
Standard Decimal Arithmetic
Extended Specification

9th August 2000

Mike Cowlishaw

IBM Fellow
IBM UK Laboratories

mfc@uk.ibm.com

Draft – Version 0.30

Table of Contents

Introduction 1

Scope 2
Objectives 2
Inclusions 2
Exclusions 2

The Arithmetic Model 3
Abstract representation of numbers 3
Abstract representation of context 4
Default contexts 6

Conversions 8
Numeric string syntax 8
to-scientific-string and to-engineering-string 9
to-extended-number – conversion from numeric string 9

Arithmetic operations 11
square-root 12
remainder-near 13
round-to-integer 13

Exceptional conditions 15

Appendix A – Changes 18

Index 19

Draft – Version 0.30 ii

Introduction

This document extends the general purpose decimal arithmetic defined in the Standard
Decimal Arithmetic Specification1 (the base specification). A correct implementation
of the combined base and extended specifications will conform to the decimal arithmetic
defined in the ANSI standard X3.274-19962 and will also conform to the ANSI/IEEE
standard 854-1987.3 This document is meaningful only in the context of the base specifi-
cation; it is not in itself a complete specification.

The primary audience for this document is implementers, so examples and explanatory
material are included. Explanatory material is identified as Notes, Examples, or foot-
notes, and is not part of the formal specification. Additional explanatory material can
be found in the article A Proposed Radix- and Word-length-independent Standard for
Floating-point Arithmetic.4

For further background details, including the base specification and a suggested concrete
representation which conforms to IEEE 854-1987, please see the material at the associ-
ated web site: http://www2.hursley.ibm.com/decimal

Appendix A (see page 18) summarizes the changes to this specification since the first
public draft.

Comments on this draft are welcome. Please send any comments, suggestions, and cor-
rections to the author, Mike Cowlishaw (mfc@uk.ibm.com).

Acknowledgements
This document, in conjunction with the base specification, is in effect an embodiment of
IEEE 854. It therefore owes a great debt to the authors of that standard. Special thanks
for his contribution to this work are due to Fred Ris.

1 See http://www2.hursley.ibm.com/decimal/decspec.html
2 American National Standard for Information Technology – Programming Language REXX, X3.274-1996,

American National Standards Institute, New York, 1996.
3 IEEE 854-1987 – IEEE Standard for Radix-Independent Floating-Point Arithmetic, The Institute of

Electrical and Electronics Engineers, Inc., New York, 1987.
4 by W. J. Cody et al, published in the IEEE Micro magazine, August 1984, pp86–100.

Draft – Version 0.30 Copyright (c) IBM Corporation 2000. All rights reserved. 1

Scope

Objectives

This document extends the general purpose decimal arithmetic defined in the Standard
Decimal Arithmetic Specification5 (the base specification). A correct implementation
of the combined base and extended specifications will conform to the decimal arithmetic
defined in the ANSI standard X3.274-19966 and will also conform to the ANSI/IEEE
standard 854-1987.7

Inclusions

This specification defines the following:

• Additional constraints and values for decimal numbers

• Additional arithmetical operations on decimal numbers

• Additional context information which alters the results of operations, and default
contexts

• Additional constraints and rules for exceptional conditions.

Exclusions

This specification does not define the following:

• Items already defined as requirements in the base specification

• Concrete representations (storage format) of decimal numbers

• The means by which operations are effected

• Concrete representations (storage format) of context information

5 See http://www2.hursley.ibm.com/decimal/decspec.html
6 American National Standard for Information Technology – Programming Language REXX, X3.274-1996,

American National Standards Institute, New York, 1996.
7 IEEE 854-1987 – IEEE Standard for Radix-Independent Floating-Point Arithmetic, The Institute of

Electrical and Electronics Engineers, Inc., New York, 1987.

Draft – Version 0.30 Copyright (c) IBM Corporation 2000. All rights reserved. 2

The Arithmetic Model

This specification extends the model of decimal arithmetic described in the base specifi-
cation. New parameters and constraints are added to the abstract representation of
numbers and context, and default contexts are defined.

As in the base specification, this extended specification does not define the concrete rep-
resentation (specific layout in storage, or in a processor’s register, for example) of numbers
or context.

Abstract representation of numbers

In addition to the three parameters already defined (sign, integer, and exponent), numbers
must be able to represent one of three named special values:

1. infinity – a value representing an infinitely large number (∞, see IEEE 854 §6.1)

2. quiet NaN – a value representing undefined results (“Not a Number”) which does not
cause an invalid operation condition. It is recommended that additional diagnostic
information be associated with quiet NaNs (see IEEE 854 §6.2)

3. signaling NaN – a value representing undefined results (“Not a Number”) which will
cause an invalid operation condition if used in any operation defined in this specifi-
cation (see IEEE 854 §6.2).

When a number has one of these special values, its integer and exponent are undefined.8

The sign, however, is significant (that is, there can be both positive and negative infinity
and NaNs).

For this specification, an additional constraint applies to the exponent:

• Elimit must be greater than 5 × ilength, where ilength is the length of the integer in
decimal digits (see IEEE 854 §3.1).

Notation

In addition to the triad notation of [sign, integer, exponent] introduced in the base specifi-
cation, duples are used to indicate the special values.

8 Typically, in a concrete representation, certain out-of-range values of the exponent are used to indicate
the special values, and the integer is used to carry additional diagnostic information for quiet NaNs.

Draft – Version 0.30 Copyright (c) IBM Corporation 2000. All rights reserved. 3

These have the form [sign, special–value], where the sign is indicated as before, and the
special–value is one of inf, qNaN, or sNaN, representing infinity, quiet NaN, or signaling NaN,
respectively.

So, for example, the duple [1,inf] represents the number –∞, and the duple [0,qNaN]
represents a non-negative quiet NaN.

Abstract representation of context

The abstract representation of context is extended so that it comprises the following
parameters:

flags and trap-enablers

The exceptional conditions (see page 15) are grouped into six signals, which can be
controlled individually. The context contains a flag (which is either 0 or 1) and a
trap–enabler (which also is either 0 or 1) for each signal.

For each of the six signals, the corresponding flag is set to 1 when the signal occurs.
It is only reset to 0 by explicit user action.

For each of the six signals, the corresponding trap-enabler indicates the action to
be taken when the signal occurs (see IEEE 854 §7). If 0, a defined result is supplied,
and execution continues (for example, an overflow is perhaps converted to a positive
or negative infinity). If 1, then execution of the operation is ended and control passes
to a “trap handler”. The trap handler will have access to the trap–result (see below)
which is the defined result from the condition that caused the exception.

The six signals are:

invalid-operation

raised when a result would be undefined or impossible

division-by-zero

raised when a non-zero dividend is divided by zero

overflow

raised when the exponent of a result is too large to be represented

underflow

raised when the exponent of a result is too small to be represented

inexact

raised when a result is not exact, or overflows or underflows without being
trapped

lost-digits

raised when the lost–digits condition is detected.

The lost–digits trap-enabler is the same parameter as the lost–digits context parameter
in the base specification.

Draft – Version 0.30 Copyright (c) IBM Corporation 2000. All rights reserved. 4

This specification does not define the means by which flags and traps are reset or
altered, respectively, or the means by which traps are effected.9

trap-result

A number which is the result to be made available to a trap handler. Its value is
undefined except in a trap handler, after an exceptional condition is trapped.

special-values

A value which must be either 0 or 1. If 1, the three special values will be accepted
by arithmetic operations, the sign of the value –0 is preserved in the results of
arithmetic operations, and extra checking is performed on the length of operands.
If 0, the special values are not permitted as operands for arithmetic, and the sign of
a zero value result is always 0.10

precision

This sets the precision of arithmetic operations, as defined in the base specification.
Additional constraints and recommendations apply:

• An implementation must designate a precision to be known as single precision
(see IEEE 854 §3.2.1). This must be greater than 5 (see IEEE 854 §3.1) and
within the range of implemented precisions.11

• An implementation may also designate a precision to be known as double preci-
sion, which must be within the range of implemented precisions (see IEEE 854
§3.2.2). If a double precision is designated, then the following constraints apply:

• If the value of single precision is given by Ps, and the value of double precision
is given by Pd, then Pd must be greater than or equal to 2 × Ps + 1 (see IEEE
854 §3.2.2).

• The maximum exponent (Elimit) at the designated single precision must be
at least 1 less than the Elimit at double precision, divided by 8 (see IEEE 854
§3.2.2).12

If these constraints cannot be implemented (for example, an implementation
may support very large exponents and not be able to have different exponent
limits for differing precisions), then a double precision must not be designated.

9 IEEE 854 suggests that there be a mechanism allowing traps to return a substitute result to the operation
that raised the exception, but this may not be possible in some environments (including some object-
oriented environments).

10 When 0, this parameter (together with appropriately set trap enablers and the use of the to–number
operation), can be used to ensure that numbers with special values or the value –0 can never occur, as
in the base specification. Similarly, this parameter should be set to 1 for IEEE 854 compliance.

11 This is the “narrowest basic precision” described in IEEE 854 §3.2.1. Strictly speaking, single precision
should be the narrowest precision supported; however it is assumed that when precision is fully variable
the intent of IEEE 854 is that the designation applies to the narrowest default precision – the programmer
is permitted to specify a narrower precision explicitly.

12 This constraint is very slightly tighter than that defined by IEEE 854, which specifies that Elimit for double
be greater than or equal to 8 × Elimit for double, plus 7. Given the requirement for human-oriented limits,
in the base specification, it is suggested that the Elimit for single be one tenth of, or one digit shorter than,
the Elimit for double.

Draft – Version 0.30 Copyright (c) IBM Corporation 2000. All rights reserved. 5

rounding

This sets the rounding algorithm to be used by arithmetic operations, as defined in
the base specification. Additional constraints apply:

• The round–half–even algorithm must be supported.

• The following additional rounding algorithms are defined (see IEEE 854 §4.2),
and must be supported:

round-ceiling

(Round toward +∞.) If all of the discarded digits are zero or if the sign is
1 the result is unchanged. Otherwise, the result should be incremented
by 1 (rounded up). If this would cause overflow then the result will be
[0,inf].

round-down

(Round toward 0.) The discarded digits are ignored; the integer is always
left unchanged.

round-floor

(Round toward –∞.) If all of the discarded digits are zero or if the sign is
0 the result is unchanged. Otherwise, the sign is 1 and the integer should
be incremented by 1. If this would cause overflow then the result will be
[1,inf].

Notes:

1. For completeness, implementations may wish to offer two further rounding modes:
round–half–down (round to nearest, where a 0.5 case is rounded down) and round–up
(round away from zero).

2. The setting of precision may be used to reduce a result from double to single precision,
using the plus operation. This meets the requirements of IEEE 854 § 4.3.

Default contexts

This specification defines two default contexts, which define suitable context settings for
base arithmetic (as defined in the base specification) or the extended arithmetic required
by IEEE 854. It is recommended that the default contexts be easily selectable by the
user.

Base default context
In the base default context, the parameters are set as follows:

• flags – all set to 0

• trap–enablers – inexact and lost–digits are set to 0; the others are all set to 1

• trap–result – is undefined; it is recommended that it be set to [0,0,0]

• special–values – is set to 0

• precision – is set to 9

Draft – Version 0.30 Copyright (c) IBM Corporation 2000. All rights reserved. 6

• rounding – is set to round–half–up

Note that with these parameters, any operation that completes will have a numeric value
(that is, not a special value), and zero will have a sign of 0, as in the base specification.

Extended default context
In the extended default context, the parameters are set as follows:

• flags – all set to 0

• trap–enablers – all set to 0 (IEEE 854 §7)

• trap–result – is undefined; it is recommended that it be set to [0,qNaN]

• special–values – is set to 1 (IEEE 854 §1)

• precision – is set to the designated single precision

• rounding – is set to round–half–even (IEEE 854 §4.1)

It is recommended that if a double precision is designated then a third extended double default
context be provided, with the same settings as the extended default context except that
the precision is set to the double precision.

Draft – Version 0.30 Copyright (c) IBM Corporation 2000. All rights reserved. 7

Conversions

This section adds new rules and a new conversion operation to the base specification (see
IEEE 854 §5.6).

It is recommended that implementations also provide conversions to and from binary
floating point or integer numbers, if appropriate (that is, if such encodings are supported
in the environment of the implementation). It is suggested that such conversions be
exact, if possible (that is, when converting from binary to decimal), or alternatively give
the same results as converting using an appropriate string representation as an inter-
mediate form.

It is also recommended that if a number is too large to be converted to a given binary
integer format then an exceptional or error condition be raised, rather than losing high-
order significant bits (decapitating).

Notes

1. The to–number operation is unchanged by this specification.

2. The setting of precision may be used to convert a number from any precision to any
other precision, using the plus operation. This meets the requirements of IEEE 854
§5.3.

3. Integers are a proper subset of numbers, hence no conversion operation from an
integer to a number is necessary. Conversion from a number to an integer is effected
by using the round–to–integer operation (see page 13). This meets the requirements
of IEEE 854 §5.4 and §5.5.

Numeric string syntax

The syntax for numeric strings is extended to allow for the special values of numbers, by
replacing the final production (numeric–string) by:

special–value ::= 'NaN' | 'NaNq' | 'Infinity' | 'Inf'
numeric–value ::= decimal–part [exponent–part] | special–value
numeric–string ::= [sign] numeric–value

where the characters in the strings accepted for special–value may be in any case.

This does not affect the to–number operation, which only accepts numeric strings as
defined in the base specification.

Draft – Version 0.30 Copyright (c) IBM Corporation 2000. All rights reserved. 8

Examples:

Some numeric strings are:

"Inf" /* The same as Infinity */
"–infinity" /* The same as –Inf */

 "NaN" /* Not–a–Number */

to-scientific-string and to-engineering-string

These operations are extended to allow string representations of numbers which have
special values; both provide the same results in these cases, following the rules:

• If the special–value is signaling NaN then the resulting string is “NaN”.

• If the special–value is quiet NaN then the resulting string is “NaNq”.

• If the special–value is infinity then the resulting string is “Infinity”.

• As with other numbers, if the sign of the number is 1 then in all the above cases the
string is preceded by a “–” character. Otherwise (the sign is is 0) no sign character
is prefixed.

Examples:

For each abstract representation [sign, special–value] on the left, the resulting string is
shown on the right.

[0,inf] "Infinity"
[1,inf] "–Infinity"
[0,sNaN] "NaN"
[1,sNaN] "–NaN"
[0,qNaN] "NaNq"

Notes

1. The values quiet NaN and signaling NaN are distinguished in string form in order to
preserve the one-to-one mapping between abstract representations and the
to–scientific–string representation.

2. IEEE 854 allows additional information to be suffixed to the string representation
of special values. Any such suffixes are not permitted by this specification (again,
to preserve the one-to-one mapping). It is suggested that if additional information
is held in a concrete representation then a separate mechanism or operation is pro-
vided for accessing that information.

to-extended-number – conversion from numeric string

This operation extends the to–number operation of the base specification to accept
numeric string representations of special values. It follows the definition of the
to–number operation, and in addition:

• The string “NaN”, optionally preceded by a sign character and independent of case,
will be accepted by to–extended–number and converted to signaling NaN.

Draft – Version 0.30 Copyright (c) IBM Corporation 2000. All rights reserved. 9

• The string “NaNq”, optionally preceded by a sign character and independent of case,
will be accepted by to–extended–number and converted to quiet NaN.

• The strings “Infinity” and “Inf”, optionally preceded by a sign character and
independent of case, will be accepted by to–extended–number and converted to
infinity.

• In all three cases above, the sign of the number is set to 1 if the string is preceded
by a “–”. Otherwise the sign is set to 0.

• If the integer is 0 and the numeric string starts with a “–” sign then the sign of the
number will be 1. That is, the sign of a negative zero is preserved by
to–extended–number.

Examples:

For each string on the left, the resulting abstract representation [sign, integer, exponent]
or [sign, special–value] is shown on the right.

"0" [0,0,0]
"0.00" [0,0,–2]
"123" [0,123,0]
"–123" [1,123,0]
"1.23E3" [0,123,1]
"1.23E+3" [0,123,1]
"12.3E+7" [0,123,6]
"12.0" [0,120,–1]
"12.3" [0,123,–1]
"0.00123" [0,123,–5]

 "–1.23E–12" [1,123,–14]
 "1234.5E–4" [0,12345,–5]

"–0" [1,0,0]
"–0.00" [1,0,–2]
"inf" [0,inf]

 "+inFiniTy" [0,inf]
 "–Infinity" [1,inf]

"–NAN" [1,sNaN]
"NaNQ" [0,qNaN]

Note: As usual, an implementation does not have to make operations logically distinct,
provided that the function of each defined operation is available. For example, in a
software implementation, the to–number and to–extended–number operations could be
implemented as a single method, taking a parameter which switches the operation.

Draft – Version 0.30 Copyright (c) IBM Corporation 2000. All rights reserved. 10

Arithmetic operations

This section adds new rules and operations to the base specification, notably to permit
the production and handing of special values and –0.

The same notation for examples is used as in the Arithmetic operations section of the
base specification.

Arithmetic operation rules
The following additional rules apply to all arithmetic operations:

• If special–values is 0, then special values are not permitted as an operand to an
arithmetic operation; an Invalid operation exceptional condition (see page 15) results
in this case. If special–values is 1, then special values are permitted as operands to
an arithmetic operation (see IEEE 854 §6).

• Arithmetic using the special value infinity follows the usual rules, where [1,inf] is
less than every finite number and [0,inf] is greater than every finite number.
Under these rules, a infinite result is always exact. Certain uses of infinity raise
exceptional conditions (see page 15), which are listed under each condition.

• signaling NaNs always raise the Invalid operation condition when used as an operand
to an arithmetic operation.

• The result of any arithmetic operation which has an operand which is a NaN (a quiet
NaN, or signaling NaNs when the invalid–operation trap enabler is 0) is [0,qNaN]. In this
case, the signs of the operands are ignored (the following rules do not apply).

• The sign of the result of a multiplication or division will be 1 only if the operands
have different signs.

• The sign of the result of an addition or subtraction will be 1 only if the result is less
than zero, except for the special case below where the result is –0.

• If special–values is 0, a zero result is always [0,0,0], as in the base specification. If
special–values is 1, then a result of [1,0,0] is possible. This can occur under the
following conditions only:

• the operation is an addition or subtraction and the result has an integer of 0 and
the rounding is round–floor, unless both operands to the addition or subtraction
had an integer of 0 and a sign of 0

• the operation is a multiplication or division and the result has an integer of 0
and the signs of the operands are different.

Draft – Version 0.30 Copyright (c) IBM Corporation 2000. All rights reserved. 11

• the operation is square–root (see below) and the operand has a value of –0.

• If the length of the integer of an operand is greater than precision then if the lost–digits
condition is not raised and special–values is 1 then an Invalid operation condition is
raised.13

Examples:

For these examples, special–values has the value 1, and the divide–by–zero trap enabler has
the value 0.

add('Infinity', '1') ==> 'Infinity'
add('NaNq', '1') ==> 'NaNq'
subtract('1', 'Infinity') ==> '–Infinity'
multiply('–1', 'Infinity') ==> '–Infinity'
multiply('–1', '0') ==> '–0'
divide('–1', 'Infinity') ==> '–0'
divide('1', '0') ==> 'Infinity'
divide('1', '–0') ==> '–Infinity'
divide('–1', '0') ==> '–Infinity'

Notes:

1. Quiet NaNs are permitted to propagate diagnostic information pertaining to the
origin of the NaN (see IEEE 854 §6.2). Any such diagnostic information, and the
means by which it is propagated, is outside the scope of this specification.

2. Overflow and underflow may result in infinite or zero results if the corresponding
trap is not enabled, as defined under the relevant Exceptional condition (see page
15).

3. The rules above imply that the compare operation can now return quiet NaN as a
result, which indicates an “unordered” comparison (see IEEE 854 §5.7).

4. As stated in the base specification, an implementation may use the compare opera-
tion “under the covers” to implement a closed set of comparison operations (greater
than, equal, etc.) if desired. In this case, the additional constraints in IEEE 854 §5.7
will apply; they are not repeated here.

square-root

square–root takes one operand, which must be greater than or equal to 0. If the value
of the operand is –0 then the result is [1,0,0].

Otherwise, the result is the exact square root of the operand, rounded according to the
settings of precision and rounding. Finally, any insignificant trailing zeros are removed
(that is, if the integer is a multiple of a power of ten then it is divided by that power of ten
and the exponent increased accordingly).

13 This rule is required to comply with IEEE 854 §5.1, second sentence.

Draft – Version 0.30 Copyright (c) IBM Corporation 2000. All rights reserved. 12

Examples:

For these examples, special–values has the value 1, and precision is 9.

square–root('0') ==> '0'
 square–root('–0') ==> '–0'

square–root('1.00') ==> '1'
square–root('7') ==> '2.64575131'

remainder-near

remainder–near takes two operands. If the operands are given by x and y, then the result
is defined to be x – y × n, where n is the integer nearest the exact value of x ÷ y (if two
integers are equally near then the even one is chosen). If the result is equal to 0 then
its sign will be the sign of x. (See IEEE §5.1.)

Examples:

remainder–near('2.1', '3') ==> '–0.9'
remainder–near('10', '3') ==> '1'
remainder–near('–10', '3') ==> '–1'
remainder–near('10.2', '1') ==> '0.2'
remainder–near('10', '0.3') ==> '0.1'
remainder–near('3.6', '1.3') ==> '–0.3'

Notes:

1. The remainder–near operation differs from the remainder operation in that it does not
give the same results for numbers whose values are equal to integers as would the
usual remainder operator on integers. For example, the operation remainder('10',
'6') gives the result '4', and remainder('10.0', '6') gives '4.0' (as would
remainder('10', '6.0') or remainder('10.0', '6.0')). However,
remainder–near('10', '6') gives the result '–2' because its integer division step
chooses the closest integer, not the one nearer zero.

2. The result of this operation is always exact.14

3. This operation is sometimes known as “IEEE remainder”.

round-to-integer

round–to–integer takes one operand. If the operand is infinite, zero, or has an exponent
which is zero or positive, then the result is the same as the operand.15 Otherwise (the
exponent is negative), the result is the operand, rounded to the nearest integer using the
rounding algorithm. This will raise the Inexact condition unless the decimal part was 0.
After the rounding the exponent will be 0.

14 There is an open question, here. The exact result would appear to require the possibility of subnormal
numbers (see IEEE 854 §2), but subnormal numbers are in conflict with the requirement to have a bal-
anced exponent range for numbers (see IEEE 854 §3.1).

15 Unless the operand caused an exceptional condition, as usual.

Draft – Version 0.30 Copyright (c) IBM Corporation 2000. All rights reserved. 13

Examples:

 round–to–integer('2.1') ==> '2'
 round–to–integer('100') ==> '100'

round–to–integer('100.0') ==> '100'
round–to–integer('100.5') ==> '100'
round–to–integer('10E+5') ==> '10E+5'

Note: IEEE 854 refers to §4 for this operation, but then implies that round–half–even
rounding should always be used (whereas §4 specifically allows directed rounding). It is
assumed that it was not intended to exclude directed rounding.

Draft – Version 0.30 Copyright (c) IBM Corporation 2000. All rights reserved. 14

Exceptional conditions

This section lists, in the abstract, the exceptional conditions that can arise during the
operations defined in this specification. This list is a superset of the list in the base
specification (that is, the exceptions in the base specification are repeated here, with the
addition of the Invalid operation and Inexact conditions).

For each condition, the corresponding signal in the context (see page 6) is given, along with
the defined result if the signal is not trapped. Unless stated otherwise, this is also the
defined result if the signal is trapped. The value of the trap-enabler for each signal in
the context determines whether an operation is completed after the condition is detected
or whether the condition is trapped and hence not immediately completed (see IEEE 854
§8).

The following exceptional conditions can occur:

Invalid operation

This occurs and signals invalid–operation if:

• special–values is 0, and any operand to an arithmetic operation is infinite or a
NaN

• an operand to an operation is [0,sNaN] (signalling NaN)

• an attempt is made to add [0,inf] to [1,inf] during an addition or subtraction
operation

• an attempt is made to multiply 0 by [0,inf] or [1,inf]

• an attempt is made to divide either [0,inf] or [1,inf] by either [0,inf] or
[1,inf]

• the dividend for the divide–integer operation or a remainder operation is either
[0,inf] or [1,inf]

• the operand of the square–root operation has a sign of 1 and a non-zero integer

• special–values is 1, and any operand to an arithmetic operation has an integer
whose length is greater than precision and the lost–digits condition does not occur.

The result of the operation after any of these invalid operations is [0,qNaN].

Draft – Version 0.30 Copyright (c) IBM Corporation 2000. All rights reserved. 15

Division by zero

This occurs and signals division–by–zero if division by zero was attempted, and the
dividend was not zero.

The result of the operation is [sign,inf], where sign is the sign of the dividend.

Division undefined

This occurs and signals invalid–operation if division by zero was attempted, and the
dividend is also zero. The result is [0,qNaN].

Division impossible

This occurs and signals invalid–operation if the integer result of a divide–integer or
remainder operation had too many digits (would be longer than precision), or if the
divisor for either of these operations is 0. The result is [0,qNaN].

Overflow

This occurs and signals overflow if the exponent of a result (from an operation that is
not an attempt to divide by zero) would be greater than the largest value that can
be handled by the implementation (the value Emax as defined in the base specifica-
tion).

The result depends on the rounding mode:

• For round–half–up and round–half–even, the result of the operation is [sign,inf],
where sign is the sign of the intermediate result.

• For round–down, the result is the largest finite number that can be represented,
using double precision16 if designated, or single precision otherwise, with the
sign of the intermediate result.

• For round–ceiling, the result is the same as for round–down if the sign of the
intermediate result is 1, or is [0,inf] otherwise.

• For round–floor, the result is the same as for round–down if the sign of the inter-
mediate result is 0, or is [1,inf] otherwise.

The result for a trapped overflow is different, and depends on whether the overflow
was the result of a conversion or an arithmetic operation (to be added, see IEEE 854
§7.3).

Underflow

This occurs and signals underflow if the exponent of a result (from an operation that
is not an attempt to divide by zero) would be smaller (more negative) than the
smallest value that can be handled by the implementation (the value Emin as defined
in the base specification).

The results for underflows, whether trapped or not, are handled in the same way
as for the corresponding overflow, with zero being used instead of infinity.17

16 A designated precision is specified here, as in an arbitrary-precision implementation the largest finite
number may be ill-defined.

17 Note that underflows can never result in a subnormal number (see IEEE 854 §2) because the abstract
representation cannot represent these; subnormal numbers would be numbers with an exponent less than
Emin.

Draft – Version 0.30 Copyright (c) IBM Corporation 2000. All rights reserved. 16

Lost digits

This occurs and signals lost–digits if an operand to an arithmetic operation has more
leading significant digits than the precision in the context. The result (the value used
for the operand, in this case) is the operand rounded to precision digits.

Conversion syntax

This occurs and signals invalid–operation if an string is being converted to a number
and it does not conform to the appropriate numeric string syntax (see page 8). The
result is [0,qNaN].

Conversion overflow

This occurs and signals overflow if an string is being converted to a number and the
value of the integer or exponent resulting from the conversion is too large for an
implementation to handle (perhaps because the concrete representation has size
limits).

If the exponent is too large, the result is as defined for the Overflow condition. Oth-
erwise (the integer is too large), the result is the number rounded to double precision
(if designated) or to single precision otherwise.

Conversion underflow

This occurs and signals underflow if an string is being converted to a number and the
value of the exponent resulting from the conversion is too small for an implementa-
tion to handle (perhaps because the concrete representation has size limits).

The result is as defined for the Underflow condition.

Inexact

This occurs and signals inexact whenever the result of an operation is not exact (that
is, it needed to be rounded and any discarded digits were non-zero), or if an overflow
or underflow condition occurs and is not trapped. The result in all cases is
unchanged.

The inexact signal may be tested (or trapped) to determine if a given operation (or
sequence of operations) was inexact.18

Insufficient storage

For many implementations, storage is needed for calculations and intermediate
results, and on occasion an arithmetic operation may fail due to lack of storage. This
is considered an operating environment error, which can be either be handled as
appropriate for the environment, or treated as an Invalid operation condition.

The Lost digits and Inexact conditions can coincide with each other or with other condi-
tions. In these cases then any trap enabled for another condition takes precedence over
(is handled before) both, and any Lost digits trap takes precedence over Inexact.

It is recommended that implementations distinguish the different conditions listed above,
and also provide additional information about exceptional conditions where possible (for
example, the operation being attempted and the values of the operand or operands
involved – see also IEEE 854 §8.1).

18 Note that IEEE 854 is inconsistent in its treatment of Inexact in that it states in §7 that the Inexact
exception can coincide with Underflow, but does not allow the possibility of Underflow signalling Inexact
in §7.5. It is assumed that the latter is an accidental omission.

Draft – Version 0.30 Copyright (c) IBM Corporation 2000. All rights reserved. 17

Appendix A – Changes

This appendix documents changes since the first public draft of this specification (0.30,
9 Aug 2000). It is not part of the specification.

(None yet.)

Draft – Version 0.30 Copyright (c) IBM Corporation 2000. All rights reserved. 18

Index

A

abstract representation
of context 4
of numbers 3

acknowledgements 1
algorithms, rounding 6
ANSI standard

for REXX 1, 2
IEEE 854-1987 1, 2
X3.274-1996 1, 2

arbitrary precision arithmetic 11
arithmetic 11-14

decimal 1
errors 15
exceptions 15
lost digits 17
operation rules 11
overflow 16
precision 5
underflow 16

B

base default context 6
base specification 2
binary floating point conversions 8
binary integer conversions 8

C

concrete representation 3
conditions, exceptional 15-17
context

abstract representation 4
base default 6
defaults 6
extended default 7

conversion 8-10
binary floating point 8
binary integer 8
errors 17
from numeric string 9
inexact 17
to engineering numeric string 9
to scientific numeric string 9

D

decimal arithmetic 1, 11-14
decimal specification 1
default contexts 6
division

by zero 16
impossible 16
undefined 16

division-by-zero 4
double precision 5

Draft – Version 0.30 Copyright (c) IBM Corporation 2000. All rights reserved. 19

E

errors during arithmetic 15
exceptional conditions 15-17
exceptions 15-17

conversion overflow 17
conversion syntax 17
conversion underflow 17
division by zero 16
division impossible 16
division undefined 16
during arithmetic 15
inexact 17
insufficient storage 17
invalid operation 15
lost digits 17
overflow 16
underflow 16

exclusions 2
exponent 3

constraints 3
extended default context 7

F

flags 4

I

IEEE remainder 13
IEEE standard 854-1987 1, 2
inclusions 2
inexact 4
infinity 3
integer 3
integer arithmetic 11-14
invalid operation 15
invalid-operation 4

L

lost digits
checking 17

lost-digits 4

M

model 3

N

NaN
quiet 3
signaling 3

notation
for abstract representation 3

numbers
abstract representation 3
arithmetic on 11
from strings 8

numeric
part of a numeric string 8

numeric string 8
syntax 8

O

objectives 2
operations

arithmetic 11
overflow 4
overflow, arithmetic 16

P

plain numbers
See numbers

precision 5
arbitrary 11

Draft – Version 0.30 Copyright (c) IBM Corporation 2000. All rights reserved. 20

double 5
in abstract context 5
of arithmetic 5
single 5

Q

quiet NaN 3

R

remainder
IEEE 13

remainder-near
definition 13

round-ceiling algorithm 6
round-floor algorithm 6
round-to-integer

definition 13
rounding 6

exceptions from 17
in abstract context 6
to integer 13

S

scope 2
sign 3
signaling NaN 3
signals 4

significant digits, in arithmetic 5
simple number

See numbers
single precision 5
special values 3

in numeric strings 9
special-values 5

in abstract context 5
square-root

definition 12
strings 8

T

to-engineering-string operation 9
to-extended-number operation 9
to-scientific-string operation 9
trap-enablers 4
trap-result 5

U

underflow 4
underflow, arithmetic 16

Z

zero
division by 16
division of by zero 16

Draft – Version 0.30 Copyright (c) IBM Corporation 2000. All rights reserved. 21

