
The Art of
OS/2 Warp
Programming
Katheleen Panov

Larry Salomon, Jr.

Arthur Panov

Trademarks
OS/2, IBM, Presentation manager, CUA, BookMaster, C Set/2, SCRIPT, THESEUS2, SMP/2, Common
User Access are trademarks of IBM Corporation.

Dedicatory
This book is dedicated to Alexandra and Lisa

Contenido
Trademarks ..2

Dedicatory ..3

Figures ..8

Preface ...9

Notes From the Edge ..9

What We Have Done ..9

What We Expect of You ..9

What You Will Need ...9

Contacting the Authors ..10

Finally ...10

Acknowledgments ..11

The Art of OS/2 Warp Programming ..12

Chapter 1..13

Tools ...13

Dialog Box Editor ..13

Resource Compiler ...13

NMAKE ...13

IPFC ..13

Libraries ..14

Header (or INCLUDE) Files ..14

The Compiler Switches Used in This Book ..14

Chapter 2..16

Memory Management ...16

Committing Memory ..17

Suballocating Memory ...18

Shared Memory ..19

DosAllocMem or malloc? ...20

Chapter 3..22

Multitasking ...22

Chapter 4..34

File I/O and Extended Attributes ..34

Chapter 5..61

Interprocess communication ..61

DOS-OS/2 Client-Server Connection ...65

Chapter 6..73

DLLs ..73

Chapter 7..82

Exception Handling ...82

Chapter 8..88

Interfacing with OS/2 Devices ..88

Chapter 9..91

Introduction to Windows. ..91

Chapter 10..128

Window Management. ...128

Chapter 11..136

Window Messages and Queues ...136

Chapter 12..145

Resources ...145

Chapter 13..162

Dialog Boxes ...162

Chapter 14..169

Menus ..169

Chapter 15..181

List Boxes ..181

Chapter 16..192

Buttons ...192

Chapter 17..198

Entry Fields ...198

Chapter 18..203

Multiline Edit Controls..203

Chapter 19..211

Other Window Classes ...211

Chapter 20..218

Drag and Drop ..218

Chapter 21..240

Value Set ..240

Chapter 22..246

Notebook ...246

Chapter 23..251

Containers ..251

Chapter 24..273

Spin Buttons ...273

Chapter 25..274

Sliders ...279

Chapter 26..279

Font and File Dialogs ..279

Chapter 27..279

Subclassing Windows ...279

Chapter 28..279

Presentation Manager Printing ..279

Chapter 29..280

Help Manager ...280

Application Components ..280

The Application Source ...280

Messages ..282

The Help Tables ..283

Sample HELPTABLE ...284

Message Boxes ...285

Fishing, Anyone ? ...286

The Help Panels ..288

Chapter 30..290

Multithreading in Presentation Manager Applications ..290

Appendix A ...290

Windows Messages ..290

Appendix B ...291

References..291

Index ..293

Figures

Preface

Notes From the Edge

OS/2 has come a long way since you last read the preface to this book. OS/2 2.1 made it to the
public and it won accolades from the industry. OS/2 2.11 and OS/2 for Windows were
subsequently released and were likewise praised by the industry pundits. Ironically, OS/2 was still
the subject of criticism from the omnipresent cynics who sought to deride and belittle the
operating system. However, when OS/2 Warp was released in the summer of 1994 and then won -
for the third consecutive year - the "Product of the Year" award from lnfoworld as well as man y
other awards, no one could deny it: the product that was "doomed to die" was here to stay after
all.

It's been a long two years since The Art of OS/2 2.1 C Programming was released, but we've finally
made it. The lst edition, you said, was good. You liked the approach we took, analyzing the
individual window classes instead of taking a task-oriented view of PM programming. You liked the
"Gotchas" that indicated many of the things to watch out for when doing OS/2 development.
However, there were also things you didn't like.

So, as OS/2 underwent its many mutations, so have we.

What We Have Done

With this edition, you'll find all of the things that you said needed improving upon in the lst
edition. We've added 10 new chapters (50% more) to account for not only the essential areas we
missed last time, but also the areas that "would have been nice to have." We've added more detail
in the chapters that already existed as well as added more samples to them. We've added new
sections to the existing chapters to allow the OS/2 developer to stay current with the new features
of Warp.

What We Expect of You

As with the last edition, we make sorne assumptions about your abilities. W e assume that yo u ha
ve a good working knowledge of the C language. We do not assume that you have any prior
development experience with a multitasking operating system, nor with a graphical user interface
environment.

What You Will Need

You will need the following software to compile the samples presented in the book:

• OS/2 Warp
• The Warp Programmer's Toolkit, or a compatible substitute

• IBM C-Set++ (any version)

You may substitute any compiler for IBM C-Set++, but you should have a good knowledge of the
compiler so that you can migrate the makefiles from IBM C-Set++. See Chapter 1 for a table of the
more commonly used compiler switches and their meanings.

Contacting the Authors

The authors look forward to your comments on this book, whether compliments, suggestions, or
criticisms.

Arthur and Kathleen Panov can be contacted by sending email to 71033,1721 (Compuserve) or
71033.1721@compuserve.com (Internet). Larry Salomon Jr. can be contacted by sending email to
os2man@panix.com (Internet). Ali three authors follow the Internet newsgroup
comp.os.os2.programmer.misc and Arthur and Kathleen also follow the OS/2 forums on
Compuserve.

Finally

We have worked hard to make sure that this book remains the book recommended by most
people for doing OS/2 development. While we were not able to implement everything that you
asked for in this edition ofthe book, we certainly tried. Enjoy.

Acknowledgments
There are many people the authors would like to thank. Special thanks go to James Summers, Phil
Doragh, Sam Detweiler, David Reich (author of Designing OS/2 Applications), Tom Ingram, Bret
and Brian Curran, Alan Warren, Jerry Cuomo, John Ponzo, Peter Haggar, Tanja Lindstrom, Marc
Fiammante, and MarkBenge.

Lastly, we would like to thank Terri Hudson, Katherine Schowalter, and Maureen Drexel at John
Wiley and Sons for making this book possible.

The Art of OS/2 Warp Programming

Chapter 1

Tools
All the examples in this book were compiled using the IBM C Set/2++ compiler and the IBM OS/2
Toolkit. There are other OS/2 compilers available including Watcom, Zortech~ and the Borland C++
compiler. The include files and libraries necessary to access the system calls-memory
management, multitasking, Presentation Manager, and so on-are found in the Developer's Toolkit.
Although you can write a fully functional OS/2 program using only an OS/2 C compiler, you
probably want to get the toolkit for any serious development work. Without it, you will need to
delve into the minds of the OS/2 developers to find function prototypes, structure definitions, and
the like. Suffice it to say, however, that doing so without the toolkit is an order of magnitude more
difficult.

Dialog Box Editor

The dialog box editor, DLGEDIT, is a very nice program to facilitate the creation of dialog boxes.
The interface consists of a screen painter that lets you visually design the dialog boxes for your
own applications. The editor will create a resource file (.RC), dialog file (.DLG), and a header file
(.H). The dialog box editor is shipped with the Developer's Toolkit for OS/2 Warp.

Resource Compiler

The resource compiler, RC, is a compiler that takes your application-defined resources---dialogs,
menus, messages-and compiles them to a .RES file. This file can then be bound to your executable
so that when the resources are needed, they are pulled into your program. The resource compiler
is shipped with the Developer's Toolkit for OS/2 Warp and with the operating system.

NMAKE

NMAKE is a newer version of the MAKE utility provided with most compilers. It is a program that
sorts through all the tasks that need to be done to build an OS/2 executable and dispatches those
tasks that should be done when a specific module has been changed. There are many different
ways to build makefiles (.MAK). The IBM Workframe/2 environment will automate this process for
you. However, the examples in this book contain .MAK files that were built by hand.

IPFC

The program IPFC is the Information Presentation Facility Compiler. This will take a text-based file
and create a .HLP or .INF file that can be used either with the help facility in Presentation Manager
or using VIEW.EXE, which is shipped with OS/2 Warp. This program has been greatly expanded to
give the programmer and the technical writer a lot of power over the online information displays.

Libraries

The OS/2 Warp Developers Toolkit comes with two libraries, OS2286.LIB and OS2386.LIB. OS2386
contains the system call resolutions for ali 32-bit entry points. OS2286 contains the 16-bit ones.
You will need to explicitly link one of these in with your OS/2 W arp applications.

Header (or INCLUDE) Files

The Developer's Toolkit for OS/2 contains many different header files, but only one, OS2.H, should
be included in your program. However, you must use the #define INCL_xxx statements in order to
include the function definitions, structures, data types, and the like necessary for your program.
INCL_ WIN will include ali the necessary information for the Win ... functions; INCL_DOS includes
ali the information for the Dos ... functions ; and INCL_GPI includes ali the information for the Gpi
... functions. These INCL_statements can be broken down even further.

It is a very good idea for you to go snooping through the header files. They contain a lot of
information, and also, in many cases the online and hard-copy documentation is just flat-out
wrong. The header files are the final authority. One caveat here: The header files are not always
complete. They will be adequate for development purposes 99 percent of the time; the other one
percent of the time you will tear your hair out trying to find your mistake.

Table 1.1 is a road map to the various header files.

Files Description
OS2DEF.H lncludes the most common constants, data types, and structures.
PM*.H lncludes the necessary information for the Presentation Manager functións.
BSE*.H Includes the necessary information for the base (Dos ...) functions.
SOM*.H lncludes the System Object Model functions and information.
WP*.H Includes ali the information for the Workplace Object functions .
REXX*.H Includes the REXX information and functions.

The Compiler Switches Used in This Book

Ali examples in this book include their own .MAK files. The compiler and linker switches for the
IBM C Set/2++ compiler you may see are defined in Table 1.2 and Table 1.3. Check your compiler
documentation for a foil discussion of the compiler switches and the equivalents if you are not
using the IBM C Set/2++ compiler.

Table 1.2 Compiler Switches

Switch Meaning Default
C oc C+ Compile only, no linking No
Gd- Static linking Yes
Ge+ Build an .EXE file Yes
Gm- Single-threaded Yes
Gm+ M ultithreaded No
Kb+ Basic diagnostic messages (check

for function prototypes)
No

Ms- Use system linkage No
O No optirnization Yes
Re Subsystem development enabled Yes
S2 SAA Leve! 2 No
Sa ANSIC No
Spn Structure packing along n byte

boundaries
4 byte boundaries

Ss+ Allow use of // comments No
W3 Warning level Yes

Table 1.3 Linker Switches

Linkage opts Meaning
/MAP Generate MAP file
/A:n Align along n byte boundaries
/PM:VIO Window-compatible application

Chapter 2

Memory Management

In 0S/2 1.3 the memory management scheme was designed to support the Intel segmented
architecture. The 80286 could provide access to memory in segments that were limited in
size to 64K. At times more than 64K was necessary. In those cases, the developer would
have to create elaborate memory management schemes. This changed in OS/2 2.0. The
amount of memory that developers can access is only limited by three items:

• The physical amount of RAM in the system
• The amount of disk space available on the drive pointed to by the SWAPPATH variable in

config.sys
• The absolute limit of 512MB

By dropping support for the 80286 and supporting only processors capable of supporting a
32-bit engine, 0S/2 could have the flat, paged memory architecture of other non Intel-based
chips. Both the Motorola 680x0 chips (base of the Apple Macintosh and other machines)
and the RISC-base chips (base for IBM's RS-6000) use the flat, paged architecture. You
cats probably see where this is leading. Designing a memory model that is portable is the
first step in designing a portable operating system. A 32-bit operating system will allow
addresses of up to OxFFFFFFFF, or 4GB. This also gives programmers the opportunity to
allocate memory objects that are as large as the system memory allows.

OS/2 1x used the 16-bit addressing scheme of the 80286. A location in memory was
represented as a 16:16 pointer, in selector-offset fashion. The upper portion of the selector
maps into a descriptor table. The entry in the descriptor table maps the absolute location of
the memory address.

Thirty-two-bit OS/2 has only three segments that combine to make -4GB total. This means
that memory addresses are represented as a 0:32 pointer. All memory resides in these three
segments. A normal program will run in die segment that starts at address 0 and covers
480Mb. Protected dynamic link libraries (DLLs see the same 480Mb region plus 32Mb
above it 'This 512Mb addressability limitation is due to compatibility with 16-bit 0S/2
programs. The kernel functions see the full 4GB region. This is where the big performance
boost comes in. Because all memory is in these three segments, when the operating system
has to switch memory objects, the segment registers do not always have to be loaded. A flat
memory management scheme has one more advantage: All pointers are near pointers, since
all memory can be addressed using a 0:32 pointer. This means no more 'FAR' jumps for the
operating system. This also means memory models -small. medium, large, and huge -are
now obsolete.

The basis of the 32-bit OS/2 memory management functions is DosAllocMem . This
function allocates memory in 4,096-byte chunks called pages; however, a developer can
allocate several contiguous pages in one call. While this means that you can allocate any
amount of memory up to the process limit, it also means that you can waste a considerable

amount of memory if you're not careful.
Consider the following code fragment:

 for (i=0; i< 1000; i++)
 DosAllocMem(&p[i],
 1,
 PAG_READ | PAG_WRITE | PAG_COMMIT);

The first parameter is a PPVOID, the second parameter is the number of bytes allocated,
and the last parameter is the memory flags. We'll see this again soon.

What you see in the code fragment is 1,000 1-byte blocks being allocated. What you don't
see is the 1,000 4,095-byte blocks that are not being used because DosAllocMem allocates
memory as an integral number of pages.

Committing Memory

0S/2 2.0 also introduced she concept or committing memory. A call to
DosAllocMem will reserve an address range for the memory; however,
physical memory is actually assigned to the range only if the
PAG_COMMIT flag is specified. (A side note here: In 32-bit OS/2, a
page is only assigned to an address really when the page is touched.) If
you try to access uncommitted memory, otherwise known as sparse
memory objects TRAP-BOOM! If you choose to allocate memory
without committing it, you have two ways of having it committed later -
DosSetMem or DosSubSetMem. Also, in 32-bit 0S/2, memory is
guaranteed to be initialized to 0. This prevents the application from
having to initialize the memory, thereby touching all the memory,
thereby committing all the memory

The following is a very simple program to allocate memory and to show a little about what
happens to bad programs. Remember that we are seasoned professionals. Do not attempt
this at home. Well, you may want to attempt it at home, but if you attempt this at work
consistently, it may get you tired.

BADMEM.C
BADMEM.MAK
BADMEM.DEF

Now, you may look at this code and say, 'But, you're allocating only 3.000 bytes, and
you're writing to 4,098.' Okay, this is bad code; however, It illustrates that no matter how
much you specify as bytes allocated, the operating system will return it to you in 4,096 -
byte pages, and you could use them all and never see a protection violation. You'd just end
up stomping all over some data that you may need.
However, notice that when you try to write to byte 4097, TRAP ! This too can happen to
you, so be very careful about writing to unallocated, uncommitted memory.

The flags used as the page attributes in the preceding example were PAG_READ |
PAG_WRITE | PAG_COMMIT. Table 2.1 lists the possible page attributes.

Table 2.1 Page Attributes

Flag Description

PAG_READ
 Read access is the only access allowed. A write to the memory location will
generate a trap.

PAG_WRITE Read, write, and execute access is allowed.

PAG_EXECUTE
 Execute and read access to the memory is allowed. This flag sill also
provide compatibility for future versions of the operating system.

PAG_GUARD

Sets a guard page after the allocated memory object If any attempt is made
to write to that guard page. a guard page fault exception is raised, and the
application is given a chance to allocate more memory as needed. (See Chapter 6-
 Exception Handling)

OBJ_TILE

All memory objects are put into the tiled, or compatibility, region in OS/2 2.x. All
objects are aligned on 64K boundaries. Provides upward compatibility when
applications will be allowed by future versions of the operating system to access
regions above 512MB "16-bit compatibility" barrier

Often the example programs and manuals will reference the default page attribute,
fALLOC; this is a #define for 0BJ_TILE | PAG_COMMIT | PAG_EXECUTE |
PAG_READ | PAG_WRITE.

Suballocating Memory

DosSubSetMem and DosSubAllocMem provide a more efficient way for developers to
access chunks of memory smaller titan 4,096 bytes. An application can use DosAllocMem
to allocate some number of bytes, called a memory object. DosSubSetMem is used to
initialize or grow a heap within the memory object. This function has three parameters,
PVOID offset, ULONG flags. and ULONG size. The flags parameter is
used to provide mote details about the heap. The following options are available for this
parameter:

• DOSSUB_INIT - You must specify this option when first suballocating a memory object. If
this bit is not set, the operating systems will try to find shared memory from another

process. If no shared memory is found, the return code ERROR_INVALID__PARAMETER
(87) will result.

• DOSSUB_GROW - This option will grow die memory pool to the size specified by the last
parameter. Note that this flag will increase just the amount of memory in the memory
pool that will be suballocated. It will not increase the size of the memory pool itself.

• DOSSUB_SPARSE_OBJ - This options allows the operating system to commit and decommit
pages as they are needed. Note that all pages in the memory object must be
uncommitted.

• DOSSUB_SERIALIZE - Serializes the suballocation of shared memory by multiple processes.
if you have two processes sharing memory and suballocating it, use this to make your life
easier.

DosSubSetMem has access to all memory in the memory object. The application then calls
DosSubAllocMem to allocate a smaller chunk of the heap. DosSubAllocMem can allocate
all but 64 bytes of the heap. The 64 bytes is called a memory pool header. The operating
system uses it to manage the suballocated portion. DosSubAllocMem has three parameters,
PVOID Offset, PPVOID SmallBlock, and ULONG size. The amount actually allocated is a
multiple of 8 bytes, rounded up if not a multiple of 8.

The following program shows you how to handle suballocations of memory:

SUBMEM.C
SUBMEM.MAK
SUBMEM.DEF

You'll notice when you run this program that all your pointer sizes are rounded up In
increments of 8 and that DosSubAllocMem starts allocating at the 65th byte of the memory
object.

Shared Memory

Shared memory is the fastest method of interprocess communication. There are two types
or shared memory, named and unnamed. Shared memory is created by a call to
DosAllocSharedMem. If creating shared memory, the second parameter to
DosAllocSharedMem is the name for the memory, in the form of \SHAREM\MemName.
If using unnamed memory, a NULL is specified. There is one other difference between
shared and unnamed memory-the process that allocates an unnamed memory object must
declare it as giveable by using DosGiveSharedMem, and the process accessing the memory
object must call
DosGetSharedMem. Shared memory can be committed and decommitted just like private
memory. Also, when suballocating memory from a shared memory pool, both

DosSubSetMem must use the same size parameter in both processes. or an error will result.

Gotcha!

All the processes involved with the shared memory (both the getting and
giving) must free the shared memory before it is available foe reuse. if
only one process frees the memory, you may begin to notice an increase
in your program's memory consumption over time. The system maintains
a usage count of shared memory that enables is to keep track of all she
processes that have access to the shared memory. The IBM
products THESEUS2 and SPM/2 are the only tools available to detect
memory leakage. They are two
excellent tools to monitor the system performance.

The following programs are examples of allocating a named shared memory object. Notice
that the memory is being allocated in a downward fashion; private memory is allocated
upward from the bottom of the available space.

BATMAN.C
BATMAN.DEF
ROBIN.C
ROBIN.DEF
DYNDUO.H
DYNDUO.MAK

DosAllocMem or malloc?

DosAllocMem, DosSubSetMem, and DosSubAllocMem might seem like a bit of overkill if
you would like to have only 20 bytes for a string every now and then. And they are. These
functions are moss useful for large programs that allocate large quantities of memory at one
time, allocate shared memory, or have special memory needs. For most smaller
applications, malloc from an ANSI C compiler will be just fine.
Also, you probably will find that malloc is much more portable to other versions of OS/2
running on top of the Power PC. The C Set++ version of malloc is the only compiler
version of malloc that will be compared to DosAllocMem and company. In most cases
malloc will provide memory to the program just as fast as DosAllocMem. The C Set++
compiler uses a special algorithm, designed to provide the expected amount of memory in
the fastest time. The following program uses mailer to allocate memory and then displays
the amount of memory allocated plus the location of the pointer in memory. You probably
will start to notice a pattern emerging, and there is one.

SPEED.C
SPEED.MAK
SPEED.DEF

By looking at the program's output, you'll notice that memory allocation starts by using 32
for values between 1 and 16. It uses 64 for values between 17 and 32, 128, 256, and finally
512. You may notice a few "bumps" in the algorithm. They occur when the C runtime is
using some of the memory for its own purposes.

Chapter 3

Multitasking
The session and task management facilities in OS/2 give the programmer an exceptional
opportunity to fully exploit the multitasking features in the operating system. Threads or
processes can provide applications with a tremendous performance boost. OS/2 provides a special
brand of multitasking, preemptive multitasking, which is different from the multitasking found in
either Windows or the Macintosh System 7. Preemptive multitasking is controlled by the operating
system. Each process is interrupted when its time to run is over, and the process will never realize
it has been interrupted the next time it is running. In other words, OS/2 lets your computer walk
and chew gum at the same time. With either the Mac or Windows, your computer takes a step,
chews the gum, takes a step. chews the gum. And so on.

The task management of OS/2 is divided into three separate entities:

• Threads
• Processes
• Sessions

A thread is the only unit to get its own time slice of the CPU. All threads belonging to a
process are contained within that process, and each thread has its own stack and registers.
There is a systemwide limit of 4,096 threads; however, CONFIG.SYS contains a
THREADS parameter that is usually set at a significantly smaller number-256 is the
default. The base operating system uses approximately 40 threads, so most applications are
limited to 216 threads unless the THREADS parameter is changed. Typically, a thread
should have one distinct function: for example, file I/O, asynch communications, or heavy
number crunching. Each thread has a thread identifier-a TID. Each thread also has a
priority. The higher the priority, the more CPU time slices are given to the thread. A thread
is much quicker to create than a process or session and has less system overhead. All
threads within a process run in the same virtual address space; therefore, global resources,
such as file handles, and global variables are accessible from all threads in the process.
Threads are created using DosCreateThread, with the first thread created automatically by
the operating system. When a thread is created is is assigned the same priority class as the
thread that created it.

A process is a collection of threads and resources that are owned by those threads. Each
process occupies a unique address space in memory that cannot be accessed by other
processes in the system. Two processes can access the same area in memory only by using
shared memory. A process also contains file handles, semaphores, and other resources. All
processes contain at least one thread, the main thread. A process also contains a unique
identifier-a PID. A process contains its own set of memory pages that can be swapped in
and out as the kernel switches from one process to the other. A process can create other
processes; however, these must be of the same session type. For instance, a full-screen
process can only create other full-screen processes. The live types of processes are OS/2

Full Screen, OS/2 windowed, DOS Full Screen,.DOS windowed, and Presentation
Manager.

A session is similar to a process except a session also contains ownership of the mouse,
keyboard, and video. A session can contain either one process or multiple processes. The
task list (accessed by Ctrl-Esc) contains a list of all running sessions. When a process or
session creases a new session using DosStartSession, the keyboard, screen, and mouse are
responsive only to the session in the foreground.
The session chosen as the background can gain control of the three resources only by
switching to the foreground.

The Scheduler

The OS/2 Scheduler runs on a round-robin type of disbursement of CPU
time. The Scheduler deals only with threads, not processes or sessions.
Threads have four different priority levels: time-critical, server class or fixed
high, regular, and idle time. The first threads to run are the time-critical
threads. All time-critical threads will run until there are no more time-critical
threads waiting to be run. After all time-critical threads are finished, the
server-class threads are run. After server-class, the regular class of threads
are run. After the regular class of threads are run, idle-time threads are run.
Within each class of priorities are 32 sublevels. A thread that is not running
is called a "blocked" thread.

The OS/2 Scheduler does a lot of monkeying around with thread priorities. Threads are
given "boosts" by the scheduler to make OS/2's multitasking smarter. Three types of
artificial priority boosts are given to threads:

• Foreground boost
• I/O boost
• Starvation boost

The foreground boost is given to the user interface thread that is in the foreground. This is
usually the main thread. The foreground process is the process with which the user is
currently interacting. This makes the system respond quickly when the user clicks a mouse
button or types in characters at a keyboard. This boost is a full boost in priority. Also, a
Presentation Manager thread has a boost applied to it while it is processing a message.
We'll take this opportunity to get up on our soapbox. Do not throw away all the work the
operating system does to provide the end user with a crisp response time. Any operation
that takes any amount of time should be in its own thread. A well-written. multithreaded
program running on a 20 MHz 386SX will be blazingly fast to an end user used to a single-
threaded program running on a 486 DX2. Well, maybe that's a little bit of an exaggeration,
but you get the idea. Any time you see an hourglass on the screen for more than a second or
two, and the user cannot size a window or select a menu item, that program should be put
through a serious design review. Okay, off the soapbox, and on to our regularly scheduled
programming.

An I/O boost is given after an I/O operation is completed. An I/O boost does not change a
thread's priority but will bump it up to level 31 (the highest level) within its own priority
class.
A starvation boost is given to a thread in the regular class that has not been able to run.
The MAXWAIT parameter in CONFIG.SYS is used to define how long, in seconds, a
thread must nor run before it is given a starvation boost. The default value is 3 seconds.

The time slices for threads that are given a starvation boost or an I/O boost are different
from a normal time slice. Because of she tinkering the scheduler does with their priorities,
they do not get to run as long as a nonadjusted thread would run. The length of time for the
"short" and normal time slices is controlled by the TIMESLICE parameter in
CONFIG.SYS. The first value represents the "shots" time slice length; the default amount
of time is set to 32 ms. The second value represents the normal time slice length; the default
amount of time is set to 65536 ms.
A programmer can refine the way the threads in a program are run in four ways:

• DosSetPriority
• DosSuspendThread / DosResumeThread
• DosEnterCritSec / DosExitCritSec
• DosSleep

APIRET APIENTRY DosSetPriority(
 ULONG scope,
 ULONG ulClass,
 LONG delta,
 ULONG PorTid);

DosSetPriority has four parameters. The first indicates to what extent the priority is to be
changed. The priority can be changed at the process or thread level. The ulClass parameter
indicates at what class to set the priority. The delta parameter indicates at what level within
the class to set the priority. The last parameter is the process ID of the process to be
affected .A value of 0 indicates the current process. Note that a process can change just the
priority of a child process. DosSetPriority can be called anytime in the threads lifetime. It
is used to adjust the class and/or the priority level within that class. DosSetPriority should
be used to adjust threads whose tasks need special timing considerations. For instance, a
thread handling communications would probably want to run at a server class. A thread that
backs up files in the background should be set at idletime priority, so that it would run
when no other tasks were running. You can change the priority of threads in another
process. but only if they were not changed explicitly from the regular class.

APIRET DosResumeThread(TID tid);
APIRET DosSuspendThread(TID tid);

The only parameter to each of these functions is the thread ID of the thread.
DosResumeThread and DosSuspendThread are used to change a thread's locked stare.
DosSuspendThread will cause a thread to be set to a blocked state. DosResumeThread is

used to cause a suspended thread to be put back in the list of ready-to-run threads.
DosEnterCritSec is used to suspend all other threads in a process. This function should be
used when it is vitally important that the running thread not be interrupted until it is good
and ready. DosExitCritSec will cause all the suspended threads to be put back in a ready-
to-run state A program can nest critical sections within critical sections. A counter is
incremented by DosEnterCritSec calls and decremented by DosExitCritSec calls. Only
when this counter is 0 will the critical section exit. You probably should avoid nesting
critical sections unless you absolutely need this functionality. One final note on critical
sections: If a thread exits while in a critical section, the critical section automatically ends.

Gotcha!

DosEnterCritSec can be a very dangerous function. If for any reason the
single thread running is put in a blocked state and needs some other
thread to cause it to be unblocked, your program will go out to lunch and
will not return. For example. DosWait...Sem are major no-nos in a critical
section, because the required DosPost...Sem calls probably will exist in a
thread that will be put in a suspended slate.
Also, be very careful calling a function that resides in a .DLL when inside
a critical section. The function may use semaphores to manage resources,
and it may be put in a suspended state while waiting for those resources to
be freed.

DosSleep is the most practical function of the group. Using this function you can put a
thread in a suspended state until a specified amount of time has passed. DosSleep has only
one argument, the amount of time to "sleep". This value is specified in milliseconds. A
thread cannot suspend other threads using DosSleep, only itself. When DosSleep is called
with an argument of 0, the thread gives up the rest of its time slice. This does not change
the thread's priorities or affect its position in the list of ready-to-run threads.

The Subtleties of Creating a Thread

DosCreateThread is used to create a thread. The following code illustrates this:

DosCreateThread (&tidThread, /* thread TID */
 pfnThreadFunction, /* pointer to fn */
 ulThreadParameter, /* parameter passed */
 ulThreadState, /* 0 to run, 1 to suspend */
 ulStackSize); /* 4096 at a minimum */

The first parameter contains the address of the threads TID, or Thread ID. The next
parameter is .a pointer to the function that the operating system will call when the thread is
running.. When using
DosCreateThread , a typical function prototype of a thread function looks something like
this:

VOID APIENTRY fnThread(ULONG ulThreadArgs)

Notice the APIENTRY keyword. This is used to indicate that this is a function that will be
called by the operating system. The ulThreadArgs is 4 bytes of data, in the form of a
ULONG, that are passed as an argument to the thread function. If you need to pass more
than one value, you need to create a structure that contains all the values you want to pass.
The first bytes of the structure should contain the size of the structure that is being passed.
Also, if you use a structure, make sure you pass the address of the structure as the data. The
ulThreadState parameter indicates whether the thread is started in a running state (with a
value of 0) or in a suspended stare (with a value of 1). If the thread is started suspended,
somebody needs to call DosResumeThread to get the thread going. The last parameter is
the stack size. The threads stack is located in memory when the thread is blocked and is
loaded into registers when the thread becomes ready to run. In OS/2 2.0, the programmer
no longer needs to mess with allocating and freeing the memory for the stack. However, the
programmer does need to know the maximum amount of memory that the stack will use.
This is the value passed as the last parameter. This memory is not committed until it is
absolutely necessary. The thread stack uses guard pages to commit a new page as
necessary. Also, you may notice that a thread stack grows downward rather than upward as
normal memory grows.

Threads and the C Runtime

Tire C runtime library can cause problems when used within a thread other than the main
thread. Because the C runtime uses many internal variables, multiple threads using the C
runtime can cause problems unless the runtime library is notified of the other threads. C-
Set/++ has provided a separate function, _beginthread, to fix this situation.. This function
should be used to create threads in which you want to use the C library. The parameters for
_beginthread are very similar to the parameters for DosCreateThread

 _beginthread (pfnThreadFunction,
 /* void pointer to thread function */
 pNull,
 /* this is NOP parameter, used for migration */
 ulStackSize, /* stack size */
 pArgList); /* pointer to argument list */

The prototype for a thread function changes a little here. The typical thread function
prototype looks something like this:

void fnThread(void *pArgList);

Gotcha!

When using the C Set/++ compiler, make sure you specify the
multithreaded option, Gm+. Also, either let the compiler link in the
proper library for you, or make sure you specify DDE4M*.LIB

A Thread Example

The following example creates threads with different priorities. Each thread writes its
priority to the screen. In this example, we avoided using _beginthread and printf but
instead used DosCreateThread and DosWrite. This gives us the opportunity to start the
threads in a suspended state.

THREADS.C
THREADS.MAK
THREADS.DEF

The first part of the program is the actual creation of the threads. We'll create five almost
identical threads. Each thread is started in suspended state by specifying 1
(THREAD_SUSPEND) as ulThreadFlags. The thread function, MyThread, is assigned to
pfnThreadFuncrion. Since the thread function itself is fairly small, the minimum stack size
of 4.096 is specified.

The one difference between the five threats is their priority. Each thread priority is passed
to MyThread in the ulThreadArgsr variable. An array,ulThreadPrioriries[], holds all the
possible thread priority classes.
DosSetPriority is used actually to change the priority of the threads from regular priority to
the respective priority in the ulThreadPrioriries[] array. The first parameter,
PRTY_THREAD, specifics that only one thread, not all the threads in the process, will
have its priority affected. The second parameter is the priority class to use. The third
parameter is the delta of the priority level. Within each class ate 32 levels that can be used
to refine a thread's priority even further. Threads at level 31 of a class will execute before
threads at level 0 of the same class. This parameter, specifies the change to make to the
current level, not the absolute level value itself. Values are from -31 to +31. A value of 0
indicates no change, and this is what we use in this example. The last parameter,
tidThreadID[], is the thread ID of the thread whose priority is to be changed.
Once the thread is created and its priority has been changed, DosResumeThread is called
to wake the thread up and have it begin running.
These steps are repeated for all five threads in a FOR loop. DosSleep is used to delay the
main thread from ending for 2 seconds. This gives all the threads a chance to complete.

The Thread Output

Each thread will print out its priority 200 times. Although this example is an elementary
program, it will give you some insight into how threads are scheduled. The screen output
you see should show the "3" thread (PRTYC_TIMECRITICAL) running first, followed by
the "4" thread (PRTYC_FORGROUNDSERVER). The "2" thread (PRTYC_REGULAR)
and the "0" thread (PRTYC_NOCHANGE) actually are running at the same priority and
should appear somewhat intermingled. A 0 in the priority class means no change from the
existing class. The "1" thread PRTYC_IDLETIME) should always run after the other
priority threads.

Executing a Program

The function DosExecPgm is used to execute a child process from within a parent process.
A child process is a very special kind of process. Normally all resources are private to each
process; however. because of the parent/child relationship, a child can inherit some of the
resources owned by the parent. Most handles can be inherited; however, memory cannot,
unless it is shared memory. This protects one process (even if it is a child process) from
destroying another process.
The following examples uses DosExecPgm to create a new command process session. The
command process executes a "dir *.*"

PROG.C
PROG.MAK
PROG.DEF

The first parameter or DosExecPgm is a buffer that is used to store information if the
application being started fails. The size of the buffer is the next parameter.
The third parameter indicates how you wont to the child process to run. A child process can
run simultaneously with the parent process (EXEC_ASYNC), or the parent can wait to run
until the child has finished(EXEC_SYNC). There are other options, but these are the two
most commonly used.

Gotcha!

The parameter string conforms to regular C parameter conventions, where
argv[0] is the name of the executing program. After the program name,
you must insert one null character. Following the null is the regular
string of program arguments. These arguments must be terminated by two
null characters. This is accomplished easily by manually inserting one
null as the end of the argument string and letting the normal C string null
termination insert the other.

The argument string for this example is:

"CMD.EXE\0 /C dir *.*\0"

CMD.EXE will execute a new command processor session. The "\0" is the first null
character. The argument string "/C dir *.*\0" indicates the session will be cloned when it
finishes executing the dir *.* command. The "\0" at the end is the first of the last two nulls.
The second null is inserted automatically at the end of the string.

The fifth parameter is the environment string to pass to the new program. This is formatted:

variable = text \0 variable = text \0\0

Each environment variable you want to set must be ended with a null character. The end of
the string must be terminated with two null characters. A null value in the environment
string variable indicates that the child process will inherit its parent's environment.

The next parameter is a RESULTCODES structure. This structure contains two values, a
termination code and a result code. The operating system provides a termination code to
indicate whether the program ended normally or whether some error, for example, a trap,
ended the program abruptly. The result code is what is returned by the program itself, either
through DosExitProcess or through return.
The last parameter is the actual name of the program to be executed. A fully qualified
pathname is necessary only if the executable file is not found in the current directory or in
any of the directories specified in the path.
There are several ways to tell whether a child process has terminated, but the easiest by far
is DosCwait. This function either will wait indefinitely until a child process has ended, or
will return immediately with an error, ERROR_CHILD_NOT_COMPLETE.

Sessions

A session is a process with its own input/output devices (i.e.. Presentation Manager / non-
Presentation Manager output, keyboard, and mouse). There are several different types of
sessions:

• OS/2 window
• OS/2 full screen
• DOS window
• DOS full screen
• Presentation Manager (PM)

All are started the same way, using DosStartSession.

Gotcha!

There is a little bit of a trick to determine whether to use DosExecPgm or
DosStartSession. The difference lies in whether she newly created process
is going to perform any input or output. Table 3.1 outlines the guidelines.
If you need to determine the type of an application (or .DLL).
DosQueryAppType can be used.

Table 3.1 Starting Session Guidelines

Parent Type Child Type Child does I/O ? Use

PM PM - DosExecPgm or DosStartSession

Non-PM PM - DosStartSession

PM Non-PM yes DosStartSession

PM Non-PM no DosExecPgm or DosStartSession

The following example program starts a seamless Windows session using DosStartSession

STARTWIN.C
STARTWIN.MAK
STARTWIN.DEF

The DosStartSession function itself is actually very small. Most of the preparatory work is
done by setting up the STARTDATA structure. The structure looks like this:

 Start session data structure.

typedef struct _STARTDATA
{
 USHORT Length; /* The length of the data structure, in bytes,
including Length itself. */
 USHORT Related; /* An indicator which specifies whether the
session created is related to the calling session. */
 USHORT FgBg; /* An indicator which specifies whether the new
session should be started in the foreground or background. */
 USHORT TraceOpt; /* An indicator which specifies whether the
program started in the new session should be executed under conditions
for tracing. */
 PSZ PgmTitle; /* Address of an ASCIIZ string that contains the
program title. */
 PSZ PgmName; /* The address of an ASCIIZ string that contains
the file specification of the program to be loaded. */
 PBYTE PgmInputs;/* Either 0 or the address of an ASCIIZ string
that contains the input arguments to be passed to the program. */
 PBYTE TermQ; /* Either 0 or the address of an ASCIIZ string
that contains the file specification of a system queue. */
 PBYTE Environment;/* The address of an environment string to be
passed to the program started in the new session. */
 USHORT InheritOpt; /* Specifies whether the program started in the
new session should inherit the calling program's environment and open
file handles. */

 USHORT SessionType;/* The type of session that should be created
for this program. */
 PSZ IconFile; /* Either 0 or the address of an ASCIIZ string
that contains the file specification of an icon definition. */
 ULONG PgmHandle; /* Either 0 or the program handle. */
 USHORT PgmControl;/* An indicator which specifies the initial
state for a windowed application. */
 USHORT InitXPos; /* The initial x-coordinate, in pels, for the
initial session window. */
 USHORT InitYPos; /* The initial y-coordinate, in pels, for the
initial session window. */
 USHORT InitXSize; /* The initial x extent, in pels, for the
initial session window. */
 USHORT InitYSize; /* The initial y extent, in pels, for the
initial session window. */
 USHORT Reserved; /* Reserved; must be zero. */
 PSZ ObjectBuffer; /* Buffer in which the name of the object
that contributed to the failure of DosExecPgm is returned. */
 ULONG ObjectBuffLen;/* The length, in bytes, of the buffer
pointed to by ObjectBuffer. */
 } STARTDATA;

 typedef STARTDATA *PSTARTDATA;

Length is the length of the structure in bytes.

FgBg specifies whether the new session will be a child session (field is TRUE) or nit
independent session (field is FALSE).

FgSg defines whether the session is to be sinned in the foreground (field is FALSE) or in
the background (field is TRUE).

TraceOpt specifies whether there is to be any debugging (tracing) of the new session.
TRUE indicates debug on; FALSE indicates debug off.

PgmTitle is the name that the program is to be called. This is not the name of the
executable, only the title for any windows or task list. If a NULL is used, the executable
name is used for the title.

PgmName is the fully qualified pathname of the program to load.

PgmInputs is a pointer to a string of program arguments (see page 23 for argument
formatting.)

TermQ is a pointer to a string that specifies the name of a system queue that will be
notified when the session terminates.

Environment is a pointer to a string of environment variables (see page 2.3 for
environment variable formatting.)

InherritOpt indicates whether the new session will inherit open file handles and an
environment from the calling process. TRUE in this field will cause the session to inherit
the patent's environment; FALSE will cause the session to inherit the shell's environment.

SessionType specifies the type of session to start. Possible values are listed in Table 3.2

Table 3.2 Descriptions of Session Types

Value Description

SSF_TYPE_DEFAULT Uses the program's type as the session type

SSF_TYPE_FULLSCREAN OS/2 full screen

SSF_TYPE_WINDOWABLEVIO OS/2 window

SSF_TYPE_PM Presentation Manager program

SSF_TYPE_VDM DOS full screen

SSF_TYPE_WINDOWEDVDM DOS window

In addition. Table 3.3 lists the values that are also valid for Windows programs.

Table 3.3 Valid Windows Session Types

Value Description

PROG_31_STDSEAMLESSVDM Windows 3.1 program that will execute in its own windowed

PROG_31_STDSEAMLESSCOMMON Windows 3.1 program that will execute windowed session.

PROG_31_ENHSEAMLESSVDM
Windows 3.1 program that will execute in enhanced
compatibility mode in its own windowed session.

PROG_31_ENHSEAMLESSCOMMON
Windows 3.1 program that will execute in enhanced
compatibility mode in a common windowed session

PROG_31_ENH
Windows 3.1 program that will execute in enhanced
compatibility mode in a full screen session.

PROG_31_STD
Windows 3.1 program that will execute in a full screen
session.

IconFile is a pointer to a fully qualified pathname of an .ICO file to associate with the
new session.
PgmName i s a program handle that Is returned from either WinAddProgram or
WinQueryProrgamHandle A 0 can be used if these functions are not used.
PgmControl specifies the initial attributes for either the OS/2 window or DOS window
sessions. The following values can be used:

SSF_CONTROL_VISIBLE
SSF_CONTROL_INVISIBLE
SSF_CONTROL_MAXIMIZE
SSF_CONTROL_MINIMIZE
SSF_CONTROL_NOAUTOCLOSE
5SF_CONTROL_SETPOS

Except for SSF_CONTROL_NOAUTOCLOSE and SSF_CONTROLSETPOS, the values
are pretty self-explanatory. SSF_CONTROL_NOOAUTOCLOSE is used only for the OS/2
windowed sessions and will keep the sessions open after the program has completed. The
SSF_CONTROL_SETPOS value indicates that the operating system will use the InitXPos,
InitYPos, InitXSise. and InitYSize for the size and placement of the windowed sessions.

The second parameter to DosStartSession is the address of a ULONG that will contain the
session ID after the function has completed. The last parameter is the address of a PID
(process ID) that will contain the new process's PID after the session has started.

Chapter 4

File I/O and Extended Attributes

File I/O is one of the most important aspects of any operating system. OS/2 makes the file
system programming very easy to understand and master, yet it still provides the
programmer with many flexible and powerful features. OS/2 has introduced to DOS
developers the new concept of Installable File Systems. which allows various file systems
to be installed like device drivers. OS/2 introduces the new High Performance File System
(HPFS), which allows greater throughput and security features for servers, workstations.
and local area network (LAN) administrators. The File Allocation Table (FAT)
compatibility is preserved, so DOS users can manipulate their flies without any constraints.

Extended Attributes

The following examples demonstrate some straightforward file manipulation, yet provide
the user with some useful concepts. It is also necessary to introduce the concept of
Extended Attributes (EAs), which is the lesser-known 0S/2 file system feature. One of the
examples shows a way to gain access to the various types of EAs. EAs appeased in 0S/2 1.2
and have remained there through the 16- to 32-bit migration; they are nothing more than
additional data that is associated with the file, The user does not see this extra data. It is
there only for the use of the application and operating system. The designers had to be
creative it order to implement EA support under FAT due to the fact that DOS, which is the
grandfather of FAT never had support for EAs. The HPFS does not require the same
creativity in implementation, thus the FAT implementation, is the one that deserves a short
explanation.

The FAT directory entries take up 32 bytes (20 hex) and are represented by Table 4.1.

Table 4.1 FAT Directory Entries

Entry Location

Filename: 00-07

Extension: 08-0A

Attribute: 0B

Reserved: 0C-15

Time: 16-17

Date: 18-19

FAT cluster: 1A-1B

Size: 1C - 1F

Most DOS files will have the reserved bits 0C to 15 set to zero. This is the area that is
utilized to attach the Extended Attributes to the files in OS/2. The EA allocation clusters
use the 14h and 15h bytes, and thus may appear illegal to some DOS applications. In order
to avoid DOS compatibility problems, another file entry is maintained called EA DATA.
SF; this file "pretends" to own all of the loose EA clusters on the hard disk, thus eliminating
"lost clusters" messages from chkdsk.exe and similar messages from other disk managing
utilities. Two references to all EA clusters exist: one that is maintained with the 14h- and
15h-byte directory entries, and one that is "assigned" to the EA DATA.SF. This
implementation creates a source of confusion for users who are not familiar with EAs. For
example, when using EA unaware backup utilities or when copying files from an OS/2
partition under DOS. most users do not know what to do wish the EA DATA.SF file. Users
must realize that the EA clusters referenced by that file belong to several different
applications. In order to maintain the EAs properly, it is best to use the OS/2 EAUTIL.
program to separate EAs from their owners, then copy them as separate files and later
reunite them for a happy ending.
Generally the EAs take up a substantial amount of disk space; if space is at a premium,
EAs not associated with a critical attribute can usually be deleted. In such cases, the
presence of the EA is not critical to the application's correct execution and thus it can be
removed. Users must take care in determining which EAs can be removed, as some
applications will not work correctly afterward.

A more thorough discussion of EA API and a detailed discussion of the API structures for
the FAT and HPFS can be found in the OS/2 Programming Guide and various other IBM
technical publications. The short description offered here is merely for the benefit of the
programming examples and to help the programmer understand the API syntax used to
attain the EA information. Extended attributes will appear foreign to DOS users and
programmers, and their usefulness generally is questioned almost immediately. Only upon
closer inspection does it become evident that EAs are quite important and really constitute a
must-have feature , especially in high-end operating systems such as OS/2. Basically the
Extended Attributes are nothing more than a storage area of information no more than 64K
in sire that are available for applications to use as they please. OS/2 defines several
standard types of EAs that are available for general use. Also, the programmer can define
application-specific extended attributes. The only restriction is that the total EA size s
cannot exceed 64K. Standard EAs are called SEAs, and by convention starts with a period
[.]. They include:

.ASSOCTABLE

.CODEPAGE

.COMMENTS

.HISTORY

.ICON

.KEYPHRASES

.LONGNAME

.SUBJECT

.TYPE

.VERSION

It is a good idea to not use the preceding [.] character in your own applications. The
operating system reserves the right to use [.] as the first character of the EA name types.
Nothing prevents users from implementing the same convention, but if OS/2 designers
decide to add another standard type that happens to use your EA name, some unpredictable
behavior may result. The type of data that is stored within an SEA is representative of the
SEA name. For example, the .ICON SEA will contain the icon data, while the .TYPE SEA
will contain the file object's type. This type can represent an executable, data, metafile, C
code, bitmap, icon, resource file, object code, DOS binary, and so on. As you might have
guessed, the .TYPE SEA is one of the more frequently used attributes of a file object. Note
that extended attributes are associated not only with files but also with subdirectories. In
fact, the subdirectory containing the Workplace Shell desktop information contains
subdirectories that have many, many EAs.

EAs - Fragile: Handle with Care

A programmer must take certain steps while using EAs. First, if the file objects are being
moved or copied to a system that does not support EAs (such as a DOS-FAT combination),
the programmer must take care not to lose the EAs that may be associated with the
particular file object. Consider the case of uploading a file with EAs to a UNIX machine
and then downloading the same file back. Doing so may result in EAs being lost or
misplaced because most UNIX machines do not support EAs. Another good example is
trying to copy a file that has a long name from an HPFS partition to a FAT partition. Since
FAT supports the 8.3 naming convention only, the file name may be truncated, but that is
not a problem since the correct HPFS name may be stored in the .LONGNAME EA. An
application that manipulates files must be EA- and HPFS-aware in order to perform proper
file management in an OS/2 environment.

The LIBPATH.C Example

The first example we discuss attempts to find out the value of the LIBPATH environment
variable. In OS/2 Warp, an extended LIBPATH variable was created. This special variable
can be set or queried from the command line or from an API, DosSetExtLIBPATH and
DosQueryExtLIBPATH. This variable can be changed dynamically and either pretended
or appended to the system LIBPATH variable. The system LIBPATH itself cannot be
returned from the regular environment SET command or a DosQuery... API. Occasionally
the system LIBPATH variable is a handy thing to know. So, a not-so-clean solution is to

find the value of the boot drive, find the CONFIG.SYS file, and attempt to extract the
LIBPATH string from that file. This will work only when there have been no previous
changes to the CONFIG.SYS file since the system has been booted and specifically no
direct manipulations of the system LIBPATH value. Although this example is a crude
kluge, the method actually can be useful on a number of occasions.

LIBPATH.C
LIBPATH.MAK
LIBPATH.DEF

The first step is to find the system boot drive. In order to do this, use DosQuerySysInfo
and specify the arguments corresponding to the boot drive information. DosQuerySysInfo
takes three input parameters and one output parameter, and returns the values of the
system's static variables:

 APIRET DosQuerySysInfo (
 ULONG uStartIndex; /* Ordinal of the first system variable to
return. */
 ULONG uLastIndex; /* Ordinal of the last system variable to
return. */
 PVOID pDataBuf; /* Address of the data buffer where the system
returns the variable values. */
 ULONG ulDataBufLen);/* Length, in bytes, of the data buffer. */
/* APIRET Return Code. */

This call can return a single value or a range of values, depending on the ulSrartIndex,
ulLastIndex. As is evident by the example, in order to obtain a single value, the
ulStartIndex and ulLastIndex are set to the same input value:

arReturn = DosQuerySysInfo(
 QSV_BOOT_DRIVE,
 QSV_BOOT_DRIVE,
 &ulDrive,
 sizeof(ulDrive));

The QSV_BOOT_DRIVE constant is defined by the BSEDOS.H header file, which is part
of the set standard header files provided by she Programmer's Toolkit. Table 4.1 defines the
additional values. The third parameter is the data buffer that DosQuerySysInfo uses to place
the returned values into. The parameter is the size of the data buffer.

Table 4.1 System Constants for DosQuerySysInfo

Description Value Meaning

QSV_MAX_PATH_LENGTH 1 Maximum path name length in bytes

Q_MAX_PATH_LENGTH 1 = QSV_MAX_PATH_LENGTH

QSV_MAX_TEXT_SESSIONS 2 Maximum number or text sessions

QSV_MAX_PM_SESSIONS 3 Maximum number of PM sessions

QSV_MAX_VDM_SESSIONS 4
Maximum number of virtual DOS machine (VDM)
sessions

QSV_BOOT_DRIVE 5 Boot drive value (1=A:, 2=B:, etc.)

QSV_DYN_PRI_VARIATION 6 Dynamic/Absolute priority (0=Absolute, 1=Dynamic)

QSV_MAX_WAIT 7 Maximum wait time in seconds

QSV_MIN_SLICE 8 Minimum time slice allowed in milliseconds

QSV_MAX_SLICE 9 Maximum time slice allowed in milliseconds

QSV_PAGE_SIZE 10 Default page size (4K)

QSV_VERSION_MAJOR 11
Major version number (20 for OS/2 2.0, 2.1, 2.11, 3.0,
4.0)

QSV_VERSION_MINOR 12
Minor version number (00, 10, 11, 30,40 for OS/2 2.0,
2.1, 2.11, 3.0, 4.0 respectively)

QSV_VERSION_REVISION 13 Revision version letter

QSV_MS_COUNT 14
Free running millisecond 32-bit counter (value=0 at boot
time)

QSV_TIME_LOW 15 Lower 32 bits of time since 01-01-1970 in seconds

QSV_TIME_HIGH 16 Upper 32 bits of times since 01-01-1970 in seconds

QSV_TOTPHYSMEM 17 Total number of bytes of physical memory

QSV_TOTRESMEM 18 Total number of system-resident memory

QSV_TOTAVAILMEM 19 (Available memory for all processes)
Maximum number of bytes of memory that can be

allocated by all processes in the system. This number is
advisory and is not guaranteed, since system conditions
change constantly.

QSV_MAXPRMEM 20

(Avail private mem for calling proc)
Maximum number of bytes of memory that this process
can allocate in its private arena. This number is advisory
and is not guaranteed, since system conditions change
constantly.

QSV_MAXSHMEM 21

(Avail shared mem for calling proc)
 Maximum number of bytes of memory that a process
can allocate in the shared arena. This number is advisory
and is not guaranteed, since system conditions change
constantly.

QSV_TIMER_INTERVAL 22 Timer interval in tenths of millisecond

QSV_MAX_COMP_LENGTH 23
 Maximum length, in bytes, of one component in a path
name.

QSV_FOREGROUND_FS_SESSION 24

Session ID of current fgnd FS session
Session ID of the current foreground full-screen session.
Note that this only applies to full-screen sessions. The
Presentation Manager session (which displays Vio-
windowed, PM, and windowed DOS Sessions) is full-
screen session ID 1.

QSV_FOREGROUND_PROCESS 25 Process ID of the current foreground process.

QSV_NUMPROCESSORS 26 Number of processors in the machine

QSV_MAXHPRMEM 27
Maximum amount of free space in process's high private
arena

QSV_MAXHSHMEM 28
Maximum amount of free space in process's high shared
arena

QSV_MAXPROCESSES 29 Maximum number of concurrent processes supported

QSV_VIRTUALADDRESSLIMIT 30 Size of the user's address space in megabytes

QSV_INT10ENABLED 31 INT10ENABLED

QSV_MAX = QSV_INT10ENABLED

Gotcha!
An application that is intended to be used in the HPFS/FAT environment should
make the DosQuerySysInfo call and determine the maximum value of the legal
file name length: QSV_MAX_COMP_LENGTH. For HPFS, this value is much
greater than FAT (255). The application should issue this call in its initialization
section and remember the pertinent values for future DosFindFirst,
DosFindNext buffer sire allocation values.

Once the boot drive is located, the string containing the full path to CONFIG.SYS is
created.

Getting the File Size

 arReturn = DosQueryPathInfo(
 pchFile,
 FIL_STANDARD,
 &fsStatus,
 sizeof(fsStatus));
pchBuffer = malloc (fsStatus.cbFile +1);

DosQueryPathInfo is used to determine the size of CONFIG.SYS. The function is
designed to get file information for a file or subdirectory. The first parameter, pchFile, is
the fully qualified path for the file. The second parameter is the level of information
required. All we need for this example is standard file information, FIL_STANDARD. The
information level determines the third parameter. If FIL_STANDARD is specified, a
pointer to a FILESTATUS3 structure is used. The structure looks like this:

 typedef struct _FILESTATUS3 {
 FDATE fdateCreation; /* Date of file creation. */
 FTIME ftimeCreation; /* Time of file creation. */
 FDATE fdateLastAccess; /* Date of last access. */
 FTIME ftimeLastAccess; /* Time of last access. */
 FDATE fdateLastWrite; /* Date of last write. */
 FTIME ftimeLastWrite; /* Time of last write. */
 ULONG cbFile; /* File size (end of data). */
 ULONG cbFileAlloc; /* File allocated size. */
 ULONG attrFile; /* Attributes of the file. */
 } FILESTATUS3;

The FILESTATUS3 structure contains two fields of interest: cbFile and cbFileAlloc. The
cbFiIe element contains the actual size of the file, start to finish, in bytes. The cbFileAlloc,
on the other hand, contains the file size, based on system allocation unit (AU) size, whose
value can be a multiple of 512, 2K, 4K, 8K, l6K,32K. and so on, depending on the type of
magnetic media used. HPFS and diskettes use 512-byte AUs, while the FAT AU size
depends on the volume size. cbFileAlloc is of minimal value in applications, and the cbFile
value should be used to allocate the required storage. Thus, cbFile size value is used in the
next call to allocate the memory buffer needed to read the whole CONFIG.SYS at once,
plus an extra byte for a NULL character.

This memory allocation does not have to be performed. It is possible to read one character
at a time and parse the output using a 1-byte storage area. The method used in CHKEA was
used for ease of implementation as well as performance reasons. Reading the whole file is
much quicker. (Since the CONFIG.SYS is generally smaller than 4K in size, it should
easily fit into a single page of memory, which is the smallest allocation allowed in 32-bit
OS/2.) The parsing can be achieved more rapidly as well. Memory operations are much
quicker than storage disk I/O.

Opening a File

Having found the file size, the next step is to attempt to open the CONFIG.SYS file. The
DosOpen API call is a good example of the flexibility and power of the OS/2 file system
interface. Several flags are available to the programmer, and almost any combination of
them can be defined in order to provide for maximum systemwide cooperation. In this case,
the file is opened in read-only mode and with full sharing enabled This means that if
another application decided to open and read CONFIG.SYS at the same time, it would be
able to do so. Allowing other applications full sharing rights also presents a problem of the
file data being changed while we are attempting to read if. Although this is a remote
possibility, the risk is still there; using the OPEN_SHARE_DENYWRITE flag instead of
OPEN_SHARE_DENYNONE easily prevents it. The OPEN_FLAGS_SEQUENTIAL flag
is used to define how we will be reading the file. Last. we examine the file in read-only
mode by specifying the flag OPEN_ACCESS_READONLY. DosOpen is a fairly involved
API. We'll go into some more details in just a moment.

arReturn = DosOpen (
 pchFile,
 &hfFile,
 &ulAction,
 0,
 FILE_NORMAL,
 FILE_OPEN,
 OPEN_FLAGS_FAIL_ON_ERROR |
 OPEN_FLAGS_SEQUENTIAL |
 OPEN_SHARE_DENYNONE |
 OPEN_ACCESS_READONLY,
 NULL);

Reading a File

arReturn = DosRead(
 hfFile,
 pchBuffer,
 fsStatus.cbFile,
 &ulBytesRead);

DosRead is the function to read not only flies but any devices. The first parameter, hfFile,
is the file handle returned from DosOpen . The buffer, pchBuffer, is the second parameter.
The third parameter is the number of bytes to read. In our case, the entire file size is used.
The last parameter is a pointer to a ULONG. The number of bytes actually placed into the
buffer is returned in a variable, ulBytesRead.

Note: In DOS and OS/2 it is possible to get a good return code (arReturn = 0) and not have the
DosRead/DosWrite API complete as expected. It is a good idea to check for the return code first,
then check for the BytesRead value and compare it with the expected number.

Once in memory, the last character of the CONFIG.SYS file is set to NULL. This is done
so that string operations can be performed more easily. The last step is parsing the file in
order to find the LIBPATH information. Once the LIBPATH is found, it is displayed with a
straightforward printf. The cleanup is accomplished by freeing the memory and using
DosClose to close the file.

arReturn = DosClose(hfFile);
printf("\n%s\n", pchLibpath);
free(pchBuffer);

More on DosOpen

Before we continue with the EA example, it might be beneficial to cover the DosOpen API
in greater detail.

APIRET DosOpen(
 PSZ pszFileName, /* Address of the ASCIIZ path name of the file or
device to be opened. */
 PHFILE pHf, /* Address of the handle for the file. */
 PULONG pulAction, /* Address of the variable that receives the value
that specifies the action taken by the DosOpen function. */
 ULONG cbFile, /* New logical size of the file (end of data,
EOD), in bytes. */
 ULONG ulAttribute, /* File attribute information. */
 ULONG fsOpenFlags, /* The action to be taken depending on whether the
file exists or does not exist.*/
 ULONG fsOpenMode, /* The mode of the open function. Possible values
are shown in the following list: */
 PEAOP2 peaop2); /* Extended attributes. */

The first three arguments are clearly identified.

• pszFileName Input address of a string containing file name

• ppFileHandle Output address of a returned file handle

• pActionTaken Output address of a specified action variable

The action variable on output will have the following useful values:

Table 4.3 Values of the Action Variable

#define Value Meaning

FILE_EXISTED 1 File existed prior to call

FILE_CREATED 2 File was created as the result of the call

FILE_TRUNCATED 3 Existing file was changed by the call

The next three input arguments can create the most confusion.

• ulFileAttribute Double word containing the files attributes

• ulOpenFlag Double word containing the desired open conditions

• ulOpenMode Double word containing the mode/sharing conditions

They create confusion because the same DosOpen call can be used to open files, disk
volumes, pipes, and other devices. For example, if a user wanted to open a named pipe,
some of the sharing flags and the ulFileSize value are ignored by the operating system
because the pipes buffer sizes are specified by the DosCreareNPipe API. Also, the
ulFileSize may not make sense if the user is opening a disk volume for direct access.
Sometimes device drivers allow DosOpen calls with a device name specified in place of
the pszFileName. It is still a null-terminated string, but in the case of a device driver the
string contains the device name, such as "DEVICE$". Specifying ulFileSize or other
ulFileAttribute flags makes no sense, and thus some of the input parameters are ignored.
All three input flag parameters are bit-encoded, meaning each bit that is set represents a
new or unique flag condition. Most of the bits can be set in combination. All of the flags are
32 bits wide, but not all of the 32 bits are used at this time. Some are reserved for future use

and must be set to zero. For example, the ulFileAttribute bit values are shown in Figure
4.1.

Figure 4.1 File attribute bit flags.

0 FILE_READONLY

1 FILE_HIDDEN

2 FILE_SYSTEM

3 RESERVED, must be set to ZERO

4 FILE_DIRECTORY

5 FILE_ARCHIVED

6-15 RESERVED, must be set to ZERO

16-31 RESERVED, must be set to ZERO

Table 4.4 describes the file attribute bit flags.

Table 4.4 File Attribute Bit Flag Descriptions

Value Description

FILE_READONLY File can be read but not written to

FILE_NORMAL File can be read and written to

FILE_HIDDEN File is a hidden file

FILE_SYSTEM File is a system file

FILE_DIRECTORY File is a subdirectory

FILE_ARCHIVED File has archive bit set

To allow the file read-only access and to declare the file to be of system type, the following
combination is used.

ulFileAttribute = FILE_READONLY | FILE_SYSTEM;

The ulOpenFlag describes the actions that the DosOpen will perform based on the bit
encoding specified by the programmer. These actions deal with conditions of file existence,
replacement, and creation. A user may want to allow the DosOpen API to fail, if the file
already exists. If so, specify:

 ulOpenFlag = OPEN_ACTION_FAIL_IF_EXISTS;

If the user wants the DosOpen call to open the file if it exists, and fail if it does not exist,
the following should be specified:

 ulOpenFlag = OPEN_ACTION_FAIL_IF_NEW |
 OPEN_ACTION_OPEN_IF_EXISTS;

Figure 4.2 depicts additional file open action flags.

Figure 4.2 File Open action flags.

0
OPEN_ACTION_FAIL_IF_EXISTS 0000

OPEN_ACTION_OPEN_IF_EXISTS 0001

OPEN_ACTION_REPLACE_IF_EXISTS 0010

1

2

3

4

OPEN_ACTION_FAIL_IF_NEW 0000

OPEN_ACTION_CREATE_IF_NEW 0001

5

6

7

8-15 RESERVED, must be set to ZERO

16-31 RESERVED, must be set to ZERO

Table 4.5 describes the file open action flags that are available.

Table 4.5 File Open Action Flags

Value Description

OPEN_ACTION_FAIL_IF_EXISTS DosOpen will fail if the file already exists; file is created

OPEN_ACTION_OPEN_IF_EXISTS File is opened if it already exists

OPEN_ACTION_REPLACE_IF_EXISTS File is replaced if it already exists

OPEN_ACTION_FAIL_IF_NEW
DosOpen will fail if file does not exist; file is opened if it does
exist

OPEN_ACTION_CREATE_IF_NEW File is created if it does not exist

The ulOpenMode describes the mode that the open call will set for the file object. This
flag will tell the system how to behave when other users request access to the file that is
currently in use by someone else. It is here that the system write-through buffering is
specified and the error reporting is decided. For example, the user may want to allow the
system to use its cache to transfer the data between the application and the file object, but
the actual write must complete prior to the return of the call. Also, the user may want to
have all of the errors reported directly to his or her application and not through the system
critical-error handle.. On top of that, a programmer may want to open this file in read-only
mode and not allow anyone else write access to the file while in use. Wow! Well, for a
combination of conditions like that, use the following flags:

 ulOpenFlag = OPEN_FLAGS_WRITE_THROUGH
 | OPEN_FLAGS_FAIL_ON_ERROR
 | OPEN_SHARE_DENY_WRITE
 | OPEN_ACCESS_READONLY ;

Thus, a. number of conditions can be specified, and file management becomes a tedious
and time-consuming task for the programmer and the operating system. Figure 4.3 depicts
the available open mode flag.

Figure 4.3 Open mode flags.

0
OPEN_ACCESS_READONLY 000

1

11 RESERVED, must be set to ZERO

12 OPEN_FLAGS_NO_CACHE

2
OPEN_ACCESS_WRITEONLY 001

OPEN_ACCESS_READWRITE 010

3 RESERVED, must be set to ZERO

4 OPEN_SHARE_DENYREADWRITE 001

OPEN_SHARE_DENYWRITE 010

OPEN_SHARE_DENYREAD 011

OPEN_SHARE_DENYNONE 100

5

6

7 OPEN_FLAGS_NOINHERIT

8 OPEN_FLAGS_NO_LOCALITY 000

OPEN_FLAGS_SEQUENTIAL 001

OPEN_FLAGS_RANDOM 010

OPEN_FLAGS_RANDOMSEQUENTIAL 011

9

10

13 OPEN_FLAGS_FAIL_ON_ERROR

14 OPEN_FLAGS_WRITE_THROUGH

15 OPEN_FLAGS_DASD

16-17 RESERVED, must be set to ZERO

18 OPEN_FLAGS_NONSPOOLED

19-27 RESERVED, must be set to ZERO

28 OPEN_SHARE_DENYLEGACY

29 RESERVED, must be set to ZERO

30 OPEN_FLAGS_PROTECTED_HANDLE

31 RESERVED, must be set to ZERO

Table 4.6 Open Mode Flag Descriptions

Value Description

OPEN_ACCESS_READONLY File is given only read access

OPEN_ACCESS_WRITEONLY File is given only write access

OPEN_ACCESS_READWRITE File Is given read/write access

OPEN_SHARE_DENYREADWRITE Other processes cannot be given read or write access

OPEN_SHARE_DENYWRITE Other processes cannot be given write access

OPEN_SHARE_DENYREAD Other processes cannot be given read access

OPEN_SHARE_DENYNONE Other processes can have read and write access to file

OPEN_FLAGS_NOINHERIT File handle is not inherited to spawned processes

OPEN_FLAGS_SEQUENTIAL File is opened for mainly sequential access

OPEN_FLAGS_RANDOM File is opened for mainly random access

OPEN_FLAGS_RANDOMSEQUENTIAL File is opened for both random and sequential access

OPEN_FLAGS_NO_LOCALITY File locality is not known

OPEN_FLAGS_NO_CACHE No file data is placed in cache

OPEN_FLAGS_FAIL_ON_ERROR
Media I/O errors are reported by return code rather
than through the system error handler

OPEN_FLAGS_WRITE_THROUGH
File writes may go through cache but will be completed
before the write call returns

OPEN_FLAGS_DASD File is a drive to be opened for direct access

OPEN_FLAGS_NONSPOOLED ?

OPEN_SHARE_DENYLEGACY ?

OPEN_FLAGS_PROTECTED_HANDLE ?

An Extended Attribute Example: CHKEA.C

The next example, CHKEA.C, shows a way to find out if the file object has Extended
Attributes associated with it. If so, then the query is made as to the size of all of the
Extended Attributes that are attached. Last, the names of the types of the Extended
Attributes are displayed, and the extended attribute data is dumped.

CHKEA.C
CHKEA.MAK
CHKEA.DEF

CHKEA.EXE expects a command-line input argument that is the name of the file of
interest. Wildcard characters are accepted. First, a determination is made if the file object
can be located on the hard disk; if successful, the full name of the object is constructed.

DosQueryPathInfo (apchArgs[1],
 FIL_QUERYFULLNAME,
 achPath,
 CCHMAXPATHCOMP);
pchPath = strrchr (achPath, '\\') ;
if (pchPath != NULL)
{ pchPath++;
 *pchPath = 0;
} /* endif */
ulCount = 1;
hdFile = HDIR_SYSTEM
arReturn = DosFindFirst(apchArqs[1],
 &hdFile,
 FILE_DIRECTORY,
 &ffbFile,
 sizeof (FILEFINDBUF4) ,
 &ulCount,
 FIL_QUERYEASIZE) ;

The DosFindFirst API is the most useful function call available to a programmer when
attempting to locate the objects.

/* Finds the first file object or group of file objects whose names match
the specification. */
/* The specification can include extended attributes (EA) associated
with a file or directory. */

APIRET APIENTRY DosFindFirst(
PSZ pszFileSpec,/* Address of the ASCIIZ path name of the file or
subdirectory to be found. */
PHDIR phdir, /* Address of the handle associated with this
DosFindFirst request. */
ULONG flAttribute,/* Attribute value that determines the file objects to
be searched for. */
PVOID pfindbuf, /* Result buffer. */
ULONG cbBuf, /* The length, in bytes, of pfindbuf. */
PULONG pcFileNames,/* Pointer to the number of entries: */
ULONG ulInfoLevel /* The level of file information required. */
);

The definition for this API can be found in the BSEDOS.H header file, which is part of the
OS/2 Developers Toolkit. Table 4.7 presents the arguments of interest.

Table 4.7 Arguments of DosFindFirst

Arguments Value(s) Meaning

phdir HDIR_SYSTEM Use STDOUT for handle

phdir HDIR_CREATE Handle is created

flAttribute bit encoded Type of object to search for

pfindbuf depends on ulInfoLevel Result of the request

ulInfoLevel FIL_STANDARD Standard file information is returned

ulInfoLevel FIL_QUERYEASIZE File EA size is returned

ulInfoLevel FIL_QUERYEASFROMLIST Actual EA data is returned

Table 4.8 lists the acceptable values for the flAuribute argument.

Table 4.8 Acceptable Values for flAttribule

Value Description

MUST_HAVE_ARCHIVED Files returned must have the archive bit set

MUST_HAVE_DIRECTORY Files returned must have the directory bit set

MUST_HAVE_SYSTEM Files returned must have the system bit set

MUST_HAVE_HIDDEN Files returned must have the hidden bit set

MUST_HAVE_READONLY Files returned must have the read-only bit set

FILE_ARCHIVED Files with archive bit set are not returned unless this value is specified

FILE_DIRECTORY
Files with directory bit set are not returned unless this value is
specified

FILE_SYSTEM Files with system bit set are not returned unless this value is specified

FILE_HIDDEN Files with hidden bit set are not returned unless this value is specified

FILE_READONLY
Files with read-only bit set are not returned unless this value is
specified

phdir is an input/output parameter. On input it specifies the type of file handle required by
the application. HDIR_SYSTEM tells the operating system to assign a handle that will
always be available to the process. This is a handle for standard output. HDIR_CREATE
will cause the system to allocate a handle and return it to the application in phdir. Since
pszFileSpec can accept wildcard characters, the handle returned can be used in conjunction
with the DosFindNext to find the next file object that matches the pszFileSpec.

flAttribute is an input bit-encoded flag that tells DosFindFirst what types of file objects
to look for. These bits represent conditions that may be true or must be true. For example,
a programmer may want to locate a directory with a particular name that may be hidden;
although there are files that can correspond to the pszFileSpec specified, only the
directories are of interest. The following bit combination could be used.

flAttribute = MUST_HAVE_DIRECTORY | FILE_HIDDEN;

The pfindbuf is a pointer to the buffer that must be allocated prior to making the
DosFindFirst call, and must be passed to the API as a pointer. On output the buffer will
contain the information specified by the next parameter ulInfoLevel, which can have three
valid values associated with it (FIL_STANDARD,
FIL_QUERYEASIZIE, FILE_QUEARYEASFROMLIST).

The first value requests DosFindFirst to return FIL_STANDARD information about the
file. FIL_STANDARD information contains the data associated with the FILEFINDBUF3
structure.

FIL_QUERYEASIZE information is requested by specifying FIL_QUERYEASIZE for
ulInfoLcvcl, and it returns the data associated with the FILEFINDBUF4 structure. Finally,
FIL_QUERYEASFROMLIST information is obtained by specifying the value
FIL_QUERYEASFROMLIST for the ulInfoLevel. It returns an EAOP2 data structure.

The FIL_QUERYEASFROMLIST request is slightly different from the previous two
levels. On input pfindbuf must contain the EAOP2 data structure with the correct names of
the EAs to be queried. Since EA data structures are variable in length. the fpGEA2List
must contain a pointer to the GEA2 list, which in turn must have the correct value specified
for the oNextEntryOffset and szName. The szName specifies the EA to be returned, and
the oNextEntryOffset contains the number of bytes from the beginning of the first entry to
the end of the next entry. On output the EAOP2 contains a pointer to the fpFEA2List. The
fpFEA2List points to the list of FEA2 structures that have the actual EA information. All

of the input records must be aligned on a two-word boundary, and the last in the list of
GEA2 structures oNextEntryOffset value must be set to zero. The following are the
various data buffers that are returned depending on the level of information requested.

• FIL_STANDARD Output generally contains the basic file information without EAs, the
FILEFINDBUF3 data structure without the last two fields: cchName and achName.

/* Level 1 (32-bit) information (used without EAs). */
 typedef struct _FILEFINDBUF3 {
 ULONG oNextEntryOffset; /* Offset of next entry. */
 FDATE fdateCreation; /* Date of file creation. */
 FTIME ftimeCreation; /* Time of file creation. */
 FDATE fdateLastAccess; /* Date of last access. */
 FTIME ftimeLastAccess; /* Time of last access. */
 FDATE fdateLastWrite; /* Date of last write. */
 FTIME ftimeLastWrite; /* Time of last write. */
 ULONG cbFile; /* Size of file. */
 ULONG cbFileAlloc; /* Allocation size. */
 ULONG attrFile; /* File attributes. */
 UCHAR cchName;
 CHAR achName[CCHMAXPATHCOMP];/* File name including null
terminator. */
 } FILEFINDBUF3;

The oNextEntryOffset field indicates the number of bytes from the beginning of the
current structure to the beginning of the next structure. When this field is 0, the last
structure has been reached.

• FIL_QUERYEASIZE Output contains the same file information as FIL_STANDARD plus
EA size.

 Level 2 (32-bit) information (used with EAs).
 typedef struct _FILEFINDBUF4 {
 ULONG oNextEntryOffset; /* Offset of next entry. */
 FDATE fdateCreation; /* Date of file creation. */
 FTIME ftimeCreation; /* Time of file creation. */
 FDATE fdateLastAccess; /* Date of last access. */
 FTIME ftimeLastAccess; /* Time of last access. */
 FDATE fdateLastWrite; /* Date of last write. */
 FTIME ftimeLastWrite; /* Time of last write. */
 ULONG cbFile; /* Size of file. */
 ULONG cbFileAlloc; /* Allocated size. */
 ULONG attrFile; /* File attributes. */
 ULONG cbList; /* Size of the file's extended
attributes. */
 UCHAR cchName; /* Length of file name. */
 CHAR achName[CCHMAXPATHCOMP]; /* File name including null
terminator. */
 } FILEFINDBUF4;

 typedef FILEFINDBUF4 *PFILEFINDBUF4;

The cbList field contains the size of the entire EA set for this file object, in bytes.

• FIL_QUERYEASFROMLIST input contains the GEA2 information. Output contains the
FEA2 information.

On input, pfindbuf contains an EAOP2 data structure. fpGEA2List contains a pointer to a
GEA2 list, which defines the attribute names whose values are to be returned. Entries in
the GEA2 list must be aligned on a doubleword boundary. Each oNextEntryOffset field
must contain the number of bytes from the beginning of the current entry to the beginning
of the next entry.

On output, pfindbuf contains a structure with a set of records, each aligned on a
doubleword boundary. These records represent the directory entry and associated EAs for
the matched file object. pfindbuf has the following format:

• The EAOP2 data structure, with the fpFEA2List pointer incorrect.
• The EAOP2 data structure occurs only once in the pfindbuf buffer. The rest of

these records are repeated for the remainder of the file objects found.
• A FILEFINDBUF3 data structure without the last two fields: cchName and achName.
• A FEA2LIST data structure contained in and related to the FILEFINDBUF3 returned.
• Length of the name string of the file object (cbName)
• Name of the file object matched by the input pattern (achName)

Gotcha!

 The result buffer from DosFindFirst should be less than 64KB.

/* Level 3 (32-bit) (FIL_QUERYEASFROMLIST) file information - get
extended attributes. */

 typedef struct _GEA2 {
 ULONG oNextEntryOffset; /* Offset to next entry. */
 BYTE cbName; /* Name length not including NULL. */
 CHAR szName[1]; /* Attribute name. */
 } GEA2;
 typedef GEA2 *PGEA2;

/* Get extended attributes list. */

 typedef struct _GEA2LIST {
 ULONG cbList; /* Total bytes of structure including full list.
*/
 GEA2 list[1]; /* Variable-length GEA2 structures. */
 } GEA2LIST;
 typedef GEA2LIST *PGEA2LIST;

/* FEA2 defines the format for setting the full extended attributes in
the file. */

 typedef struct _FEA2 {
 ULONG oNextEntryOffset; /* Offset to next entry. */
 BYTE fEA; /* Extended attributes flag. */
 BYTE cbName; /* Length of szName, not including
NULL. */
 USHORT cbValue; /* Value length. */
 CHAR szName[1]; /* Extended attribute name. */
 } FEA2;
 typedef FEA2 *PFEA2;

/* FEA2 data structure. */

 typedef struct _FEA2LIST {
 ULONG cbList; /* Total bytes of structure including full list.
*/
 FEA2 list[1]; /* Variable-length FEA2 structures. */
 } FEA2LIST;
 typedef FEA2LIST *PFEA2LIST;

/* EAOP2 data structure. */

 typedef struct _EAOP2 {
 PGEA2LIST fpGEA2List; /* GEA set. */
 PFEA2LIST fpFEA2List; /* FEA set. */
 ULONG oError; /* Offset of FEA error. */
 } EAOP2;

 typedef EAOP2 *PEAOP2;

Figure 4.4 Illustrates the EAOP2 structure in memory.

Figure 4.4 Map of EAOP2 memory buffer

EAOP2 fpGEA2List

cbList
(4 bytes)

list

cbNextEntryOffest (4 bytes)

cbName (1byte)

szName (cbName bytes)

fpFEA2List

cbList
(4 bytes)

list

cbNextEntryOffset (4 bytes)

fEA (1 byte)

cbName (1 byte)

cbValue (2 bytes)

szName (cbName bytes)

EA Data (cbValue)

DosFindFirst also accomplishes one other thing. It provides us with the size of the EAs
associated with the file. A buffer of this size, pbBuffer, is allocated.
DosEnumAttribute is used to identify the names of the EAs associated with a particular
file object.

/* Identifies names and lengths of extended attributes for a specific
file or subdirectory. */

APIRET APIENTRY DosEnumAttribute(
 ULONG ulRefType, /* A value that indicates whether pvFile points
to a handle or to an ASCIIZ name. */
 PVOID pvFile, /* Address of the handle of a file returned by
DosOpen; or the ASCIIZ name of a file or subdirectory. */
 ULONG ulEntry, /* Ordinal of an entry in the file object's EA
list, which indicates where in the list to begin the return of EA
information. */
 PVOID pvBuf, /* Address of the buffer where EA information is
returned. */

 ULONG cbBuf, /* The length, in bytes, of the buffer pointed to
by pvBuf. */
 PULONG pulCount, /* Pointer to number of EAs. */
 ULONG ulInfoLevel); /* Level of information required. */

The ulRefType tells the DosEnumAttribute about the next input parameter. When the
value is 0. the pvFile argument contains a file handle; when the value is 1, the pvFile
argument contains a pointer to null-terminated string representing the name of the file
object.

If the pvFile contains a handle, then this handle must be obtained by an earlier call to a
DosOpen or similar API.
ulEntry describes the ordinal of the file object's EA entry. This value must be non-zero and
positive. The value of 1 is indicative of the first EA entry in the list, 2 of the second one,
and so on.
pvBuf is the pointer to the output buffer. Only FIL_STANDARD information can be
returned; thus the ulInfoLevel is always 1 (ENUMEA_LEVEL_NO_VALUE).
cbBuf is the length of the buffer referenced by the pvBuf.
pulCount is an input/output type argument. On input, the value contains the number of
EAs for which the information is requested. If the value of -1L is specified, all of the EAs
are queried, and the information is returned in the pvBuf provided the buffer is of adequate
size. On output this argument contains the actual number of EAs for which the information
was returned. If the buffer is big enough, all of the requested EAs for the file will be
returned. On output the buffer contains the list of those FEA2 structures that are aligned on
a two-word boundary. The last structure in the list will have the oNextEntryOffset value of
zero.

arReturn = DosEnumAttribute (
 ENUMEA_REFTYPE_PATH,
 achFile,
 1,
 pbBuffer,
 ffbFile.cbList,
 ulCount,
 ENUMEA_LEVEL_NO_VALUE);

printf("\nThis object contains %ld Eas.\n", ulCount);

In this example, DosEnumAttribute uses a '1" as the EA ordinal, indicating the function
is to start enumerating at the first EA. Since pbBuffer is big enough to hold all the EA, it
should all be placed in the buffer after just one function call to DosEnumAttribute.

 pdAttribute = (PFEA2)pbBuffer;
 while (ulCount != 0)
 { printf("\nFound EA with name (Name length=%i)\"%s\"",
 (int)(pdAttribute->cbName),pdAttribute->szName);
 DumpEA(achFile,
 pdAttribute);
 ulCount--;
 pdAttribute = (PFEA2)(((PBYTE)pdAttribute)+
 pdAttribute->oNextEntryOffset);

 } /* endwhile */

Once the EM are enumerated, a while loop is used to loop through and list each EA. The
user function DumpEA is covered in more detail later. The next EA is found by adding the
oNextEntryOffes to the pbBuffer pointer. Notice the casting involved here. Remember,
additions should be made in PBYTE-increments, not in PFEA2-increments.

 arReturn = DosFindNext(hdFile,
 &ffbFile,
 sizeof(ffbFile),
 &ulCount);

Once all the EAs are listed for one file object, DosFindNext is used to find the next file
object this matches the wildcard criteria.

In order so obtain the values of the EAs, Level FIL_QUERYEASFROMLIST information
should be specified and DosQueryFileInfo or DosQueryPathInfo should be used. Also,
it is important to remember that while one process is reading the EA information, another
one can be changing it. To prevent this from becoming a problem. the application must
open a file wish the sharing flag set to the deny-write state. This will prevent another user
from changing the information in the EAs while in use. Note that the
DosEnumAttribute may return a different EA for the same specified ordinal number,
because ordinals are assigned only to the existing EAs. An application can delete an EA,
then turn around and write another one in its place. The ordinal numbers are not preserved,
and thus are not unique. The following formula (from the OS/2 2.1 Control Program
Programming Reference manual) shows the information needed to calculate the required
buffer size.

The buffer size is calculated as follows:

4 bytes (for oNextEntryOffset) +

1 byte (for fEA) + wild card

1 byte (for cbName) +

2 bytes (for cbVabse) +

Value of cbName (for the name of EA) +

1 byte (for NULL in cbName) +

Value of cbValue (for the value of EA)

Gotcha!
Each EA list entry must start on a double-word boundary.

The DumpEA function checks the FEA2 structure to see if the EA
matches the types, .LONGNAME, .ICONPOS, or .TYPE. These types
were selected as examples, simply because each is an ASCII string.

 ulFBufLen = sizeof(FEA2LIST) + pdAttribute->cbName + 1 + /*
actual name */
 pdAttribute->cbValue; /*
actual value */
 pFEA2 = (PFEA2)calloc(1,
 ulFBufLen);
 if (!pFEA2)
 return FALSE;

 /***************************/
 /* only one pFEA2 attribute in this list */
 /***************************/

 eaopGet.fpFEA2List = (FEA2LIST *)pFEA2;
 eaopGet.fpFEA2List->cbList = ulFBufLen;

The first step is building the fpFEA2List structure for input. The size of the buffer is
calculated by adding the structure size, plus the size of the EA name, cbName, plus the sire
of the EA data cbValue, plus one byte for a '\0' appended to the name. The fpFEA2List
structure in the eaopGet structure is set equal to the memory that has been allocated. The
only other initialization involved is setting cbList equal to the size of the output buffer.

 ulGBufLen = sizeof(GEA2LIST) + pdAttribute->cbName +1;
 pGEA2List = (GEA2LIST *) calloc(1,
 ulGBufLen);
 if (!pGEA2List)
 { free(pFEA2);
 return FALSE;
 }
 /**************************/
 /* initialize fpGEA2List */
 /**************************/
 pGEA2List->cbList = ulGBufLen;
 pGEA2List->list[0].oNextEntryOffset = 0;
 pGEA2List->list[0].cbName = pdAttribute->cbName;
 strcpy(pGEA2List->list[0].szName,
 pdAttribute->szName);
 eaopGet.fpGEA2List = (GEA2LIST *) pGEA2List;

The fpGEA2List structure is used to tell the DosQuery functions which EAs the
programmer is interested in. The buffer size is calculated like the fpFEA2List buffer. The
offset to the next list entry is set to 0, because this example is looking for only one EA at a
time. The cbList variable is the buffer size. The cbNanse variable is the EA name string

size. The actual name is copied into the szName buffer. The last assignment is setting
fpGEA2List in the eaopGet structure equal to the pGEA2List structure that has just been
created.
DosQueryPathInfo is used to retrieve the actual EA data. The prototype for the function
is:

 /* Gets file information for a file or subdirectory.*/

 APIRET DosQueryPathInfo(
 PSZ pszPathName, /* Address of the ASCIIZ file specification
of the file or subdirectory. */
 ULONG ulInfoLevel, /* The level of path information required. */
 PVOID pInfoBuf, /* Address of the storage area containing the
requested level of path information. */
 ULONG cbInfoBuf); /* The length, in bytes, of pInfoBuf. */

The first parameter is the filename to use to query the information. The second parameter is
the level of information to retrieve. The value FIL_QUERYEASFROMLIST will retrieve
the EA information. The third parameter is a pointer to the EAOP2 structure. The last
parameter is the size of the EAOP2. This value is equal to the size of the fpFEA2List
structure plus the size of the fpGEA2List structure.

 rc = DosQueryPathInfo(pszFile,
 FIL_QUERYEASFROMLIST,
 (PVOID)&eaopGet,
 ulEBufLen);
 ulSize = sizeof(FEA2LIST);
 pFEA2 = (PFEA2)eaopGet.fpFEA2List->list;
 ulDataStart = ulSize+pFEA2->cbName;
 ptrEAData = (PEAINFO)((PBYTE)eaopGet.fpFEA2List +
ulDataStart);
 ptrEADataHolder = calloc(1,
 sizeof(EAINFO) +
 ptrEAData->usEALength+1);
 printf("Type = 0x%x ",
 ptrEAData->usEAType);
 printf("Length = 0x%x",
 ptrEAData->usEALength);
 memcpy(ptrEADataHolder,
 ptrEAData->bEAData,
 ptrEAData->usEALength);
 printf("\nData = %s", ptrEADataHolder);

The last step in the DumpEA function is actually to print out the EA data. The data is
returned in the fpFEA2List structure that was set up on input. First, the offset into the
fpFEA2List where the EA data is located is found by adding the size of the FEA2 structure
plus the size of the attribute name. If this sounds confusing, take a look at Figure 4.4 to help
illustrate this. The EA data is formatted in the following manner. The first USHORT
contains the type of EA data. The second USHORT contains size of the EAdata. All the
bytes that follow contain the actual data located in that EA. This data is copied into a
memory buffer that contains enough space for a '\0' character at the end. The EA data does

not contain the '\0' character at the end of the data, because not all EA data is in the form of
an ASCII null-terminated string.

Chapter 5

Interprocess communication

OS/2 provides several different methods of interprocess communication that are all fairly
easy to implement. In OS/2 1.x there were five distinct ways available for a process to
communicate with another process. These communications methods used flags,
semaphores, pipes, queues, and shared memory to send and receive messages and signals.
Four of the most common methods were retained in 0S/2 2.0; the one that was dropped was
the DosFlagProcess API. The functionality provided by DosFlagProcess is now provided
by DosRaiseException and related APIs.
The easiest interprocess communication (IPC) method to implement is unnamed and named
pipes. An unnamed pipe is a circular memory buffer that can be used to communicate
between related processes. The parent process must set the inheritance flags to true in order
for the child process to inherit the handles and allow the parent and the child processes to
communicate. Communication is bidirectional, and the pipe remains open until both the
read handle and the write handle are closed. Named pipes are also an easy way to provide
remote communication. A process on the requester workstation can communicate with a
process running on the server workstation as well as with a process running locally.
However, the client-server remote connectivity can be achieved only with the help of some
type of local area network server.

An OS/2 Named Pipe Client-Server Example

SERVER.C is, as the name suggests, the server of the Named Pipe IPC mechanism. The
program allows remote and local communications and performs simple character
redirection. The characters are highlighted in different colors to distinguish server and
client modes of operation. As the user types in characters at the client, they immediately
echo on the server. There is no implied limitation that the server can receive only, and the
client can send only. The particular implementation is specific to this example.
The SERVER.EXE application can be started by simply typing Server followed by a
carriage return from the command line. This will start the server component of the program
pair. The Server must be started first, since it is the Server that creates the named pipe and
allows the Client to connect to it. After the server starts successfully, the Client can be
starred by typing Client [ServerName] followed by a carriage return from the command
line. Note that the [ServerName] is an optional parameter and is used only if a remote pipe
connection is being attempted. If the Server and the Client are running in the same
workstation, and the workstation is capable of running the IBM OS/2 LAN Server software,
the Client-Server communication can be achieved with both local and remote
connections. However, if the IBM OS/2 LAN Server is not active, or the user is not logged
on to the IBM OS/2 LAN Server domain, attempting a remote connection will produce an
error stating that the pipe name was not found. This is correct, and usually points to an
inactive server or an unauthorised user. The best way to look at this example is to open two
OS/2 window sessions and to .allow one session to run the SERVER.EXE and the other to
run the CLIENT.EXE. This way it will be easier to see the Client-Server communication.

SERVER.C
SERVER.H
SERVER.DEF

First, a DosExitList call is made in order to allow the SERVER.EXE to clean up properly
in an event of a Ctrl-C / Ctrl-Brk condition.

APIRET DosExitList(ULONG ulOrderCode, PFNEXITLIST pfn)
ulOrderCode consists of two lower-order bytes that have meaning and a high-order word must be
0. The lower-order byte can have the values lined in Table 5.1.

Table 5.1 Values for Lower-Order Byte of ulOrderCode

Value Description

EXLST_ADD Add an address to the termination list

EXLST_REMOVE Remove an address from the termination list

EXLST_EXIT When termination processing completes, transfer to the next address on the
termination list

The high-order byte of the low-order word must be zero if EXLST_REMOVE, or
EXLST_EXIT is specified. If, however, EXLST_ADD is specified, the high-order byte will
indicate the invocation order.
The second parameter for DosExitList is an address of the routine to be executed - pfn.
The CleanUp() routine closes the named pipe handle and resets the window text color
back to white black.
Next, ConnToClient() must issue two calls: DosCreateNPipe() and DosConnectNPipe().
Issuing DosConnectNPipe call is what allows the client to perform a
DosOpen() successfully. After the first few necessary setup APIs are called, a simple
handshake operation is performed by reading a known string from the pipe and writing a
known string back.

/* Creates a named pipe. */

PSZ pszName; /* The ASCIIZ name of the pipe to be opened. */
PHPIPE pHpipe; /* A pointer to the variable in which the system
returns the handle of the pipe that is created. */
ULONG openmode; /* A set of flags defining the mode in which to open
the pipe. */
ULONG pipemode; /* A set of flags defining the mode of the pipe. */
ULONG cbOutbuf; /* The number of bytes to allocate for the outbound
(server to client) buffer. */
ULONG cbInbuf; /* The number of bytes to allocate for the inbound

(client to server) buffer. */
ULONG msec; /* The maximum time, in milliseconds, to wait for a
named-pipe instance to become available. */
APIRET ulrc; /* Return Code. */

ulrc = DosCreateNPipe(pszName, pHpipe, openmode,
 pipemode, cbOutbuf, cbInbuf, msec);

The DosCreateNPipe() API expects seven arguments. The first parameter,
DEFAULT_PIPE_NAME, is a ASCII string that contains the name of the pipe to be
created, pszName. The second is a pointer to the pipe handle that will be returned when the
function returns. The next parameter is the open mode used for the pipe. The flag used in
the example is NP_ACCESS_DUPLEX, which provides inbound and outbound
communication. The fourth parameter is the pipe mode. This parameter is a set of bitfields
that define the pipe mode. The flags used in this example are NP_WMESG | NP_RMESG |
0x01. These flags indicate the pipe can send and receive messages, and also that only one
instance of the pipe can be created. The pipe can be created in either byte or message mode
only. If a byte mode pipe is created, then DosRead() and DosWrite() must use byte
stream mode when reading from or writing to the pipe. If a message mode pipe is created,
then DosRead() and DosWrite() automatically will use the first two bytes of each
message, called the header, to determine the size of the message. Message mode pipes can
be read from and written to using byte or message streams. Byte mode pipes, on the other
hand, can be used only in byte stream mode. If a message stream is used, the operating
system will encode the message header without the user having to calculate the value. Care
should be taken when deciding what size buffers should be used during communications.
The transaction buffer should be two bytes greater than the largest expected message

APIRET DosConnectNPipe(HPIPE hpipe);

The DosConnectNPipe() only takes one argument, the named pipe handle. At this point,
the pipe is ready for a client connection

CLIENT.C
CLIENT.DEF
COMMON.H
CLNTSVR.MAK

When the Client is started, the initialization call is made to ConnToServer(). The client
application must perform a DosOpen() first in order to obtain a pipe handle. Once the pipe
handle is obtained, the application can freely read from the Pipe and write to the pipe. In
this case, the this case write/read pair is used for primitive handshaking communication.
The most interesting set of parameters for the DosOpen() call on the client side is the
ulOpenFlag, which contains the value OPEN_ACTION_OPEN_IF_EXISTS, and the
ulOpenMode, which contains the

OPEN_FLAGS_WRITE_THROUGH | OPEN_FLAGS__FAIL_ON_ERROR | OPEN_FLAGS_RANDOM
| OPEN_SHARE_DENYNONE | OPEN_ACCES_READWRITE

value.

Next, the while loop is entered. It can be stopped only if an API error is encountered, or if
the user presses the F3 function key at the Client window. The buffer that is being
transmitted from the Client to the Server represents the character received from the
keyboard buffer used by the Client application. A double word is used to allow proper
character translation for the F1-F12 function keys and some other extended keyboard keys.
(The function key keystroke generates two characters; the first is always a 0x00 followed
by the 0xYY. where YY is a unique function key identifier.)

The remote pipe connection from the Client to the Server is achieved by starting the
CLIENT.EXE with the following command-line syntax:

CLIENT [MYSERVER]

where MYSERVER is the remote Server machine name. (The NetBIOS machine name for
IBM OS/2 LAN Server is found in the IBMLAN.INI file). The pipe names that are created
by the Client have the following format:

local named pipe name: \PIPE\MYPIPE

remote named pipe name: \\MYSRVR\PIPE\MYPIPE

The functionality that this example application provides is the same in both remote and
local connectivity modes. As a matter of fact,neither the Client nor the Server
differentiates between the remote and local case; only the pipe name is significant. This is
the subtle beauty of the named pipes IPC!

The main reason for choosing pipes as an IPC method is ease of implementation, but it is
not the best choice for all cases. Pipes are useful only when a process has to send a lot of
information to or receive information from another process. Even though it is possible to
allow pipe connections with multiple processes, connect and disconnect algorithms must
always be implemented for such situations. The remote connection advantage of named
pipes sometimes outweighs the complexity of connect- disconnect algorithms. Since it is
not possible under 0S/2 to communicate remotely with queues or remote shared
memory, pipes sometimes become not only the best bus the only IPC choice.

Gotcha!

Is is not unusual for an application to receive a return value of
ERROR_TOO_MANY_HANDLES when attempting to open additional
pipes. The system initially allows 20 file handles per process; once the
limit is reached, the above error will appear. To prevent this from
happening, the DosSetMaxFH(ULONG ulNumberHandlers) call must
be issued, where ulNumberHandlers is the new maximum number of
handles allowed to be open. This call will be successful if system
resources have not been exhausted. It is a good idea to issue this call only
when needed, since additional file handles consume system resources that
may be used elsewhere in the system.

DOS-OS/2 Client-Server Connection

To make the pipe connectivity example complete, a DOS-named pipe client must be
discussed. The DOS based, D_CLIENT.EXE. is only slightly different from its big brother,
the OS/2 based CLIENT.EXE. There are no logical differences between the two; the
difference lies in the APIs. The DosOpen()/DosRead()/DosWrite() OS/2 calls are replaced
with open()/read()/write() DOS calls.

D_CLIENT.C
D_CLIENT.MAK
D_CLIENT.DEF
DCOMMON.H

An OS/2 QUEUE Client-Server Example

The next example pair is QSERVER.C and QCLIENT.C. In this example. the
communication process is a little bit more complex than the one in the named pipe
illustration. Here the point is to show how several different processes can communicate
with one central process. The functionality is similar to the named pipe example, but with
one key difference: The queue Server process does not send anything to the queue Client
processes. In fact, only the queue Client process can send information to the queue Server.
However, this does not mean that the queue Server cannot issue a DosWriteQueue() call
to itself; it is just not part of this example. It is left to the reader to implement this
additional functionality. By using the QSERVER.C as a prototype template, the
WriteToQue function call can enhance the QSERVER.C example program to issue
DosWriteQueue calls. The QSERVER.C-QCLIENT.C example makes use of both the
OS/2 queue APIs and named shared memory segments.

The concept of an OS/2 queue is somewhat simple. It is, in fact, an ordered set of elements.
The elements are 32-bit values that are passed from the Client to the Server of the queue.

The Server of the queue is the process that created the queue by issuing the
DosCreateQueue() API call.

APIRET DosCreateQueue(PHQUEUE pha, ULONG ulPriority, PSZ pszName)

phq is a pointer to the queue handle of the queue that is being created. ulPriority is a set of
two flags OR'ed together. The first flag can have the values listed in Table 5.2. The second
flag can have the values listed in Table 5.3.

Table 5.2 Values of Low Byte of
ulPriority.

Value Description

QUE_FIFO FIFO queue

QUE_LIFO LIFO queue

 QUE_PRIORITY
 Priority
queue

Table 5.3. Values of High Byte of ulPriority.

Value Description

QUE_NOCONERT_ADDRESS
Does not convert addresses of
16-bit elements that are placed
in the queue

QUE_CONVERT_ADDRESS
 Convert 'addresses of 16-bit
elements to 32-bit elements

The last parameter is a pointer to the ASCII name of the queue.

Only the Server of the queue can read from the queue. When the queue is read, one
element is removed from it. The Server and the Client can both issue calls to write, query,
and close the queue. However only the Server can issue calls to create, read, peek, and
purge the queue. The Client must issue a DosOpenQueue call prior to attempting to write
elements to the queue or to query the queue elements.

APIRET DosOpenQueue (PPID ppid, PHQUEUE phq, PSZ pszName);

ppid is a pointer to the process ID of the queue's server process. phq is a pointer to the
write handle of the queue. pszName is the ASCII name of the queue to be opened.
The queue elements can be prioritized and processed in particular order. The order depends
on the ulQueueFlags value used when creating the queue. This value cannot be changed
once the queue has been created.

Specifying a priority will cause the DosReadQueue API to read the queue elements in
descending priority order. Priority 15 is the highest, and 0 is the lowest. FIFO order will be
used for the elements with equal priority. The elements of the queue can be used to pass
data to the server directly or indirectly. The indirection comes front using pointers to shared
memory. When pointers are used, the shared memory can be of two types: named shared
memory and unnamed shared memory. Related processes generally use named shared

memory, while the rest use unnamed shared memory. In this example, the named shared
memory method is implemented. OS/2 queues do not perform any data copying. They only
pass pointers. They leave the rest of the work for the programmer.

 /* Reads an element from a queue. */

 HQUEUE hque; /* The handle of the queue from which an
element is to be removed. */
 PREQUESTDATA pRequest; /* A pointer to a REQUESTDATA that returns a
PID and an event code. */
 PULONG pcbData; /* A pointer to the length, in bytes, of the
data that is being removed. */
 PPVOID ppBuf; /* A pointer to the element that is being
removed from the queue. */
 ULONG ulElement; /* An indicator that specifies whether to
remove the first element in the queue
 or the queue element that was previously
examined by DosPeekQueue. */
 BOOL32 bWait; /* The action to be performed when no
entries are found in the queue. */
 PBYTE pbPriority; /* The address of the element's priority
value. */
 HEV hSem; /* The handle of an event semaphore that is
to be posted when data is added to the queue and wait is set to 1. */
 APIRET ulrc; /* Return Code. */

 ulrc = DosReadQueue(hq, pRequest, pcbData,
 ppBuf, element, wait, pbPriority,
 hsem);

hQue is a handle of the queue to be read from. pRequest is a pointer to a
REQUESTDATA structure that returns a PID and an event code. pcbData is an output
parameter that specifies the length of the data to be removed. ppBuf is an output parameter
that is a pointer to the element being removed from the queue.
ulElement is an indicator that can be either 0, meaning remove the first element from the
queue, or a value returned by DosPeekQueue. Table 5.4 lists the values for bWait.

Table 5.4. Values for bWait

Value Description

DCWW_WAIT The thread will wait for an element to be added to the queue

DCWW_NOWAIT Return immediately with ERROR_QUE_EMPTY if no data is available

pbPriority is an output parameter that indicates the priority of the element being read.
hSem is a handle of an event semaphore that will be posted when data is added to the
queue, and DCWW_NOWAIT is specified.

The OS/2 QUEUE Client-Server example is best illustrated by starting several OS/2
window sessions from the desktop and making all of them visible to the user at the same
time. The queue Server process must be started first. Once the queue is created and the
queue Server is started, the queue Clients can use the queue to pass various information to
the queue Server. In this case the information that is passed is the keystrokes the user
enters from each one of the Client processes. Figure 5.1 illustrates this procedure.

Figure 5.1 Diagram of a queue.

Table 5.5 Queue
client Text Colors

Number Color

Client 1 Red

Client 2 Green

Client 3 Yellow

Client 4 Blue

Client 5 Magenta

Each one of the queue Clients will send keystroke characters the
queue Server via FIFO queue. Once the characters are received by
the queue Server. they will be displayed in color depending on the
Client that sent them. Table 5.5 describes the queue client text
colors.

The QSERVER.EXE allows only up to five active QCLIENT.EXE
connections at any one time. Once the maximum number of clients
has been reached, entering QCLIENT.EXE followed by a carriage
return from the command line will produce a program error message
describing the maximum number of clients.

The complete listing of QSERVER.C follows.

QSERVER.C
QSERVER.DEF

Now that the intended operation of the OS/2 QUEUE Client - Server has been described,
the implementation itself can be discussed in greater detail.

During the initialization Server uses the InitServerQueEnv() first to allocate the named
shared memory segment, next to create the queue, and last to create the queue event
semaphore.

The named shared memory segment is used as a common communications area for all of
the Clients and the Server. The shared named memory segment later will contain client-
specific information: the Client process ID. and the client text color ANSI escape
sequence. The memory map in Figure 5.2 shows the way the shared named memory
segment is used

 Color string PID

0x000 Red

<------- Client 0 Area

 Green

<------- Client 1 Area

 Yellow

<------- Client 2 Area

 Blue

<------- Client 3 Area

 Magenta

<------- Client 4 Area

0x0fff UNUSED MEMORY

Shared memory map (\SHAREDMEM\MYQUEUE.SHR)

Figure 5.2 Shared memory map.

A client area is dedicated to each one of the queue Clients and contains the entire
MYQUESTRUCT structure. After the shared memory is allocated, the queue Server
creates the queue and initializes the named shared segment to nulls. The last API that is
called by the initialization routine is DosCreateEventSem. Even though the semaphore
that is created will not be used as a semaphore during this application, its handle is required
later for the DosReadQueue. The reason it is required in this case because the queue is
read in nonblocking mode, and the API requires a semaphore handle in that case. Choosing
to read the queue in nonblocking fashion allows the queue Server main thread to perform
other functions while waiting for the new queue elements.

APIRET DosCreateEventSem(PSZ pszName, PHEV phev, ULONG flAttr, BOOL32
fState)

przName is a pointer to the ASCII name of the semaphore, phev is an output parameter
that is a pointer to the semaphore handle. flAttr is either DC_SEM_SHARED to indicate

the semaphore is shared, or 0. All named semaphores are shared, so if pszName is not null,
this argument is unused.
fState can be either TRUE, meaning the semaphore is initially "posted" or FALSE,
meaning the semaphore is initially "set."

In the initialization of the queue Client environment, the InitClientQueEnv() function call
attempts to obtain the named shared memory handle. Once the handle is returned, the queue
Client begins to scan the client areas, checking for the valid color string. The moment the
Client finds an unused color string area, it assumes it is free and copies its color attribute
there. It also saves the unique position identification number in the global sIndex variable.
If the Client determines that five other Clients are already active, it will display an error
message and exit. On the other hand, if the sIndex value is acceptable (less than maximum
number of Clients), the Client will issue the DosOpenQueue() API call, thus completing
the initialization by connecting to the queue.

QCLIENT.C
QCLIENT.DEF
QCOMMON.H
Q_CS.MAK

First, the queue server attempts to read the queue; if any elements are present, they are
decoded and displayed in their corresponding color; otherwise the Server loops to check
for the next queue element. The ERROR_QUE_EMPTY is ignored and reset to 0. It is
normal for the Server to receive this particular error since it is possible for the queue to
have no messages from any of the Clients.
Readers may wonder why the queue is read continuously in nonblocking mode when it can
be read in blocking mode, which will assure a returned queue element prior to completing
the DosReadQueue call. The answer is simple. If the DosReadQueue API was
implemented with the blocking flag set to true, it would be difficult for the main thread to
do anything other than wait. An additional thread would have to implemented to handle any
other type of work. It is also possible to implement a separate thread that waits on the queue
event semaphore and displays the characters only when the semaphore was posted. Because
either method would be more complex, we chose the current implementation for this
sample program. The point here is to show the differences between the OS/2 queues and the
OS/2 named pipes.
The Client does nothing more than read a keystroke character and write that character to
the queue by issuing a WriteToQue() function call, which in turn calls the
DosWriteQueue() API.

APIRET DosWriteQueue(HQUEUE hQue, ULONG ulRequest, ULONG cbData, PVOID
pbData, ULONG ilPrority)

hQue is a handle of the queue to which data is to be written. ulRequest is a user-defined
value passed with DosPeekQueue. cbData is length of the data that is being written.
pbData is a pointer to the data. ulPriority is a priority of the data being added to the queue.
Any value between 0 and 15 is accepted. A value of 15 indicates the element is added to the

top of the queue, and a value of 0 indicates the clement is the last element in the queue.
This example shows that the OS/2 queues are somewhat cumbersome to implement;
however, they are very useful when several processes have to talk to a single process, even
if the processes are unrelated.

Note: The InitClientQueEnv function has a potential timing problem. If multiple clients
decide to initialize concurrently, a race condition will ensue. To avoid a potential problem.
a Mutes semaphore should be installed to protect the access to the shared memory. The
implementation is left as an exercise for the reader.

An OS/2 Semaphore vs. Flag Variable Example

There are three different types of semaphores: Event, Mutes, and MuxWait. Event
semaphores are used when a thread or a process needs to notify other threads or processes
that some event has occurred. Mutes semaphores enable multiple threads or processes to
coordinate or serialize their access to some shared resource. MuxWait semaphores, on the
other hand, enable threads or processes to wait for multiple events to occur.
With this brief introduction, here is the last IPC example pair: STHREAD.C and
FTHREARC. This case uses the concept of semaphores for task or event synchronization,
also known as signaling. If a process is waiting for a resource to become available, such an
a file or a port access right, and the resource is being used by another process, the current
task must wait. In the earlier DOS operating systems the synchronization was accomplished
primitively through the use of flags. The developer would set a flag, then wait for the flag
to be cleared, thus signaling that the resource was free to be used. Since only one process
could execute at a time under DOS, this was an acceptable form of pseudo interprocess
communication. Under OS/2, however, it is not a good idea to use flags to perform the
equivalent semaphore functions. An example of this bad flag synchronization processing is
evident in FIILREAD.C, which employs the following construct:

while (FlagBusy); /* Wait for flag to clear */

If a task requires this type of processing, a semaphore should be used. The STHREAD.C
example demonstrates the difference in the number of machine cycles that are spent waiting
for a semaphore to clear as opposed to waiting for a flag to clear. The STHREAD.EXE
creates several threads and then decides to wait on a semaphore. The default number of
threads is 10, but that number can be changed by providing an input argument to the
STHREAD.EXE program. While this wait is in process, the user is free to type characters
at the keyboard, which will be echoed to the console immediately. In contrast, the
FTHREAD.EXE uses the same logic but employs a flag variable to perform the wait inside
the threads, which dramatically increases CPU usage, and the keystrokes will appear
greatly delayed. The FTHREAD.EXE also can accept an input argument specifying the
number of threads to be created to wait on the same flag variable. Even with as little as 30
threads, the difference between waiting on a flag variable and waiting on a semaphore is
dramatic.

FTHREAD.C
FTHREAD.DEF
STHREAD.C
STHREAD.DEF
SFTHREAD.MAK

Example of usage:

FTHREAD [NUMTHREADS]

or

STHREAD [NUMTHREADS]

The first command-line argument, NUMTHREADS, should be a number in the range of
11 to 255. The default number of threads created is 10; specifying a number less than 10 is
unnecessary. It is not recommended to go over 100 threads with FTHREAD.EXE. Doing so
even on a superfast Pentium PC will cause the system to respond to keystrokes very slowly.
For example, once the C'TRL-ESC keys are pressed, it may take the system several minutes
to paint the PM/WPS screen. STHREAD.EXE, on the other hand, is perfectly capable of
handling 255 threads in the wait state and will still provide reasonable keyboard and display
response.

Chapter 6

DLLs

DLL Overview

There have been many articles written about Dynamic Link Libraries, and just as many
programming books have devoted at least a chapter or two to this topic. Several of these
sources are listed in the Reference section or this book. This chapter concentrates on
several examples of how DLLs can be used, what to look for in selecting a particular
function for a DLL inclusion, and what o avoid putting in a DLL at all costs.

As the name Dynamic Link Libraries suggests, these libraries are not linked into the .EXE
file during the .EXE creation, rather they get loaded dynamically into the system memory at
runtime. The overwhelming advantage of DLLs is their ability to save system resources.
Once the DLL is loaded, its functions are available immediately for use to all of the
system's processes. On the other hand, DLLs require complex object linking and process
loading tool implementation. Overall, however, DLLs live up to their claim to fame - they
save system resources and offer much more rapid successive loading of executable modules
that share the common functions than do statically linked .EXEs.

Another subtle advantage of DLLs is the ability of the programmer to control the
functionality available to the user. For example, a programmer writing a terminal emulation
application could implement a basic set of functions and label that the base package. Later,
if the user demanded more functionality, the additional features could be compiled and
linked into a series of DLLs that would be available to the user at an additional cost. This
way users could purchase only the functionality required, nothing less, nothing more. This
particular approach yields itself very nicely to a DLL implementation. One of the DLLs, for
example, may contain the Zmodem protocol while another contains a 3270 terminal
emulation filter.

So far, the discussion has centered around generic DLL functionality. Windows 3.x, OS/2,
NT, and Windows 95 have implemented DLL support, but the way DLLs are loaded,
unloaded, initialized, and terminated differs with each operating system. Since this hook
concerns itself with OS/2, the 0S/2 specifics are of the most interest here. One of the
peculiar OS/2 implementations is the way DLLs are loaded into memory. Theoretically
OS/2 has a 4 gigabyte memory limit; practically, however, the user only has 512 MB of real
memory available to applications. The limit is artificially imposed by the OS/2
process loading mechanism, which is related to the OS/2 l.x compatibility issues. In
particular, the LDT tiling (this is discussed by Michael Kogan, 1990) limits the 32-bit OS/2
process address space to 512 MB. The system loader will attempt to use the upper memory
area for any shared code, which includes DLLs that allow shared data, while the DLLs and
EXEs with nonshared data will be loaded in the lower memory area. Figure 6.1 depicts this
process.

Figure 6.1 System memory map.

512 MB Shared DLLs and .EXEs

Unallocated

Nonshared DLLs and .EXEs

0 MB

Thunking

The compatibility issues between the 32-bit and the 16-bit OS/2 modules demand a
particular transition implementation called thunking. DLLs are greatly affected by this
thunking mechanism. Both the 16-bit .EXE to 32-bit DLL transition, and the 32-bit .EXE to
16-bit DLL transition must be considered. The following examples explain why this is
necessary.

In the 16-bit to 32-bit case, the 16-bit .EXE file may have been implemented in such a way
that converting to 32-bit is tedious and unnecessary, resulting in poor performance benefits
and other insignificant improvements. On the other hand, some DLLs that perform 16-bit
drawing routines, for example, may benefit greatly from being converted to 32-bit modules.
Also, large data structures that span 64K require careful manipulation under the 16-bit
implementation; in 32-bit mode the implementation is greatly simplified.

In such cases, a developer may choose to convert the performance-sensitive sections-
DLLs - of the applications to the 32-bit model, while leaving the base core as a 16-bit
.EXE. The opposite transition of 32-bit to 16-bit may be required because some support
libraries that the application uses are purchased 16-bit .OBJs or DLLs, and while the vendor
may or may not provide the equivalent 32-bit versions of these tools, the application need
not suffer a schedule slip. A 32-bit EXE access to a 16-bit DLL can be allowed easily.

DLL Performance

Although DLLs are designed to improve system resource usage, a few performance
implications as they relate to DLL management must be understood. There are really two
distinct ways to use the functions that comprise a DLL. The first and most automatic
method is to create an import library, and it to resolve any references to the functions that
are located inside the DLL The system will automatically load and link the DLL functions
at runtime. One thing to remember, however, is that every time a DLL function call is
made, an associated address fixup must be resolved. These fixups may present somewhat of
a performance impact if the memory that contains the fixup tables happens to be swapped

out to disk while the call to a DLL function is made. Before an address fixup can be
resolved, the tables have to be brought back; in a resource-constrained system, this can
amount to a considerable performance hit.

In order to avoid a problem with fixups Dynamic link libraries, David Reich's technique of
DLL aliasing can be used. Outlined in his book Designing OS/2 Applications, he
suggests the creation of an alias function with the same parameters as the DLL function that
will be called. Then you just turn around and call the corresponding DLL function with the
same parameters as the aliased one. By doing this, you are guaranteed to have only one
fixup per each function in your DLL. Of course, this technique is helpful only when a
particular DLL function is called numerous times throughout the .EXE. Having only a few
references to a DLL function does not warrant the creation of an alias.
Portability is another good reason for aliasing some of the functions. Imagine if a developer
wanted to migrate an application from one operating system to another. Sometimes using
operating system-specific APIs cannot be avoided, but by aliasing some of these the
migration path is much easier. The programmer is left with porting a single API reference
as opposed to numerous references throughout the code.

Simple DLL Example (32-32)

In order to preserve legacy applications' environments, the current version of OS/2 for the
Intel platform allows applications to mix memory models when it comes to 16-bit and 32-
bit code. It is perfectly acceptable to have a 32-bit executable call a 16-bit DLL, which in
turn can call another 16-bit or 32-bit DLL. A 16-bit executable also can call a 32-bit DLL,
and so forth. The only problem that may arise in doing this is memory model
compatibilities. Compatibility is just a general description of pointer conversion. Both the
DLL and the .EXE must know that pointer conversion must occur and take careful
precautions to avoid a conversion error. Most bugs with mixed mode 16-bit/32-bit function
calling are found in pointer arithmetic code. The compiler does a great job of helping the
programmer convert the pointers correctly, as the following examples show. For a detailed
compiler description of this thunking conversion technique, see the IBM C Set/2 User's
Guide or IBM C/C++ FirstStep Tools: Programming Guide.

The most straightforward example of DLL creation and usage employs a 32-bit executable
calling a 32-bit DLL. In this case, there are no memory model mixing considerations, and
the programmer can freely pass values and pointers to any of the DLL functions without
regard to conversion problems that are usually associated with the mixed memory
environments.
The main section of the program does little more than call an externally declared function
called MyDLLFunction, which requires two parameters. One parameter is a pointer to a
function, and the other is a character pointer. Once inside the DLL, MyDLLFunction uses
the input function pointer and passes the character pointer to that function. The user never
knows how this function is implemented as it is hidden inside the DLL. At the same time,
passing a function pointer to the DLL allows the DLL to call back to the .EXE if the
function pointer happens to point to the function in the calling .EXE module. This, for
example, may allow the DLL to "signal" the .EXE when the DLL is done with a particular

task but has not completed the rest of the work yet. SIMPLE.C provides the first 32-bit to
32-bit .EXE to DLL example.

SIMPLE.C
SIMPLE.MAK
SIMPLE.DEF
MYDLL.C
MYDLL.MAK
MYDLL.DEF

Creating the .EXE and the DLL

A couple of things need to be said about how this .EXE and DLL are built. First, the .EXE
is compiled the same way .EXEs always are compiled. There are no special considerations.
There are, however, two ways to link the .OBJs to create an .EXE that uses DLLs.
The first method employs an IMPORTS statement in the .EXE DEF file and specifies the
exact DLL name and the exported function names. The second one relies on a DLL import
library that is linked in just as a static library would be. Using the import library is more of
an automatic linking process, because you do not have to keep track of all of the functions
called in the .EXE. From a maintenance standpoint, the import library is the preferred
linking choice. The import library is created by running the IMPLIB.EXE, an OS/2 Toolkit
utility, and specifying the DLL DEF file or the DLL itself as a parameter. The import
library allows the linker to resolve all of the references to the DLL resident functions. Note
that the import library or the DEF file with the IMPORTS keyword and functions defined is
required only when the DLL resident functions are invoked automatically by the .EXE.
0S/2 provides another method of loading the DLLs at runtime and calling the DLL resident
functions explicitly. In this fashion, neither the imports library nor the IMPORTS keyword
and functions specification is needed in the DEF file. An example of this loading technique
is covered later in this chapter.
The DLL can be considered just as a special .EXE file, and in the earlier releases of some
of the operating systems DLLs actually had .EXE extensions. The main difference is that a
DLL cannot execute without a parent .EXE. In comparison with the .EXE creation, the
DLL files must be compiled with a DLL flag ON (for C-Set: /Ge-). This may not be a
requirement for other compilers. Next the DLL object code must be LINKed and the DLL
created. The most important file for the LINK step (and again, this is for IBM C-Set/2
C/C++) is the proper use of the module definition file (DEF). The DEF' file specifies how
the DLL will be loaded, named, shared, and so forth. LINK386.EXE, a 32-bit linker for
OS/2, recognizes module definition keywords listed in Table 6.1.

Table 6.1. Module Definition Keywords

Keyword Description

BASE Preferred load address

CODE Code segments attributes

DATA Data segments attributes

DESCRIPTION Module description

EXETYPE DLL operating system type

EXPORTS Functions exported by DLL

IMPORTS Functions imported by EXE/DLL

HEAPSIZE Local heap size

LIBRARY DLL name

NAME EXE name

OLD Preserve old ordinal numbers

PHYSICAL DEVICE Device driver name

PROTMODE Protected mode only module

SEGMENTS Segments attributes

STACKSIZE Local stack size

STUB Pretended DOS executable module

VIRTUAL DEVICE Virtual device driver name

The definition module must specify the correct combination of keywords so that the linker
can construct the DLL or .EXE file correctly.
Detailed explanation of the linker recognized keywords can be found in the online OS/2
Toolkit documentation (OS/2 Tools Reference: TOOLINFO.INF).

Gotcha!

IMPORTS 1mydll.MyFunction1 statement fails due so a parser. The
parser of IMPORTS does not expect a number as the first character of a
DLL even though the DLL name is a legal OS/2 file name.

16-32, 32-16 Transitions

OS/2 supports four classes of applications:

• Pure 16-bit
• Mixed 16-bit
• Pure 32-bit
• Mixed 32-bit

The pure 16-bit application development was left behind in OS/2 l.x days, and the pure 32-
bit application development with DLLs is covered in the SIMPLE.DLL example. This
leaves only two interesting cases:

• 16-bit .EXE calling 32-bit DLL
• 32-bit .EXE calling 16-bit DLL

The most interesting item in mixed programming is the transition from one memory model
to the other and back. This transition in OS/2 is achieved with the help of a mapping layer
technique called thunking. A 32-16 thunk and a 16-32 thunk are possible. Thunking
involves converting 32-bit pointers to 16-bit pointers, and vice versa. This thunking
mechanism is a requirement for all mixed mode applications. Luckily for the programmer,
the compiler generally supports the thunking transitions automatically.
The 16-bit memory model has 64K segmentation size limitations, while the 32-bit memory
model does not. Therefore, if a 16-bit .EXE needed to manipulate a large data area (>64K),
rewriting just the manipulation routines and composing them into a 32-bit DLL would
work.

Call a 32-Bit DLL from a 16-Bit Program

The 16-bit to 32-bit example is a simple checksum program that operates on a data area
greater than 64K in size. Both the DLL and the .EXE source code are rather simple. The
interesting part is the way the functions are declared in the 16-bit source and in the 32-bit
source. The sires of the arguments must match across the transition boundary. In this case,
all of the parameters and the return value are of the same size in the 16-bit and the 32-bit
sections of the code.
The 16-bit executable makes a call to the 32-bit DLL requesting the checksum value by
passing a file name to the 32-bit DLL function. The 32-bit DLL is invoked automatically by

the system. The DLL function proceeds to use the 32-bit APIs to determine the file size
(DosQueryPathInfo), allocate the memory (malloc > 64K), open the file (DosOpen),
and read the data (DosRead). The checksum calculation is made nest, and the values are
returned to the caller.

HOWBIG.C
HOWBIG.MAK
HOWBIG.DEF
COUNT.C
COUNT.MAK
COUNT.DEF

Pointer Declarations

When passing a pointer to a 16-bit function from a 32-bit program, the _Seg16 type
qualifier should be used. For example:

 char *_Seg16 ptrForl6Bit ;

declares this pointer to be a segmented pointer that is usable in 16-bit functions. It is also usable
in a 32-bit program.

Calling a 16-Bit DLL from a 32-Bit Program

A similar transition takes place when calling the 16-bit DLL from a 32-bit .EXE. The
function declarations utilize the same keywords that were used in the 16-bit to 32-bit
example earlier. This particular program attempts to determine whether the computer's
serial ports utilize the faster buffered I/O National 16550 UARTs (Universal Asynchronous
Receiver/Transmitter). In order to do this, the program employs a 16-bit I/O DLL. called
l6BITIO.DLL. This DLL. contains two functions, my_inp and my_outp . These functions
will directly input or output a single byte from or to the specified I/O port. A 16-bit DLL is
used to demonstrate how quickly the presence of the National 16550 UART can be
determined. The algorithm for determining the presence of the UART is trivial and
described in the National UART Devices Data Book.

Gotcha!

In order to perform direct h/w I/O the code must run at the RING 2
Input/Output Privilege Level (IOPL). This is why the appropriate CODE
statement is found in the DEF file for the l6BITIO.DLL. Unfortunately,
there is no IOPL support for the 32-bit DLLs; thus 16-bit IOPL DLLs
must be used in such cases. This may change in future
releases, but for now we are limited to using 16-bit code.

AUT16550.C
AUT16550.H
AUT16550.MAK
AUT16550.DEF
16BITIO.C
16BITIO.MAK
16BITIO.DEF

Loading/Unloading of DLLs

As was mentioned earlier, developers have two choices about loading and unloading the
DLLs. They may choose to have the system do the work for them automatically, or they
may decide to have complete control over how DLL functions are loaded, unloaded, and
called.
The automatic loading and unloading of DLLs is the most headache-free, low-maintenance
option. Bus it does have some drawbacks. The application cannot be started without the
DLL being present in the LIBPATH. Nor can the resources used by the DLL be freed up
until the application exits. If resource considerations are of great importance, the manual
method of loading and unloading DLLs must be used. The benefits of manual manipulation
of DLL functions are obvious: low memory usage, no initialization of DLLs at application
startup time, resources can be freed when not needed, application can recover if DLL is
missing or corrupted, and so on. The drawback to using the manual option is complexity.

The previous example of 32-bit to 16-bit CHK16550.EXE is used here to illustrate the
manual loading, usage, and unloading of a DLL. First a call to the DosLoadModule is
made.

APIRET DosLoadModule (PSZ pszName, ULONG cbName, PSZ pszModeleName,
PHMODULE phMod)

pszName is the address of buffer used in case of failure; on output it will contain the name
of the object that caused the failure. cbName is the size of the pszName buffer.
pszModuleName is the name of the dynamic link library, and phMod is a pointer that on
output contains the handle for the dynamic link module.
Next, the starting address of a function is found using the DosQueryProcAddr .

APIRET DosQueryProcAddr(HMODULE hmod, ULONG ulOrd, PSZ pszName, PFN
*ppfn)

hmod is the dynamic link module handle. ulOrd is the ordinal number of the function
whose address is to be found. If this value is 0, the pszName argument is used to find the
desired function. pszName contains the function name that is being referenced. ppfn is a
pointer to a PFN that on output contains the procedure address.
Once the addresses of my_inp and my_outp are known, the program run's the same way.
Last, the DosFreeModule is called to release the DLL and effectively unload it from
CHKI6500.EXE's memory space.

APIRET DosFreeModule (HMODULE hmod)

This function has only one parameter, hmod, which is the handle of the module that is to be
freed.

MAN16550.C
MAN16550.H
MAN16550.MAK
MAN16550.DEF

Gotcha!

If using a DosExitList in a DLL, the DLL cannot be freed Via
DosFreeModule until the exit list function has run.

Optimizing Performance in DLLs

System performance can be improved significantly by efficient use of DLLs. These
performance improvements can be gained from something as simple as combining several
smaller DLLs into one larger one, or by using David Reich's 'aliasing' technique in helping
the fix-up problems. The following checklist lists some good DLL candidates.

1. Rarely called functions
2. Functions that add functionality to the base product
3. Functions that remove functionality from the base product
4. Functions that can be shared among applications
5. Functions with frequently changing internal implementation
6. Internationalization enabling functions
7. Help and Message type functions

Chapter 7

Exception Handling

OS/2 provides an opportunity for a program to interrupt system errors and handle them in
their own manner. These system "errors" are known as exceptions and are not really errors,
but more abnormal conditions. Some types of exceptions are guard-page exceptions,
divide-by-zero exceptions, illegal instruction, and access violation (or protection violation).
Most everyone has seen the black protection violation screen, which only lets the user end
the program. Wouldn't it be nice to intercept that exception and either fix the problem
ahead of time or at least provide an error message that was somewhat intelligible to the
user? Exception handlers are the answer.
There are two kinds of exceptions generated by the operating system, asynchronous
exceptions and synchronous exceptions. Asynchronous exceptions are caused by events
external to a thread. Synchronous exceptions are caused by events internal to a thread.
Some common synchronous exceptions include guard-page exceptions, divide-by-zero
exceptions, and access violations. All the asynchronous exceptions generate one of two
exception types, XCPT_SIGNAL or
XCPT_ASYNC_PROCESS_TERMINATE. Asynchronous exceptions, except for the
XCPT_ASYNC_PROCESS_TERMINATE exception, are also known as signal exceptions.
Signal exceptions are available only to non-Presentation Manager processes.

When a synchronous exception occurs, the operating system sends an exception just to the
thread causing the exception. If the operating system terminates the application, a
XCPT_ASYNC_PROCESS_TERMINATE is sent to all the other threads in the process.

When an asynchronous exception occurs, the operating system sends an exception just to
the main thread.

How to Register an Exception Handler

Exception handlers are registered on a per-thread basis using the function

/* Registers an exception handler for the current thread. */
 #define INCL_DOSEXCEPTIONS
 #include <os2.h>

/* A pointer to the exception registration record that describes the
exception handler to be registered. */
 PEXCEPTIONREGISTRATIONRECORD pERegRec;
 APIRET ulrc; /* Return Code. */

 ulrc = DosSetExceptionHandler(pERegRec);

Exception handlers can be "nested" as a chain of exception-handling functions. The
operating system will call the last handler in the chain: after that function has completed, it
may call the next-to-last handler, and so on. An exception handler will do its work and then

rerun a value to the operating system that indicates whether to continue with the next
exception handler registered in the chain or to dismiss the exception.

General use for exception handlers are to handle memory faults, and Guard
Page example will show the exception handler working with a memory fault. Memory
exceptions can occur when an application attempts to access a guard page, attempts to use
memory that has been allocated but not committed (a sparse memory object), or when an
application attempts to write to memory that has read-only access. Without an application-
registered exception handler, some of these exceptions might cause the application to
terminate. If the application registers its own exception handler, it can correct the cause of
the memory fault and continue to run.

Gotcha!

On the other hand, massive usage of memory exceptions for memory
allocation in application program has one, but very unpleasant drawback.
Debugger also use memory exception handlers for catching up memory
violation errors and programmer should think enough before using
memory exceptions technique for memory allocation.
C/C++ compiler has memory exception handling in its memory heap
model implementation and malloc's functions family as well as in
new/delete core, so application programmer generally don't need to use
memory exceptions.

The EXCEPTIONREGISTRATIONRECORD data structure forms a linked list of
exception handlers. The first element in the structure is a pointer to either the next
exception handler or an end-of-list marker, and is filled in by the operating system. The
second is a pointer to the exception-handling function currently being registered and should
be filled in by the developer. When registering an exception handler, this structure must be
local to the procedure that contains DosSetExceptionHandler, as opposed to a global
structure.

Gotcha!

Before exiting your program, make sure you call the function
DosUnsetExeptionHandler. If you do not, you will probably see a stack
overflow error.

What an Exception Handler Looks Like

An exception handler should use the following prototype

APIRET APIENTRY myHandler(PEXCEPTIONREPORTRECORD pERepRec,
 PEXCEPTIONREGISTRATIONRECORD pERegRec,

 PCONTEXTRECORD pCtxRec,
 PVOID p)

The EXCEPTIONREPORTRECORD structure is a data structure that describes the
exception and includes the exception type and other exception information.

/*
 This structure contains machine-independent information about an
exception or unwind. No system exception will ever have more parameters
than the value of EXCEPTION_MAXIMUM_PARAMETERS. User exceptions are not
bound to this limit.
*/
 typedef STRUCT _EXCEPTIONREPORTRECORD {
 ULONG ExceptionNum; /* Exception
number. */
 ULONG fHandlerFlags; /* Handler flags.
*/
 STRUCT _EXCEPTIONREPORTRECORD *NestedExceptionReportRecord; /*
Nested exception report record structure. */
 PVOID ExceptionAddress; /* Address of
the exception. */
 ULONG cParameters; /* Size of
exception specific information. */
 ULONG ExceptionInfo[EXCEPTION_MAXIMUM_PA
RAMETERS]; /* Exception specific information. */
 } EXCEPTIONREPORTRECORD;

 typedef EXCEPTIONREPORTRECORD *PEXCEPTIONREPORTRECORD;

The EXCEPTIONREGISTRATIONRECORD structure is described in the last section.
"How to Register an Exception Handler."

/* These structures are linked together to form a chain of exception
handlers that are dispatched upon receipt of an exception. Exception
handlers should not be registered directly from a high level language
such as "C". This is the responsibility of the language runtime routine.
*/
 typedef struct _EXCEPTIONREGISTRATIONRECORD {
 STRUCT _EXCEPTIONREGISTRATIONRECORD *prev_structure; /* Nested
exception registration record structure. */
 _ERR *ExceptionHandler; /* Pointer
to the ERR function. */
 } EXCEPTIONREGISTRATIONRECORD;

 typedef EXCEPTIONREGISTRATIONRECORD *PEXCEPTIONREGISTRATIONRECORD;

The CONTEXTRECORD structure (as it is described in \TOOLKIT\H\BSEXCPT.H)

struct _CONTEXT
{
 /* The flags values within this flag control the contents of a
ContextRecord.
 * If the ContextRecord is used as an input parameter, then for each
portion

 * of the ContextRecord controlled by a flag whose value is set, it is
assumed that that
 * portion of the ContextRecord contains valid context. If the
ContextRecord
 * is being used to modify a thread's context, then only that
 * portion of the thread's context will be modified.
 * If the ContextRecord is used as an Input/Output parameter to capture
the context
 * of a thread, then only those portions of the thread's context
corresponding
 * to set flags will be returned.
 */

 ULONG ContextFlags;
 /* This section is specified/returned if the ContextFlags
 * contains the flag CONTEXT_FLOATING_POINT.
 */
 ULONG ctx_env[7];
 FPREG ctx_stack[8];

 /* This section is specified/returned if the ContextFlags
 * contains the flag CONTEXT_SEGMENTS.
 */
 ULONG ctx_SegGs;
 ULONG ctx_SegFs;
 ULONG ctx_SegEs;
 ULONG ctx_SegDs;

 /* This section is specified/returned if the ContextFlags
 * contains the flag CONTEXT_INTEGER.
 */
 ULONG ctx_RegEdi;
 ULONG ctx_RegEsi;
 ULONG ctx_RegEax;
 ULONG ctx_RegEbx;
 ULONG ctx_RegEcx;
 ULONG ctx_RegEdx;

 /* This section is specified/returned if the ContextFlags
 * contains the flag CONTEXT_CONTROL.
 */
 ULONG ctx_RegEbp;
 ULONG ctx_RegEip;
 ULONG ctx_SegCs;
 ULONG ctx_EFlags;
 ULONG ctx_RegEsp;
 ULONG ctx_SegSs;
};
typedef struct _CONTEXT CONTEXTRECORD;
typedef struct _CONTEXT *PCONTEXTRECORD;

is an input/output parameter that contains register contents at the time of the exception. If
the exception handler will return XCPT_CONTINUE_EXECUTION, the structure can be
modified. If it is modified without XCPT_CONTINUE_EXECUTION being specified,
very bad things will happen.

The last parameter, the DISPATCHERCONTEXT structure, is undocumented because it
should never be modified.
The 486 chip uses the address at FS:0 so point to the address of the first exception
registration record. Many compilers implement exception handlers by modifying this value
directly, rather than using the OS/2 API, in order to improve performance.

Signal Exceptions

Signal exceptions are special types of exceptions generated by only three events: when the
user press Ctrl+C, when the user presses Ctrl+Break, and when another process
terminates the application with the DosKillProcess function.

In a order to receive the Ctrl+C and the Ctrl+Break exceptions, the thread must call
DosSetSignalExeptionFocus. The kill process signal is sent whether this function is used
or not.

Dos and Don'ts for Exception Handlers

• Always deregister the exception handler. Some compilers will do this for you if you use the
#pragma handler. This pragma will set and unset the exception handler where necessary.
If you use DosSetExceptionHandler, you must use DosUnsetExeptionHandler.

• Make sure all semaphores are released if the exceptions are not being handled over to the
system default exception handler (by returning XCPT_CONTINUE_EXCEPTION).

• An exception handler needs approximately 1.5K of stack in the process to be called. The
process will be terminated if there is not enough stack space.

An error in the exception handler may generate a recursive exception condition. This
creates a situation that is very difficult to debug. Life will get much easier for the developer
if the exception handler is unset when a fatal error condition occurs.

DosExitList and Exception Handlers

When all threads in a process receive the process termination exception, a process will
execute the functions specified by DosExitList. The functions DosCreateThread and
DosExecPgm should not be used in exit list routine.

A Guard Page Example

The following example illustrates guard-page handling. Guard pages provide an extra level
of protection for two things, data and thread stacks. A guard page is like a traffic cop with a
large brick wall as a stop sign. When someone hits that brick wall, he or she is going to
have some reaction, in this case, a guard-page exception. This gives the programmer a
chance to clean up the problem. When a page of memory is committed, it also can be
marked as a guard page. If the application writes to the edge of the guard page, top or
bottom, a guard-page exception is generated. The default behavior is designed for dynamic
stack growth, and stacks grow downward. Because of this, the operating system will look to
see if the next lower page is free, and if so, commit it. However, an exception handler gives

the programmer some flexibility. If the application so chooses, it can commit the next
higher page in the exception handler, and then return control back to the function that
generated the guard-page exception. This memory management scheme the method used by
most compilers to control thread stack growth.

GP.C
GP.MAK
GP.DEF

When an exception occurs, information about the exception is placed in the
EXCEPTIONREPORTRCORD structure, and a pointer to these structures is passed to the
exception handler.

 typedef STRUCT _EXCEPTIONREPORTRECORD {
 ULONG ExceptionNum; /* Exception
number. */
 ULONG fHandlerFlags; /* Handler flags.
*/
 STRUCT _EXCEPTIONREPORTRECORD *NestedExceptionReportRecord; /*
Nested exception report record structure. */
 PVOID ExceptionAddress; /* Address of
the exception. */
 ULONG cParameters; /* Size of
exception specific information. */
 ULONG ExceptionInfo[EXCEPTION_MAXIMUM_PA
RAMETERS]; /* Exception specific information. */
 } EXCEPTIONREPORTRECORD;

ExceptionNum is the field that tells the type of exception that has occurred. In our case,
we're looking for a XCPT_GUARD_PAGE_VIOLATION. If the exception is not a guard
page, we pass it on through to the system exception handler by returning
XCPT_CONTINUE_SEARCH. If a guard-page exception occurs, we check to see if we
have enough memory to commit one more page. If the memory is available, we commit
another page and set it as a guard page. The last thing we do is return
XCPT_CONTINUE_EXECUTION, which tells the system to bypass the other exception
handler and continue executing the program. The errant function statement will execute
correctly, and the program functions as if no problems had occurred.

Summary

Exception handlers are a flexible way to give the developer control over system errors.
Exception handlers have a lot of restrictions because the process can be dying when the
exception handler is executed. However, with the right amount of prudence, an exception
handler provides a powerful tool for error control.

Chapter 8

Interfacing with OS/2 Devices

The current OS/2 architecture supports three types of device drivers:

• Virtual device drivers (VDD)
• Physical device drivers (PDD)
• Presentation drivers (PD)

VDDs are used primarily by the legacy DOS and Windows applications. The virtualization
of the physical devices provides OS/2 with the ability to control the access to these devices
through the Virtual Device Driver. An example of a VDD is a VMOUSE.SYS or a
VCDROM.SYS. The first one provides the virtual support for the mouse pointer
requirements, while the latter one makes sure the CD ROM interfaces for the DOS and
Windows applications are supported correctly.
The PD concerns itself mainly with 0S/2's Presentation Manager support. PDs usually run
at Ring 2 or Ring 3. and enable the Presentation Manager (PM) APIs to perform all of the
necessary video functions. These include all aspects of the PM windowing, messaging, and
controlling requirements.
The PDDs provide the OS/2 user with the actual access to the standard I/0 devices. A PDD
usually has a corresponding VDD, which allows the same functionality for the DOS and
Windows legacy applications. The PDDs and VDDs are loaded at system startup and
remain loaded for the entire duration of an 0S/2 session. PDD architecture also provides
OS/2 the flexibility to add non-standard device support just by loading the appropriate
device driver at startup time. There are two kinds of PDDs: block device driven and
character device drivers.

A SCSI (Small Computer Systems Interface) driver is a type of block device driver. This
driver manipulates the data in blocks of a certain size, and is referred to by the system via a
drive letter. A good example of a PDD is the serial I/O device driver. But many character
and block device drivers make up the device driver suite for OS/2.
This chapter offers two examples of how to talk to the serial devices under 0S/2's control.
The first example utilizes the preferred device driver interface DosDevIOCtl(), while the
second shows how to get to I/O ports without having to talk to the device driver.
There are obvious advantages for using the device driver interface:

1. Serialization / synchronization controls are built into the driver.
2. All OS/2 device drivers are interrupt driven.
3. It provides a well-defined interface for upward OS/2 migration.
4. Devices can be shared by multiple users.

Generally, the OS/2 applications gain access to the devices through the IOCTL interface,
while the DOS applications can perform the same I/O functions that are allowed under real
DOS (not VDM). Only 16-bit OS/2 code can run at Ring 2 privilege level, which allows the
code direct I/0 access (IOPL - means I/O Privilege Level). Occasionally it is advantageous

to use the IOPL code to perform a quick read or a write from or to a particular I/O port, but
it is not the preferred OS/2 method. For example, if an application is monitoring room
temperature and displays it on the screen, writing a full-blown device driver to access a
particular I/O port on some adapter just to read two bytes of data may not make sense. In
this case it is easier to utilize a 16-bit I/0 code segment to perform an IN (Input from Port)
instruction and read the temperature data. Synchronization and serialization do not have to
be worried about. On the other hand , if the program reads the temperature and then decides
to adjust the environmental conditions, a device driver must provide serialization and
locking controls.

Serial Interface Example Using DosDevIOCtl

The first of the two serial I/O examples deals with reading the data from the keyboard and
transmitting all of the keystrokes to the Ox3F8 I/O port (COM 1).
In order to gain access to the COM1, DEVICE=COM.SYS must be executed correctly at
system startup and COM.SYS must be loaded, Next, a DosOpen call is issued to the device
driver with "$COM1" as the filename. The system is smart enough to recognize the fact
that the user is looking to gain access to the COM1 I/O port; if no other program is using
the device, the file handle for the COM1 device is granted. Using this file handle the
process can now issue any DosDevIOCtl call with the appropriate asynchronous
parameters to gain access to the control functions of the NS 8250/16450/16550 UARTs.
Issuing DosRead and DosWrite requests to the system using the same file handle results
in the data being transferred between the application buffers and the hardware UART.
The program uses the main thread to perform all of the keyboard read functions. The
characters read are transmitted immediately to the COM1 I/O port via DosWrite function.
However, a separate thread is used to read the data from COM1 and display it on the
screen. Since the device driver is capable of processing both the read and the write requests
simultaneously, a better-designed communications program will dedicate a thread for each
major function, such as read or write.

32_TERM.C
32_TERM.MAK
32_TERM.DEF

The COM.SYS expects the following to be true:

COM1 Must reside at 0x3F8 and use the interrupt level 4.

COM2 Must reside at 0x2F8 and use the interrupt level 3.

The COM.SYS driver provides support for the UART control functions and the RS232C
interface only. No specific devices are supported directly by the COM.SYS driver. It is left
up to the applications to create subsystems or standalone programs to support the RS232C
devices (modems and the like). The COM.SYS is a fully interrupt driven driver and has

support for extended hardware buffering that is offered by the NS 16550 UARTs.
The PDD utilizes a memory buffer between the operating system and the UARTs, and data
is copied in and out of the buffer from and to the UART transmit/receive registers. Once
the user has obtained the file handle for a particular I/O port (COM1, COM2, etc.), he or
she can use this handle to issue DosRead and DosWrite requests to move the data
between an application and an I/O port. Currently, the system maintains a 1,024-byte
receive and a 128-byte transmit buffer for the COM1-COM4 I/O ports when the driver is in
the non-DMA mode. When the driver is in the enhanced DMA mode, there are two 1,024
receive queues and one 255-byte transmit queue. OS/2 does not guarantee that the sizes will
remain constant with each version of the operating system, and thus the sizes are subject to
change. The operating system also does not guarantee packet delivery to the device drivers
in the same order that they were issued by the application due to the multitasking nature of
OS/2.

Serial Interface Example Using inp

The second example is much simpler than the first. As was mentioned before, only 16-bit
code is allowed to execute with IOPL flag enabled. Taking this into consideration we can
create a very handy 16-bit DLL like 16BITIO.DLL that exports the inp(), inpw(), outp(),
and outpw() calls. Any 32-bit application can link with the import 16BITIO.LIB library
and allow direct I/O functionality. This particular example uses a very simple algorithm to
check for the presence of an NS l6550 UART by issuing a series of inp() and outp() calls
to the particular COM1 and COM2 I/O port ranges.

CHK16550.C
CHK16550.H
CHK16550.MAK
CHK16550.DEF
16BITIO.C
16BITIO.MAK
16BITIO.DEF

The. ASYNC PDD is covered in much greater detail in the IBM Physical Device Driver
Reference manual (10G6266), which is part of the OS/2 Toolkit Technical Library.

Chapter 9

Introduction to Windows.

Introduction

The basic building block for all Presentation Manager (PM) programming is a window.
Most items displayed on the screen are windows, of some shape or fashion. A window is
designed to react to messages sent to it either from the system or from another window.
These messages are placed into a message queue that is unique to each PM application. A
message is used to signal events that happen to a window. For example, a WM_CREATE
message is sent when a window is halfway through its creation process; a WM_SlZE
message is sent after the user has sized the window; a WM_DESTROY message just before
the destruction of the window is complete. Each window has a specific window procedure
that is used to respond back to the system when a message is sent. The programmer is
responsible for creating this window procedure. The window procedure is a switch
statement that will filter out certain messages that are of interest to the application. The
messages that are not interesting can be passed on to a default window procedure or a
default dialog procedure. For instance, the programmer may want to initialize some data in
the WM_CREATE message processing or free up memory when the WM_DESTROY is
received.

What Is a Window?

The first thing to understand when beginning Presentation Manager programming is the
concept of a window. A window is a graphical image of a rectangle that sits on the screen
and is used to provide a uniform interface with which a user can interact. (See Figure 9.1.)

Figure 9.1 A Window.

A window can be sized larger or smaller, it can be
opened or closed, it can be made visible or invisible.
Suffice it to say that there are a lot of things to do with a
window.

Figure 9.2 Drawing of a window's components

Figure 9.2 looks like one window but, in
reality, it is seven windows:

• The frame window
• The title bar
• The system menu
• The close/maximize/minimize

buttons
• The client window

Each of the five windows has a window procedure associated with it. In most cases, the
programmer will be able to use the system-defined window procedures for all but the client
window. The window procedure is a function that tells the window how to behave.
Windows that share the same window procedure belong to the same window class. This is
a familiar concept for those readers acquainted with object-oriented programming.

Imagine a fast food restaurant. Each item on the menu could be considered one class - a hot
dog class, a hamburger class, and a pizza class. Suppose mustard, mayo, relish, or cheese
could be put on a hot dog, in any combination. Each of these condiments would he a hot
dog style.

The same is true for window classes. There are many predefined window classes, including
some classes specific to pen computing and the multimedia extensions. The classes specific
to Presentation Manager are:

Symbolic constant Meaning

WC_FRAME The Frame control class

WC_COMBOBOX Combo box control class

WC_BUTTON Button control class

WC_MENU Menu control class

WC_STATIC Static text control class

WC_ENTRYFIELD Entryfield control class

WC_LISTBOX Listbox control class

WC_SCROLLBAR Scroll bar control class

WC_TITLEBAR Titlebar control class

WC_MLE Multi-line edit control class

WC_SPINBUTTON Spinbutton control class

WC_CONTAINER Container control class

WC_SLIDER Slider control class

WC_VALUESET Valueset control class

WC_NOTEBOOK Notebook control class

Each window class is very different from the others. Some of these predefined classes will
be covered in later chapters. The client window, which is the area inside the window frame,
belongs to a user-defined class. Each window class also contains a set of window styles
specific to that class. There is a set of class styles available to all classes. The styles are:

• CS_MOVENOTIFY
• CS_SIZEREDRAW
• CS_HITTEST
• CS_PUBLIC
• CS_FRAME
• CS_CLIPCHILDREN
• CS_CLIPSIBLINGS
• CS_PARENTCLIP
• CS_SAVEBITS
• CS_SYNCPAINT

These styles will be covered in more detail in the section entitled "Window Stylin".
Once we know a little bit about the window classes the operating system offers, we can

decide which are best suited for our application, or, as most of us do-it-yourselfers will do,
you can create your own. So, let's do just that.

WIN1.C
WIN1.MAK
WIN1.DEF

The INCLUDE Files

The OS/2 Toolkit provides oodles and oodles of header files. These files contain structure
definitions, function prototypes, and many system-defined constants to make OS/2
programs much easier to read. The large size of these files and the tremendous amount of
overhead they create make it advantageous to selectively pick and choose those parts that
are applicable to a program. This is done by placing a series of #defines before the
inclusion of OS2.H. In this program, we will use #define INCL_WIN.

#define INCL_WIN
#include <os2.h>

This is an all-encompassing define that will include the necessary headers for all the Win...
functions. This is overkill in most cases, but for our first example we'll keep things simple.

The Window Procedure Definition

MRESULT EXPENTRY ClientWndProc(

 HWND hwndWnd,
 ULONG ulMsg,
 MPARAM mpParm1,
 MPARAM mpParm2);

Window procedures are declared in a very special way, using the prefix MRESULT
EXPENTRY. In OS2DEF.H, these expand to VOID * _System. The return type,
MRESULT, gives the window procedure the freedom to return whatever it needs to by
using the VOID * type. The _System tells the C-compiler that the operating system will be
calling the function. It is a good idea to use the Presentation Manager-defined data types
when dealing with window procedures and messages. There is a good probability that some
definitions will change when moving to other machine architectures, and by using the
defined data types, we save some headaches if we need to port the application to some
other version of OS/2. A more detailed explanation of window procedure is in the section
"The Window Procedure Revisited"

The function's parameters are HWND hwndWnd, ULONG ulMsg, MPARAM mpParm1,
and MPARAM mpParm2. This may look very familiar to Microsoft Windows
programmers. The variable hwndWnd is a window handle. Each window has its own
unique window handle, and most Win... functions will include this as a parameter. In this
case, hwndWnd is the window to which the message is being sent. The parameter ulMsg is

the specific message being sent so the window. We will cover messages in more detail in
Chapter 11.

The last two parameters are mpParm1 and mpParm2 which have the type MPARAM.
These are "shape-shifter" parameters. MPARAM is really a PVOID in disguise. This gives
the operating system two 32-bit spaces to insert whatever data corresponds to the message
being sent. These values could be pointers or short or long integers. For example. the
message WM_MOUSEMOVE is sent whenever the mouse is moved. The first message
parameter, mpParm1, would contain two SHORTs. The second message parameter,
mpParm2, also contains two SHORTs. Figure 9.3 provides a breakdown of a message-
parameter variable.

Y Coordinate X Coordinate

SHORT2 (16 bits) SHORT1 (16 bits)

32-bit MPARAM mp1

Figure 9.3 Breakdown of a message-parameter variable

Helper Macros

Many data-type conversions are necessary in a Presentation Manager application because
of the multiple data types that can be used as an MPARAM or MRESULT. MRESULT is
the value returned by the window procedure and is also a "shape-shifter". The Toolkit
includes a group of helper macros to make these conversions easier.
Table 9.1 presents the macros used to convert some standard data type into a MPARAM
data type that can be used when sending or posting a window message.

Table 9.1 Macros to Convert into MPARAM

Macro Converts into MPARAM

MPFROMVOID 0

MPFROMP PVOID

MPFROMHWND HWND

MPFROMCHAR CHAR

MPFROMSHORT SHORT

MPFROM2SHORT 2 SHORTs

MPFROMSH2CH 2 CHARs

MPFROMLONG ULONG

Table 9.2 presents the macros used to convert a MPARAM data type into a standard data
type that can be used when receiving a window message.

Table 9.2 Macros to Convert from MPARAM

Macro Converts from MPARAM

PVOIDFROMMP PVOID

HWNDFROMMP HWND

CHAR1FROMMP CHAR

CHAR2FROMMP second CHAR

CHAR3FROMMP third CHAR

CHAR4FROMMP fourth CHAR

SHORT1FROMMP low SHORT

SHORT2FROMMP high SHORT

LONGFROMMP ULONG

Table 9.3 presents the macros used to convert a MRESULT data type into standard data
type that can be used to examine a return value for the window procedure.

Table 9.3 Macros to Convert from MRESULT

Macro Converts from MRESULT

PVOIDFROMMR PVOID

SHORT1FROMMR low SHORT

SHORT2FROMMR high SHORT

LONGFROMMR ULONG

Table 9.4 presents the macros used to convert a standard data typo into a MRESULT data
type that can be used to construct a return value from the window procedure.

Table 9.4 Macros to Convert to MRESULT

Macro Converts to MRESULT

MRFROMP PVOID

MRFROMSHORT SHORT

MRFROM2SHORT 2 SHORTs

MRFROMLONG ULONG

Presentation Manager Program Initialization

habAncbor = WinInitialize (0) ;
hmqQueue = WinCreateMsgQueue(habAncor,0) ;

The beginning of a PM program will always start with a few things. First, WinInitialize is
called to obtain an anchor block handle, or HAB. An anchor block is specific to each thread
that contains a window procedure.

HAB WinInitialize(ULONG. flOptions)

The only parameter for WinInitialize is a ULONG that is used for initialization options. In
a PM environment, this should be 0. An anchor block currently contains error information
for each thread and also may be used for "future portability issues". Each Presentation
Manager thread should obtain its own anchor block for two reasons: portability and also to
obtain error information specific to that thread.

 HMQ WinCreateMsgQueue(HAB habAnchor, Long lQueuesize)

WinCreateMsgQueue will create a message queue for the thread that called the function.
The message queue is how Presentation Manager communicates back and forth with the
windows. The first parameter is the anchor block handle, habAnchor. The second
parameter is the queue size. A parameter of 0 indicates the default queue size in OS/2,
which holds 10 messages. A full queue will cause the user interface to respond rather
slowly and sometimes to stop responding completely. The default queue size should be
fine for most applications. If a queue is getting too full, the program should be checked to
see where messages are getting backlogged. (One of the requirements for a PM interface is
a crisp user response. Any response that consumes more than 100 milliseconds probably
should be put in a separate thread. See Chapter 30 for more information on multithreading
in a PM program.)

Creating a New Class

WinRegisterClass
 (habAnchor,
 CLS_CLIENT,
 ClientWndProc,
 0,
 0) ;

The function WinRegisterClass is used to create a new class of windows, in this case
CLS_CLIENT.

BOOL WinRegisterClass
 (HAB hab,
 PSZ pszClassName,
 PFNWP pfnWndProc,
 ULONG flStyle,
 ULONG cbWindowData)

The first parameter is the anchor, habAnchor. The next parameter is the class name. This
parameter is a null-terminated string. The next parameter is the window procedure the class
is assigned to, ClientWndProc. The fourth parameter is the class styles used for the new
class. We're not going to use any class styles for now, so we put 0 here. The last parameter
is the number of bytes of storage space that will be tacked on to each window belonging to
this class. This piece of space is commonly referred to as "window words." This is covered

in more detail later.

Creating a Window

By now readers are probably thinking "But I just wanted to create one lousy
window". Well, this is it, the function call you've been waiting for:
WinCreateStdWindow. This function actually creates five windows as stated
earlier; but only two that are of any interest to us - the frame window and the
client window.

ulFlags = FCF_TITLEBAR |FCF_SYSMENU | FCF_SIZEBORDER | FCF_MINMAX |
FCF_SHELLPOSITION | FCF_TASKLIST ;

hwndFrame = WinCreateStdWindow(
 HWND_DESKTOP,
 WS_VISIBLE,
 &ulFlags,
 CLS_CLIENT,
 "Titlebar",
 0L,
 NULLHANDLE,
 0,
 &hwndClient);

The function returns the frame window handle.

/* This function creates a standard window. */
 #define INCL_WINFRAMEMGR /* Or use INCL_WIN, INCL_PM, Also in COMMON
section */
 #include <os2.h>

 HWND hwndParent; /* Parent-window handle. */
 ULONG flStyle; /* Frame-window style. */
 PULONG pflCreateFlags; /* Frame-creation flags. */
 PSZ pszClassClient; /* Client-window class name. */
 PSZ pszTitle; /* Title-bar text. */
 ULONG flStyleClient; /* Client-window style. */
 HMODULE Resource; /* Resource identifier. */
 ULONG ulId; /* Frame-window identifier. */
 PHWND phwndClient; /* Client-window handle. */
 HWND hwndFrame; /* Frame-window handle. */

 hwndFrame = WinCreateStdWindow(hwndParent,
 flStyle, pflCreateFlags, pszClassClient,
 pszTitle, flStyleClient, Resource,
 ulId, phwndClient);

The. first parameter specified is the parent of the frame window. We'll discuss parents and
owners in a minute. The second parameter is the frame style. A frame can draw from two
sets of styles: frame styles, because this is a frame window; and window styles, because the
frame class is a subset of the window class "window". The most common window style
available is WS_VISIBLE. Yep, you guessed it, this means the window is not only created
but will show up as well.
The third parameter is the frame flags. Frame flags describe how the frame will look. The
possible descriptors are OR'ed together. Figure 9.4 is a diagram of all the possible
descriptors and the bits that correspond to them.

Bit Constant

0 FCF_TITLEBAR

1 FCF_SYSMENU

2 FCF_MENU

3 FCF_SIZEBORDER

4 FCF_MINBUTTON

5 FCF_MAXBUTTON

6 FCF_VERTSCROLL

7 FCF_HORZSCROLL

8 FCF_DLGBORDER

9 FCF_BORDER

10 FCF_SHELLPOSITION

11 FCF_TASKLIST

12 FCF_NOBYTEALIGN

13 FCF_NOMOVEWITHOWNER

14 FCF_ICON

15 FCF_ACCELTABLE

16 FCF_SYSMODAL

17 FCF_SCREENALIGN

18 FCF_MOUSEALIGN

[...] -

24 FCF_HIDEBUTTON

25 -

26 FCF_CLOSEBUTTON

[...]

30 FCF_AUTOICON

Figure 9.4 Frame creation flags

Table 9.5 Frame Creation Flags Description

Flag Description

FCF_TITLEBAR Creates a title bar on the frame.

FCF_SYSMENU Creates a system menu on the frame.

FCF_MENU
Creates an application menu on the frame. This is loaded from the
resource file or .DLL. (See Chapter 12 for more information.)

FCF_SIZEBORDER Creates a sizing border on the frame.

FCF_MINBUTTON Creates a minimize button on the frame.

FCF_MAXBUTTON Creates a maximize button on the frame.

FCF_MINMAX Creates both a minimize and maximize button on the frame.

FCF_VERTSCROLL Creates a vertical scroll bar on the frame.

FCF_HORZSCROLL Creates a horizontal scroll bar on the frame.

FCF_DLGBORDER Creates the thick dialog box border on the frame.

FCF_BORDER Creates a thin border on the frame.

FCF_SHELLPOSITION The system determines the initial size and placement of the
frame window.

FCF_TASKLIST
Adds the program title to the task list and window title to the
window list.

FCF_NOBYTEALIGN Do not optimize window movements in 8 pel multiples.

FCF_NOMOVEWITHOWNER The frame window will not move when the owner is moved.

FCF_ICON
An icon is added to the frame. This is loaded from the resource file or
.DLL. (See Chapter 12 for more information.)

FCF_ACCELTABLE
An accelerator table is added to the frame. This is loaded from the
resource file or DLL. (See Chapter 12 for more information)

FCF_SYSMODAL The frame window is system modal.

FCF_SCREENALIGN The frame window is positioned relative to the desktop rather
than relative to the owner window.

FCF_MOUSEALIGN The frame window is positioned relative to the position of the
mouse rather than relative to the owner window.

FCF_HIDEBUTTON Creates "hide" button on the frame

FCF_HIDEMAX Creates "hide" and maximize buttons on the frame.

FCF_CLOSEBUTTON use when no other min/max button is present

FCF_AUTOICON A WM_PAINT message will tot be sent to the application when
the frame window is iconized

FCF_STANDARD
FCF_TITLEBAR | FCF_SYSMENU | FCF_MINBUTTON |
FCF_MAXBUTTON | FCF_SIZEBORDER |FCF_ICON |FCF_MENU |
FCF_ACCELTABLE | FCF_SHELLPOSITION |FCF_TASKLIST

In this example, we'll use the following flags:
FCF_TITLEBAR, FCF_SYSMENU, FCF_SIZEBORDER,
FCF_MINMAX, FCF_SHELLPOSITION, FCF_TASKLIST

Gotcha!

Be sure to pass a pointer to a ULONG as this parameter

The fourth parameter is the name of the window class that the client window will belong to;
in this case we use the string defined by CLS_CLIENT. The next parameter is the window
text for the title bar. The sixth parameter is the client window style. Since we defined the
parent of the client window hwndFrame to have the style WS_VISIBLE, the client, as a
child of hwndFrame, will inherit the WS_VISIBLE style. This means we don't have to
specify any window styles here; we'll just leave that a 0.
The next parameter is the resource ID location. The next parameter contains the resource
ID for the frame window. This one resource ID will point to all the resources that are
defined for the frame. This includes the menu, icon, accelerator table, and any other items
defined using the frame creation fags. For more information on resources, see Chapter 12.
The last parameter is the address of a window handle. Presentation Manager will place the
client window handle into this variable upon the function's return.
If WinCreateStdWindow fails, NULLHANDLE is returned. Before we attempt to do
anything else, it is a good idea to check the return handle to make sure it is valid; if not, the
application should quit, preferably with some sort of error message.

Message, Message, Who's Got the Message ?

bLoop = WinGetMsg (habAnchor,
 &qmMsg
 NULLHANDLE,
 0,
 0);
while (bLoop)
{
 WinDispatchMsg (habAnchor, &qmMsg) ;
 bLoop = WinGetMsg(habAnchor,
 &qmMsg,
 NULLHANDLE,
 0,

 0) ;
} /* endwhile */

The two functions WinGetMsg and WinDispatchMsg, are the keys to getting the
message queue up and running. Without some form of message retrieval and dispatch the
system will respond with a "Program not responding..." error message. The secret to a well
thought out Presentation Manager application is a message queue that is quick and
responsive. WinGetMsg will retrieve the message from the message queue and place it into
the variable qmMsg. The QMSG structure looks very similar to the variables that are
passed to the window procedure. Eventually the QMSG structure will be passed on to
ClientWndProc or the window procedure for the window receiving the message.
WinGetMsg and WinDispatchMsg form a post office for messages. They pick up the
messages and then make sure that the messages are delivered to the correct window.

BOOL WinGetMsg(
 HAB hab,
 PQMSG pqmsgmsg,
 HWND hwnfFilter,
 ULONG ulFirst,
 ULONG ulLast)

The first parameter of WinGetMsg is the anchor block handle. The next one is the address
of the QMSG structure that will handle the retrieved message information. The next three
parameters are not used in this example. They provide a way for WinGetMsg to choose
selectively which messages to pick out of the queue. By specifying zeroes here,
WinGetMsg will retrieve all messages from the message queue in the order they were
placed there. After the message is retrieved from the queue, it is then passed on to
WinDispatchMsg.

MRESULT WinDispatchMsg (HAB hab, PQMSG pgmsgMsg) ;

It is WinDispatchMsg's job to take the message from the qmMsg variable and send it on
to the window procedure associated with the window it is addressed to. For instance, if
qmMsg.hwnd were equal to hwndWnd, WinDispatchMsg would take qmMsg and send
it on to ClientWndProc.

 /* QMSG structure */
 typedef struct _QMSG /* qmsg */
 {
 HWND hwnd; /* window handle that msg is being sent to */
 ULONG msg; /* the message itself */
 MPARAM mp1; /* Message Parameter 1 */
 MPARAM mp2; /* Message Parameter 2 */
 ULONG time; /* Time msg was sent */
 POINTL ptl; /* mouse position when msg was sent */
 ULONG reserved;
 } QMSG;
 typedef QMSG *PQMSG;

The QMSG structure contains a lot of very interesting information about the message. The
first field in the structure, hwnd, is the window handle the message is for. The field msg is
the constant identifying the message. Some common messages are WM_CREATE,
WM_PAINT, WM_QUIT and WM_SIZE. The next two parameters, mp1 and mp2, are the
message parameters. Each message has a set use for these parameters. Usually they are
used to convey more information about the message. The time field contains the time the
message was sent, and the ptl field is a structure that contains the mouse position when the
message was sent.

Terminating a Program

You may have noticed that WinGetMsg and WinDispatchMsg were
running in a while loop. While WinGetMsg returns a TRUE value, this
loop continues to process messages. When WinGetMsg receives a
WM_QUIT, WinGetMsg returns FALSE and will fall out of the loop. At
this point, the user has elected to close the application, and it's time for
the final cleanup. We have created three things that need to be destroyed -
the frame window hwndFrame, hmqQueue, and habAnchor. Each of
these items has its own destroy function.

BOOL WinDestroyMsgQueue(HMQ hmq) ;
BOOL WinDestroyWindow(HWND hwnd);
BOOL WinTerminate (HAB hab);

By destroying hwndFrame, we also are destroying the client window, the title bar, and all
the other windows that are children of the frame.

 WinDestroyWindow (hwndFrame);
} /* endif */
WinDestroyMsgQueue(hmqQueue) ;
WinTerminate (habAnchor);
return 0;

The Window Procedure Revisited

You might have looked over main and thought. "Is this it?" Well, no. We've presented just
the tip of the iceberg. The window procedure is the meat of a Presentation Manager
program. A window procedure's sole purpose in life is to respond to the messages for the
window that belongs to it. It is also important to realize that multiple windows can and will
access the same window procedure. Programmers must be very careful with static and
global variables or flags. They can come back to haunt developers if two windows are
accessing the same procedure. Is is a good idea to avoid these if at all possible.
Most window procedures are nothing more than a giant switch statement, with a case for
each message. A window procedure does not have to respond to every message; it can filter
the majority of the messages through to a function, WinDefWindowProc or
WinDefDlgProc. This function lets the system handle messages in a system default
manner. As the creator of the window procedure, it is the programmer's job to pick out
which messages will trigger a response in your program. For instance, when a WM_SIZE

message is received, the programmer may wish to reflow any text on the window so that it
is all visible and centered. Passing messages on to WinDefWindowProc or
WinDefDlgProc is very safe.

Gotcha!
Be very careful about accidentally reversing WinDefWindowProc and
WinDefDlgProc. Strange things can occur when calling
WinDefWindowProc for a dialog box or using WinDefDlgProc for a non-dialog
box window.

The default action for these messages is listed in the online reference for the Toolkit. A few
messages are very important to a window procedure. These will be covered later in this
chapter.
In this example the window procedure, ClientWndProc, is very small. It's not quite the
smallest window procedure available, but it's pretty close.

MRESULT EXPENTRY ClientWndProc (HWND hwndWnd,
 ULONG ulMsg,
 MPARAM mpParm1,
 MPARAM mpParm2)
{
 switch (ulMsg) {
 case WM_ERASEBACKGROUND:
 return MRFROMSHORT (TRUE) ;

 default:
 return WinDefWindowProc (hwndWnd,
 ulMsg,
 mpParm1,
 mpParm2) ;
 } /* endswitch */

 return MRFROMSHORT (FALSE) ;
}

The only message that is utilized in ClientWndProc is WM_ERASEBACKGROUND.
This message is used to fill the client window with the system-window background color. If
we let this message pass on to WinDefWindowProc, the background of the window would
be transparent and the desktop would show through. By returning TRUE, we tell the system
to paint the client window with the background color. In some cases, this message doesn't
need to be processed if the painting is handled in the WM_PAINT message. In a window
procedure, most messages have a default handling of returning FALSE. Programmers can
save a few extra function calls by returning FALSE themselves from the handled instead of
calling WinDefWindowProc.

Parents and Owners

Earlier we had mentioned the concept of parents and owners. These terms are used often in
Presentation Manager programming. It is important to understand each one. Every window
has a parent, except for the desktop window. In some cases the parent will be the desktop,
HWND_DESKTOP. In the last example, the frame window had the desktop as its parent.
The frame window was the parent for the client window, the title bar window, and the other
windows. What is a parent window?

A parent window performs many of the same duties that parents of human
children perform. A parent window controls where the child can go. A child is
"clipped' to the parent and will not be visible outside the parental boundaries.
A child window can be moved outside these boundaries; however, the portion
outside the parent window will not be visible. Also, a child will inherit all of
the parent's styles. If a parent is visible, a child will be visible; if a parent is
not visible, a child will not be visible. If a parent moves, the child moves
alone with it. However, unlike a human parent, if a parent window is
destroyed. all of its children are destroyed as well. If a parent window has two
child windows, these children are considered siblings. When a family of
windows is all visible at the same time, there is a power struggle for which
window will be displayed on top. A child window always will be on top of the
parent window. Some surprise, huh?

However, siblings, and the whole windowing system as well, use a concept known as 'Z-
Order" to decide who gets on top. The sibling created last usually is at the top of the "Z-
Order". The programmer can change the order using the function WinSetWindowPos.
This function lets a window be put on top or behind its other siblings. User interaction also
affects the "Z-Order." When the user clicks on one of the of the siblings, that window will
become the active window, and it will move to the top of the '"Z-Order." The active
window is usually the window that either is or owns lime focus window. There is only one
active window in the system at any given time.
The other type of window relationship is an owner window. In the last example,
hwndFrame was also the owner of the other windows. An owner shares some of the same
duties a parent shares. When an owner is hidden, destroyed, or minimized, the children are
also. However, an owned window is not clipped to its owner.
The other interesting features of owners is the level of communication between owners and
owned, or "control" windows. When an important event happens to an owned window, the
owner is sent a WM_CONTROL message. The mpParm1 and mpParm2 parameters tell
the owner which control sent the message and what kind of event has occurred. A window
does not have to have an owner.

Window Stylin'

When a window is created, various descriptors are used to describe how the window will
look or act; these descriptors are known as window styles. There are many different kinds
of styles, including window styles and class styles, and each type of control has its own

styles as well. In this section we will concentrate on window styles, class styles, and frame
styles. The other control styles will be covered in their respective chapters.

[...] -

15 control styles

16 WS_GROUP

17 WS_TABSTOP

18 WS_MULTISELECT

19 UNUSED

20 UNUSED

21 UNUSED

22 WS_ANIMATE

23 WS_MAXIMIZED

24 WS_MINIMIZED

25 WS_SYNCPAINT

26 WS_SAVEBITS

27 WS_PARENTCLIP

28 WS_CLIPSIBLINGS

29 WS_CLIPCHILDREN

30 WS_DISABLED

31 WS_VISIBLE

Figure 9.5 Window-style
flags

Figure 9.5 shows that the first 16 bits are used for the respective
control window styles; the upper 16 bits are used for window styles.
Since controls are also windows, both the control window styles and
the basic window styles are designed to live together harmoniously.

Table 9.6 Window Style Descriptions

Value Description

WS_GROUP Defines which items make up a group in a dialog box window. See Chapter 13

WS_TABSTOP The user can use the tab key to move to this dialog item. See Chapter 13.

WS_ANIMATE Will create "exploding windows."

WS_MAXIMIZED Causes a window to he created fully maximized.

WS_MINIMIZED Causes a window to be created fully minimized.

WS_SYNCPAINT
Causes a window to have paint messages generated immediately when an
area of
the window needs to be repainted.

WS_SAVEBITS
Will save the screen area under a window and will restore the image when
covered area has been uncovered.

WS_PARENTCLIP

Will cause the parent's presentation space to be clipped to the child's
presentation space, enabling the child to draw on the parent's presentation
space. This can create some very interesting results, as the parent's visible
presentation space usually is larger than or equal to the child's. Most often
this style is not used.

WS_CLIPSIBLINGS Will prevent siblings from redrawing on top of each other

WS_CLIPCHILDREN

Will cause the child window area to be excluded from the drawing region; in
other words, the parent cannot paint over the child. Usually this style is not
necessary because if both the parent and child windows need to be repainted
and also overlap, the parent will be repainted first, and then the child window
is repainted.

WS_DISABLED
Will cause a window to be disabled upon creation. Thus this window will not
respond to user input until the window is enabled.

WS_VISIBLE
Will make a window visible at creation time. An invisible default window will
be created.

Table 9.7 presents class styles that can be specified at class registration time.

Table 9.7 Class Style Description

Class Style Description

CS_MOVENOTIFY WM_MOVE messages will be sent whenever the window is moved.

CS_SIZEREDRAW
When a window has been sized, the window will be made completely invalid.
and a WM_PAINT message will be sent. This style is useful when an application
centers text on the window or sizes an image to fill the window.

CS_HITTEST
WM_HITTEST messages will be sent to the window whenever the mouse
moves in the window.

CS_FRAME Specifies a frame window class.

CS_CLIPCHILDREN See above.

CS_CLIPSIBLINGS See above.

CS_PARENTCLIP See above.

CS_SAVEBITS See above.

CS_SYNCPAINT See above.

Another Window Example: WINDOW

The following example program illustrates some of the concepts we've talked about so far
and includes some new ones also. The program, WINDOW, creates a list of all the
windows that are children of the frame window and also queries the window style of each
window. The information is displayed in the client area.

WINDOW.C
WINDOW.MAK
WINDOW.DEF

Here main has one small difference from main in the previous example. WIN1.C. The
class style CS_SIZEREDRAW, is used for tle client window class. With this style,
Presentation Manager will invalidate the window whenever the size changes. The text on
the client area is dependent on the width of the window. Because we want to ensure that all
the text is nicely formatted even when the window is resized, thus we use
CS_SIZEREDRAW.

The Presentation Manager Coordinate Space

Figure 9.6 Coordinate space.

Presentation Manager windows use a different coordinate space from the one used by
Microsoft Windows. (See Figure 9.6) The bottom left corner is coordinate 0,0. Most
window drawing is done by specifying two sets of x,y coordinates that form the lower left
and upper right corners of a "bounding rectangle." A structure RECTL,. contains the
coordinates. It is a familiar parameter in most painting functions. The structure is defined:

typedef struct _RECTL /* rcl */
{
 LONG xLeft;
 LONG yBottom;
 LONG xRight;
 LONG yTop;
} RECTL;
typedef RECTL *PRECTL;

More on Window Painting

In a structured program, the application controls exactly when the screen is updated; in an
event-driven environment, the system tells the application when it can update the screen.
This is done by sending the application the WM_PAINT message. A Presentation Manager
program should update the screen within the WM_PAINT message processing.

This message is one of the most common messages to handle. A WM_PAINT message is
generated whenever some part of the client window needs to be painted. If a user moves
one window on top of another window, the bottom window receives a WM_PAINT
message when the covered area becomes visible again. When a portion of a window needs
to be repainted. that portion is said to be "invalid". Presentation Manager can invalidate a
region or a programmer can invalidate a region using WinInvalidateRegion or
WinInvalidateRect .

BOOL APIENTRY WinInvalidateRect(HWND hwnd,
 PRECTL pwrc,
 BOOL fIncludeChildren);

BOOL APIENTRY WinInvalidateRegion(HWND hwnd,
 HRGN hrgn,
 BOOL fIncludeChildren);

The first parameter for these functions is the window handle hwnd. The next parameter is
the area that is to be invalidated. The last parameter indicates whether children are to be
included in the invalid rectangle or region.
Presentation Manager is very stingy in sending WM_PAINT messages. Only that piece of
the window that needs to be painted will be invalidated, not the the entire window.

Painting by Numbers

 hpsPaint = WinBeginPaint(hwndWnd,
 NULLHANDLE,
 &rclRect);

Painting in this example starts with WinBeginPaint to obtain a presentation space.

 HPS APIENTRY WinBeginPaint(HWND hwnd,
 HPS hps,
 PRECTL prclPaint);

hwndWnd is the window the presentation space belongs to. Presentation Spaces are
covered in more detail later. The second parameter is used if the user already has a
presentation space obtained using WinGetPS or some other means and wants to use that
space for drawing If a NULLHANDLE is specified, the system will provide a presentation
space to be used. The last parameter is a pointer to RECTL structure. The coordinates of the
invalidated region are placed in the structure. The invalidated region is the region that
needs to be painted.

 BOOL WinEndPaint(HPS hps)

WinEndPaint is used to terminate a paint procedure. There is only one parameter, hps,
which is the presentation space returned from WinBeginPaint.

Once WinEndPaint is called, the region is validated, and any presentation space returned
from WinBeginPaint is released.

 WinFillRect(hpsPaint,
 &rclRect,
 SYSCLR_WINDOW);

This function paints the region designated by the second parameter with the specified color
index. The first parameter is the presentation space to paint.

 BOOL APIENTRY WinFillRect(HPS hps,
 PRECTL prcl,
 LONG lColor);

A program can use a value such as CLR_BLUE or a system value such as
SYSCLR_WINDOW that will fill the rectangle with the system default window color.

The WINDOW example is designed to draw some text on the client window area; however,
in a graphical user interface (GUI) environment, this is not just a call to printf. Instead
the developer must provide the exact pixel location where the text is to be located. Before
we get around actually to drawing the text, we need to find some information about the size
of the font used in the client window. GpiQueryFontMetrics is the function to provide all
the needed information about a font.

 BOOL APIENTRY GpiQueryFontMetrics(HPS hps,
 LONG lMetricsLength,
 PFONTMETRICS pfmMetrics);
 GpiQueryFontMetrics(hpsPaint,
 sizeof(fmMetrics),
 &fmMetrics);

The FONTMETRICS structure contains much data concerning the point size, face name,
height, and width of the current font. The variable lMaxBaselineExt provides the height of
the tallest character. We'll use this value as the height-of-line line of text.

 WinQueryWindowRect(hwndWnd,
 &rclWindow);
 liLineInfo.usxLeft = (USHORT)fmMetrics.lAveCharWidth;
 liLineInfo.usxRight = rclWindow.xRight-(USHORT) fmMetrics.lAveCharWidth;

The next task is to find the current size of the window. Remember, a window can be sized
by the user at any time, and a program should be able to adjust to such changes.
WinQueryWindowRect will return the size of a window in a RECTL. structure. We will
define a right and left margin that is equal to the average width of one character. Very
conveniently, the FONTMETRICS structure contains lAveCharWidth, which is exactly
that. With all this, we now know the height of our lines, the x coordinate our lines will start
at, and the x coordinate that is the end of the line.
To position the first line of text at the top of the page and create a one-line margin, the
following math is done to move the bounding rectangle down one line.

rclWindow.yTop = rclWindow.yTop-
 liLineInfo.ulCharHeight;
rclWindow.yBottom = rclWindow.yTop-
 liLineInfo.ulCharHeight;

Enumerating Windows

 hwndFrame = WinQueryWindow(hwndWnd,
 QW_PARENT);

Remember, in the window procedure, hwndWnd is the client window, not the frame
window. WinQueryWindow is used to find the parent of the client window, which in our
case is the frame window. This is a very simple function that will be used many times. The
first parameter is the handle of the window to query, and the second parameter indicates
what information will be returned.

Table 9.8 WinQueryWindow Flags

Value Description

QW_NEXT Returns the window below the specified window.

QW_PREV Returns the window above the specified window.

QW_TOP Returns the topmost child window.

QW_BOTTOM Returns the bottommost child window.

QW_OWNER Returns the owner of the specified window.

QW_PARENT Returns the parent of the specified window.

QW_NEXTTOP Returns the next window of the owner window hierarchy.

QW_PREVTOP Returns the previous window of the owner window hierarchy.

QW_FRAMEOWNER
Returns the owner of the specified window that also shares the same parent
as the specified window.

 WriteWindowInfo(hpsPaint,
 hwndFrame,
 &rclWindow,
 &liLineInfo);

 heEnum = WinBeginEnumWindows(hwndFrame);

 hwndEnum = WinGetNextWindow(heEnum);

 while (hwndEnum != NULLHANDLE)
 {
 WriteWindowInfo(hpsPaint,
 hwndEnum,
 &rclWindow,
 &liLineInfo);
 hwndEnum = WinGetNextWindow(heEnum);
 } /* end while hwndEnum */
 WinEndEnumWindows(heEnum);

Presentation Manager lets users query all the descendants of a particular window by using
the functions WinBeginEnumWindows and WinGetNextWindow. The window that is the
head of the window family tree is the frame window, hwndFrame.

HENUM WinBeginEnumWindows(HWND hwnd);
HWND WinGetNextWindow(HENUM henum);
BOOL WinEndEnumWindows(HENUM henum);

This window handle is passed to WinBeginEnumWindows, which passes back
an enumeration handle, heEnum. This is a place holder to keep track of the last window
that was returned. WinGetNextWindow takes heEnum and returns the next window in the
window family tree. As each window is found, our own function, WriteWindowInfo , is
used to display information about the window. The enumeration ends with a call to
WinEndEnum Windows.

Write WindowInofo

 WinQueryClassName(hwndPaint,
 sizeof(achClass),
 achClass);

The first piece of information we'll retrieve from each window is the class name.
Documentation refers to the system-defined class names as WC_FRAME and so on.
However, the class name in reality, and returned by WinQueryClassName, is a string in
the format "#1". Some help, huh? Public window class names are stored in powerful lookup
tables known as atom tables. This format helps to cheek to see if a newly registered
window class has the same name as one that is already registered. To convert from this
cryptic format to something more readily deciphered, we define an array, pszClassNames,
that maps the numeric class names to the documented class names. The string pszClass,
returned from WinQueryClassName , is incremented by one to strip off the "#" and leave a
value that can be converted to an integer index into the array.

If achClass is a nonnumeric value, we assume this to be an application-defined class, and
keep the sting whole.

The second piece of information to retrieve is the parent and owner windows.
WinQueryWindow is used to return the window handles of the parent and owner of the
specified window. All this window detail is formatted into one string that will displayed on
the client window by the user-function DrawString.

ulStyle = WinQueryWindowULong(hwndPaint,
 QWL_STYLE);

The other information we will output to the client area is the window styles. This is a value
that is stored in the window word. Presentation Manager stores a lot of window information
in window words. The next example covers this concept in more detail,
WinQueryWindowULong will retrieve the window styles. The first parameter is the
window we're inquiring about. The next parameter is a constant used to identify which
piece of the window word we're after. The value QWL_STYLE designates that the window
style is the ULONG is question. The example converts these values to meaningful text
string and uses the function DrawString to display the formatted string on the client area.

The DrawString function

Two functions will draw text on a window, WinDrawText and
GpiCharString. WinDrawText is the more powerful function, that providing such
features as positioning, coloured text, and word break. GpiCharString is much faster but
leaves more more work for the programmer.

LONG APIENTRY WinDrawText(HPS hpsPaint,
 LONG lCount,
 PCH pchString,
 PRECTL prclRect,
 LONG lForeColor,
 LONG lBackColor,
 ULONG flCmd);

We use the WinDrawText function in this example. The first parameter is the presentation
space. The second parameter is the number of characters to output. A -1 indicates that the
entire length of the null-terminated string is to be used. The string to write is pchString.
The size of the text area is defined by passing a pointer to a RECTL structure that contains
the designated coordinates. The next two parameters indicate the foreground and
background color of the text. The last parameter is the formatting flag, a collection of
formatting attributes that are ORed together. The attributes used in this example are
DT_LEFT | DT_TEXTATTRS | DT_WORDBREAK. DTLEFT left-aligns the text
horizontally, and DT_TEXTATTRS indicates that default window foreground and
background colors will be used. If this flag is specified, the two previous parameters are
ignored. The DT_WORDBREAK attribute will draw only the number of whole words that
will fit inside the bounding rectangle. The number of characters drawn is returned. By
enclosing this code in a loop and incrementing the string offset by the number of characters
drawn, a very powerful routine that will be used often to print formatted text is created.

 while (!bFinished)
 {
 /* move down to next line */
 usReturn = DropOneLine(prclRect,
 pLineInfo->ulCharHeight);
 /* if we can't move down any more, stop trying to write any more */
 if (!usReturn)
 return ;

 /* set the left and right drawing coordinates */
 prclRect->xLeft = pLineInfo->usxLeft;
 prclRect->xRight = pLineInfo->usxRight;

 /* draw text that will fit */
 usNumChars = WinDrawText(hpsPaint,
 strlen(&pString[usOffset]),
 &pString[usOffset],
 prclRect,
 0,
 0,
 DT_LEFT|DT_TEXTATTRS|DT_WORDBREAK);

 if (!usNumChars || (usOffset+usNumChars == usStringLength))
 /* if no characters were printed, or we are at the end of the string,
quit */
 bFinished = TRUE;

 else

 /* offset string to new position */
 usOffset += usNumChars;
 }
There is one last short function to explain, DropOneLine. This is a user function that will
take a pointer to a RECTL structure and decrement the top and bottom y coordinates by the
height of one line.

Presentation Spaces

A presentation space is similar so an artist's canvas, It is the space where the application
draws. However, a presentation space does not have to be a window. It could also be a
printer or even some piece of memory. In reality, a presentation space is a data structure,
but to the programmer it is the drawing area. There are two types of presentation spaces - a
normal presentation space and a micropresentation space. A micropresentation space is
designed to have output to only one source. A normal presentation space can be shared
between multiple devices. For instance, to print some copy of the video display, a normal
presentation space would be used. A normal presentation space uses more memory than
a micropresentation space and is slower; however, it is the most powerful presentation
space type available.
There are two types of micropresentation spaces - standard and cached. A microcached
presentation space is used for the video display and is maintained by Presentation Manager.
A microcached presentation space is faster than the other presentation spaces and uses less

memory. A microstandard presentation space is used to send output to a printer or any other
output device. However, it cannot send output to more than one device at a time.
Presentation Manager controls how much of a window actually belongs in the presentation
space. For example, if another window is covering most of a window, who should be able
to draw on the intersection of the two windows ? The normal answer is the window with
the highest value in the Z-order. There are a few exceptions to this rule.

• WS_CLIPCHILDREN If a window has this style, when the child window overlaps the
parent, the parent window cannot draw on any part of the child's window. Normally, a
child has a higher place in the Z-order than the parent, anyway, and this style is not
necessary.

• WS_CLIPSIBLINGS When two windows share the same parent, this style will omit a
sibling's presentation space from that of the other sibling. This style can be used to make
sure one sibling always "comes out on top."

• WS_PARENTCLIP This gives a child window the ability to draw on its parent This style
can be potentially dangerous, esthetically speaking, because the parent's presentation
space is larger than the child's space. However somebody must have had a use for it
somewhere.

Window Words

Window words is a fairly simple concept that is fairly easy to implement, but it got a bad
rap because it was poorly documented. Every window has a pointer to some memory that
contains quite a bit of very interesting information. Such things as window ID, frame flags,
window style, and much more are available through window words. Table 9.9 presents
three sets of functions that are used to set and query the information.

Table 9.9 Data Type Returned From Window Word Functions

Function Data Type Returned

WinQueryWindowUShort USHORT

WinSetWindowUShort USHORT

WinQueryWindowULong ULONG

WinSetWindowULong ULONG

WinQueryWindowPtr PVOID

WinSetWindowPtr PVOID

Four bytes of space are reserved in the window word for the programmer. These four bytes
can contain any data type that will fit in the space. If more space is needed, the programmer
should create his or her own structure and pass a pointer to the structure in the window
word.
Specific information from the window word is obtained using QWL_*,. QWS_*, and
QWP_* values. These. values are constants that represent the offset into the window word.
The L, S. and P indicate the data type that resides at that offset. The programmer-defined
data space resides at offset QWL_USER. One note here: The following control windows
contain the programmer-defined data area:

• Frames
• Dialog boxes
• Combo boxes
• Buttons
• Menus
• Static text
• Entryfields
• Listboxes
• Scrollbars
• Titlebars
• MLEs
• Spin buttons
• Containers
• Sliders
• Value set
• Notebooks

The following example modifies the WINDOW program to use a window word to save the
window handles and prevent multiple window enumerations in the WM_PAINT
processing.

WINWORD.C
WINWORD.MAK
WINWORD.DEF

The structure that contains the window information is defined as follows.

typedef struct _WININFO
{
 ULONG ulStructSize;
 BOOL bStructInit;
 SHORT sNumWindows;
 HWND ahwndWindows[10];

} WININFO,*PWININFO;

The first element a window word structure is the size of the structure. The operating system
uses this first element if running under OS/2 2.1 or lower. The windowing functions in

these versions are 16-bit, and the operating system must 'thunk" the 32-bit memory pointers
so the 16-bit parts of the operating system can understand the address. The operating
system uses the ulStructSize to see if the memory chunk is placed into 64K boundary. If a
boundary is straddled, the memory chunk is placed into a new 64K segment. This
requirement goes away in OS/2 Warp, but programmers must be careful if their code will
run on prior OS/2 versions.

Most of the functions in this program should look familiar. The first difference to emerge is
WinRegisterClass.

 WinRegisterClass(habAnchor,
 CLS_CLIENT,
 ClientWndProc,
 CS_SIZEREDRAW,
 sizeof(PVOID));

The last parameter specifics the amount of space to set aside in the user-defined window
word each time a window of this class is created. In most cases, the programmer will want
o allocate a pointer to a structure that contains all the information to be carried around with
the window.

Some initialization is necessary in order to utilize this space, and the best place for
initialization is in the WM_CREATE message. This is the first message that will be sent to
a window.

 case WM_CREATE :
 {
 pWinInfo = (PWININFO)calloc(1,
 sizeof(WININFO));
 if (pWinInfo)
 WinSetWindowPtr(hwndWnd,
 QWL_USER,
 pWinInfo);
 else
 DisplayError("No memory allocated for pWinInfo");
 break;
 }

The memory for the WININFO structure is allocated, and WinSetWindowPtr places the
pWinInfo pointer at the window word location QWL_USER (otherwise known as offset
0).

 pWinInfo = (PWININFO)WinQueryWindowPtr(hwndWnd,
 QWL_USER);

Instead of enumerating all the windows each time we receive a WM PAINT message, we
perform this action only the first time through and set the Boolean initialized flag,
bStructInit in the WININFO structure, to TRUE. The next time a WM_PAINT message is
received, this flag is checked; if it indicates that the initialization been performed already,
the array of window handles in the WININFO structure are used.

Control Windows

At the heart of data input in a Presentation Manager program are many different styles of
reusable controls. A control window is a window within a window designed to perform
some useful behavior in a consistent manner. The controls available are listed on page 125.

Presentation Parameters

Presentation Manager provides pretty fancy ways to set the color and font of a window-
descriptors are called presentation parameters. WinSetPresParam and
WinQueryPresParams are used to set and query the presentation parameters respectively.

BOOL WinSetPresParam(HWND hwnd,
 ULONG id,
 ULONG cbParam,
 PVOID pbParam);

hwnd is the window for which to set the presentation parameters. id is a constant used to
indicate which presentation parameter to set. These values are listed below. cbParam is the
size of the presentation parameter data, and pbParam is the actual presentation parameter
data. For examples setting presentation parameters see Chapter 25, Sliders, and Chapter
26, Font and File Dialogs.

BOOL WinQueryPresParam(HWND hwnd,
 ULONG id1,
 ULONG id2,
 PULONG pulId,
 ULONG cbBuf,
 PVOID pbBuf,
 ULONG fs);

Again, hwnd is the window for which to query the presentation parameters. id1 is the first
of the presentation parameter attribute to be queried. id2 is the second of the presentation
parameter attribute to be queried. If a window contains both presentation parameter
attributes, only the data for id1 is returned. pulId is used on output to indicate which
presentation parameter attribute was found. cbBuf is the size of the buffer used to hold the
presentation parameter data, and pbBuf is the actual buffer itself. fs is a collection of
possible query options which are OR'ed together. Table 9.10 lists the possible values.

Table 9.10 Options For Presentation Parameter Attribute Queries

Value Description

QPF_NOINHERIT Presentation parameters are not inherited from the owner of window

hwnd. By default, the presentation parameters are inherited.

QPF_ID1CQLORINDEX
Indicates id1 is a color index presentation parameter attribute, which
needs to be converted to RGB before being passed back in pbBuf.

QPF_ID2CQLORINDEX
Indicates id2 is a color index presentation parameter attribute, which
needs to be converted to RGB before being passed back in pbBuf.

QPF_PURERGBCOLOR
Specifies that either or both id1 and id2 reference an RGB color, and that
these must be pure colors.

For an example using WinQueryPresParam, see Chapter 26.

BOOL WinRemovePresParam(HWND hwnd, ULONG id);

WinRemovePresParam is used to remove a presentation parameter attribute. hwnd is the
window to remove the presentation parameter attribute from. id is the id of the presentation
parameter to remove. The function returns TRUE upon successful completion.
Presentation parameters can also be passed through WinCreateWindow. A presentation
parameter has an attribute type (PP_*) and a value for the specified attribute. Table 9.11
presents valid attribute types.

Table 9.11 Attribute Types

Attribute Type Description
Data
Type

Value

PP_FOREGROUNDCOLOR
Foreground window
color

RGB 1L

PP_FOREGROUNDCOLORINDEX
Foreground window
color

COLOR
(LONG)

2L

PP_BACKGROUNDCOLOR
Background window
color

RGB 3L

PP_BACKGROUNDCOLORINDEX
Background window
color

COLOR
(LONG)

4L

PP_HILITEFOREGROUNDCOLOR Highlighted foreground RGB 5L

window

PP_HILITEFOREGROUNDCOLORINDEX
Highlighted foreground
window

COLOR
(LONG)

6L

PP_HILITEBACKGROUNDCOLOR
Highlighted background
window color

RGB 7L

PP_HILITEBACKGROUNDCOLORINDEX
Highlighted background
window color

COLOR
(LONG)

8L

PP_DISABLEDFOREGROUNDCOLOR
Disabled foreground
window color

RGB 9L

PP_DISABLEDFOREGROUNDCOLORINDEX
Disabled foreground
window color

COLOR
(LONG)

10L

PP_DISABLEDBACKGROUNDCOLOR
Disabled background
window color

RGB 11L

PP_DISABLEDBACKGROUNDCOLORINDEX
Disabled background
window color

COLOR
(LONG)

12L

PP_BORDERCOLOR Window border color RGB 13L

PP_BORDERCOLORINDEX Window border color
COLOR
(LONG)

14L

PP_FONTNAMESIZE
Window font name and
point size

PSZ 15L

PP_FONTHANDLE Font handle attribute

16L

PP_RESERVED Reserved attribute

17L

PP_ACTIVECOLOR
Active frame window title
bar color

RGB 18L

PP_ACTIVECOLORINDEX
Active frame window title
bar color

COLOR
(LONG)

19L

PP_INACTIVECOLOR
Inactive frame window
title bar color

RGB 20L

PP_INACTIVECOLORINDEX
Inactive frame window
title bar color

COLOR
(LONG)

21L

PP_ACTIVETEXTFGNDCOLOR
Active text foreground
color

RGB 22L

PP_ACTIVETEXTFGNDCOLORINDEX
Active text foreground
color

COLOR
(LONG)

23L

PP_ACTIVETEXTBGNDCOLOR
Active text background
color

RGB 24L

PP_ACTIVETEXTBGNDCOLORINDEX
Active text background
color

COLOR
(LONG)

25L

PP_INACTIVETEXTFGNDCOLOR
Inactive text foreground
color

RGB 26L

PP_INACTIVETEXTFGNDCOLORINDEX
Inactive text foreground
color

COLOR
(LONG)

27L

PP_INACTIVETEXTBGNDCOLOR
Inactive text background
color

RGB 28L

PP_INACTIVETEXTBGNDCOLORINDEX
Inactive text background
color

COLOR
(LONG)

29L

PP_SHADOW
Color used for drop
shadows on certain
controls

COLOR
(LONG)

30L

PP_MENUFOREGROUNDCOLOR Menu foreground color RGB 31L

PP_MENUFOREGROUNDCOLORINDEX Menu foreground color
COLOR
(LONG)

32L

PP_MENUBACKGROUNDCOLOR Menu background color RGB 33L

PP_MENUBACKGROUNDCOLORINDEX Menu background color
COLOR
(LONG)

34L

PP_MENUHILITEFGNDCOLOR
Menu highlighted
foreground color

RGB 35L

PP_MENUHILITEFGNDCOLORINDEX
Menu highlighted
foreground color

COLOR
(LONG)

36L

PP_MENUHILITEBGNDCOLOR
Menu highlighted
background color

RGB 37L

PP_MENUHILITEBGNDCOLORINDEX
Menu highlighted
background color

COLOR
(LONG)

38L

PP_MENUDISABLEDFGNDCOLOR
Menu disabled
foreground color

RGB 39L

PP_MENUDISABLEDFGNDCOLORINDEX
Menu disabled
foreground color

COLOR
(LONG)

40L

PP_MENUDISABLEDBGNDCOLOR
Menu disabled
background color

RGB 41L

PP_MENUDISABLEDBGNDCOLORINDEX
Menu disabled
background color

COLOR
(LONG)

42L

PP_SHADOWTEXTCOLOR Shadow text color RGB 43L

PP_SHADOWTEXTCOLORINDEX Shadow text color
COLOR
(LONG)

44L

PP_SHADOWHILITEFGNDCOLOR
Shadow highlighted
foreground color

RGB 45L

PP_SHADOWHILITEFGNDCOLORINDEX
Shadow highlighted
foreground color

COLOR
(LONG)

46L

PP_SHADOWHILITEBGNDCOLOR
Shadow highlighted
background color

RGB 47L

PP_SHADOWHILITEBGNDCOLORINDEX
Shadow highlighted
background color

COLOR
(LONG)

48L

PP_ICONTEXTBACKGROUNDCOLOR
Icon text background
color

RGB 49L

PP_ICONTEXTBACKGROUNDCOLORINDEX
Icon text background
color

COLOR
(LONG)

50L

PP_BORDERLIGHTCOLOR Border light color

51L

PP_BORDERDARKCOLOR Border dark color

52L

PP_BORDER2COLOR Second border color

53L

PP_BORDER2LIGHTCOLOR Second border light color

54L

PP_BORDER2DARKCOLOR Second border dark color

55L

PP_BORDERDEFAULTCOLOR Border default color

56L

PP_FIELDBACKGROUNDCOLOR Field background color

57L

PP_BUTTONBACKGROUNDCOLOR Button background color

58L

PP_BUTTONBORDERLIGHTCOLOR Button border light color

59L

PP_BUTTONBORDERDARKCOLOR Button border dark color

60L

PP_ARROWCOLOR Arrow color

61L

PP_ARROWBORDERLIGHTCOLOR Arrow border light color

62L

PP_ARROWBORDERDARKCOLOR Arrow border dark color

63L

PP_ARROWDISABLEDCOLOR Arrow disabled color

64L

PP_CHECKLIGHTCOLOR Check light color

65L

PP_CHECKMIDDLECOLOR Check middle color

66L

PP_CHECKDARKCOLOR Check dark color

67L

PP_PAGEFOREGROUNDCOLOR Page foreground color

68L

PP_PAGEBACKGROUNDCOLOR Page background color

69L

PP_MAJORTABFOREGROUNDCOLOR
Major tab foreground
color

70L

PP_MAJORTABBACKGROUNDCOLOR
Major tab background
color

71L

PP_MINORTABFOREGROUNDCOLOR
Minor tab foreground
color

72L

PP_MINORTABBACKGROUNDCOLOR
Minor tab background
color

73L

PP_ values 0x100 - 0x012F are reserved for bidirectional language support

PP_BIDI_FIRST

 0x0100L

PP_BIDI_LAST

0x012FL

PP_USER
This is a user-defined
presentation parameter.

0x8000L

Chapter 10

Window Management.

A window has many physical characteristics that are controlled both by the user and by the
programmer. These characteristics include size, visibility, position, and order. A user can
size a window by dragging the sizing border of the window; likewise, the programmer also
can size the window by using a function call. A good application will not hinder the user
from arranging the windows on the desktop in whatever manner he or she sees fit; however,
an application also can provide the user with visual clues at to what actions can and cannot
be performed. For example, a "Save" menu item may be disabled when the file is
unchanged from its previous state, or a window may be inactive until the user has logged
on successfully.
This chapter covers the following window characteristics:

• Visibility/invisible
• Active/inactive
• Sizing
• Z-order

The programming interfaces to change these characteristics are explained and two example
programs are included: WINSAVE, a program designed to save the window characteristics
at the time the application is closed, WINTRACK, a program that will maintain a
minimum and maximum size requirement.

Visible, Invisible, Enabled, and Disabled Windows

Presentation Manager supports the idea of a "messy desktop" window arrangement. This
means that several windows can be stacked upon each other similar to pieces of paper on a
desk. A window that is visible is one that is currently visible on the desktop or that can be
uncovered by moving a window that is on top of it. An invisible window is one with the
WS_VISIBLE bit not set; the programmer must make it visible before it can be seen.
WinShowWindow can be used to make an invisible window visible.

BOOL WinShowWindow(HWND hwnd, BOOL fShow);

The first parameter is the window to be made visible or invisible. A value of TRUE for the
next parameter indicates the window is to be made visible. FALSE indicates the window is
to be made invisible.
A window that is enabled is one that can respond so user input. An application can disable a
window by using WinEnableWindow. Items on a dialog box can be disabled from being
chosen if the choices are no longer applicable.

BOOL WinEnableWindow(HWND hwnd, BOOL fEnable);

The first parameter is the window to be enabled or disabled. A value of TRUE for the next
parameter indicates the window is to be enabled. FALSE indicates the window is to be
disabled.

Window Sizing

The CUA (Common User Access) guidelines recommend that a frame window let the user
size and position the window to his or her own specifications. These guidelines are used to
help maintain a consistent "look and feel" across all Presentation Manager applications.
The CUA specifications are published by IBM and can help a user adapt more easily to a
new OS/2 application.
Conveniently enough, Presentation Manager can handle most of this frame manipulation
automagically. The frame control flag, FCF_SIZEBORDER. gives the frame window a
"sizing border." The user can shape and size the window to his or her heart's content, and
the programmer can kick back, relax and let Presentation Manager do all the work. But
(there's always a but) the programmer should make sure that the WM_PAINT message
processing adapts for the change in window real estate. There are a few ways to keep track
of the window size.

• In the WM_PAINT processing, callto return the RECTL structure containing the window
size.

• Keep track of the window size by processing the WM_SIZE messages. and store these
values in a structure pointed to by a window word.

Suppose a client area contained a graphic that the .programmer wanted to be visible at all
the times. One option is to resize automatically the window if the user sizes the window to
a a smaller size. A less clumsy option is to restrict the size when the user is adjusting the
the border. The following example shows just how to do this.

WINSIZE.C
WINSIZE.MAK
WINSIZE.DEF

Winsize.exe window

Device Independence, Almost

One new feature will be added to main in this example-a mini form of device
independence. SVGA is very popular, and supporting both 1024 x 768 and 640 a 480
screen resolutions in your programs can be quite painful. Unfortunately. Presentation
Manager does not guarantee that your programs will be dimensioned proportionally at both
resolutions. The best way to make your program look great at any resolution is t to size
your windows according to the screen size. "But how will I know how big the screen is?"
you may ask. The answer Presentation Manager knows all, and you just have to know
which questions to ask. WinQuerySysValue is used for exactly that reason.

LONG WinQuerySysValue(HWND hwndDesktop, LONG iSysValue);

HwndDesktop is the desktop window handle, and iSysValue is a constant used to query a
specific value. The constants available are too numerous to list here, but are listed in the
documentation for WinQuerySysValue.

 lWidth = WinQuerySysValue(HWND_DESKTOP, SV_CXSCREEN);
 lHeight = WinQuerySysValue(HWND_DESKTOP, SV_CYSCREEN);

This function will provide lots of information about the dimensions of various system
components. The values we are interested in are the height and width of the screen,
SV_CXSCREEN and SV_CYSCREEN. The value returned from the function is the answer
to your query.
Once we know the screen height and width, we use WinSetWindowPos to size and position
the window accordingly.

Subclassing the Frame Window

 pfnNormalFrameProc = WinSubclassWindow(hwndFrame,
 SubclassFrameProc);
 WinSetWindowPtr(hwndFrame,
 QWL_USER,
 pFrameInfo);
 pFrameInfo->lWidth = lWidth;
 pFrameInfo->lHeight = lHeight;
 pFrameInfo->pfnNormalFrameProc = pfnNormalFrameProc;

The frame window must be subclassed in order to alter the default frame window behavior.
For more information on subclassing, see Chapter 27. In this program, the old (in this case,
the default) frame window procedure is saved, along with the minimum height and width,
in the frame window word. Window words were covered in Chapter 9. Remember, some of
the system control windows, such as the frame windows, have reserved space for a user-
defined window word.

In Case of Error, Use the Class Default

 hab = WinQueryAnchorBlock(hwndFrame);
 WinQueryClassInfo(hab,
 WC_FRAME,

 &classInfo);
 pfnNormalFrameProc = classInfo.pfnWindowProc;
 return ((*pfnNormalFrameProc)(hwndFrame,
 ulMsg,
 mpParm1,
 mpParm2));

In case the window pointer is not found, the frame resorts back to its old window
procedure. The path to the old window procedure is found by using two very useful
functions, WinQueryAnchorBlock and WinQueryClassInfo.

 HAB WinQueryAnchorBlock(HWND hwnd);

WinQueryAnchorBlock has only one parameter, the window handle of the window for
with to retrieve the anchor block handle. The function returns the handle to the anchor
block.

 BOOL APIENTRY WinQueryClassInfo(HAB hab,
 PSZ pszClassName,
 PCLASSINFO pClassInfo);

This function has three parameters. hab is the anchor block handle, pszClassName is the
name of the class for which to retrieve the information, and pClassInfo is a pointer to
CLASSINFO structure.

 typedef struct _CLASSINFO /* clsi */
 { ULONG flClassStyle;
 PFNWP pfnWindowProc;
 ULONG cbWindowData;
 } CLASSINFO;
 typedef CLASSINFO *PCLASSINFO;

The structure contains the class style flags, flClassStyle. A pointer to the window
procedure, pfnWindowProc, and also the number of additional window words,
cbWindowData.

WinQueryAnchorBlock is used to retrieve the anchor block for our message queue. Once
we have the anchor block handle, WinQueryClassInfo is called to retrieve the default
window procedure for the frame class. Then, this window procedure is executed rather than
the subclassed frame window procedure.

Tracking the Frame

The WM_TRACKFRAME message controls the sizing of the frame. This message is sent
from the title bar to the frame window. When the frame window receives this message, it
sends a WM_QUERYTRACKINFO message to itself to query the TRACKINFO structure,
which is used to define the boundaries of the tracking (moving or sizing) operation What

the example program does is intercept the WM_QUERYTRACKINFO message, fill in the
TRACKINFO structure, modify the tracking values that we want to limit, and return TRUE
to let the tracking operation continue. The TRACKINFO structure looks like this.

 typedef struct _TRACKINFO /* ti */
 {LONG cxBorder;
 LONG cyBorder;
 LONG cxGrid;
 LONG cyGrid;
 LONG cxKeyboard;
 LONG cyKeyboard;
 RECTL rclTrack;
 RECTL rclBoundary;
 POINTL ptlMinTrackSize;
 POINTL ptlMaxTrackSize;
 ULONG fs;
 } TRACKINFO;
 typedef TRACKINFO *PTRACKINFO;

The default frame window procedure is called in order to get TRACKINFO structure that is
already filled in.

pTrackInfo->ptlMinTrackSize.x = pFrameInfo->lWidth/2;
pTrackInfo->ptlMinTrackSize.y = pFrameInfo->lHeight/2;

Once we have this structure, we modify the ptlMinTrackSize.x and ptlMinTrackSize.y
values. We use one-half the screen width and one-half the screen height as the new
minimum tracking sizes. The last step is to return mrReply which will be TRUE in all
cases, except for errors.

Saving Window Settings

Now we're ready to expand a little beyond the basic Presentation Manager program. When
the user closes down an application, it is only polite to remember all the changes he or she
has made to the frame window. In OS/2 2.0, the developers added two new functions to
make it super-easy really to impress your customers - WinStoreWindowPos and
WinRestoreWindowPos. These functions store the window size, position, and
presentation parameters in OS2.INI file and then retrieve them on demand.

WINSAVE.C
WINSAVE.MAK
WINSAVE.DEF

Winsave.exe restotes window position.

WinRestoreWindowPos

 bReturn = WinRestoreWindowPos (SAVE_NAME,
 SAVE_KEY,
 hwndFrame);

WinRestoreWindowPos is called right after the frame window is created. This enables the
saved changes to be visible right when the window is created.

BOOL APIENTRY WinRestoreWindowPos(PSZ pazAppName,
 PSZ pszKeyName,
 HWND hwnd);

The first parameter is the application name, placed in the .INI tile. The second is the
keyword used in conjunction with the application name. The last parameter is the window
to apply the changes to.
If the call completes successfully, WinSetWindowPos will make the window visible and
make it the active window.

BOOL APIENTRY WinSetWindowPos(HWND hwnd,
 HWND hwndInsertBehind,
 LONG x,
 LONG y,
 LONG cx,
 LONG cy,
 ULONG fl);

WinSetWindowPos is a very handy function. It is used to position, size, activate,
deactivate, maximize, minimize, hide, or restore a window. One of the nice aspects of
WinSetWindowPos is its ability to consolidate several function calls into one.

 WinSetWindowPos (hwndFrame,
 HWND_TOP,
 0,
 0,
 0,
 0,
 SWP_ACTIVATE | SWP_SHOW) ;

hwndFrame is the window to adjust. The next parameter HWND_TOP indicates the
position in the Z-order for the window. We've mentioned Z-order before; it's time for a
little more detail.

X,Y,Z-Order

Presentation Manager supports a concept of piling windows (visually) one on top of
another, known as Z-order. The active window and its children are always at the top of the
Z-order. Children are ahead of their parents in their position in the Z-order. The window
that is at the lop of the Z-order is one in which the user inputs keystrokes and mouse
moves.
The next four parameters of WinSetWindowPos are the x coordinate, y coordinate, width,
and height of the window. The last parameter is the value of the action flags OR'ed
together. If SWP_MOVE is specified, the x, y coordinates are used to move the window to
the requested position; if not, these two parameters are ignored. If SWP_SIZE is used, the
window is resized to the new height and width; if not, these two parameters are ignored.
We'll use SWP_ACTIVATE and SWP_SHOW to show the window, and also to make the
frame window the active one.
Readers may wonder why they call these flags SW_. The reason is that a structure used in
window positioning is a SWP (or "set window position") structure. The structure is as
follows.

typedef struct _SWP /* swp */
{
 ULONG fl;
 LONG cy;
 LONG cx;
 LONG y;
 LONG x;
 HWND hwndInsertBehind;
 HWND hwnd;
 ULONG ulReserved1;
 ULONG ulReserved2;
} SWP;
typedef SWP *PSWP;

After calling WinRestoreWindowPos, either WinShowWindow or WinSetWindowPos
with the SWP_SHOW flag should be called.

Saving State

 case WM_SAVEAPPLICATION:
 WinStoreWindowPos (SAVE_NAME,
 SAVE_KEY,
 WinQueryWindow (hwndWnd, QW_PARENT)) ;
 break ;

Presentation Manager sends a special message at application shutdown time for the sole
purpose of giving the programmer a chance to save the options and settings the user has
customized to reflect his or her preferences. This is the WM_SAVEAPPLICATION
message. Catchy name. This is the time to call WinStoreWindowPos.

BOOL APIENTRY WinStoreWindowPos(PCSZ pszAppName,
 PCSZ pszKeyName,
 HWND hwnd);

The parameters for this function are exactly the same as WinRestoreWindowPos.

Chapter 11

Window Messages and Queues

Window Messages and Queues
Presentation Manager windows communicate using a queue message processing system.
All windows in a Presentation Manager thread share a single message queue for processing
messages: however, all message queues are descendants of the Presentation Manager
system message queue. This is the reason that one poorly designed Presentation Manager
application can freeze up the entire system The queuing mechanism is a very important
concept to understand.

Once a window has a message queue. it can communicate with any other window in the
entire system. All it needs is the window, or message queue, handle to send the message to.
A window can send or receive messages. Each message is used to signal some sort of event.
Each time a mouse is moved, a window is resized, or a menu item is selected, messages are
sent to a window. A window procedure operates like a massive sieve, filtering the messages
of interest and passing through those messages that are unimportant. It is important to
realize that all messages must be processed and replied to, either through your own window
procedure or by passing the message to WinDefWindowProc or WinDefDlgProc. This
facility of using events to control the programming flow is known as 'event-driven
programming.' This style is common not only to Presentation Manager programming, but
to other GUI programming environments as well.

Message Ordering

It is not a good idea to count on messages arriving in your message queue in a certain order;
the purpose of event-driven programming is to be flexible and dynamic and respond only
when asked; however, there are obviously times when it is important to understand the flow
of messages the system sends to your queue.
The first message you can count on being sent to your client window is the WM_CREATE
message. At the time this message arrives, the window handle exists, but has no size and is
not visible. The WM_CREATE message can be used to do some application-specific
initialization, for instance, allocating memory for window words; however, any queries
specific to size or focus should be done after creation. One way to accomplish this is by
posting a user- defined message to the client window in the WM_CREATE processing. The
size and focus messages the system places in the queue are sent messages, and will be
processed before a posted message. When you process the user-defined message, you will
have a client area that has both size and focus, and this information can be used in any
initialization that needs to be done.
The standard way to set size or focus is by using the respective API's directly after
WinCreateStdWindow or WinCreateWindow call. If you would like to change the size
or position of window, there are two ways to do this. First, create the client window as not
visible, and use the function WinSetWindowPos to size and show the window, The
second method is to intercept the WM_ADJUSTWINDOWPOS message. This message is

sent before a window has been sized or moved. This gives the application a chance to
override the new size and position with a size and position of its own choosing. If
modifications are made, the application should return TRUE instead of FALSE, and the
new coordinates are used.

Focus Messages

When a window is gaining or losing focus, there are several messages that are sent by the
system. It is not advisable to process any of these messages yourself, but it is useful to
understand how Presentation Manager handles changing a windows focus.
When a user clicks the mouse on another window, the system first sends a set of messages
to the frame window that is losing the focus. A set of WM_QUERYFOCUSCHAIN
messages are sent to the frame window and its children to help the system decide which
windows will be involved in this focus change operation. Next, a WM_FOCUSCHANGE
message is sent to both the frame and its children to indicate they are all losing focus. The
next message sent is the WM_SETFOCUS message. This message indicates the window is
either about to lose or about to gain the input focus. In this case, it would be losing input
focus. Next, the WM_SETSELECTION message is sent This message is used to
unhighlight or highlight any selected items in the window, The client area does not do
much with this message, but it is at this time that the titlebar window changes from a
highlighted titlebar to unhighlighted titlebar. The last message sent when a window is
losing focus is the WM_ACTIVATE message. The message actually takes away the focus
from the active window.

When a window is gaining focus, the messages are sent in a similar fashion. First,
the system queries the windows with the WM_QUERYFOCUSCHAIN. Then, a
WM_FOCUSCHANGE message is sent to the frame and its children to indicate they are
gaining focus. Next, the focus change operations are actually performed, with a
WM_SETFOCUS being sent first, then the WM_SETSELECTION, and lastly, the
WM_ACTIVATE.

Size and Paint Messages

An application receives three messages when a window is
sized,WM_CALCVALIDRECTS, WM_SIZE and then WM_PAINT. The message
WM_CALCVALIDRECTS is used to communicate the new window size and coordinates
after the sizing operation. The WM_CALCVALIDRECTS is used only when
CS_SIZEREDRAW style is not specified, as the whole window will be invalidated when a
sizing operation is done on a window with this style.
The next message is the VM_SIZE message. This message gives the application a chance
to reposition any other window that may be dependent on the newly sized windows
position. The last message passed, if she style CS_SIZEREDRAW is set, is the
WM_PAINT. If the WS_SYNCPAINT style is set, the message will be sent, otherwise the
message will be posted The system will pass the rectangular coordinates that contain the
area to be redrawn as a parameter in the WM_PAINT message.

The Last Messages a Window Receives

When a WM_CLOSE message is posted to a window (when the user selects CLOSE from
the system menu), first a WM_SYSCOMMAND message is posted with the SC_CLOSE
ID. Next, a WM_QUIT message is posted to the message queue. This is a very special
message, because when WinGetMsg receives this message, the function returns FALSE,
causing the WinGetMsg / WinDispatchMsg loop to terminate. A
WM_SAVEAPPLICATION message is posted next. This gives the application a chance to
prompt the user for any last minute clean-up work; for instance, saving a file, or
disconnecting a communication line. When WinDestroyWindow is used to destroy the
frame window, the system will send the focus change messages to indicate this frame
window and all its children will be losing focus. The last message a window will receive is
the WM_DESTROY. This is the place to control any application-specific cleanup. For
example, freeing memory should be done in the WM_DESTROY processing.

When the user has selected "Shutdown" from the desktop menu or the Warp Launchpad,
there is a little change in the messages that arrive in the queue. The system bypasses the
WM_CLOSE message, and sends two messages to each thread that contains a message
queue. The first is the WM_SAVEAPPLICATION. The next message issued is the
WM_QUIT message. An application will usually not process the WM_QUIT message;
however, in the case when it needs to interrupt or halt system shutdown, it must process
WM_QUIT. If the application wants to cancel the shutdown, it can call
WinCancelShutdown. If the application would like to do something else before shutting
down, it can perform its closing work, and then call WinDestroyMsgQueue. After
processing, make sure you return FALSE implicitly, and do no call
WinDefWindowProc as the default window procedure does not know how to handle a
WM_QUIT message.

Gotcha!

For each thread that contains a message queue, make absolutely sure that
you issue a WinCancelShutdown soon after the thread is created if you
do not want to process the WM_QUIT, or else be prepared to process the
WM_QUIT message and destroy the message queue. A thread with a
never-ending message queue can prevent the entire system from shutting
down properly. Also, there is no guarantee that a secondary thread will
execute all function calls and return before the primary thread (and thus
the application) exits. It is up to the developer to make sure all clean-up in
secondary threads is complete before the application exits.

Sending Messages

When a message is sent, it is usually directed to a particular window. For instance, a
WM_CHAR message, indicating a key had been pressed, would be sent to the window that
was currently active and had the keyboard focus. There are two ways a message can be
dispatched. They can either be sent, using WinSendMsg, or posted, using WinPostMsg.
There is a very subtle difference between these two dispatch methods, and this could cause

you problems somewhere down the road. When a message is sent, it is not put in a
window's message queue; it is processed the next time WinGetMsg is called, or
immediately executed, if no message is currently being processed. The thread containing
WinSendMsg blocks, and control is switched over to the thread containing the
receiving message's window procedure.

Figure 11.1 WinSendMsg in a multithread application.

A message should be sent when it absolutely, positively,. has to be there right now A good
example of this is passing painters in messages when there is no guarantee that the pointer
will point to something valid when the message is up for processing. WinSendMsg should
be used in this situation.
One little bit of information about WinSendMsg: this function will not return until that
message has been processed. Yup, that's right. If you send a message from your window
procedure to a window procedure that's asleep at the wheel, or even just a little slow to
respond, your window procedure will sit there and wait until it gets some response back
from the other window procedure. If you send a message to some window that the system
controls the window procedure for, you can pretty much guarantee a zippy response;
however, .be very careful when using this function to send messages to either your own
window procedure or to some other application's window procedure. WinPostMsg is a
much safer method of transmitting messages; however, the message is placed into the
receiving window's message queue. It will be processed when that window gets around to
it. WinPostMsg should be used when you want to communicate some information and do
not care about a reply. WinSendMsg should be used when it is imperative that you gain
some piece of information and have to respond to it now.

Broadcasting Messages

A window can communicate one to one with another window directly, or it can broadcast a
message to several windows at once. The function

BOOL APIENTRY WinBroadcastMsg(HWND hwnd,
 ULONG msg,
 MPARAM mp1,
 MPARAM mp2,
 ULONG ulCmd);

can be used to send or post a message to the windows specified in the ulCmd parameter.
This command contains two parts: who to communicate with, and what form of
communication to use. These flags are then ORed together The default communication
form is BMSG_POST. You can specify BMSG_POST, BMSG_SEND, or
BMSG_POSTQUEUE. The POSTQUEUE flag will post a message to all threads in the
system that have a message queue, and the hwnd parameter will be ignored. Only one of
these three flags can be specified. The second part of the ulCmd parameter indicates who
to communicate with. The choices are BMSG_DESCENDANTS, or
BMSG_FRAMEONLY. DESCENDANTS will communicate with hwnd, and all of its
descendants. FRAMLEONLY will broadcast a message to all frame windows that are
descendants of hwnd. To broadcast to all frames in the system use HWND_DESKTOP for
hwnd.

Peeking into the Message Queue

There are many instances when you do not want to retrieve a message from the message
queue, instead you would rather just "peek into the queue, and see if a message it waiting.
The function:

BOOL APIENTRY WinPeekMsg(HAB hab,
 PQMSG pqmsg,
 HWND hwndFilter,
 ULONG msgFilterFirst,
 ULONG msgFilterLast,
 ULONG fl);

inspects the message queue and returns back information about the queue. hwndFilter
narrows the search to a specific window or its children. The msgFilterFirst
and msgFilterLast parameters let you narrow the search even further to numerical range.
If both these parameters are null, all messages are included in the search. The fl flag
indicates whether the message is removed from the queue, or not. The default is to not
remove the message from the queue. The return from this function indicates whether the
search was successful, or not.

Finding More Message Queue Information

There are several functions to query information from the message queue. The following
are these query functions:

Function Description

WinQueryMsgPos
Returns the pointer position when last message retrieve from the queue
was posted. This is the ptl parameter in the QMSG structure.

WinQueryMsgTime
Returns the time in milliseconds when the last message retrieved from
the queue was posted. This is the time parameter in the QMSG structure.

WinQueryQueueInfo
Returns the MQINFO structure. This structure includes the process ID,
thread ID, and message count

WinQueryQueueStatus Returns information about what types of messages are in the queue

Message Priorities

When messages are retrieved from the message queue, they are not necessary retrieved on a
"first in, first out" basis. Instead, messages are retrieved on the basis of priority, similar to
threads. The following is a list of messages in order they will be retrieved:

• Sent messages
• WM_SEM1
• All other posted messages
• Keyboard or mouse messages
• WM_SEM2
• WM_PAINT
• WM_SEM3
• WM_TIMER
• WM_SEM4

Figure 11.2 represents a flow chart of how messages are retrieved

Figure 11.2 WinGetMsg message processing order

You may be wondering. "What are these WM_SEM messages, and the WM_TIMER
message?" Well, on to the next topic... WM_PAINT messages are fairly low on the
message priority totem pole. The default window style causes Presentation Manager to
"group" invalidated regions together and generate one WM_PAINT message. The window
style, WS_SYSPAINT, or the class style CS_SYSCPAINT, wilt stop Presentation Manager
from behaving in this independent manner, and each time a region
invalidated, Presentation Manager will very obediently call the WM_PAINT processing
immediately by sending the WM_PAIN'T message. The system does not post this
messages, it jumps to the WM_PAINT processing and then, when painting is completed,
jumps back to the call following the region invalidation.

Messages and Synchronization of Events

Often an application wants to know when some event has occurred. One way to do this is
the use of the WM_SEM1,2,3,4 messages. These messages are totally for your application
use. It these messages are passed to WinDefWindowProc or WinDefDlgProc, it has no

effect on the system. For example, suppose you have a worker thread that has finished
processing. That thread could post a WM_SEM2 to the main thread to indicate that the
thread has finished its work. WM_SEM1 messages should really be reserved for very
important. time-critical events.
A way to keep track of an event that is dependent on some function of time is to use the
functions WinStartTimer and WinStopTimer. WinStartTimer starts an alarm clock that
is set to go off after some application- defined amount of time, in milliseconds. When the
timer goes off, the system sends WM_TIMER message back to your window procedure.
You might consider using semaphores in a window procedure. DON'T!! Instead,
think of using WinRequestMutexSem,WinWaitEventSem, or WinWaitMuxWaitSem.
Waiting on a semaphore using the regular DosWait...Sem functions can bring a window
procedure to a screeching halt. Even the most well-behaved semaphore synchronization can
develop a mind of its own every now and then. The special set of window semaphore
functions were created to provide the same functionality as the DosWait...Sem functions,
but not to interrupt the flow of your window procedure completely.. The system will
appear to wait in the message processing that this function is called from, but messages
sent to the message queue will be processed synchronously. When the semaphore has
been posted or the function times out, the message processing resumes where the
WinWait... cal was executed. Note that messages that are posted will remain in the
message queue until after WinWait... call has completed.

User-Defined Messages

Presentation Manager also gives you the flexibility to add your own messages to the
system. These are called user-defined messages, and are numerically represented by the
range 0x1000 through 0xbfff. There are some system-defined messages that fall into this
range, WM_USER+40 through WM_USER+55. This is an area that may change in the
future, so its a good idea to search through the Toolkit header files to see if there are any
new messages defined that fall into this range. Several examples in this book use user-
defined messages.

Some words about using window messages with non-PM threads.

You can post messages to windows from thread that is not initialised for PM via
WinInitialize and WinCreateMsgQueue. You also can use in such thread some Win...
functions that don't use queue , say WinAlarm. But sometimes it is necessary to use some
kind of communication with user from thread and/or process that don't use even-driven
programming model. For example, you want to inform user on error condition with
WinMessageBox function. To do this you can use WinPostMsg with user-defined
message to one of your client window or may simply initialize your thread to PM with
WinInitialize and WinCreateMsgQueue, but don't use standard message loop:

 while(WinGetMsg(hab, &qmsg, 0UL, 0UL, 0UL))
 WinDispatchMsg(hab, &qmsg);

Gotcha!

One little note here: The settings for the frame window, not the client, are
the ones to be retrieved.

Chapter 12

Resources

Although resources such as CPU rime and memory in the traditional sense are viewed as
"things" that need so be shared, the term has a different meaning in a GUI environment. In
a Presentation Manager environment resources are viewed as items that are necessary for
the user interface of an application but nor part of the application code itself.
So, why does this book contain a chapter dedicated to resources if they aren't code-related?
The operative phrase in the preceding paragraph is "necessary for the user interface."
Resources are not something that can be done without. Instead, programmers will spend a
large amount of time on "developing" resources, since they define the look of the resulting
application (though not its operation).
This chapter discusses the following types of resources, what they are, and how they are
used within an application: pointers, icons, bitmaps, string tables, accelerator tables, and
application defined resources. Help tables, dialog boxes, and menus are also resources that
are discussed briefly. with cross-references to chapters on these topics provided. Fonts,
which are the other resource type defined, will not be discussed because their use requires a
detailed look as the Graphics Programming Interface (GPI), which It a hock in itself.

More About Resources, I Would Know

In an orchestra, there are the musicians, the conductor, and the seating arrangement, which
allows the conductor to know exactly where everything can be found. In this chapter, we
will look the analogous parts in a PM application:

• The resources (musicians)
• The application (the conductor)
• The resource file (the seating arrangement)

The resources are the actual user interface items that are used by the application - pointers,
menus, and so on; as in an orchestra, without the resources themselves, the rest is pointless.
The application coordinates the use of the resources to get a meaningful result: is wouldn't
make sense, for example, to show an "Open" dialog when the user requested that the
document should be printed. The resource file is where the compiler is instructed which
resources the application will use; these resources, as we will show, are appended to the
executable in a separate area (called resource segments), which are analogous to the seats
in the orchestra section.

Table 12.1 shows the types of resources, defined by OS/2, that we look at this chapter

Table 12.1 Resource Types.

Resource Description

Pointer Pointer or icon data

Bitmap Bitmap data

String table Table of strings

Accelerator
table

Table of "shortcut" keys

Menu Menu description

Dialog Dialog description

Font Font description

Help table Table of frame windows and dialogs for which online help is to be provided

Help subtable
Table of windows within a frame window or dialog for which online help is to be
provided

User data Data in an application-specific format

All resources are defined using resource identifiers, numeric constants that, together with
the type of the resource being referenced, uniquely identify each resource in an application.
A resource is said to be loaded when an application needs to use it for the first time; this
loading of the resource results in a handle that the application uses when it calls a
Presentation Manager function.

Resource Files

But before we can look at the resources themselves, we must first look at the place in which
they are specified and the compiler used to append them to the executable. The resource file
usually has a main file with the extension .RC, and this file usually includes one or more
dialog definition files with the extension .DLG. The resource file can include C header files
using the #include keyword and also can include comments according to the C++ standard
(i.e., using "/*" and "*/" or using "//"). Where a construct requires a BEGIN and END
keywords, the symbols "{" and "}" also may be used.
Dialog files are included in a funny manner: The main file uses the keyword
DLGINCLUDE to specify that dialog file is to be included.

DLGINCLUDE resid filename

resid specifies the resource identifier of the file (!) and filename is the name of the file to
be included. The original intent was that each dialog definition would go in a separate file
and all of the files would be included by the main file.

Gotcha!

Because the original purpose of the dialog file is as described, each
DLGINCLUDE statement must have a unique resource identifier. It is not
necessary, however, to limit each dialog file to having a single dialog box
definition.

As if that weren't enough trouble, each dialog file also must use the RCINCLUDE
statement to specify what the main file is to which it is being attached. This is to allow the
dialog file to access the symbolic definitions (i.e., #defines)
As was said, dialog files are included in is funny manner, and the logic is rather illogical.
This process was not followed in every PM sample presented in this book; instead, all of
the dialog definitions were moved from the dialog files into the main file to eliminate the
confusion of resource identifiers for files.

Using the Resource Compiler

Now that a resource file is defined, it needs to be compiled into a .RES file. This is
accomplished using the resource compiler (RC.EXE). The compiler comes with the base
operating system and can be found in the \OS2 directory. It also comes with the
Programmer's Toolkit, Visual Age C++ and Watcom compilers. It supports the command-
line options listed in Table 12.2.

Table. 12.2 Resource Compiler Switches

Option Description

 -d defname
-Ddefname

Preprocessor define - Defines a macro and optionally a value

 -i Include file path - specifies a path to include when searching files

 -r Create .res file - Do not attach the compiled .RES file to the .EXE or .DLL

-p Pack - 386 resources will not cross 64K boundaries

-x[1|2] Exepack - Compress resources, using method 1 or 2

 -cc cc Country code

 -cp cp | lb,tb,... DBCS codepage or lead/trail byte info.

 -n Don't show logo

-w2 Suppress warnings

-?
-h

Access Help

To compile a resource file, MYAPP.RC, to a .RES file without attaching MYAPP.RES to
MYAPPS.EXE, compressing resources, and using "." as a directory to search, the following
code would be entered:

RC -R -X1 -I. MYAPP.RC

Pointers and Icons

Pointers and icons are defined and accessed in the same manner. This isn't coincidence;
with the exception of the first two bytes in the file containing the actual data, the two are
identical. Both resources are defined in the resource file in the following manner:

POINTER resid filename

resid is the resource identifier of the pointer or icon, and filename is the name of the file
containing the pointer or icon data. These files are created using the "icon editor" utility
(ICONEDIT.EXE), which is provided by OS/2 and also can be found as part of the
Programmer's Toolkit. For help on using the icon editor, programmers should refer to the
online documentation.
In a program, both are loaded using the WinLoadPointer function.

HPOINTER APIENTRY WinLoadPointer(HWND hwndDesktop,
 HMODULE hmod,
 ULONG idres);

hwndDesktop is the desktop window handle, for which HWND_DESKTOP can he
specified. hmDll is the handle to a DLL that was loaded with DosLoadModule or
WinLoadLibrary to which the resource is attached. If the resources are appended to the
executable, then NULLHANDLE should he used for this parameter. ulId is the resource
identifier of the pointer or icon to he loaded. This function returns a handle to the pointer or
icon that was loaded, which is used in subsequent functions that act upon pointers or icons.

Once a pointer or icon is loaded, it can be drawn in a window with
WinDrawPointer function.

BOOL APIENTRY WinDrawPointer(HPS hpsWnd,
 LONG lX,
 LONG lY,
 HPOINTER hpPointer,
 ULONG ulFlags);

hpsWnd is a handle to the presentation space in which the pointer or icon is to be drawn.
lX and lY specify the position within the presentation space where the pointer or icon is to
be drawn. hpPointer specifies the handle of the pointer or icon that is to be drawn. ulFlags
specifies how the pointer or icon is to be drawn, and is one of the constants listed in Table
12.3.

Table 12.3 Values for ulFlags

Constant Description

DP_NORMAL Draw the pointer or icon in the "normal" manner.

DP_HALFTONED Draw the pointer or icon in a halftone manner.

DP_INVERTED Draw the pointer or icon in color-inverted state.

DP_MINI 0x0004 /* Feature:85493 */ (???)

This function returns a flag indicating success or failure.
The WinDrawPointer function is useful for drawing an icon in a window, but it cannot be
used to set the mouse pointer to anything. To accomplish this, we instead need the
WinSetPointer function.

BOOL APIENTRY WinSetPointer(HWND hwndDesktop,
 HPOINTER hptrNew);

hwndDesktop is the handle to the desktop; again, the HWND_DESKTOP constant for this
can be specified. hptrNew is the handle to the pointer to which one wishes the mouse
pointer to change. This function also returns a flag indicating success or failure.

Gotcha!

Just because the mouse is set to a specified pointer doesn't mean that
something else cannot set it to something else. In fact.
WinDefWindowProc will set the pointer to the arrow pointer within its
processing for the WM_MOUSEMOVE message. Typically, the
application would intercept the WM_MOUSEMOVE message and call
WinSetPointer at that point to change the mouse pointer and not call

WinDefWindowProc.

In addition to any user-drawn pointers or icons, Presentation Manager defines a number of
"system pointers": the arrow pointer, the waiting pointer, and some icons that have been
discussed come from here. These pointers and icons can be accessed or reloaded using the
WinQuerySysPointer function.

HPOINTER APIENTRY WinQuerySysPointer(HWND hwndDesktop,
 LONG lptr,
 BOOL bLoad);

hwndDesktop is the desktop handle (HWND_DESKTOP). lPtr specifies which system
pointer or icon one wishes to access or load. It is one of the constants found in Table 12.4.

Table 12.4 System Pointers

Constant Description

SPTR_APPICON Default icon for a PM application

SPTR_ARROW Arrow pointer

SPTR_FILE File icon

SPTR_FOLDER Folder icon

SPTR_ICONERROR Error icon

SPTR_ICONINFORMATION Information icon

SPTR_ICONQUESTION Query icon

SPTR_ICONWARNING Warning icon

SPTR_ILLEGAL Illegal action icon

SPTR_MOVE Move icon

SPTR_MULTFILE Multiple object icon

SPTR_PROGRAM Executable object icon

SPTR_SIZE Sizing pointer

SPTR_SIZENESW Sizing pointer from upper right to lower left

SPTR_SIZENWSE Sizing pointer from upper left to lower right

SPTR_SIZENS Vertical sizing pointer

SPTR_SIZEWE Horizontal sizing pointer

SPTR_SIZETEXT Text "I-beam" pointer

SPTR_WAIT Waiting pointer

bLoad specifies whether the handle to the pointer that the system loaded during its
initialization should be returned or whether the pointer should be loaded again and a new
handle returned. To make modifications to the pointer for use within your application,
bLoad should be specified TRUE. This function returns a handle to the specified pointer or
to a copy of the specified pointer, depending on the value of bLoad.

Pointers and icons that were loaded explicitly by an application are destroyed using the
WinDestroyPointer function.

BOOL APIENTRY WinDestroyPointer(HPOINTER hpPointer);

hpPointer specifies the handle of the pointer or icon to be destroyed. This function returns
a flag indicating success or failure.

Bitmaps

Bitmaps are similar to their cousins, pointers and icons. However, pointers and icons are of
a fixed size, defined by Presentation Manager and cannot be any bigger or smaller. Bitmaps
do not have this restriction;they do not have a "transparency" color, though, which is
something that pointers and icons do have. Bitmaps in general have many uses - no blanket
statement describes their usual purpose in an application.

The manner in which a bitmap is specified within a resource file is like that of the pointer
and icon.

BITMAP resid filename

This causes the bitmap file with the specified name, filename, to be included in the
resource tables and be assigned the specified resource id, resid.
Bitmaps are loaded with the GpiLoadBitmap function.

HBITMAP APIENTRY GpiLoadBitmap(HPS hpsWnd,
 HMODULE hmDll,
 ULONG idBitmap,
 LONG lWidth,
 LONG lHeight);

hpsWnd is a handle to the presentation space that is used to load the bitmap; this parameter
is complex and will not be discussed. hmDll is a handle to a DLL that contains the
resources, if this is the case. Again, if the resource is appended to the executable,
NULLHANDLE should be specified. idBitmap is the resource identifier of the bitmap to
be loaded. lWidth and lHeight are the width and height to which the bitmap should be
stretched, if this is desired. Specifying 0 for both of these parameters specifies that the
bitmap should be kept at its original size. This function returns a handle to the bitmap
loaded.
Drawing a bitmap is accomplished in one of many ways. We will look at the simplest of
these, which is to use the WinDrawBitmap function. Like WinDrawPointer, this will
draw a bitmap into a presentation space that is associated with a window.

BOOL APIENTRY WinDrawBitmap(HPS hpsWnd,
 HBITMAP hbmBitmap,
 PRECTL prclSrc,
 PPOINTL pptlDst,
 LONG clrFore,
 LONG clrBack,
 ULONG ulFlags);

hpsWnd is, again, a handle to a presentation space in which the bitmap will be drawn.
hbmBitmap is a handle to the bitmap to be drawn. prclSrc points to a RECTL structure
that defines the portion of the bitmap to be drawn. If NULLHANDLE is specified, the
entire bitmap is drawn. pptlDst specifies the point corresponding to where the lower left
corner of the bitmap is to be in the presentation space.
clrFore and clrBack are the foreground and background colors and are used for
monochrome bitmaps only. ulFlags specifies how the bitmap is to be drawn and can be
one of the constants depicted in Table 12.5

Table 12.5 Values for ulFlags

Constant Description

DBM_NORMAL Draw the bitmap in a "normal" fashion.

DBM_INVERT Draw the bitmap in a color-inverted state.

DBM_HALFTONE Draw the bitmap in a halftone manner.

DBM_STRETCH Draw the bitmap stretched to fit prclSrc.

DBM_IMAGEATTRS
Draw the (monochrome) bitmap using the current foreground and
background colors of the presentation space. clrFore and clrBack are ignored
if this is specified.

This function returns a flag indicating its success or failure.

We've used the word "monochrome" twice, so it is helpful to be able to determine what the
parameters are that were used to create the bitmap. This is done with the
GpiQueryBitmapInfoHeader function

BOOL APIENTRY GpiQueryBitmapInfoHeader(HBITMAP hbmBitmap,
 PBITMAPINFOHEADER2 pbmpData);

hbmBitmap is a handle to the bitmap in which the programmer is interested. pbmpData
points to a very interesting structure - BITMAPINFOHEADER2.

typedef struct _BITMAPINFOHEADER2 /* bmp2 */
{
 ULONG cbFix; /* Length of structure */
 ULONG cx; /* Bit-map width in pels */
 ULONG cy; /* Bit-map height in pels */
 USHORT cPlanes; /* Number of bit planes */
 USHORT cBitCount; /* Number of bits per pel within a plane */
 ULONG ulCompression; /* Compression scheme used to store the
bitmap */
 ULONG cbImage; /* Length of bit-map storage data in bytes*/
 ULONG cxResolution; /* x resolution of target device */
 ULONG cyResolution; /* y resolution of target device */
 ULONG cclrUsed; /* Number of color indices used */
 ULONG cclrImportant; /* Number of important color indices */
 USHORT usUnits; /* Units of measure */
 USHORT usReserved; /* Reserved */
 USHORT usRecording; /* Recording algorithm */
 USHORT usRendering; /* Halftoning algorithm */
 ULONG cSize1; /* Size value 1 */
 ULONG cSize2; /* Size value 2 */
 ULONG ulColorEncoding; /* Color encoding */
 ULONG ulIdentifier; /* Reserved for application use */
} BITMAPINFOHEADER2;
typedef BITMAPINFOHEADER2 *PBITMAPINFOHEADER2;

The GpiQueryBitmapInfoHeader function returns a flag indicating success or failure of
the function..
In OS/2 versions l.x. this structure was called BITMAPINFOHEADER and contained only
the first five fields. In the current structure, PM developers have enabled programmers to
have much more control over the creation of a bitmap (or, in this situation, much mow
information about a bitmap). However, they also realized that programmers probably still
will use only the first five fields. So, the Gpi requires only that programmers initialize all
fields up to the last one they are interested in and that they specify the number of bytes
initialized in the cbFix field; and if the parameters of an existing bitmap are being queried,
only cbFix needs to be initialized to specify how many bytes need to be returned. Thus, if
cbFix has the value 16. only the first five fields (sizeof(cbFix) + sizeof(cx) + sizeof(cy) +
sizeof(cPlanes) + sizeof(cBitCount) = 16) would be provided, but any value that makes
sense, up to the size of the structure, can be specified. Before
GpiQueryBitmapInfoHeader is called, cbFix should be initialized to specify bow much
information should be returned.

Gotcha!
Initializing cbFix to the proper value is a must when calling the
GpiQueryBitmapInfoHeader function, or unpredictable information will be
returned.

cx and cy specify the width and height of the bitmap. cPlanes specifies the number of color
planes used by the bitmap; while OS/2 supports multiplane bitmaps, the APIs to draw
bitmaps support only single-plane bitmaps. cBitCount specifies the number of bits it takes
to represent one pel in the bitmap and can have a value 1, 2, 4, 8, or 24; if the value is 1, it
is a monochrome bitmap, since it can base only 21 colors. ulCompression specifies the
compression scheme used to compress the bitmap in memory and can be one of the values
listed in Table 12.7.

Table 12.7 Values for ulCompression

Constant Description

BCA_UNCOMP Uncompressed

BCA_HUFFMAN1D Huffman encoding scheme

BCA_RLE4 Run-length encoding for 4 bit-per-pel (BPP) bitmaps

BCA_RLE8 Run-length encoding for 8 BPP bitmaps

BCA_RLE24 Run-length encoding for 24 BPP bitmaps

cbImage specifies how much memory is needed to store the bitmap data. cxResolution and
cyResolution specify the resolution of the device for which the bitmap was intended to be
displayed upon. This does not prohibit the bitmap from being displayed on another display
type; it merely indicates the display type for which the bitmap was drawn. cclrUsed,
cclrImportant, ulRecording, ulRendering, cSizel, cSize2, and ulColorEncoding
all specify additional data as described in structure's comments and are beyond the scope
of this text.

Bitmaps are destroyed using the GpiDeleteBitmap function.

BOOL APIENTRY GpiDeleteBitmap(HBITMAP hbmBitmap);

hbmBitmap specifies the handle to the bitmap to be deleted. This function returns a flag
indicating the success or failure of the function.

String tables.

String tables are very simple in concept and implementation. They age lookup tables where
the application provides the resource identifier of a string and Presentation Manager
provides the corresponding text that was defined in the resource file. The purpose of a
string table is to allow easy translation of an application to other languages, providing all of
the "user-readable" text is placed into a string table. "User-readable" in this sense means
text that the user sees; window class names would not be included in this group, but
messages would be.

Unlike all other resources, string tables do not have a resource identifier explicitly assigned
to them by the programmer. Instead, the resource compiler breaks up the string table into
groups of 16 strings and automatically assigns an identifier to each 16- string group. A
string table has the following form in a resource file.

STRINGTABLE
{ resid1, "string1"
 rasid2, "string2"'
 rasid3, "string3"'
}

As was stated earlier and is now obvious, a string table is simply that - a table of strings.
Each string has a unique identifier associated with it, which is specified on the call to
WinLoadString which loads a string from the string table.

LONG APIENTRY WinLoadString(HAB habAnchor,
 HMODULE hmDll,
 ULONG ulId,
 LONG lSzBuffer,
 PCSZ pchBuffer);

habAnchor is the handle to the anchor block of the calling thread. hmDll is the handle to
the DLL where the string table resides, or NULLHANDLE if it resides in the executable's
resource tables. ulId is the identifier of the string to be loaded. lSzBuffer specifies the size
of the buffer pointed to by pchBuffer. This function returns the number of characters
loaded from the string table, up to a maximum of lSzBuffer - 1.

That's all there is to it!

Accelerators

Accelerators are "shortcut" keys that accelerate the rate at which a user is able to complete
certain tasks within an application. The accelerator table defines a translation from a
keystroke, modified by the Alt, Ctrl, or Shift keys if specified, to a numeric identifier that is
sent to the application via the WM_COMMAND message.
The accelerator table has the following form.

ACCELTABLE resid
{
 key, cmd_id, type [, modifiers]
 key, cmd_id, type [, modifiers]
 key, cmd_id, type [, modifiers]
}

resid is the resource identifier for the accelerator table, key is the base key for the
accelerator and can be a VK_ constant (e.g. VK_F1) or a character in quotes. cmd_id is the
numeric identifier to be sent as SHORT1FROMMP(mpParm1) in the WM_COMMAND
message. type is the type of character and must be CHAR or VIRTUALKEY. modifiers
are optional and can be one or more of those listed in Table 12.8, separated by commas.

Table 12.8 Values for modifiers

Modifier Description

CONTROL Ctrl key must be pressed.

ALT Alt key must be pressed.

SHIFT Shift key must be pressed.

Gotcha!
If a character (instead of a virtual key) is specified (or an accelerator, it is case-
sensitive, so two entries must he provided to cover both possibilities of the
shift key stale (unless each case should have different meanings, of course).

If the sole modifier of a character accelerator is the control key, the CONTROL
modifier may be be omitted and the key prefixed with a caret symbol, "^"., Also, keys that
are not virtual keys must be specified in quotes.

ACCELTABLE RES_CLIENT
{ "^O", MI_OPEN
 "^o", MI_OPEN
}

Accelerator tables usually are associated with standard windows through the use of it
FCF_ACCELTABLE frame control flag. However, an accelerator table can be loaded
explicitly with WinLoadAccelTable function.

HACCEL APIENTRY WinLoadAccelTable(HAB habAnchor,
 HMODULE hmDll
 ULONG idAccelTable);

habAnchor is the handle to the anchor block of the calling thread. hmDll is the handle to
the DLI if the accelerator table resides there, or to NULLHANDLE if is in the executable's
resource tables. idAccelTable is the resource identifier of the accelerator table. This
function returns a handle to the loaded accelerator table.
After an accelerator table is loaded, is can be made active with the WinSetAccelTable
function.

BOOL APIENTRY WinSetAccelTable(HAB habAnchor,
 HACCEL haAccel,
 HWND hwndFrame);

habAnchor is the handle to the anchor block of the calling thread. haAccel is the handle
to the accelerator table o be made active. hwndFrame is the handle to the frame window to
which the accelerator table attached. This function returns a flag indicating success or
failure.

For each message queue, there are certain "standard" accelerators that are defined, such as
Alt+F4 to close a frame window. These are called "queue accelerators," since they are in
effect for the entire message queue and are independent of the active window. If
hwndFrame in the call to WinSetAccelTable is NULLHANDLE, the accelerator table

replaces the queue accelerator table.
Accelerator tables are destroyed with the WinDestroyAccelTable function.

BOOL APIENTRY WinDestroyAccelTable(HACCEL haAccel);

This function destroys the accelerator table whose handle is specified in haAccel and
returns a flag indicating success or failure.

Dialog Boxes

Dialog boxes are complicated beasts, but their use is simplified greatly through the use of
the "dialog box" editor DLGEDIT.EXE (as well as through the use of resource editor URE
named IRE in VisualAge C++ 4) A dialog box is described in a resource file using the
dialog template. This template consists of three parts:

• The DLGTEMPLATE statement
• The DIALOG statement
• One or more child window definitions

The nice thing is that the dialog box editor will create the template for the programmer; all
he or she needs to do is build the dialog box using its WYSIWYG interface. When the
work is saved in the dialog box editor, a dialog file (.DLG) is generated, containing the
dialog templates corresponding to the dialog boxes that the programmer designed.
However, it is nice to know how to make minor adjustments manually, so let us look
briefly at the format of of the dialog template.

DLGTEMPLATE resid
{
 DIALOG "title text", resid, x, y, cx, cy, style, flags
 [CTLDATA controldata]
 [PRESPARAM presparam]
 { CONTROL "text", id, x, y, cx, cy, class, style
 [CTLDATA controldata]
 [PRESPARAM presparam]
 }
}

Gotcha!

The resid on the DLGTEMPLATE and DIALOG statements must match,
or the dialog will fail to load. Why the same constant must be specified
twice is beyond our understanding.

x,y, cx, and cy are the coordinates of the lower left corner and the size of the dialog or
window, respectively. style is one or more style flags; since a dialog is really nothing more
than a subclassed frame window, it can use the FS_ constants in addition to the WS_
constants. The child windows (CONTROL statement) can use the WS_. constants as well
as the constants specific to their window class. class can be a WC_ constant or an
application-defined class-registered prior to the loading of the dialog with
WinRegisterClass - in double quotes.

The control data (CTLDATA statement) is used to initialize the dialog or the child
window, as will be shown in later chapters. The presentation parameters (PRESPARAM
statement) define the appearance, such as the font used, the foreground and background
colors, and so on. See Chapter 9 for more information on setting presentation parameters.
It should be noted that the coordinates and size of the dialog and the child windows are
based on a different coordinate system; the units are dialog units, which are based on the
average character width of the system font for the resolution of the display. The concept-
went-awry is that dialog units are supposed to be "display independent," meaning that the
dialog will occupy the same amount of physical space on different resolutions; however,
most monitors (in 1995) do not report their pel densities properly, so this rarely works.
WinMapDlgPoints can be used to convert between dialog units and pels.

BOOL APIENTRY WinMapDlgPoints(HWND hwndDlg,
 PPOINTL pptlPoints,
 ULONG ulNumPoints,
 BOOL bCalcWindowCoords);

hwndDlg is the handle to the dialog window. pptlPoints points to one or more POINTL
structures to convert. ulNumPoints specifies how many structures pptlPoints points to.
bCalcWindowCoords is TRUE if the programmer wants to convert to window
coordinates from dialog coordinates or FALSE if the opposite is desired.

Menus

Menus are a familiar user-interface component to anyone who has used a
Macintosh, Windows, OS/2 or some other GUI. Their definition in a resource file is also
quite simple, for there are only three different parts: the main "MENU" keyword, submenu
definitions, and menu item definitions.

MENU resid
{ SUBMENU "Text", submenu_id [,styles]
 { MENUITEM "Text", menuitem_id [,attributes]
 MENUITEM "Text", menuitem_id [,attributes]
 }
}

resid is the resource identifier of the menu, submenu_id and menuitem_id are unique
identifiers of the submenus and menu items, respectively. They are used when
communicating with the menu via the MM_ messages, styles are one or more MIS_
constants that affect the entire submenu. attributes are one or more MI_A constants that

affect a specific menu item. Both styles and attributes optional.
See Chapter 14 for more information on using menus.

Help Tables

Help tables are used to provide a linkage between the application's child windows
(including menu items, which are child windows in an odd way) and the help panels which
are defined by a help developer. As you will see in Chapter 29, there are two parts to this
linkage: the HELPTABLE and the various HELPSUBTABLES. See that chapter for
information on the resource file syntax and how online help is provided by an application.

Application-defined Data

Application-defined data is the general case for all resources. In facts all of the APIs
discussed in this chapter for loading resources follow these instructions in the bowels of the
Presentation Manager code. The OS/2 kernel provides two APIs for resource management
that are used to load and unload a specific resource - DosGetResource and
DosFreeResource .

APIRET APIENTRY DosGetResource(HMODULE hmDll,
 ULONG ulType,
 ULONG ulId,
 PPVOID ppvData);

APIRET APIENTRY DosFreeResource(PVOID pvData);

hmDll is the handle to the DLL where the resource resides, or is NULLHANDLE if it is
found in the executable's resource tables. uIType is an RT_ constant that specifies the type
of the resource.

Table 12.9 Resource Type Constants

Constant Description

RT_POINTER Pointer data

RT_BITMAP Bitmap data

RT_MENU Menu template

RT_DIALOG Dialog template

RT_STRING String table

RT_FONTDIR Font directory

RT_FONT Font data

RT_ACCELTABLE Accelerator table

RT_RCDATA Binary data

RT_MESSAGE Error message

RT_DLGINCLUDE File name for the DLGINCLUDE statement

RT_HELPTABLE Help table for Help Manager

RT_HELPSUBTABLE Help subtable for Help Manager

ulId is the resource identifier to be loaded. ppvData is a pointer to a pointer that is
initialized by OS/2 to point to the beginning of the resource data. This pointer is specified
on the call to DosFreeResource to return the memory consumed to the system, since OS/2
allocates the memory for the programmer when DosGetResource is called.
In the resource file, application-defined data must reside in a separate file and is included
via the RESOURCE keyword.

RESOURCE type resid filename

type and resid correspond to their definitions as described earlier, and filename is the
name of the file where the resource data resides. It should be noted that application-defined
resources must have a value for type of 256 or greater.

Chapter 13

Dialog Boxes

Dialog boxes are designed to gather
specific pieces of information from the
user. Dialog contain a mix and match of
child control windows. A window that pops
up and contains such fields as "Name:",
"Address", "Phone", "City", and "State", is
a good example of a dialog box.

There are three ways to create a dialog box and its child controls - by using a resource file,
by physically calling the WinCreateWindow for the dialog box and each of its controls, or
by using WinCreateDlg. The resource file is the easiest way to crease a dialog box. The
Dialog Box Editor shipped with the Toolkit is designed to help facilitate this creation
process.

Dialog boxes come in two styles - modal and modeless. A modeless dialog box lets the user
interact with all the other windows and controls belonging to the same process. A modal
dialog box is more restrictive of the user's input. A user cannot interact wish the other
windows and controls that are children of the owner of the dialog box, including the owner.
A modal dialog box is designed to be used when the user is required to enter some
information before proceeding on to the next step in the application.
The following sample program is designed to introduce dialog box programming and to
display the difference between modal and modeless dialog boxes.

DIALOG.C
DIALOG.RC
DIALOG.H
DIALOG.M
AK
DIALOG.DE
F

Dialog.exe - Modeless dialog example

The resource file, DIALOG.RC, is the starting point for the sample program. Two items are
defined in the file, a menu and the dialog box. The resource file for the window shows the
menu that we would like displayed in our client window. For more information on
resources, see Chapter 12.

The Dialog Box Template

The following is the resource definition to create the dialog boxes used in the DIALOG.C
program.

DLGTEMPLATE IDD_DIALOG LOADONCALL MOVEABLE DISCARDABLE
{
 DIALOG "Dialog example", IDD_DIALOG, 53, 28, 260, 55,
 WS_VISIBLE,
 FCF_SYSMENU | FCF_TITLEBAR
 {
 LTEXT "?", IDT_DIALOGNAME, 10, 40, 150, 8
 LTEXT "?", IDT_CLICK, 10, 30, 150, 8
 DEFPUSHBUTTON "OK", DID_OK, 10, 10, 50, 13
 }
}

The dialog IDD_DIALOG is created in the resource file as visible, with a system menu and
title bar.

The next step is to define the controls that are to appear on the dialog box In this example
only an "OK" pushbutton and some static text will be used. The IDT_CLICK text will be
used to communicate some instructions to the user. The IDT_DIALOGNAME is used to
specify whether this is a modal or modeless dialog box.

The Client Window Procedure

The client window procedure, ClientWndProc, is not very big. A window word is used to
store some information that we will need later in the dialog procedure. This information is
stored in a DLGINFO structure. The structure includes the structure size, a BOOL variable
to indicate whether the user selected modal or modeless from the menu, the handle of the
modeless dialog box, and the handle of the client window. This structure is allocated in the
WM_CREATE processing, and cleanup is done in the WM_DESTROY processing.
The programmatic differences between a modal and nonmodal dialog box exist in the
processing of the WM_COMMAND message.
In our WM_COMMAND processing, we first find out who is sending us the
WM_COMMAND message. The resource ID for the sender is located in mpParm1. If the
user selected "Modal Dialog Box", IDM_MODAL is returned in mpParm1. A Boolean
variable, pDlglnfo->bModal, is used to indicate to the DlgProc whether the user selected a
modal or modeless dialog box.

Creating a Modal Dialog Box

The function WinDlgBox is used to create a modal dialog box.

ULONG APIENTRY WinDlgBox(HWND hwndParent,
 HWND hwndOwner,
 PFNWP pfnDlgProc,
 HMODULE hmod,
 ULONG idDlg,
 PVOID pCreateParams);

When WinDlgBox is used to create a dialog box, a message queue is created for that
dialog. User interaction with the other message queue (and the client window associated
with it) is held up until the dialog box is dismissed and the message queue is destroyed.

pDlgInfo->bModal = TRUE;

WinDlgBox(HWND_DESKTOP,
 hwndWnd,
 DlgProc,
 NULLHANDLE,
 IDD_DIALOG,
 pDlgInfo);

The first parameter is the parent, HWND_DESKTOP, and the second parameter is the
owner window, hwndWnd. The programmer almost always will want to specify the
desktop as the parent of a modal dialog, and the client window as the owner. If the frame or

client was specified as the parent of the dialog, the frame window would still be active,
thus preventing the whole purpose of using a modal dialog. The third parameter is the
pointer to the dialog process function, in this case DlgProc. NULLHANDLE tells the
system that the resources for the dialog process, DlgProc, are located in the .EXE file.
IDD_DIALOG is the resource ID for the dialog. The last parameter is the data area. This is
used to pass programmer - defined data of type PVOID into the dialog procedure. In this
area we will pass a pointer to our dialog information structure, pDlgInfo. WinDlgBox is
actually a combination of four functions, WinLoadDlg, WinProcessDlg,
WinDestroyWindow, and return.

Gotcha!
The last parameter to WinDlgBox must be a pointer. This parameter undergoes
a procedure called "thunking" that converts a 32-bit pointer into a pointer that
is readable by 16'bit code. The application will trap if the value is not a pointer
and the system attempts to thunk it. The dialog box functions are l6-bit in OS/2
2.1, and must try and thunk this value. The dialog box functions in Warp are 32-
bit, so no thunking will be done; however, if previous versions of the operating
system must be supported, it is best to be prepared for thunking.

Creating a Modeless Dialog Box

pDlgInfo->bModal = FALSE;
if (!pDlgInfo->hwndModeless)
 pDlgInfo->hwndModeless = WinLoadDlg(HWND_DESKTOP,
 hwndWnd,
 DlgProc,
 NULLHANDLE,
 IDD_DIALOG,
 pDlgInfo);
else
 WinSetWindowPos(pDlgInfo->hwndModeless,
 HWND_TOP,
 0,
 0,
 0,
 0,
 SWP_SHOW|SWP_ACTIVATE);

In this example, we first set the bModal variable to FALSE to indicate that this will be a
modeless dialog box.

Gotcha!

A modeless dialog is not destroyed by WinDismissDlg, only hidden. In
order to destroy the dialogs loaded by WinLoadDlg,
WinDestroyWindow must be called implicitly for each modeless dialog
that has been created.

If the user selects the modeless option from the menu multiple times, we do not create the
same dialog over and over; instead, we just check to see if its already exists. If the window
handle is there, WinSetWindowPos is used to show the dialog and make it the active
window.
WinLoadDlg is used to create a modeless dialog box, and this function returns
immediately after creating it. WinDlgBox waits until it finishes its processing before
returning. This is why a modeless dialog box permits user interaction with the other
windows and a modal dialog box does not. The parameter list for WinLoadDlg is exactly
the same as for WinDlgBox.

The Dialog Procedure DlgProc

The dialog procedure, in this case DlgProc is fairly similar to a window procedure. Our
program can use the same dialog process for both the modal and modeless dialog boxes.

Gotcha!

One difference between a dialog procedure and a window procedure is
the default procedure function. A dialog procedure must call
WinDefDlgProc instead of WinDefWindowProc. If a dialog procedure
behaves irrationally, it should be checked to see if it includes
WinDefDlgProc. These two functions often get interchanged.

One of the other differences between dialog and window procedures is the appearance in
the former of the WM_INITDLG message instead of the usual WM_CREATE. This
message is provided to give the programmer a place to put the initialization code for the
dialog box.

pDlgInfo = PVOIDFROMMP(mpParm2);

The first thing we do is retrieve the information sent to us through the WinLoadDlg or
WinDlgBox function. Both these functions will send this information in the message
parameter 2 of the WM_INITDLG message.

WinQueryWindowRect(pDlgInfo->hwndClient,
 &rclClient);

lHeight = rclClient.yTop-rclClient.yBottom;
lWidth = rclClient.xRight-rclClient.xLeft;

In order to make our dialog program prettier, we'll position the two dialogs directly on the
client window. However, the parent of the dialogs is the desktop, and remember, the
children wilt be positioned relative to the parent. So we do some math. First, we find the
height and width of the client area, and use these dimensions to see where the dialogs
should be placed relative to the client. We'll start the dialogs at the x coordinate that is 1/8th
of the client area width. The y coordinate will differ depending on whether the dialog is the
modal dialog or the modeless dialog.

ptPoints.x = lWidth/8;
ptPoints.y = bModal?lHeight/19:lHeight/19*10;

Now that we know where we would put our dialogs if they were placed relative to the client
window's coordinate system, all we have to do is find where these coordinates are on the
desktop window. And Presentation Manager has a function that will do this for us:
WinMapWindowPoints.

BOOL APIENTRY WinMapWindowPoints(HWND hwndFrom,
 HWND hwndTo,
 PPOINTL aptlPoints,
 LONG lCount);

hwndFrom is the handle of the window to map the coordinate space from. hwndTo is the
handle of the window to map the coordinate space to. aptlPoints is a point to an array (one
or more) of POINTL structures that on input contain the coordinates to map and on output
contain the new coordinates relative to hwndTo. lCount is the number of structures in the
aptlPoints array
In our case, the function looks like this.

WinMapWindowPoints(pDlgInfo->hwndClient,
 HWND_DESKTOP,
 &ptPoints,
 1);

On the function's return, ptPoints will contain the new x and y coordinates relative to the
desktop. We use these coordinates as the basis for the WinSetWindowPos function to
adjust the size and position of the dialog.

WinSetWindowPos(hwndDlg,
 NULLHANDLE,
 ptPoints.x,
 ptPoints.y,
 lWidth/8*6,
 lHeight/19*8,
 SWP_MOVE|SWP_SIZE);

The WM_COMMAND processing is just like the WM_COMMAND processing for the
client window. If the user presses the OK pushbutton, the dialog box is canceled with
WinDismissDlg.

WM_COMMAND and Dialogs

Some "features" (actually they really can be nice) can cause problems in the future if
programmers are unaware of the way WinDefDlgProc handles WM_COMMAND
messages. A dialog will be dismissed if a WM_COMMAND message is passed to
WinDefDlgProc. In some cases, this makes sense. For instance, if the user presses the OK
or CANCEL pushbuttons, it would be perfectly logical for the dialog box to go away.
However, if the other pushbuttons exist, and the programmer does nor want the dialog box
to be dismissed, WM_COMMAND processing must be intercepted and return FALSE,
instead of letting the message processing fall through to WinDefDlgProc. This also means
that WinDismissDlg must be called when the programmer is ready for the dialog to
disappear and WinDestroyWindow when he or she is ready to destroy the dialog box.
WinDismissDlg is also called if a WM_QUIT message is sent to the dialog.

Summary

Dialogs will become an integral part of most of a programmer's Presentation Manager programs.
They are easy to use and provide a clean user interface. The main drawback to dialogs is the lack
of true device - independent dialog coordinates. Currently, a set of multiple dialogs must be
created for different screen resolutions.

Chapter 14

Menus

The menu is a control that provides a list of choices to the user. There are four types of
menus: the menu bar, pull-down menus, cascaded menus, and pop-up menus. A menu uses
a small amount of screen real estate and can be very valuable complex applications by
providing visual clues to the user.
A menu bar is displayed in the area between the title bar and the client area of a window. A
menu bar is almost always visible, and contains either specified choices or a description of
the choices that the pull-down menu contains.

Figure 14.1 A pull-down menu.

Most users are familiar with the traditional pull-
down menus. (See Figure 14.1) This interface is
common throughout many GUI environments. A
pull-down menu should contain related choices.
These choices extend from the menu bar when a
particular menu bar choice is selected
A cascaded menu is one one that extends from a
selected choice in a pull-down menu of a tag-
along pull-down menu.. Cascaded menus can
help to shorten long menus. Presentation
Manager indicates the presence of a cascaded
menu by right arrow along the right edge of the
pull-down menu.

A pop-up menu (see Figure 14.2) is a menu that
pops up a list of choices for an object when
some action is performed to trigger the menu..
Pop-up menus are very common in 32-bit OS/2
and are an integral part of the object-oriented
workplace shell. Pop-up menus normally are
placed to the right of the object they pertain to,
unless space does not permit; in such case, the
menu is placed wherever space permits.

Figure l4.2 A pop-up menu.

Menus: The Keyboard and the Mouse

Menus are no good to the user unless they are easy to understand and easy to get to. The
mouse provides the easiest interaction with a menu. The user just selects the item by
clicking the mouse on any item. If a pull-down menu is available, it will become visible.

The keys specified in Table 14.1 are important keystrokes to access menus.

Table 14.1 Menu Keystrokes.

Key Action

ALT Toggles the focus on the menu action bar.

Shift + ESC, Alt +
spacebar

Causes the system menu to become visible.

F10 Jumps to the next higher menu level.

(up arrow)
If the pull-down menu is not visible, causes it to become visible; if the pull -
down menu is visible, will move to the previous menu item.

(down arrow)
If the pull-down menu is not visible, causes it to become visible if the pull -
down down menu is visible, will move to the next menu item.

(left arrow)
Will move to the next item on the action bar; the system menu is is included in
the items items this key will cycle through.

(right arrow)
Will move to the previous item on the action bar; the system menu is included
in the items this key will cycle through.

Enter
Selects the current item; if the item is on the action bar, the pull - down menu
will become visible.

Character keys Moves to the menu item that has corresponding mnemonic key.

Mnemosyne's Mnemonics

A mnemonic key is similar to an accelerator key, only not quite as powerful. A mnemonic
will select the first menu item with the specified character as its mnemonic key. If the item
has a pull-down menu associated with it, the pull-down menu will become visible. A
mnemonic key usually corresponds to a character in the menu item text. The first letter is

used if possible; otherwise, some meaningful character in the text is used. A mnemonic is
indicated by an underlined character. The tilde character (~) in s menu template in the
resource file indicates that the character to follow is a mnemonic key. No other definitions
are necessary in the program; the menu control processing will handle the action of the
mnemonics.

Menu Styles

Table 14.2 Menu Styles

Styles Description

MS_ACTIONBAR Creates a menu bar.

MS_CONDITIONALCASCADE
Creates a cascaded menu that will become visible only when the
arrow to the right of the menu item is selected.

MS_TITLEBUTTON Creates a push button along the menu bar.

MS_VERTICALFLIP
Causes a pull-down menu to be placed above the action bar, space
permitting; if space is not available, the menu is placed below the
action bar.

The choices available in a menu are known as menu items. These menu items are not really
a window, but they do have a special set of styles associated with them. Table 14.2 lists
these styles.

Menu Item Styles

Table 14.3 Menu Item Styles

Item Styles Description

MIS_SUBMENU Creates submenu.

MIS_SEPARATOR
Inserts a horizontal bar in the menu; a separator is a dummy item and
cannot be selected, enabled, or disabled.

MIS_BITMAP A bitmap instead of text

MIS_TEXT A text string.

MIS_BUTTONSEPARATOR

Creates a menu item that is separate from the other menus. Is placed
on the far right on a menu bar and as the last item in a pull-down
menu. A vertical separator is drawn between this item and the
previous items.

MIS_BREAK
Creates a new row (on a menu bar) or a new column (on a pull-down
menu).

MIS_BREAKSEPARATOR
Just like MIS_BREAK, except that a line is drawn between the new row
or column.

MIS_SYSCOMMAND
Notifies the owner through a WM_SYSCOMMAND message rather than
a WM_COMMAND message.

MIS_OWNERDRAW
Creates an owner-drawn menu item; WM_DRAWITEM messages are
sent whenever the menu item is to be drawn.

MIS_HELP
Sends a WM_HELP message to its owner, rather than a
WM_COMMAND message.

MIS_STATIC
Creates an unselectable menu item that should be used for
information purposes only.

The following example program shows how to create a pull-down menu. When the menu
item is selected a message box is displayed containing information about the selected item.

MENU.C
MENU.RC
MENU.H
MENU.MAK
MENU.DEF

The Resource File

The menu for a frame window can be created two ways: either statically, using the resource
file, or dynamically, using WinCreateWindow with the class WC_MENU. The easiest
way is to create a menu in the resource file, and this example will do just that.

MENU RES_CLIENT

The MENU keyword in a resource file indicates that a menu is being defined. The next
word is the resource ID, RES_CLIENT. All resources including icons, accelerator cables,

and menus, that are attached to the frame window share the same resource ID. This
resource ID will automatically attach all resources indicated by the FCF_* flags used in
WinCreateStdWindow. This can cause the function to fail if a resource is defined with
the FCF_ flag and not in the .RC file.

MENU RES_FRAME
{
 SUBMENU "~Menu", IDM_SUB1
 {
 MENUITEM "~Checked\tAlt+C", IDM_ITEM1, MIS_TEXT, MIA_CHECKED
 MENUITEM "~Framed\tAlt+F", IDM_ITEM2, MIS_TEXT, MIA_FRAMED
 MENUITEM "~Text\tAlt+T", IDM_ITEM3, MIS_TEXT
 MENUITEM SEPARATOR
 MENUITEM "", IDM_BITMAP
 }
 SUBMENU "~Edit", IDM_EDIT
 {
 MENUITEM "~Cut", IDM_CUT
 MENUITEM "C~opy", IDM_COPY
 MENUITEM "~Paste", IDM_PASTE, MIS_TEXT, MIA_DISABLED
 }
 MENUITEM "F1=Help", IDM_HELP, MIS_HELP | MIS_BUTTONSEPARATOR
}

The \t character on the MENUITEM indicate that a tab is placed between the next and the
text that follows. The text following the tab is the information on the accelerator key. Just
because we have defined the menu text to indicate an accelerator key does not guarantee its
existence.

The options after the resource IDs arc the menu item styles. A comma is used to separate
the styles from the menu item attributes. Attributes are used to describe the state of a menu
item and are designed to be turned on and off on the fly. The previous example program
contains examples of five different kinds of menu items: Checked, Text, Framed, Bitmap,
and Disabled. A menu item that is checked or unchecked is an example of a menu item
attribute. The attributes specified in Table 14.4 are available.

Menu Item Attributes

Table 14.4. Menu Item Attributes

Item Attribute Description

MIA_HILITED The menu item is selected

MIA_CHECKED A check will appear next to this menu item if TRUE

MIA_DISABLED The menu item will appear in grayed, disabled state.

MIA_FRAMED The menu item is enclosed within a frame

MIA_NODISMISS The pull-down menu containing this menu item will not be dismissed until
told to do so.

Creating the Menu Bitmap

There are two ways to use a bitmap as a menu item. One is to include it in the resource file;
the other is to load it during the message processing. In this example, we'll choose the
latter method.

 hbmBitmap = GpiLoadBitmap(hpsWnd,
 NULLHANDLE,
 IDB_BITMAP,
 32,
 32);
For more information on GpiLoadBitmap see Chapter 12.
The bitmap handle, hbmBitmap, is returned from GpiLoadBitmap.
 typedef struct _MENUITEM /* mi */
 { SHORT iPosition;
 USHORT afStyle;
 USHORT afAttribute;
 USHORT id;
 HWND hwndSubMenu;
 ULONG hItem;
 } MENUITEM;
 typedef MENUITEM *PMENUITEM;

A MENUITEM structure is used to tell the menu how this menu item is to appear. As
always when passing structures, all fields must be initialized. For the menu item style, we
use MIS_BITMAP. The ID is IDM_BITMAP. hItem is the handle to the item-in this case,
hbmBitmap.

 miItem.iPosition = 0;
 miItem.afStyle = MIS_BITMAP;
 miItem.afAttribute = 0;
 miItem.id = IDM_BITMAP;
 miItem.hwndSubMenu = NULLHANDLE;
 miItem.hItem = hbmBitmap;

In the MENU.RC file, a spot was created for the IBM_BITMAP menu item. The
MM_SETITEM message is sent to finish the job.

 WinSendMsg(hwndMenu,
 MM_SETITEM,
 MPFROM2SHORT(0, TRUE),
 MPFROMP(&miItem));

mpParam1 is composed of two USHORTS. The first is always O and the second is a flag
indicating that submenus are to be included in the search. We do want to include submenus.
The second message parameter is a pointer to the MENUITEM structure.

The Client Window Procedure ClientWndProc

The client window procedure is where all of the menu handling is done. The
WM_COMMAND message is sent to the owner, hwndClient , whenever the user has
selected some item from the menu, using the mouse, keyboard, or accelerator key. The
example finds out which menu item is selected and displays a message box with
information about the item. The menu item IDM_ITEM1 will have the check mark toggled
on and off whenever it is selected.

 case WM_COMMAND :
 switch (SHORT1FROMMP(mpParm1))
 {
 case IDM_ITEM1 :
 case IDM_ITEM2 :
 case IDM_ITEM3 :
 case IDM_BITMAP:
 case IDM_CUT :
 case IDM_COPY :
 { HWND hwndFrame;
 HWND hwndMenu;
 USHORT usAttr;
 MRESULT mrReply;
 CHAR achText[64];

 hwndFrame = WinQueryWindow(hwndClient,
 QW_PARENT);
 hwndMenu = WinWindowFromID(hwndFrame,
 FID_MENU);

The menu hem ID is contained in mpParam1 of the WM_COMMAND message. After the
ID is obtained, we obtain the menu window handle. The menu handle is used
later. WinWindowFromID will return the menu window handle when the special ID,
FID_MENU, is used. The first parameter is the parent of the menu, the frame window.

 if (SHORT1FROMMP(mpParm1) == IDM_ITEM1)
 {
 mrReply = WinSendMsg(hwndMenu,
 MM_QUERYITEMATTR,
 MPFROM2SHORT(IDM_ITEM1,
 TRUE),
 MPFROMSHORT(MIA_CHECKED
));
 usAttr = SHORT1FROMMR(mrReply);

If the menu item ID is IDM_ITEM1, we query whether the MIA_CHECKED bit is set,
using the message MM_QUERYITEMATTR. mpParm1 consists of two USHORTS. The

lower bytes are the menu item ID to query, IDM_ITEM1. The upper bytes indicate whether
to include submenus. This is applicable when you want to query all menu items on a pull-
down, or sublevel, menu. mpParam2 is the attribute mask for the query. We want to know
only whether the MIA_CHECKED bit is set, so this will be the mask we use. A mask can
be a collection of attributes OR'ed together or only one. The value of the bit is returned in
the variable usAttr.

 usAttr ^= MIA_CHECKED;

Once we know whether the menu item is checked, we want to reverse the state of the
MIA_CHECKED bit in order to toggle the check mark.

 if (usAttr != 0)
 {
 strcpy(achText,
 " ~Checked item\tAlt + C");
 } else {
 strcpy(achText,
 " ~Unchecked item\tAlt + C");
 } /* endif */

 WinSendMsg(hwndMenu,
 MM_SETITEMATTR,
 MPFROM2SHORT(IDM_ITEM1,
 TRUE),
 MPFROM2SHORT(MIA_CHECKED,
 usAttr));

 WinSendMsg(hwndMenu,
 MM_SETITEMTEXT,
 MPFROMSHORT(IDM_ITEM1),
 MPFROMP(achText));

The next thing to do is to set the menu with the new menu item state, and also update the
menu item text to reflect the change. The checked state is determined by AND'ing usAttr
and MIA_CHECKED. The message MM_SETITEMTEXT is used to set the menu item
text to the new string. mpParm1 is set to the menu item ID, IDM_ITEM1. mpParm2 is a
pointer to the next string. The message MM_SETITEMATTR is used to set the menu item
attribute to the new value in usAttr. The message parameters are equivalent to the
MM_QUERYITEMATTR message parameters, except that MM_SETITEMATTR has an
extra SHORT in mpParam2 that contains attribute data.

The User Function displayMenuInfo

After the user selects a menu item, a message box is popped up do display various bits of
information about the menu item. The menu item attributes are found using
MM_QUERYITEMATTR. Instead of using just one menu item attribute mask, the values
MIA_NODISMISS, MIA_FRAMED, MIA_CHECKED, MIA_DISABLED, and
MIA_HILITED are OR'ed together.

 usAllStyles = MIA_NODISMISS | MIA_FRAMED | MIA_CHECKED |
 MIA_DISABLED | MIA_HILITED;
 usAttr = SHORT1FROMMR(WinSendMsg(hwndMenu,
 MM_QUERYITEMATTR,
 MPFROM2SHORT(usMenuItem, TRUE),
 MPFROMSHORT(usAllStyles)));
 usSzText = SHORT1FROMMR(WinSendMsg(hwndMenu,
 MM_QUERYITEMTEXT,
 MPFROM2SHORT(usMenuItem, 30),
 MPFROMP(achItemText)));
The return from the message will yield the state of all these attributes OR'ed together.
MM_QUERYITEMTEXT is used to query the menu item text. mpParm1 is two USHORTS. The lower
bytes contain the menu item ID; the upper bytes contain the length of the text input buffer,
achItemText. The second message parameter is a pointer to the text input buffer.
The last step is to call WinMessageBox to display the menu item information.

Pop-up Menus

The following example will demonstrate how to create a pop-up menu suitable for the OS/2
Warp environment. An icon is created on the client window. If the user clicks the context
menu mouse button (the right one by default) on the icon, a pop-up menu will appear.

POPUP.C
POPUP.RC
POPUP.H
POPUP.MAK
POPUP.DEF

Creating a Pop-up Menu

 pmdMenuData = malloc(sizeof(MENUDATA));
 WinSetWindowPtr(hwndClient,
 0,
 pmdMenuData);

 pmdMenuData->hwndMenu = WinLoadMenu(hwndClient,
 NULLHANDLE,
 IDM_POPUP);
The pop-up menu is created almost exactly as a regular menu is. The pop-up template contains the
same keywords and definitions as regular pull-down template. When the client window is being
created (the WM_CREATE processing), the menu template is loaded.

 HWND APIENTRY WinLoadMenu(HWND hwndFrame,
 HMODULE hmod,
 ULONG idMenu);

WinLoadMenu has three parameters. hwndFrame is the owner and parent window
handle. hmod is the resource identifier if the menu resource is located in a .DLL, and

idMenu is the menu resource ID. WinLoadMenu returns a menu handle that will be used
later in the WinPopupMenu function. For now, it is stored in the window word of the
client area. one performance note here; We could have used WinLoadMenu in the
WM_CONTEXTMENU processing, because WM_CREATE is called once and
WM_CONTEXTMENU is called as many times as the user chooses, considerable time and
system resources are saved if we load the menu in the WM_CREATE processing.
Whenever possible, programmers should keep message processing as lean as possible and
be careful of loading resources multiple times.

I Think I Can, I Think Icon

 pmdMenuData->hptrFileIcon = WinLoadFileIcon ("POPUP.EXE", FALSE);
One of the functions introduced in OS/2 2.0 is WinLoadFileIcon. This is a nifty function to "fit" an
icon from some file to use in a program. This example takes the file icon associated with itself and
paints it on the client window.

 HPOINTER APIENTRY WinLoadFileIcon(PCSZ pszFileName,
 BOOL fPrivate);
WinLoadFileIcon has two parameters. The first is the file name. The second is a flag that indicates
whether the icon needs to be "public" or "private". A "public" icon is much easier on system
resources, but it is a read-only version of the icon. A pointer handle, hptrFileIcon, to the icon is
returned. Onces again, the handle is stored in the client's window word for future use.

 WinDrawPointer(hpsPaint,
 50,
 50,
 pmdMenuData->hptrFileIcon,
 DP_NORMAL);

WinDrawPointer actually will paint the icon on the client window. For more information on this
function, see Chapter 12.

Popping Up a Menu

 rclIcon.xLeft = 50;
 rclIcon.xRight = rclIcon.xLeft+WinQuerySysValue
 (HWND_DESKTOP,
 SV_CXICON);

 rclIcon.yBottom = 50;
 rclIcon.yTop = rclIcon.yBottom+WinQuerySysValue
 (HWND_DESKTOP,
 SV_CYICON);

 ptlMouse.x = (LONG)SHORT1FROMMP(mpParm1);
 ptlMouse.y = (LONG)SHORT2FROMMP(mpParm1);

 bInside = WinPtInRect(habAnchor,
 &rclIcon,

 &ptlMouse);

In this example, when the user clicks the context menu mouse button or uses the context
menu keystroke, we'll pop up a menu. The message we'll use to track that event is
WM_CONTEXTMENU.

 BOOL APIENTRY WinPtInRect(HAB hab,
 PRECTL prcl,
 PPOINTL pptl);

We use WinPtInRect to determinate if the mouse is over the icon that we have drawn
already. hab is the anchor block handle. prcl is a pointer to the points region of the
rectangle coordinates. pptl is a pointer to the points region. If the points lies within the
rectangle, TRUE is returned. If the mouse is over the icon, we pop up the menu.

The Workhorse Function WinPopupMenu

 WinPopupMenu(hwndClient,
 hwndClient,
 pmdMenuData->hwndMenu,
 ptlMouse.x,
 ptlMouse.y,
 IDM_ICON,
 PU_POSITIONONITEM | PU_KEYBOARD |
 PU_MOUSEBUTTON1 | PU_MOUSEBUTTON2);

The pop-up menu actually is made visible by WinPopupMenu. This function handles all
the user I/O and returns WM_COMMAND messages to the owner window, just as a
regular pull-down menu does.

 BOOL APIENTRY WinPopupMenu(HWND hwndParent,
 HWND hwndOwner,
 HWND hwndMenu,
 LONG x,
 LONG y,
 LONG idItem,
 ULONG fs);

The first and second parameters are the parent and owner windows, respectively. The client
window, hwndClient, is used for both. The next parameter is the menu handle of the
popup menu. The next two parameters are the x and y coordinates at which to place the
menu. The last two parameters are used to control the initial display state and user interface
for the menu. IDM_ICON is the menu item we want to be selected initially.

The last parameter is a collection of flags. Table 14.5 specifies the flags available.

Table 14.5. Popup menu Flags

Flag Description

PU_POSITIONONITEM

Will cause the ID specified in the previous parameter to appear directly
above where the mouse pointer is. This flag overrides the x, y coordinates
as placement of the menu. it also causes the specified menu item ID to
appear selected when the pop-up menu appears.

PU_KEYBOARD
Lets the user use the keyboard keys to traverse the menu choices and
select an item.

PU_MOUSEBUTTON2 Enables the user to use mouse button 2 to select a menu item.

PU_MOUSEBUTTON1 Enables the user to use mouse button 1 to select a menu item.

Gotcha!

For pop-up menus, the WM_INITMENU documentation does not state
that the menu identifier for top-level menu will be FID_MENU

Chapter 15

List Boxes

A list box (see Figure 15.1) is a control that provides the user with a list of choices. Single
or multiple items can be selected; the default is single. A list box can scroll horizontally,
vertically, or both. List boxes, by default, contain only text entries, although they are not
limited to only text.

The items in a list box
should be presented in
some order meaningful
to the user. A list box
should be large enough
to have six or eight
choices visible at all
times and wide enough
to display an item of
average width without
horizontal scrolling. If
multiple selection is
supported, informative
text should be
provided to indicate
the current number of
selected Items.

Figure 15.1 A list box control.

List Box Styles

The styles presented in Table 15.1 can be used when creating a list box.

Table 15.1 List Box Styles

Style Description

LS_MULTIPLESEL Supports selection of multiple items

LS_OWNERDRAW Generates a WM_DRAWITEM whenever certain parts are to be drawn.

LS_NOADJUSTPOS Will not size the list box

LS_HORZSCROLL
Will have a horizontal scroll bar along the bottom and will support horizontal
scrolling.

LS_EXTENDEDSEL
Lets the user select more than one item using a point-end-point selection
technique.

Extended Selection

List boxes also support a selection technique known as extended selection. Extended
selection supports a "swiping" technique to select the list box items. Table 15.2 shows the
keystrokes and mouse actions defined in a extended-selection list box.

Table 15.2Extended Selection List Box Keystrokes

Movement Action

Click mouse button on object
Selects object; all others are
deselected.

Drag mouse from start point of selection to end point of
selection

Selects all objects in area; all other
objects are deselected.

Press SHIFT key while cursor is at start point and use

and keys to move to end point

Selects all objects in area; all other
objects are deselected.

Click mouse button on object while pressing Ctrl key
Selects object; all other selected
objects are left selected.

Press Ctrl+spacebar, or spacebar while cursor is
positioned at object

Selects object; all other selected
objects are left selected.

Press Ctrl key while dragging mouse from start point of
selection to end point of selection

Selects all objects in area; all other
objects are deselected.

The following LIST1 example program shows a very introductory list box program. This
list box has the LS_MULTIPLESEL style and communicates with the client area to have
the selections displayed in the window.

LIST1.C
LIST1.RC
LIST1.H
LIST1.MAK
LIST1.DEF

In the LIST1 sample program, the dialog box will post a message, UM_LISTBOXSEL, to
the client area when the OK button is pressed. When the client area receives this message, it
queries the list box to determine which items have been selected. These items are stored in
the user-defined window word area for the client window. Also a flag, fSelectedItems, is
set to indicate items have been selected.
When the WM_PAINT message is received, the client area is cleared. If the flag
fSelectedItems is set, the items in the window word are written to the client area.

Initializing the Client Window

The structure LISTBOXINFO is used to hold the list box information

 typedef struct
 { USHORT ausListBoxSel[NUM_ENTRIES];
 } LISTBOXINFO,*PLISTBOXINFO;

The array ausListBoxSel[] is used to hold the items that have been selected.
The WM_CREATE message processing is were the memory is allocated for the structure
LISTBOXINFO. WinSetWindowPtr is used to assign the pointer to the structure pliInfo
to the window word.

Initializing the List Box

 hwndListBox = WinWindowFromID(hwndDlg,
 IDL_LISTBOX);
 for (i = 0; i < NUM_ENTRIES; i++)
 WinInsertLboxItem(hwndListBox,
 LIT_END,
 pszListBoxEntry[i]);

The WM_INITDLG message processing initializes the list box. The first step is to obtain
the window handle of the list box using WinWindowFromID. The dialog box is the parent
of all the controls in it. The macro WinInsertLboxItem is a shortened version of the
function WinSendDlgItemMsg, designed specially to insert items into list box. The first
parameter is the list box window handle, hwndListBox. The second parameter indicates
the position in the list box to insert the item. Acceptable entries are either an integer value
indicating the placement of the item (0 indicates the topmost item) or the constant
LIT_END. Also, the list box control is smart enough to sort the items alphabetically. The
constants LIT_SORTASCENDING and LIT_SORTDESENDING can be used to automate
this process. Alphabetization takes some time, though; sorting the list box items before
inserting them in the list box may increase performance. The last parameter is the text

string to enter into the list box. The header file LISTBOX.H contains the definition for
pszListBoxEntry.

 WinSendDlgItemMsg(hwndDlg,
 IDL_LISTBOX,
 LM_SELECTITEM,
 MPFROMSHORT(0),
 MPFROMSHORT(TRUE));

One other nit about the list box: The first item must be selected manually. The message
LM_SELECTITEM will do this for us. The first parameter is the index of the list box item
to be selected. The second parameter indicates whether the item is selected (TRUE) or
deselected (FALSE). Notice that this time we use the function WinSendDlgItemMsg; this
is another way to send messages to items in a dialog box.

The WM_COMMAND Message Dialog Processing

 hwndClient = WinQueryWindow(hwndDlg,
 QW_OWNER);
 if (!hwndClient){
 DisplayError("WinQueryWindow Failure:1");
 break;
 }
 WinPostMsg(hwndClient,
 UM_LISTBOXSEL,
 MPVOID,
 MPVOID);

 /***/
 /* if hit OK, don't dismiss dialog */
 /***/

 return (MRFROMSHORT(TRUE));

When the user presses either the Ok or the CANCEL button, the system sends a
WM_COMMAND message to the dialog box. mpParm1 contains the ID of the
pushbutton, either DID_OK or DID_CANCEL. If the user presses DID_OK, the system
sends a user-defined message, UM_LISTBOXSEL, to the client window and returns
TRUE. This prevents the system from dismissing the dialog box.

If the user presses the CANCEL button, the dialog box is destroyed, using WinDismissDlg.
Also, a UM_LISTBOXSEL message is sent to reset the LISTBOXINFO structure and
repaint the client window area.

Processing the UM_SELECTBOXSEL Message

 SHORT sSelect = 0;
 SHORT sIndex = LIT_FIRST;
 HWND hwndDlg;

 USHORT i;

 /***/
 /* first set all to unselected */
 /***/

 for (i = 0; i < NUM_ENTRIES; i++)
 pliInfo->ausListBoxSel[i] = FALSE;

 hwndDlg = WinWindowFromID(HWND_DESKTOP,
 IDD_LISTBOX);

 /***/
 /* get selected items from listbox */
 /***/

 while (sSelect != LIT_NONE && hwndDlg)
 {

 sSelect = (SHORT)WinSendDlgItemMsg(hwndDlg,
 IDL_LISTBOX,
 LM_QUERYSELECTION,
 MPFROMSHORT (sIndex),
 MPVOID);

 pliInfo->ausListBoxSel[sSelect] = TRUE;

 /**/
 /* set query to start at last selected item */
 /**/

 sIndex = sSelect;
 }

 /***/
 /* invalidate the window */
 /***/

 WinInvalidateRect(hwndClient,
 NULL,
 FALSE);
 break;

When the client window receives the UM_LISTBOXSEL message, it is the client's job to
find the selected list box items. Our list box has style LS_MULTIPLESEL, so the user can
select as many items as he or she wants. Because so many items can be selected, the
procedure to find all of them can be a little tricky; not difficult, just tricky. The message
LM_QUERYSELECTION starts at the list box item specified in mpParam1 and returns
the first selected item it finds. This is a fairly simple procedure to code. A while loop
continues searching until sSelect equals LIT_NONE (in other words, no more items are
selected). We next send a LM_QUERYSELECTION message to the list box window, with
the variable sIndex indicating the index of the item at which to start the search. At the start
of the loop, this variable is LIT_FIRST, the first item in the list box. When the first selected
item is found, the variable sSelect contains the index of th item. As the loop traverses

through the items in the list box, the starting search point is updated to sSelect. As a
selected item is found, the corresponding index in the array ausListBoxSel[] is set to
TRUE. This information is used in the WM_PAINT processing.

The Client Window Painting Routine

The WM_PAINT processing is where the items selected in the list box actually are written
to the client area window. WinFillRect fills the drawing region with the color
CLR_WHITE.

 bReturn = WinQueryWindowRect(hwndClient,
 &rclPaintRegion);

 rclNewPaint.xLeft = (rclPaintRegion.xRight-
 rclPaintRegion.xLeft) / 4 * 3;
 rclNewPaint.xRight = rclPaintRegion.xRight;

 rclNewPaint.yBottom = rclPaintRegion.yBottom;
 rclNewPaint.yTop = rclPaintRegion.yTop;

 WinFillRect(hpsPresentationSpace,
 &rectInvalidRect,
 CLR_WHITE);

If the use has selected some items, WinDrawText is used to write a heading on the client
area. The array ausListBoxSel[] is cycled through to find each selected item and write the
list box item text to the client area as well.

Owner-Drawing Controls

An owner-draw style can be used for many of the Presentation Manager controls. This style
sends aWM_DRAWITEM message when some portion of the control is to be drawn. This
feature lets the programmer customize the appearance of the control.
The LISTBOX example program creates an owner-drawn list box that has system bitmaps
and their titles as the selectable items.

LISTBOX.C
LISTBOX.RC
LISTBOX.H
LISTBOX.MAK
LISTBOX.DEF

The beginning of the program should look familiar. The structure BITMAPDATA is
defined:

typedef struct _BITMAPDATA
{
 CHAR achName[20];

 USHORT usNumber;
} BITMAPDATA,*PBITMAPDATA;

The first field, achName, is the #define'd text string of each system bitmap. The second
field, usNumber, is the number of the system bitmap. When we draw the bimaps, we'll use
this structure to access the bitmaps we want.

DlgProc

 for (usIndex = 0; usIndex < MAX_BITMAPS; usIndex++)
 {
 WinSendDlgItemMsg(hwndDlg,
 IDL_LISTBOX,
 LM_INSERTITEM,
 MPFROMSHORT(usIndex),
 MPFROMP(""));
 } /* endfor */

The WM_INITDLG message is where the initialization of the dialog box and all its
components takes place. In this case, we want to initialize the list box.
WinSendDlgItemMsg can be used to communicate directly with it. The message
LM_INSERTITEM is used to insert items into list box. If this was not an owner-drawn list
box, the actual text strings would be inserted here; however, because this is an owner-
drawn list box, it is important to tell the list box there will be eight items. The message
LM_SELECTITEM is used to set first item to the selected state.

The WM_MEASUREITEM Message

 for (usIndex = 0; usIndex < MAX_BITMAPS; usIndex++)
 {
 hbmBitmap = WinGetSysBitmap(HWND_DESKTOP,
 abdBitmaps[usIndex].
 usNumber);

 bmihHeader.cbFix = 16;
 GpiQueryBitmapInfoHeader(hbmBitmap,
 &bmihHeader);

 /**/
 /* which is larger, previous max or bitmap */
 /**/

 lMaxCy = max(lMaxCy,
 bmihHeader.cy);

 /**/
 /* free the bitmap */
 /**/

 GpiDeleteBitmap(hbmBitmap);
 } /* endfor */
 return MRFROMLONG(lMaxCy+10);

The WM_MEASUREITEM message must be processed for an owner-drawn list box and
also for horizontal scrolling list boxes. This message tells the list box how tall or, in some
cases, how wide each list box item is to be. The tallest, or widest, size should be returned in
order for all the list box items to have a consistent look. In our example, all items are the
same size. GpiQueryFontMetrics is used to get all sorts of information about the selected
font. The one piece of the FONTMETRICS structure we are interested in is
fm.Metrics.lMaxBaselineExt. This indicates the maximum height of the font. This is
compared to the maximum height of the system bitmap. This information is contained in
the BITMAPINFOHEADER structure that is obtained using
GpiQueryBitmapInfoHeader. After the comparison, we free the bitmap handle with
GpiDeleteBitmap.

The WM_DRAWITEM Message

The WM_DRAWITEM is the most complicated message processing in this example. This
message is sent to the owner that will be doing the drawing whenever an item needs to be
selected, unselected, or drawn. The second parameter in the WM_DRAWITEM message is
a pointer to an OWNERITEM structure, which looks like this:

 typedef struct _OWNERITEM /* oi */
 {
 HWND hwnd;
 HPS hps;
 ULONG fsState;
 ULONG fsAttribute;
 ULONG fsStateOld;
 ULONG fsAttributeOld;
 RECTL rclItem;
 LONG idItem; /* This field contains idItem for menus, iItem
for lb. */
 ULONG hItem;
 } OWNERITEM;
 typedef OWNERITEM *POWNERITEM;

This structure has pretty much everything you need to draw a list box item.

An Introduction to Owner-drawn States

The OWERITEM structure contains the variabes fsState and fsStateOld. The state
variables indicate whether an item needs selection highlighting. When an item's selection
highlighting is changing, the item needs to be redrawn, and the fsState field will be set
differently from the fsStateOld field. A state of TRUE indicates the item is selected;
FALSE indicates an unselected item. Programmers can draw the highlighting themselves or
let the system handle the highlighting and unhighlighting. The flowchart depicted in Figure
15.2 lists the possible combination of states and returns and the action by both the program
and the system.

Figure 15.2 Flowchart of owner-drawn selection

The system sets these variables before the WM_DRAWITEM message is sent; it looks at
what is returned in them after the WM_DRAWITEM message has been processed to
determine whether to handle the highlighting of the item. If fsState is equal to fsStateOld,

the system will do no highlighting. If the variables are not equal to each other, the system
will highlight them or unhighlight them by inverting the item rectangle.

Drawing the List Box Labels

 poiItem = (POWNERITEM)PVOIDFROMMP(mpParm2);
 rclText = poiItem->rclItem;
 rclText.xLeft = (rclText.xRight-rclText.xLeft)/7;
 /***/
 /* draw the bitmap name */
 /***/
 WinDrawText(poiItem->hps,
 -1,
 abdBitmaps[poiItem->idItem].achName,
 &rclText,
 poiItem->fsState?CLR_YELLOW:CLR_BLUE,
 poiItem->fsState?CLR_BLUE:CLR_WHITE,
 DT_LEFT|DT_VCENTER|DT_ERASERECT);

A pointer to OWNERITEM structure is contained in mpParm2. The rclItem field is the
RECTL structure of the specific list box item that needs to be drawn. We indent the text
one-seventh of the way across and use the function WinDrawText to write the bitmap
name. Notice the use of the flag DT_ERASERECT in the last parameter. This flag erases
the drawing area before Presentation Manager draws the text.

Drawing the Bitmaps

 rclText = poiItem->rclItem;
 rclText.xRight = (rclText.xRight-rclText.xLeft)/7;
/* fill the rectangle with white */
 WinFillRect(poiItem->hps,
 &rclText,
 CLR_WHITE);

 hbmBitmap = WinGetSysBitmap(HWND_DESKTOP,
 abdBitmaps[poiItem->
 idItem].usNumber);
/* draw the bitmap, then delete */
 Draw1Bitmap(poiItem->hps,
 hbmBitmap,
 &rclText);

 GpiDeleteBitmap(hbmBitmap);

The next thing to do is get a handle to the bitmap we want to draw in our list box
item. WinGetSysBitmap is used to do this. The first parameter is the desktop window
handle, HWND_DESKTOP. The second parameter is the system bitmap number. poiItem-
>idItem is the index of the selected item. We use this index as the index into the
abdBitmaps structure. Draw1Bitmap is a very simple user-defined function we use to
actually draw the bitmap. Once bitmap has been drawn, some cleanup will be necessary.
The handle of the bitmap needs to be freed using GpiDeleteBitmap.

 poiItem->fsState = FALSE;
 poiItem->fsStateOld = FALSE;
 return MRFROMSHORT(TRUE);

The last step in our message processing is to set all the appropriate variables correctly for
the window procedure. We set fsState and fsStateOld to FALSE to tell the system we
already have done highlighting. A return code of TRUE indicates that the item has been
drawn already, so please do not draw it again. If FALSE had been returned here, the text "
", the string that was used in the LM_INSERTITEM message, would be placed over all
wonderful work we've done so far.

For more information on drawing bitmaps, see Chapter 12.

Summary

A list box is a very simple control to use, yet it provides a powerful level of functionality.
This chapter has introduced the concepts of a regular list box and owner-drawn list box.
Developers interested in creating their own, even more advanced list box, should refer to
the series of articles by Mark Benge and Matt Smith starting in the January/February 1994
OS/2 Developer magazine.

Chapter 16

Buttons

The easiest controls to use are buttons. Buttons belong to the class WC_BUTTON. There
are five types of buttons - push buttons, radio buttons, three-state buttons, check boxes and
owner-drawn.

Figure 16.1 Push buttons.

A push button (see Figure 16.1) sends a WM_COMMAND to its owner immediately when
it is pressed. This feature distinguishes the push button from the other button types. Push
buttons commonly are used to initiate such actions as "OK", "Cancel" and "Help".

Radio buttons are designed to be used when only one item in a group can be selected. For
instance, indicating "AM" or "PM" as a period of time is an example of where radio buttons
should be used. There are two styles of radio buttons: BS_AUTORADIOBUTTON and
BS_RADIOBUTTON. When using the BS_RADIOBUTTON, the application must
highlight the selected button and unhighlight the button previously selected. The system
handles this automatically when the BS_AUTORADIOBUTTON is used. When radio
buttons are used, the application can send a BM_QUERYCHECKINDEX message to
determine which button was selected when the user exited the dialog box.

In cases where more than one choice can be selected, check boxes should be used. Two
styles define check boxes: BS_CHECKBOX or BS_AUTOCHECKBOX. The difference

between the two styles is similar in manner to their radio button counterparts,
BS_RADIOBUTTON and BS_AUTORADIOBUTTON.

Button Styles

The styles presented in Table 16.1 can be used when creating buttons.

Table 16.1 Button Styles

Style DescrIption

BS_3STATE
Creates a three-state check box that can be selected, unselected, or
disabled.

BS_AUTO3STATE
Creates a three-state check box whose state is set by the system
automatically.

BS_AUTOCHECKBOX
Creates a check box that the system will toggle automatically between
selected and unselected.

BS_AUTORADIOBUTTON
Creates a radio button that will disable other radio buttons in the group
automatically whenit is selected.

BS_AUTOSIZE
Will size the push button to fit the text label, if -1 is specified as width
and height.

BS_BITMAP Creates a push button, labeled with a bitmap instead of text

BS_CHECKBOX Creates a check box; it is the application's responsibility to select or
deselect the check box.

BS_DEFAULT Creates a button with thick border boxes; used with BS_PUSHBUTTON or
BS_USERBUTTON.

BS_ICON Creates a push button, labeled with an icon instead of text.

BS_HELP Creates a push button that sends a WM_HELP message to the owner
window; this can be used only with push buttons.

BS_MINIICON Creates a icon push button with a 16x16 icon.

BS_NOCURSORSELECT Creates an auto-radio button that is not selected automatically when the
button is moved to with the cursor keys.

BS_NOBORDER Creates a push button with no border; can be used only with push
buttons.

BS_NOPOINTERFOCUS Creates a radio button or check box that does not recive the keyboard
focus when the user selects it.

BS_PUSHBUTTON Creates a push button.

BS_RADIOBUTTON Creates a radio button.

BS_SYSCOMMAND Creates a button that posts a WM_SYSCOMMAND when selected; can
be used only with push buttons.

BS_USERBUTTON Creates a user-defined button; generates a BN_PAINT notification
message, sent to its owner, when painting is needed.

Example Programm

The following program will create a simple dialog box that contains various types of
buttons, Buttons are created both in the resource file and by using WinCreateWindow.

BUTTON.C
BUTTON.RC
BUTTON.H
BUTTON.MAK
BUTTON.DEF

The BUTTON.RC Resource file.

The follwing is the code used to define the dialog box. The background color is set to white
using the PRESPARAMS keyword in the BUTTON.RC file.

 DIALOG "Button dialog", IDD_BUTTON, 28, 23, 258, 110,
 FS_NOBYTEALIGN | WS_VISIBLE,
 FCF_SYSMENU | FCF_TITLEBAR
 PRESPARAMS PP_BACKGROUNDCOLORINDEX, CLR_WHITE

The creation of the buttons is specified by the keywords PUSHBUTTON,
AUTOCHECKBOX, and AUTORADIOBUTTON in the BUTTON.RC resource file.

DlgProc

 BTNCDATA bcdData;

 bcdData.cb = sizeof(BTNCDATA);
 bcdData.fsCheckState = 0;
 bcdData.fsHiliteState = 0;
 bcdData.hImage = WinQuerySysPointer(HWND_DESKTOP,
 SPTR_ICONINFORMATION,
 FALSE);

The WM_INITDLG message processing is used to create the BS_ICON push button. The
information icon is loaded from the system using WinQuerySysPointer. This returns a
resouce handle(HPOINTER) that is needed in the BTNCDATA structure. The
BTNCDATA structure is defined as follows in \TOOLKIT\H\pmwin.h.

 typedef struct _BTNCDATA /* btncd */
 {
 USHORT cb;
 USHORT fsCheckState;
 USHORT fsHiliteState;
 LHANDLE hImage;
 } BTNCDATA;

Gotcha!

Programmers must not forget to initialize everything in the BTNCDATA
structure. If they don't they will receive an error. cb is always the size of
the BTNCDATA structure. fsCheckState indicates whether the initial
state of a button is checked or unchecked. fsHiliteState is used to set the
highlight or unhighlight state of the button. The last field, hImage, is a
handle for a pointer or a bitmap.

Dialog Units - Can We Talk ?

 ptl.x = 175;
 ptl.y = 25;
 /* map out to correct window coordinates */
 WinMapDlgPoints(hwndWnd,
 &ptl,
 1,
 TRUE);

In this example, we mix the create buttons in the resource file and also dynamically in the C
code. There is a difference between the coordinates specified in the resource file and thouse
specified in the C file. The resource file uses a coordinate system known as dialog units.
These units are based on the size of the system font and are different from pixel units that a
window coordinate system uses. In order to place the new push button in the right position,
we must first map the dialog units to a window coordinate system. The dialog coordinates
are placed into a POINTL structure, which consists solely of as x and y elements. The

function WinMapDlgPoints is explained in Chapter 12.

 WinCreateWindow(hwndWnd,
 WC_BUTTON,
 "",
 WS_VISIBLE|WS_TABSTOP|BS_ICON,
 ptl.x,
 ptl.y,
 WinQuerySysValue(HWND_DESKTOP,
 SV_CXICON),
 WinQuerySysValue(HWND_DESKTOP,
 SV_CYICON),
 hwndWnd,
 HWND_TOP,
 IDR_ICON,
 (PVOID)&bcdData,
 NULL);

WinCreateWindow is used to create the icon push button. The client area of the dialog is
used as both the parent and the owner. The text area is specified as "". The styles specified
for the button are WS_VISIBLE|WS_TABSTOP|BS_ICON. WS_TABSTOP indicates that
the user can press the TAB key to move to the button. On some button styles this is the
default and does not have to be specified. This style is associated with push buttons and
check boxes automatically. Icon buttons and radio buttons do not.
The placement of push button is specified at ptl.x and ptl.y, and the width and height are
set at the system values for the icon width (SV_CXICON) and icon height (SV_CYICON),
respectively. The dialog window hwndWnd will be the owner. The next parameter is the
address of the button control data, which is &ButtonData in this example.

 WinSendDlgItemMsg(hwndWnd,
 IDC_AUTOCHECKBOX,
 BM_SETCHECK,
 MPFROMSHORT(TRUE),
 NULL);

 WinSendDlgItemMsg(hwndWnd,
 IDR_AUTORADIOBUTTON,
 BM_SETCHECK,
 MPFROMSHORT(TRUE),
 NULL);

 WinSendDlgItemMsg(hwndWnd,
 IDC_AUTO3STATE,
 BM_SETCHECK,
 MPFROMSHORT(2),
 NULL);

The last step in the dialog initialization procedure sends a BM_SETCHECK to
AUTOCHECKBOX, AUTORADIOBUTTON and AUTO3STATE buttons. Also the three-
state check-box is sterted in the indeterminate (or grey-scaled) stape by specifying 2 as
mpParm2.

Button Actions

The icon button style operates just like a push button. An icon button is identical to a push
button in appearance exept for the image on top, and sends a WM_COMMAND message to
its owner when it is pressed. Check boxes and radio buttons will send a WM_CONTROL
message to their owners only when selected.

Summary

Buttons are the easiest control to program. The three varieties of buttons are push buttons, radio
buttons, and check boxes. A push button should be used to indicate an action choice, such as
"Save", or a routing choices, such as "Include" or "Delete". A radio button should be used to
display mutially exclusive choices, and should always be paired with at least one other radio
button in a field. A radio button should not be used when a valid user choice is no selection;
instead, a check box should be used. A check box should be used to display a binary choice - that
is, a choice with two distinct states. Programmers should make sire that both the checked and
unchecked states are clerly understandable from the check box text

Chapter 17

Entry Fields

The entry field is perhaps one of the most widely used controls, with possible contenders
being the button and the list box (see Figure 17.1). It provides the capability to receive a
single line of input as well as to display text as if it were a scrollable static text field. It is
also useful for just that: reading or displaying a single line of text. Entry fields are simple
controls; multiline edit controls (MLEs) which are discussed in Chapter 18, should be used
in situations where more complex functionality is required. Simplicity in function does
have its advantages, as the entry field also is probably one of the easiest controls to write
code for.

Figure 17.1 Entry fields.

The entry field does lack some capabilities that would be very nice to have. For example,
being able to accept only certain types of text, having a fully functional picture string
capability ('a la COBOL), and being able to force all text to be upper- or lowercase would
be handy. Chapter 27 addresses the issue of adding function to an existing control and
illustrates its concepts by an example that allows numeric input only in an entry field.

Entry Field Basics

Table 17.1 shows the various styles available for the entry field.

Table 17.1 Entry Field Styles

Style Description

ES_LEFT Text is left justified.

ES_CENTER Text is center justified.

ES_RIGHT Text is right justified.

ES_AUTOSCROLL Text is scrolled as the cursor moves beyond the visible portion of the entry field.

ES_MARGIN A margin is drawn around the entry field.

ES_AUTOTAB When the maximum number of characters has been entered, the input focus is
passed to the next control with the WS_TABSTOP style.

ES_READONLY Text is not modifiable.

ES_COMMAND The entry is denoted a command entry field. The help Manager uses this to
provide help for the contents of the field, should the user request it. There
should be only one entry field per window with this style.

ES_UNREADABLE Text is displayed as a string of asterisks ('*'), one per character of actual text.

ES_AUTOSIZE The entry field will size itself automatically to insure that the text fits within the
visible portion of the control.

ES_ANY The entry field can contain single- and double-byte characters. If the text is
converted from an ASCII code to an EBCDIC code page, there may be an overrun
in the converted text. Contrast this with ES_MIXED, where this is not allowed.

ES_SBCS Text is comprised of single-byte characters only.

ES_DBCS Text is comprised of double-byte characters only.

ES_MIXED Text can contain either single- or double-byte characters, which may later be
converted to or from an ASCII code page from or to EDCDIC code page.

Table 17.1 shows that numerous possibilities exist for creating entry fields. The
ES_READONLY style is especially handy for displaying long strings of text for which
there is no space; the ES_UNREADABLE is useful for getting information such as
passwords from the user in cases where a passerby should not be able to - at a casual glance
- perceive the contents.
The entry field is, again, an uncomplicated control; sometimes this leads to inconsistencies
with other controls. For example (this applies to buttons also), the WinSetWindowText
function is used to set the contents of an entry field.

BOOL APIENTRY WinSetWindowText(HWND hwndWindow, PCSZ pszText);

hwndWindow is the handle of the entry field to set the text of, and pszText is a pointer to
the text. The inconsistency is that, as we will be seen in other controls, text is usually set -
and queried - through messages. However, why overcomplicated things unnecessarily ?
As we implied, the text also is queried through a function - the WinQueryWindowText
function.

LONG APIENTRY WinQueryWindowText(HWND hwndWindow,
 LONG cchBufferMax,
 PCH pchBuffer);

Again, hwndWindow is the handle of the entry field we are querying. cchBufferMax
specifies the size of the buffer, and pszBuffer points to the receiving buffer. A companion
function is helpful here; WinQueryWindowTextLength returns the length of the window
text.

LONG APIENTRY WinQueryWindowTextLength(HWND hwndWindow);

It takes a single parameter - hwndWindow - which indicates the window to be queried.
It should be noted that the default maximum text length of an entry field is only 32 bytes.
While this may be large enough for most instances, at times a different length might be
preferred - to limit the field to 5 characters for a Zip code or increase it to 256 for a file
name, for example. This is accomplished by sending the entry field an
EM_SETTEXTLIMIT message; passing the maximum number of characters in the first
parameter will do the trick.

Gotcha!

The limit in the EM_SELECTTEXTLIMIT message should not include
the terminating null character, but the extra byte should be allotted when
calling WinQueryWindowText and 1 should be added to
WinQueryWindowTextLength. An interesting point is that, while there
is a message for setting the limit, there is no message for querying the
limit. This querying can be accomplished using a voodoo incarnation of

the WM_QUERYWINDOWPARAMS message, but that seems to be a
lot of work for something so simple.

Selection Basics

Many operations in Presentation Manager programming deal with selected items. IBM's
Common User Access (CUA) guidelines define a set of different attributes that an object
can have, and being selected is one of them. A selected object is an object on which an
action is to be performed.

Selections have two defining characteristics - an anchor point and a cursor point.
The anchor point is the place where the selection begins; the selection continues until it
reaches the cursor point, which is where the input cursor is at any given time.

Selections can be performed using either the mouse or the keyboard. Using keyboard, the
arrow keys are used to move the cursor to the desired anchor point; then the arrow keys are
used while holding down either shift key to expand and contract the text selection.
Selecting with the mouse can be done in two ways: swipe selection and shift-click
selection.

Swiping is the method by which the mouse is moved to the desired position, the first mouse
button is pressed and held, and the mouse is moved over the items to be selected. This is
similar in action to direct manipulation, but the intention is different. Shift-click selection
is closer to using the keyboard; the mouse is clicked at the desired anchor point and then
clicked again while the shift key is held down to set the cursor point and thus the selected
text.

When something is selected, it is given selection emphasis, and this is usually conveyed by
displaying selected items in reverse; this is true for entry fields. Specifically for entry
fields (and a few other controls, as we'll see in other chapters) once a selection of text is
selected, it can be manipulated. For example, any keypress replaces the selected text with
the key pressed. If something is pasted from the clipboard, which is discussed in the next
section, it replaces the selected text.
For the programmer, fortunately, two important messages refer to selections -
EM_SETSEL and EM_QUERYSEK; the former sets the current selection and the latter
queries the current selection is, if one exists. See Appendix A for specifics of each message.

The Entry Field and the Clipboard

No engineer can do without one; it is indispensable in meetings when a person needs to
write and there is no table. A clipboard is what we are referring to. For those who do not
know what it is, it is a piece of compressed wood - usually slightly larger than a sheet of
paper - with a metal clip on top to hold papers in place when it is written on. Most, if not
all, windowing systems have a beast of the same name, although (usually) the purpose is a
bit different: A clipboard in a GUI environment is used for the temporary placement of data
so that it may be copied to other places, whether in the same application that placed the data

there or not.

From the viewpoint of an entry field, there are three interfaces to the clipboard, all via
messages. The EM_CUT message removes the selected text and places it on the clipboard.
The EM_COPY message copies the selected text onto clipboard, but the text remains in the
entry field. The EM_PASTE message copies the date from the clipboard and inserts it
either at the current cursor position or, if there is selected text in the entry field, replaces the
currently selected text. Again, see Appendix A for specifics of each message.

And Other Things

Already we have a control that is quite usable. However, IBM provided some additional
functionality. Two of these are read only and unreadable data, and they are specified by
the two window styles ES_READONLY and ES_UNREADABLE.

The effect of ES_READONLY is rather obvious - it prevents the user from changing the
contents of the entry field. Text may be selected and copied to the clipboard, but it may not
be cut from the entry field, nor may other text be pasted into the entry field. The need for
this is evident when text of an indeterminable length must be displayed on a fixed amount
of screen "real estate". Using an entry field allows the text to be placed in required space,
because it can be scrolled so that entire text can be viewed.
The implementation of ES_UNREADABLE is difficult to fathom. While the purpose is
evident - to prevent the contents from being viewed - the method by which this is achieved
is not. Currently, each character is displayed as an asterisk; this is a poor choice, since the
most frequent application of ES_UNREADABLE is for computer passwords, where using
an asterisk eliminates the need to guess how many letters are in the value. A programmer
who needs to provide secure access should not use the ES_UNREADABLE style.

ENTRY - Entry Field Samples

The following application displays some entry fields with different styles. The point is not
to demonstrate any particular piece of code, for entry field is very simple-minded; its
purpose is to show the effects of the various styles that entry field can have.

ENTRY.C
ENTRY.RC
ENTRY.H
ENTRY.MAK
ENTRY.DEF

Chapter 18

Multiline Edit Controls

When OS/2 was released in the middle of the MacintoshTM era, many people wondered why
it didn't have s control similar to that used in any of the Mac's popular, easy-to-use word
processors. IBM's answer in OS/2 1.2 was the multiline edit control (usually abbreviated
as MLE); this control provided a similar yet simpler version of what people saw on the
Macintosh. It supported the multiline text entry and browsing that they were familiar with
and the anchor point selection style discussed in Chapter 17.
But let's not stop there: The MLE was also one of the first controls to support a selectable
font, and it can handle very large text buffers easily. Being a stream-based editing control
means that word wrap also came cheaply. Finally, it included a primitive undo capability.
Unfortunately, IBM tried (and failed) to emulate the Macintosh; it has no multifont
capability, which contributed heavily to ease-of-use that made Mac such a big seller. Also,
it seems clumsily written. Even with all of these problems, the MLE still is quite usable and
is nifty for grabbing a chunk of text from the user when needed. MLEs are used everywhere
- in the WPS (setting pages), in containers (editing icon text), and so on.

Terminology, Etc.

Table 18.1 shows the styles available for the MLE control.

Table 18.1 MLE Styles

Style Description

MLS_BORDER Creates an MLE with a surrounding border

MLS_DISABLEUNDO Specifies that the MLE should ignore undo actions.

MLS_HSCROLL Specifies that the MLE should have a horizontal scrollbar.

MLS_IGNORETAB
Specifies that the MLE should ignore the tab key and instead pass the
WM_CHAR message to its owner.

MLS_READONLY Creates an MLE that is read-only.

MLS_WORDWRAP Specifies that the MLE should wrap words to the next line that do not fit on
the current line.

MLS_VSCROLL Specifies that the MLE should have a vertical scrollbar.

The MLE has a concept of an import/export buffer that is used to set and query the text in
the control (called importing and exporting text). Also, since the control is used frequently
to read from and write to files, the MLE supports different and-of-line formats.

Table 18.2 MLE End-of-Line Formats

Format Description

CR-LF A carriage return (CR) followed by a line feed (LF) denotes the end of a line.

LF LF denotes the end of a line

Windows
MLE

On import, CR CR LF is ignored, and CR LF is interpreted as end of line. On export, CR
LF is used to specify end of line and CR CR LF is used to denote line breaks caused by
word wrapping.

To set the import/export buffer, the MLE expects to receive an
MLM_SETIMPORTEXPORT message before receiving any MLM_IMPORT (import text
from buffer) or MLM_EXPORT (export text to buffer). The format of the text to be
imported or exported is specified in the MLM_FORMAT message. The
MLM_SETIMPORTEXPORT message simply tells the MLE the address of the buffer to
be used in later message; thus, if this message is sent followed immediately by an
MLM_IMPORT message, whatever was in the buffer will get imported. Similarly, multiple
MLM_IMPORT messages can be sent to import the same text multiple times.
Additional messages that correspond to well-known or easily understood capabilities are
the MLM_SETSEL (set selection) and MLM_SETWRAP (set world wrap) messages.
Two items need to be noted. The first is the concept of an insertion point (datatype is IPT),
which is simply an offset in the MLE from the beginning of the text. The second is that of
line numbers; it may seem obvious since we are programming using a language whose
arrays begin at index 0, but it doesn't hurt to state explicitly that line numbers, when used
in the various MLE messages, began at 0 also.

MLE1

The following sample shows an MLE and performs some rudimentary operations with it.

MLE1.C
MLE1.RC
MLE1.H
MLE1.MAK
MLE1.DEF

Figure 18.1 MLE control.

The code does most of the important work in addText and selectAllText.

 WinSendMsg(hwndMle,
 MLM_SETIMPORTEXPORT,
 MPFROMP(achImpExp),
 MPFROMLONG(sizeof(achImpExp)));
 WinSendMsg(hwndMle,
 MLM_FORMAT,
 MPFROMLONG(MLFIE_NOTRANS),
 0);

As was stated earlier, the import/export transfer buffer must be set before any text is
imported. Also, since the internal representation of a new-line character is simply a line
feed, we have to tell the MLE that the format of the imported text is just that
(MLFIE_NOTRANS).

 iInsert=0;

 for (usIndex=1; usIndex<=20; usIndex++) {
 sprintf(achImpExp,"This is line %d.\n",usIndex);

 WinSendMsg(hwndMle,
 MLM_IMPORT,
 MPFROMP(&iInsert),
 MPFROMLONG(strlen(achImpExp)));

 } /* endfor */

Finally, we loop to insert 20 lines of text. As can be seen in the message section at the end
of this chapter, MLM_IMPORT updates mpParm1 to reflect the point just after the place
where the last character was inserted; this is to prepare the application for the next import
(or export, for MLM_EXPORT).
The processing of the input focus is interesting.

 case WM_SETFOCUS:
 if (SHORT1FROMMP(mpParm2)) {
 WinPostMsg(hwndWnd,MYM_SETFOCUS,0,0);
 } /* endif */
 break;
 case MYM_SETFOCUS:
 WinSetFocus(HWND_DESKTOP,pidData->hwndMle);
 break;

While a focus change is in progress, applications are not supposed to call WinSetFocus or
WinFocusChange. Presentation Manager will not prevent this from being done, but since
it has not completed the focus processing, any window to which the focus is assigned will
lose it immediately. The only way to accomplish this - as in the code just given - is to post
a message that will call WinSetFocus. Since posting is being done, not sending, the
message gets executed whenever it gets dispatched, which is after the focus change has
completed.

How to Upset a User Rather Quickly.

Upon running MLE1, it is noticeable how the control repainted itself whenever any changes
took place. Whenever an application does a lot of textual manipulations, this can look
rather nasty. Fortunately, two messages can be used to disable and enable updates -
MLM_DISABLEREFRESH and MLM_ENABLEREFRESH. The first messages tells the
MLE that the application is making many changes and that it should not update the display
until an MLM_ENABLEREFRESH message is sent.

Gotcha!

The MLM_DISABLEREFRESH message does not work as advertised;
instead of disabling display updates and disabling the mouse pointer, it
simply disables the mouse pointer. A better way to perform this action is
to use the WinEnableWindowUpdate function specifying FALSE as the
second parameter (and reenabling using the same function with TRUE as
the second parameter). Also, the MLM_DISABLEREFRESH message
disables the mouse systemwide, instead of just over itself, which can be
quite annoying for operations that take up large amounts of time. An
application that is guilty of this is System Editor, readers can start the
editor and read a file that is greater than 500K to see an example of this.

No Refreshment

MLE2 is the next sample to be looked at. It calls WinEnableWindowUpdate to disable the
window refresh before inserting the text and calls it again to enable the window refresh
afterward. Its behavior should be compared with that of MLE1.

MLE2.C
MLE2.RC
MLE2.H
MLE2.MAK
MLE2.DEF

Clipboard Support

In Chapter 17, we discussed what the clipboard is and which entry-field messages can be
used to interface with it. The MLE has a similar set of messages - MLM_COPY,
MLM_CUT and MLM_PASTE - that perform analogous functions. As with the entry field,
the first two messages require that some text is selected in the MLE, so these two usually
are used in conjunction with MLM_SETSEL message. Because the concepts associated
with the clipboard were explained thoroughly in the last chapter, we will move on the next
topic.

Navigation without a Sextant

Suppose the insertion point corresponding to a known line number withing an MLE has to
be found. Or, given an insertion point, the line number where the insertion point can be
found to be determined. Because of the word-wrap capability of the MLE, these can be
difficult - if not impossible - to calculate without some help from the control. Fortunately,
the MLE has two such messages that perform these functions for you; they
are MLM_CHARFROMLINE and MLM_LINEFROMCHAR.

Line by Line

The following example uses the MLM_CHARFROMLINE message to read its contents
line by line and to write each line to a file.

MLE3.C
MLE3.RC
MLE3.H
MLE3.MAK
MLE3.DEF

The main difference between this sample and the previous two is the addition of the
function exportText. Its purpose is to read, line by line the contents of the MLE and to
write each line to a file. To do this, we make use of the MLM_QUERYLINECOUNT,

MLM_CHARFROMLINE, and MLM_QUERYLINELENGTH messages. First, we need to
determine how many lines are in the MLE; the first message does this.

 lNumLines=LONGFROMMR(WinSendMsg(hwndMle,
 MLM_QUERYLINECOUNT,
 0,
 0));

Obviously, we use this as the terminating condition of a for loop. Each iteration of the loop
performs the following: Determine the offset of the first character on the line using
MLM_CHARFROMLINE; query the length of the line using MLM_QUERYLENGTH;
finally, query the data on the line using MLM_EXPORT.

 for (lIndex=0; lIndex<lNumLines; lIndex++) {
 iBegin=LONGFROMMR(WinSendMsg(hwndMle,
 MLM_CHARFROMLINE,
 MPFROMLONG(lIndex),
 0));
 lSzLine=LONGFROMMR(WinSendMsg(hwndMle,
 MLM_QUERYLINELENGTH,
 MPFROMLONG(iBegin),
 0));

 memset(achImpExp,0,sizeof(achImpExp));

 WinSendMsg(hwndMle,
 MLM_EXPORT,
 MPFROMP(&iBegin),
 MPFROMP(&lSzLine));

 fputs(achImpExp,pfExport);
 } /* endfor */

Gotcha!

The MLM_QUERYLINECOUNT takes as its parameter an insertion
point instead of a line number, as would be imagined.

Searching for What Was That Again ?

An action that is commonly performed on large quantities of text is searching for a
particular string. Before digging out Knuth volumes, readers should take note of the
MLM_SEARCH message. This message will do both search and search-and-replace
actions on the text contained withing the MLE. The method of communication is via the
MLE_SEARCHDATA structure, which specifies the string to search for and (optionally) a
replacement string.

 typedef struct _SEARCH /* search */
 {
 USHORT cb; /* size of search spec structure */
 PCHAR pchFind; /* string to search for */
 PCHAR pchReplace; /* string to replace with */
 SHORT cchFind; /* length of pchFindString */
 SHORT cchReplace; /* length of replace string */
 IPT iptStart; /* point at which to start search */
 /* (negative indicates cursor pt) */
 /* becomes pt where string found */
 IPT iptStop; /* point at which to stop search */
 /* (negative indicates EOT) */
 USHORT cchFound; /* Length of found string at iptStart */
 } MLE_SEARCHDATA;

cb specifies the size of the structure, pchFind points to the search text. pchReplace points
to the text to replace with. cchFind specifies the length of the search text. cchReplace
specifies the length of the replacement text. iptStart on entry specifies the search starting
point. If this is -1, cursor position is used. On exit, iptStart specifies the insertion point of
the first character of the occurrence found, if one is found. iptStop specifies the search
ending point. If this is -1, the end of text is used. If this is less than iptStart, the search
wraps to the beginning of the text after it reaches the end. cchFound specifies the length of
the text found.
mpParm1 specifies one or more flags that are used to determine the action of the search.

Table 18.3 mpParm1- Style flags in MLM_SEARCH Message

Format Description

MLFSEARCH_CASESENSITIVE
If set, only exact matches are considered a successful match. If not
set, any case-combination of the correct characters in the correct
sequence is considered a successful match.

MLFSEARCH_SELECTMATCH
If set, the MLE selects the text and scrolls it into view when found,
just as if the application had sent an MLM_SETSEL message. This is
not done if MLFSEARCH_CHANGEALL is also indicated.

MLFSEARCH_CHANGEALL

Using the MLE_SEARCHDATA structure specified in mpParm1, all
occurrences of pchFind are found, searching from iptStart to
iptStop, and replacing them with pchReplace. If this style is selected,
the cchFound field has no meaning, and the iptStart value points to
the place where the search stopped, or is the same as iptStop
because the search has not been stopped at any of the found
strings. The current cursor location is not moved. However, any
existing selection is deselected.

Since the MLE can hold a large quantity of text, searches conceivably can take a long time
to complete. Because of this, the MLE periodically sends the application a
WM_CONTROL message with an MLN_SEARCHPAUSE notification code; this allows
the application to halt the search(usually per the user's request0; it also can be used to
implement a progress indicator.

As if That Weren't Enough

Finally, there is a number of messages that perform miscellaneous functions. To select a
font, there is the MLM_SETFONT message, which is a bit tricky to use since it expects a
font attributes structure(FATTRS). Fortunately, the Font Dialog (see Chapter 26) returns
the FATTRS structure for the font selected, so if we consent to using this (a good idea), we
can avoid a lot of work. The current font is returned in a FATTRS structure by the
MLM_QUERYFONT message.

Gotcha!

The MLM_SETFONT message is the only way to change the font of an
MLE control. WinSetPresParam will not work as it does with the other
window classes.

Chapter 19

Other Window Classes

Quick-minded reader will have observed that there are more window classes available to
the programmer than what are listened on the contents page. The remaining window
classes, however, either are rarely used directly by an application or are too trivial to
warrant a separate chapter. This chapter serves as a catchall to discuss these
unmentionables.
Table 19.1 below lists these window classes and provides a brief description of them.

Table 19.1 Window Classes Covered in this Chapter

Constant Description

WC_COMBOBOX
Combo box. This is a combination of an entry field and a list box. It responds to
all messages for both controls; additionally, there are a few messages
specifically for this class.

WC_FRAME

Frame. This window is used as the primary window for most applications, and is
also the basis for dialog windows. While the typical interaction with this class is
through subclassing, the frame window has some useful messages for the
developer.

WC_SCROLLBAR
Scrollbar. This can be found in many applications, where the environment is
larger than the amount of screen allocated for the application. scrollbars allow
the user to change the visible portion by scrolling the window.

WC_STATIC
Static window. This is a window whose contents are static, that is, unchangeable
by the user. Typically, windows of this class are textual in nature, but they can
also be icons, bitmaps, and so on.

WC_TITLEBAR
Titlebar. On a standard window, this window is placed between the system
menu and the min/max buttons. It provides a placement for the frame window
text and also allows quick access to window resizing, maximizing, and restoring.

Combo Boxes.

A combo box is displayed as an entry
field with either a drown arrow
displayed to its right or a list box
displayed below it. Its primary
purpose is to display a list of items
that can be selected from but added to
at the user's discretion. A drop-down
combo box is especially useful when
screen "real-estate" is limited but a list
is still needed; in such cases the down
arrow is displayed to the right of an
entry field.
Because a combo box is simply a
handy way of putting together two
existing window classes, the designers
decided that it should be able to accept
messages for both of its ancestors.
Thus, any entry field message (EM_)
and list box message (LM_) can be
sent to the control with the expected
results. The reader is referred to the
chapters dealing with those control
classes for more information.

Figure 17.1 Entry fields.

The table below lists the combo-box styles.

Table 19.2 Combo-Box Styles

Style Description

CBS_SYMPLE

Both the entry field and the list box are displayed. Whenever an item in
the list box is selected, the text is displayed in the entry field. If the item
required is not in the list, the user can type the desired value in the entry
field.

CBS_DROPDOWN
This is the same as CBS_SIMPLE except the list box is hidden until the user
requests that it be shown; this is accomplished either by clicking with the
mouse on the down arrow or pressing the Ctrl-Down arrow keys.

CBS_DROPDOWNLIST This is the same as CBS_DROPDOWN except the entry field is read-only,

meaning items cannot be entered manually by the user.

The following simple application illustrates the different types of combo boxes.

COMBO.C
COMBO.RC
COMBO.H
COMBO.MAK
COMBO.DEF

The combo box, while fairly straightforward in its usage, does have some limitations in its
design about which programmers should know. First, there is no easy way to have an
ownerdrawn combo box (i.e. ownerdrawn list box within the combo box). This means that,
for those with the need to display bitmaps, colors, etc., you're "outta lack". Second, a
CBN_SHOWLIST notification indicates when the list is about to be shown, but no
corresponding notification indicates when the list is about to be hidden; this one goes in the
"honestly, we didn't inhale" group of design idiosyncrasies.

Gotcha!

When a CBN_SHOWLIST notification is received, the list is not shown
already, so a CBM_ISLISTSHOWING message will return FALSE. This
is documented but often overlooked.

A final note is that combo boxes process the messages and notifications for the entry field
and list box by acting as a dispatcher. Thus, code may need slight modifications if it is
being copied from another source that was used solely for an entry field/list box and not a
combo box. For example, instead of a LN_ENTER notification, there is the CBN_ENTER
notification.

Frames

A frame window is, as mentioned in Chapter 9, one of the components of the standard
window. It's primary purpose is to keep things organized - it receives messages from the
various components (e.g. menu, sizing border, etc.) and dispatches them to the appropriate
windows with a "need to know", it is the parent of all of the standard window components,
which keeps them contained within its boundaries; it provides a standard look to a
standard window (thus the name), giving the feeling of consistency to the system. Because
the frame is the parent of all the components, oftentimes its parent is the desktop itself;
when this is the case, it is referred to as the top-level window for the application.
Direct interfacing with the frame does not yield many useful functions - the real "meat" of

the frame is accessed through subclassing. (See Chapter 27 for more information on
subclassing.)

A note on the WM_UPDATEFRAME message: After looking at the description of the
message, readers will undoubtedly question the reasoning for such a message, if the client
is the one to add or delete the controls. The answer can be said in one word (with a bit of
explanation afterward): "housekeeping". Just because a control or two has been added or
deleted by the programmer doesn't mean the frame is going to know about it. The
programmer must indicate the changes to the frame so that it can resize the controls
properly when it is resized.

Scrollbars

Scrollbars are used to allow the user to specify a value, within a specified range. Originally,
they were intended as navigational tools withing windows (thus, their name), when the
viewable area was larger than the visible area. Since then, however, many other purposes
have been designed and other, more specialized controls have been created as a result. (see
"Combo Boxes" earlier in this chapter, Chapter 24 and Chapter 25.)

A scrollbar consists of three parts - the buttons, the slidetrack and the thumb. The buttons
are found on the ends of the scrollbar, and they are used to adjust the position up or down
by a "unit". The thumb is a rectangular area in the middle of the scrollbar and is used to
adjust the position by an arbitrary amount; usually it also indicates the amount of data
visible compared with the total amount of data available. The thumb is sometimes referred
to as the slider, but we will refrain from doing so in order to avoid confusion with the
control of the same name. The slidetrack is everything else, and the thumb is contained by
the slidertrack; the slidertrack is used to adjust the position up/left or down/right one "page"
by clicking above/left or below/right of the thumb.
A few properties are associated with a scrollbar. The first is the range; it is an inclusive set
of numbers greater than or equal to zero in which the value of the scrollbar can fall. The
fact that neither boundary can be less than zero is significant, since application code may
have to be adjusted to account for this. When the scrollbar is created, it has the default
range 0 to 100. The second property is the thumbsize; it indicates to the user the amount of
data that is visible relative to the total amount of data available for viewing.
Table 19.3 lists the scrollbars styles.

Table 19.3 Scrollbar Styles

Style Description

SBS_HORZ Creates a horizontal scrollbar

SBS_VERT Creates a vertical scrollbar

SBS_THUMBSIZE Specifies that the SBCDATA structure in the call to WinCreateWindow contains

valid values for the cVisible and cTotal fields.
Used to calculate the size of the scroll-bar slider from the SBCDATA passed to
WinCreateWindow.

SBS_AUTOTRACK

Causes the entire slider to track the movement of the mouse pointer when the
user scrolls the window. Without this style, only an outlined image of the slider
tracks the movement of the mouse pointer, and the slider jumps to the new
location when the user releases the mouse button.

SBS_AUTOSIZE
The scrollbar thumb changes the size to reflect the amount of data in the
window.

Because the scrollbar is such a simple control, programming it is simple. What is difficult is
how the scrollbar is used in an application; it is easy to specify what the valid range of
values is and even query the current value, but it isn't as easy to scroll a window
appropriately or change the green component in a color window; these things will not be
covered in this chapter because the possibilities are endless.

Statics

Static controls have the dubious role of providing information to the user that cannot be
modified by him or her. This information can take many forms, the more common of which
is text and icons/bitmaps. However, many people fail to realize that there are many forms
of the static control and that this flexibility compensates for its lack of functionality.
Speaking of "lack of functionality," let's describe it in a single sentence. For textual static
controls, WinSetWindowText and WinQueryWindowText set and query the current text
being displayed; for bitmapped (including icons) static controls, two messages are used to
specify the bitmap or icon handle and query the current handle.
Table 19.4 lists the static control styles.

Table 19.4 Static Control Styles

Style Description

SS_AUTOSIZE Specifies that the control is to size itself so that its contents fit.

SS_BITMAP

Specifies that the control is to contain a bitmap, and the text of the control
specifies the resource id of the bitmap. If the first byte of the text is
hexadecimal x'FF', then the second and the third bytes are used as low and
high word of the resource id of the bitmap to load, respectively. If the first
byte of the text is '#', then the remainder of the text is considered to be an

ASCII representation of the resource ID of the bitmap to load. If the text is
empty or does not follow the above format, no bitmap is loaded.

SS_BKGNDFRAME
Creates a box whose color is that of the background. This is similar to, but
not the same as, SS_GROUPBOX

SS_BKGNDRECT Creates a solid rectangle whose color is that of the background.

SS_FGNDFRAME
Creates a box whose color is that of the foreground. This is similar to, but
not the same as, SS_GROUPBOX

SS_FGNGRECT
Creates a solid rectangle whose color is that of the foreground. This is often
used for background shadowing and very thick underlining.

SS_GROUPBOX
Creates a box as in SS_FGNDFRAME, except that the text of the static
control is displayed in the top left of the box. This is used to group like
controls together with an associated heading.

SS_HALFTONEFRAME
Creates a box that has a halftone outline. This is similar to, but not the same
as, SS_GROUPBOX.

SS_HALFTONERECT
Creates a box filled with halftone shading. This is similar to, but not the
same as, SS_GROUPBOX.

SS_ICON
The same as SS_BITMAP, except that the resource loaded is expected to be
an icon or pointer instead of a bitmap.

SS_SYSICON
The same as SS_BITMAP, except that the resource ID that is specified in the
text is interpreted as SPRT_ constant and is used to obtain a system icon as
in the WinQuerySysPointer function.

SS_TEXT
Specifies that the static control is to display the text in the manner
specified. See the following text for more information.

Gotcha!

For dialogs containing static controls with the style SS_BITMAP or
SS_ICON, the bitmap, icon or pointer must reside in the resource area of
the executable. This is true even if the dialog template is defined in the
resource area of a DLL. If this behavior is unacceptable, the programmer
must use an empty string for the text, load the bitmap, icon, or pointer in
the dialog procedure, and specify this as the (already loaded) resource to
use by sending the control an SM_SETHANDLE message.

For static controls with the style SS_TEXT, a number of additional styles can be applied
that control alignment and world-wrapping. Horizontally, DT_LEFT, DT_CENTER and
DT_RIGHT specify left, center and right-aligned text. Vertically, DT_TOP,
DT_VCENTER, and DT_BOTTOM specify top, center and bottom-aligned text.
Additionally, DT_WORDBREAK can be specified if and only if DT_LEFT and DT_TOP
are specified; this indicates that words are to be wrapped to next line if they do not fit
completely within the control's area at the current vertical position. If none of these flags is
specified, the default is DT_LEFT and DT_TOP.
Static controls have one other use: Since they do nothing other than display themselves,
they are very handy for adding the programmer's behavior withing a dialog via subclassing
(See Chapter 27 for more information on subclassing windows.)

Titlebars

The titlebar is a control whose role in the standard window is perfunctory, yet it is still
quite important. It automatically provides for mouse-oriented changing of the window's
position and maximizing and restoring of the window's size. Also, its interaction with the
frame insures that, whenever the frame's window text is changed, it is updated to reflect the
new text.
Even with this, there isn't much the programmer can do with the titlebar control directly. Its
functions are strictly defined and were not built with other uses in mind. There are no
titlebar-specific styles, and it accepts only two messages. These are described in Appendix
A.

Chapter 20

Drag and Drop

While the capability to drag and drop an icon from one window to another has been present
since OS/2 1.1, a standardized, robust method for providing this essential function was not
introduced until OS/2 1.3 with the Drg functions and their associated DM_ messages. But
what is drag and drop, really ?
Drag and drop is the capability of using the mouse to manipulate directly the transfer and
placement of data within single or multiple applications. Objects can either be "moved" or
"copied" from a source window to a target window. ("Moved" and "copied" are
application-defined concepts.)
Drag and drop can be seen from two viewpoints: from the viewpoint of the source, who
initiates the drag; and from the aspect of the target, which can accept or reject a dragging
operation. We will examine both of those as well as what to do once the target is
established.

Tennis, Anyone ?

In a nutshell, the source window is responsible for determining that the user is attempting
to drag an object, initializing the appropriate data structures, and finally calling either
DrgDrag or DrgDragFiles (a version of DrgDrag specifically for file objects).
Determining that the user is attempting to drag an object is the easiest part, since the system
will send a WM_BEGINDRAG message with the pointer position in mpParpm1. (This is
not entirely true. If a child control receives a WM_BEGINDRAG message, it might alert
the programmer to this through a WM_CONTROL message, but it is not required that it do
so).

After it has been decided that a drag operation is necessary, the application needs to
allocate and initialize three structure types: DRAGINFO, DRAGITEM and DRAGIMAGE.
(There are actually four; the DRAGTRANSFER structure is used ones a target has been
established.) The DRAGINFO structure contains information about the drag as an entity.
The DRAGITEM structures describe each object being dragged. Finally, the
DRAGIMAGE structures each describe the appearance of the object under the pointer
while it is being dragged.

 typedef struct _DRAGINFO /* dinfo */
 {
 ULONG cbDraginfo; /* Size of DRAGINFO and
DRAGITEMs*/
 USHORT cbDragitem; /* size of
DRAGITEM */
 USHORT usOperation; /* current drag
operation */
 HWND hwndSource; /* window handle of
source */
 SHORT xDrop; /* x coordinate of drop position
*/

 SHORT yDrop; /* y coordinate of drop position
*/
 USHORT cditem; /* count of
DRAGITEMs */
 USHORT usReserved; /* reserved for future
use */
 } DRAGINFO;
 typedef DRAGINFO *PDRAGINFO;

In the DRAGINFO structure, cbDraginfo is the size of the DRAGINFO structure in bytes.
cbDragitem is the size of the DRAGITEM structure contained therein. usOperation is the
default operation that can be, but is not required to be, set by the source and inspected by
the target; it is a DO_ constant. hwndSource is the only field not initialized by
DrgAllocDragInfo, and is the handle of the window initiating the drag-and-drop operation.
xDrop and yDrop are the coordinates of the object as dropped. cdItem specifies the
number of DRAGITEM structures stores along with the DRAGINFO structure.
usReserved is reserved and must be set to 0.

 typedef struct _DRAGITEM /* ditem */
 {
 HWND hwndItem; /* conversation
partner */
 ULONG ulItemID; /* identifies item being dragged
*/
 HSTR hstrType; /* type of
item */
 HSTR hstrRMF; /* rendering mechanism and
format*/
 HSTR hstrContainerName; /* name of source
container */
 HSTR hstrSourceName; /* name of item at
source */
 HSTR hstrTargetName; /* suggested name of item at
dest*/
 SHORT cxOffset; /* x offset of the origin of the
*/
 /* image from the mouse
hotspot*/
 SHORT cyOffset; /* y offset of the origin of the
*/
 /* image from the mouse
hotspot*/
 USHORT fsControl; /* source item control
flags */
 USHORT fsSupportedOps; /* ops supported by
source */
 } DRAGITEM;
 typedef DRAGITEM *PDRAGITEM;

In the DRAGITEM structure, hwndItem is the handle of the window with which the target
should communicate to transfer the information necessary to complete the operation. The
only time this would be different from the hwndSource field of the DRAGINFO structure
is when an application contains many "standard" windows as a children of the main
window. hstrType is the type of the item represented by the DRAGITEM structure.

hstrRMF is the rendering mechanism used to transfer the information and format of data
being transfered. hstrContainerName is the name of the container that holds the object
being dragged. With a file object, for example, this would be the directory where the file
resides. hstrSourceName and hstrContainerName is the names of the object at its
original location and the suggested name of the object at the target location. The target
does not have to use the suggested name; it is up to the application programmer. cxOffset
and cyOffet specify the offset from the hotspot of the pointer to the lower left corner of the
image representing the object and is copied here by the system from the corresponding
fields in the DRAGIMAGE structure. fsControl specifies one or more DC_ constants
describing any special attributes of the objects being dragged. Finally, fsSupportedOps
specifies the operations that can be performed as part of the drag - the object may be
copied, moved, linked ("shadowed"), and so on.

 typedef struct _DRAGIMAGE /* dimg */
 {
 USHORT cb; /* size control
block */
 USHORT cptl; /* count of pts, if
DRG_POLYGON */
 LHANDLE hImage; /* image handle passed to
DrgDrag*/
 SIZEL sizlStretch; /* size to stretch ico or bmp to
*/
 ULONG fl; /* flags passed to
DrgDrag */
 SHORT cxOffset; /* x offset of the origin of the
*/
 /* image from the mouse
hotspot*/
 SHORT cyOffset; /* y offset of the origin of the
*/
 /* image from the mouse
hotspot*/
 } DRAGIMAGE;
 typedef DRAGIMAGE *PDRAGIMAGE;

In the DRAGIMAGE structure, cb specifies the size of the structure in bytes. fl specifies a
number of DRG_ constants describing the type of data that is given in this structure.

Table 20.1 DRG_ Constants

Constant Description

DRG_BITMAP hImage specifies a bitmap handle

DRG_CLOSED The polygon specified is to be closed. If specified, DRG_POLYGON
also must be specified.

DRG_ICON hImage specifies an icon handle.

DRG_POLYGON hImage specifies an array of POINTL structures.

DRG_STRETCH The bitmap or icon is to be stretched to fit the specified size. If
specified, DRG_BITMAP or DRG_ICON also must be specified.

DRG_TRANSPARENT An outline of the icon is to be shown only. If specified, DRG_ICON also must
be specified.

cPtl specifies the number of points if fl contains DRG_POLYGON. hImage can specify
one of many things, depending on what flags are set in fl, as seen in Table 20.1. sizlStretch
specifies the size that the bitmap or icon should be stretched to. cxOffet and cyOffest
specify the offset of the lower left corner of the image, relative to the hotspot of the cursor
as the object is dragged. these two fields are copied into the DRAGITEM structure.

At this point, probably few of the fields in these structures make any sense. It is important
to realize that, because the target will more likely than not exist as part of another process,
simple allocation of these structures will not suffice, due to OS/2's memory protection
features. They must be allocated in shared memory through the use of the
DrgAllocDraginfo and DrgAddStrHandle functions.

 PDRAGINFO APIENTRY DrgAllocDraginfo(ULONG cditem);
 HSTR APIENTRY DrgAddStrHandle(PCSZ psz);

The former accepts the number of items being dragged and returns a pointer to the shared
DRAGINFO structure, whose individual DRAGITEM structures must be initialized using
the DrgSetDragitem function. The latter takes a pointer to a string and returns a "string
handle" - a pointer to a shared memory block containing (among other things) the string
passed to the function.

Initialization Code for Drag and Drop Source.

The following is the typical initialization code used in a Presentation Manager application
to initiate a drag-and-drop operation.

HWND hwndWindow;
PDRAGINFO pdiDrag;
DRAGITEM ditem;

pdiDrag = DrgAllocDraginfo(1);
//---
// Note that DrgAllocDraginfo() initializes all of the DRAGINFO
// fields *except* hwndSource.
//---
pdiDrag->hwndSource = hwndWindow;

diItem.hwndItem = hwndWindow;
diItem.ulItemID = 1L; //Unique identifier
diItem.hstrType = DrgAddStrHandle(DRT_TEXT);
diItem.hstrRMF = DrgAddStrHandle("<DRM_OS2FILE,DRF_TEXT>");
diItem.hstrContainerName = DrgAddStrHandle("C:\");
diItem.hstrSourceName = DrgAddStrHandle("CONFIG.SYS");
diItem.hstrTargetName = DrgAddStrHandle("CONFIG.BAK");
diItem.cxOffset = 0;
diItem.cyOffset = 0;
diItem.fsControl = 0;

DrgSetDragItem(pdiDrag, &diItem, sizeof(diItem), 0);

The following sections will explain this listing in more detail.

Things Never Told to the Programmer That Should Have Been.

Before actually taking our forceps to the code, a few concepts need to be introduced. The
first is that of the type and the true type of an object being dragged. The type is just that -
a string that describes what the object consists of. The true type is a type that more
accurately describes the object, if such a true type exists. For example, a file that contains C
source code might have the type "Plain Text" but have a true type of "C code". An object
can have more than one type, with each separated by commas and the true type appearing
as the first type listed. Thus, the hstrType field for the C source code would be initialized
as DrgAddStrHandle("C Code, Plain Text"). OS/2 defines a set of standard types in the
form of DRT_ constants.

The second concept that needs to be discussed is the rendering mechanism and format
(RMF). The rendering mechanism is the method by which the data will be communicated
from the source to the target. The format is the format of the data if the corresponding
rendering mechanism as used to transfer the data. These RMF pairs take the form
"<rendering mechanism, format>", with multiple RMF pairs separated by commas. OS/2
also defines a set of rendering mechanisms, also no constants are defined for them.
Note that if programmers have a fully populated set of RMF pairs ("fully populated"
meaning that for every rendering mechanism, every format is available), a shorthand cross-
product notation can be used. For example, if there are the rendering mechanisms RA, RB
and RC and the formats FA, FB and FC, and the following RMF pairs are available:

"<RA,FA>,<RA,FB>,<RA,FC>,<RB,FA>,<RB,FB>,<RB,FC>,<RC,FA>,<RC,FB>,<RC,FC>"

then this can be represented as "(RA,RB,RC) X (FA,FB,FC)". Obviously, this is a much
more concise way of describing the mess. If the thought of having to parse such a monster
with so many different combinations just to discover if <RD, FD> is supported drives
programmers crazy, they should have no fear - there are functions that will determine this.

Analogous to the relationship between type and true type, there also exists a native RMF,
which describes the preferred RMF for this object. It is always the first RMF pair listed or
the first RMF pair generated in a cross-product. The native RMF might employ faster data
transfer algorithms or other such performance boosters, so it should be used by the target

whenever possible.

Just because OS/2 defines set of types, rendering mechanisms, and formats doesn't mean
programmers are limited to those sets. If an application needs to use a new format, it can
register the appropriate strings describing this with the DrgAddStrHandle function.
However, the transfer protocol for the rendering mechanisms and the corresponding data
formats also should be published so that other applications can understand the new type of
RMF.

The next concepts are that of source name, source container Drag and drop:, and target
name Drag and drop:. The source name is the name of the object being dragged. It is
useful because the target application may be able to perform the requested operation
without having to interact with the source application. Typically, this is used when dealing
with files. The source container describes where the object resides. This, again, is useful
when deciding how to complete the action. When dealing with files, for example, the
source container would be directory name containing the file. Finally, the target name is
actually a suggested name, since the target could determine that an object with that name
already exists and that the object will receive a new, unique name.
Now that these concepts have been explained, the structures and sample code shown earlier
in this chapter should be easier to understand. We are dragging one item, as evidenced in
the DrgAllocDragInfo call. The one item is of type "text" and will be transferred via the
file system using the format "unknown". The file system object resides in the
container/directory "C:\" and has the name "CONFIG.SYS". The suggested target name is
"CONFIG.BAK", although the target application is free to select a different name.

Direct Manipulation Is a Real Drag

Assuming that the last section has been understood and that programmers have successfully
(and correctly) initialized the DRAGINFO structure and each DRAGITEM structure for
each object, we are now ready to call the function that makes all of this hard work
worthwhile: DrgDrag:

 HWND APIENTRY DrgDrag(HWND hwndSource,
 PDRAGINFO pdinfo,
 PDRAGIMAGE pdimg,
 ULONG cdimg,
 LONG vkTerminate,
 PVOID pRsvd);

hwndSource is the handle of the window initiating the drag operation. pdinfo points to the
DRAGINFO structure returned from DrgAllocDraginfo. pdimg points to an array of one or
more DRAGIMAGE structures, and cdimg specifies how many images the array contains.
vkTerminate describes the manner by which the drag is ended and is a VK_ constant.

Table 20.2 Description of VK_ Constants in a Drag Operation

Constant Description

VK_BUTTON1 Drag is ended using mouse button 1.

VK_BUTTON2 Drag is ended using mouse button 2.

VK_BUTTON3 Drag is ended using mouse button 3.

VK_ENDDRAG
Drag is ended by the mouse button defined in the "System Setup" folder to end a
drag. This should be used when dragging is performed in response to a
WM_BEGINDRAG message.

The DRAGIMAGE structure describes the image to be displayed as the object is being
dragged. Since only the DrgDrag function needs to access this, and since the DrgDrag
function executes in the context of the process calling it, this structure is not part of the
DRAGITEM structure (although having it there would have made things slightly less
complicated).
DrgDrag returns the window handle of the target window, if one is established. If the user
pressed either the ESC key (to end the drag) or the F1 key (to get help for dropping on the
current target), NULLHANDLE is returned, and the source is responsible for returning any
shared resources consumed by calling DrgDeleteDraginfoStrHandles to delete all of
string handles in the DRAGINFO structure, DrgDeleteStrHandle for each HSTR allocated
that is not present in the DRAGINFO structure, and DrgFreeDraginfo to free the
DRAGINFO structure. If this occurred frequently, nothing more would have to be
discussed; instead we will assume that the user selected a target window and released the
appropriate mouse button to initiate the transfer.

And Now a Word from Our Sponsor

Since the data transfer actively involves both the source and target windows, now is a good
time to view the target's perspective from the beginning. Remember that it is the target's
responsibility to provide visual feedback to the user during the drag operation and to initiate
the data transfer once the drop has occurred. Visual feedback is accomplished by
responding to the appropriate DM_ messages that are sent to the target during the drag.

DM_DRAGOVER This message is sent whenever the pointer enters the target window
space to allow it the opportunity to add target emphasis to the destination of the drag. This
is also sent whenever a key is pressed or released. The message contains a pointer to the
DRAGINFO structure which cab accessed by calling DrgAccessDragInfo.
DM_DRAGLEAVE This message is sent to any window previously sent a
DM_DRAGOVER message whenever the pointer leaves the target window space to allow
it the opportunity to remove any "target emphasis" previously drawn. Note that since this
occurs only for a window, the target is responsible for monitoring the mouse position of the
DM_DRAGOVER messages when it is a container for other items. This message is not
sent if the object(s) are dropped on the window.
DM_DROP This message is sent to the target window when the user drops the object(s) on

it. As with DN_DRAGLEAVE, any target emphasis should be removed ones this message
is received. Normally this message is responded to before any data transfer takes place so
that the source can learn the window handle of the target.
DM_DROPHELP This message is sent whenever the user presses F1 during a drag
operation. The target should respond by displaying help on the actions that would occur if
the object(s) were dropped at the point where F1 was pressed.
Whenever a DM_DRAGOVER message is received, the potential target must determine if
the drag operation is valid. For example, a C source file could be dropped on a C compiler
object, but not a Pascal source file; by holding down the CTRL key, a file could be copied
to the printer, but it is (probably) unlikely that a file could be moved to the printer. At a
minimum, the following two conditions must be met for a drop to be possible:

1. Both the source and target must understand at least one common type of each object
being dragged.

2. Both the source and target must understand at least one common RMF for each object
being dragged.

When determining the state of these conditions, the functions DrgVerifyType,
DrgVerifyRMF, DrgVerifyTrueType, and DrgVerifyNativeRMF help considerably.

 BOOL APIENTRY DrgVerifyType(PDRAGITEM pditem, PCSZ pszType);
 BOOL APIENTRY DrgVerifyRMF (PDRAGITEM pditem,
PCSZ pszMech, PCSZ pszFmt);
 BOOL APIENTRY DrgVerifyTrueType (PDRAGITEM pditem,
PCSZ pszType);
 BOOL APIENTRY DrgVerifyNativeRMF(PDRAGITEM pditem, PSZ pszRMF);
In all of these functions, pditem points to the DRAGITEM structure describing the item being
tested. pszType specifies the type to compare with. pszMech specifies the rendering mechanism.
pszFmt specifies the data format. pszRMF specifies a rendering mechanism and format. All of
these functions return TRUE if the condition is met and FALSE if not.

The target responds to the DM_DRAGOVER message with a DOR_ constant.

Table 20.3 DOR_ Constants

Constant Description

DOR_DROP
Returned whenever the drag is acceptable. This is the only response that can
be equated with "Yes, you can drop here".

DOR_NODROP
Returned whenever the location of the object(s) in the target window is
unacceptable

DOR_NODROPOP
Returned whenever the operation (copy or move) is unacceptable; this implies
that the drag might be valid if the operation is changed.

DOR_NEVERDROP
Returned whenever a drag is never acceptable; no further DM_DRAGOVER
messages will be sent to the application until the mouse leaves the window
and returns.

Gotcha!

Although the DRAGINFO structure is allocated in shared memory and
the pointer is passed to the target, the target cannot access the structure
until the DrgAccessDraginfo is called.

Data transfer

Okay, let's assume that the user selected one or more objects, depressed the appropriate
mouse button, dragged the object(s) over a window, received the feedback that the target is
willing to accept the object(s), and let go of the mouse button. What happens next ? The
answer to this depends on the RMF chosen to transfer the data with. For example, if
DRM_OS2FILE is chosen, the target could choose to render the data itself, or maybe it
doesn't know the name of the source data (e.g. for security reasons, the source window
didn't fill this in), so it must ask the source window to render the data before it can
complete the drop operation.
Let us consider each of the three system-defined rendering mechanisms to see the possible
chain of events within each.

DRM_OS2FILE This mechanism would be used to transfer the data via the file system.
The data does not have to exist already in this form, but could be placed there by the source
after receiving a DM_RENDER message from the target.
If the target understands the native RMF and if the true type of the object, then the target
can render the operation without the intervention of the source. However, this might not be
feasible; in that case, a DN_RENDER message would need to be sent to the source so that
it can perform the operation. (This could occur if the source does not know the name of the
file containing the data to be transferred.) If so, the target needs to allocate a
DRAGTRANSFER structure (via DrgAllocDragtransfer) and fill in the
hstrRenderToName field; the source sends back a DM_RENDERCOMPLETE message
to indicate that the operation is done.
DRM_PRINT This mechanism would be used when the data is dropped onto a printer,
and should be used only if the source understands and can process the DM_PRINT
message that will be sent to it by the target. This message contains the name of the print
queue to which the operation is to be performed.

Gotcha!

We have experienced trouble using the pdriv field of the pdosData field
of the PRINTDEST structure passed in as a pointer in mpParm2 for the
DM_PRINTOBJECT message; the printer consistently rejects the data as
being invalid when we call DevOpenDC. Unfortunately, one cannot
simply call DevPostDeviceModes (see Chapter 25 for more information)
to get a good set of driver data, because the device name is not specified
anywhere. The workaround is to call SplQueryQueue first using the
queue name in pszLogAddress field of the pdosData field of the
PRINTDEST structure to get the PRQINFO3 structure containing the
device name.

DRM_DDE This mechanism could be used when the other two do not provide the
capability to complete the desired operation. While this is the most flexible of the three
mechanisms, it is also the most cumbersome.

The source must understand and be able to process the appropriate WM_DDE_ messages
sent to it by the target. Note that a WM_DDE_INITIATE is not required since the target
already has the window handle with which it wishes to converse.
Since the topic of DDE could fill an entire chapter by itself, we will not present any more
information on this type of data transfer in this chapter.

A Concrete Example

A lot of material has been explained
so far, and an example is sorely
needed to cross the boundary from
the abstract to the applied. The
following application can act as
both source and target for direct
manipulation. While it is a simple
program, it demonstrates the
concepts previously described.

DRAG1.C
DRAG1.MAK
DRAG1.DEF

Since main is fairly standard, we'll
ignore it except for the fact that
we're reserving space for a pointer
in a call to WinRegisterClass. This
will be used to store a pointer to the
client's instance data, so that we can
avoid global variables. This
instance data is allocated and
initialized in the WM_CREATE
message and is freed in the
WM_DESTROY message.

typedef struct _CLIENTINFO
{ PDRAGINFO pdiDrag;
 BOOL bDraggin
g;
 BOOL bEmphasi
s;
 CHAR achLine[
256];
} CLIENTINFO,*PCLIENTINFO;

The pdiDrag field is used only by
the source window and points to the
DRAGINFO structure allocated via
DrgAllocDraginfo.
bDragging and bEmphasis
specify whether a dragging
operation is in progress and
whether the client is displaying
emphasis, respectively. achLine is
used only by the target window and
contains the line of text that was
dropped on the window. for clarity,
the processing of the direct-
manipulation messages has been
separated into those usually
associated with the source and the
target windows. (See doSource
and doTarget.)

What the program does is allow the
dragging of text from the left half
of the window into either the right
half of this window or another
instance of this window. (Try
starting two copies of DRAG1.EXE
to do this.) Whenever the source
receives a WM_BEGINDRAG
message, the appropriate data
structures are initialized and
DrgDrag is called. The target adds
emphasis whenever it receives a
DM_DRAGOVER message and
returns the appropriate DOR_
value. After the object has been
dropped, the target completely
renders the data provided by the
source and sends the source a
DM_ENDCONVERSATION
message to terminate the dragging
operation.

Readers probably are wondering why we return DOR_NODROP from the DRAGOVER
message when we find that we cannot accept the drop because the objects are in an
unrecognized type or use an unrecognized RMF. It is true that normally
DOR_NEVERDROP would be returned, but it must be remembered that we allow
dropping only on the right half of the window; once the pointer moves into the left half, we
must remove the target emphasis. However, if we return DOR_NEVERDROP, we never
receive another DM_DRAGOVER message until the mouse moves out of the window and
than back into the window. This technique is required for container window (where
container is a concept and does not specify the WC_CONTAINER window class) when
the potential targets are not child windows.

Gotcha!

It needs to be stated somewhere, and what a better place than here, that
there appears to be a bug in OS/2 Warp when using DRG_BITMAP for
the DRAGIMAGE to be displayed. The first time the drag and drop is
performed, everything works fine; but if the application is exited and
restarted, dragging the object using DRG_BITMAP leaves "mouse
droppings" behind, making the display quite ugly. We have no
information regarding the availability of a fix.

Gotcha!

Another important item is that the cxOffset and cyOffset fields of the
DRAGITEM structure cannot be used for the programmer's own
purposes, since DrgDrag copies the corresponding fields from the
DRAGIMAGE structure here. Likewise, hwndItem should specify a
valid window handle, or unexpected results will occur. Any associated
structures that need to be "attached" to a DRAGITEM structure may do
so safely by casting the structure to a ULONG and passing the pointer to
the ulItemID field.

More Cement, Please

Let's complicate things by modifying our program to have the source window render the
data.

DRAG2.C
DRAG2.MAK
DRAG2.DEF

As can be seen, the case when the source does not render the data prior to calling DrgDrag
is a bit more involved. This is communicated to the target by not specifying the source
name in hstrSourceName. After determining that this did not happen, the program
allocates another shared structure - DRAGTRANSFER - using a call to
DrgAllocDragtransfer and sends the source a DM_RENDER message with the target
name in the DRAGTRANSFER structure.

 PDRAGTRANSFER APIENTRY DrgAllocDragtransfer(ULONG cdxfer);
cdxfer specifies the number of structures to allocate and must be greater than 0. It returns a
pointer to the array of structures allocated.

 typedef struct _DRAGTRANSFER /* dxfer */
 {
 ULONG cb; /* size of control
block */
 HWND hwndClient; /* handle of
target */
 PDRAGITEM pditem; /* DRAGITEM being
transferred */
 HSTR hstrSelectedRMF; /* rendering mech & fmt of
choice*/
 HSTR hstrRenderToName; /* name source will
use */
 ULONG ulTargetInfo; /* reserved for target's
use */
 USHORT usOperation; /* operation being
performed */
 USHORT fsReply; /* reply
flags */

 } DRAGTRANSFER;
 typedef DRAGTRANSFER *PDRAGTRANSFER;

cb is the size of the structure in bytes. hwndClient specifies the handle of the window on
which the item was dropped. pditem points to the DRAGITEM structure withing the
DRAGINFO structure that was passed via the DM_DROP message representing the item of
interest.

hstrSelectedRMF specifies a string handle that describes the RMF to use when
transferring the item. hstrRenderToName specifies a string handle that describes the name
to be used when rendering the data. ulTargetInfo specifies any application-specific data
that the target window wishes to communicate to the source. usOperation specifies the
operation to use - for example, copy, move, or link. fsReply is filled in by the source
window and specifies a DMFL_ constant. Table 20.4 lists the available constants.

Table 20.4 DMFL_ Constants

Constant Description

DMFL_NATIVERENDER
The source does not support rendering of the object. This should not
be specified unless the source gives enough information for the target
to perform the rendering

DMFL_RENDERRETRY The source does support rendering of the object, but not using the
RMF specified.

hstrSelectedRMF and hstrRenderToName must have been allocated using the
DrgAddStrHandle function.
The obvious question here is why to use DrgSendTransferMsg instead of the old reliable
WinSendMsg. The answer is that the DRAGTRANSFER structure, like the DRAGINFO
structure, is allocated in shared memory but is not automatically accessible by the other
process. The DrgSendTransferMsg ensures that the recipient of the message can access
the DRAGTRANSFER message in addition to calling WinSendMsg on behalf of the
source.

Resources must be freed via appropriate Drg functions by both the source and target
windows, except for of the two HSTR handles in the DRAGTRANSFER structure. The
target window is responsible for freeing of these handles.

DrgDragFiles

For drag operations involving only files, a much simplified version of DrgDrag can be
used: DrgDragFiles.

 BOOL APIENTRY DrgDragFiles(HWND hwnd,
 PCSZ *apszFiles,

 PCSZ *apszTypes,
 PCSZ *apszTargets,
 ULONG cFiles,
 HPOINTER hptrDrag,
 ULONG vkTerm,
 BOOL fSourceRender,
 ULONG ulRsvd);

hwnd is the handle of the window calling the function. apszFiles, apszTypes, and
apszTargets are array of pointers to the filenames, file types and target filenames,
respectively. cFiles specifies the number of pointers in the apszFiles, apszTypes, and
apszTargets arrays. hptrDrag is the handle to the pointer to display while dragging.
vkTerm has the same meaning as in DrgDrag, discussed earlier. fSourceRender specifies
whether the caller needs to render the files before the transfer can take place. If so, a
DM_RENDERFILE message is sent for each file.
That's it! The system takes care of the rest, since files are the only allowed object type.

From the Top Now

Table 20.5 details the chain of events from the beginning of the drag notification to the end
of the data transfer.

Table 20.5 Steps in a Drag/Drop Operation

Step Source Target

1 Receives a WM_BEGINDRAG message

2
Allocates the DRAGINFO/DRAGITEM
structures using DrgAllocDraginfo

3 Creates the strings for the type and RMF
using DrgAddStrHandle

4 Initializes the appropriate number of
DRAGIMAGE structures

5 Calls DrgDrag

6 Receives DM_DRAGOVER

7 Calls DrgAccessDraginfo

8 Decides if object are acceptable (both type
ans RMF).

9 Returns the appropriate DOR_ value; if not
DOR_DROP, go to step 20.

10 If the user presses F1, target receives a
DM_DROPHELP; after providing help, go to
step 20

11 If the user presses ESC, go to step 20

12 User drops objects on target.

13 If target can render the objects on its own, do
so. Go to step 18

14 Allocates DRAGTRANSFER structures for each
object (DrgAllocDragtransfer)

15 Renders the object

16 Copies the objects and deletes the from the
source.

17 Frees HSTRs for DRAGTRANSFER and
DRAGTRANSFER structures
(DrgDeleteStrHandle and
DrgFreeDragtransfer).

18 Frees HSTRs for DRAGINFO and DRAGINFO
structure (DrgDeleteDraginfoStrHandles and
DrgFreeDragtransfer).

19 Sends source a DM_ENDCONVERSATION
message.

20 Free HSTR for DRAGINFO and DRAGINFO
structure (DrgDeleteDraginfoStrHandles and
DrgFreeDragtransfer).

Pickup and Drop

OS/2 Warp introduced a new twist on the direct manipulation concept. Because drag and
drop is a modal operation - meaning that nothing else can occur while a direct manipulation

is in progress - it can be limiting at times. What happens if you start to drag an object and
then realize that the target window isn't open yet ? You have to press Escape, find the
target window and open it, then repeat the operation.
Pickup and drop alleviates the headaches cause in these situations by allowing the user to
continue using the mouse in the normal fashion while the operation is in progress. Because
of this characteristics, pickup and drop is often referred to as lazy drag and drop.
Obviously, there are some profound differences from the user's perspective between the
modal and modeless versions of direct manipulation. And this means that there are
differences in the coding of the two types; fortunately, IBM decided in its wisdom to
minimize the impact of choosing one or the other (or both) in your application by changing
as little as possible in the manner in which the modeless version is coded. The interface
differences are listed here:

• The operation is initiated by holding down the Alt key in addition to using direct
manipulation mouse button.

• Instead of receiving a WM_BEGINDRAG message, the potential source window receives a
WM_PICKUP message.

• Whereas in modal operation all objects to be dragged must be selected before beginning
the operation, in pickup and drop, objects can be added to the pickup set dynamically. In
OS/2 Warp, however, all objects must originate from the same source window.

• Because the mouse is still usable after the pickup is initiated, the operation can not be
ended by releasing the mouse button like the modal operation is ended in this fashion.
The only way to end a direct manipulation operation is to call DrgCancelLazyDrag
function. And since the user must communicate to the program that the operation is to be
canceled, the most common method of indicating this is through a menu item.

• Another change that is related to using the mouse is the use of the DRAGIMAGE
structures. Since the operation is modeless, the pointer displayed is still subject to the
WinSetPointer function (via the WM_MOUSEMOVE and WM_CONTROLPOINTER
messages). Thus, instead of displaying the DRAGIMAGEs provided by the application
initiating the operation, the mouse pointer is only slightly augmented to indicate that the
operation is in progress. The DRAGIMAGEs structures are still passed to the DrgLazyDrag
function for "compatibility" with the parameter list given to DrgDrag but the are not used.

• Because the user could request help for any subject during a lazy drag, the DM_DROPHELP
message will not be sent during a lazy drag. Help can only be provided via a menu item, for
example, and it is the programmer's responsibility to code this support explicitly.

• Because the operation can potentially take a long time to complete, DrgLazyDrag returns
immediately and the source window is sent a DM_DROPNOTIFY message whenever the
user "drops" the objects on a target window via some interface (e.g. menu item). This is
probably the most significant change of which the programmer needs to be aware.

Functions Used for Lazy Drag

In order to make the programmer's job easier, IBM provided many new functions
specifically for use with lazy drag.

 PDRAGINFO APIENTRY DrgReallocDraginfo (PDRAGINFO pdinfoOld, ULONG
cditem);

This function reallocates memory to hold a new number of DRAGITEM structures when
additional items are to be added to the pickup item set. pdinfoOld points to the old
DRAGINFO structure. cditem specifies the new number of DRAGITEM structures to be
contained by the new DRAGINFO structure. This function returns a pointer to the new
DRAGINFO structure and frees the memory pointed to by the old structure. Once this
function is called, DrgLazyDrag must be called again to reinitiate the lazy drag operation.

 PDRAGINFO APIENTRY DrgQueryDraginfoPtr(PDRAGINFO pRsvd);

pRsvd is reserved and must be NULL. This function returns a pointer to the DRAGINFO
structure currently in use by a direct manipulation operation. DrgQueryDragStatus must
be called to determine what type of operation is in progress, however. If NULL is returned,
no operation is in progress.

 PDRAGINFO APIENTRY DrgQueryDraginfoPtrFromDragitem(PDRAGITEM pditem
);
pditem points to a DRAGITEM structure returned from DrgQueryDragitemPtr. This function
returns a pointer to the DRAGINFO structure with which the DRAGITEM is associated.

 PDRAGINFO APIENTRY DrgQueryDraginfoPtrFromHwnd(HWND hwndSource);
hwndSource is the handle to the source window in a direct manipulation operation. This function
returns a pointer to the DRAGINFO structure allocated by the source window.

 ULONG APIENTRY DrgQueryDragStatus(VOID);
This function returns a DGS_ constant specifying what type of drag operation is in progress. Table
20.6 lists the available constants.

Table 20.6 Values of DGS_* Constants

Constant Description

0 No direct manipulation operation in progress

DGS_DRAGINFOPROGRESS Modal operation is in progress

DGS_LAZYDRAGINPROGRESS Modeless operation is in progress

Note that this function could conceivably be handy for determining whether the "standard"
function or the version which replaces it when direct manipulation is in progress should be called,
for example, WinGetPS or DrgGetPS.
 BOOL APIENTRY DrgLazyDrag(HWND hwndSource,
 PDRAGINFO pdinfo,
 PDRAGIMAGE pdimg,
 ULONG cdimg,
 PVOID pRsvd);

This function initiates a lazy drag operation. hwndSource specifies the source window handle.
pdinfo points to the DRAGINFO structure. pdimg points to one or more DRAGIMAGE structures.
cdimg specifies the number of DRAGIMAGE structures pointed by pdimg. pRsvd is reserved and
must be NULL.

 BOOL APIENTRY DrgLazyDrop(HWND hwndTarget,
 ULONG ulOperation,
 PPOINTL pptlDrop);

This function is called by a target to complete the lazy drag operation. hwndTarget is the
target window handle. ulOperation specifies the operation to be performed and is a D)_
constant. pptlDrop points to a POINTL structure containing the mouse position in desktop-
related coordinates. This function returns TRUE if the operation was successfully initiated
or FALSE otherwise.

 BOOL APIENTRY DrgCancelLazyDrag(VOID);
This function is used to cancel a lazy drag operation. It returns TRUE if successful, or FALSE
otherwise.

Gotcha!

With the DrgQueryDraginfoPtr, DrgQueryinfoPtrFromHwnd and
DrgQueryDraginfoPtrFromDragitem functions, the application must
still call DrgAccessDragInfo to get access to the structure returned.

Gotcha!

Be sure that if you initiate a lazy drag operation it is either completed or
canceled before your application terminates. The authors noticed that
when the sample application (see below) was terminated without doing
this that the direct manipulation subsystem seemed to get confused and no
longer worked correctly.

Gotcha!

The Workplace Shell seems to be able to correctly determine if a lazy
drag operation is in progress because it offers a "Cancel drag" menu item
on context-sensitive menus. However, selecting the menu item has no
apparent effect. We cannot determine why this happens. (?)

Lazy Drag Sample

Below is a sample application which demonstrates the use of lazy drag and drop.

DRAG3.C
DRAG3.RC
DRAG3.H
DRAG3.MAK
DRAG3.DEF

This sample was based on DRAG1, allowing the target to render the data so that the sample
is not burdened with details not necessary to the discussion.
The first difference that you will note are the use of WM_PICKUP instead of
WM_BEGINDRAG to begin the operation and the processing of the DM_DROPNOTIFY
as the signal of the completion of the operation.

 case WM_PICKUP :
 case DM_DROPNOTIFY :
 case DM_ENDCONVERSATION :
 return doSource(hwndClient,
 ulMsg,
 mpParm1,
 mpParm2);

Also, since the user must specify to the application that the operation is to be completed or
canceled, the WM_CONTEXTMENU, WM_MENUEND, and WM_COMMAND
messages are processed to handle the user interface.

 case DM_DRAGOVER :
 case DM_DRAGLEAVE :
 case DM_DROP :
 case DM_DROPHELP :
 case MYM_DEWDROP :
 case WM_CONTEXTMENU :
 case WM_MENUEND :
 case WM_COMMAND :
 return doTarget(hwndClient,
 ulMsg,
 mpParm1,
 mpParm2);

The real work is done in doSource and doTarget, as was the case in the earlier samples.

 case WM_PICKUP :
 {
 RECTL rclWindow;
 FILE *pfFile;
 DRAGITEM diItem;
 DRAGIMAGE diImage;
 BOOL bSuccess;

 if (DrgQueryDragStatus() == DGS_LAZYDRAGINPROGRESS)
 {
 return MRFROMSHORT(FALSE);
 } /* endif */

Note how we check for a lazy-drag-in-progress and return immediately if this is true. This
was done to keep the sample simple. The processing of WM_PICKUP then continues as it
did for WM_BEGINDRAG exept we call DrgLazyDrag instead of DrgDrag.

 bSuccess = DrgLazyDrag(hwndClient,
 pciInfo->pdiDrag,
 &diImage,
 1L,
 NULL);

From the target's perspective, we need to provide an interface to the user allow them to
complete or cancel the operation. This is done via the WM_CONTEXTMENU,
WM_MENUEND, and WM_COMMAND messages.

 case WM_CONTEXTMENU :
 { POINTL ptlPoint;
 RECTL rclWindow;
 HWND hwndMenu;

 if (DrgQueryDragStatus() == DGS_LAZYDRAGINPROGRESS)
 { WinQueryPointerPos(HWND_DESKTOP,
 &ptlPoint);

 WinQueryWindowRect(hwndClient,
 &rclWindow);

 if (ptlPoint.x < rclWindow.xRight/2)
 { return MRFROMSHORT(FALSE);
 } /* endif */

 hwndMenu = WinLoadMenu(HWND_OBJECT,
 NULLHANDLE,
 M_LAZYDRAG);

 WinPopupMenu(HWND_DESKTOP,
 hwndClient,
 hwndMenu,
 ptlPoint.x,
 ptlPoint.y,
 0,
 PU_MOUSEBUTTON1|PU_KEYBOARD);
 } /* endif */
 }
 break;
 case WM_MENUEND :
 if (SHORT1FROMMP(mpParm1) == FID_MENU)
 { WinDestroyWindow(HWNDFROMMP(mpParm2));
 } /* endif */
 break;
 case WM_COMMAND :
 switch (SHORT1FROMMP(mpParm1))
 { case MI_DROP :
 { POINTL ptlPoint;
 WinQueryPointerPos(HWND_DESKTOP,
 &ptlPoint);

 DrgLazyDrop(hwndClient,
 DO_DEFAULT,
 &ptlPoint);
 }
 break;
 case MI_CANCELDRAG :
 DrgCancelLazyDrag();
 break;
 default :
 return WinDefWindowProc(hwndClient,
 ulMsg,
 mpParm1,
 mpParm2);
 } /* endswitch */
 break;

 default :
 break;

 } /* endswitch */

It should be pretty obvious that we are simply providing a popup menu for the user to select
one of two choices - drop or cancel - and handling each choice appropriately.
Everything else about this sample is as it was in DRAG1, which demonstrates the ease with
which a programmer can switch between using one mode or the other.

Before we close this topic, a question must be asked: how does the target specify whether
or not a set of objects that were picked up can be dropped on it or not ? In modal drag and
drop, you receive the DM_DRAGOVER and DM_DRAGLEAVE to allow for user
feedback, but these messages are not sent automatically by the system when a lazy drag
operation is in progress. IBM's documentation states that these messages are sent when the
user presses a key indicating that intention to drop the object, but nowhere do they state
what this mythical key is. It is the opinion of the authors that this "key" is a concept and not
an actual key on the keyboard, and we chose to implement the "key" concept as a popup
menu. It is then, therefore, that the target determines the validity of the operation and acts
appropriately.

Chapter 21

Value Set

A value set is a control that provides a way
for a user to select from several graphically
illustrated choices. Only one choice can be
selected at a time. A value set can use icons,
bitmaps, colors, text, or numbers. However,
it is optimal to use only graphical images
and/or short text; other controls should be
used if a choice of only text or numbers is
offered. The value set is designed to show
setting choices, not action choices; if an
action choice needs to be designated, a push
button or menu should be used. A value set
must contain at least two items. A value set
choice that is unavailable should be
disabled; if a value set has text choices, a
letter for each choice should be designated
as a mnemonic. A value set can be used as a
tool palette also; however, the pointer
should be changed to represent the current
"tool" selected. For instance, if a "paint"
tools is selected, the cursor could be
changed to represent a paintbrush.

Figure 21.1 Example of the value set control.

Value Set Styles

Table 21.1 lists the available value set styles

Table 21.1 Value Set Styles

Style Description

VS_BITMAP Default all value set items to bitmaps.

VS_ICON Default all value set items to icons.

VS_TEXT Default all value set items to text strings.

VS_RGB Default all value set items to color info in RGB values

VS_COLORINDEX Default all value set items to color info in color indices

VS_BORDER Add a border around the value set control.

VS_ITEMBORDER Add a border around each value set item

VS_SCALEBITMAPS Scale bitmaps to fit in cell size.

VS_RIGHTTOLEFT Support right to left ordering.

VS_OWNERDRAW Owner draws value set control.

The following example program shows the creation of a value set control with the style
VS_COLORINDEX.

VALUE.C
VALUE.RC
VALUE.H
VALUE.MAK
VALUE.DEF

The VALUE.RC Resource File

The VALUE.RC file contains two items: a menu and a dialog with the value set control.
The dialog is created with the following code.

DLGTEMPLATE IDD_VALUE LOADONCALL MOVEABLE DISCARDABLE
{
 DIALOG "Color Set", IDD_VALUE, 12, 12, 155, 105, WS_VISIBLE,
 FCF_SYSMENU | FCF_TITLEBAR
 {
 LTEXT "Select color: ", -1, 11, 25, 102, 8
 VALUESET IDV_VALUE, 13, 38, 91, 61, VS_COLORINDEX |
VS_BORDER
 CTLDATA 8, 0, 3, 4
 PUSHBUTTON "Cancel", DID_CANCEL, 6, 2, 40, 14
 }
}

The sixth parameter in the VALUESET statement is the combination of window and
control styles. In this case, we specify VS_COLORINDEX, indicating that the choices of
the value set are the indices into the color index table. We also use VS_BORDER, which
draws a border around the value set. The last parameter is the CTLDATA statement. In this
case, this represents the VSCDATA structure. The VSCDATA structure is defined as:

 typedef struct _VSCDATA /* vscd */
 {
 ULONG cbSize; /* Size of control block

*/
 USHORT usRowCount; /* Number of rows in value set
*/
 USHORT usColumnCount; /* Number of columns in value set
*/
 } VSCDATA;
 typedef VSCDATA *PVSCDATA;

The CTLDATA key word sees each parameter as a SHORT, so a LONG is represented as
two parameters. The first two parameters correspond to the cbSize structure member. They
are specified in low-byte, high-byte order. The third parameter represents usRowCount.
Our value set will contain three rows. The fourth parameter represents usColumnCount.
Our value set will contain four columns.
A structure defined at the top of the program is used for the window word. It is:

 typedef struct
 {
 SHORT sColor;
 HWND hwndDlg;
 } WNDDATA,*PWNDDATA;

In the structure, the first element SHORT sColor represents the currently selected color in
the value set. The hwndDlg is the window handle for the dialog box.
Also, the array alColor is declared. This is the array of color index values that are used in
the value set.

Initializing the Value Set

 case WM_INITDLG :
 { SHORT sColor;
 USHORT usX;
 USHORT usY;
 MRESULT mrReply;

 sColor = 0;

 /***/
 /* loop through the rows and columns to initialize */
 /* items */
 /***/
 for (usX = 1; usX <= 3; usX++)
 {
 for (usY = 1; usY <= 4; usY++)
 {
 mrReply = WinSendDlgItemMsg(hwndDlg,
 IDV_VALUE,
 VM_SETITEM,
 MPFROM2SHORT(usX,
 usY),
 MPFROMLONG(alColors
 [sColor++]));
 if (!LONGFROMMR(mrReply))
 DisplayError("WinSendDlgItemMsg failed");

 } /* endfor */
 } /* endfor */
 } /* end WM_INITDLG */
 break;
The value set initialization is a very simple process of sending a VM_SETITEM for each item in the
value set. Because this value set is of style VS_COLORINDEX, mpParm2 will contain a color index
constant. We will use the CLR_* values in the alColor array. mpParm1 is a collection of two
SHORTS that make up the row and column of the item. Notice that there is no row or column 0;
these values start at 1. All value set messages pertaining to a specific value set item are done by
using the row and column of the item of interest.

By default, the first item in the value set is selected.

Value Set Select Notification

 /* get row and column of selected item */
 usRow = SHORT1FROMMP(mpParm2);
 usCol = SHORT2FROMMP(mpParm2);

 /* calculate index into color array */
 sColorIndex = ((usRow-1)*4)+(usCol-1);

 /* get the client window handle to post message */
 hwndFrame = WinWindowFromID(HWND_DESKTOP,
 ID_FRAME);
 hwndClient = WinWindowFromID(hwndFrame,
 FID_CLIENT);
 bSuccess = WinPostMsg(hwndClient,
 USRM_UPDATE,
 MPFROMSHORT(sColorIndex),
 MPVOID);

The WM_CONTROL message is where the value set will indicate when a new color has been
selected. We check for the notification code VN_SELECT from WM_CONTROL message. The row
number (starting with 1) is sent as the low order byte of mpParam2. The column number is sent as
a high order byte of mpParm2. By doing some quick math, the index into the alColor array is
determined. The next task is to notify the client window that a new selection has been made. This
is done by posting the user-defined message, UM_UPDATE, to the client, with the color index sent
in mpParm1.

VALUE Paint Processing

 case WM_PAINT :
 { HPS hpsPaint;
 RECTL rclPaint;
 SHORT sColor;
 BOOL bPaint = FALSE; /* variable to indicate
whether to paint or not */

 pwdData = WinQueryWindowPtr(hwndClient,

 QWL_USER);

 /* paint the entire client with the dropped color */
 hpsPaint = WinBeginPaint(hwndClient,
 NULLHANDLE,
 &rclPaint);
 GpiErase(hpsPaint);

 /* do some error checking */
 if (pwdData)
 { if (pwdData->sColor >= 0)
 {
 bPaint = TRUE;
 sColor = pwdData->sColor;
 }
 }

 if (bPaint)
 WinFillRect(hpsPaint,
 &rclPaint,
 alColors[sColor]);
 WinEndPaint(hpsPaint);
 }
 break;

The WM_PAINT message starts with WinQueryWindowPtr to retrieve the window word of the
client window. Next the usual WinBeginPaint is called. GpiErase is used to erase the entire
invalidated region. If the sColor variable in the pwdData structure is greater than 0, a color has
been selected by the user. Remember, the variable was initially set to -1. A Boolean variable
bPaint is used to indicate all is okay, so go ahead and paint. WinFillRect fills the invalidated region
with the specified color, and WinEndPaint is called to release the presentation space.

The User-defined Message UM_UPDATE

 case USRM_UPDATE :
 /**/
 /* user message indicates end-user selected new color */
 /* in value set, window needs to repaint itself with */
 /* new color */
 /**/

 pwdData = WinQueryWindowPtr(hwndClient,
 QWL_USER);
 if (!pwdData)
 {
 DisplayError("WinQueryWindowPtr failed");
 break;
 }
 pwdData->sColor = SHORT1FROMMP(mpParm1);
 WinInvalidateRect(hwndClient,
 NULL,
 FALSE);
 WinUpdateWindow(hwndClient);
 break;

The message UM_UPDATE is a user-defined message that is sent from the value set when a new
value set item has been selected. This is the signal to the client to repaint itself. The index of the
selected item is sent in mpParam1. This value is retrieved and stored in the pwdData structure so
it is visible to the WM_PAINT processing. WinInvalidateRect is used to invalidate the entire client
window, and WinUpdateWindow message is used to force the update of the client window - in
other words, generate a WM_PAINT message and process it, now!

BOOL APIENTRY WinUpdateWindow(HWND hwnd);
WinUpdateWindow has only one parameter - hwnd, which is the window handle of the window
to update.

This potent approach is not always necessary, but the example program depends on a quick user
notification of the new value set selection.

Chapter 22

Notebook

The notebook control is designed to provide the user with a visual organize of information,
similar to a real notebook with dividers. Information can be broken up into categories, with
the major tabs representing category headings. Information can be then further broken up
using minor tabs as teh subcategory headings. The notebook consists of six major perts, as
illustratedin Figure 22.1: the binding, status line, intersection of pages, forward/backward
page buttons, major tabs, and minor tabs.

A notebook should be used to offer the user a choice of settings or to present data that can
be organized logically into categories or groupes. Information that can be grouped together
should be put into a single tabbed section. Major tabs can be placed at any of the four
notebook sides; howeever, minor tabs always are placed perpendicular to the major tabs.
Page buttons are provided to allow the user to page forward and backward between the
notebook pages. Page buttons always are located in the corner that is flanked by the back
pages. The bindings can either be spiral-bound or solid-bound, depending on the specified
style. A line of status text can be associated with each notebook page. If more than one
page exists in a category, the staus line should be used to indicate this to the user; for
example, "Page 1 of 20". The status line can be left-justied, right-justified, or centered
along the bottom of the notebook. The last part of the notebook is the insertion of the back
pages, used to design a landscape- or portrait-mode notebook. This feature gives the
appearance of a three-dimensional notebook. This intersection can be located at any of the
four corners. Figures 22.2 through 22.9 show the eight possible combinations of styles.

[...]

Table 22.1 Notebook Window Styles

Style Description

Backpage Orientation

BKS_BACKPAGESBR Intersection of pages is located at the Bottom Right corner

BKS_BACKPAGESBL Intersection of pages is located at the Bottom Left corner

BKS_BACKPAGESTR Intersection of pages is located at the Top Right corner

BKS_BACKPAGESTL Intersection of pages is located at the Top Left corner

Major Tab Side

BKS_MAJORTABRIGHT Major tabs are located on the Right side

BKS_MAJORTABLEFT Major tabs are located on the Left side

BKS_MAJORTABTOP Major tabs are located on the Top side

BKS_MAJORTABBOTTOM Major tabs are located on the Bottom side

 Tab Type

BKS_SQUARETABS Notebook has Square edged tabs

BKS_ROUNDEDTABS Notebook has Round edged tabs

BKS_POLYGONTABS Notebook has Polygon edged tabs

Binding type

BKS_SOLIDBIND Notebook has a Solid binding

BKS_SPIRALBIND Notebook has a Spiral binding

Status line text justification

BKS_STATUSTEXTLEFT Notebook has the status text Left justify

BKS_STATUSTEXTRIGHT Notebook has the status text Right justify

BKS_STATUSTEXTCENTER Notebook has the status text Centered

Tab text justification

BKS_TABTEXTLEFT Notebook has the tab text Left-justified

BKS_TABTEXTRIGHT Notebook has the tab text Right-justified

BKS_TABTEXTCENTER Notebook has the tab text centered

Tabbed dialog styles

BKS_TABBEDDIALOG Tabbed dialog

BKS_BUTTONAREA Reserve space for

The major and minor tabs can be customized somewhat. Thay can be square or polygonal
or have rounded corners. A tab can contain eithertext or bitmaps. The text can be left-
justified, right-justified, or centered. If a bitmap is specified for the tab, the bitmap is sized
automatically to fill the tab. The dimensions for the tab need to be set using the message
BKM_SETDIMENTIONS. There is no automatic sizing of the tab for text.

Notebook Pages

A notebook page is designed to be associated with a dialog box or window. When a new
page is selected in a notebook, the notebook invalidates the new page, causing a
WM_PAINT to be sent to the procedure associated with newly selected page. When a
notebook is created, the initialization should handle the insertion of any needed pages. If a
page has a major or minor tab associated with it, this is specified in the
BKM_INSERTPAGE. The following code segment shows how to insert a page.

 ULONG ulPageID;
 MRESULT mrReply;

 mrReply = WinSendMsg(hwndNotebook,
 BKM_INSERTPAGE,
 (MPARAM)0,
 MPFROM2SHORT(BKA_MAJOR|BKA_STATUSTEXTON,
 BKA_FIRST)));
 ulPageID = LONGFROMMR(mrReply);

If no major or minor tabs are specified, the new page becomes part of the current section.
Each page has a ulPageId that is returned from the BKM_INSERTPAGE message. This
ID is used extensively in the notebook messaging system.
 The following example program illustates the creation of a notebook.

NOTEBOOK.C
NOTEBOOK.RC
NOTEBOOK.H
NOTEBOOK.MAK
NOTEBOOK.DEF

Flipping Pages

In the WM_CONTROL message processing, the BKN_PAGESELECTED notification
code is sent each time a ne page is selected in the notebook. We'll use this message as a
signal to set the focus to the specified dialog control for the selected page. The

BKN_PAGESELECTED notification code returns a pointer to the PAGESELECTNOTIFY
structure. The structure looks like this:

 typedef struct _PAGESELECTNOTIFY /* pgsntfy */
 {
 HWND hwndBook; /* Notebook window
handle */
 ULONG ulPageIdCur; /* Previous top page
id */
 ULONG ulPageIdNew; /* New top Page
id */
 } PAGESELECTNOTIFY;
 typedef PAGESELECTNOTIFY *PPAGESELECTNOTIFY;

The item we are interested in is the new top page ID, ulPageIdNew. This value is used to
query the window handle of the new page.

 ppsnSelect = PVOIDFROMMP(mpParm2);

 mrReply = WinSendMsg(ppsnSelect->hwndBook,
 BKM_QUERYPAGEWINDOWHWND,
 MPFROMLONG(ppsnSelect->ulPageIdNew),
 0);
 hwndPage = (HWND)PVOIDFROMMR(mrReply);

Once we have the window handel, we uery for the ID of the new top page. If the ID
belongs to the dialog, IDD_PERSONAL, we set the focus to the first entry field,
IDE_NAME. Otherwise, we know the dialog is the TEAMOS2 dialog, and we set the focus
to the first entry field in that dialog, IDE_TEAMOS2.

 usDlgId = WinQueryWindowUShort(hwndPage, QWS_ID);
 if (usDlgId == IDD_PERSONAL)
 {
 WinSetFocus(HWND_DESKTOP,
 WinWindowFromID(hwndPage, IDE_NAME));
 } else {
 WinSetFocus(HWND_DESKTOP,
 WinWindowFromID(hwndPage, IDE_TEAMOS2));
 } /* endif */

Creating a Notebook

The notebook is created using WinCreateWindow after the client area has been created.

 hwndNotebook = WinCreateWindow(hwndWnd,
 WC_NOTEBOOK,
 "",
 BKS_SPIRALBIND | BKS_SQUARETABS |
BKS_STATUSTEXTCENTER,
 0,
 0,
 rclClient.xRight,
 rclClient.yTop,

 hwndWnd,
 HWND_TOP,
 ID_NOTEBOOK,
 NULL,
 NULL);

Chapter 23

Containers

It was a happy occasion when Tupperware containers were containers were invented. Not Only
could leftover meatloaf be stored in them, but so could crayons, plants, or almost anything else
you desired. The container didn't know about the specifics of the item you stored, nor did it care;
it simply stored the items.

OS/2 also has a container that has a similar purpose: to store items. It doesn't care if the items are
employee names or sales statistics or the batting averages of the 1929 Yankees. The items to be
stored are defined by application. Additionally, the container control supports multiple views of
the objects, in concordance with the CUA 1991 specification. Multiple-object selection methods
are supported as well as direct editing of text and drag and drop. In short, the container can do
anything save wash your windows or butter your bread.

This extreme amount of functionality and flexibility is not without its price, unfortunately. The
container is a very complex control that demands a fair of initialization, and almost every message
sent to and from the container a structure or two. This chapter discusses container basics and
develops a couple of applications to demonstrate the concepts discussed; the more advanced
topics will be left to the reader.

Container Views

When a user opens a container, the contents of that container are displayed in a window. A
container window can present various views of its contents, and each view can provide different
information about its container items. The following table describes the views the container
control provides:

Table 23.0 Container's View

 View
Type

 Contents
Displayed

 Sample

Icon
view

Displays either
icons or bit maps,
with text beneath
the icons or bit
maps, to
represent
container items.
These are called
icon/text or bit-
map/text pairs.
Each icon/text or
bit-map/text pair
represents one
container item.
This is the default
view

Name
view

Displays either
icons or bit maps,
with text to the
right of the icons
or bit maps, to
represent
container items.
These are called
icon/text or bit-
map/text pairs.
Each icon/text or
bit-map/text pair
represents one
container item.

Text
view

Displays a simple
text list to
represent
container items.

Tree
view

Displays a
hierarchical view
of the container
items. Three
types of Tree
views are
available: Tree
text, Tree icon,
and Tree name.

Details
view

Displays detailed
information about
each container
item. The same
type of data is
displayed for each
container item,
arranged in
columns. The data
in each column
can consist of an
icon or bit map,
text, numbers,
dates, or time

Container Styles

Table 23.1 describes the container styles and their meanings.

Table 23.1 Container Styles

Style Description

CCS_EXTENDSEL
Specifies that the extended selection model is to be used according to
the CUA'91 guidelines.

CCS_MULTIPLESEL Specifies that one or more items can be selected at any time.

CCS_SINGLESEL
Specifies that only a single item may be selected at any time. This is the
default.

CCS_AUTOPOSITION
Specifies that the container should position items automatically when
one of a specific set of events occurs. This is valid for icon view only.

CCS_VERIFYPOINTERS

Specifies that the container should verify that all pointers used belong to
the object list. It does not validate the accessibility pf the pointers. This
should be used only during debugging, since it affects the performance
of the container.

CCS_READONLY Specifies that no text should be editable

CCS_MINIRECORDCORE Specifies that the object records are of the type MINIRECORDCORE
(instead of RECORDCORE)

CCS_MINIICONS Style to have container support mini icons with the minirecord

CCS_NOCONTROLPTR don't send WM_CONTROLPOINTER on WM_MOUSEMOVE

LPs or 45s ?

The basic data unit of a container is a structure that describes the state of an individual item
withing the container. Depending on whether the CCS_MINIRECORDCORE style bit is specified, this
is either a RECORDCORE or MINIRECORDCORE structure. There are advantages to using either; the
former requires more setup but is more flexible, while the later requires less setup but is more
limiting. (Here we use RECORDCORE structure in our discussions but we use the MINIRECORDCORE
in the samples.) Additional bytes at the end of the record can be specified when the record is

allocated. Thus, typically a structure would be defined by the programmer, whose first field is the
RECORDCORE structure; the structure would be typecast to the appropriate structure type for
messages sent to or fro the container.

typedef struct _ITEMINFO
{ MINIRECORDCORE mrcRecord;
 CHAR achItem[256];
 ULONG lUnitsSold;
 float fRevenue;
} ITEMNFO,*PITEMINFO;

Programmers always should be sure to specify the style bit that corresponds to the type of object
record they decide to use.

Records are allocated using the CM_ALLOCRECORD message with the extra bytes needed beyond
the RECORDCORE structure specified in the first parameter and the number of records to allocate
specified in the second parameter. Obviously, for performance reasons, allocating one record at a
time should be avoided. Instead, if possible, the number of records needed should be determined
and allocated in one call. If more than one record is allocated, the head of a linked list of records is
returned, with the link specified in the preccNextRecord field. Note that allocating memory for the
records is not equivalent to inserting the records into container. This is done using the
CM_INSERTRECORD message and, as before, should be done with as many records as possible to
increase performance.

 The CM_INSERTRECORD message requires the first parameter to contain the head of the linked
list of the (one or more) records to insert. The second parameter points to a RECORDINSERT
structure

 typedef struct _RECORDINSERT
 {
 ULONG cb;
 PRECORDCORE pRecordOrder;
 PRECORDCORE pRecordParent;
 ULONG fInvalidateRecord;
 ULONG zOrder;
 ULONG cRecordsInsert;
 } RECORDINSERT;
 typedef RECORDINSERT *PRECORDINSERT;

cb is the size of the structure in bytes. pRecordOrder specifies the record after which the record(s)
are to be inserted. CMA_FIRST or CMA_END also can be specified to indicate that the record(s)
should go at the front or end of the record list. pRecordParent specifies the parent record and can
be NULL to indicate a top-level record. This field is valid only for tree view. fInvalidateRecord is
TRUE if the records are to be invalidated (and thus redrawn) after being inserted. zOrder specifies
the Z-order of the record and can be either CMA_TOP or CNA_BOTTOM to specify the top and
bottom of the Z-order. cRecordsInsert specifies the number of records that are being inserted

Half Full or Half Empty ?

We stated before that the container supports multiple views of its objects. This is a perfect time to
elaborate because it introduces us to the CNRINFO structure, which is used to control a variety of
container characteristics.

 /**
******/
 /* CNRINFO data structure, describes the container
control. */
 /**
******/
 typedef struct _CNRINFO /* ccinfo */
 { ULONG cb; /* size of CNRINFO
struct */
 PVOID pSortRecord; /* ptr to sort
function, */

/* RECORDCORE */
 PFIELDINFO pFieldInfoLast; /* pointer to last column in
left pane of a split window. */
 PFIELDINFO pFieldInfoObject; /* Pointer to a column to
represent an object. This is */
 /* the column which will
receive IN-USE emphasis. */
 PSZ pszCnrTitle; /* text for container title.
One string separated by line */
 /* separators for multi-
lines */
 ULONG flWindowAttr; /* container attrs - CV_*,
CA_* */
 POINTL ptlOrigin; /* lower-left origin in
virtual coordinates. CV_ICON view */
 ULONG cDelta; /* Application defined
threshold or number of records from */
 /* either end of the
list. */
 ULONG cRecords; /* number of records in
container*/
 SIZEL slBitmapOrIcon; /* size of bitmap in
pels */
 SIZEL slTreeBitmapOrIcon; /* size of tree bitmaps in
pels */
 HBITMAP hbmExpanded; /* bitmap for tree
node */
 HBITMAP hbmCollapsed; /* bitmap for tree
node */
 HPOINTER hptrExpanded; /* icon for tree
node */
 HPOINTER hptrCollapsed; /* icon for tree
node */
 LONG cyLineSpacing; /* space between two
rows */
 LONG cxTreeIndent; /* indent for
children */
 LONG cxTreeLine; /* thickness of the Tree
Line */
 ULONG cFields; /* number of fields in

container*/
 LONG xVertSplitbar; /* position relative to the
container (CV_DETAIL); */
 /* if 0xFFFF then
unsplit */
 } CNRINFO;
 typedef CNRINFO *PCNRINFO;

CNRINFO structure contains a large number of fields. Note that not every one of them needs to be
initialized. Instead, only the needed fields are initialized; fields which were initialized are cited as a
combination of flags specified in the second parameter of the CM_SETCNRINFO message. To
change the view to icon view, for example:

 CNRINFO ciInfo;
 ciInfo.cb = sizeof(CNRINFO);
 ciInfo.flWindowAttr = CV_ICON;
 WinSendMsg(pcdData->hwndCnr,
 CM_SETCNRINFO,
 MPFROMP(&ciInfo),
 MPFROMLONG(CMA_FLWINDOWATTR));
Since we're talking about views of an object, let's look at the various combinations of view flags to
specify the different view types. Table 23.2 provides a list of view flags.

Table 23.2 Container's View flags

Constant Description

CV_TEXT
Specifies that the text alone should be displayed. This can be combined with
CV_FLOW flag.

CV_NAME
Specifies that the icon should be displayed with the text to the right. This can
be combined with CV_FLOW flag.

CV_ICON Specifies that the icon or bitmap should be displayed with the text below it.

CV_DETAIL The details view shows data in a columnar format. This is discussed in
more detail in Details View.

CV_FLOW
Specifies that, ones a column is filled, the list should continue in an adjacent
column.

CV_MINI use mini icon

CV_TREE
Used for records that have children. Three view types can be used with the
tree view (See Tree View) The three view shows a hierarchical view of the data

CV_GRID gridded icon view

CV_EXACTLENGTH Exact match for SearchString

The following sections look at each view type in detail.

Icon, Name, and Text Views

The icon view is perhaps the most widely known because it is the default view for the folders on
the desktop. It consists of an icon or bitmap representing the object, with text directly beneath it.
The text can be "directly edited" - the user can, using the mouse and/or keyboard directly edit the
text. (The application controls whether the container retains the changes.)
 If the container was created with the CCS_AOUTOPOSITION style, the objects are arranged
automatically whenever any of the following events occur:

• The window size changes
• Container items are inserted, removed, sorted, invalidated, or filtered.
• The font or font size changes
• The window title text changes

This arranging occurs as if the container were sent a CM_ARRANGE message.
 The name view consist of the icon or bitmap representing the object with the text immediately
to the right. As with the icon view, the text can be edited directly. If CV_FLOW is not specified,
objects are arranged vertically in a single column. If CV_FLOW is specified, a new column is created
to the right if the objects extend beyond the bottom of the container.
 The text view consists of the text only, and the objects are arranged in the same manner as the
name view, with the same semantics regarding the specification of the CV_FLOW flag.
 The following application illustrates these three views of a container's contents.

CONTAIN1
.C
CONTAIN1
.RC
CONTAIN1
.H
CONTAIN1
.MAK
CONTAIN1
.DEF

Icon View

Name/flowed View

Text/flowed view

The code should be easy to digest. First, the records are allocated using the CM_ALLOCRECORD
structure

 psiYears = (PSALESINFO)PVOIDFROMMR(
 WinSendMsg(pcdData->hwndCnr,

 CM_ALLOCRECORD,
 MPFROMLONG(ulExtra),
 MPFROMSHORT(MAX_YEARS)));
Then the allocated records are initialized by calling the initSales function; after each record is
initialized it is inserted using the riRecord structure that was initialized earlier.

 psiCYear = psiYears;
 for (usIndex = 0; usIndex < MAX_YEARS; usIndex++)
 { initSalesInfo(pcdData, psiCYear, usIndex);

 riRecord.pRecordParent = NULL;
 riRecord.cRecordsInsert = 1;

 WinSendMsg(pcdData->hwndCnr,
 CM_INSERTRECORD,
 MPFROMP(psiCYear),
 MPFROMP(&riRecord));
 psiCYear = (PSALESINFO) psiCYear->mrcStd.preccNextRecord;
 } /* endfor */

It is true that the the source code should "practice what we preach" in terms of inserting more
than one record at a time to increase performance, but simplicity was deemed more important to
allow better understanding of the code.

Finally, the container is switched into icon view by sending ourselves a WM_COMMAND message
to simulate the selection of the corresponding menu item.

 WinSendMsg(hwndClient,
 WM_COMMAND,
 MPFROMSHORT(MI_ICON),
 0);
The WM_COMMAND code to switch between container view is rather simple as well. For space
reasons, here we present only the code or switching to icon view.

 case MI_ICON :
 { CNRINFO ciInfo;
 ciInfo.cb = sizeof(CNRINFO);
 ciInfo.flWindowAttr = CV_ICON;

 WinSendMsg(pcdData->hwndCnr,
 CM_SETCNRINFO,
 MPFROMP(&ciInfo),
 MPFROMLONG(CMA_FLWINDOWATTR));

 WinSendMsg(pcdData->hwndCnr,
 CM_ARRANGE,
 NULL,
 NULL);
 }
 break;

Tree View

The tree view is next in the list in order of complexity. It offers three different variations, which
are described in Table 23.3

Table 23.3 Tree View Variations

View Description

Tree
icon
view

Objects in the tree are represented by icons or bitmaps with the text to the right. If an
item is expandable, a separate bitmap as drawn to the left of the object. This view is
specified by adding CV_ICON and CV_TREE flags to the flWindowAttr field.

Tree
name
view

This is the same as the tree icon view except that an object's expandability is shown on
the icon or bitmap of the object, and not as a separate bitmap; the TREEITEMDESC
structure contains the bitmap or icon handles for both expanded and collapsed views.
The caveat here is that the TREEITEMDESC structure is pointed to by the RECORDCORE
structure but not by the MINIRECORDCORE structure. This view is specified by adding the
CV_NAME and CV_TREE flags to the flWindowAttr field.

Tree
text
view

Objects in the tree are represented by text only. The feedback on the expandability of an
object is represented by a separate bitmap to the left of the text. This view is specified by
adding the CV_TEXT and CV_TREE flags to the flWindowAttr field.

In addition to specifying the view type, the amount of space (in pels) for indentation and the
thickness of the tree lines may be specified when CA_TREELINE is specified. The indentation and
thickness are specified in the cxTreeIndent and cxTreeLine fields of the CNRINFO structure,
respectively. If a value less than 0 is specified for either field, the default for that field is used.

Details View

The details view is by far the most difficult of the five view types to program, but its ability to show
a lot of information at once overshadows this complexity. This view supports the following data
types: bitmap/icon, string, unsigned long integer, date, and time. For latter three, national
language support (NLS) is enabled, meaning that the proper thousands separator character is
used, the time information is ordered correctly, and so on. There is no support for decimal types,
so any decimals will have to be converted to there strings equivalents to display numbers of this
type.
 The major item of interest when using the details view is the FIELDINFO structure, which
describes a single column that is displayed in this view. As with the object records, memory for the
FIELDINFO structures is allocated via message: CM_ALLOCDETAILFIELDINFO. The first parameter
specifies the number of FIELDINFO structures to allocate, and a pointer to the first structure is
returned. As with CM_ALLOCRECORD, this is the head of a linked list of structures if more than one
is allocated and the link to the next record is specified in the pNextFieldInfo field.

 typedef struct _FIELDINFO /* fldinfo */
 { ULONG cb; /* size of FIELDINFO
struct */
 ULONG flData; /* attributes of field's
data */
 ULONG flTitle; /* attributes of field's
title */
 PVOID pTitleData; /* title data (default is string).
If CFT_BITMAP, must be HBITMAP */
 ULONG offStruct; /* offset from RECORDCORE to data
*/
 PVOID pUserData; /* pointer to user
data */
 struct _FIELDINFO *pNextFieldInfo; /* pointer to next linked
FIELDINFO structure */
 ULONG cxWidth; /* width of field in
pels */
 } FIELDINFO;

cb specifies the size of the structure in bytes. flData specifies the type of the data in this field and
any associated attributes of the column via one ore more CFA_ constants listed in table 23.4

Table 24.2 CFA_ Constants

Constant Description

CFA_LEFT Specifies that the data is to be horizontally aligned left.

CFA_RIGHT Specifies that the data is to be horizontally aligned right.

CFA_CENTER Specifies that the data is to be horizontally centered.

CFA_TOP Specifies that the data is to be vertically aligned top.

CFA_VCENTER Specifies that the data is to be vertically centered.

CFA_BOTTOM Specifies that the data is to be vertically aligned bottom.

CFA_INVISIBLE Specifies that the column is not to be shown

CFA_BITMAPORICON
Specifies that offStruct points to a bitmap or icon handle to be displayed
in the column, depending on the current setting of flWindowAttr in the
CNRINFO structure last used to set the container attributes.

CFA_SEPARATOR
Specifies that there should be a vertical separator to the right of the
column.

CFA_HORZSEPARATOR
(flTitle only)Specifies that the column title should have a horizontal
separator dividing it from the data.

CFA_STRING
Specifies that offStruct points to a pointer to a string to be displayed in
the column.

CFA_OWNER Specifies that the column is to be owner-drawn.

CFA_DATE Specifies that offStruct points to a CDATE structure.

CFA_TIME Specifies that offStruct points to a CTIME structure.

CFA_FIREADONLY Specifies that the column data should be read-only

CFA_FITITLEREADONLY (flTitle only)Specifies that the column should be read-only

 CFA_ULONG Specifies that offStruct points to a ULONG

CFA_RANGE ???

CFA_NEWCOMP
(CLASSFIELDINFO in wpobject.h) Tells the system to use strings specified
in pNewComp

CFA_OBJECT

(CLASSFIELDINFO in wpobject.h)
 Tells the system that the applications wants to use its own comparison
function in which the first parameter is a pointer to an object. For
example:

LONG MyComp(WPObject *obj, PSZ str2)

CFA_LIST ???

CFA_CLASS ???

CFA_IGNORE ???

flTitle specifies attributes about the heading for this column and is also a combination of CFA_
constants. pTitleData points to the column title data; this is a bitmap or icon if
CFA_BITMAPORICON is specified in flTitle; otherwise it is a pointer to a string. offStruct specifies
the offset from the beginning of the RECORDCORE structure to where the data resides. pUserData
points to any application-specific data for this column. pNextFieldInfo points to the next
FIELDINFO structure in the linked list. cxWidth specifies the width of the column. If 0, the column
will be autosized to be the width of the widest element.

The fields cb, pNextFieldInfo and cxWidth are initialized by the container in the
CN_ALLOCDETAILINFO processing. The application is responsible for initializing the remaining
fields.

Gotcha!

If flData specifies CFA_STRING, then offStruct specifies the offset of the pointer
to the text and not the text itself

Gotcha!

The column heading data is not copied into the container's workspace. Thus
they must be global, static, or dynamically allocated data.

Gotcha!

A common mistake when specifying CFA_DATE or CFA_TIME for a column is to
improperly convert an FDATE structure to a CDATE structure and FTIME
structure to a CTIME structure.

Splitbars

Details view also provides the option of having a single splitbar between columns. A splitbar is a
vertical bar that can be moved with the mouse. This is useful if the data displayed in a column
extends beyond the space available. If a splitbar is used, horizontal scrollbars are displayed on the
bottom of the container for each subselection bounded by a container edge or a splitbar.

As might be expected, a splitbar is added to the details view using the CM_SETCNRINFO message.
The pFieldInfoLast and xVertSplitbar fields are initialized in CNRINFO structure. The former points
to the FIELDINFO structure to the immediate left of the splitbar; and the latter specifies where the
splitbar is to be positioned initially. After initializing these fields, the CM_SETCNRINFO message is
sent, specifying CMA_PFIELDINFOLAST | CMA_XVERTSPLITBAR as the second parameter.

The following sample application adds tree and details view to the last sample application.
Additionally, it demonstrates the use of a splitbar in the details view.

CONTAIN2.C
CONTAIN2.RC
CONTAIN2.H
CONTAIN2.MAK
CONTAIN2.DEF

Detail View

Tree View

As before, we allocate a number of records using the CM_ALLOCRECORD structure; withing the
loop to initialize each record (which represents a year of sales figures), we allocate 12 records to
represent each month initialize these records, and insert them into the container, specifying the
year record previously inserted as the parent. This establishes a hierarchical structure that we may
observe by placing the container in tree view.

 psiMonths = (PSALESINFO)PVOIDFROMMR(
 WinSendMsg(pcdData->hwndCnr,
 CM_ALLOCRECORD,
 MPFROMLONG(ulExtra),
 MPFROMSHORT(MAX_MONTHS)))
;
 psiCMonth = psiMonths;
 for (usIndex2 = 0; usIndex2 < MAX_MONTHS; usIndex2++)
 { initSalesInfo(pcdData,
 psiCYear,
 psiCMonth,
 usIndex2);
 psiCMonth = (PSALESINFO)
 psiCMonth->mrcStd.preccNextRecord;
 } /* endfor */
 riRecord.pRecordParent = (PRECORDCORE)psiCYear;
 riRecord.cRecordsInsert = MAX_MONTHS;

 WinSendMsg(pcdData->hwndCnr,
 CM_INSERTRECORD,

 MPFROMP(psiMonths),
 MPFROMP(&riRecord));
Finally, we call initColumns to set up the datail view. It allocates a fixed number of FIELDINFO
structures by sending a CM_ALLOCDETAILFIELDINFO message to the container.

 pfiInfo = (PFIELDINFO)PVOIDFROMMR(WinSendMsg(pcdData->hwndCnr,
 CM_ALLOCDETAILFIELDINFO,
 MPFROMLONG(MAX_COLUMNS),
 0));
Each FIELDINFO structure is then initialized, and then all of the FIELDINFO structures are inserted.

 pfiCurrent->flData =
CFA_BITMAPORICON|CFA_HORZSEPARATOR|CFA_CENTER|CFA_SEPARATOR;
 pfiCurrent->flTitle = CFA_STRING|CFA_CENTER;
 pfiCurrent->pTitleData = "Icon";
 pfiCurrent->offStruct = FIELDOFFSET(SALESINFO,
 mrcStd.hptrIcon);
......
 fiiInfo.cb = sizeof(fiiInfo);
 fiiInfo.pFieldInfoOrder = (PFIELDINFO)CMA_FIRST;
 fiiInfo.cFieldInfoInsert = MAX_COLUMNS;
 fiiInfo.fInvalidateFieldInfo = TRUE;

 WinSendMsg(pcdData->hwndCnr,
 CM_INSERTDETAILFIELDINFO,
 MPFROMP(pfiInfo),
 MPFROMP(&fiiInfo));

Finally, the splitbar is initialized by sending the CM_SETCNRINFO message.

 memset(&ciInfo, 0, sizeof(ciInfo));
 ciInfo.cb = sizeof(CNRINFO);
 ciInfo.pFieldInfoLast = pfiLefty;
 ciInfo.xVertSplitbar = CX_SPLITBAR;

 WinSendMsg(pcdData->hwndCnr,
 CM_SETCNRINFO,
 MPFROMP(&ciInfo),
 MPFROMLONG(CMA_PFIELDINFOLAST|CMA_XVERTSPLITBAR));

Of Emphasis and Pop-ups

Object emphasis is a visual cue to the user that something about the object is different from the
norm. Cursored, selected, in-use, source, target and picked emphasis are six defined by the
container. Of these six types, defined in Table 23.5 only first two are set automatically by the
container. The latter two must be explicitly set by the application via the
CM_SETRECORDEMPHASIS message.

Types

Table 23.5
Emphasis

Types

 Emphasis

Constant Description

Cursored CRA_CURSORED
Set whenever the input focus belongs to the object. This is shown
as a dotted-line rectangle around the object.

Selected CRA_SELECTED

Set whenever the object was selected using the mouse button on
the spacebar. The selection style of the container defines how
records previously selected behave when a new record is selected.
This is shown as an inverted background around the object.

In-use CRA_INUSE
Set whenever the object is defined to be in use by the application.
This is shown as a crosshatch pattern in the background of the
object.

Source CRA_SOURCE

Set whenever the the object is a source of some action This record
also could be in the selected state, but doing so is not required.
This is shown as a dashed-line rectangle with rounded corners
around the object.

Target CRA_TARGET

Target emphasis is used during direct manipulation. When a user
drags one container item over another, the item beneath the
dragged item displays target emphasis. Two forms of target
emphasis (visible feedback) are available: a black line and a black
border. These forms of emphasis indicate the target, where the
container item is dropped if the user releases the drag button.

Picked CRA_PICKED record picked (Lazy Drag)

The following sample removes the action bar from the window and instead uses pop-up menus to
provide the actions available to the user.

CONTAIN3.C
CONTAIN3.RC
CONTAIN3.H
CONTAIN3.MAK
CONTAIN3.DEF

The WM_CONTROL notification specifies the record under the mouse when the pop-up menu was
request. If there was no record, NULL is specified instead.

 psiSales = (PSALESINFO)PVOIDFROMMP(mpParm2);
 if (psiSales != NULL)
 {
 if ((psiSales->mrcStd.flRecordAttr
 &CRA_SELECTED) == 0)
 {
 WinSendMsg(pcdData->hwndCnr,
 CM_SETRECORDEMPHASIS,
 MPFROMP(psiSales),
 MPFROM2SHORT(TRUE, CRA_SOURCE));
 psiSales->bEmphasized = TRUE;
 } else {
 emphasizeRecs(pcdData->hwndCnr, TRUE);
 } /* endif */
 } else {
 WinSendMsg(pcdData->hwndCnr,
 CM_SETRECORDEMPHASIS,
 0,
 MPFROM2SHORT(TRUE, CRA_SOURCE));
 pcdData->bCnrSelected = TRUE;
 } /* endif */
The records are selected using CM_SETRECORDEMHASIS message; this message sets the
appropriate bit in the flRecordAttr field and redraw the record. Conceivably this could be done
explicitly, but why go through the extra work ? The method of determining which records are
given source emphasis follows that of Workplace Shell, and can be summarized in the following
manner:

• If there is a record under the mouse and it is selected, give all selected records source
emphasis.

• If there is a record under the mouse and it is not selected, give it source emphasis only.
• If there are no records under the mouse, give the entire container source emphasis.

Gotcha!

The documentation does not state how the container is given source emphasis
this is done by specifying NULL for the record pointer in mpParm1. The
container does not keep track of whether it has source emphasis or not and
blindly draws this emphasis using the XOR method. Thus, if two
CM_SETRECORDEMPHASIS messages are sent, both specifying that source
emphasis is to be removed from the container, no visible difference will be
seen.

After the records have been given source emphasis in the appropriate manner, the pointer
position is determined and the menu is popped up via the WinPopupMenu message.

 WinQueryPointerPos(HWND_DESKTOP, &ptlMouse);
 WinMapWindowPoints(HWND_DESKTOP,
 hwndClient,
 &ptlMouse,
 1);
 WinPopupMenu(hwndClient,
 hwndClient,
 pcdData->hwndMenu,
 ptlMouse.x,
 ptlMouse.y,
 M_VIEWS,
 PU_HCONSTRAIN | PU_VCONSTRAIN |
 PU_KEYBOARD | PU_MOUSEBUTTON1 |
 PU_MOUSEBUTTON2| PU_NONE);

Direct Editing

As stated earlier, the user can edit directly with a mouse click. The application must be aware of
this possibility and be able to process this event properly. When the user selects the proper
combination of mouse clicks or keystrokes, the container sends the application a WM_CONTROL
message with a CN_BEGINEDIT notification code. The data in the second parameter is a pointer to
the CNREDITDATA structure.

 typedef struct _CNREDITDATA /* cnredat */
 { ULONG cb;
 HWND hwndCnr;
 PRECORDCORE pRecord;
 PFIELDINFO pFieldInfo;
 PSZ *ppszText; /* address of PSZ */
 ULONG cbText; /* size of the new text */
 ULONG id;
 } CNREDITDATA;
cb is the size of the structure in bytes. hwndCnr is the handle of the container window. pRecord is
a pointer to the RECORDCORE structure of the object being edited. If the container titles are being
edited, this field is NULL. pFieldInfo is a pointer to the FIELDINFO structure if the current view is
detail view and the column titles are not being edited. Otherwise, this field is NULL. ppszText

points to the pointer to the current text if the notification code is CN_BEGINEDIT or
CN_REALLOCPSZ. For CN_ENDEDIT notification, this points to the pointer to the new text. cbText
specifies the number of bytes in the text. id is the identifier of the window being edited and is a
CID_ constant.
 The CN_BEGINEDIT notification allows the application to perform any preedit processing, such
as setting a limit on the text length. After the user direct editing, he container sends a
CN_REALLOCPSZ notification to the container's owner before copying the new text into the
application's text string to allow any postedit processing to be done.

Gotcha!

The application must return TRUE from CN_REALLOCPSZ notifications, or else
the container will discard the editing changes.

Of Sorting and Filtering

The final, great abilities we will look at are sorting and filtering records, which are done with a
little assistance from the application. Sorting is concept that programmers should be familiar with;
filtering, however, might not be so familiar. Its idea is analogous to a strainer that would be used
when cooking. Item that meet the criteria demanded by the strainer (that they are smaller than a
defined threshold) can continue on their merry way. Items that do not, mat not. "continuing" in
the sense of the container is the visibility state of the record. If record meets the threshold, it
remains visible; if it doesn't, it is hidden. It should be noted that filtered records are not deleted -
they simply aren't shown. Defining the threshold such that all records will meet it will reshow all of
the records.
 The sorting and filtering callback functions are defined in the following manner. For sorting
(CM_SORTRECORD message), we have:

SHORT EXPENTRY pfnCompare(PRECORDCORE p1,
 PRECORDCORE p2,
 PVOID pStorage);

For filtering(CM_FILTER message), we have

BOOL PFN pfnFilter(PRECORDCORE p,
 PVOID pStorage);
Of course, if the container was created with the CCS_MINIRECORDCORE style, the RECORDCORE
pointers are instead MINIRECORDCORE pointers.

The sorting function behaves like strcmp - if the first record is "less than" the second, a negative
number should be returned; if the first is "equal to" the second, 0 should be returned; if the first
record is "greater than" the second, a positive number should be returned. The container takes
care of the rest.
 Filtering is just as easy - if the record meets the criteria and should remain visible, TRUE should
be returned. Otherwise, return FALSE.

The following sample illustrates both sorting and filtering.

CONTAIN4.C
CONTAIN4.RC
CONTAIN4.H
CONTAIN4.MAK
CONTAIN4.DEF

By running this sample, it will be seen that two sort menu items are provided, sort by units
sold and sort by revenue. The code actually to sort the records is quite simple.

 case MI_SORTBYUNITS :
 { USHORT usId;
 usId = MI_SORTBYUNITS;
 WinSendMsg(pcdData->hwndCnr,
 CM_SORTRECORD,
 MPFROMP(sortRecords),
 MPFROMP(&usId));
 }
 break;
As was said, this really is simple. The callback function is just as easy to understand.

SHORT EXPENTRY sortRecords(PSALESINFO psiFirst,
 PSALESINFO psiSecond,
 PUSHORT pusSortBy)
{
 switch (*pusSortBy)
 {
 case MI_SORTBYUNITS :
 if (psiFirst->ulNumUnits < psiSecond->ulNumUnits)
 { return -1;
 } else
 if (psiFirst->ulNumUnits == psiSecond->ulNumUnits)
 { return 0;
 } else {
 return 1;
 } /* endif */

 case MI_SORTBYYEAR :
 return strcmp(psiFirst->mrcStd.pszIcon,
 psiSecond->mrcStd.pszIcon);
 default :

 return 0;
 } /* endswitch */
}

It checks to see by what the user requested the items to be sorted and then checks the
appropriate field in the SALESINFO structure. That is all there is to sorting; there isn't anything
difficult about it.
Filtering is even easier; the same defines four filter choices: revenues greater than $300, greater
than $400, greater than $500 and no filtering at all. Again, the code that actually filters the records
is trivial.

 case MI_FILTER300DOLLARS :
 { USHORT usId;
 usId = MI_FILTER300DOLLARS;
 WinSendMsg(pcdData->hwndCnr,
 CM_FILTER,
 MPFROMP(filterRecords),
 MPFROMP(&usId));
 }
 break;

This is almost identical to code that initiates the sorting. The callback is simpler than the
sorting callback.

BOOL EXPENTRY filterRecords(PSALESINFO psiInfo,PUSHORT pusFilterBy)
{ switch (*pusFilterBy)
 {
 case MI_FILTER300DOLLARS :
 return (psiInfo->fSales > 300.0);
 case MI_FILTER400DOLLARS :
 return (psiInfo->fSales > 400.0);
 case MI_FILTER500DOLLARS :
 return (psiInfo->fSales > 500.0);
 case MI_FILTERNONE :
 return TRUE;
 default :
 return TRUE;
 } /* endswitch */
}
It checks to see by what criteria the user wanted to filter the records and returns the appropriate
value.
How mush easier can it get ?

Where Does Direct Manipulation Fit In ?

From what we can see of the container's capabilities, it was obviously designed to be an advanced
control; thus, we would expect it to support direct manipulation (drag and drop). However, as
Chapter 20: Drag and Drop makes clear, direct manipulation is a very complex mechanism that

could not possibly be supported entirely by the container. Instead, the container sends its owner a
WM_CONTROL message with one of seven notification codes specific to direct manipulation.

Table 23.6 Container Notification Codes

 Notification Explanation

CN_DRAGAFTER

Sent to container's owner whenever the container receives a DM_DRAGOVER
message. The CN_DRAGAFTER notification code is sent only if the
CA_ORDEREDTARGETEMPHASIS or CA_MIXEDTARGETEMPHASIS attribute of the
CNRINFO data structure is set and the current view is the name, text, or details
view.

CN_DRAGLEAVE
 Sent to container's owner when the container receives a DM_DRAGLEAVE
message.

CN_DRAGOVER

Sent to container's owner when the container receives a DM_DRAGOVER
message. The CN_DRAGOVER notification code is sent only if the
CA_ORDEREDTARGETEMPH attribute of the CNRINFO data structure is not set
or the current view is the icon view or tree view.

CN_DROP Sent to container's owner when the container receives a DM_DROP message.

CN_DROPHELP
Sent to container's owner when the container receives a DM_DROPHELP
message.

CN_INITDRAG
Sent to container's owner when the drag button is pressed and the pointer is
moved while the pointer is over the container control.

CN_DROPNOTIFY Sent to container's owner when a pickup set is dropped over the container.

Chapter 20: Drag and Drop presents information about what is to be done when one of these
notifications is received.

Summary

The container control, while at times cumbersome to initialize and interact with, is a very useful
addition to the library of standard controls provided with Presentation Manager. It is very flexible,
providing many different viewing methods, and support the CUA'91 user interface guidelines. With
a little imagination and a great deal of programming, this control could greatly enhance the user
interface of an application.

Chapter 24

Spin Buttons
A spin button is a button that will display a list of choices to the user. Up and down arrows are
displayed tothe right of the button; they are used to "spin" through the choices. Spin buttons
should be used when the choices can be organized into some logical, consecutive order. For
example, a list of days of the week would be a good use for a spin button. A spin button can be
read-only, or it can be edited similar to an entry field.

Spin Button Styles

Table 24.1 presents spin button styles.

Table 24.1 Spin Button Styles

Style Description
SPBS_ALLCHARACTERS All characters are accepted into spin button.
SPBS_NUMERICONL Y Only the characters 0-9 are accepted into spin button.
SPBS_READONL Y No characters are allowed into spin button.
SPBS_MASTER Spin button will have arrows displayed to the right.
SPBS_SERV ANT Spin button has no arrows but is attached to a set of

spin buttons that share one set of arrows.
SPBS_JUSTLEFT Left-justify the spin button text.
SPBS_JUSTRIGHT Right-justify the spin button text.
SPBS_JUSTCENTER Center the spin button text.
SPBS_NOBORDER No border will be drawn around spin button.
SPBS_FASTSPIN Spin button can skip over numbers, when arrows are

held down.
SPBS_PADWITHZEROS Pad the number with zeros.

Figure 24.1 One master spint button with two slave spin buttons.

Figure 24.1 illustrates one master spin button with two slaves. A master spin button contains spin
arrow and the servant spin buttons do not. The master spin arrows control the spinning of the
master button and the attached slaves. When the user spins the arrows, the button with the
cursor is the button that will spin.

The following example program shows how to use a spin button in a program.

• SPIN.C
• SPIN.RC
• SPIN.H
• SPIN.MAK
• SPIN.DEF

Accelerator Keys

In this example, we create three spin buttons directly on the client window. However, the big
drawback using a client window and not a dialog box as the parent is that you lose a lot of the
keyboard handling of the dialog box. The dialog box procedure automates the moving from
control to control when the user hits the TAB and BACKTAB key. We want our spin buttons to do
this also, so we will emulate the TAB key handling using accelerator keys.

Accelerator keys are a shortcut keystroke that causes some action to happen immediately. In
Presentation Manager programming lingo, a WM_COMMAND message is posted whenever an
accelerator key is pressed. Accelerator keys are covered in more detail in Chapter 12.

ACCELTABLE ID_WINDOW
{
VK_TAB, IDK_TAB, VIRTUALKEY
VK_BACKTAB, IDK_BACKTAB, VIRTUALKEY
}

Accelerator keys can be created dynamically or in a resource file. This example uses a resource file.
Our resource file defines only two accelerator keys, VK_TAB and VK_BACKTAB.

WM_ CREATE Processing

In this example, we want to create the spin buttons directly on the client area of the window. The
ideal time to create them is at the same time the window is created, in the WM_CREATE
processing.

u1YearStyle = SPBS_MASTER | SPBS_READONLY |
 SPBS_JUSTLEFT | SPBS_FASTSPIN |
 WS_VISIBLE ;

The variables ulMonthStyle, ulDayStyle, and ulYearStyle are used to hold the spin button styles.
Each button is fairly similar. SPBS_READONL Y indicates this spin button will be read-only.
SPBS_JUSTLEFf will left-justify the spin button text. SPBS_FASTSPIN lets the user spin the buttons
quickly by holding down the arrow keys. Two of the spin buttons will be servant spin buttons. The
Year spin button will be the master, and the up and down arrows are located to the right of that
button.

1Height = WinQuerySysValue (HWND_DESKTOP,
 SV_CYSCREEN) / 2 ;

1Width = WinQuerySysValue (HWND_DESKTOP,
 SV_CXSCREEN) / 2 ;

The next step is to determine where we will place the spin buttons in the client area. In the
WM_CREATE message, the client area has a size of 0, 0. This can make it very difficult to try to
guess the size. However, in this case we can cheat. We know what proportion the client window is
of the screen siz; so we use the screen height and width, and divide by two.

xPosition = 1Width / 5;
yPosition = 1Height / 3;
yHeight = 50;

The x and y coordinates are calculated by using one-fifth the client area width, and one-third the
client area height.

The spin buttons are created using WinCreateWindow with the class WC_SPINBUTTON.

WinSendDlgitemMsg (hwndWnd,
ID_SPINBUTTONDAY,
SPBM_SETARRAY,
MPFROMP (achDayArray) ,
MPFROMSHORT (31)) ;

WinSendDlgitemMsg (hwndWnd,

ID_ SPINBUTTONDAY,
SPBM_SETMASTER,
MPFROMHWND (WinWindowFromID

hwndWnd,
ID_SPINBUTTONYEAR)},

0) ;

The last step in creating the spin buttons is to initialize them. The buttons with the IDs
ID_SPINBUITONDAY and ID_SPINBUTTONMONTH need to be told exactly who their master is,

since they are only servant spin buttons. The message SPBM_SETMASTER will do this. mpParml is
the master window handle, and mpParm2 is not used. Each different button also has an array of
data that needs to be associated with it. These arrays are defined in SPIN.C. To associate the array,
we will send the spin button the message SPBM_SETARRA Y. mpParml is a pointer to the array,
and mpParm2 is the number of items in the array.

WM_CONTROL Processing

The owner of control windows will receive a WM_CONTROL message when something important
has happened. It just so happens that one of these messages will be able to tell the client window
that the spin button has finished spinning. When that happens, we want to update the status
string at the top of the client window.

usID = SHORTlFROMMP (mpParml } ;
u sNotifyCode = SHORT2FROMMP (mpParml

if (usID == ID_SPINBUTTONDAY I I

usID == ID_SPINBUTTONMONTH I I
usID == ID_SPINBUTTONYEAR } {
if (usNotifyCode == SPBN_ENDSPIN) {

WinQueryWindowRect (hwndWnd, &rclWindow) ;
rclWindow .yBottom (rclWindow .yTop -

rclWindow.yBottom) I 3 * 2
WininvalidateRect (hwndWnd,

&rel Window,
FALSE) ;

mpParm1 in the WM_CONTROL message contains all the information we need to know about the
spin buttons. The first SHORT is the ID of the control that sent the WM_CONTROL message. The
second SHORT is a notification code that is specific to that type of control. It's a good idea to look
at the IDs of the window sending the message in order to make sure you've got the right window.
The only notification code that we're interested in is SPBN_ENDSPIN. If we receive that message,
we want to make the client area repaint the status area. This area takes up the top third of the
client window. First we find the rectangle we want to repaint, then we use WinlnvalidateRect to
force a repaint of that area.

WM_COMMAND Processing

The WM_COMMAND processing is where we handle the processing of the accelerator keys.

if (SHORTlFROMMP (mpParm2) == CMDSRC_ACCELERATOR) {
hwndActive = WinQueryFocus (HWND_DESKTOP) ;
usFocusID = WinQueryWindowUShort (hwndActive,

 QWS_ID) ;

The lower bytes of mpParm2 contain the command type ID. This can contain values such as.
CMDSRC_PUSHBUTTON, CMDSRC_MENU, CMDSRC_FONTDLG, CMDSRC_FILEDLG.
CMDSRC_OTHER, or the value that we're interested in, CMDSRC_ACCELERA TOR. The lower bytes
of mpParml contains the accelerator key command ID that we specified as the cmd element of the
ACCEL structures. This information tells us whether the user hit the TAB key or BACKTAB key.
WinQueryFocus is used to determine what spin button to use as a starting point. The window ID is
retrieved using WinQueryWindowUShort. Our window IDs are consecutive numbers, so it is a
simple matter to determine which spin button should have the focus next.

if (SHORTlFROMMP mpParml) == IDK_TAB) {
usFocusID ++ ;
if (usFocusID > LAST_CONTROL) {

usFocusID = FIRST_CONTROL;
} /* endif */
hwndActive = WinWindowFromID (hwndWnd,

us Focus ID);
WinSetFocus (HWND_DESKTOP, hwndActive);
} else

If the accelerator key was a TAB key, we're moving forward. If the current spin button is the last
one in the chain, or if the window ID received is out of the bounds of the spin buttons, we set the
variable usFocusID to the first spin button, or else we just increment usFocusD.

if (SHORTlFROMMP mpParml) == IDK_BACKTAB) {
usFocusID -- ;
if (usFocusID < FIRST_CONTROL) {

usFocusID = LAST_CONTROL ;
} / * endif * /
hwndActive = WinWindowFromID (hwndWnd,

usFocusID);
WinSetFocus (HWND_DESKTOP, hwndActive);
}/ * endif * /

} /* endif * /

The same logic, reversed, is used if the accelerator key is the BACKTAB. Once the new window ID is
determined, WinSetFocus will set the keyboard focus to the new window.

WM_PAINT Processing

The text displaying the current selection of the spin buttons is displayed in the top third of the
window. WinQueryWindowRect determines the size of the window, and then WinFillRect fills this
part of the window with the color white (CLR_ WHITE), effectively erasing this part of this window.

WinSendDlgitemMsg (hwndWnd,
ID_SPINBUTTONYEAR,
SPBM_QUERYVALUE,
MPFROMP (achYear) ,
MPFROM2SHORT (sizeof (achYear) ,

SPBQ_DONOTUPDATE))

sprintf (achMsg,
"SpinButton's set to: %s %s, %s",
achMonth,
achDay,
achYear) ;

WinDrawText (hpsPaint,
-1 ,
achMsg,
&rclBox,
0,
0 ,
DT_CENTER I DT_VCENTER I DT_TEXTATTRS) ;

The message SPBM_QUERYV ALUE will determine what the spin buttons are currently set at. All
three spin buttons are queried, and their values are returned in a character string. These strings
are used to create one string that will be displayed in the text portion of the window.
WinDrawText is used to display the text, centered both horizontally and vertically, in the text
portion of the window.

liders

::ontrol is a control designed for two purposes: to let a user adjust some value on a graduated scale
-erve as a progress indicator of a process. The slider is similar in function to an air-conditioning

It can be adjustable or read-only. There are two kinds of sliders: a linear slider and a circular
The circular slider was included with MMPM/2 in earlier versions of OS/2, but in Warp it is

- .: in the base operating system. Figure 25 .1 illustrates the different linear slider components.

E! File Cop~J

Sea) \
Ribbon Strip

Figure 25.1 Slider control.

~~ slider arm is the "handle" that is used to select new values along the slider shaft. The arm can be
__ gged with a mouse or moved with the cursor keys.

:"-e piece of color that sits to the right or left of the slider arm (depending on slider orientation) is called a
n strip.

7 e graduations marked along the slider shaft are called tick marks. They can be labeled with text or left
-lank.

_ detent is a little arrow that marks some point of interest along the scale.

A slider scale can sit above or below the slider shaft, or a slider can use two scales. Table 25 .1 presents the
a ailable slider styles.

471

4 72 - The Art of OS/2 Warp Programming

Linear Slider Styles

SLS_ VERTICAL

SLS_CENTER
SLS_BOTTOM

SLS_TOP

SLS_LEFT

SLS_RIGHT

SLS_PRIMARYSCALEl

SLS_PRIMARYSCALE2

SLS_HOMELEFT

SLS_HOMERIGHT

SLS_HOMEBOTTOM

SLS_HOMETOP

SLS_BUTTONSLEFT

SLS_BUTTONSRIGHT

SLS_BUTTONSBOTTOM

SLS_BUTTONSTOP

SLS_SNAPTOINCREMENT

The default orientation of the slider. When is slider is of style
SLS_HORIZONTAL, the slider arm will move left and right. The scale is
placed above the shaft, below the shaft, or above and below the shaft.
Positions the slider vertically. The arm will move up and down the shaft..
and the scale(s) are placed vertically along the shaft, similar to ""
thermometer.
Centers the slider in the slider window. This is the default.
Positions the slider at the bottom of the slider window. Not valid ~

vertical sliders.
Positions the slider at the top of the slider window. Not valid for verti -
sliders.
Positions the slider at the left of the slider window. Not valid ~ •
horizontal sliders.
Positions the slider at the right of the slider window. Not valid ~

horizontal sliders.
Positions the scale above the slider for a horizontal slider and to the rig~
of the slider for a vertical slider. The increments and detents are ais;::

positioned correspondingly. This is the default style.
The inverse of the previous style. Scales for horizontal sliders are pla -
on the bottom, and scales for vertical sliders are placed on the left.
Causes the slider arm to be placed on the left edge of the slider when i -
in base, or 0, position. This style can be used only with horizon .,
sliders.
Causes the slider arm to be placed on the right edge of the slider when ·
is in base, or 0, position. This style can be used only with horizon·~

sliders.
Causes the slider arm to be placed on the bottom of the slider when i -
in base, or 0, position. This style can be used only with vertical sliders.
Causes the slider arm to be placed on the top of the slider when it i -
base, or 0, position. This style can be used only with vertical sliders.
Includes slider buttons that will be placed to the left of the slidc.
Clicking on the buttons moves the slider arm one position in · ~
specified direction. This style can be used only with horizontal sliders.
Includes slider buttons that will be placed to the right of the slide:
Clicking on the buttons moves the slider arm one position in 1-e
specified direction. This style can be used only with horizontal sliders.
Includes slider buttons that will be placed on the bottom of the slide:
Clicking on the buttons moves the slider arm one position in ' e
specified direction. This style can be used only with vertical sliders.
Includes slider buttons that will be placed on the top of the slid
Clicking on the buttons moves the slider arm one position in
specified direction. This style can be used only with vertical sliders.
Causes the slider arm to snap to the nearest scale increment as it · -
moved.

Sliders -473

Prevents the user from interacting with the slider. The slider will contain
no slider buttons and no detents, and the slider arm is narrower than non
read-only sliders.

-LS_OWNDERDRA W

SLS_RIBBONSTRIP

Causes WM_DRA WITEM messages to be sent to the application when
the slider needs to be painted.
Provides a ribbon strip in the middle of the slider shaft.

Creating a Linear Slider
A slider can be created either by using WinCreate Window or by specifying a slider control in the resource
file. The following code demonstrates using the function WinCreateWindow to create a slider.

SLDCDATA structSliderData;
HWND hwndSlider;
ULONG ulSliderStyle;

structSliderData.cbSize = sizeof(SLDCDATA);
/ * size of control data structure * /
structSliderData.usScalelincrements = 10;
/ * number of increments on Scale 1 * /
structSliderData.usScalelSpacing = 6;
/* number of pixels between Scale 1 increments */
structSliderData.usScale2Increments = O;
/ * number of increments on Scale2 * /
structSliderData.usScale2Spacing = O;
/ * number of pixels between Scale 2 increments * /
ulSliderStyle = WS_VISIBLE I SLS_BUTTONSLEFT SLS_ SNAPTOINCREMENT;

hwndSlider = WinCreateWindow(
hwndParent, /* parent window * /
WC_SLIDER, / * slider class * /
(PSZ)O, / * window text - none here * /
ulSliderStyle , /* slider styles */
50, / * x * /
50, / * y * /
240, / * ex * /
50, / * cy */
hwr,dOwner, / * owner window * /
HWND_TOP , / * Z-order * /
IDS_SLIDER, /* slider ID * /
&structSliderData, / * pointer to SLDCDATA structure * /
NULL) ; / * presentation parameters * /

When specifying a slider in a resource file, the following statements are necessary.

CONTROL "", IDS_SLIDER, 50, 50, 240, 50, WC_SLIDER,
SLS_SNAPTOINCREMENT I SLS_BUTTONSLEFT I WS_VISIBLE

CTLDATA 12, 0, 11, 0, 0, 0

The CTLDATA line represents the slider control data structure. The first two numbers represent the
ULONG value that is the size of the structure. The next number is the number of divisions on scale one.
The fourth number indicates auto-spacing if 0, or the number of pixels between increments if a nonzero
value is used. The last two numbers represent the number of divisions on scale two and spacing on scale
two, respectively.

474 -The Art of OS/2 Warp Programming
Gotcha!
Auto-sizing for the increments between the tick marks is not ideal. The slider divides
the number of increments into the size of the slider. This means that long-tick-mark
text will fall off the edges. Unless short-tick-mark text is present, it is best for
programmers to size the slider increments themselves.

A Linear Slider Example Program
The following program is an example of a read-only slider that is used as a progress indicator. The slider is
owner-drawn (SLS_OWNERDRA W) in order to change the ribbon strip color from ordinary gray to blue.
The program is designed to create a backup copy of the source code. This program does not create a
standard window as the parent of the dialog; instead, a dialog is created at program startup.
HWND_DESKTOP is used as the parent and owner of the dialog. This is a perfectly legitimate way o
designing small programs that don't need the extra functionality of a client window space or menu.

SLIDER.C
#define
#define
#define
#define
#define
#define

INCL_DOSFILEMGR
INCL_DOSMEMMGR
INCL_WINDIALOGS
INCL_WINMENUS
INCL_WINSTDSLIDER
INCL_WINSYS

#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "slider.h"
#define COPY_FILE "SLIDER.C"
#define BACKUP_FILE "SLIDER.BAK"
BOOL CopyFile(HWND hwndSlider);

MRESULT EXPENTRY DlgProc(HWND hwndDlg,ULONG ulMsg,MPARAM mpParml,
MPARAM mpParm2);

INT main(VOID)
{

HAB
HMQ

habAnchor;
hmqQueue;

habAnchor Wininitialize(O);
hmqQueue = WinCreateMsgQueue(habAnchor,

0);

WinDlgBox(HWND_DESKTOP,
HWND_DESKTOP,
DlgProc,
NULLHANDLE,
IDD_FCOPYDLG,
NULL);

WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return O;

MRESULT EXPENTRY DlgProc(HWND hwndDlg,ULONG ulMsg,MPARAM mpParml,
MPARAM mpParm2)

switch (ulMsg)

- ER.MAK

LINK386 @<<

SLIDER.OBJ
SLIDER.RES

RC SLIDER.RES SLIDER.EXE

SLIDER.RC \
SLIDER.H

RC -r SLIDER.RC SLIDER.RES

--.:....'< .OBJ: SLIDER.C \
SLIDER.H

ICC -C+ -Kb+ -Ss+ SLIDER . C

ER.DEF

~:3:PTION 'Slider example
:-:~~ight (c) 1992-1995 by Kathleen Panov

: ~ ights reserved. '

=---...:3:S IZE 16384

Initalizing the Slider
WinSendDlgitemMsg hwndDlg,

IDS_SLIDER,
SLM_SETTICKSIZE,
MPFROM2SHORT (SMA_SETALLTICKS, 7) ,
0) ;

Sliders - 4 79

·- che WM_INITDLG, a SLM_SETIICKSIZE message is sent to the slider window to set the height of
-~e tick marks. This is different from the item in the CTRLDATA statement in the resource file that sets

e width between the tick marks.

strcpy (achFont, "8. Tms Rmn") ;
WinSetPresParam (WinWindowFromID (hwndDlg, IDS_SLIDER),

PP_FONTNAMESIZE,
strlen (achFont) + l,
achFont) ;

WinSetPresParam is used to change the system font of the slider to something nicer and smaller, "8.Tms
Rmn"; this can be useful when your slider text runs over the edges of the slider.

for (usindex = 0 ; usindex < 11 ; usindex ++
sprintf (achMessage, "%d%%", us Index * 10

WinSendDlgitemMsg (hwndDlg,
IDS_SLIDER,
SLM_SETSCALETEXT,
MPFROMSHORT (usindex) ,
MPFROMP (achMessage))

480 - The Art of OS/2 Warp Programming
Next, the tick marks are labeled with 11 percentage markers by sending the message
SLM_SETSCALETEXT. The first parameter is the division number to set, and the second parameter is the
string to use.

Gotcha!
One little note here: SLM SETSCALETEXT does not recognize
SMA_SETALLTICKS in mpParm2. (Not that anyone will want to set all the tick
marks with the same text very often, but just in case it was desired.)

The WM_COMMAND processing is very simple: When the user pushes the START button, a
WM_COMMAND message is sent to the dialog process. The function CopyFile is called to back up the
file. If the CANCEL button is pressed, the dialog is dismissed, and the process exits.

Using an Ownerdrawn Slider
Because the slider is of style SLS_OWNERDRA W, the dialog procedure also will receive the
WM_DRA WITEM message. mpParm2 contains a pointer to the owneritem structure. The structure is the
same as the OWNERITEM structure covered in Chapter 15. For a slider the idltem can contain one of four
different values: SDA_RIBBONSTRIP, SDA_SLIDERSHAFT, SDA_BACKGROUND, or
SDA_SLIDERARM.

poiitem = (POWNERITEM) PVOIDFROMMP (mpParm2)

switch (poiitem->iditem) {
case SDA_RIBBONSTRIP :

WinFillRect (poiitem->hps,
&poiitem->rclitem,
CLR_BLUE) ;

return MRFROMSHORT (TRUE) ;

In this case, the program checks to see if the item needing to be drawn, poiltem->idltem, is
SDA_RIBBONSTRIP. If it isn't, we break out of the switch statement. If it is SDA_RIBBONSTRIP
WinFillRect is called to fill the RECTL structure, poiltem->rclltem with CLR_BLUE. After the area is
filled we return TRUE, to indicate that we've already drawn the area, and there's no drawing left to do.

The last part of the program is the function CopyFile, which is used to copy the file, SLIDER.C, to the file
SLIDER.BAK. This example copies the file in 10 equal increments, in order to demonstrate a progres
indicator. Please note that there is an OS/2 function, DosCopy, that will do all this in one function call, buc
for this example we'll do our own copying. First, DosQueryPathlnfo is used to make sure the file exists
and to find the file size. A buffer, pbBuffer, is allocated to serve as the holding place for bytes read and
then written. Next, DosOpen is called to open both files. The file functions are covered in more detail in
Chapter 4; see this chapter for more information on the parameters used in DosOpen, DosQueryPathlnfo.
and DosFindFirst.

WinSendMsg hwndSlider,
SLM_SETSLIDERINFO,
MPFROM2SHORT (SMA_SLIDERARMPOSITION,

SMA_INCREMENTVALUE) ,
MPFROMSHORT (usindex)) ;

Sliders - 481
- •]1 copy the file in 10 pieces. As each piece is copied, a message is sent to the slider to set the
_:e -s indicator to the next value. The message is SLM_SETSLIDERINFO. The first parameter is made
= o SHORTS. The first value is the type of information that is being set. Possible values are:

• SMA_SHAFfDIMENSIONS
• SMA_SHAFfPOSITION
• SMA_SLIDERARMDIMENSIONS
• SMA_SLIDERARMPOSITION.

:: -ill use SMA_SLIDERARMPOSITION. The second value, SMA_INCREMENTV ALUE, tells the
=- to change the slider arm position using tick marks instead of pixels. The second parameter indicates
~umber of the tick mark at which to set the slider arm.

Circular Sliders
- cular slider is used to provide a user interface similar to a volume control on a stereo. The user selects
-ew value by using the slider arm that radiates from the center of the circle, or by using the incremental

- " decremental buttons on either side of the slider. The circular slider is useful when there is not much
=een space. Figure 25 .2 illustrates a circular slider and Table 25.2 specifies circular slider styles.

Circular Slider Example

Selected
Value

Volume
19~

~
Value Buttons

Title Text

Circular Slider Styles

CSS_360

CSS_CIRCULARV ALUE

Figure 25.2 Circular slider.

The slider will have values extending a full 360 degrees (a full
circle). The default is 180 degrees (a semicircle). See Figure
25.3 for an example of this style.
A circular "thumb" is used, rather than a slider arm, to display the
currently selected value. See Figure 25 .4 for an example of this
style.

CSS_MIDPOINT

CSS_NOBUTTON

CSS_NONUMBER

CSS_NOTEXT

CSS_POINTSELECT

CSS_PROPORTIONAL TICKS

The midpoint and end-point tick marks are made larger than the
other tick marks.
No increment and decrement buttons are displayed. The default
is to include the buttons.
No numeric indicator of the dial's currently selected value is
included. The default is to include the indicator.
No title is displayed beneath the dial. The default is to include
the title.
The user can use the mouse to select a value, and the slider arm
instantly moves the the new value. The default method is for the
slider arm to scroll through the slider tick marks sequentially.
The tick mark length is calculated as a percentage of the radius of
the dial.

I,! Circular Slicler Example

I I \ \

Volume

Figure 25.3 Circular slider with CSS_360 style.

Sliders - 483

Circular Slider Example 11 llli

Volume

Figure 25.4 Circular slider with CSS_CIRCULARVALUE style.

Creating a Circular Slider
A circular slider can be created using a resource file or the function WinCreateWindow. The following
: ode shows a sample resource definition.

CONTROL "Volume"'
ID_ VOLUME,
10, 10, 100, 100,
wc_CIRCULARSLIDER,
WS_VISIBLE I CSS_360

or you can use the WinCreateWindow function to create a slider dynamically:

hwndCircle = WinCreateWindow(hwndClient,
WC_CIRCULARSLIDER,
"Volume",

Gotcha!

WS_VISIBLE I CSS_360,
10, 10, 100, 100,
hwndClient,
ID_ VOLUME,
NULL,
NULL) ;

The documentation for the Warp Toolkit indicates that WinRegisterCircularSlider
must be called to register the circular slider class before a circular slider can be created.
This is wrong. There is no WinRegisterCircularSlider defined. Earlier versions of the
circular slider previously belonged to the MMPM/2 Toolkit and had to be registered
before the class could be used. Obviously, someone forgot to update the manual.

A Circular Slider Example Program
The following is a simple example program to create a circular slider.

488 -The Art of OS/2 Warp Programming
CIRCLE.OBJ: CIRCLE.C \

CIRCLE.H
ICC -c+ -Kb+ -Ss + CIRCLE.C

CIRCLE.DEF
NAME CIRCLE WINDOWAPI

DESCRIPTION 'Circular Slider example
Copyright (c) 1992-1995 by Kathleen Panov
All rights reserved. ·

STACKSIZE 16384

Initializing the Slider
WinSendMsg(hwndCirc,

CSM_SETRANGE,
MPFROMLONG(O),
MPFROMLONG (5 0)) ;

WinSendMsg(hwndCirc,
CSM_SETINCREMENT,
MPFROMLONG (10) ,
MPFROMLONG(O));

WinSendMsg(hwndCirc,
CSM_SETVALUE,
MPFROMLONG (3 0) ,
NULL);

Three items are initialized in the sample program. The range of the slider is set with ·-
CSM_SETRANGE message. The first message parameter is the low value, 0. The second me --:
parameter is the high value, 50. The CSM_SETINCREMENT message controls the amount of incremc·
to move when the slider buttons are pressed. It also controls the number of tick marks to skip
drawing the slider tick marks. The first message parameter represents the increment movements o - -
slider buttons; the second message parameter sets the tick mark drawing at tick mark 0. The last me --_ -
sent is CSM_SETV ALUE. This message sets the currently selected value of the slider. In this exan::
the initial value is set at 30.

Circular Slider Colors
rgb2.bRed = OxFF;
rgb2.bGreen = OxFF;
rgb2.bBlue = OxFF;
rgb2.fc0ptions = O ;

WinSetPresParam(hwndCirc,
PP_BACKGROUNDCOLOR,
sizeof (RGB2),
&rgb2);

The circular slider responds only to two of the presentation parameters, PP _BACKGROUNDCOLO
PP _BORDER. The background color is the area that sits outside the slider dial. In our example pr ~
we will set the background color to white. Notice that this is PP _BACKGROUNDCOLOR
PP _BACKGROUNDCOLORINDEX.

Sliders - 489

Summary
The slider controls are a nice way to display a progress indicator or to provide the user with a large range
of values to choose from. Sliders are simple controls to use in a program. Although they are not as
customizable as might be desired, they still can be used in many instances. A volume control for a CD
player program is an ideal use for a circular slider. A linear slider could be used as a thermostat.

hapter 26

Font and File Dialogs

2e font dialog and file dialog were introduced in OS/2 2.0 to provide two high-level functions that
:erform tasks that most programmers previously had written by hand at one time or another. The Font
- og is a dialog box with a listing of fonts and an example of each. The file dialog is a dialog box that
_ mains a list of files on the end user's available drives. (See Figure 26.1.) Both functions can be
:econfigured extensively by the programmer.

FILEDLG.C
FILEDLG.CP
FILEDLG.DEF
FILEDLG.DOC
FILEDLG.EXE

Figure 26.1 A file dialog box.

491

492 -The Art of OS/2 Warp Programming

The File Dialog
The file dialog can be created either as a "Save As ... " or as an "Open" dialog. A list of all the controls in
the file dialog is included in the Toolkit header file, PMSTDDLG.H, so that readers can add their own, or
remove those they feel are unnecessary.

The meat of creating a file dialog structure is the FILEDLG structure. This structure, which follows.
includes all the configurable options for the file dialog.

typedef struct _FILEDLG
{

/ * filedlg * /

ULONG
ULONG
ULONG
LONG
LONG
PSZ

cbSize;
fl;
ulUser ;
lReturn;
lSRC;
pszTitle ;

PSZ
PFNWP
PSZ
PAPSZ
PSZ
PAPSZ
HMODULE
CHAR
PAPSZ
ULONG
US HORT
SHORT

pszOKButton;
pfnDlgProc;
pszIType;
papszITypeList;
pszIDrive;
papszIDriveList;
hMod;
szFullFile[CCHMAXPATH];
papszFQFilename;
ulFQFCount;
usDlgid;
x;

SHORT y;
SHORT sEAType;

FILEDLG;
typedef FILEDLG *PFILEDLG;

The cbSize is the size of the FILEDLG structure. This field must be filled in. The fl field, which also fTlllj

be filled in is the File Dialog flags used to describe the file dialog. Table 26.1 presents the possible val -

FDS_CENTER
FDS_CUSTOM
FDS_FILTERUNION
FDS_HELPBUTTON
FDS_APPL YBUTTON
FDS_PRELOAD_ VOL_INFO

FDS_MODELESS
FDS_INCLUDE_EAS
FDS_OPEN_DIALOG
FDS_SA VEAS_DIALOG
FDS_MUL TIPLESEL
FDS_ENABLEFILELB

The file dialog is centered within its owner.
Use a custom-defined dialog box.
Use a union of extended attributes and file name filter.
Include a HELP push button on the file dialog.
Include an APPLY push button on the file dialog.
Load the volume information on the file dialog
initialization. This can cause lengthy processing at
startup.
The file dialog is modeless.
Load the extended attribute information.
File dialog is the "Open" dialog.
File dialog is the "Save As ... " dialog.
Multiple files can be selected from the list box.
If file dialog is the "Save As ... " style, the list box of files
is enabled, not disabled (the default).

Font and File Dialogs - 493
-- - :1/User field is 4 bytes of space that are available for the programmer to use. The !Return field is the

code from the file dialog. This can be DID_OK, DID_CANCEL, or 0 if an error occurs. The ISRC
- ontains an FDS_ERR return code if an error occurs in the file dialog.

--~ pszTitle field is a pointer to a string that contains the title of the file dialog box window. If this is
-_-:...L, the title of the owner window is used. The pszOKButton field is a pointer to a string that contains

rext for the OK push button. If this is NULL, "OK" is used. The pfnDlgProc field is a pointer to a
.-defined dialog procedure. The function WinDefFileDlgProc can be used to call the default dialog
edure from the user-defined procedure.

psz!Type field is a pointer to a string containing a type of EA (extended attribute). Only files that
- tain this EA type will be shown in the list of available files. The field papsz]TypeList is an array of

ters that contain a list of EA types for filtering the available file list. This array must end with a NULL
ter. The psz]Drive field is a pointer to a string that contains the selected drive when the dialog is first
e visible.

:--e field papsz!DriveList is an array of pointers to strings that contain a list of drives to use as available
·es. A NULL in this field will cause all available drives to be included in the list. This array must end

Lb a NULL pointer. The hMod field is the handle of a .DLL that contains the dialog box resource to be
s.ed if a FDS_CUSTOM flag is specified. The character array szFullFile contains the filename of the

-· ·ally selected file . On return, this field contains the fully qualified filename selected by the end user.

:-- e field papszFQFilename is an array of pointers to fully qualified filenames. On return from the
"fn FileDlg function, this array contains all the files that the end user selected. The field ulFQFCount is

·-e number of files selected by the user. The field usDlgID is the dialog resource ID of a file dialog to use
_a replacement for the default file dialog. This field is used if FDS_CUSTOM is specified.

:be fields x and y are the x,y coordinates to be used to place the file dialog. These fields are ignored when
:DS_CENTER is used. The field sEAType is an index into the papsz]TypeList array that contains the EA
::.-pe of the file that was selected.

pecial Considerations for Multiple File Selections
• 'hen a file dialog has the style FDS_MULTIPLESEL, multiple files can be selected from the file dialog.
:his causes a few events to happen:

• The number of files selected is returned in the field ulFQFCount.
• An array of pointers to the names of the selected files is returned in the papszFQFilename field .
• If the file dialog has allocated memory for these strings, the ISRC field will contain

FDS_ERR_DEALLOCATE_MEMORY. This is a signal to the programmer that he or she needs to
free the memory allocated for these strings with the WinFreeFileDlgList application.

• The first file selected will be contained in the szFullFile array.

The WinFreeFileDlgList function has only one parameter, the array of pointers to strings,
papszFQFilename.

BOOL WinFreeFi l eDlgLi st(PAPSZ papszFQFilename);

494 - The Art of OS/2 Warp Programming

The FILEDLG Example Program
The example program FILEDLG creates a file dialog and prints the filename of the selected file on the
client area.

FILEDLG.C
#define INCL_WINSTDFILE
#define INCL_WINSYS
#define INCL_WINWINDOWMGR
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "filedlg.h"
MRESULT EXPENTRY ClientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM

mpParml,MPARAM mpParm2);

BOOL FindFile(HWND hwndWnd,CHAR *pchFile);
VOID DisplayError(CHAR *pszText);

#define CLS CLIENT
INT main(VOID)

HMQ
HAB
ULONG
HWND
BOOL
QMSG
LONG
HWND

"MyClass"

hmqQueue;
habAnchor;
ulFlags;
hwndClient;
bLoop;
qmMsg;
lWidth,lHeight;
hwndFrame = NULLHANDLE;

habAnchor Wininitialize(O);
hmqQueue = WinCreateMsgQueue(habAnchor,

0);

WinRegisterClass(habAnchor,
CLS_CLIENT,
ClientWndProc,
CS_SIZEREDRAWICS_SYNCPAINT,
sizeof (PVOID));

ulFlags = FCF_TITLEBAR IFCF_SYSMENUIFCF_SIZEBORDER IFCF_MENU I
FCF_MINMAX ;

/ ** /
/* create frame and client window * /
/ ** /

hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
0 ,
&ulFlags,
CLS_CLIENT,
"Font Dialog Example ",
o.
NULLHANDLE,
RES_CLIENT,
&hwndClient) ;

/ ** /
/ * get screen height and width * /
/ *************** ********************** ***********************/

D

\Vindow Word

pchFile = (PCHAR)calloc(l,
CCHMAXPATH) ;

if (!pchFile)
{

DisplayError ("No memory could be allocated");
return MRFROMSHORT(TRUE);

WinSetWindowPtr (hwndClient,
QWL_USER,
pchFile);

/ * endif

Font and File Dialogs - 499

* /

-e FILEDLG example, a standard window is created with a menu. In the WM_CREATE processing,
ory is allocated to hold the selected filename. The pointer to this memory is attached as a window
· using WinSetWindowPtr. This memory is freed when the WM_DESTROY message is received.

- ~n the user selects the "Open" selection from the menu, a WM_ COMMAND message is sent. When
message is received, the user function FindFile is called. After this function returns, the client area is

· ·dated to force a repaint.

Putting It All Together: FindFile
--e FindFile function is a user-defined function where the FILEDLG structure is initialized and

FileDlg is called. When the FILEDLG structure is declared, it is important to initialize the entire
- ture to 0.

Gotcha!
The FILEDLG structure is a very particular beast. Several fields in the structure are
pointers or arrays of pointers. Very bad results ensue if unsued pointer fields are set to
some arbitrary garbage, rather than NULL. This will occur if the FILEDLG structure
is declared as an automatic structure variable and is left uninitialized. Also, note that
most of these fields in the FILEDLG structure are pointers, not arrays. This means it is
the programmer's responsibility to provide the memory. There is only one character

may, szFul!File, of size CCHMAXFILEPATH. This is the only string field that data can be copied
directly into!

Initializing the FILEDLG Structure
fdFileDlg.cbSize = sizeof(FILEDLG);
fdFileDlg.fl = FDS_CENTER i FDS_PRELOAD_VOLINFOIFDS_OPEN_DIALOG;

The mandatory cbSize field is set to the size of the FILED LG structure. The file dialog box in this example
has the styles FDS_CENTER, FDS_PRELOAD_INFO, and FDS_OPEN_DIALOG. This centers the
dialog, loads all the drive volume info on startup, and creates the "File Open ... " dialog. These styles are
OR'ed together in theft field . This is also a mandatory field.

500 - The Art of OS/2 Warp Programming

if (WinFileDlg(HWND_DESKTOP,
hwndClient,
&fdFileDlg) != DID_OK)

WinFileDlg has three parameters. The first parameter is the parent window handle, in this case
HWND_DESKTOP. The second parameter is the owner window handle, in this case hwndClient. The last
parameter is a pointer to a FILEDLG structure.

Once the user has closed the file dialog, szFullFile is copied into the window word, pchFileName, and the
function returns.

The Font Dialog

Figure 26.2 The font dialog.

The font dialog (see Figure 26.2) is created using WinFontDlg. This function is very similar to WinFileDlg
in its setup. The structure FONTDLG is used to design the font dialog box layout. The structure is as
follows.

typedef struct _FONTDLG
{

ULONG cbSize;
HPS hpsScreen;
HPS hpsPrinter;
PSZ pszTitle;
PSZ pszPreview;
PSZ pszPtSizeList;
PFNWP pfnDlgProc;
PSZ pszFamilyname;
FIXED fxPointSize;
ULONG fl;
ULONG flFlags;
ULONG fl Type;
ULONG flTypeMask;
ULONG flStyle;
UL ONG flStyleMask;

Font and File Dialogs - 501
LONG clrFore;
LONG clrBack;
ULONG ulUser;
LONG lReturn;
LONG lSRC;
LONG lEmHeight;
LONG lXHeight;
LONG lExternalLeading;
HMODULE hMod;
FATTRS fAttrs;
SHORT sNominalPointSize;
USHORT usWeight;
USHORT usWidth;
SHORT x;
SHORT y;
USHORT usDlgid;
USHORT usFamilyBufLen;
USHORT usReserved;

} FONTDLG;
typedef FONTDLG *PFONTDLG;

:--e field cbSize is the size of the FONTDLG structure. The field hpsScreen is the presentation space for
~ screen. If this field is NULL, no screen fonts will be used as available fonts . The field hpsPrinter is

presentation space for the printer. If this field is NULL, no printer fonts will be used as available fonts .
:--e field pszTitle is a pointer to a string that is the title of the file dialog box window. If this is NULL, the

· e of the owner window is used. The field pszPreview is a pointer to a string that is the text to be used in
e preview window.

:- e field pszPtSizeList is a pointer to a string that is the list of font sizes that the font dialog will use as
- .ailable fonts. The string is in the format "8 10 12", where each font size is separated by a space. The
:eld pfnDlgProc is a pointer to a user-defined dialog procedure. The function WinDefFontDlgProc can be
-~ct to call the default dialog procedure from the user-defined dialog procedure. The field pszFamilyname
- a pointer to a string that contains the font family name. On input, this field is used to determine the
~ ected font when the font dialog is first started. When the user closes the dialog box, this field contains

·-e family name of the font the user selected.

7 e field fxPointSize is the point size of the selected font. On input, this field is the point size of the
:efault-selected font. When the user closes the dialog box, this field contains the point size of the font the
::ser selected. The field fl is the font dialog styles flag. This field is a collection of styles OR'ed together.
:-able 26.2 presents the available styles.

~S_CENTER

~S_CUSTOM

~S_OWNERDRA WPREVIEW
~S_HELPBUTTON

~S_APPL YBUTTON
~S_RESETBUTTON

~S_MODELESS

2ITS_INITFROMFATTRS

VITS_BITMAPONL Y

The dialog is centered on the owner window.
Uses a custom-defined dialog template.
The preview box is owner-drawn.
A HELP button is included in the font dialog.
An APPLY button is included in the font dialog.
A RESET button is included in the font dialog.
The font dialog box is modeless.
The font dialog will choose the initially selected font by matching
the values in the FATTRS structure.
Only bitmapped fonts will be used as available fonts.

·502 - The Art of OS/2 Warp Programming

FNTS_ VECTORONL Y Only vector fonts will be used as available fonts.
FNTS_FIXEDWIDTHONL Y Only monospaced fonts will be used as available fonts.
FNTS_PROPORTIONALONL Y Only proportional fonts will be used as available fonts.
FNTS NOSYNTHESIZEDFONTS Fonts will not be synthesized.

The field flFlags is a collection of font flags OR' ed together. The flags listed in Table 26.3 are available.

Table 26.3 Available Font Flags

FNTF _NOVIEWPRINTERFONTS

FNTF _NOVIEWSCREENFONTS

FNTF_PRINTERFONTSELECTED
FNTF SCREENFONTSELECTED

An input flag . If specified, and both hpsScreen and hpsPrinter are
used, the printer fonts will not be included in the list of available
fonts.
An input flag. If specified, and both hpsScreen and hpsPrinter are
used, the screen fonts will not be included in the list of available
fonts.
An output flag . It indicates that the user selected a printer font.
An output flag. It indicates that the user selected a screen font.

The field flType contains the additional characteristics of the font the user selected. Table 26.4 specifies
the types available.

Table 26.4 Font Characteristics

FTYPE_IT ALIC
FTYPE_ITALIC_DONT_CARE
FTYPE_OBLIQUE
FTYPE_OBLIQUE_DONT_CARE
FTYPE_ROUNDED
FTYPE_ROUNDED_DONT_CARE

The font selected was italic.
The font selected was not italic.
The font selected was oblique.
The font selected was not oblique.
The font selected was rounded.
The font selected was not rounded.

The field flTypeMask is a mask of which font types to use.

The fieldflStyle is the font styles the user selected. Table 26.5 lists the available styles.

FATTR_SEL_ITALIC The font selected was italic.
FATTR_SEL_UNDERSCORE
FA TTR_SEL_BOLD
FA TTR_SEL_STRIKEOUT
FATTR SEL OUTLINE

The font selected was underscore.
The font selected was bold.
The font selected was strikeout.
The font selected was outline.

The fieldflStyleMask is a mask of which font styles to use. The field clrFore is the font foreground color
index. The field clrBack is the font background color index.

The field ulUser is 4 bytes of user-defined storage space. The field lRetum is the ID of the push-button the
user pushed to close the dialog; DID_OK, DID_CANCEL, or 0 if an error occurred.

The field lSRC is the system return code if the font dialog fails. Table 26.6 presents the possible values.

Font and File Dialogs - 503

-able 26.6 Values of JSRC

2-ITS_SUCCESSFUL Font dialog was successful
2-ITS_ERR_INV ALID_DIALOG Invalid dialog error
2ITS_ERR_ALLOC_SHARED_MEM Error allocating shared memory
2-ITS_ERR_INV ALID_pARM Invalid parameter
FNTS_ERR_OUT_OF _MEMORY Out-of-memory error
F.-ITS_ERR_INV ALID_ VERSION Invalid version error
FNTS ERR DIALOG LOAD ERROR Error loading dialog

The field lEmHeight is the point size of the font converted into world coordinates. This field multiplied by
l.2 is often a good gauge for the vertical spacing between rows of text. The field lXHeight is the height in
pixels of the character x. The field lExternalLeading is the recommended vertical spacing between rows of
Lext. This value is the maximum spacing, not the actual spacing to use.

The field hMod is the module handle to use for loading a custom font dialog. This field is used only if
FNTS_CUSTOM is set in the fl field. If FNTS_CUSTOM is set, and this field is NULL, the resource is
drawn from the executable. The field fAttrs is a FATTRS structure for the selected font. The field
sNominalPointSize is the font point size. This field is meaningful for bitmap fonts only.

The field us Weight is the weight of the font. Table 26.7 lists possible values.

Table 26.7 Values of usWeiQht

FWEIGHT_DONT_CARE
FWEIGHT _UL TRA_LIGHT
FWEIGHT _EXTRA_LIGHT
FWEIGHT_LIGHT
FWEIGHT_SEMI_LIGHT
FWEIGHT_NORMAL
FWEIGHT_SEMI_BOLD
FWEIGHT_BOLD
FWEIGHT_EXTRA_BOLD
FWEIGHT_ULTRA_BOLD

Any font weight is applicable.
The font is ultra-light.
The font is extra light.
The font is light.
The font is semilight.
The font is normal weight.
The font is semibold.
The font is bold.
The font is extrabold.
The font is ultra-bold.

The field us Width is the width class of the font the user selects. Table 26.8 lists possible values.

Table 26.8 Values of usWidth

FWIDTH_DONT_CARE
FWIDTH_ UL TRA_CONDENSED

FWIDTH_EXTRA_CONDENSED

FWIDTH_CONDENSED

Any font width is applicable.
The selected font has an aspect ratio 50 percent of the normal
ratio.
The selected font has an aspect ratio 62.5 percent of the normal
ratio.
The selected font has an aspect ratio 75 percent of the normal
ratio.

· 504 - The Art of OS/2 Warp Programming

FWIDTH_SEMI_CONDENSED The selected font has an aspect ratio 87.5 percent of the normal
ratio.

FWIDTH_NORMAL The selected font has an aspect ratio 100 percent of the normal
ratio.

FWIDTH_SEMI_EXPANDED The selected font has an aspect ratio 112.25 percent of the normal
ratio.

FWIDTH_EXPANDED The selected font has an aspect ratio 125 percent of the normal
ratio.

FWIDTH_EXTRA_EXPANDED The selected font has an aspect ratio 150 percent of the normal
ratio.

FWIDTH_ UL TRA_EXPANDED The selected font has an aspect ratio 200 percent of the normal
ratio.

The field x is the x coordinate for the font dialog box . This field is unused if the fl flag has
FNTS_CENTER set. The field y is the y coordinate for the font dialog box. This field is unused if the fl
flag has FNTS_CENTER set. The field usDlg!D is the resource ID of the dialog box to be used if the
FNTS_CUSTOM flag in the fl field is set. The field usFamilyBufLen is the length of the pszFamilyname
buffer. This field is mandatory.

Gotcha!
Several fields are mandatory in the font dialog control: cbSize, hpsScreen or
hpsPrinter, pszFamilyname, usFamilyBufLen, and fl. Also, all of the string fields in
the FONTDLG structure are pointers. It is the programmer's responsibility to provide
the space for these fields.

An Example Program: FONTDLG

FONTDLG.C
#define INCL_WIN
#define INCL_STDDLG
#define INCL_GPI
#include <os2.h>
#include <stdio.h>
#include <stdlib . h>
#include <string.h>
#include "fontdlg.h"

typedef struct
(

FONTDLG fdFontDlg;
USHORT binit;

MYFONTINFO,*PMYFONTINFO;

MRESULT EXPENTRY ClientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2);

514 -The Art of OS/2 Warp Programming

FONTDLG.RC
#include <os2.h>
#include "fontdlg.h "

MENU RES_CLIENT
{

SUBMENU "-Fonts", IDM_SUBl
{

MENUITEM ·-change font .. . •, IDM_ FONT
MENUITEM "E-xit " , IDM_ EXIT

FONTDLG.H
#define RES_CLIENT
#define IDM_ SUBl
#define IDM_FONT
#define IDM_EXIT

FONTDLG.MAK
FONTDLG . EXE :

FONTDLG
FONTDLG
FONTDLG
082386
FONTDLG
<<

LINK386 @<<

256
512
513
514

FONTDLG.OBJ \
FONTDLG . RES

RC FONTDLG . RES FONTDLG.EXE

FONTDLG.RES : FONTDLG . RC \
FONTDLG.H

RC - r FONTDLG.RC FONTDLG.RES

FONTDLG . OBJ: FONTDLG.C \
FONTDLG . H

ICC -C+ -Kb+ - Ss + FONTDLG. C

FONTDLG.DEF
NAME FONTDLG WINDOWAPI
DESCRIPTION 'Font dialog e xampl e

Copyright (c) 1992 - 1995 by Ka thleen Panov.
All rights reserve d. '

STACKSIZE 32768

Customizing the Font Dialog
The font dialog does not use the current font of a window as the default-selected font. There are two ways
to make the default font the current font of a selected window:

• Query the current font characteristics, place these in the appropriate spots in the FONTDLG structure,
and use the FNTS_INITFROMA TTRS flag . This method must be used if the current font of a selected
window will be used and this is the first time WinFontDlg has been called.

•

The
InirF

We

: 'y:

Thi
iniria

In tho

oce

Qut

Font and File Dialogs - 515
• Store the FONTDLG structure that was the output from WinFontDlg, and reuse it the next time

WinFontDlg is called.

The first option is a real pain to implement but is used the first time the dialog is called. The function
lnitFont uses this method. After initialization, we use the second method.

We create a special structure, MYFONTINFO, to hold the FONTDLG structure in memory.

ypedef struct {
FONTDLG fdFontDlg ;
USHORT bini t ;

} MYFONTINFO , *PMYFONTINFO

This structure contains a FONTDLG structure and a flag to indicate whether the structure has been
initialized or not.

In the WM_CREATE processing, space is allocated for the MYFONTINFO structure. This pointer is
stored in a window word of the client window. This memory is freed in the WM_DESTROY message
processing.

Querying the Current Font
ulReturn = WinQueryPresPararn(hwndClient,

PP_FONTNAMESIZE,
0 ,
NULL,
256,
achFontNarne,
0);

When a WM_PAINT message is received, WinQueryPresParam is used to determine the current font. The
first parameter is the window to query. The next parameter is the attribute ID. PP _FONTNAMESIZE will
retrieve the font name and point size. The third parameter is used to query a second type of presentation
parameter. The next parameter is used to determine which presentation parameter, the first or second, was
found first. The fifth parameter is the length of the results buffer. The buffer, achFontName, is the next
parameter. The last parameter, the query options, is unused in this example. WinQueryPresParam returns
the number of characters placed in the achFontName buffer. The font name is copied into a character
array, and WinDrawText outputs the result onto the client window.

Initializing the Font Dialog Structure with the Current Font
The lnitFont function converts a FONTMETRICS structure, returned from GpiQueryFontMetrics, into a
FATTRS structure that the font dialog can understand. The initial font attributes from the
FONTMETRICS structure are OR'ed with thefsSelection field in the FATTRS structure. These attributes
include italic, bold, outline, underscore, and strikeout.

!Match is a unique identifier for a font. All fonts available to a presentation space are given a match ID.
These vary from device to device and from system to system; however, within a single presentation space,
they are consistent. The idRegistry is the IBM registered number for certain fonts. The current code page
is also queried and set in the FATTRS structure.

GpiQueryCharBox(hPS,
&sizef);

516 - The Art of OS/2 Warp Programming

hDC = GpiQueryDevice (hPS);
DevQueryCaps(hDC,

CAPS_HORIZONTAL_FONT_RES,
lL,
&lxFontResolution) ;

if (fm.fsDefn&FM_DEFN_OUTLINE)
{

pfdFontDlg->fAttrs.fsFontUse = FATTR_FONTUSE_OUTLINE;
pfdFontDlg->fxPointSize (FIXED) ((sizef . ex *72) I

lxFontResolution) ;

/ * if outline font * /

The setup for an outline font is a little more complicated than that of a nonoutline font. The
lMaxBaselineExt is correct for the bitmap fonts, but for outline fonts this value is the actual distance from
the highest pel to the lowest pel, with no leading indicator included. Instead of trying to determine this
value, we find the exact point size and set lMaxBaselineExt and IA veCharWidth to 0. This is done by using
the following conversion.

point size = ex pixels/inch * 72 points/inch I resolution pixels/inch

else
{

pfdFontDlg->fAttrs.fsFontUse = FATTR_FONTUSE_NOMIX;
pfdFontDlg->fxPointSize (FIXED) (fm . sNominalPointS i ze /

100);
/ * not outline font * /

For a nonoutline font, the point size is simply the nominal point size divided by 100.

Bringing Up the Font Dialog

SetFont is a user-defined function to initialize the font dialog, bring it up, and change the client windo
font to the newly selected font.

The MYFONTINFO structure that contains the FONTDLG structure is retrieved from the window wo
and is passed to SetFont.

faAttrs = pmfiFont->fdFontDlg.fAttrs;
fxSzFont = pmfiFont->fdFontDlg.fxPointSize;

memset(&pmfiFont->fdFontDlg,
0,
sizeof(FONTDLG));

memset (achFont,
0,
256);

The first thing SetFont does is to save the FATIRS structure and also thefxPointSize values for use
The FONTDLG structure and font name string are then cleared to 0. If this is the first time through -
function, InitFont is called, and the initialization flag is set to TRUE. If this is not the first time Se F
has been called, we assume the FATIRS structure in memory is valid and set the font dialog stru
FA TIRS equal to the structure in memory.

pmfiFont->fdFontDlg.hpsScreen = WinGetPS(hwndClient) ;
pmfiFont->fdFontDlg.cbSize = sizeof (FONTDLG);

Font and File Dialogs - 517
pmfiFont->fdFontDlg.pszFarnilyname = achFamily;
pmfiFont->fdFontDlg.usFamilyBufLen = sizeof(achFarnily);
pmfiFont->fdFontDlg.fl = FNTS_CENTER IFNTS_INITFROMFATTRS;
pmfiFont->fdFontDlg.clrFore CLR_NEUTRAL;
pmfiFont->fdFontDlg.clrBack = SYSCLR_WINDOW;

Several elements of the FONTDLG structure are initialized. The screen presentation space is queried, and
the size of the FONTDLG structure is set. The pszFamilyname member is set equal to the achFamily
buffer. The size of this buffer is set in usFamilyBujLen. The flags used for this font dialog are
FNTS_CENTER (center the dialog) and FNTS_INITFROMFATTRS (use the FATTRS structure to set the
initial default font selection). The last elements initialized are the foreground and background colors for
the sample preview box.

HWND WinFontDlg(HWND hwndParent, HWND hwndOwner, PFONTDLG
pFontDialog)

WinFontDlg has three parameters. The first is the parent window, HWND_DESKTOP. The next is the
owner window, and the last is a pointer to the FONTDLG structure.

sprintf (achFont ,
"%d . %s",
FIXEDINT(pmfiFont->fdFontDlg.fxPointSize),
pmfiFont->fdFontDlg.fAttrs.szFacename);

The fxPointSize variable in the FONTDLG structure is a FIXED data type. This is a long integer used to
represent a fractional integer. To obtain the actual point size, the macro FIXEDINT is used to extract the
integer position of the fixed type. This value is the actual font point size.

The szFacename array in the fAttrs structure is where we get the font style from. This array contains a bit
more descriptive font style than the pszFamilyname pointer. (We had mixed results using the
pszFamilyname variable but got 100 percent accuracy using szFacename.)

if (pmfiFont->fdFontDlg.fAttrs . fsSelection&FATTR_SEL_ITALIC)
(

strcat(achFont,
" . Italic") ;

} / * endif
if (pmfiFont ->fdFontDlg.fAttrs .fsSelection

&FATTR_SEL_UNDERSCORE)

strcat(achFont,
" . Underscore") ;

*/

} /* endif * /
if (pmf iFont->fdFontDlg.fAttrs .fsSelection&FATTR_SEL_STRIKEOUT

)

strcat(achFont,
" . Strikeout") ;

/* endif */
if (pmfiFont ->fdFontDlg .fAttrs . fsSelection&FATTR_SEL_BOLD)
{

strcat(achFont,
".Bold");

/ * endif */
if (pmfiFont ->fdFontDlg .fAttrs.fsSelection&FATTR_SEL_OUTLINE)
{

strcat(achFont,
".Outline");

/ * endif

518 - The Art of OS/2 Warp Programming

The fsSelection flag contains more information about the font type. A comparison is made, and if the result
is TRUE, the string is concatenated with a ".Descriptor" string. The presentation parameter string can take
multiple instances of these descriptors, for example, "10.Tms Rmn Bold.Italic.Underline".

WinSetPresParam(hwndClient,
PP_FONTNAMESIZE,
strlen(achFont)+l,
achFont);

WinSetPresParam will change the font of the client window to the user-selected font. The first parameter
is the window to apply the changes to, hwndClient. The next parameter is the presentation attribute,
PP _FONTNAMESIZE, to change. The third parameter is the size of the presentation parameter. The last
parameter is a pointer to the variable itself. A small note here: If the presentation parameter is a color, this
value is the address of a LONG or an RGB structure.

Chapter 27

Subclassing Windows

ubclassing windows is the ability to intercept and process messages sent to the window procedure of an
established window class. A message is normally sent to a window procedure where it is either processed
and returned to the calling window, processed and returned to WinDejWindowProc, or passed directly to
WinDejWindowProc. A subclassed procedure is placed in the calling chain directly above the window
procedure. This also allows the subclassed procedure to sort through the messages and process only the
ones it wishes to modify.

The flowchart shown in Figure 27 .1 illustrates the normal calling chain for window messages.

No

Message
Queue

Yes

DoSomething()

No

WinDefWindowProc()

· · · · · · · · · ciierii Window F>"roceciure · · · · · · · ··

Figure 27.1 Diagram of normal window procedure.

519

520 -The Art of OS/2 Warp Programming
The flowchart shown in Figure 27 .2 illustrates what happens to the calling chain when a window 1s
subclassed.

Message
Queue

:

Yes

Yes
No

DoSomething()

Subclass Window Procedure

~---No

...........................

Yes

DoSomething()

No

No Yes

Old Window Procedure

WinDefWindowProc()

. . ..
Figure 27.2 Subclassed window procedure calling chain.

Subclassing is a very easy way to modify the behavior of a window class. The subclassed procedure
should be kept small to keep the window's behavior responsive to the user. A long and complex subclass
procedure will cause a decrease in performance. (Three functions are being called for every message
generated from the window.) The following code will define the subclassed procedure.

MRESULT EXPENTRY pfnwpOldProc;
pfnwpOldProc = WinSubclassWindow(hwndWindowToSubclass,

pfnwpNewProc) ;

Subclassing Windows - 521
-:::ie function returns the previous window procedure as pfnwpOldProc. This function provides the
_ bclassed procedure a way to call the previous window procedure.

_-ow let's put subclassing to use. Suppose we want an entry field that handles only numbers, say, for Zip
.::odes. There's not an existing numerics-only entry field, so let's create one.

SUBCLASS.C
=define
=define

INCL_ WIN
INCL_GPILCIDS

=include <os2.h>
=include <string . h>
=include <ctype.h>

'1def ine
;define
#define
#define

CLS CLIENT "MyClass"
IDE_ENTRYFIELD 256
STR_TEXT "Zip code:"
UM_CREATEDONE WM_USER+l

MRESULT EXPENTRY newEntryWndProc(HWND hwndWnd,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2);

MRESULT EXPENTRY ClientWndProc(HWND hwndWnd,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2);

INT main(VOID)
{

HAB
HMQ
ULONG
HWND
BOOL
QMSG
LONG

habAnchor;
hmqQueue;
ulFlags;
hwndFrame;
bLoop;
qmMsg;
lWidth,lHeight;

habAnchor Wininitialize(O) ;
hmqQueue = WinCreateMsgQueue(habAnchor,

0);

WinRegisterClass(habAnchor,
CLS_CLIENT,
ClientWndProc,
0,
0);

ulFlags = FCF_TITLEBARIFCF_SYSMENU !FCF_SIZEBORDERIFCF_MINMAX I
FCF_TASKLIST;

/***** *** /
/* create frame window * /
/******************** ** /

526 - The Art of OS/2 Warp Programming
WinMessageBox(HWND_DESKTOP,

HWND_ DESKTOP,
"Only numeric c haracters are

"allowed in thi s fi e ld " ,
"Numerical Field",
0,
MB_ OKjMB_ ERROR);

return MRFROMSHORT(TRUE);
/ * endif

else
{

/ * endwhil e

WinCloseClipbrd(habAnchor);

break;
default

break;

return (*pfnOldEntryProc) (hwndEntry,
ulMsg,
mpParml,
mpParm2);

SUBCLASS.MAK

/* endif

/ * e nds witch

SUBCLASS.EXE: SUBCLASS.OBJ
LINK386 @<<

SUBCLASS
SUBCLASS
SUBCLASS
OS2386
SUBCLASS
<<

SUBCLASS.OBJ : SUBCLASS.C
ICC -C+ -Kb+ -Ss+ SUBCLASS.C

SUBCLASS.DEF
NAME SUBCLASS WINDOWAPI

DESCRIPTION 'Subclass example
Copyright (c) 1992-1995 by Kathl e en Panov
All rights reserved.'

STACKSIZE 16384

*/
*/

*/

*/

The first part of the program should look fairly familiar by now; we're just creating a basic client window.
In the WM_CREATE message processing, we post a UM_CREATEDONE message to indicate the clie •
window has been created completely.

lie- r

Subclassing Windows - 527
In the UM_CREATEDONE processing, we create an entry field using WinCreateWindow. After the
window is created, WinSubclassWindow is called to subclass the default window procedure for an entry
field.

pfnOldEntryProc = WinSubclassWindow(hwndEntry,
newEntryWndProc);

WinSetWindowPtr (hwndEntry,
QWL_USER,
(PVOID)pfnOldEntryProc);

The first parameter is the window to subclass, hwndEntryField. The second parameter is a pointer to the
procedure that messages to the window will be sent to. WinSubclassWindow returns the old window
procedure, and this pointer is stored in the window word for the entry field.

newEntryWndProc is designed to handle only two messages, WM_CHAR and EM_PASTE. All the other
messages will be passed to the normal window procedure for entry fields.

if (CHARMSG(&ulMsg) ->fs&KC_CHAR)
{

if (! isdigit(CHARMSG(&ulMsg) ->chr) &&
(CHARMSG(&ulMsg)->chr != ' \ b'))

WinMessageBox (HWND_DESKTOP,
HWND_DESKTOP,

"Only numeric characters are allowed in this field",
"Numeric Field",
0 ,
MB_OKIMB_ERROR);

return MRFROMSHORT (TRUE);

The WM_CHAR processing is fairly straightforward. We will look at all the KC_CHAR keys. The only
character keys we want to allow are the digits 0 to 9 and the Backspace key. The other editing keys set the
KC_ VIRTUALKEY flag, not the KC_CHAR flag, so they will be allowed. If a nonnumeric character is
entered, WinMessageBox is called to pop up an error message, telling the user that only numeric keys are
allowed in this field. Next, we return TRUE in order to prevent the character from being processed by the
next procedure called for the entry field.

The other message we want to intercept is EM_PASTE. This message is generated whenever text is pasted
into the entry field from the clipboard. Remember, the keyboard is not the only method of entering text in
an entry field. To determine if the data is valid, we have to take a peek at what is in the clipboard.

habAnchor = WinQueryAnchorBlock(hwndEntry);
WinOpenClipbrd (habAnchor);
pchText = (PCHAR) WinQueryClipbrdData(habAnchor,

CF_TEXT);

The clipboard is opened by calling WinOpenClipbrd.

528 -The Art of OS/2 Warp Programming

BOOL WinOpenClipbrd(HAE hab)

There is only one parameter for the function, the anchor block. This gives ownership of the clipboard to
the application window. No other window can open the clipboard while it is open. This is potentially a
very dangerous situation. If the clipboard is already open when WinOpenClipbrd is called, the function
will not return until the clipboard can be opened. Presumably most programs out there are well behaved
and will close the clipboard as soon as they are done, but programmers must beware: If programs don 't
close the clipboard, the message queue will be frozen unless the clipboard is opened in another thread.
Once the clipboard is opened, WinQueryClipbrdData is called.

ULONG WinQueryClipbrdData(HAB hab ,
ULONG fmt);

This function has two parameters, the anchor block and the clipboard data format that is to be retrieved. In
our case, we are concerned only with text, so the format CF_ TEXT is used. Table 27 .1 presents the other
possible values for formats .

Table 27.1 Clipboard Formats

CF_TEXT
CF_DSPTEXT
CF_BITMAP
CF _DSPBITMAP
CF _METAFILE
CF _DSPMET AFILE
CF PALETTE

Text format
Private text display format
Bitmap
Private bitmat display format
Metafile
Private metafile display format
Palette

The function returns a string of the text contained in the clipboard. If no text is in the clipboard, the string
will be NULL.

strcpy (achText,
pchText);

WinCloseClipbrd(habAnchor);
usindex = O;
while (achText[usindex))
{

if (!i sdigit (achText[usindex++)))
{

WinMessageBox(HWND_DESKTOP,
HWND_DESKTOP,
"Only numeric characters are "
"allowed in this field",
"Numerical Field",
0,
MB_OK IMB_ERROR);

return MRFROMSHORT(TRUE);

Subclassing Windows - 529

After we have the string, we check each digit to see if it is a numeric character. If not, the error message
box is again displayed, and we return TRUE to avoid further processing.

r etu r n (*pf nO ldEnt ryProc) (hwndEntry,
ulMsg,
mpParml,
mpParm2) ;

If the characters entered are valid, or if the message is something other than WM_ CHAR or EM_PASTE, it
will fall through the switch statement. At this point, we want to call the old procedure for the entry field.

Superclassing
Suppose the developer wants to create a lot of these numeric-only entry fields. There is an easier way than
to call WinSubclass Window for every one that is created-a concept called superclassing. This creates a
whole new window class, created using WinRegisterClass, that has the subclassed procedure as its default
window procedure. In the last example program, we could call WinRegisterClass to create a class called
WC_NUMERICENTRY. The window procedure used would be newEntryWndProc. However, instead of
storing the old window procedure in the window word, we could call WinQueryClasslnfo using the
WC_ENTRYFIELD class and return that procedure for all the messages that we are not handling.

Subclassing is a very easy way to modify the existing controls in Presentation Manager to work the way we
want them to. A lot of powerful things can be done using subclassing or superclassing.

Chapter 28

Presentation Manager Printing

One of the more profound limitations of DOS was that if an application needed to support many different
screens and/or printers, display- and/or printer-specific code had to be written for each type of device.
Even though the better programmers could make the job easier with a good design, the effort required to
code and support the multitude of output devices was often disheartening enough to dissuade all but
commercial developers from attempting the feat.

When the Presentation Manager was added to OS/2 1.1, the concept of output device independence finally
became an attainable reality because of the layer of abstraction that a handle to the presentation space
(HPS) provides; the HPS contains only the settings of the current logical attributes (color, fill type, line
type, etc.) that were set by default or by the application. The binding of this (and thus the mapping of the
logical attributes to their physical counterparts) to a specific device is done by associating the HPS to a
device context. The device context (HDC) contains the actual attributes being used and other things, such
as the size of the displayable area. This association between HPS and HDC is done either with the
GpiAssociate call or when the HPS is created by using the GPIA_ASSOC flag in the GpiCreatePS call.

Knowing this, it probably is evident that by associating the HPS with an HDC that corresponds to the
appropriate device, an application can create output on that device without any changes to the code. This is
almost correct; Presentation Manager is more attuned to the display device than to the printer, since the
display is used significantly more than the printer. Thus, when drawing to the screen, PM eliminates the
need for a Jot of the coding details that are necessary when drawing to a printer or plotter.

Still, this is much better than how DOS does it (or doesn ' t do it, depending on how it is looked at).

This chapter discusses the details of establishing a "connection" with a hardcopy device and the associated
bells and whistles that can be created to ensure that an application has to do as little work as needed.

A Printer's Overview
Before we begin, a bit of overview regarding printing system design is needed. As with the output device
model, there is a layer of abstraction between the application and the printer. This is the print queue,
which is associated with a print port, which can be a physical port or a networked logical port. The
similarity stops here, however, since each print queue is also assigned a printer driver. Applications
"print" to the print queue, which stores the output in a device-independent format and relies on the printer
driver to convert the device-independent graphics commands to device-specific ones. (Actually, the output
goes to a queue processor, which uses the printer driver to assist it in converting the commands to the
printer-specific ones.) Figure 28.l presents a view of the print subsystem.

531

532 -The Art of OS/2 Warp Programming

(If spooler is
disabled)

Application

Printer Queue

Queue Processor

Printer Port

Printer

Spooler

Printer Driver

Figure 28.1 A view of the print subsystem.

Now we turn to the pseudocode on which we initially base the sample code. This describes the strategy
used for creating hardcopy output. "Draw page" is an abstract term that is defined by the application.

Initialize a DEVOPENSTRUC for the desired printer / plotter
Open a dev ice context (HDC)
Create a presentation space (HPS) associated with the printer HDC

Tell the printer that we are starting a print job
Draw page 1
Tell the printer to start a new page
Draw page 2

Tell the printer to start a new page
Draw page n
Tell the printer that we are finished with the print job

Destroy the HPS
Close the printer HDC

Two things are worth noting: the reference to the data structure DEVOPENSTRUC and the phrase "tell the
printer that..." The DEVOPENSTRUC is explained next; how to tell the printer anything at all is explainoc
later in this chapter.

The DEVOPENSTRUC structure describes the hardcopy device to PM. It contains the following nine
fields:

typedef struct _DEVOPENSTRUC
PSZ pszLogAddress;
PSZ pszDriverName;
PDRIVDATA pdriv;
PSZ pszDataType;
PSZ pszComment;
PSZ pszQueueProcName;
PSZ pszQueueProcParams;
PSZ pszSpoolerParams;
PSZ pszNetworkParams ;

DEVOPENSTRUC;

Presentation Manager Printing - 533

pszLogAddress points to the name of the printer queue to print to. psUJriverName points to the name of the
printer driver to be used when converting the output to printer-specific commands. pdriv points to printer
specific data to be used when printing-whether to print in portrait or landscape mode. This will be
discussed in more detail later in the chapter. psUJataType points to the type of output being sent. This can
be either PM_Q_STD or PM_Q_RAW, the latter indicating that the application has already converted the
output to the appropriate commands for the printer and that the output should pass directly to the printer
port. Using this is discouraged, since it does not fit into the strategy of output device independence
discussed at the beginning of this chapter. pszComment points to a string describing the output being
printed. pszQueueProcName points to the name of the queue processor to be used. (OS/2 comes with two
queue processors- "PMPRINT" and "PMPLOT'; see the function printDoc below for determining the
default queue processor for a particular printer.) pszQueueProcParams, pszSpoplerParams, and
pszNetworkParams point to a set of queue processor parameters, spooler parameters, and network
parameters. We will not be using these fields.

The initialized DEVOPENSTRUC is passed to DevOpenDC as the fifth parameter, with the number of
fields that are initialized as the fourth parameter. As a rule, all nine fields should always be initialized,
even though all of them won't be used.

"Telling" the printer to do certain things is accomplished by sending it an "escape code." An escape code
is a method of accessing the capabilities of an output device for which there is no APL Two examples of
this are starting and ending a print job.

LONG DevEscape(HDC hdcDevice,
LONG lEscCode,
LONG lSzinData,
PBYTE pbinData,
PLONG plSzOutData,
PBYTE pbOutData);

hdcDevice is the handle to the device context. lEscCode is the DEVESC_ code that you want to issue to
the device. lSzJnData is the size of the data being passed in. pblnData points to the data being passed in.
plSzOutData points to the size of the buffer to receive the results (if any). On return, this variable is
updated to reflect the number of bytes actually copied into pbOutData. pbOutData points to the receiving
buffer for the results of the call (if any).

For escape codes that do not have any data, 0 should be specified for lSzJnData and NULL for pblnData,
plSzOutData, and pbOutData.

534 -The Art of OS/2 Warp Programming
So, substituting real code where possible in our pseudocode, we now have the following code that reflects
the initialization steps to establish the connection between the application and the printer.

BOOL printDoc(HAB habAnchor,PCHAR pchName)
{

DEVOPENSTRUC dosPrinter;
HDC hdcPrinter;
SIZEL szlHps;
HPS hpsPrinter;

!!--- --------
// Initialize a DEVOPENSTRUC for the desired printer / plotter
1/- ----------------------------- --- -------~- --------- ----------
dosPrinter.pszLogAddress="LPTlQ";
dosPrinter.pszDriverName="PSCRIPT";
dosPrinter.pdriv=NULL;
dosPrinter.pszDataType="PM_Q_STD";
dosPrinter.pszComment=pchName;
dosPrinter.pszQueueProcName="PMPRINT";
dosPrinter.pszQueueProcParams=NULL;
dosPrinter.pszSpoolerParams=NULL;
dosPrinter.pszNetworkParams=NULL;

!!---
//Open a device context (HDC)
1/---
hdcPrinter=DevOpenDC(habAnchor,

OD_QUEUED,
II* II

9L,
(PDEVOPENDATA)&dosPrinter,

NULLHANDLE) ;
if (hdcPrinter==NULLHANDLE) {

/! ---------------- ---
/!An error occurred
1/ -------------------------- ---------------------------------
return;

/ * endif * /

!! ----------------------------------- -------------------- -------
//Query the width and height of the printer page
1/------------------- ---
DevQueryCaps(hdcPrinter,CAPS_WIDTH,lL,&szlHps .cx);
DevQueryCaps(hdcPrinter,CAPS_HEIGHT,lL,&szlHps.cy);

!!--- -------
!/ Create a presentation space (HPS} associated with
I I the printer HDC
1/------------------------------ --------------------------------
hpsPrinter=GpiCreatePS(habAnchor,

hdcPrinter,
&szlHps,

PU_PELS IGPIT_MICRO IGPIF_DEFAULT IGPIA_ASSOC};
if (hpsPrinter==NULLHANDLE } {

!!--
// An error occurred
1/------ ----- --- --
DevCloseDC(hdcPrinter};
return;

/* endif * /

Presentation Manager Printing - 535

/! ---
/! Tell the printer that we are starting a print job
1/---
if (DevEscape(hdcPrinter,

DEVESC_STARTDOC,
(LONG)strlen(pchNarne),
pchNarne ,
NULL,
NULL) ! =DEV_OK) {

!!---
//An error occurred
1/ ---
GpiDestroyPS(hpsPrinter);
DevCloseDC(hdcPrinter);
return;

/ * endif * /

!!--
// Draw page 1
1/---
if (!drawPage(hpsPrinter ,l)) {

/! --
// An error occurred so abort the print job
1/ --
DevEscape (hdcPrinter,

DEVESC_ABORTDOC,
OL,
NULL,
NULL,
NULL);

GpiDestroyPS (hpsPrinter);
DevCloseDC (hdcPrinter);
return;

/ * endif * /

!! ---
// Tell the printer to start a new page
1/---
if (DevEscape(hdcPrinter,

DEVESC_NEWFRAME,
0,
NULL,
NULL,
NULL) ! =DEV_OK) {

!! --
// An error occurred so abort the print job
1/--
DevEscape(hdcPrinter,

DEVESC_ABORTDOC,
OL,
NULL,
NULL,
NULL);

GpiDestroyPS(hpsPrinter);
DevCloseDC(hdcPrinter);
return;

/ * endif * /

!/---
// Draw page 2
1/---
if (!drawPage(hpsPrinter,2)) {

536 -The Art of OS/2 Warp Programming
!! --
!/An error occurred so abort the print job
1/--
DevEscape(hdcPrinter,

DEVESC_ABORTDOC,
OL,
NULL,
NULL,
NULL);

GpiDestroyPS(hpsPrinter);
DevCloseDC(hdcPrinter);
return;

/ * endif */

!/ ---
!!Tell the printer that we are finished with the print job
1/ ---
if (DevEscape(hdcPrinter,

DEVESC_ENDDOC,
OL,
NULL,
NULL,
NULL) ! =DEV_OK) (

11 --
/! An error occurred so abort the print job
1/ --
DevEscape(hdcPrinter,

DEVESC_ABORTDOC,
OL,
NULL,
NULL,
NULL);

GpiDestroyPS (hpsPr inter);
DevCloseDC(hdcPrinter);
return;

/* endif */

/!- --
!! Destroy the HPS and close the printer HDC
1/---
GpiDestroyPS(hpsPrinter);
DevCloseDC (hdcPrinter);

Looking at the hard-coded values for pszLogAddress and pszDriverName, it is hard to imagine this as
being the device-independent code discussed earlier. Well, that's right. Actually there is a (huge) ste;:
before this to initialize the initialization-selecting the printer and any job-specific parameters.

Where's My Thing?
What we need is a way to figure out what printers and queues are defined so that we do not have to rely ~

hard-coded values or prompt the user for this information. Instead, we should simply retrieve the needeC
data and present the user with a choice of printers to print to. Fortunately, this information is obtainab e
through the spooler (Spl) functions and in particular SplEnumQueue.

(SPLERR)SplEnurnQueue(PSZ pszComputer,
ULONG ulLevel'
PVOID pvBuf '
ULONG ulSzBuf,
PULONG pulNumReturned,
PULONG pulNurnTotal,
PULONG pulSzBufNeeded,
PVOID pvReserved);

Presentation Manager Printing - 537
pszComputer is the name of the computer containing the queues to enumerate. This is for networked
printing and can be NULL to specify the local computer. u!Level specifies the amount and type of
information to return. pvBuf points to a buffer to contain the results. If NULL, the number of bytes needed
is returned in pulSzBujNeeded. ulSzBuf specifies the size of the buffer pointed to by pvBuf If pvBuf is
NULL, this is ignored. pu!NumRetumed specifies the number of queues returned, while pulNumTotal
specifies the total number of queues. pvReserved is reserved and must be NULL.

The data returned is dependent on the value of u!Level and can be one of those specified in Table 28.1 .

Table 28 .1 Values of u/Level

3 pvBuf points to an array of PPRQINF03 structures.
4 pvBuf points to a list of PPRQINF03 structures, with each element of the list followed by 0 or

more PPRflNF02 structures describing the jobs currently in the queue.
5 pvBuf points to a queue name.
6 pvBuf points to an array of PPRQINF06 structures.

We will be interested in information level 3, which returns all of the information that we will need to
eliminate the hard-coded values shown in the preceding code. Let's look at the PRQINF03 structure in
detail.

typedef struct _PRQINF03
PSZ pszName;
USHORT uPriority;
USHORT uStartTime;
USHORT uUntilTime;
USHORT fsType;
PSZ pszSepFile;
PSZ pszPrProc;
PSZ pszParms;
PSZ pszComment;
USHORT fsStatus;
USHORT cJobs;
PSZ pszPrinters;
PSZ pszDriverName;
PDRIVDATA pDriverData;

PRQINF03;

pszName is the queue name. uPriority is the default queue priority and is used to calculate the default job
priority for the queue. uStartTime is the number of minutes past midnight when the queue becomes active.
uUntilTime is the number of minutes past midnight when the queue becomes inactive. fsType specifies one
or more flags describing any characteristics of the queue. pszSepFile points to the file name of the
separator page. pszPrProc points to the name of the queue processor used. pszParms points to the default
queue processor parameters to be used. pszComment points to the description string that is displayed in
the Workplace Shell. fsStatus specifies one or more flags describing the status of the queue. cJobs
specifies the number of jobs in the queue. pszPrinters specifies one or more printers, separated by
commas, that use this queue (for printer pooling). pszDriverName specifies the printer driver and device (if
the driver supports more than one device) separated by a period. pDriverData points to the default driver
data to be used.

538 - The Art of OS/2 Warp Programming

We will see later that the only information we really need for any printer is the corresponding
DEVOPENSTRUC structure and the device name, if the printer driver supports more than one device. The
function createPrnList enumerates the printers in the system and calls extractPrnlnfo to initialize the
DEVOPENSTRUC structure for the printer. Also included is destroyPrnList, which returns any consumed
memory to the system.

The following is code for extracting the DEVOPENSTRUC information from a PRQINF03 structure.

typedef struct {
DEVOPENSTRUC dosPrinter;
CHAR achDevice[256J;

} PRNLISTINFO, *PPRNLISTINFO;

#define CPL_ERROR
#define CPL_NOPRINTERS
#define CPL_SUCCESS

(USHORT)O
(USHORT)l
(USHORT)2

VOID extractPrninfo(PPRQINF03 ppiQueue,DEVOPENSTRUC *pdosPrinter)
11---
11 This function extracts the needed information from the specified
I I PRQINF03
II structure and places it into the specifies DEVOPENSTRUC
II structure.
II
II Input: ppiQueue - points to the PRQINF03 structure
II Output : pdosPrinter - points to the initialized DEVOPENSTRUC
II structure
11---------------------------------- -------- ---------------------
{

PCHAR pchPos;

pdosPrinter->pszLogAddress=ppiQueue->pszName;

pdosPrinter->pszDriverName=ppiQueue->pszDriverName ;
pchPos=strchr(pdosPrinter->pszDriverName,'. ');
if (pchPos!=NULL) {

*pchPos=O;
} I* endif *I

pdosPrinter->pdriv=ppiQueue->pDriverData;
pdosPrinter->pszDataType="PM_Q_STD" ;
pdosPrinter->pszComment=ppiQueue->pszComment ;

if (strlen(ppiQueue->pszPrPr oc)>O) {
pdosPrinter->pszQueueProcName=ppiQueue->pszPrProc ;

else {
pdosPrinter->pszQueueProcName=NULL;

I* endif *I

if (strlen(ppiQueue->pszParms)>O) {
pdosPrinter->pszQueueProcParams=ppiQueue->pszPar ms ;

e lse {
pdosPrinter->pszQueueProcParams=NULL;

I* endif *I

pdosPrinter->pszSpoolerParams=NULL;
pdosPrinter->pszNetworkParams=NULL;

USHORT createPrnList(HWND hwndListbox)
11 ----------------------------- --------- --- ---------------------- --
11 This function enumerates the printers available and inserts them
II into the specified listbox.
II

Presentation Manager Printing - 539
II Input: hwndListbox - handle to the listbox to contain the list
II Returns: an CPL* c onstant
11--
{

SPLERR seError;
ULONG ulSzBuf;
ULONG ulNurnQueues;
ULONG ulNurnReturned;
ULONG ulSzNeeded;
ULONG ulindex ;
PPRQINF03 ppiQueue;
PCHAR pchPos;
PPRNLISTINFO ppliinfo;
SHORT sinsert;

11 ---
11 Get the size of the buffer needed
11 ---
seError=SplEnurnQueue (NULL,

3'
NULL,
OL,
&ulNurnReturned,
&ulNurnQueues,
&ulSzNeeded,
NULL) ;

if (seError!=ERROR_MORE_DATA)
return CPL_ERROR;

} else
if (ulNurnQueues==O) {

return CPL_NOPRINTERS;
} I* endif *I

ppiQueue=malloc(ulSzNeeded) ;
if (ppiQueue==NULL) {

return CPL_ERROR;
} I* endif *I

ulSzBuf =ulSzNeeded;

11 ---------------------------- ---------------------------------
11 Get the information
11---
SplEnurnQueue(NULL,

3'
ppiQueue ,
ulSzBuf,
&ulNurnReturned,
&ulNurnQueues,
&ulSzNeeded,
NULL);

11 ---
11 ulNurnReturned has the count of the number of PRQINF03
II structures.
11 ---
for (ulindex=O; ulindex<ulNurnReturned; ulindex++) {

11 --
11 Since the "comment" can have newlines in it, replace them
II with spaces
11 --
pchPos=strchr(ppiQueue[ulindex] .pszComment, '\n');
while (pchPos ! =NULL) {

*pchPos= ' ';
pchPos=strchr(ppiQueue[ulindexJ .pszComment, ' \ n');

I* endwhile *I

540 -The Art of OS/2 Warp Programming

ppliinfo=malloc(sizeof(PRNLISTINFO));
if (ppliinfo==NULL) {

continue;
} I * endif *I

11---
11 Extract the device name before initializing the
II DEVOPENSTRUC structure
11--
pchPos=strchr(ppiQueue[ulindex] .pszDriverName, ' . ');
if (pchPos!=NULL) {

*pchPos=O ;
strcpy (ppliinfo->achDevice ,pchPos+l);

I* endif *I

extractPrninfo(&ppiQueue[ulindex],&ppliinfo->dosPrinter);

sinsert=(SHORT)WininsertLboxitem(hwndListbox,
0,

ppiQueue [ulindex] .pszComment);

WinSendMsg(hwndListbox,
LM_SETITEMHANDLE,
MPFROMSHORT(sinsert),
MPFROMP(ppliinfo));

if ((ppiQueue[ulindex] .fsType &
PRQ3_TYPE_APPDEFAULT) != 0) {

WinSendMsg(hwndListbox,
LM_SELECTITEM,
MPFROMSHORT(sinsert) ,
MPFROMSHORT(TRUE));

I* endif *I
I* endfor * I

free (ppiQueue) ;
return CPL_SUCCESS;

VOID destroyPrnList(HWND hwndListbox)
11--
11 This function destroys the printer list and returns the memory
II to the system.
II
II Input: hwndListbox - handle of the listbox containing the
II printer list
11--
{

USHORT usNumitems;
USHORT usindex ;
PPRNLISTINFO ppliinfo;

usNumitems=WinQueryLboxCount(hwndListbox);

for (usindex=O; usindex<usNumitems; usindex++) {
ppliinfo=(PPRNLISTINFO)PVOIDFROMMR(WinSendMsg(hwndListbox,

LM_QUERYITEMHANDLE,
MPFROMSHORT(usindex),
OL));

if (ppliinfo! =NULL)
free (ppliinfo);

I * endif *I
I* endfor *I

WinSendMsg(hwndListbox,LM_DELETEALL,OL,OL);

Presentation Manager Printing - 541

I Want That with Mustard, Hold the Mayo, No Onions, Extra Ketchup
Okay, so now we have the printer selection tools needed (you're going to have to write the dialog
procedure!), but what if the user wants the printer output to go to a file, for example? In a restaurant, when
we want to order an entree, we usually can see what it comes with ("a vegetable and a choice of salad or a
dessert"). With printers, the same concept applies; it is referred to as the job properties (or as the printer
driver data). These are usually specific to the printer type and can specify portrait or landscape mode and
so on. These job properties are stored in the pdriv field of the DEVOPENSTRUC structure and are queried
and changed via the DevPostDeviceModes function.

(LONG)DevPostDeviceModes(HAB habAnchor,
PDRIVDATA pddData,
PSZ pszDriver,
PSZ pszDevice,
PSZ pszPrinter,
ULONG ulOptions);

habAnchor is the anchor block of the thread calling the function. pddData is used to store the results. If
NULL, this function returns the number of bytes needed to store the data. pszDriver is the printer driver
name and corresponds to the pszDriverName field of the DEVOPENSTRUC structure. pszDevice is the
device name and corresponds to the achDevice field of our PRNLISTINFO structure. pszPrinter is the key
name passed to PifQueryProfileData and is passed to the queryPrinter routine (and is stored in the
achPrinter field). Finally, ulOptions can be one of three DPDM_ constants, as specified in Table 28.2.

Table 28.2 Values of u!Options

DPDM_QUERYJOBPROP
DPDM_POSTJOBPROP

DPDM_CHANGEPROP

Returns the default data in pddData.
Displays the printer-specific dialog box containing the job properties and the
forms list. If pszPrinter is NULL, the initial values displayed on the dialog
box are taken from the pddData field.
Displays first the DPDM_pQSTJOBPROP dialog box and then displays the
"printer-properties" dialog box, allowing the user to change any permanent
settings regarding the printer.

This information now allows us to provide a "Properties" button on a printer selection dialog box. Note
that normally the DPDM_QUERYJOBPROP option isn't needed since the SplEnumQueue returns this
information. We have all of the tools needed to query the printers defined for the system, the data specific
to each, and the job properties.

Where Were We?
Looking back, we now know that somewhere before the initialization of the DEVOPENSTRUC structure,
we need to display a dialog box allowing the user to select which printer to print the document on and any
job properties he or she wishes to use. From the values returned, we can properly initialize the
DEVOPENSTRUC structure with non-hard-coded values, thereby increasing our device independence.
To firm up our knowledge, the following is a simple example program that prints a box.

556 -The Art of OS/2 Warp Programming
PRINT.ff
#define RES_ CLIENT
#define WND_LISTBOX
#define M_SAMPLE
#define MI_PRINT
#define MI_SETUP
#define MI_REFRESH
#define M_EXIT
#define MI_EXIT
#define MI_RESUME

PRINT.MAK
ICCOPTS=-C+ -Gm+ -Kb+ -Ss+
LINKOPTS=/MAP /A:l6

PRINT.EXE:

PRINT,
PRINT,
PRINT,
OS2386
PRINT
<<

LINK386 $(LINKOPTS) @<<

RC PRINT.RES PRINT.EXE

PRINT.RES:

256
257
256
257
258
259
260
261
262

PRINT.OBJ \
PRINT.RES

PRINT.RC \
PRINT.H

RC -r PRINT.RC PRINT.RES

PRINT.OBJ:

ICC $(ICCOPTS) PRINT.C

PRINT.DEF
NAME PRINT WINDOWAPI

DESCRIPTION 'Printing example

PRINT.C \
PRINT.H

Copyright (c) 1992-1995 by Larry Salomon
All rights reserved. '

STACKSIZE 16384

This program illustrates the use of multithreading within a PM application. For more information, see
Chapter 30.

Note that because many PM functions require the existence of a message queue, likely Winlnitialize and
WinCreateMsgQueue will have to be called. Also, it is usually good to call WinCancelShutdown so that
PM will not send the thread a WM_QUIT message if the user should shut down the system while
processing is still in progress.

The extractPrnlnfo, createPrnList, and destroyPrnList functions were used in previous examples.
createPrnList creates a DEVOPENSTRUC structure for each printer present and calls extractPrnlnfo to
initialize it. It also saves the device name for calls to DevPostDeviceModes.

Presentation Manager Printing - 557
drawPage is present only to separate the drawing from the print-job initialization (in printThread) . Since it
:eally does nothing, it could instead be placed directly in printThread. If an application does any complex
drawing, it might be beneficial to keep the drawing separate so that (1) it allows reuse if the code between
rinting and repainting and (2) it does not clutter up the print-job handling. Mileage may vary.

printThread handles the creation of a queued device context and associated presentation space and the
print-job creation. It calls drawPage to actually draw the output. Except for a few changes, it is the same
~ode that was used earlier.

The client' s window procedure (clientWndProc) provides the meat on the bones, so to speak. It utilitizes
the window words to store a pointer to a structure containing any needed instance data. The instance data
here contains the handle of a list box, to avoid using global variables instead. This list box, created in the
WM_ CREA TE processing, contains the list of the printers defined for the system. It is resized in the
WM_SIZE processing to match the size of the client, for maximum utilitization of "screen real estate."

Here we also see our first use of the WM_INITMENU message. This message is sent whenever the action
bar or a pull-down menu is selected. This allows the application to disable menu items according to the
state of the application at the time the menu was selected instead of trying to doing this on a per-action
basis (i.e., the user selected item A on the menu, so immediately disable item B and enable item C).
Taking a snapshot of the application often is much easier to do than figuring out state tables and all sorts of
third-order differential equations just to see if the "Save" menu item should be selectable.

The WM_INITMENU has two parameters as well: SHORTlFROMMP(mpParml) contains the resource ,
ID of the menu that was selected, and HWNDFROMMP(mpParm2) contains the handle of the menu that
was selected. The client checks to see if a printer is selected and if it contains any driver data and enables
or disables the menu items as appropriate.

Of particular interest should be the processing of the menu items. MI_PRINT indicates that something
should be printed, and this should take place asynchronously, so a PRNTHREADINFO structure is
allocated and initialized with the handle of the client window and a pointer to the PRNLISTINFO structure
for the selected window. A second thread finally is created using _beginthread and is passed the pointer to
the PRNTHREADINFO structure. (This second thread is responsible for freeing the structure.)

MI_SETUP has practically nothing to do since everything was done already by createPrnList. It simply
queries the PRNLISTINFO structure and calls DevPostDeviceModes.

MI_REFRESH simply calls destroyPrnList followed by createPrnList. This is needed in case the user adds
a new printer after starting the application. Unfortunately, yet understandably, there is no way to be
notified whenever the system configuration changes, so we have to force the user to select this menu item
to update the list.

Chapter 29

Help Manager

Beginning with OS/2 1.2, IBM introduced an addition to the Presentation Manager interface
(touted as the "Help Manager") that allowed an application to add both general help and field help
online. (With 1.3, IBM published the previously undocumented method for creating online books,
which are viewed using the system-supplied utility VIEW.EXE). It should be noted, however, that
while this capability is very appealing, it is by no means added to an application quickly; in fact,
well-written online help can take on the average of 1 day/3000 lines of code to complete for the
text alone. (This figure is based on personal experience.) The upside of this is that, for most
Presentation Manager applications, programmers do not have to think about his designing the
programs; online help can be added at any time, providing that the source code to the application
is available.

Application Components

There are at least three parts to the help component of any application: the source code, the
HELPTABLEs, and the definitions of the help panels. The source code is obviously part of the
application source, and includes the corresponding Win* calls and HM_ messages sent to and
received from the Help Manager. The HELPTABLEs (and HELPSUBTABLEs) are part of the resource
file, and they define the relationships between the various windows and the corresponding help
panels. Finally, the help panel definitions describe the look as well as the text of the help panels
and are written using a general markup language (GML)-like language (SCRIPT and Bookmaster
users will recognize the help panel definition language as a subset of the Bookmaster macros they
are familiar with). Let us take a closer look at each of these three parts in more detail.

The Application Source

The source code is usually the smallest component of the three, only because it typically
consists of an initialization section and the processing of a few messages. The initialization
section normally goes in the main routine after the main window is created and follows
the next which is the typical initialization code used in a Presentation Manager application
to create a help instance.

 #define HELP_CLIENT 256

 HELPINIT hiInit;
 CHAR achHelpTitle[256];
 HAB habAnchor;
 HWND hwndHelp;
 HWND hwndFrame;

 : // WinInitialize, etc. goes here

 // We need to initialize the HELPINIT structure before calling
 // WinCreateHelpInstance. See the online technical reference
 // for an explanation of the individual fields.

 hiInit.cb = sizeof(HELPINIT);
 hiInit.ulReturnCode = 0L;
 hiInit.pszTutorialName = NULL;

 // By specifying 0xFFFF in the high word of phtHelpTable, we are
 // indicating that the help table is in the resource tables with
 // the id specified in the low word.

 hiInit.phtHelpTable = (PHELPTABLE)MAKEULONG(HELP_CLIENT,0xFFFF);

 hiInit.hmodHelpTableModule = NULLHANDLE;
 hiInit.hmodAccelActionBarModule = NULLHANDLE;
 hiInit.idAccelTable = 0;
 hiInit.idActionBar = 0;
 hiInit.pszHelpWindowTitle = achHelpTitle;
 hiInit.fShowPanelId = CMIC_HIDE_PANEL_ID;
 hiInit.pszHelpLibraryName = "MYAPPL.HLP";

 hwndHelp = WinCreateHelpInstance(habAnchor,&hiInit);
 if ((hwndHelp != NULLHANDLE) && (hiInit.ulReturnCode != 0)) {
 WinDestroyHelpInstance(hwndHelp);
 hwndHelp = NULLHANDLE;
 } /* endif */

 :
 : // Message loop goes here
 :

 if (hwndHelp != (HWND)NULL) {
 WinDestroyHelpInstance(hwndHelp);
 hwndHelp = NULLHANDLE;
 } /* endif */

As with the relationship between window classes and window instances, there exists a help
manager class of which you create an instance by calling WinCreateHelpInstance. This
function can have one of three outcomes:

1. The call can complete successfully, and the return value is the handle of the help instance.
2. The function can partially complete, returning a help instance handle and specifying an

error code in the ulReturnCode field.
3. The function can fail returning NULL. Because of the subtle difference between (1) and

(2), it is not sufficient to simply check the return value.

If the help instance is successfully created, it becomes the recipient of any messages that you send
and the originator of any messages that are sent to the active window.
Since a help instance is associated with a "root" window and all of its descendants, you need to
indicate what the root window is. This is done using the WinAssociateHelpInstance function.

 (BOOL)WinAssociateHelpInstance(HWND hwndHelp, // Help instance

 HWND hwndWindow); // "Root" window

Specifing a non-NULL value for hwndHelp indicates that this is the active window that should be
used when determining which help panel to display. Specifying NULL for this parameter removes
the current association between the help instance and the window specified. We will see how this
is used shortly.

Gotcha!

Note that the call to WinAssociateHelpInstance will not work if you call it
within the WM_CREATE message of the window with which it is
associated. WinAssociateHelpInstance needs a valid window handle, and
when the WM_CREATE message is received, the window handle is not yet
valid.

Messages

The next piece of source code that you will use in most of your applications deals with the "Help"
pull-down menu and "Help" push-buttons (obviously, if your application does not contain an
action bar or any dialogs, you need not read this). According, to IBM's guidelines on developing a
application user interface, there should exist on the action bar a pull-down titled "Help" that
contains the following four items:

• "Using help..."
• "General help..."
• "Keys help..."
• "Help index..."

There can also be an optional fifth item - labeled "Product information..." - that displays an
"About" box when selected. Fortunately, the Help Manager has four messages that can be sent to
it to process these four menu items. Each of them take no parameters and are listed in Table 29.1:

Table 29.1 Help Manager Display Messages

Message Description

HM_DISPLAY_HELP Displays help on using online help.

HM_EXT_HELP Displays the "extended" help for the current window.

HM_KEYS_HELP Displays the keys help for the current window.

HM_HELP_INDEX Displays the help index.

Except for HM_KEYS_HELP, all that needs to be done is send the appropriate message to the help
instance. Sending HM_KEYS_HELP results in the help instance sending the window a
HM_QUERY_KEYS_HELP message back to determine which "keys help" panel to display. The panel
resource ID should be returned by the programmer in response to this message.

 The behavior of a "Help" push-button is left somewhat up to the programmer. The official IBM
response is that it should display field help - a panel that describes what the purpose is of the
control containing the cursor. We follow this strategy in our applications; it results in the
displaying of the extended help for the frame or dialog. To display this help for the frame, the
programer should define the push button with the BS_NOPOINTERFOCUS style to avoid receiving
the input focus, and should send the help instance a HM_DISPLAY_HELP message (this time with
either the panel resource ID or the panel name in mpParm1 and either HM_RESOURCEID or
HM_PANELNAME in mpParm2) to display the help panel for the current control with the focus. To
display this help for the dialog, the programmer simply needs to send an HM_EXT_HELP message
to the help instance.

The Help Tables

The help tables define the relationship between the control windows and the help panels to be
displayed when the user requests help. Visualizing the help tables as a two-dimensional array of
help panel Ids may make undestanding what they are easier. The first index into this array is the
ID of the window that has been associated with a help instance via WinAssociateHelpInstance,
and the second index is either a menu item ID or an ID of a child window that can receive the
input focus. To understand how the help tables are used, we need to understand the sequence of
events beginning with the user pressing F1 and the displaying of the help panel.

1. The user presses F1.
2. The help instance determines the ID of the window that it is currently associated with.
3. The HELPITEM for the given window ID is referenced, and the appropriate HELPSUBTABLE

is determined.
4. The menu item ID (or the ID of the window with the focus) is used to look up in the

HELPSUBTABLE the ID of the help panel to display.
5. The help panel definition is retrieved from the compiled help file.
6. The help panel is displayed.

There are obviously many places where errors can occur; the most frequent one is when the menu
item ID/child window ID is not in the HELPSUBTABLE. When this occurs, the owner window-chain
is searched (steps 3 - 6). If it is still not found, the parent window chain is also searched. If the ID
has not been found after both searches, the current window is sent a
HM_HELPSUBITEM_NOT_FOUND message, giving it the opportunity to remedy the situation (via a

HM_DISPLAY_HELP message). The default action is to display the extended help for the
current window.

When the ID is found in a HELPSUBTABLE but the panel definition does not exist, or when any
other error occurs (with the exception of HELPSUBITEM not found described above and when the
extended help panel cannot be determined), the application is sent an HM_ERROR message. This
message contains an error code in the first parameter that describes the condition causing the
error. The typical response to receiving this is to display a message and then disable the help
manager by calling WinDestroyHelpInstance.

Given this logical view of the help tables, let us look at a sample definition in a resource file.

Sample HELPTABLE

The tables below describe the online help panels that correspond to the child windows and
menuitems in the application and its associated dialogs.

 HELPTABLE HELP_CLIENT
 {
 HELPITEM HELP_CLIENT, SUBHELP_CLIENT, EXTHELP_CLIENT
 HELPITEM DLG_OPEN, SUBHELP_OPEN, EXTHELP_OPEN
 HELPITEM DLG_PRODUCTINFO,
 SUBHELP_PRODUCTINFO, EXTHELP_PRODUCTINFO
 }

 HELPSUBTABLE SUBHELP_CLIENT
 {
 HELPSUBITEM M_FILE, HELP_M_FILE
 HELPSUBITEM MI_NEW, HELP_MI_NEW
 HELPSUBITEM MI_OPEN, HELP_MI_OPEN
 HELPSUBITEM MI_SAVE, HELP_MI_SAVE
 HELPSUBITEM MI_CLOSE,HELP_MI_CLOSE
 HELPSUBITEM MI_EXIT, HELP_MI_EXIT
 HELPSUBITEM M_HELP, HELP_M_HELP
 HELPSUBITEM MI_USINGHELP, HELP_MI_USINGHELP
 HELPSUBITEM MI_GENERALHELP, HELP_MI_GENERALHELP
 HELPSUBITEM MI_KEYSHELP, HELP_MI_KEYSHELP
 HELPSUBITEM MI_HELPINDEX, HELP_MI_HELPINDEX
 HELPSUBITEM MI_PRODINFO, HELP_MI_PRODINFO
 }
 HELPSUBTABLE SUBHELP_SETOPEN
 {
 HELPSUBITEM DOPEN_EF_FILENAME, HELP_DOPEN_EF_FILENAME
 HELPSUBITEM DLG_PB_OK, HELP_DLG_PB_OK
 HELPSUBITEM DLG_PB_CANCEL, HELP_DLG_PB_CANCEL
 HELPSUBITEM DLG_PB_HELP, HELP_DLG_PB_HELP
 }

 HELPSUBTABLE SUBHELP_PRODINFO
 {

 HELPSUBITEM DLG_PB_CANCEL, HELP_DLG_PB_CANCEL
 HELPSUBITEM DLG_PB_HELP, HELP_DLG_PB_HELP
 }

As is clear from the sample, our application has two dialogs with online help. Their resource
identifiers are DLG_OPEN and DLG_PRODUCTINFO, and that there are 12 child windows or menu
items that belong to the client window. In each of the HELPSUBITEMS, the window ID is on the left
and the corresponding help panel resource ID is on the right.

Gotcha!

If the resource ID specified in the WinCreateStdWindow call is different from
that used as the resource ID of the HELPTABLE, the first parameter to the
HELPITEM that refers to the main window should be the same as the
HELPTABLE resource ID and not the ID for the frame resources.

Message Boxes

When your application needs to give the user some information, one of the way it can do so is by
using the WinMessageBox function. This displays a window that contains application-specified
title and text, as well as an optional icon to the left and one or more predefined push-buttons
(e.g., "OK", "Yes", "Abort", etc.).

 (USHORT)WinMessageBox(HWND hwndParent, // parent window
 HWND hwndOwner, // owning window
 PSZ pszMessage, // pointer to the text
 PSZ pszTitle, // pointer to the title
 USHORT usHelpId, // help topic id
 ULONG ulStyle); // message box style

hwndParent defines the bounding area of the message box; typically, this
is HWND_DESKTOP. hwndOwner specifies the window that "owns" the message
box; this window is disabled while the message box is displayed and is
reactivated when the call returns. pszMessage and pszTitle point to the
message box text and title, respectively. usHelpId is used when MB_HELP
is specified in ulStyle (see below), and ulStyle is a combination of MB_*
constants. This function returns a constant that specifies the push-
button selected on the message box (e.g., MBID_OK, MBID_NO, MBID_RETRY,
etc.)

As might be imagine, only so much can be said in a small dialog
box. Often, what fits is enough for most users to figure out what the
programmer is trying to say. However, it would be nice to provide another
level of detail for those who would like more information (i.e., online
help). The constant MB_HELP specifies that a "Help" push-button is
requested; this is the only button that does not cause the function to
return. Unfortunately, since a message box doesn't have to have an
application window as the owner (HWND_DESKTOP will work fine for
hwndOwner; this could be used in, for example, a program that simply

calls WinMessageBox with the command line for the message for CMD files),
it cannot simply send the owner a message saying that the help button was
pressed. The system, therefore, provides two ways to display help for
message boxes: using a help hook and using HELPTABLEs. We will look at
the latter method later in the chapter.

Fishing, Anyone ?

A "hook" is a function that PM calls whenever a certain event occurs. In a preverted way, we
could look at it as subclassing the entire system, but instead of intercepting messages before the
intended recipient receives them, the application intercepts "events". These events range from
the "code page changed" event to the "DLL has been loaded with WinLoadLibrary" event and
cover 16 different items. There is, of course, a "help requested" event as well, and it is this event
that we are interested in.

 Hooks are installed with WinSetHook and are released with WinReleaseHook Both take the same
parameters:

 below:

 (BOOL)WinSetHook(HAB habAnchor, // HAB of the calling thread
 HMQ hmqQueue, // HMQ of the calling thread,
 // HMQ_CURRENT for current
thread or NULL for
 // system-wide hook
 USHORT usHookType, // HK_* constant
 PFN pfnHookProc, // pointer to the hook
procedure
 HMODULE hmodProc); // HMODULE containing
pfnHookProc

habAncor is the handle to the anchor block of the calling thread. hmqQueue is the handle
of the queue for which events are to be monitored. If this is HULLHANDLE, events for the
entire system are monitored; however, the hook function - since it will be called by
different processes - must reside in a DLL so that PM can load the function when needed.
usHookType is one of the HK_ constants specifying the event to be monitored.
pfnHookProc is a pointer to the event monitoring function (the "hook"). hmodProc is a
handle to the DLL containing the hook function or NULLHANDLE if hmqQueue is not
NULLHANDLE and the hook function resides in the exutable.

Each of the procedures for the different hook types take different parameters and return
different values. Since we're interested in the HK_HELP hook, here is the prototype of the
hook function:

 (BOOL)pfnHookProc(HAB habAnchor, // HAB of the calling thread
 SHORT sMode, // HLPM_* constant
 USHORT usTopic, // Topic number

 USHORT usSubTopic,// Subtopic number
 PRECTL prclPosition);

habAncor is the handle to the anchor block of the thread for which the event occured.
sMode indicates the context in which help was requested and is a HLPM_
constant. usTopic and usSubTopic are dependent on the value of sMode.

Table 29.2 Hook Variables

sMode Is usTopic Is usSubTopic Is

HLPM_FRAME Identifier of the active frame window Identifier of the window with the focus

HLPM_MENU
Identifier of the pull-down menu or
FID_MENU if the action bar selected

Identifier of the menu item or submenu
item for which help was requested.

HLPM_WINDOW Identifier of the message box Not used

The help hook returns TRUE if the next hook in the help hook chain should not be called
and FALSE if the next hook should be called. The typical function of the help hook when
used in this context is to send the help instance a HM_DISPLAY_HELP message to
display the specified help panel.

Gotcha!

Note that the documentation states that the help hook should be installed
before creating the help instance. However, since WinSetHook installed the
hook at the head of the hook chain, this information is backwards. For this
procedure to work properly, the call to WinSetHook should be placed after the
call to WinAssociateHelpInstance.

Given the information in the Gotcha, the following question comes up: Since
WinAssociateHelpInstance is called only aftre frame window has been created successfully, how
does an application provide message box help for the WM_CREATE message ? The answer is to call
WinSetHook after creating the help instance, calling WinCreateStdWindow to create the frame
window, and then releasing the hook, associating the help instance, and resetting the hook with
WinReleaseHook, WinAssociateHelpInstance, and WinSetHook, respectively.

Gotcha!

The header files in the Toolkit indicate that the parameters for the help hook
are a SHORT and two USHORTs for 16-bit applications and a LONG and two
ULONGs for 32-bit application. This is incorrect. The parameters are always a
SHORT and two USHORTs.

The Help Panels

Now that we've seen how easy the code and resource definitions are, it is time to tackle the most
difficult (to do well) and time-consuming aspect of this development phase - writing the help
panels. While the definition of the language is large, it is fairly easy to digest. We will look at only
the rudiments of the language; the full language definition can be gleamed from the online
document entitled "IPF Reference" that is included with the OS/2 Programmer's Toolkit.

The help file (whose file extension is usually ".IPF") is compiled by the "Information Presentation
Facility Compiler" (a.k.a. IPFC) to produce a ".HLP" file that is read by the Help Manager when
WinCreateHelpInstance is called. The source file contains a collection of "tags," which begin with a
colon (:), followed by the tag name, an optional set of attributes, and finally a period (.). Some
tags also require a matching "end tag" (e.g., a "begin list" and "end list" tag), which have no
attributes and whose name usually matches the beginning tag name preceded by an e (e.g., ":sl."
and ":esl."). Table 29.3 presents common tags and their meanings.

Table 29.3 Common IPF Tags

 Tag

 Meaning

:h1. through
:h6.

Heading tag. Headings 1 - 3 also have an entry in the table of contents.

:p. New paragraph.

:fn. :efn. Footnote and ending tag.

:hp1. through
:hp9.

Emphasis tag. This requires the matching ending tag (:ehp1. through :ehp9.).

:link. Hypertext link.

:sl. :esl. Simple list and ending tag.

:ul. :eul. Unordered list and ending tag.

:ol. :eol. Ordered list and ending tag.

:li. List item. Used between the list tags to describe the items in the list.

:dl. :edl. Definition list and ending tag. Whereas the other lists consist of a single element,
definition lists consist of a "data term" and "data definition" (:dt. and :dd.,
respectively).

:dt. :dd. Data term and data definition tags.

:dthd. :ddhd. Data term heading and data definition heading tags. Also, there are a few special
tags that are used only once in a help file.

:userdoc.
:euserdoc.

Beginning and ending of the document.

:title. The text to be placed in the title bar of the help panels.

While most of these tags have attributes, the ones you'll use most are the resource and ID
attributes. The resource attribute allows you to assign a numerical value to a heading tag (e.g.,
":h1 res=2048.Help panel"), and this is what the HELPSUBITEMs reference. The ID attribute allows
you to assign a alphanumeric name for use in hypertext links (e.g., ":h2 id='MYPANEL'.Help
panel"). The ID attribute can be used on both heading and footnote tags, while the resource
attribute can only be used on heading tags. Heading IDs are referenced using the "refid" attribute
of a hypertext link, while a footnote is referenced also using the "refid" attribute of a ":fnref"
(footnote reference) tag.

In addition to the tags, certain symbols that are either translated into different values in other
languages, not easily enterable using the keyboard, or are also used by IPF are defined. These are
referenced by symbol name substitution, beginning with an ampersand (&), including the symbol
name, and ending with a period (.).

Chapter 30

Multithreading in Presentation
Manager Applications

Introduction
Because of what is often perceived as a design flaw in Presentation Manager, tasks that require more time
than is suggested by IBM's "well-behaved" application guideline should be performed in a thread separate
from that which contains the message dispatch loop (denoted by the calls to WinGetMsg and
WinDispatchMsg). However, the issue of communication between the user interface and additional
threads created by the user interface arises because there is no recommended design to follow. This
hapter attempts to design an architecture that is easy to implement yet expandable and requires no global

variables (always a good thing).

Before we can begin to explore this topic, we need to know exactly when should it be used-what exactly
is a "well-behaved" application? When Presentation Manager was introduced in OS/2 1.1, IBM defined
this to be an application that does not take longer than one-tenth of a second to process each message and
return to the message loop. Multithreading lets us avoid this is by creating separate threads for the various
tasks that will take (significantly) longer to complete.

Throughout the years, every conceivable technique has been tried to accomplish mulithreading in a smooth
fashion . The solution presented herein seems to be good for most actions requiring the user to initiate a
task that requires the additional thread. It should be stressed, however, that mileage may vary and that this
may not work as well for programmers and their design "methodologies." This chapter should be used as a
starting point and not as the final result.

For the curious, the reason for this one-tenth of a second rule involves changing the input focus from one
window to another. Developers at IBM decided that, for backward compatibility, type-ahead should be
included as a feature in Presentation Manager. Because of the resulting design, all input from the keyboard
and mouse first goes into a system input queue; it gets moved to the queue of the window with the input
focus whenever WinGetMsg is called.

Whenever WinDispatchMsg routes a message to a window procedure, the function does not return until the
window procedure finishes processing the message; this means that the WinGetMsg function is not called,
which ultimately results in the input not being rerouted from the system queue to the application queue. To
a user, if PM appears "hung"-if he or she tries to change the input focus by clicking with the mouse on
another window, nothing will happen because WinGetMsg is not being called regularly. ·

579

580 - The Art of OS/2 Warp Programming
Fortunately, PM has a "watchdog" thread that monitors the rate at which input messages are removed from
the system queue. If none is removed before a certain time has elapsed, the infamous "the application is
not responding to system messages" window is displayed, allowing the user to terminate the offending
application. OS/2 Warp has a new option in the System notebook of the System Setup folder to disable type
ahead; while this may be a workaround (its effectiveness has yet to be fully tested), this chapter still is
relevant because this setting may or may not be in effect.

Types of Threads
With the brouhaha about client/server programming everywhere we look, it could appear that this is the
only multithreading application. However, a quick reality check reveals that many common user-initiated
operations can be performed in a separate thread. Examples of this include file loading and saving,
printing, and even window initialization (if it takes awhile to finish). What makes these tasks different
from others is that, once the specifics have been collected from the user (if necessary), the processing can
be performed without further user intervention. Threads that perform the tasks are dubbed one-shot
threads because they are created as needed and are destroyed once they are no longer needed. We will
concentrate on these, since they are one of the more common uses of multithreading.

Consider the following list of events.

1. The user selects "Open ... " from the menu.
2. The application is notified of this selection.
3. The application prompts the user for a filename.
4. The application reads the selected file.
5. The user is then allowed to perform operations on the file's data.

As can be seen, these one-shot threads have a specific purpose and usually are accompanied by user input
(e.g., filename to load); thus, communication quickly becomes an issue to be considered. The easy way out
is to use global variables to hold data, but this is inadequate because of synchronization issues and more
important, because the number of threads that perform a specific task must be limited to the number of
global variables defined to hold the data resulting from the operations. Thus only two choices are left:
local (automatic) variables and dynamic allocation. Because we cannot exceed the one-tenth second in our
window procedure we will quickly discard the option of using local variables.

Assuming dynamic allocation is the solution to use, how is data communicated to the thread, and how does
the thread return the results to the user interface?

Designing the Architecture
Since the quality of the solution to any nontrivial problem is dependent on the quality of the design, we
will take a look at this first. There are three defined areas of interest: data communications, entry and
exitpoints, and user feedback.

Data communications involves passing parameters to the thread and receiving results from the thread.
Entry and exit points provide a consistent interface to the programmer, to ease the coding necessary to start
a thread (including data communications) and to allow the easy addition of new one-shot thread types.
User feedback is less an issue of the threading but more an issue of communicating to the user that
processing is being performed in the background.

Multithreading in Presentation Manager Applications - 581

Data Communications
Although data communications is more likely to be associated with interprocess communication, the latter
is unnecessarily complex, because the two ends of the communcations line are not always in the same
process. Because threads always belong to the same process, we can simplify things considerably by
(carefully) using pointers instead of shared memory, queues, or pipes to communicate our intentions. Even
though most compilers provide a runtime function to start a thread and set up the run-time environment so
that the new thread also can call the C runtime library, they are all constrained by the DosCreateThread
function to passing a single argument to the new thread; this limits us to one pointer for all data, which
immediately forces us to use structures to pass things back and forth.

Experience shows that most threads require a common set of information, encapsulated in a THREADINFO
structure.

t ypedef struct _THREADINFO
ULONG u lSzStruct;
HWND hwndOwner;
BOOL bKil l Thread;
HAB habThread;
BOOL bThreadDead;
BOOL bResult;

THREADINFO, *PTHREADINFO;

u/SzStruct specifies the size of the structure. hwndOwner specifies the handle of the window that created
the thread. bKillThread is set to TRUE by the owner when the request is to be aborted. habThread specifies
the anchor block handle of the thread. (Readers should keep reading to see why this is necessary.)
bThreadDead is set to TRUE by the thread when it is dead. (Again, readers should keep reading to see
why this is necessary.) bResult is a blanket indicator of the success or failure of the task.

Since we said that this information is common to most threads and not specific to a particular task, it can be
deduced that the task-specific data is encapsulated in another structure, with a THREADINFO structure as
one of the fields. In fact, the THREADINFO structure should always be the first field, so that any task
independent code can safely typecast any task-specific structure pointer to access the common fields.

typedef struct _OPENTHREADINFO {
THREADINFO tiComrnon;
CHAR achFilename[CCHMAXPATH];
PFILEDATA pfdData;

OPENTHREADINFO, *POPENTHREADINFO;

Entry and Exit Points
As explained earlier, one-shot threads are created as the result of a user action, usually from a menu item.
Because the context of an action (Open file, for example) is dependent on the window that was active when
the action was requested, it makes sense to say that the one-shot thread belongs to the active window.
Since one window class might support many different thread types, a common entry and exit point for all
asynchronous tasks can save a lot of typing. Windows primarily communicate using messages, so we will
introduce two user messages to be used as these entry and exit points.

582 -The Art of OS/2 Warp Programming

MYM_STARTTHREAD This message is sent by a window to create a thread to perform a user-initiated
request.

Parameter 1:
Parameter 2:
Reply:

ULONG ulType
PVOID pvData
BOOL bSuccess

ID of thread type to be created
Pointer to task-specific data
Successful? TRUE: FALSE

MYM_ENDTHREAD This message is sent by a thread to indicate that processing has completed.

Parameter 1:

Parameter 2:
Reply:

ULONG ulType

PVOID pvData
ULONG ulReserved

ID of thread type sending the
message
Pointer to task-specific data
Reserved, 0

pvData in both messages points to the task-specific data discussed in the last section. Because there is
more to the data than the common information, we need to specify the type of the thread being created; the
type identifiers have a one-to-one correspondence to the task-specific structures that also are created.
ulType allows us to switch on this value to access the task-specific portion of each thread type. We will see
later that each thread type identifier should occupy a unique bit in the 32 available.

MYM_STARTIHREAD first initializes the common portion of the structure, allocates enough memory
from the heap (based on the value of ulType) to hold a copy of the structure, and copies pvData to this new
memory block. After this, the thread is created and passed the pointer to the new memory block as the
parameter. Any task-specific fields should be initialized prior to sending this message.

Not all of the fields of the THREADINFO structure can be initialized by the MYM_STARTTHREAD
message. In particular, the habThread, bThreadDead, and bResult fields can be initialized only by the
thread.

#define MYM_STARTTHREAD
#define MYM_ENDTHREAD

#define ASYNC_OPEN

(WM_USER)
(WM_USER+l)

OxOOOOOOOlL

typedef VOID (_Optlink PFNREQ) (PVOID);

case MYM_STARTTHREAD:
{

ULONG ulBit;
PTHREADINFO ptiinput;
PFNREQ pfnThread;
PVOID pvParm;

ulBit=LONGFROMMR(mpParml);
ptiinput=(PTHREADINFO)PVOIDFROMMP(mpParm2);

ptiinput ->hwndOwner=hwndWnd;
ptiinput->bKillThread=FALSE;

switch (ulBit) {
case ASYNC_OPEN:

{

Multithreading in Presentation Manager Applications - 583
POPENTHREADINFO potiinfo;

ptiinput->ulSzStruct=sizeof(OPENTHREADINFO);

potiinfo= (POPENTHREADINFO)malloc(
sizeof (OPENTHREADINFO));

if (potiinfo==NULL) {
WinMessageBox(HWND_DESKTOP,

hwndWnd,
"There is not enough memory.",
"Error",
0,
MB_OK iMB_ICONEXCLAMATION i

MB_MOVEABLE) ;
return MRFROMSHORT(FALSE);

/ * endif * /

memcpy(potiinfo,
ptiinput,
sizeof(OPENTHREADINFO));

pfnThread=(PFNREQ)openThread;
pvParm=(PVOID)potiinfo;

}
break;

default:
WinMessageBox (HWND_DESKTOP,

hwndWnd,
"There is an internal error.",
11 Error",
0,
MB_OK iMB_ICONEXCLAMATIONi

MB_MOVEABLE);
return MRFROMSHORT(FALSE);

/ * endswitch * /

if (_beginthread(pfnThread,NULL,Ox4000,pvParm)==-l)
free (pvParm) ;
WinMessageBox(HWND_DESKTOP,

hwndWnd,
"The thread could not be created.",
"Error",
0,
MB_OKiMB_ICONEXCLAMATION i

MB_MOVEABLE);
return MRFROMSHORT(FALSE);

/ * endif * /

break;

Note the need for the PFNREQ type. If we do not use this, then we will not be able to use the pfnThread
variable; more important, we will receive compiler warnings on the call to _beginthread.

MYM_ENDTHREAD waits for the thread to die, using the bThreadDead field of the THREADINFO
structure as its cue. Afterward, it uses the value of ulType to check the return information (or it could use
the bResult field of the THREADINFO structure for a quick-check). Finally, it performs any processing
necessary to allow the application to continue and then frees the memory allocated for pvData in
MYM_STARTTHREAD.

#define MYM_STARTTHREAD
#define MYM_ENDTHREAD

(WM_USER)
(WM_USER+l)

584 -The Art of OS/2 Warp Programming
#define ASYNC_OPEN

case MYM_ENDTHREAD:
{

ULONG ulBit;
PTHREADINFO ptiinput;

OxOOOOOOOlL

ulBit=LONGFROMMR(mpParml};
ptiinput=(PTHREADINFO}PVOIDFROMMP(mpParm2);

while (!ptiinput->bThreadDead}
DosSleep(l);

} / * endwhile * /

switch (ulBit) {
case ASYNC_OPEN:

{
POPENTHREADINFO potiinfo;

potiinfo=(POPENTHREADINFO}ptiinput;
free (potiinfo};

}
break;

default:
return MRFROMSHORT(FALSE};

} / * endswitch * /

break;

Programmers who think about it for a second will undoubtedly question the use of DosSleep in the
preceding code. Isn't multithreading used in PM programs so that the message loop is always returned to
in one-tenth of a second? Yes, it is; however, as we will see in the thread termination processing, this
message is not sent until just before the thread dies, so the while loop will be executed a few times at most.
Thus, the DosSleep call and the entire loop is rather harmless in this situation.

What Have We So Far?
Let's take a look at an example that illustrates the concepts described up to this point.

THRDl.C
#define INCL_DOSPROCESS
#define INCL_WININPUT
#define INCL_WINMENUS
#define INCL_WINPOINTERS
#define INCL_WINSYS
#define INCL_WINWINDOWMGR
#include <os2.h>
#include <stdlib.h>
#include <string.h>
#include "thrdlrc.h"

#define CLS_MAIN

#define ASYNC_TEST

typedef VOID (* _Optlink

#define MYM_BASE
#define MYM_STARTTHREAD
#define MYM_ENDTHREAD

"ThreadlClass"

OxOOOOOOOlL

PFNREQ} (PVOID};

(WM_USER)
(MYM_BASE)
(MYM_BASE+l)

590 -The Art of OS/2 Warp Programming
THRDlRC.H
#define RES_CLIENT
#define MI_THREAD
#define MI_EXIT

256
257
258

THRDl.MAK
APP=THRDl

$(APP) .EXE: $(APP) .OBJ\
$(APP) .RES

LINK386 / A:l6 $(APP) ,$(APP),NUL,OS2386,$(APP);
RC $(APP) .RES $(APP) .EXE

$(APP) . RES : $(APP) .RC \
$(APP) RC .H

RC -r $(APP) .RC $(APP) . RES

$(APP) . OBJ: $(APP) .C \
$(APP)RC.H

ICC -C+ -Gm+ -Kb+ -Ss+ $(APP) .C

THRDl.DEF
NAME THRDl WINDOWAPI

DESCRIPTION 'PM Threads Example 1
Copyright (c) 1993 by Larry Salomon, Jr.
All rights reserved. '

STACKSIZE Ox4000

Readers should recognize and understand much of the program. Of particular interest is the processing for
the MI_ THREAD menu item.

case MI_THREAD:
{

TESTTHREADINFO ttiTest;

// -------------------------------------
// Request a thread
1/---------------------------------- ---
WinSendMsg(hwndWnd,

MYM_STARTTHREAD,
MPFROMLONG(ASYNC_ TEST),
MPFROMP(&ttiTest));

break;

That is all there is to it. Of course, this sample is simplified somewhat. If, as will likely be the case, there
is task-specific data (there is none in the THRDl sample), you should be initialized prior to sending the
MYM_STARTTHREAD message.

The thread procedure contains some elements that will likely show up in thread procedures. First is the
thread initialization, including initializing the remainder of the THREADINFO structure. Also is the
thread termination, including signaling the owner thread that it is finished.

habAnchor=Wininitialize(O);
hmqQueue=WinCreateMsgQueue(habAnchor,0);

pttiinfo->tiinfo.habThread=habAnchor;

Multithreading in Presentation Manager Applications - 591
pttiinfo->tiinfo.bThreadDead=FALSE ;
pttiinfo->tiinfo.bResult=FALSE;

WinPostMsg(pttiinfo->tiinfo.hwndOwner,
MYM_ENDTHREAD,
MPFROMLONG(ASYNC_TEST),
MPFROMP(pttiinf o));

WinDestroyMsgQue ue(hrnqQueue);
WinTerminate(habAnchor);

DosEnterCritSec ();
pttiinfo->tiinfo.bThreadDead=TRUE;
return;

As with the call to DosSleep in MYM_ENDTHREAD given earlier, the critical section at the end of the
thread is harmless because it exists only briefly.

What would happen if the WinPostMsg was changed to WinSendMsg? Looking at the code for
MYM_ENDTHREAD, the window procedure would enter a loop waiting for the thread to die, but the
thread is in the middle of a WinSendMsg call; a deadlock condition occurs, and killing the application
requires precision timing and a little bit of luck.

Gotcha!
If a thread enters a critical section and then dies, the system automatically marks the
critical section as having been exited.

A typical question that is asked is why an anchor block and a message queue are needed for such a simple
thread. The answer is that they aren't. However, rather than try to determine if a thread needs a message
queue or not, I decided long ago that my time was better spent by creating it anyway and continuing in my
development.

User Feedback
Earlier, we glossed over the issue of feedback to the user. How can we indicate that processing is being
performed in the background? While the answer to this and other similar questions is "it depends on the
application," here are some areas that need to be considered.

Mouse pointers are an immediate indicator that "something" is happening, and the system pointers
SPTR_ WAIT and SPTR_ARROW (whose handle is obtained via the WinQuerySysPointer function) come
in handy . Where is the pointer changed ? The answer appears to be in the processing for
WM_MOUSEMOVE and WM_CONTROLPOINTER, but first we need to be able to tell if something is
going on.

We need to introduce the only data item used for the duration of the window, which goes into the instance
data. In Chapter 9, we explained how window words are used to hold information specific to a window
instance (versus a window class). Storing a pointer to a dynamically allocated structure so that we can
"attach" a lot of data to a window was also discussed. If, in the window words, we add a new field-

592 -The Art of OS/2 Warp Programming

ulAsync, we can store either the number of threads owned by the window or (using the ASYNC_ constants)
the types of threads owned by the window that are active.

This makes the WM_MOUSEMOVE and WM_CONTROLPOINTER messages trivial; we simply check
the value of ulAsync. If it is nonzero, we set the pointer to SPTR_ WAIT; otherwise we leave it alone.

Menu items are another issue. If the user requests that a file be opened, we (usually) do not want to allow
them to try an print the file until we have finished reading the file's contents. This can be addressed again
using ulAsync and the WM_INITMENU message; this message is sent whenever a menu or submenu is
about to be displayed, allowing the application to disable, check, or perform any other operation on the
(sub)menu before the user sees it. We could disable the menu items that are not valid according to the
threads that are active.

User Feedback Example
Let us now take a look at a revised version of THRDl that includes feedback to the user. It changes the
mouse pointer and disables the "Start thread" menu item if the thread is already active.

THRD2.C
#define INCL_DOSPROCESS
#define INCL_WINFRAMEMGR
#define INCL_WININPUT
#define INCL_WINMENUS
#define INCL_WINPOINTERS
#define INCL_WINSYS
#define INCL_WINWINDOWMGR
#include <os2. h>
#include <stdlib.h>
#include <string.h>
#include "thrd2rc.h"

#define CLS_MAIN

#define ASYNC_TEST

"Th read2Class"

Ox OOOOOO OlL

typedef VOID(* _Optlink PFNREQ) (PVOID);

#define MYM_BASE
#define MYM_STARTTHREAD
#define MYM_ENDTHREAD

typedef struct _THREADINFO {

(WM_USER)
(MYM_BASE)
(MYM_BASE+l)

// ---
// Initialized by the main thread
1/--------- --
ULONG ulSzStruct ;
HWND hwndOwner ;
BOOL bKillThread;
// -------- ---
// Initialized by the secondary thread
1/---
HAB habThread;
BOOL bThreadDead;
BOOL bResult;

THREADINFO, *PTHREADINFO;

typedef struct _TESTTHREADINFO
THREADINFO tiinfo;

} TESTTHREADINFO, *PTESTTHREADINFO;

Multithreading in Presentation Manager Applications - 599
$(APP) .OBJ: $(APP) .C \

$(APP)RC.H
ICC -C+ -Gm+ -Kb+ -Ss+ $(APP) .C

THRD2.DEF
NAME THRD2 WINDOWAPI

DESCRIPTION 'PM Threads Example 2
Copyright (c) 1993 by Larry Salomon, Jr.
All rights reserved. '

STACKSIZE Ox4000

As we discussed, the three messages that we are interested in are WM_INITMENU, WM_MOUSEMOVE,
and WM_CONTROLPOINTER, which are grouped together just before the MYM_STARTIHREAD
message.

case WM_INITMENU:
switch (SHORTlFROMMP(mpParml))
case FID_MENU:

if ((pidData->ulAsync & ASYNC_TEST) ! =0) {
WinEnableMenuitem(HWNDFROMMP(mpParm2),

MI_ THREAD ,
FALSE);

else {
WinEnableMenuitem(HWNDFROMMP(mpParm2),

MI_THREAD,

/* endif */
break;

default:

TRUE);

return WinDefWindowProc(hwndWnd,
ulMsg,
mpParml,
mpParm2);

} / * endswitch * /
break;

We first need to determine, in the preceding code, which menu is about to be displayed. In our application,
this is unnecessary, since there are no submenus, but for illustrative purposes the check is included. If the
ASYNC_TEST bit is set in pidData->ulAsync, then we disable the item; otherwise we reenable it.

This brings up an interesting point for programmers to consider: Suppose it is valid to have multiple
threads of the same type active simultaneously. We can no longer set individual bits in ulAsync, but if we
simply keep a thread count, we do not know what types of threads are active. The solution to this dilemma
is left to readers as an exercise.

case WM_MOUSEMOVE:
{

HPOINTER hpPointer;

if (pidData->ulAsync>O)
hpPointer=

WinQuerySysPointer(HWND_DESKTOP,
SPTR_WAIT,
FALSE);

WinSetPointer(HWND_DESKTOP,hpPointer);
return MRFROMSHORT(TRUE);

else {

600 - The Art of OS/2 Warp Programming
return WinDefWindowProc(hwndWnd,

ulMsg,
mpParml,
mpParm2);

} / * endif */

case WM_CONTROLPOINTER:
{

HPOINTER hpPointer;

if (pidData->ulAsync>O)
hpPointer=

WinQuerySysPointer(HWND_DESKTOP ,
SPTR_WAIT,
FALSE);

return MRFROMLONG(hpPointer);
else {
return WinDefWindowProc(hwndWnd,

ulMsg,
mpParml ,
mpParm2);

} / * endif *I

The processing for these two messages is trivial but their effect is profound. By changing the pointer, the
user is instantly notified of background processing. More important, by changing the pointer in these
messages, only our application is affected, allowing other applications running to be used while the task is
performed.

Synchronicity
Ah ... back to the old days, when programming in DOS was considered exotic-there was only one
process, text mode was considered an okay interface for most programs, and function calls were always
synchronous. Well, the first two items might no longer hold true, but the last one is at least attainable for
one-shot threads.

What? How can an asynchronous concept like multithreading be done synchronously? That idea is
paradoxical in itself, much less the attempt at implementing it! The trick here is to reconsider the issue of
synchronicity; it is, as Einstein would have said, based on frame of reference. In other words, something
could not in reality be synchronous but appear so to the user (the application program).

In the beginning of the chapter we stated the one-tenth-second rule, which said that, in summary, the
application must remain responsive to the user. What would happen if we wrote a function that started a
thread and immediately went into a message loop until the thread was finished? Take a look at the
WinDlgBox or WinMessageBox functions; they are both synchronous functions whose length of execution
is dependent on the user, yet they do not "hang" the application. How do they do it? Now you know
they initialize their environment and then enter a message loop to insure that responsiveness is maintained.

In order to implement this concept in a modular fashion, we need to think carefully. It should be obvious
that all "synchronous" threads are going to have a call to _beginthread followed by a message loop, in
addition to other stuff. If we extract this portion out, we can write a generic "dispatch" function.

#define DT_NOERROR
#define DT_QUITRECEIVED
#define DT_ERROR

0
1
2

Multithreading in Presentation Manager Applications - 601
USHORT dispatchThread(HAB habAnchor,

PFNREQ pfnThread,
PTHREADINFO ptiinf o)

TID tidThread;
BOOL bLoop;
QMSG qmMsg;

ptiinfo->bKillThread=FALSE;
ptiinfo->bThreadDead=FALSE;

tidThread=_beginthread(pfnThread,
NULL,
Ox400 0 ,
ptiinfo);

if (tidThread==(TID)-1) {
return DT_ERROR;

} / * endif * /

WinPeekMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0,
PM_REMOVE) ;

bLoop=((qmMsg.msg!=WM_ QUIT) &&
(!ptiinfo->bThreadDead));

while (bLoop) {
WinDispatchMsg(habAnchor,&qmMsg);
WinPeekMsg(habAnchor,

&qmMsg ,
NULLHANDLE,
0,
0'
PM_REMOVE) ;

bLoop=((qmMsg.msg!=WM_QUIT) &&
(!ptiinfo->bThreadDead));

/* endwhile * /

if (qmMsg.msg==WM_ QUIT) {
DosKillThread(tidThread);
return DT_QUITRECEIVED;

} / * endif * /

return DT_NOERROR;

The definitions of PFNREQ and THREADINFO are the same as before, so this function shouldn' t be too
hard to digest. There are a few things that aren ' t obvious, however.

The first is the initialization of bThreadDead. Before, this was done in the thread, but since we
immediately start checking this value after the call to _beginthread, we should initialize this ourselves
because conceivably the thread could have had no timeslices before we query this value.

The second item of note is the use of WinPeekMsg instead of WinGetMsg .

BOOL WinPeekMsg(HAB habAnchor,
PQMSG pqmMsg,
HWND hwndFilter,
ULONG ulFilterFirst,
ULONG ulFilterLast,
ULONG ulFlags) ;

602 - The Art of OS/2 Warp Programming

The parameters are all the same as with WinGetMsg (discussed in Chapter 11), with the exception of
u!Flags, which is unique to WinPeekMsg. It can have the value PM_REMOVE or PM_NOREMOVE,
which specifies that the message in the queue is to be removed or not removed, respectively. We are not
interested in the parameters, however; our concern is with the behavior. If there are no messages in the
queue, WinPeekMsg will return immediately, while WinGetMsg will not. This is significant because, if the
user does not touch the mouse or the keyboard, and no timers are started, the dispatchThread function will
never return, even though the thread might have finished.

Some of the PMWIN developers at IBM discouraged this use of DosKil!Thread, so it is not necessarily a
good one. Supposedly, its use can cause stability problems if the thread being killed has a message queue.
I use it here because I have never had any problems with it, but this isn't to say that the problem doesn't
exist. Mileage may vary.

Synchronous Threading Example
The following sample program illustrates this "synchronous" threading concept, which is applied it to
THRD 1, cited earlier.

THRD3.C
#define INCL_DOSPROCESS
#define INCL_WININPUT
#define INCL_WINMENUS
#define INCL_WINPOINTERS
#define INCL_WINSYS
#define INCL_WINWINDOWMGR
#include <os2.h>
#include <stdlib.h>
#include "thrd3rc.h"

#define CLS_MAIN

#define DT_NOERROR
#define DT_QUITRECEIVED
#define DT_ERROR

"Thread3Class"

0
1
2

typedef VOID(* _Optlink PFNREQ) (PVOID);

typedef struct _THREADINFO {
//------ ----------------------------- ---------- -- --
// Initialized by the main thread
1/---
ULONG ulSzStruct;
HWND hwndOwner;
BOOL bKillThread;
//-------------------------------- -----------------
// Initialized by the secondary thread
11---------------------- ---------------- -----------
HAB habThread;
BOOL bThreadDead;
BOOL bResult;

THREADINFO, *PTHREADINFO;

typedef struct _TESTTHREADINFO
THREADINFO tiinfo;

} TESTTHREADINFO, *PTESTTHREADINFO;

WinDestroyWindow(hwndFrarne);
/* endif */

WinDestroyMsgQueue(hrnqQueue);
WinTerminate(habAnchor);
return O;

THRD3.RC
#include <os2.h>
#include "thrd3rc.h"

MENU RES_CLIENT
{

MENUITEM "-Start thread", MI_ THREAD
MENUITEM SEPARATOR
MENUITEM "E-xit " , MI_EXIT

THRD3RC.H
#define RES_CLIENT
#define MI_ THREAD
#define MI_EXIT

THRD3.MAK
APP=THRD3

256
257
258

Multithreading in Presentation Manager Applications - 607

$(APP) .EXE: $(APP) .OBJ\
$(APP) .RES

LINK386 $(APP) ,$(APP),NUL,OS2386,$(APP);
RC $(APP) .RES $(APP) . EXE

$(APP) .RES: $(APP) .RC \
$(APP)RC.H

RC -r $(APP) .RC $(APP) .RES

$(APP) .OBJ: $(APP) .C \
$ (APP)RC.H

ICC -C+ -Gm+ -Kb+ -Ss+ $(APP) .C

THRD3.DEF
NAME THRD3 WINDOWAPI

DESCRIPTION 'PM Threads Example 3
Copyright (c) 1993 by Larry Salomon , Jr.
All rights reserved.'

STACKSIZE Ox4000

Object Windows
The final method that we will look at here for performing long tasks asynchronously is the use of object
windows. An object window is like any other window used in other applications with the following, very
important exceptions:

608 - The Art of OS/2 Warp Programming

• Object windows do not receive any system messages other than WM_CREATE and
WM_DESTROY.

• Object windows are not subject to the one-tenth of a second rule.

The second point is simply a consequence of the first. Remember, the 1/lOth of a second rule came about
to insure that input messages (keyboard and mouse) were transferred from the system input queue to the
message queue of the application. However, the first point says that object windows receive only the two
messages listed; this means that they never receive the mouse or keyboard messages from the system.

Gotcha!
Although an object window can take more than one-tenth of a second to process a
request, a call to WinSendMsg will not return until the object window exits its window
procedure. Thus, WinPostMsg should be used to communicate with an object window
unless it is absolutely necessary to send the message instead. This same logic applies
to the WinDispatchMsg function, as we'll see.

An object window typically is not used for one-shot threads because of its ability to send and receive
messages and its persistence due to the message loop in the thread. Object windows instead lean toward
client/server applications, although there is nothing that object windows can do that cannot be done with
the one-shot architecture already discussed.

Building a Blind Window
Now we know what an object window is and for what it is used, but how do we use it in our application?
Since an object window can take as long as it feels necessary to process a message, we cannot use the
message loop of the main thread to dispatch messages to it (as was explained in the last "Gotcha"). What is
needed is the creation of a second thread that has its own message loop in it.

Communication with the object window is done through user messages, as we see in the next example.

THRD4.C
#define INCL_DOSPROCESS
#define INCL_WININPUT
#define INCL_WINMENUS
#define INCL_WINPOINTERS
#define INCL_WINSYS
#define INCL_WINWINDOWMGR
#include <os2.h>
#include <stdlib.h>
#include "thrd4rc.h"

#define CLS_MAIN
#define CLS_OBJECT

#define MYM_BASE
#define MYM_STARTREQUEST
#define MYM_ENDREQUEST

#define ASYNC_NOTE
#define ASYNC_WARNING
#define ASYNC_ERROR

"Thread4Class"
"Thread40bjectClass"

(WM_ USER)
(MYM_BASE)
(MYM_BASE+l)

0
1
2

typedef VOID(* _Optlink PFNREQ) (PVOID);

614 ~ The Art of OS/2 Warp Programming

WinDestroyWindow(hwndFrarne);
/* endif */

WinDestroyMsgQueue(lunqQueue);
WinTerminate(habAnchor);
return O;

THRD4.RC
#include <os2.h>
#include "thrd4rc.h"

MENU RES_CLIENT
{

MENUITEM "-Note thread", MI_NOTETHREAD
MENUITEM "-Warning thread", MI_WARNINGTHREAD
MENUITEM "-Error thread", MI_ERRORTHREAD
MENUITEM SEPARATOR
MENUITEM "E-xit", MI_EXIT

THRD4RC.H
#define RES_CLIENT
#define WND_OBJECT
#define MI_NOTETHREAD
#define MI_WARNINGTHREAD
#define MI_ERRORTHREAD
#define MI_EXIT

THRD4.MAK
APP=THRD4

256
257
258
259
260
261

$(APP) .EXE: $(APP) .OBJ \
$(APP) .RES

LINK386 $(APP) ,$(APP),NUL ,OS2386,$(APP);
RC $(APP) .RES $(APP) .EXE

$(APP) .RES: $(APP) .RC\
$ (APP)RC.H

RC -r $(APP) .RC $(APP) .RES

$(APP) .OBJ: $(APP) . C \
$(APP)RC.H

ICC -C+ -Gm+ -Kb+ -Ss+ $(APP) .c

THRD4.DEF
NAME THRD4 WINDOWAPI

DESCRIPTION 'PM Threads Example 4
Copyright (c) 1993 by Larry Salomon, Jr.
All rights reserved. '

STACKSIZE Ox4000

Careful observation will show that objectThread is almost identical to main. The creation of the object
window is done with a call to WinCreateWindow.

Multithreading in Presentation Manager Applications - 615

pidDa t a->hwndObject =WinCrea t e Wi ndow(HWND_ OBJECT ,
CLS_OBJ ECT ,

0,
0,
0,
0 ,
0,
HWND_ OBJECT ,
HWND_TOP,
WND_OBJ ECT,
NULL,
NULL);

What tells PM to make this an object window is that the parent (the first parameter) is the predefined
constant HWND_OBJECT.

Design Considerations
Before wrapping this topic up, let us consider the following issues.

Who displays messages during the processing of the task? To answer this question, we must consider the
purpose of the message. If the message is event-specific within the thread (e.g., "file could not be
opened"), then it makes sense to have the thread display the message, since the message is associated with
a thread-specific event. However, general result messages (e.g., "printing was unsuccessful") probably are
better left to the owner thread, since they usually can be grouped together in a function that checks the
return information in the thread-specific structure.

How is the thread halted because the user has requested it? Say, for example, a user wants to print a
50-page document and then after realizing that it will take 20 minutes to complete (!) , changes his or her
mind. The THREADINFO structure contains a mild-mannered field bKillThread. The purpose of this is to
inform the thread that it should halt processing and exit.

Of course, because the various thread structures are allocated dynamically and then forgotten about until
the thread finishes, actually getting access to this field to set it to TRUE might be a task in itself. Also,
setting this field to TRUE only signals the thread that it should kill itself; it is up to the thread to monitor
this field so that it can stop itself if needed.

In dispatchThread, we ignored the issue of WM_ QUIT and what should be done if it is received. While
the function will kill the thread and return, what does the application do? A WM_QUIT is sent to an
application only as the result of another action, whether it is the default processing for WM_CLOSE or
because the system is shutting down. In any case, usually it can be safely assumed that, if this message is
received, the application should quit as soon as it is safely possible.

Appendix B

References
IBM [March 1991), Operating System/2™ Programming Tools and Information Version 1.3,
Programming Guide. [91F9259]

IBM [March 1992), OS/2 2.0 Technical Library, Control Program Programming Reference. [1006263)

IBM [March 1992), OS/2 2.0 Technical Library, Presentation Manager Programming Reference Volume I.

[1006264)

IBM [March 1992), OS/2 2.0 Technical Library, Presentation Manager Programming Reference Volume II. [

1006265)

IBM [March 1992), OS/2 2.0 Technical Library, Presentation Manager Programming Reference Volume Ill.
[1006272)

IBM [March 1992), OS/2 2.0 Technical Library, Programming Guide Volume I. [1006261]

IBM [March 1992), OS/2 2.0 Technical Library, Programming Guide Volume II. [1006494]

IBM [October 1991), Systems Application Architecture Library, Common User Access Advanced Interface

Design Reference. [SC34-4290]

IBM [September 1991), Systems Application Architecture Library, Common Programming Interface C

Reference - Level 2. [SC09-1308-02]

IBM [April 1992), C Set/2, Migration Guide. [1004445]

IBM [April 1992), C Set/2, User's Guide. [100444]

IBM [April 1992), Red Book, OS/2 Version 2.0 Volume 1: Control Program. [0024-3730-00)

IBM [April 1992), Red Book, OS/2 Version 2.0 Volume 4: Application Development. [0024-3774-00)

Paul Somerson [June 1988), PC Magazine DOS Power Tools Techniques, Tricks and Utilities , Bantam Books,
Inc., New York, New York.

H. M Deitel, M.S. Kogan [1992], The Design of OS/2., Addison-Wesley Publishing Company, Inc., New
York, New York.

Robert Orfali, Dan Harkey [1992], Client/Server Programming with OS/2. 2.0 2"dEd., Van Nostrand
Reinhold, New York, New York.

Reich, David, Designing OS/2. Applications, John Wiley & Sons, New York, New York.

Real World Programming for OS/2 2.1, Blain, Delimon, and English. Published by SAMS publishing.

Petzold, Charles, Programming the OS/2 Presentation Manager, Ziff-Davis Press.

EDM/2. Published by IQPac Inc. Available on the Internet at hobbes.nmsu.edu in the /os2/newsltr
directory and on Compuserve in the OS2DF2 forum.

OS/2 Developer. Published by Miller Freeman Inc. Call (800) WANT-OS2 in the United States or
(708) 647-5960 elsewhere for subscription information.

Index

	Trademarks
	Dedicatory
	Figures
	Preface
	Notes From the Edge
	What We Have Done
	What We Expect of You
	What You Will Need
	Contacting the Authors
	Finally

	Acknowledgments
	The Art of OS/2 Warp Programming
	Chapter 1
	Tools
	Dialog Box Editor
	Resource Compiler
	NMAKE
	IPFC
	Libraries
	Header (or INCLUDE) Files
	The Compiler Switches Used in This Book

	Chapter 2
	Memory Management
	Committing Memory
	Suballocating Memory
	Shared Memory
	DosAllocMem or malloc?

	Chapter 3
	Multitasking
	The Scheduler
	The Subtleties of Creating a Thread
	Threads and the C Runtime
	A Thread Example
	The Thread Output
	Executing a Program
	Sessions

	Chapter 4
	File I/O and Extended Attributes
	Extended Attributes
	EAs - Fragile: Handle with Care
	The LIBPATH.C Example
	Getting the File Size
	Opening a File
	Reading a File
	More on DosOpen
	An Extended Attribute Example: CHKEA.C

	Chapter 5
	Interprocess communication
	An OS/2 Named Pipe Client-Server Example

	DOS-OS/2 Client-Server Connection
	An OS/2 QUEUE Client-Server Example
	An OS/2 Semaphore vs. Flag Variable Example

	Chapter 6
	DLLs
	DLL Overview
	Thunking
	DLL Performance
	Simple DLL Example (32-32)
	Creating the .EXE and the DLL
	16-32, 32-16 Transitions
	Call a 32-Bit DLL from a 16-Bit Program
	Pointer Declarations
	Calling a 16-Bit DLL from a 32-Bit Program
	Loading/Unloading of DLLs
	Optimizing Performance in DLLs

	Chapter 7
	Exception Handling
	How to Register an Exception Handler
	What an Exception Handler Looks Like
	Signal Exceptions
	Dos and Don'ts for Exception Handlers
	DosExitList and Exception Handlers
	A Guard Page Example
	Summary

	Chapter 8
	Interfacing with OS/2 Devices
	Serial Interface Example Using DosDevIOCtl
	Serial Interface Example Using inp

	Chapter 9
	Introduction to Windows.
	Introduction
	What Is a Window?
	The INCLUDE Files
	The Window Procedure Definition
	Helper Macros
	Presentation Manager Program Initialization
	Creating a New Class
	Creating a Window
	Message, Message, Who's Got the Message ?
	Terminating a Program
	The Window Procedure Revisited
	Parents and Owners
	Window Stylin'
	Another Window Example: WINDOW
	The Presentation Manager Coordinate Space
	More on Window Painting
	Painting by Numbers
	Enumerating Windows
	Write WindowInofo
	The DrawString function
	Presentation Spaces
	Window Words
	Control Windows
	Presentation Parameters

	Gotcha!
	Chapter 10
	Window Management.
	Visible, Invisible, Enabled, and Disabled Windows
	Window Sizing
	Device Independence, Almost
	Subclassing the Frame Window
	In Case of Error, Use the Class Default
	Tracking the Frame
	Saving Window Settings
	WinRestoreWindowPos
	X,Y,Z-Order
	Saving State

	Chapter 11
	Window Messages and Queues
	Message Ordering
	Focus Messages
	Size and Paint Messages
	The Last Messages a Window Receives
	Sending Messages
	Broadcasting Messages
	Peeking into the Message Queue
	Finding More Message Queue Information
	Message Priorities
	Messages and Synchronization of Events
	User-Defined Messages
	Some words about using window messages with non-PM threads.

	Chapter 12
	Resources
	More About Resources, I Would Know
	Resource Files
	Using the Resource Compiler
	Pointers and Icons
	Bitmaps
	String tables.
	Accelerators
	Dialog Boxes
	Menus
	Help Tables
	Application-defined Data

	Chapter 13
	Dialog Boxes
	The Dialog Box Template
	The Client Window Procedure
	Creating a Modal Dialog Box
	Creating a Modeless Dialog Box
	The Dialog Procedure DlgProc
	WM_COMMAND and Dialogs
	Summary

	Chapter 14
	Menus
	Menus: The Keyboard and the Mouse
	Mnemosyne's Mnemonics
	Menu Styles
	Menu Item Styles
	The Resource File
	Menu Item Attributes
	Creating the Menu Bitmap
	The Client Window Procedure ClientWndProc
	The User Function displayMenuInfo
	Pop-up Menus
	Creating a Pop-up Menu
	I Think I Can, I Think Icon
	Popping Up a Menu
	The Workhorse Function WinPopupMenu

	Chapter 15
	List Boxes
	List Box Styles
	Extended Selection
	Initializing the Client Window
	Initializing the List Box
	The WM_COMMAND Message Dialog Processing
	Processing the UM_SELECTBOXSEL Message
	The Client Window Painting Routine
	Owner-Drawing Controls
	DlgProc
	The WM_MEASUREITEM Message
	The WM_DRAWITEM Message
	An Introduction to Owner-drawn States
	Drawing the List Box Labels
	Drawing the Bitmaps
	Summary

	Chapter 16
	Buttons
	Button Styles
	Example Programm
	The BUTTON.RC Resource file.
	DlgProc
	Dialog Units - Can We Talk ?
	Button Actions
	Summary

	Chapter 17
	Entry Fields
	Entry Field Basics
	Selection Basics
	The Entry Field and the Clipboard
	And Other Things
	ENTRY - Entry Field Samples

	Chapter 18
	Multiline Edit Controls
	Terminology, Etc.
	MLE1
	How to Upset a User Rather Quickly.
	No Refreshment
	Clipboard Support
	Navigation without a Sextant
	Line by Line
	Searching for What Was That Again ?
	As if That Weren't Enough

	Chapter 19
	Other Window Classes
	Combo Boxes.
	Frames
	Scrollbars
	Statics
	Titlebars

	Chapter 20
	Drag and Drop
	Tennis, Anyone ?
	Initialization Code for Drag and Drop Source.
	Things Never Told to the Programmer That Should Have Been.
	Direct Manipulation Is a Real Drag
	And Now a Word from Our Sponsor
	Data transfer
	A Concrete Example
	More Cement, Please
	DrgDragFiles
	From the Top Now
	Pickup and Drop
	Functions Used for Lazy Drag
	Lazy Drag Sample

	Chapter 21
	Value Set
	Value Set Styles
	The VALUE.RC Resource File
	Initializing the Value Set
	Value Set Select Notification
	VALUE Paint Processing
	The User-defined Message UM_UPDATE

	Chapter 22
	Notebook
	Notebook Pages
	Flipping Pages
	Creating a Notebook

	Chapter 23
	Containers
	Container Views
	Container Styles
	LPs or 45s ?
	Half Full or Half Empty ?
	Icon, Name, and Text Views
	Tree View
	Details View
	Splitbars
	Of Emphasis and Pop-ups
	Direct Editing
	Of Sorting and Filtering
	Where Does Direct Manipulation Fit In ?
	Summary

	Chapter 24
	Spin Buttons
	Spin Button Styles
	Accelerator Keys
	WM_ CREATE Processing
	WM_CONTROL Processing
	WM_COMMAND Processing

	Chapter 25
	Sliders

	Chapter 26
	Font and File Dialogs

	Chapter 27
	Subclassing Windows

	Chapter 28
	Presentation Manager Printing

	Chapter 29
	Help Manager
	Application Components
	The Application Source
	Messages
	The Help Tables
	Sample HELPTABLE
	Message Boxes
	Fishing, Anyone ?
	The Help Panels

	Chapter 30
	Multithreading in Presentation Manager Applications

	Appendix A
	Windows Messages

	Appendix B
	References

	Index
	Chapter25.pdf
	Chapter25-01
	Chapter25-02
	Chapter25-03
	Chapter25-04
	Chapter25-05
	Chapter25-06
	Chapter25-07
	Chapter25-08
	Chapter25-09
	Chapter25-10
	Chapter25-11

	Chapter26.pdf
	Chap26-01
	Chap26-02
	Chap26-03
	Chap26-04
	Chap26-05
	Chap26-06
	Chap26-07
	Chap26-08
	Chap26-09
	Chap26-10
	Chap26-11
	Chap26-12
	Chap26-13
	Chap26-14
	Chap26-15

	Chapter27.pdf
	Chap27-01
	Chap27-02
	Chap27-03
	Chap27-04
	Chap27-05
	Chap27-06
	Chap27-07

	Chapter28.pdf
	Chap28-01
	Chap28-02
	Chap28-03
	Chap28-04
	Chap28-05
	Chap28-06
	Chap28-07
	Chap28-08
	Chap28-09
	Chap28-10
	Chap28-11
	Chap28-12
	Chap28-13

	Chapter30.pdf
	Chap30-01
	Chap30-02
	Chap30-03
	Chap30-04
	Chap30-05
	Chap30-06
	Chap30-07
	Chap30-08
	Chap30-09
	Chap30-10
	Chap30-11
	Chap30-12
	Chap30-13
	Chap30-14
	Chap30-15
	Chap30-16
	Chap30-17

