Standard Decimal Arithmetic
Specification

5th January 2001

Mike Cowlishaw

IBM Fellow
IBM UK Laboratories
mfc@uk.ibm.com

Draft — Version 0.81

Table of Contents

Introduction 1

Scope 2
Objectives 2
Inclusions 2
Exclusions 2

The Arithmetic Model 3
Abstract representation of numbers 3
Abstract representation of operations 5
Abstract representation of context 5

Conversions to and from strings 8
Numeric string syntax 8
to-scientific-string — conversion to numeric string 9
to-engineering-string — conversion to numeric string 10
to-number — conversion from numeric string 11

Arithmetic operations 12
add and subtract 13
plus and minus 14
multiply 14
divide 14
power 15
divide-integer 16
remainder 17
compare 18

Exceptional conditions 19
Appendix A - Design concepts 21
Appendix B - Changes 24

Index 26

Draft — Version 0.81

Introduction

This document defines a general purpose decimal arithmetic. A correct implementation
of this specification will conform to the decimal arithmetic defined in the ANSI standard
X3.274-1996.* This document describes that arithmetic in a language-independent man-
ner, and it is also the base document for an extended arithmetic specification which also
conforms to the ANSI/IEEE standard 854-1987.2

The primary audience for this document is implementers, so examples and other
explanatory material are included. Explanatory material is identified as Notes, Exam-
ples, or footnotes, and is not part of the formal specification.

Appendix A (see page 21) summarizes the design concepts behind the decimal arithmetic.
For further background details, including a suggested concrete representation which

conforms to IEEE 854, please see the material at the associated web site:
http://ww2. hursl ey. i bm coni deci mal

Appendix B (see page 24) summarizes the changes to this specification since the first
public draft.

Comments on this draft are welcome. Please send any comments, suggestions, and cor-
rections to the author, Mike Cowlishaw (nf c@k. i bm comn).

Acknowledgements

Very many people have contributed to the arithmetic described in this document, espe-
cially the 1980 Rexx Language Committee, the IBM Rexx Architecture Review Board, the
IBM Vienna Compiler group, and the X3 (now NCITS) J18 technical committee. Special
thanks for their contributions to the current design and this document are due to Joshua
Bloch, Dirk Bosmans, Brian Marks, and Dave Raggett.

1 American National Standard for Information Technology — Programming Language REXX, X3.274-1996,
American National Standards Institute, New York, 1996.

2 |EEE 854-1987 — IEEE Standard for Radix-Independent Floating-Point Arithmetic, The Institute of
Electrical and Electronics Engineers, Inc., New York, 1987.

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 1

Scope

Objectives

This document defines a general purpose decimal arithmetic. A correct implementation
of this specification will conform to the decimal arithmetic defined in the ANSI standard
X3.274-1996.° Recommendations are also included where the application of additional
constraints will aid conformance with the ANSI/IEEE standard 854-1987.4

Inclusions

This specification defines the following:

Constraints on the values of decimal numbers

Operations on decimal numbers, including

< Required conversions between string and internal representations of numbers
= Arithmetical operations on decimal numbers (addition, subtraction, etc.)
Context information which alters the results of operations

Exceptional conditions, such as overflow, underflow, undefined results, and other
exceptional situations which may occur during operations.

Exclusions

This specification does not define the following:

Concrete representations (storage format) of decimal numbers
The means by which operations are effected

Concrete representations (storage format) of context information
Extensions which permit full conformance with IEEE 854.

American National Standard for Information Technology — Programming Language REXX, X3.274-1996,
American National Standards Institute, New York, 1996.

ANSI/IEEE 854-1987 — IEEE Standard for Radix-Independent Floating-Point Arithmetic, The Institute
of Electrical and Electronics Engineers, Inc., New York, 1987.

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 2

The Arithmetic Model

This specification is based on a model of decimal arithmetic which is a formalization of
the arithmetic taught in schools as defined and constrained by the relevant standards
(ANSI X3-274 and IEEE 854).

There are three components to the model:

1. numbers — which represent the values which can be manipulated by, or be the results
of, the core operations defined in this specification

2. operations — the core operations (such as addition, multiplication, etc.) which can be
carried out on numbers

3. context — which represents the changeable parameters or rules which govern the
results of a arithmetic operations (for example, the precision to be used).

This specification defines these components in the abstract. It neither defines the way
in which operations are expressed (which might vary depending on the computer lan-
guage or other interface being used), nor does it define the concrete representation (specific
layout in storage, or in a processor’s register, for example) of numbers or context.®

The remainder of this section describes the abstract model for each component.

Abstract representation of numbers

Numbers are defined by three integer parameters:

1. sign — a value which must be either 0 or 1, where 1 indicates that the number is
negative and 0 that the number is positive.

2. integer — an integer which may be zero or positive.

In the abstract, there is no upper limit on the maximum size of the integer. In
practice there may be some upper limit to the integer, in which case this limit must
be expressed as an integral number of decimal digits.®

3. exponent — a signed integer which indicates the power of ten by which the integer
component is multiplied.

5 Indeed, some variations of operations could be selected by using context settings outside the scope of this
specification.

6 That is, the maximum value of the integer will be an integral power of ten, less one — for example,
99999999999999999999.

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 3

In the abstract, there is no upper limit on the absolute value of the exponent. In
practice there may be some upper limit, E;_;, on the absolute value of the exponent,
in which case this limit must be expressed as an integral number of decimal digits
or be one of the numbers 1, 5, or 25, multiplied by an integral power of ten.

It is recommended that an E, , of nine or more digits be supported. It is also
recommended that E,, be greater than 10 x i | engt h, where i | engt h is the length
of the integer in decimal digits.”

When a limit to the exponent applies, it must result in a balanced range of positive
or negative numbers,? taking into account the magnitude of the integer. To achieve
a balanced range, the minimum and maximum values of the exponent (E,,;, and E,,,
respectively) will have different magnitudes, depending on the length of the integer.
The value of E_;, will be -E; ~(!ength-1), and the value of E_ . will be

min max

E,.i—(| engt h—1), where i | engt h is again the length of the integer in decimal digits.

For example, if the integer had the value 123456789 (9 digits) and the exponent had
an E;; of 999 (3 digits), then E_;, would be -1007 and E__, would be +991. This
would allow positive values of the number to range from 1.23456789E-999 through
1.23456789E+999.

Eimi» therefore, is the maximum absolute value of the exponent of a number when
that number is presented in scientific notation with one digit before any decimal
point.

sign exponent

The numerical value of the number is then given by: (-1)™ X integer x 10

Notes:

1. Many concrete representations for numbers have been used successfully. The inte-
ger is typically represented in some form of binary coded decimal (BCD) or using a
base which is a higher power of ten, but it may also be expressed as a binary integer.
The exponent is typically represented by a twos complement or biased binary inte-
ger. One possible concrete representation is described in detail at:
http://ww2. hursl ey.i bm coni deci nmal / decconc. ht m

2. This abstract definition deliberately allows for multiple representations of values
which are numerically equal but are visually distinct (such as 1 and 1.00). However,
there is a one-to-one mapping between the abstract representation and the result
of the primary conversion to string using to-scientific—string (see page 9) on that
abstract representation. In other words, if one number has a different abstract
representation to another, then the primary string conversion will also be different.

No such constraint applies to the concrete representation (that is, there may be
multiple concrete representations of a single abstract representation).

3. For the purposes of this specification the number could have been described by two
signed integers. However, one of these has been separated into a sign and non-
negative integer for convenience of description and also to allow for an extended
arithmetic in which a value of negative zero is a possibility.

7 This is an IEEE 854 recommendation; IEEE 854 also requires that E,;, be greater than 5 x i | engt h.

8 This rule, a requirement for both ANSI X3.274 and IEEE 854, constrains the number of values which
would overflow or underflow when inverted (divided into 1).

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 4

4. When implementing this arithmetic for use in the Rexx language, ANSI X3.274
requires that E, , be at least 999999999, and that integer lengths of at least 999
digits are supported.

Notation

In later sections of this document, a specific number is described by its abstract repre-
sentation, using the triad notation: [sign, integer, exponent].

So, for example, the triad [0, 2708, -2] represents the number 27. 08, and the triad
[1, 1953, 0] represents the integer —1953.

Abstract representation of operations

The core operations which must be provided by an implementation are described in later
sections which define Conversions (see page 8) and Arithmetic Operations (see page 12).
Each operation is given an abstract name (for example, “add”), and its semantics are
strictly defined. However, the manner in which each operation is effected is not defined
by this specification.

For example, in a object-oriented language, the addition operation might be effected by
a method called add, whereas in a calculator application it might be effected by clicking
on a button icon. In other uses, an infix “+” symbol might be used to indicate addition.

Similarly, operations which are distinct in the specification need not be mapped one-to-
one to distinct operations in the implementation — it is only necessary that all the core
operations are available. For example, conversions to a string could be handled by a
single method, with variations determined from context or additional arguments.

Abstract representation of context

Context is defined by three parameters:

1. precision — an integer which must be positive (greater than 0). This sets the maxi-
mum number of significant digits that can result from an arithmetic operation.

In the abstract, there is no upper bound on the maximum size of the precision. In
practice there may be some upper limit to it (for example, the length of the maximum
integer supported by a concrete representation), in which case this limit must be
expressed as an integral number of decimal digits.

If a default precision is supplied by some environment, it is recommended that the
default be 9.

2. rounding — a named value which indicates the algorithm to be used when rounding
is necessary. Rounding is applied when a result integer needs more digits than the
value of precision; in this case the digit to the left of the first discarded digit may be
incremented by one, depending on the rounding algorithm selected and the remain-
ing digits of the integer.

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 5

The following rounding algorithms are defined:®
round-down

the discarded digits are ignored; the result is unchanged.
round-half-up

if the discarded digits represent greater than or equal to half (0.5) of the value
of a one in the next left position then the result should be incremented by 1
(rounded up). Otherwise the discarded digits are ignored.

round-half-even

if the discarded digits represent greater than half (0.5) the value of a one in the
next left position then the result should be incremented by 1 (rounded up). If
they represent less than half, then the result is not adjusted (that is, the dis-
carded digits are ignored).

Otherwise (they represent exactly half) the result is unaltered if its rightmost
digit is even, or incremented by 1 (rounded up) if its rightmost digit is odd (to
make an even digit).

When a result is rounded, the integer may become longer than the current precision.
In this case (it will be a multiple of ten) it is divided by ten, and the exponent incre-
mented by one. This in turn may give rise to an overflow condition (see page 19).

This specification requires only that round-half-up be provided.® It is recommended
that round—down and round-half-even also be provided.*

3. lost—digits — a value which must be either 0 or 1. If 0, an operand which has more
leading significant digits in its integer than the precision setting will be rounded to
precision digits before use, using the rounding algorithm. If 1, this “lost digits” condi-
tion will be treated as an Exceptional condition (see page 19).

The lost digits test does not treat trailing decimal zeros in the integer as significant.
If precision had the value 5, then the operands
[0, 12345, —5]
[0, 12345, -2]
[0, 12345, 0]
[1, 12345, 0]
[0, 123450000, —4]
[0, 1234500000, 0]
would not cause an exception (whereas [0, 123451, —-1] or [0, 1234500001, 0] would).
Notes:
1. precision can be set to positive values lower than nine. Small values, however, should

be used with care — the loss of precision and rounding thus requested will affect all

10
11

The term “round to nearest” is not used as it is ambiguous; round-half~up is the usual round-to-nearest
algorithm used in European countries and in international financial dealings; round-half-even is often used
in the USA.

ANSI X3.274 specifies round-half-up as its default (only) rounding algorithm.

IEEE 854 specifies round-half-even as its default rounding algorithm. IEEE 854 further requires that three
additional rounding modes be implemented (round—ceiling, round—down, and round—floor).

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 6

computations affected by the context, including comparisons. To conform to IEEE
854, this value should not be set less than 6.

2. The concrete representation of rounding is often a series of integer constants, or
enumerations, held in an object or control register.

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 7

Conversions to and from strings

This section defines the required conversions between the abstract representation of
numbers and string (character) form. Two number-to-string conversions and one string-
to-number conversion are defined; these are not affected by the context.

It is recommended that implementations also provide additional number formatting
routines (including some which are locale-dependent), and if available should accept
non-Arabic decimal digits in strings.

Numeric string syntax

Strings that are acceptable for conversion to the abstract representation of numbers, or
might result from conversion from the abstract representation to a string, are called
numeric strings

A numeric string is a character string that includes one or more decimal digits, with an
optional decimal point. The decimal point may be embedded in the digits, or may be
prefixed or suffixed to them. The group of digits (and optional point) thus constructed
may have an optional sign (“+” or “=") which must come before any digits or decimal point.

The string thus described may optionally be followed by an “E” (indicating an exponential
part), an optional sign, and an integer following the sign that represents a power of ten
that is to be applied. The “E” may be in uppercase or lowercase. No blanks or other white
space characters are permitted in a numeric string.

exponent —part
nuneric-string ::

i ndicator [sign] digits
[sign] decimal —part [exponent—part]

Formally:*?
sign = '+ | <
digit = '0" | "1 2] "3 |4 | '5 |6 | 7] '8 |9
i ndi cat or = 'e" | 'E
digits = digit [digit]...
deci mal —part = digits "."' [digits] | ['."'] digits

12 Where quotes surround terminal characters, “: : =" means “is defined as”, “| ” means “or”, “[] ” encloses
an optional item, and “[] . . . ” encloses an item which is repeated 0 or more times.

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 8

Examples:

Some numeric strings are:

"o" [* Zero */
"12" /* A whol e nunber * |
"-76" /* A signed whol e nunber */
"12.70" /* Sone deci mal places * |
"+0. 003" /* A plus sign is allowed, too. */
"17." * The sane as 17 */
" 5" /* The same as 0.5 */
" 4E+9" /* Exponential notation */
"0.73e-7" /* Exponential notation */

The "4E+9" can be considered a short way of writing 4000000000, and the " 0. 73e-7" is
short for 0. 000000073.

Notes:
1. Assingle period alone is not a valid numeric string.

2. Leading zeros are permitted by the definition above.

to-scientific-string — conversion to numeric string

This operation converts a number to a string, using scientific notation if an exponent is
needed.

The integer is first converted to a string in base ten using the characters 0 through 9 with
no leading zeros (except if its value is zero, in which case a single 0 character is used).

Next, an adjusted exponent is calculated; this is the exponent in the abstract represen-
tation, plus the number of characters in the converted integer, less one. That is,
exponent+(i | engt h—1), where i | engt h is the length of the integer in decimal digits.

If the exponent is less than or equal to zero and the adjusted exponent is greater than or
equal to —6, the number will be converted to a character form without using exponential
notation. In this case, if the exponent is zero then no decimal point is added. Otherwise
(the exponent will be negative), a decimal point will be inserted with the absolute value
of the exponent specifying the number of characters to the right of the decimal point.
“0” characters are added to the left of the converted integer as necessary. If no character
precedes the decimal point after this insertion then a conventional “0” character is pre-
fixed.

Otherwise (that is, if the exponent is positive, or the adjusted exponent is less than -6),
the number will be converted to a character form using exponential notation. In this
case, if the converted integer has more than one digit a decimal point is inserted after the
first digit. An exponent in character form is then suffixed to the converted integer (per-
haps with inserted decimal point); this comprises the letter “E” followed immediately by
the adjusted exponent converted to a character form. The latter is in base ten, using the
characters 0 through 9 with no leading zeros, always prefixed by a sign character (“-” if
the calculated exponent is negative, “+” otherwise).

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 9

Finally, the entire string is prefixed by a minus sign character®® (“-”) if sign is 1. No sign
character is prefixed if sign is O.

Examples:

For each abstract representation [sign, integer, exponent] on the left, the resulting string
is shown on the right.

[0, 123, 0] "123"
[1,123,0] "_123"

[0, 123, 1] "1, 23E+3"
[0, 123, 3] "1, 23E+5"
[0, 123, -1] "12. 3"

[0, 123, -5] "0.00123"
[0, 123, -10] "1. 23E-8"
[1, 123, -12] "_1.23E-10"

Note: There is a one-to-one mapping between abstract representations and the result
of this conversion. That is, every abstract representation has a unigue to-scientific—string
representation. Also, if that string representation is converted back to an abstract rep-
resentation using to-number (see page 11), then the original abstract representation will
be recovered.

This one-to-one mapping guarantees that there is no hidden information in the internal
representation of the numbers (“what you see is exactly what you've got”).

to-engineering-string — conversion to numeric string

This operation converts a number to a string, using engineering notation if an exponent
is needed.

The conversion follows the rules for conversion to scientific numeric string except in the
case where exponential notation is used. In this case, the converted exponent is adjusted
to be a multiple of three (engineering notation) by positioning the decimal point with one,
two, or three characters preceding it (that is, the part before the decimal point will range
from 1 through 999). This may require the addition of either one or two trailing zeros.

If after the adjustment the decimal point would not be followed by a digit then it is not
added. If the adjusted exponent is zero then no indicator letter and exponent is suffixed.

Examples:

For each abstract representation [sign, integer, exponent] on the left, the resulting string
is shown on the right.

[0, 123, 1] "1. 23E+3"
[0, 123, 3] " 123E+3"
[0, 123, -10] "12. 3E-9"
[1, 123, -12] "_123E-12"
[0,7,-7] " 700E-9"

13 This specification defines only the glyph representing a minus sign character. Depending on the imple-
mentation, this may correspond to a hyphen rather than to a distinguishable “minus” character.

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 10

to-number - conversion from numeric string

This operation converts a string to a number, as defined by its abstract representation.

Specifically, the string must conform to the above numeric string syntax (see page 8).
If it has a leading sign, then the sign in the resulting abstract representation is set
appropriately (1 for “~”, 0 for “+”). Otherwise the sign is set to O.

The decimal-part and exponent-part (if any) are then extracted from the string and the
exponent-part (following the indicator) is converted to form the integer exponent which
will be negative if the exponent-part began with a “~” sign. If there is no exponent-part,
the exponent is set to 0.

If the decimal-part included a decimal point then the exponent is reduced by the count of
digits following the decimal point (which may be zero) and the decimal point is removed.
The remaining string of digits has any leading zeros removed (except for the rightmost
digit) and is then converted to form the integer which will be zero or positive. If the
integer is zero, then the sign is set to 0.*4

A numeric string to number conversion is always exact. If the value of the integer or
exponent is too large for an implementation to handle (perhaps because the concrete rep-
resentation has size limits) then an exceptional condition (error) must result.

Examples:

For each string on the left, the resulting abstract representation [sign, integer, exponent]
is shown on the right.

"o [0, 0, 0]

"0. 00" [0,0,-2]
"123" [0, 123, 0]

" _123" [1,123, 0]
"1, 23E3" [0, 123, 1]
"1, 23E+3" [0, 123, 1]
"12. 3E+7" [0, 123, 6]
"12.0" [0, 120, -1]
"12. 3" [0, 123, -1]
"0.00123" [0, 123, -5]
"_1.23E-12" [1,123, -14]
"1234. 5E-4" [0, 12345, —5]
"OE+7" [0,0,7]

" _QE+7" [0,0,7]
"_Q" [0,0,0]

14 This rule, together with the arithmetic rules, ensures that numbers with value —0 will not result from this
specification (though they are permitted in the extended specification). This allows a concrete represen-
tation for this specification to comprise simply two integers in twos complement form or equivalent.

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 11

Arithmetic operations

This section describes the arithmetic operations. These are identical to those defined in
ANSI X3.274, where an algorithmic definition of each operation may be found.

Arithmetic operation notation

In this section, a simplified notation is used to illustrate arithmetic operations: a number
is shown as the string that would result from using the to-scientific—string operation,
rather than as a triad. Single quotes are used to indicate that a number, converted from
an abstract representation, is implied. Also, operations are indicated as functions (taking
either one or two operands), and the sequence ==> means “results in”. Hence:

add(' 12', '7.00') ==>'19.00'
means that the result of the add operation with the operands [0, 12, 0] and [0, 700, -2]
is [0, 1900, -2] .

Finally, in this example and in the examples below, the context is assumed to be a preci-
sion of 9, a rounding setting of round-half-up, and a lost—digits setting of O.

Arithmetic operation rules
The following general rules apply to all arithmetic operations:

If the number of decimal digits in the integer of an operand to an operation is greater than
the current precision in the context then (unless the lost-digits condition (see page 5) is
triggered) the operand is rounded to precision significant digits using the rounding algo-
rithm described by the context before being used in the computation.

The operation is then carried out as described under the individual operations below to
give an exact result. This is then rounded to precision digits, again using the current
rounding algorithm, if necessary.®

15 In practice, it is only necessary to work with intermediate results of up to twice the current precision.
Some rounding settings may require some inspection of possible remainders or additional digits (for
example, to determine whether a result is exactly 0.5 in the next position), though their actual values
would not be required.

For round-half-up, rounding can be effected by truncating the result to precision (and adding the count of
truncated digits to the exponent). The first truncated digit is then inspected, and if it has the value 5
through 9 the result is incremented by 1. This could cause the result to again exceed precision digits, in
which case it is divided by 10 and the exponent is incremented by 1.

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 12

After rounding, a positive exponent is reduced to O (by multiplying the integer by
10°""") if the resulting integer would have no more than precision digits.e

Finally, if the integer in the result has the value zero, then the sign'” and exponent are set
to 0. Other than this case, trailing zeros are not removed after operations, except as
described below (for example, after division).

add and subtract

add and subtract both take two operands. If either number is zero (that is, its integer is
zero) then the other number, rounded to precision digits if necessary, is used as the result
(with sign and exponent adjustment as appropriate).

Otherwise, the two numbers are aligned at their units digit, taking account of any expo-
nent, and extended with zeros on the right and left as necessary to overlap all digits of
both numbers.*® The numbers are then added or subtracted as requested.

For example, the addition
add("' xxxx. xxx', "yy.yyyyy')
(where “x” and “y” are any decimal digits) becomes:
XXXX. XxXx00

+ 00yy.yyyyy
777Z.72272

The result is then rounded to precision digits if necessary, taking into account any extra
(carry) digit on the left after an addition, but otherwise counting from the position cor-
responding to the most significant digit of the operands being added or subtracted.

Examples:
add(' 12', "'7.00") ==> '19. 00

subtract('1.3", '1.07') ==> '0.23
subtract('1.3', '2.07") ==> '-0.77

16 This rule preserves integers, as specified by ANSI X3.274, and in particular ensures that the results of
the divide and divide-integer operations are identical when the result is an exact integer.

17 This rule, together with the to—number definition, ensures that numbers with value —0 will not result from
this specification (though they are permitted in the extended specification). This allows a concrete rep-
resentation for this specification to comprise simply two integers in twos complement form.

18 |If adding, and rounding is round-half-up, it is only necessary to extend the numbers up to a total maximum
of precision+1 digits. The number with the smaller absolute value may then lose some or all of its digits
on the right. In the example, ' yy. yyyyy' would have three digits truncated if precision were 5.

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 13

plus and minus

plus and minus both take one operand, and correspond to the prefix plus and minus
operators in programming languages.

The operations are evaluated using the same rules as add and subtract; the operations
pl us(a) and m nus(a) (where a and b refer to any numbers) are calculated as add(' 0',
a) and subtract (' 0', b) respectively.

Examples:
plus('1.3") => '1.3
plus('-1.3") => '-1.3
mnus('1.3") => '-1.3

mnus('-1.3") ==> '1.3

multiply

multiply takes two operands. The numbers are multiplied together (“long
multiplication”) resulting in a number which may be as long as the sum of the lengths
of the two operands. For example:

mul tiply(" xxx. xxx', "yy.yyyyy')
becomes:
'2272272.222222227'

The result is then rounded to precision digits if necessary, counting from the first signif-
icant digit of the result.

Examples:
mul tiply('1.20", '3") ==> '3.60
multiply('7, '3") ==> 271
mul tiply('0.9", '0.8") => '0.72
nmul tiply('654321', '654321') ==> '4, 28135971E+11'
divide

divide takes two operands. For the division:
di vide('yyy', 'xxxxx')

the following steps are taken: first, the number ' yyy' is extended with zeros on the right
until it is larger than the number ' xxxxx' (with note being taken of the change in the
power of ten that this implies). Thus in this example, ' yyy' might become ' yyy00'.
Traditional long division then takes place, which can be written:

27277

XXXXX) yyy00

The length of the result (' zzzz') is such that the rightmost “z” will be at least as far right
as the rightmost digit of the (extended) “y” number in the example. During the division,

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 14

the “y” number will be extended further as necessary, and the “z” number (which will
not include any leading zeros) is also extended as necessary until the division is complete.

The division is complete when precision digits have been accumulated; at this point the
result is rounded according to the rounding algorithm and the remainder from the
division.®

Finally, any insignificant trailing zeros are removed. That is, if the exponent is not zero
and the integer is a multiple of a power of ten then the integer is divided by that power of
ten and the exponent increased accordingly. If the exponent was negative it will not be
increased above zero.

Examples:
divide('1', '3) ==> '(0.333333333'
divide('2', "3) ==> '0.666666667'
divide('5, '2") ==> '2.5
divide('1', '10") ==> '0.1'
divide('12', '12") => '1
divide('8.00', '2") => '4
divide(' 1000', '100') ==> '10'
di vi de(' 1000', '1") ==> '1000'

power

power takes two operands, and raises a number (the left-hand operand) to a whole num-
ber power (the right-hand operand).

The right-hand operand must be a whole number whose integer part (after any exponent
has been applied) has no more digits than precision and whose decimal part (if any) is all
zeros before any rounding. The operand may be positive, negative, or zero; if negative,
the absolute value of the power is used, and then the result is inverted (divided into 1).

For calculating the power, the number is in theory multiplied by itself for the number
of times expressed by the power, and finally trailing zeros are removed (as though the
result were divided by one).

In practice (see the note below for the reasons), the power is calculated by the process
of left-to-right binary reduction. For power (x, n): “n” is converted to binary, and a
temporary accumulator is set to 1. If “n” has the value 0 then the initial calculation is
complete. Otherwise each bit (starting at the first non-zero bit) is inspected from left to
right. If the current bit is 1 then the accumulator is multiplied by “x”. If all bits have
now been inspected then the initial calculation is complete, otherwise the accumulator
is squared by multiplication and the next bit is inspected. When the initial calculation

is complete, the temporary result is divided into 1 if the power was negative.

The multiplications and division are done under the normal arithmetic operation and
rounding rules, using the context supplied for the operation, except that the multipli-
cations (and the division, if needed) are carried out using a precision of
di gi t s+el engt h+1 digits. Here, el engt h is the length in decimal digits of the integer

19 For round-half-up, rounding can be effected by continuing the division to precision+1 result digits, at which
point the final digit can be inspected to determine rounding and the remainder need not be used.

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 15

part of the whole number “n” (i.e., excluding any sign, decimal part, decimal point, or
insignificant leading zeros.

Finally, any insignificant trailing zeros are removed, as for divide.

If, when raising to a negative power, an overflow or underflow occurs before the division
into 1, the condition raised will be adjusted to reflect the pending division. That is, an
overflow will cause an Underflow condition, and an underflow will cause an Overflow
condition.

Examples:
power ('2', "'3") => 'g
power('2', '-3") ==> '0.125'

power('1.7', '8) ==> '69.7575744"

Note: A particular algorithm for calculating powers is described, since it is efficient
(though not optimal) and considerably reduces the number of actual multiplications per-
formed. It therefore gives better performance than the simpler definition of repeated
multiplication. Since results can occasionally differ from those of repeated multiplication,
the algorithm must be defined here so that different implementations will give identical
results for the same operation on the same values. Other algorithms for this (and other)
operations may always be used, so long as they give identical results to those described
here.

divide-integer

divide-integer takes two operands; it divides two numbers and returns the integer part
of the result. The result returned is defined to be that which would result from repeat-
edly subtracting the divisor from the dividend while the dividend is larger than the
divisor. During this subtraction, the absolute values of both the dividend and the divisor
are used: the sign of the final result is the same as that which would result if normal
division were used.

In other words, if the operands x and y were given to the divide-integer and remainder
operations, resulting in i and r respectively, then the identity

X = ixy +r
holds.

The exponent of the result must be 0. Hence, if the result cannot be expressed exactly
within precision digits, the operation is in error and will fail — that is, the result cannot
have more digits than the value of precision in effect for the operation, and will not be
rounded. For example, di vi de-i nt eger (' 10000000000', '3') requires ten digits to
express the result exactly (' 3333333333') and would therefore fail if precision were in the
range 1 through 9.

20 The precision specified for the intermediate calculations ensures that the final result will differ by at most
1, in the least significant position, from the “true” result (given that the operands are expressed precisely
under the current setting of digits). Half of this maximum error comes from the intermediate calculation,
and half from the final rounding.

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 16

Notes:

1. The divide-integer operation may not give the same result as truncating normal
division (which could be affected by rounding).

2. The divide-integer and remainder operations are defined so that they may be calcu-
lated as a by-product of the standard division operation (described above). The
division process is ended as soon as the integer result is available; the residue of the
dividend is the remainder.

3. The divide and divide-integer operation on the same operands give identical results
if no error occurs and there is no residue from the divide-integer operation.

Examples:
di vide-integer('2', '3") => '(Q
di vi de—i nteger (' 10', '3") => '3
di vide-integer('1', '0.3") ==> '3

remainder

remainder takes two operands; it returns the remainder from integer division, and is
defined as being the residue of the dividend after the operation of calculating integer
division as just described for divide-integer, rounded to precision digits if necessary. The
sign of the result, if non-zero, is the same as that of the original dividend.

This operation will fail under the same conditions as integer division (that is, if integer
division on the same two operands would fail, the remainder cannot be calculated).

Examples:
remainder('2.1', '3") => '2.1
remai nder (' 10", '3") => '171
remai nder (' =10', '3") ==> '-1
remai nder (' 10.2', '1") => '0.2
remai nder (' 10", '0.3") => '0.1

remainder('3.6', '1.3) ==> "1.0
Notes:

1. The divide-integer and remainder operations are defined so that they may be calcu-
lated as a by-product of the standard division operation (described above). The
division process is ended as soon as the integer result is available; the residue of the
dividend is the remainder.

2. The remainder operation differs from the remainder operation defined in IEEE 854,
in that it gives the same results for numbers whose values are equal to integers as
would the usual remainder operator on integers. For example, the result of the
operation renmi nder (' 10', '6') as defined here is ' 4', and remai nder (' 10.0',
"6') would give ' 4. 0' (as would renai nder (' 10', '6.0') or renai nder (' 10.0',
'6.0'")). The IEEE 854 remainder operation would, however, give the result ' -2
because its integer division step chooses the closest integer, not the one nearer zero.

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 17

compare

compare takes two operands and compares their values numerically.

The comparison is effected by subtracting the two numbers (calculating the difference,
as though by using the subtract operation with the same operands) and then returning
an indication of the sign of the result (' -1' if the result is negative, ' 0' if the result is
zero, or ' 1' if the result is positive).

It is therefore the difference between two numbers, when subtracted under the rules for
the subtract operation, which determines their equality.

When the signs of the operands are different a value representing the sign of each oper-
and (' -1' if negative, ' 0' if zero, or ' 1' if positive) is used in place of that operand for
the comparison instead of the actual operand.®

An implementation may use this operation “under the covers” to implement a closed set
of comparison operations (greater than, equal, etc.) if desired. It need not, in this case,
expose the compare operation itself.

Examples:
conpare('2.1', '3") => '-1'
conpare('2.1', "2.1") => '(Q
conpare('2.1', '2.10") ==> '0'
conpare('3', '2.1") => '1
conpare('2.1', '-3") => '1
conpare('-3', '2.1") => '-1'

21 This rule removes the possibility of an arithmetic overflow during a numeric comparison.

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 18

Exceptional conditions

This section lists, in the abstract, the exceptional conditions that can arise during the
operations defined in this specification. These conditions are all abnormal; once one
occurs the current operation is not completed and the implementation must not quietly
continue with some substituted result.

This specification does not define the manner in which exceptions are reported or han-
dled. For example, in a object-oriented language, an Arithmetic Exception object might
be signalled or thrown, whereas in a calculator application an error message might be
displayed.

The following exceptional conditions can occur:
Conversion overflow

This occurs if an string is being converted to a number and the value of the integer
or exponent resulting from the conversion is too large for an implementation to han-
dle (perhaps because the concrete representation has size limits).

Conversion syntax

This occurs if an string is being converted to a number and it does not conform to
the numeric string syntax (see page 8).

Conversion underflow

This occurs if an string is being converted to a number and the value of the exponent
resulting from the conversion is too small for an implementation to handle (perhaps
because the concrete representation has size limits).

Division by zero

This occurs if division by zero was attempted (during a divide—integer, divide, or
remainder operation), and the dividend was not zero.

Division impossible

This occurs if the integer result of a divide-integer or remainder operation had too
many digits (would be longer than precision).

Division undefined
This occurs if division by zero was attempted (during a divide—integer, divide, or
remainder operation), and the dividend is also zero.

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 19

Insufficient storage

For many implementations, storage is needed for calculations and intermediate
results, and on occasion an arithmetic operation may fail due to lack of storage. This
is considered an operating environment error, which can be either be handled as
appropriate for the environment, or treated in the same way as other exceptional
conditions during arithmetic.

Invalid operation

This occurs if the right-hand operand to a power operation has a non-zero decimal
part or has more than precision digits.

Invalid context

This occurs if an invalid context was detected during an operation. This can occur
if contexts are not checked on creation and either the precision exceeds the capability
of the underlying concrete representation or an unknown or unsupported rounding
was specified. These aspects of the context need only be checked when the values
are required to be used.

Lost digits

This occurs if an operand to an arithmetic operation has more leading significant
digits than the precision in the context, and lost—digits in the context is 1.

Overflow

This occurs if the exponent of a result (from an operation that is not an attempt to
divide by zero) would be greater than the largest value that can be handled by the
implementation.

Underflow

This occurs if the exponent of a result (from an operation that is not an attempt to
divide by zero) would be smaller (more negative) than the smallest value that can
be handled by the implementation.

It is recommended that implementations distinguish the different conditions listed above,
and also provide additional information about exceptional conditions where possible (for
example, the operation being attempted and the values of the operand or operands
involved).

It is also recommended that exceptional conditions be recorded as a series of accumulated
flags. This allows a series of operations to be carried out, with a check being made at the
end of the sequence to detect whether any error occurred.

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 20

Appendix A — Design concepts

This appendix summarizes the concepts underlying the arithmetic described in this doc-
ument, as background information. It is not part of the specification.

The decimal arithmetic specified in this document was designed with people in mind, and
necessarily has a paramount guiding principle — computers must provide an arithmetic
that works in the same way as the arithmetic that people learn at school.?

Many people are unaware that the algorithms taught for “manual” decimal arithmetic
are quite different in different countries, but fortunately (and not surprisingly) the end
results differ only in details of presentation.

The arithmetic described here was based on an extensive study of decimal arithmetic and
was then evolved over several years (1979-1982) in response to feedback from thousands
of users in more than forty countries. Numerous implementations have been written
since 1982, and minor refinements to the definition were made during the process of
ANSI standardization (1991-1996).

In the past eighteen years the arithmetic has been used successfully for hundreds of
thousands of applications covering the entire spectrum of computing; among other fields,
that spectrum includes operating system and application scripting, text processing,
commercial data processing, engineering, scientific analysis, and pure mathematics
research. From this experience there is some confidence that the various defaults and
other design choices are sound.

Fundamental concepts

When people carry out arithmetic operations, such as adding or multiplying two numbers
together, they commonly use decimal arithmetic where the decimal point “floats” as
required, and the result that they eventually write down depends on three factors:

1. the specific operation carried out
2. the explicit information in the operand or operands to the operation

3. the information from the implied context in which the calculation is carried out (the
precision required, etc.).

The information explicit in the written representation of an operand is more than that
conventionally encoded for floating point arithmetic. Specifically, there is:

22 For more discussion on why this is important, see the Frequently Asked Questions about decimal arith-
metic at ht t p: // ww\2. hur sl ey. i bm coni deci mal / deci faq. ht m

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 21

= an optional sign (only significant when negative)

= anumeric part, or numeric, which may include a decimal point (which is only signif-
icant if followed by any digits)

< an optional exponent, which denotes a power of ten by which the numeric is multi-
plied (significant if both the numeric and exponent are non-zero).

The length of the numeric and original position of the decimal point are not encoded in
traditional floating point representations, such as ANSI/IEEE 754-1985,% yet they are
essential information if the expected result is to be obtained.

For example, people expect trailing zeros to be indicated conventionally in a result: the
sum 1. 57 + 2.03 is expected to result in 3. 60, not 3. 6; however, if the positional infor-
mation has been lost during the operation it is no longer possible to show the expected
result.

Fortunately, the later standard ANSI/IEEE 854-1987,2 which is intended for decimal as
well as binary floating point arithmetic, does not proscribe representations which do
preserve the desired information. A suitable internal representation for decimal numbers
therefore comprises a sign, an integer, and an exponent (which is a power of ten).

Similarly, decimal arithmetic in a scientific or engineering context is based on a floating
point model, not a fixed point or fixed scale model (indeed, this is the original basis for
the concepts behind binary floating point). Fixed point decimal arithmetic packages such
as ADAR? or the BigDecimal class in Java 1.1 are therefore only useful for a subset of
the problems for which arithmetic is used.

The information contained in the context of a calculation is also important. It usually
applies to an entire sequence of operations, rather than to a single operation, and is not
associated with individual operands. In practice, sensible defaults can be assumed,
though provision for user control is necessary for many applications.

The most important contextual information is the desired precision for the calculation.
This can range from rather small values (such as six digits) through very large values
(hundreds or thousands of digits) for certain problems in Mathematics and Physics.
Some decimal arithmetics (for example, the decimal arithmetic® in the Atari Operating
System) offer just one or two alternatives for precision — in some cases, for apparently
arbitrary reasons. Again, this does not match the user model of decimal arithmetic; one
designed for people to use must provide a wide range of available precisions.

This specification provides for user selection of precision; the representation (especially
if it is to conform to the IEEE 854-1987 standard referred to above) may have only a few
options for precisions, but within the limits of the representation the precision used for
operations may be chosen by the programmer.

23 ANSI/IEEE 754-1985 — IEEE Standard for Binary Floating-Point Arithmetic, The Institute of Electrical
and Electronics Engineers, Inc., New York, 1985.

24 ANSI/IEEE 854-1987 — IEEE Standard for Radix-Independent Floating-Point Arithmetic, The Institute
of Electrical and Electronics Engineers, Inc., New York, 1987.

25 “Ada Decimal Arithmetic and Representations”
See An Ada Decimal Arithmetic Capability, Brosgol et al. 1993.
http://ww. cdrom com pub/ ada/ swconps/ adar/

26 See, for example, The [Atari] Floating Point Arithmetic Package, C. Lisowski.
http://intrepid.nts. kent. edu/ %Ecl i sowsk/8bit/atrl11. htm

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 22

The provision of context for arithmetic operations is therefore a necessary precondition
if the desired results are to be achieved, just as a “locale” is needed for operations
involving text.

This specification provides for explicit control over three aspects of the context: the
required precision — the point at which rounding is applied, the rounding algorithm to be
used when digits have to be discarded, and whether lost-digits checking is to be applied.
Other items could be included as future extensions, as in the Extended Specification.

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 23

Appendix B — Changes

This appendix documents changes since the first public draft of this specification (0.65,
26 Jul 2000). It is not part of the specification.

Changes in Draft 0.66 (28 Jul 2000)

The rules constraining any limits applied to the exponent of a number (see page 3)
have been added.

Minor corrections and clarifications have been added.

Changes in Draft 0.69 (9 Aug 2000)

A number produced by the to—number conversion operation has a sign of zero if the
integer is 0; similarly, arithmetic operations cannot produce a result of —-0. These
rules allow concrete representations comprising two simple integers. Note that the
Extended specification provides a mechanism for preserving and producing values
of -0.

The Exceptional conditions (see page 19) section has been extended to separate out
more exceptions and to align them with IEEE 854.

The names of some operations have been changed to achieve a consistent style.

Minor corrections and clarifications have been added.

Changes in Draft 0.74 (27 Nov 2000)

The rules constraining the limits applied to the exponent of a number (see page 3)
have been corrected (E,,, did not take into account the length of the integer).

The rules for converting a number to a scientific string (see page 9) have been
rephrased and corrected (the previous rules incorrectly converted some zero values).

The Exceptional conditions (see page 19) section has been alphabetized, and the
Invalid context condition has been added.

Minor corrections, clarifications, and additional examples have been added.

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 24

Changes in Draft 0.81 (5 Jan 2001)

The round-down (truncation) rounding algorithm has been added as a recommenda-
tion.

The rules constraining the right-hand operand of the power operation have been
clarified, and the Invalid operation condition has been added to report a error in the
operand.

The rules for reporting underflow or overflow during a power operation to a negative
power have been specified.

The rules for preserving integers and removing insignificant trailing zeros have been
clarified.

Minor clarifications and additional examples have been added.

Draft — Version 0.81 Copyright (c) IBM Corporation 2001. All rights reserved. 25

Index

- (minus)

in numbers 11

in numeric strings 8
. (period)

in numeric strings 9
+ (plus)

in numbers 11

in numeric strings 8

A

abstract representation

of context 5

of numbers 3

of operations 5
acknowledgements 1
ADAR

decimal arithmetic 22
add

definition 13
adjusted exponent 9
algorithms, rounding 5
ANSI standard

for REXX 1,2

IEEE 754-1985 22

IEEE 854-1987 1, 2, 22

X3.274-1996 1, 2
arbitrary precision arithmetic 12
arithmetic 12-18

comparisons 18

decimal 1

errors 19

exceptions 19

lost digits 6, 20

operation rules 12

Draft — Version 0.81

overflow 20
precision 5
underflow 20

B

blank
in numeric strings 8

C

calculation

context of 21

operands of 21

operation 21
comparative operations 18
compare

definition 18
comparison

of numbers 18
concrete representation 3
conditions, exceptional 19-20
context 3

abstract representation 5

invalid 20

of calculation 21
conversion 8-11

errors 19

from numeric string 11

to engineering numeric string 10

to scientific numeric string 9

to scientific string 24

Copyright (c) IBM Corporation 2001. All rights reserved. 26

D

decimal arithmetic 1, 12-18

Atari 22

concepts 21

for Ada 22
decimal digits

in numeric strings 8
decimal specification 1
digit

in numeric strings 8
divide

definition 14
divide-integer

definition 16
division

by zero 19

impossible 19

undefined 19

E

engineering notation 10
errors during arithmetic 19
exceptional conditions 19-20
exceptions 19-20
conversion overflow 19
conversion syntax 19
conversion underflow 19
division by zero 19
division impossible 19
division undefined 19
during arithmetic 19
insufficient storage 20
invalid context 20
invalid operation 20
lost digits 6, 20
overflow 20
underflow 20
exclusions 2
exponent 3
adjusted 9
in abstract numbers 3

Draft — Version 0.81

in numeric strings 8

limits 4, 24

part of an operand 22
exponential notation 9
exponentiation

definition 15

IEEE standard 754-1985 22

IEEE standard 854-1987 1, 2, 22

inclusions 2
insufficient storage 20
integer 3

in abstract numbers 3

limits 3

preservation 13, 25
integer arithmetic 12-18
integer divide 16
invalid context 20
invalid operation 20

L

lost digits

checking 20
lost-digits 6

in abstract context 6

M

minus
definition 14
minus zero 24
cannot result 13
in to-number 11

model 3
modulo

See remainder operator
multiply

definition 14

Copyright (c) IBM Corporation 2001. All rights reserved.

27

N

negation

See minus
non-Arabic digits

in numeric strings 8
notation

for abstract represent
numbers 3

in abstract context 5
of a calculation 22
of arithmetic 5

R

ation 5 remainder
definition 17

abstract representation 3 residue

arithmetic on 12
comparison of 18
from strings 8

See remainder operator
result
rounding of 12

numeric round-down algorithm 6, 25
part of a numeric string 8 round-half-even algorithm 6
part of an operand 22 round-half-up algorithm 6

numeric string 8
syntax 8
white space in 8

O

objectives 2
operand
of calculation 21
rounding of 12
operations 3, 21

rounding 5
exception from 6
exceptions from 20
in abstract context 5
of operands 12
of results 12

S

scientific notation 9
scope 2

abstract representation 5 sign 3

arithmetic 12
conversion 8
overflow, arithmetic 20

P

period

in numeric strings 9
plain numbers

See numbers

plus

definition 14
power

checking 25

definition 15
precision 5

arbitrary 12

Draft — Version 0.81

in abstract numbers 3
in numbers 11
, 25 in numeric strings 8
of an operand 21
significant digits, in arithmetic 5
simple number
See numbers
strings 8
subtract
definition 13

T

to-engineering-string operation 10
to-number operation 11
to-scientific-string operation 9
trailing zeros 13

Copyright (c) IBM Corporation 2001. All rights reserved.

28

U

W

. . white space
underflow, arithmetic 20, 25 in numeric strings 8
vV Z
zero
value of a number 4 division by 19

Draft — Version 0.81

division of by zero 19
minus 11, 13, 24

Copyright (c) IBM Corporation 2001. All rights reserved.

29

