
SG24-5265-00

International Technical Support Organization

http://www.redbooks.ibm.com

VisualAge for Java Enterprise Version 2:
Data Access Beans - Servlets - CICS Connector

Olaf Graf, Avril Kotzen, Osamu Takagiwa
Ueli Wahli

VisualAge for Java Enterprise Version 2:
Data Access Beans - Servlets - CICS Connector

December 1998

SG24-5265-00

International Technical Support Organization

© Copyright International Business Machines Corporation 1998. All rights reserved
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (December 1998)

This edition applies to Version 2.0 of VisualAge for Java Enterprise, for use with the OS/2, Windows 95,
or Windows NT operating system.

Sample Code on the Internet:

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

The sample code for this redbook is available as sg245265.zip file on the ITSO home page on the
Internet:

ftp://www.redbooks.ibm.com/redbooks/SG245265

Download the sample code and read Appendix A.6, “Installation of the Redbook Samples” on page
373.

Before using this information and the product it supports, be sure to read the general information in
Appendix B, “Special Notices” on page 375.

Take Note!

Contents

Figures . xiii

Tables . xix

Preface . xxi
The Team That Wrote This Redbook. xxii
Comments Welcome . xxiii

Part 1. VisualAge for Java Enterprise Version 2.1

Chapter 1. Introduction . 3
1.1 VisualAge for Java Version 2 Professional. 4

 Support for Java Development Kit 1.1.6 . 4
 New Integrated Development Environment Features 4
 New Visual Composition Editor Features. 4
 JavaBeans for Easy Access to Data . 4

1.2 VisualAge for Java Version 2 Enterprise . 5
 Java Team Programming Support. 5
 Source Code Management Tools Integration . 5
 Open Tool Integrator APIs . 5
 Enterprise Toolkits for Workstation, AS/400, and OS/390 6
 Enterprise Access Builders . 6
 Automated Object to Relational Mapping . 7
 Servlet Builder . 7
 IDL Development Environment. 7
 Support for SanFrancisco, Tivoli, Lotus, and Component Broker 8
 AIX Development Environment. 8
© Copyright IBM Corp. 1998 iii

Chapter 2. Relational Database Access with Data Access Beans . 9
2.1 Overview. 10

 Data Access Beans versus Data Access Builder 11
2.2 Development Process with Data Access Beans 11

 Loading the Data Access Bean Feature . 11
 Using the Select Bean . 12
 Development Process Step by Step . 17

2.3 Building a Sample Application . 19
 Application Requirements . 19
 Development Process . 20
 Creating the Project and the Package . 21

 Creating the Sample Panel and the Select Bean 21
 Building the User Interface . 41
 Improving the Select Bean. 45
 Run the Application . 46

2.4 Summary . 46

Chapter 3. Enterprise Application Development with Servlets . 47
3.1 Server-Side Applications . 48

 Common Gateway Interface. 48
 Servlets . 48
 What Are Servlets? . 49
 Servlet Creation Tools . 51
 Web Server Consideration . 52

3.2 Inside Servlets . 52
 Simple Servlet. 53
 Invoking a Servlet in HTML . 54
 Invoking a Servlet with Parameters . 56
 HttpServlet . 57
 Complex Servlets . 58

3.3 Servlet Builder Overview . 59
 How Do Servlet Builder Beans Work?. 59
 Advantages of the Servlet Builder. 60
 Visual Servlet . 61
 Servlet Builder Visual Beans. 62
 Servlet Builder Nonvisual Beans. 65
 Form Data . 65
 Cookie Wrapper . 66
 Session Data Wrapper . 67
 Run Configuration . 67
 Invoking Another Servlet . 67

3.4 Creating Visual Servlets . 68
 Simple Servlet. 69
 Server-Side Include Servlet . 71
iv VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

 Counter Servlet. 71
 Passing Data to the Servlet . 73

3.5 Advanced Servlet Techniques . 75
 Advanced HTML Tags . 75
 Servlet Chaining. 77
 Keeping and Passing Data between Servlets . 81
 Servlet Branch . 84
 Condition Control . 85
 Disable Caching of Generated HTML . 87
 Servlet with JDBC . 88

Chapter 4. CICS Access with the CICS Connector 91
4.1 The Enterprise Access Builder . 92
4.2 Connectors . 92
4.3 The CICS Connector . 93

 CICS Connector Installation . 93
 CICS Connector Classes. 94

4.4 CICS Universal Clients . 95
 Communcation Protocols . 95
 Client Customization . 96
 Client Functions . 98

4.5 CICS Transaction Gateway. 100
 What the CICS Transaction Gateway Provides 101
 How the CICS Transaction Gateway Accesses CICS 101

4.6 A Discussion Review . 103
4.7 Accessing Enterprise Data . 103

 Overview . 104
 Structure Description . 105
 Records and the Java Record Framework. 105
 Record Bean Generation . 109
 Commands. 111
 Navigators. 117
 Business Objects . 119
 Mappers. 119
 Executing the Command . 123

4.8 A Review of Accessing Enterprise Data . 124

Part 2. Implementing the ATM Application125

Chapter 5. ATM Application Requirements and ATM Database 127
5.1 ATM Application Requirements . 128
5.2 ATM Database Implementation . 130

 Sample Data of ATM Tables . 133
 v

Chapter 6. ATM Application Business Model 137
6.1 Application Design. 138

 Application Layers . 138
 Application Layer Architecture . 138

6.2 Business Object Layer . 140
 Business Logic Classes . 142
 Testing the Business Objects . 152

6.3 Application Controller . 154
 Persistence Layer Interface . 154
 Controller Interface . 155

 Controller and Persistence Interfaces . 157
 Implementing the Controller . 158

6.4 Persistence Layer. 162

Chapter 7. ATM Application Persistence Using Data Access Beans
. 163
7.1 Persistence Layer Design . 164
7.2 Database Access with ATM Database Beans . 165

 PIN Validation . 165
 List of Accounts. 174
 Debit and Credit Transactions. 175
 Transaction History . 177

7.3 Business Object Creation with ATM Database Beans 178
 PIN Validation . 178
 List of Accounts. 180
 Debit and Credit Transactions. 182
 Transaction History . 184

7.4 Implementing the Persistence Interface . 186
 AtmDB Bean . 186
 Testing the Implementation of the Persistence Interface 188

7.5 Preparation for Servlet Usage. 189

Chapter 8. Swing GUI for ATM Application 191
8.1 Design of the GUI Application . 192

 Application Controller . 193
 Panel Design . 193

8.2 Implementation of the Application Panels . 195
 Card Panel . 195
 PIN Panel . 196
 Select Account Panel . 198
 Transaction Panel. 200
 ATM Applet. 202

8.3 Running the ATM GUI Applet . 204
vi VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Chapter 9. ATM Application Using Servlets 205
9.1 Create a Skeleton Controller Servlet . 206
9.2 Servlet Views . 206

 Card Servlet . 206
 PIN Servlet . 209
 Account Servlet . 212
 Transaction Servlet . 216
 Thank You Servlet . 220

9.3 Application Flow Design . 221
9.4 Implementing the Controller Servlet . 223

 Preparation for Testing . 223
 Initialization . 223
 Customer Verification . 225
 PIN Verification . 226
 Account Selection . 227
 Deposit Transaction . 228
 Withdraw Transaction . 229
 Query Transaction History . 230
 Termination and Restart . 231
 Disable Caching of the Output HTML . 233
 Controller Servlet Total Design . 234

9.5 Testing the ATM Servlet Application . 235
 Built-in HTTP Server . 235
 Using the WebSphere Application Server. 235
 Using the ATM Servlet Application with DB2 236

9.6 Deploying Servlets . 236

Chapter 10. ATM Application with the CICS Connector 239
10.1 A Review of the ATM Application Design . 240

 The Persistence Interface. 240
10.2 Task Overview . 242

 Conventions. 242
 Only a Subset of the Interface Methods . 242
 CICS Infrastructure Assumptions. 242
 CICS Programs . 242
 Tasks Implemented . 243

10.3 CICS Infrastructure Requirements . 243
 CICS Server Resources. 243
 CICS Client Configuration and Startup . 244
 Starting the CICS Transaction Gateway . 245

10.4 Initial Creation of AtmCICS Class . 245
10.5 ATM Header for the COMMAREA . 245
10.6 CICS Transaction to Retrieve an ATM Card 246
 vii

 CICS COBOL Program ATMCARDI . 247
 Card Record Bean. 248
 Card Command. 250
 Building a Navigator to Execute the CICS Transaction 252
 Implement the extGetCard Method. 254

10.7 Using Mappers . 255
 Input Mapper for Card . 255
 Output Mapper for Card . 256
 Create a Command with Mappers . 257
 Execute the CICS Transaction with Mappers 257

 Change the AtmCICS Class to Use the Mappers 259
10.8 Test the CICS Card Transaction. 260

 Prepare Test Output for Card Transaction. 260
 Testing Card Transaction with a Scrapbook Script 261
 Testing without CICS. 262

10.9 Discussion Review . 262
10.10 CICS Transaction to Retrieve Accounts . 263

 CICS COBOL Program ATMACCNT . 263
 Accounts Record Bean . 264
 Accounts Input Mapper . 266
 Accounts Command . 266
 Navigator to Execute the CICS Accounts Transaction. 267
 Implement the extGetAccounts Method . 270

10.11 Testing the CICS Accounts Transaction. 270
 Prepare Test Output for Accounts Transaction 270
 Testing the Accounts Transaction with a Scrapbook Script 271

10.12 Testing the ATM Application with CICS . 272
 Testing the Real Application . 272

10.13 Using an Advanced Navigator . 273
 Design of a Navigator . 273
 Implementation of the Navigator . 274
 Testing the Navigator. 276

10.14 Implementation of the Back-End Programs. 277
10.15 Conclusion . 277

Chapter 11. ATM Application Using MQSeries. 279
11.1 A Brief Overview of MQSeries . 280

 Messages and Queues. 280
 MQSeries Objects . 281
 MQSeries Clients and Servers . 286

11.2 MQSeries Version 5 . 287
11.3 About MQSeries and Java. 287

 MQSeries Client for Java . 287
viii VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

 MQSeries Bindings for Java . 288
 The MQSeries Java Programming Interface . 289

11.4 Implementing the ATM Application with MQSeries 291
11.5 MQSeries Queue Manager and Objects . 292

 Create a Queue Manager . 292
 Define MQSeries Objects . 292
 Command File to Start the Queue Manager. 294

11.6 Importing MQSeries into VisualAge for Java 294
11.7 Create an MQAccess Bean . 295

 Sample MQSeries Package . 295

 MQAccess Bean. 295
 Implement the MQAccess Methods . 297

11.8 ATM MQSeries Design Choices . 304
 Conforming to the ATM Model . 305
 Unit of Work Considerations . 305

11.9 ATM Request Classes . 306
 AtmRequest Class. 306
 Card Request. 308
 Accounts Request . 308

11.10 ATM Response Classes . 309
 AtmResponse Class . 309
 Card Response . 310
 Accounts Response . 311

11.11 ATM Access Classes. 312
 Card Access Class . 312
 Account Access Class . 314

11.12 Persistence Interface with MQSeries . 315
 AtmMQ Class . 315

11.13 Adding Additional Transactions . 318
 Create a Class for the MQSeries Request . 319
 Create a Class for the MQSeries Response . 320
 Create a Transaction-Specific Access Class . 320
 Modify the AtmMQ Class . 322
 Create a Back-End Application Program . 324

11.14 Back-End Programs. 324
 Java Back-End Server Program . 324
 Testing the ATM MQSeries Server . 330
 Testing the ATM Application with MQSeries. 331
 CICS COBOL Back-End Programs . 332

Chapter 12. Deployment of the ATM Application Implementations
. 333
12.1 Deployment of Applications. 334
 ix

 Prerequisites for Applications . 334
 Exporting an Application from VisualAge for Java 334
 Deployment Process for Applications . 335

12.2 Deployment of Applets. 336
 Exporting Applets from VisualAge for Java . 336
 Deployment Process for Applets . 336

12.3 Deployment of Servlets . 338
 Deployment of Servlets for Lotus Domino Go Webserver 339
 Target Location. 340
 Class Path Setting for Web Server . 340

12.4 Deployment of Applications with Swing. 344
12.5 Tailoring the Web Browser . 344

Chapter 13. High-Performance Compiler and Remote Debugger
. 345
13.1 High-Performance Compiler . 346

 Compiler Options . 346
 Base Java Classes. 346
 Swing Classes . 347
 Execution. 347

13.2 Compiling the ATM Application . 347
 Export the ATM Application . 347
 Compile the ATM Application . 348
 Compile the Data Access Beans. 348
 Compile the DB2 JDBC Drivers . 349
 Remove the Object Files . 349

13.3 Run the Compiled ATM Application. 350
13.4 Alternative Compile Approach . 351
13.5 Remote Debugger. 353

 Reasons for Remote Debugging . 353
 Running the Remote Debugger . 353

13.6 Remote Debugging of the ATM Application . 354
13.7 Debugging a Compiled Program . 357

Appendixes .359

Appendix A. Installation, Setup, and Configuration 361
A.1 Setup of VisualAge for Java Enterprise Version 2 362
A.2 Setup for Data Access Beans . 363
A.3 Setup for the Servlet Builder . 364

 Web Server . 364
A.4 Setup for the CICS Connector . 365
x VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

 Setup of the CICS Server and Client. 365
 COBOL Sample Programs . 366

A.5 Setup for MQSeries on Windows NT . 369
 Installation Considerations . 369
 Queue Manager and Queue Setup. 369
 VisualAge for Java Setup . 369
 MQSeries CICS Bridge Program . 369

A.6 Installation of the Redbook Samples . 373

Appendix B. Special Notices . 375

Appendix C. Related Publications . 379
C.1 International Technical Support Organization Publications 380
C.2 Redbooks on CD-ROMs. 381
C.3 Other Publications . 381

How to Get ITSO Redbooks . 383
How IBM Employees Can Get ITSO Redbooks. 383
How Customers Can Get ITSO Redbooks . 384
IBM Redbook Order Form . 385

List of Abbreviations . 387

Index . 389

ITSO Redbook Evaluation . 395
 xi

xii VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figures

1. Select Bean Result Set in Memory. 13
2. Development Process with Data Access Beans 18
3. Data Access Beans Sample Application. 19
4. Placing a Select Bean on the Free-Form Surface 22
5. Query Property Editor of the Select Bean . 24
6. Specification of the Database Access Class . 25
7. Specification of the Connection Alias Definition 26
8. Query Property Editor Connection Page . 28
9. Query Property Editor SQL Page. 29
10. Define a new SQL Specification . 30
11. SQL Assist SmartGuide Tables Page (required) 31
12. Schemas to View and Table Name Filters. 32
13. SQL Assist SmartGuide Join Page (optional) . 33
14. SQL Assist SmartGuide Condition Page (optional) 34
15. Search for Column Values in the Value Lookup Window. 35
16. SQL Assist SmartGuide Columns Page (optional) 36
17. SQL Assist SmartGuide Sort Page (optional) . 37
18. SQL Assist SmartGuide Mapping Page (optional) 39
19. SQL Assist SmartGuide SQL Page (optional) . 40
20. Query Property Editor with New SQL Specification 41
21. Sample Application User Interface and Database Connection 43
22. Sample Application Logic to Display the Employee Photos 44
23. HTTP Transactions. 49
24. HTTP Session and Servlet . 50
25. Simple Servlet Source Code . 53
26. Server-Side Include HTML File . 55
27. Servlet with HTTP Server-Side Include . 55
28. Server-Side Include Counter Servlet Source Code 56
© Copyright IBM Corp. 1998 xiii

29. HTML File with Form Invoking a Servlet. 56
30. Servlet Processing with Form Data . 57
31. Servlet with Post Processing . 58
32. Servlet Class Hierarchy . 60
33. Visual Servlet . 61
34. Flow between Servlets . 66
35. Adding the Servlet Builder Feature to the Workbench 68
36. Create Servlet SmartGuide . 69
37. Servlet Palette and HTML Page in Visual Composition Editor. 70
38. Code Property for a Server-Side Include Servlet 71

39. HTML Page with a Counter . 72
40. Servlet with Counter in Netscape Browser . 72
41. Interactive Servlet . 74
42. Style Sheet Specification . 76
43. JavaScript Invocation . 76
44. Servlet Chaining in Single Flow . 77
45. Sign On Servlet . 78
46. Data Entry Servlet . 78
47. Service Handler Specification for Form Action 79
48. Conversion Servlet . 80
49. Data Entry Servlet with Cookie and Session Data 83
50. Conversion Servlet with Cookie and Session Data 83
51. Servlet Branch. 84
52. Branch Form . 84
53. Condition Control Servlet . 85
54. Controller Servlet . 86
55. Post Servlet with Caching Disabled. 87
56. Disabling Caching in a Visual Servlet . 87
57. Servlet with Data Access Bean . 89
58. Servlet with Data Access Bean Browser Result 90
59. Client Initialization File Syntax . 97
60. Extract for Customized Client Initialization File 98
61. CICS Transaction Gateway . 100
62. Record Bean Creation . 107
63. SmartGuide for COBOL Record Type . 108
64. Generate Records SmartGuide. 109
65. Generate Records SmartGuide: Changing Properties 110
66. Command Construction . 112
67. Command Editor: Initial View . 114
68. Command Editor with Communication, Input, and Output Beans . . 116
69. Visual Composition Editor View of a Command 116
70. Navigator . 117
xiv VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

71. Construction of a Navigator . 118
72. Mapper Editor . 121
73. Command Editor with Mappers. 122
74. Visual Composition Editor View of Command with Mappers 123
75. ATM Application Layers and Implementations 126
76. ATM Application Panels and Flow. 129
77. Relationships among the ATM Tables . 130
78. ATM Database Data Definition Language . 132
79. ATM Database Sample Data Load. 135
80. Layers of the ATM Application . 139
81. Object Model of the ATM Business Object Layer 141

82. Defining an Event with an Event Listener (First Page). 144
83. Defining an Event with an Event Listener (Second Page) 144
84. Scrapbook Script for Testing the Business Model. 153
85. Controller and Persistence Interfaces . 157
86. Select Statement for Customer Information and PIN Validation . . . 166
87. Specification of the Database Access Class . 167
88. Connection Alias Definition for the ATM Application 168
89. New SQL Specification . 169
90. SQL Assist SmartGuide: ATM Table Specification. 170
91. SQL Assist SmartGuide: ATM Join Specification. 171
92. SQL Assist SmartGuide: Condition Specification 172
93. SQL Assist SmartGuide: Columns Specification 173
94. SQL Assist SmartGuide:View and Test the SQL Statement 174
95. Select Statement to Retrieve Accounts of a Card 175
96. Select Statement to Update the Account Balance. 175
97. Select Statement to Retrieve All Transactions 176
98. Select Statement to Retrieve the Transactions of an Account 177
99. Visual Composition of PinCustInfo Bean . 178
100. Visual Composition of Accounts Bean . 180
101. Visual Composition of UpdateBalance Bean . 182
102. Visual Composition of Transactions Bean. 184
103. Scrapbook Script for Testing the AtmDB Bean. 188
104. Updated Connection Specification for the ATM Application 189
105. ATM Application Panels . 192
106. GUI Application with Application Controller 193
107. Visual Composition of the Card Panel . 195
108. Visual Composition of the PIN Panel . 196
109. Visual Composition of the Select Account Panel 198
110. Visual Composition of the Transaction Panel 200
111. Visual Composition of the ATM Applet . 202
112. Card Servlet View . 206
113. Card Servlet Design . 207
 xv

114. PIN Servlet View. 209
115. PIN Servlet Design . 210
116. Account Servlet View . 212
117. Account Servlet Design. 213
118. Transaction Servlet View . 216
119. Transaction Servlet Design . 217
120. Thank You Servlet View. 220
121. Servlet Application Flow . 221
122. Initializing the Controller Servlet . 224
123. Customer Verification. 225
124. PIN Verification . 226

125. Account Selection . 228
126. Deposit Transaction . 229
127. Withdraw Transaction . 230
128. Query Transaction History. 231
129. Termination and Restart . 232
130. Disabling Caching for the ATM Servlets . 233
131. Controller Servlet Total Design . 234
132. Client Listener Definition. 244
133. Checking the Return Code of the CICS Transaction 246
134. COMMAREA of the ATMCARDI Program . 247
135. Card Record Type Creation: Class and COBOL File 248
136. Card Record Type Creation: COMMAREA Selection 249
137. Card Record Bean Generation . 250
138. CardCommand with CICSConnectionSpec Properties 251
139. Visual Composition of CICSCardNavigator Class 253
140. Implementation of extGetCard . 254
141. Mapper Editor for Input Record Mapping . 256
142. Command Editor with Mappers. 257
143. Visual Composition of the CICSCardMapperAccess Class. 258
144. Extracting Objects from a Command. 258
145. Implementation of Enhanced extGetCard. 260
146. Scrapbook for CICS Card Transaction Testing 261
147. COMMAREA of the ATMACCNT Program. 264
148. Edit of Accounts Record Type. 265
149. Classes Generated from Accounts Record Type 265
150. Visual Composition of CICSAccountsNavigator 267
151. Code Listing of createAccountsVector Method 269
152. extGetAccounts Method . 270
153. Scrapbook Script for CICS Accounts Transaction Testing 271
154. Scrapbook Script for CICS Application Testing 272
155. Visual Composition of the Navigator . 274
156. Scrapbook Script for Advanced Navigator. 276
xvi VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

157. Method to Invoke the Advanced Navigator . 277
158. Local Queue Attributes. 282
159. Message Flow across a Channel. 284
160. Two-way Message Channel Communication . 284
161. MQI Channel Definition . 285
162. Use of an MQI Channel . 285
163. MQSeries Client to Server Flow. 286
164. MQSeries Objects for ATM Application. 293
165. MQSeries Startup Command File . 294
166. connectToQmgr Method . 298
167. disconnectFromQmgr Method . 298

168. openQueue(String, int) Method . 299
169. openQueue(String) Method . 300
170. closeQueue Method . 300
171. putRequestMessage Method. 301
172. putRequestMessage Method for ATM Requests 302
173. retrieveSpecificMessage Method . 303
174. getHeader Method. 307
175. toString Method . 307
176. Request Trigger Method . 308
177. getCard Method. 310
178. getAccounts Method . 311
179. Visual Composition of Card Access Class . 313
180. Visual Composition of Accounts Access Class 314
181. Properties of MQAccess Beans . 316
182. Visual Composition of AtmMQ Class. 317
183. extGetCard Method. 318
184. extGetAccounts Method . 318
185. Visual Composition of Update Balance Access Class 322
186. Visual Composition of AtmMQ with Update Balance. 323
187. extUpdateBalance Method . 323
188. Visual Composition of the ATM MQSeries Server Class 325
189. Scrapbook Script for Testing the ATM MQSeries Server 330
190. Deployment Process for Applications. 335
191. Deployment Process for Applets. 337
192. Deployment Process for Servlets in Lotus Domino Go Webserver. . . 339
193. WebSphere Application Server: Administration 341
194. WebSphere Application Server: Manage Configuration 342
195. WebSphere Application Server: Servlet Configuration Basic Page . . 343
196. Remote Debugger: Session Control Window . 354
197. Remote Debugger: Source Window . 355
198. Remote Debugger: Source Window with Breakpoint 356
199. Remote Debugger: Program Monitor Window. 356
 xvii

xviii VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Tables

1. DBNavigator Push Buttons . 16
2. Mapping between SQL Data Types and Java Classes 38
3. Web Servers Supporting Servlets . 52
4. Methods of the ServerRequest Class. 54
5. Methods of the ServerResponse Class. 54
6. Servlet Builder Visual Beans. 63
7. Servlet Builder Visual Beans for Forms . 64
8. Servlet Builder Nonvisual Beans . 65
9. Client Environment Variables. 96
10. Customer Table . 130
11. Card Table . 131
12. Account Table . 131
13. Transaction Table. 131
14. Customer Table Sample Data . 133
15. Card Table Sample Data . 133
16. Account Table Sample Data. 134
17. Transaction Table Sample Data . 134
18. ATM Persistence Interface Methods . 155
19. ATM Application Controller Methods . 156
20. ATM Application Controller Events . 156
21. ATM Database Beans. 165
22. GUI Beans in Card Servlet . 208
23. GUI Beans in PIN Servlet . 210
24. GUI Beans in Account Servlet. 213
25. GUI Beans in Transaction Servlet . 218
26. ATM Persistence Interface Methods . 241
27. MQAccess Bean Properties . 296
28. MQAccess Bean Method Features. 297
© Copyright IBM Corp. 1998 xix

29. Methods of the AtmRequest Class. 307
30. Card Request Class . 308
31. Accounts Request Class . 309
32. Methods of the AtmResponse Class . 309
33. Card Response Class . 310
34. Accounts Response Class . 311
35. Properties of the Card Access Class . 312
36. Properties of the Account Access Class . 314
37. AtmMQ Methods Implemented for ATM Application 317
38. Update Balance Request Class . 319

39. Properties of the Update Balance Access Class 322
40. Methods of the ATM MQSeries Server Class . 325
41. Servlet Deployment Specifications . 340
42. High-Performance Compiler Options . 346
43. CICS COBOL Programs. 366
44. Redbook Sample Code . 373
45. Packages of the Redbook Sample Applications. 374
xx VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Preface

VisualAge for Java Enterprise Version 2 is the second generation of the
award-winning VisualAge for Java product. Version 2 extends the
connectivity to enterprise data and applications through a set of new
enterprise access builders:

 ❑ Data access beans for easy access to relational databases

 ❑ Servlet Builder for visual constructions of servlets

 ❑ E-Connectors to connect to enterprise transactions servers, including
CICS and Encina

 ❑ Persistence Builder to automate the mapping of a business model into a
relational database

Version 2 also includes a high-performance compiler, a remote debugger,
team programming support, the Java Foundation Classes (Swing), an IDL
development environment, support for SAP/R3, Lotus Notes, Component
Broker, Tivoli, San Francisco Framework, and an open tool integration API.

In this book we concentrate on data access beans, the Servlet Builder, and
the CICS Connector. We also touch on the high-performance compiler and
debugger.

The book demonstrates a practical approach to using VisualAge for Java
Enterprise Version 2. A sample ATM bank application is used throughout the
book to illustrate the use of the new enterprise access builders.
© Copyright IBM Corp. 1998 xxi

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, San Jose
Center.

Olaf Graf is an AD Technical Support Specialist working for IBM Techline
Germany. He provides pre- and post-sales technical support to customers
across Europe, the Middle East, and Africa. His areas of expertise include
application development, databases, and VisualAge products. He is a Sun
Certified Java JDK 1.1 Programmer. Before joining CSG, a subsidiary of IBM
Germany, two years ago, Olaf worked as a software developer on a research
project entitled “Sleep Analysis by Means of Neural Networks.” Olaf holds a
degree in Electrical Engineering from the Technical University of Ilmenau,
Germany.

Avril Kotzen is an IT specialist in South Africa. She provides product
support for CICS and MQSeries. Her roles include designing end-to-end
integration solutions. Avril has recently worked on a Lotus Notes to CICS
integration solution using MQSeries.

Osamu Takagiwa is an advisory IT Specialist working for IBM Japan
Systems Engineering Co., Ltd. He provides technical support to customers in
Japan. Osamu is a Sun Certified Java JDK 1.1 Programmer and an IBM
Certified VisualAge for Java Developer. He wrote an entry-level book for
VisualAge for Java in Japanese. Osamu has recently worked on a server-side
Java solution using WebSphere Application Server and VisualAge for Java.

Ueli Wahli is a Consultant AD Specialist at the IBM International Technical
Support Organization in San Jose, California. Before joining the ITSO 14
years ago, Ueli worked in technical support at IBM Switzerland. He writes
extensively and teaches IBM classes worldwide on application development,
object technology, VisualAge products, data dictionaries, and library
management. Ueli holds a degree in Mathematics from the Swiss Federal
xxii VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Institute of Technology. His e-mail address is wahli @ us.ibm.com.

Thanks to the following people for their invaluable contributions to this
project:

 ❑ Derek Carter and Becky Nin, IBM Santa Teresa Laboratory

 ❑ Dean Williams and Sheldon Wosnick, IBM Toronto Laboratory

 ❑ Scott Rich, Lawrence Smith, and Joe Winchester, IBM RTP Laboratory

 ❑ Hanspeter Nagel and Emma Jacobs, ITSO San Jose Center

 ❑ Maggie Cutler, ITSO San Jose Center, for her outstanding editing work

Comments Welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

 ❑ Fax the evaluation form found in “ITSO Redbook Evaluation” on page 395
to the fax number shown on the form.

 ❑ Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com

For IBM Intranet users http://w3.itso.ibm.com

 ❑ Send us a note at the following address:

redbook@us.ibm.com
 xxiii

xxiv VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Part 1 VisualAge for
Java Enterprise
Version 2

In Part 1 we describe the new functions of VisualAge for Java Enterprise
Version 2.

We give an introduction of all the new functions and then concentrate on
© Copyright IBM Corp. 1998 1

three key features:

 ❑ Data Access Beans

 ❑ Servlet Builder

 ❑ CICS Connector

2 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

1 Introduction
In this chapter we give a short overview of the new function of VisualAge for
Java Version 2. In subsequent chapters we describe some of the new function
in detail.

VisualAge for Java Version 2 is available as two products:

 ❑ VisualAge for Java Version 2 Professional

 ❑ VisualAge for Java Version 2 Enterprise
© Copyright IBM Corp. 1998 3

1.1 VisualAge for Java Version 2 Professional
VisualAge for Java Version 2 Professional provides the new function listed
here. The redbook, Programming with VisualAge for Java Version 2,
SG24-5264, provides a detailed description of the new function of the
Professional edition.

Support for Java Development Kit 1.1.6
VisualAge for Java 2.0 supports the JDK 1.1.6. This support includes Swing
1.0.2, inner classes, and anonymous classes, and the Java Native Interface
(JNI). For more details on Swing, see Chapter 8, “Swing GUI for ATM
Application.”

New Integrated Development Environment Features
The integrated development environment (IDE) provides:

 ❑ Advanced coding tools such as automatic formatting, automatic code
completion, and fix-on-save

 ❑ Context-sensitive help
 ❑ Advanced debugging tools such as conditional breakpoints and both

multiple and incremental program debug
 ❑ Support for JavaDoc output
 ❑ Enhanced searching capabilities

New Visual Composition Editor Features
The Visual Composition Editor provides:

 ❑ Visual programming support for Swing beans
 ❑ Wizards for string externalization to assist in building multilanguage

applications
4 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

 ❑ Complete support for object serialization
 ❑ Ability to import GUIs built in other Java IDEs

JavaBeans for Easy Access to Data
New data access beans give your Java application the power to access
relational data from any Java Database Connectivity (JDBC) enabled
database and make it available on the Web. For more details, see Chapter
2, “Relational Database Access with Data Access Beans” and Chapter
7, “ATM Application Persistence Using Data Access Beans.”

1.2 VisualAge for Java Version 2 Enterprise
VisualAge for Java Version 2 Enterprise provides the new function listed
here.

Java Team Programming Support
The ultimate quality of your Java applications depends on how well you
manage your development process. VisualAge for Java includes a built-in
source code and version control system that provides you with a complete
audit trail of your project and helps in recovery from undesired code changes.

In addition to source code and version control, Enterprise Edition users also
get a fully integrated team development environment that improves
productivity and reuse levels for any size team. Each developer gets a
personalized workspace that is integrated with a collaborative repository
providing fine-grained versioning of individual components, change
identification, and impact analysis across multiple projects. This tight
integration avoids time-consuming switching between the repository and the
development environment and gives every developer instant “live access” to a
library of reusable components.

For more details on the team support, consult the redbook,
VisualAge for Java Version 2 Team Support, SG24-5245.

Source Code Management Tools Integration
If you are developing on the Windows platform, you can also check in or check
out your VisualAge for Java code to or from either VisualAge
TeamConnection, ClearCase, or PVCS.

Open Tool Integrator APIs
Introduction 5

Advanced users and commercial software developers who need to extend
VisualAge for Java can use the tool integrator API to:

 ❑ Add third-party tools that are launched from within the IDE
 ❑ Store and retrieve components from the integrated repository
 ❑ Add JavaBeans to the Visual Composition Editor's parts palette

Enterprise Toolkits for Workstation, AS/400, and OS/390
The increasing popularity of Java as a server language has placed new
requirements for application scalability on Java development shops.
Enterprise Edition 2.0 is ready to meet those requirements with a new
high-performance compiler for Java that maximizes the execution speed of
your server code.

We have also filled VisualAge for Java’s toolkit with cross-platform
debugging, testing, and performance analysis tools that are accessed from
your development workstation and that target applications built to run on
OS/2, Windows NT, AIX, OS/400, and OS/390. Plus, the VisualAge for Java
remote debugger tests and debugs interpreted Java, compiled Java, and C++
on multiple platforms, giving you a true multitier development environment.
New for S/390 developers is JPort, which prescreens Java programs to ensure
OS/390 portability and profiles OS/390 Java applications to detect
performance bottlenecks.

For more details, see Chapter 13, “High-Performance Compiler and
Remote Debugger.”

Enterprise Access Builders
Extending existing enterprise application servers to the Web is a critical
success factor for leading-edge IT shops. VisualAge for Java Enterprise
Edition provides a collection of Enterprise Access Builders that give you
access to enterprise systems such as relational data, CICS transactions, or
SAP R/3 applications from your Java programs.

VisualAge for Java’s unique approach lets you access multiple systems from a
single Java application and uses a consistent programming interface across
diverse enterprise systems to reduce your learning curve, maximize your
productivity, and increase the run-time performance of your applications.
6 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

VisualAge for Java’s Enterprise Access Builders include:

 ❑ Access Builder for CICS including CICS ECI, CICS EPI, CICS EXCI. For
more details, see Chapter 4, “CICS Access with the CICS
Connector” and Chapter 10, “ATM Application with the CICS
Connector.”

 ❑ Access Builder for Encina using the DCE Encina Lightweight Client
 ❑ Access Builder for SAP R/3 using SAP R/3 Business Objects
 ❑ Access Builder for Data for JDBC access to enterprise data
 ❑ Access Builder for J2C++ for access to C++ programs
 ❑ Access Builder for Remote Method Invocation (RMI) for creating

distributed Java applications

Automated Object to Relational Mapping
A new Enterprise Access Builder for Persistence provides a set of tools that
automate the task of mapping the persistent state of Java objects to
relational databases. These tools generate a layer of code that implements all
of the JDBC access calls necessary to insert, update, or retrieve the data for
an object from an SQL database.

The programming model used to create the persistent Java objects is based
on the industry standard Enterprise JavaBeans (EJB) Architecture. The
Enterprise Access Builder for Persistence and its generated Java code will be
upward compatible to support full EJBs in a future release of VisualAge for
Java. This functionality will coincide with the delivery of IBM’s Enterprise
Java Server (EJS) environments, such as IBM’s WebSphere Application
Server and Component Broker.

Servlet Builder
Enterprise Edition users can now use visual programming techniques to
create and test servlets. With Servlet Builder, a wide variety of custom and
off-the-shelf business objects can be Web-enabled and used within the
VisualAge for Java reusable parts library. When Servlet Builder is used along
with the IBM WebSphere Application Server, site builders can test and debug
a combination of pages built using pure HTML, compiled Java Server Pages
(JSP), and Servlet Builder visual servlets.

For more details, see Chapter 3, “Enterprise Application
Development with Servlets” and Chapter 9, “ATM Application Using
Servlets.”

IDL Development Environment
The Enterprise Edition provides an integrated development environment for
Introduction 7

CORBA-based applications. Interface Definition Language (IDL) descriptors
can be stored in the repository, together with the Java source code that is
generated using IDL-to-Java compilers. Products that implement the
CORBA standard can be invoked from the VisualAge for Java IDE to develop
and test Java applications that communicate using Internet Inter-ORB
Protocol (IIOP).

For more information, consult the redbook, Using VisualAge for Java
Enterprise Version 2 to Develop CORBA and EJB Applications,
SG24-5276.

Support for SanFrancisco, Tivoli, Lotus, and Component Broker
IBM has a rich portfolio of Java-based solutions, and VisualAge for Java is
the tool of choice for developing many of these systems:

 ❑ Enterprise Edition includes SanFrancisco wizards for building
applications from the SanFrancisco Business Application Components.

 ❑ VisualAge for Java can also be used to build Java-based business
productivity applications using the Lotus eSuite components and to
develop, debug, and test Lotus Notes Agents.

 ❑ Version 2.0 includes new Tivoli Beans used to make Java applications
“ready to manage” with Tivoli's enterprise management software. Tivoli
lets you easily track activities such as version upgrade, daily use
monitoring, and operation and distribution to target systems. VisualAge
for Java’s complete IDL environment can be used to create and manage
applications that can communicate with CORBA business objects, such as
those deployed on IBM's Component Broker application server.

AIX Development Environment
Now, with Version 2.0, you can use AIX 4.2 and 4.3 workstations as your
development platform.
8 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

2 Relational Database
Access with Data
Access Beans
In this chapter we look at new ways of accessing data outside VisualAge for
Java Version 2, specifically, how to access relational databases through data
access beans. The data access bean feature is included in both VisualAge for
Java Professional and Enterprise Version 2. We provide detailed information
about this new feature that facilitates retrieving and updating existing SQL
© Copyright IBM Corp. 1998 9

databases.

In Version 2 of VisualAge for Java access to relational databases is provided
in three ways:

 ❑ Data access beans (covered in this chapter)

 ❑ Persistence framework (a topic for a future redbook)

 ❑ Data Access Builder (unchanged from VisualAge for Java Version 1)

Now you can decide for yourself how sophisticated, but also how complex
your relational database development with VisualAge for Java should be.

2.1 Overview
Using data access beans is the fastest, nonprogramming way of building SQL
queries accessing existing databases. Just open the Visual Composition
Editor, place a Select bean on the free-form surface, specify the database
connection and data you need, and you are ready.

Most functionality is predefined. For example, your application can add,
update, and delete rows, commit or rollback database transactions, handle
multiple connections, lock rows, make the access read only, and specify how
many rows are fetched into memory (cache).

An SQL Assist SmartGuide helps you to visually specify the data you need.
You can select one or more tables, join tables, define search conditions,
restrict the number of columns, sort the result set, and change the mapping
between the SQL types in the database and the Java types in the application.

In addition, an SQL Editor lets you enter SQL statements manually. Use this
method when you need to compose very special or very sophisticated
database queries.1

After you have defined your database access using a Select bean, you can
place a DBNavigator bean into your visual application. The DBNavigator
bean incorporates buttons that navigate the result set of a query and perform
various relational database operations.

The Select bean fits into the JTable model of the new Java Foundation
Classes (JFC, called Swing). This relationship between retrieved SQL data
and the Swing table model makes it very easy to develop attractive user
interfaces for Java applets and applications, based on standard Java classes.

With data access beans you have direct access to any database for which a
JDK 1.1 compliant JDBC driver exists, for example, DB2 Universal Database
(UDB) Version 5.2 Alternatively, you can use an Open Database Connectivity
10 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

(ODBC) driver together with the JDBC-ODBC bridge that comes with the
Sun JDK.

1 SQL Editor generated code, in contrast to SQL Assistant generated code, cannot handle SQL parameters (host
variables) because the statement is not parsed. The developer or the application code can add the parameter
definitions manually to the generated methods to enable passing of values into the host variables.
2 You can also use DB2 V2.12, plus the latest CSD.

Data Access Beans versus Data Access Builder
In comparison to the Data Access Builder that was introduced in VisualAge
for Java Enterprise Version 1, data access beans use a distinct approach for
the development process:

 ❑ With Data Access Builder you invoke a separate tool to create and manage
plenty of database-specific access beans. Data visualization works best
with database-specific table beans, which are also created.

 ❑ Data access beans are available in the beans palette of the Visual
Composition Editor. You have to customize one data access bean, the
Select bean. Data visualization is completely based on Sun JDK classes;
the DBNavigator bean is optional.

Basically, Data Access Builder provides the same functionality as data access
beans, in a more complex and sophisticated way. In addition, Data Access
Builder generated beans can perform some database actions beyond the
scope of data access beans. You can use DB2 stored procedures, you have
background thread support to execute long-running methods asynchronously,
and there is explicit support to handle primary keys, that is, a column (or a
group of columns) that uniquely identifies each row.

2.2 Development Process with Data Access Beans

Tip We assume that you are familiar with the basic concepts
of JDBC. A good start for beginners is the redbook,
Application Development with VisualAge for Java
Enterprise, SG24-5081, and the Sun JDBC Guide:
Getting Started that is part of the JDK documentation.
Relational Database Access with Data Access Beans 11

In this section we describe in detail how to use data access beans.

Loading the Data Access Bean Feature
Before you can use data access beans you have to add the data access bean
feature to the Workbench. Use the Quick Start menu (F2), select Features ->
Add feature, and select IBM Data Access Beans 1.0 in the dialog that is
displayed. This action loads the project into the Workbench and adds the
data access beans to the beans palette of the Visual Composition Editor.

You also have to make suitable JDBC drivers available to the Workbench.
You can either load the driver classes into a Workbench project or add a zip or
jar file containing the driver classes to the Workbench’s class path. The class
path is specified in the Resources page of the Window -> Options dialog. The
DB2 JDBC drivers are contained in d:\SQLLIB\JAVA\db2java.zip.

Using the Select Bean
The Select bean, available from the database category in the beans palette of
the Visual Composition Editor, provides the base functionality to deal with
all kinds of relational data.

Retrieving the Result Set
To use the Select bean you have to specify both a connection alias and an SQL
statement,3 which identify the database as well as the data you want to
retrieve (see “Specify the Connection Alias” on page 25 and “Make an SQL
Specification” on page 29).

Whenever you start a database transaction, first you have to execute the SQL
statement specified for the Select bean, using the execute method (see Figure
1 on page 13, step 1), to retrieve a result set. All methods to display, navigate,
insert, update, or delete data expect this, nonempty, result set. All
changes are made in memory and then applied to the database.

The result set is automatically closed by the SQL statement that generated it
when that SQL statement is closed, reexecuted, or used to retrieve the next
result from a sequence of multiple results.

You can define parameters, or host variables, in your SQL statement, and
specify the parameters at run time. You must set the parameters before you
invoke the execute method. The Select bean has two properties for each
parameter defined. One property is the parameter in its specified data type,
the other property is a string representation of the parameter. Therefore, you
12 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

can make a property-to-property connection between the text property of an
entry field and the string representation of the parameter to invoke the
setParameter method.

3 The VisualAge for Java documentation uses the phrase SQL statement, and we will use the phrase in this book.
However, for all readers who know SQL, the SQL statement is a SELECT statement.

Result Set

ex
ec

u
te

setParameter
(getParameter)

ro
w

po
si

ti
on

up
da

te
R

ow

de
le

te
R

ow

User-defined SQL statement

getColumnValue

setColumnValue

newRow
ch

a
n

ge

Step 1: Retrieve
data in memory

Step 3: Update
database tables

commit

roll back

Step 4: Complete
database transaction

Step 2: Update
data in memory

Select Bean

SQL Assist
SmartGuide
Relational Database Access with Data Access Beans 13

Figure 1. Select Bean Result Set in Memory

Database

Database

Displaying and Updating the Result Set
The Select bean has two bound properties for each data column in the SQL
specification. One property is the data column in its specified data type, the
other is a String representation of the data column.

Once you have retrieved the result set (Figure 1, step 2), you can display the
data by making a property-to-property connection between a user interface
component, such as the text property of an entry field, and a property of the
Select bean. Such a connection invokes the getColumnValue method to
update the user interface when the Select bean property changes.

This property-to-property connection works in both directions. In the same
way as you view the contents of the result set, you can update the result set,
changing the value in the connected user interface component to invoke the
setColumnValue method.

Many of the Select bean methods are designed to operate on the current row
of the result set. When an SQL statement is executed using a Select bean, the
first row of the result set is the current row. The Select bean includes
methods to change the current row, for example, one method makes the next
row in the result set the current row. Each column value property for the
Select bean is a bound property, if the current row is changed, the data
displayed in any interface component connected to the bound property is
updated.

Updating the Database
Rows that have been changed in the result set are marked for update of the
database as soon as the current row position changes.

The Select bean also provides predefined methods to insert, update, and
delete data in the database (Figure 1, step 3), and to commit or roll back
changes to the database (Figure 1, step 4).

There are various ways to use these methods. For example, one way to
14 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

implement updates in an application is to make an event-to-method
connection between an appropriate user interface component, such as a push
button, and the updateRow, deleteRow, or newRow method of the Select
bean.

The updateRow method applies changes to the database, and the deleteRow
method deletes data in the database, both on the basis of data in the current
row of the result set. To insert a new row, invoke the newRow method. Then
use the setColumnValue method to set values for its columns. The new row is
not inserted into the database until you move to another row or invoke the
updateRow method.

You can specify that all database updates are automatically committed for
each SQL query, or you can call the update as well as the rollback methods of
the Select bean directly to implement a more sophisticated transaction
control.

For more information refer to the VisualAge for Java Online Reference (IBM
Tool APIs, Data Access Beans, Package com.ibm.ivj.db.uibeans).

Using the DBNavigator Bean
The DBNavigator bean, available from the database category in the beans
palette of the Visual Composition Editor, provides a set of buttons to perform
relational database operations for the associated Select bean (see Table 1).
The DBNavigator bean is a Swing component and requires the Swing class
library.

To use the DBNavigator bean, add it to your user interface components and
edit its properties. Among other things you can specify which buttons will be
displayed; however, you cannot control the order of buttons in the display.

To associate the DBNavigator bean with the Select bean, create a
property-to-property connection between the this property of the Select bean
and the model property of the DBNavigator bean.

You can also use the DBNavigator bean to update data in a relational
database, although the DBNavigator bean does not provide an Update
button. Change the displayed value, as appropriate, in a user interface
component that is connected to the pertinent column value in the result set.
If the connection specifies an event to trigger the propagation of the updated
value, the value will be set in the result set. Then click on a DBNavigator
button, such as Next or Last, that changes the currentRow property value.
The values of the current row in the result set are updated in the database
before the currentRow property value is changed.
Relational Database Access with Data Access Beans 15

Table 1. DBNavigator Push Buttons

Button Remark

Retrieve the Result Set

Execute Connects to the database, using the connection specified in
the connection alias for the associated Select bean, and
executes the SQL statement for the associated Select bean.

Refresh Executes the SQL statement for the associated Select bean.
It is designed to reexecute an SQL statement that was
previously executed. The button does not reconnect to the
database. If the SQL statement is changed after its initial
invocation, the initial version of the query is executed.

Navigate the Result Set

First Sets the currentRow property of the associated Select bean
to the first row in the result set.

Previous Sets the currentRow property of the associated Select bean
to the previous row in the result set.

Next Sets the currentRow property of the associated Select bean
to the next row in the result set.

Last Sets the currentRow property of the associated Select bean
to the last row in the result set.

Modify the Result Set

Insert Inserts a new, blank row in the result set at the position
specified by the currentRow property of the associated
Select bean. An associated user interface component will
display blanks.

Delete Deletes the current row in the result set of the associated
Select bean. An associated user interface component will
display the next row, or the previous row when the deleted
16 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

row was the last one.

Commit Commits any uncommitted changes to the database made
by the associated Select bean or by any other Select bean
that shares the connection alias with the associated Select
bean.

Rollback Rolls back any uncommitted changes to the database made
by the associated Select bean or by any other Select bean
that shares the connection alias with the associated Select
bean.

Development Process Step by Step
Follow these high-level steps to construct an applet or application with data
access beans (see Figure 2 on page 18):

1. Create a project and package (or use an existing one) in the Workbench,
and open the Visual Composition Editor for a created class (for example,
an applet).

2. Place a Select bean from the Database category of the Beans Palette on
the free-form surface of the Visual Composition Editor (1).

3. Edit the properties of the Select bean according to your requirements:

 ❑ Specify characteristics of the Select bean, that is, bean name, how
many rows are fetched into memory (cache), whether a lock is
immediately acquired for the row, and whether database update is
allowed (2).

 ❑ Define characteristics of the database query (query property):

 • Specify a new or existing database access class (3).

 • Specify the connection alias. Identify the characteristics of the
database connection, that is, connection name, JDBC driver name,
database name, TCP/IP name and port number of the database
server, whether database updates are automatically committed,
user ID, password, and additional connection parameters. Saving
the connection alias generates a connection method in the database
access class (4).

 • Make an SQL specification. The query editor uses the connection
specification to interact with the database catalog (5). Specify the
SQL statement to retrieve the result set. Saving the SQL
specification generates an SQL query method in the database
access class (6). Methods for adding, updating, and deleting a row,
setting parameters, and getting column values are predefined in
the Select bean.
Relational Database Access with Data Access Beans 17

Depending on how you want to separate different database
transactions in your applet or application, you can use one or more
database access classes. Each class can hold methods for multiple
connections and SQL statements.

4. Design the application’s GUI, add a DBNavigator bean from the Database
category of the Beans Palette, if needed (7).

5. Connect the visual components (entry fields, push buttons, DBNavigator)
of the application’s GUI to the Select bean (8). Now, a user can use the
DBNavigator bean to execute the SQL statement specified in the Select
bean and display the result in the entry fields (9).

Figure 2. Development Process with Data Access Beans

You can have more than one Select bean in your applet or application. Select
beans can share a database connection using the same connection alias. They
can also share the SQL specifications of the database access class.

GUIGUI

Workbench

Database
7

1

DBNavigator Bean

Select Bean

2

8

(Select Bean)

Query property editor
SQL Statement

Catalog

Data Access

64Connection SQL
method method

connect
select
update

DB2

open

Class 3

9

5

18 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

2.3 Building a Sample Application
The fastest way to demonstrate how data access beans work is an example.
Now let’s start building an application using data access beans.

Application Requirements
The application we are building retrieves all photos saved in gif format from
the DB2 SAMPLE database and displays each photo, one after the other, in a
window. A table below the photo lists the names of all employees. A
DBNavigator bean on top of the application lets you perform all database-
specific actions.

You can select an employee and view his or her picture. To initiate the
database connection, click on the execute button of the DBNavigator, then
navigate between the photos by using the other buttons of the DBNavigator
bean (Figure 3).

EMPLOYEE
EMP_PHOTO

SAMPLE DB

Tables:
Relational Database Access with Data Access Beans 19

Figure 3. Data Access Beans Sample Application

Although the example is simple, it combines the functionality of data access
beans with the new Swing support of VisualAge for Java Version 2.

With Swing, you can develop efficient GUI components that have exactly the
“look and feel” that you specify. For example, a program that uses Swing
components can be designed in such a way that it will execute without
modification on any kind of computer and will always look and feel just like a
program written specifically for the particular computer on which it is
running.

From an architectural point of view, the Swing component set extends, but
does not replace, the Abstract Windowing Toolkit (AWT). The class hierarchy
is similar in some ways to the AWT hierarchy but has more than twice as
many components as the AWT.

We cover only components of the Swing component set we need for our
sample application. For an introduction to the Swing support of VisualAge for
Java Version 2 we recommend the IBM redbook entitled Programming with
VisualAge for Java Version 2, SG24-5264.

We use the JTable bean to create the list of names and show how you can
customize the Select bean so that it fits better with the JTable model. A
JLabel displays the photos, or an error message, if necessary. A JPanel works
as container for all other components. Later the JPanel can be placed in a
JApplet or combined with additional components to build an application.

Remember, you can always divide an application into three modules: the user
interface, the business logic, and the data store. For simplicity, we wrap the
data store into the Select bean, making our application pure object-oriented,
and we place the Select bean together with the business logic in the user
interface module.

Development Process
20 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Before you start, please verify that you have loaded the IBM Data Access
Beans feature and have installed the JDBC support as described in “Setup
for Data Access Beans” on page 363.

Keep in mind that the SQL language is not case sensitive. For instance,
whenever you specify a database table name, like EMPLOYEE, you can also
use employee or Employee. For clarity we use upper-case letters for
databases, tables, and columns, and lower-case letters for SQL language
elements, such as select, update, insert, from, where, and, and order by.

To build the sample application perform the following steps:

 ❑ Create a project and a package for the sample application.

 ❑ Create a sample panel and a Select bean that retrieves the required data
from the SAMPLE database.

 ❑ Create the user interface of the sample application, using beans such as
JPanel, JTable, JButton, JScrollPane, ImageIcon, and DBNavigator. Add
the logic to convert the picture data returned from the database into a
Java image.

 ❑ Subclass the Select bean to improve its standard behavior.

 ❑ Run the application and view the results.

We assume that you are familiar with the basic functionality of VisualAge for
Java, especially with the Workbench and the Visual Composition Editor.
Otherwise, refer to the VisualAge for Java Online Help.

Creating the Project and the Package
Create a project named ITSO VAJ Enterprise Book V2 in the Workbench
and add a package named itso.entbk2.sample.databean.

All our samples will be stored in this project, and we will create individual
packages for each example.

Creating the Sample Panel and the Select Bean
Add a class named SamplePanel derived from com.sun.java.swing.JPanel to
the itso.entbk2.samples.databean package. This class will keep a Select bean
for the database access and, later, it will also include the user interface.
Select the package in the Workbench, select Add -> Class... in the Selected
menu and create the new class. Alternatively, use the context (pop-up) menu
of the selected package.
Relational Database Access with Data Access Beans 21

Open the Visual Composition Editor for the SamplePanel class. In the Beans
Palette, switch to the Database category and place a Select bean on the free-
from surface of the Visual Composition Editor. Rename the bean SampleDB
(Figure 4).

Figure 4. Placing a Select Bean on the Free-Form Surface

Select Bean Properties
With the Select bean, you specify properties pertinent to relational database
access, for example, when a lock should be acquired for a row in a table. You
also specify a query property that contains the connection alias and an SQL
specification. When you later execute the SQL statement, it returns a result
set.

Open the Properties window of the Select bean by double-clicking on it and
check the Show Expert Features checkbox to display all features of the Select
bean. You will find the following properties; the description comes directly
from the VisualAge for Java help text:

beanName
22 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Specifies the name of the Select bean instance. It must follow standard
naming rules for beans. The default name is Selectn, where n is the
number of Select beans with default names; for example, the first default
name is Select1.

currentRow
Specifies the current row of the result set. A value of -1 indicates that
there is no current row, that is, an SQL statement has not yet been
executed or the result set is empty.

currentRowInCache
Specifies the current row in cache. A value of -1 indicates that there is no
current row, that is, an SQL statement has not yet been executed or the
result set is empty.

fillCacheOnExecute
Specifies whether all the rows of the result set are fetched into memory
(cache) or only a subset of the result set. A value of true means that all the
rows of the result set are fetched, up to a maximum number of rows. The
maximum number of rows is the maximumRows value, or the product of
the packetSize value multiplied by the maximumPacketsInCache
value—whichever is smaller. Suppose a result set is 1000 rows,
fillCacheOnExecute is true, maximumRows is 100, packetSize is 10, and
maximumPacketsInCache is 50. Executing an SQL statement fetches 100
rows into the cache, that is, the value of maximumRows.

A value of false means that only the number of rows in the result set
needed to satisfy the SQL statement are fetched into the cache. For
example, if a result set is 1000 rows, but the application displays only 10
rows, only 10 rows are fetched into the cache.

The default value is true.

lockRows
Specifies whether a lock is immediately acquired for the row. A value of
true means a lock is immediately acquired for the current row. A value of
false means that a lock is not acquired for the row until an update request
is issued. The default value is false.

maximumPacketsInCache
Specifies the maximum number of packets allowed in the cache. A packet
is a set of rows. A value of 0 means that there is no maximum. The default
value is 0.
Relational Database Access with Data Access Beans 23

maximumRows
Specifies the maximum number of rows that can be fetched into the cache.
A value of 0 means that there is no maximum. The default value is 0.

packetSize
Specifies the number of rows in a packet. A value of 0 means that there is
no maximum. The default value is 0.

query
Specifies the connection alias and SQL specification for the Select bean.

readOnly
Specifies whether updates to the data are allowed. A value of true means
that updates are disallowed even if the database manager would permit
them. A value of false means that updates are allowed, provided that the
database manager permits them. The default value is false.

You can change some property values now, or create connections to change
the values at run time. For example, depending on how big the result set is
and how fast the database connection, you should decide how many rows you
want to cache. Be aware that caching a big result set increases the time it
takes to update a database view. However, when you want to change a lot of
rows, or you have a slow database connection, caching may accelerate your
work.

At this time, use default values. Therefore, you only have to specify the
connection alias and the SQL statement. Select the query property, then click
on the rectangle on the right side of the query entry.

The Query property editor opens (Figure 5). You will see two pages, a
Connection page to specify the connection alias, and an SQL page to specify
the SQL statement.
24 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 5. Query Property Editor of the Select Bean

Specify the Connection Alias
A connection alias defines database connection characteristics for the Select
bean. The Connection page also identifies the database access class to hold
the definition. One database access class can handle more than one
connection alias. Use this page to create a new connection alias or select an
existing one.

Multiple Select beans can use the same connection alias. In this case, they
share the database connection associated with that connection alias. If one
Select bean commits updates to a database, it commits all uncommitted
updates made by any Select bean sharing the database connection.

The Database Access Class combo box lists all database access classes that
exist in the workspace.

For this example, create a new database access class by clicking on the New...
button. The New Database Access Class window opens and you enter
itso.entbk2.samples.databean as the name of the package and SampleDB as
the name of the database access class (Figure 6).

Figure 6. Specification of the Database Access Class
Relational Database Access with Data Access Beans 25

The Connections field (Figure 5) lists all connection aliases currently defined
in the selected database access class. Because the class is new, the list is
empty at the moment.

Click on the Add... button to open the Connection Alias Definition window
(Figure 7) and enter the following information:

Figure 7. Specification of the Connection Alias Definition

Connection Name
Name of the connection alias. It must be a valid Java method name,
usually starting with a lower-case letter.

URL
The URL for the database connection identifies the data source for the
connection and provides information to locate the database.4

For example, the URL specification using:

 • The DB2 application JDBC driver to access a local database named
26 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

sample is:

jdbc:db2:sample

 • The DB2 network JDBC driver to access a database named sample, on
a remote server named dbserver, through port number 8888 is:

jdbc:db2://dbserver:8888/sample

In the first case, you must run the DB2 Client Application Enabler on the
same machine where your application runs.

4 To familiarize yourself with the JDBC driver concept, read the Sun JDBC Guide: Getting Started which comes
with the Sun JDK documentation.

In the second case, you must start both the DB2 database manager and
the DB2 JDBC daemon on the remote server. From the command line,
call:

 • db2start, to start the DB2 database manager

 • db2jstrt port, to start the DB2 JDBC Applet Server for a specified
TCP/IP port, for example, db2jstrt 8888.

JDBC Driver Choices
The predefined JDBC drivers are:

 • COM.ibm.db2.jdbc.app.DB2Driver, the DB2 JDBC application driver
 • COM.ibm.db2.jdbc.net.DB2Driver, the DB2 JDBC network driver
 • sun.jdbc.odbc.JdbcOdbcDriver, the JDBC-ODBC driver bridge
 • oracle.jdbc.driver.OracleDriver, the Oracle JDBC driver
 • com.sybase.jdbc.SybDriver, the Sybase JDBC driver

JDBC Driver Input
Name of a JDBC driver class, if not listed in the JDBC Driver Choices
field.

Connection Properties
Any properties to be passed in the database connection request, other
than the user ID and password. Specify the properties in the following
format: prop=value;prop=value;... where, prop is the name of the property,
and value is the value of the property.

In the following example, three properties are passed:

proxy=localhost:8888;a=1;b=2

Auto-commit
Database updates are automatically committed for each SQL query if
checked (default).
Relational Database Access with Data Access Beans 27

Prompt for logon ID and password before connecting
You are prompted for the user ID and password when a connection to the
database is required at development and run time.

User ID
The user ID for the database connection request. (This user ID is also
displayed in the prompt dialog if the Prompt for logon ID and password
before connecting checkbox is checked.)

Password
The password for the database connection request (This password is also
displayed in the prompt dialog if the Prompt for logon ID and password
before connecting checkbox is checked.)

With data access beans you can build a database connection to any database
management system (DBMS) that supports JDBC. In the same way as you
access your DBMS to read the database catalog at development time, you
access it to retrieve the data at run time.

At the same time you create a connection alias you can test the connection.
Just click on the Test Connection button to test the database connection using
the specifications made. You can find errors, for example, an unavailable
JDBC driver, as soon as possible.

Click on the OK button to finish your work. The query builder defines the
new connection alias, generates a new static method called connect in the
SampleDB class, and adds the connection alias to the Connections list
(Figure 8).
28 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 8. Query Property Editor Connection Page

Make an SQL Specification
Specifying the connection alias enables the SQL tab to switch to the SQL
specification page. This page lets you compose the SQL statement to retrieve
the result set. In fact, creating the SELECT statement is the only time that
you will ever come in touch with SQL code.

When you define an SQL specification, you also identify a database access
class to hold the definition. You normally use the same database access class
for both the connection alias and SQL specification. In addition, different
Select beans can use the same SQL specification to share the result set.

All database access classes defined in the workspace are listed in the
Database Access Class field. As you can see, one of these classes is the
itso.entbk2.samples.databean.SampleDB class that you just created. Because
our sample application is small, we decide to keep the specification for the
connection alias and the SQL statement together (Figure 9).
Relational Database Access with Data Access Beans 29

Figure 9. Query Property Editor SQL Page

The SQL field lists all SQL specifications that can be found in the selected
database access class. At the moment this list is empty, because no
specifications have been made.

Click on the Add... button to add a new SQL specification. The New SQL
Specification window opens. Enter getSampleData as the SQL Name (Figure
10).

Figure 10. Define a new SQL Specification

The SQL name must be a valid Java method name; it should start with a
lower-case letter.

Then choose Use SQL Assist SmartGuide. The SmartGuide lets you
graphically compose the SQL statement without SQL skills.

Although in this book every SQL statement is composed using the
SmartGuide, we also list the appropriate SQL code, so that readers with
previous experience in SQL will have a good understanding of what really
happens and everyone can avoid mistakes. Alternatively, you can select
Manually write SQL to enter the SQL statement manually, but then you
might as well stop reading this chapter.

Click on the OK button to open the SQL Assist SmartGuide. Although you
can use this tool without knowing SQL, you should at least know how your
database is organized, the information you require, and how to get that
information from the database. Then you will find that the SQL Assist
SmartGuide is a good tool that provides visual control over the code you
create and a powerful test environment for looking up values in the database,
running the generated SQL code whenever you want, and finding errors
early.
30 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 11 shows the SQL Assist SmartGuide. Below we explain the different
pages of the SmartGuide.

Tables Page
For the sample application, we have to retrieve the names of the employees
from the EMPLOYEE table and the photos from the EMP_PHOTO table,
both assigned with the creator ID of the sample database as schema name.

The Table name field lists the tables that are accessible in the sample
database identified by the connection alias connect. Make sure that both the

EMPLOYEE and the EMP_PHOTO tables are checked (Figure 11). These
tables will appear in the FROM clause of the SQL statement.

Figure 11. SQL Assist SmartGuide Tables Page (required)

You can control the table names displayed in the list by clicking on either the
View Schema(s)... or Filter table(s)... button.

The View Schema(s)... button opens the Schema(s) to View window (Figure
12). In this window you specify which schemas are to be shown. We
recommend removing the SYSCAT, SYSIBM, and SYSSTAT schemas, which
are DB2 internal tables and are not necessary for the example.
Relational Database Access with Data Access Beans 31

Clicking on the Filter table(s)... button opens the Table Name Filter window
(Figure 12). You can enter the following information for the filter:

 ❑ Filtering characters for the table name. The filtering characters are
case-sensitive. These characters limit the display to table names
beginning with those characters. For example, if you enter EMP, only
table names that begin with EMP are listed, such as the EMPLOYEE
table. The % character is a wildcard character. Use it to position the filter.
For example, specifying %ID requests the display of all table names that
end with the characters ID. The specification N%ID requests the display
of all tables names that begin with N and end with ID.

 ❑ Table type. This information determines the type of tables that will be
displayed in the Tables page. You can specify alias tables, system tables,
user tables, or views by checking its checkbox in the Table type field. You
can check multiple table types.

Figure 12. Schemas to View and Table Name Filters

The sample database is very small, so you can ignore both windows.
However, if you were to manage dozens of databases and hundreds of tables,
you could see how such inconspicuous features would accelerate your work.

Join Page
We only want the names of the employees for whom a photo exists in the
database, and vice versa. From a database point of view, you have to specify
an inner join between the EMPNO column in both the EMPLOYEE and the
EMP_PHOTO tables.

The Join page (Figure 13) displays the columns of both tables; remember, you
marked the tables in the Tables page. Select EMPNO in the EMPLOYEE
table and EMPNO in the EMP_PHOTO table. A line appears connecting both
32 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

columns to indicate the requested join. You can see whether the requested
join is invalid, for instance, because of a mismatch in the data type of the
columns, or you request the same join twice. The control buttons are also
enabled. Click on the Join button. A red join line indicates that the join is
successful.

By default, the Join button creates an inner join; do not change it. Your join
will appear in the WHERE clause of the SQL statement.

Figure 13. SQL Assist SmartGuide Join Page (optional)

If you want to see what other types of joins are available, click on the Options
button to get the Join Properties window:

1. Inner Join—This is a request for rows where the values in the joined
columns match.

2. Left Outer Join—This is a request for an inner join and any additional
rows in the left table (as viewed on the Join page) that are not already
included in the inner join.
Relational Database Access with Data Access Beans 33

3. Right Outer Join—This is a request for an inner join and any additional
rows in the right table (as viewed on the Join page) that are not already
included in the inner join.

If you have selected more than two tables, you can request additional joins in
the same way as the initial join. You can join other displayed columns in the
same tables or in other tables. Navigate between multiple joins by clicking on
> or <. The selected join is indicated by a red join line.

Condition Page
We want to restrict retrieval of photos to only those that are in gif format.
This format is directly supported by the Sun JDK, so no additional code is
necessary to display the photos.

You need a search condition. On the Condition 1 page, select the
EMP_PHOTO table in the Selected table(s) field and PHOTO_FORMAT in
the Columns field. Then select is exactly equal to in the Operator field and
enter gif in the Values field (Figure 14).
34 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 14. SQL Assist SmartGuide Condition Page (optional)

Alternatively, you can use the Find... button to find appropriate values for a
search condition (see Figure 15).

You can look for values that include a specific character string or you can
display all values in the column. The % character is used as a wildcard
character. For example, specifying A% searches for values that begin with the
character A. Specifying %1 searches for values that end with the character 1.
The specification A%1 searches for values that begin with the character A
and end with the character 1.

Figure 15. Search for Column Values in the Value Lookup Window

Check the Case sensitive checkbox if you want to search for the characters in
upper or lower case, exactly as entered in the Search for field. Select a value
from the Maximum hits list to control the maximum number of values
returned for the search.

Results are displayed in the Available values list. Select an appropriate value
or values from the list, and click on Use values. The selected values are added
to the Values list on the Condition page.

Take time to explore the tool, for instance, see which other picture formats
are stored in the database. Perhaps you can enter the statement in the SQL
editor faster, especially if you are well-versed in SQL. But, are you really sure
that you never will make a spelling mistake? Now you can be sure.

You can also specify parameters, called host variables in SQL, in the Values
Relational Database Access with Data Access Beans 35

list to pass the value to the SQL statement at run time. A parameter is
specified in the format :parm, where parm is the parameter name. The dialog
converts your name to upper case while you type. For example, :EMPID is a
valid specification for a parameter named EMPID.

If you want to add a second condition, click on the Find on another column
button. A second Condition window is displayed (the tab for the page is
labeled Condition 2). Repeat the process until you specify all the search
conditions for the query.

The search conditions supplement any joins specified on the Join page, that
is, the joins and the search conditions appear in the WHERE clause of the
SQL statement.

Columns Page
We need the information from the FIRSTNME, MIDINIT, and LASTNAME
column of the EMPLOYEE table, and from the PICTURE column of the
EMP_PHOTO table.

Select the tables in the Selected table(s) field and the column you want in the
Columns field, then click on the Add>> button to add the columns. Repeat
until you have added all columns.

As you will see later, it is important to add the columns in the order in which
they are listed. Use the Move up and Move down buttons, if necessary (Figure
16).

The columns you specify in the Columns page will appear in the SELECT
clause of the SQL statement. If you do not specify a column, an * will appear
in the SELECT clause, that is, all columns are selected.
36 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 16. SQL Assist SmartGuide Columns Page (optional)

Sort Page
We want the order of a person in the name list to be based purely on an
alphabetical ordering of his or her last name. Specify the order by identifying
the EMPLOYEE.LASTNAME column to be used as a sort key (ascending
order). Select the EMPLOYEE table, the LASTNAME column, and the sort
order, Ascending. Then click on the Add>> button (Figure 17).

Figure 17. SQL Assist SmartGuide Sort Page (optional)
Relational Database Access with Data Access Beans 37

You can also specify a descending order for a column, or you can specify
multiple columns. Each column is used as a separate sort key. The rows of
the result set are ordered by the value in the selected column, that is, by the
value of the sort key. If you specify more than one sort column, the rows of the
result set are ordered by the value of the first sort column, then by the value
of the second sort column, and so forth.

The sorting specification will appear in the ORDER BY clause of the SQL
statement.

Mapping Page
On the Mapping page you can remap the data retrieved from a table column
to a different SQL data type, and thus, to a different Java class, as shown in
Table 2.

Table 2. Mapping between SQL Data Types and Java Classes

SQL Type Java Class

CHAR java.lang.String

VARCHAR java.lang.String

LONG VARCHAR java.lang.String

INTEGER java.lang.Integer

TINYINT java.lang.Integer

SMALLINT java.lang.Short

DECIMAL java.math.BigDecimal

NUMERIC java.math.BigDecimal

BIT java.math.Boolean

BIGINT java.lang.Long

REAL java.lang.Float

FLOAT java.lang.Double

DOUBLE java.lang.Double

BINARY byte[]

VARBINARY byte[]

LONGVARBINARY byte[]
38 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

The JDBC driver attempts to convert the underlying data to the specified
Java type and returns a suitable Java value. Check this page when you are
experiencing problems with data conversion. Leave this page untouched for
our example (Figure 18).

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

Figure 18. SQL Assist SmartGuide Mapping Page (optional)

SQL Page
The SQL page displays the final SQL statement (Figure 19). When your
statement looks exactly the same as the displayed statement, you know that
half the work is done:

SELECT
<schema>.EMPLOYEE.FIRSTNME,
<schema>.EMPLOYEE.MIDINIT,
Relational Database Access with Data Access Beans 39

<schema>.EMPLOYEE.LASTNAME,
<schema>.EMP_PHOTO.PICTURE

FROM
<schema>.EMPLOYEE,
<schema>.EMP_PHOTO

WHERE
((<schema>.EMPLOYEE.EMPNO = <schema>.EMP_PHOTO.EMPNO)

AND
(<schema>.EMP_PHOTO.PHOTO_FORMAT = ’gif’))

ORDER BY
<schema>.EMPLOYEE.LASTNAME

Instead of <schema> you will find the name representing the creator ID of
the sample database.

Figure 19. SQL Assist SmartGuide SQL Page (optional)

You can generate your SQL method, copy it to the clipboard, or save it to a
file. We recommend that you test the statement before finishing. SQL code
can be checked only by your underlying database management system. You
may generate the wrong SQL code without detecting the mistake. Years later,
somebody will call your code and get unexpected behavior. Now it takes only
40 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

minutes to fix the problem, later it could take ages. Do you really want to risk
that?

Click on the Finish button to generate the code. Generation defines an SQL
specification, creates a new static method, getSampleData, in the
itso.entbk2.samples.databean package, and adds the SQL specification to the
SQL list (Figure 20). Click on OK to return to the Visual Composition Editor.

Figure 20. Query Property Editor with New SQL Specification

Building the User Interface
You have finished and tested the database part. Now it is time to design the
user interface. This interface is based on Swing and the DBNavigator bean
from the Database category of the Beans palette. Keep in mind that the
DBNavigator bean uses a Swing component and requires the JFC library.

When building a Swing user interface, it is not always easy to select the user
interface components in the Visual Composition Editor to change their
Relational Database Access with Data Access Beans 41

arrangement or properties. Open the Beans List window (Tools -> Beans List)
and select the components from there.

Perform the following steps to design the user interface:

 ❑ Select the SamplePanel, open the Properties window, and set the layout
property to BorderLayout. Then select the constraints property and set
both height and width to 400.

 ❑ Add a JPanel bean from the Swing category to the center region of the
SamplePanel, rename it to DataPanel, and set the layout property to
GridLayout with 2 rows and 1 column.

 ❑ Place a JScrollPane in the DataPanel, rename it to PhotoScrollPane, and
set the following properties:

 • verticalScrollBarPolicy: VERTICAL_SCROLLBAR_ALWAYS
 • horizontalScrollBarPolicy: HORIZONTAL_SCROLLBAR_ALWAYS

 ❑ Add a JLabel to the PhotoScrollPane, change the bean name property to
PhotoLabel, and remove the text in the text property. Later the
PhotoLabel will show the photos and, if necessary, any error messages.

 ❑ Select the JTable bean in the Swing category of the Beans palette and add
it to the DataPanel. This adds a JTable inside a JScrollPane. Rename the
bean names to NamesTable and NamesScrollPane. We use the
NamesTable to display the list of employees.

 ❑ To complete your user interface, drop a DBNavigator bean from the
Database category to the north region of the SamplePanel and change the
bean name to DBNavigator.

After placing all the visual components, you have to add connections:

 ❑ Connect SampleDB this to DBNavigator model. This plugs the Select bean
named SampleDB into the DBNavigator bean model and allows you to
connect to the database and navigate in the result set by clicking one of
the Execute, First, Previous, Next, or Last buttons (1).

All other buttons have no functionality in our sample application, in fact,
most of them throw an exception and are shown only for completeness.
Feel free to disable these buttons in the Properties window of the
DBNavigator bean.

 ❑ Display all error messages in the PhotoLabel. Create an event-to-method
connection from DBNavigator exceptionOccurred to PhotoLabel text. Make
sure the Pass event data checkbox is checked in the Properties window of
the connection (2).

Figure 21 shows the resulting GUI. To test the database connection, click on
the Execute button. You should be able to connect to the database without
42 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

any error message. If unsuccessful, check that both DB2 database manager
and DB2 JDBC daemon are running and that you can connect to the
database with the specified user ID and password. Check the Console
window for additional information.

Figure 21. Sample Application User Interface and Database Connection

If your database access was successful, you can start developing the logic to
convert the image data retrieved from the database and display the photos in
PhotoLabel.

The SampleDB bean has a bound property containing the data from the
PICTURE column, and the PhotoLabel has another property called icon. It
should be very easy to display the photos by simply defining a
property-to-property connection, provided that both properties can be
directly converted.

The run-time type of the source property is byte[] because the original data is
stored as a BLOB (see Table 2 on page 38). The PhotoLabel bean needs an
icon of type com.sun.java.swing.ImageIcon. In our application, we have one of
the rare situations where handwritten code is needed to convert the data.5

1

2

Relational Database Access with Data Access Beans 43

In the Visual Composition Editor (see Figure 22):

 ❑ Tear off the EMP_PHOTO.PICTURE (Object) property of the SampleDB
bean. You will get a variable of type java.lang.Object. Rename this
variable to Photo (3).

 ❑ Add a factory from the Other palette category to the free-form surface and
change the type to com.sun.java.swing.ImageIcon, then rename the bean
name to ImageIcon (4).

5 A complete visual design would be possible if VisualAge for Java would allow you to create variables that are one
of the simple types, for example, int, float, or byte[].

Figure 22. Sample Application Logic to Display the Employee Photos

Next, connect the beans:

 ❑ Create an event-to-code connection from Photo this to the free-form
surface of the Visual Composition Editor (5), mark the Pass event data
checkbox and enter this code:

public byte[] convertPhotoToByteArray(java.lang.Object photo) {
return (byte[])photo;

}

 ❑ Connect the normalResult of the previous connection to the constructor
ImageIcon(byte[]) of the ImageIcon factory to create a new ImageIcon (6).

3

4

6

11

10

9

8
7

5

44 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

To display an error message, connect exceptionOccurred of this connection
to PhotoLabel text and mark the Pass event data checkbox in the
Properties window of the connection (7).

 ❑ To pass the ImageIcon to the PhotoLabel bean, connect the ImageIcon this
event to the setIcon method of PhotoLabel (8). Pass this of the ImageIcon
as a parameter.

 ❑ Connect the ImageIcon this event to the setSize method of PhotoLabel to
initiate resizing the PhotoLabel and PhotoScrollPane (9). This guarantees
that the photos are correctly shown. Pass the properties iconHeight and
iconWidth of PhotoIcon as parameters height and width.

Test the application again. You should see photos of four employees. Navigate
among the photos, using the DBNavigator bean.

If everything works, you can create two additional connections to display the
names of the employees:

 ❑ Connect the SampleDB this property to the NamesTable model property
(10).

 ❑ Connect the NamesTable selectedRow property to the SampleDB
currentRow property. Note that currentRow is an expert feature (click on
the Show expert features checkbox). Change the source event of the
connection to mousePressed (11).

Test the final application. Whenever you select one of the employees in the
JTable, you should see his or her photo.

Improving the Select Bean
At this time, the application has two disadvantages. You cannot read the
headings of the columns in the JTable, and you cannot remove the PICTURE
column that displays the object address. To get a really nice-looking
application you have to make some improvements.

Create a new class, SampleSelect, subclass of com.ibm.ivj.db.uibeans.Select
and add it to the itso.entbk2.samples.databean package. Then add two
methods to the class:

public int getColumnCount() {
return super.getColumnCount()-1;

}

and

public String getColumnName(int column) {
switch (column) {

case 0 :
Relational Database Access with Data Access Beans 45

return "First Name";
case 1 :

return "Initial";
case 2 :

return "Last Name";
default :

return super.getColumnName(column);
}

}

To change from the original Select bean to the SampleSelect, select Morph
into... from the context menu of the SampleDB bean and morph the Select
bean to an itso.entbk2.samples.databean.SampleSelect bean. Make sure your
Bean Type is class, and not variable. All connections should still be valid.
Save and generate the code.

Run the Application
Test your new application. The three columns of the table should now display
nice headings and data.

2.4 Summary
In this chapter we describe the function of the data access beans and show
with a sample application how easy it is to access a relational database with
data access beans.

We show in some detail how to build a database access class with a
connection to the database and an SQL select statement to retrieve relational
data.

For an additional application with data access beans, see Chapter 7, “ATM
Application Persistence Using Data Access Beans.”
46 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

3 Enterprise
Application
Development with
Servlets
In this chapter we describe servlets and the Servlet Builder, which is a new
© Copyright IBM Corp. 1998 47

function of VisualAge for Java Version 2. We describe how servlets work in
general and we explain how to create a servlet with the Servlet Builder.

3.1 Server-Side Applications
To use Web-based applications more efficiently, server-side applications are
the most important. There are basically two approaches to server-side
applications, Common Gateway Interface (CGI) programs and servlets.

Common Gateway Interface
CGI programs have performed this function for a long time. A CGI program
is a server-side program that is invoked by the Web server to generate an
HTML file and send it to the client. User input is added by the Web browser
to the URL statement and sent to the Web server. CGI programs are usually
written in C, C++, Perl, or other compiled languages. Java is also available
for CGI programming, but Java servlets provide an even better approach.
The major drawback to a CGI program is that the program is loaded and
terminated for each interaction.

Servlets
A servlet is the best solution for creating a server-side application running on
a Web server. The servlet was introduced by Sun Microsystems, and its usage
is growing fast. A servlet is similar to a CGI program or Active Server Pages
(ASP), but it is based on Java, so servlet programming is platform
independent.

To use servlets, you need a Web server that supports the servlet model.
Current Web server vendors are trying to support servlets, and many of the
famous Web servers, such as Sun Java Web server and Lotus Domino Go
Webserver already support servlets. Several vendors also released a servlet
plugin that enables the servlet function on the Web server. IBM WebSphere
Application Server is such a plugin and supports Lotus Domino Go
Webserver, Microsoft Internet Information Server, and Apache. The client
48 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

machine does not require Java; a simple browser with HTTP support is fine.

Sun provides the Java Servlet Development Kit (JSDK) to create servlets.
JSDK is freely distributed, but it only includes a run-time library and a
testing tool.

With VisualAge for Java Version 2, IBM has released an easy servlet creation
tool, the Servlet Builder. With the Servlet Builder and the Visual
Composition Editor, you can create servlets visually and debug them in the
VisualAge for Java development environment.

What Are Servlets?
As mentioned, servlets are server-side Java programs. Servlets are invoked
by the Web server, and they communicate with a client through HTTP. The
client performs standard Web browsing. The Web server receives a request
that invokes a servlet. The servlet processes the request and generates an
HTML reply that is returned to the client.

Because servlets run on a Web server, they have no user interface. Servlets
receive data values from an HTML form, and they return an HTML reply.
Servlets have no security limitation; they can access files and databases on
the server or connect to other systems within the enterprise. For example, a
servlet can invoke a CICS transaction for part of its processing.

A servlet is loaded into a Web server only once, when the first user invokes
the servlet. After that, the Web server calls the servlet to process the user
request. For visual servlets, the Web server creates a new instance of the
servlet to use. This instance is removed when the servlet finishes its process.

HTTP Session
Let’s look at basic HTTP transactions (Figure 23).

WEB Server

HTTP
HTML
Enterprise Application Development with Servlets 49

Figure 23. HTTP Transactions

GIF

The Web browser sends URLs to the server through an HTTP session, and
the Web server sends back an HTML file. Once the Web browser receives the
HTML file, it reads it and requests more information from the Web server as
additional HTTP transactions, for example, to retrieve images or other
required items. If the user clicks on a link, the Web browser sends the URL
through another HTTP session. These interactions create a big problem for
an application that uses several continuous pages. Each HTTP request is
separate, and such an application cannot keep some data unique to the user.

To keep data across multiple HTTP transactions, application programs are
used on the Web server, either CGI programs or servlets.

Servlet Processing
Figure 24 shows the servlet programming model.

WEB Server

HTTP

HTML

Servlet

DB
50 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 24. HTTP Session and Servlet

Servlet or CGI?
Similarities and differences between servlets and CGI programs are:

 ❑ Both the servlet and the CGI program can hold user requests and
generate different HTML files, depending on the user request.

 ❑ Servlets are platform independent because they are written in Java. CGI
programs are usually written in other programming languages, although
Java is supported for CGI as well.

 ❑ For CGI programs, the Web server creates a process for every request by
the client, but a servlet is loaded once and is then ready to run. After the
first request, the servlet is not removed from the Web server until it is
unloaded. Therefore a servlet is faster than a CGI program.

 ❑ A servlet can use multiple threads. It is easy to split jobs by using threads.
For example, with JDBC it takes a long time to connect to a database.
However, you can create the connection as another thread and keep it
running. When the servlet that uses the database is started, it can access
the database immediately, using the database connection thread.

 ❑ Servlets are secure and can use standard Java security. If the Web server
is secure, servlets are secure too.

 ❑ Servlets and CGI programs work with a lightweight client. Only a simple
HTML browser is required (Java applets do require JDK-specific
browsers).

 ❑ Servlets are scalable and can use all Java functions.

 ❑ Both the servlet and the CGI program support cookies and can keep user
information on the client PC.

Servlet Creation Tools
What do you need to create servlets? The JSDK is good for studying how
servlets works but not quite good enough for real production of an
application. In “Inside Servlets” on page 52 we describe how to create a
servlet with the JSDK.

The latest JSDK is Version 2.0, but (at the time of writing) only Sun’s Java
Web Server supports Version 2.0. Use JSDK 1.1 for the following reasons:

 ❑ To use JSDK 2.0, you have to use the beta version of JDK 1.2. As you
know, beta code is not good for production.

 ❑ Many Web servers and plugins support Version 1.1 only.
Enterprise Application Development with Servlets 51

 ❑ VisualAge for Java Enterprise Version 2 is based on JDK 1.1.6 and
supports JSDK 1.1, which is included in the product.

 ❑ VisualAge for Java provides a servlet test environment, and you do not
require a real Web server for testing.

 ❑ VisualAge for Java contains an easy-to-use servlet creation tool, the
Servlet Builder.

Why Servlet Builder?
The Servlet Builder uses JSDK 1.1 and provides a servlet development
environment using visual construction. Now you can construct your servlet

Web page layout through drag and drop of HTML elements. The Servlet
Builder components are:

 ❑ A SmartGuide (Create Servlet) to generate a skeleton of a servlet

 ❑ A palette of visual beans for HTML elements and servlets (cookies,
session data)

 ❑ The Visual Composition Editor for visual constructions of HTML pages
and forms and for connecting servlet data and events to other Java beans
for processing and enterprise access

 ❑ A test environment with a built-in Web server for debugging servlets in
the Workbench

Web Server Consideration
To run servlets on a Web server, make sure the Web server contains a servlet
run-time facility. Table 3 lists some Web servers that support servlets.

Table 3. Web Servers Supporting Servlets

3.2 Inside Servlets
Let’s see how servlets work and how to develop them. Servlets can be invoked
in several ways. The simplest way is to specify a URL in the Web browser:

http://your.web.server.com/servlet/package.YourServletClass

Server Name Vendor JSDK Version

IBM WebSphere Application Server IBM 1.1

Lotus Domino Go Webserver Lotus/IBM 1.1

Sun Java Web Server Sun 2.0
52 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

This is similar to a URL request for an HTML page. To invoke a servlet you
should specify the second word as servlet and add a name of the servlet class
with its package name. For such a request, the Web server loads the servlet
(the first time only), instantiates the servlet, and runs it.

So what is a servlet class? A servlet class implements the
javax.servlet.Servlet interface. The JSDK provides two implementations, the
GenericServlet and the HttpServlet. When you create a servlet, you subclass
either of these two implementations, depending on what level of API you
want to use. This will become clear when we describe the simple examples.

After the servlet is loaded, the Web server invokes the init method of the
servlet. This is only done once and not for every invocation.

For each invocation of the servlet, some API-specific methods are called. This
is where the logic of the servlet is written and the result HTML is generated.

Simple Servlet
Let’s study a simple servlet (Figure 25). This servlet sends a short message to
the client. To invoke this servlet, use this URL:

http://[Your Server Address]/servlet/Simple

import javax.servlet.*;
import java.io.*;

public class SimpleGeneric extends GenericServlet {

public void init(ServletConfig cfg) throws ServletException {
super.init(cfg);

}
public void service (ServletRequest req, ServletResponse res)

throws ServletException,IOException {
res.setContentType("text/html");
ServletOutputStream so = res.getOutputStream();
so.println("<html>");
so.println("</html>");
so.println("<body>");
so.println("Welcome to the Servlet world!");
so.println("</body>");
so.close();

}
public void destroy() {}

}

Enterprise Application Development with Servlets 53

Figure 25. Simple Servlet Source Code

GenericServlet
The javax.servlet.* packages are included in the JSDK and the
javax.servlet.GenericServlet class is a skeleton class for a standard servlet.

Init and Destroy Methods
The init and destroy methods are called only once when the servlet is loaded
and unloaded. The init method is a good place to activate a thread for
database connections.

Service Method
The service method is an abstract method and must be implemented when
subclassing from the GenericServlet class. (An alternative using the
HttpServlet class is discussed in “HttpServlet” on page 57.)

The service method processes the user request and return. The servlet
request object contains parameters provided by the client. Our sample does
not process any input and only returns the “Welcome to the Servlet world!”
message to the client in HTML format. To respond, open a stream on the
ServletResponse object and write to it. To receive a parameter, use the
getParameter method of the ServletRequest object.

Tables 4 and 5 list the usable methods of the ServerRequest and the
ServerResponse classes.

Table 4. Methods of the ServerRequest Class

Table 5. Methods of the ServerResponse Class

Method Description

ServletInputStream getInputStream() Returns a stream handle to receive
binary data from the client

BufferedReader getReader() Returns a handle to receive text data
from the client with proper encoding

String[] getParameterValues(String) Returns values of a named parameter
from the client HTML form

String getRemoteAddr() Returns client’s IP address

String getRemoteHost() Returns client’s host name

String getServerName() Returns server’s host name

Method Description
54 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Invoking a Servlet in HTML
This example invokes a servlet from an HTML file. This type of HTML file
has a special .SHTML extension (Figure 26).

ServletOutputStream getInputStream() Returns a stream handle to send binary
data to the client

PrintWriter() Returns a handle to send text data to
the client with proper encoding

Figure 26. Server-Side Include HTML File

When the Web server gets such a request, it invokes the servlet and then
merges the output of the servlet with the HTML and sends it to the browser.
This technique is called server-side include (SSI).

Here is the servlet tag syntax:

<SERVLET CODE=class name with package name>
<PARAM NAME=Parameter1 VALUE=One>
<PARAM NAME=Parameter2 VALUE=Two>

</SERVLET>

The syntax of the servlet tag is similar to that of the applet tag. In the code
field, specify the full servlet class name and add parameter data through the
PARAM tag.

Counter Servlet
The counter servlet (Figure 27) is not much different from the simple servlet
(Figure 25 on page 53). The counter servlet has a permanent variable counter
that is initialized in the init method. In the service method, the counter is
increased and written as HTML to be merged with the existing SHTML file.
(Note that the counter is reset to zero if the servlet is unloaded.)

<HTML> <BODY> <CENTER> Welcome to My Home Page! <P>
You are the <SERVLET CODE=Counter> </SERVLET>
th visitor!
 </BODY> </HTML>

WEB Server

HTML

Counter.shtml
Enterprise Application Development with Servlets 55

Figure 27. Servlet with HTTP Server-Side Include

HTTP

SSI

counter

Servlet

Figure 28 shows the source code of the counter servlet.

Figure 28. Server-Side Include Counter Servlet Source Code

Invoking a Servlet with Parameters
This sample shows you how to pass the data from the client to the servlet. As
with a CGI program, when the user clicks on a button in a form, the servlet is
invoked with user input data.

HTML forms provide a way to submit user input data. In the form tag, you
can specify the target servlet name. The entry fields become parameter
values, and a button (usually Submit) invokes the servlet. Figure 29 shows a
sample HTML file invoking a servlet with a user-entered parameter. Note
that the submit button displays the text Send.

import javax.servlet.*;
import java.io.*;

public class Counter extends GenericServlet {
private static int count;
public void init(ServletConfig cfg) throws ServletException {

super.init(cfg);
count = 0;

}

public void service (ServletRequest req, ServletResponse res)
throws ServletException,ioException {

ServletOutputStream so = res.getOutputStream();
so.println("");
so.println(count++);
so.println("");
so.close();

}
}

56 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 29. HTML File with Form Invoking a Servlet

<HTML> <BODY>
<FORM method="Post" action="http://www.xxx.com/servlet/PostServlet">

<CENTER> Please let me know your name!
<INPUT type="text" name="name">

<INPUT type="submit" value="Send" name="Send">

</FORM>
</BODY> </HTML>

Entry fields are coded as <input type="text" ...>, and the Submit button is
coded as <input type="submit" ...>. Clicking on the Submit button sends the
form data to the Web server. The Web server invokes the servlet that is
specified in the action value of the form (Figure 30).

Figure 30. Servlet Processing with Form Data

Get or Post?
The method value of the form tag can be get or post. Get is the HTTP get, and
post is the HTTP post. Both methods send data to the servlet. So what is
different? Get sends all parameters in the URL, which has a length
limitation and causes security problems because the data is viewable. Post
sends the data in the HTTP entity body. It takes two steps to send the form
data: contacting the Web server, and sending the data when it is requested by
the server. Post might be a little bit slower than get but is recommended for
large forms. (Post is not well supported by the JDSK on Windows 95/98.)

WEB Server

HTTP

DB

httpPost/httpGet

Result

doGet/

Servlet

doPost
Enterprise Application Development with Servlets 57

HttpServlet
The easiest way to code a servlet with get or post processing is to create a
subclass of HttpServlet. HttpServlet itself is a subclass of GenericServlet.
This class handles the HTML get and post requests by providing doGet and
doPost methods. The service method invokes the proper method according to
the get or post specification in the HTML form. In the servlet code you
implement either the doGet or doPost method (or both to be completely

flexible). To get the user data from the HTML form, use the
getParameterValues method of the ServerRequest object.

Servlet Post Processing
Figure 31 shows the code of the post servlet. This example retrieves the name
entered by the user and sends back a thank you message. All of the names
are accumulated in a vector.

Figure 31. Servlet with Post Processing

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;

public class PostServlet extends HttpServlet {

private Vector users;

public void init(ServletConfig cfg) throws ServletException {
super.init(cfg);
users = new java.util.Vector();

}
public void doPost (HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {
String str = req.getParameterValues("name")[0];
users.addElement(str);
res.setContentType("text/html");
ServletOutputStream so = res.getOutputStream();
so.println("<HTML><BODY>Thank you ");
so.println(str);
so.println("</BODY></HTML>");
so.close();

}
}

58 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Complex Servlets
Now you know the basics about servlets and how to create some simple
servlets. Creating a small example is always easier than creating a real
application.

Without VisualAge for Java, you have to design the output HTML without a
WYSIWYG editor and the processing without visual composition. Using
VisualAge for Java, you can create servlets visually. Let’s take a look at the
Servlet Builder of VisualAge for Java Version 2.

3.3 Servlet Builder Overview
The VisualAge for Java Servlet Builder consists of four parts:

 ❑ The Create Servlet SmartGuide generates a visual servlet. A visual
servlet inherits from com.ibm.ivj.servlet.http.VisualServlet, which
inherits from javax.servlet.http.HttpServlet.

 ❑ Servlet Builder beans consist of visual beans and nonvisual beans.
Visual beans are wrappers of HTML elements, and nonvisual beans are
wrapper of Sun JSDK classes.

 ❑ The Visual Composition Editor provides an environment for
constructing an HTML page, using Servlet Builder visual beans, and an
application flow, using Servlet Builder nonvisual beans, and connecting
the beans into an application.

 ❑ A test environment with a built-in Web server enables the debugging of
servlets in VisualAge for Java with a real Web browser.

How Do Servlet Builder Beans Work?
The Web server invokes a visual servlet object to process a user request. A
visual servlet (VisualServlet class) works like an HttpServlet, but its
construction is much simplified by the Servlet Builder.

You create an HTML page with an input form, using the Visual Construction
Editor and Servlet Builder visual beans. The Servlet Builder constructs a
JavaBean that contains the data of the input form. This FormData bean has
a bound property for each input field, and an event representing the Submit
button. The form also specifies the name of the servlet to be invoked.

You create an HTML output page as the result of the servlet, using the Visual
Construction Editor. In some instances the input and output HTML pages
are the same; in other instances one servlet generates the input page and
Enterprise Application Development with Servlets 59

form, and another servlet processes the form and generates the output
HTML page. You use the FormData bean in the servlet that generates the
output. You connect its data and events to other beans for application logic
and database or transaction access.

For testing, VisualAge for Java provides a tool based on the Sun Servlet
Runner. A Web server is started inside VisualAge for Java to test and debug
the servlet. A browser is started to receive the servlet’s output and to submit
further input to the same or other servlets. Because the Web server and the
servlets run inside VisualAge for Java, you can debug all the code.

Advantages of the Servlet Builder
The Servlet Builder covers the weak points of the GenericServlet and the
HttpServlet classes by providing:

 ❑ Visual Composition Editor for input and output forms

 ❑ Event-oriented programming, using connections

 ❑ Full capability of JavaBeans

 ❑ Session data and cookie data to keep client state

 ❑ Creation of reusable servlet beans

 ❑ Database access or connections to other enterprise resources

 ❑ Testing and debugging environment

Figure 32 shows the class hierarchy of servlet classes. For the GenericServlet
the service method must be implemented. For the HttpServlet either doGet
or doPost methods (or both) must be implemented. The VisualServlet is
constructed using the Visual Construction Editor and no special methods
must be implemented. The parameters are placed into a form data bean by
the system, and the output HTML is generated from HTML beans.

GenericServlet

HttpServlet

Router

MyServlet

MyServlet

service

doGet
doPost

JSDK

VA
60 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 32. Servlet Class Hierarchy

VisualServlet

MyServletMyServlet

visual construction

Java

Visual Servlet
The visual servlet enables you to construct the input and output Web pages
using the Visual Composition Editor. You can drag and drop HTML objects
such as text, forms, buttons, and entry fields. You can drop any other
nonvisual JavaBeans, such as database access beans and cookie data, on the
free-form surface. Then you connect the beans by events or properties.

To test the servlets simply click on the Run button in the tool bar. You do not
have to write a configuration file for the Servlet Runner or be concerned
about loading and unloading the servlet. An HTTP server and a browser are
started. The Console window shows which Servlet is running and its
messages. You can see which thread is running, and you can put breakpoints
anywhere in the code. You can debug your servlets in the same way as you
debug applets.

Each visual servlet is processed as a new instance. The Web server caches the
initial instance and creates a new instance when the service method is called.
This process is handled by the Router class, which inherits from HttpServlet
and is the parent of VisualServlet.

Figure 33 shows the basic construction of a visual servlet.

VisualServlet

GUI

Data
Web
Enterprise Application Development with Servlets 61

Figure 33. Visual Servlet

Logic

Server

Servlet Builder Visual Beans
You cannot use Java’s AWT or Swing classes to create the output of a servlet
because the result is an HTML page. The Servlet Builder visual beans
represent HTML elements and generate the HTML dynamically at run time.

To construct the visual part of a servlet, use Servlet Builder visual beans in
the Visual Composition Editor. You can edit an HTML page visually just as
you can edit a Java applet. The HTML page uses a unique layout technique
that simulates a browser. The display of the page is not exactly the same as
what you will eventually see in a browser because each browser has its own
technique for displaying the details of HTML elements.

HTML Page
The container that represents an HTML page or part of a page is the
HtmlPage bean. The HTML page can generate the complete output page or a
part of a page that is embedded into another servlet or HTML file, using the
servlet bean or tag. All other beans are placed inside an HtmlPage bean.

HTML Elements
The palette of the Servlet Builder contains two sets of visual beans. Most of
the beans can be put anywhere on the HTML page (see Table 6 on page 63);
however, beans that store data to be sent to the Web server can only be
placed into an HTML form (see Table 7 on page 64).

HTML Tables
There are two HTML table beans: HtmlTable and HtmlResultTable. You can
add and remove rows and columns at design time through a pop-up menu or
at run time through application logic. HtmlTable is a static table and can be
anywhere on the HTML page. HtmlResultTable is a useful bean to display
data retrieved by an SQL query result. The HtmlResultTable is based on the
same table models as the Swing JTable bean.
62 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

HTML Button
The HTMLPushButton bean can be used in three ways through its property
sheet:

 ❑ Submit button—used to submit the form.data that is passed to the servlet

 ❑ Reset button—used to clear the data in the form (servlet is not invoked)

 ❑ Button—used to activate a script in HTML (servlet is not invoked)

Table 6. Servlet Builder Visual Beans

Icon Bean Name HTML Description

Basic

HTMLPage <HTML> Represents an HTML page or
part of an HTML page

Basic

HTMLText NONE Text data

Basic

HTMLImage <IMAGE> Sets a URL to display an
image

Basic

HTMLRule <HR> Horizontal rule

Basic

HTMLLineBreak
 Adds a line break to force the
next element to a new line

Basic

HTMLParagraph <P> Starts a new paragraph

Basic

HTMLScript <SCRIPT> Adds a script or JavaScript
code to the HTML

Basic

HTMLStyleSheet <STYLE> Adds a predesigned style to
the HTML

Basic

HTMLServlet <SERVLET> Embeds the output of
another servlet

HTMLApplet <APPLET> Adds an applet in the HTML
Enterprise Application Development with Servlets 63

Basic

Basic

HTMLEmbed <EMBED> Adds an object such as audio
in the HTML

Basic

HTMLTable <TABLE> Arranges HTML objects in
matrix style

Table 7. Servlet Builder Visual Beans for Forms

Icon Bean Name HTML Description

Form

HTMLForm <FORM> Container for HTML form
objects

Form

HTMLHiddenInput <INPUT> Invisible form object to keep
some data to be sent back to
the server

Form

HTMLPushButton <INPUT
type=submit>
(or other)

Push button to send the form
data to the servlet specified
for the form

Form

HTMLCheckBox <INPUT
type=checkbox>

Adds a checkbox in the
HTML form (data is sent to
the server)

Form

HTMLRadioButtonSet <INPUT
type=radio>

Adds a radio button in the
HTML form (data is sent to
the server)

Form

HTMLEntryField <INPUT
type=text>

Adds an entry field in the
HTML form (data is sent to
the server)

Form

HTMLTextArea <TEXTAREA> Adds a text area in the
HTML form (data is sent to
the server)

Form

HTMLList <SELECT> Adds a list box in the HTML
form (data is sent to the
server)

Form

HTMLDropDownList <SELECT
size=1>

Adds a drop-down list in the
HTML form (data is sent to
the server)
64 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Form

HTMLResultTable <TABLE> Adds a table that represents
a query result in the HTML
form

Form

HTMLResultColumn <TR><TH> Adds a column to the result
table in the HTML form

Servlet Builder Nonvisual Beans
To implement the application server-side logic you can use any JavaBeans.
The Servlet Builder provides three nonvisual beans to handle the servlet
data (Table 8).

Table 8. Servlet Builder Nonvisual Beans

Form Data
Every input element has to be placed inside an HTML form bean. A property
of the form is used to select the method for passing parameters as get or post
(see “Get or Post?” on page 57). The action of the form is another property
and allows you to link to a URL for processing by any tool or select a servlet
from the list of existing servlets to process the data.

The FormData bean is generated by the Servlet Builder when you save the
visual servlet class from the Visual Composition Editor. The name of the
generated class is YourServletFormData. The FormData bean is the key part
for the application flow of control.

The FormData bean contains properties for all input values on the HTML

Icon Bean Name Description

FormData Contains user input data and generates an event
representing the Submit button

CookieWrapper Saves or retrieves data in a cookie that is stored on
the client. Value is a string identified by a key. An
expiration data can be specified.

SessionDataWrapper Saves or retrieves data in a session bean that is
stored on the server. Value is any object, for
example a JavaBean.
Enterprise Application Development with Servlets 65

page, such as entry field strings, selected list items, checkboxes, and any
other data elements placed inside an HTML form of your visual servlet. The
FormData bean only fires events and has input properties if the current
request corresponds to the matching form.

Visual Composition with the FormData Bean
The FormData bean contains the data from the client. To handle this data in
the Visual Composition Editor, put the FormData bean on the free-form
surface and connect events and properties.

When you put the FormData bean next to your visual HTML page, it seems
that it gets its values directly from the form in the page, but that is not the
case. You can connect form data properties to the visual beans to prepare the
output HTML page sent to the client. You cannot get the user data values
through connections from the visual HTML fields; they are placed into the
FormData bean automatically when the user submits the form.

What you are designing visually is the output page, not the input page. Note
that in many cases the input page is not the same as the output page. You
will use the FormData bean generated from an input form in the servlet that
processes the data and displays it in an output page (Figure 34).

Figure 34. Flow between Servlets

Input

Output

Servlet

Servlet

1

2

generated
FormData bean

other
beans

Action

HTML form
66 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Cookie Wrapper
A cookie is a data object stored on the client machine. A cookie is useful for
keeping data during a session or a specified time frame. The servlet can save
the data to the client hard drive as a file if the user accepts it. Cookies have
been used before servlets existed to save data. Once a cookie is saved on the
client, a servlet can access the cookie data by request. This is useful for
keeping client access information handy, for example, to inquire about the
progress of the application. Cookies can live longer than the servlet; the
cookie data is available until its expiration date or until it is deleted from the
client machine.

The CookieWrapper bean is a nonvisual bean to be used with the Visual
Composition Editor. The CookieWrapper bean has two properties: name and
value. The value is a string. You can keep multiple CookieWrapper beans
with individual name and value pairs. Each CookieWrapper bean is stored as
a cookie on the client machine.

Session Data Wrapper
Session data is similar to a cookie but is stored on the server. Session data is
only available as long as the servlet is loaded in the Web server.

The SessionDataWrapper bean works like the CookieWrapper bean. It
contains two properties: name and value. The value of the
SessionDataWrapper bean is any object. You can keep multiple
SessionDataWrapper beans with individual name and value pairs. A cookie
that points to the session data is generated automatically.

The advantages of the SessionDataWrapper bean are:

 ❑ The SessionDataWrapper bean keeps any object (a cookie keeps strings).
 ❑ There is no network transfer of data because the object is on the server.
 ❑ The data is secure for each user session.

Run Configuration
To test the servlet, simply click on the Run button in the tool bar. VisualAge
for Java has a built-in Web server from the Sun JSDK Servlet Runner. If you
need to configure or would like to use WebSphere Application Server, you
have to edit configuration file. The file name is:

\IBMVJava\ide\project_resources\IBM Servlet class libraries\
com\ibm\ivj\servlet\runner\configuration.properties

To change the browser for a test, specify a browser in the configuration file or
change the browser used by the Help facility in the Windows -> Options
Enterprise Application Development with Servlets 67

dialog. You can change the server host name or address, port, and directory:

URL 127.0.0.1:8080 <=== localhost address
Directory /../serunner

Invoking Another Servlet
Each visual servlet has a TransferToServiceHandler property where you can
specify another servlet to be invoked. To use a servlet as a nonvisual router or
controller, set the isTransferring property to true and, after processing, use
the TransferToServiceHandler property to invoke another servlet.

3.4 Creating Visual Servlets
In this section we describe how to create four basic visual servlets with the
Servlet Builder of VisualAge for Java:

 ❑ A simple servlet that only displays a message

 ❑ A server-side include servlet

 ❑ A servlet that uses a variable to keep data as long as the servlet is loaded
in the Web server

 ❑ An interactive servlet that sends back the data entered by the user

Loading the Servlet Builder
Before you can create any servlets with VisualAge for Java you have to load
the Servlet Builder into the Workbench. If you cannot see the IBM Servlet
Builder class libraries project in your workbench, use Quick Start (F2) and
Add Feature to add the Servlet Builder to your Workbench (Figure 35).
68 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 35. Adding the Servlet Builder Feature to the Workbench

Simple Servlet
It is time to create a simple servlet with VisualAge for Java. Use Quick Start
and select Servlet. Select Create Servlet then click on the OK button. Fill in
all fields in the SmartGuide window (Figure 36). We use the
itso.entbk2.sample.servlet package for these exercises.

Choose Simple from the template list to create an HTML page.

Click on Next and move to next page. You do not have to modify this page.
The servlet name will be your class name, and the form data class is
generated as ClassNameFormData. The radio buttons allow you to select a
server-side include; for now leave this option as a stand-alone page. Click on
Finish to generate the servlet.
Enterprise Application Development with Servlets 69

Figure 36. Create Servlet SmartGuide

The Visual Composition Editor opens with an HTML page. Select the Servlet
palette (Figure 37) and add an HTMLText bean to the page.

Figure 37. Servlet Palette and HTML Page in Visual Composition Editor

Edit the properties of the HTMLText bean:

 ❑ Change the bean name to WelcomeText.
 ❑ Change the font size to 6.
 ❑ Change the foreground color (for fun).
 ❑ Change the HTML text string to Welcome to the Servlet World!

Testing the Servlet
To test this servlet, click on the Run button in the tool bar. The built-in HTTP
server is started and displays this message in the Console window:

ServletRunner starting with settings:
 port = 8080
70 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

 backlog = 50
 max handlers = 100
 timeout = 5000
 servlet dir = .
 document dir = .
 servlet propfile = .\servlet.properties

The servlet is started from the Web browser. You can change the browser
from the Help option of the Window -> Options dialog. Error messages or
debug output of the servlet are displayed in the Console window.

Server-Side Include Servlet
Do you remember the difference between an SSI servlet and a standard
servlet? The standard servlet returns a full HTML page, whereas the SSI
servlet generates only a part of the HTML page.

VisualAge for Java generates the HTML tags. To set the tags to be generated
by an SSI servlet, either change the generateBodyElement property of the
HTML page bean to false, or select No, servlet is a segment of HTML to be
embedded using the <servlet> tag on the second page of the Create Servlet
SmartGuide (Figure 36 on page 69).

Create an SSI servlet named SSIServlet with two HtmlRules and the text
Imbedded from SSI Servlet between the rules. You should not need any
specific instructions for this task.

To use the SSI servlet in another servlet, drop an HTMLServlet bean onto
the primary HTMLPage of the SimpleServlet and change the code property of
the embedded servlet to specify the name of the SSI servlet (Figure 38).

Figure 38. Code Property for a Server-Side Include Servlet
Enterprise Application Development with Servlets 71

See Figure 39 for the layout of the SimpleServlet with the embedded
SSIServlet.

Counter Servlet
For every user request, an instance of the servlet is created. This instance is
destroyed when processing has finished. However, the servlet can keep a
class variable that can be used with all instances of one servlet class.

Let’s add a counter to the simple servlet. To hold the counter value, the
servlet must have a static property that we connect to an HTML text:

 ❑ Open the BeanInfo page of SimpleServlet.

 ❑ Create a bound read-only int property named counterValue.

 ❑ Go to the Method page and deselect all methods.

 ❑ Edit the modifier of fieldCounterValue variable to static.

 ❑ Select the getCounterValue method and change the return statement:

return fieldCounterValue++;

 ❑ Go to Visual Composition Editor and add a paragraph and two HTML text
fields to the page. Change the text fields to Counter: and count.

 ❑ Connect the counterValue property (of the servlet) to the string property of
the count text field (Figure 39).

Figure 39. HTML Page with a Counter

Save the servlet and test it. Click the Reload button in your browser and
verify that the counter is counting the visitors (Figure 40).
72 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 40. Servlet with Counter in Netscape Browser

Passing Data to the Servlet
Now let’s implement an interactive servlet that can handle user input and
respond to the user after performing some work. This sample, named
InteractiveServlet, has an entry field, a push button, and an image field. The
servlet generates the response HTML with the image requested by the user.

 ❑ Create a Servlet named InteractiveServlet, using the SmartGuide with
the Simple template.

 ❑ Add a header level 1 text of Interactive Servlet.

 ❑ Add an HtmlForm after a paragraph.

 ❑ Place an HTMLTable into the form. The table has two rows and columns
by default.

 ❑ Place an HTMLText into the top left cell of the table and set the string to
Image file:.

 ❑ Place an HTMLEntryField into the top right cell, name it ImageSource,
and set the size to 30.

 ❑ Place an HTMLPushButton into the bottom right cell, name it GetButton,
and set its string value to Get Image.

 ❑ Select the cell with the push button and change the align property to
Right.

 ❑ Add a third row (use the Beans List to select the second row, then select
Add Row Below in the context menu).

 ❑ Put an HTMLImage into the bottom right cell and name it Image.

Once you have designed the page layout, save the servlet (Bean -> Save) to
generate the FormData bean. Use the FormData bean to handle the input
data.

 ❑ Place a FormData bean on the free-form surface. Select the
InteractiveServletFormData bean in the dialog (1).
Enterprise Application Development with Servlets 73

 ❑ Connect the imageSourceString property (HtmlEntryField) of the
FormData bean to the source property of the Image (HtmlImage) in the
table (2).

 ❑ Connect the imageSourceString property to the string property of the
entry field in the input form to redisplay the selected image name (3).

 ❑ Connect the GetButtonPressed event of the FormData bean to the
transferToServiceHandler method of the servlet itself (free-form surface)
and pass the this of the servlet as a parameter (4).

Note that you cannot connect from the Get Image button in the HTML page.
The button does not have an action event. You must use the properties and
events in the FormData bean for any action to be performed.

The servlet displays the image entered by the user. Test the servlet and enter
the full file name of any image that you can access on your machine. Figure
41 shows the finished servlet.

Figure 41. Interactive Servlet

1

2

4

2

74 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

3.5 Advanced Servlet Techniques
In this section we cover advanced servlet topics. HTML has more tags than
are available through the visual beans. We start by explaining how to use
extra HTML tags and then move to implement cooperation among multiple
servlets. We conclude by discussing how to implement servlets in a multitier
application environment.

Advanced HTML Tags
Some advanced HTML tags are applet, embed, style sheet, and JavaScript.

Applet
If you want to embed an applet in the servlet form, use the HTMLApplet
bean. This bean has properties that are required to construct the applet tag,
such as code, codebase, parameters, size, and archives. Properties are
reflected in the generated applet tag. You cannot see the applet in the Visual
Composition Editor where you develop the servlet. You can see its layout only
in its own development environment.

Embed
Embed is similar to an applet but is used to embed other objects, such as
sound or movies. Use the HTMLEmbed bean and set the source property to
point to the URL of the target object.

Style Sheet
You can define a page style, using the HTMLStyleSheet bean. A style sheet
contains fonts and colors of various heading and body elements. To keep your
pages in the same formatting style, you can point with the URL property to a
predefined HTMLStyleSheet bean. Additional specifications can be added
through the styles property (Figure 42) and the extraAttributes property.
Enterprise Application Development with Servlets 75

Figure 42. Style Sheet Specification

JavaScript
If you want your page to be more active, for example, for input validation or
animation, you can use JavaScript. JavaScript can handle list or button
events and set or edit the fields of forms. Therefore, if the process does not
need data from the server, JavaScript is a good solution for processing
because it is much faster than invoking code on the server.

To use JavaScript, drop an HTMLScript bean into the HTML page and write
the script in the string property. To activate the script from a form, write code
such as onSelect=... into the extraAttribute property of the form (Figure 43).
76 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 43. JavaScript Invocation

Servlet Chaining
To create a real application, it is not enough to have one form and one
process. Applications usually have several forms and a continuous process. In
this section we describe how to create an application with multiple forms.

Let’s think about a servlet with a single flow. Assume a data entry
application. The user must log on and enter the data, and a result is
calculated. For this application we require three forms:

 ❑ Sign on form
 ❑ Data entry form
 ❑ Conversion form (result)

Here is a scenario. The first form is the sign on form. The user enters the
logon ID and clicks the SignOn button. The servlet processes the logon and
displays the entry form. The user enters the data and clicks on the Process
button. The servlet calculates and displays the conversion form (Figure 44).

Figure 44. Servlet Chaining in Single Flow

Step by Step Instructions
Follow these steps to create the sign on servlet (Figure 45):

 ❑ Create a visual servlet named AppSignOn.

 ❑ Use an HTMLText bean as header level 1 with the string Sign On Panel:
Enter your ID.

Data entry form

Servlets

Conversion formSign on form
Enterprise Application Development with Servlets 77

 ❑ Place an HTMLForm below the text.

 ❑ Place an HTMLTable into the form and delete the second column.

 ❑ Place an HTMLEntryField in the left cell of the table and name it UserID.

 ❑ Place an HTMLButton in the right cell and name it SignOn and set the
string to Sign On.

Now you have the sign on servlet. Save it and generate the
AppSignOnFormData bean.

Figure 45. Sign On Servlet

The data entry servlet greets the user and presents a data entry form. The
Dollar amount entered by the user is passed to the conversion servlet to
calculate the equivalent value in Japanese Yen. Follow these steps to create
the data entry servlet (Figure 46):

 ❑ Create a visual servlet named AppEntry.

 ❑ Add a header level 1 that reads Currency Conversion.

 ❑ Add a table with two text fields that read Welcome and ??. Name the
second field userID (it will display the sign on ID from the first servlet).

 ❑ Add a form with a table of one row and three columns. Put the text Dollar
amount: into the left column, an entry field named Dollar into the middle,
and a push button named Calculate into the right column. Set the text of
the button to Calculate Yen.

 ❑ Put the AppSignOnFormData generated from the sign on servlet on the
free-form surface.

 ❑ Connect the userIDString property of the AppSignOnFormData bean to
the string property of the userID text field. This action copies the user ID
entered in the sign on servlet to the output of the data entry servlet.

Save the data entry servlet to generate the AppEntryFormData bean.
78 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 46. Data Entry Servlet

The data entry servlet gets data from the sign on servlet and passes data to
the conversion servlet. How does the sign on servlet invoke the data entry
servlet? Yes, you have to relate them:

 ❑ Open the sign on servlet again.

 ❑ Double-click on the form, select the action property, and click on the small
button in the edit field.

 ❑ Select Service Handler and choose the AppEntry servlet in the drop-down
list (Figure 47). Click on OK and save the servlet.

Figure 47. Service Handler Specification for Form Action

The conversion servlet is next. The Dollar value is passed from the data entry
servlet and converted into Yen. To perform the calculation we use an
Event-to-Code connection. Follow these steps to create the conversion servlet
(see Figure 48):

 ❑ Create a visual servlet named AppConversion.

 ❑ Put a header level 1 that reads Currency Conversion Result.
Enterprise Application Development with Servlets 79

 ❑ Add a table with two rows and columns. Set the border property to 2.

 ❑ Place two text fields that read Dollar amount and Yen amount into the
first row.

 ❑ Put two text field into each cell in the second row. Use $@, xxx, Y@, and
yyy, where @ stands for one blank character.

 ❑ Change the align property of the two lower cells to Right.

 ❑ Add a thank you text field below the table.

 ❑ Add the AppEntryFormData bean to the free-form surface (1).

 ❑ Connect the dollarString property of the AppEntryFormData bean to the
string property of the xxx field (2).

 ❑ Connect the calculatePressed event of the AppEntryFormData bean to
Event-to-Code (3). Create the calculateYen method that converts a Dollar
input into a Yen output:

public String calculateYen(String dollar) {
return new String(new Integer(Integer.parseInt(dollar)*120).toString());

}

 ❑ Connect the dollar parameter of the connection to the dollarString
property of the AppEntryFormData bean (4).

 ❑ Connect the normalResult of the event-to-code connection to the string
property of the yyy field (5).

 ❑ Save the servlet.

 ❑ To invoke this servlet from the data entry servlet, open the AppEntry
servlet and set the form’s action to the AppConversion servlet.

Figure 48. Conversion Servlet

Test the three servlets by starting the sign on servlet. All servlets should

1

2

3

4

5

80 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

work. Start with the sign on servlet and calculate a few Dollar to Yen
conversions.

You have learned how to create chained servlets by following these important
concepts:

 ❑ To invoke the next Servlet, use the action property of a form.

 ❑ To access user-entered data or events, use the FormData bean.

Keeping and Passing Data between Servlets
The sign on, data entry, and conversion servlets work in a continuous way,
but they do not keep such data as the user ID. The data entered in the sign
on servlet is passed to the data entry servlet but is not forwarded to the
conversion servlet. Each transaction is based on HTTP, and every instance of
a servlet is removed after its processing. How can you keep the data? You
have three ways of keeping the data:

 ❑ Use a static variable. It is not feasible, however, to keep a user-unique
value in a static variable, because you can have multiple users connected
to the same servlet. Note that static variables are of limited value because
the servlet may be unloaded, or there may be multiple instances of the
servlet in a multiserver solution with load balancing.

 ❑ Keep the data in each form. You can use a hidden field in the form to pass
a value from one servlet to another. The hidden field is invisible to the
user, who is not aware that such a value is passed along. An experienced
user can find the value by looking at the HTML source.

 ❑ Use a cookie or session data. A cookie can be rejected by the browser or
the user.

We have already used a static variable for the counter servlet (see “Counter
Servlet” on page 55). Let’s implement solutions with a hidden field and with a
cookie or session data.

Hidden Field
Follow these steps to implement a hidden field to pass the user ID from the
entry servlet to the conversion servlet:

 ❑ Open the data entry servlet (see Figure 49 on page 83).

 ❑ Place an HTMLHiddenInput bean into the form and name it
userIDhidden (1).

 ❑ Connect the userIDString property of the AppSignOnFormData to the
Enterprise Application Development with Servlets 81

string property of the hidden field (2).

 ❑ Save the data entry servlet to regenerate the code and FormData bean.

 ❑ Open the conversion servlet (see Figure 50 on page 83).

 ❑ Place a text field before the thank you text and set the text to ??. Change
Thank you ... to , thank you ... (the user ID will go in front of the comma).

 ❑ Connect the userIDhidden property of the AppEntryFormData to the
string property of the ?? text (3). (If you cannot see the userIDhidden
property, use the context menu and select Refresh Interface.)

Save and test the servlets. Check out the HTML source of the data entry
servlet and look for the hidden input field with the user ID.

This is a small sample with only one variable. For just a small amount of
data a hidden field is just fine, but what if many forms require the same data
or there is a lot of data? In such cases a cookie or session data is a better
solution. Let’s modify the example to utilize a cookie or session data.

Cookie
To use a cookie in a servlet, choose a CookieWrapper bean from the palette.
This bean has a cookieName and a cookieValue property. In most cases a
constant is used as the cookieName and a dynamic value is assigned to the
cookieValue.

To store the userID in a cookie and pass it to the conversion servlet follow
these steps:

 ❑ Open the data entry servlet (Figure 49).

 ❑ Place a CookieWrapper bean on the free-form surface. Open the bean, set
the bean name to userIDcookie and the cookieName to userID.

 ❑ Connect the userIDString property of the AppSignOnFormData to the
cookieValue property of the cookie (4).

 ❑ Open the conversion servlet (Figure 50).

 ❑ Place a CookieWrapper bean on the free-form surface. Open the bean, set
the bean name to userIDcookie and the cookieName to userID.

 ❑ Connect the cookieValue property to the string property of a text (5).

Now you can save the userID data to a cookie and have it retrieved
automatically in another servlet. For testing, tailor your browser to prompt
you when a cookie is stored. In Netscape Navigator Version 4, open Edit ->
Preferences and on the Advanced page set the Warn me checkbox in the
Cookies section.
82 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Session Data
A cookie can only save a string to its value property. If you would like to save
an object, use the SessionDataWrapper instead of the CookieWrapper.

Lets us store a Date object in a SessionDataWrapper and pass it from the
data entry servlet to the conversion servlet.

 ❑ Open the data entry servlet.

 ❑ Place a SessionDataWrapper bean on the free-form surface. Open the
bean, set its name to dateSessionData and the propertyName to date.

 ❑ Connect the signOnPressed event of the AppSignOnFormData to the
propertyValue method of the session data bean (6). To store the current
date, create a parameter-from-code connection to a new getDate method:

public java.util.Date getDate() {
return new java.util.Date();

}

 ❑ Save the servlet (Figure 49).

Figure 49. Data Entry Servlet with Cookie and Session Data

 ❑ Open the conversion servlet.

 ❑ Place a SessionDataWrapper bean on the free-form surface. Open the
bean, set its name to dateSessionData and the propertyName to date.

 ❑ Connect the propertyValue property to the string of any HTML text (7).

 ❑ Save the servlet (Figure 50).

1 2

4 6
Enterprise Application Development with Servlets 83

Figure 50. Conversion Servlet with Cookie and Session Data

3

5

7

 ❑ Test the servlets. If you have enabled the cookie warning, you notice that
two cookies are stored: the session data pointer and the user ID cookies.

Servlet Branch
Would you like to have a branch in your application? Many applications have
a selection menu and branch to multiple servlets like a fork (Figure 51).

Figure 51. Servlet Branch

It is not complicated to implement a branch. The HTML form has a target
servlet specification, so you can put multiple forms on one servlet page and
specify the targets for each form (Figure 52).

Data entry form

Servlets

Conversion formSign on form

2nd entry

form
Another

result form
84 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 52. Branch Form

Condition Control
What about condition control? In our currency conversion application, the
user ID should be validated; if it is not valid, an error message should be
displayed without proceeding to the data entry servlet (Figure 53).

Figure 53. Condition Control Servlet

To implement a conditional branch, an invisible servlet is useful. An invisible
servlet is called a router or controller. Note that there is a Router class in the
servlet hierarchy (see Figure 32 on page 60), but for a different purpose. A
nonvisual servlet also extends from the visual servlet class but does not have
any GUI pages. The sign on servlet invokes the controller servlet, which
validates the user ID. If the user ID is valid, the controller servlet invokes
the data entry servlet. If the user ID is invalid, the sign on servlet is invoked
again to display an error message.

When the Web server invokes a servlet, an HTML response is expected. The
controller servlet has to make sure that it passes control to a servlet that
creates the HTML response. The controller servlet itself does not produce any
HTML.

Let’s implement a message field in the sign on servlet and a controller servlet
that validates the user ID:

 ❑ Open the sign on servlet.

Data entry form

Servlets

Sign On form Validate
Enterprise Application Development with Servlets 85

 ❑ Add a text field with an initial value of Welcome!, and name the bean
message. Set the foreground color to red and italic to true.

 ❑ Promote the string property of the message field. This creates a property
named messageString (with getMessageString and setMessageString
methods) and makes the message field accessible to the controller.

 ❑ Create the controller servlet as a visual servlet named AppRouter. Delete
the Page bean that is generated.

 ❑ Connect the requestReceived event of the servlet to the isTransferring
property and set the parameter value to true. We specify here that the
servlet is transferring control to another servlet.

 ❑ Add two beans of types AppSignOn and AppEntry. One of these two
servlet beans will get control. Add a FormData bean and select the
AppSignOnFormData class.

 ❑ Implement the user ID validation. Connect the signOnPressed event of
the AppSignOnFormData bean to a new validate method (event-to-code)
(1) The validate method accepts the user ID ITSO and any IDs starting
with the letter U:

public void validate(String userid) throws Exception {
if (!userid.equals("ITSO") &

!userid.startsWith("U")) throw new Exception();
}

 ❑ Set the userid parameter for the validate method from the userIDString
property of the AppSignOnFormData (2).

 ❑ Connect the exceptionOccurred event of the validate connection to the
messageString property of the AppSignOn servlet and set the parameter
to Invalid user ID, please reenter! (3)

 ❑ Connect the same exceptionOccurred event to the
transferToServiceHandler property of the controller servlet and pass the
this property of the AppSignOn servlet as a parameter (4)

 ❑ Connect the normalResult event of the validate connection to the
transferToServiceHandler property of the controller servlet and pass the
this property of the AppEntry servlet as a parameter (5).

 ❑ Save the controller servlet (Figure 54).

4 5
86 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 54. Controller Servlet

 ❑ Open the sign on servlet and change the action of the form to point to the
new controller servlet.

 ❑ Save the sign on servlet and test the application flow.

1

2
3

Disable Caching of Generated HTML
The HTML output of a servlet is cached by Web browsers and displayed when
the servlet is invoked again. In many cases this can lead to wrong results,
and the user must force the reload and repost of the data to the servlet.

Caching of HTML can be disabled through the HTML header. To disable
caching of the generated HTML of the post servlet (see “Servlet Post
Processing” on page 58), change the doPost method as shown in Figure 55.

Figure 55. Post Servlet with Caching Disabled

In a visual servlet, you first have to access the response object so that you can
issue the setHeader and setDateHeader methods. The best place to disable
caching in a visual servlet is the initialize method (Figure 56).

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

String str = req.getParameterValues("name")[0];
users.addElement(str);
res.setContentType("text/html");
res.setHeader("Pragma","no-cache");
res.setHeader("Cache-Control","no-cache");
res.setDateHeader("Expires",0);
ServletOutputStream so = res.getOutputStream();
so.println("<HTML><BODY>Thank you ");
so.println(str);
so.println("</BODY></HTML>");
so.close();

}

private void initialize() {
// user code begin {1}
// user code end
initConnections();
Enterprise Application Development with Servlets 87

Figure 56. Disabling Caching in a Visual Servlet

...
// user code begin {2}
javax.servlet.http.HttpServletResponse resp = getResponse(); // <====
resp.setContentType("text/html");
resp.setHeader("Pragma","no-cache"); // no caching
resp.setHeader("Cache-Control","no-cache");
resp.setDateHeader("Expires",0); // expires immediately
// user code end

}

Servlet with JDBC
It is very easy to access a relational database by using JDBC from a servlet.
You do not have to worry about the Java security architecture because the
database access is on the server. A servlet can use JDBC as a local
application. In this section we describe how to use data access beans in a
servlet.

Data access beans are capable of retrieving, updating, deleting, and inserting
rows in a relational table. We combine the simplicity of data access beans
with the HTML result table bean of the Servlet Builder. The Select bean (of
the data access beans) implements the table model, and that is exactly what
the HTML result table expects.

We describe here only a very simple scenario. See Chapter 9, “ATM
Application Using Servlets” for more complex database access from servlets.

For our example we want to display the names and a few other attributes of
the employees of a specified department from the DB sample database:

 ❑ Create a new servlet named EmpOfDept (Figure 57).

 ❑ Place a form on the page with a text, an entry field (deptnum), a push
button (RetrieveButton), and an HTML result table in the form.

 ❑ Save the servlet to generate the EmpOfDeptFormData bean.

 ❑ Add the EmpOfDeptFormData bean and a Select bean (database palette).

 ❑ Open the Select bean and specify the connection and SQL statement.
Refer to “Creating the Sample Panel and the Select Bean” on page 21 for
detailed instructions. Use the same SampleDB data access class, the same
connection, and generate a new SQL statement named getEmpOfDept:

SELECT <s>.EMPLOYEE.EMPNO, <s>.EMPLOYEE.FIRSTNME, <s>.EMPLOYEE.LASTNAME,
<s>.EMPLOYEE.PHONENO, <s>.EMPLOYEE.JOB, <s>.EMPLOYEE.SEX
FROM <s>.EMPLOYEE WHERE ((<s>.EMPLOYEE.WORKDEPT = :DEPT))

 ❑ Connect the deptnumString (of FormData) to the string of the deptnum
88 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

entry field to redisplay the value that was entered (1).

 ❑ Connect the retrieveButtonPressed event (of FormData) to the
Parm_DEPT_String property (of Select) to set the host variable in the
SQL statement (2). Pass the deptnumString property as a parameter.

 ❑ Connect the retrieveButtonPressed event to the execute method (of Select)
to run the SQL statement before generating the HTML output (3).

 ❑ Connect the this property of the Select bean to the tableModel property of
the HTML result table (4). The Select bean and the HTML result table are
compatible with the table model of Swing.

 ❑ Save the servlet and test.

Figure 57. Servlet with Data Access Bean

The Select bean, in conjunction with the HTML result table, makes it quite
easy to display SQL data in a servlet. The only visible problem is the table
headings with their long names, such as USERID.EMPLOYEE.EMPNUM.

As long as you only retrieve data with the Select bean you can easily change
the headings in the method generated for the SQL statement. Open the
getEmpOfDept method of the SampleDB data access class and change the
code in the addColumn specifications:

public static StatementMetaData getEmpOfDept() throws Throwable {
String name = "itso.entbk2.sample.databean.SampleDB.getEmpOfDept";
String statement = "SELECT)";
StatementMetaData aSpec = null;
try{

aSpec = new StatementMetaData();
aSpec.setName(name);
aSpec.setSQL(statement);

4

2 3

1

Enterprise Application Development with Servlets 89

aSpec.addTable("USERID.EMPLOYEE");
aSpec.addColumn("Number", 1,1);
aSpec.addColumn("Firstname", 12,12);
aSpec.addColumn("Lastname", 12,12);
aSpec.addColumn("Phone", 1,1);
aSpec.addColumn("Job", 1,1);
aSpec.addColumn("Sex", 1,1);
aSpec.addParameter("DEPT", 1, 1);

} catch(java.lang.Throwable e){throw e;}
return aSpec;

}

With the corrected table headings the output in the browser is quite nice
(Figure 58).

Figure 58. Servlet with Data Access Bean Browser Result
90 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

4 CICS Access with
the CICS Connector
VisualAge for Java Enterprise provides the Common Connector Framework,
the CICS Connector, the Enterprise Access Builder Library, and the Java
Record Library as building stones for accessing CICS transactions from Java
applications and servlets.

The Common Connector Framework provides a consistent means of
interacting with enterprise resources, such as CICS transactions, from any
Java execution environment. Enterprise resource management products
have developed IBM e-business Connectors, or prebuilt beans, that use the
© Copyright IBM Corp. 1998 91

Common Connector Framework.

The CICS Connector is such an IBM e-business Connector and is provided
with VisualAge for Java Enterprise Version 2.

In this chapter we take a look at the CICS Connector and the supporting
frameworks. We examine what is needed to implement an interaction where
data is sent to a CICS application program, which in turn responds by
sending output data.

4.1 The Enterprise Access Builder
The Enterprise Access Builder consists of frameworks and tools that allow
Java applications to access existing host applications and data. An
interaction with a back-end system often involves sending input data to a
host application, which would respond with some output data. Such an
interaction is often called a transaction in back-end systems. We reserve the
term transaction, however, for a more global meaning, namely, a series of
interactions with back-end systems that are committed as a whole.

In the Enterprise Access Builder, an interaction is called a command.
Commands dictate the data that gets passed to and from the back-end
system in a single interaction. Records are used as input and output for the
commands. Records define the layout of the input and output data within the
back-end system.

More complex interactions, consisting of a sequence of interactions, are
represented by navigators. A navigator encapsulates a sequence of
commands. A business object is an object representing an entity in the
application space and contains a number of Java properties. The relationship
between commands (or navigators) and business objects are defined through
objects called mappers. Mapper objects are classes that map record
properties within commands and navigators to business objects and move the
values of these properties from business objects to a record before the host
interaction, and from records to business objects after the interaction.

The Enterprise Access Builder provides the Common Connector Framework
that is consistent across different host applications and facilitates
communication between a client and host program. For Version 2 of
VisualAge Java, the Enterprise Access Builder supports CICS and Encina
DELight transactions. In this book we cover only the CICS Connector.
92 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

4.2 Connectors
The Common Connector Framework provides a consistent means of
interacting with enterprise resources from any Java execution environment.

The Common Connector Framework can be used to:

 ❑ Extend existing enterprise data and applications to any Java execution
environment

 ❑ Reduce the learning curve required to access multiple back-end resources

 ❑ Integrate coordination and management of enterprise resources at run
time

 ❑ Improve performance by sharing and reusing client/server connections.

The Common Connector Framework consists of interface or class definitions
that provide the framework for each connector. The three main interfaces
are:

 ❑ The Communication interface, which defines the common communication
interface for all connectors. It allows you to connect, disconnect, and pass
data to a host system.

 ❑ The ConnectionSpec interface, which defines the common connection
specification interface for all connectors. It allows you to create a new
communication configured with properties specific to the host system.

 ❑ The InteractionSpec interface, which defines the host-specific properties
for a single interaction with that host resource manager.

These interfaces are implemented in the CICS Connector.

4.3 The CICS Connector
The CICS Connector provides a powerful way of accessing CICS servers from
the Internet. An applet or servlet uses the CICS Connector classes to access
the CICS Transaction Gateway through its own TCP/IP-based protocol, or
through HTTP, HTTPS, or SSL protocols.

The CICS Transaction Gateway, a Java application residing on the Web
server, uses the CICS Universal Client to communicate with the CICS server.

CICS Connector Installation
CICS Access with the CICS Connector 93

VisualAge for Java Enterprise Version 2 is packaged with the following:

 ❑ CICS Transaction Gateway Version 3, which contains the CICS Universal
Client Version 3 (the CICS Client for Windows NT has been renamed
CICS Universal Client for Windows NT)

 ❑ CICS Connector classes

 ❑ HTML documentation on the Gateway and the Universal Client

Features To Be Added to the Workspace
Once the CICS Connector has been installed, the following features should be
added to your workspace:

 ❑ IBM Common Connector Framework

 ❑ IBM Enterprise Access Builder Library

 ❑ CICS Connector

 ❑ IBM Java Record Library

CICS Connector Classes
The CICS Connector classes are supplied in packages in the Connector CICS
project.

In keeping with the Common Connector Framework, the CICS Connector
classes include a CICS ConnectionSpec, an external call interface (ECI)
InteractionSpec, and an external presentation interface (EPI)
InteractionSpec. These classes are found in package com.ibm.connector.cics.

The value of the URL property of the CICSConnectionSpec is set to the IP
address or host name of the CICS Transaction Gateway. The value of the
CICSServer property of the CICSConnectionSpec is set to the name of the
CICS server as specified in the CICS client initialization file (CICSCLI.INI).

The CICSInteractionSpec is used to indicate which program has to be run at
the CICS server. It describes the call to be made at the CICS server.

The ECI allows a non-CICS application to call a CICS program in a CICS
server. The CICS program cannot perform terminal I/O but can access and
update all other CICS resources. Data is exchanged by means of a
communication area (COMMAREA).

The EPI allows a non-CICS application program to be viewed as a 3270
94 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

terminal by the CICS server system to which it is connected. For more
information about the ECI and EPI, see “CICS Universal Clients” on page 95.

Compatibility with Previous Gateway and Client Software
Before we installed the CICS Transaction Gateway and the CICS Universal
Client, we worked with the CICS Gateway for Java and CICS Client for NT
Version 2 in our test environment. These had successfully been tested with
the CICS Access Builder supplied with VisualAge for Java Enterprise
Version 1.

We were unable to run the Adder ECI CICS Connector sample provided with
VisualAge for Java Enterprise Version 2 with this configuration. Only after
we had installed the CICS Transaction Gateway and the Universal Client
were we able to successfully run the Adder sample in package
com.ibm.ivj.eab.sample.eci.adder.

There are therefore potential migration issues if the CICS Connector is used.
Please note the difference in name between the CICS Gateway for Java and
the CICS Transaction Gateway. This change affects package names. The
packages relevant to the CICS Gateway for Java start with ibm.cics.jgate, for
example, ibm.cics.jgate.client. The packages relevant to the CICS
Transaction Gateway start with com.ibm.ctg, for example, com.ibm.ctg.client.

When using the CICS Connector make sure that the com.ibm.ctg.* packages
are added to your workspace. These are found in the Connector CICS project.

When planning to migrate, consult the section on migration issues in the
“Planning before Installation” chapter of the CICS Transaction Gateway
Administration manual.

4.4 CICS Universal Clients
This discussion is taken from the Overview chapter of the CICS Universal
Clients Administration manual. For more information about the CICS
Universal Clients, refer to that manual, which comes with the CICS
Connector.

CICS Universal Clients allow users to access transactions and programs on
the entire family of CICS application servers.

The CICS Universal Clients family comprises:

 ❑ IBM CICS Universal Client for OS/2
CICS Access with the CICS Connector 95

 ❑ IBM CICS Universal Client for Windows 98
 ❑ IBM CICS Universal Client for Windows NT
 ❑ IBM CICS Universal Client for AIX
 ❑ IBM CICS Universal Client for Solaris

Communcation Protocols
CICS Universal Clients can communicate through the following protocols:

 ❑ Network Basic Input/Output System (NetBIOS)
 ❑ Transmission Control Protocol/Internet Protocol (TCP/IP)
 ❑ Advanced Program-to-Program Communication (APPC)

CICS Universal Client for OS/2, Windows 98, and Windows NT can also
communicate with CICS for MVS/ESA through the IBM TCP62 protocol
mapper, which allows APPC applications to communicate over a TCP/IP
network.

CICS Universal Clients can communicate with multiple CICS servers. The
client initialization file determines the parameters for client operation and
identifies the associated servers and protocols used for communication.

Client Customization
Client customization can be done through modifying the contents of three .ini
files. Default .ini files are supplied with the CICS Universal Clients in the
Client \BIN directory:

 ❑ CICSCLI.INI - the client initialization file

 ❑ CICSKEY.INI - the keyboard mapping file

 ❑ CICSCOL.INI - the color mapping file

We recommend that you use different names if you create your own
customized versions of these files. You should reference your customized files
through the environment variables shown in Table 9.

Table 9. Client Environment Variables

Client Initialization File
There is a relationship between the client initialization file and a property

File Environment Variable

Client initialization file CICSCLI

Keyboard mapping file CICSKEY

Color mapping file CICSCOL
96 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

value of one of the beans used by the CICS Connector. It is for this reason
that we discuss this file here.

The client initialization file contains configuration information used to
inform the client of the servers it can connect to, and the necessary
communication protocols that are used to access the servers.

The client initialization file is structured into sections, each containing a set
of parameters specific to that section. The sections are:

 ❑ At most one Client section.

 ❑ One or more Server sections. The first server definition is used as the
default server for the client.

 ❑ One or more Driver sections. There is one Driver section for each unique
protocol referenced in the Server sections.

The syntax is shown in Figure 59 and explained in the CICS Universal Client
for Windows Administration manual.

[Client=* | applid
 [MaxBufferSize=nn]
 [TerminalExit=name]
 [TraceFile=filename]
 [LogFile=filename]
 [ApiTrace=Y|N]
 [MaxServers=nnn]
 [MaxRequests=nnnnn]
 [PrintCommand=command]
 [PrintFile=filename]
 [DumpMemSize=nn]
 [DumpFile=filename]
 [CPName=name]
 [CPIPAddressMask=mask]
 [DomainNameSuffix=suffix]
 [DceCellDirectory=Y|N]
 [EnablePopups=Y|N]
]
 Server=Servername
 NetName=Applid | LUName | HostName | IPAddress
 Protocol=ProtocolName
 [Description=desc]
 [UpperCaseSecurity=Y|N]
 [InitialTransid=transid]
 [ModelTerm=name]
 [Port=nnnn]
 [Adaptor=0|1|2|3]
CICS Access with the CICS Connector 97

Figure 59. Client Initialization File Syntax

 [LocalLUName=LUName]
 [Modename=modename]
 [LUAliasNames=Y|N]
 [SnaSessionLimit=nnn]
 [SnaMaxRUSize=nnnn]
 [SnaPacingSize=nnn]
 [LUIPAddressmask=suffix]
 [EndPoint=portnumber]
 [TcpKeepAlive=Y|N]

 Driver=ProtocolName
 Drivername=drivername

Of special interest here is the value of the Server keyword. Figure 60 is an
extract from the customized file used during the development of the samples
in this book.

Figure 60. Extract for Customized Client Initialization File

The server name of ATMTCP is referenced in the ServerName property of the
CICSConnectionSpec bean that is discussed in “CICS Connector Classes” on
page 94 and in “Constructing a Command” on page 112.

Client Functions
In this section we summarize the functions provided by the CICS Universal
Client.

3270 Terminal Emulation
CICS 3270 emulation enables a client workstation to function as a 3270
display or printer for CICS applications, without needing a separate 3270
emulator product.

External Call Interface
The ECI enables a non-CICS client application to call a CICS program
synchronously or asynchronously, as a subroutine. The client application
communicates with the server CICS program through the COMMAREA. The
COMMAREA is passed to the CICS server on the call, and the CICS program
typically populates it with data accessed from files or databases, which is
then returned to the client for manipulation or display.

Server = ATMTCP ; name for the server
 Description = TCP/IP Server ; description for the server
 Protocol = TCPIP ; Protocol is TCP/IP
 NetName = bosporus ; server’s TCP/IP address
 Port = 0 ; Use the default TCP/IP CICS port
98 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

The ECI is the recommended interface for developing new client/server
applications. The ECI call structure easily separates the presentation logic
(usually in the client) from the business logic in the CICS application. For
example, the ECI can be used with mainframe CICS applications that are
already separated into business logic (in the application-owning region) and
presentation logic (in the terminal-owning region). The business logic can
remain unaltered when the presentation logic is developed.

The examples discussed in this book use the ECI.

External Presentation Interface
The EPI enables client applications to start and converse with a legacy 3270
CICS application running on the CICS server. The CICS application sends
and receives 3270 data streams (for example, a CICS basic mapping support
(BMS) transaction) to and from the client application as though it were
conversing with a 3270 terminal. The client application captures these data
streams and, typically, displays them with a non-3270 presentation product,
such as GUI or multimedia software.

The EPI is therefore a method of enhancing an existing CICS application by
adding a graphical or other modern interface. The CICS application itself
does not need to be altered.

External Security Interface
The ESI enables client applications to verify that a password matches the
password recorded by an external security manager for a specified user ID.

3270 Client Printer Support
With CICS 3270 client printer support a printer terminal can be defined on
the client workstation. Thus CICS applications running on the server can
direct output to the client-attached printer.

CICS 3270 client printer support uses CICS 3270 emulation functions.

Client Control
CICS Universal Clients provide commands or icons to:

 ❑ Start or stop the client process
 ❑ Turn the client trace on or off
 ❑ Specify the client initialization file to be used
 ❑ Set up security by specifying user IDs and passwords for a CICS server
 ❑ List connected servers
CICS Access with the CICS Connector 99

 ❑ Enable and disable the display of messages
 ❑ Control terminal emulation
 ❑ Control client printer operation

CICS Telnet Support
CICS Universal Clients provides a command, CICSTELD, to start a CICS
Telnet daemon. You can use any Telnet 3270 client to access a CICS server
through the CICS Telnet daemon.

4.5 CICS Transaction Gateway
This discussion is taken from the Overview chapter of the CICS Transaction
Gateway Administration Version 3 manual. For more information on the
CICS Transaction Gateway, refer to that manual, which comes with the CICS
Connector. Additional information is also available in the redbook Revealed!
CICS Transaction Gateway with More CICS Clients Unmasked, SG24-5277.

The IBM CICS Transaction Gateway provides secure, easy access from Web
browsers and network computers to business-critical applications running on
a CICS Transaction Server or TXSeries server using standard Internet
protocols.

The CICS Transaction Gateway is provided for the OS/2, Windows NT, AIX,
and Solaris platforms. The CICS Transaction Gateway is also provided for
Windows 95 and 98, but on these platforms it can only be used for
development purposes and not for production.

Figure 61 shows how a Web client can access CICS programs through the
CICS Transaction Gateway.

Network
Computer

Java-
enabled
Browser

Server Machine

Web Server

CICS
Server

CICS Transaction
Gateway

CICS CICS

HTTP

HTTP

HTTPS
ECIApplet
100 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 61. CICS Transaction Gateway

Universal
Client

Gateway
for

Java

SSL

TCP

EPI

Application

Java
Servlet

Java
ORB

IIOP

Application
Java

SSL
TCP

What the CICS Transaction Gateway Provides
The CICS Transaction Gateway provides:

 ❑ A Java gateway application that is usually resident (for security reasons)
on a Web server machine. It communicates with CICS applications
running in CICS servers through the ECI or EPI provided by the CICS
Universal Clients. This Java application was previously available in the
IBM CICS Gateway for Java.

 ❑ A CICS Universal Client that provides the ECI and EPI, as well as the
terminal emulation function. See “CICS Universal Clients” on page 95.

 ❑ A CICS Java class library that includes classes that provide an API and
are used to communicate between the Java gateway application and a
Java application (applet or servlet). The JavaGateway class is used to
establish communication with the gateway process and uses Java’s
sockets protocol. The ECIRequest class is used to specify the ECI calls
that flow to the gateway. The EPIRequest class is used to specify the EPI
calls that flow to the gateway. These Java classes were previously
available in the IBM CICS Gateway for Java.

 ❑ A terminal servlet that enables you to use a Web browser as an emulator
for a 3270 CICS application running on any CICS server. The terminal
servlet can be used with a Web server or a servlet engine that provides
support equivalent to JSDK 1.1 or later. This is an enhanced version of
the function that was provided by the CICS Internet gateway in IBM
CICS Clients Version 2.

 ❑ A set of Java EPI beans for creating Java front ends for existing CICS
3270 applications, without any programming.

The CICS Transaction Gateway can concurrently manage many
communication links to connected Web browsers and can control
asynchronous conversations to multiple CICS server systems. The
multithreaded architecture of the CICS Transaction Gateway enables a
single Gateway to support multiple concurrently connected users.
CICS Access with the CICS Connector 101

How the CICS Transaction Gateway Accesses CICS
Access is discussed for both applets and servlets. This discussion is taken
from the Version 3.0 CICS Transaction Gateway Administration manual.

Java Applet Access
For Java applets, access is achieved as follows:

 ❑ The Web browser or network computer requests an HTML page from the
Web server using HTTP.

 ❑ The Web server returns the HTML page containing a tag identifying a
Java applet.

 ❑ The browser starts requesting relevant Java classes from the Web server.

 ❑ The Web server returns Java classes, including CICS Transaction
Gateway classes as requested.

 ❑ As classes are returned, the Java applet starts.

 ❑ For ECI, the Java applet creates an ECIRequest object containing ECI
calls and sends it to the gateway using the JavaGateway.flow method. The
ECIRequest supports most of the ECI calls.

 ❑ For EPI, the Java applet creates an EPIRequest object containing EPI
calls and sends it to the gateway using the JavaGateway.flow method. The
EPIRequest supports most of the EPI calls.

 ❑ The Gateway receives the request, unpacks it, and makes corresponding
ECI or EPI calls to the CICS Universal Client.

 ❑ The CICS Universal Client passes the calls to the intended CICS server.

 ❑ The CICS server processes the call, including verification of the user ID
and password if required, and passes control and user data to the CICS
application program.

 ❑ When it has finished processing, the CICS application returns control and
data back to CICS, which passes it back to the gateway.

 ❑ The gateway packs these results and returns them to the Java applet
running on the Web browser.

Java Servlet Access
For Java servlets, access is achieved as follows:

 ❑ The Web server loads and initializes the servlet, either when the Web
server starts or the first time a request is made to the servlet. The servlet
may at this point create a JavaGateway object to connect to the CICS
Transaction Gateway.
102 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

 ❑ When the servlet is invoked by an appropriate HTTP request, the Web
server calls its Service method with details of the request.

 ❑ For ECI, the Java servlet creates an ECIRequest object containing ECI
calls and sends it to the gateway using the JavaGateway.flow method. The
ECIRequest supports most of the ECI calls.

 ❑ For EPI, the Java servlet creates an EPIRequest object containing EPI
calls and sends it to the gateway using the JavaGateway.flow method. The
EPIRequest supports most of the EPI calls.

 ❑ The Gateway receives the request, unpacks it, and makes corresponding
ECI or EPI calls to the CICS Universal Client.

 ❑ The CICS Universal Client passes the calls to the intended CICS server.

 ❑ The CICS server processes the call, including verification of the user ID
and password if required, and passes control and user data to the CICS
application program.

 ❑ When it has finished processing, the CICS application returns control and
data back to CICS, which passes it back to the gateway.

 ❑ The gateway packs these results and returns them to the Java servlet.

 ❑ When the servlet receives the results of the requests it has made to the
CICS Transaction Gateway, it generates an HTTP response to be returned
to the Web browser.

4.6 A Discussion Review
Thus far the discussion has focused on the CICS Connector as an
implementation of the Common Connector Framework, the CICS
Transaction Gateway, and the Universal CICS Clients, which provide the
means for interacting from a Web client to a CICS server. Typically an
interaction would consist of an input data stream that is passed to a program
on the CICS server. When complete, this program would typically pass
response data back.

How such data is formatted and how the flow is defined and controlled still
needs to be discussed.

4.7 Accessing Enterprise Data
CICS Access with the CICS Connector 103

In this section we discuss at a high level the tasks required to get an
end-to-end flow between a Web client and a CICS server. We do not describe
in detail how to carry out each task; rather we introduce the tasks
conceptually. For a more detailed discussion of exactly how to implement the
tasks, see Chapter 10, “ATM Application with the CICS Connector.”

Overview
In the VisualAge for Java Enterprise Concepts documentation the page
entitled “Accessing Enterprise Data: Overview” lists a typical task flow for
accessing enterprise data with the Enterprise Access Builder:

 ❑ Create a structure description.

 ❑ Generate a dynamic record type. Use the SmartGuide that corresponds to
your middleware to generate a record type for your source. The dynamic
record type represents the data structure on the host. It can be used as
generated or modified in the record editor.

 ❑ If necessary edit the dynamic record type. This is probably not necessary
for simple COMMAREA design.

 ❑ Generate a record bean or class. Use the Generate Records SmartGuide to
generate a record bean or class based on the record type you define as
input.

 ❑ Construct commands. Define connection and interaction specifications
and use them in conjunction with record beans to create commands.
Commands define the flow of interactions with the host program.

 ❑ Construct a navigator. Use your commands to construct a navigator that
combines the commands you created and defines the overall flow of
interactions with the host program.

 ❑ Create business objects. Create classes that inherit from the
IBusinessObject class. You can create either managed or unmanaged
business object classes.

 ❑ Map the business object to the record bean. Use the mapper to map the
properties between the business object and the record. Then, add the
mapper to the record beans in the command.

 ❑ Connect business objects.

 ❑ Export business objects and supporting classes. If you wish to use your
business objects in another environment, for example, IBM Component
104 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Broker or IBM WebSphere, export your business objects and associated
classes.

 ❑ Create a client program using your business objects. Use the VisualAge
for Java Visual Composition Editor to construct a client program that
contains your business objects.

 ❑ Test your client application. Test run your client program either as an
applet or a main program.

 ❑ Deploy your client application.

Structure Description
The structure description pertains to some sort of source representing an
input or output data stream such as a CICS COMMAREA. Typically a
structure description would be found in the server program that is called.
Throughout this discussion it is assumed that the server program is written
in COBOL.

Records and the Java Record Framework
The bulk of enterprise data continues to reside in either a database or a
record-oriented store. This data is processed by existing line-of-business
applications such a CICS transactions. Most of these applications are written
in programming languages such as COBOL.

The Java application developer needs to work with such record-oriented data.
Most of today’s record data has been written by non-Java applications.
Consequently record access from Java must be able to handle data
conversions required by cross-language access. In order to assist with this
task the Java record framework is provided.

Java Record Framework
The Java record framework describes and converts record data. The
framework is usage-context independent. It is used as a base for
record-oriented file input and output, as well as for record-based message-
passing schemes.

A record is a logical collection of application data elements. These data
elements are related by an application-level semantic that is stored and
retrieved as a unit. When a record is retrieved, individual data elements can
be accessed directly, typically through a native language structure, such as
COBOL, C, or PL/I.

CICS Access with the CICS Connector 105

Custom and Dynamic Records
Two separate mechanisms for record data access are provided as part of the
Java record framework. The first is an implementation of a dynamic
descriptor structure. The second mechanism is intended for optimized access
to records whose format is known ahead of time and does not change. Such a
record is referred to as a custom record.

In general, records can have fixed or variable lengths. The Java record
framework allows the manipulation of fixed or variable length records. A
dynamic record is defined as a collection of separate data fields with
descriptive field level information being captured as part of a run-time access

structure. Variable length records, whose format is not known ahead of time,
have to be dynamic records. A custom record is used for fixed formats.
Instead of a dynamic record descriptor, the custom record makes direct
references to fields based on their field offsets relative to the record.

Although quite different in their usage and implementation, both styles of
records implement a common set of record handling interfaces. Consequently,
either record style can be used in higher-level frameworks based on the
record support.

Support for Different Record Structure Groupings
The Java record framework supports nested structures, arrays, overlaid
fields, and field alignment and packing.

A record can be viewed as a series of nested subrecords, which involves
building up a composite record type descriptor. The framework supports such
an approach.

The Java record framework supports array fields with an arbitrary number
of dimensions. Individual array elements can be accessed directly.

Existing record applications allow the definition of field overlays. The
framework supports this by defining a union of data fields, all anchored to
the same offset within the record bytes (subject to individual component
subfield alignment). The length of an overlaid field is the length of its largest
component subfield (again, including any subfield alignment).

Record structures typically support the concepts of alignment and packing.
In compiled languages, these determine the tradeoff between speed of access
to record elements and required storage for the data record. The framework
provides an implementation of packing and alignment in the supplied
classes.

Framework Tools
106 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

The main purpose of the Java record framework is to provide run-time
support for accessing application record data. The framework also defines a
set of mechanisms for record builder tools to use. The builder-type tools are
provided to assist in the construction of record-oriented structures.

For a more detailed discussion of the Java record framework refer to the Java
record framework documentation supplied with VisualAge for Java
Enterprise.

Record Creation Overview
Record beans contain properties that represent the fields in the server
application with which a Java client application interacts. Record beans are
generated from dynamic record types.

Dynamic Record Types
A dynamic record type is a representation of the field content of a record in
an application. A field can be another dynamic record type, an array, or a
simple field. Dynamic record types are created from source code. Currently
there is support for COBOL, basic mapping support (BMS), and message
format service (MFS) source. You can use the SmartGuide corresponding to
your source to parse a local copy of a source file and generate a dynamic
record type.

Dynamic record types can be modified in the record editor. Once you have
defined the fields of your record type, you can use the Generate Records
SmartGuide to generate a record bean or class. Figure 62 shows the steps to
create a record bean.

Source Record

Record

Type
Importer

Record GenerateEditor
CICS Access with the CICS Connector 107

Figure 62. Record Bean Creation

SmartGuides for Dynamic Record Type Creation
To use the Java record framework you have to define and generate a record
bean or class. Three record type SmartGuides are provided with VisualAge
for Java Version 2: BMS, MFS, and COBOL. A record type is a representation

Bean

of the field contents of a record in a host application. Each SmartGuide
parses a local copy of a source file and generates a record type. The
SmartGuides can be accessed by selecting Tools -> Records ->
Create....Recordtype.

A record type can also be hand-coded by creating a class that inherits from
the DynamicRecord class.

Record types can be modified in the record editor.

Below we describe the COBOL Record Type SmartGuide, because it is used
most often.

Cobol RecordType SmartGuide
To generate a record type from COBOL source, follow these steps:

 ❑ Download a local representation of your COBOL source file into the
codepage of your current locale.

 ❑ In the Workbench, select a package to contain the generated record type.

 ❑ From the Selected menu, select Tools -> Records -> Create COBOL
RecordType to open the COBOL RecordType SmartGuide (Figure 63).
108 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 63. SmartGuide for COBOL Record Type

 ❑ In the Class Name field, specify a valid class name for the new
COMMAREA RecordType.

 ❑ In the COBOL file field, specify the name of the COBOL program for
which you want to generate a record type. You can also click on Browse to
open a dialog in which you can select the COBOL file from a directory.

 ❑ Specify a project and package.

 ❑ Click on Next. The second page of the SmartGuide opens. From the
Available list, select a level 1 COMMAREA from the COBOL source file
you defined earlier. Click on > to add the COMMAREA to the Selected list.

 ❑ Click on Finish. A record type is generated into the package you selected.

Record Bean Generation
Once you have defined the fields of a record type, you can use the Generate
Records SmartGuide to generate a record bean or class. To access this
SmartGuide, select the record type you just created and select Tools ->
Record -> Generate Record. The Generate Records SmartGuide opens (Figure
64).
CICS Access with the CICS Connector 109

Figure 64. Generate Records SmartGuide

In the SmartGuide you can choose direct or hierarchical field access. If the
field names are not unique, hierarchical access to the field names forces the
field names to be fully qualified. If the field names are unique, choose direct
access.

You can also choose between dynamic records or custom records for the
generated record beans or classes. Typically you would choose dynamic for
variable records and custom when you know the exact record layout ahead of
time.

Click on Next and specify character code set, encoding, and operating system
options. The defaults are associated with MVS (Figure 65).
110 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 65. Generate Records SmartGuide: Changing Properties

The generated record bean or class is referenced in a command.

Commands
The interaction between Java applications and host-based systems involves
input data being sent to the receiving application, followed by the application
responding with output data. For example, when invoking a CICS program,
fields within the input COMMAREA would be set, the CICS program would
be invoked passing the input COMMAREA, and the CICS program would
respond with the output COMMAREA. The Enterprise Access Builder allows
for the specification of such an interaction through commands. A command
within the Enterprise Access Builder consists of the input-interaction-output
combination.

An Enterprise Access Builder command wraps a single interaction with a
host system. On execution, an Enterprise Access Builder command:

 ❑ Takes its input data and sends the data to a host system, using a
connector.

 ❑ Sets, as its output, the data returned by the host system.

Figure 66 shows the construction pattern of a command.

You need the following information when constructing a command:

 ❑ Input data

The input data is required by the command to perform the execution. The
input of a command is defined by a record bean.

 ❑ Output data

The output data is the result of the command’s execution. The output of a
command is defined by one or more record beans.

 ❑ Connection information

Connection information is specified in the ConnectionSpec and
InteractionSpec beans. These beans are specific to the CICS Connector
and implement the ConnectionSpec and InteractionSpec interfaces
CICS Access with the CICS Connector 111

defined in the Common Connector Framework. These interfaces are
discussed in “Connectors” on page 92.

The ConnectionSpec bean is used to specify the connection to the CICS
system. The InteractionSpec bean is used to specify the CICS program to
be called.

Figure 66. Command Construction

Constructing a Command
You construct a command with either the Visual Composition Editor or the
Command Editor.
112 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

The Visual Composition Editor enables visual programming when composing
a command. The Command Editor provides guidance for going through the
steps of constructing a command and thus allows you to focus on the specific
composition patterns of a command. Because both tools work on the same
metadata, it is possible to switch from one tool to the other.

Using the Visual Composition Editor
Originally, when first exploring commands, we created a command using the
Visual Composition Editor. All beans were associated with names of our own
the details of the command. When using the Visual Composition Editor, you
must adhere to a naming convention:

 ❑ Name the interaction specification bean ceInteractionSpec.

 ❑ Name the connection specification bean ceConnectionSpec.

 ❑ Name the input bean ceInput and the corresponding mapper bean
ceMapperCeInput.

 ❑ If there is only one output that does not implement the IByteBuffer
interface, name it ceOutput and the corresponding mapper,
ceMapperCeOutput.

 ❑ If there is only one output bean implementing the IByteBuffer interface,
name it ceOutput1 and the corresponding mappe, ceMapperCeOutput1.

 ❑ If there are multiple output beans, name them ceOutput1, ceOutput2, ...,
and the mappers, ceMapperCeOutput1, ceMapperCeOutput2, ...

We do not show how to use the Visual Composition Editor to construct a
command. We found that the command editor allows for a more intuitive
approach. However, this is an entirely personal view.

In addition, there are instances where the Visual Composition Editor has to
be used. Once such case is when the input is defined as a bean variable. Refer
to the documentation supplied with VisualAge for Java for details on how to
construct a command with the Visual Composition Editor. The
documentation on the sample ECI transactions is useful.

Using the Command Editor
To use the Command Editor, create a new class that is a subclass of
com.ibm.ivj.eab.command.CommunicationCommand.
CICS Access with the CICS Connector 113

To launch the Command Editor select such a class and choose Tools ->
Command Editor. Figure 67 shows the Command Editor dialog.

Figure 67. Command Editor: Initial View

Setting up Common Connector Framework Information
The ConnectionSpec and InteractionSpec properties must be specified.
Follow these steps:

 ❑ Select Communication and right-click.

 ❑ A menu box pops up allowing the addition of ConnectionSpec and
114 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

InteractionSpec.

 ❑ Select Add ConnectionSpec. A pop-up menu displays a choice of
ConnectionSpecs. For CICS choose CICSConnectionSpec.

 ❑ Select Add InteractionSpec. A pop-up menu displays a choice of
InteractionSpecs. For ECI choose ECIInteractionSpec.

 ❑ Right-click on the ceConnectionSpec and choose Properties. Specify the
relevant CICSServer and URL and any other properties that must be
changed. The CICSServer is associated with the server name specified in
the client initialization file. See “Client Customization” on page 96. The

URL must point to the hostname or IP address where the CICS
Transaction Gateway is running.

 ❑ Right-click on the ceInteractionSpec and choose Properties. Specify the
relevant programName and any other pertinent properties. For example,
specify ATMCARDI if this is the name of the CICS program to be called.

Specifying the Input Bean
 ❑ Select Input and right-click. A menu box pops up with options Add

IBytebuffer Bean and Add Input Bean.

 ❑ Choose the type of input, for example, Add Input Bean. Specify the name
of the record bean you want to use as input.

Specifying the Output Bean
 ❑ Select Output and right-click. A menu box pops up with options Add

IBytebuffer Bean and Add Output Bean.

 ❑ Choose the type of output, for example, Add Output Bean. Specify the
name of the record bean you want to use as output.

The output can be associated with multiple beans.

Promoting Bean Features
 ❑ Right-click on the relevant bean. A menu box pops up with options

Property, Promote Bean Features, Delete, and Add Mapper.

 ❑ Promote those bean features that need to be visible. (These are the
features that you might want to connect later in the Visual Composition
Editor.)

Adding Mappers
 ❑ To add a mapper, select Add Mapper and specify the name of the relevant

mapper. The mapper class must be generated before doing this step.
Mappers are discussed in “Mappers” on page 119. Essentially they allow
CICS Access with the CICS Connector 115

for the mapping of a record to a business object.

Figure 68 shows a view of the Command Editor after the communication,
input, and output beans have been added.

Figure 68. Command Editor with Communication, Input, and Output Beans

You can view a command in the Visual Composition Editor (Figure 69).
116 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 69. Visual Composition Editor View of a Command

Navigators
A navigator is a sequence of commands strung together to form a more
complex interaction with the host system. Each command in the navigator is
executed in the order specified. A navigator can be constructed in the Visual
Composition Editor.

Connection information can be specified at the navigation level. This
overrides the connection information supplied with the individual
commands. Navigators can be strung together to form higher-level
navigations.

Figure 70 shows that a navigator is made up of a set of commands.

Figure 70. Navigator

Constructing a Navigator
This discussion is not very detailed as we designed only a few navigators. A
navigator is constructed with the Visual Composition Editor as a subclass of
com.ibm.ivj.eab.command.CommunicationNavigator.

To construct a Navigator:

 ❑ Set up a ConnectionSpec bean. This is optional. If not specified, the
ConnectionSpec of the commands is used.
CICS Access with the CICS Connector 117

 ❑ Select the command bean for the first command in the sequence.

 ❑ Trigger this command by connecting the internalExecutionStarting event
of the navigator to the execute method of this first command.

 ❑ To handle unsuccessful execution, connect the executionUnsuccessful
event of the command to the returnExecutionUnsuccessful method of the
navigator.

 ❑ Select the command bean of the next command in the sequence.

 ❑ Invoke the next command by connecting the executionSuccessful event of
the previous command to the execute method of the next command.

 ❑ Connect the executionUnsuccessful event of the next command to the
returnExecutionUnsuccessful method of the navigator.

 ❑ Add more commands and trigger their execution from the previous
command.

 ❑ For the last command, connect the executionSuccessful event to the
returnExecutionSuccessful method of the navigator.

Figure 71 shows the construction of a navigator from the sample ATM
application.

Figure 71. Construction of a Navigator

A navigator may contain only one command. Even in such cases a navigator
can be very helpful because of the execute method and the events that it
provides. Those facilities make visual construction of command processing
quite simple.

For examples of navigators, see the following packages:

com.ibm.ivj.eab.sample.eci.mapper
118 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

com.ibm.ibj.eab.sample.eci.navigator

Business Objects
A business object can be used to map many different host interactions with
many different host resources.

A business object is an object that is a subclass of either the BusinessObject
class or the BusinessObjectKey class. A business object can contain any
number of Java properties. There are two types of business objects:

 ❑ Managed business objects

 ❑ Unmanaged business objects

For more information about business objects refer to the online
documentation about business objects supplied with the Visual Age for Java
product.

In the ATM application, business objects have not been used. Instead records
have been mapped to the beans associated with the ATM business model in
the itso.entbk2.atm.model package.

Mappers
To exchange data between a business object and a command or navigator, the
Enterprise Access Builder uses classes called mappers.

Generally, the documentation supplied with VisualAge for Java associates
mappers with business objects. We, however, have successfully mapped to
classes whose superclass is java.lang.Object. We did this because we did not
want to reinvent the classes associated with the ATM application. This
probably does not give the portability offered by business objects, but at least
the mapping can be done. Although the ensuing discussion also refers to
business objects, bear in mind that we did not map to business objects, that
is, classes that implement the BusinessObject interface.
CICS Access with the CICS Connector 119

A mapper maps the properties of a record to or from the properties of a
business object. Thus the input record of a command can have data from a
business object automatically set within it before the command execution. A
mapper also allows the properties of an output record of a command to
automatically set the properties of a business object after the command is
executed.

The Enterprise Access Builder supplies a mapper builder, which enables you
to map a record to one or more business objects. The mapper builder
generates a mapper bean that can be included in a command. In the
Command Editor, the Add Mapper option is used to specify a mapper for the
command.

The Mapper Builder
The record bean is used in the mapper builder as an input bean. Multiple
business objects or classes can be specified as output beans.

To invoke the mapper builder select a record bean and Tools -> Mapper
Editor.

The mapper editor is presented. The input bean is primed with the properties
of the selected Record.

To complete the mapping follow these steps:

 ❑ Add business objects (classes) to the output bean. You can add more than
one class.

 ❑ In the Output Bean pane, select a business object property that you want
to map to a record bean property.

 ❑ In the Input Bean pane, select the record bean field or property that you
want to map to the business object property.

 ❑ Click on the Connection button that corresponds to the desired direction of
data flow between the selected properties. For the mapper of an input
record, the source is the output bean (business object) and the target is the
input bean (record). For the mapper of an output record, the source is the
input bean (record) and the target is the output bean (business object).

 ❑ Complete the previous three steps for any additional connections you
want to map.

 ❑ Click on Apply. You are prompted to supply project, package, and class
names.

 ❑ When all the mappings are established, click on OK to generate the
mapper bean.

Figure 72 shows the mapper editor for creating a mapping from the
CardRecord bean to objects of the customer and card classes. This
120 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

mapping was developed for the ATM application.

You can also use the mapper editor to edit existing mapper classes.

CICS Access with the CICS Connector 121

Figure 72. Mapper Editor

Including the Mapper in a Command
As mentioned in “Constructing a Command” on page 112, mapper beans can
be added to a command.

Assuming that you have launched the Command Editor:

 ❑ Mark the record bean to be associated with the mapper.

 ❑ Right-click and select Add Mapper.

 ❑ Specify the name of the mapper class.

 ❑ Click on OK.

Figure 73 shows the Command Editor once mappers have been added.
122 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 73. Command Editor with Mappers

Figure 74 shows the Visual Composition Editor view of a command with
mapper beans.

Figure 74. Visual Composition Editor View of Command with Mappers

Executing the Command
To use the command you create a class that invokes the command’s execute
method. Use the Visual Composition Editor.

The general principle is to have an event triggered within the application.
Connect this event in the Visual Composition Editor to the execute method of
CICS Access with the CICS Connector 123

the command bean. Then connect the executionSuccessful and
executionUnsuccessful events of the command bean to application actions.

A sample execution of a command from a client application is described in
Chapter 10, “ATM Application with the CICS Connector.”

4.8 A Review of Accessing Enterprise Data
In “Accessing Enterprise Data” on page 103, the classes and beans needed to
access enterprise data with CICS programs are discussed.

Essentially classes are needed to define the flow from a Java class to a CICS
program using a COMMAREA.

The COMMAREA is represented by a record bean. A record bean is
associated with both input and output. The connectivity to CICS and the
program that is to be called is specified in the CICSConnectionSpec and
InteractionSpec beans, respectively.

A command is used to collate input, output, and communication beans. A set
of commands can be strung together to form a navigator. In the navigator the
sequence of execution between commands is defined.

A record can be mapped to business objects through a mapper bean. The
mapper bean is added to a command. With a mapper bean, a record that
represents the COMMAREA is mapped to one or more business objects or
application classes. Data from the business objects (or application classes) is
moved to the COMMAREA record before command execution, and data from
the COMMAREA is moved to business objects after command execution.

In Chapter 10, “ATM Application with the CICS Connector” we show how the
CICS Connector is used to connect the ATM application to CICS programs
running on a CICS server.
124 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Part 2 Implementing
the ATM
Application

In Part 2 we introduce the ATM application (see Figure 75 on page 126) and
then implement it using the features of VisualAge for Java Enterprise
Version 2 described in Part 1:
© Copyright IBM Corp. 1998 125

 ❑ Data access beans
 ❑ Servlet Builder
 ❑ CICS Connector

We also show how to use MQSeries to connect the ATM application to a CICS
or other server.

We describe how to deploy VisualAge for Java applets, applications, and
servlets to various environments.

We conclude with a short description of the Java high-performance compiler
and remote debugger.

Figure 75 shows the user interfaces, business model, application controller,
and persistence servers we use in this book for the ATM application.

Card

TransactionBankAccount

SavingsAccount CheckingAccount

Customer

Servlet Implementation

Swing GUI HTML

Business
Model

Application
Controller

Data
Access CICS

Connector
MQSeries

Beans

User
Interface
Layer

Business Object Layer

Persistence Layer
Testing

Web Server

Web Browser
126 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 75. ATM Application Layers and Implementations

DB2

MQ Client
for JavaObjects

in Memory

Transaction
Gateway

CICS
Server

MQ Java
Server

MQ CICS
Bridge

Enterprise
Servers

5 ATM Application
Requirements and
ATM Database
In Part 1, we demonstrate the power of the new features of VisualAge for
Java Enterprise Version 2, such as data access beans, Servlet Builder, and
the CICS Connector, and construct sample applications to explain their
functionality.
© Copyright IBM Corp. 1998 127

In this chapter, we describe a more sophisticated application that combines
several features. We define the application requirements and the underlying
relational database.

In the chapters that follow, we implement the business logic together with
different user interfaces and data sources.

5.1 ATM Application Requirements
Basically, the application used in this book is similar to that described in the
redbook Application Development with VisualAge for Java Enterprise, IBM
form number SG24-5081.

When we wrote this book we had to decide which sample application we
would use. We concluded that the best way was to reimplement an existing
sample and improve it with the extended functionality of VisualAge for Java
Enterprise Version 2. This would give you the opportunity to draw on your
experience using the first book and become familiar with new approaches of
VisualAge for Java without spending too much time on unimportant things.

In fact, the business object model and the controller of the ATM application
are almost identical. What we did change are the user interface, database
access, and transaction invocation.

The ATM application handles two types of accounts, savings and checking.
For both accounts, customers can perform debit and credit transactions. In
addition, customers can list the transaction history belonging to an account.
Customers must maintain a minimum balance in a savings account and
cannot withdraw funds beyond a specified overdraft amount from a checking
account.

The ATM application simulates an ATM card reader installed at real ATM
machines. To start a bank transaction, the user is prompted to enter the ATM
card identification number (card ID).

On receiving a valid card ID, the ATM application greets the customer with
the customer’s name and title in the PIN panel. The card ID is re-displayed,
so that the customer can verify the card. The ATM application prompts the
customer for the personal identification number (PIN).

The ATM application verifies the PIN. If the PIN is invalid, a message is
128 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

displayed indicating that the number is invalid, and the customer can
reenter the PIN. On successful validation, a list of accounts that belong to the
card is displayed in the Account panel.

The ATM application requests the customer to select an account for further
processing. When the customer selects an account, the Transaction panel
showing the customer information (title, name) and the account information
(account ID, account type, old balance, new balance) is displayed. At the start
of a transaction, the new balance is the same as the old balance. The
customer can enter an amount and proceed with a debit or a credit
transaction. After every successful transaction, the new balance is displayed.

If the customer requests to see the account’s transaction history, the ATM
application displays the accumulated transactions in a drop-down list on the
same panel.

From all panels the customer can return to the previous panel.

Figure 76 shows the basic layout of the panels and the application flow.

Please enter card ID:

OK Cancel
(valid)

-

Ms Fname Lname,

OK Cancel
(valid)

Card ID : #######

please verify your card and enter your PIN#:

PIN# : -

Select an Account ID for Transaction:

OK

Cancel

###-####
###-####

###-####
###-####

Account ID

Old Balance

Ms Fname Lname, please perform your transaction

New Balance

: ###-####
: Saving Account Account Type

: $$$$$.$$

: $$$$$.$$

Card
Panel

PIN
Panel

Select
Account

Transaction
Panel

Panel
ATM Application Requirements and ATM Database 129

Figure 76. ATM Application Panels and Flow

Deposit

Cancel

Transaction History

Amount:

Withdrawal

####
####
####

-

5.2 ATM Database Implementation
For compatibility purposes, we use the existing database design described in
the redbook Application Development with VisualAge for Java Enterprise,
IBM form number SG24-5081.

The following description is a summary from that book. We only review the
relationships among the tables (Figure 77) and the physical database design.

Figure 77. Relationships among the ATM Tables

Tables 10 through 13 show the physical design of the ATM tables.

Table 10. Customer Table

CUSTID TITLE FNAME LNAME
(PK)

Customer

CARDID PIN CUSTID
(PK)

Card

(PK) (FK) (FK)
AccountACCID CARDID CUSTID ACCTYPE BALANCE MINAMT OVERDRAF

TRANSID ACCID TRANSTYPE TRANSAMT

(PK) (FK)
Transaction
130 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Column Name Type Length Key Nulls Description

CUSTID CHAR 4 Yes No Customer ID

TITLE CHAR 3 No No Title

FNAME CHAR 30 No No First name

LNAME CHAR 30 No No Last name

Table 11. Card Table

Table 12. Account Table

Table 13. Transaction Table

Column Name Type Length Key Nulls Description

CARDID CHAR 7 Yes No Card ID

PIN CHAR 4 No No PIN

CUSTID CHAR 4 No No Customer ID

Column Name Type Length Key Nulls Description

ACCID CHAR 8 Yes No Account ID

CARDID CHAR 7 No No Card ID

CUSTID CHAR 4 No No Customer ID

ACCTYPE CHAR 1 No No Account type
(S = Savings
C = Checking)

BALANCE DEC (8, 2) No No Balance

MINAMT DEC (8, 2) No No Minimum amount

OVERDRAF DEC (8, 2) No No Overdraft amount

Column Name Type Length Key Nulls Description

TRANSID TIME-
STAMP

26 Yes No Transaction ID

ACCID CHAR 4 No No Account ID

TRANSTYPE CHAR 1 No No Transaction type
(D = Debit
C = Credit
T = Transfer)
ATM Application Requirements and ATM Database 131

After determining the physical database design, we use command line
processor commands and SQL statements to create the database and the
objects within it.

Enter the code of Figure 78 in a new text document, save it as AtmDB.ddl,
and run the DB2 command line processor:

db2 -f AtmDB.ddl

TRANSAMT DEC (8, 2) No No Transaction amount

echo --- create the ATM database ---
CREATE DATABASE ATM

echo --- connect to ATM database ---
CONNECT TO ATM

echo --- creating tables ---
CREATE TABLE ATM.CUSTOMER (\
 custid CHAR(4) NOT NULL PRIMARY KEY, \
 title CHAR(3) NOT NULL, \
 fname CHAR(30) NOT NULL, \
 lname CHAR(30) NOT NULL \
)
CREATE TABLE ATM.CARD (\
 cardid CHAR(7) NOT NULL PRIMARY KEY, \
 pin CHAR(4) NOT NULL, \
 custid CHAR(4) NOT NULL, \
 FOREIGN KEY (custid) REFERENCES ATM.CUSTOMER ON DELETE RESTRICT \
)
CREATE TABLE ATM.ACCOUNT (\
 accid CHAR(8) NOT NULL PRIMARY KEY, \
 cardid CHAR(7) NOT NULL, \
 custid CHAR(4) NOT NULL, \
 acctype CHAR(1) NOT NULL, \
 balance DEC(8,2), \
 minamt DEC(8,2), \
 overdraf DEC(8,2), \
 FOREIGN KEY (custid) REFERENCES ATM.CUSTOMER ON DELETE RESTRICT, \
 FOREIGN KEY (cardid) REFERENCES ATM.CARD ON DELETE RESTRICT \
)
CREATE TABLE ATM.TRANS (\
 transid TIMESTAMP NOT NULL PRIMARY KEY, \
 accid CHAR(8) NOT NULL, \
 transtype CHAR(1) NOT NULL, \
 transamt DEC(8,2) NOT NULL, \
 FOREIGN KEY (accid) REFERENCES ATM.ACCOUNT ON DELETE RESTRICT \
)

echo --- execute GRANT statements ---
GRANT BINDADD ON DATABASE TO PUBLIC
GRANT CONNECT ON DATABASE TO PUBLIC
GRANT ALL ON ATM.CUSTOMER TO PUBLIC
GRANT ALL ON ATM.CARD TO PUBLIC
132 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 78. ATM Database Data Definition Language

GRANT ALL ON ATM.ACCOUNT TO PUBLIC
GRANT ALL ON ATM.TRANS TO PUBLIC

echo --- connect reset ---
CONNECT RESET

Sample Data of ATM Tables
The sample data of the ATM tables shows the internal relationships among
the tables:

 ❑ We have six customers, with numbers 101 to 106.

 ❑ There are seven ATM cards with numbers 1111111 to 7777777, and
matching PINs 1111 to 7777.

 ❑ Account numbers are structured xxx-yyyy, where xxx is the customer
number.

Tables 14 through 17 list an extract of the sample data of the ATM tables.

Table 14. Customer Table Sample Data

Table 15. Card Table Sample Data

CUSTID TITLE FNAME LNAME

101 Ms. Avril Kotzen

102 Mr. Olaf Graf

103 Mr. Osamu Takagiwa

104 Mr. Frederik Haesbrouck

105 Ms. Unkown Lady

106 Mr. Ueli Wahli

CARDID PIN CUSTID

1111111 1111 101

2222222 2222 102

.......
ATM Application Requirements and ATM Database 133

5555555 5555 105

6666666 6666 106

7777777 7777 106

Table 16. Account Table Sample Data

Table 17. Transaction Table Sample Data

Figure 79 shows the SQL statements to load the sample data into the tables.
Run this file with:

db2 -f AtmDB.sql

ACCID CARD-
ID

CUST-
ID

ACC-
TYPE

BALANCE MIN-
AMT

OVERDRAF

101-1001 1111111 101 C 80.00 0.00 100.00

101-1002 1111111 101 C 195.22 0.00 400.00

101-1003 1111111 101 S 9375.26 100.00 0.00

102-2001 2222222 102 S 19375.26 9999.99 0.00

....

106-6666 6666666 106 C 6.66 0.00 0.00

106-7777 7777777 106 S 111.11 11.11 0.00

TRANSID ACCID TRANSTYPE TRANSAMT

1997-10-07-14.30.26.720001 101-1001 C 80.00

CURRENT TIMESTAMP 101-1002 C 200.00

...

CURRENT TIMESTAMP 106-7777 D 111.11
134 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

echo --- connect to ATM database ---
CONNECT TO ATM

echo --- insert into CUSTOMER table ---
INSERT INTO ATM.CUSTOMER \
 (custid, title, fname, lname) VALUES \
 (’101’, ’Ms.’, ’Avril’, ’Kotzen’), \
 (’102’, ’Mr.’, ’Olaf’, ’Graf’), \
 (’103’, ’Mr.’, ’Osamu’, ’Takagiwa’), \
 (’104’, ’Mr.’, ’Frederik’, ’Haesbrouck’), \
 (’105’, ’Ms.’, ’Unkown’, ’Lady’), \
 (’106’, ’Mr.’, ’Ueli’, ’Wahli’)

echo --- insert into CARD table ---
INSERT INTO ATM.CARD \
 (cardid, pin, custid) VALUES \
 (’1111111’, ’1111’, ’101’), \
 (’2222222’, ’2222’, ’102’), \
 (’3333333’, ’3333’, ’103’), \
 (’4444444’, ’4444’, ’104’), \
 (’5555555’, ’5555’, ’105’), \
 (’6666666’, ’6666’, ’106’), \
 (’7777777’, ’7777’, ’106’)

echo --- insert into ACCOUNT table ---
INSERT INTO ATM.ACCOUNT \
 (accid, cardid, custid, acctype, balance, minamt, overdraf) VALUES \
 (’101-1001’, ’1111111’, ’101’, ’C’, 80.00, 0.00, 100.00), \
 (’101-1002’, ’1111111’, ’101’, ’C’, 195.22, 0.00, 400.00), \
 (’101-1003’, ’1111111’, ’101’, ’S’, 9375.26, 100.00, 0.00), \
 (’102-2001’, ’2222222’, ’102’, ’S’, 19375.26, 9999.99, 0.00), \
 (’102-2002’, ’2222222’, ’102’, ’C’, 75.50, 0.00, 3000.00), \
 (’103-3001’, ’3333333’, ’103’, ’S’, 100.00, 100.00, 0.00), \
 (’104-4001’, ’4444444’, ’104’, ’C’, 362.00, 0.00, 100.00), \
 (’105-5001’, ’5555555’, ’105’, ’C’, 0.00, 0.00, 0.00), \
 (’106-6001’, ’6666666’, ’106’, ’C’, 1000.00, 0.00, 100.00), \
 (’106-6002’, ’6666666’, ’106’, ’S’, 2000.00, 200.00, 0.00), \
 (’106-6003’, ’6666666’, ’106’, ’S’, 3000.00, 300.00, 0.00), \
 (’106-6004’, ’6666666’, ’106’, ’C’, 4000.00, 0.00, 250.00), \
 (’106-6666’, ’6666666’, ’106’, ’C’, 6.66, 0.00, 0.00), \
 (’106-7777’, ’7777777’, ’106’, ’S’, 111.11, 11.11, 0.00)

echo --- insert into TRANS table ---
ATM Application Requirements and ATM Database 135

Figure 79. ATM Database Sample Data Load

INSERT INTO ATM.TRANS \
 (transid, accid, transtype, transamt) VALUES \
 (CURRENT TIMESTAMP, ’101-1001’, ’C’, 80.00)
INSERT INTO ATM.TRANS \
 (transid, accid, transtype, transamt) VALUES \
 (CURRENT TIMESTAMP, ’101-1002’, ’C’, 200.00)
INSERT INTO ATM.TRANS \
 (transid, accid, transtype, transamt) VALUES \
 (CURRENT TIMESTAMP, ’101-1003’, ’C’, 10000.00)
...............
echo --- connect reset ---
CONNECT RESET

136 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

6 ATM Application
Business Model
In this chapter we design an implementation of the ATM application, using a
layered approach with a user interface, business logic, and persistence layer.

We also implement a controller that interacts with the different layers to
minimize direct interactions between the layers.
© Copyright IBM Corp. 1998 137

6.1 Application Design
The first step in developing an application is to create an application design
based on the requirements the application should satisfy. The power of this
design determines how much effort you must spend on implementing it, as
well as how difficult it is to modify some features when the requirements
change.

Application Layers
One prerequisite for maintainable applications is a layered architecture that
assigns responsibility for certain services to an appropriate application layer.
These responsibilities are similar to an object model, where we assign
responsibilities to each object.

First, all business logic and application knowledge should be modeled in
business objects, located in the business object layer. These objects represent
core entities of the ATM application and have the responsibility for its correct
behavior. To satisfy the needs of the underlying entities, the business objects
implement both properties and methods in a standardized way.

Next, we define a user interface layer to separate the GUI part of the
application from the core business objects. The GUI objects are responsible
for handling all user interactions and for presenting business objects in a
nice format to users. Whenever information from the business objects is
required, or an action is triggered by a user, the respective service from the
business objects is called.

We also want to separate the data access from the rest of the application. The
ATM application has to remember the customer, the card, the account, and
the transaction information. Neither the GUI nor the business objects should
be aware of the details about where the data is stored. This separation makes
it possible to have the core of the application unchanged, even if we change
138 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

database access, or use other services such as a transaction system to access
the enterprise data.

Application Layer Architecture
We end up with three layers for the ATM application as shown in Figure 80.

Figure 80. Layers of the ATM Application

Figure 80 also shows a cross-layer called the Application Controller. The
application controller is necessary to connect the layers. Basically there are
three ways of connecting the layers. The important principle is that there be
a crisp interface among the layers.

Here are the three basic ways of connecting the layers:

 ❑ Each object has all the knowledge required to access other objects across
the borders. This approach looks very appealing at first but can become
quite cumbersome because changes at one point might affect multiple
classes. Therefore, this approach is only feasible for small applications.

 ❑ A framework provides the necessary interfaces and underlying services.
The application objects just connect to the framework, by either
inheritance or delegation. This is a great approach if such a framework is
available. However, the creation of a framework is difficult and requires
another approach and different skills from those required for an

User Interface Layer

Business Object Layer

Persistence Layer

Applet, Servlet, HTML ...

Account, Transaction, Customer, Card

Database, CICS, MQSeries, ... A
pp

li
ca

ti
on

C
on

tr
ol

le
r

ATM Application Business Model 139

application development project.

 ❑ The interfaces are modeled in objects that have some knowledge of both
sides. Such objects are often called mediators. This approach has the
advantage that we have only one place to update, if the interface of a layer
or subsystem changes. The downside, of course, is a somewhat longer path
for the messages.

We decided to use mediator objects in the ATM application; these objects are
part of the Controller. We explain their responsibilities when we describe the
objects in more detail.

The most encapsulated layer is the business object layer. Business objects are
not aware of the existence of both the user interface layer and the persistence
layer. The user interface layer classes use the business objects but have no
connection to the persistence layer. The persistence layer knows about the
business objects, but not about the user interface layer.

6.2 Business Object Layer
Let’s review “ATM Application Requirements” on page 128 to isolate the
classes we need (see also Figure 81 on page 141).

We deal with two type of accounts, savings and checking. The main business
logic functions are customer identification and account transactions. In that
respect, our implementation requires the following classes:

 ❑ SavingsAccount and CheckingAccount. Because the main functionality is
identical, we introduce a third, abstract class, BankAccount, from which
the real account classes inherit most of their behavior.

 ❑ Card and Customer. This allows customer identification.

 ❑ Transaction. Every bank transaction should be logged.

The following types of transactions have been identified: PIN validation,
debit transaction, and credit transaction. In addition, customer information,
card information, and transaction history have to be maintained.

In our implementation, Card is the class that knows the card number entered
by the user and the PIN related to that card number. Starting from this
information, it must perform the PIN validation when the user enters the
PIN. After validation, the Card sends a successful or unsuccessful message.

Card also holds a property of type Customer. We need the information stored
in a Customer object to welcome the card holder with title and name.
140 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

BankAccount, SavingsAccount, and CheckingAccount are closely related to
each other. In fact, the BankAccount class represents the generic bank
account, with all of the features of a bank account, such as account ID,
balance, and customer ID. SavingsAccount and CheckingAccount inherit
from BankAccount, but each of them has additional information and
behavior. The SavingsAccount class contains the information related to the
minimum amount that it can reach; the CheckingAccount, instead, contains
its overdraft value. In other words, the instances of the SavingsAccount and
CheckingAccount classes represent the real accounts of the customer.

When a customer uses the ATM application to perform a withdrawal
transaction, different answers can come from the system, depending on the
kind of account. The SavingsAccount class performs the withdrawal
transaction only if the balance, after the transaction, is still greater than the
minimum amount; the CheckingAccount class checks that a resulting
negative balance is higher than the overdraft amount.

When a customer requires a deposit transaction, both the SavingsAccount
and CheckingAccount classes have the same behavior, that is, they increase
the balance by the deposit amount.

In addition, the account classes implement a property of type Transaction to
log all successful transactions made by the customer in a transaction history
log in the underlying database.

Figure 81 shows the complete object model of the business object layer.

 Customer

title
firstName
lastName

BankAccount

accountId

deposit
withdraw

Transaction

transId
transType

transAmount

balance

Card

card number
pinCard

checkPin

oldBalance

getAccountTypecustomerId

getGreetings

isValidForholds

accountOf

has

subjectOf
0,11,m1

1

1,m

0,1

1,m

1

owner

belongsTo

hasCard

Methods
Properties
ATM Application Business Model 141

Figure 81. Object Model of the ATM Business Object Layer

SavingsAccount CheckingAccount

withdrawAllowedwithdrawAllowed

minAmount overdraft

Business Logic Classes
Now let us see how to implement the business logic classes. We create all
classes as nonvisual beans in the itso.entbk2.atm.model package.
Therefore the features (properties, methods, and events) are defined on the
BeanInfo page of the class. Create the properties as read and write with get
and set methods and define that they are bound, that is, they fire the
PropertyChange event whenever the value changes.

Customer Class
The Customer class holds information about a customer, that is, a customer
ID, a title, a first name, and a last name.

We implement the Customer class as nonvisual bean.6 Create a new class,
Customer, and switch to the BeanInfo page of the Class Details View window.
Add the following features, using New Property Feature... in the Features
menu:

 ❑ customerId, type java.lang.String

 ❑ title, type java.lang.String

 ❑ firstName, type java.lang.String

 ❑ lastName, type java.lang.String

 ❑ accounts, type java.util.Vector

The customer has bank accounts, but he or she also holds a card that is
associated with the same accounts. To avoid storing the same information
twice, the accounts property of the Customer class is never used. Instead, the
ATM application uses the Card class to hold the account information.

Reviewing the created code you can see that the internal attribute name for a
property has the prefix field, followed by the property name with the first
letter in uppercase. For example, the customerId property is represented by
the fieldCustomerId attribute, and the get and set methods are called
142 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

getCustomerId and setCustomerId.

Next, you implement two methods, a constructor, and a method to return the
greeting text:

6 An alternative way would be to implement the Customer class as an inner class of the Card class. In fact, we do
not require direct access to Customer because all functionality is encapsulated in the Card bean.

 ❑ A user-defined constructor to create a new Customer object:

public Customer(String customerId, String title, String firstName,
String lastName) {

setCustomerId(customerId);
setTitle(title);
setFirstName(firstName);
setLastName(lastName);

}

 ❑ A getGreetings method feature (BeanInfo page) that returns a formatted
string with title, first name, and last name:

public String getGreetings() {
return getTitle().trim() + " " + getFirstName().trim() + " " +

getLastName().trim();
}

Card Class
The Card class can validate a PIN and knows the holder (customer) and the
accounts associated with the card.

Add the following properties on the BeanInfo page:

 ❑ accounts, type java.util.Vector

 ❑ cardNumber, type java.lang.String

 ❑ pinCard, type java.lang.String

 ❑ customer, type itso.entbk2.atm.model.Customer

The accounts property is a vector to store objects of class BankAccount,
cardNumber is used to specify one unique card, pinCard stores the PIN to
verify this card, and customer points to the customer information.

The Card class has to send messages to other objects about the result of the
PIN validation. We implement this behavior as two events, pinCheckedOk,
thrown when the correct PIN is entered, and pinCheckedNotOk, thrown
ATM Application Business Model 143

when a bad PIN is entered.

Select New Listener Interface in the Features pull-down menu of the BeanInfo
page, and the New Event Listener SmartGuide opens:

 ❑ On the first page of the dialog, enter the name of the event, pinCheckedOk
(or pinCheckedNotOk), and click on Next (Figure 82).

Figure 82. Defining an Event with an Event Listener (First Page)

 ❑ On the second page, enter the name of the method that the listener class
has to implement, handlePinCheckedOk (or handlePinCheckedNotOk),
and click on Add, then on Finish (Figure 83).
144 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 83. Defining an Event with an Event Listener (Second Page)

The system automatically generates the event and interface classes and the
supporting methods.

 ❑ PinCheckedOkEvent class
 ❑ PinCheckedOkListener interface
 ❑ fireHandlePinCheckedOk method
 ❑ addPinCheckedOkListener method
 ❑ removePinCheckedOkListener method

 ❑ PinCheckedNotOkEvent class
 ❑ PinCheckedNotOkListener interface
 ❑ fireHandlePinCheckedNotOk method
 ❑ addPinCheckedNotOkListener method
 ❑ removePinCheckedNotOkListener method

To implement the logic to fire the events, add a new method feature to the
Card class and call it checkPin. The checkPin method compares the
pinEntered parameter with the pinCard property and notifies the caller by
firing the pinCheckedOkEvent or the pinCheckedNotOkEvent:

public void checkPin(String pinEntered) {
if (getPinCard().trim().equals(pinEntered.trim()))

fireHandlePinCheckedOk(new PinCheckedOkEvent(this));
else

fireHandlePinCheckedNotOk(new PinCheckedNotOkEvent(this));
}

Additionally, implement the following methods:

 ❑ A user-defined constructor to create a new Card object:

public Card (String cardNumber, String pinCard, Customer customer) {
setCardNumber(cardNumber);
setPinCard(pinCard);
setCustomer(customer);
clearAccounts(); // <=== will be defined below

}

 ❑ A method feature to add an account to the accounts vector. To avoid errors
you must also define the BankAccount class. Leave the BankAccount class
empty for now; you will complete it shortly.

public void addAccount (BankAccount account) {
getAccounts().addElement(account);

}

 ❑ A method feature that returns the account with a given accountId. (Note
that getAccountId() will be defined later for the BankAccount class.)
ATM Application Business Model 145

public BankAccount getAccount(String accountId) {
BankAccount bankaccount = null;
for (int i = 0; i < getAccounts().size(); i++) {

if (((BankAccount)
getAccounts().elementAt(i)).getAccountId().equals(accountId)) {

bankaccount = (BankAccount)getAccounts().elementAt(i);
break;

}
}
return bankaccount;

}

 ❑ A method feature to clear the accounts vector:

public void clearAccounts () {
setAccounts(new java.util.Vector());

}

 ❑ A method feature that calls the customer’s getGreetings method:

public String getGreetings() {
return getCustomer().getGreetings();

}

Transaction Class
In the ATM application the transaction objects are no more than a container
of transaction data. Once they are created they are just there for logging.

Add the following properties on the BeanInfo page:

 ❑ accountId, type java.lang.String

 ❑ transAmount, type java.math.BigDecimal

 ❑ transId, type java.sql.Timestamp

 ❑ transType, type java.lang.String

The accountID identifies the account and transAmount the amount of the
transaction. The transId sets a unique time stamp used as a primary key in
the database table. The transType property indicates whether the
transaction is a debit or credit transaction.

You have to implement two user-defined constructors to create new
Transaction objects:

public Transaction (String accountid, String transtype,
java.math.BigDecimal amount) {

setAccountId(accountid);
setTransType(transtype);
setTransAmount(amount);
146 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

setTransId(new java.sql.Timestamp(System.currentTimeMillis()));
}

public Transaction (String accountid, String transtype,
java.math.BigDecimal amount,java.sql.Timestamp transId){

setAccountId(accountid);
setTransType(transtype);
setTransAmount(amount);
setTransId(transId);

}

BankAccount Class
We implement the BankAccount class as an abstract class. In fact, we want
to reuse the attributes and methods of the BankAccount class in the
SavingsAccount and CheckingAccount classes. In the ATM application we
create only instances of SavingsAccount or CheckingAccount, that is, the real
accounts that belong to a customer.

Add the following properties on the BeanInfo page:

 ❑ accountId, type java.lang.String

 ❑ balance, type java.math.BigDecimal

 ❑ oldBalance, type java.math.BigDecimal

 ❑ tempBalance, type java.math.BigDecimal

 ❑ transactions, type java.util.Vector

The accountId identifies the bank account, the balance and oldBalance store
information about the account balance, and the transactions property stores
a vector of objects of type Transaction. The property tempBalance is used to
simulate a commit or rollback behavior.

Additionally, we add a number of methods:

 ❑ A user-defined constructor to initialize the attributes of a bank account:

public BankAccount(String accId, java.math.BigDecimal balance) {
setAccountId(accId);
setBalance(balance);
setOldBalance(new java.math.BigDecimal(0));
clearTransactions(); //<=== to be defined below

}

 ❑ Three method features related to the transactions vector—add a
transaction, clear the vector, and get the last transaction:

public void addTransaction(Transaction transaction) {
getTransactions().addElement(transaction);
ATM Application Business Model 147

}

public void clearTransactions() {
setTransactions(new java.util.Vector());

}

public Transaction getLastTransaction() {
return (Transaction) getTransactions().lastElement();

}

 ❑ The account type should be displayed as a word, Checking Account or
Savings Account, not just as code C or S. For this purpose you have to
define an abstract method that you will implement later in the
SavingsAccount and CheckingAccount subclasses:

public abstract String getAccountType();

Create a new public abstract method on the Methods page of the Class
Details View window and add this method on the BeanInfo page, using
Features -> Add Available Features.

 ❑ To simulate a commit or rollback behavior you implement two method
features:

public void commit() { }

public void rollback() {
setOldBalance(getTempBalance());
setBalance(getOldBalance());
getTransactions().removeElementAt(getTransactions().size()-1);

}

In fact, this is only a simulation to keep the code as simple as possible.

 ❑ The deposit transaction is independent on the account type, so you can
implement the deposit method feature in the BankAccount class and use
the same implementation for SavingsAccount and CheckingAccount. This
methods stores the current balance in the oldBalance property and then
adds the amount entered by the user:

public void deposit (String amount) {
java.math.BigDecimal amt = new java.math.BigDecimal(amount);
setTempBalance(getOldBalance());
setOldBalance(getBalance());
setBalance(getBalance().add(amt));
getTransactions().addElement(new Transaction(getAccountId(),"C",amt));

}

 ❑ The withdrawal transaction is dependent on the account type, because it
has to check whether the account balance can be updated on the basis of
148 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

the balance and overdraft properties. Therefore, you implement two
methods:

 • One abstract method that checks whether updating is allowed. This
method is implemented in the SavingsAccount and CheckingAccount
subclasses:

public abstract boolean withdrawAllowed(java.math.BigDecimal amount);

 • One method to perform the withdrawal transaction (the method is not
transaction dependent):

public boolean withdraw (String amount) {
java.math.BigDecimal amt = new java.math.BigDecimal(amount);
if (withdrawAllowed(amt)) {

setTempBalance(getOldBalance());
setOldBalance(getBalance());
setBalance(getBalance().subtract(amt));
getTransactions().

addElement(new Transaction(getAccountId(), "D", amt));
return true;

}
return false;

}

BankAccount fires an event to inform the caller when there are not enough
funds to allow the withdrawal transaction. The SavingsAccount and
CheckingAccount classes use these methods in their own withdrawAllowed
methods. If a withdrawal is not allowed, the ATM application can fire an
event.

We implement this behavior in the same way we implemented it for the Card
class. Select New Listener Interface in the Features pull-down menu of the
BeanInfo page to open the New Event Listener SmartGuide:

 ❑ On the first page of the dialog, enter the name of the event,
limitExceeded.

 ❑ On the second page, enter the name of the method that the listener class
has to implement, handleLimitExeeded.

The system automatically generates the event and interface classes and the
supporting methods:

 ❑ LimitExeededEvent class
 ❑ LimitExeededListener interface
 ❑ fireHandleLimitExeeded method
 ❑ addLimitExeededListener method
 ❑ removeLimitExeededListener method
ATM Application Business Model 149

To pass an event message, modify the LimitExceededEvent class. Add a
public property errorMessage (of type String) to this class and a public
constructor:

public LimitExceededEvent (java.lang.Object source,
java.lang.String errorMessage) {

super(source);
setErrorMessage(errorMessage);

}

CheckingAccount Class
CheckingAccount is a subclass of BankAccount and therefore inherits all of
its properties. In addition it has an overdraft property, which is the
maximum amount by which the account is allowed to be overdrawn. If the
customer attempts to withdraw an amount that exceeds this limit, a
LimitExceededEvent gets fired to provide overdraft protection.

Create the CheckingAccount class as a subclass of BankAccount, then add
one additional property on the BeanInfo page:

 ❑ overdraft, type java.math.BigDecimal

Add a constructor and implement two methods:

 ❑ A user-defined constructor to create a new CheckingAccount:

public CheckingAccount (String accId, java.math.BigDecimal balance,
java.math.BigDecimal overdraft) {

super(accId, balance);
setOverdraft(overdraft);

}

 ❑ The inherited method, getAccountType:

public String getAccountType() {
return "Checking Account";

}

 ❑ The CheckingAccount class has to implement its own withdrawAllowed
method. This method checks whether the account balance can be updated
on the basis of the balance and overdraft properties. The method notifies
other objects of the result of the withdrawal transaction, using the
limitExceeded event defined in the BankAccount class. The method
returns true, if withdrawal of the amount is allowed.

public boolean withdrawAllowed(java.math.BigDecimal amount) {
if (getBalance().add(getOverdraft()).compareTo(amount) < 0) {

fireHandleLimitExceeded
(new LimitExceededEvent(this, "Sorry - your overdraft limit is "
150 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

+ getOverdraft().toString()));
return false;

}
return true;

}

SavingsAccount Class
SavingsAccount is a subclass of BankAccount. It has an additional
minAmount property, which is the minimum amount of the account’s
balance. If the customer attempts to withdraw an amount that would leave a
balance below the limit, a LimitExceededEvent gets fired.

Create the SavingsAccount class as a subclass of BankAccount and add this
property:

 ❑ minAmount, type java.math.BigDecimal

Add a constructor and implement two methods:

 ❑ In the constructor of the SavingAccount class, initialize the minAmount
property with the value from the ATM account table:

public SavingsAccount (String accId, java.math.BigDecimal balance,
java.math.BigDecimal minAmount) {

super(accId, balance);
setMinAmount(minAmount);

}

 ❑ The inherited method, getAccountType:

public String getAccountType() {
return "Savings Account";

}

 ❑ The SavingsAccount implements the withdrawAllowed method,
considering the minAmount property value, and fires a LimitExceeded
event defined in the BankAccount class if withdrawal is not allowed. The
method returns true if withdrawal of the amount is allowed.

public boolean withdrawAllowed(java.math.BigDecimal amount) {
if (getBalance().subtract(amount).compareTo(getMinAmount()) < 0) {

fireHandleLimitExceeded
(new LimitExceededEvent(this, "Sorry - your minimum balance is "
+getMinAmount().toString()));

return false;
ATM Application Business Model 151

}
return true;

}

Testing the Business Objects
After the beans (classes) for the business objects are created, they are ready
for testing. If you ensure now that every bean performs the task for which it
is responsible, and the beans interact properly, it is easier to locate
problems—if there are problems—as you add the other layers.

To test the business objects, use the Scrapbook window, the Console window,
and inspectors. You can support the testing task somewhat if you save test
scripts for the various test cases as either files or methods. This approach can
be helpful when you have to do regression testing.

Start by implementing a toString method in each bean; it displays some of
the attributes and is very handy for testing with the Scrapbook window:

 ❑ Customer:

return "Customer " + getCustomerId() + " " + getGreetings();

 ❑ Card:

return "Card " + getCardNumber() + " PIN " + getPinCard();

 ❑ Checking account:

return getAccountType() + " " + getAccountId() + " Balance " + getBalance()
+ " Overdraft " + getOverdraft();

 ❑ Savings account:

return getAccountType() + " " + getAccountId() + " Balance " + getBalance()
+ " MinAmount " + getMinAmount();

 ❑ Transaction:

return "Transaction " + getTransId() + " " + getTransType() + " "
+ getTransAmount();

Testing with the Scrapbook Window
To run a sample page of the Scrapbook window, add the code listed in Figure
152 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

84 to a Scrapbook page and select one of the business model classes in the
Page->Run in menu to allow short class names without the package prefix.

// set Page->Run in to Customer class in itso.entbk2.atm.model

java.util.Enumeration enum;
java.math.BigDecimal amt = new java.math.BigDecimal(100);

Customer cust1 = new Customer("102", "Mr.", "Olaf", "Graf");
System.out.println(cust1);

Card card1 = new Card("2222222", "2222", cust1);
System.out.println(card1);

SavingsAccount sav1 = new SavingsAccount("102-2001", amt, amt);
CheckingAccount check1 = new CheckingAccount("102-2002", amt, amt);
card1.addAccount(check1);
card1.addAccount(sav1);
enum = card1.getAccounts().elements();
while (enum.hasMoreElements())
 { System.out.println((BankAccount)enum.nextElement()); }

Transaction t1 = new Transaction("102-2002", "C", amt);
check1.addTransaction(t1);
System.out.println(t1);

check1.deposit("250");
check1.withdraw("100");
check1.withdraw("351"); // not allowed
check1.withdraw("350");

sav1.deposit("2000");
sav1.withdraw("1000");
sav1.withdraw("1001"); // not allowed
sav1.withdraw("1000");

System.out.println(check1);
enum = check1.getTransactions().elements();
while (enum.hasMoreElements())
 { System.out.println((Transaction)enum.nextElement()); }

System.out.println(sav1);
enum = sav1.getTransactions().elements();
while (enum.hasMoreElements())
 { System.out.println((Transaction)enum.nextElement()); }
ATM Application Business Model 153

Figure 84. Scrapbook Script for Testing the Business Model

6.3 Application Controller
The application controller, or controller for short, works as a manager
between the different application layers. Its task is to delegate the work and
to control what is happening inside the application. We can describe the flow
of information in the controller thus:

 ❑ Whenever an event occurs, for example, a user clicks on a button, the user
interface layer invokes a method in the controller, and this method
invokes another method in the persistence layer.

 ❑ The controller also checks the result of methods in the persistence layer
where necessary and takes appropriate action, that is, the controller fires
an event to notify the user interface layer.

As you can see, you have to:

 ❑ Guarantee that the persistence layer implements the methods invoked by
the controller. For this purpose, you define a Java Interface that describes
the communication between the controller and the persistence layer in a
well-defined way. Later, any class implementing this interface can be used
as the implementation for persistence services.

 ❑ Specify which methods of the controller can be invoked from the user
interface layer, and which events get fired from the controller to notify the
user interface layer.

Persistence Layer Interface
To guarantee that the persistence layer implements the correct methods, you
have to create a new interface, ATMPersistenceInterface, in the
itso.entbk2.atm.model package with the methods listed in Table 18. All
methods are public abstract and throw a java.lang.Exception to signal error
conditions. For clarity, we use the prefix ext for these methods.
154 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Table 18. ATM Persistence Interface Methods

Controller Interface
The user interface layer assumes that it can invoke the methods shown in
Table 19, and that it is notified by the events listed in Table 20. In other
words, our ATM application controller must provide an implementation of
these methods and events.

With such a controller, we have an ATM application fully written in Java. It
is also conceivable to replace the persistence layers of the application, for
example, using CICS, and keep only the user interface. For such an
implementation, you have to write another controller that encapsulates the
CICS access but presents the user interface layer with the same
programming interface as our controller.

Method Return
Type

Parameters Remarks

extConnect void - Connect to the data source

extDisconnect void - Disconnect from the data source

extGetCard Card String cardId Retrieve the data and construct
new Card object

extGetPin Card Card Retrieve the PIN

extGetAccounts void Card Retrieve all accounts of a card
and store it in card object

extUpdateBalance void BankAccount Update balance and log changes
in transaction history

extGetTransactions void BankAccount Retrieve all transactions and
store in account object
ATM Application Business Model 155

Table 19. ATM Application Controller Methods

Table 20. ATM Application Controller Events

Method Return Type Parameters Remarks

connect void - Connects to the data source

disconnect void - Disconnects from the data
source

getCard Card String cardId Construct new Card object,
fire cardFound or
cardNotFound event

checkPin void Card,
String pin

Check the PIN, fire
PinCheckedOk or
PinCheckedNotOk event

getAccounts Card Card Retrieve all accounts of a card
and store it in the card object

deposit BankAccount BankAccount,
String
amount

Deposit amount, update
balance, log changes in
transaction history, fire
newTransaction or
DBOutOfSynch event

withdraw BankAccount BankAccount,
String
amount

Withdraw amount if allowed,
update balance, log changes in
transaction history, fire
newTransaction or
DBOutOfSynch event

getTransactions BankAccount BankAccount Retrieve all transactions and
store in account object

Event Event Listener Method Remarks

cardFound handleCardFound Valid card number entered
156 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

cardNotFound handleCardNotFound Invalid card number entered

pinCheckedOk handlePinCheckedOk Valid PIN entered

pinCheckedNotOk handlePinCheckedNotOk Invalid PIN entered

newTransaction handleNewTransaction Deposit or withdraw succeeds

DBOutOfSynch handleDBOutOfSynch Deposit or withdraw fails

limitExceeded handleLimitExceeded Withdraw not allowed because
limit exceeded

Controller and Persistence Interfaces
Figure 85 shows the interaction between the controller methods and the
persistence interface, and the events that may occur.

ext

get
Accounts

check
Pin

get
Card

deposit

with
draw

get
Trans

actions

disconnect

ext

Connect
Dis

ext
GetCard

ext
GetPin

ext
Get
Accounts

ext

Balance
Update

ext

actions
GetTrans

connect

Controller

Persistence
Interface

connect
ATM Application Business Model 157

Figure 85. Controller and Persistence Interfaces

card
Found

card
NotFound

pin
Checked

new
Checked

Okaction
Trans

limit
Exceeded

DBOut
OfSynch

NotOk

pin

Events

Implementing the Controller
To start your work, create a new class, ATMApplicationController, as a
subclass of Object in the itso.entbk2.atm.model package.

On the BeanInfo page, add a nonbound property, ATMPersistenceLayer, of
type ATMPersistenceInterface. This enables the controller to use every class
that implements the interface. Simply replace the initialization of this
property in the constructor to plug in another implementation of the
persistence layer. In Chapter 7, “ATM Application Persistence Using Data
Access Beans” we implement persistence for a relational database and in
Chapter 10, “ATM Application with the CICS Connector” we use CICS
transactions.

Next, add all the events listed in Table 20. Select New Listener Interface in
the Features menu to create the events. On the first page of the New Event
Listener SmartGuide specify the event name and on the second page add the
event listener method (prefix the event name with handle, for example,
handleCardFound).

The pinCheckedOk, pinCheckedNotOk, and limitExceeded events are
originally fired by objects of the business layer (Card and BankAccount). The
ATMApplicationController has to listen to these events, that is, you have to
change the class definition:

public class ATMApplicationController implements
itso.entbk2.atm.model.PinCheckedOkListener,
itso.entbk2.atm.model.PinCheckedNotOkListener,
itso.entbk2.atm.model.LimitExceededListener { ...

Later, you also have to add code in the checkPin and withdraw method of the
ATMApplicationController to add and remove a PinCheckOkListener.

Every event that occurs in the business object must be propagated to the user
interface layer. When an event gets fired, it invokes a method to handle this
event. Use these methods to propagate the events:
158 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

public void handlePinCheckedOk
(itso.entbk2.atm.model.PinCheckedOkEvent event) {

fireHandlePinCheckedOk (new PinCheckedOkEvent(this));
}

public void handlePinCheckedNotOk
(itso.entbk2.atm.model.PinCheckedNotOkEvent event) {

fireHandlePinCheckedNotOk (new PinCheckedNotOkEvent(this));
}

public void handleLimitExceeded
(itso.entbk2.atm.model.LimitExceededEvent event) {

fireHandleLimitExceeded
(new LimitExceededEvent(this, event.getErrorMessage()));

}

Note that you have to create a new event in each method, because you have
to set the Controller as the source of the event.7

Now you can review the scenario of the ATM application and implement the
methods from Table 19 on page 156 step by step. Add all the methods on the
BeanInfo page as new method features.

 ❑ getCard

The customer enters the card number. If the number is valid, the system
prompts for the PIN; otherwise an error message appears. Therefore, you
ask the ATMPersistenceLayer to retrieve the card, and, depending on the
result, fire an event.

public synchronized Card getCard(String cardId) {
Card newCard = null;
try {

newCard = getATMPersistenceLayer().extGetCard(cardId);
fireHandleCardFound(new CardFoundEvent(this));

} catch (Exception e) {
fireHandleCardNotFound(new CardNotFoundEvent(this));
e.printStackTrace(System.out);

}
return newCard;

}

 ❑ checkPin

The customer enters the PIN. This PIN has to be validated by the system.
The PinCheckOk and PinCheckNotOk events are propagated.

public synchronized void checkPin(Card card, String pinEntered) {
card.addPinCheckedOkListener(this);
ATM Application Business Model 159

card.addPinCheckedNotOkListener(this);
try {

getATMPersistenceLayer().extGetPin(card);
card.checkPin(pinEntered);

} catch (Exception e) {
e.printStackTrace(System.out);

}
card.removePinCheckedOkListener(this);
card.removePinCheckedNotOkListener(this);

}
7 For the LimitExceeded event, review “BankAccount Class” on page 147 to learn how to modify the
LimitExceededEvent class to add the error message field.

 ❑ getAccounts

If the PIN is valid, the system shows a list of the accounts the card is
authorized to access. Later, the customer can select one account to see the
details.

public synchronized Card getAccounts(Card card) {
try {

getATMPersistenceLayer().extGetAccounts(card);
} catch (Exception e) {

e.printStackTrace(System.out);
}
return card;

}

 ❑ deposit

The customer performs a deposit transaction for the selected account. The
account is asked to update itself, and the ATMPersistenceLayer is asked
to update the data source. Depending on the result, an event gets fired.

public synchronized BankAccount deposit(BankAccount account, String amount,
Card dummy) {

try {
account.deposit(amount);
getATMPersistenceLayer().extUpdateBalance(account);
account.commit();
fireHandleNewTransaction(new NewTransactionEvent(this));

} catch (Exception e) {
account.rollback();
fireHandleDBOutOfSynch(new DBOutOfSynchEvent(this));
e.printStackTrace(System.out);

}
return account;

}

 ❑ withdraw

Withdraw is handled in a way similar to deposit. The system performs a
check. If the overdraft or minimum balance limit of the account would be
160 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

reached because of the withdrawal, the request is rejected; otherwise the
balance is updated and a new transaction is added to the account history.
If the withdrawal was not allowed (the account fires a limitExceeded
event and returns false), the controller propagates the event and returns
the account unchanged.

public synchronized BankAccount withdraw(BankAccount account, String amount,
Card dummy) {

account.addLimitExceededListener(this);
try {

if (account.withdraw(amount) == false)
return account;

getATMPersistenceLayer().extUpdateBalance(account);
account.commit();
fireHandleNewTransaction(new NewTransactionEvent(this));

} catch (Exception e) {
account.rollback();
fireHandleDBOutOfSynch(new DBOutOfSynchEvent(this));
e.printStackTrace(System.out);

}
account.removeLimitExceededListener(this);
return account;

}

 ❑ getTransactions

The customer might want to look at the transaction history.

public synchronized BankAccount getTransactions(BankAccount account,
Card card) {

try {
getATMPersistenceLayer().extGetTransactions(account);

} catch (Exception e) {
e.printStackTrace(System.out);

}
return account;

}

 ❑ connect and disconnect

All functions require a connection to the ATM database. The controller
implements connect and disconnect methods that pass the request to the
persistence layer.

public synchronized void connect () {
try {
ATM Application Business Model 161

getATMPersistenceLayer().extConnect();
} catch (Exception e) {

e.printStackTrace(System.out);
}

}

public synchronized void disconnect() {
try {

getATMPersistenceLayer().extDisconnect();
} catch (Exception e) {

e.printStackTrace(System.out);
}

}

The AtmApplicationController bean is ready. Note that all methods are
synchronized to work properly in a multithreaded environment and that
exceptions are caught and logged on the console standard output. Later, you
may change the controller to have an improved logging mechanism.

6.4 Persistence Layer
The persistence layer is implemented by using new features of VisualAge for
Java Enterprise Version 2. In subsequent chapters we concentrate on the
implementation of the user interface and the persistence layer, now that the
business model and the controller are ready.

Persistence Layer for Testing
For testing you can create a simple memory implementation of the
persistence layer. Create a new class named ATMPersistenceDefault that
implements the ATMPersistenceInterface.

Let VisualAge for Java generate all required methods:

public class ATMPersistenceDefault implements ATMPersistenceInterface {...}

The only method you must implement is extGetCard, where you create a few
objects in memory (the method accepts any card ID that is 7 characters long):

public Card extGetCard(String cardId) throws Exception {
if (cardId.length() != 7)
162 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

 throw new java.lang.Exception("Card "+cardId+" not found");
java.math.BigDecimal amt1 = new java.math.BigDecimal(1000);
java.math.BigDecimal amt2 = new java.math.BigDecimal(100);
String id = cardId.substring(0,3);
Customer cust = new Customer(id,"Dr.","VA","Java");
CheckingAccount acct1 = new CheckingAccount(id+"-6001", amt1, amt2);
SavingsAccount acct2 = new SavingsAccount(id+"-6002", amt1, amt2);
Card card = new Card(cardId, cardId.substring(0,4), cust);
card.addAccount(acct1);
card.addAccount(acct2);
return card;

}

7 ATM Application
Persistence Using
Data Access Beans
In Chapter 6, “ATM Application Business Model” we explain how the
business objects and the application controller work. Now we can move on
and create beans to make our data persistent.

One way of handling database access in VisualAge for Java is through data
© Copyright IBM Corp. 1998 163

access beans. You should choose this solution if you need access to an existing
database. You can reuse the database design and only implement SQL
queries to map relational data into Java objects.

7.1 Persistence Layer Design
Before we start, some preliminary remarks. We use the full power of the
Select bean and the SQL Assist SmartGuide to create sophisticated SQL
statements. This moves most of the work to the database management
system and keeps our persistence layer simple.

From the database perspective, this approach has additional advantages.
Only data required by the application is retrieved from the database. Low
network traffic relieves the network connection and benefits all network
users. We also allow the underlying database management system to
optimize access, which speeds up the return of requested data.

We spend no time tuning the database server by creating views, stored
procedures, and so forth. Tuning and optimization are very database-specific
tasks and contradict our goal of developing highly portable applications.

Our implementation of the persistence layer is based on several beans (see
Table 21):

 ❑ One nonvisual bean, AtmDB, implementing the ATMPersistenceInterface
of the itso.entbk2.atm.model package.

To provide an implementation of data persistence with data access beans,
we assign an instance of AtmDB to the ATMPersistenceLayer property of
the ATMApplicationController (see “Implementing the Controller” on
page 158).

 ❑ Four visual beans, PinCustInfo, Accounts, UpdateBalance, and
Transactions, to implement the database transactions needed to satisfy
the controller requirements, that is, the methods described by the
ATMPersistenceInterface (Table 18 on page 155).

We provide no implementation for the extGetPin, extConnect, and
extDisconnect methods. The extGetPin functionality is covered by
extGetCard, and database connect and disconnect are handled
164 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

automatically by the data access beans.

 ❑ One database access class, AtmDatabase, to handle JDBC access to the
database. This class is automatically generated when we design the Select
beans.

Table 21. ATM Database Beans

7.2 Database Access with ATM Database Beans
In this section we describe how to use Select beans as part of the ATM
database beans to specify the database access. In “Business Object Creation
with ATM Database Beans” on page 178 we describe how to complete the
development. You will visually define the steps necessary to return requested
business objects from database data or update database contents based on
information in the business objects.

ATM Database
Bean

Related Persistence
Interface Methods

Remarks

AtmDB all Implements the persistence
interface, delegates to other beans

--- extConnect()
extDisconnect()

Automatically handled by the Select
beans

PinCustInfo extGetCard() Retrieve customer data and PIN to
validate the card

--- extGetPin() Not provided, handled by
extGetCard()

Accounts extGetAccounts() Return list of accounts for one
specified card

UpdateBalance extUpdateBalance() Update balance for an account and
add new transaction to history log

Transactions extGetTransactions() Retrieve transaction history log

AtmDatabase - JDBC connection and SQL
statements
ATM Application Persistence Using Data Access Beans 165

All work is done in the itso.entbk2.atm.databean package.

PIN Validation
When a user starts a business transaction, he or she is asked for the number
of the ATM card. On the basis of the card identification number (card Id), the
application retrieves data to create two business objects, a Customer and a
Card. The Customer object (title, first name, last name) holds information to
welcome the customer, and the data in the Card object (PIN) is needed to
validate the card.

In fact, we have to define two business transactions. The first transaction
retrieves the Customer data for the card Id entered by the user. Then the
customer is asked to enter the PIN. The second transaction retrieves the card
information (PIN) from the database to compare both PINs.

What can go wrong? The customer may enter the wrong PIN. In this case, the
customer has the opportunity to reenter the PIN, and the application must
connect to the database and retrieve the same data again.

We can simplify the process by handling both business transactions as one
database transaction and storing the PIN retrieved from the database in the
card object. Moreover, this gives us the opportunity to demonstrate a join
between tables with data access beans.

To retrieve both the card and the customer data in one database transaction,
we join the two tables CARD and CUSTOMER (Figure 86).

Figure 86. Select Statement for Customer Information and PIN Validation

In this SQL statement :CARDID represents a host variable, that is, the card
ID parameter entered by the user.

The name of the ATM database bean responsible for retrieving the customer
and card data is PinCustInfo (in the itso.entbk2.atm.databean package).
Create such a class in the Workbench and open the Visual Composition
Editor for it. Drop a Select bean from the Database category of the Beans
Palette on the free-form surface, name it PinCustSelect, and open the
property editor for the query property. First select Properties in the pop-up
menu or double-click on the Select bean to open the Properties window, then

select ATM.CARD.PIN, ATM.CUSTOMER.TITLE, ATM.CUSTOMER.FNAME,
ATM.CUSTOMER.LNAME, ATM.CUSTOMER.CUSTID

from ATM.CARD, ATM.CUSTOMER
where ((ATM.CUSTOMER.CUSTID = ATM.CARD.CUSTID)
and (ATM.CARD.CARDID = :CARDID))
166 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

select the query property in the Properties window and click on the button on
the right side of the selected field.

Connection Alias Definition
On the Connection page of the Query property editor you specify the
information needed to access the database through JDBC.

We decided to have only one database access class, AtmDatabase, and one
connection alias for the ATM application, to facilitate maintaining the code.

To define a new connection alias, create a new database access class,
AtmDatabase, in the itso.entbk2.atm.databeans package. Click on the New...
button and fill in the required fields (Figure 87).

Tip Remember that all Select beans identifying the same
connection alias also share the database connection
associated with that connection alias, provided that
instances of these beans exist in parallel.

Sometimes it is advantageous to have only one database
connection per application. If you have many users,
however, they may block each other, and each connect,
disconnect, commit, and rollback forced for one user
affects every user. To avoid such situations, define a pool
of connection aliases to assign the aliases to different
users and different tasks.
ATM Application Persistence Using Data Access Beans 167

Figure 87. Specification of the Database Access Class

Now create a new connection alias by clicking on the Add... button and
entering the connection name, JDBC driver, database URL, and user ID and
password information (Figure 88).

Figure 88. Connection Alias Definition for the ATM Application

We strongly recommend that you test your connection by clicking on the Test
Connection button and check that you are successful. In this way you can fix
problems as early as possible. Click on the OK button to finish your work.

SQL Statement Specification
The Select bean has predefined methods to add, update, and delete the
current row of a result set. This reduces your work; you only have to define
the SELECT statement to retrieve the result set from the database. Switch to
the SQL page to specify the necessary SQL statement.
168 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Warning Keep in mind that when you repeat a query you use the
same result set. It does not matter whether you run the
query in the same Select bean or in another one. It is
important to realize that changes of the result set, for
example, of the position of the current row, between
different calls of the same query are possible. You should
encapsulate all database transactions in synchronized
Java methods and test your application thoroughly to
detect obscure errors. It is dangerous to trust that any
parameter has not changed since the previous query
execution.

To keep all methods needed to query the ATM database together in one class
and to simplify maintenance tasks, we decided to reuse the database access
class we defined for the connection alias.

Choose the AtmDatabase class in the itso.entbk2.atm.databean package from
the list of classes in the Database Access Class field. Then click on the Add...
button to add an SQL specification. In the New SQL Specification window
enter getPinCustInfo in the SQL Name field and select Use SQL Assist
SmartGuide (Figure 89).
ATM Application Persistence Using Data Access Beans 169

Figure 89. New SQL Specification

The SQL Assist SmartGuide window opens. On the Tables page you can see
all tables that are accessible in the ATM database. Click on the View
Schema(s)... button and make sure that only the ATM schema is displayed,
then mark the ATM.CARD and ATM.CUSTOMER tables (Figure 90).

170 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 90. SQL Assist SmartGuide: ATM Table Specification

Switch to the Join page to join the CUSTID column of the ATM.CARD table
with the CUSTID column of the ATM.CUSTOMER table. Select both
columns to create a link and click on the Join button to activate the link. The
line becomes red to signal that the join has been successful (Figure 91).

You need an inner join that includes only those rows where the joined fields
from both tables are equal. You could also create left and right outer joins;
click on the Options... button for more information.

Figure 91. SQL Assist SmartGuide: ATM Join Specification

Use the Condition 1 page to specify that you need all rows of the ATM.CARD
table where the CARDID column value is exactly equal to a given value.
Choose ATM.CARD in the Selected table(s) list and CARDID in the Columns
list. Select the is exactly equal to operator and enter :CARDID in the Values
field (Figure 92).

The :CARDID specification indicates that a host variable is used. The real
value will be set at run time.
ATM Application Persistence Using Data Access Beans 171

You can click on the Find... button to see which card IDs are stored in the
ATM database, and you can use the Find on another column button to add a
Condition 2 page. The Condition 2 page would help to define a second
condition, but there is no need for that in the ATM application.

Figure 92. SQL Assist SmartGuide: Condition Specification

Switch to the Columns page and add the following columns:

 ❑ ATM.CARD.CARDID
 ❑ ATM.CARD.PIN
 ❑ ATM.CUSTOMER.TITLE
 ❑ ATM.CUSTOMER.FNAME
 ❑ ATM.CUSTOMER.LNAME
 ❑ ATM.CUSTOMER.CUSTID
172 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Choose the tables in the Selected table(s) list and the columns in the Columns
list. Use the Add>>, <<Remove, Select all, and Deselect all buttons to add or
remove the columns of selected tables to or from the list in the Columns to
include panel (Figure 93).

Figure 93. SQL Assist SmartGuide: Columns Specification

There is no need to sort the result tables (there is only one result row) or to
change the mapping of the SQL types, that is, you can skip the Sort and the
Mapping pages.

Check that the final SQL statement on the SQL page matches Figure 86 on
page 166. As you can see, you implemented a sophisticated SQL query
without any knowledge of SQL.
ATM Application Persistence Using Data Access Beans 173

We recommend that you spend one minute to test your work by clicking on
the Run SQL.... button. (Note that the Run SQL button is grayed out in some
implementations of VisualAge for Java Enterprise Version 2 if a host variable
is used.) A Specify Parameter Value(s) window appears to let you specify a
value for the :CARDID parameter. Click on the Run SQL... button and see
the result (Figure 94).

Figure 94. SQL Assist SmartGuide:View and Test the SQL Statement

As a last step, click on the Finish button to complete your work. This
generates a new getPinCustInfo method in the AtmDatabase class and adds
the name of this method to the names list in the SQL field of the SQL page.

Close the Query property editor by clicking on the OK button and return to
the Visual Composition Editor. Save the bean and close the window.
174 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Now you have seen how you can define both the connection alias and the SQL
specification. Use this section as an outline to complete all other SQL queries
yourself.

List of Accounts
When the PIN is successfully validated, the ATM application retrieves all
accounts for one ATM card based on the card ID. These accounts are shown
in a table. The customer can select an account to see the details (account ID,
account type, and account balance).

Implement the SQL statement shown in Figure 95.

Figure 95. Select Statement to Retrieve Accounts of a Card

In this statement :CARDID is the parameter passed to the SQL query at run
time.

Create a class, Accounts, in the itso.entbk2.atm.databean package, open the
Visual composition Editor, place a Select bean on the free-form surface, and
name it AccountsSelect.

Then open the Query property editor:

 ❑ On the Connection page, reuse the connection alias definition. Select
itso.entbk2.atm.databeans.AtmDatabase in the Database Access Class
field and connect in the Connections field.

 ❑ On the SQL page, select itso.entbk2.atm.databeans.AtmDatabase as
database access class, add a new SQL specification, and name it
getAccounts.

 ❑ In the SQL Assist SmartGuide, specify the following values:

 • Tables page: select ATM.ACCOUNT table
 • Condition page: column CARDID is exactly equal to :CARDID

Validate that the SQL statement on the SQL page is correct and click on OK
to finish your work. Return to the Visual Composition Editor, save the bean,
and close the window.

Debit and Credit Transactions
The customer can choose one account from the account table to start the debit
and credit transaction. For that, the application has to perform two steps:

select * from ATM.ACCOUNT where ((ATM.ACCOUNT.CARDID = :CARDID))
ATM Application Persistence Using Data Access Beans 175

 ❑ Update the balance for an account in the ACCOUNT table.

First, retrieve the result set. Implement the SQL statement shown in
Figure 96. Host variable :ACCID is a parameter passed to the SQL select
at run time.

Figure 96. Select Statement to Update the Account Balance

select ATM.ACCOUNT.BALANCE from ATM.ACCOUNT
where ((ATM.ACCOUNT.ACCID = :ACCID))

Second, update the current row of the result set, using the predefined
updateRow method in the Select bean.

 ❑ Add a new transaction to the transaction history table, TRANS.

First execute an SQL statement to retrieve all transactions (Figure 97).

Figure 97. Select Statement to Retrieve All Transactions

Actually we will retrieve only a few rows and then add a new row. Select
beans require a successful retrieve before an insert can be performed. We
add a new row to the result set through the predefined newRow method of
the Select bean. Update the values of this new row, using the
setColumnValue method, and apply the changes to the database, using
the updateRow method.

Create a class, UpdateBalance (in the itso.entbk2.atm.databean package),
open the Visual Composition Editor, and place two Select beans on the
free-form surface. Rename the beans as UpdateBalanceSelect and
AddTransactionSelect.

Open the Query property editor for each bean:

 ❑ On the Connection page, use the same connection alias definition for both
beans. Select itso.entbk2.atm.databeans.AtmDatabase in the Database
Access Class field and connect in the Connections field.

 ❑ On the SQL page, select itso.entbk2.atm.databeans.AtmDatabase as the
database access class:

1. UpdateBalanceSelect

Add a new SQL specification named updateBalance and specify the
following values in the SQL Assist SmartGuide:

 • Tables page: select ATM.ACCOUNT table

select * from ATM.TRANS
176 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

 • Condition page: column ACCID is exactly equal to :ACCID
 • Columns page: select BALANCE column

2. AddTransactionSelect

Add a new SQL specification named addTransaction and specify the
following values in the SQL Assist SmartGuide:

 • Tables page: select ATM.TRANS table

To limit the number of rows retrieved, open the properties of the
AddTransactionSelect bean and set some of the expert features:

 • maximumPacketsInCache: 1
 • packetSize: 2
 • maximumRows: 0

Validate each SQL statement on the SQL page, then click on OK to finish
your work. Return to the Visual Composition Editor, save the bean, and
close the window.

Transaction History
The ATM application provides information about all transactions related to
the specified account. This transaction history includes, for each transaction,
a transaction ID (time stamp), an account ID, a transaction type, and a
transaction amount.

To retrieve all transactions of an account from the TRANS table, you have to
implement the SQL statement shown in Figure 98. In this statement :ACCID
is the parameter account ID to specify an account.

Figure 98. Select Statement to Retrieve the Transactions of an Account

Create a class, Transactions (in the itso.entbk2.atm.databean package), open
the Visual Composition Editor, place a Select bean on the free-form surface,
and name it TransactionsSelect.

In the Query property editor:

 ❑ On the Connection page, reuse the connection alias definition. Select
itso.entbk2.atm.databeans.AtmDatabase in the Database Access Class
field and connect in the Connections field.

 ❑ On the SQL page, select itso.entbk2.atm.databeans.AtmDatabase as the
database access class, add a new SQL specification, and name it

select * from ATM.TRANS where ((ATM.TRANS.ACCID = :ACCID))
order by ATM.TRANS.TRANSID
ATM Application Persistence Using Data Access Beans 177

getTransactions.

 ❑ In the SQL Assist SmartGuide, specify the following values:

 • Tables page: select ATM.TRANS table
 • Condition page: column ACCID is exactly equal to :ACCID
 • Sort page: select TRANSID column

Validate the SQL statement on the SQL page and click on OK to finish your
work. Return to the Visual Composition Editor, save the bean, and close the
window.

7.3 Business Object Creation with ATM Database Beans
The ATM database beans you have created form the interface between the
ATM database and the Java application, acting as object wrappers around
result tables returned by Select beans. They are also responsible for creating
and initializing business objects with the data in the result tables. The
objects are passed to the AtmDB bean that performs a final check of the
results.

For a good object-oriented design, we only use the constructors of the
business objects to create new objects and the get methods to ask for the
values of the property fields. The only exception is when we have to manage
lists of accounts and transactions. The Card class has two methods,
clearAccounts and addAccount, and the Account class has two methods,
clearTransactions and addTransaction, to hide the internal implementation.

In this section we complete the four ATM database beans, using the Visual
Composition Editor.

PIN Validation
Figure 99 shows the visual composition of the PinCustInfo bean.

4 1
3

5

178 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 99. Visual Composition of PinCustInfo Bean

Perform the following steps in the Visual Composition Editor:

 ❑ The PinCustInfo bean is used to create two new business objects. Add two
factories from the Others category of the Beans palette, change the types

2

to Customer and Card (in the itso.entbk2.atm.model package) and rename
them to Customer (1) and Card (2).

 ❑ You need external access to tree features of the bean, that is, you have to
promote these features:

 • Parm_CARDID_String property (PinCustSelect bean) as CardId
 • execute method (PinCustSelect bean) as execute
 • this property (Card factory) as Card

To change the name of a feature, make sure that it is in the list of
promoted features in the Promote Feature SmartGuide, then double-click
on the name in the Promote Name column. The field becomes white to
indicate that you can make your change.

 ❑ Make an event-to-code connection from the executed event of the Select
bean to the free-form surface (3), and add this code:

public void checkResult(int numRows) throws java.lang.Exception {
if (numRows < 1) {

setCard(null);
throw new java.lang.Exception("Result Set is empty");

}
}

Pass the numRows property of the Select bean as a parameter to avoid
creating a card bean without any data.

 ❑ To construct a new customer object, connect the normalResult of the
previous connection (3) to the constructor Customer(java.lang.String, ...)
of the Customer factory and pass the CUSTOMER.CUSTID_String,
CUSTOMER.TITLE_String, CUSTOMER.FNAME_String and
CUSTOMER.LNAME_String properties of the Select bean as parameters
(4).

 ❑ Connect the normalResult of the previous connection to the constructor
Card(java.lang.String, ...) of the Card factory and pass the
Parm_CARDID_String and CUSTOMER.PIN_String properties of the
Select bean and the this property of the Customer factory as parameters.
ATM Application Persistence Using Data Access Beans 179

This constructs a new card object (5).

Save the bean to generate the code and close the Visual Composition Editor.

List of Accounts
Figure 100 shows the visual composition of the Accounts bean.

Figure 100. Visual Composition of Accounts Bean

Perform the following steps in the Visual Composition Editor:

 ❑ To pass a card object to the Accounts bean and access it inside the Visual
Composition Editor, add a variable of type itso.entbk2.atm.model.Card to
the free-from surface and name the variable Card (1).

 ❑ You have to create new checking and savings account objects. Add two
factories, change their types to CheckingAccount and SavingsAccount (in
itso.entbk2.atm.model), and name them CheckingAccount and
SavingsAccount (2).

 ❑ You need external access to the features, therefore, promote these bean
features:

 • this property (Card variable) as Card
 • this property (CheckingAccount factory) as CheckingAccount
 • this property (SavingsAccount factory) as SavingsAccount
 • execute method (Select bean) as execute

 ❑ Connect the aboutToExecute event (AccountsSelect bean) to the

1 3
7

5

4

6

8

2

2

180 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Parm_CARDID property (same bean) and pass the cardNumber (Card
variable) as a parameter (3).

This connection sets the parameter for the Select bean from a Card
property, every time, before it executes the query. The advantage of an
event connection instead of a property-to-property connection is that no
exception is fired during initialization of the Accounts bean, and you have
control when the parameter update occurs.

 ❑ Connect the aboutToExecute event (Select bean) to the clearAccounts
(Card variable) (4) to discard all old accounts before the new result set is
retrieved.

 ❑ For every row retrieved create both a new checking and savings account
object. You have to write code later to see which one is the correct one to be
added to the card.

Connect the ACCOUNT.ACCID event (AccountsSelect bean) to the
CheckingAccount(String,BigDecimal,BigDecimal) constructor of the
CheckingAccount factory and pass ACCOUNT.ACCID_String,
ACCOUNT.BALANCE, and ACCOUNT.OVERDRAF as parameters (5).

Connect the ACCOUNT.ACCID event (AccountsSelect bean) to the
SavingsAccount(String,BigDecimal,BigDecimal) constructor of the
SavingsAccount factory and pass ACCOUNT.ACCID_String,
ACCOUNT.BALANCE, and ACCOUNT.MINAMT as parameters (6).

 ❑ It is necessary to reset the currentRow property of the Select bean.
Connect the executed event to the firstRow method (AccountsSelect bean)
(7).

 ❑ Now you have to loop through all the retrieved accounts and add either
the checking or the savings account to the card variable.

Make an event-to-code connection from the normalResult of the previous
connection (7) to the free-form surface (8) and enter the following code to
add the accounts to the Card object:

private void addAllAccounts(itso.entbk2.atm.model.Card card)
throws com.ibm.db.DataException {

for (int row=0; row < getAccountsSelect().getRowCount(); row++) {
if (getAccountsSelect().getColumnValueToString("ACCOUNT.ACCTYPE").

trim().equalsIgnoreCase("C"))
card.addAccount(getCheckingAccount());

else
card.addAccount(getSavingsAccount());

getAccountsSelect().nextRow();
}

}

Pass the this property (Card variable) as a parameter. This code checks
the account type, adds the appropriate account to the card, and gets the
ATM Application Persistence Using Data Access Beans 181

next row.

Save the bean to generate the code and close the Visual Composition Editor.

Debit and Credit Transactions
Figure 101 shows the visual composition of the UpdateBalance bean.

Figure 101. Visual Composition of UpdateBalance Bean

Perform the following steps in the Visual Composition Editor:

 ❑ Add two variables, one of type BankAccount and one of type Transaction
(itso.entbk2.atm.model) to the free-from surface, name them
BankAccount (1) and Transaction (2). BankAccount is necessary to pass an
account to the UpdateBalance bean, and the Transaction variable refers to
the last transaction of the bank account.

 ❑ Because you need external access, you have to promote the following bean

1

2

3

4

5
6

7

8

12

1110

9

13

14

15

15
182 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

features:

 • this property (BankAccount variable) as BankAccount
 • this property (Transaction variable) as Transaction
 • execute method (UpdateBalanceSelect bean) as execute
 • commit method (UpdateBalanceSelect bean) as commit
 • rollback method (UpdateBalanceSelect bean) as rollback

 ❑ Set the accountId each time before executing the UpdateBalance query.
Connect the aboutToExecute event to the Parm_ACCID_String property
(UpdateBalanceSelect bean) (3) and pass the accountId property
(BankAccount variable) as a parameter.

 ❑ Connect the executed event (UpdateBalanceSelect bean) to the
ACCOUNT.BALANCE property (4) and pass the balance property
(BankAccount variable) as a parameter. Connect the normalResult of this
connection to the updateRow method (5). These steps are necessary to
update the balance in the ACCOUNT table.

 ❑ Connect the normalResult of the updateRow connection (5) to the
getLastTransaction method (BankAccount variable) (6). Connect the
normalResult of this connection to the this property of the Transaction
variable (7). After executing these steps, the Transaction variable refers to
the last transaction stored in BankAccount. This transaction was created
by the deposit or withdraw method.

 ❑ Connect the this (Transaction) to the execute method
(AddTransactionSelect bean) (8). Connect the normalResult of this
connection to the firstRow method (9). This retrieves a few rows from the
TRANS table.

 ❑ Connect the this (Transaction) to the newRow method
(AddTransactionSelect bean) (10) Leave the parameter as false. Make four
connections from the normalResult of this connection to the
TRANS.TRANSID, TRANS.TRANSAMT, TRANS.TRANSTYPE_String,
and TRANS.ACCID_String (AddTransactionSelect bean) attributes. Pass
the appropriate attributes of the Transaction variable as parameters (11).
These steps prepare a new row in the TRANS table.

 ❑ Connect the normalResult of the newRow connection (10) to the
updateRow method (AddTransactionSelect bean) (12). This step inserts
the row into the TRANS table.

 ❑ Connect the normalResult of the updateRow connection to the commit
method (AddTransactionSelect bean) (13). The updates to the balance and
the new transaction are committed to the database.

 ❑ You have to roll back the updates if anything goes wrong. Connect the
exceptionResult of the two updateRow connections (5 and 12) to the
rollback method of the Select bean (14).
ATM Application Persistence Using Data Access Beans 183

Note that by default Auto-commit is enabled (Figure 88 on page 168). This
could lead to the situation where the balance update is performed but the
insert of the new transaction fails. Go back to the definition of the
connection and deselect the Auto-commit checkbox.

 ❑ Add a new public nonbound int property errorCode to the UpdateBalance
bean and set it 0 or 1, depending on whether the database update was
successful or not (connections 15). Add a connection from the
aboutToExecute event (UpdateBalanceSelect bean) to the errorCode
property and set the value to 1 (this sets the initial value as unsuccessful).
Add a connection from the normalResult of the commit method (13) to the

errorCode property and set the value to 0 (indicating successful). You only
set a successful return code when the final commit has been executed.

Save the bean to generate the code and close the Visual Composition Editor.

Transaction History
Figure 102 shows the visual composition of the Transactions bean.

Figure 102. Visual Composition of Transactions Bean

Perform the following steps in the Visual Composition Editor. These steps are
very similar to those you performed for the Accounts bean, so a short
description will suffice:

 ❑ Add a variable of type itso.entbk2.atm.model.BankAccount to the
free-from surface (1), name it BankAccount. Add a factory of type
Transaction to the free-form surface (2). The factory is used to create
Transaction objects to be added to the BankAccount.

 ❑ Promote the following bean features:

 • this property (BankAccount variable) as BankAccount
 • this property (Transaction factory) as Transaction

1

2

4

5

6
7

3

184 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

 • execute method (Select bean) as execute

 ❑ Connect the aboutToExecute event (TransactionsSelect bean) to the
Parm_ACCID_String property (TransactionsSelect bean) and pass the
accountId (BankAccount variable) as a parameter (3).

 ❑ Connect the aboutToExecute event (TransactionsSelect bean) to the
clearTransactions (BankAccount variable) (4).

 ❑ For every row retrieved create a Transaction object. Connect the
TRANS.ACCID event (TransactionsSelect bean) to the
Transaction(String,..,..,..) constructor of the Transaction factory and pass
the four attributes, TRANS.TRANSID, TRANS.TRANSAMT,

TRANS.ACCID_String, and TRANS.TRANSTYPE_String, as parameters
(5).

 ❑ Connect the executed event to the firstRow method (TransactionsSelect
bean) (6). Make an event-to-code connection from the normalResult of this
connection to the free-form surface (7) and add this code:

private void addAllTrans(itso.entbk2.atm.model.BankAccount account)
throws com.ibm.db.DataException {

for (int row=0; row < getTransactionsSelect().getRowCount(); row++) {
account.addTransaction(getTransaction());
getTransactionsSelect().nextRow();

}
}

Pass the this property (BankAccount variable) as a parameter.

Save the bean to generate the code and close the Visual Composition Editor.
ATM Application Persistence Using Data Access Beans 185

7.4 Implementing the Persistence Interface
Now you create the link between the ATM database access beans and the
application controller.

AtmDB Bean
The AtmDB bean works as a mediator between the application controller and
the ATM database beans. It implements the methods the controller expects
from the persistence interface and calls the related methods in the ATM
database beans to handle the controller requests.

The AtmDB provides the implementation of the persistence layer. Add a class
AtmDB derived from java.lang.Object to the itso.entbk2.atm.databean
package and add to it the itso.entbk2.atm.model.ATMPersistenceInterface
interface.

Make sure that the Methods which must be implemented checkbox is marked
on the second page of the Create Class SmartGuide (the checkbox is marked
by default). A new class, AtmDB, is generated with stubs for all methods to
implement.

Add four read-only, nonbound properties—pinCustInfo, accounts,
updateBalance, and transactions—to the AtmDB bean, one for each ATM
database bean:

private PinCustInfo fieldPinCustInfo = new PinCustInfo();
private Accounts fieldAccounts = new Accounts();
private UpdateBalance fieldUpdateBalance = new UpdateBalance();
private Transactions fieldTransactions = new Transactions();

Implementing the Methods of the Interface
Now you implement the code for the methods of the ATMPersistence
186 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

interface.

extGetCard
public itso.entbk2.atm.model.Card extGetCard(String cardId)

throws java.lang.Exception {
getPinCustInfo().setCardId(cardId);
getPinCustInfo().execute();
itso.entbk2.atm.model.Card card = getPinCustInfo().getCard();
if (card == null)

throw new java.lang.Exception("Card "+cardId+" not found");
return card;

}

extGetAccounts
public void extGetAccounts(itso.entbk2.atm.model.Card card)

throws java.lang.Exception {
getAccounts().setCard(card);
getAccounts().execute();
if (card.getAccounts().size() == 0) throw new java.lang.Exception

("Accounts for card "+card.getCardNumber()+" empty");
}

extUpdateBalance
public void extUpdateBalance(itso.entbk2.atm.model.BankAccount account)

throws java.lang.Exception {
getUpdateBalance().setErrorCode(0); // done in bean as well
getUpdateBalance().setBankAccount(account);
getUpdateBalance().execute();
if (getUpdateBalance().getErrorCode() != 0) {

getUpdateBalance().rollback(); // just to be safe
throw new java.lang.Exception

("Updating the account or transaction log failed");
}

else getUpdateBalance().commit(); // just to be safe
}

extGetTransactions
public void extGetTransactions(itso.entbk2.atm.model.BankAccount account)

throws java.lang.Exception {
getTransactions().setBankAccount(account);
getTransactions().execute();
if (account.getTransactions().size() == 0) throw new java.lang.Exception

("Transactions for account "+account.getAccountId()+" empty");
}

As you can see, each of the above methods passes a parameter (cardId, card,
or account) to the related ATM database bean, calls the execute method, and
gets the result. Then it checks the result of the execution.8 Whenever
ATM Application Persistence Using Data Access Beans 187

something goes wrong, an exception gets fired.

The remaining methods of the interface do not require an implementation:

 ❑ Database connect and disconnect are performed automatically by the data
access beans.

 ❑ extGetPin is not necessary because the PIN is stored in the card after
extGetCard and can be checked by the ATMApplicationController.

8 This check is necessary, because there is no easy way to forward exceptions from inside the ATM database
bean. The beans are generated visually, that is, all exceptions are caught inside the ATM database bean and
handled by the handleException method. In this method you could fire an event or set a returnCode, as shown
in the UpdateBalance bean.

Testing the Implementation of the Persistence Interface
Most of the functionality of the AtmDB bean can be tested in the Scrapbook
by creating a controller (ATMApplicationController) and assigning an
AtmDB bean for the implementation of the interface.

By calling some of the methods of the controller you can debug the functions
of the AtmDB bean. Figure 103 shows a sample Scrapbook script.

// set Page->Run in to ATMApplicationController in itso.entbk2.atm.model

java.util.Enumeration enum;
BankAccount acct1;

ATMApplicationController ctl = new ATMApplicationController();
itso.entbk2.atm.databean.AtmDB atmdb = new itso.entbk2.atm.databean.AtmDB();
ctl.setATMPersistenceLayer(atmdb);

Card card1 = ctl.getCard("1111111");
System.out.println(card1);
boolean pinok = ctl.checkPin(card1,"1111");
System.out.println("PIN OK " + pinok);

ctl.getAccounts(card1);
enum = card1.getAccounts().elements();
while (enum.hasMoreElements())
 { System.out.println((BankAccount)enum.nextElement()); }

acct1 = (BankAccount)card1.getAccount("101-1001");
//acct1 = ctl.deposit(acct1,"180");
//acct1 = ctl.withdraw(acct1,"240");
acct1 = ctl.getTransactions(acct1);
System.out.println(acct1);
enum = acct1.getTransactions().elements();
while (enum.hasMoreElements())
 { System.out.println((Transaction)enum.nextElement()); }
188 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 103. Scrapbook Script for Testing the AtmDB Bean

acct1 = (BankAccount)card1.getAccount("101-1003");
acct1 = ctl.deposit(acct1,"400");
acct1 = ctl.getTransactions(acct1);
System.out.println(acct1);
enum = acct1.getTransactions().elements();
while (enum.hasMoreElements())
 { System.out.println((Transaction)enum.nextElement()); }

7.5 Preparation for Servlet Usage
In Chapter 9, “ATM Application Using Servlets” we use this ATM persistence
implementation. To make the DB2 connection work without being prompted
for a user ID on the Web server, you must change the connection definition to
use a fixed user ID and password specification.

Figure 88 on page 168 shows the initial connection specification. Open any of
the ATM database beans, for example, PinCustInfo, and edit the connection
to specify a valid user ID and password, and deselect the Prompt checkbox.
At the same time make sure that the Auto-commit checkbox is not selected
(Figure 104).
ATM Application Persistence Using Data Access Beans 189

Figure 104. Updated Connection Specification for the ATM Application

190 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

8 Swing GUI for ATM
Application
In this chapter we develop a GUI for the ATM application, using the Java
Swing classes, also known as the Java Foundation Classes (JFC).

We basically copy the approach used for the RMI design in the redbook
Application Development with VisualAge for Java Enterprise, SG24-5081.

We already have the business model and the database implementation of the
ATM application, so all we need to develop is a GUI that can run as an applet
or application.
© Copyright IBM Corp. 1998 191

We do not explain the Swing classes in any detail because many books about
Swing are available. We use Swing to create a simple GUI that is more
attractive than an AWT GUI.

8.1 Design of the GUI Application
Figure 105 shows the basic layout of the application. We use one main panel
with a card layout of four panels:

 ❑ Card panel to enter the ATM card number
 ❑ PIN panel to enter the PIN for the ATM card
 ❑ Select account panel to select an account that belongs to the card
 ❑ Transaction panel for deposit and withdrawal transactions
192 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 105. ATM Application Panels

Application Controller
The heart of the GUI application is the ATM application controller that
performs all the processing together with an implementation of the
persistence interface (Figure 106).

Figure 106. GUI Application with Application Controller

ext

get
Accounts

check
Pin

get
Card

deposit

with
draw

get
Trans

actions

disconnect

ext

Connect
Dis

ext
GetCard

ext
GetPin

ext
Get
Accounts

ext

Balance
Update

ext

actions
GetTrans

connect

Persistence
Interface

connect

Application
initialization
termination
Swing GUI for ATM Application 193

Panel Design
The four panels have the same basic layout:

 ❑ A container panel with a border layout

 ❑ A greeting panel in the North area (flow or grid bag layout)

 ❑ A button panel in the South area (flow layout)

 ❑ A processing panel in the center (grid bag layout)

Nonvisual Variables
All four panels have the same four nonvisual variables:

 ❑ Controller (of type ATMApplicationController), used for application
processing

 ❑ Card (of type Card), used to display the card number and customer name

 ❑ Main (of type JPanel), required as parent in the calls to CardLayout

 ❑ CardLayout (of type CardLayout), used to switch to the next or previous
panel

The select account panel and the transaction panel contain one additional
variable that represents the current bank account.

Set Up of the Variables
The Controller, Card, and Main variable are set up at the start of the
application and the CardLayout variable is prepared on each subpanel:

 ❑ The Controller is allocated in the main panel and assigned to the
variables on each subpanel.

 ❑ A Card variable is set up in the main panel and connected to all
subpanels. An actual card object is retrieved in the card panel.

 ❑ The Main variable represents the main panel itself and is passed on to all
subpanels.

 ❑ The CardLayout is the layout manager property of the main panel and is
allocated in each subpanel. To set the CardLayout variable, connect the
this event of the Main variable to the this property of the CardLayout
variable and pass the layout property as a parameter.

Promotion of the Variables
The this property of the Controller, Card, and Main variables on all
subpanels is promoted so that the variables are accessible from the main
194 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

panel. This creates the properties:

 ❑ controllerThis
 ❑ cardThis
 ❑ mainThis

8.2 Implementation of the Application Panels
We implement the four panels independently. We assemble the panels in the
main applet panel in a later step.

We create a new itso.entbk2.atm.gui package for the GUI application and
create the four panels as subclasses of the Swing JPanel class.

Card Panel
Figure 107 shows the visual composition of the card panel (CardPanel class).

1

12

2

3

4

5
6

7

9

8

Swing GUI for ATM Application 195

Figure 107. Visual Composition of the Card Panel

Initialization
 ❑ Connect the initialize event of the panel to the message and display the

welcome message. Connect the same event to the requestFocus method
(expert) of the entry field (1). Draw the same connections from the
componentShown event of the panel (2).

 ❑ Use the componentShown event to set the entry field to null (3).

Processing
 ❑ Connect the Ok button to the message and display Please wait (4).

 ❑ Connect the Ok button to the getCard method of the controller with the
card number entry field as a parameter (5). Connect the normalResult to
the this property of the card variable (6).

 ❑ Connect the cardNotFound event of the controller to the message and
display Invalid card (the same panel is displayed) (7).

Next Panel
 ❑ Connect the cardFound event of the controller to the next method of the

card layout with the main panel as parent parameter (8).

 ❑ Connect the Exit button to a new exit method (9) that contains this code:
System.exit(0).

PIN Panel
Figure 108 shows the visual composition of the PIN panel (PinPanel class).

1

1

2

67
9

196 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 108. Visual Composition of the PIN Panel

3

4

5

8

Initialization
 ❑ Use the componentShown event and set the message and the PIN entry

field to null. Connect the same event to the requestFocus method of the
entry field (1).

 ❑ Use the this event of the card to set the customer text
(...title...first...last...), using the getGreetings method as a parameter
value. Use the exceptionOccurred event to set the customer text to null (2).

Processing
 ❑ Connect the Ok button to the checkPin method of the card with the PIN

entry field as parameter (3).

 ❑ Use the checkPinOk event of the card to set the message to null (4).

 ❑ Connect the checkPinOk event to the getAccounts method of the controller
and pass the card as parameter. Assign the normalResult back to the card.
The card now contains a vector of associated accounts (5).

 ❑ Use the checkPinNotOk event to set the PIN entry field to null (6).

 ❑ Use the checkPinNotOk event to set the error message as PIN invalid,
please reenter (the same panel is displayed) (7).

Next Panel
 ❑ Connect the checkPinOk event to the next method of the card layout (with

main as parent) (8).

 ❑ Connect the Cancel button to the previous method of the card layout (with
main as parent) (9).
Swing GUI for ATM Application 197

Select Account Panel
Figure 109 shows the visual composition of the select account panel
(SelectAccountPanel class).

Figure 109. Visual Composition of the Select Account Panel

Additional Beans
 ❑ Drop a BankAccount variable and name it SelectedAccount (1). Promote

its this property as selectAccountThis.

 ❑ The list of accounts is displayed in a list box (JList) that is inside a scroll
pane (JScrollPane) (2).

1

2

3

4

7

8

10

9

11

12

13
5

6

198 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

 ❑ Drop a DefaultListModel bean and name it ListModel. Connect its this
property to the model property of the list box (3).

Initialization
 ❑ Use the componentShown event to set the two fields for the account and

type to null (4). (These fields are entry fields set as noneditable.)

 ❑ Open the Ok button and set it to be disabled. Connect the
componentShown event to the setEnabled method with false as parameter
(5).

 ❑ Use the this event of the card to set the customer text (same as in PIN
panel) (6).

 ❑ Connect the componentShown event to a new createAccountList method
and pass the list model and the card as parameters (7). This method fills
the list model with the accounts stored in the card:

private void createAccountList(com.sun.java.swing.DefaultListModel list,
itso.entbk2.atm.model.Card card) {

list.clear();
java.util.Vector accounts = card.getAccounts();
if (accounts != null) {

java.util.Enumeration enum = accounts.elements();
while (enum.hasMoreElements())

list.addElement(((itso.entbk2.atm.model.BankAccount)
enum.nextElement()).getAccountId());

}
}

Processing
 ❑ Connect the listSelectionEvents event of the list box to the this property of

the selected account variable (8). Connect the parameter to a new
selectAccount method and pass the selectedIndex of the list box and the
card as parameters (9). This method extracts the account selected in the
list box from the card:

private itso.entbk2.atm.model.BankAccount selectAccount(int index,
itso.entbk2.atm.model.Card card) {

return (itso.entbk2.atm.model.BankAccount)
card.getAccounts().elementAt(index);

}

 ❑ Connect the listSelectionEvents event of the list box to the setEnabled
method of the Ok button with true as a parameter (10).

 ❑ Connect the this event of the selected account variable to the account text
field with the accountID property as a parameter (11). Connect the same
event to the type text field with the getAccountType method as a
Swing GUI for ATM Application 199

parameter. The selected account information is displayed in the two text
fields.

Next Panel
 ❑ Connect the Ok button to the next method of the card layout (with main as

parent) (12).

 ❑ Connect the Cancel button to the previous method of the card layout (with
main as parent) (13).

Transaction Panel
Figure 110 shows the visual composition of the transaction panel
(TransactionPanel class).

Figure 110. Visual Composition of the Transaction Panel

Additional Beans
 ❑ Drop a BankAccount variable and name it BankAccount (1). Promote its

this property as bankAccountThis.

 ❑ The list of transactions is displayed in a list box (JList) that is inside a
scroll pane (JScrollPane) (2).

1

2
3

4

4

4

5

6

7

8

9

10

11

12
13

14
200 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

 ❑ Drop a DefaultListModel bean and name it ListModel (3). Connect its this
property to the model property of the list box.

Initialization
 ❑ Use the componentShown event to set the message, amount entry field,

and old balance text field (noneditable) to null (4).

 ❑ Use the componentShown event to set the three fields, account number,
account type, and new balance, to the values of the matching properties of
the bank account (5). (Use the getAccountType method for the type field.)

 ❑ Connect the componentShown event to the clear method of the list model
to empty the list box (6).

 ❑ Use the this event of the card to set the customer text (same as in PIN
panel) (7).

Processing
 ❑ Connect the balance event of the bank account to the balance text field

and pass the balance property as a parameter. Do the same for the
oldBalance event of the bank account. These connections display the
current balance values (8).

 ❑ Connect the Deposit button to the deposit method of the controller and
pass the amount and the bank account as parameters (9).

 ❑ Connect the Withdraw button to the withdraw method of the controller
and pass the amount and the bank account as parameters.

 ❑ Connect the History button to the getTransactions method of the
controller and pass the amount and the bank account as parameters (10).

 ❑ Connect the History button to a new buildTransactonList method and
pass the list model and the bank account as parameters (11). This method
fills the list box with the transactions:

private void buildTransactionList(com.sun.java.swing.DefaultListModel list,
itso.entbk2.atm.model.BankAccount account) {

list.clear();
for (int i=account.getTransactions().size()-1; i>=0; i--)

list.addElement(account.getTransactions().elementAt(i).toString());
return;

}

 ❑ Connect the newTransaction event of the controller with the
buildTransactionList method and pass the list model and the bank
account as parameters (12).

 ❑ Use the newTransaction event to set the message to null (13).
Swing GUI for ATM Application 201

 ❑ Use the limitExceeded event of the controller to display the Limit exceeded
- not enough funds available message.

 ❑ Use the DBOutOfSynch event of the controller to display the Transaction
failed - please reenter message.

Next Panel
 ❑ Connect the Cancel button to the previous method of the card layout (with

main as parent) (14).

 ❑ Connect the Exit button to the first method of the card layout (with main
as parent).

ATM Applet
You create the ATM applet (ATMApplet class) as a subclass of the Swing
JApplet class. You set the layout manager to CardLayout and drop five
panels on the main applet’s panel:

 ❑ A JPanel from the palette. This is the starting panel where the user
selects what persistence implementation to use for the applet.

 ❑ Four beans of type CardPanel, PinPanel, SelectAccountPanel, and
TransactionPanel. This is the sequence of the application panels.

Use the Beans List to make individual panels of the card layout visible in the
applet. This is necessary for some of the connections.

Figure 111 shows the visual composition of the ATM applet (ATMApplet
class), with the additional persistence panel displayed.

6

3

4

7 7 7 7

8

9

10

11

12
202 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 111. Visual Composition of the ATM Applet

12 1413

5

Additional Beans
 ❑ Drop an ATMApplicationController bean (1) and a Card variable (2).

 ❑ Drop an ATMPersistenceDefault bean (3) (memory implementation) and
an AtmDB bean (4) (relational database implementation).

 ❑ Tear off the layout property of the applet’s main panel (5). Change its type
to CardLayout and name it CardLayout.

 ❑ Tear off the selectedAccountThis property from the SelectAccountPanel
(6).

Initialization
 ❑ Connect the this of the applet panel to the mainThis property of each of

the four subpanels (7). This sets the Main variable on all panels.

 ❑ Connect the this of the Card variable to the cardThis property of each of
the four subpanels (8). This sets the Card variable on all panels.

 ❑ Connect the this of the ATM application controller bean to the
controllerThis property of each of the four subpanels (9). This sets the
Controller variable on all panels.

 ❑ Connect the this of the selectedAccountThis to the bankAccountThis
property of the TransactionPanel (10). This passes the selected bank
account from the SelectAccountPanel to the TransactionPanel.

Processing
 ❑ Connect the Memory button to the setPersistenceLayer method of the

controller and pass the PersistenceDefault bean as a parameter (11).
Connect the normalResult to the connect method of the controller.

 ❑ Connect the Database button to the setPersistenceLayer method of the
controller and pass the AtmDB bean as a a parameter (12). Connect the
normalResult to the connect method of the controller.

 ❑ Connect the destroy event of the applet to the disconnect method of the
Swing GUI for ATM Application 203

controller (13).

Next Panel
 ❑ Connect the normalResult of the two connect method calls to the next

method of the card layout and pass the applet’s main panel as parent
parameter (14).

8.3 Running the ATM GUI Applet
Before running the ATM GUI applet, make sure to check the class path for
the ATMApplet class through the Run -> Check class path pop-up. The JFC
and data access beans must be included in the class path.

Also check that DB2 is started, including the Java daemon process:

db2jstrt 8888
204 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

9 ATM Application
Using Servlets
In this chapter we implement all of the user interfaces of the ATM
application with servlets. The servlets interact with the ATM application
controller designed in Chapter 6, “ATM Application Business Model” and will
work with any implementation of the persistence interface that is attached to
the application controller.

We implement the user interface with five visual servlets and one nonvisual
controller servlet that controls the flow of the application. The six servlet
classes are:
© Copyright IBM Corp. 1998 205

 ❑ Card servlet (CardView class)
 ❑ PIN servlet (PinView class)
 ❑ Account servlet (AccountView class)
 ❑ Transaction servlet (TransactionView class)
 ❑ Thank you servlet (ThankYouView class)
 ❑ ATM controller servlet (ATMServletController class)

All six classes inherit from the VisualServlet class. The controller servlet
does not have a user interface, however.

9.1 Create a Skeleton Controller Servlet
The application flow is handled by the controller servlet, that is, all other
servlets invoke the controller through the action specification of the form.
The controller contains most of the business logic and decides which servlet
to invoke next.

To facilitate development of the view servlets, it is good to have a skeleton
controller from the beginning. Let’s develop the skeleton controller first.

Create a new package named itso.entbk2.atm.servlet. Create a visual
servlet named ATMServletController. Delete the HTML page from the visual
composition and save the servlet. Your skeleton controller is in place.

9.2 Servlet Views
Now let’s design the five views that represent the ATM application.

Card Servlet
When a user requests to start the ATM application, the card servlet displays
a form for the customer to enter the ATM card number. This simulates the
action of sliding the ATM card through a reader and is similar to today’s
home banking systems (Figure 112).
206 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 112. Card Servlet View

The card servlet has an image, a welcome text, and a form with an entry
field, push buttons, and a message field.

An an image we use the ITSO banner that is displayed on the home page of
the International Technical Support Organization (point your browser to
http://www.redbooks.ibm.com or http://w3.itso.ibm.com).

Let’s construct the card servlet named CardView. We do not describe all of the
steps to visually create a servlet. Refer to Chapter 3, “Enterprise Application
Development with Servlets” for detailed instructions.

The purpose of the card servlet is to get the card number. We minimize the
logic in this servlet to keep it simple. The development steps are:

 ❑ GUI layout

 ❑ Auxiliary properties

 ❑ Auxiliary method

 ❑ Connections

GUI
Figure 113 shows the design of the card servlet. We use a form and set its
action property to the ATMApplicationController. The HTML image bean has
a source property that can point to a URL (use your own favorite URL) or a
local file. Only with a local file can you see the image at design time.

1

ATM Application Using Servlets 207

Figure 113. Card Servlet Design

2

3

Table 22 shows the GUI beans. This table does not represent all of the GUI
elements; only a subset is listed with the important properties. We also use a
table, paragraphs, and a rule. You can arrange the beans yourself.

Table 22. GUI Beans in Card Servlet

Auxiliary Properties
Define a messageText property on the BeanInfo page. This property will be
connected to the message field in the GUI to set an error message.

The logo image is hard corded as source property of HTMLImge. Somebody
might not like such a hardcorded reference. But think again, when you create
an HTML file, you write a source URL directly, don’t you? However, it is
possible to set this URL from the controller. We promote the source property
of the logo image as logoImageURL.

Auxiliary Method
We define a serverName method that returns the HTTP server’s IP address:

public String serverName() {

Type Bean Name Property Property Value

HTMLImage logo source /itso/image/itso.gif

HTMLForm form action ATMServletController

HTMLEntryField cardId

HTMLText message string ..message..

HTMLText server string ..server..

HTMLTable

HTMLPushButton okButton string Ok

HTMLPushButton exitButton string Exit
208 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

try {return java.net.InetAddress.getLocalHost().getHostAddress(); }
catch (java.net.UnknownHostException e) { return null; }

}

Connections
We use connections to set up the server name.

 ❑ Connect the aboutToGenerateOrTransfer event (of the servlet) to the
serverName method, using an event-to-code connection (1).

 ❑ Connect the normalResult to the string of the server field (2).

 ❑ Connect the messageText property to the string of the message field (3).

PIN Servlet
The PIN servlet (PinView class) is invoked by the controller servlet and asks
the user to enter the PIN associated with the ATM card (Figure 114).

Figure 114. PIN Servlet View

The user name consists of title, first name, and last name. This user-unique
data is defined in the customer class of the ATM model, and the customer
class is accessed through the card class (see “Business Object Layer” on
page 140). We keep the card object in a SessionDataWrapper Bean to have it
available in all subsequent servlets.

This view uses a number of GUI beans and connections to extract data for the
GUI, but it has no business logic. The development steps are:
ATM Application Using Servlets 209

 ❑ GUI layout

 ❑ Session data for user-unique information

 ❑ Auxiliary property

 ❑ Connections

GUI
Figure 115 shows the design of the PIN servlet, and Table 23 shows the major
GUI beans and their properties.

Figure 115. PIN Servlet Design

Table 23. GUI Beans in PIN Servlet

Type Bean Name Property Property Value

HTMLImage logo source /itso/image/itso.gif

HTMLText custTitle

HTMLText custFirst

HTMLText custLast

HTMLText message string ..message..

4 1

2

3

5

5

6

210 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

HTMLForm form action ATMServletController

HTMLText cardId string ..cardid..

HTMLEntryField pin password-
Protected

true

HTMLPushButton okButton string Ok

HTMLPushButton cancelButton string Cancel

Notice that we protect the PIN code of the user through the
passwordProtected property of the entry field.

Session Data
We use session data to keep user-unique data. Every servlet session is
separate for each user’s HTTP session. The servlet handles multiple users, so
we must keep the data of multiple users for the next servlet interaction, and
we have to control the lifetime of the data. To keep it simple, we decide to
keep the data as session data, which, as we learned, is pointed to by a cookie
that is generated automatically.

If do not want to use a cookie, you should create a thread that controls all
user-unique data, return the data by request from the servlet, and purge the
data at some point in time. Our servlet lifetime is quite short, only as long as
one HTTP session.

The SessionDataWrapper contains the card object. We will implement this
later in the construction of the controller servlet. For now we can just extract
a card object from the SessionDataWrapper to get the card ID and the
customer object.

 ❑ Drop a SessionDataWrapper bean on the free-form surface, name it
CardData, and name its propertyName property card (1). The
propertyName is important to access the same data.

 ❑ Tear off the propertyValue to extract a card object. Change the type of the
variable to the Card class of the itso.entbk.atm.model package (ignore the
warning message) and name the variable Card (2).

 ❑ Tear off the customer property from the Card variable to extract a
customer object. Name the variable Customer (3).

Auxiliary Property
Define a messageText property on the BeanInfo page. This property will be
connected to the message field in the GUI to set an error message.
ATM Application Using Servlets 211

Promote the source property of the logo image as logoImageURL.

Connections
We set up the title, first name, last name, and card ID before generating the
HTML. We also clear the PIN entry field.

 ❑ Use the aboutToGenerateOrTransfer event to set a title text string and
pass the title property of the Customer object as a parameter (4). Set up
the first name and last name in the same way.

 ❑ Set the up the card ID from the cardNumber property of the Card
variable, and clear the PIN entry field, using similar connections from the
aboutToGenerateOrTransfer event (5).

 ❑ Connect the messageText property to the string of the message field (6).

Account Servlet
After PIN validation, the user can choose one of the accounts. The account
servlet (AccountView class) displays the customer’s title and name, and a list
of the accounts. The customer’s name comes from the session data bean
(Figure 116).

When an account is selected, the account ID and the account type (savings or
checking) are displayed. We implement this with a JavaScript that runs on
the client. The account ID and type are displayed in a drop-down list instead
of a text field because the selected list item can be changed by the JavaScript
without regenerating the HTML.
212 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 116. Account Servlet View

This view is composed of beans, connections, and some logic to extract the
account data into two arrays of strings to fit into an HTML list bean. The
steps to complete this view are:

 ❑ GUI layout
 ❑ Session data for user-unique information
 ❑ Auxiliary property and methods to extract account data
 ❑ JavaScript for dynamic account selection
 ❑ Connections

GUI
Figure 117 shows the design of the account servlet, and Table 24 shows the
major GUI beans and their properties.

Figure 117. Account Servlet Design

1

2

3

4

6

5

7

ATM Application Using Servlets 213

Table 24. GUI Beans in Account Servlet

Type Bean Name Property Property Value

HTMLImage logo source /itso/....../itso.gif

HTMLText custTitle

HTMLText custFirst

HTMLText custLast

HTMLForm form action ATMController
Servlet

Session Data
We use the session data in the same way as for the PIN view. Place a
SessionDataWrapper (with propertyName card), tear off the propertyValue
(as type Card), and tear off the customer property from the Card (1).

Auxiliary Property and Methods for List of Accounts
We promote the source property of the logo image as logoImageURL.

The card object contains the list of accounts. The card object has a vector of
account objects and each account object contains the account ID and the
account type. We write two methods to extract the account IDs and account
types into an array of strings:

private String[] fillAccountIDList(java.util.Vector accounts) {
String[] result = new String[accounts.size()];
for (int i=0; i<accounts.size(); i++)

result[i] = new String (
((itso.entbk2.atm.model.BankAccount)accounts.elementAt(i)).getAccountId());

return result;
}

private String[] fillAccountTypeList(java.util.Vector accounts) {
String[] result = new String[accounts.size()];
for (int i=0; i<accounts.size(); i++)

result[i] = new String (

HTMLList AccountList visibleItemCount 4

HTMLDropDownList AccountID visibleItemCount 1

HTMLDropDownList AccountType visibleItemCount 1

HTMLPushButton okButton string Ok

HTMLPushButton cancelButton string Cancel

HTMLScript SelectionScript string <see below>

Type Bean Name Property Property Value
214 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

((itso.entbk2.atm.model.BankAccount)accounts.elementAt(i)).getAccountType());
return result;

}

JavaScript
We implement a JavaScript (2) to display the selected account ID and type
when the user selects an account from the list of accounts. We allow selection
of the account in either of the three lists and adjust the other two lists. You
write the JavaScript code in the string property of the HTMLScript bean that
we named SelectionScript (below the push buttons). Define a function for

each of the three lists. Each function accepts a parameter, the name of the
form that contains the list.

function selectAccountListFunc(s){
s.AccountID.options[s.AccountID.selectedIndex].selected =true;
s.AccountType.options[s.AccountID.selectedIndex].selected =true;

}
function selectAccountIDFunc(s){

s.AccountList.options[s.AccountList.selectedIndex].selected =true;
s.AccountType.options[s.AccountList.selectedIndex].selected =true;

}
function selectAccountTypeFunc(s){

s.AccountList.options[s.AccountType.selectedIndex].selected =true;
s.AccountID.options[s.AccountType.selectedIndex].selected =true;

}

Each function changes the selection in the two other lists to the selected
index of the originating list box. To invoke this function, add an event
handler to each of the lists. Edit the extraAttributes property of each list to
one line of code:

onChange=selectAccountListFunc(form) <== in AccountList
onChange=selectAccountIDFunc(form) <== in AccountID
onChange=selectAccountTypeFunc(form) <== in AccountType

This code will be written to the list tag of the generated HTML:

<LIST onChange=selectAccountXxxxFunc(form) ...>

The JavaScript now contains three functions, one for each of the three lists. A
selection in either list triggers the other two to be positioned on the matching
item. Note that the names in the script must match the names of the GUI
beans defined in Table 24.

Connections
We set up the customer and account information before generating the
HTML:
ATM Application Using Servlets 215

 ❑ Connect the aboutToGenerateOrTransfer event to extract the customer
information (same as in PIN servlet) (3).

 ❑ Connect the aboutToGenerateOrTransfer event to the fillAccountIDList
method (event-to-code) and pass the accounts property of the Card
variable as a parameter (4). Connect the normalResult to the items
property of both the accountList and accountID bean (5).

 ❑ Connect the aboutToGenerateOrTransfer event to the fillAccountTypeList
method (event-to-code) and pass the accounts property of the Card
variable as parameter (6). Connect the normalResult to the items property
of the accountType bean (7).

Transaction Servlet
The transaction servlet (TransactionView class) provides the main function of
the ATM application. The transaction servlet handles deposit, withdraw, and
query operations A bank account object created by the model contains the
account ID, account type, current balance, and transaction history.

The bank account object is not saved as session data but accessed as a
property of the servlet that is set by the controller servlet before invoking the
transaction servlet. Each deposit, withdraw, and query operation invokes the
controller servlet for processing, and the updated bank account object is
assigned to the transaction servlet.

The Cancel button returns to the account selection view and the Exit button
terminates the dialog with the thank you view (Figure 118).
216 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 118. Transaction Servlet View

This view is composed of beans, connections, and some logic to extract the
transaction history data into an array of strings to fit into an HTML list
bean. The steps to complete this view are:

 ❑ GUI layout
 ❑ Session data for user-unique information
 ❑ Auxiliary method to extract transaction history data
 ❑ Connections

GUI
Figure 119 shows the design of the transaction servlet, and Table 25 shows
the major GUI beans and their properties.

23

4

5

6

78

10
ATM Application Using Servlets 217

Figure 119. Transaction Servlet Design

1

9

Table 25. GUI Beans in Transaction Servlet

The account ID is not stored in a live object. The account ID is used only in
the transaction servlet and for processing in the controller servlet. As you

Type Bean Name Property Property Value

HtmlImage logo source /itso/image/itso.gif

HtmlText custTitle string ..title..

HtmlText custFirst string ..first..

HtmlText custLast string ..last..

HtmlForm form action ATMServletController

HtmlText accountID string ..id..

HtmlText accountType string ..type..

HtmlText oldBalance string ..oldBal..

HtmlText newBalance string ..newBal..

HtmlEntryField amount size 8

HtmlList TransactionList visible... 5

HtmlText message string ..message..

HtmlPushButton depositButton string Deposit

HtmlPushButton withdrawButton string Withdraw

HtmlPushButton historyButton string History

HtmlPushButton cancelButton string Cancel

HtmlPushButton exitButton string Exit

HtmlHiddenInput accountIdHidden
218 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

know, the card object contains all the accounts, but it does not record which
account the user selected.

We use a hidden field to keep the account ID (1). The controller servlet gets
the (hidden) account ID from the form.

Of course we could use a cookie or add a property in the Card class, but we do
not want to modify the business model.

Session Data
We use the session data in the same way as for the PIN view. Place a
SessionDataWrapper (with propertyName card), tear off the propertyValue
(as type Card), and tear off the customer property from the Card (2).

Auxiliary Properties and Method
Define a messageText property on the BeanInfo page. This property will be
connected to the message field in the GUI to set an error message.

Promote the source property of the logo image as logoImageURL.

We define a bankAccount property of type BankAccount. (The BankAccount
class is in the itso.entbk2.atm.model package.)

We define a method to extract the transaction history from the bank account.
Input is a Vector object that contains itso.entbk2.atm.model.Transaction
objects, and output is an array of formatted Strings for the list.

private String[] buildTransactionList(java.util.Vector trans) {
String[] result = new String[trans.size()];
for (int i=0; i<trans.size(); i++) {

result[i] = new String(
((itso.entbk2.atm.model.Transaction)trans.elementAt(i)).toString());

}
return ret;

}

Connections
 ❑ Connect the aboutToGenerateOrTransfer event to extract the customer

information (same as in PIN and account servlets) (3).

 ❑ Place a variable on the free-form surface and change the type to
itso.entbk2.atm.model.BankAccount (4). This is the current account.
Connect the bankAccount property of the servlet to the this of the variable
(5).

 ❑ Extract account ID, account type, old balance, and new balance from the
ATM Application Using Servlets 219

bank account variable using the aboutToGenerateOrTransfer event (6).

 ❑ For the transaction history, connect the aboutToGenerateOrTransfer event
to the buildTransactionList method (event-to-code). Pass the transactions
property of the bank account as a parameter (7). Connect the
normalResult to the items property of the list box (8).

 ❑ To store the account ID for the next transaction process, connect the
aboutToGenerateOrTransfer event to the hidden field with the accountid
of the bank account as a parameter (9).

 ❑ Connect the messageText property to the string of the message field (10).

Thank You Servlet
The thank you servlet (ThankYouView class) is displayed at the end of an
ATM session (Figure 120). This servlet runs when the user clicks on the Exit
button in the card or transaction servlet. The Restart Transaction button tells
the controller servlet to start a new session with the card servlet.

Figure 120. Thank You Servlet View

The design of this servlet is so simple that we leave it to you to complete. Do
not forget to the set the action property in the form!
220 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

9.3 Application Flow Design
In this section we describe the general flow of the ATM application. In
“Implementing the Controller Servlet” on page 223 we construct the
controller servlet based on this design.

The controller servlet has two functions: to control the sequence of the servlet
views and to act as the gateway to the application controller layer (see
“Application Controller” on page 154) that interfaces with the persistent
storage (Figure 121).

Controller

ATM

Controller

Card Servlet

Pin Servlet

SessionData

Account Servlet

Transaction

View Layer (Servlets) Controller

FormData

FormData

FormData

FormData

Servlet

Application

Persistence

Servlet
ATM Application Using Servlets 221

Figure 121. Servlet Application Flow

Card

Business Object Layer
Customer Bank Account

Interface

Implementation

Keep the ATM Application Controller Alive
Servlets are instantiated when invoked and dismissed after processing
However, we want to keep the ATM application controller object alive
because it has database or enterprise connections. Therefore we instantiate
the application controller when the first user invokes the controller servlet.
We store the ATMApplicationController object in a static variable.

Flow Control
Each servlet passes control to the controller servlet through the action in the
form. All processing is done in the controller servlet that decides to which
servlet to pass control to display a user view.

Customer Verification
The entry point of the application is the card servlet. The controller servlet
requests a card object from the ATM application controller, which generates a
cardFound or cardNotFound event. A valid card is stored in session data, and
the PIN servlet is invoked, for an invalid card the card servlet displays an
error message.

PIN Verification
The PIN servlet passes the PIN to the controller servlet. The PIN is validated
against the card object (no database access required). For a correct PIN the
account servlet is invoked; for an invalid PIN the PIN servlet displays an
error message.

Selecting an Account
The account servlet passes the selected account to the controller servlet,
which retrieves the bank account object and invokes the transaction servlet.

Processing a Transaction
The account information is available in the bank account object. Each
deposit, withdraw, or history transaction is processed by the controller
222 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

servlet and an updated bank account object is sent back to the transaction
servlet. The Cancel button invokes the account servlet to select another
account, and the Exit button invokes the thank you servlet.

Exiting the ATM Application
The controller servlet handles the exit request from the card and transaction
servlets and invokes the thank you servlet. The Restart Transaction button
from the thank you servlet invokes the card servlet.

9.4 Implementing the Controller Servlet
It is time to implement the controller servlet (ATMServletController class)
with the processing and flow logic. The controller servlet is a kind of
connector with visual composition and business logic. We implement the
function in small and understandable pieces:

 ❑ Preparation for testing
 ❑ Initialization
 ❑ Customer verification
 ❑ PIN verification
 ❑ Account selection
 ❑ Deposit transaction
 ❑ Withdraw transaction
 ❑ Query transaction history
 ❑ Termination and restart
 ❑ Disable caching of the output HTML

Preparation for Testing
The servlets use the ATM application controller for processing. The ATM
application controller must have an implementation of the
ATMPersistenceInterface assigned.

For initial tests you can use the ATMPersistenceDefault memory
implementation (see “Persistence Layer” on page 162), and later you can
switch to the AtmDB database implementation (see Chapter 7, “ATM
Application Persistence Using Data Access Beans”). For the database test,
make sure that:

 ❑ DB2 is started

 ❑ The DB2 Java daemon is started (db2jstrt 8888)
ATM Application Using Servlets 223

Initialization
To keep the ATMApplicationController alive for a whole session, we use a
static field and assign it to a variable using visual composition.

 ❑ Create a static field named applicationController of type
itso.entbk2.atm.model.ATMApplicationController:

private staticATMApplicationController applicationController = null;

 ❑ Create a getApplicationController method to initialize the application
controller including setting a suitable persistence implementation:

publicATMApplicationController getApplicationController() {
if (applicationController == null) {

applicationController = new itso.entbk2.atm.model.ATMApplicationController();
applicationController.setATMPersistenceLayer
// (new itso.entbk2.atm.databean.AtmDB()); <=== database

(new itso.entbk2.atm.model.ATMPersistenceDefault()); <=== memory
setTransferToServiceHandler(getCardView());

}
return applicationController;

}

Initially we use the memory implementation of the persistence interface.

The setTransferToServiceHandler method specifies the card servlet as the
default target. We can start the application by invoking the controller
servlet.

 ❑ Go to the Visual Composition page and add a variable of type
ATMApplicationController (1).

 ❑ Connect the initialize event (of the servlet) to the this property of the
controller variable and get the parameter from the
getApplicationController method (parameter-from-code) (2).

 ❑ To indicate that the controller servlet does not generate HTML, connect
the initialize event (of the servlet) to the isTransferring property with a
parameter value of true (3).

Figure 122 shows the visual composition of the initialization phase.

2

3

224 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 122. Initializing the Controller Servlet

1

Customer Verification
Figure 123 shows the customer verification implementation.

Figure 123. Customer Verification

The steps to implement the customer verification are:

 ❑ Add a CardViewFormData bean to receive the data and event from the
card servlet (1).

 ❑ Add a SessionDataWrapper bean, name it CardData, with card as the
property name (2). We will save the card object in session data for
subsequent servlets.

 ❑ Add the two target servlets, CardView and PinView, as beans (3).

 ❑ The starting point for processing is the Ok button in the card servlet.
Connect the okButtonPressed event (in CardViewFormData) to the
getCard method of the ATMApplicationController. Pass the cardIdString
(of CardViewFormData) as a parameter (4). Do the same for the
enterKeyPressed event.

 ❑ The getCard method retrieves the card from the database. Connect the

1

2

33

4

5

6
8

7

ATM Application Using Servlets 225

normalResult to the propertyValue in the CardData session data bean (5).

 ❑ The ATMApplicationController fires a cardFound or cardNotFound event
after retrieving the card. We use these events to invoke the next servlet.

 • For a valid card we invoke the PIN servlet. Connect the cardFound
event to the transferToServiceHandler property of the controller
servlet and pass the this of PinView as a parameter (6).

 • For an invalid card we prepare an error message and invoke the card
servlet. Connect the cardNotFound event to the messageString
property of CardView and set the parameter to The card number is
invalid (7). Connect the cardNotFound event to the

transferToServiceHandler property of the controller servlet and pass
the this of CardView as a parameter (8).

 ❑ We will handle the Exit button event later.

Save the controller servlet and run it. When the card servlet displays the
greeting, enter a valid card number and click on Ok. The PIN servlet should
get control and display the next form.

PIN Verification
Figure 124 shows the PIN verification connections.

Figure 124. PIN Verification

1

2
3

4

5

6

7
8

9

226 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

The steps to implement the PIN verification are:

 ❑ Tear off the propertyValue of CardData (session data) and name it Card
(1). Change the type to itso.entbk2.atm.model.Card (ignore the warning).

 ❑ Add a PinViewFormData bean to receive the PIN entered by the user (2).

 ❑ The PIN is checked when the user clicks on the Ok button or presses the
Enter key. Connect the okButtonPressed event (of PinViewFormData) to
the checkPin method of the application controller (3). Two parameters are
required, the this of the Card, and the pinString of the PinViewFormData.

Create the same connections for the enterKeyPressed event.

 ❑ After checking a PIN, the application controller fires an event, either
pinCheckedOk and pinCheckedNotOk.

If the PIN is correct, we retrieve the accounts of the card and pass control
to the account servlet.

 • Connect the pinCheckedOk event to the getAccount method of
ATMApplicationController to add the account data to the card object.
(This data is required for the account servlet.) Pass the this of the Card
as a parameter (4).

 • Add a bean of type AccountView (5). Connect the pinCheckedOk event
to the transferToServiceHandler method and pass the this of
AccountView as a parameter (6).

 ❑ If the PIN is incorrect, we set an error message and return to the pin
servlet. Connect the pinCheckedNotOk event (of the application
controller) to the messageText property of PinView with the text PIN
invalid, please reenter! (7) Connect the pinCheckedNotOk to the
transferToServiceHandler method with the this of PinView as a parameter
(8).

 ❑ When the Cancel button is clicked (in PinView) we return to the card
servlet. Connect the cancelButtonPressed event to the
transferToServiceHandler method with the this of CardView as a
parameter (9).

Account Selection
Figure 125 shows the account selection connections. The steps to implement
account selection are:

 ❑ Add an AccountViewFormData and a TransactionView bean to the
free-form surface (1).

 ❑ The TransactionView requires a bank account object that contains the
ATM Application Using Servlets 227

balance and the transactions. The getAccount method of the application
controller returns a bank account based on the account ID.

 • Connect the okButtonPressed (and same for enterKeyPressed) event of
the AccountViewFormData to the getAccount method of the application
controller. Pass the accountIDSelectedItemString property of
AccountViewFormData as a parameter; this is the selected item in the
account ID list (2).

 • The result of the connection is the bank account object. Connect the
normalResult of the connections to the bankAccount property of the
TransactionView (3).

 • Connect the okButtonPressed and enterKeyPressed events to the
transferToServiceHandler method with the this of TransactionView as
a parameter (4).

 ❑ Connect the cancelButtonPressed event to the transferToServiceHandler
method with the this of PinView as a parameter (5).

Figure 125. Account Selection

Deposit Transaction

3

1

1

2

4 5
228 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 126 shows the connections for the deposit transaction. The
transaction is applied to the bank account, and the account servlet is invoked
again with the updated account object.

 ❑ Add a TransactionViewFromData bean to the free-form surface (1).

 ❑ The Deposit button invokes the deposit transaction. Connect the
depositButtonPressed event (of TransactionViewFormData) with the
deposit method of the application controller to update the bank account
(2). The deposit method requires two parameters: a bank account and an
amount:

 • The bank account we get from the card. Connect the account
parameter to the getAccount method of the card and with the
accountIDhiddenString property of TransactionViewFormdata as a
parameter (3). (We saved the account ID as hidden data in the form.)

 • We get the amount from the amountString property of the form (4).

 ❑ The result of the deposit method is the updated bank account. Connect the
normalResult to the bankAccount property of the TransactionView (5).

 ❑ The application controller fires a newTransaction event when the deposit
is complete. Connect the newTransaction event to the messageText
property of the TransactionView with the text Transaction complete,
account updated (6). Then connect the newTransaction event to the
transferToServiceHandler method with the this of TransactionView as a
parameter (7).

Figure 126. Deposit Transaction

1

2
3

4

5
6

7

ATM Application Using Servlets 229

Withdraw Transaction
Figure 127 shows the connections for the withdraw transaction. Withdraw is
similar to deposit but may fire a limit exceeded event if not enough funds are
available.

 ❑ The withdraw transaction is implemented with connections that match
the deposit transaction; connect the withdrawButtonPressed event to the
withdraw method of the application controller and use the same two
parameters (account as getAccount of Card and amount as amountString

of the form). Connect the normalResult to the bankAccount property of the
TransactionView (1).

Figure 127. Withdraw Transaction

 ❑ A complete withdrawal transaction fires the new transaction event. We
have already handled that in the deposit transaction.

 ❑ To handle the case of not enough funds, connect the limitExceeded event
(of the application controller) with the messageText property of the
TransactionView and set the text to Withdraw failed, not enough funds.
Then connect the limitExceeded event to the transferToServiceHandler
method with the this of TransactionView as a parameter (2).

 ❑ The application controller may fire a DBOutOfSynch event if the account
in the database does not match the account object. Deposit or withdraw
transactions are not performed. Connect the DBOutOfSynch event to a

1

2

2

3

3

230 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

suitable messageText in the TransactionView and to the
transferToServiceHandler method with the this of TransactionView as a
parameter (3).

Query Transaction History
Figure 128 shows the connections for the transaction history that retrieves
all transaction objects of an account for display. The initial list of
transactions displays current transactions only.

Figure 128. Query Transaction History

 ❑ Connect the historyButtonPressed event to the getTransactions method of
the application controller (1).

 ❑ The parameter of this connection is the bank account that we get in the
same way as for deposit and withdraw (use getAccount method in card) (2).
Connect the normalResult to the bankAccount property of the
TransactionView.

 ❑ No event is fired by the application controller. Connect the normalResult
of the getTransactions method to the transferToServiceHandler method
with the this of TransactionView as a parameter (3).

Cancel
 ❑ Connect the cancelButtonPressed event of the TransactionViewDataForm

1

3

4

2

ATM Application Using Servlets 231

to the transferToServiceHandler method with the this of AccountView as a
parameter (4).

Termination and Restart
Figure 129 shows the exit and restart connections. Here we handle the Exit
button in the card and transaction servlet to invoke the thank you servlet,
and we schedule the card servlet for the Restart button in the thank you
servlet.

We also have to make sure that the event listeners of the servlet are removed
from the application controller because each user interaction creates a new
instance of the servlet.

Figure 129. Termination and Restart

 ❑ Add a ThankYouView bean to the free-form surface (1).

 ❑ Connect the exitButtonPressed event of the CardViewFormData and of the
TransactionViewFormData to the transferToServiceHandler method with
the this of ThankyouView as a parameter (2).

 ❑ Add the ThankYouViewFormData bean to receive the Restart button

1

2

3

4

2

232 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

event and connect the restartButtonPressed and enterkeyPressed events to
the transferToServiceHandler method with the this of CardView as a
parameter to restart the ATM application (3).

 ❑ Add a connection from the aboutToGenerateOrTransfer event of the
servlet to the this property of the ATMApplicationController and set the
value to null (4). This connection removes all event listeners that the
controller servlet has set up with the application controller. (We found
that without this connection all previous instances of the controller
servlet received the events of the current interaction.)

Disable Caching of the Output HTML
When testing the ATM servlets we found that sometimes wrong accounts
were displayed for an ATM card, or that entering a PIN number of a
previously displayed card worked for another card ID.

Analysis proved that bad HTML pages were displayed to the end user
because they were cached from previous requests. The solution is to disable
the caching of the output HTML pages as discussed in “Disable Caching of
Generated HTML” on page 87.

Instead of disabling caching in each of the servlets, you can add the required
code to the initialize method of the controller servlet.

We also found that when invoking the ATMServletController in the middle of
a session without any parameters, a null pointer exception occurred because
no target servlet was set up with the setTransferToServiceHandler method.
The easiest solution for this problem is to set up the card servlet as the
default transfer servlet.

Figure 130 shows the tailored initialize method of the controller servlet. Note
that the connection method numbers (connEtoMx) may be different in your
implementation.

private void initialize() {
// user code begin {1}
// user code end
initConnections();
connEtoM1(); // setIsTransferring(true)
connEtoM3(); // setATMApplicationController(...)
// user code begin {2}
setTransferToServiceHandler(getCardView()); // default target servlet

// get response object
javax.servlet.http.HttpServletResponse resp = getResponse();
ATM Application Using Servlets 233

Figure 130. Disabling Caching for the ATM Servlets

resp.setContentType("text/html");
resp.setHeader("Pragma","no-cache"); // no caching
resp.setHeader("Cache-Control","no-cache");
resp.setDateHeader("Expires",0); // cache expires
// user code end

}

Controller Servlet Total Design
Figure 131 shows the total design of the controller servlet in the Visual
Composition Editor.

Figure 131. Controller Servlet Total Design
234 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

The dashed lines highlight the five servlets as they are invoked in sequence
by the ATM application controller.

9.5 Testing the ATM Servlet Application
Confirm that the functions of the system service layer, such as DB2, CICS, or
MQSeries, are properly configured.

Select the controller servlet (ATMServletController) and click on the Run
button in the tool bar. VisualAge for Java starts the internal HTTP server,
and a Web browser (defined in the Window->Options->Help menu) that
invokes the selected servlet. The card servlet should display the first user
interface. You can also select the card servlet (CardView) as the starting
point. The browser points to the URL:

http://127.0.0.1:8080/servlet/itso.entbk2.atm.servlet.ATMServletController

Built-in HTTP Server
com.ibm.ivj.servlet.runner.HttpServerStarter is the class that starts the
HTTP server to test a servlet. You can see the server running status in the
Console window. While the server is running, you can access the ATM servlet
from any browser that is in the network of your machine. The port address to
access the servlet is defined in the server configuration file
(IBMVJava\ide\project_resource\IBM Servlet Builder class libraries\com\
ibm\ivj\servlet\runner\configuration.properties) and is displayed in the
Console window. If you access a servlet from another machine, you must
specify the port; the default is 8080.

The default HTTP server comes from the Sun JSDK and is known as the
Servlet Runner. The Servlet Runner works as a servlet run-time engine and
not really as a Web server.

Using the WebSphere Application Server
You can use the WebSphere Application Server inside VisualAge for Java to
ATM Application Using Servlets 235

test your servlets.

Detailed instructions on how to make the WebSphere Application Server
work within VisualAge for Java depend on the version of WebSphere. The
instructions are available from these IBM Web sites:

http://www.software.ibm.com/ad/vajava
http://www.software.ibm.com/webservers

Using the ATM Servlet Application with DB2
After initial tests with the memory implementation of the persistence
interface we can now switch to the DB2 implementation.

Edit the getApplicationController method of the controller servlet to specify
the AtmDB bean as the persistence interface:

publicATMApplicationController getApplicationController() {
if (applicationController == null) {

applicationController = new itso.entbk2.atm.model.ATMApplicationController();
applicationController.setATMPersistenceLayer

(new itso.entbk2.atm.databean.AtmDB()); // <=== database
setTransferToServiceHandler(getCardView());

}
return applicationController;

}

Before starting the servlet test, make sure that DB2 is active and that the
DB2 Java daemon is started:

db2start
db2jstrt 8888

Attention Verify the connection information in the AtmDatabase
class. A user ID and password must be specified, and
prompting and auto-commit must not be checked. You
can check this in the code of the connect method

connection.setPromptUID(false);
connection.setAutoCommit(false);

or you can open one of the select beans and verify it in
the Visual Composition Editor (see Figure 104 on page
189). If user ID prompting is active, the prompt
window appears but may be hidden behind the Web
browser!
236 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

9.6 Deploying Servlets
The target for deploying servlets is a Web server. You can use Lotus Domino
Go Webserver, Netscape Application Server, Apache, and many others; they
all support servlets.

We used the WebSphere Application Server plugin with Lotus Domino Go
Webserver on Windows NT.

Install Lotus Domino Go Webserver
To use the Lotus Domino Go Webserver with WebSphere, do not install its
servlet function, because WebSphere replaces that function with its own
servlet support.

Install WebSphere and Customize
WebSphere is installed on top of an existing Web server and adds a servlet
run-time facility. WebSphere comes with an administration dialog that
enables you to tailor the WebSphere run time. Invoke the administration
dialog with:

http://host.machine.com:9090

One of the important tasks is to set up the class path for servlets. If you use
any of the VisualAge for Java Enterprise builders, you must make sure that
enterprise builder classes or jar files are accessible to WebSphere through the
WebSphere class path specification.

For more information see “Deployment of Servlets” on page 338.
ATM Application Using Servlets 237

238 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

10 ATM Application
with the CICS
Connector
In Chapter 4, “CICS Access with the CICS Connector”, we discuss the CICS
Connector. We cover the Common Connector Framework, the Universal CICS
Client, and the CICS Transaction Gateway, as well as record beans,
commands, navigators, and mappers.
© Copyright IBM Corp. 1998 239

In this chapter we examine the way in which the persistence layer of the
ATM application can be extended to make use of the CICS Connector to
access enterprise data through CICS programs.

10.1 A Review of the ATM Application Design
The ATM application design is based on a layered approach, as discussed in
Chapter 5, “ATM Application Requirements and ATM Database.”

The three layers of the application design are:

 ❑ User interface layer

The user interface layer deals with the GUI part of the application.

 ❑ Business object layer

The business object layer is responsible for the business logic. Core
entities of the ATM application are represented here.

 ❑ Persistence layer

The persistence layer is used to separate data access from the rest of the
application. This separation allows for different services to be used to
access the data without affecting the rest of the application.

Because this chapter is about accessing enterprise data with the CICS
Connector, the persistence layer is of special interest. The persistence layer
knows about the business objects, but not about the user interface layer.
Therefore the user interface layer is not addressed at all in this chapter.

Managing these layers is an application controller. Mediator objects are used
to connect the different layers. These objects are part of the application
controller. A Java interface, ATMPersistenceInterface, specifies the interface
to the persistence layer.

The Persistence Interface
The ATMPersistenceInterface consists of the methods listed in Table 26.
240 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Table 26. ATM Persistence Interface Methods

The application controller itself, represented by the
ATMApplicationController class, instantiates an object of a class that
implements the ATMPersistenceInterface. Each access method in the
persistence layer can have its own implementation of the
ATMPersistenceInterface.

We have already shown one such implementation when accessing enterprise
data with data beans (see Chapter 7, “ATM Application Persistence Using
Data Access Beans”). In this chapter we show another implementation for
accessing enterprise data through the CICS Connector. To use the different
enterprise access mechanisms, we only have to replace the persistence class
being instantiated.

Method Return
Type

Parameters Remarks

extConnect void - Connects to the data source

extDisconnect void - Disconnects from the data
source

extGetCard Card String cardId Retrieves the data and
constructs a new Card object

extGetPin Card Card Retrieves the PIN

extGetAccounts void Card Retrieves all accounts (of a
card) and stores them in the
card object

extUpdateBalance void BankAccount Updates balance and logs
changes in transaction history

extGetTransactions void BankAccount Retrieves all transactions (of an
account) and stores them in the
account object
ATM Application with the CICS Connector 241

Whenever a user-driven event occurs, such as a button being clicked, the user
interface layer calls a function in the application controller, which calls a
method of a class in the persistence layer that implements the
ATMPersistenceInterface. The behavior of the called method differs
according to the enterprise access mechanism. In this chapter we create a
class called AtmCICS that implements the ATMPersistenceInterface.
AtmCICS uses the CICS Connector.

10.2 Task Overview
In this section we briefly outline what parts of the persistence interface we
implemented to show how the ATM application can access enterprise data
through the CICS Connector.

Conventions
All classes created in this chapter are in the itso.entbk2.atm.cics package.

Only a Subset of the Interface Methods
The ATMPersistenceInterface consists of seven methods. For each type of
enterprise access mechanism, a nonempty method body should be developed
for each of these methods. Because of time constraints we implemented only
two of the interface methods, namely, extGetCard and extGetAccounts.

The main purpose of this chapter is to show an approach to implementing
ATMPersistenceInterface methods. The approach involves the use of the
CICS Connector. We hope that with such an approach other interface
methods can be implemented in a similar or even modified way.

CICS Infrastructure Assumptions
We assume that a CICS Transaction Gateway (with a CICS Gateway for Java
and a Universal CICS Client) and a CICS server have been installed and are
operational. We do not discuss the installation and customization of these in
detail.

CICS Programs
242 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

The CICS programs are the same as those used in Chapter 11, “ATM
Application Using MQSeries.” These programs are called through the ECI
interface. For more information about the programs, see “COBOL Sample
Programs” on page 366.

Unit of Work Considerations
The ECI call is associated with a start code of DS. This is equivalent to a
distributed program link (DPL) with the SYNCONRETURN option. Thus in
the absence of any explicit unit of work requests, the unit of work control is
dealt with implicitly.

For enquiry type transactions, whether successful or unsuccessful, all unit of
work is controlled implicitly when the CICS program issues an EXEC CICS
RETURN.

For update transactions that are successful, all unit of work is controlled
implicitly when the CICS program issues an EXEC CICS RETURN.

For update transactions that are unsuccessful, the unit of work is explicitly
rolled back before an EXEC CICS RETURN is issued.

Simulated DB2 Calls
DB2 calls have not been coded in the CICS COBOL programs. The data is
simulated in memory. Although it certainly would have been preferable to
have coded the DB2 calls, the simulation does not in any way affect the
discussion on the use of the CICS Connector.

Tasks Implemented
In the rest of this chapter we deal with the creation of classes and beans that
are needed to implement the extGetCard and extGetAccounts methods, in
the context of using the CICS Connector. We briefly describe the CICS
infrastructure needed to access CICS programs through the CICS Connector.
In our implementation we used TXSeries Version 4.2 for Windows NT.

10.3 CICS Infrastructure Requirements
In this section we cover the CICS infrastructure requirements for running
the CICS Connector.

CICS Server Resources
ATM Application with the CICS Connector 243

The CICS server definitions include a client listener and programs.

Client Listener
Define a client listener. In our example it is called ATMTCP and uses TCP/IP.
Figure 132 shows the definition using TXSeries Version 4.2 for Windows NT.

Figure 132. Client Listener Definition

Program Definitions
Assuming that program autoinstall is not active, create a program definition
for every program that will be called.

CICS Client Configuration and Startup
On the client machine you have to configure and start the CICS Client.
244 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

The CICSCLI.INI file needs to be customized to point to the CICS Server.

 ❑ Make a copy of the CICSCLI.INI file and rename it.

 ❑ Update environment variable CICSCLI to point to this file.

 ❑ Update the server stanza to point to the relevant server, host name, and
protocol, in our example, Server=ATMTCP. The customized stanza is
shown in Figure 60 on page 98.

Click on the appropriate icon to start the CICS Client (Programs -> IBM
Connectors -> IBM CICS Transaction Gateway -> Start Client).

Starting the CICS Transaction Gateway
Click on the appropriate icon to start the CICS Transaction Gateway
(Programs -> IBM Connectors -> IBM CICS Transaction Gateway -> CICS
Transaction Gateway).

10.4 Initial Creation of AtmCICS Class
The AtmCICS class implements the ATMPersistenceInterface. We create the
AtmCICS class with empty methods. As we develop the CICS Connector for
the ATM application, we will modify this class.

Define the AtmCICS class in the itso.entbk2.atm.cics package. Add the
ATMPersistenceInterface to the interface implementation list. On the second
page of the Create Class SmartGuide, check the box labeled Methods which
must be implemented so that skeletons for the seven methods of the
ATMPersistenceInterface are created.

Save the class for now. We will implement the extGetCard and
extGetAccounts methods later.

10.5 ATM Header for the COMMAREA
A design decision was taken to prefix all requests and responses with a
header. Every COMMAREA contains a header known as the ATM header.

The ATM header consists of four fields, namely id, date, output length, and
return code. The id and date fields should be primed for input requests. The
return code should be checked on getting a response back. A nonzero return
code indicates that an error has occurred.
ATM Application with the CICS Connector 245

To implement the ATM header create an AtmHeader class as a subclass of
Object with four properties:

 ❑ atmHdrId, of type java.lang.String, read/write, bound
 ❑ atmHdrDate, of type java.lang.String, read-only
 ❑ atmHdrReturnCode, of type short, read/write, bound
 ❑ atmHdrOutputLength, of type int, read/write, bound

All fields will be mapped into a COBOL COMMAREA.

Update the default constructor to initialize the properties:

public AtmHeader() {
super();
setAtmHdrId("ATM");
setAtmHdrReturnCode((short) 9999);
setAtmHdrOutputLength(44);

}

The header date is set to the current date whenever it is accessed. Update the
getAtmHdrDate method:

public String getAtmHdrDate() {
fieldAtmHdrDate = java.util.Calendar.getInstance().getTime().toString();
fieldAtmHdrDate = (fieldAtmHdrDate + " ").substring(0,28);
return fieldAtmHdrDate;

}

Auxiliary Method
Add a checkReturnCode method feature that throws an exception if the
return code in the header is not zero. The return code is set to a zero string by
the CICS COBOL program only if its execution was successful. This method
must be called to check the results of the CICS transaction (Figure 133).

Figure 133. Checking the Return Code of the CICS Transaction

public void checkReturnCode(short returnCode) throws Exception {
/* Perform the checkReturnCode method. */
if (returnCode != 0) {

System.out.println("ATM Header exception: return code " + returnCode);
throw (new Exception("Transaction failed: return code " + returnCode));

}
return;

}

246 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

10.6 CICS Transaction to Retrieve an ATM Card
The first interface method we look at is the extGetCard method. This method
is invoked when a user enters a card ID.

To implement the extGetCard method, using the CICS Connector, we require:

 ❑ A CICS COBOL program that accesses the card and customer enterprise
data. We assume that this program exists and is called ATMCARDI.

 ❑ A record bean representing the COMMAREA associated with the
ATMCARDI program.

 ❑ A command representing the input-interaction-output flow.

 ❑ A navigator that executes the command.

 ❑ An implementation of the extGetCard method.

CICS COBOL Program ATMCARDI
When the user enters his or her card ID, enterprise data must be accessed to
create a card and customer object as defined in the business object layer. The
ATMCARDI program is a CICS COBOL program that performs this function.

Figure 134 shows the COMMAREA of the ATMCARDI program.

Figure 134. COMMAREA of the ATMCARDI Program

The ATM-HEADER is not pertinent to the actual enterprise data. However,

01 DFHCOMMAREA.
 03 IO-COMMAREA.
 05 ATM-HEADER.
 07 ATMH-ID PIC X(4).
 07 ATMH-DATE PIC X(28).
 07 ATMH-RETURN-CODE.
 09 ATMH-RETURN-CODE-N PIC 9(4).
 07 ATMH-OUTPUT-LENGTH PIC 9(8).

 05 ATM-TRANSACTION-SPECIFIC.
 07 ATM-INFO-MESSAGE PIC X(50).
 07 FILLER PIC X(1950).

 05 ATM-CARD-REQ-RESP REDEFINES ATM-TRANSACTION-SPECIFIC.
 07 ATM-CARD-INFO.
 09 ATM-CARDID PIC X(7).
 09 ATM-PIN PIC X(4).
 09 ATM-CUSTID PIC X(4).
 09 ATM-CUST-TITLE PIC X(3).
 09 ATM-CUST-FNAME PIC X(30).
 09 ATM-CUST-LNAME PIC X(30).
ATM Application with the CICS Connector 247

it is used for internal processing and for checking the success or failure of the
transaction. Originally the COMMAREA was padded to cater for MQSeries
messages of varying sizes. To cater for variable record lengths, we use the
dynamic record structure provided by the Java record framework. In these
examples we have used custom records. Thus we are assuming a fixed length
COMMAREA knowing full well that for all the transactions discussed here
most of the COMMAREA is not referenced.

The COMMAREA is input for the COBOL dynamic record type generation.

Card Record Bean
The command needs to reference a record bean as input and output. This is a
two-step process (see Figure 62 on page 107). The first step creates a COBOL
record type; the second step generates the record bean from the record type.

Create the COBOL Card Record Type
To generate a record type from the COBOL source, complete these steps:

 ❑ Download a local representation of the source code of ATMCARDI into the
codepage of your current locale.

 ❑ In the Workbench, select the itso.entbk2.atm.cics package to contain the
generated record type.

 ❑ From the Selected menu, select Tools -> Records -> Create COBOL
RecordType. The Create a COBOL RecordType SmartGuide opens.

 ❑ In the Class Name field specify CardRecordType.

 ❑ In the COBOL file field specify the path and name of the COBOL program
you downloaded (Figure 135).
248 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 135. Card Record Type Creation: Class and COBOL File

 ❑ Click on Next. On the second page of the SmartGuide select a level 01
COMMAREA from the COBOL source file and click on > to add the
COMMAREA to the Selected commareas list (Figure 136).

 ❑ Click on Finish. A record type is generated into the package you selected.

Figure 136. Card Record Type Creation: COMMAREA Selection

Generate the Card Record Bean
Now you can generate the record bean from the COBOL record type:

 ❑ Select CardRecordType and right-click.

 ❑ Select Tools -> Record -> Generate Record.

 ❑ Enter a class name of CardRecord.

 ❑ Check Beans, Direct, and Custom Records.
ATM Application with the CICS Connector 249

 ❑ Click on Next. The properties of the Record Attributes Bean are displayed.

 ❑ If necessary alter the properties according to the platform of the target
CICS Server.

 ❑ Click on Finish.

Two classes are generated, namely, CardRecord and the associated
CardRecordBeanInfo. (CardRecord is a real JavaBean.)

Figure 137 shows the setting of the properties for TXSeries Version 4.2 on
Windows NT.

Figure 137. Card Record Bean Generation

Card Command
To access the enterprise data with the CICS Connector it is necessary to
create a command. For this transaction we create a command that does not
use a mapper bean. The command is constructed with the Command Editor.
250 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Note that it is also possible to construct a command with the Visual
Composition Editor.

CardCommand Class
Create the CardCommand class as a subclass of
com.ibm.ivj.eab.command.CommunicationCommand. See “Constructing a
Command” on page 112 for detailed instructions.

Command Editor
Once the class is created we construct the command, using the Command
Editor:

 ❑ Select the CardCommand class and open the Command Editor (Tools ->
Command Editor).

 ❑ Add a CICSConnectionSpec and an ECIInteractionSpec.

 ❑ Open the ceConnectionSpec and change its properties. In our case the
CICSServer is ATMTCP and the URL is bosporus (Figure 138). Our CICS
Transaction Gateway is installed on a machine with the host name
bosporus.
ATM Application with the CICS Connector 251

Figure 138. CardCommand with CICSConnectionSpec Properties

 ❑ Open the ceInteractionSpec and change the CICS program property to
ATMCARDI (our CICS program).

 ❑ Associate the Input with the CardRecord input bean.

 ❑ On the input record select Promote Bean Features and promote the
ATM_CARDID, ATMH_ID, ATMH_DATE, ATMH_OUTPUT_LENGTH,
and ATMH_RETURN_CODE_N properties.

 ❑ Associate the Output with the CardRecord output bean.

 ❑ On the output record select Promote Bean Features and promote the
ATM_CARDID, ATM_CUST_FNAME, ATM_CUST_LNAME, ATM_CU
ST_TITLE, ATM_CUSTID, ATM_PIN, and ATMH_RETURN_CODE_N
properties.

 ❑ Click on OK to generate the CardCommand.

Building a Navigator to Execute the CICS Transaction
It is necessary to create a class that executes the CardCommand command.
We could just create a class that does the job, but the CICS Connector
provides a suitable class for us, the navigator.

What Is a Navigator?
A navigator is a wrapper that can execute one command or multiple
commands in sequence. Commands can be chained together depending on the
successful or unsuccessful event of previous commands, or depending on the
results of the command execution.

A navigator provides an execute method to start processing. It also provides
methods to set a successful or unsuccessful completion event. This allows you
to build higher level beans by nesting navigators and commands.

We describe an advanced navigator in “Using an Advanced Navigator” on
page 273. For now we build a simple navigator that executes one command.

Navigator for the Card Command
We create the CICSCardNavigator class as a subclass of the navigator class,
252 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

com.ibm.ivj.eab.command.CommunicationNavigator, and open the Visual
Composition Editor (Figure 139):

 ❑ Add a CardCommand and an AtmHeader bean to the free-form surface.

 ❑ Add two factories of types Card and Customer to the free-form surface.

 ❑ Add a variable of type String to the free-form surface and name it CardId.

Figure 139. Visual Composition of CICSCardNavigator Class

Connections
In the Visual Composition Editor add the following connections:

 ❑ Connect the internalExecutionStarting event of the navigator class to the
execute method of CardCommand (1).

 ❑ Connect the this property of CardId to the ceInputATM_CARDID property
of CardCommand. Make sure that the target event is set to none (2).

 ❑ Connect the atmHdrId, atmHdrDate, atmHdrOutputLength, and
atmHdrReturnCode properties of AtmHeader to the corresponding
CardCommand properties (ceInputATMH__ID, ceInputATMH__DATE,
ceInputATMH__OUTPUT__LENGTH, ceInputATMH__RETURN__CODE__N)
(3).

 ❑ Connect the executionSuccessful event of the CardCommand to the
checkReturnCode method of AtmHeader and pass the
ceOutput1ATMH__RETURN__CODE__N property (of CardCommand) as
a parameter (4).

1

2

3 4
5

6

78

9

10
ATM Application with the CICS Connector 253

 ❑ Connect the normalResult of the connection to the constructor (with
parameters) of Customer (5).

 ❑ Connect each constructor parameter to the corresponding ceOutput1xxxx
properties of CardCommand (6).

 ❑ Connect the normalResult of the instantiation of Customer to the
constructor (with parameters) of Card (7).

 ❑ Connect the cardNumber and pinCard parameters to the corresponding
ceOutput1xxxx properties of CardCommand (8).

 ❑ Connect the customer parameter or the Card constructor to the this
property of Customer (9).

 ❑ Connect the executionSuccessful event of the CardCommand to the
returnExecutionSuccessful method of the navigator, and connect the
executionUnsuccessful event of the CardCommand to the
returnExecutionUnsuccessful method (10).

 ❑ Save the bean.

Promote External Features
The this properties of CardId and Card must be promoted for external access.
This generates public methods setCardIdThis and getCard, which will be
used in the extGetCard method of the AtmCICS bean.

Implement the extGetCard Method
Now that all the components have been developed, we can implement the
extGetCard method in the AtmCICS class.

Add CICSCardNavigator Bean to AtmCICS
Open the Visual Composition Editor for the AtmCICS class. Add a
CICSCardNavigator bean to the free-form surface and label it
CICSCardNavigator. Close the window and save.

Code the extGetCard Method
Figure 140 shows how the extGetCard is implemented to instantiate a
CICSCardNavigator object, set the card ID, and call its execute method. The
resulting card object is retrieved after executing the navigator.

public itso.entbk2.atm.model.Card extGetCard(String cardId) throws Exception {
itso.entbk2.atm.model.Card card = null;
getCICSCardNavigator().setCardIdThis(cardId);
getCICSCardNavigator().execute();
card = getCICSCardNavigator().getCard();
254 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 140. Implementation of extGetCard

At this stage the CICS function to retrieve card and customer information
can be invoked.

return card;
}

10.7 Using Mappers
Instead of using the Visual Composition Editor to connect the properties of
one or more business objects to the properties of a command, it is possible to
achieve this mapping through mapper beans. These mapper beans map the
properties of one or more business objects or classes to a record bean.
Mappers are added to a command.

In this section we develop an alternative command with input and output
mappers for the extGetCard function. The new command requires a change
in the class that executes the command.

Input Mapper for Card
The input request consists of the AtmHeader and a field representing a card
ID. We map the AtmHeader to the input record but pass the card ID directly.

Use Mapper Editor to Create CardInputMapper
We create a mapper named CardInputMapper to set up the COMMAREA for
input.

 ❑ Select the CardRecord and Tools -> Mapper Editor from the context menu.
The Mapper Editor is presented with the input bean primed with the
properties of the CardRecord bean.

 ❑ Click on Add and add the AtmHeader class to the output beans.

 ❑ Map the four AtmHeader properties to the CardRecord properties:

 • Select the AtmHdrDate property in the AtmHeader (output bean).
 • Select the ATMH_ID property in the CardRecord (input bean).
 • Select the connection direction from the AtmHeader to the CardRecord

(arrow left to right).

Perform the same steps for the other three properties (Figure 141).
ATM Application with the CICS Connector 255

Figure 141. Mapper Editor for Input Record Mapping

Click on OK and enter CardInputMapper when you are prompted for a class
name. The CardInputMapper class is generated.

Output Mapper for Card
The output response consists of the AtmHeader, customer, and card
information. To map the COMMAREA to properties of the Card and
Customer beans create the CardOutputMapper:

 ❑ Open a new Mapper Editor on the CardRecord. The input bean is primed
with the properties.
256 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

 ❑ Add three classes to the output bean: Customer, Card, and AtmHeader.

 ❑ Map the customer ID, first name, last name, and title of the customer to
matching properties in the CardRecord. Be sure to click on the right to left
arrow (input bean to output bean).

 ❑ Map the card ID and PIN of the card to matching properties. You cannot
set the customer property through mapping; this must be done by coding.

 ❑ Map the return code of the AtmHeader to the return code in the input.

 ❑ Click on OK and enter CardOutputMapper as the class to be generated.

Create a Command with Mappers
To use the input and output mappers, we create a new
CardMapperCommand class, similar to the CardCommand class. Follow the
steps outlined in “Command Editor” on page 251, replacing references to
CardCommand with CardMapperCommand.

Now we add the mappers. Open the Command Editor on the
CardMapperCommand class.

Add the Mappers
To add the mapper to the input record select Add Mapper in the context
menu and specify CardInputMapper as the class. In the same way add the
CardOutputMapper class to the output record (Figure 142).

Figure 142. Command Editor with Mappers

Execute the CICS Transaction with Mappers
In “Building a Navigator to Execute the CICS Transaction” on page 252 we
create a CICSCardNavigator class that calls the execute method of the
CardCommand bean.
ATM Application with the CICS Connector 257

In this section we create a CICSCardMapperNavigator class that calls the
execute method of the CardMapperCommand. CICSCardMapperNavigator is
similar to CICSCardNavigator except that the creation of the card and
customer objects occurs within the command itself.

Add a new CICSCardMapperNavigator class to the itso.entbk2.atm.cics
package. In the Visual Composition Editor:

 ❑ Add a CardMapperCommand and an AtmHeader bean to the free-form
surface.

 ❑ Add a variable of type Card to the free-form surface.

 ❑ Add a variable of type String to the free-form surface and name it CardId
(Figure 143).

Figure 143. Visual Composition of the CICSCardMapperAccess Class

Extracting the Card and Customer
Once the execute method of the CardMapperCommand has run successfully,
an instance of the card and customer classes is created. The card object is
associated with the customer object. This association has not been mapped in
the mapper bean and must be created now.

The command has a mappedObjects property (an enumeration) that contains
all the objects that were created. We extract the card and customer objects
and associate them with a new method called enumCard (Figure 144).

private itso.entbk2.atm.model.Card enumCard(java.util.Enumeration enum) {
Object nextObj = null;
itso.entbk2.atm.model.Card card = null;

1

7

3

45

6

7

258 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 144. Extracting Objects from a Command

itso.entbk2.atm.model.Customer customer = null;
if (enum == null) return null;
while (enum.hasMoreElements()) {

nextObj = enum.nextElement();
if (nextObj instanceof itso.entbk2.atm.model.Card)

card = (itso.entbk2.atm.model.Card)nextObj;
if (nextObj instanceof itso.entbk2.atm.model.Customer)

customer = (itso.entbk2.atm.model.Customer)nextObj;
}
card.setCustomer(customer);
return card;

}

Connections
We create the logic in the Visual Composition Editor:

 ❑ Connect the internalExecutionStarting event of the navigator class to the
execute method of CardMapperCommand (1).

 ❑ Connect the this property of CardId to the ceInputATM_CARDID property
of CardMapperCommand. Make sure that the target event is set to none
(2).

 ❑ Connect the executionSuccessful event of the CardMapperCommand to
the checkReturnCode method of AtmHeader and pass the
ceOutput1ATMH_RETURN_CODE_N property as a parameter (3).

 ❑ Connect the normalResult of the connection to the enumCard method
(event-to-code) (4).

 ❑ Connect the enum parameter of the connection to the
connectionMappedObjects method of the CardMapperCommand (5).

 ❑ Connect the normalResult of the enumCard method to the this of Card (6).

 ❑ Connect the executionSuccessful (and executionUnsuccessful) event of the
CardMapperCommand to the returnExecutionSuccessful (and
returnExecutionUnsuccessful) method of the navigator (7).

 ❑ Save the bean.

Promote External Features
The this properties of CardId and Card must be promoted for external access.
This generates public methods setCardIdThis and getCardThis, which will be
used in the extGetCard method of the AtmCICS bean.

Note that for a variable the method name is getCardThis; for the factory it
was getCard.

Change the AtmCICS Class to Use the Mappers
ATM Application with the CICS Connector 259

CICSCardMapperNavigator is an alternative to CICSCardNavigator. The
extGetCard instantiates an object of class CICSCardNavigator (Figure 140
on page 254).

We enhance the AtmCICS class to work with either the CICSCardNavigator
or CICSCardMapperNavigator class:

 ❑ Open the AtmCICS class and add a cardMapperSwitch property of type
boolean in the BeanInfo page. With this switch you can set which class is
used in the extGetCard method.

 ❑ In the Visual Composition Editor add a bean of type
CICSCardMapperNavigator to the free-form surface.

 ❑ Change the extGetCard method to initialize either CICSCardNavigator or
CICSCardMapperNavigator (Figure 145).

Figure 145. Implementation of Enhanced extGetCard

At this stage the CICS function to retrieve card and customer information
can be invoked with either the CICSCardNavigator or the
CICSCardMapperNavigator.

10.8 Test the CICS Card Transaction
You can now go ahead and test the CICS transaction that retrieves a card.
With systems like CICS it is a good idea, however, to prepare for testing.

Prepare Test Output for Card Transaction

public itso.entbk2.atm.model.Card extGetCard(String cardId) throws Exception {
itso.entbk2.atm.model.Card card = null;
if (getCardMapperSwitch() == false) {

getCICSCardNavigator().setCardIdThis(cardId);
getCICSCardNavigator().execute();
card = getCICSCardNavigator().getCard();

}
else {

getCICSCardMapperNavigator().setCardIdThis(cardId);
getCICSCardMapperNavigator().execute();
card = getCICSCardMapperNavigator().getCardThis();

}
if (card == null) throw new java.lang.Exception("Card not found");
return card;

}

260 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

To display some useful information when testing the CICS transaction we
modify the two command classes, CardCommand and
CardMapperCommand:

 ❑ Change the handleException method according to the help documentation
by adding one line of code:

private void handleException(Throwable exception) {
this.internalExceptionHandler(exception);

}

 ❑ Overwrite the checkInputState method that is inherited from the
CommunicationCommand class to display input record data:

public void checkInputState()
throws com.ibm.ivj.eab.command.InvalidInputStateException {

System.out.println("Card Command Input State:");
System.out.println("cardid="+getCeInputATM__CARDID());
System.out.println("headid="+getCeInputATMH__ID());
System.out.println("date ="+getCeInputATMH__DATE());
System.out.println("outlg ="+getCeInputATMH__OUTPUT__LENGTH());
System.out.println("retcod="+getCeInputATMH__RETURN__CODE__N());

}

 ❑ Overwrite the afterInternalExecution method to display the output record
data after the execution of the command:

public void afterInternalExecution
(com.ibm.ivj.eab.command.CommandEvent param1) {

System.out.println("Command execute: ");
System.out.println("cardid="+getCeOutput1ATM__CARDID());
System.out.println("pin ="+getCeOutput1ATM__PIN());
System.out.println("cust ="+getCeOutput1ATM__CUST__FNAME()+

" "+getCeOutput1ATM__CUST__LNAME()+
" "+getCeOutput1ATM__CUST__TITLE());

System.out.println("retcod="+getCeOutput1ATMH__RETURN__CODE__N());
}

 ❑ For testing we directly invoke the extGetCard method of the AtmCICS
class.

Testing Card Transaction with a Scrapbook Script
The functionality of the card transaction can be tested with a small
Scrapbook script (Figure 146).

// Test the CICS card transaction
ATM Application with the CICS Connector 261

Figure 146. Scrapbook for CICS Card Transaction Testing

itso.entbk2.atm.cics.AtmCICS atmcics = new itso.entbk2.atm.cics.AtmCICS();

atmcics.setCardMapperSwitch(false); // set to true for CardMapperCommand

itso.entbk2.atm.model.Card card1 = atmcics.extGetCard("1111111");
System.out.println(card1);

Testing without CICS
When you run the Scrapbook test without a CICS system, the Console
window should display output similar to this:

Card Command Input State:
cardid=1111111
headid=ATM
date =Thu Nov 19 20:45:37 PST 1998
outlg =44
retcod=9999
*** CICSManagedConnection.getCICSGatewayObject() exception:

java.io.IOException: CCL6651E: Unable to connect to the Gateway.
[address = bosporus, port = 2006] [java.net.SocketException: No route to host].

*** ECIHelper.eciRequest() exception: java.io.IOException: CCL6651E:
Unable to connect to the Gateway. [address = bosporus, port = 2006]
[java.net.SocketException: No route to host].

Command execute:
cardid=
pin =
cust =
retcod=0
java.lang.Exception: Card not found

10.9 Discussion Review
Thus far we have discussed how to use the CICS Connector to create classes
and beans necessary to implement the extGetCard method. We have shown
the construction of a record bean, a command, a mapper, and a navigator that
invokes the execute method of the command. On completion of the
extGetCard method, a card and customer object should have been
instantiated.

The next requirement is to populate the card object with the associated
account details. This is implemented in the extGetAccounts method of the
persistence layer.
262 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

10.10 CICS Transaction to Retrieve Accounts
Once a card object has been instantiated, it is necessary to get the details of
all accounts associated with that card. In the ATM application, there are two
types of accounts, checking and savings. These two types are represented,
respectively, by the CheckingAccount and SavingsAccount classes in the
itso.entbk2.atm.model package. A card object is associated with a vector of
BankAccounts. BankAccount is a superclass of SavingsAccount and
CheckingAccount.

In this section, the enterprise account data is retrieved by a CICS COBOL
program called ATMACCNT. Given a card, it retrieves card account data.
This is returned in the COMMAREA. It is the function of the extGetAccounts
method to call this CICS COBOL program. On getting a response, the
accounts must be set up in a vector that consists of both SavingsAccount and
CheckingAccount instances.

The implementation of the extGetAccounts method with the CICS Connector
requires:

 ❑ A CICS COBOL program that accesses the accounts associated with a
customer card. This program exists and is called ATMACCNT.

 ❑ A record bean representing the COMMAREA associated with the
ATMACCNT program.

 ❑ A command representing the input-interaction-output flow.

 ❑ A mapper for the output COMMAREA to move the return code to the
return code associated with the AtmHeader.

 ❑ A navigator that executes the command.

 ❑ An implementation of the extGetAccounts method.

CICS COBOL Program ATMACCNT
ATM Application with the CICS Connector 263

Once a customer and card object have been instantiated, the account details
associated with that card must be retrieved from the enterprise data store.
The ATMACCNT program performs this function.

Figure 147 shows the COMMAREA of the ATMACCNT program.

Figure 147. COMMAREA of the ATMACCNT Program

The COMMAREA consists of an ATM header, a card id (ATM-CARDID), a
field specifying the number of accounts (ATM-NO-ACCOUNTS), and an
array of account details (ATM-ACCOUNTS). An artificial limit of 10 has been
imposed on the number of accounts associated with a card. In reality there
would be no limit, and the dynamic record access mechanism would be used
for record bean generation. We have instead chosen to implement the custom
record option where we have imposed a fixed length record layout.

Accounts Record Bean

01 DFHCOMMAREA.
 03 IO-COMMAREA.
 05 ATM-HEADER.
 07 ATMH-ID PIC X(4).
 07 ATMH-DATE PIC X(28).
 07 ATMH-RETURN-CODE.
 09 ATMH-RETURN-CODE-N PIC 9(4).
 07 ATMH-OUTPUT-LENGTH PIC 9(8).

 05 ATM-TRANSACTION-SPECIFIC.
 07 ATM-INFO-MESSAGE PIC X(50).
 07 FILLER PIC X(1950).

 05 ATM-ACCOUNTS-REQRESP REDEFINES ATM-TRANSACTION-SPECIFIC.

 07 ATM-ACCOUNTS-FIXED.
 09 ATM-CARDID PIC X(7).
 09 ATM-NO-ACCOUNTS PIC 9(2).

 07 ATM-ACCOUNTS.
 09 ATM-ACCOUNT-DETAILS OCCURS 10.
 11 ATM-ACCID PIC X(8).
 11 ATM-ACCTYPE PIC X(1).
 11 ATM-BALANCE PIC 9(6).99.
 11 ATM-MINAMT PIC 9(6).99.
 11 ATM-OVERDRAF PIC 9(6).99.
264 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

A command needs to reference a record bean as input and output. It is
therefore necessary to generate a record bean from a COBOL record type.
This record bean is called AccountsRecord.

Create the COBOL Accounts Record Type
The steps are identical to “Create the COBOL Card Record Type” on page 248
and are not repeated here. The output record type is called
AccountsRecordType.

Edit the Accounts Record Type
We are not actually going to change the record type but want to show you the
Java Record Editor. Select Tools -> Records -> Edit RecordType on the
AccountsRecord (Figure 148).

Figure 148. Edit of Accounts Record Type

Should the return code contain alphanumeric values, we would change the
COBOL Type Picture field to X(4).

Generate the Accounts Record Bean
Now we generate the AccountsRecord bean from the record type in the same
way as in “Generate the Card Record Bean” on page 249. Figure 149 shows
ATM Application with the CICS Connector 265

the classes that are generated.

Figure 149. Classes Generated from Accounts Record Type

Classes for Arrays
The class that is generated with the very long name

AccountsRecord_IO__COMMAREA_ATM__TRANSACTION__SPECIFIC__ATM__ACCOUNTS__REQRESP_
ATM__ACCOUNTS_ATM__ACCOUNT__DETAILS

is used to access an account array occurrence. If you look inside the
AccountsRecord class, you find two methods to access the account
occurrences:

 ❑ getATM__ACCOUNT__DETAILS() retrieves the whole array of accounts.

 ❑ getATM__ACCOUNT__DETAILS(int) retrieves one account instance.

It looks like the COBOL REDEFINES and OCCURS clauses cause the
generation of very long names!

Accounts Input Mapper
We create a mapper named AccountsInputMapper to set up the COMMAREA
with the AtmHeader information.

Start the Mapper Editor for the AccountsRecord (see “Use Mapper Editor to
Create CardInputMapper” on page 255).

Add an AtmHeader instance and map the four properties to the matching
properties of the AccountsRecord. Generate the mapper class as
AccountsInputMapper.

Accounts Command
To access the enterprise data with the CICS Connector we create a command
with the Command Editor.

AccountsCommand Class
266 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Create the AccountsCommand class as a subclass of
CommunicationCommand.

Command Editor
Start the Command Editor on the AccountsCommand class:

 ❑ Add a CICSConnectionSpec and an ECIInteractionSpec and set the
properties to ATMTCP (CICSServer), bosporus (URL), and ATMACCNT
(Program).

 ❑ Associate the input and the output with the AccountsRecord bean.

 ❑ Promote the ATM__CARDID property of the input bean.

 ❑ Add the AccountsInputMapper to the input bean.

 ❑ Promote the ATMH_RETURN_CODE_N, ATM_ACCOUNT_DETAILS,
and ATM_NO_ACCOUNTS properties of the output bean.

 ❑ Click on OK to generate the AccountsCommand.

Navigator to Execute the CICS Accounts Transaction
To execute the AccountsCommand we create a CICSAccountsNavigator class
(subclass of CommunicationNavigator), using the Visual Composition Editor
(Figure 150):

 ❑ Add an AccountsCommand and an AtmHeader bean to the free-form
surface.

 ❑ Add a variable of type String and name it CardId.

 ❑ Add a variable of type Vector and name it AccountsVector (this is the
result of the accounts transaction).

Figure 150. Visual Composition of CICSAccountsNavigator

1

2

3
4

5

6

7

ATM Application with the CICS Connector 267

Connections
In the Visual Composition Editor add the following connections:

 ❑ Connect the internalExecutionStarting event of the navigator class to the
execute method of AccountsCommand (1).

 ❑ Connect the property of CardId to the ce1InputATM__CARDID property
of AccountsCommand. Set the target event to none (2).

 ❑ Connect the executionSuccessful event of AccountsCommand to the
checkReturnCode method of AtmHeader and pass the
ceOutput1ATMH__RETURN__CODE__N property as parameter (3).

 ❑ Connect the normalResult of the connection to a new createAccountsVector
method (event-to-code) (4).

The createAccountsVector method has to create the result vector of
accounts that belong to the card given as input. Define the method with a
return type of java.util.Vector and these two parameters:

 • noOfAccounts, type int
 • accounts, type AccountsRecord_IO__COMMAREA_ATM__TRAN...[]

(an array of the very long class name)

We will develop the code of the method later.

 ❑ The call to the createAccounts method requires two parameters. Pass the
number of accounts (property ceOutput1ATM__NO__ACCOUNTS) and
the accounts array (property ceOutput1ATM__ACCOUNT__DETAILS) as
parameters (5).

 ❑ Connect the normalResult of the createAccountsVector method call to the
this of the AccountsVector variable. Pass the event data (the vector) as a
parameter. (6)

 ❑ Connect the executionSuccessful (and executionUnsuccessful) event of the
AccountsCommand to the returnExecutionSuccessful (and
returnExecutionUnsuccessful) method of the navigator. (7)

Creating the Vector of Accounts
The objective of the CICS transaction is to populate a card object with a
vector of bank accounts. On completion of the ATMACCNT CICS program, an
array of accounts is returned. The array is only a data stream, however.
Something is needed to format this array into a vector of bank accounts
where the individual elements are either a savings account or a checking
account object. This is the role of the createAccountsVector method.

The array of accounts and the number of occurrences in the array are in the
CICS output COMMAREA. The COMMAREA is represented by the
AccountsRecord bean. We promote the two properties in the output bean and
268 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

pass them as parameters into the createAccountsVector method.

The createAccountsVector method creates a vector of accounts from the array
of accounts in the output bean of the command. The method runs through the
number of accounts retrieved in the accounts array and creates a new
checking account or savings account object according to the account type.

The class that represents an account in the array of accounts provides the
required methods to extract the properties of an account, for example,
getATM__ACCID and getATM__BALANCE. These properties are used in the
constructor of the checking or savings account.

The new bank account objects are added to the result vector, which in turn is
returned to the caller.

Figure 151 shows the code of the createAccountsVector method.

Figure 151. Code Listing of createAccountsVector Method

Promote External Features

public java.util.Vector createAccountsVector
(int noOfAccounts,
AccountsRecord_IO__COMMAREA_ATM__TRANSACTION__SPECIFIC__ATM__ACCOUNTS__

REQRESP_ATM__ACCOUNTS_ATM__ACCOUNT__DETAILS[] accounts) {
itso.entbk2.atm.model.BankAccount bankAccount;
String acctype = null;
String acctid = null;
java.math.BigDecimal balance = null;
java.math.BigDecimal minAmt = null;
java.math.BigDecimal overDraft = null;
java.util.Vector vecAccounts = new java.util.Vector();
System.out.println("Creating accounts vector ...");

for (int i=0 ; i < noOfAccounts ; i++) {
acctype = accounts[i].getATM__ACCTYPE();
acctid = accounts[i].getATM__ACCID();
balance = new java.math.BigDecimal(accounts[i].getATM__BALANCE());
minAmt = new java.math.BigDecimal(accounts[i].getATM__MINAMT());
overDraft = new java.math.BigDecimal(accounts[i].getATM__OVERDRAF());

if (acctype.equalsIgnoreCase("C"))
bankAccount = new itso.entbk2.atm.model.CheckingAccount

(acctid, balance, overDraft);
else

bankAccount = new itso.entbk2.atm.model.SavingsAccount
(acctid, balance, minAmt);

vecAccounts.addElement(bankAccount);
System.out.println(" - added account: "+bankAccount);

}
return vecAccounts;

}

ATM Application with the CICS Connector 269

The this property of CardId and the AccountsVector must be promoted for
external access. This generates public methods setCardIdThis and
getAccountsVectorThis, which will be used in the extGetAccounts method of
the AtmCICS bean.

Implement the extGetAccounts Method
The next step is to include the CICSAccountsNavigator class in the AtmCICS
class and code the extGetAccounts method to invoke the transaction.

Add CICSAccountsNavigator Bean to AtmCICS
Open the Visual Composition Editor for the AtmCICS class. Add a
CICSAccountsNavigator bean to the free-form surface and label it
CICSAccountsNavigator. Close the window and save.

Code the extGetAccounts Method
Figure 152 shows how the extGetAccounts method initializes the
CICSAccountsNavigator with the card ID and then calls the execute method
of the CICSAccountsNavigator. The createAccountsVector method of the
navigator creates the vector of associated accounts that is retrieved and
assigned to the card object.

Figure 152. extGetAccounts Method

At this stage the CICS function to prime a card object with its associated
accounts can be invoked.

10.11 Testing the CICS Accounts Transaction

public void extGetAccounts(itso.entbk2.atm.model.Card card) throws Exception {
getCICSAccountsNavigator().setCardIdThis(card.getCardNumber());
getCICSAccountsNavigator().execute();
card.setAccounts(getCICSAccountsNavigator().getAccountsVectorThis());
if (getCICSAccountsNavigator().getAccountsVectorThis() == null)

System.out.println("No accounts for "+card);
}

270 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Before we test the CICS transaction to retrieve the accounts of a card, let’s
prepare for testing.

Prepare Test Output for Accounts Transaction
We modify the AccountsCommand class with test output as we did for the
CardCommand and CardMapperCommand classes:

 ❑ Change the handleException method according to the help documentation
by adding one line of code:

this.internalExceptionHandler(exception);

 ❑ Overwrite the checkInputState method that is inherited from the
CommunicationCommand class to display the cardId in the input record:

public void checkInputState()
throws com.ibm.ivj.eab.command.InvalidInputStateException {

System.out.println("Card Command Input State:");
System.out.println("cardid="+getCeInputATM__CARDID());

}

 ❑ Overwrite the afterInternalExecution method to display the output record
data after the execution of the command:

public void afterInternalExecution
 (com.ibm.ivj.eab.command.CommandEvent param1) {

System.out.println("Command execute: ");
System.out.println("retcod="+getCeOutput1ATMH__RETURN__CODE__N());
System.out.println("noAcct="+getCeOutput1ATM__NO__ACCOUNTS());
if (getCeOutput1ATM__NO__ACCOUNTS() > 0)
System.out.println("acct1 ="+getCeOutput1ATM__ACCOUNT__DETAILS(0));

}

Testing the Accounts Transaction with a Scrapbook Script
We use a Scrapbook script to test the accounts transaction (Figure 153).

// Test the CICS accounts transaction

itso.entbk2.atm.cics.AtmCICS atmcics = new itso.entbk2.atm.cics.AtmCICS();
itso.entbk2.atm.model.Card card;

card = new itso.entbk2.atm.model.Card("1111111","1111",null);
System.out.println(card);

atmcics.extGetAccounts(card);
System.out.println(card);
try {
 java.util.Enumeration enum = card.getAccounts().elements();
 while (enum.hasMoreElements())
ATM Application with the CICS Connector 271

Figure 153. Scrapbook Script for CICS Accounts Transaction Testing

 { System.out.println((itso.entbk2.atm.model.BankAccount)enum.nextElement()); }
} catch (Exception e) { System.out.println("card has no accounts"); }

10.12 Testing the ATM Application with CICS
To test the sequence of the two transactions with the CICS implementation
we use the ATM application controller.

We can write a small Scrapbook script for initial testing and then use the real
ATM servlet application for final testing.

Figure 154 shows a Scrapbook script for the two transactions using the ATM
application controller.

Figure 154. Scrapbook Script for CICS Application Testing

Note that we set the persistence layer in the application controller to be the

// set Page->Run in to ATMApplicationController class in itso.entbk2.atm.model

ATMApplicationController ctl = new ATMApplicationController();
itso.entbk2.atm.cics.AtmCICS atmcics = new itso.entbk2.atm.cics.AtmCICS();
ctl.setATMPersistenceLayer(atmcics);

atmcics.setCardMapperSwitch(false); // set to true for CardMapperCommand

Card card1 = ctl.getCard("1111111");
System.out.println(card1);

if (card1==null) card1 = new Card("1111111","1111",null);

System.out.println("PIN OK "+card1.checkPin("1111"));

Card card2 = ctl.getAccounts(card1);
System.out.println(card2);

try {
 java.util.Enumeration enum = card2.getAccounts().elements();
 while (enum.hasMoreElements())
 { System.out.println((BankAccount)enum.nextElement()); }
} catch (Exception e) { System.out.println("card has no accounts"); }
272 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

CICS implementation, that is, the AtmCICS class.

Testing the Real Application
You can test the CICS transactions by using the servlet implementation
described in Chapter 9, “ATM Application Using Servlets.”

Change the getApplicationController method of the ATMServletController to
use the AtmCICS class for persistence:

public getApplicationController() {
if (applicationController == null) {

applicationController = new itso.entbk2.atm.model.ATMApplicationController();
applicationController.setATMPersistenceLayer

(new itso.entbk2.atm.cics.AtmCICS());
setTransferToServiceHandler(getCardView());

}
return applicationController;

}

Note that you can only test the first steps of the application, namely,
retrieving the card information, checking the PIN, and retrieving the
accounts for the card.

10.13 Using an Advanced Navigator
A navigator enables us to build a complex business transaction that consists
of multiple commands with branching logic between the commands.

The design of the application controller with individual methods for each step
of the application enabled us to build simple navigators that perform one
command, but with a slight variation of the controller we can at least
demonstrate how an advanced navigator could be used.

The current design of the application controller involves three steps:

 ❑ CICS transaction to get the card information for a card number entered
 ❑ Check the PIN entered against the card object
 ❑ CICS transaction to get the accounts associated with the card

We implemented both the first and the last step with a CICS command
executed from the getCard and getAccounts method of the application
controller.
ATM Application with the CICS Connector 273

Let us assume that the user enters the card number and the PIN together. In
such a case we can implement a navigator that invokes the two CICS
commands and checks the PIN in between.

Design of a Navigator
The navigator that implements the CICS card and account transactions in
one class performs these three steps:

 ❑ Invokes the card command passing the card ID entered by the user.
Creates a card object for the card information returned by the command.

 ❑ Check the PIN entered by the user against the PIN stored in the card.

 ❑ Invokes the accounts command passing the card ID. Creates a vector of
accounts from the information returned by the command and adds the
vector to the card object.

The navigator has to check whether each command was successful and set
the proper return condition.

Implementation of the Navigator
We build the navigator in the Visual Composition Editor by combining the
designs of the CICSCardNavigator and CICSAccountsNavigator classes.

Navigator Class
Create a class named CICSCardAccountsNavigator as a subclass of
CommunicationNavigator. On the BeanInfo page, add two properties,
cardNumber and pinNumber, both of string type. Using properties is an
alternative to using variables and then promoting them.

Visual Composition of the Navigator
Let us now implement the visual composition of the navigator:

 ❑ Drop three beans on the free-form surface: a CardCommand, an
AccountsCommand, and an AtmHeader.

 ❑ Drop two factories on the free-form surface and change the types to
Customer and Card (Figure 155).

1 4
9

13
274 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 155. Visual Composition of the Navigator

2

3

5
6

7

8

10

11

12

Connections
First we set up the execution of the card command:

 ❑ Connect the internalExecutionStarting event of the navigator to the
execute method of CardCommand to invoke the first CICS transaction (1).

 ❑ Connect the cardNumber property of the navigator to the
ceInputATM__CARDID property of CardCommand (2).

 ❑ Connect the four properties of the AtmHeader to the matching
ceInputxxxx properties of CardCommand (3).

After the card command is executed we check for its status and return code.
Most of these connections are identical to the CICSCardAccess class.

 ❑ Connect the executionUnsuccessful event of CardCommand to the
returnExecutionUnsuccessful method of the navigator and pass the event
data as a parameter (4).

 ❑ Connect the executionSuccessful event of CardCommand to the
checkReturnCode method of the AtmHeader and pass the
ceOutput1ATMH__RETURN__CODE__N property as a parameter (5).

 ❑ Connect the normalResult of the connection to the constructor (with
parameters) of Customer (6).

 ❑ Connect each constructor parameter to the corresponding ceOutput1xxxx
properties of CardCommand.

 ❑ Connect the normalResult of the instantiation of Customer to the
constructor (with parameters) of Card (7).

 ❑ Connect the cardNumber and pinCard parameters to the corresponding
ceOutput1xxxx properties of CardCommand.

 ❑ Connect the customer parameter or the Card constructor to the this
property of Customer.

Now we can check the PIN entered by the user and invoke the accounts
ATM Application with the CICS Connector 275

command if the PIN is correct.

 ❑ Connect the normalResult of the Card constructor to the checkPin method
of the Card and pass the pinNumber property of the navigator as a
parameter (8).

 ❑ Connect the pinCheckedOk event of the Card to the execute method of
AccountsCommand (9).

After the accounts command is executed we check for its status and return
code. Most of these connections are identical to the CICSAccountsAccess
class.

 ❑ Connect the executionSuccessful event of AccountsCommand to the
checkReturnCode method of AtmHeader and pass the
ceOutput1ATMH__RETURN__CODE__N property as a parameter (10).

 ❑ Connect the normalResult of the connection to a new createAccountsVector
method (event-to-code) (11).

Copy the createAccountsVector method from the CICSAccountsAccess
class. It has the same two parameters and returns a vector of accounts.

 ❑ Connect the number of accounts and the accounts array (properties
ceOutput1ATM__NO__ACCOUNTS and xxx__ACCOUNT__DETAILS) as
parameters to the createAccountsVector method.

 ❑ Connect the normalResult of the createAccountsVector method call to the
accounts property of the Card. Open the connection and pass the event
data (the vector) as a parameter (12).

 ❑ Connect the executionSuccessful (and executionUnsuccessful) event of
AccountsCommand to the returnExecutionSuccessful (and
returnExecutionUnsuccessful) method of the navigator and pass the event
data as a parameter to set the final return code (13).

Testing the Navigator
We cannot easily use the AtmCICS class or the application controller to test
the navigator because we did not design a method that takes both a card
number and a PIN as input and retrieves the card and its accounts.

We can test the navigator by itself with a Scrapbook script, however (Figure
156).

// Test the CICS navigator, set Page -> Run in to itso.entbk2.atm.cics.AtmCICS

CICSCardAccountsNavigator navig = new CICSCardAccountsNavigator();
itso.entbk2.atm.model.Card card;
276 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 156. Scrapbook Script for Advanced Navigator

navig.setCardNumber("1111111");
navig.setPinNumber("1111");
navig.execute();
card = navig.getCard();
System.out.println(card);
try {
 java.util.Enumeration enum = card.getAccounts().elements();
 while (enum.hasMoreElements())
 { System.out.println((itso.entbk2.atm.model.BankAccount)enum.nextElement()); }
} catch (Exception e) { System.out.println("card has no accounts"); }

We can add a suitable method for the navigator to the AtmCICS class,
(Figure 157), but to use it we would have to modify the ATM application
controller.

Figure 157. Method to Invoke the Advanced Navigator

10.14 Implementation of the Back-End Programs
We implemented the back-end CICS transaction with COBOL programs. The
setup of a real CICS transaction server is described in “Setup for the CICS
Connector” on page 365 and the COBOL programs are described in “COBOL
Sample Programs” on page 366.

10.15 Conclusion
We have shown how two CICS transactions can be invoked with the CICS
Connector.

We have not explored the full functionality of the CICS Connector. We have
limited the options on record generation, only looking at custom records. We
have only considered ECI calls and have not looked at BMS. The use of the

public itso.entbk2.atm.model.Card extGetCardAccounts(String cardId, String pin)
throws Exception {

CICSCardAccountsNavigator navig = new CICSCardAccountsNavigator();
navig.setCardNumber(cardId);
navig.setPinNumber(pin);
navig.execute();
itso.entbk2.atm.model.Card card = navig.getCard();
if (card == null) throw new java.lang.Exception("Card not found");
return card;

}

ATM Application with the CICS Connector 277

mapper still needs much further exploration. Given a common header, we
still would have to investigate reuse of its mapping across various
commands. Business objects were not used.

In short we have only touched the tip of the proverbial iceberg. More
examples are provided with the VisualAge for Java product. Sample
packages to examine are in com.ibm.ivj.eab.sample.eci.*.

We hope we have given you a sense of the CICS Connector and how it
simplifies the use of the underlying middleware. This is indeed powerful. The
ECI and EPI can be used without having to acquire knowledge about their
details. The fact that the e-business connectors conform to a Common
Connector Framework augures well for the incorporation of other connectors
in the future.
278 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

11 ATM Application
Using MQSeries
In this chapter we explain how VisualAge for Java can incorporate MQSeries
to access enterprise business and data services. The MQSeries support for
Java enables MQSeries access from Java applications, applets, and servlets.

We discuss the classes that have to be created to interface with MQSeries.
Some of these classes are application specific, whereas others pertain to
MQSeries access per se.

To illustrate message-driven processing we use examples from the ATM
© Copyright IBM Corp. 1998 279

application described in Chapter 5, “ATM Application Requirements and
ATM Database.”

We show a partial implementation of the persistence interface of the ATM
application with MQSeries to demonstrate how ATM transactions can access
enterprise data through messaging and queuing.

11.1 A Brief Overview of MQSeries
MQSeries is IBM’s middleware for commercial messaging and queuing. It
runs on more than 20 hardware and software platforms from mainframe to
desktop. MQSeries allows programs to communicate with each other across
different platforms. These programs use message queuing to participate in
message-driven processing. Message delivery is assured even across
temporary network or system failures. A common, platform-independent API
called the message queue interface (MQI) is implemented. The exchange of
messages between the sending and receiving programs is time independent.
The sender can continue processing without having to wait for the receiver to
acknowledge the receipt of the message.

This section is taken from Chapter 1, “Introduction to IBM MQSeries,” of the
sixth edition of the MQSeries Planning Guide.

Messages and Queues
Messages and queues are the core components of a message queuing system.

Messages
Messages are used to transfer information from one application to another.
These applications can be running on the same or different platforms.

MQSeries messages have two parts: the application data and a message
descriptor. The content and structure of the application data is defined by the
application programs that use the data. The message descriptor identifies the
message and contains control information, such as the type of message and
the name of the queue for the reply.

Queues
A queue is a data structure that stores messages. The messages may be put
280 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

on the queue by either applications or a queue manager. Queues exist
independently of the applications that use them. Each queue belongs to a
queue manager, which is responsible for maintaining it.

Queues can exist either in a local system, in which case they are called local
queues, or at another queue manager, in which case they are called remote
queues.

Applications use MQI calls to send and receive messages. For example, an
application can put a message on a queue and another application can
retrieve the message from the same queue.

MQSeries Objects
An MQSeries object is a recoverable resource managed by MQSeries.
Commands are available for manipulating objects. Each object is associated
with a name and can be referenced in MQSeries commands and MQI calls.
Objects include:

 ❑ Queue manager
 ❑ Queues
 ❑ Named lists
 ❑ Distribution lists
 ❑ Processes
 ❑ Channels
 ❑ Storage classes

Not all these objects are available on all platforms. For example, storage
classes pertain to MVS only. We discuss some of these objects in this section.

Queue Manager
The queue manager is the heart of an MQSeries system. It provides queuing
services to applications and manages the queues that belongs to it. It ensures
that messages are put on the correct queue, as requested by the application
making the MQPUT call.

The functions of a queue manager include:

 ❑ Management of queues
 ❑ Transfer of messages to other queue managers
 ❑ Generation of trigger and instrumentation events when appropriate

conditions are met
 ❑ Object attribute management

Queues
A queue is an MQSeries object that can store messages. Each queue has
ATM Application Using MQSeries 281

queue attributes that determine what happens when applications reference
the queue in MQI calls. An example of an attribute is whether the queue is
put enabled or not. If it is, a message can be put on the queue. If it is not, an
MQPUT request will fail. Another example pertains to whether the queue is
associated with triggering. If triggering is on, depending on the type of
triggering, the presence of a message or messages is associated with the
initiation of a process. This process is defined in a process object.

Figure 158 shows the queue attribute of a local queue. It was captured by
entering the dis ql(ATM.REQUEST.QUEUE) command.

Figure 158. Local Queue Attributes

Queue Object Types
In MQSeries, there are several types of queue objects. This does not mean
that there are several different types of queues; essentially there is only one
type of queue. Each type of queue object can be manipulated by MQSeries
commands and is associated with queues in different ways:

 ❑ A local queue object defines a local queue belonging to the queue manager
to which the application is connected.

 ❑ A remote queue object identifies a queue belonging to another queue

C:\>runmqsc
84H2004,6539-B43 (C) Copyright IBM Corp. 1994, 1997. ALL RIGHTS RESERVED.
Starting MQSeries Commands.

dis ql(atm.request.queue)
 1 : dis ql(atm.request.queue)
AMQ8409: Display Queue details.
 DESCR(ATM application request queue) PROCESS(ATM.CICS.PROCESS)
 BOQNAME() INITQ(SYSTEM.CICS.INITIATION.QUEUE)
 TRIGDATA() QUEUE(ATM.REQUEST.QUEUE)
 CRDATE(1998-11-29) CRTIME(22.13.22)
 GET(ENABLED) PUT(ENABLED)
 DEFPRTY(0) DEFPSIST(NO)
 MAXDEPTH(5000) MAXMSGL(4194304)
 BOTHRESH(0) SHARE
 DEFSOPT(SHARED) NOHARDENBO
 MSGDLVSQ(PRIORITY) RETINTVL(999999999)
 USAGE(NORMAL) TRIGGER
 TRIGTYPE(FIRST) TRIGDPTH(1)
 TRIGMPRI(0) QDEPTHHI(80)
 QDEPTHLO(20) QDPMAXEV(ENABLED)
 QDPHIEV(DISABLED) QDPLOEV(DISABLED)
 QSVCINT(999999999) QSVCIEV(NONE)
 DISTL(NO) DEFTYPE(PREDEFINED)
 TYPE(QLOCAL) SCOPE(QMGR)
 IPPROCS(0) OPPROCS(0)
 CURDEPTH(0)
282 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

manager. The remote queue is usually given a local definition. The
definition specifies the name of the remote queue manager where the
queue exists as well as the name of the remote queue itself. The
information on a remote queue definition enables the queue manager to
find the remote queue manager, so that any messages destined for the
remote queue go to the correct queue manager.

 ❑ An alias queue object enables applications to access queues by referring to
them indirectly in MQI calls. When an alias queue name is used in an
MQI call, the name is resolved to the name of a message queue at run
time.

 ❑ The model queue object defines a set of queue attributes that are used as a
template for a dynamic queue. Dynamic queues are created by the queue
manager when an application makes an open queue request specifying a
queue that is a model queue. The dynamic queue that is created in this
way is a local queue whose name is specified by the application and whose
attributes are those of the model queue.

Processes
A process definition object defines an application to an MQSeries queue
manager. Typically, in MQSeries, an application puts or gets messages from
one or more queues and processes them. A process definition object is used
for defining applications to be started by a trigger monitor. The definition
includes the application ID, the application type, and application-specific
data. For example, an application type can be CICS, and the application ID
can be the name of the CICS transaction associated with the process.

Channels
If a message is destined for a remote queue manager, it needs to be
transmitted to that queue manager. Messages are transmitted through
channels. If an MQSeries client needs to communicate with a queue
manager, such communication is achieved through channels. A channel is a
logical communication link. Several transport protocols are supported,
including SNA LU 6.2, TCP/IP, NetBIOS, and SPX. There are two types of
channels, message channels and MQI channels.

Message Channels
A message channel provides a communication path between two queue
managers. The software that handles the sending and receiving of messages
is called the message channel agent. The message channel is used for the
transmission of messages from one queue manager to another and shields
the application programs from the complexities of the underlying networking
protocols.
ATM Application Using MQSeries 283

A message channel can transmit messages in one direction only. Each end of
a channel has a separate definition, defining it, for example, as the sending
end or the receiving end. The definition of each end of a message channel can
be one of four types, namely sender, receiver, server, and requester. A
message channel is defined using one of these types defined at one end and a
compatible type at the other end. Possible combinations are:

 ❑ Sender-receiver
 ❑ Requester-server
 ❑ Requester-sender (callback)
 ❑ Server-receiver

As an example, a channel could consist of a sender channel definition at the
local queue manager and a receiver channel definition at the remote queue
manager. These two definitions must have the same name, and together they
constitute one channel.

Figure 159 shows a message flow across a channel from queue manager QM1
to queue manager QM2. The figure shows a transmission queue, which is a
special type of local queue on which messages are stored until they can be
successfully transmitted and stored at the remote queue manager.

Figure 159. Message Flow across a Channel

To send a message from queue manager QM2 to queue manager QM1,
another channel is required, with each end of the channel having a separate
definition. In this case the sender end would be at QM2 and the receiver end
would be at QM1 (Figure 160).
284 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 160. Two-way Message Channel Communication

MQI Channels
An MQI channel connects an MQSeries client to a queue manager on a server
machine. It is used only for the transfer of MQI calls and responses and is
bidirectional and synchronous.

The MQI channel is established when an MQCONN or MQCONNX call is
issued. To create any new channel, two channel definitions, one for each end
of the connection, are needed. The channel definition associated with a server
is known as a server connection, and the channel definition associated with
the client is known as a client connection. There are two different ways of
creating the channel definitions, one where the server definition is created at
the server and the client definition is set up on the client, and the other
where both definitions are set up at the server. In the latter case, the
definitions are stored in a binary file known as the client channel definition
table. (MQSeries Version 5 provides an auto-definition capability where
channel definitions are created automatically from a model definition.)

Figure 161 shows definitions for a server connection and a client connection
of channel CHAN2, and Figure 162 shows the connection using this channel.

Figure 161. MQI Channel Definition

DEFINE CHANNEL(CHAN2) CHLTYPE(SVRCONN) TRPTYPE(TCP) +
 DESCR(’Server connection to Client_2’)

DEFINE CHANNEL(CHAN2) CHLTYPE(CLNTCONN) TRPTYPE(TCP) +
 CONNAME(9.20.4.26) QMNAME(QM2) DESCR(’Client connection to Server_2’)
ATM Application Using MQSeries 285

Figure 162. Use of an MQI Channel

MQ connection tables are not supported by the MQSeries Client for Java.
Therefore, we have not used the client channel definition table.

MQSeries Clients and Servers
An MQSeries client is a part of an MQSeries product that can be installed on
a machine without installing the full queue manager. It accepts MQI calls
from application programs and passes MQI requests across an MQI channel
to an MQSeries server executing on another processor (see Figure 163).

Figure 163. MQSeries Client to Server Flow

The MQSeries server is a full queue manager that can accept MQI calls
directly from application programs running on the server processor as well as
requests from MQSeries clients.

The MQSeries client allows a configuration where an application running on
a client machine can use the MQI to access a queue manager running on a
different machine.

When an application program in the client issues an MQI call, the client
formats the parameter values of the call into an MQI request and sends the
request to the server. The server receives the request, performs the action
specified in the request, and sends back a response to the client. The
286 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

response is used by the client to generate information that is returned to the
application program through the normal MQI return mechanism.

An MQSeries client communicates with an MQSeries server, using an MQI
channel, which is used to transfer MQI call requests from the client to the
server and responses from the server to the client.

The examples discussed in this chapter use the MQSeries client for Java (see
“MQSeries Client for Java” on page 287).

11.2 MQSeries Version 5
The latest release of MQSeries is Version 5. New features include:

 ❑ Database-message resource coordination
 ❑ Smart distribution of multicast messages
 ❑ Improvements to distributed performance through fast messages, trusted

bindings, and improved internal architecture
 ❑ Support for messages of up to 100 MB
 ❑ Support for reference messages where the MQ message is a logical pointer

to external data such as a file
 ❑ Use with additional languages such as C++, COBOL on Windows NT,

PL/I, and Java
 ❑ IBM Software Server Integration
 ❑ Enhancements to simplify administration and problem solving
 ❑ Enhancements to security; DCE authentication can be used

For more information see:

http://www.software.ibm.com/ts/mqseries/v5

11.3 About MQSeries and Java
The MQSeries support for Java enables application developers to use the
power of the Java programming language to create applets, servlets, and
applications that interface with MQSeries and run on any platform that
supports the Java run-time environment. This support helps reduce the
development time for multiplatform MQSeries applications. Changes to
applets are automatically picked up by end users as the applet code is
downloaded.

MQSeries for Java provides two types of support:
ATM Application Using MQSeries 287

 ❑ MQSeries Client for Java to enable Java applets, servlets, and
applications to use MQSeries applications through a Web browser, Web
server, or applet viewer.

 ❑ MQSeries Bindings for Java to enable Java applications to connect
directly to an MQSeries queue manager.

MQSeries Client for Java
MQSeries Client for Java is an MQSeries client written in the Java
programming language for communicating through TCP/IP. It enables Web

browsers, Java applets, and servlets to issue calls and queries to MQSeries.
Thus host-based applications can be accessed over the Internet without the
need for any other MQSeries code on the client machine. With MQSeries
Client for Java the user of an Internet terminal can become a true
participant in transactions, rather than just a giver and receiver of
information.

The client can be installed on either a local hard disk or a Web server.
Installation on a Web server has the advantage of allowing the MQSeries
client applications to be run on machines that do not have the MQSeries
Client for Java installed locally.

The client can be run in four different modes:

 ❑ From within any Java-enabled Web browser. If running as a Java applet
from a browser, the MQSeries Client for Java classes, the Web server, and
the MQSeries server are installed on a server.

 ❑ As a servlet in any Java-enabled Web server. If the servlet needs to
connect to a queue manager on a different machine, the MQSeries Client
for Java is used. The servlet and MQSeries Client for Java classes run on
the Web server. The MQSeries server is on another machine. If the
MQSeries server is on the same machine as the Web server, MQSeries
Bindings for Java can be used.

 ❑ Using an applet viewer. The JDK must be installed on the client machine.

 ❑ As a stand-alone Java program. The JDK must be installed on the client
machine. The MQSeries Client for Java classes are on the client and an
MQSeries server is on a server.

To use the MQSeries Client for Java include the following import statement:

import com.ibm.mq*

For more information about the MQSeries Client for Java, see the redbook
Internet Application Development with MQSeries and Java, SG24-4896.
288 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

MQSeries Bindings for Java
The MQSeries Bindings for Java enable MQSeries applications and servlets
to be written with the Java programming language. These applications
communicate directly with MQSeries queue managers. The MQSeries
Bindings for Java provide the same programming interface as the MQSeries
Client for Java, but they use Java native methods to call directly into the
existing queue manager API rather than communicating through an
MQSeries server connection channel. Unlike the MQSeries Client for Java,
applications written using the MQSeries Bindings for Java cannot be

downloaded as applets and they cannot be run inside an applet viewer or
Web browser. Provided that the queue manager is installed on the same
machine as the Web server, MQSeries Bindings for Java can be used for
servlets.

To use the MQSeries Bindings for Java include the following import
statement:

import com.ibm.mqbind.*

The MQSeries Java Programming Interface
The Java programming interface conforms to the MQSeries object model. A
program using the Java programming interface consists of a set of MQSeries
objects that are acted on by calling methods on them. There are two packages
for interfacing with MQSeries: com.ibm.mq for use with the MQSeries Client
for Java and com.ibm.mqbind for use with the MQSeries Bindings for Java.
These packages are described in the MQSeries for Java Programmer’s
Reference Manual.

Here are some of the more commonly used classes found in both packages:

 ❑ MQEnvironment

MQEnvironment contains static data members that control the
environment in which an MQQueueManager object (and its corresponding
connection to a queue manager) is constructed. The values in the
MQEnvironment class should be set before constructing an
MQQueueManager instance. An example of a static data member is
channel, which is the name of the channel for connecting to the target
queue manager.

All methods and attributes of this class apply to the MQSeries Client for
Java, but only enableTracing and disableTracing apply to the MQSeries
Bindings for Java.

 ❑ MQManagedObject
ATM Application Using MQSeries 289

MQManagedObject is a superclass for MQQueueManager, MQQueue, and
MQProcess. It provides the ability to inquire about and set attributes of
these objects.

 ❑ MQQueueManager (extends MQManagedObject)

To connect to a queue manager, an MQQueueManager object must be
instantiated.

To open a queue, invoke the accessQueue method of this class. This
establishes access to an MQSeries queue on this queue manager. It
returns an object of type MQQueue.

 ❑ MQQueue (extends MQManagedObject)

MQQueue provides inquire, set, put, and get operations for MQSeries
queues. The inquire and set capabilities are inherited from
MQManagedObject.

To put a message on a queue, use the put(MQMessage,
MQPutMessageOptions) method. To get a message from a queue, use the
get(MQMessage, MQGetMessageOptions) method.

 ❑ MQMessage (implements DataInput, DataOutput)

MQMessage represents both the message descriptor and the data for an
MQSeries message. There are a group of readXXX methods for reading
data from a message and a group of writeXXX methods for writing data
into a message. An instance of this class is passed as an argument to the
MQQueue put and get methods.

 ❑ MQPutMessageOptions

This class contains options that control the behavior of the MQQueue put
method. An instance of this class is passed as an argument to the put
method.

 ❑ MQGetMessageOptions

This class contains options that control the behavior of the MQQueue get
method. An instance of this class is passed as an argument to the get
method.

 ❑ MQException (extends Exception)

Methods in the Java interface do not return a completion code and reason
code. Instead, they throw an MQException whenever the completion code
and reason code resulting from an MQSeries call are not both zero. To test
the completion and reason code, use try and catch blocks. By default,
exceptions are logged to System.err. This can be changed by altering the
value of MQException.log. Constants beginning with MQCC_ are
MQSeries completion codes, and constants beginning with MQRC_ are
MQSeries reason codes.
290 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

11.4 Implementing the ATM Application with MQSeries
MQSeries can be used to send transaction requests to back-end processes and
receive responses from such processes. When a transaction is initiated by
some user action, such as the clicking of an OK button, an MQSeries request
message is sent to a queue manager. The message is retrieved by an
application monitoring the message queue. On the basis of the contents of the
message, an appropriate program is called to execute the business and data
services associated with the message. This program returns response data.
The data is put to a response MQSeries queue. The response message is
retrieved, formatted, and presented to the user through an HTML page.

The ATM application design architecture consists of three layers, namely the
user interface layer, the business object layer, and the persistence layer. The
persistence layer is used to separate the data access from the rest of the
application. This separation allows for different services to be used to access
the data without affecting the rest of the application. Managing these layers
is a controller. A Java interface, ATMPersistenceInterface, is called from the
application controller. AtmPersistenceInterface specifies the interface to the
persistence layer.

To illustrate how enterprise data can be accessed through MQSeries, the
persistence layer of the ATM model is extended to include an MQSeries
implementation of the ATMPersistenceInterface interface. The class that
implements this interface is called AtmMQ. This class controls the MQSeries
access used by each ATM transaction.

The methods of the interface are shown in Figure 85 on page 157.

Not all methods are implemented in the examples. Only extGetCard and
extGetAccounts are detailed. However, a methodology is described for how
the other methods can be implemented.

In these examples the back-end programs are designed as CICS programs.
ATM Application Using MQSeries 291

We could have selected other application types. In this case we chose CICS to
reuse the CICS COBOL programs written for the CICS Connector samples.

In the rest of this chapter we discuss what you have to configure and develop
in order to have ATM transactions access enterprise data through MQSeries.

11.5 MQSeries Queue Manager and Objects
We assume that MQSeries Version 5 has been installed. In this section we
describe the MQSeries queue manager and objects that need to be set up to
implement the sample ATM transactions.

Create a Queue Manager
In this example the queue manager is called VAJEQMGR. It is created as the
default queue manager. The dead letter queue associated with this queue
manager is called VAJE.DEAD.LETTER.QUEUE.

To create the queue manager run this command:

crtmqm -q -u VAJE.DEAD.LETTER.QUEUE VAJEQMGR

Start the queue manager: strmqm VAJEQMGR

Define MQSeries Objects
To use the ATM transactions it is necessary to define some MQSeries objects.
These include:

 ❑ Local queue definitions for:

 • VAJE.DEAD.LETTER.QUEUE

 • SYSTEM.CICS.INITIATION.QUEUE

 • ATM.REQUEST.QUEUE

 • ATM.RESPONSE.QUEUE

 ❑ Process definition for:

 • ATM.CICS.PROCESS

 ❑ ServerConnection channel definition for:
292 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

 • A.CLCHL.ATM

These definitions can be set up in a file that is input to the runmqsc
command.9 Assuming that the file is called atmobj.def, issue the following
command to define the objects to the queue manager:

runmqsc <file-path:\atmobj.def

Figure 164 shows the command file.

9 MQSeries provides the RUNMQSCutility to create and delete queue manager objects and manipulate them.

**
* define MQ objects for ATM application
**

* server connection channel definition

define channel(’A.CLCHL.ATM’) +
 chltype(SVRCONN) +
 trptype(TCP) +
 replace +
 descr(’Client channel for ATM application’) +
 mcauser(’ ’)

* dead letter queue defintion

define ql(’VAJE.DEAD.LETTER.QUEUE’) +
 replace +
 descr(’VAJEQMGR dead letter queue ’)

* ATM request queue
* triggered on first, associated with process ATM.PROCESS
* associated with initiation queue ATM.INIT.QUEUE

define ql(’ATM.REQUEST.QUEUE’) +
 replace +
 descr(’ATM application request queue’) +
 initq(SYSTEM.CICS.INITIATION.QUEUE) +
 trigger +
 process(ATM.CICS.PROCESS) +
 share +
 trigtype(first) +
 usage(normal)

* ATM initiation queue
* Uncomment this if SYSTEM.CICS.INITIATION.QUEUE is not defined
* define ql(’SYSTEM.CICS.INITIATION.QUEUE’) +
* replace +
* descr(’Default Init queue associated with CICS triggering ’)

* ATM process

define process(’ATM.CICS.PROCESS’) +
 replace +
ATM Application Using MQSeries 293

Figure 164. MQSeries Objects for ATM Application

 descr(’process for ATM applications’) +
 applicid(ATMQ) +
 appltype(CICS)

* ATM response queue holding replies to requests

define ql(’ATM.RESPONSE.QUEUE’) +
 replace +
 descr(’ATM application responsequest queue’)

Command File to Start the Queue Manager
It is advisable to set up in a command file the commands needed to start the
queue manager. This file can be run either automatically or manually,
depending on deployment requirements.

The command file includes the starting of a queue manager, the command
server, and listeners. Normally the starting of trigger monitors could also be
included in the command file. However, in our case the trigger monitor will
be started in CICS. The exact contents of such a file is operating system and
deployment dependent. The command file shown in Figure 165 is used on
Windows NT, if the queue manager has not been added as a service.

Figure 165. MQSeries Startup Command File

After you run the command file, the queue manager should be started and
ready for use.

11.6 Importing MQSeries into VisualAge for Java
It is necessary to import the MQSeries for Java packages into VisualAge for
Java. MQSeries Version 5 Java classes are located at
mqdisk:\MQM\Java\Lib.

Define a project for MQSeries for Java classes, for example, MQSeries, and
import these packages:

strmqm VAJEQMGR
strmqcsv VAJEQMGR
start "MQ TCP Listener" runmqlsr -t TCP -p 1414 -m VAJEQMGR
start "MQ chinit" runmqchi -q SYSTEM.CHANNEL.INITQ -m VAJEQMGR
REM start "MQ triggermon" runmqtrm -m VAJEQMGR -q ATM.INIT.QUEUE
294 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

 ❑ com.ibm.mq - needed for MQSeries Client for Java
 ❑ com.ibm.mqbind - needed for MQSeries Bindings for Java
 ❑ com.ibm.mqservices - needed for MQSeries service functions

The MQSeries for Java property files must be copied into the project resource
directory of VisualAge for Java. These property files are located at
mqdisk:\MQM\Java\Lib*.properties and must be copied into the resource
directory d:\IBMVJava\ide\project_resources\MQSeries.

Version the MQSeries project (with all packages and classes), for example,
with a version identifier of 5.0.

11.7 Create an MQAccess Bean
Because VisualAge for Java does not have MQSeries beans, it is necessary to
create one and write some methods that invoke the MQSeries Java APIs.
These methods need to connect to a queue manager, disconnect from a queue
manager, open a queue, close a queue, put a message on a queue, and get a
message from a queue.

Sample MQSeries Package
We create a package called itso.entbk2.atm.mq for all classes and
interfaces relevant to the MQSeries implementation of the ATM application.

For discussion purposes, we create a new class called MQAccess. In reality
two new classes might have to be created. One would import com.ibm.mq.*
and would be used with the MQSeries Client for Java. The other would
import com.ibm.mqbind.* and would be used with the MQSeries Bindings for
Java. For our ATM application we use the MQSeries Client for Java.

MQAccess Bean
Create a new class called MQAccess as a subclass of Object in the
itso.entbk2.atm.mq package. Add the com.ibm.mq.*package to the import
list.

Properties
Before you connect to a queue manager from a MQSeries client, you have to
set MQEnvironment variables. For this example the values of these variables
are derived from bean property values. Therefore, the environment variables
for which the default value is not used are set up as bean properties of the
MQAccess bean.
ATM Application Using MQSeries 295

Other properties pertaining to MQSeries classes also need to be added. These
are qMgr (an MQQueueManager object), queue (an MQQueue object), and
three strings, requestQueue, responseQueue, and queueManagerName, used
in the instantiation of MQSeries objects.

Table 27 shows the MQAccess bean properties.

Table 27. MQAccess Bean Properties

The generated code for the qMgr and queue properties is flagged with errors
because the com.ibm.mq.MQException is not handled. Alter the generated
code from:

private MQQueueManager fieldQMgr = new com.ibm.mq.MQQueueManager(" ");
private MQQueue fieldQueue = new MQQueue(null, "", 0, "", "", "");

to:

private MQQueueManager fieldQMgr = null;
private MQQueue fieldQueue = null;

The last two properties return constant values. Change their definitions to:

int fieldMqOpenOutput = MQC.MQOO_OUTPUT;
int fieldMqOpenInputShared = MQC.MQOO_INPUT_SHARED;

Method Features

Property Name Property Type Option

hostName java.lang.String read/write, bound

channelName java.lang.String read/write, bound

queueManagerName java.lang.String read/write, bound

qMgr ibm.com.mq.MQQueueManager read/write, bound

queue ibm.com.mq.MQQueue read/write, bound

requestQueue java.lang.String read/write, bound

responseQueue java.lang.String read/write, bound

mqOpenOutput int read-only

mqOpenInputShared int read-only
296 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Several methods are needed to put messages on and get messages from
MQSeries queues. The bodies of these methods are described in sections
“Connect to a Queue Manager” on page 297 through “Getting a Message from
a Queue” on page 302.

Define the method features listed in Table 28.

Table 28. MQAccess Bean Method Features

Implement the MQAccess Methods
In this section we describe the function and implementation of each method.

Connect to a Queue Manager
There is a difference in connecting to a queue manager when you use the

Method Return
Type

Parameters Remarks

connectToQmgr void - Connects to queue manager

disconnectFromQmgr void - Disconnects

openQueue void String Opens the given queue for
input and output

openQueue void String
int

Opens the given queue with
the specified open mode (int)

closeQueue void - Closes a queue

putRequestMessage MQ
Message

String
String

Given a message string and a
queue name, puts a message
to an MQ queue

putRequestMessage MQ
Message

AtmRequest
String

Tailored method for the ATM
application to queue a
request of type AtmRequest
(see note)

retrieveSpecific
Message

String MQMessage Returns a message for a
given correlation ID

Note: The AtmRequest type is not defined at this time. For now, create an abstract
class named AtmRequest. We will define its details later.
ATM Application Using MQSeries 297

MQSeries Client for Java and the MQSeries Bindings for Java. When you use
the client, you must set MQEnvironment variables before creating an
instance of the MQQueueManager class. The MQSeries Bindings for Java
ignore most of the parameters provided by the MQEnvironment class and use
only those connected with tracing. As the Bindings attach directly to a queue
manager, the port and channel parameters are not required, and the user ID
and password are obtained from the MQSeries environment variables. All
examples assume the use of the MQSeries Client for Java. In this example
the values of the environment variables are derived from pertinent
MQAccess bean property values.

connectToQmgr Method
The connectToQmgr method is used to connect the application to a queue
manager. Try and catch blocks are used. All caught exceptions are rethrown
(Figure 166).

Figure 166. connectToQmgr Method

Disconnect from a Queue Manager
It is good practice to disconnect from the queue manager when the connection
is no longer needed.

disconnectFromQmgr Method
The disconnectFromQmgr method uses try and catch blocks to handle any
MQExceptions. All caught exceptions are rethrown (Figure 167).

public void connectToQmgr() throws Exception {
/* Perform the connectToQmgr method. */
// setup MQEnvironment
try {

MQEnvironment.hostname = getHostName();
MQEnvironment.channel = getChannelName();
// connect to Queue Manager
setQMgr(new MQQueueManager(getQueueManagerName()));

}
catch (MQException e) {

System.out.println("An MQ exception occurred in connectToQmgr: CC: " +
e.completionCode + " Reason Code: " + e.reasonCode);

throw e;
}
return;

}

public void disconnectFromQmgr() throws Exception {
/* Perform the disconnectFromQmgr method. */
try {
298 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 167. disconnectFromQmgr Method

getQMgr().disconnect();
// fireHandleDisconnected(new DisconnectedEvent (this));

}
catch (MQException e) {

System.out.println("An MQ exception occurred when disconnecting: CC: " +
e.completionCode + " Reason Code: " + e.reasonCode);

throw e;
}
return;

}

Open a Queue
Before messages can be put to or retrieved from a queue, the queue must be
opened. To open a queue, you supply the name of the queue. You also have to
specify open options. You can either use the defaults or code the options
explicitly.

Initially we had only one openQueue method in which we allowed the open
mode to cater for both input and output. However, this caused problems with
MQSeries triggering. Because the queue was already open for input, no
triggering occurred. We therefore added another openQueue method in which
we parameterized the open mode.

openQueue(String, int) Method
This method has two parameters, a sting that represents the queue name,
and an int that determines whether the queue is opened for input, output, or
both. The queue is opened and the result is stored in the queue property
(Figure 168).

Figure 168. openQueue(String, int) Method

public void openQueue(java.lang.String queueName, int openMode) throws Exception {
/* Perform the openQueue method. */
try {

// Note: we will access the system default queue
setQueue(getQMgr().accessQueue(queueName, openMode,

null, // default q manager
null, // no dynamic queue
null)); // no alternate user id

}
catch (MQException e) {

System.out.println("An MQ exception occurred when opening queue " +
queueName + " : CC: " +
e.completionCode + " Reason Code: " + e.reasonCode);

throw e;
}
return;

}

ATM Application Using MQSeries 299

openQueue(String) Method
This method has only one parameter, a string that represents the queue
name. The method calls the previously defined openQueue method with a
default open option set to input and output (Figure 169).

Figure 169. openQueue(String) Method

Close a Queue
Once all queue processing is complete, it is good practice to close the queue.

closeQueue Method
The closeQueue method invokes the close method of the MQManagedObject
class (Figure 170).

Figure 170. closeQueue Method

Put a Message to a Queue
To put a message to a queue, call the MQQueue put method. This method has
two parameters, namely, MQMessage and MQPutMessageOptions.
MQMessage contains the user message that is added to the MQMessage
object through a writeXXX method. The put options control the behavior of

public void openQueue(java.lang.String queueName) throws Exception {
/* Perform the openQueue method. */
int openMode = MQC.MQOO_INPUT_SHARED | MQC.MQOO_OUTPUT;
openQueue(queueName, openMode);

}

public void closeQueue() throws Exception {
/* Perform the closeQueue method. */
try {

getQueue().close();
}
catch (MQException e) {

System.out.println("An MQ exception occurred when closing queue: CC: " +
e.completionCode + " Reason Code: " + e.reasonCode);

}
return;

}

300 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

the put. In our method we use default put options.

putRequestMessage(String, String) Method
The putRequestMessage method is used to put a message to a queue. Two
parameters are passed: a string that is the user portion of the message, and a
string that contains the name of the reply-to queue name. The reply-to queue
name represents the name of the queue to which a response associated with
this request message must be sent.

The putRequestMessage method (see Figure 171):

 ❑ Creates an MQMessage object and initializes its replyToQueueName
(parameter), messageType (request), and format (string).

 ❑ Adds the user message by calling the writeString method (Originally the
writeUTF method was used, but the generated 2-byte length field caused
problems when putting a corresponding reply from a COBOL program.)

 ❑ Creates an MQPutMessageOptions object with default options
 ❑ Invokes the put method on the queue property with the constructed

message and options parameters
 ❑ Returns the result message object

public com.ibm.mq.MQMessage putRequestMessage(String request, String aReplyToQueue)
throws Exception {

/* Perform the putRequestMessage method. */
MQMessage message = null;
try {

// create a new message object
message = new MQMessage();
message.replyToQueueName = aReplyToQueue;
message.messageType = MQC.MQMT_REQUEST;
message.format = MQC.MQMTFMT_STRING;
message.writeString(request);
MQPutMessageOptions pmo = new MQPutMessageOptions(); // default options
// put the message on the queue
getQueue().put(message,pmo);

}
catch (MQException e) {

System.out.println("An MQ exception occurred when putting a message on a queue "
+ " : CC: " + e.completionCode + " Reason Code: " + e.reasonCode);
throw e;

}
catch (java.io.IOException e) {

System.out.println("An IO error occurred when putting a message on a queue " +
e.toString());

throw e;
}
catch (Exception e) {

System.out.println("An exception has occurred " + e.toString());
throw e;

}

ATM Application Using MQSeries 301

Figure 171. putRequestMessage Method

putRequestMessage(AtmRequest, String) Method
Originally we only passed strings to the putRequestMessage method. During
the course of development we created a second method with a parameter that
is an object representing a request message. This new method uses the
toString method to convert the request object into a string and calls the
previously defined putRequestMessage method (Figure 172).

return message;
}

Figure 172. putRequestMessage Method for ATM Requests

Getting a Message from a Queue
To get a message from a queue you have to call the MQQueue get method.
This method has two parameters, namely, MQMessage and
MQGetMessageOptions. These types must be instantiated and possibly
primed if you do not want to use the default options associated with the
MQGetMessageOptions object. In our method, changed defaults are
hard-coded and not passed as parameters. This is not the best approach and
restricts the reusability of the method. Once the get method has executed,
the user portion of the message can be extracted by using one of the
MQMessage readXXX methods. In our method the user portion of the
message is returned as a string.

retrieveSpecficMessage(MQMessage) Method
The retrieveSpecificMessage method is used to get a specific message from a
queue. By specific message we mean that the message we want to retrieve is
identified by a specific correlation ID. The value of this correlation ID is
associated with the message ID of a request message, so an object of type
MQMessage is passed as a parameter.

In this method we hard-coded the get options:

 ❑ MQC.MQGMO_WAIT
 ❑ MQC.MQGMO_NO_SYNCPOINT
 ❑ MQC.MQGMO_FAIL_IF_QUIESCING

We also hard-coded the wait interval time for a response to the request to 30

public com.ibm.mq.MQMessage putRequestMessage(itso.entbk2.atm.mq.AtmRequest request,
String aReplyToQueue) throws Exception {

/* Perform the putRequestMessage method. */
return putRequestMessage(request.toString(), aReplyToQueue);

}

302 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

seconds. During testing, we found that 30 seconds was not necessarily
sufficient during the first two or three invocations.10

Also note the choice of MQGMO_NO_SYNCPOINT. We point out in “Unit of
Work Considerations” on page 305 that we have largely ignored unit of work
considerations. Of course in the real world such omissions could lead to poor
designs that do not meet business objectives. Whether or not
MQGMO_NO_SYNCPOINT is a reasonable option would depend largely on
business unit of work requirements.

10 This problem has been addressed by corrective service.

The getSpecificMessage method (see Figure 173):

 ❑ Creates an MQMessage object and an MQGetMessageOptions object with
our hard-coded options

 ❑ Sets up the message correlation ID from the message parameter
 ❑ Invokes the get method on the queue property to retrieve a message
 ❑ Checks the message length and reads the user message string
 ❑ Returns the message as a string.

public String retrieveSpecificMessage(MQMessage msg) throws Exception {
/* Perform the retrieveSpecificMessage method. */

 String aString = null;
 MQMessage aMessage = null;
 try {

// create a new message object
aMessage = new MQMessage();
MQGetMessageOptions gmo = new MQGetMessageOptions();
gmo.options = MQC.MQGMO_WAIT + MQC.MQGMO_NO_SYNCPOINT +

MQC.MQGMO_FAIL_IF_QUIESCING;
gmo.waitInterval = 60000;
aMessage.correlationId = msg.messageId; // set up correlation ID
// get the message from the qeueue
getQueue().get(aMessage, gmo);
try {

if (aMessage.getMessageLength() > 0) {
int i = aMessage.getMessageLength();
aString = aMessage.readString(i);
return aString;

}
else { System.out.println("message length is <= 0 ");

return null; }
} catch (java.io.IOException e) {

System.out.println("An IO exception occurred in retrieveSpecificMessage”
+ “ method" + e.toString());

throw e;
}

} catch (MQException e) {
// failed or MQRC_NO_MSG_AVAILABLE
if ((e.reasonCode != e.MQRC_NO_MSG_AVAILABLE)) {

System.out.println("An MQ exception occurred in retrieveSpecificMessage”
+“ method"+": CC: "+e.completionCode+" Reason Code: "+e.reasonCode);

throw e;
ATM Application Using MQSeries 303

Figure 173. retrieveSpecificMessage Method

}
else { System.out.println("There are no more messages on the queue ");

throw e;
}

}
}

11.8 ATM MQSeries Design Choices
The ATM application consists of a set of transactions. Each transaction is
associated with a request and a response. From an MQSeries perspective a
request is represented by a message on a queue that is retrieved by a
back-end process. When the request is processed, the back-end application
returns a response by putting a reply message on an MQSeries queue.

We made a design decision to have a common header that is associated with
every request and every response. In addition, in keeping with the protocol of
the MQSeries-CICS/ESA bridge, the first 8 bytes of every message are
associated with a program name.11 To represent the common methods and
data members associated with each request, we created an ATM request
class called AtmRequest. This class is associated with the ATM header.
Similarly we created an ATM response class called AtmResponse. This class
checks the response return code.

The request and response for each ATM transaction has a well-defined
format that needs to be adhered to by both sender and receiver applications.
We decided to represent each of these formats as a separate class. This is
analogous to having a separate COBOL copy book for each format. Ideally,
there should be only one definition for each format from which language-
specific views can be generated. We did not implement this for the ATM
application.

Attention For the CICS implementation, we used the Java Record
Framework and dynamic record types that can be
generated from COBOL copy books. It would be
interesting to see whether we could use the generated
record beans for formatting the application data portion
of MQSeries messages.

If this were possible we could probably avoid having to
304 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

11 The MQSeries-CICS/ESA bridge is supplied with MQSeries for MVS/ESA Version 1.2. Documentation can be
obtained at http://www.software.ibm.com/ts/mqseries/txppacs/supportpacs/ma1e.pdf.

create our own home-grown classes representing each
message request and each message response. Records
are described in “Records and the Java Record
Framework” on page 105.

The Java Record Framework and e-Connectors will be
available for MQSeries in future updates of VisualAge
for Java.

When formatting a request message, the ATM request class associated with
the relevant transaction is invoked. Once the message is formatted, a method
in the MQAccess class is invoked to put the message on a queue. When a
response message is available on a queue, a method in the MQAccess class is
invoked to retrieve the message. The ATM response class associated with the
relevant transaction is invoked to parse the message into its field
components.

Conforming to the ATM Model
In the first development cycle the MQSeries access to enterprise data was
invoked directly in a servlet. The way response messages were formatted did
not necessarily conform to any predefined layout. Thus MQSeries access was
developed in isolation, without taking any architectural models into
consideration.

This quick approach proved to be a rather poor choice but provides a valuable
lesson. Whatever access mechanism is chosen to implement an end-to-end
transaction flow, it should conform to an architected strategy represented by
a model. Conversely the model should be comprehensive enough to utilize the
strengths of the various access mechanisms.

The ATM application was designed to be a layered architecture with a
separation of user interface, business, and persistence layers. To interface
with this model, the MQSeries access classes need to take cognizance of it
and its specifications. Not considering the architecture in the first place
caused considerable redevelopment effort.

To reiterate, it is critical to understand the interfaces of the design model,
before you undertake major design decisions. It is also important to note that
it is only necessary to understand the model interfaces. The implementation
details should be hidden.
ATM Application Using MQSeries 305

Unit of Work Considerations
MQSeries provides transactional messaging. Over and above this, the
decision to run back-end applications under CICS provides a transaction-
based framework. It should therefore be possible to achieve transaction
atomicity and integrity.

To a large extent this key concept has not been addressed sufficiently in the
work presented here. The home-grown back-end program developed to feed
MQSeries messages to CICS programs is not sophisticated enough to deal
with the multiplicity of options when coordinating MQSeries and CICS
resource management. It is assumed that in reality a more sophisticated tool

would be used to enable this. This omission of comprehensive unit of work
design can cause disparity between the view presented to the user and the
actual data stored on the enterprise databases. For example, it is possible for
a user to be shown a balance without that balance having been stored on the
enterprise database.

Unit of work issues are essential to any MQSeries and CICS design
considerations. These issues exist regardless of the development
environment and tools chosen. Specific implementation of design decisions,
however, can be environment dependent. For example, if a transaction
manager such as CICS is used, the unit of work is coordinated by it. If an
X/Open XA compliant database is used, MQSeries itself can take on the role
of coordinator of the unit of work.

Comprehensive unit of work analysis in terms of using MQSeries with the
ATM application has not been done. This would prove to be an interesting
undertaking that we have not addressed in this book. It is also deemed that
such analysis is essential for any robust MQSeries implementation. The
omission here is due to time constraints, not to the importance that should be
attributed to the task.

11.9 ATM Request Classes
In this section we discuss the creation of the request classes of the ATM
application. We do not discuss the creation of each request class associated
with every ATM transaction. We discuss only the creation of the classes
associated with the instantiation of a customer and a card.

AtmRequest Class
To deal with those features that are common to all requests, an abstract class
called AtmRequest is created. Primarily this class is responsible for
306 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

formatting the common header.

All ATM MQSeries messages consist of an 8-byte program name followed by
an ATM header. We use the same header properties here as in “ATM Header
for the COMMAREA” on page 245 in the CICS implementation:

 ❑ atmTxProgram, of type java.lang.String, read/write, bound (<== added)
 ❑ atmHdrId, of type java.lang.String, read/write, bound
 ❑ atmHdrDate, of type java.lang.String, read-only
 ❑ atmHdrReturnCode, of type short, read/write, bound
 ❑ atmHdrOutputLength, of type int, read/write, bound

To implement the AtmRequest class we do not implement the properties, only
the methods that return the formatted information. This is sufficient for the
MQSeries implementation of the back-end because we chose to use a string
format for all our messages. Table 29 shows the methods of the AtmRequest
class.

Table 29. Methods of the AtmRequest Class

getHeader Method
The getHeader method formats an ATM header with a transaction program
prefix (Figure 174).

Figure 174. getHeader Method

Method Return
Type

Para-
meter

Description

abstract getTxPgm String - Abstract method that returns the
name of the program associated with
the back-end transaction

getHeader String - Returns the AtmHeader as a string

abstract
appendData

String - Abstract method that returns the
transaction-specific portion of a
request message

toString String - Returns the MQSeries message as a
string consisting of the header and the
transaction-specific data

protected final String getHeader() {
String date = java.util.Calendar.getInstance().getTime().toString();
date = (date + " ").substring(0,28);
String header = getTxPgm() + "ATM " + date + "9999" + "00000052";
return header;

}

ATM Application Using MQSeries 307

toString Method
The toString method concatenates the header and the transaction-specific
portion of the message (Figure 175).

Figure 175. toString Method

public String toString() {
return (getHeader() + appendData());

}

Execution Trigger
To trigger the execution of the request we add a boolean write-only property
named trigger and change the setTrigger method so that the trigger is reset
immediately after being set (Figure 176). The trigger event is used to start
processing.

Figure 176. Request Trigger Method

Card Request
In the first step of the ATM application, a card and a customer object must be
instantiated in the business object layer from enterprise data. In the
MQSeries implementation we send an MQSeries request message to get the
data, and we retrieve a corresponding MQSeries response message. This
response message contains the information necessary to create the business
layer objects.

Create the CardReq class as a subclass of AtmRequest (Table 30).

Table 30. Card Request Class

public void setTrigger(boolean trigger) {
boolean oldValue = fieldTrigger;
fieldTrigger = trigger;
firePropertyChange("trigger", new Boolean(oldValue), new Boolean(trigger));
fieldTrigger = false; // reset the trigger

}

Class CardReq Definition

Property cardId String, read/write, bound

Method getTxPgm String getTxPgm() {
return "ATMCARDI";

}

appendData String appendData() {
308 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Accounts Request
A card object is also associated with account information. A card can have
multiple accounts. Once the card object has been instantiated, another
MQSeries request is sent to retrieve the account information.

Create the AccountsReq class as a subclass of AtmRequest (Table 31).

return getCardId();
}

Table 31. Accounts Request Class

11.10 ATM Response Classes
In this section we discuss the creation of the response classes of the ATM
application. As with the request classes, we discuss only the creation of the
classes associated with the instantiation of a customer and a card.

AtmResponse Class
To deal with the data content that is common to all responses, we create an
abstract class called AtmResponse. This class is primarily responsible for
checking the response return code. Because this class parses a retrieved
MQSeries message, we create an additional constructor with the message as
a parameter.

Create the AtmResponse class as an abstract class and declare a private
string, responseMsg.

Table 32 shows the methods of the AtmResponse class.

Table 32. Methods of the AtmResponse Class

Class AccountsReq Definition

Property cardId String, read/write, bound

Method getTxPgm String getTxPgm() {
return "ATMACCNT";

}

appendData String appendData() {
return getCardId();

}

Method Return Description and Code
ATM Application Using MQSeries 309

Type

AtmResponse - Constructor to save the response message string:
public AtmResponse(String str) {

responseMsg = str;
}

getUserData String Returns the response message without the header:
public String getUserData() {

return responseMsg.substring(52);
}

Card Response
In response to the CardReq message, enough information is sent back in the
response message to create a card and customer object. We provide a method
in the response class that instantiates the card and customer objects and
returns the card object.

Remember that the card object contains a reference to the customer object.

Create the CardResp class as a subclass of AtmResponse (Table 33).

Table 33. Card Response Class

getCard Method
Figure 177 shows the getCard method.

checkRCOfHeader void Checks the ATM header return code and throws an
exception if the return code is not 0:
public final void checkRCOfHeader() throws Exception{

String returnCode = responseMsg.substring(40,44);
if (!(returnCode.equals("0000")))

throw (new Exception("Transaction failed - " +
"return code is " + returnCode));

}

Class CardResp Definition

Method
Feature

getCard Constructs a customer object and a card object and
returns the card object

public itso.entbk2.atm.model.Card getCard() {
itso.entbk2.atm.model.Customer cust = new itso.entbk2.atm.model.Customer(

getUserData().substring(11,15), // customer ID

Method Return
Type

Description and Code
310 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 177. getCard Method

getUserData().substring(15,18), // title
getUserData().substring(18,48), // first name
getUserData().substring(48,78)); // last name

itso.entbk2.atm.model.Card card = new itso.entbk2.atm.model.Card(
getUserData().substring(0,7), // card ID
getUserData().substring(7,11), // card PIN
cust); // cutomer object

return card;
}

Accounts Response
In response to the AccountsReq message, enough information is sent back in
the response message to create a vector of accounts associated with the card
object. The account classes are defined in the business object layer of the
ATM model. An account can be either a CheckingAccount class or a
SavingsAccount class. Both classes are subclasses of the BankAccount class.

Create the AccountsResp class as a subclass of AtmResponse (Table 34).

Table 34. Accounts Response Class

getAccounts Method
Figure 178 shows the getAccounts method.

Class AccountsResp Definition

Method
Feature

getAccounts Extracts account details in the response message
to create a vector whose elements are objects of
either the CheckingAccount or the
SavingsAccount class

public java.util.Vector getAccounts() throws Exception {
itso.entbk2.atm.model.BankAccount account = null;
java.util.Vector vectorAccounts = new java.util.Vector();
int nbrOfAccounts = (new Integer(getUserData().substring(7,9)).intValue());
for (int i=0 ; i < nbrOfAccounts ; i++) {

String str = getUserData().substring(9+i*33,(9+i*33+33));
String acctype = str.substring(8,9);
if (acctype.equalsIgnoreCase("C"))

account = new itso.entbk2.atm.model.CheckingAccount(
str.substring(0,8), // account ID

new java.math.BigDecimal(new java.math.BigInteger(str.substring(9,17)),2),
new java.math.BigDecimal(new java.math.BigInteger(str.substring(25,33)),2));

else
account = new itso.entbk2.atm.model.SavingsAccount(

str.substring(0,8), // account ID
new java.math.BigDecimal(new java.math.BigInteger(str.substring(9,17)),2),
ATM Application Using MQSeries 311

Figure 178. getAccounts Method

new java.math.BigDecimal(new java.math.BigInteger(str.substring(17,25)),2));
vectorAccounts.addElement(account);

}
return vectorAccounts;

}

11.11 ATM Access Classes
Before we can implement the ATM persistence interface, we encapsulate
individual MQSeries interactions in ATM access classes. Such an approach
will make it easy to code the class that implements the persistence interface.

An ATM access class embodies the flow of MQSeries requests and responses
for one user transaction. These MQSeries requests trigger back-end
applications that return sufficient information in MQSeries response
messages to prepare the response for the user interface.

To begin, we concentrate on two interactions, retrieving ATM card
information and retrieving the accounts for one ATM card. We encapsulate
these two interactions in two classes called MQCardAccess and
MQAccountsAccess.

Each class implements an execute method that triggers the processing.

Card Access Class
Create a class called MQCardAccess as a subclass of Object. Define the
properties shown in Table 35, all read/write and bound.

Table 35. Properties of the Card Access Class

Visual Composition
We construct the processing of the card access class in the Visual
Composition Editor (Figure 179).

Property Type Description

cardId String The input card number for retrieving

card Card The resulting card object of the operation
312 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

 ❑ Drop a bean of type CardReq and a factory of type CardResp on the
free-form surface.

 ❑ Add two variables of type MQAccess and name them mqRequest and
mqResponse. These variables will be set from outside before execution.

 ❑ Promote the this property of the two variables as mqRequestThis and
mqResponseThis.

Figure 179. Visual Composition of Card Access Class

Connections
The processing is accomplished through these connections:

 ❑ Connect the trigger event of the CardReq bean to the cardId property of
the CardReq bean and pass the cardId property of the MQCardAccess
class as a parameter (1).

 ❑ Connect the trigger event of the CardReq bean to the
putRequestMessage(AtmRequest, String) method of the mqRequest
variable. Connect the request parameter to the this of the CardReq bean
and the aReplyToQueue parameter to the responseQueue property of the
mqRequest variable (2). This sends the message to MQSeries.

 ❑ Connect the normalResult of putRequestMessage to the
retrieveSpecificMessage of the mqResponse variable and pass the event
data (the MQMessage) (3). This retrieves the response from MQSeries.

 ❑ Connect the normalResult of retrieveSpecificMessage to the
CardResp(String) constructor of the CardResp factory and pass the event
data (the retrieved message) (4).

1
2

3

4

5

67
ATM Application Using MQSeries 313

 ❑ Connect the this event of the CardResp factory to the checkRCOfHeader of
the factory (5). Here we check the return code and throw an exception if
not zero.

 ❑ Connect the exceptionOccurred of the return code check to the setCard
method of the MQCardAccess class and pass null as a parameter (6).

 ❑ Connect the normalResult of the return code check to the setCard method
of the MQCardAccess class and use the getCard method of CardResp as a
parameter (7). This constructs the card object, our result.

Execute Method
The execute method sets the trigger in the CardReq bean:

public void execute() {
getCardReq().setTrigger(true);

}

Account Access Class
Create a class called MQAccountAccess as a subclass of Object. Define the
properties shown in Table 36, all read/write and bound.

Table 36. Properties of the Account Access Class

The MQAccountsAccess class is constructed in the same sequence as the
MQCardAccess class (see Figure 180). The only differences are:

 ❑ Use an AccountsReq bean and an AccountsResp factory.
 ❑ The method to assign the result is setAccountsVector.

Property Type Description

cardId String The input card number for retrieving

accountsVector Vector The resulting vector of accounts for a given card
314 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 180. Visual Composition of Accounts Access Class

Do not forget to promote the this of the mqRequest and mqResponse
variables.

Execute Method
The execute method sets the trigger in theAccountsReq bean:

public void execute() {
getAccountsReq().setTrigger(true);

}

11.12 Persistence Interface with MQSeries
The ATM model has an application controlling class, the
AtmApplicationController. When an event occurs, such as the user clicking
on an Ok button, a relevant method in this class is invoked.

The controller delegates the access to enterprise data to a class that
implements the ATMPersistenceInterface. In previous chapters we show
implementations of the persistence interface using data access beans and the
CICS Connector. In this section we implement this interface with MQSeries.

The controller contains the ATMPersistenceLayer property that holds the
implementation of the persistence interface. This object is instantiated in the
default constructor of the ATMApplicationController class:

setATMPersistenceLayer(new ...nameOfImplementationClass...());

For access through MQSeries we implement a class called AtmMQ and we
initialize the controller with:

setATMPersistenceLayer(new itso.entbk2.atm.mq.AtmMQ());

AtmMQ Class
Create the AtmMQ class and implement the ATMPersistenceInterface:

class AtmMQ implements itso.emtbk2.atm.model.ATMPersistenceInterface

This creates skeleton bodies for all the methods. We discuss the contents of
the methods of interest for the MQSeries implementation in “Methods of the
Persistence Interface” on page 317.

Setting up the MQ Connections
We decided to have two MQ connections per instantiation of the AtmMQ
class. One connection is used for request messages, and the other is used for
ATM Application Using MQSeries 315

response messages.

If more connections are needed for workload management, several instances
of the AtmMQ class could be instantiated. We use only one instance for the
ATM application.

Visual Components
We build the AtmMQ class in the Visual Composition Editor:

 ❑ Add two beans of type MQAccess to the free-form surface and name them
MQRequest and MQResponse.

 ❑ Open the two MQAccess beans and set the value for the channelName,
hostName, queueManagerName, requestQueue, and responseQueue
properties according to your MQSeries configuration (Figure 181).

 ❑ Add a bean for every class that needs to use the MQSeries connections, in
our case, MQCardAccess and MQAccountAccess.

Figure 181. Properties of MQAccess Beans

Connections
Figure 182 shows the visual composition of the AtmMQ class.

 ❑ Connect the initialize event of AtmMQ to the connectToQmgr method of
316 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

MQRequest (1).

 ❑ Connect the normalResult of connectToQmgr to the openQueue(String,int)
method of MQRequest. Connect the queueName parameter to the
requestQueue property of MQRequest, and connect the openMode
parameter to the MQOpenOutput property of MQRequest (2).

 ❑ Connect the initialize event of AtmMQ to the connectToQmgr method of
MQResponse (3).

 ❑ Connect the normalResult of connectToQmgr to the openQueue(String)
method of MQResponse. Connect the queueName parameter to the
responseQueue property of MQResponse (4).

 ❑ For every class that uses the MQRequest connection, connect the this
property of MQRequest to the mqRequestThis property of the class. (This
assumes that the variable was named mqRequest.)

For example, connect the this property of MQRequest to the
mqRequestThis property of MQCardAccess and MQAccountAccess (5).

 ❑ For every class that uses the MQResponse connection, connect the this
property of MQResponse to the mqResponseThis property of the class (6).

Figure 182. Visual Composition of AtmMQ Class

Methods of the Persistence Interface
AtmMQ must implement all methods of the ATM persistence interface. For
now we only deal with the instantiation of a card object with its associated
accounts, so we implement the extGetCard and extGetAccounts methods
(Table 37).

Table 37. AtmMQ Methods Implemented for ATM Application

2
1 3

4

5
5

6
6

ATM Application Using MQSeries 317

Method Return
Type

Parameters Description

 extGetCard Card String Retrieves card and customer data
and constructs a card object

extGetAccounts void Card Retrieves all accounts of a card
and stores the accounts in the card
object

extGetCard Method
Figure 183 shows the extGetCard method. This method sets the cardId
variable in MQCardAccess and calls the execute method. This triggers the
MQSeries flows, culminating in the creation of a card object that is returned
by this method. We discuss the details of these MQSeries request and
response flows in “Card Access Class” on page 312.

Figure 183. extGetCard Method

extGetAccounts Method
Figure 184 shows the extGetAccounts method. The extGetAccounts method
retrieves the accounts associated with a card object and stores them in a
vector of the card object. The vector is created in the MQAccountAccess class.
An exception is thrown if no accounts are found.

Figure 184. extGetAccounts Method

public itso.entbk2.atm.model.Card extGetCard(String cardId) throws Exception {
getMQCardAccess().setCard(null);
getMQCardAccess().setCardId(cardId);
getMQCardAccess().execute(); // MQ processing
if (getMQCardAccess().getCard() == null)

throw new java.lang.Exception("Card not found");
return getMQCardAccess().getCard();

}

public void extGetAccounts(itso.entbk2.atm.model.Card card) throws Exception {
card.setAccounts(null);
getMQAccountAccess().setAccountsVector(null);
getMQAccountAccess().setCardId(card.getCardNumber());
getMQAccountsAccess().execute(); // MQ processing
if (getMQAccountAccess().getAccountsVector() == null)

throw new java.lang.Exception("Card has no accounts");
card.setAccounts(getMQAccountAccess().getAccountsVector());

}

318 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

11.13 Adding Additional Transactions
Up to now we have concentrated on showing how MQSeries can be used to
enable the creation of a card and customer object. The ATM application
consists of several transactions. Any of these could be implemented using a
similar MQSeries access mechanism.

The explicit implementation of these transactions, using MQSeries, is not
shown. Instead the focus is on how the classes already discussed are modified

to incorporate other transactions. To illustrate the discussion, we use the
updateBalance function.

The updateBalance function of the ATM persistence interface gets the
updated account as a parameter. In the account is the new balance, and a
new transaction record is added to the transaction property.

We construct an update balance message containing:

 ❑ account ID
 ❑ account type
 ❑ new balance (BigDecimal converted to a string of 10 characters, in cents)
 ❑ transaction ID
 ❑ transaction type
 ❑ transaction amount (BigDecimal converted to a string of 10 characters)

This invokes a back-end application that updates the external resources of
the account and the transaction and returns a response message indicating
whether the update was successful or not.

Create a Class for the MQSeries Request
Every request message is represented by a class whose superclass is
AtmRequest. The two methods of this class that affect the message content
are getTxPgm and appendData.

Relevant classes that have already been discussed are CardReq and
AccountsReq.

Update Balance Request
Create the UpdateBalanceReq class as a subclass of AtmRequest (Table 38).

Table 38. Update Balance Request Class

Class UpdateBalanceReq Definition
ATM Application Using MQSeries 319

Property account type: BankAccount, read/write, bound

Method getTxPgm String getTxPgm() {
return "ATMBALUP";

}

appendData Formats the message string

bigdecToString Converts a BigDecimal value to a
10-character string

bigdecToString Method
private String bigdecToString(java.math.BigDecimal amount) {
 // returns a string of 10 chars, BigDecmial amount in cents
 java.math.BigDecimal baldec;
 java.math.BigInteger balint;
 baldec = amount.multiply(new java.math.BigDecimal(100));
 baldec = baldec.add(new java.math.BigDecimal(.5)); // rounding
 balint = baldec.toBigInteger();
 String str = "0000000000" + balint.toString();
 str = str.substring(str.length()-10);
 return str;
}

appendData Method
public String appendData() {

itso.entbk2.atm.model.Transaction trans = getAccount().getLastTransaction();
return getAccount().getAccountId() +

getAccount().getAccountType().substring(0,1) +
bigdecToString(getAccount().getBalance()) +
trans.getTransId() +
trans.getTransType() +
bigdecToString(trans.getTransAmount());

}

Create a Class for the MQSeries Response
Every response message is represented by a class whose superclass is
AtmResponse. The methods that must be created depend on the processing
that occurs with the response message. Relevant classes that have already
been discussed are CardResp and AccountsResp.

Update Balance Response Class
Create the UpdateBalanceResp class as a subclass of AtmResponse.

Because only the header return code is checked for successful execution, no
additional methods are needed to format the response message.
320 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Create a Transaction-Specific Access Class
This class essentially controls the MQSeries ATM transaction interface. It
depicts how a request message is sent to trigger an enterprise transaction.
On getting a response message back from the transaction, the message is
formatted to return an object or data type.

The message flows in this class must be activated by an event triggered in
one of the persistent interface methods. Because this class accesses
MQSeries, the connections established in the AtmMQ class must be
referenced. This class can be created visually.

The following components are needed for an access class:

 ❑ Properties that hold the values required for the execution of the
transaction and that are set from the persistent interface method

 ❑ Two variables that reference the MQ connection established for request
and response messages (mqRequest and mqResponse) with their this
properties promoted for external access

 ❑ A bean representing the request message (for example,
UpdateBalanceReq)

 ❑ A factory for the response message, with a constructor that accepts a
string (for example, UpdateBalanceResp)

 ❑ Any variables or properties that are required to supply parameters or
return values

 ❑ An execute method that sets the trigger property in the request bean

The components of the class can be connected visually. The specifics of these
connections can only be detailed on a transaction by transaction basis, but in
general the following applies:

 ❑ Connect the trigger property event of the request message bean
(UpdateBalanceReq) to set up its properties.

 ❑ Connect the trigger property event to the putRequestMessage method of
the mqRequest variable.

 ❑ Connect the request parameter of the putRequestMessage to the this
property of the request class (UpdateBalanceReq).

 ❑ Connect the aReplyToQueue parameter of the putRequestMessage to the
responseQueue property of the mqRequest variable.

 ❑ Connect the normalResult event of the putRequestMessage to the
retrieveSpecificMessage method of the mqResponse variable and pass the
event data.

 ❑ Connect the normalResult event of the retrieveSpecificMessage to the
ATM Application Using MQSeries 321

constructor(String) method of the response class factory
(UpdateBalanceResp).

 ❑ Connect the this event of the response class to its own checkRCOfHeader
method.

 ❑ Connect the normalResult event of checkRCOfHeader to whatever
method(s) are needed to format the response message.

 ❑ Connect any return object to a property that can be retrieved externally.

The MQCardAccess and MQAccountsAccess classes are examples of this type
of class.

Update Balance Access Class
Create the MQUpdateBalance class as a subclass of Object. Define the
properties shown in Table 39, all read/write and bound.

Table 39. Properties of the Update Balance Access Class

The MQUpdateBalance class is constructed visually, similar to the
MQCardAccess and MQAccountsAccess classes (see Figure 185). Note that
the trigger event sets the account property of the UpdateBalanceReq class.

Figure 185. Visual Composition of Update Balance Access Class

Modify the AtmMQ Class
It is necessary to modify the AtmMQ class to include processing for the
additional transaction.

Property Type Description

account BankAccount The updated bank account

errorCode int A return code indicating success (0) or failure (1)
322 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Connect the Additional Access Bean
Add the additional access bean (MQUpdateBalance) to the free-form surface
of the AtmMQ class. Connect the this property of the MQRequest and
MQResponse beans to the promoted mqRequestThis and mqResponseThis
properties of the additional access bean.

Figure 186 shows the updated visual composition.

Figure 186. Visual Composition of AtmMQ with Update Balance

Modify the Transaction-Specific Interface Method
Every ATM transaction is associated with a method of the ATM persistence
interface method. It is in such a method that the transaction-specific
processing must be invoked.

Modify the extUpdateBalance Method
The method associated with the update balance transaction is
extUpdataBalance(BankAccount). This method sets the error code property
to 1, indicating failure. The bank account is then set into the property of
MQUpdateBalance and the execute method is invoked to start the
processing. After processing the error code is checked and an exception is
thrown if it is not zero (Figure 187).

public void extUpdateBalance(itso.entbk2.atm.model.BankAccount account)
ATM Application Using MQSeries 323

Figure 187. extUpdateBalance Method

throws Exception {
getMQUpdateBalance().setErrorCode(1);
getMQUpdateBalance().setAccount(account);
getMQUpdateBalance().execute(); // MQ processing
if (getMQUpdateBalance().getErrorCode() != 0)

throw new java.lang.Exception("Update of balance failed");
}

Create a Back-End Application Program
To complete the end-to-end flow we require a back-end transaction to carry
out the designated business and data services.

The existence of such a transaction is assumed. The name of the program
associated with this transaction is reflected in the getTxPgm() method of the
relevant subclass of AtmRequest. We have coded the transaction program
ATMBALUP (see “Program ATMBALUP” on page 368).

The CICS COBOL programs invoked through the MQSeries messages are
briefly discussed in the next section.

11.14 Back-End Programs
The enterprise business services required for the ATM applications use
MQSeries queues to retrieve request data from MQSeries messages.
Response data, created using data services, is put on MQSeries queues.
These response messages are retrieved and the user interface (HTML for
servlets, or applet) is updated with the appropriate information.

In a real application the back-end could be implemented through multiple
CICS transaction programs. For testing we can also implement the back-end
as a Java program that reads transactions from the MQSeries request queue
and sends responses back through the MQSeries response queue.

Java Back-End Server Program
To test our design the easiest implementation of the back-end is a Java
program that accesses the queues defined for the ATM application. This
program reads the messages sent by the front-end application and constructs
suitable response data, without accessing a database or transaction system.
324 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

ATM MQSeries Server Class
Create the AtmMQServer class as a subclass of Object.

Define two properties, read/write and bound:

 ❑ card, of type Card, to hold the current card object

 ❑ mqCorrelationId, of type byte[], to hold the incoming message ID to be put
in the reply message (the retrieveSpecificMessage of the MQAccess class
tests for a matching correlation ID)

Visual Composition
The visual composition is similar to that of the AtmMQ class with two
MQAccess beans named MQRequest and MQResponse (Figure 188).

Figure 188. Visual Composition of the ATM MQSeries Server Class

The properties and connections for the two beans are set up in the same way
as for the AtmMQ class (Figure 181 on page 316 and Figure 182 on page 317).
One additional connection from the initialize event to a new processRequests
method starts the processing cycle of the ATM MQ Server.

ATM MQSeries Server Methods
Table 40 shows the processing methods of the server class.

Table 40. Methods of the ATM MQSeries Server Class

Method Description

processRequests Reads a message from the queue, extracts the user portions,
and calls one of the tailored processing routines

processCard Prepares the response for the card request
ATM Application Using MQSeries 325

processAccounts Prepares the response for the accounts request

processUpdate Prepares the response for the update balance request

sendReply Sends a positive response with return code zero

sendError Sends an error message with return code nonzero

getAtmHeader Returns an ATM header

bigdecToString Returns a string representation of a BigDecimal number

processRequests Method
The processRequests method performs a loop to retrieve a message from the
queue, check it, save the message ID for correlation in the response message,
and call the appropriate specific processing routine.

private void processRequests() throws Exception{
String msgString = null;
MQMessage aMessage = null;
for (int i=1; ; i++) {

System.out.println("Get message "+ i);
try {

msgString = null;
aMessage = new MQMessage();
MQGetMessageOptions gmo = new MQGetMessageOptions();
gmo.options = MQC.MQGMO_WAIT + MQC.MQGMO_NO_SYNCPOINT +

 MQC.MQGMO_FAIL_IF_QUIESCING;
gmo.waitInterval = 30000;
getMQRequest().getQueue().get(aMessage, gmo);
try {

if (aMessage.getMessageLength() > 0) {
int lg = aMessage.getMessageLength();
msgString = aMessage.readString(lg);

}
else { System.out.println("message length is <= 0 "); }

} catch (java.io.IOException e) {
System.out.println("An IO exception occurred in ” +

“retrieveSpecificMessage method" + e.toString());
throw e;

}
} catch (MQException e) {

// failed or MQRC_NO_MSG_AVAILABLE
if ((e.reasonCode != e.MQRC_NO_MSG_AVAILABLE)) {

System.out.println("An MQ exception occurred in “ +
“retrieveSpecificMessage method" +
": CC: " + e.completionCode + " Reason Code: " + e.reasonCode);

throw e;
}
else { System.out.println("Waiting for messages ... "); }

}
if (msgString != null) {

System.out.println("-> Msg: " + msgString);
setMqCorrelationId(aMessage.messageId);
if (msgString.substring(0,8).equals("ATMCARDI"))

processCard(msgString.substring(52));
326 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

if (msgString.substring(0,8).equals("ATMACCNT"))
processAccounts(msgString.substring(52));

if (msgString.substring(0,8).equals("ATMBALUP"))
processUpdate(msgString.substring(52));

}
}

}

processCard Method
The processCard method creates a customer and a card object with two
accounts. The card is saved in a property for further transactions. A response
message is generated and sent to the response queue.

private void processCard(String msg) {
String reply = null;
String blank30 = " ";
String cardId = msg.substring(0,7);
java.math.BigDecimal amt1 = new BigDecimal(1000);
java.math.BigDecimal amt2 = new BigDecimal(100);
String custId = cardId.substring(3,7);
Customer cust = new Customer(custId,"Dr.","VA","Java");
System.out.println(" cust " + cust);
CheckingAccount acct1 = new CheckingAccount(custId+"-601",amt1,amt2);
SavingsAccount acct2 = new SavingsAccount(custId+"-602",amt1,amt2);
Card card = new Card(cardId,cardId.substring(0,4),cust);
System.out.println(" card " + card);
card.addAccount(acct1);
card.addAccount(acct2);
setCard(card); // save for next transactions
// prepare reply
reply = cardId + cardId.substring(0,4) + custId + "Dr." +

("VA"+blank30).substring(0,30) + ("Java"+blank30).substring(0,30);
sendReply(reply,"00000130");

}

processAccounts Method
The processAccounts method prepares a response message with the two
accounts of the card. The card ID is checked against the stored card from the
card request.

private void processAccounts(String msg) {
String reply = null;
BankAccount account = null;
String cardId = msg.substring(0,7);
if (cardId.equals(getCard().getCardNumber())) {

System.out.println(" card " + cardId + " 02 accounts");
reply = cardId + "02";
for (int i=0; i<2; i++) {

account = (BankAccount) getCard().getAccounts().elementAt(i);
System.out.println(" acct " + account);
String accountId = (account.getAccountId() + " ").substring(0,8);
String accType = account.getAccountType().substring(0,1);
reply = reply + accountId + accType +

bigdecToString(account.getBalance());
if (accType.equalsIgnoreCase("C"))

reply = reply + "00000000" +
ATM Application Using MQSeries 327

bigdecToString(((CheckingAccount)account).getOverdraft());
else

reply = reply +
bigdecToString(((SavingsAccount)account).getMinAmount()) +
"00000000" ;

}
sendReply(reply,"00000127");

}
else sendError("Bad Card ID for account retrieval");

}

processUpdate Method
The processUpdate method prepares an empty response message (no data is
sent back). The input account is checked against the stored card and a
mismatch in the calculated balance is reported in the Console window.

private void processUpdate(String msg) {
String accountId = msg.substring(0,8);
BankAccount account = getCard().getAccount(accountId);
if (account == null) {

sendError("Bank account " + accountId + " not found");
return;

}
BigDecimal balance = new BigDecimal(new BigInteger(msg.substring(9,17)),2);
String tranType = msg.substring(17,18);
String amount = msg.substring(18,24)+"."+msg.substring(24,26);
System.out.println(" trn: " + tranType + amount + " = " + balance);
if (tranType.equalsIgnoreCase("C"))

account.deposit(amount);
else account.withdraw(amount);
if (account.getBalance().compareTo(balance) != 0)

System.out.println(" bal: server = " + account.getBalance() + " client = " +
balance);

sendReply("","00000052");
}

sendReply Method
The sendReply method adds the ATM header to a response message, sets the
return code to zero, and sends the message to the response queue.

private void sendReply(String userReply, String lg) {
MQMessage message = null;
String totalReply = getAtmHeader() + "0000" + lg + userReply;
try {

// create a new message object
message = new MQMessage();
message.messageType = MQC.MQMT_REPLY;
message.writeString(totalReply);
message.correlationId = getMqCorrelationId();
MQPutMessageOptions pmo = new MQPutMessageOptions(); // default options

// put the message on the queue
System.out.println("-> Rep: " + totalReply);
getMQResponse().getQueue().put(message,pmo);
328 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

}
catch (MQException e) {

System.out.println("An MQ exception occurred when putting a message on a queue "
 + " : CC: " + e.completionCode + " Reason Code: " + e.reasonCode);

}
catch (java.io.IOException e) {

System.out.println("An IO error occurred when putting a message on a queue " +
e.toString());

}
catch (Exception e) {

System.out.println("An exception has occurred " + e.toString());
}
return;

}

sendError Method
The sendError method adds the ATM header to a response message, sets the
return code to 8, and sends the message to the response queue.

private void sendError(String errorMsg) {
MQMessage message = null;
String paddedMsg = (errorMsg+" ...50 blanks ...").substring(0,50);
String totalReply = getAtmHeader() + "0008" + "00000102" + paddedMsg;
try {

// create a new message object
message = new MQMessage();
message.messageType = MQC.MQMT_REPLY;
message.writeString(totalReply);
message.correlationId = getMqCorrelationId();
MQPutMessageOptions pmo = new MQPutMessageOptions(); // default options
// put the message on the queue
System.out.println("-> Err: " + totalReply);
getMQResponse().getQueue().put(message,pmo);

}
catch (MQException e) {

System.out.println("An MQ exception occurred when putting a message on a queue "
 + " : CC: " + e.completionCode + " Reason Code: " + e.reasonCode);

}
catch (java.io.IOException e) {

System.out.println("An IO error occurred when putting a message on a queue " +
e.toString());

}
catch (Exception e) {

System.out.println("An exception has occurred " + e.toString());
}
return;

}

getAtmHeader Method
The getAtmHeader method returns a formatted ATM header.

private String getAtmHeader() {
return "ATMREPLY" + "ATM "+ java.util.Calendar.getInstance().getTime().toString();

}

bigdecToString Method
The bigdecToString method converts a BigDecimal into a string of eight
ATM Application Using MQSeries 329

characters. The code is the same as in the UpdateBalanceReq class (see
“bigdecToString Method” on page 320).

Testing the ATM MQSeries Server
To test the ATM MQSeries server, start the MQSeries queue manager and
listener (see “Command File to Start the Queue Manager” on page 294).

Start the ATM MQSeries server by clicking on the Run button in the tool bar.
The server waits for messages and prints output to the Console window.

The easiest way to test the server is through a Scrapbook script (Figure 189).

// set Page->Run in to ATMApplicationController class in itso.entbk2.atm.model

java.util.Enumeration enum;
BankAccount acct1;
BankAccount acct2;

ATMApplicationController ctl = new ATMApplicationController();
itso.entbk2.atm.mq.AtmMQ atmmq = new itso.entbk2.atm.mq.AtmMQ();
ctl.setATMPersistenceLayer(atmmq);

Card card1 = ctl.getCard("1234567");
System.out.println(card1);

boolean pinok = ctl.checkPin(card1,"1234");
System.out.println("PIN OK " + pinok);

ctl.getAccounts(card1);
enum = card1.getAccounts().elements();
while (enum.hasMoreElements())
 { System.out.println((BankAccount)enum.nextElement()); }

acct1 = (BankAccount)card1.getAccount("4567-601");
acct1 = ctl.deposit(acct1,"400");
acct1 = ctl.withdraw(acct1,"300");
System.out.println(acct1);

acct2 = (BankAccount)card1.getAccount("4567-602");
acct2 = ctl.deposit(acct2,"200");
acct2 = ctl.withdraw(acct2,"100");
System.out.println(acct2);
330 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 189. Scrapbook Script for Testing the ATM MQSeries Server

Testing the ATM Application with MQSeries
Instead of the Scrapbook script you can use the ATM GUI application or the
ATM servlet application together with the ATM MQSeries server. You only
have to set the AtmMQ bean as the persistence interface.

Preparing the ATM GUI Application
One way to change the GUI application to use the MQSeries persistence
interface is to make a copy of the ATMApplet class and change it to use
MQSeries:

 ❑ Copy the ATMApplet class (select Reorganize -> Copy in the pop-up menu)
and name it AtmMQApplet.

 ❑ Delete the main method. It will be regenerated.

 ❑ Open the Visual Composition Editor and change the PersistenceDefault
bean into an AtmMQ bean (use the Morph into pop-up selection).

 ❑ Change the Memory button label to MQSeries and save the application.

Running the ATM GUI Application with MQSeries
Make sure that the class path for the applet is set properly. Use
Run->Check Class Path in the context menu of the class and click on
Compute Now.

Start the MQSeries queue manager and the ATM MQSeries server. Now you
can start the ATM GUI Application and experiment with the MQSeries
connection.

Enter any seven-digit card number. A card object with two accounts is
created by the ATM MQSeries server. Use the first four digits as the PIN.
Note that the getTransaction method for the History button was not
implemented in the ATM MQSeries server.
ATM Application Using MQSeries 331

Running the ATM Servlet Application with MQSeries
To test the ATM servlet application with the ATM MQSeries server, change
the getApplicationController method of the ATMServletController to use the
AtmMQ class for persistence:

public getApplicationController() {
if (applicationController == null) {

applicationController = new itso.entbk2.atm.model.ATMApplicationController();
applicationController.setATMPersistenceLayer

(new itso.entbk2.atm.mq.AtmMQ());
...

CICS COBOL Back-End Programs
If it is necessary to maintain atomicity between MQSeries and database
resources, a transaction management service is required. Some MQSeries
Version 5 queue managers can act as transaction managers and coordinate
updates made by external resource managers that comply with the X/Open
XA interface. For example, MQSeries for Window NT can coordinate a unit of
work involving access to MQSeries and DB2 resources. This function makes
it possible to achieve transactional atomicity without the use of a transaction
server. MQSeries can play the role of the unit of work coordinator. This
function is available on server configurations, but it is not available to client
applications.

It is also possible to run MQSeries applications under a transaction manager
such as CICS, IMS, Encina, Tuxedo, or Top End. In this case the transaction
manager is responsible for coordinating the unit of work, and MQSeries is
just another resource that it manages.

Regardless of which method is selected, transactional integrity is
guaranteed. It is therefore possible to decide how a back-end application
requiring atomicity is written and deployed.

For this book we decided to run back-end applications under CICS.
Enterprise services accessed through MQSeries or CICS clients were written
as CICS COBOL programs. The samples discussed in this book were run on
TXSeries Version 4.2 on Windows NT.

We used the same COBOL programs for MQSeries as for the CICS
Connector. See “COBOL Sample Programs” on page 366 for more information
about the COBOL programs.

We implemented one extra program as a bridge between MQSeries and
CICS. See “MQSeries CICS Bridge Program” on page 369 for more
information about the bridge program.
332 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

12 Deployment of the
ATM Application
Implementations
Up to now we have dealt only with the ATM application within the VisualAge
for Java development environment. We developed several versions of the
application, but we have not discussed how to extract the final code from
VisualAge for Java to run it in a real environment.
© Copyright IBM Corp. 1998 333

In this chapter we cover the general process of deployment of applications,
applets, and servlets. You can apply this process to deploy the different
versions of the ATM application:

 ❑ ATM GUI implementation as a stand-alone application with memory or
database persistence

 ❑ ATM GUI implementation as an applet

 ❑ ATM servlet implementation

 ❑ ATM CICS implementation

 ❑ ATM MQSeries implementation

12.1 Deployment of Applications
The basic characteristics of applications are:

 ❑ They run in a platform JVM.

 ❑ They must be installed on a client or server machine.

 ❑ They have normal access to the machine they run on and to other
machines on the network.

Prerequisites for Applications
To run applications deployed from VisualAge for Java, the machine must
have:

 ❑ A JVM; VisualAge for Java is now at the JDK 1.1.6 level.

 ❑ VisualAge for Java run-time libraries if you used Enterprise Access
Builders. Copy the files to the run-time machine and add them to the
CLASSPATH environment variable.

VisualAge for Java Access Builder Jar Files
VisualAge for Java Version 1 Access Builders are in:

d:\IBMVJava\eab\runtime\ivjeab.zip

VisualAge for Java Version 2 Access Builders are in:

d:\IBMVJava\eab\runtime20\
ccf.jar - common connector framework
eablib.jar - enterprise access builder library
ivjdab.jar - data access beans
ivjdab20.jar - data access builder
ivjpb20.jar - persistence builder
ivjsap11.jar - SAP/R3 access
ivjsb20.jar - servlet builder
334 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

jdebug.jar - remote debugger
recjava.jar - record framework

Exporting an Application from VisualAge for Java
The steps to export an application are:

 ❑ Create a master directory for the exported classes (d:\Export).

 ❑ Select the classes in the Workbench and export the class files to the
master directory. Subdirectories for the packages are automatically
created.

Deployment Process for Applications
Copy the exported directories to the machine where the applications will run.
Set up a master directory that is in the class path and copy the package
subdirectories into the master directory.

Figure 190 shows the process of deploying applications from a VisualAge for
Java development machine to an execution machine.

Development Machine

VisualAge
d:\Export

PackageA

PackageB

A1.class
A2.class

B1.class
B2.class
B3.class

for Java
Export

Execution Machine

d:\JavaApp

PackageB

PackageC

A1.class
A2.class

B1.class
B2.class
B3.class

C1.class
Java Virtual Machine

CLASSPATH=.;.....;
 d:\JavaApp;
 ...

RUN

PackageA
Deployment of the ATM Application Implementations 335

Figure 190. Deployment Process for Applications

This setup guarantees that the JVM will find all classes. A proper setup that
follows the Java class naming rules is required for successful operation. Run
an application with this command:

java PackageA.A2

12.2 Deployment of Applets
The basic characteristics of applets are:

 ❑ They run in a Web browser on a client machine.

 ❑ They are downloaded from a server machine.

 ❑ They have limited access to the client machine.

 ❑ They have limited access to the network—only to the server machine from
which they come.

Some of the restrictions can be lifted for trusted applets; such security
facilities are, however, beyond the scope of this book.

The biggest advantage of applets is that they are automatically distributed to
the client machine. There is no maintenance burden; new versions of applets
are installed on Web servers.

The Web browser provides the JVM; the platform JVM is not required.

Exporting Applets from VisualAge for Java
The steps to export an applet are the same as for exporting an application:

 ❑ Create a master directory for the exported classes.

 ❑ Select the classes in the Workbench and export the class files to the
master directory.

Deployment Process for Applets
Copy the exported directories to the Web server machine. Set up a master
directory where the Web server looks for HTML files and applets and copy
the package subdirectories into the master directory.
336 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Expand the VisualAge for Java enterprise library and the DB2 JDBC library
into a subdirectory called COM\ibm of the master directory. See “VisualAge
for Java Access Builder Jar Files” on page 334 for a list of files.

In the master directory, create an HTML file for each applet that points to
the applet’s class. Note that export can create a skeleton applet file for each
applet.

Figure 191 shows the process of deploying applets from a VisualAge for Java
development machine to a Web server and a Web browser.

download

Web Browser

X1.html

VisualAge
d:\Export

PackageX

PackageY

X1.class
X2.class

Y1.class
Y2.class
Y3.class

for Java
Export

Development Machine

Web Server Machine

d:\WWW\hmtl

PackageY

COM.ibm....

X2.class

Y1.class
Y2.class
Y3.class

aa.class

Web Server

PackageX

X2.html

http:

X1.html

X1.class<HTML>

<applet
 code=PackageX.X1.class
 ...>
...
Deployment of the ATM Application Implementations 337

Figure 191. Deployment Process for Applets

X1 Applet

Web Browser Client

12.3 Deployment of Servlets
Most Web servers contain a servlet run-time facility that enables the
execution of servlets. Some Web servers have their own JVM, others use the
JVM of the underlying operating system.

Modern Web servers have optimized servlet run-time facilities that cache
servlet code and keep servlets active after their first use. This optimization
improves performance considerably compared to CGI programs that are
loaded at each invocation.

We cover only the Windows NT platform and two configurations of Web
servers with a servlet run time in this book:

 ❑ Lotus Domino Go Webserver without WebSphere

 ❑ Lotus Domino Go Webserver with WebSphere

WebSphere contains an improved servlet run-time facility over Lotus Domino
Go and completely replaces the servlet run-time facility during installation.

In the near future, WebSphere will run on top of the Apache Web server on
Windows NT. We assume that the WebSphere configuration will be very
similar to what we describe here.

Because servlets run on the Web server in a trusted environment, they have
no real restrictions about what they can access and with which other
machines they can communicate. Communication with other servers is more
a question of which protocols and products are installed on the Web server.

Possible communication protocols include:

 ❑ JDBC to a relational database on the same or a different database server

 ❑ RMI to another server

 ❑ CICS Transaction Gateway on the same or a different server
338 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

 ❑ MQSeries on the same or a different server

The basic deployment process is the same with or without WebSphere
installed:

 ❑ Export the servlet classes

 ❑ Copy the exported files to a suitable target directory on the Web server

 ❑ Set up the Web server class path

Deployment of Servlets for Lotus Domino Go Webserver
Figure 192 shows the process of deploying servlets from a VisualAge for Java
development machine to Lotus Domino Go Webserver.

<html>
<form action=
"/servlet/PackageX.X1"

</form>
......

input

Web Browser

VisualAge
d:\Export

PackageX

PackageY

X1.class
X2.class

Y1.class
Y2.class
Y3.class

for Java
Export

Development Machine

Lotus Domino Go Webserver

d:\..target..directory..

PackageY

X2.class

Y1.class
Y2.class
Y3.class

Web Server

PackageX

http:

X1.class

outputgenerated HTML
Deployment of the ATM Application Implementations 339

Figure 192. Deployment Process for Servlets in Lotus Domino Go Webserver

Title

Input:

Submit

X1 Applet

Web Browser Client

Result:

Lotus Domino Go Webserver is configured in a configuration file called
HTTPD.CNF. We do not go into details here about Web server configuration.

The servlet run-time facility of Lotus Domino Go Webserver is an optional
component. To run servlets you install either the servlet runtime or the
WebSphere Application Server on top of Lotus Domino Go Webserver.

The differences for deployment of servlets with or without WebSphere are:

 ❑ Location of the target directory
 ❑ Class path setting

Table 41 gives an overview of the location and class path settings.

Table 41. Servlet Deployment Specifications

Target Location
The target location given in Table 41 is the installation default. You can chose
any target directory that is part of the class path setting.

Class Path Setting for Web Server
The most important configuration activity for servlet deployment is the setup
of the class path. Every Web server has its unique way of defining its class
path. Because many servlets use some of the Enterprise Access Builder
classes of VisualAge for Java, it is mandatory that the jar files of the
Enterprise Access Builders are deployed to the Web server and added to the
class path.

Option Lotus Domino Go WebSphere

Target location d:\www\servlets\public d:\WebSphere\AppServer\classes

Class path Specified in servlet.cnf file
(in c:\Winnt)

Specified using administration
applet
340 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Class Path Setting of Lotus Domino Go Webserver
The class path of the servlet run time of Lotus Domino Go Webserver is
specified in the servlet configuration file, servlet.cnf, in the Windows master
directory. At the end of the file you find the JavaClassPath specification:

JavaClassPath D:\WWW\Bin\Java\lib\classes.zip;D:\WWW\Servlets\Public;
D:\WWW\HTML;D:\WWW\Classes;D:\WWW\CGI-Bin\icsclass.zip;
D:\SQLLIB\java\db2java.zip;
D:\IBMVJAVA\EAB\RUNTIME20;D:\IBMVJAVA\EAB\RUNTIME;

In this example we added the DB2 JDBC drivers and the VisualAge for Java
run-time directories. Depending on the use of VisualAge for Java Enterprise
Access Builders or other products (CICS, MQSeries), additional jar files
might have to be added to the class path.

Class Path Setting for WebSphere
WebSphere does not have a configuration file per se. All configuration
activity is performed using an administration applet.

The administration applet is started through a special HTTP command:

http://...hostname....:9090/

Figure 193 shows the logon form for the WebSphere Application Server.
Deployment of the ATM Application Implementations 341

Figure 193. WebSphere Application Server: Administration

WebSphere displays the next administration form, and you click on the
Manage button to start servlet configuration (Figure 194).

Figure 194. WebSphere Application Server: Manage Configuration

Most of the configuration activities involve the servlet run-time engine of
WebSphere.

We do not go through all of the WebSphere administration pages. For now
the most important setting to get servlets created with VisualAge for Java to
work is the class path setting, and that is on the Basic page.
342 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Clicking on the Servlets icon in the tool bar displays another set of pages
where you can control individual servlets:

 ❑ Add a servlet

 ❑ Assign an alias (short name)

 ❑ Preload

 ❑ Specify parameters

Figure 195 shows the Basic page of the WebSphere servlet configuration
dialog.

Figure 195. WebSphere Application Server: Servlet Configuration Basic Page

It is difficult to edit the class path setting in that small field, so we suggest
copying the text into an editor.

We used the following class path:

E:\jdk1.1.6\lib\classes.zip; <=== JDK
Deployment of the ATM Application Implementations 343

F:\WebSphere\AppServer\lib\ibmwebas.jar;
F:\WebSphere\AppServer\lib\jst.jar;F:\WebSphere\AppServer\lib\jsdk.jar;
F:\WebSphere\AppServer\lib\x509v1.jar;F:\WebSphere\AppServer\lib;
F:\WebSphere\AppServer\web\admin\classes\seadmin.jar;
F:\WebSphere\AppServer\web\classes\ibmjbrt.jar;
F:\WebSphere\AppServer\web\classes; <=== export directory
F:\WebSphere\AppServer\servlets;
D:\SQLLIB\java\db2java.zip; <=== DB2 JDBC Drivers
D:\IBMVJava\eab\runtime20\ivjdab.jar; <=== data access beans
D:\IBMVJava\eab\runtime20\ivjsb20.jar; <=== servlet builder
D:\IBMVJava\hpj\lib\swingall.jar; <=== swing

12.4 Deployment of Applications with Swing
Many new applications use Swing function. Even if you do not use a Swing
GUI, there is a good chance that your application uses Swing function; for
example, data access beans and visual servlets with HTML result tables use
the Swing table model.

If you use any part of Swing, you must make sure that the Swing classes are
in the class path. Swing provides several jar files with subsets of the classes
and one file with all the classes. This complete file, swingall.jar, is also
provided with VisualAge for Java in the IBMVJava\hpj\lib directory.

To make it simple, add the swingall.jar files to every class path.

12.5 Tailoring the Web Browser
Web browsers find classes in several ways. First they look through their own
directory of classes, then they check the class path of the platform, and last
they ask the Web server for classes.

The jar files of VisualAge for Java are quite large and, instead of exploding
them in the Web server, you can install the jar files in the browser’s directory.

Netscape
The Netscape browser locates jar files in this directory:

d:\...NetscapeInstallDirectory...\Communicator\Program\Java\Classes

for example:

c:\Program Files\Netscape\Communicator\Program\Java\Classes

Microsoft Internet Explorer
344 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Internet Explorer locates jar files in this directory:

c:\Winnt\Java\classes <=== Windows NT
c:\Windows\java\classes <=== Windows 95

13 High-Performance
Compiler and
Remote Debugger
VisualAge for Java Enterprise Version 2 includes a high-performance
compiler and a remote debugger.

In this chapter we briefly describe the high-performance compiler and
compile and run the ATM GUI application.
© Copyright IBM Corp. 1998 345

We also briefly describe the remote debugger and apply it to the ATM
application.

13.1 High-Performance Compiler
We do not describe all the facilities and options of the high-performance
compiler in this book. We rather choose a practical approach and just show
how the ATM application is compiled and run. This experience demonstrates
a number of the steps that are necessary and highlights potential problems
you may encounter when compiling your own applications.

Compiler Options
The basic command to invoke the high-performance compiler is:

hpj [options] input-file

Table 42 shows the major compiler options that we will use:

Table 42. High-Performance Compiler Options

The input-file specification can be one file or a file name pattern with
asterisks. Files can be source files (.java), class files (.class), jar files (.jar or

-exe Create an executable (default)

-jll Create one DLL of all input files (extension .jll)

-jlc Create a DLL for each input file (extension .jlc)

-O Optimize the code (default is no optimization)

-verbose Display compile progress in the window

-o filename Name of the generated output file

-nofollow Do not compile referenced classes (default is -follow)

-main class Name of main program (default is first with main method)

-g Include debugging hooks (default -nog)
346 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

.zip), or object files from a previous compilation.

The high-performance compiler creates an object file (.obj) for each class, and
result file(s) according to the specification (.exe, .jll, .jlc).

Base Java Classes
The base Java classes are precompiled into DLLs. Check out the
d:\IBMVJava\hpj\lib\classes directory.

Swing Classes
The Swing classes are precompiled as well. The Swing classes are in the
d:\IBMVJava\hpj\lib directory:

swingall.jar: Swing classes for class path
swingall.jll: Compiled Swing classes for high-performance compiler

Execution
To execute a compiled program, just run the executable, or, for a DLL use the
hpjava command:

hpjvava -load dll-name;dll-name classname parameters

To pass execution options to a .exe file, use an environment variable:

set IBMHJ_OPTS=execution-options

If you get an error message about a Swing class not being found, be sure to
include the swingall.jll in the -load option:

set IBMHJ_OPTS=-load d:\IBMVJava\hpj\lib\swingall.jll

13.2 Compiling the ATM Application
To compile the ATM application we have to perform a series of steps:

 ❑ Export the code from VisualAge for Java

 ❑ Compile the ATM application

 ❑ Compile the data access beans

 ❑ Compile the DB2 JDBC drivers
High-Performance Compiler and Remote Debugger 347

Export the ATM Application
To export the ATM application from VisualAge for Java, we could use the
same directory as discussed in “Deployment of Applications” on page 334, but
to separate the files we create a new directory:

md d:\atmgui

We export the three packages of the ATM application:

itso.entbk2.atm.model
itso.entbk2.atm.databean
itso.entbk2.atm.gui

We export only the class files. The high-performance compiler can run from
source Java files or from class files. Exporting the packages creates the
package subdirectories under the d:\atmgui directory.

Test the Exported Application
Before compiling we can test whether the application works. Check that DB2
is started, and that the Java daemon (db2jstrt 8888) is started as well.
Remember that we use the net driver in the ATM data bean implementation.

cd atmgui
set classpath=d:\atmgui;d:\SQLLIB\java\db2java.zip;%classpath%
java itso.entbk2.atm.gui.ATMApplet

The application should work without a problem. You may have to resize the
window to have the panel displayed properly.

Compile the ATM Application
In the d:\atmgui directory we invoke the high-performance compiler for the
ATM application. We can only compile one directory at a time. Therefore, we
compile the GUI part into an executable, and each of the two supporting
packages into a DLL. We specify the -nofollow option so that no other classes
are compiled. We also add the atmgui directory to the class path:

cd atmgui
set classpath=d:\atmgui;%classpath%
hpj -exe -O -o atmgui.exe -verbose -nofollow itso\entbk2\atm\gui*.class
hpj -jll -O -o atmdata.jll -verbose -nofollow itso\entbk2\atm\databean*.class
hpj -jll -O -o atmmodel.jll -verbose -nofollow itso\entbk2\atm\model*.class

Compile the Data Access Beans
The data access beans are not available in compiled format. Therefore we
have to compile those classes ourselves. The classes are available in a jar file:
348 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

d:\IBMVJava\eab\runtime20\ivjdab.jar

In a first try we used the -nofollow option but ran into a problem when trying
to execute later. The data access beans require a few classes of the
com.ibm.uvm.edit package, and that package is not available outside
VisualAge for Java.

Exporting the com.ibm.uvm Classes
We export the entire IBM Java Implementation project into a jar file and add
the jar file to the class path so that its classes can be found:

d:\IBMVJava\eab\runtime20\ibmuvm.jar
set classpath=d:\IBMVJava\eab\runtime20\ibmuvm.jar;%classpath%

Compile the Data Access Beans
Now we compile the data access beans with the -follow option:

cd d:\IBMVJava\eab\runtime20
hpj -jll -O-o ivjdab.jll -verbose -follow ivjdab.jar

Note that we could compile the complete ibmuvm.jar file, but the data access
beans actually require only three classes.

Compile the DB2 JDBC Drivers
We know that the data access beans use the JDBC drivers to access the
relational database. Therefore we compile the DB2 JDBC driver classes into
a DLL:

cd d:\SQLLIB \java
hpj -jll -O -verbose -o db2java.jll db2java.zip

Remove the Object Files
The compiler creates an object (.obj) file for every compiled class. You can
safely remove those classes:

cd d:\IBMVJava\eab\runtime20
del *.obj /s
cd com\ibm
rd uvm /s <=== remove uvm directory structure
cd d:\SQLLIB\Java
High-Performance Compiler and Remote Debugger 349

rd com /s <=== remove com\ibm\ directory structure

13.3 Run the Compiled ATM Application
Now let’s try to run the compiled application.

Check that DB2 and the Java daemon (db2jstrt 8888) are started. Remember
that we use the net driver in the ATM data bean implementation.

We have to load all DLLs before starting the executable:

d:\IBMVjava\hpj\lib\swingall.jll
d:\sqllib\java\db2java.jll
d:\IBMVJava\eab\runtime20\ivjdab.jll
atmdata.jll
atmmodel.jll

One approach is to create a small .bat file for the execution (the -load option
must fit on one line):

set IBMHPJ_OPTS=-load d:\IBMVjava\hpj\lib\swingall.jll;
d:\sqllib\java\db2java.jll;d:\IBMVJava\eab\runtime20\ivjdab.jll;
atmdata.jll;atmmodel.jll

atmgui

The ATM application should run perfectly. You may have to resize the
window so that the panel appears.
350 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

13.4 Alternative Compile Approach
Another way of compiling is to compile the main class with the -follow option
and have the high-performance compiler find all referenced classes.

To make this approach work we have to set the class path so that all classes
can be found.

set classpath=d:\atmgui;d:\SQLLIB\java\db2java.zip;%classpath%

Now we compile the main class:

hpj -exe -O -o atmgui2.exe -verbose itso\entbk2\atm\gui\ATMApplet.class
IVJH3220(S) Stopping because an error was detected:
IVJH3260(E) Class com.ibm.uvm.abt.edit.GenericBeanInfo not found.

We immediately run into the problem of the com\ibm\uvm classes not being
found. We change the class path to include the jar file we exported
previously:

set classpath=d:\atmgui;d:\SQLLIB\java\db2java.zip;%classpath%
set classpath=d:\IBMVJava\eab\runtime20\ibmuvm.jar;%classpath%

Let’s try again to compile the main class:

hpj -exe -O -o atmgui2.exe -verbose itso\entbk2\atm\gui\ATMApplet.class
itso.entbk2.atm.gui.ATMApplet
itso.entbk2.atm.model.ATMApplicationController
itso.entbk2.atm.gui.TransactionPanel
......
itso.entbk2.atm.databean.AtmDB
itso.entbk2.atm.model.ATMPersistenceDefault
itso.entbk2.atm.model.ATMPersistenceInterface
itso.entbk2.atm.model.Customer
......
itso.entbk2.atm.databean.UpdateBalance
itso.entbk2.atm.databean.Transactions
High-Performance Compiler and Remote Debugger 351

......
com.ibm.ivj.db.uibeans.Select
......
com.ibm.uvm.abt.edit.GenericBeanInfo
com.ibm.uvm.abt.edit.DiscriminatedPropertyDescriptor
......
atmgui2.exe

This approach looks very promising because only the required classes are
compiled. Note that we still have to load the Swing and DB2 DLLs.

However, execution fails with an exception when accessing DB2:

set IBMHPJ_OPTS=-load d:\IBMVjava\hpj\lib\swingall.jll;d:\sqllib\java\db2java.jll
atmgui2
The SQL type specified for the column is invalid or unsupported.
The SQL type specified for the column is invalid or unsupported.
The SQL type specified for the column is invalid or unsupported.
The specified parameter index or name is not defined.
java.lang.IllegalArgumentException:
 at java.lang.Class.forName (Offset 0x0000000e)
 at com.ibm.db.base.JDBCConnectionManager.registerDriver (Offset 0x0000003d)
 at com.ibm.db.base.JDBCConnectionManager.getJDBCConnectionManager (Offset..)
 at com.ibm.db.base.DatabaseConnectionSpec.connect (Offset 0x00000066)
 at com.ibm.db.DatabaseConnection.connect (Offset 0x000001f0)
 at com.ibm.db.SelectStatement.execute (Offset 0x000002c1)
 at com.ibm.ivj.db.uibeans.Select.execute (Offset 0x0000000f)
 at itso.entbk2.atm.databean.Accounts.execute (Offset 0x00000011)
 at itso.entbk2.atm.databean.AtmDB.extGetAccounts (Offset 0x0000003f)
 at itso.entbk2.atm.model.ATMApplicationController.getAccounts (Offset ...)
 at itso.entbk2.atm.gui.PinPanel.connEtoM9 (Offset 0x00000060)
 at itso.entbk2.atm.gui.PinPanel.handlePinCheckedOk (Offset 0x0000007b)
 at itso.entbk2.atm.model.Card.fireHandlePinCheckedOk (Offset 0x00000065)
 at itso.entbk2.atm.model.Card.checkPin (Offset 0x00000065)
 at itso.entbk2.atm.gui.PinPanel.connEtoM7 (Offset 0x00000070)
 at itso.entbk2.atm.gui.PinPanel.actionPerformed (Offset 0x00000032)
 at com.sun.java.swing.AbstractButton.fireActionPerformed (Offset 0x000002d1)
 at com.sun.java.swing.AbstractButton$ForwardActionEvents.actionPerformed (Offset)
 at com.sun.java.swing.DefaultButtonModel.fireActionPerformed (Offset ...)
 at com.sun.java.swing.DefaultButtonModel.setPressed (Offset 0x00000119)
 at com.sun.java.swing.plaf.basic.BasicButtonListener.mouseReleased (Offset ...)
 at java.awt.Component.processMouseEvent (Offset 0x00000104)
 at java.awt.Component.processEvent (Offset 0x000000e3)
 at java.awt.Container.processEvent (Offset 0x00000072)
 at java.awt.Component.dispatchEventImpl (Offset 0x0000022d)
 at java.awt.Container.dispatchEventImpl (Offset 0x000000ac)
 at java.awt.Component.dispatchEvent (Offset 0x00000008)
 at java.awt.LightweightDispatcher.retargetMouseEvent (Offset 0x000000fe)
 at java.awt.LightweightDispatcher.processMouseEvent (Offset 0x0000008e)
 at java.awt.LightweightDispatcher.dispatchEvent (Offset 0x00000067)
 at java.awt.Container.dispatchEventImpl (Offset 0x00000026)
 at java.awt.Component.dispatchEvent (Offset 0x00000008)
 at java.awt.EventDispatchThread.run (Offset 0x000000cd)

It looks like we are missing some other classes!
352 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

13.5 Remote Debugger
The remote debugger can be used to debug an application that runs in its
native execution environment. The user interface of the remote debugger
runs on a Windows platform, whereas the program executes on another Intel
machine, an AS/400, an OS/390, or an AIX machine.

The remote debugger is part of the Enterprise Toolkit. You need the toolkits
for both the debugging and the execution platform.

In this short visit to the remote debugger we only show the user interface
part without actually running the program on another machine.

Reasons for Remote Debugging
You have to use a remote debugger if:

 ❑ You have to debug an application that uses graphics or has a GUI and you
need to keep the debugger user interface separate from the application’s
GUI

 ❑ The program you are debugging was compiled for a platform on which the
debugger user interface does not run

 ❑ You cannot duplicate the environment for the program on your local
machine

Running the Remote Debugger
In a real case you would run in a client/server environment. Two programs
provide the function of remote debugging:

 ❑ On the execution platform you start the JDBUG program:

jdbug -qport=xxxx
High-Performance Compiler and Remote Debugger 353

 ❑ On the debugging platform (for example, Windows NT) you start the
JDEBUG program:

jdebug -qport=xxxx -qhost=remotehostname programclass parameters

Note that you specify the program to execute on the debugging machine and
not on the execution machine.

To debug a local program you start the JDBUG program directly:

jdbug programclass parameters

13.6 Remote Debugging of the ATM Application
Let’s start the remote debugger for the ATM application.

set classpath=d:\atmgui;d:\SQLLIB\java\db2java.zip
cd d:\atmgui
jdbug itso.entbk2.atm.gui.ATMApplet

The first window that opens is the Debugger - Session Control window
(Figure 196).

Figure 196. Remote Debugger: Session Control Window

You can use the Session Control window to load additional source programs so
that you can set breakpoints. You can also set up a number of debugging
354 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

options.

After the Session Control window is opened, the source window of the
application opens (Figure 197).

Figure 197. Remote Debugger: Source Window

In the Source window you control the execution by setting breakpoints and
stepping through the code, using the buttons in the tool bar. You can execute
line by line, step into methods within one line, execute to the method’s return
point, or run to the next breakpoint.

For example, you can click on the Run button (in the tool bar) and wait until
High-Performance Compiler and Remote Debugger 355

the ATM applet window (where you can enter the card number) appears. You
then halt the execution, using the Halt button in the tool bar, load the Card
class from the itso.entbk2.atm.model package, and set a breakpoint in the
checkPin method. You restart the execution, enter the card number and PIN
in the applet’s window, and the program stops in the Card class at the
breakpoint (Figure 198).

Figure 198. Remote Debugger: Source Window with Breakpoint

To display the values of program variables, you click on a variable and select
Popup expression or Add to program monitor in the pop-up window. Figure
199 shows the Program Monitor window with the value of a variable.
356 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Figure 199. Remote Debugger: Program Monitor Window

The debugger remembers breakpoints if you debug the same program
multiple times, and the Program Monitor automatically opens with the last
shown variables.

13.7 Debugging a Compiled Program
The remote debugger facility is also available for compiled programs. Two
programs provide the function of remote debugging for compiled programs:

 ❑ On the execution platform you start the JRMTDBG program:

jrmtdbg -qport=xxxx

 ❑ On the debugging platform (for example, Windows NT) you start the
JDEBUG program:

jdebug -qport=xxxx -qhost=remotehostname program parameters

To debug a local compiled program you start the JDBUG program:

jdebug programclass parameters

To debug the compiled ATM application:

cd d:\atmgui
set IBMHPJ_OPTS=-load d:\IBMVjava\hpj\lib\swingall.jll;

d:\sqllib\java\db2java.jll;d:\IBMVJava\eab\runtime20\ivjdab.jll;
atmdata.jll;atmmodel.jll

jdebug atmgui.exe

If debugging hooks were not generated into the compiled program, the
debugger displays a disassembly of the program in the source window.
High-Performance Compiler and Remote Debugger 357

358 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

 Appendixes
© Copyright IBM Corp. 1998 359

360 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

A Installation, Setup,
and Configuration
In this appendix we describe the installation of VisualAge for Java Version 2
and the setup that is necessary for the different chapters of this book:

 ❑ Data access beans

 ❑ Servlet Builder

 ❑ CICS Connector

 ❑ MQSeries
© Copyright IBM Corp. 1998 361

We also describe the installation and content of the sample code distributed
with this book.

Please review the setup for each chapter before starting to develop or run
sample code.

A.1 Setup of VisualAge for Java Enterprise Version 2
Follow the standard installation procedure for VisualAge for Java Enterprise
Version 2. Select all the optional features except for the Enterprise
Toolkit/400 (ET/400) that is not used in this book.

You can install the team server and work in a client/server configuration, but
it is not necessary for any of the samples discussed in this book.

We strongly suggest that you install the latest fixpack for the product. Check
out the information about fixpacks on the Web page:

http://www.software.ibm.com/ad/vajava

Workspace Recovery
After installing the product and the fixpacks, make a copy of the workspace
file, IDE.ICX in d:\IBMVJava\ide\program. If you ever need to recover the
workspace, you can always go back to this copy and then load the features
and your own code from the repository.

Repository Recovery
We suggest making a copy of the repository file, IVJ.DAT in
d:\IBMVJava\ide\repository, every week. Should you ever lose the
repository, you can go back to the copy.

Saving Your Own Work
To save all applications you develop, version the project or the packages by
selecting Manage->Version in the context menu. Then export the project or
the packages in repository format to a new repository file
(ITSOENTBK2.dat). You can always reload your saved code into the
repository.
362 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

A.2 Setup for Data Access Beans
To use the data access beans you must have a relational database with a
JDBC driver. The IBM product is DB2 V5 (UDB) or DB2 V2.12 with one of
the newer service packs. Only very simple examples work without applying a
service pack. The sample application discussed in Chapter 2, “Relational
Database Access with Data Access Beans” on page 9 requires the service pack
to handle the BLOBs.

VisualAge for Java
Add the data access beans feature to the Workbench:

 ❑ Select File->Quick Start, or press F2

 ❑ Select Features->Add Feature and select IBM Data Access Beans 1.0 in
the dialog that is displayed

DB2 JDBC Driver Classes
Add the db2java.zip file to the workspace class path:

 ❑ In the Workbench select Window-> Options

 ❑ Select Resources

 ❑ Click on Edit for the workspace class path

 ❑ Add the file db2java.zip that is in d:\SQLLIB\JAVA

There is no need to load the DB2 JDBC driver classes into the Workbench.

Applications
Make sure that the class path for each executable application is set properly.
In case of error use Run->Check Class Path in the context menu of the class
and click on Compute Now.
Installation, Setup, and Configuration 363

DB2
Make sure that DB2 is started. If you are using the net driver
(COM.ibm.db2.jdbc.net.DB2Driver), make sure that the DB2 Java daemon is
started (db2jstrt 8888) and that the database URL specifies the same port
(jdbc:db2://hostname:8888/databasename).

A.3 Setup for the Servlet Builder
Add the Servlet Builder feature to the Workbench:

 ❑ Select File->Quick Start, or press F2

 ❑ Select Features->Add Feature and select IBM Servlet Builder 2.0 in the
dialog that is displayed

Test the help facility using the menu option Help->Help Home Page. The Web
browser should start and display the help menu. When testing servlets
within VisualAge for Java, the Web browser configured for the help facility is
started. Testing the help facility confirms that a suitable browser was
configured at installation time.

Make sure that the class path for each executable application is set properly.
In case of error use Run->Check Class Path in the context menu of the class
and click on Compute Now.

Web Server
You need a Web server that has run-time support for servlets. Most current
Web servers have this support.

We used Lotus Domino Go Webserver to deploy the servlets. We also installed
the WebSphere Application Server on top of Lotus Domino Go.

For more information about deployment of servlets, see “Deployment of
Servlets” on page 338.
364 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

A.4 Setup for the CICS Connector
Using the CICS Connector to develop applications requires four features
loaded into the Workbench:

 ❑ IBM Java Record Library 2.0
 ❑ IBM Common Connector Framework 2.0
 ❑ CICS Connector 3.0
 ❑ IBM Enterprise Access Builder Library 2.0

Make sure that the class path for each executable application is set properly.
In case of error use Run->Check Class Path in the context menu of the class
and click on Compute Now.

Setup of the CICS Server and Client
TXSeries Version 4.2 is used for VisualAge for Java and CICS.

Prepare CICS for the ATM application:

 ❑ Create a CICS region:

cicscp -v create dce -R
cicscp -v create region ATMCICS
cicscp -c ld -r ATMCICS -P ATMTCP Protocol=TCP

 ❑ Add the programs to the CICS definition:

cicsadd -c pd -r ATMCICS -P ATMCARDI ActivateOnStartup=yes
PathName="d:\va2entbk\sampcode\cics\ATMCARDI"
Resident=yes RSLKey=public

 ❑ Start the CICS Administration utility, highlight the ATMCICS region,
pop-up, Start. Select cold start and wait for this message:

Region ATMCICS started successfully.

Stop the region again.
Installation, Setup, and Configuration 365

 ❑ Find the CICS client initialization file (CICSCLI.INI) and edit it with the
Notepad editor:

 • Change: MaxServers=10
 • Change: Server = ATMTCP
 • Change: NetName=CICS server’s host name

 ❑ To test or run the ATM application:

 • Start the ATMCICS region. Wait for “started successfully” message.
 • Start the CICS Client and the CICS Transaction Gateway.

COBOL Sample Programs
The main focus of this book is to show how different enterprise access
software can be integrated into VisualAge for Java. Because the intention is
to show how a message-based application can be invoked from a servlet or
application, the actual design and details of the back-end programs have
been simplified. The sample programs are really skeleton programs. The aim
of these programs is to illustrate a concept. A sophisticated and all-
encompassing design has not been implemented. For example, DB2 access is
simulated, and data information is hard-coded.

Table 43 lists the CICS COBOL programs that we wrote to implement some
of the ATM transactions. All programs were written using VisualAge for
COBOL Version 2.2 on NT.

Table 43. CICS COBOL Programs

Program Function Remarks

 ATMCARDI Uses the card ID in the
COMMAREA to look up card and
customer information. Returns
card and customer information in
the COMMAREA.

All database access is
simulated. There is no
explicit UOW control.

ATMACCNT Uses the card ID in the
COMMAREA to look up
associated accounts. Stores
account information in the
COMMAREA.

All database access is
simulated. There is no
explicit UOW control. A
limit of 10 accounts is
imposed.

ATMBALUP Updates the account balance
based on the information in the
COMMAREA.

All database access is
simulated. Updates occur
only in memory. There is an
explicit rollback in the event
of failure.

 ATMMQBR Acts as a bridge between See “MQSeries CICS Bridge
366 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

MQSeries and CICS. Program” on page 369 for
more information.

ATM Business Transaction Programs
Every ATM business transaction is associated with one or more programs.
Only the programs associated with the instantiation of a card and customer
object are discussed here.

These programs do not issue MQSeries calls. They are CICS COBOL
programs. In reality they should also have issued DB2 calls. These are
simulated, and data is stored in memory.

All programs are passed the ATM header discussed in “ATM Header for the
COMMAREA” on page 245. It is imperative that the return code in this
header be set to indicate the success or failure of the transaction.

Compiling and Defining CICS COBOL Programs
Compiling and defining programs is operating system, Transaction Server,
and COBOL compiler dependent. For an explanation of how to do this, please
refer to the CICS Application Programming guide relevant to your platform.

If program autoinstall is not available or is not being used, a CICS program
definition must be defined and installed per program being loaded.

Program ATMCARDI
The program to implement the business function of retrieving information
associated with a card is called ATMCARDI. When the user enters a card
number, sufficient enterprise data is retrieved in order to instantiate a card
and customer object. All database accesses are simulated.

ATMCARDI retrieves the card based on the card ID in the COMMAREA. If a
valid card is found, the output COMMAREA is set up with the card ID, PIN,
and the customer information (number, title, first name, last name). For an
invalid card ID an error message is set up in the COMMAREA, and the
return code is set to nonzero.
Installation, Setup, and Configuration 367

Program ATMACCNT
Every card is associated with one to many accounts. In this program,
however, we placed an artificial limit of a maximum of 10 accounts per card.
The account information must be retrieved from the enterprise database.
Database access is simulated.

ATMACCNT retrieves the accounts for the given card. The account
information is placed in the COMMAREA. If the access fails, an error
message is set up in the COMMAREA, and the return code is set to nonzero.

Program ATMBALUP
Program ATMBALUP implements the business function of updating an
account balance. This is truly a skeleton program. No actual update takes
place as no database calls are issued. All data is simulated in memory. In
addition a balance update should be associated with a transaction history
update. This is not done.

ATMBALUP updates the balance of the given account. If the update is
successful, a SYNCPOINT is issued; if unsuccessful, a ROLLBACK is issued,
an error message is set up in the COMMAREA, and the return code is set to
nonzero. (The program should also add the new transaction to the
transaction table, but this was not implemented.)
368 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

A.5 Setup for MQSeries on Windows NT
Development of VisualAge for Java applications with MQSeries requires
Version 5 of the product.

Installation Considerations
When you install MQSeries Version 5, select the MQSeries server, client,
toolkit, and bindings for Java features. After rebooting, open the user
manager (Programs -> Administrative Tools -> User Manager) and add your
Windows NT user ID to the group named mqm. (This is for administration
purposes only; MQSeries users need not be in the mqm group.)

Queue Manager and Queue Setup
Set up the queue manager and MQSeries objects for the ATM application as
described in “MQSeries Queue Manager and Objects” on page 292.

After setting up the objects, start the queue manager and the listener.

VisualAge for Java Setup
Import the three MQSeries packages, com.ibm.mq, com.ibm.mqbind, and
com.ibm.mqservices, into a new project, for example, MQ Series. Version the
code to a version identifier of 5.0 (for MQSeries Version 5).

MQSeries CICS Bridge Program
Conceptually we decided to implement a bridge type of design by having a
program that would interface with MQSeries and control the business UOW.
However, the actual program written to do this task is written and designed
Installation, Setup, and Configuration 369

extremely simply and is a somewhat trivial example. As stated in “Unit of
Work Considerations” on page 305, the UOW control issues have been largely
ignored. It is assumed that organizations using MQSeries and CICS have
implemented some form of MQSeries CICS broker or bridge. IBM supplies
the MQSeries CICS/ESA bridge as part of MQSeries MVS/ ESA 1.2.

Conceptually the design calls for each business transaction to be independent
of the original invocation mechanisms. The bridge hides the details of the
source and destination end points. Whether the retrieve card information
business function is invoked through an MQSeries message or a CICS client
should be irrelevant to the process performing this function. Each business

transaction is invoked through a well-defined protocol. In this sample it is
linked to and data is passed through the COMMAREA.

Sample Program ATMMQBR
In these examples the MQSeries-CICS bridge is implemented in the
ATMMQBR program. This program determines the business transaction it
must link to from the first 8 bytes of the request MQSeries message. The
program performs the following functions:

 ❑ Issues a Handle Abend, and, should an abend occur, an EXEC CICS
SYNCPOINT ROLLBACK

 ❑ If triggered, gets the name of the request queue from the MQTMC2
structure

 ❑ Connects to the queue manager

 ❑ Opens the request queue

 ❑ Gets a request message out of syncpoint

 ❑ Calls the program specified in message. This program is responsible for
the business and data services.

 ❑ Puts (out of syncpoint) a reply message containing enterprise data12

 ❑ If all is OK, issues an EXEC CICS SYNCPOINT to commit the business
unit of work

 ❑ Gets the next message

In reality the UOW control would be very different. The MQGET and
MQPUT would more than likely occur within syncpoint, and the bridge
would control the UOW for all recoverable resources. It has not been done
here. The processing shown would need to be a lot more sophisticated and
design decisions on what to do with backed-out messages would have to be
made. In addition it is extremely unlikely that access to request messages
would be single streamed as implied by this design.
370 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Compiling the ATMMQBR Program
To compile an MQSeries CICS COBOL program refer to the MQSeries
Application Programming Guide. The steps to follow depend on the operating
system and compiler.

For the ATM application we used VisualAge for COBOL 2.2, MQSeries
Version 5, and TXSeries Version 4.2.

12 We really should have put using the MQPMO-SYNCPOINT option, but the definitions enabling two-phase
commit between MQSeries and TXSeries were not set up.

 ❑ Set up environment variables:

 • USERLIB=MQMCBB.LIB
 • CICS_IBMCOB_FLAGS=mqm-drive\mqm\tools\cobol\copybook\VA

cobol;%CICS_IBMCOB_FLAGS%

Note. The setting of CICS_IBMCOB_FLAGS is documented in
Chapter 28, “Building Your Application on Windows NT, Preparing
COBOL Programs, Preparing CICS and Transaction Server
Programs,” of the MQSeries Application Programming Guide. When
we set the CICS_IBMCOB_FLAGS as suggested, we got an error in the
compile step. To compile successfully we did not set this variable. This
problem is probably the result of faulty installation. We suggest you set
the CICS_IBMCOB_FLAGS variable, and only if you get an error, try
unsetting it.

 ❑ Assuming your current path points to your source program directory, to
translate, compile, and link a COBOL program, issue the following
command:

cicstcl -l IBMCOB atmmqbr.ccp

As an aid to using the translate, compile, and link facilities offered with
TXSeries, choose the development option when installing the product.

Running ATMMQBR under CICS
You can invoke ATMMQBR under CICS in various ways, for example, as a
PLT program, from a terminal, or triggered through MQSeries.

For this discussion we assume that the program is triggered through
MQSeries. A trigger type of first is assumed. When we first developed the
MQSeries access code with the MQSeries Client for Java, we coded the
method to open an MQSeries queue generically so that the queue would open
for both input and output. This prevents triggering on first. The method had
to be refined to take the open options as a parameter.

CICS MQSeries Trigger Monitor
Installation, Setup, and Configuration 371

This monitor is platform dependent. The sample CICS trigger monitors are
discussed under “Trigger Monitors” in the chapter entitled “Starting
MQSeries Applications Using Triggers” in the MQSeries Application
Programming Guide.

The sample trigger monitor for TXSeries Version 4.2 for Windows NT is
AMQLTMC4. If you use this monitor, you probably have to make the CICS
group a member of the mqm group.

CICS Resource Definitions
To support triggering and running of ATMMQBR the CICS resources listed
below need to be defined. Note that the transaction names were chosen
arbitrarily. The definitions assume a Windows NT platform. They would be
different for other platforms.

 ❑ Program AMQLTMC4

 ❑ Transaction MQTM associated with program AMQLTMC4

 ❑ Program ATMMQBR

 ❑ Transaction ATMQ associated with program ATMMQBR

Starting the CICS Trigger Monitor
Because the trigger monitor is platform dependent, different trigger monitors
can be started in different ways.

For our testing, we started the NT CICS trigger monitor with CECI:

START TRANSID(MQTM)
372 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

A.6 Installation of the Redbook Samples
The samples used in this book are distributed in a zip file called
sg245265.zip. This file is available from the ITSO home page:

ftp://www.redbooks.ibm.com/redbooks/SG245265

Unzipping the file on a hard drive creates an SG245265 directory with
subdirectories as listed in Table 44.

Table 44. Redbook Sample Code

Subdirectory Description

AtmDB DDL and SQL to setup and load the ATM database in DB2
- AtmDB.ddl: database and table definitions
- AtmDB.sql: SQL insert statements with sample data

BusModel Supporting files for ATM business model
- atmBusModel.scrap: Scrapbook to test business model

Databean Supporting files for data access beans
- atmDatabean.scrap: Scrapbook to test relational persistence

Servlet Supporting files for servlets
- xxxxx.java: sample servlet source code
- xxxxx.html, xxxxx.shtml: sample HTML/SHTML files

CICS Supporting files for CICS
- atmCicsXxxxx.scrap: Scrapbooks to test CICS transactions

COBOL CICS COBOL programs for ATM application
- xxxCommarea: COMMAREA of COBOL programs
- atmXxxxxx.ccp: COBOL source programs

MQ Supporting files for MQSeries
- atmobj.def: ATM object definition file
- atmobj.bat: run ATM object definition
- atmqueue.bat: define the queue for ATM application
Installation, Setup, and Configuration 373

- startmq.bat, stopmq.bat: start/stop queue manager/listener
- atmMQ.scrap: Scrapbook to test MQSeries persistence

HpjComp Supporting files for the high-performance compiler and the
remote debugger
- skeletoncompile.cmd: compile ATM applet
- hpjcompile.txt: compile console text with -follow
- atmGuiX.bat: run Java applet, class file or executable
- atmDebugX.bat: remote debugger, class file or executable

Dat Repository import file for VisualAge for Java
- sg245265.dat: see Table 45

The repository file can be imported into VisualAge for Java. We used a
project named ITSO VAJ Enterprise Book V2. The samples are structured
into the packages listed in Table 45.

Table 45. Packages of the Redbook Sample Applications

Package Description

itso.entbk2.atm.cics ATM persistence with CICS Connector

itso.entbk2.atm.databean ATM persistence with data access beans

itso.entbk2.atm.gui ATM applet or application with Swing GUI

itso.entbk2.atm.model ATM business model classes

itso.entbk2.atm.mq ATM persistence with MQSeries

itso.entbk2.atm.servlet ATM HTML application with servlets

itso.entbk2.sample.databean Data access beans examples

itso.entbk2.sample.servlet Servlet Builder examples
374 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

B Special Notices
This publication is intended to help VisualAge for Java developers develop
enterprise applications with VisualAge for Java Enterprise Version 2. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by VisualAge for Java Enterprise.
See the PUBLICATIONS section of the IBM Programming Announcement
for VisualAge for Java Enterprise for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which
IBM operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM’s product, program, or service may
© Copyright IBM Corp. 1998 375

be used. Any functionally equivalent program that does not infringe any of
IBM’s intellectual property rights may be used instead of the IBM product,
program or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject
matter in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to the

IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(“vendor”) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer's ability to evaluate and
integrate them into the customer's operational environment. While each item
may have been reviewed by IBM for accuracy in a specific situation, there is
no guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples contain the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and
addresses used by an actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
376 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
are registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by
IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service
marks of others.

IBM AIX
CICS CICS\ESA
DATABASE 2 DB2
IMS MQ
MQSeries MVS\ESA
NetRexx OS/2
S/390 ThinkPad
VisualAge WebSphere
Special Notices 377

378 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

C Related Publications
The publications listed in this section are considered particularly suitable for
a more detailed discussion of the topics covered in this redbook.
© Copyright IBM Corp. 1998 379

C.1 International Technical Support Organization
Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 383.

 ❑ Programming with VisualAge for Java Version 2, SG24-5264

 ❑ VisualAge for Java Enterprise Version 2 Team Support, SG24-5245

 ❑ Using VisualAge for Java Enterprise Version 2 to Develop CORBA and
EJB Applications, SG24-5276

 ❑ VisualAge for Java - RMI - Smalltalk, The ATM Sample from A to Z,
SG24-5418

 ❑ Using VisualAge UML Designer, SG24-4997

 ❑ Programming with VisualAge for Java, published by Prentice Hall, ISBN
0-13-911371-1, 1998

 ❑ Application Development with VisualAge for Java Enterprise, SG24-5081

 ❑ Creating Java Applications with NetRexx, SG24-2216

 ❑ Unlimited Enterprise Access with Java and VisualAge Generator,
SG24-5246

 ❑ From Client/Server to Network Computing, A Migration to Java ,
SG24-2247

 ❑ CBConnector Overview, SG24-2022

 ❑ CBConnector Cookbook Volume 1, SG24-2033

 ❑ Connecting the Enterprise to the Internet with MQSeries and VisualAge for
Java, SG24-2144

 ❑ Internet Application Development with MQSeries and Java, SG24-4896

 ❑ Factoring JavaBeans in the Enterprise, SG24-5051
380 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

 ❑ JavaBeans by Example: Cooking with Beans in the Enterprise, SG24-2035,
published by Prentice Hall, 1997

 ❑ World Wide Web Programming: VisualAge for C++ and Smalltalk, published
by Prentice Hall, ISBN 0-13-612466-6, 1997

C.2 Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and
receive updates 2-4 times a year at significant savings.

C.3 Other Publications
These publications are also relevant as further information sources:

 ❑ Developing JavaBeans Using VisualAge for Java, Dale Nilsson and
Peter Jakab, published by John Wiley, ISBN 0-471-29788-7, 1998

 ❑ Design Patterns: Elements of Reusable Object-Oriented Software, Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides, published by
Addison-Wesley Professional Computing Series, ISBN 0-201-63361, 1995

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
Lotus Redbooks Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Related Publications 381

382 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at http://www.redbooks.ibm.com/.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

 • Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/

 • PUBORDER – to order hardcopies in the United States

 • Tools Disks

To get LIST3820s of redbooks, type one of the following commands:

 TOOLCAT REDPRINT
 TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
 TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BokkManager BOOKs of redbooks, type the following command:

 TOOLCAT REDBOOKS

To get lists of redbooks, type the following command:

 TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

To register for information on workshops, residencies, and redbooks, type the following command:

 TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

 • REDBOOKS Category on INEWS

 • Online – send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL
© Copyright IBM Corp. 1998 383

For information so current it is still in the process of being written, look at "Redpieces" on the
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in
progress; not all redbooks become redpieces, and sometimes just a few chapters will be published this
way. The intent is to get the information out much quicker than the formal publishing process allows.

Redpieces

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

 • Online Orders – send orders to:

 • Telephone Orders

 • Mail Orders – send orders to:

 • Fax – send orders to:

 • 1-800-IBM-4FAX (United States) or (+1) 408 256 5422 (Outside USA) – ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

In United States
In Canada
Outside North America

IBMMAIL
usib6fpl at ibmmail
caibmbkz at ibmmail
dkibmbsh at ibmmail

Internet
usib6fpl@ibmmail.com
lmannix@vnet.ibm.com
bookshop@dk.ibm.com

United States (toll free)
Canada (toll free)

1-800-879-2755
1-800-IBM-4YOU

Outside North America
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(long distance charges apply)
(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer
Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-800-267-4455
(+45) 48 14 2207 (long distance charge)
384 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

 • On the World Wide Web

Redbooks Web Site
IBM Direct Publications Catalog

http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl

For information so current it is still in the process of being written, look at "Redpieces" on the
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in
progress; not all redbooks become redpieces, and sometimes just a few chapters will be published this
way. The intent is to get the information out much quicker than the formal publishing process allows.

Redpieces

IBM Redbook Order Form

Please send me the following:

Title Order Numer

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Country

Quantity
 385

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Invoice to customer number

Credit card number

Credit card expiration date SignatureCard issued to

386 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

List of Abbreviations

API application programming interface

ASP Active Server Pages

ATM automated teller machine

AWT Abstract Windowing Toolkit

BMS basic mapping support

CB Component Broker

CCF Common Connector Framework

CGI Common Gateway Interface

CORBA Common Object Request Broker
Architecture

DBMS database management system

DLL dynamic link library

DPL distributed program link

ECI external call interface

EPI external presentation interface

GUI graphical user interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IBM International Business Machines
Corporation

IDE integrated development
environment

IDL interface definition language

IIOP Internet Inter-ORB Protocol
© Copyright IBM Corp. 1998

ITSO International Technical Support
Organization

JAR Java archive

JDBC Java Database Connectivity

JDK Java Developer’s Kit

JFC Java Foundation Classes

JNI Java Native Interface

JSDK Java Servlet Development Kit

JVM Java Virtual Machine
MFS message format services

MQI message queue interface

ODBC Open Database Connectivity

PIN personal identification number

RDBMS relational database management
system

RMI Remote Method Invocation

SQL structured query language

TCP/IP Transmission Control
Protocol/Internet Protocol

UOW unit of work

URL uniform resource locator

WWW World Wide Web
 387

388 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

Index

Numerics
3270 emulation 98

A
Abstract Windowing Toolkit 20
account

access class 314
CICS transaction 263, 270
class 147
command 266
navigator 267
panel 198
record type 264
request 308
response 311
selection 198, 227
servlet 212
table 131

Active Server Pages 48
administration

CICS 365
WebSphere 342

AIX 8
Apache 48, 338
applet 75, 102

deployment 336
application

controller
see controller

deployment 334, 335
layers 138
© Copyright IBM Corp. 1998

ATM application
access classes 312
applet 202
business model 137
CICS Connector 239
COBOL programs 367
data access beans 163
database 130
deployment 333
flow 129, 221
GUI 191
high-performance compiler 347
MQSeries 279, 291
objects 293
server 325

panels 193
remote debugger 354
request 306
requirements 128
response 309
run executable 350
run GUI 204
sample data 133
servlet views 206
servlets 205
test CICS 272
test MQSeries 330
test servlet 235

ATM header 245
ATMApplet 202
ATMApplicationController 158
AtmCICS 241, 245
AtmDB 186, 223
AtmMQ 315
ATMPersistenceDefault 162
ATMPersistenceInterface 154, 241, 245, 291
ATMServletController 206, 223

B
bank account 140
basic mapping support 107
BeanInfo 72, 142, 143
BigDecimal 147
BLOB 43, 363
business model 140
business object 119
389

C
card

access class 312
CICS transaction 246, 261
class 143
command 250
layout 192
mapper 255
navigator 252
panel 195
record type 248

request 308
response 310
servlet 206
table 131

CGI 48, 56, 338
channel

MQI 285
CICS

client 244
customization 96

programs 242
server 243
Telnet 99

CICS Connector 91, 93
ATM application 239
setup 365

CICS Transaction Gateway 93, 100, 242, 245
CICS Universal Client 93, 95
class

ATMApplet 202
ATMApplicationController 158
AtmCICS 245
AtmDB 186
AtmHeader 245
AtmMQ 315
ATMPersistenceDefault 162
AtmRequest 307
AtmResponse 309
ATMServletController 206
BankAccount 147
BigDecimal 147
Card 143
CheckingAccount 150
Customer 142
GenericServlet 52
HttpServlet 52
MQAccess 295

Common Connector Framework 91, 92
Common Gateway Interface

see CGI
communication interface 93
compiler

options 346
Component Broker 7, 8
connection alias 25, 166
ConnectionSpec 93, 111
controller 139, 154, 193, 222, 315

events 156
implementation 158
interface 155
methods 156
servlet 205, 223

cookie 60, 65, 66, 82
counter 55, 71
currency

conversion 78
customer

class 142
table 130
verification 225

D
data access beans 4, 9

ATM application 164
business objects 165
high-performance compiler 348
setup 363

Data Access Builder 9, 11
window 22

database
access class 25

DB2 236, 363
Client Application Enabler 26
390 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

SavingsAccount 151
Transaction 146

class path 334, 335, 340, 343
ClearCase 5
COBOL

programs 243, 247, 263, 277, 324, 332, 366
record type 248

command 92, 111
editor 112, 113, 122, 250
mapper 257

COMMAREA 94, 98, 104, 109, 124, 245, 263
commit 148

Java daemon 27, 204, 223, 236
JDBC 26, 363

DB2 Universal Database 10
db2jstrt 27, 204, 223, 236, 363
db2start 27, 236
DBNavigator bean 10, 15, 19
deployment 333

applet 336
application 335
servlet 338
Swing 344

deposit 148, 160

E
ECI 94, 98, 102
embed 75
Encina 6
Enterprise Access Builder 6, 91, 92
Enterprise JavaBeans 7
Enterprise Toolkit 6, 362
EPI 94, 99, 102
event 158

aboutToGenerateOrTransfer 208
componentShown 195
executionSuccessful 253
listener 144

events
ATM business model 143

event-to-code 179, 181, 219
export 334, 336, 362

F
FormData 65
framework 139

G
gateway

see CICS Transaction Gateway
GenericServlet 52, 53
get 57
gif 34
GUI 138

H
hidden field 81, 218
high-performance compiler 6, 345, 346
HTML

button 62

VisualAge for Java 362
integrated development environment 4
InteractionSpec 93, 111
Internet Explorer 344

J
JApplet 202
jar 340, 349

Internet Explorer 344
Netscape 344
VisualAge for Java Access Builders 334

Java Development Kit
see JDK

Java Foundation Classes
see Swing

Java programming interface
MQSeries 289

Java Record Framework 105
Java Record Library 91
Java Servlet Development Kit

see JSDK
JavaScript 76, 212, 214
JDBC 10, 88, 338

driver 26
high-performance compiler 349

JDBUG 353
JDEBUG 353
JDK 4, 51, 334
JFC

see Swing
JList 198, 200
join 32
JPort 6
JRMTDBG 357
JSDK 48, 51, 52
JTable 20, 45
 391

form 56, 65
page 62
result table 88
table 62

HTTP
session 49

HttpServlet 52, 57

I
IDL 7
installation

redbook samples 373

JVM 334, 336

L
layout 192
list model 198
listener interface 143
Lotus Domino Go Webserver 48, 338, 339, 364
Lotus Notes 8

M
mapper 92, 113, 119, 255

builder 120
mapping

SQL data type 38
message

channel 283
MQSeries 280
receive 302
send 300

message format service 107
method

afterInternalExecution 261
bigdecToString 320
checkInputState 261
checkPin 159
closeQueue 300
connect 161
connectToQmgr 298
deposit 160
destroy 53
disconnect 161
disconnectFromQmgr 298
doGet 57
doPost 57
extGetAccounts 187, 270, 318
extGetCard 162, 186, 254, 318
extGetTransactions 187
extUpdateBalance 187
getAccounts 160
getCard 159
getTransactions 161
handleException 260
init 53
openQueue 299
putRequestMessage 300
requestFocus 195
retrieveSpecficMessage 302
returnExecutionSuccessful 254

objects 281
overview 280
persistence 315
server 325
setup 369
VisualAge for Java 294

N
navigator 92, 117, 252

advanced 273
test 276

Netscape 344

O
object model 141
ODBC 10

P
persistence

data access beans 164
interface 154, 186, 240, 315
layer 154, 162, 164
MQSeries 315
test 188

personal identification number
see PIN 128

PIN 128, 159, 165, 178
panel 196
servlet 209
verification 226

post 57, 58
promotion 194
property

ATM business model 141
cookieName 82
392 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

service 54
toString 152
withdraw 160

MQI
channel 285

MQSeries
access bean 295
ATM application 292
Bindings for Java 288
CICS/ESA bridge 369
Client for Java 287
Java programming interface 289

cookieValue 82
MQSeries 294
propertyValue 83
query 17, 166
ServerName 98
styles 75

PVCS 5

Q
query 17
queue

close 300

manager 281
MQSeries 280
open 299

queue manager
ATM application 292
start 294

Quick Start 11

R
record

custom 105
dynamic 105
generation 109

recovery 362
redbook

samples 373
remote debugger 6, 345, 353
repository 362
result set 14
RMI 6, 338
rollback 148
runmqsc 292

S
sample database 19
SanFrancisco 8
SAP R/3 6
Scrapbook script 152

business objects 152
CICS accounts transaction 271
CICS card transaction 261
CICS navigator 276
data access beans 188
MQSeries server 330

Select bean 10, 12, 21, 45, 88, 166
server

configuration 67
controller 205, 234
deployment 338
JDBC 88
parameter 56
persistence 189
router 85
terminal 101
test 70
transfer 67
visual 61

Servlet Builder 7, 47, 48, 51, 59, 62, 68, 364
Servlet Runner 59
session data 60, 65, 67, 82, 211
SHTML 54
SmartGuide

COBOL Record Type 108, 248
Create Servlet 52, 59, 69
Generate Records 109
New Event Listener 158
SQL Assist 10, 169

source code management 5
SQL Assist SmartGuide 10, 30
SQL specification 29
style sheet 75
submit button 57, 62
Swing 4, 15, 20, 41, 347

deployment 344

T
team programming 5
TeamConnection 5
Telnet 99
terminal servlet 101
tool integration 5
transaction
 393

MQSeries 325
server-side

application 48
include 55, 68, 71

servlet 47
advanced 75
ATM application 205
branch 84
chaining 77
CICS Java gateway 102
class hierarchy 60
condition control 85

class 146
deposit 228
history 177, 230
panel 200
servlet 216
table 131
withdraw 229

TXSeries 243, 332, 365

U
unit of work 242, 305
URL 26, 50, 52, 363

user interface 41
layer 138

V
Visual Composition Editor 4

command 112
command with mappers 123
controller servlet 234
navigator 117

visual servlet 60, 68
VisualAge for Java

Enterprise 5
installation 362
MQSeries 294
package 21
products 10, 19
Professional 4
project 21

VisualServlet
see visual servlet

W
Web

browser 70, 336, 344
server 49, 52, 336, 364

WebSphere 7, 48, 52, 235, 340, 341
where clause 34
withdrawal 148, 160
Workbench 334
workspace 362
394 VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector

© Copyright IBM Corp. 1998 395

ITSO Redbook Evaluation

VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector
SG24-5265-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

 • Use the online evaluation form found at http://www.redbooks.ibm.com
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Printed in the U.S.A.
SG24-5265-00

V
isualA

ge for Java E
nterprise V

ersion 2: D
ata A

ccess B
eans - Servlets - C

IC
S C

onnector
S

G
24-5265-00

	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Part 1 VisualAge for Java Enterprise Version 2
	1 Introduction
	1.1 VisualAge for Java Version 2 Professional
	Support for Java Development Kit 1.1.6
	New Integrated Development Environment Features
	New Visual Composition Editor Features
	JavaBeans for Easy Access to Data

	1.2 VisualAge for Java Version 2 Enterprise
	Java Team Programming Support
	Source Code Management Tools Integration
	Open Tool Integrator APIs
	Enterprise Toolkits for Workstation, AS/400, and OS/390
	Enterprise Access Builders
	Automated Object to Relational Mapping
	Servlet Builder
	IDL Development Environment
	Support for SanFrancisco, Tivoli, Lotus, and Component Broker
	AIX Development Environment

	2 Relational Database Access with Data Access Beans
	2.1 Overview
	Data Access Beans versus Data Access Builder

	2.2 Development Process with Data Access Beans
	Loading the Data Access Bean Feature
	Using the Select Bean
	Development Process Step by Step

	2.3 Building a Sample Application
	Application Requirements
	Development Process
	Creating the Project and the Package
	Creating the Sample Panel and the Select Bean
	Building the User Interface
	Improving the Select Bean
	Run the Application

	2.4 Summary

	3 Enterprise Application Development with Servlets
	3.1 Server-Side Applications
	Common Gateway Interface
	Servlets
	What Are Servlets?
	Servlet Creation Tools
	Web Server Consideration

	3.2 Inside Servlets
	Simple Servlet
	Invoking a Servlet in HTML
	Invoking a Servlet with Parameters
	HttpServlet
	Complex Servlets

	3.3 Servlet Builder Overview
	How Do Servlet Builder Beans Work?
	Advantages of the Servlet Builder
	Visual Servlet
	Servlet Builder Visual Beans
	Servlet Builder Nonvisual Beans
	Form Data
	Cookie Wrapper
	Session Data Wrapper
	Run Configuration
	Invoking Another Servlet

	3.4 Creating Visual Servlets
	Simple Servlet
	Server-Side Include Servlet
	Counter Servlet
	Passing Data to the Servlet

	3.5 Advanced Servlet Techniques
	Advanced HTML Tags
	Servlet Chaining
	Keeping and Passing Data between Servlets
	Servlet Branch
	Condition Control
	Disable Caching of Generated HTML
	Servlet with JDBC

	4 CICS Access with the CICS Connector
	4.1 The Enterprise Access Builder
	4.2 Connectors
	4.3 The CICS Connector
	CICS Connector Installation
	CICS Connector Classes

	4.4 CICS Universal Clients
	Communcation Protocols
	Client Customization
	Client Functions

	4.5 CICS Transaction Gateway
	What the CICS Transaction Gateway Provides
	How the CICS Transaction Gateway Accesses CICS

	4.6 A Discussion Review
	4.7 Accessing Enterprise Data
	Overview
	Structure Description
	Records and the Java Record Framework
	Record Bean Generation
	Commands
	Navigators
	Business Objects
	Mappers
	Executing the Command

	4.8 A Review of Accessing Enterprise Data

	Part 2 Implementing the ATM Application
	5 ATM Application Requirements and ATM Database
	5.1 ATM Application Requirements
	5.2 ATM Database Implementation
	Sample Data of ATM Tables

	6 ATM Application Business Model
	6.1 Application Design
	Application Layers
	Application Layer Architecture

	6.2 Business Object Layer
	Business Logic Classes
	Testing the Business Objects

	6.3 Application Controller
	Persistence Layer Interface
	Controller Interface
	Controller and Persistence Interfaces
	Implementing the Controller

	6.4 Persistence Layer

	7 ATM Application Persistence Using Data Access Beans
	7.1 Persistence Layer Design
	7.2 Database Access with ATM Database Beans
	PIN Validation
	List of Accounts
	Debit and Credit Transactions
	Transaction History

	7.3 Business Object Creation with ATM Database Beans
	PIN Validation
	List of Accounts
	Debit and Credit Transactions
	Transaction History

	7.4 Implementing the Persistence Interface
	AtmDB Bean
	Testing the Implementation of the Persistence Interface

	7.5 Preparation for Servlet Usage

	8 Swing GUI for ATM Application
	8.1 Design of the GUI Application
	Application Controller
	Panel Design

	8.2 Implementation of the Application Panels
	Card Panel
	PIN Panel
	Select Account Panel
	Transaction Panel
	ATM Applet

	8.3 Running the ATM GUI Applet

	9 ATM Application Using Servlets
	9.1 Create a Skeleton Controller Servlet
	9.2 Servlet Views
	Card Servlet
	PIN Servlet
	Account Servlet
	Transaction Servlet
	Thank You Servlet

	9.3 Application Flow Design
	9.4 Implementing the Controller Servlet
	Preparation for Testing
	Initialization
	Customer Verification
	PIN Verification
	Account Selection
	Deposit Transaction
	Withdraw Transaction
	Query Transaction History
	Termination and Restart
	Disable Caching of the Output HTML
	Controller Servlet Total Design

	9.5 Testing the ATM Servlet Application
	Built-in HTTP Server
	Using the WebSphere Application Server
	Using the ATM Servlet Application with DB2

	9.6 Deploying Servlets

	10 ATM Application with the CICS Connector
	10.1 A Review of the ATM Application Design
	The Persistence Interface

	10.2 Task Overview
	Conventions
	Only a Subset of the Interface Methods
	CICS Infrastructure Assumptions
	CICS Programs
	Tasks Implemented

	10.3 CICS Infrastructure Requirements
	CICS Server Resources
	CICS Client Configuration and Startup
	Starting the CICS Transaction Gateway

	10.4 Initial Creation of AtmCICS Class
	10.5 ATM Header for the COMMAREA
	10.6 CICS Transaction to Retrieve an ATM Card
	CICS COBOL Program ATMCARDI
	Card Record Bean
	Card Command
	Building a Navigator to Execute the CICS Transaction
	Implement the extGetCard Method

	10.7 Using Mappers
	Input Mapper for Card
	Output Mapper for Card
	Create a Command with Mappers
	Execute the CICS Transaction with Mappers
	Change the AtmCICS Class to Use the Mappers

	10.8 Test the CICS Card Transaction
	Prepare Test Output for Card Transaction
	Testing Card Transaction with a Scrapbook Script
	Testing without CICS

	10.9 Discussion Review
	10.10 CICS Transaction to Retrieve Accounts
	CICS COBOL Program ATMACCNT
	Accounts Record Bean
	Accounts Input Mapper
	Accounts Command
	Navigator to Execute the CICS Accounts Transaction
	Implement the extGetAccounts Method

	10.11 Testing the CICS Accounts Transaction
	Prepare Test Output for Accounts Transaction
	Testing the Accounts Transaction with a Scrapbook Script

	10.12 Testing the ATM Application with CICS
	Testing the Real Application

	10.13 Using an Advanced Navigator
	Design of a Navigator
	Implementation of the Navigator
	Testing the Navigator

	10.14 Implementation of the Back-End Programs
	10.15 Conclusion

	11 ATM Application Using MQSeries
	11.1 A Brief Overview of MQSeries
	Messages and Queues
	MQSeries Objects
	MQSeries Clients and Servers

	11.2 MQSeries Version 5
	11.3 About MQSeries and Java
	MQSeries Client for Java
	MQSeries Bindings for Java
	The MQSeries Java Programming Interface

	11.4 Implementing the ATM Application with MQSeries
	11.5 MQSeries Queue Manager and Objects
	Create a Queue Manager
	Define MQSeries Objects
	Command File to Start the Queue Manager

	11.6 Importing MQSeries into VisualAge for Java
	11.7 Create an MQAccess Bean
	Sample MQSeries Package
	MQAccess Bean
	Implement the MQAccess Methods

	11.8 ATM MQSeries Design Choices
	Conforming to the ATM Model
	Unit of Work Considerations

	11.9 ATM Request Classes
	AtmRequest Class
	Card Request
	Accounts Request

	11.10 ATM Response Classes
	AtmResponse Class
	Card Response
	Accounts Response

	11.11 ATM Access Classes
	Card Access Class
	Account Access Class

	11.12 Persistence Interface with MQSeries
	AtmMQ Class

	11.13 Adding Additional Transactions
	Create a Class for the MQSeries Request
	Create a Class for the MQSeries Response
	Create a Transaction-Specific Access Class
	Modify the AtmMQ Class
	Create a Back-End Application Program

	11.14 Back-End Programs
	Java Back-End Server Program
	Testing the ATM MQSeries Server
	Testing the ATM Application with MQSeries
	CICS COBOL Back-End Programs

	12 Deployment of the ATM Application Implementations
	12.1 Deployment of Applications
	Prerequisites for Applications
	Exporting an Application from VisualAge for Java
	Deployment Process for Applications

	12.2 Deployment of Applets
	Exporting Applets from VisualAge for Java
	Deployment Process for Applets

	12.3 Deployment of Servlets
	Deployment of Servlets for Lotus Domino Go Webserver
	Target Location
	Class Path Setting for Web Server

	12.4 Deployment of Applications with Swing
	12.5 Tailoring the Web Browser

	13 High-Performance Compiler and Remote Debugger
	13.1 High-Performance Compiler
	Compiler Options
	Base Java Classes
	Swing Classes
	Execution

	13.2 Compiling the ATM Application
	Export the ATM Application
	Compile the ATM Application
	Compile the Data Access Beans
	Compile the DB2 JDBC Drivers
	Remove the Object Files

	13.3 Run the Compiled ATM Application
	13.4 Alternative Compile Approach
	13.5 Remote Debugger
	Reasons for Remote Debugging
	Running the Remote Debugger

	13.6 Remote Debugging of the ATM Application
	13.7 Debugging a Compiled Program

	Appendixes
	A Installation, Setup, and Configuration
	A.1 Setup of VisualAge for Java Enterprise Version 2
	A.2 Setup for Data Access Beans
	A.3 Setup for the Servlet Builder
	Web Server

	A.4 Setup for the CICS Connector
	Setup of the CICS Server and Client
	COBOL Sample Programs

	A.5 Setup for MQSeries on Windows NT
	Installation Considerations
	Queue Manager and Queue Setup
	VisualAge for Java Setup
	MQSeries CICS Bridge Program

	A.6 Installation of the Redbook Samples

	B Special Notices
	C Related Publications
	C.1 International Technical Support Organization Publications
	C.2 Redbooks on CD-ROMs
	C.3 Other Publications

	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	List of Abbreviations
	Index
	ITSO Redbook Evaluation

