reads the string from the shared memory and dis-

Serialization and Interprocess Communication 205

plays it on the screen.

/* This program writes a string into shared memory and
then executes a child process. The child
process reads the string from the shared memory
and displays it on the screen.

*/

f#define INCL_BASE

#include <os2.h>

main()

£
register int i;
char faill1281;
RESULTCODES result;
unsigned long senm;
unsigned short shrmem;
unsigned char far *pshrmenm;
char buf[801, #p;

/* create a system semaphore */
if(DosCreateSem(1, /% non-exclusive #*/
(void far x%) 8&sem, /* pointer to system sem */
" "\\sem\\MySem")) /* semaphore name */
printf("error creating systenm semaphore');
exit(1);
)

DosSemSet ((void far *) sem);

if(DosAllocShrSeg(1000, /* size of segment */
"\\sharemem\\MyMen", /* name =*/
(unsigned short far *) &shrmem))
printf("allocation to shared segment failed\n™);

/* transform the selector into a pointer */
pshrmem = (char far *) MAKEP(shrmenm, 0);

/* put a string into shared memory */
strepy(buf, "this is a test of shared memory");

p = buf;
while(xp) *pshrmem++ = #p++; .
pshrmem = '\0'; / null terminate the string =/

if(DosExecPgm(C(char far *) fail, 128,
1, /* run asynchreonous */
(char far =*) "", /% no command line args =*/
(char far *) "", /* pno environment args */
(RESULTCODES far *) &result, /% result x/
"SHRTEST.EXE")) /* name of program */
printf("exec failed");

DosSemWait((void far *) sem, =1L); /* Wait */

206 OS5/2 Programming: An Introduction

The SHRTEST program is shown here:

Hdefine INCL_DOS
#include <os2.h>

main()

{
unsigned numread;
unsigned long sem;
unsigned short shrmem;
char far *pshrmem;

if(bosOpensSem((void far **) &sem, "\\sem\\MySem")) {
printf("SHRTEST cannot open system semaphore");
exit(1);

2

printf("Inside the child process\n");
printf("\nbata read from shared RAM: ");

if(posGetShrSeg({(char far %) "\\sharemem\\MyMem",
(unsigned short far *) &shrmem))
printf("error obtaining shared memory selector");

/% transform the selector into a pointer */
pshrmem = (char far *) MAKEP(shrmem, 0);

while(*pshrmem) printf("%c", *pshrmem++);

/* clear the semaphore =*/
DosSemClear((void far *) sem);

Even though these sample programs use shared memory for string
data, you can use shared memory to hold any types of objects you
desire.

There is one very important thing to remember about using shared
memory: You must be sure to allocate enough to hold the largest
object you wish to put into it. If your program tries to write past the
end of the segment, a memory protection fault is generated, which
terminates the process.

Pipes
(0S/2 lets two processes communicate with each other via a pipe, which
is a special type of file maintained by the operating system. Once the

pipe has been created, routines read and write to and from the pipe
using the standard DosRead and DasWrite services.

Serialization and Interprocess Communication 207

To create a pipe, use DosMakePipe, whose prototype is

unsigned DosMakePipe(unsigned short far *read _handle,
unsigned short far *write__handle,
unsigned size);

Here, the variable pointed to by read__handle receives the read handle
for the pipe. The variable pointed to by write__handle receives the write
handle. The length of the pipe is determined by the value of size, which
must be in the range 0 through 65,504. If your program tries to write
data to a full pipe, the writing process suspends until there is room in
the pipe.

Pipes are easy to use for communication, but one little problem
must be overcome. The process that creates the pipe must have some
method of transferring the read or write handle to the second process.
This can be done either by using shared memory or by duplicating the
file handles.

A Pipe Example Using Shared Memory The f{ollowing program
creates a pipe and allocates a small segment of shared memory to pass
the pipe read handle to the child process called PIPETEST. It then
writes a message to the pipe. The child process examines the shared
memory to obtain the pipe read handle. It then reads the pipe and dis-
plays its contents.

/* This program uses a pipe to send informaticn to a
child process. This program uses shared memory to
pass the pipe's handle to the child, #/

#define INCL_BASE

#include <os2.h>
main()

char faill1281;

RESULTCODES result;

unsigned long sem;

unsigned short rd, wrt;
unsigned short child rd;
unsigned wWrttn; -
unsigned short shrmem;
unsigned short far #*pshrmem;

/* create a system semaphore */
if(DosCreateSem(1, /* non-exclusive */

208 0OS/2 Programming: An Introduction

(void far #%) &sem, /* pointer to system sem */
"\\sem\\MySem")) /* semaphore name */
{
printf("error creating system semaphore");
exit(1);
>

DosSemSet ((void far *) sem);

if(DosMakePipe((unsigned short far *) &rd, /* read handle =/
(unsigned short far *) &urt,/* write handle */
10000)) /* 10,000 bytes long =*/
printf("cannot open pipe");

if(DosAllocShrSeg(2, "\\sharemem\\MyMenm",
(unsigned short far *) &shrmem))
printf("allocation to shared segment failed\n'");

/* pass read handle to child via shared memory */

pshrmem = MAKEP(shrmem, 0);
*pshrmem = rd;

if(DosExecPgm((char far *) fail, 128,
1, /% run asynchronous */
(char far *) "", /* no command Lline args #*/
(char far %) "", /* no environment args */
(RESULTCODES far *) &result, /* result x/
"PIPETEST.EXE")) /% name of program x/
printf("exec failed");

DosWrite(wrt, (void far *) "shared segment", 14,
(unsigned far %) &wrttn);

DosSemWait((void far *) sem, —1L); /* Wait */

The PIPETEST child process is shown here:

#define INCL_DOS
#include <os2.h>

main()
{

unsigned numread;

unsigned short rd;

char buf[C801;

unsigned long sem;

unsigned short shrmem, far *pshrmem;

if(DosOpenSem({void far **) &sem, "\\sem\\MySem")) {
printf("PIPETEST cannot open system semaphore');
exit(1);

>

Serialization and Interprocess Communication 209

printf("Inside the child process\n');
printf{("\nbata received from the pipe: ");

if(DosGetShrSeg((char far *) "\\sharemem\\MyMem",
(unsigned short far *) &shrmem))
printf("error obtaining shared memory selector");

pshrmem = MAKEP(shrmem, 0);
rd = *pshrmem;

/* read the pipe =*/
DosRead(rd, (char far *) buf, 14, (unsigned far *) & numread);
bufC141 = '"\Q0"'; /* null terminate the string */

printf(buf);

/* clear the semaphore */
DosSemClear((void far *) sem);

Using DosDupHandle to Pass a Pipe Handle Another way you can
“pass” a pipe handle to another process is to have the process that
creates the pipe copy the value of a known handle. This can be accom-
plished using the DosDupHandle service, which has the prototype

unsigned DosDupHandle(unsigned short old__handle,
unsigned short far *new__handle);

All the information associated with the original handle is copied to the
new handle. After this operation, the handles are interchangeable:
What happens to one will affect the other. The variable pointed to by
new__handle must either hold a valid file handle or the value FFFFH if
you want O5/2 to choose a handle. For our purposes we will supply a
valid handle. If the handle pointed to by new__handle is currently open,
the file it is associated with is closed and the handle is reopened with
the new information.

The general approach for using DosDupHandle to pass a pipe han-
dle to another process is as follows. The process that creates the pipe
duplicates the desired handle onto a known handle. The second process
simply assumes that this known handle is associated with the pipe.
Admittedly, this process feels a bit shaky because the second process
simply assumes something that it cannot verify, but in a tightly con-
trolled situation it can be used with confidence.

210 0OS5/2 Programming: An Introduction

This program uses DosDupHandle to duplicate a pipe handle:

/* This program uses a pipe to send information to
a child process. */
#define INCL_BASE

#include <os2.h>

main()

{
char fail[C1281;
RESULTCODES result;
unsigned lLong sem;
unsigned short rd, wrt;
unsigned short child rd;
unsigned wrttn; -

/* create a system semaphore */
if(bosCreateSem(1, /* non-exclusive */
(void far #*) g&sem, /* pointer to system sem */
¢ "\\sem\\MySem")) /* semaphore name */
printf("error creating system semaphore”);
exit(1);

DosSemSet{((void far *) sem);

if(DosMakePipe((unsigned short far *) &rd,
(unsigned short far *) Bwrt,
10000))
printf("cannot open pipe");

child rd = 4; /* use handle 4 =*/

/* dup the rd handle */

if(DosDupHandle(rd, (unsigned short far *) & child_rd))
printf("cannot dup handle');

if(DosExecPgm((char far *) fail, 128,
1, /* run asynchronous */
(char far %) "", /* no command line args */
(char far *) "", /* no environment args */
(RESULTCODES far *) &result, /* result =*/
"PIPETST2.EXE")) /* name of program */
printf("exec failed");

DosWrite(wrt, (void far *) "this is a test", 14,
(unsigned far %) &wrttn);

DosSemWait((void far *) sem, =1L); /* Wait =/

The child process PIPETST2 is shown here:

#define INCL_DOS

#include <os2.h>

Serialization and Interprocess Communication 211"

main()
{

unsigned rd;
char bufl801;
unsigned long sem;

if(DosOpenSem((void far #%) &sem, "\\sem\\MySem")) {
printf("PIPETSTZ2 cannot open system semaphore"”);
exit(1);

¥

printf("Inside the child process\n");
printf("\nData Received: ");

/* read the pipe */

DosRead(4, (char far *) buf, 14, (unsigned far *) & rd);
buff14] = '\0'; /* null terminate the string */
printf(buf);

/* clear the semaphore */
DosSemClear((void far *) sem);

JUST A SCRATCH ON
THE SURFACE

This and the previous chapters have introduced you to the most impor-
tant and fundamental aspects of O5/2’s multitasking capabilities. How-
ever, you have only scratched the surface of the multitasking environ-
ment provided by OS/2. It is not enough just to know how to use the
appropriate OS/2 services to create a multithread or multiprocess
application. You must learn to use multitasking effectively. You will
want to use multitasking to increase performance of your program and
to prevent the user from being idle while the program performs some
lengthy task. While it is beyond the scope of this book to discuss the
various theories and approaches to writing multitasking applications,
you should give much thought to how both data and execution flow
through your program, looking for discrete tasks that can be executed
concurrently. With practice, this process will become second nature.

DEVICE MONITORS

Some of the most desirable programs written for DOS are in a class
called terminate-and-stay resident (TSR) utilities. These types of programs
load themselves, initialize any necessary data, and then exit with a call
to the DOS TSR function. The program lies dormant in memory until
you press a special hof key, which activates the program and stops what-
ever the computer is doing at the time. When the TSR is finished, what-
ever the computer was doing is resumed. What made (and makes) TSR
programs so difficult to write for a DOS environment is that DOS was
not designed to accommodate them. As a result several more-or-less
undocumented features and aspects of DOS had to be used, which
made the programs hard to develop and vulnerable to unforeseen cir-
cumstances. The designers of OS/2, however, understood the impor-
tance of TSR programs and made provisions for them in OS/2.

Two key concepts distinguish a TSR-type program from a regular
application program:

1. The program lies dormant in RAM until needed.
2. You activate the program by pressing a special key.

In OS/2 you can easily realize the first concept by creating a separate
task that simply suspends the program’s execution until it is needed
and using a VioPopUp call to request the screen. To handle the second
concept, O5/2 allows the creation of a device monitor. Through a device
monitor a process can examine the input stream of an I/O device such

213

214 OS5/2 Programming: An Introduction

as the keyboard. If a special value is encountered, the monitor can sig-
nal a pop-up application to begin executing.

The term TSR is not used in the O5/2 environment. Instead, TSR
programs are called pop-up programs. Sometimes they may be referred to
as part of the larger class of detachable processes. It is also not uncommon
in OS5/2-related literature to see these programs referred to simply as
device monitors, although this term is somewhat misleading since a device
monitor does not need to be associated with a pop-up program. (Pop-
ups are sometimes informally called device monitors because the crea-
tion of pop-up programs was the most important reason for their
inclusion in OS/2. Hence the dual use of the term.) The OS/2 device
monitor services are shown in Table 2-1.

This chapter covers the creation of device monitors for both the
keyboard and the mouse. Several device monitor programs are devel-
oped, including a keystroke translator, a keyboard macro expander, and
a pop-up calculator. While the chapter emphasizes the use of a device
monitor to provide pop-up applications, keep in mind that device moni-
tors are not limited to this function.

DEVICE MONITOR THEORY
OF OPERATION

In its simplest form a device monitor consists of three elements: an
input buffer, an output buffer, and a short piece of code that reads
from the input buffer and writes to the output buffer. The device mon-
itor is put in between the actual hardware device driver and the applica-
tion program. Qutput from the device driver is put into the device

Table 9-1. The Device Monitor Services

Service Function

DosMonClose Closes a device monitor
DosMonOpen Opens a device monitor
DosMonRead Reads from a device

DosMonReg Registers (activates) a device monitor

DosMonWrite Writes to a device

Device Monitors 215

monitor’s input buffer. The device monitor reads this information and
(in its simplest form) passes the information along to its output buffer.
From the device monitor’s output buffer, the information is passed to
the application program. This situation is depicted in Figure 9-1. It is
important to understand that more than one device monitor can be
associated with any hardware device. In this case the output of one
monitor is passed to the input of the other in a chainlike fashion.

A device monitor is useful because of three special capabilities:

1. A device monitor can examine the input stream from a device and
cause special actions to take place when a specific value is encoun-
tered. For example, a keyboard monitor can watch for the Fo key,
which activates a pop-up application.

2. A device monitor can alter the information received from the device,
allowing it to act as a filter, or translator, for certain values.

3. A device monitor can manufacture and transmit output that does
not come from the hardware device. For example, you can create a
keyboard macro program that generates strings when you press
special hot keys. (Such a program might generate “DIR *.*” when
the Fo key is pressed.)

hardware device

i

interrupt-driven device driver

B
input buffer

device monitor

outpu! buffer

i

application program

Figure 9-1. How a device monitor becomes part of a device’s 1/O chain

216 Q8/2 Programming: An Introduction

The creation of a device monitor is essentially a three-step process:

1. You open the monitor to obtain a monitor handle.

2. You reglster the monitor. The registration process tells OS/2 to
enter the monitor into the input chain. In other words, it activates
the monitor. After the registration process, the monitor must be
ready to begin processing input.

3. The monitor executes a loop that first reads the input buffer and
then writes to the output buffer, thus passing along the device
information.

In the next sections you will see how to implement this approach.

OPENING AND REGISTERING
A DEVICE MONITOR

To open a monitor use DosMonOpen, which has the prototype

unsigned DosMonOpen((char far *) mon _name,
unsigned short far *mon__handle;

The mon_name parameter must point to a null-terminated string that
holds the name of the device to be monitored. The variable pointed to
by mon__handle receives the monitor’s handle upon return from a suc-
cessful call.

The strings for the devices that can be monitored are shown here:

KBD$ MOUSE$
LPLE LPIZ LPT3 LPT4

The most commonly monitored of these are the keyboard (KBD$) and
the mouse (MOUSES$).

You can open more than one device monitor for each device. Each
monitor is simply placed in the device’s input chain.

Before you can use a monitor, you must register it with OS/2 using
the DosMonReg service, whose prototype is as follows:

Device Monitors 217

unsigned DosMonReg(unsigned short mon__handle,
void far *inbuf,
void far *outbuf,
unsigned chain__pos,
unsigned sid);

The mon__handle parameter is the monitor handle returned by a call to
DosMonOpen. The regions pointed to by inbuf and outbuf are the moni-
tor’s input and output buffers. The size and description of these
buffers will be discussed shortly.

OS/2 can insert the monitor into one of three places in the device
[/O chain: at the front of the chain, at the end of the chain, or any-
where in between. The value of the chain__pos position determines
which position is used, as shown here:

chain__pos Value Position Inserted

0 Anywhere in the chain

1 At the start of the chain
2 At the end of the chain

Keep in mind that even if you specify the start or the end of the chain,
a subsequent thread could register another monitor that preempts the
earlier one’s position.

If you are registering either a keyboard or a mouse monitor, the sid
parameter must contain the session identifier number of the session to
be monitored. It is important to remember that each session estab-
lishes its own monitor chain. If you are creating a printer monitor, sid
will be 1 for the data chain and 2 for the control chain.

Determining the Session Identifier

When you create a keyboard or mouse monitor, you must call Dos-
MonReg with the identifier of the session you want to monitor. There
are two basic methods of determining the value of the session
identifier:

1. You can make use of the fact that the session identifier for the DOS
emulator is 2, the first OS/2 session is 4, the second OS/2 session is
5, and so on. The trouble with this method is that it more or less
hardcodes the monitor to a specific session.

218 OS/2 Programming: An Introduction

2. Often you will want to link a monitor to the current foreground
session — whatever that session may be. To do this you must first
call DosGetInfoSeg, which returns selectors to the global and local
information segments. One part of the information found in the
global information segment is the current foreground session identi-
fier.

DosGetInfoSeg has the prototype

unsigned DosGetInfoSeg(unsigned short far *global —seg,
unsigned short far *local __seg);

After DosGetInfoSeg returns, the selectors pointed to by global _seg
and local__se¢ contain the segment selectors of the global and local
information segments.

The information found in the global information segment is
arranged like a structure of type GINFOSEG, defined by Microsoft.
Most of the information it contains is obtainable by other OS/2 ser-
vices. However, the field sgCurrent contains the current session identi-
fier number. You can use this value in a call to DosMonReg to associate
the monitor with the current session. (Refer to an OS/2 reference for a
complete description of the information contained in the global or local
information segments.)

Remember that the selector returned by DosGetInfoSeg is a selec-
tor, not an address as C understands it. You must use the MAKEP
macro to convert the selector into a pointer. (The MAKEP macro is
defined in the Microsoft C compiler and may be called something else
by different compilers.)

Before going further, let’s examine the fragment of code that
generates the current session identifier.

unsigned short gsel, Lsel;
unsigned char sid;

/* get ‘the information segment selectors */

DosGetInfoSeg((unsigned short far *) &gsel,
(unsigned short far *) B&lsel);

info = MAKEP(gsel, 0); /* make a pointer */

sid = info->sgCurrent; /% current session ID */

Before you can create a device monitor, you must know the form of
the input and output buffers. These are the subjects of the next
section.

Device Monitors 219

MONITOR BUFFERS

A device monitor must provide input and output buffers. Each time
input is generated, it is put into the input buffer unless that buffer is
full. If the buffer is full, the input device is blocked until there is room
in the buffer. The next link in the chain reads the output buffer unless
it is empty, in which case it waits until there is input. These buffers do
not need to be very large for keyboard use because people cannot type
faster than the computer can process information. In the examples in
this chapter the buffers are only 128 bytes long. However, larger
buffers will be desirable for the printer and mouse because these de-
vices can generate data faster than it can be processed.
All monitor buffers must be defined as

struct buffers {
unsigned bufsize;
char reserved[18];
char buf[SIZE];

} inbuf, outbuf;

Here bufsize must hold the size of the entire structure, including itself
and the reserved parameter. You should define SIZE appropriately.

DosMonRead AND DosMonWrite

A device monitor reads input from the device by calling DosMonRead,
which has the prototype

unsigned DosMonRead(void far *inbuf, unsigned wait,
void far *packet,
unsigned far *length);

The region pointed to by inbuf must be an input buffer as described in
the previous section. If wait is 0, DosMonRead will wait for data if the
queue is empty. If wnit is 1, the call will return immediately. Generally
you will want DosMonRead to wait for data. The structure pointed to
by packet receives the information packet generated by the device. (At no
time does your program actually have to examine the input buffer.) The
exact nature of the packet will be discussed in the next section. The
length parameter must point to a variable that contains the length of the

220 OS5/2 Programming: An Introduction

input buffer. On return from the call, length contains the number of
bytes in the information packet. Even though the packet size does not
change for any specific device, a device may generate only part of a
packet when it simply wants to signal some event to the device driver.

To pass along input (or output in the case of a printer monitor) you
must call DosMonWrite, which has the prototype

unsigned DosMonWrite(void far *outbuf,
void far *packet,
unsigned length);

The region pointed to by outbuf must be the monitor’s output buffer. .
The region pointed to by packet must be a valid packet for the device
monitored. The value of length specifies the length of the packet. You
can use the length returned by DosMonRead for this value.

DEVICE MONITOR PACKETS

Each device that can be monitored sends information to the monitor in
a packet. The form of the packet determines what sort of data structure
your program will need when using DosMonRead and DosMonWrite.
The different types of packets are discussed here.

The Keyboard Packet

The keyboard packet can be described by the following structure:

struct keymonbuf {

unsigned monflag; [* device flags */

char ch; |* character code */

char scan; [* scan code */

char status; I* status code */

char reserved;

unsigned shift; I+ shift status */

unsigned long time; /* time of keypress */
unsigned kbddriver; /* kbd device driver flags */
}i

The meanings of ch, scan, status, reserved, shift, and time are exactly the
same as those returned by the KbdCharlIn service. (Refer to Chapter 4
for details.)

Device Monitors 221

The monflag parameter contains information that is generally appli-
cable only to the device driver interrupt handler.
The kbddriver field is encoded as shown here:

Bit Meaning When Set

0-5 Reserved

6 Key was released

7 Preceding scan code was a prefix

8 Autorepeat generated keystroke

9 Accent key

10-13 Reserved

14-15 User definable bits used for communicating between
monitors

For most monitor applications only bit 6 is of interest. As you may
already know, the PC keyboard generates two signals for each key-
press: a make and a break. The make signal is issued when the key is
pressed. The break signal is sent when the key is released. Except for
device monitors, you never have to worry about the make and break
signals. At the device monitor level, however, your routines often need
to know when a key is released, as you will see in the monitor examples
developed in this chapter. When bit 6 of kbddriver is 0, a key has been
pressed. When it is 1, the key has been released.

The Mouse Packet

The mouse information packet can be described by this structure:

struct mousebuf {
unsigned mouflag;
unsigned event;
unsigned long time;
unsigned row; .
unsigned col;

} mybuf;

Here, mouflag is the device-dependent information used by the device
driver. The time parameter contains the time of the mouse event, and
row and col contain the mouse’s current screen position. The event
parameter is encoded as shown on the following page.

222 0O6S5/2 Programming: An Introduction

Bit Meaning When Set

Mouse moved

Mouse moved; button 1 pressed
No movement; button 1 pressed
Mouse moved; button 2 pressed
No movement; button 2 pressed
Mouse moved; button 3 pressed
No movement; button 3 pressed
7-15 Reserved

O W= O

The Printer Packet

A printer monitor is unique in the sense that it must monitor output
rather than input. The printer information packet can be described by
the structure

struct printer {
unsigned prnflag;
unsigned pid;
char data;

3

The proflag parameter contains information specific to the printer
device driver. The pid field holds the identifier of the process that sent
output to the printer. Finally, data is the data being transmitted.

DosMonClose

To close a monitor, use the DosMonClose service, which has the proto-
type

unsigned DosMonClose(unsigned short mon__handle);

S

whére mon__handle is the handle of the monitor you wish to close.

A WORD ABOUT EFFICIENCY

Because a device monitor inserts itself into the I/O chain of the moni-
tored device, the performance of the monitor directly affects the effec-
tive I/O transfer rate of the device. For this reason a device monitor’s
code must be very fast. Perhaps even more important, at no time

Device Monitors 223

should a device monitor suspend its operation; doing so effectively
breaks the device’s I/O chain.

Now that you have learned the necessary background information,
it is time to create some device monitors. Most of the examples are
keyboard monitors because they represent the most common use of a
device monitor.

A First Keyboard Monitor

For an easy first keyboard monitor, let’s create one that simply waits
for a keystroke. When a keystroke is received, the monitor issues a
VioPopUp, displays the key and its scan code, waits for a keystroke, and
then terminates. This monitor is shown here:

/% A very simple keyboard monitor. */

#define INCL_SUB
#define INCL_DOS

#include <o0s2.h>
#include <stdio.h>

main()
{
unsigned wait;
unsigned short mhand;
struct buffers {
unsigned size;
char reserved[18];
char bufC108];
} dinbuf, outbuf;

struct keymombuf {

unsigned monflag; /% device flags =*/
char ch; /* character code */
char scan; /* scan code */

char status; {* status code */
char reserved;

unsigned shift; /* shift status */

unsigned long time; /* time of keypress %/
unsigned kbddriver; /* kbd device driver flag */
} mybuft;

unsigned Len;
unsigned short gsel, Llsel;
GINFOSEG far *info;
unsigned char sid;
if(DosMonOpen((char far *)"KBDS$",
(unsigned short far *) &mhand))
<
printf("cannot open monitor");
exit{1);
b

224 OS5/2 Programming: An Introduction

inbuf.size = sizeof(struct buffers);
outbuf.size = sizeof(struct buffers);

/* get the current screen group ID */
posGetInfoSeg((unsigned short far *) &gsel,
(unsigned short far *) &lsel);

info = MAKEP(gsel, 0);
sid = info=->sgCurrent;

if(bposMonReg(mhand,
(void far *) &inbuf, /* input buffer */
(void far *) &outbuf,/* output buffer */
0, /* put the monitor anywhere */
sid)) /* monitor foreground process */

{
printf("cannot register monitor™);
exit(1);

B

len = sizeof(struct buffers);

DosMonRead((void far =) &inbuf,
0, /* wait for input */
(void far *) &mybuf,
(unsigned far %) &len);

DosMonWrite((void far *) &outbuf,
(void far %) &mybuf,
Len);

posMonClose (mhand);
wait = 1; /% non-transparent, wait */
VioPopUp(Clunsigned far %) &uait, 0 ;

printf("You pressed Zci\n", mybuf.ch);
printf("its scan code is %d", mybuf.scan);
getch(); 3
VioEndPopUp(0);

The code is straightforward and should be easy for you to under-
stand. Keep in mind that if you are simply waiting for a keypress it
is not technically necessary to follow DosMonRead with a call to
DosMonWrite. However, you must do this if you wish to pass the key-
stroke along to the next link in the [/O chain. Since only one read-write
operation takes place in this example, only the make-keypress signal is
detected. However, in the following examples it is necessary to process
both the make and break signals.

To try this program, first compile it and then execute it as a de-
tached process. For example, if you call the program MONTEST, exe-

Device Monitors 225

cute it using this command:
DETACH MONTEST

Next just press a key to activate the pop-up.

A POP-UP APPLICATION
SKELETON

The example in the preceding section is very simple in its operation and
works fine as it is. However, real device monitors must continue to
process device I/O while an application linked to the monitor, such as a
pop-up program, executes. As stated earlier, device monitors must con-
sist of very small pieces of efficient code because they are in the /O
chain and any slowing of the I/O system slows the performance of the
entire system. You need to do three things to link a monitor to an
application:

1. Put the monitor in its own thread with the application in another.

2. Give the monitor thread a higher priority than the application so
that it will always have access to the CPU when it needs it to pro-
cess input on a real-time basis.

3. Have the monitor activate the application by clearing a RAM sema-
phore. The application must wait for this semaphore to be cleared
before it executes and it must reset the semaphore when it finishes.

Using these principles, the following program provides a skeleton you
can use to create any type of keyboard monitor pop-up application.

/* A keyboard monitor skeleton. */

#define INCL_SUB
#idefine INCL_DOS

#include <os2.h>

#include <mt\process.h>
#include <mt\stdio.h>

void far keymon();
void far app();

226 OS5/2 Programming: An Introduction

char stack1C40961, stack2[40961;

unsigned Long sem = 0L;
unsigned Llong term_sem = 0OL;
unsigned tid;

main()

{

DosSemSet({unsigned long far *) &sem);
posSemSet((unsigned long far *) &term_sem);

tid = beginthread(keymon,
(void far *) stackil,
4096,
(void far *) 0);

beginthread(app,
- (void far *) stack2,
4096,
(void far *) 0);

DosSemWait((unsigned far %) &term_sem, =1L);

void far keymon()

{

unsigned char sid;
unsigned short mhand;
struct buffers {
unsigned size;
char reserved[18];
char buf[1081];
} inbuf, outbuf;

struct keymombuf {
unsigned monflag; /* device flags */

char ch; /* character code */
char scan; /* scan code */

char status; /* status code */
char reserved;

unsigned shift; /* shift status */

unsigned long time; /* time of keypress */
unsigned kbddriver; /* kbd device driver flag
} mybuf;

unsigned len;

unsigned wait;

unsigned short gsel, Lsel;
GINFOSEG far *info;

/* open the monitor */
if(DosMonOpen({char far *)"KBDS$",
(unsigned short far %) &mhand))
{
printf('"cannot open keyboard monitor");
exit(1);
b

inbuf.size = sizeof(struct buffers);
outbuf.size = sizeof(struct buffers);

*/

Device Monitors 227

/% get the current screen group ID */

DosGetInfoSeg((unsigned short far *) &gsel,
(unsigned short far *) &lsel);

info = MAKEP(gsel, 0);

sid = info->sgCurrent;

/* increase this thread's priority */
if(DosSetPrty(2, /* change only this thread =*/
3, /* make time-critical =*/
0, /* leave at Lowest priority within class */
tid)) /* thread ID */
printf("could not make keymon() into a time-critical task");

/* register the monitor */

if(DosMonReg(mhand, /* monitor handle */
(veid far *) &inbuf, /* dinput buffer */
(void far *) Boutbuf,/* output buffer */
o, /* put the monitor anywhere */

sid)) /% monitor foreground process */

printf("cannot register keyboard monitor");
exit(1);
3

/* this is the main monitor lLoop */
for(;;) {
len = sizeof(struct buffers);

mybuf.scan = *\0"; /* clear scan code each time */

/* read and write the monitor buffers */
DosMonRead((void far *) Einbuf,
0, /* wait for input =/
(void far *) &mybuf,
(unsigned far *) &len);

DosMonWrite((void far *) &outbuf,
(void far *) &mybuf,
Len);

/* examine key only after a break code */
ifC! (mybuf.kbddriver & 64)) continue;

/* In this skeleton, the F10 key deactivates the monitor
and the F9 key pops up the application. However,
Yyou can monitor any keys you Llike. :

*/

if{mybuf.scan==68) break; /% exit if F10 is pressed %/

/* if F9 is pressed, let popup application run */
if({mybuf.scan==67) DosSemClear((unsigned long far *) Esem);
X

wait = 1;

VioPopUp(C(unsigned far *) &wait, 0);
printf('"closing the keyboard moniter");
DosMonClose(mhand);

DosSleep(2000L);

VicEndPopUp(0);

DosSemClear((unsigned far *) &term_sem);

228 OS/2 Programming: An Introduction

/* Popup application */
void far app()

{
unsigned wait;
for(;;) {
/* wait until the monitor receives the hotkey */
DosSemWait((unsigned Long far *) &sem, =1L);
wait = 1; [/* non-transparent, wait */
VioPopUp((unsigned far *) 8wait, 0) ;
/* put your popup application code in here */
printf("strike a key ...");
getch();
/* reset the semaphore #*/
DosSemSet((unsigned far *) &sem);
ViocEndPopUp (D) ;
¥
X

One of the most important things about this example is the main mon-
itor loop, shown here:

/* this is the main monitor Loop */
forz;) L
len = sizeof(struct buffers);

mybuf.scan = '\D'; /* clear scan code each time */

/* read and write the monitor buffers */
posMonRead((void far *) &inbuf,
0, /* wait for input =*/
(void far %) &mybuf,
(unsigned far *) &len);

posMonWrite((void far *) &outbuf,
(void far *) &mybuf,
Len);

/* examine key only after a break code */
if(!¢mybuf.kbddriver & 64)) continue;

/% In this skeleton, the F10 key deactivates the monitor
and the F9 key pops up the application. However,
you can monitor any keys you Like.

*/

if(mybuf.scan==68) break; /* exit if F10 is pressed */

/* if F9 is pressed, let popup application run */
if(mybuf.scan==67) DosSemClear({unsigned Long far *) &sem);

Device Monitors 229

Let’s look at this loop line by line. First DosMonRead must be called
with the length parameter set to the length of the buffer. It is reset by
DosMonRead to return the number of bytes actually read. For this
reason, it is necessary to reset the len variable before each call to
DosMonRead. Next come the back-to-back calls to DosMonRead and
DosMonWrite. This is the way input from the keyboard is passed along
to the next link in the input chain.

The next line of code is very important. As stated earlier, the key-
board generates both make and break codes. It is important for a pop-
up to take place on only one of these. This line of code waits until the
break bit in the keyboard device driver variable is set before it allows
the key to be examined. This means that the pop-up application acti-
vates when the key is released, not when it is pressed. However, you
can change this if you like.

Finally, the keystrokes are checked against the predefined hot keys.
As it is written, the pop-up application activates when the Fo key is
pressed. To terminate the monitor, press the Fio key. You can use any
sort of hot key you like. In fact you can have several hot keys and appli-
cations linked to one monitor. Just make sure that each application is in
its own thread.

One other thing to notice about the skeleton is that the monitor’s
thread is set to time-critical priority, level 0. This is the lowest-level
time-critical setting, and it ensures that the monitor will run before
any application task.

A POP-UP CALCULATOR

Using the basic skeleton developed in the previous section, this program
monitors the keyboard and pops up a four-function stack-based calcula-
tor when the Fo key is pressed:

/* A keyboard monitor based popup stack-based calculator
application. */

#define INCL SuB
#define INCL_DOS

#define STKMAX 100

#include <os2.h>

230 5/2 Programming: An Introduction

#include <mt\process.h>
#include <mt\stdio.h>
#include <mt\stdlib.h>

void far keymon();
voeid far appQ);

char stack1[40961, stack2C40961;
unsigned Llong sem = 0L;

unsigned long term_sem = OL;
unsigned tid;

double calcstk[STKMAX];

int tos;
main()
{

DosSemSet((unsigned long far *) &sem);
DosSemSet((unsigned long far *) &term_sem);

tid = beginthread(keymon,
- (void far *) stackl,
4096,
(void far *) 0);

beginthread(Capp,
- (void far *) stack2,
4096, .
(void far *) 0);

DosSemWait(Cunsigned far %) &term_sem, -1L};
by

void far keymon(}
£
unsigned char sid;
unsigned short mhand;
struct buffers {
unsigned size;
char reserved[18];
char bufC1081;
} inbuf, outbuf;

struct keymombuf {
unsigned monflag; /* device flags =/

char ch; /* character code */
char scan; /* scan code x/

char status; /* status code */
char reserved;

unsigned shift; /* shift status */

unsigned long time; /* time of keypress */
unsigned kbddriver; /% kbd device driver flag
} mybuf;

unsigned Llen;

unsigned wait;

unsigned short gsel, Llsel;
GINFOSEG far *info;

'/* open the monitor */
jf(bosMonOpen((char far *)"KBDS",

*/

Device Monitors 231

(unsigned short far *) &mhand))

{
printf("cannot open keyboard monitor");
exit(1);
b
inbuf.size = sizeof(struct buffers);

outbuf.size = sizeof(struct buffers);

/* get the current screen group ID */

DosGetInfoSeg((unsigned short far *) &gsel,
(unsigned short far *) &lsel);

info = MAKEP(gsel, 0);

sid = info->sgCurrent;

/% up this thread's priority */
if(DosSetPrty(2, /* change only this thread =*/
3, /% make time-critical =/
0, /* leave at lowest priority within class #*/
tid)) /% thread ID */
printf("could not make keymon() intoc a time-critical task");

/* register the monitor =*/
if(DosMonReg(mhand,
(void far *) &inbuf, /* input buffer */
(void far %) &outbuf,/* output buffer */
0, /* put the monitor anywhere =/
2 sid)) /* monitor foreground process */
printf("cannot register keyboard monitor");

/* this is the main monitor lLoop #*/
fortz;:) €
len = sizeof(struct buffers);

mybuf.scan = *\0'; /% clear scan code each time */

/* read and write the monitor buffers #*/
DosMonRead((void far %) &inbuf,

0, /* wait for input =*/

(void far *) &mybuf,

(unsigned far *) &len);

DosMonWrite((void far *) BRoutbuf,
(void far *) E&mybuf,
Len);

/* wait for a break code */
ifC!{mybuf.kbddriver & 64)) continue;
ifd{mybuf.scan==68) break; /* exit monitor if F10 is pressed */

/* if F9 is pressed, let popup application run */
if{mybuf.scan==67) DosSemClear((unsigned Long far *) Esem);
b

wait = 1;

VioPopUp({unsigned far *) &wait, 0);
printf("closing the keyboard monitor™);
DosMonClose(mhand) ;

DosSleep(2000L);

VioEndPopUp(0);

DosSemClear((unsigned far *)} Eterm_sem);

3

\
232 0S/2 Programming: An Introduction

/* Popup calculator application. #*/
void far app()
{

unsigned wait;

STRINGINBUF strbuf;

double a, b;

char strC80];

char far *endptr;

strbuf.cb = 80;

fort;;> L
DossemWait((unsigned lLong far *) &sem, =1L);

tos = 0;

wait = 1; /* non-transparent, wait */
VioPopUp((unsigned far %) &wait, 0) ;
VioSetCurPos(2, 0, 0);

printf("enter "q' to quit");

do {

/* clear entry screen ares */

VioSetCurPos(0, 0, 0);

printf(": =¥

VioSetCurPos(0, 2, 0);

KbdstringIn((char far *) str,
(STRINGINBUF far *) E&strbuf,
0, O;

/* clear answer screen area */
VioSetCurPos(1, 0, 0);
printf(" ");
switch(*str) {
case '+';
VioSetCurPos{(1, 0, G);

if(!pop(&a) || !pop(&b))
printf("stack underflow");
else {
printf("ZLf",atb);
push{a+b);
X
break;

case '-":
VioSetCurPos(1, 0, 0);

if(!pop(Ra) || !pop(R&b))
printf("stack underflow");
else {

printf("%Lf",b=a);
push{(b=aj;

break;
case '"*';
VioSetCurPos(1, 0, 0);

if(!pop(Ra) || !'pop(&b))
printf("stack underflow');
else {

printf("%Lf",b*a);
push(bwa);

b
break;
case '/':

Device Monitors 233

VioSetCurPos(1, 0, 0);

if(lpop(&a) || !pop(&b))
printf("stack underflou");
else {

ifla==0.0) {
printf("divide by 0'");
break;
3
printf("%Lf",b/a);
push(b/a);
3
break;
case ',': /x display top of stack */
VioSetCurPos(1, 0, 0);
if(!pop(&a)) printf("stack underflow');
else € 7
push(al;
printf("%Lf", a);
>
break;
default:
sscanfl(str, "%Lf", &a);
if(!lpushCa)) printf("stack overflow");
b
} while(*strl='g");

DosSemSet ({unsigned far *) &sem);
VioEndPopUp(0);
} /% for lLoop */
3

/* Stack routines for the calculator. */
push(double f)
£

/* return false if end-of-stack is reached */
if(tos>=STKMAX) return D;

calcstkltos] = f;
tos++;
return 1;

3

pop(double *f)
{
tos--;

/* return false if stack underflow occurs */
if(tos<0) {
tos = 0;
return 0;
b
*f = calcstkltos];

The calculator works with a stack. Each time you enter a number,
its value is pushed onto the stack. Each time you enter an operator, the
top two values are popped off the stack, the operation is performed,

234 0S/2 Programming: An Introduction

and the result is displayed. The result is also pushed back onto the
stack. For example, to perform the series of additions 10+15+20, you
enter the following:

10<enter>
15<enter>>
+<enter>
20<enter>
+<lenter>

Press . to see what’s on the top of the stack. To quit the calculator,
press Q. You might find it fun to expand the capabilities of the calcula-
tor to accommodate your specific needs. (One good enhancement is a
binary-to-hexadecimal convertor.)

To remove the pop-up calculator, press the Fio key.

A SIMPLE KEYBOARD MACRO
PROGRAM

One of the most popular utility programs is the keyboard macro pro-
gram. This type of program associates a string with a special key, such
as a function key, and generates that string each time the special key is
pressed. For example, you might assign the string “main(int argc, char
*argv[])” to the F9 key. Each time you press F9, the string is generated
automatically without your having to type it.

The key to creating such a program is to construct keyboard device
information packets. By far the easiest way to generate a packet is to
use an existing packet, modifying only the fields that you need to
change. In the case of a keyboard macro program, you need to change
the character code and the make and break bit in the device driver
information variable. Keep in mind that when you generate keystrokes,
you must send both a make and a break signal.

The simple keyboard monitor shown here inserts the string con-
tained in the global array mess into the input stream each time the Fo
key is pressed. You can change the contents of mess by pressing the Fs
key. To terminate the program, press Fio.

/* A simple keyboard macro program. */

#define INCL_SUB
#define INCL_DOS

Device ‘-Monitors 235

#include <os2.h>

#include <mt\process.h>
#include <mt\stdio.h>

void far keymon();
void far app();

char stack1[4096], stack2L[40961;

unsigned long sem = QOL;
unsigned long term_sem = DL;
unsigned tid;

char mess[80]1 = "DIR ».%x"; /% key macro */
char *str;

main()
{
DosSemSet((unsigned lLong far *) &sem);

DosSemSet((unsigned long far *) Rterm_sem);

tid = beginthread(keymon,
" (void far *) stackil,
4096,
(void far *) D);

beginthread(app,
- (void far *) stackz,
4096,
(void far *) 0);

DosSemWait((unsigned far *) &term_sem, =1L);.
2

void far keymon()

unsigned char sid;
unsigned short mhand;
struct buffers {
unsigned size;
char reserved[183;
char buf[1081;
} inbuf, outbuf;

struct keymonbuf {

unsigned monflag; /* device flags =*/
char ch; /* character code */
char scan; /* scan code */

char status; /* status code */
char reserved;

unsigned shift; /* shift status =/

unsigned long time; /* time of keypress */
unsigned kbddriver; /* kbd device driver flag */
Y mybuf;

unsigned Llen;

unsigned wait;

unsigned short gsel, Llsel;
GINFOSEG far *info;

/* open the monitor */

236 (S/2 Programming: An Introduction

if(DosMonOpen((char far *)"KBD$",
(unsigned short far *) &mhand))
<
printf("cannot open keyboard monitor");
exit(1);
¥

inbuf.size = sizeof(struct buffers);
outbuf.size = sizeof(struct buffers);

/* get the current screen group ID */

DosGetInfoSeg((unsigned short far *) R&gsel,
(unsigned short far %) &lsel);

info = MAKEP(gsel, 0);

sid = info->sgCurrent;

/% up this thread's priority */
if(bosSetPrty(2, /* change only this thread =*/
3, /* make time-critical */
0, /* leave at lowest priority within class */
tid)) /* thread ID */
printf("could not make keymon() into a time-critical task");

/* register the monitor */
if(bosMonReg(mhand, /* monitor handle #*/
(void far #) &inbuf, /* input buffer */
(void far *) Routbuf,/* output buffer */
0, /* put the monitor anywhere %/
sid)) /* monitor foreground process */
{
printf("cannot register keyboard monitor");
exit(1);
3

/* this is the main monitor loop */
for(;;) €
len = sizeof(struct buffers);

mybuf.scan = "\D'; /* clear scan code each time */

/* read and write the monitor buffers */
DosMonRead((void far *) &inbuf,
D, /* wait for input */
(void far *) &mybuf,
(unsigned far *) &len);

if({mybuf.kbddriver & 64) && (mybuf.scan==67)) continue;

/* if F9 is pressed, insert key macro */
if{mybuf.scan==67) {
str = mess;
for(; *str; str++) { /* insert the macro string */
mybuf.kbddriver = mybuf.kbddriver & 191; /* clear break */
mybuf.ch = #*str;
DosMonWrite((void far %) &outbuf,
(void far *) Bmybuf,
Len);
mybuf.kbddriver = mybuf.kbddriver | 64; /* set break */
DosMonWrite((void far *) &outbuf,
(void far *) &mybuf,
Len);

Device Monitors 237

else
DosMonWrite((void far *) &outbuf,
(void far *) &mybuf,
Len);

/* examine key only after a break code */
ifC!(mybuf.kbddriver & 64)) continue;

if(mybuf.scan==68) break; /* exit if F10 is pressed */
if{mybuf.scan==66) DosSemClear({unsigned Long far %) &sem);
b

wait = 1; /%« wait for screen */

VioPopUp((unsigned far *) &wait, 0);

printf("closing the keyboard monitor");

DosMonClose(mhand) ;

DosSleep(2000L);

VioEndPopUp(0);

DosSemClear({unsigned far *) &term sem);
3 .

/* Change the macro string. */
void far appQ)
{

unsigned wait;

STRINGINBUF strbuf;

strbuf.cb = 80;
for(;;) {
DosSemWait((unsigned lLong far *) &sem, -1L);

wait = 1; /* non-transparent, uwait */

VioPopUp((Cunsigned far *) &wait, 0) ;

printf("enter new keyboard macro: ");

KbdstringIn((char far *) mess,
(STRINGINBUF far *) &strbuf,
0, 0);

messCstrbuf.cchInl = "\D';

DosSemSet ((unsigned Long far %) &sem);

ViocEndPopUp(Q);

The most important bit of code in this example is the part that
inserts the string into the input stream. It is shown here:

if(imybuf.kbddriver & 64) && (mybuf.scan==67)) continue;

/* if F9 is pressed, insert key macro */
if(mybuf.scan==67) {
str = mess;
for(; *str; str++) { /* insert the macro string */
mybuf.kbddriver = mybuf.kbddriver & 191; /* clear break */
mybuf.ch = *str;
PosMonWrite((void far *) &outbuf,
(void far *) &mybuf,
Len);

238 (S/2 Programming: An Introduction

mybuf.kbddriver = mybuf.kbddriver | 64; /* generate break */
posMonWrite((void far *) &Loutbuf,
(void far *) &mybuf,
Len);
b
by
else
DosMonWrite({void far *) &outbuf,
(void far *) &mybuf,
Len);

Notice that, unlike the other examples, the code that inserts the
string is activated by the pressing— not the releasing —of the F9 key.
Once the loop is entered, it generates both make and break signals for
each character in the string. In this program, the Fo keystroke is never
passed along. The first line of this fragment prevents the break signal
from being returned to the input stream. The make signal is not passed
along by the code that generates the string, either. You will have to
determine whether you want to pass along hot keys or not.

A KEY TRANSLATOR MONITOR

Not all keyboard monitors are used to activate a pop-up application.
Some are used to alter the contents of the input stream. The one
shown here can perform three different key translations. It can convert
all keys into uppercase or lowercase, or it can “encode” each keystroke
by adding 1 to the character code of a key. Each translation function is
activated and deactivated by a function key, as shown in the comments
that begin the program.

/* A keyboard monitor that performs various character
translations.

Key Action

F10 terminate monitor

F9 turns off Lowercasing
F8 turns on Llowercasing
F7 turns off uppercasing
Fé turns on uppercasing
F5 turns off encryption
F& turns on encryption

*/
#define INCL SUB
#define INCL_DOS

#include <os2.h>

Device Monitors 239

#include <mt\process.h>
#include <mt\stdio.h>

void far keymon{);
char stack1[4096];

unsigned Llong term_sem = OL;
unsigned tid;

main{)
s
DosSemSet((unsigned long far *) &term_sem);
tid = beginthread(keymon,
- (void far %) stacki,
4096,

(void far *) 0);

DosSemWait((unsigned far *) Gterm_sem, =1L);

void far keymon()
{
unsigned char sid;
unsigned short mhand;
struct buffers {
unsigned size;
char reserved[18];
char bufC1083;
} inbuf, outbuf;

struct keymombuf {
unsigned monflag; /* device flags =/

char ch; /* character code x*/
char scan; /* scan code */

char status; /* status code */
char reserved;

unsigned shift; /* shift status */

unsigned long time; /* time of keypress =/
unsigned kbddriver; /+ kbd device driver flag =/
} mybuf;

unsigned wait;
unsigned Len;
char Llcase;
char ucase;
char codeit;

unsigned short gsel, Lsel;
GINFOSEG far *info;

/* open the monitor %/
if(bosMonOpen((char far *)"KBDS$",
(unsigned short far *) &mhand))

{
printf("cannot open keyboard monitor");
exit(1);
p
inbuf.size = sizeof(struct buffers);

cutbuf.size = sizeof(struct buffers);

240 OS/2 Programming: An Introduction

/* get the current screen group ID */

DosGetInfoSeg((unsigned short far *) &gsel,
(unsigned short far *) &lsel);

info = MAKEP(gsel, 0);

sid = info->sgCurrent;

/* up this thread's priority =/ ‘
if(bosSetPrty(2, /* change only this thread */
3, /* make time=critical =/ .
0, /* leave at lowest priority within class */
tid)) /* thread ID */
printf("could not make keymon() intc a time=critical task');

/* register the monitor */

if(DosMonReg(mhand, /* monitor handle */
(void far #) &inbuf, /* input buffer */
(void far #) &outbuf,/* output buffer */

a, /* put the monitor anywhere */
sid)) /* monitor foreground process */
{
printf('"cannot register keyboard monitor');
exit(1);
lcase = D
ucase = 0

;
;
codeit = 0;

/* this is the main monitor Loop */
for(;;) {)
len = sizeof(struct buffers);

mybuf.scan = *'\0'; /* clear scan code each time */

/* read and write the monitor buffers */
DosMonRead((void far %) &inbuf,
0, /* wait for input =/
{void far *) &mybuf,
(unsigned far %) &len);

if(lcase)

mybuf.ch = tolower(mybuf.ch); /* lowercase all Letters */
if(ucase) :

mybuf.ch = toupper(mybuf.ch); /* uppercase all letters */
if(codeit)

mybuf.ch = ++mybuf.ch; /* code characters */
DosMonWrite((void far *) &outhuf,
(void far *) &mybuf,
Len);

/* examine key only after a break code */
if(!(mybuf.kbddriver & 64)) continue;

if(mybuf.scan==68) break; /% press F10 to exit */

switch(mybuf.scan) {

case 67: lcase = 0; /* F9 turns off lowercasing */
break;

case 66: lcase = 1; /* F8 turns on lowercasing */
break;

case 65: ucase = 0; /% F7 turns off uppercasing */

break;

Device Monitors 241

case 64: ucase = 1; /* F6 turns on uppercasing */

break;
case 63: codeit = 0; /% F5 turns off coding */
break;
case 62: codeit = 1; /* F4 turns on coding */
T
3
wait = 1;

VioPopUp((unsigned far %) &uwait, 0);
printf("closing the keyboard monitor");
DosMonClose(mhand);

DosSleep(2000L);

VioEndPopUp(0);

DosSemClear ((unsigned far *) &term_sem);

A MOUSE DEVICE MONITOR

To conclude this chapter on device monitors, the four-function calcula-
tor monitor program is modified to monitor the mouse rather than the
keyboard. The converted program is shown here:

/* A mouse monitor popup stack-based calculator
application. =/

#define INCL SUB
#define INCL_DOS

#define STKMAX 100
#include <os2.h>

#include <mt\process.h>
#include <mt\stdio.h>
#include <mt\stdlib.h>

void far keymon();
void far app();

char stack1[4096], stack2C409631;

unsigned Long sem = OL;
unsigned long term_sem = OL;
unsigned tid;

double calcstk[STKMAX];
int tos;

main()

{
DosSemSet((unsigned lLong far #*) &sem);
posSemSet((unsigned lLong far %) &term_sem);

tid = beginthread(keymon,
- (void far *) stackil,
4096,
(void far %) 0);

242 (OS/2 Programming: An Introduction

beginthread(app,
- (void far %) stack2,
4096,
(void far *) 0);

DosSemWait((unsigned far *) &term_senm, -1L);

void far keymon()
{
unsigned char sid;
unsigned short mhand;
struct buffers {
unsigned size;
char reserved[181;
char bufC1081;
} dinbuf, outbuf;

struct mousebuf {
unsigned mou flag;
unsigned event;
unsigned long time;
unsigned row;
unsigned col;

} mybuf;

unsigned Llen;

unsigned wait;

unsigned short gsel, Llsel;
GINFOSEG far *info;

/* open the monitor */
if(DosMonOpen((char far *)"NMOUSES", _
(unsigned short far *) &mhand))

{
printf("cannot open mouse monitor™);
exit(1);
¥
inbuf.size = sizeof(struct buffers);
outbuf.size = sizeof(struct buffers);
"

/% get the current screen group ID */
DosGetInfoSeg((unsigned short far *) &gsel,
(unsigned short far *) &Llsel);

info = MAKEP(gsel, D);
sid = info=>sgCurrent;

/% up this thread's priority */
if(DosSetPrty(2, /* change only this thread */
3, /* make time=critical */
0, /* Leave at Lowest priority within class %/
tid)) /* thread ID */
printf("could not make keymon() into a time=-critical task");

/* register the monitor */

if(bosMonReg(mhand,
(void far %) &inbuf, /% input buffer =%/
(void far #) &outbuf,/* output buffer */
0, /* put the monitor anywhere */
sid)) /% monitor foreground process */

T

Device Monitors 243

printf("cannot register keyboard monitor");

/* this is the main monitor Loop */
for(;;) €
len = sizeof(struct buffers);

/* read and write the monitor buffers */
DosMonRead((void far *) &inbuf,

0, /* wait for input */

(void far *) &mybuf,

(unsigned far *) &len);

DosMonWrite({void far *) &outbuf,
(void far *) &mybuf,
Len);

/* only recognize calculator popup request if mouse
is in the upper Left corner

*f

if((mybuf.row!=0) || (mybuf.col!=0)) continue;

if(mybuf.event & 4) break; /% exit monitor if F1 is pressed */
if(mybuf.event & 1) printf("mouse moved");
if(mybuf.event & 16) DosSemClear((unsigned Long far *) &sem);

3

wait = 1;

VioPopUp(Cunsigned far %) &wait, 0);
printf("closing the mouse monitor");
DosMonClose(mhand);

PosSleep(2000L);

VioEndPopUp(D);

bDosSemClear((unsigned far *) &term_sem);

/* Popup calculator application. */
void far appQ)

{

unsigned wait;
STRINGINBUF strbuf;
double a, b;

4

char strC807;
char far *endptr;

strbuf.cb = 80;

for(;;) (
DosSemWait((unsigned Long far *) &sem, =1L);

tos = 0;
wait = 1; /% non=transparent, wait */
VioPopUp((unsigned far *) &wait, 0) ;

VioSetCurPos(2, 0, 0);
printf("enter 'q' to quit");

do {
/* clear entry screen area */
VioSetCurPos(0, 0, 0);
printf(": i I
VioSetCurPos(0, 2, 0);

244 (OS/2 Programming: An Introduction

KbdstringIn((char far *) str,
(STRINGINBUF far *) &strbuf,
0, 0);

/* clear answer screen area */
VioSetCurPos(1, 0, 0);
printf(" s
switch(xstr) {
case "+':
VioSetCurPos(1, 0, 0);
if(!pop(&a) || !'pop(&b))
printf(”stack underflow");
else €
printf("%Lf" ,a+b);
push(a+b);
3
break;
case '=":
VioSetCurPos(1, 0, 0);
if(!pop(&a) || !pop(E&b))
printf("stack underflow");
else {
printf("%Lf",b=a);
push(b-a);
3
break;
case '*':
VioSetCurPos(1, 0, 0);:
if(!pop(&a) || !'pop(&b))
printf("stack underflow");
else {
printf("%Lf",b*a);
push(b*xa);
b
break;
case "/':
VieSetCurPos(1, 0, 0);
if(!pop(&a) || !'pop(&b))
printf("stack underflow");
else {
if(a==0.0) {
printf("divide by 0");
break;
)
printf("%Lf",b/a);
push(b/a);
!
break;
case '.'": /* display top of stack =/
VioSetCurPos(1, 0, 0);
if{!pop(&ad) printf("stack underflow'");
else {
push(a);
printf("%XLf", a);

break;
default:
sscanf(str, "%ZLf", &a);
ifC!push(a)) printf("stack overflouw");

} while(*strl='q');

Device Monitors 245

DosSemSet((unsigned far *) &sem);
VioEndPopUp(0);
} /% for Loop */
3

/* Stack routines for the calculator. */

push(double f)
{

/* return false if end-of-stack is reached */
if(tos>=STKMAX) return 0;

calcstkltos] = f;
tost+;
return 1;

3 ’

pop(double xf)
{
tos--;

/* return false if stack underflow occurs */

if(tos<0) {
tos = 0;
return 0;

*f = calecstkltos];

This monitor requires a mouse application to be running before it
will work. If no application is using the mouse, its input is being
ignored. Assuming that a mouse application is running and the mouse
is in the upper left corner, pressing the right button activates the calcu-
lator. Pressing the left button terminates the monitor.

10

CREATING AND
USING DYNAMIC
LINK LIBRARIES

This chapter examines one of OS/2’s most important features: dynamic
link libraries. Using dynamic link libraries will make your programs
more efficient and more maintainable. The chapter begins with an
overview of dynamic linking at both load time and run time and con-
cludes with several examples. It is possible to create dynamic link librar-
ies that have a single thread of execution or multiple threads. However,
this chapter is concerned only with single-thread dynamic link
libraries.

Throughout the remainder of this chapter, the term dynlink is used
interchangeably with dynamic link. Dynlink was coined by the developers
of OS5/2, and its use seems appropriate.

WHAT IS DYNAMIC LINKING?

Put simply, dynamic linking is the process by which references to
external subroutines or data are resolved when the program is loaded.
Both static and dynamic linkers have two main functions:

247

248 OS5/2 Programming: An Introduction

1. They combine separately compiled modules and libraries into an
executable program.

2. They resolve references to external functions or data.

For example, suppose you have a main program file that uses library
functions. When the program is compiled, only place-holding informa-
tion is generated when a library function is called because the compiler
has no way of knowing where that function will be in memory. It is the
linker’s job to resolve these addresses.

Dynamic linking is different from static linking in one important
way: the time when linking takes place. If a program is statically linked,
all functions that it requires are physically bound together in its .EXE
file when it is linked. In a dynamic linking situation, however, parts of a
program reside in one or more dynlink libraries, which are linked to the
main program at load time by the OS/2 loader.

Although final linking is done by the loader, your program still
needs to be linked by the linker. When your program calls a dynlink
routine, it generates an external reference. When the linker encounters
this reference, it generates code that will load the appropriate file when
the program is executed. The entire load-time linking process is invisi-
ble to the user. To understand just how transparent dynamic linking is,
remember that the OS/2 API services are implemented as dynlinks.

DYNLINK ADVANTAGES

Dynamic linking has several advantages over the more traditional static
linking. First, there is a great saving in disk space because each program
does not contain the code found in the libraries. That is, when several
programs that use the same library functions are statically linked, each
program file contains copies of the library functions. When the same
programs are dynamically linked, there is no duplication of code.

Another important advantage of dynamic linking is that it simplifies
the chore of program maintenance. Because the routines in a dynlink
library are separate from the main program, you can upgrade or repair
a dynlink routine without recompiling the entire program. For exam-
ple, an accounting package could be upgraded when tax laws change
simply by changing a dynlink library. When the program executes, it
automatically uses the new routine.

Creating and Using Dynamic Link Libraries 249

FIVE IMPORTANT FILES

Each dynlink library is supported by a minimum of five separate files,
two more than a standard program. First is the file that contains the
source code to the dynlink routines. Most likely this will be a C code
file. The compiler transforms this file into a standard .OB]J file.

The third file is the definition file associated with the source file.
This definition file should have the same name as the source file but
use the .DEF extension. The definition file contains several pieces of
information that describe the dynlink library. (You will learn more
about definition files a little later.)

The fourth file needed by the dynlink library is its import library,
which is a special type of library file that tells the linker about the
dynamic link library functions. This file takes the same name as the
source file but ends with .LIB, although it is not a library in the normal
sense of the word. You generate this file from the dynlink’s definition
file by using the IMPLIB utility program supplied by Microsoft..

Finally there is the dynlink library itself. All dynlink library files
must use the .DLL extension and must reside in the dynamic link
directory. The .DLL file is created by the same linker used to provide
static linking. It converts the .OBJ file created by the compiler into a
dynlink file.

The creation of the various files is depicted here.

name.. —————= compiler ———s= name.obj
name.obj —
——=linker ————== name.dll

name.def __|
name.def ———s=implib —————= name.lib

Here name is the name of the dynlink hbrary The actual creation of
these files is discussed next.

CREATING A SIMPLE DYNLINK
LIBRARY

A simple dynamic link library is developed in this section. Along the
way you will learn several important requirements that must be met.

250 O65/2 Programming: An Introduction

Dynlink Function Declarations

Each dynlink function resides in its own segment, which is separate
from the calling program’s code segment. Hence all dynamic link func-
tions must be declared as far. However, you must also deal with some
further complications.

A dynlink function’s data is not in the same segment as the calling
~ program. This means that the dynlink function must save the current
value of the DS register on entry and restore it on exit. To accomplish
this, you should put the function type modifier —loadds, defined by
Microsoft, in front of the function name. For example, this code shows
the proper declaration for a dynlink routine called addit():

int far _loadds addit(int a, int b);

If you are using a compiler other than Microsoft’s, study your user
manual to see how to declare dynlink functions.

A second thing that you may need to worry about is run-time stack
checking. Since the stack for a dynlink function differs from the stack
used by the main program, run-time stack checking will generate
errors. If you are using the Microsoft compiler, turn off stack checking
by using the -Gs compiler option. (Check your user manuals if you are
using a different compiler.)

Finally you must instruct the Microsoft compiler to use far pointers
and tell it that SS does not equal DS by using the -Alfw compiler
option. (Check your user manuals for instructions if you are using a
different compiler.) Keep in mind that the exact compiler options may
change with future versions of OS5/2.

A Simple Dynlink Library

The following code creates a very small dynlink library that contains
only one function: dllwrite(). Assume that this file is called DLL.C:

#define INCL_SUB
void far Loadds dllwrite(char far *s)
< -
printf(s);
}.

Creating and Using Dynamic Link Libraries 251

Before this file can be transformed into a dynlink library, you must
create its definition file. Although the next section examines definition
files in detail, the one shown here contains the minimum necessary
elements to convert DLL.C into a dynlink library.

LIBRARY dll
EXPORTS _dllurite

The LIBRARY statement specifies the name of the dynlink library. The
DLL extension is assumed. The EXPORTS statement lists the func-
tions in the dynlink library that are accessible by other programs. (A
dynlink library can contain internal functions that other programs can-
not use.) The underscore preceding dllwrite is necessary because the
Microsoft C compiler (and most others) adds the underscore during
compilation. The definition file is case sensitive and must be entered as
shown. Call this file DLL.DEF.
To create the dynlink library, use this series of commands:

cl -AlLfw =Gs =-c dll.c
Link dll.obj, dll.dLL/NOI,,LLlibcdll.Llib doscalls.lib/NOD, dlL.def;

The linker command line instructs the linker to use DLL.OB]J as input
and to create DLL.DLL as output. The /NOI option tells the linker to
be case sensitive. The /INOD option causes the default libraries to be
ignored and only those specified on the link line are used. Note that
different versions of O5/2 and C may call the library DOSCALLS.LIB
some other name. The LLIBCDLL.LIB file contains the single-thread
dynamic link run-time support library. After this command has exe-
cuted, you must copy DLL.DLL into the directory specified by the LIB-
PATH environmental variable found in the CONFIG.SYS file.

Keep in mind that it is not enough just to create the dynlink library.
You must also create an import library file to link the main application
with the dynlink routines. The IMPLIB utility program generates this
file by using the dynlink’s definition file. It takes the command line

implib filename.lib filename.def

where filename is the name of the dynlink library. Therefore, to create

252 (065/2 Programming: An Introduction

the import library for DLL.DLL, use this command:

implib dlL.lib dll.def

Accessing Dynlink Functions

Creating the dynlink library and its support files is only half the story.
You must follow a few special steps to allow your application program
to access the dynlink functions. Each dynlink function used in the pro-
gram must be declared as an external far function. For example, this
short program uses the dllwrite() function to output a string to the
screen. Assume the name of this program is TEST.

extern void far dllwrite(char far *);

main()
{ B
dllwrite(Cchar far *) "dynlink Llibraries work");
¥

Although not required in this situation, it is a good idea to create a
definition file for the main program that uses a dynlink library. This
file lists the dynlink functions accessed by the program. A valid defini-
tion file for this program is shown here:

NAME test
IMPORTS dlL. dllwrite

The first line states the name of the program. The second line specifies
which files will be imported from the DLL.DLL dynlink library. (Tech-
nically, this line is not needed because the import library created by
IMPLIB supplies this information, but a little redundancy for the sake
of documentation is not necessarily a bad idea. There are times, how-
ever, in which you do need the IMPORTS command.)

When you link the program, you must specify the import library in
the library list and include the applications definition file. For example,
assuming that the main program is called TEST, use these commands
to compile and link it:

cl -c test.c
Link test.obj/NOI,,,dlL.Llib slibcep.lib doscalls.lib/NOD,test.def;

Creating and Using Dynamic Link Libraries 253

A Set of Batch Files

To make the creation of applications that use dynlink libraries easier, it
is a good idea to create one batch file that compiles and links the library
and another that compiles and links the main application. The batch file
shown here can be used to create a .DLL library and its import library:

cl =Alfw -6s -c %1.c

Link %1.0bj, Z1.dLL/NOI,,LLibcdlLl, Lib doscalls.lib/NOD, %1.def;
implib %Z1.Llib %1.def

A good name for this batch file is MAKEDLL.CMD.

This batch file compiles the application, specified as the first argu-
ment, with the dynlink library named as specified in the second
argument:

cl -62 -¢ %¥1.c
link %1.0bj/NOI,,, %2.lib slibcep.lib doscalls.Llib/NOD, %1.def;

A good name for this batch file is MAKEMAIN.CMD.

THE DEFINITION FILE

You must create a definition file for each dynlink library. You may also
need a definition file for programs. As you have seen, a definition file’s
most common use is to specify what functions a dynlink library
exports or what functions an application file imports. However, several
other pieces of information can be included in a definition file.

The linker recognizes 12 definition file commands. Many of the
commands are optional. When a command is not included in the defini-
tion file, the default setting is used. Let’s take a look at these now.

A

CODE Command

The CODE command tells the linker how to handle the code segments
of the associated program or library. It takes the general form

CODE option__list

254 (OS/2 Programming: An Introduction

where option__list can be one or more of the following:

Option Meaning

PRELOAD The code segment is loaded when the program be-
gins execution (default).

LOADONCALL The code segment is not loaded until it is called by
the program.

SHARED The code segment can be shared by other programs.

NONSHARED The code segment cannot be shared by other pro-

grams (default).
EXECUTEONLY The code segment can be executed but not read.
EXECUTEREAD The code segment can be executed and read (default).
IOPL The code segment has 1/ privileges (not the default).

DATA Command

The DATA command tells the linker how to handle the data segments
of the associated program or library. It takes the general form

DATA option_list

where option__list may be one or more of the following:

Option Meaning

PRELOAD : The data segment is loaded when the program be-
gins execution (default).

LOADONCALL The data segment is not loaded until it is called by
the program.

NONE There is no data segment.

SINGLE The same data segment is used by all executing ver-
sions of the module.

MULTIPLE Each executing version of the module uses its own
data segment.

READONLY The data segment can be read but not written to.

READWRITE The data segment can be read and written to.

SHARED The data segment can be shared by other programs.

NONSHARED The data segment cannot be shared by other pro-

grams (default).
-IOPL The data segment has 1/O privileges (not the default).

Creating and Using Dynamic Link Libraries 255

DESCRIPTION Command

The DESCRIPTION command imbeds the string that follows it in the
executable file or library. It takes the general form

DESCRIPTION ’‘string’

Notice that the string must be enclosed between single quotes.
The main use for DESCRIPTION is to add copyright information
to a program or library prepared for distribution.

EXPORTS Command

The EXPORTS command tells the linker what functions of a module
will be accessible by other modules. You can specify up to 3072
exported functions, but each must go on a separate line. The
EXPORTS command supports several options, but its simplest form is

EXPORTS func_namel
func_name?2

func_nameN

where func__name is the name of an exported function.
You can allow a function inside a module to be accessed by a differ-
ent name by using this form of the EXPORTS command:

EXPORTS external__name = internal_name

For example, if a function is called sumit() inside a library, but your
program wants to call it addit(), use this EXPORTS statement in the
library’s definition file.

EXPORTS _addit = _sumit
The EXPORTS command supports some additional options, but

they are for advanced programming situations that are beyond the
scope of this book.

256 05/2 Prog’rarﬁming: An Introduction

HEAPSIZE Command

The HEAPSIZE command determines the number of bytes available
for a module’s local heap. By default the local heap size is 0. The com-
mand takes the general form

HEAPSIZE numbytes

where numbytes is an integer between 0 and 65,536.
Keep in mind that the local heap is separate from the global heap,
which is accessed via C’s standard dynamic allocation functions.

IMPORTS Command
The IMPORTS command tells the linker what functions the module

uses and what files these functions are in. This command is mainly
employed when the module calls dynamic link library functions. Its
simplest form is

IMPORTS filename.func__name

filename.func_name

filename.func_name

where filename is the name of the file that contains the function speci-
fied by func__name. For example, to import the function test() from the
library DLL.DLL, use this IMPORT statement:

IMPORT DLL. test

The underscore is necessary because it is added by the C compiler. The
linker automatically adds the .DLL extension to the file name.

You can import any number of functions, but each one must be
placed on a separate line and the total number of bytes needed to hold
their names must not exceed 65,536.

You can allow a function inside a module to be accessed by a differ-

Creating and Using Dynamic Link Libraries 257

ent name by using this form of the IMPORTS command:

IMPORTS internal__name = filename.external _name

For example, if a function is called sumit() inside the TEST.DLL library
but your program wants to call it addit(), use this IMPORTS statement
in the library’s definition file:

. IMPORTS _addit = TEST._sumit

The IMPORTS command supports some other options, but their
use is beyond the scope of this book.

LIBRARY Command
The LIBRARY command identifies the specified module as a library
rather than an application file. It takes the general form

LIBRARY name

where name is the name of the library. If no name is specified, the name
of the definition file is used.

NAME Command

The NAME command serves two purposes. First, it identifies the asso-
ciated source file as a program, rather than a library. Second, it can be
used to specify the name of the file. The command takes the form

NAME name

where name is the name of the application. If no name parameter is pres-
ent, OS/2 uses the name of the executable application file.

PROTMODE Command

If the PROTMODE command is found in a definition file, the asso-
ciated program can be run only in 80286’ protected mode. Otherwise
the program may be run in either mode. (To allow this, however, the

258 (S5/2 Programming: An Introduction

program must be processed by the BIND utility and use only the family
API services.)

SEGMENTS Command

The SEGMENTS command allows you to define several attributes
related to segments. In general you are not likely to need this com-
mand. For details refer to an OS/2 technical reference.

STACKSIZE Command

The STACKSIZE command specifies the size, in bytes, of a module’s
local stack. Generally the size of the local stack is given some value by
default, depending on the compiler you are using. You may need to
change this, if, for example, a stack overflow error occurs. The general
form of the STACKSIZE command is

STACKSIZE num__bytes

where num__bytes must be in the range 0 through 65,536.

STUB Command

The STUB command specifies a DOS-compatible file name that is
inserted into an OS5/2 application’s executable file. If the program is run
under DOS, the specified file executes, generally to display a message
that the application cannot be run under DOS. The STUB command
takes the general form

STUB dos__filename

where dos__filename is the name of a valid DOS-compatible program.

ANOTHER DYNLINK EXAMPLE

For a slightly larger and more meaningful example of creating and
using dynlink libraries, several of the screen routines developed in
Chapter 3 are put in a dynlink library that can be accessed by any

Creating and Using Dynamic Link Libraries 259

program you write. The library contains a function to clear the screen,
a function to show the current video mode, and one to display the
video hardware configuration. The library source code is shown here:

/* A dynlink Llibrary of video functions */
#define INCL_SUB

#include <os2.h>

/* A simple way to clear the screen by filling
it with spaces.

*/

veid far _Lloadds clrscrivoid)

{
char spacel2];

spacel0] = " *;

spacel1] = 7;

VioScrollup(0, 0, 24, 79, -1, (char far *) space, 0);
} »

void far loadds showmode(void)
p =
VIOMODEINFO m;

m.cb = sizeof m; /* must pass size of struct #*/

VioGetMode ((VIOMODEINFO far *) &m, 0);

m.fbType & 1 ? printf("graphics adapter\n"):
printf("monochrome adapter\n');

m.fbType & 2 ? printf("graphics mode\n") :
printf("text mode\n");

m.fbType & 4 ? printf("no color burst\n')
printf("color burstin");

printf("%d colors\n", m.color);

printf("%d columns %d rows\n", m.col, m.row);

printf("%d h-res %d v-res\n\n", m.hres, m.vres);

b

/* Display the video display hardware configuration. */
void far Loadds showconfig{void)
M ==

VIOCONFIGINFO c;
c.cb = sizeof ¢;
VioGetConfig(0, (VIOCONFIGINFO far *) &c, 0);

switch(c.adapter) {
case 0: printf("Monochrome ");
break;
case 1: printf("CGA ");
break;
case 2: printf("EGA ");
break;

260 (OS5/2 Programming: An Introduction

case 3: printf("VGA ");
break;
case 7: printf("8514A ");
b

printf("adapter\n");

switch(c.display) {
case 0: printf("Monochrome ")

break;

case 1: printf("Color ");
break;

case 2: printf("Enhanced color ");
break;

case 3: printf("Ps/2 8503 monochrome ");
break;)

case 4: printf("Ps/2 8513 color '");
break;

case 5: printf("Ps/2 8514 coler ");

)
printf("display\n");

printf("%lu bytes of memory on video adapter\n", c.cbMemory);

Compile this file by using the MAKEDLL batch file shown earlier in
this chapter. (A good name for this library is SCRN.) To link the file
you need to create its definition file, as shown here, and run it through
IMPLIB.

LIBRARY SCRN

EXPORTS clrsecr
“showconfig
“showmcde

Use this short program to try the library:

extern void far clrscr(void);
extern void far showmode(void);
extern void far showconfig(void);
main()
{

clrser();

showmode () ;

showconfig();
¥

Create this definition file for the program:

NAME scrntest

IMPORTS scrn. clrscr
scrn. showmode
scrn.:shouconfig

Creating and Using Dynamic Link Libraries 261

Use the batch file MAKEMAIN shown earlier to compile and link the
program.

RUN-TIME DYNAMIC LINKING

As flexible as load-time dynamic linking is, it is not the answer for all
situations because you need to know the name of the module and the
name of the functions within the module at compile time. However,
some applications need to be able to access a dynlink routine that is
defined at run time. For example, a problem-solving Al-based program
may access a collection of problem-solving routines in its attempt to
find a solution to a given problem. Using run-time dynamic linking, the
problem solver could try an arbitrarily long list of different problem-
solving functions—even new ones added while it is running—in its
attempt to find a solution. In general, run-time dynamic linking allows
your program to handle changing situations easily.

To enable run-time dynamic linking OS/2 provides the five services
shown in Table 10-1. This section presents these services and develops
two examples. '

DosLoadModule and DosGetProcAddr

Before your program can access a function that is loaded dynamically at
run time, you must load the module containing the function into

Table 10-1. The Run-Time Dynamic Linking Services

Service Function

DosFreeModule Disposes of a dynlink module and frees the
memory used by it

DosGetModHandle Returns a dynlink module handle
DosGetModName Returns the name of the module given its handle

DosGetProcAddr Returns the address of a specific function
within a dynlink module

DosLoadModule Loads the specified dynlink library

262 065/2 Programming: An Introduction

memory by using the DosLoadModule service, which has the prototype

unsigned DosLoadModule(char far *failbuf,
unsigned failbuf__size,
char far *name,
unsigned far *mhandle);

The region of memory pointed to by failbuf receives information about
the cause of a failure if an error prevents DosLoadModule from finish-
ing its load operation. The size of the buffer is specified by failbuf__size.
Generally 128 bytes is sufficient. The file name of the dynlink library,
including drive and path information, must be pointed to by name. If
successful, DosLoadModule returns a module handle to the variable
pointed to by mhandle.

If the module has already been loaded by another program, it is not
reloaded.

Once you have loaded the module, you must use DosGetProcAddr
to obtain the address of each function in the library you want to call.
DosGetProcAddr has the prototype

unsigned DosGetProcAddr(unsigned mhandle,
char far *func__name,
type far **(func__addr)());

The mhandle parameter must be acquired through a call to DosLoadMod-
ule. The string pointed to by func__name contains the name of the func-
tion that you want to call. The pointer to that function is the function
pointer pointed to by func__addr. You must substitute the correct return
type of the function for the word type shown in the prototype.

To see a simple example of run-time dynamic linking, try this
program:

/* This program assumes that the dynlink Llibrary DLL.DLL,
developed earlier in this chapter, is available.
If it is not, you must create it before attempting to
use this program.

*/

#define INCL_DOS

#include <os2.h>

Creating and Using Dynamic Link Libraries 263

char failbufl[1281];
unsigned mhandle;

void (far *func) (char far *);

main()
{
getch();
if(DosLoadModule({char far *) failbuf, /* name of fail buffer */
sizeof(failbuf), /* size of fail buffer */
(char far %) "dLL", /* name of -dynlink Lib =/
(unsigned far *) &mhandle)) /* module handle =*/
{
printf("error Loading dynlink module");
exit(1);
3

if(bosGetProcAddr(mhandle, (char far *) " dllurite”,
(void far %*%) &func))
{
printf("cannot find the specified function");
exit(1);

func({char far *) "runtime dynlink module loading works');
g

As the comment at the start of the program suggests, this program
dynamically loads the DLL.DLL dynlink library developed in the first
part of this chapter and uses dllwrite() from that library to display a
message. You should pay special attention to the declaration of the
function pointer func. Remember that func is the name of a pointer to a
function, not the name of a function.

DosFreeModule

In the preceding example, the program terminated immediately after
calling the dynlink function. In a real application this will probably not
be the case. Since a program may need to load several different
modules at different times, OS/2 provides the DosFreeModule service,
which removes a module and frees the memory it used for other
modules. The prototype for DosFreeModule is

unsigned DosFreeModule(unsigned mhandle);

where mhandle is the handle of the module that is being removed.

264 OS/2 Programming: An Introduction

Another Run-Time Dynamic
Link Example

To help give you a feel for using run-time dynlink libraries, a short file
utility dynlink library is created here along with a program that uses it.
The file utility library is a collection of functions developed in Chapter
6 that allows you to list the directory, display the contents of a file, and
report information about the disk system. Although this example could
have been written without using run-time dynamic linking, it does
illustrate its use. (Programs that actually need run-time dynamic link-
ing tend to be quite long and complex so they are unsuitable for
examples.)
The file dynlink functions are shown here:

/* File utility functions. */
#define INCL_DOS
#include <os2.h>

void far leoadds show dir(void);

void far Lloadds displayfile(char *fname);
void far :Loadds browse(char *fname);

void far _loadds diskinfo(void);

/* This function displays an entire file. #*/
void far loadds displayfile(char *fname)

unsigned short fh;
unsigned action;
unsigned num bytes;
char bufC5137;

/* open the file, no file sharing =/
if(DosOpen((char far *) fname, /% filename */
(unsigned short far *) &fh, /* pointer to handle */

(unsigned far *) Raction, /* pointer to result */
oL, /* 0 Llength =/
0 /* normal file */

’
Ox1, /* open =x/
0x10, /* read-only, no=share =/
oLy /* reserved */
{
printf("error in opening file");
exit(1);
>

do {
if(DosRead(fh, (char far *) buf, 512,
(unsigned far %) &num_bytes)) {
printf("error reading file");
exit(1);
3
bufCnum bytes]l = '\0'; /% null terminate the buffer #*/

Creating and Using Dynamic Link Libraries 265

printf(buf};
} while(num bytes);

if(DosClose(fh)) printf("error closing file");
>

/* A file browse function. */
void far _loadds browselchar *fname)

unsigned short fh;
unsigned action;
unsigned num bytes;
long pos, p;

char bufl[5131, ch;

/* open the file, no file sharing */
if(DosOpen((char far *) fname, /* filename */
(unsigned short far *) &fh, /* pointer to handle =/
(unsigned far *) &action, /* pointer to result =/
oL, /* 0 length =/
o, /* normal file */
0x1, /* open */
0x10, /* read-only, no-share */
oL>) /* reserved */
{
printf("error in opening file");
exit(1);
b

/* main loop */
pos = 0L;
do {
if(DosRead(fh, (char far *) buf, 512,
(unsigned far *) &num bytes)) {
printf("error reading file"); —
exit(1);
>
buflnum bytesl = "\0'; /% null terminate the buffer =/
printf(buf); /% display the buffer =*/

/* see what to do next =/
ch = tolower(getch());
switch(ch) €
case 'e': /* move to end */
DosChgFilePtr{(fh, -512L, 2, (unsigned Long far *) &pos);
break; '
case 's'": /* move to start */
posChgFilePtr(fh, OL, 0, (unsigned Long far *) &pos);
break;
case 'f': /* move forward */
/* forward is automatic, so no change is required */
pos = pos + num bytes;
break; -
case "b': /* move backward */
pos = pos - 512;
if(pos<0L) pos = 0L
DesChgFilePtr{(fh, pos, 0, (unsigned Long far *) &p);
b

Y whileCch != 'q');

266 OS/2 Programming: An Introduction

if(bosClose(fh)) printf("error closing file");
3

/* This routine lists the directory. */
void far _loadds show_dir0Q)
{

FILEFINDBUF *;

unsigned short hdir;

unsigned count;

printf("\n");
hdir = Oxffff; /* cause a new handle to be returned */
count = 1; /* find the first match */ _
DosFindFirst((char far *) "x.%", (unsigned short far *) R&hdir,
0x0, (FILEFINDBUF far %) &f, sizeof(f),
(unsigned far *) &count, 0OL);
do {
printf("%=-13s %d\n", f.achName, f.cbFile);
bosFindNext(hdir, (FILEFINDBUF far %) &f, sizeof(f),
(unsigned far *) &count);
Jwhile(count);
DosFindClose(Chdir);

/* This function displays the number of bytes
per sector, sectors per cluster, total disk space,
and available disk space.
*/
void far loadds diskinfo(void)
{
FSALLOCATE f;

DosQFSInfe(0, 1, (char far *) &f,
sizeof f);

printf("Bytes per sector: %ld\n", f.cbSector);
printf("Sectors per cluster: %lLd\n", f.cSectorunit);
printf("Total disk space: %lLd\n",
f.cbSector * f.cSectorUnit * f.cUnit);
printf("Total available disk space: %Lld\n",
f.cbSector * f.cSectorUnit * f.cUnitAvail);

Call this file FILE.C. The definition file for the library is shown
here:

LIBRARY FILE
EXPORTS _show_dir
:ﬂispLayfiLe
brouwse
:diskinfa

Compile and link FILE.C by using the MAKEDLL batch file.

Creating and Using Dynamic Link Libraries 267

The program shown here loads FILE.DLL during run time, displays
a menu, and calls from the menu the function chosen by the user.
Notice that the function pointer func does not have a prototype
parameter list declared. Since the file functions do not all take the same
number of parameters, it is not possible to use a prototype.

/* A simple menu driven file manager program that uses

a runtime dynlink Llibrary.
*/

#define INCL_DOS
#include <os2.h>

char failbufC1281;
unsigned mhandle;

void (far *func) ();
main()
{

char choice;
char fnamel801;

if(DosLoadModule({(char far *) failbuf, /* name of fail buffer */

sizeof(failbuf), /* size of fail buffer =*/
(char far *) "file", /* name of dynlink Lib */
(unsigned far *) &mhandle)) /* module handle #*/
{
printf("error loading dynlink module");
exit(1); ;
3
do {
choice = menu();
switch(choice) {
case 1:
if(DosGetProcAddr(mhandle, (char far %) " displayfile”,
(void far **) &func))
{
printf("cannot find the specified function");
exit(1);
>
printf("\nfilename: "J;
gets(fname);
func({char far *) fname);
break;
case 2:

if(DosGetProcAddr(mhandle, (char far *) " browse",
(void far **) &func))
{
printf("cannot find the specified function");
exit(1);

printf("\nfilename: ");
gets(fname);

func((char far *) fname);
break;

268 OS/2 Programming: An Introduction

case 3:
if(bosGetProcAddr{mhandle, (char far *) " show dir",
(void far #%) &func)) -

€
printf("cannot find the specified function");
exit(1);

3

func();

break;

case 43
if(DosGetProcAddr(mhandle, (char far *) " diskinfo",
(void far **) &func))

{
printf("cannot find the specified function");
exit(1);

¥

func();

B3
> while(choicel!=5);
DosFreeModule (mhandle);

/* Display a menu. */
menu()
{

char choice;

printf("1, Llist a file\n'");
printf("2. browse through a file\n");
printf("3. directory\n");

printf("4. disk info\n");

printf ("5, quit\n");

do {
printf("Enter your selection: ");
choice = getche();
printf("\n");
} while (choice < "1' || choice > '5');
return choice - '0';

DYNAMIC LINKING
IMPLICATIONS

The use of dynlink libraries in either their load-time or run-time form
not only expands the options available to you when you create an appli-
cation but also implies a fundamental restructuring to the approach of
program design. To take the best advantage of dynlinks you need to
group the various functional elements of your program into separate
dynlink libraries. While this step is fairly obvious, the next is not. You
must decide what parts of your program are more-or-less fixed and

Creating and Using Dynamic Link Libraries 269

what parts may change. Although it is conceivable to have the main
program consist simply of a main() function that issues calls to dynlink
routines, a more likely situation involves a balance between dynlink
code and statically linked program code. The proper mix will vary
between applications, and achieving it requires both thought and exper-
imentation. Remember that the flexibility and improved maintainability
of your programs is worth the extra effort that dynamic linking
requires.

PROGRAMMING
PRESENTATION
MANAGER

This final part of the book introduces the Presentation Manager. The
Presentation Manager is important for several reasons:

m It provides a windowed environment that can be used quite effec-
tively.

m [t provides a dynamic data interchange facility that allows one appli-
cation to transfer data to another easily.

m It provides graphics services that allow your programs to draw
points, lines, boxes, and circles.

The Presentation Manager is a very complex piece of software con-
taining several hundred API services. While it is beyond the scope of
.this book to cover it in depth, the next two chapters present an over-
view. The main focus of this section is the basic methodology used to
create Presentation Manager-compatible programs. If you will be creat-
ing many programs that make use of the Presentation Manager, how-
ever, you will find the book Presentation Manager Programming (by Herb
Schildt, Osborne/McGraw-Hill, 1989) helpful because it provides a thor-
ough examination of all the important Presentation Manager features.

271

PRESENTATION
MANAGER:
AN OVERVIEW

Beginning with version 1.1, OS/2 includes the Presentation Manager
as the default user interface. The Presentation Manager provides the
user with a windowed, graphical interface that displays the functional-
ity of the system on the screen and makes the operation of the com-
puter by the user much more intuitive than the traditional command
line interface. As you will see, however, the end user’s ease of operation
has a price—at times a fairly high price—which is paid by the pro-
grammer in the extra time and effort it takes to create a Presentation
Manager-compatible program. This chapter introduces the fundamen-
tal concepts implemented by the Presentation Manager and develops a
Presentation Manager application skeleton that you can use to create
your own programs.

WHAT IS THE PRESENTATION
MANAGER?

What the Presentation Manager is depends to some extent on whether
you are an end user or a programmer. From the user’s point of view,
the Presentation Manager is a shell to interact with in using applica-
tions. From the programmer’s point of view, however, the Presentation
Manager is a collection of several hundred additional API services,
coupled with a general application design philosophy. From the pro-
grammer'’s point of view, the Presentation Manager is a giant toolbox
of interrelated functions that, when used correctly, allow the creation
of application programs that share a common interface.

The goal of the Presentation Manager is to enable a person who has
basic familiarity with the system to sit down and run virtually any

273

274 OSj2 Programming: An Introduction

application without prior training. In theory if you can run one Presen-
tation Manager program, you can run them all. Of course, in reality
most useful programs still require some sort of user instruction, but at
least this instruction can be restricted to what the program does, not
how the user must interact with it.

At this point it is very important for you to understand that not
every Presentation Manager program necessarily presents the user
with a Presentation Manager-style interface. You can override the basic
Presentation Manager philosophy, but you had better have a very good
reason, because the users of your programs will be very disturbed by
the change. If you are writing application programs for OS/2, they
should conform to the general Presentation Manager application inter-
face philosophy to be successful in the marketplace.

Let’s look at a few of the more important features of the Presenta-
tion Manager and the design philosophy behind them.

The Desktop Model

With few exceptions, the point of a window-based user interface is to
provide on the screen the equivalent of a desktop. On a desk you often
find several different pieces of paper, one on top of another, often with
fragments of different pages visible beneath the top page. The equiv-
alent of the desktop in the Presentation Manager is the screen. The
equivalents of the pieces of paper are windows on the screen. You can
move pieces of paper about on a desk, maybe switching which piece of
paper is on top or how much of another is exposed to view. The Pre-
sentation Manager allows the same types of operations on its windows.
By selecting a window you can make it current, which means putting it
on top of all other windows. You can also enlarge or shrink a window
or move it about on the screen. In short, the Presentation Manager lets
you control the surface of the screen the way you control the surface of
your desk.

The Mouse

Unlike DOS and the original version of OS/2, the Presentation Man-
ager allows you to use the mouse for almost all control, selection, and

Presentation Manager: An Overview 275

drawing operations. Of course, to say that it allows the use of the
mouse is an understatement. The fact is that the Presentation Manager
interface was designed for mouse input; it allows the use of the key-
board! Although it is certainly possible for an application program to
ignore the mouse, it does s0 only in violation of a basic Presentation
Manager design principle.

To activate a feature you generally move the mouse pointer to that
feature and double click the left mouse button. A double click is achieved
by pressing the button twice in rapid succession. The Presentation
Manager allows you to drag objects about by moving the mouse pointer
to the object, pressing and holding the left button, and moving the
mouse pointer and object to a new location.

Icons and Graphics Images

The Presentation Manager allows (but does not require) the use of
icons and bit-mapped graphics images to convey information to the
user. The theory behind the use of icons and graphics images is found
in the adage, “a picture is worth a thousand words.”

In OS/2 terminology, an icon is a small symbol representing some
function or program that can be activated by moving the mouse to the
icon and double clicking on it. A graphics image is generally used
simply to convey information quickly to the user.

Menus and Dialog Boxes

Aside from standard windows, the Presentation Manager also provides
special purpose windows. The most common of these are the menu and
dialog boxes. Briefly, a menu is a special window that contains options
from which the user makes a selection. Instead of providing the menu
selection functions in your program, you simply create a standard
menu window by using Presentation Manager services.

A dialog box is essentially a special window that allows more complex
interaction with the application than a menu allows. For example, your
application might use a dialog box to input a file name. With few excep-
tions, nonmenu input is accomplished in the Presentation Manager via
a dialog box.

276 OS5/2 Programming: An Introduction

STORMY Cs

Now the bad news. Because the Presentation Manager must control all
input and output, many of the C standard library functions, such as
printf() and scanf() are not usable by any program that is going to run
under the Presentation Manager. In fact one reason that there are so
many Presentation Manager services is that they must replace a large
number of the standard C functions.

GENERAL OPERATION OF
A PRESENTATION MANAGER
APPLICATION

You must fix firmly in your mind one important point: The flow of a
Presentation Manager application program is fundamentally different
from a “normal” application. You need to abandon your preconceived
notions about how information moves in and out of your program and
what constitutes a program’s “main loop.” Before looking at any con-
crete Presentation Manager services or examples, you must under-
stand the structure of all Presentation Manager-compatible programs.

An Overview of the Operation of
a Presentation Manager Application

All programs that are compatible with the Presentation Manager share
a common skeleton. In its most straightforward implementation, when
the compatible program begins, it performs the following functions in
the order shown:

1. Initializes the Presentation Manager relative to the program
2. Establishes a message queue

3. Registers a special function called the window function within the
application called by the Presentation Manager

4. Creates a window of the registered class

5. Executes a loop that reads messages from the queue and dispatches
them to the window function

Presentation Manager: An Overview 277

The window function (sometimes called wind-proc or windewproc) is a
special function that is called only by the Presentation Manager, not by
your program. It receives in its parameters a message from the mes-
sage queue established in the second step. It then takes different
actions based on the value of each message. The form and content of
these messages, as well as the window function, will be discussed
shortly.

When a Presentation Manager application ends, it must perform the
following three steps:

1. Destroy the window
2. Destroy the message queue

3. Terminate the window environment relative to the application

The Message Loop

Aside from creating and destroying the windows required by your pro-
gram, generally the only other thing that the main() function does is
receive and dispatch messages. To accomplish this it uses a loop that
looks something like

while(program is still running) {
get a message;
send the message to the proper window;

Essentially, the Presentation Manager communicates with your pro-
gram by putting messages into its message queue. Your program then
extracts a message from the queue and dispatches it to the proper win-
dow by calling another Presentation Manager service. This process
continues until the program is terminated. For the most part messages
are the only way in which your program receives input. (Remember
that a Presentation Manager program cannot, for example, call scanf()
to read input from the keyboard.) Although the form of a message
varies somewhat depending on what type of message it is, all messages
are integers.

278 0S/2 Programming: An Introduction

A CLOSER LOOK AT A WINDOW

All Presentation Manager windows begin with a frame, which is essen-
tially a box. A number of optional but desirable additions are made to
this frame. In O5/2 these additional features are actually windows in
their own right. However, it is easier to think of them as options to the
frame. Let’s look at these options now.

Two “options” are vitally necessary for all windows. The first is the
border. The border is important because it allows the user to move or
resize the window using the mouse. The second is the system menu. The
system menu is a standard menu that, at a minimum, allows the user to
perform the following operations: restore the window to its original
size, move the window, resize the window, minimize or maximize the
window, and close the window. Although the border allows a more
convenient method of moving or resizing the window, these operations
can also be activated from the system menu. When a window is mini-
mized, it is shown in its iconic form and is moved to the icon region of
the screen. Your program can specify what the iconic form of a window
will look like or simply let the system decide. When a window is max-
imized, it takes over the entire screen. Closing a window removes it
from the screen and, if this is the program’s top-level window, termi-
nates the program.

Most of the time you will also want to add three other features to
your windows: the ability to maximize and minimize icons and a title
that identifies the window. Although it is possible to maximize and
minimize the window by using the system menu, it is quicker to use
maximize and minimize icons because the user can activate them with
the mouse. When the screen holds several windows, titles remind the
user which window is which.

Finally, you will add vertical and horizontal scroll bars to the win-
dow if your program needs them. By clicking on appropriate points in
these scroll bars the user scrolls the contents of the window up, down,
left, or right.

The region enclosed by the frame and used by your application pro-
gram is called the client area.

The organization of a standard Presentation Manager window
appears in Figure 11-1. (Remember that not all options are necessarily
used for all windows.)

Each Presentation Manager-compatible program creates one or
more main windows. A main window is at the topmost level and is the

Presentation Manager: An Overview 279

System menu icon Minimize icon Maximize icon

v -
1 | TITLE I 1\%:;\5

L—Border Client area —

Vertical scroll bar—i=

= T [—

Horizontal
scroll bar

Figure 11-11. The layout of a standard window

window that the user associates with the program. Closing the main
window terminates the program.

There are two general categories of windows: parents and children.
When an application begins, it creates one or more main windows. If it
creates more than one main window, they overlap each other. However,
it is possible to create a window inside another window. In this case the
newly created window is a child of the main window and is enclosed by
the parent. A child window can, in turn, create a child of its own, and
50 on up to the limits imposed by the size of the screen.

Each window is associated with a class. There are several built-in
classes, such as menus, frames, scroll bars, and the like. However, win-
dows that you create need to be given class names, and these classes
must be registered with the Presentation Manager.

280 O85/2 Programming: An Introduction

All windows define the lower left corner as location 0,0. The maxi-
mum x and y dimensions are dynamically defined as the window
changes size and shape. However, the maximum dimension is deter-
mined by the resolution of the screen.

Now that you know some of the theory behind the Presentation
Manager and its windows, let’s look at some specifics.

OBTAINING AN ANCHOR
BLOCK USING WinlInitialize

One of the first things that you will want your Presentation Manager
application to do is obtain an anchor block handle by calling WinlInitialize,
whose prototype is

void far *WinlInitialize(unsigned short haﬁdle);

Here, handle must be NULL. Notice that the function returns a void far
pointer, which points to the region of memory used by the Presenta-
tion Manager to hold various bits of information about the window
environment relative to the application program. This region of
memory is called the anchor block and the pointer to it is called the
anchor block handle. If the system cannot be initialized, a NULL is
returned. The anchor block handle is required as a parameter by many
Presentation Manager services.

Unlike the core API services, which return 0O for success, many of
the Presentation Manager services return 0 (NULL) on failure.

CREATING A MESSAGE QUEUE

After initializing the window system all Presentation Manager applica-
tions must create a message queue by using WinCreateMsgQueue,
which has the prototype

void far “WinCreateMsgQueue(void far *anchor_block, int size);

where anchor__block is the handle obtained by using WinInitialize. The
size of the queue is determined by the value of size or, if size is NULL,
the system default is used. Generally the system default queue size is
acceptable.

Presentation Manager: An Overview 281

Each element in the message queue is contained in a structure

(called QMSG by Microsoft) defined as

struct {
void far *hwnd; /* handle of the recipient window */
~ unsigned short msg; [* the message */
void far *mp1; /* additional message info */
void far *mp2; /* additional message info */
unsigned long time; /* time message was generated */
POINTL ptl; [* position of mouse pointer */

} QMSG;
The POINTL structure is defined as

struct {
long x;
long y;

} POINTL;

WinCreateMsgQueue returns a handle to the message queue or
NULL if the request fails.

REGISTERING A WINDOW
CLASS

Before you can actually create a window, you must register its class
using WinRegisterClass, which has the prototype

unsigned short WinRegisterClass(void far *anchor_block,
char far *classname,
(pascal far * window__func) (),
unsigned long style,
int storage__bytes);

where anchor__block is a pointer to the anchor block. The string pointed
to by classname is the name of the window class being registered. The
address of the window function must be passed as the third parameter.
The style of the window is specified by style. The number of bytes of
additional storage beyond that needed by the window is specified by

282 (0S5/2 Programming: An Introduction

storage__bytes. Your program may use this extra storage for its own pur-
poses. In the examples in this book, this field will be 0.

The value of style describes the sort of window being registered.
The only style used in this book has the value 4L and is defined as
CS__SIZEREDRAW in the PMWIN.H header file provided by Micro-
soft. Using this style causes the Presentation Manager to inform your
program each time the window is resized.

The WinRegisterClass service returns nonzero if successful and
NULL if unsuccessful.

CREATING A STANDARD
WINDOW

Once you have initialized the window system relative to your applica-
tion, created a message queue, and registered the class, it is time to
create a window. The easiest way to create a standard window is to use
WinCreateStdWindow, which has the prototype

void far *WinCreateStdWindow(void far *anchor__block,
void far *parent__handle,
unsigned long style;
char far *classname,
char far *title,
unsigned module,
unsigned long client__style,
int resource,
void far **client__handle);

The parent__handle must be the handle of the parent window. When a
program begins execution, its parent is the screen, which has the han-
dle 1. Microsoft defines this value by the macro HWND_DESKTOP.
This value will be used for the examples in this chapter.

The value of style determines several features of the window. It can
be a combination of several values. The most common, along with the
macro names given to them by Microsoft, appear in Table 11-1.

The classname parameter points to the string that identifies the class.
This should be the same string that was used in the call to Win-
RegisterClass.

The string pointed to by title is used as the title of the window for

Presentation Manager: An Overview 283

Table 11-1. The Most Common Values for the WinCreateStdWindow Style
Parameter

Macro Name Value Meaning

WS__VISIBLE 0x80000000L Make window visible

WS_MINIMIZED 0x01000000L Minimize window

WS__MAXIMIZED 0x00800000L Maximize window

FS__ TITLEBAR 0x00000001L Include title bar

FS__SYSMENU 0x00000002L Include system menu

FS__VERTSCROLL 0x00000010L Include vertical scroll
bar

FS__HORZSCROLL 0x00000020L Include horizontal scroll
bar

FS_SIZEBORDER 0x00000040L Include sizing border

FS__BORDER 0x00000200L Use thin border

FS__MINBUTTON 0x00001000L Include minimize icon

FS__MAXBUTTON 0x00002000L Include maximize icon

FS_MINMAX 0x00003000L Include both minimize

and maximize icons

identification purposes.

For most purposes the client__style parameter should be OL, indicat-
ing that the client window should be the same style as the window

class.

The resource and module parameters identify a resource module. The

examples in this chapter need no resource modules, so these parame-
ters should be NULL and 0 respectively.

The WinCreateStdWindow service returns a handle in client__handle
to the frame if successful and NULL if not.

THE MESSAGE LOOP

To receive messages your program will need to use WinGetMsg, which
has the prototype

284 (OS5/2 Programming: An Introduction

unsigned short WinGetMsg(void far *anchor_block,
QMSG far *message,
void far *window,
unsigned short first,
unsigned short last);

The message retrieved from the queue is put in the queue structure
pointed to by message. If window is not null, it causes WinGetMsg to
retrieve only the messages directed to the specified window. Most of
the time your application will want to receive all messages. In this case
window should be NULL. All messages are integers. The first and last
parameters determine the range of messages that will be accepted by
defining the end points of that range. If you wish to receive all mes-
sages, first and last should both be 0. The WinGetMsg service returns
true unless a termination message is received, in which case it returns
false.

In many situations, once a message has been received it is simply
dispatched to the correct window without further processing by your
program within the message loop. The service that sends messages
along their way is WinDispatchMsg, which has the prototype

void far *WinDispatchMég(void far *anchor__block,
QMSG far *message);

When you call this function the message is automatically routed to the
proper window function. WinDispatchMsg returns the value returned
by the window function.

PROGRAM TERMINATION

Before your program terminates, it must do three things: close any
active windows, close the message queue, and deactivate the window
system interface created by the Winlnitialize service. To accomplish
these things the Presentation Manager provides the services WinDe-
stroyWindow, WinDestroyMsgQueue, and WinTerminate, which have
the prototypes

unsigned long WinDestroyWindow(void far *handle__window);
unsigned long WinDestroyMsgQueue(void far *handle__msgQ);
unsigned long WinTerminate(void far *anchor__block);

Presentation Manager: An Overview 285

Here handle__window is the handle of the window to be closed. The
handle__msg(Q) is the handle to the message queue to be destroyed.

Finally the window system is disconnected by calling WinTerminate
with the anchor block handle.

THE WINDOW FUNCTION

As mentioned earlier, all programs that are compatible with the Pre-
sentation Manager must pass to the Presentation Manager the address
of the window function that will receive messages. This function must
be declared as shown here:

void far * pascal far window func(void far *handle,
unsigned short message,
void far *paraml,
void far *param?2);

The window function receives the Presentation Manager messages in
its parameters. In essence the Presentation Manager sends your pro-
gram a message by calling the window function. The value of handle is
the handle of the window receiving the message. The integer message
contains the message itself. Some messages require further informa-
tion, which is put into the param1 and param2 parameters.

The Presentation Manager can generate several different types of
messages. Some of the more common ones appear in Table 11-2 along
with the macro names assigned to them by Microsoft. Some of these
messages will be used in the sample programs developed in this chapter
and the next.

The window function does not need explicitly to process all the
messages that it receives. In fact an application commonly processes
only a few types of messages. What happens, then, to the rest of the
messages received by the window function? They are passed back to
the Presentation Manager for default processing using the WinDefWin-
dowProc service which has the prototype

void far *WinDefWindowProc(void far *handle,
unsigned short message,
void far *paraml,
void far *param2);

286 S/2 Programming: An Introduction

Table 11-2. Some Common Messages

Macro Name Value Meaning
WM_BUTTONIDOWN 0x0071 Button 1 down
WM_BUTTON1UP 0x0072 Botton 1 up

WM__BUTTON1DBLCLK 0x0073 Double click on button 1
WM_BUTTON2DOWN 0x0074 Button 2 down
WM_BUTTON2UP 0x0075 Button 2 up
WM_BUTTON2DBLCLK 0x0076 Double click on button 2
WM_BUTTON3DOWN 0x0077 Button 3 down

WM_BUTTON3UP 0x0078 Button 3 up
WM_BUTTON3DBLCLK 0x0079 Double click on button 3
WM_CHAR 0x007A Keystroke occurred
WM_CREATE 0x0001 Window has been created
WM_DESTROY 0x0002 Window is being destroyed
WM_ERASEBACK- 0x004F OK to erase background re-
GROUND quest
WM_HSCROLL 0x0032 Horizontal scroll
WM_MOVE 0x0006 Window is being moved
WM_MOUSEMOVE 0x0070 Mouse has moved
WM__PAINT 0x0023 Window display needs to
be refreshed
WM_SHOW 0x0005 Window is shown or re-
moved from the screen
. WM_SIZE 0x0007 Window is being resized
WM_VSCROLL 0x0031 Vertical scroll
WM_QUIT 0x002A Window is being termi- |
nated -

As you can probably guess, WinDefWindowProc simply passes back to
the Presentation Manager the parameters with which it was called.

PUTTING TOGETHER THE PIECES:
A PRESENTATION MANAGER SKELETON PROGRAM

Now that you have seen the services needed to initialize and run a
simple windowed application, it is time to see some real code! The fol-

Presentation Manager: An Overview 287

lowing skeleton program creates a window that includes a system
menu, a title, a sizing border, and scroll bars. You can move the window
about the screen, minimize or maximize it, change its shape, and ter-
minate it —nothing else. For the moment dont worry too much about
the window function window__func(); it will be explained shortly.

/* A Presentation Manager Application skeleton. */
#define INCL_WIN

#include <os2.h>
#include <stddef.h> /* get definitiocn of NULL %/

void far * pascai far window func(void far *, unsigned shert,
void far *, void far *);

char class[] = "MyClass";

maind)
{
void far *hand ab;
void far *hand mg;
void far *hand frame, far *hand client;
QMSG g_mess; -

hand_ab = WinInitialize(NULL);

hand mg = WinCreateMsgQueueChand_ab, 0;

if(lWinRegisterClass(hand ab, /* anchor block */
class,;. /* class name */
window func, /* address of window function */
CS SIZEREDRAW, /* window style */
07y /* no storage reserved */
exit(1);

hand frame = WinCreateStdWindow (HWND DESKTOP,
WS VISIBLE | FS SYSMENU |
FSTSIZEBORDER |~ FS TITLEBAR |
FS_VERTSCROLL| FS_HORZSCROLL |
FSTMINMAX,
(char far *) class,
(char far *) "My Window",
oL, /* resource modules */
NULL,
0,
&hand client); /* client handle */

/* message Llcop =/
while(WinGettisgChand ab, &q mess, NULL, O, 0))
WinDispatchMsgChand_ab, &q_mess);

WinbestroyWindow(hand frame);

HinbestruyMngueue(hand_mq);
WinTerminate(hand ab);
3 -

/* This is the window function. */
void far * pascal far window func(void far *handle,
= unsigned short mess,
vaoid far *parml,
void far *parm2)

288

sWit

ca

ca

0S/2 Programming: An Introduction

chlmess) {
case WM CREATE:

/* Perform any necessary initializations here. %/
break;

se WM PAINT:
/* Refresh the window each time the WM_PAINT message
is received.
*/
break;

se WM ERASEBACKGROUND:
/* By returning TRUE, the PM automatically erases
the old window each time the window is resized
or moved. Without this, your program must
manually handle erasing the window when it changes
size or location.
*/
return(TRUE) ;

case WM CHAR:

ca

ca

ca

/* Process keystrokes here. */
break;

se WM_HSCROLL:
/* Process horizontal scroll request. =/
break;

se WM_VSCROLL:
/* Process vertical scroll reguest. */
break;

se WM_MOUSEMOVE:
/* Process a mouse motion message. */

break;

case WM BUTTONTDOWN:

/* Tst mouse button is pressed. */
break; ’

case WM BUTTON2DOWN:

ca

/* 2nd mouse button is pressed. */
break;

se HM_BUTTON3DOHN:
/* 3rd mouse button is pressed. */
break;

/% If required by your application, you may also need to

*/

process these mouse messages:

WK_BUTTONTUP
WM_BUTTON1DBLCLK
WM_BUTTON2UP
WM_BUTTON2DBLCLK
WM_BUTTON3UP
WM_BUTTON3DBLCLK

default:

/* ALL messages not handled by the window func,
must be passed along to the PM for default
processing.

Presentation Manager: An Overview 289

*/

return WinbpefWindowProc(handle, mess, parmi, parm2);
b
return OL;

T

Note that the program defines INCL_WIN. This is necessary to
include the prototypes and definitions for the window system on
0OS52.H.

Read the next two sections before you try to compile this program.

The Definition File

Unlike non-Presentation Manager programs, any Presentation Man-
ager-compatible program you write needs to include a definition file in
the link line. Other reasons aside, you will need to specify more stack
space for the Presentation Manager application than it will receive by
default. The Presentation Manager examples in this book allocate 4096
bytes, but real-world applications may need more space. It is also a
good idea to specify a heap size. The programs in this book allocate
4096 bytes for this purpose, but your programs may need more or less.
You must also include an EXPORTS statement in the file that specifies
the name of the window function. The definition file for the skeleton
just shown looks like this:

NAME skeleton
HEAPSIZE 4096
STACKSIZE 4096
EXPORTS window_func

Compiling Presentation Manager
Programs

You will need to specify some different compiler options for a Presenta-
tion Manager program than for a standard program. You can use this
batch file if you are using the Microsoft C compiler:

CL -c -G2swWw %1.c
LINK %1,,, os2, %41.def;
RC %1

The -G2sw option tells the compiler to use 32-bit addresses for all code
and data references, turn off stack checking, assume that the value of

290 OS/2 Programming: An Introduction

the DS register is different from the value of the S5 register, and
generate 80286 instructions. Since the Presentation Manager requires
at least an 80286 processor, there is no harm in generating 80286
instructions.

Note that the link line specifies the library called OS2.LIB instead of
DOSCALLS.LIB. This name was introduced with version 1.1 of OS5/2.
However, different versions of (S/2 may call this something else.

Note: You may have to use a different set of options even if you are
using Microsoft C because of future changes to the compiler. Be sure
to read your instruction manual carefully on this point.

Understanding How the Skeleton
Works

The operation of the main() function is straightforward. It initializes
the link between the Presentation Manager and the program, registers
a new window class, creates a window, and executes its message loop.
As messages are received, they are dispatched to the window__func()
by calling WinDispatchMsg. The message loop terminates when the
WM _QUIT message is received. This message is generated by choos-
ing the close option in the window’s system menu.

The most important single function in a Presentation Manager
application is the window function. It receives the messages sent by the
Presentation Manager and takes appropriate action. The skeleton
shows entries in the switch statement for only the most common of
the several messages that can be generated by the Presentation Man-
ager. (Remember that any message your program does not wish to pro-
cess must be passed back to the Presentation Manager via the Win-
DefWindowProc service.) Let’s look at the meaning of some of these.

When a window is created, the WM_CREATE message is sent to
the window function. This allows your program to initialize values or
perform other startup operations.

The Presentation Manager allows the user to move and resize win-
dows and also to cover part of a window with another. These opera-
tions imply that all or part of the window must be redrawn at some
time. The Presentation Manager generates the WM_PAINT message
whenever the contents of the window must be refreshed.

The WM_ERASEBACKGROUND message tells your program that
the window needs to be erased, perhaps because the window is being

Presentatton Manager: An Overview 291

moved. By returning TRUE, you allow the Presentation Manager to do
this for you. Otherwise, your program must do it.

Each time the user presses a key, the WM_CHAR message is
generated. This message will be discussed further in the next chapter.

Each time the user requests a vertical scroll the WM_VSCROLL
message is generated. Each time the user requests a horizontal scroll,
the WM_HSCROLL message is generated.

The mouse messages are self-explanatory.

Because this program is a skeleton for future applications, it does
not do anything with the messages. However, you will soon see exam-
ples that do. Keep in mind that when your program does not actually
need to worry about a message —if the program does not have scroll
bars, for example —that message can be removed from the switch
statement and the default processing will handle it.

PRESENTATION MANAGER
VERSUS CORE SERVICES

At this point you might be wondering how the Presentation Manager
services relate to the core O5/2 services. There certainly appears to be
significant overlap in many areas. In general, if you wish to write Pre-
sentation Manager-compatible programs that follow the standard Pre-
sentation Manager style, you must not use any of the Vio, Kbd, or
Mou services in your program. Instead you must use the comparable
Presentation Manager services. However, feel free to use the Dos core
services, especially those that support interprocess communication and
device monitors.

If a program uses a Vio, Kbd, or'Mou service, it will be run in its
own screen group, not in a Presentation Manager window:.

The main use for the Vio, Kbd, or Mou services is for utility pro-
grams, especially programmer utilities, that do not need the support of
a windowed environment.

SOME PRESENTATION
MANAGER EXAMPLES

This chapter introduces some of the commoner programming tasks,
such as input, output, and the use of graphics and menus, as they are
formulated in a Presentation Manager environment. While it is beyond
the scope of this book to go into significant detail about the Presenta-
tion Manager, the material presented in this chapter will help you grasp
some of the more important Presentation Manager programming con-
cepts and will provide a base for further study.

OUTPUTTING TEXT

Outputting text to a client window is not as easy as you might expect
for two reasons:

1. You can’t use any of the C run-time functions such as printf().

2. You can’t use any of the VIO API services either!

The reason for these restrictions is that neither the C standard output
functions nor the VIO functions have any knowledge of a windowed
environment.

Beyond the fact that your programs must use special Presentation
Manager output functions to display text in a window, it is still not a
trivial task to output text because the Presentation Manager maintains
a level of abstraction between your program and the output device.

293

294 OS/2 Programming: An Introduction

Before developing any examples, you need to learn a few new terms
and concepts.

Presentation Space and
Device Context

When your program outputs something to the “screen,” it is actually
outputting information to a presentation space (PS), which you can think of
as being a data structure that contains several pieces of information
about the size and form of the “screen.” The reason that the word screen
has been placed in quotes in the foregoing sentences is that a presenta-
tion space is not necessarily linked to the screen; it could be linked
with the printer, for example. The device that the presentation space is
actually linked to is called the device context (DC). For the rest of this
discussion, the device context is assumed to be the screen.

There are three types of presentation spaces: the normal-PS, the
micro-PS, and the cached micro-PS. The examples in this chapter use
only the cached micro-PS, but it is important that you understand the
general concept behind all three.

The normal-PS is the most flexible of the three presentation spaces.
Your program uses it when it writes to devices other than the screen or
when a screen display is in existence a long time without a refresh. A
micro-PS is similar to a normal-PS except that it requires less memory
and has fewer capabilities. The cached micro-PS is the simplest presen-
tation space to use and requires the least memory. However, the cached
micro-PS operates only with the screen, so it cannot be used to send
output to any other device.

Processing the WM_PAINT
Message

As you probably recall from the previous chapter, each time a window
is moved, resized, or uncovered, the WM_PAINT message is sent to
the window function. Each time this message is received, your program
must completely redisplay any output that was in the window. The pro-
cess is often called refreshing the window. Although it is possible to out-
put to the window during the processing of other messages, the most
common time for this to occur is when handling the WM_PAINT
message. For this reason the discussion of text output begins with how
it relates to the processing of the WM_PAINT message.

Some Presentation Manager Examples 295

Before you can output anything to the screen, you need to obtain a
presentation space handle. There are several ways to do this, but when
processing the WM_PAINT message the easiest way is to use the
WinBeginPaint service to return a micro-PS handle. The prototype for
WinBeginPaint is

void far *WinBeginPaint(void far <handle,
void far *p__space,
RECTL far *region);

where handle is the handle of the window that will be drawn to, and
p—_space is the handle of the presentation space. If this value is NULL, a
micro-PS is automatically allocated and its handle returned by the ser-
vice. The structure pointed to by region contains the coordinates of the
region that needs to be updated. This parameter may be NULL in cases
where it is simply easier for the program to update the entire window
rather than a portion. -

WinBeginPaint has a second important function: It informs the
Presentation Manager that a window refresh is beginning. For this rea-
son it is a good idea to call WinBeginPaint immediately after receiving
a WM_PAINT message.

The simplest way to write a line of text to a window is to use the
GpiCharStringAt service, whose prototype is

long GpiCharStringAt(void far *p__space,
PQOINTL far *loc,
long size,
char far *string);

where p__space is the presentation space handle. The structure pointed
to by loc contains the coordinates of the location at which the string will
be written. The size parameter holds the size, and string points to the
actual string.

The return value of GpiCharStringAt is somewhat complex and is

not required by the examples in this chapter.
The POINTL structure is defined like this:

struct POINTL {
long x;

long y;

kg

296 0S5/2 Programming: An Introduction

It is critical to keep in mind that the x,y locations in the POINTL struc-
ture are specified in pels, not in characters.

Although in its default mode no cursor is seen in a window, each
window does keep track of the position of an invisible “cursor.” The
position of this invisible cursor is called the current position. Many of the
output services, including GpiCharStringAt, affect the location of the
current position. After the string has been displayed by using
GpiCharStringAt, the current position is advanced to the pel imme-
diately following the last character in the string.

The GpiCharStringAt service does not process carriage returns or
linefeeds, so your program must manually advance to new lines when
needed.

Before the code that processes the WM _PAINT message finishes,
it must issue a call to WinEndPaint, which has the prototype

unsigned short WinEndPaint(void far *p_space);

where p__space is the handle of the presentation space updated by the
program. If WinEndPaint is successful, it returns true; otherwise it
returns false.

Assuming the necessary variable declarations, the following frag-
ment outputs “This is a test” on the screen starting at the lower left
corner:

case HM_PAINT:
/* get a handle to the presentation space */
p_space = WinBeginPaint(handle, NULL, NULL);

/* output a message that starts at the Llower
Left corner
*/
coords.x = 0OL;
coords.y = OL;
GpiCharStringAt(p space, (POINTL far *) &coords,
1%L,
(char far x) "This is a test");
/* close the presentation space */
WinEndPaint(handle);
break;

Each time the window associated with this code fragment is moved,
resized, or uncovered, the WM_PAINT message is received and the
line of text is redisplayed. An entire program that uses the code frag-
ment is shown here:

Some Presentation Manager Examples 297

/* Output a string. */

#define INCL_WIN
#idefine INCL GPI

#include <os2.h>
#include <stddef.h> /% get definition of NULL =*/

void far * pascal far window func(void far *, unsigned short,
void far *, void far #);

char class[]l = "MyClass";

main()
{
void far %hand ab;
void far *hand_mq;
void far *hand frame, far *hand client;
QMSG g_mess; -

hand ab = WinInitialize(NULL);
hand_mq = WinCreateMsgQueueChand_ab, 0);

if(!WinRegisterClass(hand ab, /% anchor block */
class, /* class name */
window_func, /* address of window function */
CS SIZEREDRAW, /* window style */
Yy /* no storage reserved */
exit(1);

hand frame = WinCreateStdWwindow(HWND DESKTOP,
- WS VISIBLE | FS_SYSMENU |
FS:SIZEBORDER l_FS_TITLEEAR |
FS MINMAX,
(char far *) class,
(char far %) "My Window",
oL,
NULL,
0,
&hand client);

while(WinGetMsg(hand ab, &q_mess, NULL, 0, 0))
WinDispatchMsg(hand_ab, &g _mess);

WinbestroyWindow(Chand_frame);

WinbDestroyMsgQueue(hand mq);
HinTerminate(hand_ab);
>

/* window function */
void far # pascal far window func{void far *handle,

- unsigned short mess,
void far *parmi,
void far *parm2)

{
void far *p space;
POINTL coords;

sWwitch(mess) {

298w 0O5/2 Programming: An Introduction

case WM_PAINT:
/* get a handle to the presentation space */
p_space = WinBeginPaint(handle, NULL, NULL) ;

/* output a message that starts at the lower
Left corner
*/
coords.x = 0OL;
coords.y = 0OL;
GpiCharStringAt(p space, (POINTL far *) &coords,
1%L,
(char far #) "This is a test");
/% close the presentation space */
WinEndPaint(handle);
break;
case WM ERASEBACKGROUND:
return(TRUE);

default:
return WinbefWindowProc(handle, mess, parmi, parm2);

i g
return OL;

To compile this program be certain to use the method discussed in
the previous chapter and include a definition file similar to the follow-
ing (in fact, be sure to include a similar definition file with all the sam-
ple programs in this chapter):

NAME prog name
HEAPSIZE 4096
STACKSIZE 4096
EXPORTS window_func

Displaying Text in Color

You can change both foreground and background colors by using
GpiSetColor and GpiSetBackColor, respectively. Their prototypes are

unsigned short GpiSetColor(void far *p__space,
long color);
unsigned short GpiSetBackColor(void far *p__space,
long color);

Some Presentation Manager Examples 299

Here p__space is the handle to the presentation space and color is the
desired color, which can be one of these values (shown along with the
macro names given them by Microsoft):

Macro Name Value
CLR_DEFAULT —3L
CLR_WHITE —2L
CLR_BLACK —1L
CLR_BACKGROUND oL
CLR_BLUE 1L
CLR_RED 2L
CLR_PINK) 3L
CLR_GREEN 4L
CLR_CYAN 5L
CLR_YELLOW 6L
CLR_NEUTRAL i i
CLR_DARKGRAY 8L
CLR_DARKBLUE 9L
CLR_DARKRED 10L
CLR_DARKPINK 11L
CLR_DARKGREEN 121
CLR_DARKCYAN 13L
CLR_BROWN 14L
CLR_LIGHTGRAY 15L

Keep in mind that once you set a foreground or background color, or
both, they remain in effect until reset. .

In the Presentation Manager’s default mode of operation, once the
foreground color is set, all subsequent screen output operations take
place in that color. This is not the case for the background color, how-
ever, because by default the new background color is not “mixed” into
the background color of the window. In order to mix the color in, you
must call the GpiSetBackMix service, whose prototype is

unsigned short GpiSetBackMix(void far *p__space,
long mix);

where p__space is the presentation space of the window and mix is the
value that determines how the background color is mixed with the cur-
rent screen color. The most common values are shown here along with
the macro names defined by Microsoft.

300 OS/2 Programming: An Introduction

Macro Name Value Meaning

BM__DEFAULT oL Use system default.

BM__OVERPAINT 2L Overwrite current color.

BM_LEAVEALONE 5L Leave current background color
unchanged.

You use BM_QVERPAINT to have the background color replace the
current screen color.

Although it is not used by the sample programs in this chapter, you
can set the mix of the foreground color by using GpiSetMix, whose
prototype is

unsigned short GpiSetMix(void far *p_space,
long mix);

Here mix specifies how the foreground color will be displayed. The most
common values are

Name Value Meaning

FM_DEFAULT oL Use default.

FM_OR 1L OR text onto screen.
FM_OVERPAINT 2L Overwrite current screen color.
FM_LEAVEALONE 5L Leave color attributes unchanged.
FM__XOR 4L XOR text onto screen.
FM_AND 6L AND text onto screen.

You may want to experiment with this service on your own.

The following program uses GpiSetBackColor, GpiSetColor, and
GpiSetBackMix to display a string using blue foreground and red back-
ground. '

l; Output blue text on red background.
*

#define INCL_WIN
#define INCL_GPI

#include <os2.h>
#include <stddef.h> /* get definition of NULL =*/

void far * pascal far window func(void far *, unsigned short,
void far #, void far *);

Some Presentation Manager Examples 301

char classCl = "MyClass";

main()
: &
void far *hand ab;
void far *hand mg;
void far *hand frame, far *hand client;
@MSG q_mess; -

hand_ab = WinInitialize(NULL);
hand_mq = NinCreateﬁsgﬂueue(handhab, 0);

if(!WinRegisterClass(hand ab, /* anchor block */
(char far *) class, /* class name */
window_func, /% address of window function %/
CS SIZEREDRAW, /* window style #*/
0y /* no storage reserved */
exit(1);

hand_frame = WinCreateStdWindow (HWND DESKTOP,
WS _VISIBLE | FS_SYSMENU |
FS_SIZEBORDER | FS TITLEBAR |
FS VERTSCROLL| FS HWORZSCROLL |
FSTMINMAX, -
(char far %) class,
(char far *) "My Window",
oL,
NULL,
0,
&hand_client); /* client handle =*/

uhiLe(winGetMsg(hand_éb, &q_mess, NULL, 0, 0))
HinDispatcthg(hand_pb, Bg_mess);

HinDestroywindou(handhframe);

WinbestroyMsgQueueChand mq);
WinTerminate(hand ab); —
3 i

! void far * pascal far window func(void far *handle,
- unsigned short mess,
veid far *parmi,
void far *parm2)

void far *p space;
POINTL coords;

sWwitch(mess) {
case WM PAINT:
/* get a presentation space handle */
p_space = WinBeginPaint(handle, NULL, NULL);

/% use red background */
GpiSsetBackColor(p_space, CLR_RED);

/* set mix to overwrite %/
GpiSetBackMix(p space, BM OVERPAINT);
/* set foreground to blue =/
GpiSetColor(p_space, CLR_BLUE);

302 OS/2 Programming: An Introduction

coords.x = 0OL;
coords.y = 0L;
GpiCharstringAt(p_space, (POINTL far *) &coords,
14L,
(char far *) "This is a test");
/* close the presentation space */
WinEndPaint (handle);

break;

case WM ERASEBACKGROUND:

/* By returning TRUE, the PM automatically erases
the old window each time the window is resized
or moved. Without this, your program must
manually handle erasing the window when it changes
size or location.

*/

return{TRUE);

default:
/* ALl messages not handled by the window_ func,
must be passed along to the PM for default
processing.
*/
return WinbefWindowProc(handle, mess, parml, parm2);
¥
return OL;
X

WinGetPS and WinReleasePS

You can obtain a handle to a cached micro-PS without using Win-
BeginPaint by using WinGetPS, whose prototytpe is

void far *WinGetPS(void far *win_handle);

Here, win__handle is the handle of the window to which you will be
outputting. The handle to the presentation space is returned by the
service.

Since you can call WinBeginPaint only when the WM_PAINT mes-
sage is received, the WinGetPS service is useful when you want to
output information during the processing of another message. (An
example of this appears in the next section.)

When your routine has finished outputting, it must call WinRe-
leasePS, which has the prototype

unsigned short WinReleasePS(void far *p_space);

where p__space is the presentation space handle obtained by a call to
WinGetPS.

Some Presentation Manager Examples 303

READING KEYSTROKES

As mentioned in passing in the previous chapter, your Presentation
Manager programs cannot read keyboard input in the traditional
fashion. For example, your programs cannot call such standard library
functions as gets() or scanf(). Instead, each time a key is pressed a
WM_CHAR message is sent to the active window.

The keystroke information is encoded in the two message parame-
ters as follows. The first 16 bits of the first parameter contain several
flags that tell you what type of key was pressed. The flags are encoded,
as shown here (along with their macro names defined by Microsoft):

Macro Name Value Meaning When Set
KC_CHAR 1 Is character
KC_VIRTUALKEY 2 Is special key
KC_SCANCODE 4 Is scan code
KC_SHIFT 8 Is SHIFT key
KC_CTRL 16 Is CONTROL key
KC_ALT 32 Is ALT key
KC_KEYUP 64 Key is being released
KC_PREVDOWN 128 Key was down
KC_LONEKEY 256 Is single key
KC_DEADKEY 512 Is unused key
KC_COMPOSITE 1024 Is key combination
KC_INVALIDCOMP 2048 Is invalid combination
KC_TOGGLE 4096 Is toggle key

The next 8 bits of the first parameter give a repetition count. This
indicates how many times the key has been autorepeated. Generally
you will not need to worry about this.

The high-order 8 bits of the first parameter hold the key’s scan
code. As you probably remember from Chapter 4, when you press a
key, OS/2 generates a scan code, which, in the case of normal keys, is
associated with a character code. Certain keys, however, such as the
arrow keys, do not have character codes, which means that the scan
code is used to identify them. (Refer to Chapter 4 for more informa-
tion on scan and character codes.)

The second parameter associated with the WM_CHAR message
contains two items. The lower 16 bits contain the character code,
assuming that a regular key has been pressed. That is, if the KC_
CHAR flag is set in the first parameter, a valid character code is found

304 (OS5/2 Programming: An Introduction

in the lower 16 bits of the second parameter. However, if you press a
special key, the KC_CHAR flag is not set and the character code of the
second parameter is 0. For U.S.-style keyboards only the first 8 bits are
of interest, but for foreign systems the full 16 bits may be needed.

The high-order 16 bits of the second parameter hold the virtual key
code for the key that was pressed. All keystrokes are assigned a virtual
code. For normal keys, however, this code is 0. The virtual key codes,
along with their corresponding macro names (defined by Microsoft) are
shown in Table 12-1. As you can see, some virtual key codes cannot be
generated by the keyboard, but are generated by the Presentation
Manager itself. -

Table 12-1. The Virtual Key Codes

Macro Name Value = Key
VK_CANCEL 04 CANCEL
VK_BACK 05 BACKSPACE
VK_TAB 06 TAB
VK_CLEAR 07
VK_RETURN 08 ENTER
VK_SHIFT 09 SHIFT
VK_CONTROL 10 CONTROL
VK_ALT T ALT
VK_ALTGRAF 12
VK_PAUSE 13 PAUSE
VK_CAPITAL 14 CAPS LOCK
VK_ESCAPE 15 ESCAPE
VK_SPACE 16 SPACE
VK_PGUP 17 PAGE UP
VK_PGDN 18 PAGE DOWN
VK_END 19 END
VK_HOME 20 HOME
VK_LEFT 21 LEFT ARROW
- VK_UP 22 UP ARROW
VK_RIGHT 23 RIGHT ARROW
VK_DOWN 24 DOWN ARROW
VK_SELECT 25
VK_PRINT 26
VK_EXECUTE 27

VK_INSERT 28 INS

Some Presentation Manager Examples 305

Table 12-1. The Virtual Key Codes {(continued)
Macro Name Value Key
VK_DELETE 29 DEL
VK_5CRLLOCK 30 SCROLL LOCK
VK_NUMLOCK 31 NUM LOCK
VK_NUMPADO 32 Number pad 0
VK_NUMPAD1 33 Number pad 1
VK_NUMPAD?2 34 Number pad 2
VK_NUMPAD3 35 Number pad 3
VK_NUMPAD4 36 Number pad 4
VK_NUMPADS5 37 Number pad 5
VK_NUMPAD6 38 Number pad 6
VK_NUMPAD? 39 Number pad 7
VK_NUMPAD3 40 Number pad &
VK_NUMPAD9 41 Number pad 9
VK_ADD 42 Number pad +
VK_SUBTRACT 43 Number pad —
VK_MULTIPLY 44 Number pad *
VK_DIVIDE 45 Number pad |
VK_DECIMAL 46 Number pad .
VK_ENTER 47 Number pad enter
VK_F1 : 48 F1
VK_F2 49 F2
VK_F3 50 F3
VK__F4 51 Fa
VK__F5 52 F5
VK_Fé 53 Fé
VK_F7 54 E7
VK_F8 55 Fa
VK__F¢ 56 Fo
VK_F10 57 F10
VK_F11 58 F11
VK_F12 59 F12
VK_F13 60 F13
VK_F14 61 F14
VK__F1s 62 F1s
VK__F16 63 F16
VK_HELP 64
VK_SYSREQ 65 SysRq
VK_MENU 11 Same as VK__AIT
VK_INS 28 Same as VK_INSERT

VK_DEL 29 Same as VK_DELETE

306 OS5/2 Programming: An Introduction

As you saw in Chapter 4, each time you press a key, OS/2 generates
a make signal. Each time you release the key, it sends a break signal.
When processing the WM_CHAR message remember that your pro-
gram is receiving both of these signals. Most of the time you want to
take an action only on key press, not on key release. To check for this
you must examine the state of the KC_KEYUP flag in the first
parameter. If it is O, the key is being pressed; if it is 1, the key is being
released.

The following program reads keys from the keyboard and displays
normal characters on the screen. It processes the make and skips the
break signal. Keep in mind that before the window created by this pro-
gram can receive input, you must click on the window to make it active.
(Only when the window is active does it become the focus of the key-
board.) Notice that this program uses WinGetPS and WinReleasePS.

/* The program reads keystrokes. */

#define INCL_WIN
#define INCL_GPI

#include <os2.h>
#include <stddef.h> /* get definition of NULL =*/

void far * pascal far window func(void far *, unsigned short,
void far *, void far *);

char class[] = "MyClass";

main()
{
void far *hand ab;
void far *hand mq;
void far *hand_frame, far *hand client;
QMSG g_mess; -

hand_ab = WinInitialize(NULL);
hand_mg = WinCreateMsgQueue(hand_ab, 0);

if(!WinRegisterClass(hand ab, /* anchor block =/
(char far *) class, /* class name */

window_func, /% address of window function */
CS SIZEREDRAW, /* window style */
0y /* no storage reserved */

exit(1);

hand _frame = WinCreateStdWindow (HWND DESKTOP,
WS_VISIBLE | FS_SYSHENU |
FS_SIZEBORDER | FS_TITLEBAR |

FS_VERTSCROLL| FS_HORZSCROLL |
FS MINMAX, -

(char far *) class,

(char far *) "My Windouw",

Some Presentation Manager Examples 307

oL, /* resource modules x*/
NULL,

o,
&hand_client); /* client handle */

while(WinGetMsg(hand_ab, &g_mess, NULL, O, 0))
Winbispatchbsg(hand ab, &q_mess);

WinDestroyWindow(hand_ frame);

WinDestroyMsgQueue(hand mq);
WinTerminate(hand ab);
» |

/* window function x/
void far * pascal far window func(void far *handle,
- unsigned short mess,
void far *parmi,
void far *parm2)

void far #*p space;
POINTL coords;
char ch;

switch(mess) {
case WM _ERASEBACKGROUND:

/* By returning TRUE, the PM automatically erases
the old window each time the window is resized
or moved. Without this, your program must
mgnuakLy handle erasing the window when it changes
size or Llocation.

*f

return(TRI'E) ;

case WM _CHAR: /* Process keystrokes here. */
/* process only keypresses, not key releases */
if(Clong) parml & KC_KEYUP) break;

if(C(long) parmi1 & KC_CHAR) {
p_space = WinGetPS(handle);

/* use overwrite mode */
GpiSetBackMix(p_space, BM_OVERPAINT);

coords,x = 20L;
coords.y = 20L;

/% extract the character */

ch = (char) LOUSHORT (parm2);

/* display the character */

GpiCharStringAt(p space, (POINTL far *) &coords,
1L,
(cﬁar far %) &ch);

WinReleasePS(p_space);
p
break; -

default:
/* ALL messages not handled by the window func,
must be passed along to the PM for default
processing.

308 OS5/2 Programming: An Introduction

*/
return WinbefWindowProc(handle, mess, parmi, parm2);
b4
return OL;
>

Keep in mind that the virtual key code and the scan code are two
separate pieces of information. The scan code more or less relates to a
specific keyboard implementation. However, the virtual key code is
completely under the control of OS/2 and the Presentation Mananger,
which means that it can map different keys into the virtual codes to
accommodate different situations, such as using foreign languages. To
see the difference between the virtual and scan codes, substitute this
window function in the foregoing program. This version displays the
scan and virtual codes for each key pressed.

/* window function */
void far * pascal far window func(void far *handle,
t - unsigned short mess,
void far #*parmi,
void far *parm2)

void far #*p space;
POINTL coords;
char ch, strC8031;
int i;

switch(mess) {
case WM_ERASEBACKGROUMD:

/* By returning TRUE, the PM automatically erases
the old window each time the window is resized
or moved. Without this, your program must
manually handle erasing the window when it changes
size or location.

*/

return(TRUE) ;

case WM_CHAR: /* Process keystrokes here. */
/* process only keypresses, not key releases */
if(Clong) parml & KC_KEYUP) break;

p_space = WinGetPSChandle);

/* use overwrite mode */
GpisetBackMix(p_space, BM_OVERPAINT);
coords.x = 20L;

coords.y = 20L;

/* extract the scan code */
ch = (char) ((HIUSHORT(parmi1) & OxFFOD) >> 8);
/* display the scan code */
sprintf(str, "scan code %3d", ch);
GpiCharStringAt(p space, (POINTL far *) &coords,
(Tong) strlen(str),
(char far *) str);

Some Presentation Manager Examples 309

coords.x = 20L;

coords.y = L;

/* extract virtual code */

i = HIUSHORT(parm2);

/* display the virtual code */

sprintfi(str, "virtual code %3d", i);

GpiCharStringAt(p space, (POINTL far %) &coords,
(Tong) strlen(str),
(char far *) str);

WinReleasePS(p_space);
break;

default:
/* ALL messages not handled by the window func,
must be passed along to the PM for default
processing.
* /
return WindefWindowProc(handle, mess, parmil, parm2);
b3
return OL;
b

A Better Approach to
Screen Output

Often the best time for your Presentation Manager-compatible pro-
grams to output information to the screen is when a WM_PAINT
message is received. (Keep in mind that it is not technically wrong to
output information to the screen during the processing of other mes-
sages, as was done in the previous two examples.) The reason for this
is that the Presentation Manager assumes that it is your program’s job
to maintain and update the screen whenever all or part of the window
becomes invalid. A window is invalidated when it is uncovered, resized,
or moved. Put another way, when a window’s size or position is
changed or a previously covered window is uncovered, all or part of the
information that was displayed in that window needs to be redrawn.
This is the entire purpose of the WM_PAINT message. Output per-
formed during the processing of another message is lost if the window
is moved or changed (unless, of course, the routine that processes the
WM_PAINT message can also refresh this output).

To redraw the window each time a WM _PAINT message is
received the WM_PAINT code must be capable of completely recon-
structing the screen. To give you a taste of what this entails, the follow-
ing program rewrites the one that reads a keystroke and displays the
key. In this version the code associated with the WM_CHAR message
simply loads the variable ch. It is the code associated with the WM__
PAINT message that actually outputs the character.

310 OS5/2 Programming: An Introduction

/* A Second approach to displaying keystrokes on
the screen.

*/

#define INCL WIN

#define INCL_ GPIL

#include <os2.h>
#include <stddef.h> /* get definition of NULL */

void far * pascal far window func(void far *, unsigned short,
void far *, void far =*);

char class[]l = "MyClass";
main()
{
void far *hand ab;
void far *hand _mq;
void far *hand frame, far *hand client;
QMSG q_mess; -

hand_ab = WinInitialize(NULL);
hand mg = WinCreateMsgQueue(hand_ab, 0);

if(!WinRegisterClass(hand_ab, /* anchor block */
(char far %) class, /* class name */

window func, /* address of window function */

CS_SIZEREDRAW, /x window style */
0)) /* no storage reserved */
exit(1);

hand frame = WinCreateStdWindow (HWND DESKTOP,
- WS VISIBLE | FS SYSMENU |
FS SIZEBORDER | FS TITLEBAR |
FS VERTSCROLL| FS_HORZSCROLL |
FS MINMAX,
(¢char far %) class,
(char far *) "My Window",
oL,
NULL ,
0,
ghand client); /* client handle */

while(WinGetMsg(hand ab, &q_mess, NULL, O, 0))
WinbDispatchMsg(hand _ab, &q mess);

WinbestroyWindow(hand_ frame);

WinbDestroyMsgQueue{hand_mq);
WinTerminate(hand ab);
3 -

/% window function */
void far * pascal far windouw func(void far *handle,

- unsigned short mess,
void far *xparmi,
void far *parm2)

L
void far *p space;
POINTL coords;
static char ch="\0";

Some Presentation Manager Examples 311

switch(mess) {
case WM PAINT:
/% Refresh the window each time the WM_PAINT message
is receijved.
*/
p_space = WinGetPSChandle);

/% use overwrite mode */
GpiSetBackMix(p_space, BM_OVERPAINT);

coords.x = 20L;
coords.y = 20L;

/* display the character */
GpiCharStringAt(p space, (POINTL far %) &coords,
Ty

#
(char far %) &ch);

WinReleasePS(p_space);

break;

case HM_ﬁRASEBACKGROUND:
/* By returning TRUE, the PM automatically erases
the old window each time the window is resized
or moved. Without this, your program must

manually handle erasing the window when it changes
size or location.
*/
return{TRUE);

case WM_CHAR: /x Process keystrckes here. */
} /* process only keypresses, not key releases */
if{llong) parmi & KC_KEYUP) break;

if(Clong) parm1 & KC_CHAR) {
ch = (char) LOUSHORT (parm2) ;
/* update the window each time a key is pressed */
WinUpdateWindow(Chandle);

X

break;

default:
/* ALL messages not handled by the window func,
must be passed along to the PM for default
processing.
*/
return WintefWindowProcChandle, mess, parml, parm2);

return 0OL;
i

This approach to screen output is very common in Presentation
Manager-compatible programs. In this method all output is directed to
internal buffers, which are written to the screen when the WM_
PAINT message is received.

312 OS/2 Programming: An Introduction

A GRAPHICS EXAMPLE

As you should know, it is very difficult to perform graphics output by
using only the core API services. The creators of OS/2 left the task of
graphics display to the Presentation Manager. This section shows a
short example of graphics output.

The Current Position Approach
to Graphics

As discussed earlier in this chapter, the Presentation Manager main-
tains a pointer to the currently active screen location. The Presentation
Manager graphics system uses this current location to streamline many
of its graphics services, such as those that draw lines and boxes. To
understand how this works, first consider the more traditional ap-
proach to the basic graphics functions.

In a traditional graphics system the function that draws a line is
defined something like this:

drawline(startX, startY, endX, endY)

Here the starting and ending points of the line are both specified explic-
itly in the function parameters. In the traditional method all graphics
functions specify both the beginning and ending points of the object to
be drawn (where applicable, of course). However, the Presentation
Manager uses a fundamentally different approach based on the current
position. In this method the call to the line-drawing function specifies
only the endpoint of the line. The start of the line is the current posi-
tion. That is, the line-drawing service found in the Presentation Man-
ager draws a line from the current position to the specified endpoint.
The same principle applies to the service that draws a box. You simply
call the box-drawing function with the coordinates of the corner oppo-
site the current position, and the box is drawn using the current posi-
tion and the specified opposite corner.

The reason that the Presentation Manager uses the current posi-
tion approach is speed. Because each parameter in a call takes time to
push onto the stack, the fewer the parameters, the faster the call is
executed. The most effective graphics are those that can be displayed
very quickly. In many drawing situations the next graphics event begins
where the last one left off, making the display of graphic information

Some Presentation Manager Examples 313

very fast. Of course the Presentation Manager contains a service that
allows you to set the current position explicitly should the need arise.

The screen coordinates for the graphics subsystem are the same as
for the text routines: The lower left corner is 0,0. The maximum x and
y values are determined by the size of the window and, ultimately, by
the resolution of the screen.

Drawing Lines and Boxes

The Presentation Manager supplies several graphics functions, but this
section explores only three of the most common: GpiSetPel, GpiLine,
and GpiBox. These services draw a point, line, and box, respectively.
Their prototypes are

long GpiSetPel(void far *p_space, POINTL far *loc);

long GpiLine(void far *p__space, POINTL far *loc);

long GpiBox(void far *p__space, long style, POINTL far *loc,
long horiz__round, long vert_round);

where p__space is the handle of the presentation space being written to.
All functions use the current foreground color to draw the object.

For GpiSetPel the structure pointed to by loc contains the coordi-
nates of the pel that will be written. The current position is unchanged
by this service.

For GpilLine the structure pointed to by loc contains the endpoint of
the desired line. The start of the line is the current position. After the
call to GpilLine, the current position is set to the end of the line speci-
fied by loc.

For GpiBox the structure pointed to by loc is the corner opposite the
current position. A rectangle is drawn through these two corners. The
value of style determines whether the box is outlined, filled, or both.
The valid values, along with their macro names as defined by Microsoft
are shown here. The current position is unchanged by this service.

Macro Name Value Meaning

DRO__FILL 1L Fill the box.
DRO_QUTLINE 2L Qutline the box.
DRO_QUTLINEFILL 3L Fill and outline the box.

Outlining and filling are done in the current drawing color.

314 OS/2 Programming: An Introduction

If any of these functions is called using invalid coordinates, OS/2
returns an error message.

Setting the Current Position

To set the current position explictly use GpiSetCurrentPosition, whose
prototype is

unsigned short GpiSetCurrentPosition(void far *p_space,
POINTL far *loc);

Here p_space is the handle of the presentation space, and the structure
pointed to by loc contains the coordinates of the pel to make the current
position. If you specify an invalid coordinate, the service returns false.

A Short Graphics Demo Program

The following program demonstrates the graphics services just
discussed:

/* This program demonstrates some graphics services. */

#define INCL_WIN
#define INCL_GPI

#include <os2.h>
#include <stddef.h> /% get definition of NULL */

void far * pascal far window func(void far *, unsigned short,
void far *, void far *);

char class[] = "MyClass";

main ()
{
void far *hand ab;
void far *hand_mg;
void far *hand_frame, far *hand client;
QMSG q_mess; -

hand_ab = WinInitialize(NULL);
hand mg = WinCreateMsgQueue(hand_ab, 0);

if(!WinRegisterClass(hand ab, /* anchor block */
class, /* class name */
window_func, /% address of window function */
CS SIZEREDRAW, /* window style =/
o0y /* no storage reserved */
exit(1);

Some Presentation Manager Examples

hand_frame = WinCreateStdWindow (HWND DESKTOP,
WS VISIBLE | FS _SYSMENU |
FS_SIZEBORDER | FS_TITLEBAR |
FS MINMAX, -
(char far *) class,
(char far *) "My Window",
oL,
NULL,
0,
&hand client);

uhile(winﬁetnsg(hand_ab, &q_mess, NULL, O, 0))
NinDispatcthg(hand_ab, &g _mess);

NinDestroyHindou(hand_frame);

WinbestroyMsg@ueue(hand mq);
WinTerminate(hand ab);
3 L)

/% window function =/

void far * pascal far window func(void far *handle,

' - unsigned short mess,
void far *parmi,
void far #*parm2)

void far *p space;
POINTL coords;
char ch;

sWwitch(mess) {
case WM _PAINT:
p_space = WinBeginPaint(handle, NULL, NULL);

GpiSetBackColor(p_space, CLR_RED);
GpiSetBackMix(p_space, BM OVERPAINT);

/* set current position x/

coords.x = 0OL;

coords.y = 0OL;

GpiSetcurrentPosition(p_space, (POINTL far *) &coords);

/* draw two Llines */

coords.x = 100L;

coords.y = 100L;

GpiLine(p space, (POINTL far *) &coords);
coords.x 200L;

coords.y 100L;

GpiLine(p_space, (POINTL far *) Ecoords);

/* draw a filled box */

coords.x = 300L;

coords.y = 200L;

GpiBox(p_space, DRO_FILL, (POINTL far *) &coords, OL, OL]

/% draw a point %/

coerds.x = 20L;

coords.y = 30L;

GpiSetPel(p_space, (POINTL far *) &coords);

WinEndPaint(handle);
break;

315

316 OS5/2 Programming: An Introduction

case WM_ERASEBACKGROUND:
return(TRUE) ;

default:
return WinbefWindowProc(handle, mess, parml, parm2);
T
return 0OL;
X

You might find it interesting to play with the various settings or
change the drawing color.

A QUICK INTRODUCTION
TO MENUS

One of the best features of the Presentation Manager from a pro-
gramming point of view is the ease with which it integrates menus into
a program. Virtually all the work is done for you, including the auto-
matic alignment of the menu items, the integration of the mouse and
keyboard into the selection process, and the cancel-selection process.
The final section of this chapter describes how you add menus to your
Presentation Mangager-compatible programs.

Before you can explore menus, you must understand the concepts
that underlie not only them but also other important Presentation
Manager tools. Toward this end this section begins with a discussion of
resources and the resource compiler.

Resources

One of the most important abstractions supported by the Presentation
Manager is the resource. The Presentation Manager is capable of manag-
ing several resources, including menus, icons, dialog boxes, bit-mapped
graphics images, mouse pointers, and string tables. Although this book
deals only with menus, OS/2 handles all resources in basically the same
way.

Essentially a resource is an object that contains information used by
the Presentation Manager. This object is more or less a “black box” as
far as your program is concerned because the object is added to your
program after the program has been compiled (or assembled) and
nothing in it can be directly accessed by your program. Instead, the
Presentation Manager acts as a link between your program and the
resource.

- Some Presentation Manager Examples 317

The resources used by your program are defined in a resource source
file (sometimes called a script file). By convention all resource source
files use the .RC extension. The resource source file should have the
same file name as the program that uses it. Inside the resource source
file you define the resources your program needs. This file recognizes
various commands that are used to define resources. (Menu commands
will be discussed shortly.) This file is then compiled into a .RES file by
the resource compiler. (The resource compiler supplied by Microsoft is
called RC.EXE.) The .RES file is added to your program’s .EXE file,
once again by using the resource compiler. The output of this final step
is an .EXE file that contains both your program and its resources.
Microsoft’s resource compiler allows you to translate the resource
source file and add the ouput to your program’s .EXE file in one step if
desired. Using this approach the compilation sequence is

1. Compile your program.
2. Link your program.

3. Use the resource compiler to add resources to your program.

In practical terms you can use the following batch file to compile, link,
and add resources to your programs. It assumes that your program, its
definition, and its resource files have the same file name and the con-
ventional extensions.

CL -c -G2sw %1.c
LINK %1,,, o0s2, %1.def;
RC %1

Defining Menus in the
Resource File

The keyword that signals a menu definition within a resource file is
MENU. The MENU statement takes the general form

MENU menu_id {
SUBMENU “entry1”, entryl_id {
MENUITEM “item1”, item1__id
MENUITEM “item2”, item2__id

318 OS/2 Programming: An Introduction

SUBMENU “entry2”, entry2—id {
MENUITEM “item1”, item1__id
MENUITEM “item2”, item2_id

SUBMENU “entryN”, entryN__id {
MENUITEM “item1”, item1__id
MENUITEM “item2”, item2__id

}

Here the uppercase terms are keywords and the lowercase words
are filled in by you.

The entire menu is started with the MENU command, and the
menu is identified by the value of menu__id, which must be an integer.
This value is its resource identifier, which will be needed by the Presenta-
tion Manager. Each menu option is specified by using the SUBMENU
keyword. The string specified between the quotes will be displayed on
the menu bar, which will appear just below the title bar in the window.
The number following each SUBMENU string is its identifier. Each
menu item under a submenu is given a label and associated with an
integer using the MENUITEM command. Although technically these
integers do not have to be unique, most of the time you will want them
to be. The numbers associated with the menu items are sent to your
window function. To identify a unique selection, the numbers asso-
ciated with the items must all be different.

For example, the following is an actual resource source file for a
simple, two-entry menu:

MENU 1 {

SUBMENU "Advance", 1 {
MENUITEM "up", 1
MENUITEM "down", 2

b

SUBMENU "Retreat", 2 {
MENUITEM "up", 3
MENUITEM "down", 4

b

Some Presentation Manager Examples 319

In general the numbers associated with the various menu items should
be unique because they are used to identify the item selected by the
user.

Adding the Menu to the Window

To display a menu resource in a window you must add it to the window
by using the WinCreateStdWindow service as follows:

1. Add the FS_MENU (4L) to the style (second) parameter. This lets
(05/2 know that you will be using a menu resource.

2. Pass the Presentation Manager the identifier of the menu by using
the resources parameter. For example, this sample call uses re-
source number 1, which implies menu number 1:

hand frame = WinCreateStdWindow(HWND DESKTOP,
WS VISIBLE | FS SYSMENU |
FS SIZEBORDER | FS TITLEBAR |
FS_VERTSCROLL| FS_WORZSCROLL |
FS_MINMAX | FS MENU, /* includes a menu =/
(char far *) class,
(char far *) "My Window",
oL, /* resource modules */
NULL,
1, /* resource identifier =*/
ghand client); /* client handle */

When the window is created, a menu bar will appear beneath the title
bar. In this example, the menu bar will contain the selections
“Advance” and “Retreat.”

Keep one thing firmly in mind: A resource file can contain re-
sources for several different windows. However, all the resources for a
specific window must use the same resource identifier.

Receiving Menu Messages

Each time you make a menu selection the Presentation Manager passes
to your program a WM_COMMAND message. The low-order word
of the first parameter contains the identifier associated with the item
selected. For present purposes, you can ignore the other information
passed with the WM_COMMAND message.

320 OS/2 Programming: An Introduction

A Sample Menu

To see a menu in action create this resource file:

MENU 1 {

SUBMENU "Test", 1
MENUITEM "Option 1", 1
MENUITEM "Option 2", 2

}

SUBMENU "sample", 2 {
MENUITEM "Option 1", 3
MENUITEM "Option 2", &

T

X

Next enter this program:

/% A menu example. #/

#define INCL_WIN
#define INCL_GPI

#include <os2.h>
#include <stddef.h> /% get definition of NULL =*/

void far * pascal far window func(void far *, unsigned short,
void far *, void far *);

char class[]l = "MyClass";

main()
{
void far *hand ab;
void far *hand_mq;
void far *hand frame, far *hand client;
aMs6 q_mess; -
hand ab = WinInitialize(NULL);

hand_mg = HincreateMngueue(hand_ab, a3;

if(!WinRegisterClass(hand ab, /* anchor block =*/
(char far %) class, /* class name =*/

window func, /* address of window function
CS_SIZEREDRAW, /* window style =*/
0)) /* no storage reserved */

exit(1);

hand frame = WinCreateStdWindow(HWND DESKTOP,
WS VISIBLE | FS SYSMENU |
FS_SIZEBORDER | FS_TITLEBAR |
FS VERTSCROLL| FS HORZSCROLL |
FSTMINMAX | FS MENU,
(char far *) cTass,
Cchar far *) "My Window”,
oL, /* resource modules */
NULL,
1,
Bhand client); /% client handle =/

*/

Some Presentation Manager Examples

while{(WinGethsg(hand ab, &q_mess; NULL, O, D))
WinDispatchMsg(hand_ab, &g mess);

WindestroyWindow(hand_frame);

WinDestroyMsgQueue(hand mq);
. WinTerminate(hand ab); —

void far % pascal far window func{void far *handle,
- unsigned short mess,
void far *parmi,
void far *parm2)

void far *p space;
POINTL coords;
static char ch='\0";

switch(mess) {
case WM_CREATE:
/* Perform any necessary initializations here. */

break;

case WM_COMMAND:
p_space = WinGetPS(handle);

/% use overwrite mode */
GpiSetBackMix(p_space, BM_OVERPAINT);
/% see what item selected */
switch(LOUSHORT(parm1)) {
case 1:
coords.x = 20L;
coords.y = 40L;
GpiCharStringAt(p_space, (POINTL far *) &coords,
8L, :
(char far *) "test one");

break;
case 2:
coords.x = 110L;
coords.y = &40L;
GpiCharstringAt{(p_space, (POINTL far *) &cocords,
8L,
(char far *) "test two');
break;
case 3:

coords.x = 20L;

coords.y = 40L;

GpiCharStringAt(p_space, (POINTL far *) &coords,
10L, i
(char far *) "sample one™);

break;

case 4:

coords.x = 110L;

coords.y = 40L;

GpiCharStringAt(p_space, (POINTL far *) &coords,
10L,
(char far *) "sample two");

break;

¥
HinReLeasePS(p_space);
break;

321

322 O8S/2 Programming: An Introduction

case WM ERASEBACKGROUND:

/* By returning TRUE, the PM automatically erases
the old window each time the window is resized
or moved. Without this, your program must
manually handle erasing the window when it changes
size or location.

*/

return(TRUE) ;

default:
/* ALL messages not handled by the window func,
must be passed along to the PM for default
processing.

*/

return WinpefWindowProc(handle, mess, parmi, parm2);
¥
return OL;

¥

As you can see when you try this program, each menu selection
produces a unique response from the program.

CONCLUSION

You have only scratched the surface of the Presentation Manager pro-
gramming environment. As you can see, writing Presentation Man-
ager-compatible applications is different from creating a traditional
program. In many ways it is harder. In the years to come, however,
there is little doubt that the graphic interface supported by the Presen-
tation Manager will be pervasive, and whatever effort you expend in
learning it now will be returned to you several times in the future.

APPENDIXES

80286's MEMORY
MODELS

The 80286 supports six different memory models for which a program
can be compiled or assembled. A memory model is essentially the con-
ceptual view your program has of memory. Each model treats the
memory of the computer differently and governs the size of the code,
the data, or both. The model used has a profound effect on your pro-
gram'’s speed of execution and the way it accesses the system resources,
especially memory.

Throughout this discussion keep one fact firmly in mind: The var-
ious memory models are determined solely by the way your program
uses the processor’s segment registers. They are not different CPU
modes.

The six models are called tiny, small, medium, compact, large, and
huge. Let’s look at how they differ.

TINY MODEL

In a program that uses the tiny model all segment registers are set to
the same value and remain more or less fixed throughout the pro-
gram’s lifetime. All addressing is done by using the 16-bit offset. This
means that the code, data, and stack must all be within the same 64K
segment. This method of compilation produces the smallest, fastest
code. The tiny model produces the fastest run times.

325

326 (OS/2 Programming: An Introduction

SMALL MODEL

In a program compiled for the small model all segment registers are set
to values that stay more or less fixed throughout the lifetime of the
program. All addressing is done by using the 16-bit offset. However, the
code segment is separate from the data, stack, and extra segments,
which are in their own segment. This means that the total size of a
program compiled this way is 128K split between code and data. The
addressing time is the same as for the tiny model, but the program can
be twice as big. Many of your programs will be of this model. The
small model produces run times as fast as those of the tiny model.

MEDIUM MODEL

The medium model is for large programs where the code exceeds the
one-segment restriction of the small model. Here the code can use
multiple segments and requires 32-bit pointers, but the code, data, and
extra segments are in their own segment and use 16-bit addresses.
This is good for large programs that use little data. Your programs will
run more slowly as far as function calls are concerned, but references
to data will be as fast as in the small model.

COMPACT MODEL

The complement of the medium model is the compact model. In this
version program code is restricted to one segment but data can occupy
several segments. This means that all accesses to data require 32-bit
addresses but the code uses 16-bit addresses. This is good for programs
that require large amounts of data but little code. Such a program will
run as fast as the small model except when referencing data, which will
be slower.

LARGE MODEL

The large model allows both code and data to use multiple segments.
However, the largest single item of data, such as an array, is limited to
64K. Use this model when you have large code and data requirements.
It is slower than any of the preceding versions.

80286's Memory Models 327

HUGE MODEL

The huge model is the same as the large model with the exception that
individual data items may exceed 64K. This further degrades run time.

OVERRIDING A MEMORY
MODEL IN C

During the foregoing discussion you may have been thinking how
unfortunate it is that even a single reference to data in another seg-
ment would require you to use the compact rather than small model,
thus slowing the execution of the entire program even though only an
isolated part of it actually needs a 32-bit pointer. In general this sort of
situation can present itself in a variety of ways. For example, it is
necessary to use 32-bit addressing to access an API service routine.
The solution to this and other related problems is the segment override
type modifiers, which are enhancements provided with most 80286-
based C compilers. They are

near far

These modifiers can be applied only to pointers or functions. When
they are applied to pointers, they affect the way data is accessed. When
applied to functions, they affect the way you call and return from the
function.

These modifiers follow the base type and precede the variable
name. For example, this declares a far pointer called f__pointer:

char far *f_pointer;

Let’s look at these modifiers now.

far

By far the most common model override is the far pointer. It is very
common to want to access some region of memory that is (or may be)
outside the program’s data segment, such as a data segment returned
by an API service. However, if the program is compiled for one of the

328 (OS/2 Programming: An Introduction

large data models, all accesses to data—not just the one outside the
data segment—become very slow. The solution to this problem is
explicitly to declare far pointers to the memory that is outside the cur-
rent data segment. In this way only references to objects actually far
away will incur the additional overhead.

The use of far as a function modifier allows a small model program
to call routines outside its code segment, such as APl services. In such
cases the use of far ensures that the proper calling and returning
sequences are used.

near

A near pointer is a 16-bit offset that uses the value of the appropriate
segment to determine the actual memory location. The near modifier
forces C to treat the pointer as a 16-bit offset to the segment contained
in the DS register. You use a near pointer when you have compiled a
program using either the medium, large, or huge memory model and
wish to reference data within the program’s data segment.

Using near on a function causes that function to be treated as if it
were compiled using the small code model. When a function is compiled
with either the tiny, small, or compact model, all calls to the function
place a 16-bit return address on the stack. If a function is compiled
with the large code model, a 32-bit address is pushed onto the stack.
Therefore, in programs that are compiled for the large code model, a
highly recursive function should be declared as near to conserve stack
space and speed execution time.

FUNCTION PROTOTYPES

In C a function that returns a value other than int must be declared
prior to its use so that the compiler can generate the proper return
codes. In ANSI standard C you can take this idea one step further by
also declaring the number and types of the function’s arguments. This
expanded definition is called a function protofype. Function prototypes are
not part of the original UNIX C but were added by the ANSI standard-
ization committee. They enable C to provide stronger type checking,
somewhat similar to that provided by languages such as Pascal. Func-
tion prototypes also provide a convenient means of documenting the
calling syntax of a function.

In a strongly typed language the compiler issues error messages if
functions are called with arguments that cause illegal type conversions
or with a different number of arguments. Although C is designed to
be very forgiving, some type conversions are simply not allowed. For
example, it is an error to attempt to convert a pointer into a float.
Using function prototypes will catch and prevent this sort of error.

A function prototype takes the general form

type function_name(arg—typel, arg_type2,...,arg_typeN);

where type is the type of value returned by the function and arg__type is
the type of each argument.

329

330 OS/2 Programming: An Introduction

For example, this program will produce an error message because
there is an attempt to call func() with a pointer instead of the float
required:

/* This program uses function prototypes to
enforce strong type checking in the calls
to func().

The program will not compile because of the
mismatch between the type of the arguments
specified in the function's prototype and

the type of arguments used to call the function.

*/
float func(int, float); /* prototype */

main ()
{
int %, *y;

x = 10; y = 10;
func(x, y); /* type mismatch %/
b3

float func(int x, float y)
{

printf("%f", y/(float)x);

Not only does the use of function prototypes help you trap bugs
before they occur, but also they help verify that your program is work-
ing correctly by not allowing functions to be called with mismatched
arguments or an incorrect number of arguments. It is generally a good
idea to use prototyping in larger programs or in situations in which
several programmers are working on the same project.

CLASSIC VERSUS MODERN
PARAMETER DECLARATIONS

It is possible to declare parameters to a function in two different
ways: the traditional (sometimes called classic) or the modern. The
traditional method is used by the earlier C compilers, while the mod-
ern form is defined by the ANSI standard. Let’s look at both.

In the traditional form only a function parameter’s names are
placed between the parentheses following the function’s name. Before
the function’s opening curly brace, the parameters are declared using a

Function Prototypes 331

syntax identical to the variable declaration. For example, this code
declares a function with two variables, a and b, of types integer and
real, respectively.

int f1(a, b)
int a;

float b;

{

Although there is nothing formally wrong with the traditional method,
the newer ANSI standard offers an alternative approach based on the
prototype syntax.

In the modern approach both the type and the name of the variable
are enclosed in parentheses and placed in the argument list that follows
the function’s name. That is, the function parameter declaration takes
a similar form to the prototype declaration except that the name of the
parameter must be included. The modern declaration method takes the
general form

type functionﬁname(type parml, type parm2,..., type parmN)

{

body of function

where type is the type of the parameter that follows and parm is the
name of the parameter.

For example, the function func() from the prototype example of the
previous section is written like this using the modern parameter decla-
ration method:

float f1(int a, float b}
{

There is a very fine technical difference between the ways the com-
piler handles each form, but for most situations the difference is
academic.

C

A REVIEW OF C

This appendix aids the inexperienced C programmer by clarifying
aspects of the language. It is a reference guide and not a tutorial.

THE ORIGINS OF C

The C language was invented and first implemented by Dennis Ritchie
on a DEC PDP-11 using the UNIX operating system. C is the result of
a process that started with Martin Richards’ development of BCPL,
which is still used primarily in Europe. BCPL prompted Ken Thompson
to invent a language called B, which led to the development of C.

For many years, the de facto standard for C was the one supplied
with the UNIX Version 5 operating system and described in The C Pro-
gramming Language by Brian Kernighan and Dennis Ritchie (Englewood
Cliffs, N.J.: Prentice-Hall, 1978). As the popularity of microcomputers
increased, a great number of C implementations were created. Most of
these implementations were highly compatible with each other on the
source-code level. However, because no standard existed, there were
some discrepancies.

To correct this situation, a committee established in the summer of
1983 began work on the creation of an ANSI standard that would
finally define the C language. As of this writing, the proposed standard
is almost complete and its adoption by ANSI is expected soon.

333

334 QS/2 Programming: An Introduction

C AS A STRUCTURED
LANGUAGE

C is commonly considered to be a structured language with some sim-
ilarities to ALGOL and Pascal. Although the term block-structured langunge
does not strictly apply to C in an academic sense, C is informally part
of that language group. The distinguishing feature of a block-structured
language is compartmentalization of code and data. This means the language
can separate and hide from the rest of the program all information and
instructions necessary to perform a specific task. Compartmentaliza-
tion is generally achieved by subroutines with local variables, which are
temporary. This makes it possible to write subroutines so that the
events occurring in them have no effect on other parts of the program.
Excessive use of global variables (variables known throughout the
entire program) may allow bugs to creep into a program by allowing
unwanted side effects. In C all subroutines are discrete functions.

Functions are the building blocks of C in which all program activity
occurs. They allow specific tasks in a program to be defined and coded
separately. After debugging a function that uses only local variables,
you can rely on the function to work properly in various situations
without creating side effects in other parts of the program. All vari-
ables declared in that particular function will be known only to that
function.

Using blocks of code also creates program structure in C. A block of
code is a logically connected group of program statements that can be
treated as a unit. It is created by placing lines of code between opening
and closing curly braces, as shown here:

if(x<10) {
printf("Invalid input = retry");
done = 0;

¥

In this example, the two statements after the if (between curly braces)
are both executed if x is less than 10. These two statements and the
braces represent a block of code. They are linked together: one of the
statements cannot execute without the other also executing. In C every
statement can be either a single statement or a block of statements.
The use of code blocks creates readable programs with logic that is
easy to follow.

A Review of C 335

C is a programmer’s language. Unlike most high-level computer lan-
guages, C imposes few restrictions on what you can do with it. By
using C a programmer can avoid using assembly code for all but the
most demanding situations. In fact one motive for the inventing of C
was to provide an alternative to assembly language programming.

Assembly language uses a symbolic representation of the actual
binary code that the computer directly executes. Each assembly lan-
guage operation is a single operation for the computer to perform.
Although assembly language gives programmers the potential for
accomplishing tasks with maximum flexibility and efficiency, it is
notoriously difficult to work with when developing and debugging a
program. Furthermore, since assembly language is unstructured by its
nature, the final program tends to be “spaghetti code”—a tangle of
jumps, calls, and indexes. This makes assembly language programs dif-
ficult to read, enhance, and maintain.

C was initially used for systems programming. A systems program is
part of a large class of programs that form a portion of the operating
system of the computer or its support utilities. For example, the follow-
ing are commonly called systems programs:

s Operating systems
s Interpreters

= Editors

= Assemblers

s Compilers

s Data base managers

As C grew in popularity, many programmers began to use C to
program all tasks because of its portability and efficiency. Since there
are C compilers for virtually all computers, it is easy to compile and
run code written for one machine on another machine with few or no
changes. This portability saves both time and money. C compilers also
tend to produce tight, fast object code —faster and smaller than most
BASIC compilers, for example.

Perhaps the real reason that C is used in all types of programming
tasks is because programmers like it. C has the speed of assembler and
the extensibility of FORTH, with few of the restrictions of Pascal. A C
programmer can create and maintain a unique library of functions that

336 OS/2 Programming: An Introduction

have been tailored to his or her own personality. Because C allows—
indeed encourages —separate compilation, large projects are easy to
manage.

A REVIEW OF C

As defined by the proposed ANSI standard, the 32 keywords shown in
Table C-1, combined with the formal C syntax, form the C program-
ming language.

In addition to these keywords, several compilers designed for use on
the 8086 family of processors or multilanguage programming envir-
onments have added the following to allow greater control over the way
memory and other system resources are used:

—cs —ds —es T
cdecl far huge interrupt
near pascal

All C keywords are in lowercase letters. Uppercase or lowercase
makes a difference in C; that is, else is a keyword, ELSE is not.

VARIABLES — TYPES
AND DECLARATION

C has five built-in data types, as shown in Table C-2. With the excep-
tion of void, all these data types can be modified through the use of the
C type modifiers:

signed
unsigned
short
long

Variable names are strings of letters from 1 to 32 characters in
length. The ANSI standard states that at least six characters will be
significant. For clarity the underscore may also be used as part of the
variable name (for example, first__time). Remember that in C upper-
case and lowercase are different—test and TEST are two different
variables.

A Review of C 337

Table C-1. List of Keywords

auto double int struct
break else long switch
case enum " register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Table C-2. Data Types and C Keyword Equivalents

Data Type C Keyword Equivalent
character char

integer int

floating point float

double floating point double

value-less o void

All variables must be declared prior to use. The general form of the
declaration is

type variable_name;

For example, to declare x to be a float, y to be an integer, and ch to be a
character, type

float x;
int y;
char ch;

In addition to the built-in types, you can create combinations of
built-in types by using struct and union. You can also create new
names for variable types by using typedef.

338 O5/2 Programming: An Introduction

A structure is a collection of variables grouped and referenced under
one name. The general form of a structure declaration is

struct struct_name {
element 1;
element 2;

element N;
} struct__variable;

For example, the following structure has two elements: name, a char-
acter array, and balance, a floating-point number: ‘

struct client {
char name[801;
float balance;
¥; {

Use the dot operator to reference individual structure elements if .
the structure is global or declared in the function referencing it. Use
the arrow operator in all other cases.

Two or more variables sharing the same memory define a union.
The general form for a union is

union union__name {
element 1;
element 2;

element N;
} union_variable;

The elements of a union overlie each other. For example, the following
declares a union t that looks like Figure C-1 in memory:

union tom {
char ch;
int x;

> ot

A Review of C 339

x

byte 1 byte 2

ch

Figure C-1. The union t in memory

Reference the individual variables that comprise the union by using the
dot operator. Use the arrow operator with pointers to unions.

Another type of variable that can be created, called an enumeration, is
a list of objects or values (depending on how you interpret it). An enu-
meration type is a specification of the list of objects that belong to the
enumeration. When you declare a variable to be of an enumeration
type, its values can be only those defined by the enumeration.

To create an enumeration, use the keyword enum. For example, the
following short program defines an enumeration of cities called cities,
and the variable c of type cities. Finally, the program assigns ¢ the value
“Houston.”

enum cities {Houston, Austin, Amarillo ;
enum cities ¢

main ()
{

c=Houston;
3

The general form of an enumeration type is
enum name { list of values };

The Storage-Class Type Modifiers

Use the type modifiers extern, auto, register, const, volatile, and static
to alter the way C creates storage for the variables that follow.

340 OS/2 Programming: An Introduction

If you place the extern modifier before a variable name, the com-
piler knows that the variable has been declared elsewhere. The extern
modifier is most commonly used when two or more files share the
same global variables.

An auto variable is created on entry into a block and is destroyed on
exit. For example, all variables defined inside a function are auto by
default. Auto variables can be valuable in specialized or dedicated sys-
tems where RAM is in short supply.

You can use the register modifier only on local integer or character
variables. This modifier causes the compiler to attempt to keep that
value in a register of the CPU instead of placing it in memory, which
makes all references to that variable extremely fast. For example, the
following function uses a register loop control:

f10
{

register int t;

for(t=0;t<10000;++t) {

3
¥

Variables of type const cannot be changed during your program’s
execution. The compiler is free to place variables of this type into
ROM. For example, the following line

const int a;

creates an integer called a that cannot be modified by your program,
but can be used in other types of expressions. A const variable receives
its value either from an explicit initialization or by some hardware-
dependent means. The inclusion of const type variables aids in the devel-
opment of applications for ROM.

The volatile modifier tells the compiler that a variable’s value can be
changed in ways not explicitly specified by the program. For example, a
global variable’s address can be passed to the clock routine of the oper-
ating system and used to hold the real time of the system. In this situa-
tion the contents of the variable are altered without any explicit

A Review of C 341

assignment statements in the program. To achieve higher performance
some C compilers automatically optimize certain expressions by assum-
ing that the contents of a variable are unchanged inside that expres-
sion. The volatile modifier prevents this optimization in the rare
instances where this is not true.

You can add the static modifier to any of the previously mentioned
variables. The static modifier instructs the C compiler to keep a local
variable in existence during the lifetime of the program instead of creat-
ing and destroying it. Remember that the values of local variables are
discarded when a function finishes and returns. By using static you can
maintain their values between function calls.

Addressing Type Modifiers

Several C compilers designed for the 8086 processor family have added
the following modifiers that can be applied to pointers so that you can
explicitly control, and override, the default addressing mode used to
compile your program:

_cs —ds _es __ss
far near huge

Arrays
You can declare arrays on any of the previously mentioned data types.

For example, to declare an integer array x of 100 elements, write

int x[100]1;

This creates an array that is 100 elements long; the first element is 0
and the last is 99. For example, the following loop loads the numbers 0
through 99 into array x:

for(t=0;t<100; t++) xCtl=t;

You declare multidimensional arrays by placing the additional dimen-
sions inside additional brackets. For example, to declare a 10 x 20
integer array, you write

342 QOS5/2 Programming: An Introduction
int xC101C201;

OPERATORS

C has a rich set of operators that can be divided into the following
classes: arithmetic, velational and logical, bitwise, pointer, assignment, and
miscellaneous.

Arithmetic Operators

C has the seven arithmetic operators shown in Table C-3.
The precedence of these operators is

Highest ++ —— —(unary minus)
* I %
Lowest Hre—s

Operators on the same precedence level are evaluated left to right.

Relational and Logical Operators

Relational and logical operators are used to produce TRUE/FALSE
results and are often used together. In C any nonzero number evalu-
ates TRUE; however, a C relational or logical expression produces 1 for
TRUE and 0 for FALSE. Table C-4 shows the relational and logical
operators.

The precedence of these operators is

Highest !
>o=]Il=

&&

Lowest i

For example, the following expression evaluates TRUE:

(100<200) && 10

A Review of C 343

Table C-3. Arithmetic Operators

Operator Action

Subtraction, unary minus

+ Addition

* Multiplication

{ Division

% Modulo division
= Decrement

- Increment

Table C-4. Relational and Logical Operators

Relational Operators

Operator Meaning

5 Greater than

>= Greater than or equal
< Less than

<= Less than or equal
== Equal

= Not equal

Logical Operators

Operator Meaning
&& AND

i OR

! NOT

Bitwise Operators

Unlike most other programming languages, C provides bitwise opera-
tors that manipulate the actual bits inside a variable. The bitwise opera-
tors can be used only on integers or characters. They are shown in
Table C-5.

344 0OS/2 Programming: An Introduction

Table C-5. Bitwise Operators

Operator Meaning

& AND

! OR

” XOR

~ One’s complement
>> Right shift

<< Left shift

The truth tables for AND, OR, and XOR are

=

EEEEEE
= =] =

—

=lo-—

>

=S
[l (=) =4

1
1
0

These rules are applied to each bit in a byte when the bitwise AND,
OR, and XOR operations are performed. For example,

0100 1101
&0011 1011

0000 1001
0100 1101
10011 1011
0111 1111

0100 1101
~0011 1011

0111 0110

In a program, you use the &, |, and * like any other operators, as shown
here:

A Review of C 345

main()
{
char x,y,z;

x = 1; vy = 2; z = &;
-x = x & y; [/* x now equals zero */

Yy = x | z; /* y now equals 4 =/

The one’s complement operator (~) inverts all the bits in a byte. For
example, if the character variable ch has the bit pattern

0011 1001

then
ch="ch;

places the bit pattern

1100 0110
into ch.

The right shift and left shift operators move all bits in a byte or a
word right or left by some specified number of bits. As bits are shifted,
0s are brought in. The number on the right side of the shift operator
specifies the number of positions to shift. The general forms of the

shift operators are

variable >> number of bit positions
variable << number of bit positions

For example, given the bit pattern
0011 1101
a shift right yields

0001 1110

346 OS/2 Programming: An Introduction

while a single shift left produces
0111 1010

A shift right is effectively a division by 2 and a shift left is a multiplica-
tion by 2. The following code fragment first multiplies and then divides
the value in x by 2:

int x;
x=10;
x=x<<1;

x=x>>1;

Because of the way negative numbers are represented inside the
machine, you must be careful when you try to use a shift for multipli-
cation or division. Moving a 1 into the most significant bit position
makes the computer think that the number is a negative number.

Note: You use the bitwise operators to modify the value of a variable.
They differ from the logical and relational operators, which produce a
TRUE or FALSE result.

The precedence of the bitwise operators is

Highest ~
i L
&
Fal
Lowest !

Pointer Operators

Pointer operators are important in C: They not only allow strings and
arrays to be passed to functions, but also allow C functions to modify
their calling arguments. The two pointer operators are & and *.
(Unfortunately, these operators are the same as the bitwise AND and
multiply symbols, which are completely unrelated to them.)

A Review of C 347

The & operator returns the address of the variable it precedes. For
example, if the integer x is located at memory address 1000,

y = &x;

places the value 1000 into y. The & can be read as “the address of.” For
example, the previous statement could be read as “Place the address of
X into y.”

The * operator uses the value of the variable it precedes as the
address of the information in memory. For example,

y = &x;

places the value 100 into x. The * can be read as “at address.” In this
example it could be read as, “Place the value 100 at address y.” You can
also use the * operator on the right-hand side of an assignment. For
example,

y = &x;
*y = 100;
z = *y/10;

places the value of 10 into z.

These operators are called pointer operators because they are
designed to work on pointer variables. A pointer variable holds the
address of another variable; in essence, it “points” to that variable as
shown in Figure C-2.

Pointers of Type void

A pointer of type void is a generic pointer and can point to any type of
object. This implies that you can assign a pointer of any type to point-
ers of type void (and vice versa) if you use the appropriate type casts.
To declare a void pointer you use a declaration similar to the following:

void *pr

348 OS/2 Programming: An Introduction

p X
p=&x; 2000 =
*p=10; 2000 10
x=+p+10; 2000 20
Figure C-2. Pointer operations for character pointer p and integer x, with

x at memory location 2000

The void pointer is particularly useful when manipulating various types
of pointers with a single routine.

Assignment Operators

The assignment operator in C is the single equal sign. However, C
allows a convenient “shorthand” for assignments of the general type

variable1 = variablel operator expression;

For example:

X
Y

x+10;
ylz;

Assignments of this type can be shortened to the general form
variable1l operator = expression;

In the case of the two examples, they can be shortened to

x += 10;
y /= z;

A Review of C 349

Experienced C programmers often use the shorthand notation, so
you should become used to it.

The ? Operator

The ? operator is a ternary operator (that is, it takes three operands). It
is used to replace if statements of the general type

if expression1 then x=expression2
else x=expression3

The general form of the ? operator is
variable = expressionl ? expression2 : expression3;

If expression? is TRUE, the value of expression2 is assigned to wariable; other-
wise, variable is assigned the value of expression3. For example,

x = (y<10) ? 20 : 40;

assigns to x the value of 20 if y is less than 10 or the value of 40 if y is
not.

The ? operator exists because a C compiler can produce very effi-
cient code for this statement—much faster than the equivalent if/else
statement.

Miscellaneous Operators

The . (dot) and — (arrow) operators reference individual elements of
structures and unions. Use the dot operator on the structure or union
itself. Use the arrow operator when only a pointer to a structure or a
union is available. For example, consider the following global structure:

struct date time {
char dateC161;
int time;

) tm;

To assign the value “3/12/88” to element date of structure tm, write

350 OS5/2 Programming: An Introduction

strepy(tm.date, "3/12/88");

You use the , (comma) operator mostly in the for statement. It
causes a sequence of operations to be performed. When you use it on
the right side of an assignment statement, the value of the entire
expression is the value of the last expression of the comma-separated
list. For example, consider the following:

y=10;

x = (y=y=5,25/y);

After execution, x has the value 5 because the original value of y (10) is
reduced by 5, and then 25 is divided by that value, yielding a result of 5.

Although sizeof is also considered a keyword, it is a compile-time
operator used to determine the size of a data type in bytes, including
user-defined structures and unions. For example,

int x;

printf("%d", sizeof(x));

prints the number 2 for many compilers.

Parentheses are operators that increase the precedence of the oper-
ations inside them. Square brackets perform array indexing.

A casl is a special operator that forces the conversion of one data
type into another. The general form is

(type) variable

For example, to use the integer count in a call to sqrt(), which is the
square root routine in C’s standard library and requires a floating-point
parameter, a cast forces count to be treated as type float:

float y;
int count;

count = 10;

y = sqrt((float)count);

A Review of C 351

Figure C-3 lists the precedence of all C operators. Note that all
operators —except the unary operators and ?—associate from left to
right. The unary operators (*, &, —, and ?) associate from right to left.

FUNCTIONS

A C program is a collection of one or more user-defined functions.
One of the functions must be main() because execution begins at this
function. Historically, main() is the first function in a program; how-
ever, it could go anywhere.

The general form of a C function is

type function__name(parameter list)-

{

body of function

Highest () —.
I~ 4+ — — (type) * & sizeof
* [9%
+ i
< >

&&

i

7

= 4= —= »= [= Y= >>= {I= &= ==
Lowest ,

Figure C-3. Precedence of C operators

352 O5/2 Programming: An Introduction

If the function has no parameters, no parameter declaration is needed.
The type declaration is optional. If no explicit type declaration is pres-
ent, the function defaults to an integer. All functions terminate and
return to the calling procedure automatically when the last brace is
encountered. You can force a return before that by using the return
statement.

All functions— except those declared as void—return a value. The
type of the return value must match the type declaration of the func-
tion. If no explicit type declaration has been made, the return value is
defaulted to integer. If a return statement is part of the function, the
value of the function is the value in the return statement. If no return
is present, the function returns an unknown value. For example,

10
{
int x;

x = 100;

return{x/10);
5

returns the value 10, whereas

f20)
{
int x;
x = 100;
= x/10;
¥

returns a random value because no explicit return statement is
encountered.

If a function is going to return a value other than an integer, its
type must reflect this fact. It is also necessary to declare the function
prior to any reference to it by another piece of code. This can best be
accomplished by making a function declaration in the global definition
area of the program. The following example shows how the function
fn() is declared to return a floating-point value:

float fn();

main()

A Review of C 353

printf("%f", fn());

>

float fn()
{

return 12.23;
¥

Because all functions, except those declared as void, have values,

they can be used in any arithmetic statement. For example, beginning C
programmers tend to write code like this:

sqrtly);

x
1]

N
1]

sin(x);

whereas a more experienced programmer would write:

z = sin(sqrt(y));

Remember that the program must be executed to determine the
value of a function. This means that the following code reads key-
strokes from the keyboard until a U is pressed:

while((ch=getche())!="u"') ;

This code works because getche() must be executed to determine its
value, which is the character typed at the keyboard.

The Scope and Lifetime of Variables

C has two general classes of variables: global and local. A global vari-
able is available for use by all functions in the program, while a local
variable is known and used only by the function in which it was
declared. In some C literature global variables are called external variables
and local variables are called dynamic or automatic variables. This appendix
uses the terms global and local because they are more commonplace.
A global variable must be declared outside all functions, including
the main() function. Global variables are usually placed at the top of

354 S5/2 Programming: An Introduction

the file before main(), because this makes the program easier to read
and because a variable must be declared before it is used. A local vari-
able is declared inside a function after the function’s opening brace. For
example, the following program declares one global variable, x, and two
local variables, x and y:

int x;
main()
G

int y;

y = get_value();

x = 100;
printf("%d %d", x, x*y);
b2
f10
{
int x;
scanf("%d", &x);
return x;
>

This program multiplies the number entered from the keyboard by
100. Note that the local variable x in £1() has no relationship to the
global variable x, because local variables that have the same name as
global variables always take precedence over the global ones.

Global variables exist during the entire program. Local variables are
created when the function is entered and are destroyed when the func-
tion is exited. This means that local variables do not keep their values
between function calls. However, you can use the static modifier to
preserve values between calls.

The formal parameters to a function are also local variables, and,
except for receiving the value of the calling arguments, they behave and
can be used like any other local variable.

The main() Function

All C programs must have a main() function. When execution begins,
main() is the first function called. You must not have more than one
function called main(). When main() terminates, the program is over
and control passes back to the operating system.

A Review of C 355

The only parameters that main() is allowed to have are arge and
argv. The variable argc holds the number of command line arguments.
The variable argv holds a character pointer to those arguments. Com-
mand line arguments are the information that you type in after the pro-
gram name when you execute a program. For example, when you com-
pile a C program, you type something like

CC MYPROG.C

where MYPROG.C is the name of the program you wish to compile.
The value of argce is always at least 1, because C considers the pro-
gram name to be the first argument. The variable argv must be
declared as an array of character pointers. This is shown in the follow-
“ing short program, which prints your name on the screen.

main{argc, argv)
int arge;
char *argv(];

{
iflargc<2)
printf("enter your name on the command Lline.\n");
else
printf("hello #%s\n",argv[11);
>

Notice that argv is declared as a character pointer array of unknown
size. The C compiler automatically determines the size of the array
necessary to handle all the command line arguments.

Command line arguments give your programs a professional lock
and feel, and allow you to place them in a batch file for automatic use.

STATEMENT SUMMARY

This section is a brief synopsis of the keywords in C.

auto

The auto keyword creates temporary variables upon entry into a block
and destroys them upon exit. For example, in

356 65/2 Programming: An Introduction

main()
{
for{;;) {
if(getche()=="a') {
auto int t;
for(t=0; t<'a'; t++)
printf("%d ", t);

the variable t is created only if you press A. Outside the if block, t is
completely unknown and any reference to it generates a compile-time
syntax error.

break

You use the break keyword to exit from a do, for, or while loop,
bypassing the normal loop condition. You also use it to exit from a
switch statement.

The following is an example of break in a loop:

while(x<100) {
x = get_new_x();
if(keystroke()) break; /* key hit on
keyboard */
process{x);

In this example, if a key is pressed, the loop terminates no matter what
the value of x is.

A break always terminates the innermost for, do, while, or switch
statement, regardless of the way they are nested. In a switch state-
ment, break effectively keeps program execution from “falling through”
to the next case. (Refer to the discussion of switch for details.)

case

Refer to the discussion of switch.

cdecl

The cdecl keyword is not part of the ANSI standard. It forces C to
compile a function so that its parameter passing conforms with the

A Review of C 357

standard C calling convention. You use edecl only when compiling an
entire file while using the Pascal option and when you want a specific
function to be compatible with C.

const

The const modifier tells the compiler that the following variable cannot
be modified.

char

The char data type declares character variables. For example, to declare
ch to be character type, write

char ch;

continue

You use the continue keyword to bypass portions of code in a loop and
force the conditional test to be performed. For example, the following
while loop simply reads characters from the keyboard until s is
pressed:

while(ch=getche()) {
iflch!="s") continue; /* read another char =*/
process(ch);

3

The call to process() will not occur until ch contains the character S.

default

You use the default keyword in the switch statement to signal a default
block of code to be executed if no matches are found in the switch. (See
the discussion of switch.)

do

The do loop is one of three loop constructs available in C. The general
form of the do loop is

358 S5/2 Programming: An Introduction

do {
statement block
} while(condition);

If only one statement is in the statement block, the braces are not
necessary, but they do add clarity to the statement.

The do loop is the only loop in C that always has at least one itera-
tion, because the condition is tested at the bottom of the loop.

The do loop is commonly used to read disk files. The following code
reads a file until an EOF is encountered:

do {
ch=getc(fp);
store(ch);

>} while(!feof(fp));

double

The double data-type specifier declares double-precision floating-point
variables. To declare d to be of type double, write

double d;

else

See the discussion of if.

enum

The enum type specifier creates enumeration types. An enumeration is
simply a list of objects, and an enumeration type specifies what that list
of objects is. An enumeration type variable can only be assigned values
that are part of the enumeration list. For example, the following code
declares an enumeration called color, declares a variable of that type
called ¢, and performs an assignment and a condition test:

enum color {red, green, yellow};
enum color c;

main()
{

A Review of C 359

c=red;
if{c==red) printf("is red\n");
bz

extern

The extern data-type modifier tells the compiler that a variable is
declared elsewhere in the program. This modifier is often used in con-
junction with separately compiled files that share the same global data
and are linked together. In essence extern notifies the compiler of a
variable without redeclaring it.

For example, if first were declared in another file as an integer, in
subsequent files you would use the following declaration:

extern int first;

float

The float data-type specifier declares floating-point variables. To
declare f to be of type float, write

float f;

for

The for loop allows automatic initialization and incrementing of a coun-
ter variable. The general form is

for(initialization; condition; increment) {
statement block

If the statement block is only one statement, the braces are not necessary.
Although the for allows a number of variations, generally the initial-
ization is used to set a counter variable to its starting value. The condition
is generally a relational statement that checks the counter variable
against a termination value, and increment increments (or decrements)
the counter value.
The following code prints the message “hello” ten times:

360 0S5/2 Programming: An Introduction

for(t=0; t<10; t++) printf("hello\n");
The next example waits for a keystroke after printing “hello™:

for(t=0; t<10; t++) {
printf{("hello\n");
getche();

b

goto

The goto keyword causes program execution to jump to the label speci-
fied in the goto statement. The general form of goto is

goto label;

label:

All labels must end in a colon and must not conflict with keywords
or function names. Furthermore, a goto can branch only within the
current function, not from one function to another.

The following example prints the message “right,” but not the mes-
sage “wrong”:

goto lab1;
printf("wrong");

lab1:
printf("right");

if
The general form of the if statement is

if(condition) {
statement block 1
i
else {
statement block 2

}

A Review of C 361

If single statements are used, the braces are not necessary. The else is
optional.

The condition can be any expression. If that expression evaluates to
any value other than 0, statement block 1 executes; otherwise, statement
block 2 executes.

The following code fragment can be used for keyboard input and to
look for a g, which signifies “quit.”

ch=getche();

iflch=="q") {
printf("program terminated™);
exit(0);

b g

else proceed();

int
The int type specifier declares integer variables. For example, to

declare count as an integer, write

int count;

interrupt

The interrupt type specifier is not part of the ANSI standard. It
declares functions that are used as interrupt service routines.

long

The long data-type modifier declares double-length integer variables.
For example, to declare count as a long integer, write

long int count;

pascal

The pascal keyword is not defined by the ANSI standard. It forces C to
compile a function so that its parameter-passing convention is compat-
ible with Pascal rather than C.

362 (OS5/2 Programming: An Introduction

register

The register declaration modifier forces an integer or character to be
stored in a register of the CPU instead of being placed in memory. It
can be used only on local variables. To declare i as a register integer,
write

register int i;

return

The return keyword forces a return from a function and can be used to
transfer a value back to the calling routine.

For example, the following function returns the product of its two
integer arguments:

mul €int a, int b)

return(a*b);
by

Remember that as soon as a return is encountered, the function
returns and skips any other code in the function.

sizeof

The sizeof keyword is a compile-time operator that returns the length
of the variable it precedes. For example, the following prints “2” on
most computers:

printf("%d", sizeof{(int));

The principal use of sizeof is in generating portable code when that
code depends on the size of the C built-in data types.

signed

The signed type modifier produces a signed data type.

A Review of C 363

short
The short data-type modifier declares 1-byte integers. For example, to

declare sh as a short integer, write

short int sh;

static

The static data-type modifier instructs the compiler to create perma-
nent storage for the local variable that it precedes. This enables the
specified variable to maintain its value between function calls. For
example, to declare last__time as a static integer, write

static int last_time;

struct

The struct keyword creates complex or conglomerate variables (called
structures) that are made up of one or more elements of the seven basic
data types. The general form of a structure is

struct struct__name {
type elementl;
type element2;

type elementn;
} structure__variable__name;

You reference the individual elements by using the dot or arrow
operator.

switch

The switch statement is C's multiway branch statement. It is used to
route execution one of several different ways. The general form of the
statement is

364 0S/2 Programming: An Introduction

switch(variable) {
case (constantl): statement set 1;
break;
case (constant2): statement set 2;

break;

case (constant n): statement set N;
break;
default: default statements;

The length of each statement set can be from one to several statements.
The default portion is optional.

The switch works by checking the variable against all the constants.
As soon as a match is found, that set of statements is executed. If the
break statement is omitted, then execution continues until the end of
the switch. Think of case as a label. Execution continues until a break
statement is found, or the switch ends.

The following example can be used to process a menu selection:

ch = getche();

switeh (ch) {

case 'e': enter();
break;

case "L': List();
break;

case 's':
break;

case "g'": exit(0);

default: printf("unknown command\n');
printf("try again\n");

sort();

typedef

The typedef keyword creates a new name for an existing data type. The
data type can be either one of the built-in types or a structure or union
name. The general form of typedef is

typedef type_specifier new_name;

A Review of C 365

For example, to use the word balance in place of float, write

typedef float balance;

union

The union keyword assigns two or more variables to the same memory
location. The form of the definition and the way an element is refer-
enced are the same as for struct. The general form is

union union__name §
type elementl;
type element2;

type elementN;
} union variable__name;

unsigned

The unsigned data-type modifier tells the compiler to eliminate the
sign bit of an integer and to use all bits for arithmetic. This doubles the
size of the largest integer but restricts it to positive numbers. For
example, to declare big to be an unsigned integer, write

unsigned int big;

void

The void type specifier is primarily used explicitly to declare functions
that return no meaningful value. It is also used to create void pointers
(pointers to void), which are generic pointers capable of pointing to any
type of object.

volatile

The volatile modifier tells the compiler that a variable may have its
contents altered in ways not explicitly defined by the program. These

366 5/2 Programming: An Introduction

may include variables that are changed by hardware, such as real-time
clocks, interrupts, or other inputs.

while

The while loop has the general form

while(condition) {
statement block

}

If a single statement is the object of the while, the braces can be
omitted.

The while tests its condition at the top of the loop. If the condition is
FALSE to begin with, the loop will not execute at all. The condifion can
be any expression.

The following example of a while loop reads 100 characters from a
disk file and stores them in a character array:

t = 0;
while(t<100) {
sCtl=getc(fp);

t++;
¥

THE C PREPROCESSOR

C includes several preprocessor commands that give instructions to the
compiler. These are examined here.

#define

The #define preprocessor command performs macro substitutions of
one piece of text for another throughout the file in which it is used.
The general form of the directive is

#define name string

Notice that no semicolon appears in this statement.

A Review of C 367

For example, if you wish to use TRUE for value 1 and FALSE for
value 0, declare the following two macro #defines:

#define TRUE 1
#define FALSE 0

This causes the compiler to substitute 1 or 0 each time TRUE or
FALSE is encountered.

Herror

The #error preprocessor directive forces the compiler to stop compila-
tion when it is encountered. [t is used primarily for debugging. Its
general form is

#error message

When #error is encountered, C displays the message and the line
number.

#include

The #include preprocessor directive instructs the compiler to read and
compile another source file. The source file to be read in must be
enclosed between double quotation marks or angle brackets. For exam-
ple, the following code instructs the C compiler to read and compile the
header for the disk-file library routines:

#include "stdio.h"

#if, #ifdef, #ifndef, #else,
#elif, #endif

These preprocessor directives selectively compile various portions of a
program. They are most useful to commercial software houses that
provide and maintain many customized versions of one program. The
general idea is that if the expression after an #if, #ifdef, or #ifndef is
TRUE, the code between one of the preceding directives and an #endif
is compiled; otherwise it is skipped. The #endif directive marks the end

368 O65/2 Programming: An Introduction

of an #if block. The #else can be used with any of the above in a
manner similar to the else in the C if statement.
The general form of #if is

#if constant expression

If the constant expression is TRUE, the block of code is compiled.
The general form of #ifdef is

#ifdef name

If the name has been defined in a #define statement, the block of code
following the statement is compiled.
The general form of #ifndef is

#ifndef name

If the name is currently undefined by a #define statement, the block of
code is compiled.

For example, here is the way some of the preprocessor directives
work together:

#define ted 10

main()
{
#ifdef ted

printf("Hi Ted\n");
#endif

printf("bye bye\n");
#if 10<9

printf("Hi George\n");
Hendif
b3

This code prints “Hi Ted” and “bye bye” on the screen, but not “Hi
George.”
The #elif directive creates an if/else/if statement. Its general form is

#elif constant-expression

The #elif can be used with the #if, but not the #ifdef or #ifndef
directives.

A Review of C 369

THE C STANDARD LIBRARY

Unlike most other languages, C does not have built-in functions to
perform disk I/O, console 1/O, and a number of other useful proce-
dures. The way these things are accomplished in C is by using a set of
predefined library functions supplied with the compiler. This library is
usually called the “C Standard Library.” Your program can use library
functions at your discretion. The compiler automatically links the func-
tions during the link process.

The C language contains a large number of library functions and
these are fully described in your C user manual. Also, C: The Complete
Reference, by Herbert Schildt (Osborne/McGraw-Hill, 1987) discusses
the library functions in considerable detail.

AT®

Color/Graphics
Adapter™

CP/M®
DEC™ PDP-11™
IBM®

IBM Monochrome
Adapter™

Intel®
Microsoft®
os/a™

PCjr™

PS5/2®

Turbo Pascal®

UNIX®

TRADEMARKS

International Business Machines Corporation

International Business Machines Corporation
Digital Research, Inc.
Digital Equipment Corporation

International Business Machines Corporation

International Business Machines Corporation
Intel Corporation

Microsoft Corporation

International Business Machines Corporation
International Business Machines Corporation
International Business Machines Corporation

Borland International, Inc.

AT&T

A
action parameter, 131-132
adapter variable, 64-66
addit() function, 250, 255, 257
anchor__block parameter, 280,
281, 285
ANSI standard
declaring parameters in,
330-331
defining C language in, 333,
336, 337
function prototypes in,
329-330
Pascal keywords and, 361
APIENTRY, 33
Application Program Interface
(API)

call-based interfacing, 25-27,

34-37

data types, 31

device monitor services,
213-245

dynamic link libraries,
247-269

INDEX

API {(continued)

file I/O services, 129-153

interprocess communication
services, 203-211

keyboard (KBD) services,
79-99

mouse services, 101-127

multitasking services,
155-186

parameters, 26, 31-33

Presentation Manager
services and, 273

routines, 26

serialization services,
187-203

service description
conventions, 41-42

list of categories of services,
37-39

list of family services, 40-41

services, keyboard
subsystem, 38

services, mouse subsystem, 39

373

374 O5/2 Programming: An Introduction

API (continued) Buffer (continued)
services, OS5/2 kernel, 37-38 used with device monitor,
services, video subsystem, 39 214-215 |

argc variable, 355 See also Video buffer 3

args parameter, 159, 174

argv variable, 355 C

Arrays, declaring, 341-342 C: The Complete Reference (Schildt),

ASCII 369 ‘
as cooked mode, 83-84 C compiler, 5.10, 41 |
keyboard codes and, 79-82, for C program, 30

88-901 future, 51, 156

ASCIIZ string, 27 header files, 35, 52

Assembly language pascal and, 32
compared to C language, 335 C language
example of, 27-30 compared to assembly

attr language, 335
parameter, 132, 148 functions, 351-355
variable, 72-73 keywords, 337, 355-366

Attribute bytes, 49-50 modifying data types in,

auto 336-342
keyword, 355-356 operators, 342-351
storage-class type modifier, origins of, 333

339, 340 in O5/2 development, 33

AX register, 27 preprocessor commands,

366-368
standard library, 36-37, 276,

B 369

__beginthread(), 174-177 structure, 334-336

BIND utility, 258 used in systems programs,

BM__OVERPAINT macro, 300 335

break keyword, 356 variables, 336-342

buf parameter, 135 C program
length, 149 calling formats, pascal versus,
size, 219 32-33

Buffer data types, 31
for device monitor, 219-220 example of, 30-31
lengths, 138, 139 C program and API parameters,

output, 133-134 31-33

C Programming Language, The
(Kernighan and Ritchie), 333
Call format, 26-27
CALL instruction, 26
Call-by-reference parameters,
26-27
Call-by-value parameters, 26
case keyword, 356, 363-364
cb
field, 168
variable, 64-66
cbMemory variable, 64-66
cchln variable, 98-99
cdecl keyword, 356-357
cEnd variable, 72-73
ch parameter, 220
char data type, 357
char far *, 35

Characters
codes for, 79-80, 82, 84-85,
86, 91-92

reading, from screen, 66-69
translation table for, 82
chChar field, 84 -
Child
as Presentation Manager
window, 279, 282
program, running, 157-161
program, starting and
stopping, 169-170
program, terminating,
161-164
chTurnAround character, 94-95
classname parameter, 281, 282
client__style parameter, 283
close() function, 129
CODE command, 253-254
codeResult field, 159

Index 375

Codes
blocks of, 334-335
constraints of, 33-34
keyboard character, 79-80,
82, 84-85, 86, 91-92
keyboard release, 80, 82
keyboard scan, 79-80, 81, 82,
84-86, 88-92
virtual key, 304-305,
308-309
codeTerminate field, 159
col
field, 62, 108
parameter, 221

value, 106
color
field, 62

parameter, 299
colScale field, 113
Communication, interprocess.
See Interprocess
communication
CONFIG.SYS file
with dynamic link library,
251
for mouse, 102-103
const storage-class type modifier,
339, 340, 357
continue keyword, 357
count parameter, 135, 138, 149
CS_SIZEREDRAW macro, 282
Cursor
changing size and shape of,
71, 72-74
positioning, 57-58
variables, 72-73
cx variable, 72-73
oxCELL field, 72

376 OS2 Programming: An Introduction

cyCELL field, 72

D
.DEF file extension, 33, 249
.DLL file extension, 29-30, 256
DATA command, 254
data parameter, 222
Data types
in C language, 336-342
reading and writing, 143-144
specifier, 358
default keyword, 357
deltax value, 124
deltay value, 124
descendants parameter, 162,
163-164, 169-170, 181
DESCRIPTION command, 255
Device monitor
buffers for, 219-220
determining session identifier
for, 217-218
efficiency of, 222-223
key translations with,
238-241
for keyboard, 223-225
keyboard macro program
with, 234-238
keyboard packet, 220-221
list of services, 214
for mouse, 241-245
mouse packet, 221-222
opening and registering,
216-217
packets, 220-222
pop-up application skeleton
with, 225-229
pop-up calculator with,
229-234
printer packet, 222

Device monitor (continued)
theory of operation, 214-216
Device monitors, 213-245
pop-up programs with,
213-214
Devices
reading and writing to,
144-146
standard, 146-147
display variable, 64-66
distance parameter, 140, 142
DLL.DLL file extension, 256, 263
dllwrite() function, 263
do loop, 356, 357-358
Dos service, 291
DosAllocShrSeg service, 203-206
DosBeep service, 27-30, 31, 41
DOSCALLS.LIB file, 28-29, 175,
251
DosChgDir service, 152-153
DosChgFilePtr service, 139-143
DosClose service, 129, 133-134
examples, 135-138
DosCloseSem service, 190, 195
DosCreateSem service, 190,
193-195
DosCreateThread service,
172-178
DosCWait service, 162-163
DosDupHandle service, 209-211
DosEnterCritSec service, 199-203
DosExecPgm service, 157-161
DosExit service, 27-30, 31, 173,
176
DosExitCritSec service, 199-202
DosExitList service, 165-167
DosFindFirst service, 147 -150
DosFindNext service, 147-150
DosFreeModule service, 263

DosGetlnfoSeg service, 218
DosGetProcAddr service,
262-263
DosGetPrty service, 181-184
DosGetShrSeg service, 204-206
DosKillProcess service, 163-164
DosLoadModule service, 262-263
DosMakePipe service, 207
DosMonClose service, 222
DosMonQOpen service, 216-217
DosMonRead service, 219-220,
224, 229
DosMonReg service, 216-217, 218
DosMonWrite service, 220, 224,
229
DosOpen service, 129, 131-134
examples, 135-138
reading and writing to
devices with, 144-146
DosOpenSem service, 190, 194

- DosQCurDir service, 152-153

DosQUFInfo service, 150-152
DosRead service, 138-139
buffer lengths for, 139
to read data types, 143-144
used by pipes, 206
DosResumeThread service,
185-186
DOSSCASS.LIB file, 290
DOSSEG command, 29
DosSelectSession service, 169-170
DosSemClear service, 191, 196
DosSemRequest service, 196
DosSemSet service, 190
DosSemWait service, 190-191
DosSetPrty service, 181-184
DosSleep service, 75-76, 160, 180
DosStartSession service, 157-158,
167-169

Index 377

DosStopSession service, 169-170
DosSuspendThread service,
185-186
DosWrite service, 53, 129, 135
buffer lengths for, 138
examples, 135-138
to write data types, 143-144
used by pipes, 206
drive parameter, 150, 152
DS register, 34
Dynamic link libraries, 247-269
.DEF used to create, 33
batch files for, 253
commands for, 253-258
creating, 249-253
definition files for, 252, 253
example, 250-252, 258-261
Dynamic linking
accessing functions of, 252
advantages, 248
at run time, 261-268
described, 247-248
extension, 29-30
file support, 249
function declarations in, 250
implications, 268-269
list of run-time services, 261
Dynlink. See Dynamic linking
Dynlink libraries.
See Dynamic link libraries

E

.EXE file extension, 29-30, 317
—endthread() function, 176
else statement, 358, 360-361
enum keyword, 339, 358-359
Enumeration, 339

env parameter, 159

378 (OS/2 Programming: An Introduction

Errors
checking in multitasking, 167
in DosStartSession call, 169
return information for,
27, 29
event parameter, 221-222
exclusive parameter, 193
exec_mode parameter, 158
exfunc() function, 166-167
exfunc parameter, 165
Exit functions, 165
EXPORTS
command, 255
statement, 251, 289
extern storage-class type
modifier, 339, 340, 359

F
failbuf parameter, 158
__size, 158, 262
Family API (FAPI), 40, 41
FAR
call address parameters and,
31-32
call instruction, 26
far
function, 250, 252
keyword, 31, 32
parameter, 204, 327-328
fbStatus field, 84-85, 86-87
fbType field, 62
FDATE structure, 149
fhandle parameter, 131, 134, 135,
138, 140
File handles
built-in, 146-147
releasing, 134-135

File /O

accessing disk system
information in, 150-152
appending, 142-143
buffer output, 133-135
displaying directory of,
147-150
DosClose service in, 129,
133-134
DosOpen service in, 129,
131-134
DosRead service in, 138-139
DosWrite service in, 129, 135
error checking, 136-137
examining and changing
directory in, 152-153
handles, 131
list of services, 130
mode values, 133-134
pointers, 131
random access to, 139-141
reading and writing other
data types in, 143-144
reading and writing to a
device in, 144-146
share attributes in, 133
standard devices associated
with, 146-147
subsystem services, 129-153
FILEFINDBUG structure,
148-150
first parameter, 284
float data-type specifier, 359
Fonts, type and size of, 71-72,
73-74
for
loop, 356, 359-360
statement, 350

fs field, 107-108
FS_MENU structure, 319
FSALLOCATE structure, 151-152
fsInterim field, 95
fsMask variable, 94, 96
fsState field, 85, 87-88, 95, 96
FTIME structure, 149
func parameter, 172, 174, 263
__addr, 262
—name, 262
Functions
as C building blocks, 334
form of, 351-353
library, 369
mouse initialization, 106-107
prototypes of, 329-331
segment override modifiers
for, 327

G

get_menu_ select(), 121-124

getch() function, 31, 178

getche() function, 353

gets() function, 303

GINFOSEG structure, 218

global _seg parameter, 218

goto keyword, 360

GpiBox service, 313-314

GpiCharStringAt service,
295-298

Gpiline service, 313-314

GpiSetBackColor service,
298-302

GpiSetColor service, 298-302

GpiSetCurrentPosition service,
314

GpiSetMix service, 300-302

GpiSetPel service, 313-314

Index 379

Graphics
drawing lines and boxes in,
313-314
example, 314-315
position approach to, 312-313
setting current position in,

314
H
handle parameter, 285, 295
—msgQ), 285
__window, 285

Header files
#ifdef statements, 35-36
C compiler, 35, 52
FSALLOCATE and, 151-152
INCL_SUB in, 52
multithread, 174-175
OS2.H, 31, 32
PMWIN.H, 282
type names defined in, 42
HEAPSIZE command, 256
hres field, 62
HWND_DESKTOP macro, 279,
282

I

if statement, 360-361

IMPLIB utility program, 249, 252

IMPORTS command, 252,
256-257

inbuf parameter, 217, 219

INCL_BASE symboal, 36

INCL_DQOS symbol, 36

INCL_DOSERRQORS symbol, 36

INCL_SUB symbol, 36, 52

INCL_WIN symbol, 289

info parameter, 148, 150-151

initmouse() function, 106-107

380 OS/2 Programming: An Introduction

int data-type specifier, 361
Interprocess communication
passing pipe handle in,
209-211
pipe example using shared
memory, 207-209
pipes in, 206-207
services, 203-211
shared memory in, 203-206,
207-209
interrupt data-type specifier, 361

K
Kbd

characters, 79

service, 291
KbdCharln service, 84-87, 91,

220

kbddriver field, 221
KbdFlushBuffer service, 93
KbdGetStatus service, 93-97
KBDINFQO structure, 94, 96
KBDKEYINFO structure, 84, 91
KbdPeek, 91-92
KbdSetStatus service, 93-97
KbdStringln, 98-99
kbhit() function, 31, 92
KC_CHAR macro, 303-304
KC_KEYUP macro, 306
Kernighan, Brian, 333
Keyboard buffer

clearing, 93-97

keypress() in, 91-92

state of, 93-97
Keyboard (KBD)

character codes for, 79-80,

82, 84-85, 86, 91-92
Dvorak, 80
handles, 83

Keyboard (continued)
input modes, cooked and

raw, 83-85
keypress status for, 80, 82,
86-87.

logical, 83

macro program with device
monitor, 234-238

reading character string for,
98-99

reading and writing to,
144-156

scan codes for, 79-80, 81, 82,

84-86, 88-92
serialization, 83
services, 79-99
services, listed, 80
shift keys status for, 84-88
Keyboard monitor
key translator, 238-241
macro program, 234-238
pop-up application, 223-229
pop-up calculator, 229-234
keypress() function, 91-92
Keys
hot, for pop-up programs,
213

status of shift and toggle, 85,

87-88
status of special, 88-91
translations of, with device
monitor, 238-241
Keywords in C language, 336,
355-366

L

—loadds function type modifier,
250

-Lp directive, 30

last parameter, 284
length parameter, 219-220
LIBRARY
command, 257
statement, 251
LLIBCDLL.LIB file, 251
LLIBCMT.LIB file, 175
loc parameter, 140
local__seg parameter, 218
long data-type modifier, 361

M
MODEL directive, 29
main() function, 269, 351,
353-355
keypress() in, 92
in Presentation Manager,
277, 290
main thread, 171
MAKEDLL.CMD file, 253, 260,
266
MAKEMAIN.CMD file, 253, 261
MAKEP macro, 204, 218
mask parameter, 148
Memory, shared, 203-206
example, 207-209
Memory model(s)
for 80286, 325-328
compact, 326
huge, 327
large, 326
medium, 326
overriding, in C, 327-328
small, 326
tiny, 325
MENU command, 317-318
MENUITEM command, 318-319

Index 381

Menus (Presentation Manager)
adding, to window, 319
defining, in resource file,

317-319
example, 320-322
receiving messages from, 319
resources of, 316-317

mess array, 234-237

message parameter, 284, 285

mhandle parameter, 108, 262, 263

Microsoft
C compiler. S5e¢ C compiler
Macro Assembler version

5.1, 28
mix parameter, 300
mode parameter, 132-133, 134,
173, 181

Modifiers, type. See Type

modifiers

module parameter, 283

mon parameter
—handle, 216, 217, 222
—name, 216

monflag parameter, 221

Mou
characters, 101
service, 291

MouDrawPtr service, 105

MOUEVENTINFO structure,

107, 109-110
mouflag parameter, 221
MouFlushQue service, 120
MouGetNumButtons service,
119-120

MouGetNumMickeys service,
114-116

MouGetScaleFact service, 113-116

MouOpen service, 103, 104-105,
113

382 OS/2 Programming: An Introduction

MouReadEventQue function,
107-110, 111-113
Mouse
basics, 103-104
button presses, 104, 107-110
custom functions, 110-113
as desktop in Presentation
Manager, 274-275
device monitor for, 241-245
flushing queue of, 120
initialization function,
106-107
installing, 102-103
measuring distance with,
116-119
menu example, 120-124
menu selection with,
120-124
mickey counts, 104
movement, 107-110
number of buttons on,
119-120
opening, 103, 104-105
with ping-pong video game,
124-127
pointer, displaying, 103, 105
pointer, positioning, 104,
105-106
scaling factors, 113-119
services, 101-127
services, listed, 102
services, MOUSE.LIB and,
101-102
MOUSE.LIB file, 101-102
MOUSEB05.5YS file, 102
MouSetPtrPos service, 105-106
MouSetScaleFact service, 114-116
MTMAINCLUDE directory, 174-175

Multitasking, 129-153

creating exit function list,
165-167

creating new sessions in,
167-170

creating threads for, 172-178

error checking in, 167

killing process in, 163-165

list of processes, 157

list of thread-based services,
171

multiple processes of,
157-167

suspending threads in, 180,
185-186

terminating child process in,
161-163

thread priorities, 180-184

threads in, 157, 170-186

waiting for threads to finish
in, 178-180

warning about, 156

N

NAME command, 257

NEAR call instruction, 26

near pointer, 328

new__handle parameter, 209

NULL, 280, 282, 283, 284, 295

#define preprocessor command,
366-367

t#elif preprocessor command,
367-368

#else preprocessor command,
367-368

#endif preprocessor command,
367-368

#error preprocessor command,
367
#if preprocessor command,
367-368
fifdef
preprocessor command,
367-368
statements in header files,
35-36
#ifndef preprocessor command,
367-368
#include
preprocessor command, 367
statement, 175
num__bytes parameter, 139, 258
—_written, 135
num__read parameter, 138

8]
.OB] file extension, 249
offset parameter, 204
open() function, 129
openflags parameter, 132, 133,
136, 137
operation parameter, 165
Operators, 342-351
&, 32, 351
7,349, 351
arithmetic, 342, 343
assignment, 348-349
bitwise, 343-346
compile-time, 350, 362
logical, 342, 343
miscellaneous, 349-351
pointer, 346-347
precedence of unary, 351
relational, 342, 343
option__list parameters, 254

Index 383

origin parameter, 142
0S2.H header file
API declarations in, 32
in C program, 31
OS2.LIB file, 290
outbuf parameter, 217, 220

P
p—change parameter, 181
p—space parameter, 295, 296,
299, 302, 313, 314
packet parameter, 219
Parameters
API, 26, 31-33
call-by-reference, 26-27
call-by-value, 26
declaring, 330-331
Parent
as Presentation Manager
window, 279, 282
program, running, 157-161
program, starting and
stopping, 169-170
program, terminating a child
process with, 163-164
parent__handle parameter, 282
pascal
C calling formats versus,
32-33
keyword, 361
path parameter, 152
pid
field, 222
parameter, 168
Pipes, 206-207
example using shared
memory, 207-209
passing handle in, 209-211

384 OSj2 Programming: An Introduction

POINTDD.SYS, 102
Pointers
checking, in dynamic linking,
250
file, 131
segment override modifiers
for, 327
of type void, 347-348, 365
variables, 337, 347
POINTL structure, 281, 295-298
Pop-up program, 77, 214
calculator with, 229-234
skeleton with device monitor,
225-229
Ports reading and writing to,
144-156
Presentation Manager, 271-291
C standard library functions
and, 276
compiling programs in,
289-290
creating message queue in,
280-281
creating standard window in,
282-283
definition file for, 289, 298
device context in, 294
displaying text in color in,
298-302
features, 273-275
graphics example in, 312-316
icons and graphics images
with, 275
list of common messages in,
286
list of virtual key codes,
304-305
macro names, 313

Presentation Manager (continued)

macros in, 294, 299-300

menus and dialog boxes
with, 275

menus in, 316-322

message loop in, 277,
283-284

mouse and, 101, 103,
274-275

obtaining anchor block
handle in, 280

operation of, 276-277

outputting text to window
in, 293-302

parent and child windows in,
279, 282

presentation space in, 294,
299

processing WM__PAINT
message in, 294-298

program termination in,
284-285

reading keystrokes in,
303-311

registering window class in,
281-282

screen as desktop in, 274

screen output with, 309-311

skeleton application program,
286-291

understanding how skeleton
works, 290-291

versus core services, 291

window function in,
276-277, 278-280,
285-286

Presentation Manager Programming

(Schildt), 271

Presentation spaces (PS), 294
print() function

console output with, 45

not usable with Presentation

Manager, 276

writing C program with, 36
printf(), 36

DosRead and, 139

multiple threads and, 173
prnflag parameter, 222
PROTMODE command, 257-258
prty parameter, 181-182
PTRLOC structure, 105-106

Q
OMSQG structure, 281

R
RC file extension, 317
.RES file extension, 317
read() function, 129
read__handle parameter, 207
region parameter, 295
register

storage-class type modifier,

339, 340

keyword, 362

reserved parameter, 133, 149,
152, 170, 219, 220
resource parameter, 283
result.codeTerminate field, 163
result parameter, 159, 162
RESULTCODES structure, 159,
162

return

keyword, 362

statement, 352
Richards, Martin, 333

Index 385

Ritchie, Dennis, 333
row
field, 62, 108
parameter, 221
value, 106
rowScale field, 113

S
SCALEFACT structure, 113,
115-116
scan parameter, 220
scanf() function, 276, 277, 303
Schildt, Herbert, 271, 369
Screen
attributes, 49-50
background process to access,
74-77
cursor and, 57-58, 71, 72-74
as desktop in Presentation
Manager, 274
fonts and, 71-72, 73-74
group, 167
logical video buffer (LVB)
and, 50, 69-71
output with Presentation
Manager, 309-311
presentation space (PS) as,
294
reading characters from,
66-69
reading and writing to,
144-156
requesting video adapter
characteristics for, 64-66
routines, using dynamic link
libraries, 258-261

386 OS/2 Programming: An Introduction

Screen (continued)
scrolling functions, 58-61
string output to, 51-52
video buffer and, 48-50
video mode and, 61-64
VIO output services to,
53-57
virtualization, 50
Scrolling functions, 58-61
SEGMENTS command, 258
selector parameter, 204
sem parameter, 191, 194, 195,
196
__handle, 193
—name, 193, 194
Semaphores
list of services, 189
method, 178-180
producer -consumer program
with, 197-199
RAM, example of, 191-193
RAM versus, 189-190
setting, 190-191
sharing resource with,
195-199
using system, 193-195
See also Serialization
Serialization
with critical section services,
199-203
problems of, 187-189
services, 187-203
See also Semaphores
sgCurrent field, 218
share attribute, 133, 134
shift parameter, 220
short data-type modifier, 363

show function
—mouse_state(), 108-110
—priority(), 182-184
sid parameter, 168, 170
signed data-type modifier, 362
size parameter, 132, 152,
203-204, 207, 280
sizeof keyword, 143, 350, 362
Stack
checking in dynamic linking,
250
defining, 29
stack parameter, 172, 174
__size, 174
STACKSIZE command, 258
stand__end parameter, 174
STARTDATA structure, 167-169
static '
storage-class type modifier,
339, 341,
data-type modifier, 354, 363
status parameter, 220
storage__bytes parameter, 282
STRINGINBUF structure, 98-99
struct
data-type modifier, 337
keyword, 363
Structure
in C language, 338
of variables, 338
STUB command, 258
style parameter, 281-282, 283
SUBMENU command, 318-319
Subroutines
call-by-reference parameters
for, 26-27
call-by-value parameters for, 26

sumit() function, 255, 257
switch statement, 363-364
exiting from, 356

Systems programs, 335

T
term__code parameter, 165-166,
173
Terminate-and-stay-resident
(TSR) programs.
See Pop-up programs
TEST.EXE program, 159-160, 161,
162-163, 164, 170
TEST.TST file, 135-138
TEST.TXT file, 142-144
Thompson, Ken, 333
Threads
creating, in multitasking,
172-178
list of multitasking services,
171
main, 171
in multitasking, 157, 170-186
priorities in multitasking,
180-184
suspending, in multitasking,
180, 185-186
- synchronization of, 178-180
waiting for, to finish in
multitasking, 178-180
tid parameter, 172, 181, 185
Time field, 108
time parameter, 220, 221
title parameter, 282-283
toggle variable, 124
.286 directive, 29

Index 387

Type modifiers
addressing, 341
storage-class, 339-341

typedef
data type, 337
keyword, 364-365
statement, 42

U
union
data type, 337, 338-339
keyword, 365
unsigned
data-type modifier, 33, 42,
365
long variable, 189, 190
USHORT, 33, 42

A"
Variables
in C language, 336-342
enumeration, 339
global and local, 353-354
pointer, 337, 347
storage-class type modifiers
for, 339-341
structure of, 338
for video adapter, 64-66
Video
adapters, 47-48, 64-66
buffer, 48-50
buffer, logical (LVB), 50,
69-71
modes, list of, 48
 hardware, 46
I/O subsystem. See VIO
mode, 47-48, 61-64

388 (S/2 Programming: An Introduction

VIO
functions with VioPopUp,
76-77
handles, 50-51
screen output services,
53-57
services, 45-77
services, list of, 46-47
services versus /O
redirection, 52-53
Vio service, 291
VIOCONFIGINFO structure,
64-66
VIOCURSORINFOQO structure,
72-74
VioEndPopUp service, 74-77
VIOFONTINFO structure, 71-72
VioGetBuf service, 69-71
VioGetConfig service, 64-66
VioGetCurPos service, 57-58
VioGetCurType service, 72-74
VioGetFont service, 71-72
VioGetMode service, 61-64,
67-69
VIOMODEINFQ structure,
62-64
VioPopUp service, 74-77, 213,
223-225
VioReadCellStr service, 66-69
VioReadCharStr service, 66-69
VioScrollDn service, 58-61
VioScrollLf service, 58-61
VioScrollRt service, 58-61
VioScrollUp service, 58-61
VioSetCurPos service, 57-58
VioSetCurType service, 72-74
VioSetFont service, 71-72
VioSetMode service, 61-64

VioShowBuf service, 69-71
VioWrtCellStr service, 53-55, 67
VioWrtCharStr service, 55
VioWrtCharStrAtt service, 56
VioWrtNAttr service, 56-57
VioWrtNCell service, 56-57
VioWrtNChar service, 56-57
VioWrtTTy

function, 34-37

multiple threads and, 173

service, 51-52
void

function, 352, 353

pointer, 347-348
void data-type specifier, 336, 365
void far

function, 172, 174

pointer, 280
volatile

storage-class type modifier,

339, 340-341

keyword, 365-366

vres field, 62

W
wait parameter, 162, 219
while loop, 188, 366
exiting from, 356
finishing threads and, 180
WinBeginPaint service, 295-298,
302
WinCreateMsgQueue service,
280-281
WinCreateStdWindow service,
282-283, 319
list of style parameter
values, 283

WinDefWindowProc service,
285-286

WinDestroyMsgQueue service,
284-285

WinDestroyWindow service,
284-285

WinDispatchMsg service, 284,
290

window parameter, 284

window__func() function, 287,
290

WinEndPaint service, 296-298

WinGetMsg service, 283-284

WinGetPS service, 302, 306-308

Winlnitialize service, 280

WinRegisterClass service,
281-282

WinReleasePS service, 302,
306-308

Index 389

WinTerminate service, 284-285
WM_CHAR message, 291, 303,
306, 309
WM_COMMAND message, 319
WM_CREATE message, 290
WM_ERASEBACKGROUND
message, 290-291
WM_HSCROLL message, 291
WM_PAINT message, 290,
294-298, 302, 309-311
WM_QUIT message, 290
WM_VSCROLL message, 291
write() function, 129
write__handle parameter, 207

Y
yStart variable, 72-73

The manuscript for this book was prepared and
submitted to Osborne/McGraw-Hill in electronic form.
The acquisitions editor for this project was Jeffrey
Pepper, the technical reviewers were William H.
Murray Il and Chris H. Pappas, and the project editor
was Fran Haselsteiner.

Text design by Pamela Webster, using Palatino for text
type and display.

Cover art by Bay Graphics Design Associates. Color
separation by Colour Image. Cover supplier, Phoenix
Color Corporation. Book was printed and bound by
R.R. Donnelley & Sons Company, Crawfordsville,
Indiana.

O0S/2 Procravming:

& ® P AN INTRODUCTION

Get up to speed on 0S/2™ programming with this fast-paced guide to
the operating system developed jointly by Microsoft and IBM.
Schildt, experienced programmer and ace instructor, has distilled months
of research into a well-organized and highly readable discussion of 0S/2.
You'll save countless hours of poring through thousands of pages of
0S/2 documentation.
0S/2™ Programming: An Introduction uses many example C programs
to explain each topic thoroughly. Schildt emphasizes 0S/2 applications as
he describes
m Multitasking m Presentation Manager
m [nterprocess communications | Screen services
m The creation of dynamic link m Mouse services

libraries m Keyboard services
m Device monitors m File I/0
0S/2™ Programming: An Introduction begins with an overview of 0S/2.
It then details the core API services and leads you to more advanced topics.
The book also provides an excellent introduction to the Presentation
Manager graphical interface. Included are numerous useful examples and
sample programs from which you can begin developing your own 0S/2
toolkit.
You'll have a solid 0S/2 foundation on which to build when you've
finished reading 0S/2™ Programming: An Introduction.
Programming expert Herbert Schildt is the author of numerous best-sellers
including: DOS Made Easy, C: The Complete Reference, C Made Easy,
Advanced C, Second Edition, C: Power User’s Guide, Artificial Intelligence
Using C, Turbo C*: The Complete Reference, Turbo C*: The Pocket
Reference, Using Turbo C*, and Advanced Turbo C®. He also also written
Advanced Turbo Prolog®: Version 11, Advanced Turbo Pascal®, Modula-2
Made Easy, and Advanced Modula-2. Schildt is president of Universal
Computing Laboratories, Inc., a software engineering firm. He holds a
master’s degree in computer science from the University of lllinois at
Champaign-Urbana. :

- m 0572 is a trademark of International Business Machines Corp.
® Turbo C, Turbo Pascal, and Turbo Prolog are registered trademarks of Borland International, Inc.

i

et e et b et e et e b Vel R Rl W e Y T g

B ISBN 0-07-881427-8

	Cover
	Contents
	Acknowledgments
	Preface
	Order Form
	I - INTRODUCTION TO OS/2 PROGRAMMING
	1 - OS/2: An Overview
	2 - OS/2 Interfacing Fundamentals

	II - PROGRAMMING OS/2 API SERVICES
	3 - The Screen Output Services
	4 The Keyboard Services
	5 - Using the Mouse
	6 - File I/O
	7 - An Introduction To Multitasking
	8 - Serialization and Interprocess Communication
	9 - Device Monitors
	10 - Creating and Using Dynamic Link Libraries

	III - PROGRAMMING PRESENTATION MANAGER
	11 - Presentation Manager: An Overview
	12 - Some Presentation Manager Examples

	APPENDIXES
	A - 80286's MEMORY MODELS
	B - FUNCTION PROTOTYPES
	C - A REVIEW OF C

	Trademarks
	Index
	Back Cover

