
SG24-5864-00

International Technical Support Organization

www.redbooks.ibm.com

Patterns for e-business:
User-to-Business Patterns for Topology 1 and 2
using WebSphere Advanced Edition

Carla Sadtler, Florian Hilgenberg, Joseph Kwek, Leo Marland, Witold Szczeponik, Guru Vasudeva

http://www.redbooks.ibm.com/

Patterns for e-business:
User-to-Business Patterns for Topology 1 and 2
using WebSphere Advanced Edition

April 2000

SG24-5864-00

International Technical Support Organization

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (April 2000)

This edition applies to Version 3.021 of IBM WebSphere Application Server, Advanced Edition, Program
Number 41L0696 for use with the Windows NT, AIX, and Solaris operating systems.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix A, “Special notices” on page 337.

Take Note!

Contents

Preface .ix
The team that wrote this redbook. ix
Comments welcome. xii

Chapter 1. Introduction to patterns . 1
1.1 Patterns for e-business . 1
1.2 How to use these patterns . 3
1.3 Patterns for e-business Web site . 4
1.4 The Application Framework for e-business . 4
1.5 An integrated view of e-business solutions . 6
1.6 Structure of this redbook . 7

Part 1. User-to-Business patterns: topologies 1 and 2 . 9

Chapter 2. Choosing the application topology 11
2.1 Application topology 1 . 11

2.1.1 Application topology 1: business driver . 12
2.1.2 Application topology 1: key features . 12
2.1.3 Application topology 1: considerations . 14

2.2 Application topology 2 . 14
2.2.1 Application topology 2: business driver . 14
2.2.2 Application topology 2: key features . 15
2.2.3 Application topology 2: considerations . 16

Chapter 3. Choosing the runtime topology. 19
3.1 An introduction to the node types . 20

3.1.1 Web application server . 20
3.1.2 Public Key Infrastructure (PKI) . 21
3.1.3 Domain Name Service (DNS) node . 21
3.1.4 User node. 21
3.1.5 Directory and security services node . 21
3.1.6 Database server node . 21
3.1.7 Protocol firewall and domain firewall nodes 22
3.1.8 Load balancer node . 22
3.1.9 Shared file system node . 22
3.1.10 Web server redirector node . 22
3.1.11 Application server node . 23
3.1.12 Existing applications and data node . 23

3.2 Runtime topology A . 23
3.2.1 Proven basic topology . 23
3.2.2 Proven variation 1 . 25
© Copyright IBM Corp. 2000 iii

3.2.3 Emerging variation 2. 27
3.2.4 Emerging multi-tier variation 3 . 29

3.3 Runtime topology B . 31
3.3.1 Proven basic topology . 32
3.3.2 Proven variation 1 . 33
3.3.3 Emerging variation 2. 36
3.3.4 Emerging multi-tier variation 3 . 38

3.4 Intranet vs. Internet runtime topologies. 40

Chapter 4. Product mapping . 43
4.1 Runtime topology options . 43

4.1.1 Implementing a redirector . 43
4.1.2 Clones running on application servers . 45
4.1.3 Session sharing across servers . 46
4.1.4 Achieving HTTP session affinity . 47

4.2 Product mapping for basic runtime topology A 48
4.3 Product mapping for variation 1 of runtime topology A 49
4.4 Product mapping for variation 2 of runtime topology A 51

Part 2. User-to-Business patterns: guidelines . 53

Chapter 5. Performance guidelines . 55
5.1 Web server performance considerations . 55
5.2 Integration server performance considerations 59
5.3 Java and Java Virtual Machines . 60

5.3.1 Just-In-Time compiler . 60
5.3.2 Adaptive compilers . 61
5.3.3 Static compiler . 61
5.3.4 Selecting JVMs. 61

5.4 Where to find more information . 62

Chapter 6. Technology options . 65
6.1 Web client . 66

6.1.1 Web browser . 67
6.1.2 HTML . 68
6.1.3 Dynamic HTML. 68
6.1.4 XML (client-side) . 69
6.1.5 JavaScript . 70
6.1.6 Java applets . 70

6.2 Web application server . 72
6.2.1 Java servlets . 73
6.2.2 Java Server Pages (JSPs) . 74
6.2.3 JavaBeans . 74
iv Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

6.2.4 XML . 75
6.2.5 JDBC and SQLJ . 75
6.2.6 Enterprise JavaBeans. 77
6.2.7 Connectors . 78
6.2.8 Additional enterprise Java APIs . 79

6.3 Where to find more information . 79

Chapter 7. Application design guidelines . 81
7.1 Application elements . 82
7.2 Understanding supporting technologies . 86

7.2.1 Java servlets . 86
7.2.2 Java Server Pages (JSPs) . 90
7.2.3 JavaBeans and Enterprise JavaBeans . 91

7.3 Application structure. 92
7.3.1 Model-View-Controller (MVC) design pattern 94
7.3.2 MVC design pattern example . 98
7.3.3 Advantages and disadvantages of the MVC design pattern . . . 102

7.4 Application component contracts . 104
7.4.1 Result beans and View beans design pattern 105
7.4.2 Result bean and View bean design pattern example. 107
7.4.3 Advantages and disadvantages of Result beans and View beans . .
114

7.5 Application output formatting . 115
7.5.1 Formatter beans . 116
7.5.2 Formatter bean example. 116
7.5.3 Advantages and disadvantages of Formatter beans 117

7.6 Application business logic granularity . 117
7.6.1 Command beans . 118
7.6.2 Command bean example . 119
7.6.3 Advantages and Disadvantages of Command beans 126
7.6.4 An alternative approach . 126

7.7 Application session management . 128
7.7.1 Session management example . 129
7.7.2 Session management design considerations 137

7.8 Application Security . 140
7.8.1 Other design considerations . 143

7.9 Conclusion . 145
7.10 Where to find more information . 145

Chapter 8. Application development guidelines. 147
8.1 The development process . 147
8.2 The scope of this chapter . 148
8.3 The application and architecture domains . 149
v

8.4 Solution outline . 150
8.5 Macro design . 151
8.6 Micro design. 153

8.6.1 Use case . 154
8.6.2 Class model and class diagram . 157
8.6.3 Interaction diagram. 163
8.6.4 State diagram . 166
8.6.5 Component model . 166
8.6.6 Deployment model . 169

8.7 Build cycle . 172
8.7.1 Develop source code . 172
8.7.2 Testing . 188

8.8 Deployment . 193
8.9 Where to find more information . 195

Chapter 9. System management products and guidelines 197
9.1 Managing your WebSphere application . 199

9.1.1 WebSphere resource management. 200
9.1.2 Using the WebSphere administrative console 202
9.1.3 WebSphere Site Analyzer . 205

9.2 User-to-business WebSphere end-to-end security 208
9.2.1 Physical systems security . 208
9.2.2 Operating systems security . 208
9.2.3 Network security . 209
9.2.4 Web application security. 211
9.2.5 WebSphere Application Server security model and policy. 213
9.2.6 HTTP Single Sign-On (SSO) . 219
9.2.7 WebSphere V3 security differences with V2 219

9.3 Backup and recovery of your systems . 220
9.3.1 Using Tivoli Storage Manager. 221
9.3.2 Application backup and recovery . 225
9.3.3 Guidelines for backup and recovery . 227

9.4 Where to find more information . 228

Part 3. Application topology 1: a working example . 229

Chapter 10. The Pattern Development Kit and an example topology 231
10.1 The Pattern Development Kit . 232
10.2 PDK section A . 233

10.2.1 PDK application interaction. 236

Chapter 11. Step 1: Modifying the PDK application 239
11.1 Using the Pattern Development Kit in VisualAge for Java 239
vi Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

11.1.1 Changing the PDK application in VisualAge for Java 239
11.2 Using the PDK in WebSphere Studio . 244

11.2.1 Changing the PDK application with WebSphere Studio. 244

Chapter 12. Step 2: Expanding the PDK to multiple machines 249
12.1 Setting up the network environment . 249
12.2 Separating the application server from the Web server. 250
12.3 Setting up the application server on Machine B 251

12.3.1 Creating the JDBC driver and DataSource definition. 252
12.3.2 Create an application server . 254
12.3.3 Set up the application file structure . 260
12.3.4 Define the servlet . 262

12.4 Separating the database from the Web application server 268
12.5 Testing the application . 273

Chapter 13. Step 3: Securing the PDK application 275
13.1 Enabling application security in WebSphere 275
13.2 Enabling WebSphere global security . 276

13.2.1 Protecting the application . 280
13.3 Hints and tips . 286

Chapter 14. Step 4: Cloning an application server 287
14.1 Topology and product mapping . 287
14.2 Preparing the WebSphere administrative domain 288
14.3 Creating a model . 289
14.4 Creating the first clone . 294
14.5 Creating the next clone . 295

Chapter 15. Setting up a standalone servlet redirector 297
15.1 Creating a standalone redirector . 297
15.2 Preparing to use firewalls . 301
15.3 Testing the redirector . 304

Chapter 16. Setting up firewalls . 305
16.1 Designating the network interfaces . 306

16.1.1 Domain firewall . 306
16.1.2 Protocol firewall . 307

16.2 Setting up the general security policy . 307
16.3 Creating the network objects . 308

16.3.1 Domain firewall . 308
16.3.2 Protocol firewall . 309

16.4 Configuring the domain name service. 310
16.5 Creating the firewall rules and services . 310

16.5.1 Domain firewall rules and services . 310
vii

16.5.2 Protocol firewall rules and services. 319
16.6 Building connections on the firewall . 321

16.6.1 Domain firewall . 322
16.6.2 Protocol firewall . 322

16.7 TCP/IP routing . 323

Chapter 17. SecureWay Directory Configuration 325
17.0.1 Administering the SecureWay Directory LDAP server 327
17.0.2 Working with the directory tree . 328
17.0.3 Using DMT to add your own directory entries 330
17.0.4 Use DMT to add a new user and assign a password. 334

Appendix A. Special notices . 337

Appendix B. Related publications . 341
B.1 IBM Redbooks publications . 341
B.2 IBM Redbooks collections. 341
B.3 Other resources . 342
17.1 Referenced Web sites . 344

How to get IBM Redbooks . 345
IBM Redbooks fax order form . 346

Index . 347

IBM Redbooks review . 351
viii Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Preface

Patterns for e-business are a group of proven, reusable assets that can help
speed the process of developing applications. The pattern discussed in this
book, the User-to-Business pattern, is the general case of users interacting
with enterprise transactions and data. In particular it is relevant to those
enterprises that deal with goods and services which cannot be listed and sold
from a catalog.

This redbook discusses two application topologies of the User-to-Business
patterns. Application topology 1 describes a situation where you are building
an application that has no need to connect to back-end or legacy data.
Topology 2 extends topology 1 to describe the situation where you need to
access existing data on legacy or third-party systems.

Part 1 of the redbook takes you through the process of choosing an
application topology and a runtime topology. It then gives you possible
product mappings for implementation of the chosen runtime topology.

Part 2 is a set of guidelines for building your e-business application. It
includes information on application design, technology options, application
development, performance, and security.

Part 3 takes you through a working example, showing the implementation of
an e-business application using application topology 1.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

The overall manager for Patterns:

Jonathan Adams is an IT consultant with IBM's Software Group and the leader
of the Patterns for e-business initiative. He works closely with all areas of IBM
and industry consultants. His commitment to the idea of a systematic approach
to end-to-end e-business architecture is based on his many years of work in the
field with major IBM customers in the United Kingdom.

The ITSO advisor for this project:

Carla Sadtler is a Senior Software Engineer at the International Technical
Support Organization, Raleigh Center. She writes extensively in many areas
including WebSphere, SecureWay Communications Servers, network
© Copyright IBM Corp. 2000 ix

integration, and Web-to-host integration products. Before joining the ITSO 14
years ago, Carla worked in the Raleigh branch office as a Program Support
Representative. She holds a degree in mathematics from the University of
North Carolina at Greensboro.

Lead technical advisor and author:

Guru Vasudeva is an IT Architect with the e-business National Practice, IBM
Global Services, United States. He has had more than eight years of
experience in the software engineering arena, specializing in Internet
architectures, client/server solutions, component-based development, and
object-oriented technologies with a particular focus on the insurance and
telecommunications industries. Mr. Vasudeva has successfully led several
complex software design and development efforts during his career. He holds
a computer science engineering degree from Mysore University, India.

Authors:

Florian Hilgenberg is an IT specialist in IBM Global Services Germany. He
has more than four years of experience in application development, working
as an application developer and consultant on object-oriented software for
customer projects in various industries. He is an IBM Certified Developer
Associate - IBM VisualAge for Smalltalk. He holds the equivalent of a masters
degree in computer science from the Berufsakademie of Stuttgart, Germany.
His areas of expertise include object-oriented analysis, design, and
implementation using Smalltalk and Java.

Joseph Kwek is an IT Specialist with IBM Global Services, Singapore. In his
three years with IBM, he has worked on the RS6000/AIX team implementing
and supporting cross-platform systems solutions. He is currently focused on
WebSphere services in ASEAN/SA. He holds a computer science degree
from the National University of Singapore. In addition, he is a Microsoft
Certified System Engineer, an IBM Certified Advanced Technical Expert for
RS6000/AIX, and a Tivoli Certified Consultant for Tivoli Storage Manager.

Leo Marland is a Senior Consulting IT Architect in IBM Canada, providing
architecture consulting and delivery services for e-business solutions to
customers in the finance, insurance, government and healthcare industries.
He has 19 years of experience with IBM including application development,
software product development, and e-business services and consulting. He
holds a doctorate in Theoretical Physics from Oxford University. His areas of
expertise include e-business architecture and object technology including
Java.
x Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Witold Szczeponik is an IT Architect with IBM Global Services, Germany. He
joined IBM in 1995 and worked as a developer, application designer and
architect in the area of Telecommunications Management Network (TMN) and
Web Application Architectures. His areas of expertise include object-oriented
analysis, design, and implementation. He holds degrees from the University
of Oklahoma, USA (Master of Science) and from the Technical University
Braunschweig, Germany (Diplom Informatiker).

A special thanks to Anthony Griffin for his invaluable contribution in building
the Pattern Development Kit.

Thanks to the following people for their invaluable contributions to this project:

Margaret Ticknor
International Technical Support Organization, Raleigh Center

George Galambos, Distinguished Engineer, e-business Achitecture and
Design Consulting
IBM Canada

Geoffrey Hambrick,
IBM Austin

Mike Bonett
IBM Gaithersburg

Michael Conner
IBM Austin

Michael Fraenkel
IBM Raleigh

Nataraj Nagaratnam
IBM Raleigh

Derek Ho
IBM Austin

Carmine Greco
IBM Raleigh

Srinivas Koushik, IBM Distinguished Engineer, Chief Architect US e-business
Services
IBM USA
xi

Ashok Iyengar
IBM USA

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks review” on page 351 to
the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an Internet note to redbook@us.ibm.com
xii Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Introduction to patterns

We are all familiar with the pace of development of the computer industry
during its relatively brief history. The rapid advances in computer hardware
have been driven in no small part by the use of standards and well specified
components for assembly. The desire to apply these same approaches to
software construction gave rise to object-oriented software, design patterns
and component-based development.

The idea of design patterns (see Design Patterns - Elements of Reusable
Object-Oriented Software, by E. Gamma, R. Helm, R. Johnson, J. Vlissides)
in software design and construction was inspired by the idea of using patterns
in the design of buildings (see A Pattern Language, by C. Alexander, S.
Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, S. Angel). The idea of
design patterns has gained acceptance by software designers and
developers because it enables an efficiency in both the communication and
implementation of software design, based upon a common vocabulary and
reference.

Buschmann, et al, authors of Pattern-Oriented Software Architecture - A
System of Patterns identified patterns for system architecture at a higher level
than the original design patterns. Their patterns are related to the
macro-design of system components such as operating systems or network
stacks.

Information technology architects, encouraged by the success of design
patterns, and facing challenges in systematic and repeatable description of
systems, have also explored the idea of architectural patterns.

The Enterprise Solution Structure (ESS) work (see “Enterprise Solutions
Structure” in IBM Systems Journal, Volume 38, No. 1, 1999 at
http://www.research.ibm.com/journal/sj38-1.html) looked at patterns for
complete end-to-end system architectures. ESS is now part of the IBM Global
Services methodology.

1.1 Patterns for e-business

The Patterns for e-business aim to communicate in a highly accessible
fashion the business pattern, systems architecture (application and runtime
topologies), product mappings, and guidelines required for different classes
of applications. For the User-to-Business patterns there is also an associated
Pattern Development Kit, which provides sample application code to illustrate
effective use of those patterns.
© Copyright IBM Corp. 2000 1

http://www.research.ibm.com/journal/sj38-1.html

The patterns are cataloged according to the following business context
scheme:

• User-to-business
• User-to-online buying
• Business-to-business
• User-to-data
• User-to-user
• Application integration

This redbook focuses on two of the application topologies for the
User-to-Business pattern. For maximum benefit we recommend you use this
redbook in conjunction with the IBM Pattern Development Kit and selected
references, such as WebSphere Studio and VisualAge for Java Servlet and
JSP Programming, SG24-5755-00, for more extended coverage of some
topics.

The Pattern Development Kit was used in our lab during the development of
this book as the running application code to validate the runtime topologies
and product mappings.

In this book, we hope to give you an idea of all the important aspects of the
Patterns for e-business, as applied to the User-to-Business patterns. These
aspects are shown in Figure 1.
2 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 1. Patterns for e-business

1.2 How to use these patterns

The Patterns for e-business are particularly focused upon addressing
common business application problems and providing answers to frequent
architecture, design, and implementation questions.

We recommend that you can use the Patterns for e-business in a number of
ways according to your needs:

• As a starting point for an end-to-end system architecture.
• As a detailed example and prescriptive approach, following the product

mappings and guidance provided.
• As a way to design more complex, multi-channel systems, when several

patterns are used together.

As with the design patterns and ESS work, we anticipate that architects and
designers will want to combine these patterns to compose solutions to more
complex system architectures. As the other Patterns for e-business are
published we will identify the appropriate integration points for such
composition.

Patterns for e-business

Runtime
Topology

Application
Topology

Business
Pattern

Guidelines

Application Design Application Development

Technology ChoicesSystems Management

Product
Mappings

Pattern
Development
Kit

Reference
implementation
of application code
and products.
Chapter 1. Introduction to patterns 3

We recommend that you use the Patterns for e-business together with an
appropriate development methodology that considers the full set of
requirements that are to be understood and implemented, whether these
requirements concern the function of the solution or its operational
characteristics such as availability, scalability, or performance.

1.3 Patterns for e-business Web site

The Patterns for e-business are published on IBM developerWorks, a portal
for developers, and can be located at:

http://www.ibm.com/software/developer/web/patterns

This interactive patterns site acts as a guide to aid you in the selection of the
pattern and topologies most relevant to your needs. While you can navigate
via shortcuts to the information you most need, the site is structured to enable
you to “drill down” into the material as you:

1. Select a business pattern.

2. Select an application topology.

3. Review runtime topologies.

4. Review product mappings.

5. Review guidelines.

At the time of writing, the Web site has material for the user-to-business and
user-to-online buying patterns, with material for the other business patterns in
the process of development.

You can also register at this site for pattern-related updates, which will include
the Pattern Development Kit for user-to-business when it is available.

1.4 The Application Framework for e-business

The advent of e-business, with the requirement for interoperability that it
brings, has been a major catalyst for the more rapid adoption of standards by
the industry.

IBM’s Application Framework for e-business establishes:

• A recommended approach for building systems, embodied in the Patterns
for e-business.

• Innovative technology delivered in a rich product portfolio.
• Cross-platform standards, including Java and XML.
4 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

http://www.ibm.com/software/developer/web/patterns

The Framework, with the standards it proscribes for e-business systems and
their components, can be applied to:

• Custom application code
• Application packages
• Software products

The Patterns for e-business are an integral part of the IBM Application
Framework for e-business. The Patterns make it easy to apply the
technologies, standards, and products of the Application Framework to
provide an e-business solution.

Figure 2 shows a pictorial summary of the major technology standards
included in the Application Framework, with an indication of the areas where
they are important.

Figure 2. Technology standards and the Application Framework for e-business

Framework white papers are an important source of information for the
guidance material included in the Patterns for e-business. The Application
Framework site at http://www.ibm.com/software/ebusiness includes a library
section with this series of white papers.

Application Protocols
SMTP, POP/IMAP

NNTP, IRC,...

Web Server
ORB, Java VM, RDB

& Transaction

Infrastructure
TCP/IP, SSL, X.509v3, LDAP,

HTTP/HTML, XML, CORBA/IIOP

Java
Servlets, JSP, EJB
Chapter 1. Introduction to patterns 5

http://www.ibm.com/software/ebusiness

1.5 An integrated view of e-business solutions

We mentioned earlier that a potential usage of the Patterns for e-business is
to compose several patterns together for more complex system architectures.

As the following diagram shows, IBM views e-business as an integration of
many application domains into systems that connect a business with its
customers, partners, and suppliers.

These systems are not confined to Web interfaces, although increasingly
many of the user interfaces to the combined system will use Web technology.

The common set of node descriptions in the Patterns for e-business enable
communication between architects and designers from very different
application domains and will suggest areas for shared nodes and
infrastructure.

This is similar to the process of using design patterns to solve a programming
design problem, where classes in the composed pattern play multiple roles,
derived from the source patterns (see Pattern Hatching - Design Patterns
Applied by J. Vlissides). It is different, however, in that design pattern
composition is based on class diagrams and white box by nature, whereas
composing architectural patterns is more component-based.

EnterpriseEnterprise

ResourceResource

PlanningPlanning

SupplySupply

ChainChain

ManagementManagement

B
u

si
n

es
se

s
B

u
si

n
es

se
s C

u
sto

m
ers

C
u

sto
m

ers

EmployeesEmployees

InfrastructureInfrastructure

e-commercee-commerce

CollaborationCollaboration

Business IntelligenceBusiness Intelligence

Knowledge ManagementKnowledge Management

ProductProduct

DesignDesign

ManagementManagement

CustomerCustomer

RelationshipRelationship

ManagementManagement

e-business Requires Integration
6 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

The Patterns for e-business may be applied to e-business solution areas.
Here is a guide to where you may find them most applicable:

Table 1. Patterns for e-business and e-business solutions

But for now, let us introduce you to the first set of patterns, those for
user-to-business.

1.6 Structure of this redbook

Chapter 2, “Choosing the application topology” on page 11 introduces
application topologies 1 and 2 for the User-to-Business pattern. With very
accessible notation, these application topologies capture the essential
“shape” of the application solution.

Chapter 3, “Choosing the runtime topology” on page 19 discusses the runtime
topologies for these application topologies. It includes discussion of
variations of these topologies that are appropriate for scalability and
availability.

Chapter 4, “Product mapping” on page 43 provides sample product mappings
to populate the logical runtime topologies. As with Chapter 3, the focus
remains on the operational aspects of the solution.

In the chapters that follow, to make the material as valuable and relevant as
possible, specific product mappings are referenced and the material is based
on actual testing and analysis of the Pattern Development Kit application
code running on the various runtime topologies.

e-business solution area Business pattern

Customer relationship management User-to-Business pattern

e-commerce User-to-Online Buying pattern

Supply chain management Business-to-Business pattern

Collaboration User-to-User pattern

Business intelligence; knowledge man-
agement

User-to-Data pattern

Business application integration Application Integration pattern
Chapter 1. Introduction to patterns 7

Chapter 5, “Performance guidelines” on page 55 introduces performance
guidelines by considering the components of a user-to-business solution that
are particularly relevant to performance.

Chapter 6, “Technology options” on page 65 discusses the technology options
available to implement a Web application and advises on appropriate usage.

Chapter 7, “Application design guidelines” on page 81 introduces
consideration of the functional components of the application within the
context of the runtime topologies.

Chapter 8, “Application development guidelines” on page 147 provides
guidelines for application development, considering the roles, processes, and
tools that are required.

Chapter 9, “System management products and guidelines” on page 197 looks
at the asset management, security, and availability aspects of an e-business
application.
8 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Part 1. User-to-Business patterns: topologies 1 and 2
© Copyright IBM Corp. 2000 9

10 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Chapter 2. Choosing the application topology

Once the business pattern is chosen, it is time to choose an application
topology. The application topologies use logical nodes to illustrate various
ways to configure the interaction between users, applications, and data. The
chosen application topology is later mapped to a runtime topology by
mapping the logical nodes to runtime nodes.

An application topology shows the principal layout of the application, focusing
on the shape of the application, the application logic, and the associated
data. It does not show middleware, or the files or databases where Web
pages may be stored. The application design is also not described in the
application topology. For information about application design refer to Chapter
7, “Application design guidelines” on page 81.

There are two different types of application topologies:

• Web-up, where the premise is to build a Web application from scratch.

• Enterprise-out, where the idea is to Web-enable an enterprise application,
that is, builds an additional Web channel to access an enterprise
application.

This book will concentrate on two Web-up specific application topologies for
the User-to-Business pattern:

• Topology 1, for use when no legacy or third-party applications are required

• Topology 2, for use when the access to legacy and/or third-party
applications is required

By using the information for each application topology:

• Business drivers

• Key features

• Considerations

you should be able to choose the application topology that best fits your
requirements with regard to users, applications, and data.

2.1 Application topology 1

User-to-business application topology 1 is applicable in a situation where you
are building a new application and there is no need to interface with legacy or
third-party applications or data. All the data required is handled by the new
© Copyright IBM Corp. 2000 11

e-business application. It does not need to share or exchange data with other
applications, nor does it need to access data from another application.

The application implements all required functions; it does not rely on
functionality provided by other existing applications.

2.1.1 Application topology 1: business driver
This topology describes the situation where the customer is planning a new
application or is extending a current Web publishing capability, with an
e-commerce capability and no back-end integration (a classic Web-up
strategy). For example, it allows businesses to provide customers with
read-only access to marketing and sales literature via the Web. Furthermore,
customers can make business transactions that update a database within the
new application.

This topology is sufficient for companies that do not have any legacy or
third-party systems to integrate with, or at least do not have that need at this
point in time. This topology can be easily extended to topology 2 in the future
to include access to existing applications such as inventory management, or
third-party applications such as credit checks. See 2.2, “Application topology
2” on page 14 for more information.

2.1.2 Application topology 1: key features
Application topology 1 represents the target topology for most application
server vendors. It allows developers to replace the monolithic fat client design
with a layered approach. This architecture uses a thin client with application
business logic on the second tier. The second tier can access a local
database maintaining the application data. It aims to address the scalability
problems of client/server and at the same time provide reuse of the business
logic and data by all styles of Web browsers.
12 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 3. Application topology 1

Application topology 1 has a simple application and data layout. The
application is divided into two different logical application nodes to
accomplish a separation of the presentation logic from the business logic,
making it a logical 2-layer architecture.

The presentation node is responsible for all presentation logic of the
application. The application node is responsible for all business logic and
data access of the application.

The communication between the presentation logic and business logic layer
is synchronous, meaning that any request coming from the user interface
directly invokes business logic on the application node. After the execution of
the business logic, control is passed back to the presentation node that uses
the results to update the user interface.

In this topology, all data is held in a read/write storage directly accessible by
the application node, usually a local database.

There is only a small amount of presentation logic (for example, JavaScript)
running on the client, which is typically a thin browser client. Most of the
presentation logic and the entire business logic runs on a server. To scale the
application, the power of the server machine can be increased or the
application can be spread across many servers. These options provide the
ability to increase the application’s overall scalability, especially when the
number of users is growing, without having to change the logical application
topology.
Chapter 2. Choosing the application topology 13

Since the presentation logic and business logic are separated, it is easy to
adapt the presentation node to new kinds of clients. The easiest approach is
to use thin browser-based clients. But it is also possible to extend the
presentation logic to new client platforms, for example, client Java
applications or Web appliances like Web-enabled cellular phones or Personal
Digital Assistants (PDAs), without the need to change the business logic in
the application node.

2.1.3 Application topology 1: considerations
A Web application server may implement both tiers of the layered design, but
developers should exercise caution. Many vendors promote ease of
development by mixing scripting and components, paying little attention to
engineering the application with separate presentation and business logic
layers. This combined approach should be avoided as separation promotes
the effective use of discrete skill sets and code reuse. Failing to separate the
layers can lead to code that is hard to maintain and extend. Also, be aware
that you may incur significant departmental system management costs when
the business logic and data are held outside the IT organization.

2.2 Application topology 2

Application topology 2 for the User-to-Business pattern applies to scenarios
where there is the need for integration with legacy or third-party applications.
The new application is not built as a stand alone solution, but instead has to
integrate with existing applications. The integration can be achieved on a
functional basis or a data basis, that is, using a transactional interface or a
data interface.

When trying to integrate with an existing application, it is important to find out
whether this application has to be changed, and if such a modification is
allowed. If the new application is going to use existing data you must
determine if the data can be used “as is” or if the structure needs to be
changed, and if so, is this modification possible. Notice that in most cases the
objective is to leave the existing applications and data unchanged.

2.2.1 Application topology 2: business driver
Application topology 2 allows for one or more point-to-point connections to
back-end legacy applications or databases. This is a very common
requirement for businesses delivering goods and services over the Web. For
example, an e-commerce application can be integrated with existing back-end
applications such as inventory management.
14 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Often this topology is used to extend existing application topology 1 solutions
to integrate with legacy or third-party systems, for example, inventory
management or credit card checking.

2.2.2 Application topology 2: key features
Application topology 2 for user-to-business is an extension of application
topology 1. It allows the second tier's new application business logic to
access existing applications or data, such as inventory management, or
third-party applications, such as credit checks. These applications reside on a
third tier elsewhere in the network.

Figure 4. Application topology 2

Application topology 2 has the same logical application nodes known from
application topology 1 and at least one additional node, making it a logical
three-tier architecture. Depending on the requirements, this additional logical
layer contains new, modified, or unmodified components and resides in the
third tier.

As in topology 1, the presentation node is responsible for all presentation
logic of the application. The application node resides in the second tier, and is
responsible for the new business logic and integration with the existing
back-end applications. The third tier node might also provide business logic,
or may only be used to access legacy or third-party data.

The communication between the first and second tier is synchronous, as
described in 2.1.2, “Application topology 1: key features” on page 12.
Chapter 2. Choosing the application topology 15

The connection between the new application node and existing or modified
nodes can be asynchronous or synchronous. The communication type
depends on the communication characteristics and capabilities of the
back-end system. When there is an existing batch system to integrate, the
communication has to be asynchronous, whereas an existing database
system will be called synchronously.

The data can reside in the second and/or the third logical tier. Usually new
data, such as user data or profiling information, will be put in the second tier
and is directly accessible by the new application node. The data of existing
systems is kept in the third tier, and is most likely only accessible through the
existing back-end systems. It may be necessary to build new, or to modify
existing, components on the back-end to give the new application proper
access to existing data. In some cases it might even be possible to directly
access legacy data from the second tier, for example, accessing an existing
database directly from the second tier application.

2.2.3 Application topology 2: considerations
The same considerations mentioned in 2.1.3, “Application topology 1:
considerations” on page 14 apply to application topology 2. Additionally the
following concerns have to be taken into account.

If the developer needs to provide access to many applications on the third
tier, an advanced application topology may be more appropriate. You should
consider an application topology that exploits a hub-and-spoke architecture
between the second and third tiers.

You should consider how this topology will be deployed to avoid systems
management complexity. Complexity arises when updated corporate data
resides on more than one tier with the second and third tiers both within the
same organization but physically distributed. For example, synchronization of
backups may be cumbersome.

If there are different IT organizations developing the new application and
maintaining or changing the existing systems, the development might be
difficult to coordinate, especially if the interfaces between the new and the
existing systems are not properly defined and documented.

As stated before, the new application might require changes to existing
production systems. This is always a critical task, especially when the
back-end systems or third-party applications are mission critical. Building a
test system for the existing applications that need to be changed is a good
way to avoid production system failure, while developing and testing the new
16 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

e-business application. Another problem might be in having skilled resources
that can change the third tier application. Often these are quite old
applications and finding someone who understands them well enough to
change them may be difficult.
Chapter 2. Choosing the application topology 17

18 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Chapter 3. Choosing the runtime topology

Application topologies 1 and 2 represent a starting point for delivering
e-business applications. In the simplest case, application topology 1, there is
no interaction with legacy back-end systems. In the more complicated case,
application topology 2, there are connections to legacy back-end systems.

Once the application topology has been chosen, it is time to choose the
runtime topology. A runtime topology uses nodes to group functional and
operational components. The nodes are interconnected to solve a business
problem. An application topology leads to an underlying runtime topology.

This chapter will discuss two runtime topologies corresponding to the
application topologies developed in Chapter 1, “Introduction to patterns” on
page 1, and variations of each. These runtime topologies are based on the
Enterprise Solution Structure (ESS) Thin Client Transactional pattern and are
a representative solution for the User-to-Business pattern. For more
information about the Enterprise Solution Structure (ESS), see “Enterprise
Solutions Structure” in IBM Systems Journal, Volume 38, No. 1, 1999 at
http://www.research.ibm.com/journal/sj38-1.html).

Each topology has four variations:

• Proven basic topology

• Proven variation 1

• Emerging variation 2

• Emerging multi-tier variation 3

A variation that is labeled “proven” means that it is based on technology that
has been around a while and has been the chosen method in many
production systems.

An “emerging” variation is one that is based on newer technology that may or
may not have been proven in production environments, but has significant
benefits and is worth considering.

You may find that, depending on the customer requirements, you will need to
extend the variations or combine them to get the desired results.

Most references to vertical scalability in this chapter assume upgrading the
power, number or memory capacity of the processors for a given platform.
Please bear in mind that one of the benefits of the Application Framework for
e-business is that vertical scalability to a big iron solution is also possible by
© Copyright IBM Corp. 2000 19

http://www.research.ibm.com/journal/sj38-1.html

migrating the application to another Application Framework for e-business
supported platform, such as OS/390, OS/400, or RS/6000 SP.

3.1 An introduction to the node types

The runtime topologies will be shown in graphical form in the following
sections. Each topology will consist of several nodes, describing the function
represented on that node. Most topologies will consist of a core set of
common nodes, with the addition of one or more nodes unique to that
topology. To understand the runtime topologies, you will need to review the
following node definitions.

3.1.1 Web application server
A Web application server node is an application server that includes an HTTP
server (also known as a Web server) and is typically designed for access by
HTTP clients and to host both presentation and business logic.

The Web application server node is a functional extension of the informational
(publishing-based) Web server. It provides the technology platform and
contains the components to support access to both public and user-specific
information by users employing Web browser technology. For the latter, the
node provides robust services to allow users to communicate with shared
applications and databases. In this way it acts as an interface to business
functions, such as banking, lending, and HR systems.

This node would be provided by the company, on company premises, or
hosted inside the enterprise network and inside a Demilitarized Zone (DMZ)
for security reasons. In most cases, access to this server would be in secure
mode, using services such as SSL or IPSEC.

In the simplest design, this node can provide the management of hypermedia
documents and diverse application functions. For more complex applications
or those demanding stronger security, it is recommended that the application
be deployed on a separate Web application server node inside the internal
network.

Data that may be contained on the node includes:

• HTML text pages, images, multimedia content to be downloaded to the
client browser

• Java Server Pages

• Application program libraries, for example, Java applets for dynamic
downloading to client workstations
20 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

3.1.2 Public Key Infrastructure (PKI)
PKI is a collection of standards-based technologies and commercial services
to support the secure interaction of two unrelated entities (for example, a
public user and a corporation) over the Internet. In the context of the
topologies defined in this redbook, PKI supports the authentication of the
server to the browser client, using the SSL protocol.

3.1.3 Domain Name Service (DNS) node
The DNS node assists in determining the physical network address
associated with the symbolic address (URL) of the requested information.
The DNS is that of the Internet service provider, although DNS is
implemented on the accessed site, too.

3.1.4 User node
This node is most frequently a personal computing device (PC, etc.)
supporting a commercial browser, for example, Netscape Navigator or
Internet Explorer. The level of the browser is expected to support SSL and
some level of DHTML. Increasingly, designers should also consider that this
node may be a pervasive computing device, such as a Personal Digital
Assistant (PDA).

3.1.5 Directory and security services node
This node supplies information on the location, capabilities and various
attributes (including user ID/password pairs and certificates) of resources and
users, known to this Web application system. The node may supply
information for various security services (authentication and authorization)
and may also perform the actual security processing, for example, to verify
certificates. The authentication in most current designs validates the access
to the Web application server part of the Web server, but it can also
authenticate for access to the database server.

3.1.6 Database server node
This node's function is to provide a persistent data storage and retrieval
service in support of the user-to-business transactional interaction. The data
stored is relevant to the specific business interaction, for example, bank
balance, insurance information, current purchase by the user, etc.

It is important to note that the mode of database access is perhaps the most
important factor determining the performance of this Web application, in all
but the simplest cases. The recommended approach is to collapse the
Chapter 3. Choosing the runtime topology 21

database accesses into a single call or very few calls. This can be achieved
via coding and invoking stored procedure calls on the database.

3.1.7 Protocol firewall and domain firewall nodes
Firewalls provide services that can be used to control access from a less
trusted network to a more trusted network. Traditional implementations of
firewall services include:

• Screening routers (the protocol firewall in this design)

• Application gateways (the domain firewall)

The two firewall nodes provide increasing levels of protection at the expense
of increasing computing resource requirements. The protocol firewall is
typically implemented as an IP router, while the domain firewall is a dedicated
server node.

3.1.8 Load balancer node
The load balancer provides horizontal scalability by dispatching HTTP
requests among several, identically configured Web servers.

3.1.9 Shared file system node
The timely synchronization of several Web servers is achieved by using a
shared file system as the content storage and capitalizing on the replication
capability of this technology.

3.1.10 Web server redirector node
In order to separate the Web server from the application server, a so-called
Web server redirector node (or just redirector for short) is introduced. The
Web server redirector is used in conjunction with a Web server. The Web
server serves HTTP pages and the redirector forwards servlet and JSP
requests to the application servers. The advantage of using a redirector is
that you can move the application server behind the domain firewall into the
secure network, where it is more protected than within the DMZ. Static pages
can be served from the DMZ by this node.

The redirector can be implemented, for example, by either a reverse proxy
server or by a Web server plug-in such as the servlet redirector function of
IBM WebSphere Application Server Advanced Edition. More information on
implementing a redirector can be found in 4.1.1, “Implementing a redirector”
on page 43.
22 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

3.1.11 Application server node
This node provides the infrastructure for application logic and may be part of
a Web application server. It is capable of running both presentation and
business logic but generally does not serve HTTP requests. When used with
a Web server redirector the application server node will run both presentation
and business logic. In other situations, it may be used for business logic only.

3.1.12 Existing applications and data node
Existing applications are run and maintained on nodes that are installed in
the internal network. These applications provide for business logic that uses
data maintained in the internal network. The number and topology of these
existing application and data nodes is dependent on the particular
configuration used by these legacy systems.

3.2 Runtime topology A

Runtime topology A implements application topology 1. This topology
consists of a basic topology and three variations. The basic topology and the
first variation are considered to be “proven” topologies. Variations 2 and 3 are
considered to be “emerging” topologies.

3.2.1 Proven basic topology
This runtime topology provides an initial implementation with an entry-level
footprint. Or, to put it in simple words: “Start simple, grow fast.”

In Chapter 2, “Choosing the application topology” on page 11, you were
assisted in choosing the appropriate application topology for your
environment.

If you chose application topology 1, continue here with 3.2, “Runtime
topology A” on page 23.

If you chose application topology 2, skip the next section and go directly to
3.3, “Runtime topology B” on page 31.

Where do you go from here?
Chapter 3. Choosing the runtime topology 23

Figure 5. Runtime topology A (proven basic topology)

In this basic runtime topology, there is a single Web application server (a Web
server and application server combined) residing in a Demilitarized Zone
(DMZ).

The presentation logic and business logic are implemented on the Web
application server. The data to be accessed from the business logic is behind
the domain firewall in the internal network.

Access to the application server’s resources is protected by the application
server’s security features. User information, needed for authentication and
authorization, is stored in the directory and security services node behind the
domain firewall in the internal network.

Benefits
This runtime topology offers the following benefits:

• This runtime topology can be closely modeled on a single developer
workstation.

• All sensitive persistent data is stored behind the DMZ.

Internal networkDemilitarized Zone (DMZ)Outside world

I
N
T
E
R
N
E
T

Domain Name
Server

Public Key
Infrastructure

User

W eb
Application

Server

P
ro

to
co

lF
ire

w
al

l

Database

D
om

ai
n

F
ire

w
al

l

Directory and
Security
Services

Application Topology 1

Presentation Application
24 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Limitations
This topology, in its pure form, has the following limitations:

• The topology has limited availability and failover capability.

• Horizontal scalability is not possible because there is no means of
allowing more than one Web application server. See 3.2.2, “Proven
variation 1” on page 25 for a solution.

• Only a limited amount of vertical scalability is possible. Vertical scalability
can be achieved by adding memory or processors, and/or creating
duplicates or clones of applications on the Web application server. See
4.1.2, “Clones running on application servers” on page 45 for more details.

• The number of clients that access the Web server simultaneously is
limited by the capacity of the Web server. The actual numbers depend on
the software and hardware platform used.

• Since the Web server is not separated from the application server, there is
no additional security available and the business logic is protected only by
the protocol firewall.

3.2.2 Proven variation 1
The number of Web servers is crucial when it comes to serving high volume
sites. This is because each Web server can serve only a limited number of
clients at the same time. As soon as this limit is reached, additional users
who want to access that site will receive error messages that the site cannot
be reached. But this information is incorrect because the Web server is
connected. It just cannot serve the requests.

To overcome this problem you can install additional Web servers, which will
then allow for a larger amount of Web traffic. Each of these Web servers will
be connected to the corresponding application server.

This topology provides two approaches to horizontal scaling:

• Model/cloning - also supports process failover
• Load balancer - also supports machine failover
Chapter 3. Choosing the runtime topology 25

Figure 6. Runtime topology A (proven variation 1)

This variation allows a larger number of clients to access the Web site. The
fundamental difference between this variation and the basic runtime topology
is that the number of Web application servers is increased. A load balancer
node is used to distribute (spray) the incoming requests to the Web
application servers.

A shared file system may be installed in the internal network. This file system
provides for shared access to information needed by all Web application
servers.

The presentation logic and business logic are implemented on the Web
application server. The data to be accessed from the business logic is behind
the domain firewall in the internal network.

Access to the application server’s resources is protected by the application
server’s security features. User information, needed for authentication and
authorization, is stored in the directory and security services node behind the
domain firewall in the internal network.

D omain N ame
Server

Internal netw orkDem ilitarized Zone (DM Z)O utside w orld

I
N
T
E
R
N
E
T

Public K ey
Infrastructure

User

W eb
Application

Server

D irectory and
Security
Services

P
ro

to
co

lF
ir

ew
al

l

D
o

m
ai

n
Fi

re
w

al
l

L
o

ad
B

al
an

ce
r

D atabase

Shared File
System

Application Topology 1

Presentation Application
26 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

It is important that the application code on the Web application server be
stateless, or that persistent sessions are shared among the pool of Web
application servers. More information on session states can be found in 4.1.3,
“Session sharing across servers” on page 46 and 4.1.4, “Achieving HTTP
session affinity” on page 47.

Since there is more than one Web application server serving the clients’
requests, special care needs to be taken whenever scarce resources are
accessed. An example of such a resource is a connection to the database.
Since only a limited number of open connections can exist, connection
pooling may be a proper way to address the problem.

A different approach to achieving horizontal scalability can be found in Part 3,
“Application topology 1: a working example” on page 229, where workload
management is done by cloning of applications.

Benefits
This runtime topology offers the following benefits:

• The topology has a high availability and failover capability.

• Horizontal scalability of the business logic is achieved by adding additional
Web application servers to the topology; vertical scalability can be applied
wherever possible or needed.

Limitations
This topology, in its pure form, has the following limitations:

• Since the Web servers are not separated from the application servers,
there is no additional security available and the business logic is protected
only by the protocol firewall.

• There can be drawbacks to increasing the number of Web application
servers if other resources cannot handle the load. The throughput will not
increase if the back-end systems have reached their limits. Overall, it is
highly application dependent as to whether a performance improvement
can be achieved by introducing additional application servers.

3.2.3 Emerging variation 2
Under certain circumstances, you may wish to separate the Web server from
the Web application server. This may be necessary when you want to put the
application server behind a DMZ so it is in a secure environment. The
corresponding Web server can be placed inside the DMZ behind a firewall.

This separation of the Web server from the application server is done by
means of the so-called Web server redirector (or redirector for short). The
Chapter 3. Choosing the runtime topology 27

Web server serves HTTP pages and the redirector forwards servlet and JSP
requests to a dedicated server.

Figure 7. Runtime topology A (emerging variation 2)

This variation to the basic topology uses one Web server and one application
server, effectively splitting the function of a Web application server across two
machines. In this case the application server resides in the internal network
to provide it with more security. The application server node will run both
presentation and business logic.

The Web server remains in the DMZ and serves static pages. A Web server
redirector is used to forward the requests from the Web server to the
application server.

Access to the application server’s resources is protected by the application
server’s security features. User authentication is implemented by the
directory and security services node.

Demilitarized Zone (DMZ)Outside world

I
N
T
E
R
N
E
T

Domain Name
Server

Public Key
Infrastructure

User

Directory

Database

P
ro

to
co

lF
ir

ew
al

l

Internal network

D
o

m
ai

n
F

ir
ew

al
l

Application
Server

Web Server
Redirector

Application Topology 1

Presentation Application
28 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

This topology is especially useful when you do not expect many clients to
access the server simultaneously and when you want to have additional
security by separating the Web server from the application server.

Benefits
Since the Web server is separated from the application server, additional
security is available and the business logic is protected by both the protocol
and the domain firewall.

Limitations
This topology has the following limitations:

• The topology has limited availability and failover capability.

• Horizontal scalability is not possible because there are no means to allow
for more than one Web server or Web application server. See 3.2.2,
“Proven variation 1” on page 25 for a solution.

• Only a limited amount of vertical scalability is possible. Vertical scalability
can be achieved by adding memory or processors, creating duplicates or
clones of applications on the application server. See 4.1.2, “Clones
running on application servers” on page 45 for more details.

• Since only one Web server is used, only a limited number of clients can be
served simultaneously. This is because each Web server has to allocate
limited resources, such as memory, sockets, processes, or threads, etc.,
whenever it serves an incoming request.

• Since the requests to the application server need to be forwarded, you
could see a noticeable performance degradation, depending on the
redirector solution chosen. A reverse proxy is an alternative way to
implement a redirector and has little performance degradation.

• In addition, a firewall needs to be configured to allow traffic from the
redirector to the application server. But it is the firewall that delivers
additional security.

3.2.4 Emerging multi-tier variation 3
Depending on the nature of the application logic and the customer’s security
policy, you may need to locate the business logic behind the DMZ while
maintaining the presentation logic on a Web application server in the DMZ.

Also, in some situations, you may want to design an application server that
can be accessed by thick clients, perhaps using a protocol other than HTTP,
and with a richer presentation logic at the client. Or you may have to integrate
an existing application server that has been designed to be accessed with a
protocol other than HTTP in the process of defining an architecture.
Chapter 3. Choosing the runtime topology 29

Figure 8. Runtime topology A (emerging multi-tier variation 3)

This variation of the basic topology adds an additional application server
behind the DMZ to provide more security. A single Web application server
within the DMZ is used for presentation logic, but all business logic is
implemented within the application server behind the DMZ. This provides a
clear layering between the presentation logic and the business logic.

This topology does not specify the choice of protocol between the Web
application server and the application server. Depending on the application
server it may be HTTP, RMI, or RMI/IIOP.

In this case the application server will be used for running business logic only.
Which application server technology to use is an important implementation
decision. Some candidates to consider are an EJB server, a traditional
transaction monitor, or an RMI server. Using an RMI server is not
recommended because session beans are a better choice. But in some
situations, an RMI server may already be present.

Demilitarized Zone (DMZ)Outside world

I
N
T
E
R
N
E
T

Domain Name
Server

Public Key
Infrastructure

User

Directory

Database
P

ro
to

co
lF

ir
ew

al
l

Internal network

D
om

ai
n

F
ir

ew
al

l

Application
Server

Web
Application

Server

Application Topology 1

Presentation Application
30 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Access to the application server’s resources is protected by the application
server’s security features. User authentication is implemented by the
directory and security services node.

Benefits
Since the Web application server that implements the presentation logic is
separated from the application server that implements the business logic,
additional security is available and the business logic is protected by both the
protocol and the domain firewall.

Limitations
This topology can have the following limitations:

• Horizontal scalability is not possible because there are no means to allow
for more than one Web application server. See 3.2.2, “Proven variation 1”
on page 25 for a solution which, combined with this runtime topology,
provides for optimal scalability.

• Only a limited amount of vertical scalability is possible. Vertical scalability
can be achieved by adding memory or processors, and/or creating
duplicates or clones of applications on the Web application server. See
4.1.2, “Clones running on application servers” on page 45 for more details.

• Since only one Web server is used, only a limited number of clients can be
served simultaneously. This is because each Web server has to allocate
limited resources, such as memory, sockets, processes, or threads, etc.,
whenever it serves an incoming request.

• Since the requests to the actual application server need to be forwarded,
there is a slight performance degradation to be expected.

3.3 Runtime topology B

This runtime topology supports application topology 2. It has much in
common with topology A. The difference is in the back-end applications.

The next section discusses runtime topology B, which applies to application
topology 2. The only difference between runtime topology A and B is in the
back-end connections, which are not covered in any significance here.
Therefore, we recommend that you skip directly to 3.4, “Intranet vs. Internet
runtime topologies” on page 40.

Where do you go from here?
Chapter 3. Choosing the runtime topology 31

Topology A assumes that no legacy or third-party data applications are
required. Topology B provides for connections to existing applications.

This topology consists of a basic topology and three variations. The basic
topology and the first variation are considered to be “proven” topologies.
Variations 2 and 3 are considered to be “emerging” topologies.

3.3.1 Proven basic topology
The motivation for this runtime topology is to provide an extension of runtime
topology A to integrate legacy or third-party systems.

Figure 9. Runtime topology B (proven basic topology)

In this basic runtime topology, there is a single Web application server, a Web
server and application server combined, residing in the Demilitarized Zone
(DMZ).

Internal networkDemilitarized Zone (DMZ)Outside world

D
om

ai
n

F
ire

w
al

lI
N
T
E
R
N
E
T

Domain Name
Server

Public Key
Infrastructure

User

W eb
Application

Server

P
ro

to
co

lF
ire

w
al

l

Existing
Applications

and Data

Directory and
Security
Services

Application Topology 2

Presentation Application Application
32 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Existing business logic in the internal network is augmented by business logic
on the Web application server. The existing applications and data to be
accessed from the business logic are behind the domain firewall in the
internal network.

Access to the application server’s resources is protected by the application
server’s security features. User information, needed for authentication and
authorization, is stored in the directory and security services node behind the
domain firewall in the internal network.

Benefits
This topology offers the following benefits:

• This runtime topology can be closely modeled on a single developer
workstation.

• All sensitive persistent data is stored behind the DMZ.

Limitations
This topology can have the following limitations:

• The topology has limited availability and failover capability.

• Horizontal scalability is not possible because there is no means of
allowing more than one Web application server. See 3.3.2, “Proven
variation 1” on page 33 for a solution.

• Using workstations, only a limited amount of vertical scalability is possible.
Vertical scalability can be achieved by adding memory or processors,
and/or creating duplicates or clones of applications on the Web application
server. See 4.1.2, “Clones running on application servers” on page 45 for
more details. Using an inherently scalable hardware architecture, such as
IBM’s SP or OS/390, vertical scalability is not an issue.

• The number of clients that access the Web server simultaneously is
limited by the capacity of the Web server. The actual numbers depend on
the software and hardware platform used.

• Since the Web server is not separated from the application server, there is
no additional security available and the business logic on the Web
application server is protected only by the protocol firewall.

3.3.2 Proven variation 1
The number of Web servers is crucial when it comes to serving high volume
sites. This is because each Web server can serve only a limited number of
clients at the same time. As soon as this limit is reached, additional users
who want to access that site will receive error messages that the site cannot
Chapter 3. Choosing the runtime topology 33

be reached. But this information is incorrect because the Web server is
connected. It just cannot serve the requests.

To overcome this problem you can install additional Web servers,L which will
then allow for a larger amount of Web traffic. Each of these Web servers will
be connected to the corresponding application server.

This topology provides two approaches to horizontal scaling:

• Model/cloning - also supports process failover
• Load balancer - also supports machine failover

Figure 10. Runtime topology B (proven variation 1)

Domain Name
Server

Internal networkDemilitarized Zone (DMZ)Outside world

I
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Application

Server

Directory and
Security
Services

P
ro

to
co

lF
ir

ew
al

l

D
om

ai
n

Fi
re

w
al

l

L
o

ad
B

al
an

ce
r

Existing
Applications

and Data

Shared File
System

Application Topology 2

Presentation Application Application
34 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

This variation allows a larger number of clients to access the Web site. The
fundamental difference between this variation and the basic runtime topology
is that the number of Web application servers is increased. A load balancer
node is used to distribute (spray) the incoming requests to the Web
application servers.

A shared file system may be installed in the internal network. This file system
provides for shared access to information needed by all Web application
servers.

Existing business logic in the internal network is augmented by business logic
on the Web application server. The existing applications and data to be
accessed from the business logic are behind the domain firewall in the
internal network.

Access to the application server’s resources is protected by the application
server’s security features. User information, needed for authentication and
authorization, is stored in the directory and security services node behind the
domain firewall in the internal network.

It is important that the application code on the Web application server be
stateless, or that persistent sessions are shared among the pool of Web
application servers. More information on session states can be found in 4.1.3,
“Session sharing across servers” on page 46 and 4.1.4, “Achieving HTTP
session affinity” on page 47.

Since there is more than one Web application server serving the clients’
requests, special care needs to be taken whenever scarce resources are
accessed. An example of such a resource is a connection to the database.
Since only a limited number of open connections can exist, connection
pooling may be a proper way to address the problem.

A different approach to achieving horizontal scalability can be found in Part 3,
“Application topology 1: a working example” on page 229, where workload
management is done by cloning of applications.

Benefits
This topology offers the following benefits:

• The topology has a high availability and failover capability.

• Horizontal scalability of the business logic is achieved by adding additional
Web application servers to the topology; vertical scalability can be applied
wherever possible or needed.
Chapter 3. Choosing the runtime topology 35

Limitations
This topology has the following limitations:

• Since the Web servers are not separated from the application servers,
there is no additional security available and the business logic is protected
only by the protocol firewall.

• There can be drawbacks to increasing the number of Web application
servers if other resources cannot handle the load. The throughput will not
increase if the back-end systems have reached their limits. Overall, it is
highly application dependent as to whether a performance improvement
can be achieved by introducing additional application servers.

3.3.3 Emerging variation 2
Under certain circumstances, you may wish to separate the Web server from
the Web application server. This may be necessary when you want to put the
application server behind a DMZ so it is in a secure environment. The
corresponding Web server can be placed inside the DMZ behind a firewall.

This separation of the Web server from the application server is done by
means of the so-called Web server redirector (or redirector for short). The
Web server serves HTTP pages and the redirector forwards servlet and JSP
requests to a dedicated server.
36 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 11. Runtime topology B (emerging variation 2)

This variation to the basic topology uses one Web server and one application
server, effectively splitting the function of a Web application server across two
machines. In this case the application server resides in the internal network
to provide it with more security. The application server will run both
presentation and business logic. There is also business logic in the existing
applications.

The Web server remains in the DMZ and serves static pages. A Web server
redirector is used to forward the requests from the Web server to the
application server.

Access to the application server’s resources is protected by the application
server’s security features. User authentication is implemented by the
directory and security services node.

Demilitarized Zone (DMZ)Outside world

I
N
T
E
R
N
E
T

Domain Name
Server

Public Key
Infrastructure

User

Directory

Existing
Applications and

Data

P
ro

to
co

lF
ir

ew
al

l

Internal network

D
o

m
ai

n
F

ir
ew

al
l

Application
Server

Web Server
Redirector

Application Topology 2

Presentation Application Application
Chapter 3. Choosing the runtime topology 37

This topology is especially useful when you do not expect many clients to
access the server simultaneously and when you want to have additional
security by separating the Web server from the application server.

Benefits
Since the Web server is separated from the application server, additional
security is available and the business logic on the application server is
protected by both the protocol and the domain firewall.

Limitations
This topology has the following limitations:

• The topology has limited availability and failover capability.

• Horizontal scalability is not possible because there are no means to allow
for more than one Web server or Web application server. See 3.3.2,
“Proven variation 1” on page 33 for a solution.

• Only a limited amount of vertical scalability is possible. Vertical scalability
can be achieved by adding memory or processors, creating duplicates or
clones of applications on the application server. See 4.1.2, “Clones
running on application servers” on page 45 for more details.

• Since only one Web server is used, only a limited number of clients can be
served simultaneously. This is because each Web server has to allocate
limited resources, such as memory, sockets, processes, or threads, etc.,
whenever it serves an incoming request.

• Since the requests to the application server need to be forwarded, you
could see a noticeable performance degradation, depending on the
redirector solution chosen. A reverse proxy is an alternative way to
implement a redirector and has little performance degradation.

• In addition, a firewall needs to be configured to allow traffic from the
redirector to the application server. But it is this firewall that delivers
additional security.

3.3.4 Emerging multi-tier variation 3
Depending on the nature of the application logic and the customer’s security
policy, you may need to locate the business logic behind the DMZ while
maintaining the presentation logic on a Web application server in the DMZ.

Also, in some situations, you may want to design an application server that
can be accessed by thick clients, perhaps using a protocol other than HTTP,
and with a richer presentation logic at the client. Or you may have to integrate
an existing application server that has been designed to be accessed with a
protocol other than HTTP in the process of defining an architecture.
38 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

An example scenario could be comprised of a CORBA application server
behind the DMZ and a Web application server that implements the
presentation logic and augments the business logic on the CORBA server. In
this scenario, you would use IIOP to communicate with the application server.

Figure 12. Runtime topology B (emerging multi-tier variation 3)

This variation of the basic topology adds an additional application server
behind the DMZ to provide more security. A single Web application server
within the DMZ is used for presentation logic, but all business logic is
implemented within the application server behind the DMZ and in other
existing applications. In this case the application server will be used for
running business logic only (no presentation logic), providing a clear layering
between the presentation logic and the business logic.

This topology does not specify the choice of protocol between the Web
application server and the application server. Depending on the application
server it may be HTTP, RMI, or RMI/IIOP.

Demilitarized Zone (DMZ)Outside world

I
N
T
E
R
N
E
T

Domain Name
Server

Public Key
Infrastructure

User

Directory

P
ro

to
co

lF
ir

ew
al

l

Internal network

D
o

m
ai

n
F

ir
ew

al
l

Application
Server

Web
Application

Server

Existing
Applications and

Data

Application Topology 2

Presentation Application Application
Chapter 3. Choosing the runtime topology 39

The application server technology to use is an important implementation
decision. Some candidates to consider are an EJB server, a traditional
transaction monitor, a CORBA server, or an RMI server. Using an RMI server
is not recommended because session beans are a better choice. But in some
situations, an RMI server may already be present.

Access to the application server’s resources is protected by the application
server’s security features. User authentication is implemented by the
directory and security services node.

Benefits
Since the Web application server that implements the presentation logic is
separated from the application server that implements the business logic,
additional security is available and the business logic is protected by both the
protocol and the domain firewall.

Limitations
This topology has the following limitations:

• Horizontal scalability is not possible because there are no means to allow
for more than one Web application server. See 3.3.2, “Proven variation 1”
on page 33 for a solution which, combined with this runtime topology,
provides for optimal scalability.

• Only a limited amount of vertical scalability is possible. Vertical scalability
can be achieved by adding memory or processors, and/or creating
duplicates or clones of applications on the Web application server. See
4.1.2, “Clones running on application servers” on page 45 for more details.

• Since only one Web server is used, only a limited number of clients can be
served simultaneously. This is because each Web server has to allocate
limited resources, such as memory, sockets, processes, or threads, etc.,
whenever it serves an incoming request.

• Since the requests to the actual application server need to be forwarded,
there is a slight performance degradation to be expected.

3.4 Intranet vs. Internet runtime topologies

The intranet runtime topologies do not differ significantly from the Internet
runtime topologies. There are, however, certain issues that you should be
aware of:

1. The bandwidth is usually higher than on the Internet. This allows you to
use more bandwidth-consuming solutions, such as “thick clients”.
Downloading these clients may be impractical on the Internet.
40 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Nonetheless, even within intranets, bandwidth may be limited, since not all
employees may have equivalent access to the intranet. For example, think
of someone working at home and connecting via telephone lines to the
intranet. Also, when a company is widespread, some branches may have
only telephone lines (say ISDN), to access the intranet.

2. Security may be less of an issue, as you have better control over who is
accessing the network. But protecting the network is important even within
the intranet, so protocol firewalls should not be left out and domain
firewalls are important too, because you want to protect the back-end
systems from unauthorized access.

3. Due to corporate rules, you may expect certain browsers to be used. Once
you know which browsers are supported within the intranet, you can
design and implement the solutions with these browsers in mind. This can
be very productive, because you do not have to use the “least common
denominator” but rather can utilize all available features.

This list of issues is not complete. They are listed here as examples of what
you may have to consider.
Chapter 3. Choosing the runtime topology 41

42 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Chapter 4. Product mapping

After having chosen a runtime topology option, you will then want actual
products mapped against the runtime topology. It is suggested that you make
the final platform recommendation based on the following considerations:

• Existing systems and platform investments

• Customer and developer skills available

• Customer choice

The platform chosen should fit into the customer's environment and ensure
quality of service, such as scalability and reliability so that the solution can
grow along with the e-business.

We have implemented a sample application topology 1 using IBM WebSphere
Advanced Edition in a heterogeneous Microsoft Windows NT and IBM AIX
environment. This chapter explains in more detail what products have been
used in the process of implementing this application topology.

4.1 Runtime topology options

Before we start with the detailed description of the topologies, some options
are discussed.

4.1.1 Implementing a redirector
The current version of WebSphere Advanced Edition (3.021) provides a
servlet redirector feature. Another option in WebSphere is the OSE Remote
feature. A third option is to use a reverse proxy.

In our samples, we used the WebSphere servlet redirector. If you are using
WebSphere 2.0, then the reverse proxy is the only way for you to separate the
Web server from the application server and put a firewall between them.

4.1.1.1 Using WebSphere’s servlet redirector
The servlet redirector is a process that distributes servlet requests to
machines remote to the Web server. With WebSphere Application Server
3.021 there are two configurations of the redirector available, base (“thick”)
and standalone (“thin”).

Base (“thick”) redirector
The base redirector runs as part of the administrative server, and therefore
has the overhead of requiring the administrative server’s infrastructure (the
© Copyright IBM Corp. 2000 43

database). The advantage of the base redirector is that it can be configured
and managed using the WebSphere administrative console from either the
redirector’s or application server’s node. The base redirector supports
WebSphere security.

Standalone (“thin”) redirector
The standalone redirector does not require the administrative server’s
infrastructure and therefore does not suffer from that overhead. It is
especially suitable when you have limited resources or do not want to expose
any information in the administrative database. Its disadvantage is that it
cannot be configured and managed using the WebSphere administrative
console. All configuration is done by means of scripts that need to be
executed on a regular basis. This means that the redirector can be out of sync
whenever the application server has changed and the changes have not been
propagated to the Web servers. The standalone redirector does not support
WebSphere security.

It depends on your requirements as to which version is a feasible alternative.
If access to secured resources is not an issue, either one can be used to
separate the Web server from the application server. If, however, resources
are secured, then only the base redirector will be an option for you.

Additional information on the servlet redirector can be found on the Web at:
http://www.ibm.com/software/webservers/appserv/doc/v30/ae/web/help/model.h

tm#a9 as well as in Chapter 15, “Setting up a standalone servlet redirector” on
page 297.

4.1.1.2 Using reverse proxy
An alternative way to implement a redirector is to use a so-called reverse
proxy. A reverse proxy is a method of making a proxy server transparent to
the client. A reverse proxy listens on port 80 for requests that have a certain
format. It then forwards those requests to an HTTPServer that resides on the
Web application server. The requests are then fulfilled and passed back to
the reverse proxy to the client.

When a proxy server is configured for reverse proxy, it appears to the client to
be the origin server. The client is not aware that the request is actually being
sent to another server.

4.1.1.3 OSE Remote
WebSphere also offers the OSE Remote feature. Configuring the HTTP Web
server for OSE Remote offers a significant performance improvement over
the servlet redirector, but will not support SSL between the Web server and
44 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

http://www.ibm.com/software/webservers/appserv/doc/v30/ae/web/help/model.htm#a9
http://www.ibm.com/software/webservers/appserv/doc/v30/ae/web/help/model.htm#a9

application server. To use SSL you will need to use the servlet redirector.
OSE Remote uses its own private protocol.

4.1.2 Clones running on application servers
In order to increase the vertical scalability of an application server, you can
increase the number of processors installed on that particular server. Each of
these processors can then execute in parallel. However, a performance
improvement is only possible if either the software or the operating system
can make use of these additional resources.

The IBM WebSphere Application Server allows you to leverage remaining
processor capacity or additional processors by means of application "cloning".
Cloning means that a given application is duplicated such that the clients
cannot distinguish between the clones. In addition, each WebSphere
Application Server (this is WebSphere’s term for grouping a servlet engine
and related resources) is running in its own JVM. This allows the use of more
than one JVM with WebSphere.

Before cloning, you first have to create a model of that resource. Clones are
created from a model. After you clone a resource, modifying the model
automatically propagates the same changes to all of the clones. You can
efficiently administer several copies of a server or other resource by
administering its model.

You can also clone servlets, servlet engines, Web applications, EJB
containers, and Enterprise Java beans. For details on cloning, please see the
Web site at:

http://www.ibm.com/software/webservers/appserv/doc/v30/ae/web/help/model.h

tm.

There are, of course, situations where it is necessary to distinguish between
the clones. For more information see 4.1.3, “Session sharing across servers”
on page 46 and 4.1.4, “Achieving HTTP session affinity” on page 47.

The application server balances the workload of the clones running on a
server automatically. Thus, you do not have to worry about the machine’s
utilization. All of that is done automatically by the application server.

There are circumstances where cloning is desirable even if you have only one
processor installed. This can be the case if you have an application that is
spending most of its time waiting for some resources. During this time,
additional requests can be served by the application’s clones. Also, if
Chapter 4. Product mapping 45

http://www.ibm.com/software/webservers/appserv/doc/v30/ae/web/help/model.htm
http://www-4.ibm.com/software/webservers/appserv/doc/v30/ae/web/help/model.htm
http://www-4.ibm.com/software/webservers/appserv/doc/v30/ae/web/help/model.htm

automatic tasks such as Garbage Collection take too long to complete,
cloning may prove a viable alternative on a single-processor machine.

In addition to all the above-mentioned advantages, cloning also increases the
availability of a particular Web application as well as the failover capability. If
any of the clones fails, the other clones take over the workload.

Overall, it is highly application dependent as to whether or not a performance
improvement can be achieved by cloning of applications.

As with all alternatives there are also disadvantages that you have to
consider:

1. If you do not require session affinity and want all session-related
information to be transparent to the users, there is some performance
penalty because all session information needs to be saved and retrieved
from a database. Depending on the amount of data, this penalty may
prove to be very expensive. Session affinity is discussed in 4.1.4,
“Achieving HTTP session affinity” on page 47

2. If your application assumes that it is running on a dedicated machine
(even on a dedicated JVM), cloning will not be an issue for you because it
cannot be determined in advance on which machine your application will
execute the next time a request is served.

4.1.3 Session sharing across servers
Whenever you distribute an application across several servers, either by
means of cloning or duplication, you have to think about how the sessions will
be handled by this configuration. Normally, there should be no problems when
running such a distributed application. This is especially true if the application
controller does not maintain any information or state between two
consecutive client requests. For simple applications this should always be the
case.

As soon as the application becomes more complex and requires that state be
maintained by the controller, distribution can lead to unexpected results. This
is because there is no guarantee that the same controller will be invoked the
next time a client sends a request. And whenever the controller is making this
assumption, it will fail.

To be able to overcome this problem when running multiple servers, the
session state must be saved to a database and whenever an application
accesses the current session’s state, it must be reloaded from the database.
This saving and loading takes time. And depending on the amount of data
that is to be written, it can add up to a substantial amount.
46 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

If the volume of data to be written to the database is almost negligible, then
the time to establish the database connection will be much larger than the
actual time to put the data into the database and later on to fetch it from the
database. In other words, if only small amounts of data are to be maintained,
the overhead to access this data will become too large. On the other hand, if
the amount of data to be written to the database is very large, say, several
kilobytes, then the time to save and read the data can take up a substantial
amount of the time spent in the controller.

These are the two extremes one has to consider. Of course, if the session
state can be computed somehow, then persistent sessions are not needed
and the state should always be re-computed whenever a request is served by
the controller. As this may not always be possible, you have to be sure how
much you are willing to pay for session sharing. Even if you have all clones
running on the same physical machine, and sessions do not have to be stored
in a database, it is up to the application server to make the decision as to
whether or not it will need to access a database.

Session sharing has a tremendous advantage. Since the session state is not
stored within a particular server, the availability of the service increases
because each time a particular server fails, other servers can take over.

4.1.4 Achieving HTTP session affinity
The term “session affinity” applies whenever a client is always connected to
the same server during a session. This server may have been determined in
advance or during the first request of that session. In the latter case, this
server will be serving the client’s subsequent requests.

There may be several reasons for session affinity to be a property that you
want to leverage. For example, due to resource restrictions you cannot allow
some other controller to continue when the next request comes in. Or maybe
the overhead related to persistent sessions is too high for you and therefore
the application performance degrades.

If you need session affinity, you must make sure that after serving a request,
the next request is sent not only to the same machine but also to the same
clone running on that machine. However, since clones cannot be
distinguished, there is no way you can be sure a request is sent to some
particular clone. This being the case, you cannot take advantage of cloning
applications. However, you can still have several applications installed on that
particular server that will utilize the server’s processing power. As for
ensuring that all subsequent requests are served by the same server, you will
have to use absolute paths such as:
Chapter 4. Product mapping 47

Title Page, as
opposed to relative paths such as
Title Page.

A disadvantage of session affinity is that workload management is basically
disabled after the initial connection. Workload management will occur at
session instantiation if you are using something like the IBM SecureWay
Dispatcher, but after that the client will connect directly to the same server.

Also, the availability of a service decreases with session affinity. Because a
client is bound to a particular server, no other server can take over should the
server fail.

4.2 Product mapping for basic runtime topology A

This mapping shows the products and platforms used in the implementation
of the basic runtime topology A discussed in 3.2.1, “Proven basic topology” on
page 23. Though we chose Windows NT for many of the nodes, keep in mind
that these products are available on other platforms.

Figure 13. Product mapping, basic runtime topology A, Windows NT based

Internal networkDemilitarized Zone (DMZ)Outside world

I
N
T
E
R
N
E
T

Domain Name
Server

Public Key
Infrastructure

User

Web
Application

Server

P
ro

to
co

lF
ire

w
al

l

Database

D
om

ai
n

F
ire

w
al

l
Directory and

Security
Services

Windows NT 4.0
SecureWay Firewall 4.1

Windows NT 4.0
WebSphere App Serv Adv Ed 3.021
JDK 1.1.7 (IBM build n117p)
IBM HTTP Server 1.3.6.2 (Apache)
DB2 UDB 5.2 (Fixpack 11)
DB2 Client Application Enabler

Windows NT 4.0
DB2 UDB 5.2
(Fixpack 11)

Windows NT 4.0
SecureWay
Directory 3.1.1
DB2 UDB 5.2
(Fixpack 11)
48 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

In this scenario:

• The protocol firewall was configured to be open on port 80 only. Thus, only
HTTP traffic could flow from the Web browsers to the Web application
server.

• The domain firewall was configured to be open on port 389 to access the
LDAP server, and on port 50000 to access the database.

• The Web application server was hosting the business logic which, in our
case, accessed data stored in the database within the internal network.

• User authentication was implemented using WebSphere’s security
features and users had to authenticate against the LDAP server.

An alternative for the Web application server is shown in Figure 14 using AIX
for the WebSphere platform.

Figure 14. Product mapping, basic runtime topology A, AIX based

4.3 Product mapping for variation 1 of runtime topology A

This mapping shows the products and platforms used in the implementation
of the first variation to runtime topology A discussed in 3.2.2, “Proven

Internal networkDemilitarized Zone (DMZ)Outside world

I
N
T
E
R
N
E
T

Domain Name
Server

Public Key
Infrastructure

Retail
Customer

Web
Application

Server

P
ro

to
co

lF
ire

w
al

l

Database

D
o

m
a

in
F

ire
w

al
l

Directory and
Security
Services

Windows NT 4.0
SecureWay Firewall 4.1

AIX 4.3.3
WebSphere App Serv Adv Ed 3.021
JDK 1.1.8 (IY06325)
IBM HTTP Server 1.3.6.2 (Apache)
DB2 UDB 6.1 (Fixpack 2)
DB2 Runtime Client V6.1

Windows NT 4.0
DB2 UDB 5.2
(Fixpack 11)

Windows NT 4.0
SecureWay
Directory 3.1.1
DB2 UDB 5.2
(Fixpack 11)
Chapter 4. Product mapping 49

variation 1” on page 25. Though we chose Windows NT for many of the
nodes, keep in mind that these products are available on other platforms.

Figure 15. Product mapping, proven variation 1 of runtime topology A

This topology is an extension of the basic runtime topology, adding multiple
Web application servers and load balancing capability. In this scenario:

• The protocol firewall was configured to be open on port 80 only. Thus, only
HTTP traffic could flow from the Web browsers to the load balancer.

• The domain firewall was configured to be open on port 389 to access the
LDAP server, and on port 50000 to access the database.

• The Web application server was hosting the business logic which, in our
case, accessed data stored in the database within the internal network.

• User authentication was implemented using WebSphere’s security
features and users had to authenticate against the LDAP server.

• IBM’s SecureWay Network Dispatcher was used to distribute (spray)
incoming HTTP requests to several identical copies of the Web application
server.

• Each of the Web application servers had the same data and code
installed, so there was no need to install a shared file system in this

Domain Name
Server

Internal networkDemilitarized Zone (DMZ)Outside world

I
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Application

Server

Directory and
Security
Services

P
ro

to
co

lF
ir

ew
al

l

D
o

m
ai

n
Fi

re
w

al
l

L
oa

d
B

al
an

ce
r

Database

Shared File
System

Windows NT 4.0
SecureWay Firewall 4.1

Windows NT 4.0
WebSphere App Serv Adv Ed 3.021
JDK 1.1.7 (IBM build n117p)
IBM HTTP Server 1.3.6
DB2 UDB 5.2 (Fixpack 11)
DB2 Client Application Enabler
AFS 3.5 Client

Windows NT 4.0
SecureWay
Directory 3.1.1
DB2 UDB 5.2
(Fixpack 11)

Windows NT
4.0
DB2 UDB 5.2
(Fixpack 11)

Windows NT 4.0
SecureWay
Network
Dispatcher 2.1.0.4

AIX 4.3.2
AFS 3.5
50 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

instance. However, if needed, a shared file system such as AFS could
have been used.

• On each of the Web application servers in the DMZ, an alias needed to be
included in the default host’s alias list to include the cluster address
(and/or cluster name) that has been created for the Network Dispatcher.

4.4 Product mapping for variation 2 of runtime topology A

This mapping shows the products and platforms used in the implementation
of the second variation to runtime topology A discussed in 3.2.3, “Emerging
variation 2” on page 27. Though we chose Windows NT for many of the
nodes, keep in mind that these products are available on other platforms.

Figure 16. Product mapping, emerging variation 2 of runtime topology A

In this scenario a servlet redirector is installed in the DMZ. In this case,
WebSphere was configured as a thin redirector on a machine, though a base
redirector could have been used as well. The process used to set up a
redirector is covered in Chapter 15, “Setting up a standalone servlet
redirector” on page 297.

The application server (WebSphere Application Server) was moved to the
secure network.

Demilitarized Zone (DMZ)Outside world

I
N
T
E
R
N
E
T

Domain Name
Server

Public Key
Infrastructure

User

Directory

Database

P
ro

to
co

lF
ir

ew
al

l

Internal network

D
o

m
ai

n
F

ir
ew

al
l

Application
Server

Web Server
Redirector

Windows NT 4.0
SecureWay Firewall 4.1

Windows NT 4.0
WebSphere App
Serv Adv Ed 3.021
JDK 1.1.7 (IBM
build n117p)
DB2 UDB 5.2
(Fixpack 11)

Windows NT 4.0
SecureWay
Directory 3.1.1
DB2 UDB 5.2
(Fixpack 11)

Windows NT 4.0
DB2 UDB 5.2
(Fixpack 11)

Windows NT 4.0
IBM HTTP Server 1.3.6
WebSphere App Serv
Adv Ed 3.021
JDK 1.1.7 (IBM build
n117p)
Chapter 4. Product mapping 51

In this scenario:

• The protocol firewall was configured to be open on port 80 only. Thus, only
HTTP traffic could flow from the Web browsers to the Web server.

• The domain firewall was configured to be open on ports needed to allow
IIOP traffic to flow between the redirector and the application server. See
Chapter 16, “Setting up firewalls” on page 305 for information on
configuring the firewalls.

• The application server was hosting the business logic which, in our case,
accessed data stored in the database within the internal network.

• User authentication was implemented using WebSphere’s security
features and users had to authenticate against the LDAP server.

In Part 3, “Application topology 1: a working example” on page 229 we used
the servlet redirector feature of WebSphere Advanced Edition 3.021 to
implement variation 2 of runtime topology A. Another option to implement the
redirector function in this topology would be the OSE Remote feature in the
WebSphere Advanced product. For some development test cases, OSE
Remote has demonstrated a performance advantage over servlet redirector
but in its first implementation uses a private protocol, whereas servlet
redirector uses RMI over IIOP. If SSL is required for the connection then the
servlet redirector must currently be used.
52 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Part 2. User-to-Business patterns: guidelines
© Copyright IBM Corp. 2000 53

54 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Chapter 5. Performance guidelines

This chapter discusses the various aspects of performance and how the
design or implementation of an e-business application can affect them. The
majority of the information was extracted from the Designing e-business
Solutions for Performance white paper, by Maggie Archibald and Mike
Schlosser. The white paper contains much useful information and is definitely
worth reading. This chapter contains only a small portion of the information.
The white paper can be found at:

http://www.ibm.com/software/developer/library/patterns/performance.html

There are many specific guidelines that relate to various components of a
solution that will be discussed later. There are also some general guidelines
that apply to the designs of all solutions:

1. Pay attention to all components of the solution.
2. Understand in detail the interfaces and flows between the various

components.
3. Plan for growth of the design.
4. Use the latest levels of infrastructure and system software.
5. Cache as much as possible.

5.1 Web server performance considerations

The Web server is responsible for serving up everything from static pages to
invoking various applications through interfaces such as Common Gateway
Interface (CGI), FastCGI, Web server Application Programming Interfaces
(APIs) and servlets. Because of this varied workload, careful planning is
needed to ensure that the Web server is processing the request in the most
efficient manner. Segmenting the work into similar functions is critical to
producing consistent response times. Another technique to improve
performance is to use the workload classification to make prioritized
decisions on how to shed workload if the server becomes overloaded.
Specific items in a Web server that impact performance are:

• Threads

Some Web servers allow the configuration of both a minimum and
maximum number of threads. Pick a reasonable, but large enough number
of threads to handle your peak workloads, then set the maximum number
of threads equal to the minimum number.

This avoids the overhead of creating and destroying threads during peak
processing hours. Experiment to find the right number of threads on your
© Copyright IBM Corp. 2000 55

http://www.ibm.com/software/developer/library/patterns/performance.html

system. Experience has shown that picking too high a number can
decrease your overall throughput on the system. Too low a number can
even cause server failure. Remember in your calculations that the Web
server uses some of the allocated threads for its own processing. In the
case of the ICSS Web server version that was tested for instance, nine
threads were used by the server for its own purposes.

Currently, IBM HTTP Server for Windows NT supports threads, but AIX
does not.

• Limit the use of server-side includes (SSI)

Server-side includes (SSI) allow you to insert information into CGI
programs and HTML documents that the server sends to the client. When
server-side include processing is enabled, the Web server will parse each
byte of every HTML file and CGI program searching for the existence of an
SSI directive and, if found, process it. This is a great feature for processing
dynamic content, but it requires a large amount of CPU processing.

SSI processing can be controlled by the use of the imbeds directive. If you
do not use SSIs, set imbeds off in the /etc/httpd.conf file.

• URL links

URL suffix processing (multi-support) is overhead for any Web server. This
occurs when a URL does not exactly match the templates on the PASS
directive. For example, if the URL is /oh_boy.html and your file name is
actually /oh_boy.html.ascii, the Domino Go Web server will do suffix
processing and eventually return the file oh_boy.html.ascii. The Web
server appends all known suffixes to the file name looking for a match.
Eventually, the correct file will be returned, if it exists, but the process is
CPU intensive.

• Caching

The addition of memory to a system almost always improves performance.
This is because physical I/O is a relatively expensive operation in terms of
latency. It makes intuitive sense then, that by dedicating memory in a Web
server to store frequently accessed HTML pages and images, you will
improve performance. As a rule of thumb, your Web server should have
enough RAM to accommodate all network buffers, frequently used
applications, images and HTML, including those mounted via DFS. This is
especially important for dynamically generated pages that can be reused.

For the Web server there are several places you can cache your static
items to help improve performance:

- Use a network router such as the IBM 2216 Nways Multiaccess
Connector.
56 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

- Use a Web proxy cache such as the one found in WebSphere
Performance Pack.

• Logging

Web server logs, in particular the access log, record important information
about the use of the Web server. However, these logs can become very
large and should be pruned and/or archived regularly. Logging can have a
surprisingly large impact on response time and throughput. For this
reason, you will often find that vendors turn logging off for bench marking
purposes.

• CGI and server-side Java

The IBM Application Framework for e-business defines the infrastructure
for developing e-business solutions. This includes the relationship
between the Web server and server-side Java elements. IBM's analysis of
the performance characteristics of this environment provides some useful
guidelines for e-business solution designers, including:

a. Any of the techniques used to connect a Web server to application logic
(CGI, in-process API, Java servlets, etc.) should be insignificant when
compared to the time required to execute the application logic.

b. Most existing Web applications have been implemented using CGI.
IBM's analysis indicates that Java servlets provide 4X to 10X better
throughput compared to CGI.

c. Java servlets generally run faster if they are instantiated and preloaded
in servlet.properties. Servlet invocation by class name rather than
instance name is slower.

• Network

If there is no contention for either CPU or memory resources on your
system, and you are experiencing performance problems, you may have a
network issue to resolve. After all, while incoming Web requests may be
relatively small, outgoing Web responses can contain large graphics,
applets, video or audio files. It is important to make sure that the number
and size of the TCP buffers be tuned appropriately on the Web server
platform. Because the size of requests coming into the server is so
different than the requests going out of the server, many sites have routed
incoming requests along relatively “thin” network pipes while routing their
output requests along relatively “fat” network pipes.
Chapter 5. Performance guidelines 57

• Load balancing

The need to manage and scale Web sites that experience high “hit rates”
over the Internet has led to the development of load balancing application
server designs. Load balancing designs range from the relatively simple
round robin Domain Name Systems (DNS) approaches to more
sophisticated dispatchers such as the IBM SecureWay Network
Dispatcher that include server-side monitors.

Unless the workload is very consistent across all the clients in terms of the
server load required and the volumes requested, and the servers are
identical in capacity, the round robin approach can cause some servers to
bear more load than others. If some users generate requests for relatively
more CPU intensive CGI calls or other types of dynamic pages versus
some users who merely request static pages that may be in cache, the
round robin approach usually does not balance the workloads. Because
the round robin approach usually is not aware of current server workloads
or the impact of the request being assigned, it just assigns the first request
from a user to the next server in the rotation. This approach is more of a
user allocation approach versus a true load balancing approach.

The most common approach to load balancing today is Web server
clustering. A clustered environment in the Web world is a set of Web
servers that appear to browsers on the Internet as a single server. A
required element in a clustered environment is a load balancer, which is
software or hardware that is responsible for making the set of Web servers
appear to be a single server. For example, the SecureWay Network
Dispatcher component of IBM's WebSphere Performance Pack provides
this function.

• Segmenting workload

If the workload is not very consistent across all of the Web servers, as is
the norm in most cases, then another approach needs to be implemented
to normalize the response times to the clients. The best way to normalize
response times to requests is to split up the workloads into groups of
similar characteristics. For example, static HTML and images are good
candidates for one group, while simple CGI/WSAPI programs belong in
another group, and complex CGI/WSAPI programs belong in a third.

This segmenting of the workload can be done at the hostname level in the
URL or you can use a load balancer to do content-based routing. It is
generally recommended that you do URL-based segmentation since it is
less of a performance hit on the load balancer.
58 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

5.2 Integration server performance considerations

Integration of Web application servers with back-end systems also raises
several performance issues, including:

1. Pre-allocating and caching resource manager:

Some of the cost associated with accessing resource managers from
middle-tier objects involves establishing connections to those resource
managers. By pre-allocating and reusing connections, it is possible to
greatly reduce the overhead of defining new ones.

2. Caching facilities local to the middle tier:

Caching state information accessed from back-end systems into the
middle-tier environment can promote good performance. This is
achievable through pre-fetch and look-aside algorithms that ensure that
the back-end will only be accessed as often as is absolutely necessary.
Note that it is common, especially when integrating with existing legacy
information systems, to access back-end state information required by one
object and, in the process, to encounter state information needed by one
or more other, related objects. Caching this information as it becomes
available may significantly improve overall system performance. Finally, a
smart caching mechanism can ensure that updates are only made to a
back-end system when the underlying state information of a given object
has actually changed.

3. Optimistic locking mechanisms:

In some cases, applications place large numbers of unnecessary locks on
resource managers. We say these locks may be unnecessary in the sense
that no attempts to use the resource concurrently actually occur. In these
situations it would be better to place no locks on the resource managers,
and instead check for conflicting usage as part of transactional commit.
Specifically, you should consider locking all affected resources only once:
at the end of a given unit of work. Then compare the relevant resource
manager values at that time with the values obtained when the unit of work
began. In the absence of intervening changes, the current unit of work can
be committed. Otherwise, it can be rolled back with an exception returned
to the client. In either case, you may be able to reduce overall locking
overhead and improve total system throughput and performance. Note that
this “optimistic” locking strategy is inappropriate for some types of
applications and domains. When updates to the same resource occur on a
frequent basis, traditional (or “pessimistic”) locking mechanisms should be
used. It’s also worth mentioning that multiple resources should typically be
Chapter 5. Performance guidelines 59

accessed by multiple applications in the same sequence to reduce
potential “deadlock” situations.

4. Implementation “pushdown”:

Object-based solutions that must coexist with legacy systems should
complement (versus compete with) these systems. For example, a query
invoked on a virtual collection of objects whose state maps to a relational
database manager should first be translated into native SQL statements.
These SQL statements, processed using the optimization technology
provided by the database manager, can then return a result set whose
values implicitly identify candidate objects satisfying the query. In this way,
a minimal amount of processing is required in “object space”, leaving the
bulk of the work to be handled instead by resource managers that have
been perfecting high performance solutions over the course of many
years. As a final point that is specific to our query example, it’s notable that
an object-based implementation of query should also be able to return
multiple elements back from a single method call, and that the query result
set should be demand-driven (meaning that objects should only be
activated on the server if a client actually requests them).

5.3 Java and Java Virtual Machines

Java is an interpreted language. Java source code must first be compiled into
portable bytecodes that can then be interpreted in the Java Virtual Machine
(JVM) on the local system. Naturally, when looking for performance
improvements for your Java applications, the quality of the JVM is the place to
start. For example, all JVMs implement an advanced feature called Garbage
Collection (GC) to boost the programming productivity and to avoid the
common pitfalls of traditional programming languages: memory leaks.
However, GC can slow down the Java program execution because most GCs
utilize a “stop and copy” technology. Due to ongoing research, GCs have
been developed that do not exhibit any of the problems described above.
These GCs run incrementally and take many characteristics of the Java
language into account.

5.3.1 Just-In-Time compiler
A Just-In-Time (JIT) compiler coverts bytecodes into native code on-the-fly
with some optimization, and it should run much faster than just a Java Virtual
Machine (JVM). A JIT works well for computationally intensive programs that
execute the same segment of instructions repeatedly. But it does not yield
significant improvement for programs that are I/O intensive or cause a lot of
60 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

garbage collection. This is because the program code takes up such a small
amount of time and thus any optimizations would become negligible.

In addition, JITs are limited in the extent of optimizations they can do because
their compile is a runtime cost. Also, since JIT compilers normally do not have
the “global view” of the executed code, the code they generate is of poorer
quality than the code generated by static compilers.

5.3.2 Adaptive compilers
Adaptive compilers try to overcome the weaknesses of JIT compilers with
adaptive optimization techniques. The idea is to intelligently select, compile
and optimize frequently used and/or resource intensive portions of the code,
so called “spots.” Once these spots have been determined, optimization
techniques known from traditional compilers are applied to compile a highly
optimized version of the code. The compiled code is then stored in a cache,
ready to be executed when the spot is executed again. Note that as with a JIT,
results of compilation are not kept between runs/users.

5.3.3 Static compiler
A static compiler compiles Java source code into the underlying machine’s
native code that is then executed without interpretation. This approach is
similar to traditional program development where the code in written,
compiled and, if necessary, debugged.

Static compilation can also be applied to the bytecode generated by some
Java compilers. This approach is applicable when the original Java source
code is not available. Static compilation of Java bytecodes is possible
because this code is the same across Java implementations and builds the
basis for the portability of the Java language.

However, it is important to note that the portability of the Java application will
not be affected by static compilation.

5.3.4 Selecting JVMs
High-performance JVMs are critical for good performance. Here are some
considerations when evaluating JVMs:

1. Java compiler and virtual machine technology changes rapidly. Today a
JIT version of a compiler may provide the best performance for your
solution, tomorrow it may be a static compiler, and next week there may be
a new technique.
Chapter 5. Performance guidelines 61

2. A JVM should be certified for portability by a recognized certification
authority such as JavaSoft.

3. JVMs that have been optimized for a specific operating system tend to
perform better than other JVMs.

4. Systems with symmetric multiprocessors (SMP) tend to perform better
because of the thread support in Java. Use JVMs that effectively support
SMP systems.

5. Evaluate the trade-off between the stability of the current release of a JVM
and the performance enhancements available in the newest beta release
and/or production version.

Generally speaking, the selection of a JVM should be of little concern to you.
The performance of applications can often be better improved by improving
the runtime characteristics of the algorithms used. However, there are
circumstances, like computationally intensive programs, where an
improvement in the performance of the underlying JVM will add to the
solution’s overall performance.

5.4 Where to find more information

White papers:
• Maggie Archibald, Mike Schlosser: Designing e-business Solutions for

Performance white paper at:
http://www.ibm.com/software/developer/library/patterns/performance.html

• JavaSoft: The Java HotSpot Performance Engine Architecture white paper
at:

http://java.sun.com/products/hotspot/whitepaper.html

IBM Redbooks:
• WebSphere V3 Performance Tuning Guide for AIX, SG24-5657

Web sites:
Documentation for IBM WebSphere Application Server, including the product
library (which includes IBM HTTP Server documentation), hints and tips,
white papers, and other support information can be found at:

• http://www.ibm.com/software/webservers/appserv/support.html

Information on IBM WebSphere Application Server, specifically for AS/400,
including documentation, support, and performance considerations, can be
found at:

• http://www.as400.ibm.com/Websphere
62 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

http://www.ibm.com/software/developer/library/patterns/performance.html
http://www.ibm.com/software/developer/library/patterns/performance.html
http://java.sun.com/products/hotspot/whitepaper.html
http://www.ibm.com/software/webservers/appserv/support.html
http://www.as400.ibm.com/Websphere

Performance information for the Domino Go Webserver for OS/390 can be
found at:

• http://www.s390.ibm.com/oe/perform/dgwperf.html
Chapter 5. Performance guidelines 63

http://www.s390.ibm.com/oe/perform/dgwperf.html

64 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Chapter 6. Technology options

This chapter looks at the technologies that you should consider for Web
applications based upon the open standards and Java-based programming
model of the IBM Application Framework for e-business. We do not attempt to
cover the many technologies that can be used in developing Web
applications, such as Perl or server-side JavaScript. The recommended
technologies are outlined in the IBM Application Framework for e-business
Architecture Overview white paper at:
http://www.ibm.com/software/ebusiness/arch_overview.html

We will look at the technologies as they apply to both the client and the server
side of the application. Some technologies such as Java and XML can apply
to both. Also, the selection of client-side technologies used in your design will
require consideration for the server-side such as to whether to store, or
dynamically create, elements for the client-side.

The sections that follow detail a number of technologies that you will want to
consider in your design.

We recommend the following as technologies that are central to the
Application Framework and its programming model:

• HTML
• Java servlets and Java Server Pages
• XML
• Connectors
• Enterprise Java beans
• JDBC / SQLJ
• Additional enterprise Java APIs

These technologies are used in the context of the following logical model for
an e-business application, which we will explore in more detail in Chapter 7,
“Application design guidelines” on page 81 and Chapter 8, “Application
development guidelines” on page 147. This model, which has similarities to
the Model-View-Controller approach in GUI development, characterizes the
presentation logic as consisting of interaction control (implemented by Java
servlets) and page construction (implemented by Java Server Pages). The
business logic may be implemented using Java beans and/or enterprise Java
beans depending on the transactional characteristics of the application. The
business logic may need to access external resources using the appropriate
connector technology.
© Copyright IBM Corp. 2000 65

http://www.ibm.com/software/ebusiness/arch_overview.html

Figure 17. The logical structure of an e-business application using the recommended core
technologies

We also include some discussion of the following technologies and the
limitations involved in their usage:

• DHTML
• JavaScript
• Java applets

For more information, see the IBM Application Framework for e-business
Architecture Overview: Understanding Technology Choices white paper, upon
which significant portions of this chapter are based:
http://www.ibm.com/software/ebusiness/buildapps/understand.html

6.1 Web client

The Application Framework recommends the following technology model for a
Web client.

Interaction
Control

Page
Construction

Business
Logic

Data

3rdparty
applications

Legacy
systems

Javaclasses
Beans
EJBs

JSPs/ Servlets

JSPs

HTML
JavaScript

Browser
Client

JDBC/
SQLJ

C
O
N
N
E
C
T
O
R
S

66 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

http://www.ibm.com/software/ebusiness/buildapps/understand.html

Figure 18. Web client technology model

The clients are “thin clients” with little or no application logic. Applications are
managed on the server and downloaded to the requesting clients. The client
portions of the applications should be implemented in HTML, dynamic HTML
(DHTML), XML, and Java applets.

The following sections outline some of the possible technologies that you
should consider, but remember that your choices may be constrained by the
policy of your customer or sponsor. For example, for security reasons, only
HTML is allowed in the Web client at some government agencies.

6.1.1 Web browser
A Web browser is a fundamental component of the Web client. For PC-based
clients, the browser typically incorporates support for HTML, DHTML,
JavaScript and Java. Some browsers are beginning to add support for XML
as well. Under user control, there is a whole range of additional technologies
which can be configured as “plug-ins”, such as RealPlayer from
RealNetworks or Macromedia Flash.
Chapter 6. Technology options 67

As an application designer you must consider the level of technology you can
assume will be available in the user’s browser, or you can add logic to your
application to enable slight modifications based upon the browser level.
Regarding plug-ins, you need to consider what portion of your intended user
community will have that capability.

For an e-business application that is to be accessed by the broadest set of
users with varying browser capabilities, the client is often written in HTML
with no other technologies. On an exception basis, limited use of other
technologies, such as using JavaScript for simple edit checks, can then be
considered based on the value to the user and the policy of the organization
for whom the project is being developed.

The emergence of pervasive devices introduces new considerations to your
design with regard to the content streams that the device can render and the
more limited capabilities of the browser. For example, WAP (Wireless
Application Protocol) enabled devices render content sent in WML (Wireless
Markup Language).

6.1.2 HTML
HTML is a document markup language with support for hyperlinks, that is
rendered by the browser. It includes tags for simple form controls. Many
e-business applications are assembled strictly using HTML. This has the
advantage that the client-side Web application can be a simple HTML
browser, enabling a less capable client to execute an e-business application.

The HTML specification defines user interface (UI) elements for text with
various fonts and colors, lists, tables, images, and forms (text fields, buttons,
checkbooks, radio buttons). These elements are adequate to display the user
interface for most applications. The disadvantage, however, is that these
elements have a generic look and feel, and they lack customization. As a
result, some e-business application developers augment HTML with other
user interface technologies to enhance the visual experience, subject to
maintaining access by the intended user base and compliance with company
policy on Web client technologies.

Because most Web browsers can display HTML Version 3.2, this is the lowest
common denominator for building the client-side of an application.

6.1.3 Dynamic HTML
DHTML allows a high degree of flexibility in designing and displaying a user
interface. In particular, DHTML includes cascading style sheets (CSS) that
enable different fonts, margins, and line spacing for various parts of the
68 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

display to be created. These elements can be accurately positioned using
absolute coordinates.

Another advantage of DHTML is that it increases the level of functionality of
an HTML page through a document object model and event model. The
document object enables scripting languages such as JavaScript to control
parts of the HTML page. For example, text and images can be moved about
the screen, and hidden or shown, under the command of a script. Also,
scripting can be used to change the color or image of a link when the mouse
is moved over it, or to validate a text input field of a form without having to
send it to the server.

Unfortunately there are several disadvantages with using DHTML. The
greatest of these is that two different implementations (Netscape and
Microsoft) exist and are found only on the more recent browser versions. A
small, basic set of functionality is common to both, but differences appear in
most areas. The significant difference is that Microsoft allows the content of
the HTML page to be modified by using either JScript or VBScript, while
Netscape allows the content to only be manipulated (moved, hidden, shown)
using JavaScript.

Because of browser compatibility issues, DHTML is not recommended in
environments where mixed levels and brands of browsers are present.

6.1.4 XML (client-side)
XML allows you to specify your own markup language with tags specified in a
Document Type Definition (DTD). Actual content streams are then produced
which use this markup. The content streams can be transformed to other
content streams, by using XSL (eXtensible Stylesheet Language).

For PC-based browsers, HTML is well established for both document content
and formatting. The leading browsers have significant investments in
rendering engines based on HTML and a Document Object Model (DOM)
based on HTML for manipulation by JavaScript.

XML seems to be evolving to a complementary role for active content within
HTML documents for the PC browser environment.

For new devices, such as WAP-enabled phones and voice clients, the data
content and formatting is being defined by new XML schema (DTD), WML for
WAP phone and VoiceXML for voice interfaces.
Chapter 6. Technology options 69

For most Web application designs, you should focus your attention on the use
of XML on the server-side. See 6.2.4, “XML” on page 75 for additional
discussion of the server-side use of XML.

6.1.5 JavaScript
JavaScript is a cross-platform object-oriented scripting language. It has great
utility in Web applications because of the browser and document objects that
the language supports. Client-side JavaScript provides the capability to
interact with HTML forms. You can use JavaScript to validate user input on
the client and help improve the performance of your Web application by
reducing the number of requests that flow over the network to the server.

ECMA, a European standards body, has published a standard (ECMA-262)
which is based on JavaScript (from Netscape) and JScript (from Microsoft)
called ECMAScript. The ECMAScript standard defines a core set of objects
for scripting in Web browsers. JavaScript and JScript implement a superset of
ECMAScript. You can find the ECMAScript Language Specification at:
http://www.ecma.ch/stand/ECMA-262.htm.

To address various client-side requirements, Netscape and Microsoft have
extended their implementations of JavaScript in Version 1.2 by adding new
browser objects. Because Netscape's and Microsoft's extensions are different
from each other, any script which uses JavaScript 1.2 extensions must detect
the browser being used, and select the correct statements to run.

The use of JavaScript on the server side of a Web application is not
recommended, given the alternatives available with Java. Where your design
indicates the value of using JavaScript, for example for simple edit checking,
use JavaScript 1.1, which contains the core elements of the ECMAScript
standard.

JavaScript: The Definitive Guide, Third Edition, by David Flanagan, is an
excellent book on JavaScript which details the JavaScript objects and
methods listing their origin and JavaScript level.

6.1.6 Java applets
The most flexible of the user interface (UI) technologies that can be run in a
Web browser is offered by the Java applet. Java provides a rich set of UI
elements that include an equivalent for each of the HTML UI elements. In
addition, because Java is a programming language, an infinite set of UI
elements can be built and used. There are many widget libraries available
that offer common UI elements, such as tables, scrolling text, spreadsheets,
editors, graphs, charts, etc.
70 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

http://www.ecma.ch/stand/ECMA-262.htm

A Java applet is a program written in Java that is downloaded from the Web
server and run on the Web browser. The applet to be run is specified in the
HTML page using an APPLET tag:

<APPLET CODEBASE="/mydir" CODE="myapplet.class" width=400 height=100>
<PARAM NAME="myParameter" VALUE="myValue">

</APPLET>

For this example, a Java applet called myapplet will run. An effective way to
send data to an applet is with the use of the PARAM tag. The applet has
access to this parameter data and can easily use it as input to the display
logic.

Java can also request a new HTML page from the Web application server.
This provides an equivalent function to the HTML FORM submit function. The
advantage is that an applet can load a new HTML page based upon the
obvious (a button being clicked), or the unique (the editing of a cell in a
spreadsheet).

A characteristic of Java applets is that they seldom consist of just one class
file. On the contrary, a large applet may reference hundreds of class files.
Making a request for each of these class files individually can tax any server
and also tax the network capacity. However, packaging all of these class files
into one file reduces the number of requests from hundreds to just one. This
optimization is available in many Web browsers in the form of either a JAR file
or a CAB file. Netscape and HotJava support JAR files simply by adding an
ARCHIVE="myjarfile.jar" variable within the APPLET tag. Internet Explorer
uses CAB files specified as an applet parameter within the APPLET tag. In all
cases, executing an applet contained within a JAR/CAB file exhibits faster
load times than individual class files. While Netscape and Internet Explorer
use different APPLET tags to identify the packaged class files, a single HTML
page containing both tags can be created to support both browsers. Each
browser simply ignores the other's tag.

A disadvantage of using Java applets for UI generation is that the required
version of Java must be supported by the Web browser. Thus, when using
Java, the UI part of the application will dictate which browsers can be used for
the client-side application. Note that the leading browsers support variants of
the JDK 1.1 level of Java and they have different security models for signed
applets.

A second disadvantage of Java applets is that any classes such as widgets
and business logic that are not included as part of the Java support in the
browser must be loaded from the Web server as they are needed. If these
additional classes are large, the initialization of the applet may take from
Chapter 6. Technology options 71

seconds to minutes, depending upon the speed of the connection to the
internet.

Because of the above shortcomings the use of Java applets is not
recommended in environments where mixed levels and brands of browsers
are present. Small applets may be used in rare cases where HTML UI
elements are insufficient to express the semantics of the client-side Web
application user interface. If it is absolutely necessary to use an applet, care
should be taken to include UI elements that are core Java classes whenever
possible.

6.2 Web application server

The Application Framework recommends the following technology model for a
Web application server.

Figure 19. Web application server technology model

We will assume in this section that you will be using a Web application server
and server-side Java. While there have been many other models for a Web
application server, this is the one which is experiencing widespread industry
72 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

adoption. For more details on the Java APIs discussed in this section see
Java Enterprise in a Nutshell by David Flanagan, Jim Farley, William Crawford
and Kris Magnusson.

Before looking at the technologies and APIs available in the Web application
programming environment, first a word about two fundamental operational
components on this node, the HTTP server and the Java Virtual Machine
(JVM). For production applications, these essential components should be
chosen for their operational characteristics in areas such as robustness,
performance and availability.

Later, in 7.3.1, “Model-View-Controller (MVC) design pattern” on page 94 we
discuss the Model-View-Controller design structure so often used in user
interfaces. For the Web application programming model:

• The View is generally best implemented using Java Server Pages.

• The Interaction Controller, which is primarily concerned with processing
the HTTP request and invoking the correct business or UI logic, often
lends itself to implementation as a servlet.

• The Model is represented to the View and Interaction Controller via a set
of JavaBean components.

6.2.1 Java servlets
Servlets provide a replacement for CGI-based techniques in Web
programming. Servlets are small Java programs that run on the Web
application server. They interact with the servlet engine running on the Web
application server through HTTP requests and responses, which are
encapsulated as objects in the servlet.

One of the attractions of using servlets is that the API is a very accessible
one for a Java programmer to master. The most current level of the servlet
API is 2.1. To learn more about the servlet API visit:
http://www.javasoft.com/products/servlet/.

Servlets are a core technology in the Web application programming model.
They are the recommended choice for implementing the “Interaction
Controller” classes that handle HTTP requests received from the Web client.

For more details on the effective use of servlets see 7.2.1, “Java servlets” on
page 86.
Chapter 6. Technology options 73

http://www.javasoft.com/products/servlet/

6.2.2 Java Server Pages (JSPs)
JSPs were designed to simplify the process of creating pages by separating
Web presentation from Web content. In the page construction logic of a Web
application, the response sent to the client is often a combination of template
data and dynamically-generated data. In this situation, it is much easier to
work with JSPs than to do everything with servlets.

The chief advantage JSPs have over Java servlets is that they are closer to
the presentation medium. A Java Server Page is an HTML page. JSPs can
contain all the HTML tags that Web authors are familiar with. A JSP may
contain fragments of Java code which encapsulate the logic that generates
the content for the page. These code fragments may call out to beans to
access reusable components and back-end data. To learn more about JSPs
visit http://www.javasoft.com/products/jsp/.

JSPs are compiled into servlets before being executed on the Web
application server. The most current level of the JSP API is 1.0, which added
significant changes from the 0.91 level.

JSPs are the recommended choice for implementing the “View” that is sent
back to the Web client. For those cases where the code required on the page
will be a large percentage of the page, and the HTML minimal, writing a Java
servlet will make the Java code much easier to read and therefore maintain.

For more details on the effective use of JSPs see 7.2.2, “Java Server Pages
(JSPs)” on page 90.

6.2.3 JavaBeans
JavaBeans is an architecture developed by Sun Microsystems, Inc.
describing an API and a set of conventions for reusable, Java-based
components. Code written to Sun’s JavaBeans architecture is called Java
beans or just beans. One of the design criteria for the JavaBean API was
support for builder tools that can compose solutions that incorporate beans.
Beans may be visual or non-visual.

Beans are recommended for use in conjunction with servlets and JSPs in the
following ways:

• As the client interface to the “Model Layer”. An “Interaction Controller”
servlet will use this bean interface.

• As the client interface to other resources. In some cases this may be
generated for you by a tool.
74 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

http://www.javasoft.com/products/jsp/

• As a component that incorporates a number of property-value pairs for use
by other components or classes. For example, the Java Server Pages
specification includes a set of tags for accessing JavaBean properties.

For more details on the effective use of beans see 7.2.3, “JavaBeans and
Enterprise JavaBeans” on page 91.

6.2.4 XML
XML and XSL style sheets can be used on the server side to encode content
streams and parse them for different clients, thus enabling you to develop
applications for both a range of PC browsers and for the emerging pervasive
devices. The content is in XML and an XML parser is used to transform it to
output streams based on XSL style sheets.

This general capability is known as transcoding and is not limited to XML
based technology. The appropriate design decision here is how much control
over the content transforms you need in your application. You will want to
consider when it is appropriate to use this dynamic content generation and
when there are advantages to having servlets or JSPs specific to certain
device types.

XML is also used as a means to specify the content of messages between
servers, whether the two servers are within an enterprise or represent a
business-to-business connection. The critical factor here is the agreement
between parties on the message schema, which is specified as an XML DTD.
An XML parser is used to extract specific content from the message stream.
Your design will need to consider whether to use an event-based approach,
for which the SAX API is appropriate, or to navigate the tree structure of the
document using the DOM API.

For more detail on the use of XML in the server side of your Web applications,
see XML and Java: Developing Web Applications by Maruyama, Hiroshi, Kent
Tamura and Naohiko Uramoto.

6.2.5 JDBC and SQLJ
The business logic in a Web application will access information in a database
for a database centric scenario. JDBC is a Java API for
database-independent connectivity. It provides a straightforward way to map
SQL types to Java types. With JDBC you can connect to your relational
databases, and create and execute dynamic SQL statements in Java.

JDBC drivers are RDBMS specific, provided by the DBMS vendor, but
implement the standard set of interfaces defined in the JDBC API. Given
Chapter 6. Technology options 75

common schemas between two databases, an application can be switched
between one and the other by changing the JDBC driver name and URL. A
common practice is to place the JDBC driver name and URL information in a
property or configuration file.

There are four types of JDBC drivers from which you can choose, based on
the characteristics of your application:

• Type 1: JDBC-ODBC bridge drivers. This type of driver, packaged with the
JDK, requires an ODBC driver and was introduced to enable database
access for Java developers in the absence of any other type of driver.

• Type 2: Native API Partly Java drivers. This type of driver uses the client
API of the DBMS and requires the binaries for the database client
software. This type of driver offers performance advantages but introduces
native calls from the JVM.

• Type 3: Net-protocol All Java drivers. A generic network protocol is used
with this type of driver. Portability is a major advantage of this type of
driver, but it has the limitation that it requires intermediate middleware to
convert the Net-protocol to the DBMS protocol.

• Type 4: Native-protocol All Java drivers. This type of driver is portable and
uses the protocol of the DBMS. Type 3 and 4 drivers are well suited for
applets that access a database server on an intranet, as they only require
Java code to be downloaded.

An important technique used to enhance the scalability of Web applications is
connection pooling, which may be provided by the application server. When
application logic in a user session needs access to a database resource,
rather than establishing and later dropping a new database connection, the
code requests a connection from an established pool, returning it to the pool
when no longer required.

SQLJ provides a simplified syntax for JDBC that allows you to write SQL-like
statements directly in your Java source code. The SQLJ preprocessor
generates static SQL providing better performance than dynamic SQL. SQLJ
will also generate iterator Java classes. These iterators allow you to navigate
query results using a very simple “get next” protocol.

JDBC is important to your design if you are implementing a solution based on
application topology 1. As your design takes shape, based on its desired
performance and sophistication you may see the need to investigate SQLJ or
enterprise Java beans.
76 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

The most recent level of the JDBC specification is 2.0, but many JDBC drivers
you use will still implement 1.0.

6.2.6 Enterprise JavaBeans
“Enterprise JavaBeans” is Sun's trademarked term for their EJB architecture
(or “component model”). When writing to the EJB specification you are
developing “enterprise beans” (or, if you prefer, “EJB beans”).

Enterprise JavaBeans are distinguished from Java beans in that they are
designed to be installed on a server, and accessed remotely by a client. The
EJB framework provides a standard for server-side components with
transactional characteristics.

The EJB framework specifies clearly the responsibilities of the EJB developer
and the EJB container provider. The intent is that the “plumbing” required to
implement transactions or database access can be implemented by the EJB
container. The EJB developer specifies the required transactional and
security characteristics of an EJB in a deployment descriptor (this is
sometimes referred to as declarative programming). In a separate step, the
EJB is then deployed to the EJB container provided by the application server
vendor of your choice.

There are two types of Enterprise JavaBeans:

• Session
• Entity

A typical session bean has the following characteristics:

• Executes on behalf of a single client.
• Can be transactional.
• Can update data in an underlying database.
• Is relatively short lived.
• Is destroyed when the EJB server is stopped. The client has to establish a

new session bean to continue computation.
• Does not represent persistent data that should be stored in a database.
• Provides a scalable runtime environment to execute a large number of

session beans concurrently.

A typical entity bean has the following characteristics:

• Represents data in a database.
• Can be transactional.
• Shared access from multiple users.
• Can be long lived (lives as long as the data in the database).
Chapter 6. Technology options 77

• Survives restarts of the EJB server. A restart is transparent to the client.
• Provides a scalable runtime environment for a large number of

concurrently active entity objects.

Typically an entity bean is used for information that has to survive system
restarts, while in session beans, the data is transient and does not survive
when the client's browser is closed. For example, a shopping cart containing
information that may be discarded uses a session bean, and an invoice
issued after the purchase of the items is an entity bean.

An important design choice when implementing entity beans is whether to
use Bean Managed Persistence (BMP), in which case you must code the
JDBC logic, or Container Managed Persistence (CMP), where the database
access logic is handled by the EJB container.

The business logic of a Web application often accesses data in a database.
EJB entity beans are a convenient way to wrap the relational database layer
in an object layer, hiding the complexity of database access. Because a single
business task may involve accessing several tables in a database, modeling
rows in those tables with entity beans makes it easier for your application
logic to manipulate the data.

The latest EJB specification is 1.1. The most significant changes from EJB
1.0 are the use of XML-based deployment descriptors and the need for
vendors to implement entity bean support to claim EJB compliance.

To learn more about Enterprise JavaBeans visit:
http://www.javasoft.com/products/ejb/index.html

6.2.7 Connectors
e-business connectors are gateway products that enable you to access
enterprise and legacy applications and data from your Web application.
Connector products provide Java interfaces for accessing database, data
communications, messaging and distributed file system services.

IBM provides a significant set of e-business connectors with tool support, for
CICS, Encina, IMS, MQSeries, DB2, SAP and Domino. IBM is basing its tool
support on a Common Connector Framework (CCF). For resources on
System 390, IBM is delivering native connectors based on CCF.

The command bean model allows you to code to the specific connector
interface(s) of your choice while hiding the connector logic from the rest of the
Web application. Command beans are discussed in 7.6.1, “Command beans”
on page 118.
78 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

http://www.javasoft.com/products/ejb/index.html

Connectors are particularly important if you are implementing application
topology 2 in your solution.

6.2.8 Additional enterprise Java APIs
In developing a server-side application, you may also need to be familiar with
the following enterprise Java class libraries:

• Java Naming and Directory Interface (JNDI). This package provides a
common API to a directory service. Service provider implementations
include those for LDAP directories, RMI and CORBA object registries.
Sample uses of JNDI include:

- Accessing a user profile from an LDAP directory

- Locating and accessing an EJB Home

• Remote Method Invocation (RMI). RMI and RMI over IIOP are part of the
EJB specification as the access method for clients accessing EJB
services. RMI can also be used to implement limited function Java
servers.

• Java Message Service (JMS). The JMS API enables a Java programmer
to access message-oriented middleware such as MQSeries from the Java
programming model. Such messaging middleware is a popular choice for
accessing existing enterprise systems and is one of your options if you are
implementing a solution based on application topology 2.

• Java Transaction API (JTA). This Java API for working with transaction
services, is based on the XA standard. With the availability of EJB servers,
you are less likely to use this API directly.

6.3 Where to find more information

For more information on topics discussed in this chapter see:

• WebSphere Studio and VisualAge for Java Servlet and JSP Programming,
SG24-5755-00

• Flanagan, David, JavaScript: The Definitive Guide, Third Edition, O'Reilly
& Associates, Inc., 1998

• Maruyama, Hiroshi, Kent Tamura and Naohiko Uramoto, XML and Java:
Developing Web Applications, Addison-Wesley 1999

• Flanagan, David, Jim Farley, William Crawford and Kris Magnusson, Java
Enterprise in a Nutshell, O’Reilly & Associates, Inc., 1999

• For information on the IBM Application Framework for e-business:
http://www.ibm.com/software/ebusiness/
Chapter 6. Technology options 79

http://www.ibm.com/software/ebusiness/

• For information about the ECMAScript language specification:
http://www.ecma.ch/stand/ECMA-262.htm

• To learn more about Java technology:

http://www.javasoft.com/products
80 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

http://www.ibm.com/software/ebusiness/
http://www.ecma.ch/stand/ECMA-262.htm
http://www.javasoft.com/products

Chapter 7. Application design guidelines

e-business application design presents some unique challenges compared to
traditional application design and development. The majority of these
challenges are related to the fact that traditional applications were primarily
used by a defined set of internal users, whereas e-business applications are
used by a broad set of internal and external users such as employees,
customers, and partners. Web applications must be developed to meet the
varied needs of these end users. The following list provides key issues to
consider when designing e-business applications:

• The user experience, look and feel of the site need to be constantly
enhanced to leverage emerging technologies, attract and retain site users.

• New features have to be constantly added to the site to meet customer
demands.

• Such changes and enhancements will have to be delivered at record
speed to avoid losing customers to the competition.

• e-business applications in essence represent the corporate brand online.
Developers have to work closely with the marketing department to ensure
the digital brand effectively represents the company image. Such
intra-group interactions usually present content management challenges.

• It is hard to predict the runtime load of e-business applications. Based on
the marketing of the site, the load can increase dramatically over time. If
the load increases, the design must allow such applications to be deployed
in various high volume configurations. Runtime configurations are
discussed in Chapter 3 “Choosing the runtime topology” on page 19 and
Chapter 4 “Product mapping” on page 43. It is important to be able to
move Web applications between these runtime configurations without
making significant changes to the code.

• Security requirements are significantly higher for e-business applications
compared to traditional applications. In order to execute traditional
applications from the Web a special set of security-related software may
be needed to access private networks.

• The emergence of the Personal Digital Assistant (PDA) market and
broad-band Internet market will require the same information to be
presented in various user interface formats. PDAs will require a
light-weight presentation style to accommodate the low network band
width. Broad-band users on the other hand will demand a highly
interactive rich graphical user interface.
© Copyright IBM Corp. 2000 81

In order to meet these challenges it is critical to design Web applications to
be flexible. This chapter helps you understand some of these design
challenges and presents various design pattern solutions that promote
loosely coupled design to provide a maximum degree of flexibility in a Web
application.

Problem domain: In addition to presenting design pattern solutions, we
demonstrate how these techniques can be applied by a sample. In this
sample we use a simple problem domain where the Web application is
responsible for displaying the average weather information of different planets
in the solar system on a specified date. This problem domain is a simplified
version of the problem domain implemented by the Pattern Development Kit
(PDK). Further details on the PDK can be found at:

http://www.ibm.com/developer/patterns

For each of these examples we present and explain class diagrams, object
interaction diagrams and code snippets. Class diagrams and object
interaction diagrams use the standard UML notation and were created using
the Rational Rose modeling tool. Chapter 8 “Application development
guidelines” on page 147 explains how such UML work products can be
developed and used throughout the application design and development
process.

7.1 Application elements

The design guidelines outlined here primarily focus on User-to-Business Web
applications. Before exploring these guidelines it is important to understand
the overall structure of these types of Web applications. Chapter 3 “Choosing
the runtime topology” on page 19 presents the overall topology of such
e-business applications and explains the responsibilities of various nodes in
the topology. Chapter 6 “Technology options” on page 65 presents various
technology options available for implementing a User-to-Business Web
application and recommends the use of server-centric Java-based
technologies such as servlets, JSPs, JavaBeans, and EJBs for such
implementations. Figure 20 identifies the key elements of such Web
applications and explains the responsibilities of these elements.
82 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 20. Key elements of User-to-Business Web applications

Clients are responsible for accepting and validating the user input,
communicating the user inputs to the Web application server, and presenting
the results received from the Web application server to the user. Clients may
use HTTP, IIOP, TCP/IP, or other Internet standard protocols to communicate
with the Web application server. These clients can be broadly classified into
the following categories:

• HTML clients use HTTP protocol to communicate with the Web application
server. These clients display HTML and DHTML Web pages. In addition,
they are capable of processing client-side JavaScript for enhancing
navigation to perform simple input validation and to handle simple errors.
Furthermore, the majority of HTML clients can display small Java applets
to enhance the GUI.

• Application clients are primarily large Java applets or Java applications.
These clients provide rich graphical user interfaces compared to HTML
clients. They may communicate with the Web application server over a
number of protocols including HTTP, IIOP, MQ, etc. Application clients
communicate with the Web application server primarily to receive data
rather than pre-formatted HTML pages. These clients use the data
received to format and render the user interface. All of the user interface

HTTP,
IIOP

HTTP

Key Elements of User to Business Web Applications

Web Server / HTTP Server

Serve Static HTML Pages
Pass all Dynamic Page Requests to the Plug In

Application Server Plug In
Communication between Web Server and the Application Server

External Services
Clients

Web Application Server

Enterprise
Applications

Enterprise
Data Sources

External
Applications
e.g. Business Partner

Business Logic
Processing

ConnectorsPage
Construction

Session Management,
Security,

Systems Management

Application Server

HTML
Client

Application
Client
Chapter 7. Application design guidelines 83

processing is performed on the client side. In addition, under this model,
some parts of the business logic can also be processed on the client side.

WebSphere Application Server supports both of these client models.
However, HTML clients provide the following benefits compared to application
clients:

• The majority of the presentation logic and all of the business logic will
reside on the server. Hence it is easy to make the necessary changes to
support a broad range of client devices including Personal Digital
Assistants (PDAs), WebTV, etc.

• The client part of the application is lightweight and downloads quickly.

• It is easier to secure, scale and maintain presentation and business logic
that reside on the server.

• Client applications that use Java applets and Java applications require a
particular version of Java to be supported by all clients, thus limiting the
universal accessibility of the applications.

• Client applications that use Java applets and Java applications are
downloaded to a user’s local machine and can be de-compiled to view the
business logic. This poses security concerns. Hence critical business logic
should not be directly coded in these downloadable applications.

For these reasons, the majority of Web applications being designed today are
zero maintenance HTML clients. The guidelines outlined in this chapter
primarily focus on designing and developing HTML client Web applications.
Further details on these client models can be found at:
http://www.ibm.com/developer/features/framework/framework.html

Web application servers are the focal point of the Web application topology.
Their responsibilities include: receiving requests from the clients, selecting
and executing the appropriate business logic based on these requests,
coordinating with External Services to retrieve data and execute external
applications, and finally formulating the response and dispatching it back to
the client. To meet these requirements, Web application servers provide a
range of dynamic page construction, business logic processing, data access,
external application integration, session management, load balancing, and
fail-over services. At a high level, one can identify the following
sub-components in the majority of Web application servers including
WebSphere Application Server:

• Web Server/HTTP Server - are responsible for receiving and responding
to HTTP requests. They are capable of serving static HTML pages without
help from other sub-components of the Web application server. However,
84 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

http://www.ibm.com/developers/features/framework/framework.html

they pass all dynamic page requests to the application server plug-in. In
the case of WebSphere Application Server, the HTTP server is usually
configured to pass all requests for servlet and JSP execution to the
WebSphere plug-In.

• Application server plug-in provides the connection between the HTTP
server and the page construction services of the Web application server.

• Page Construction services - WebSphere Application Server supports
Java-based technologies such as Java servlets and Java Server Pages
(JSPs) for dynamic page construction.

• Business logic services provide a robust environment for processing
business logic independent of the user interface client types. WebSphere
Application Server supports components based on technologies such as
JavaBeans and Enterprise JavaBeans (EJBs) for programming business
logic.

• Connectors are components that support the communication between the
application server and the external services such as databases, legacy
applications and business partner applications. WebSphere Application
Server Advanced Edition provides a number of connectors including JDBC
drivers, JNDI class libraries, CICS connectors, MQ connectors, and IMS
connectors.

Further details of these connectors, class libraries, and related tools can
be found at:

http://www.ibm.com/developer/features/framework/framework.html.

The PDK provides some examples of using these connectors.

• Session management services are necessary because inherently HTTP is
a stateless protocol. In order to address the issues of a stateless protocol,
a number of HTTP session management techniques have been
developed. WebSphere Application Server supports a number of these
techniques and provides a simple HttpSession API to handle the session
information. This API is based on the standard Java Servlet API.

• Security services include authentication, authorization, data integrity,
privacy (encryption) and non-repudiation services. WebSphere Application
Server provides these services by supporting industry standard protocols
such as SSL, LDAP, etc.

• System management services provide a robust runtime environment for
the application hosted in the Web application server. These services allow
load balancing, fail-over support, remote monitoring, etc. WebSphere
Application Server supports these features and further details can be
Chapter 7. Application design guidelines 85

found in Chapter 9 “System management products and guidelines” on
page 197.

• External Services include enterprise data sources, existing or new
enterprise applications (for example ERPs, financial systems, etc.), and
business partner systems.

7.2 Understanding supporting technologies

Before presenting some of the design pattern solutions, it is important to
establish a common understanding of the key technologies involved. Chapter
6 “Technology options” on page 65 discusses various technology options
available for Web application development and recommends the use of
HTML, JavaScripts, Java servlets, JSPs, JavaBeans, and EJBs for
implementing user-to-business applications. This section introduces you to
server-side Java technologies, namely servlets, JSPs, JavaBeans, and EJBs.
However in order to understand the design guidelines you are expected to be
familiar with HTML and client-side JavaScripts. This is because dynamically
generated Web pages contain client side JavaScripts that perform page
navigation and simple edits. A good introduction to HTML can be found at
http://www.w3.org/MarkUp/ and to JavaScripts found at
http://www.ecma.ch/stand/ECMA-262.htm.

7.2.1 Java servlets
Servlets are protocol and platform independent server-side Java
components. They implement a simple request and response framework for
communication between the client and the server. The Java servlet API is a
set of Java classes that define a standard interface between Web clients and
the Web application server. The API is composed of the following two
packages:

• javax.servlet

• javax.servlet.http

The javax.servlet package implements the generic protocol-independent
servlets. The javax.servlet.http package extends this generic functionality to
include specific support for the HTTP protocol. In this section we explore the
key classes and methods of the javax.servlet.http package. The subsequent
sections introduce other classes and methods of this package if such
services are exploited by the topic under consideration.

HttpServlet is an abstract class that provides methods for handling various
HTTP requests. Typically, all servlets that respond to HTTP traffic would
86 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

extend this class and override some of the methods such as doGet() to
handle GET requests and doPost() to handle POST requests. WebSphere
Application Server provides ways to register these servlets with the Web
server. Upon receiving an HTTP request the Web server determines if it
needs to be handled by a servlet and if so, it passes such requests to
WebSphere. WebSphere in turn calls the service() method which then calls
the HTTP-specific method based on the type of HTTP request. The following
are some of the key methods provided by the HttpServlet class:

• init() - The purpose of this method is to perform necessary servlet
initialization. It is guaranteed to be the first method to be called on any
servlet instance. The servlet implementer may choose to override this
method to perform custom servlet initialization.

• service(HttpServletRequest req, HttpServletResponse resp) - The Web
application server invokes the servlet.service() method upon receiving an
HTTP request targeted towards that servlet. This method in turn invokes
the appropriate HTTP-specific method based on the type of request.
HttpServletRequest is an input parameter and contains the HTTP
protocol- specified header information. HttpServletResponse is an output
parameter and contains an HTTP protocol-specific header and returns
data to the client. Further details on these classes can be found below.

• doGet(HttpServletRequest req, HttpServletResponse resp) - The service()
method invokes the doGet() method if the HTTP request type is GET. The
servlet implementer overrides the doGet() method if the servlet is intended
to handle GET requests. HTTP GET requests are expected to be safe and
read-only. They are suitable for queries.

• doPost(HttpServletRequest req, HttpServletResponse resp) - The
service() method invokes the doPost() method if the HTTP request type is
POST. The servlet implementer would override the doPOST() method if
the servlet is intended to handle POST requests. HTTP POST requests
are not expected to be either safe or read-only. They are suitable for
requests that result in updates to stored data.

• destroy() - This method is called just before unloading a servlet. It is
overridden only if there is a need to perform some cleanup operations
such as closing connections or files before unloading a servlet.

• getServletContext() - This method returns a ServletContext object that
contains information about the environment in which the servlet is
executing. This method is particularly useful in dispatching control from a
servlet to a JSP. Developers are never expected to override this method.

HttpServletRequest represents a communication channel from the client
and is passed as an input parameter into the HttpServlet.service() method,
Chapter 7. Application design guidelines 87

which in turn passes it to the appropriate HTTP-specific methods such as
doGet() and doPost(). The servlet can invoke this object’s methods to get
information about the client environment, the server environment, and any
HTTP protocol-specified header information that is received from the client.
The following are some of the key methods provided by this interface:

• getParameter(java.lang.String name) - returns a string containing the
value of the specified parameter.

• getParameterValues(java.lang.String name), on the other hand, returns
the parameter value as an array of strings. These methods can be used to
retrieve the HTML FORM information set by GET and POST methods.

• getSession(boolean create) - returns the current valid HttpSession
associated with this request. If create is true and a current valid
HttpSession does not exist then a new session is created.

• setAttribute(java.lang.String key, java.lang.Object o) - is used to store an
attribute in the request context. Attributes are stored as name-value pairs
in a hash table and can be retrieved by the getAttribute() method. This
method may be used to pass data between various servlets and JSPs. It is
important to note that the attributes are reset between requests.

HttpServletResponse represents a communication channel back to the
client and is passed as an output parameter into the HttpServlet.service()
method. It provides a number of set methods that allow servlets to manipulate
HTTP protocol-specified header information and to set the response data to
be returned to the client. The following are some of the key methods provided
by this interface:

• getWriter() - returns a print writer object. The print writer object is an
output stream to which servlets write dynamically generated text such as
HTML and XML. Upon completion all the text that is written to the print
writer will be sent to the client, for example sent to the browser to be
displayed.

• setContentType(java.lang.string type) - sets the MIME content type to be
sent back to the client, for example “text/html”. The content type must be
set before obtaining the print writer or writing to the output stream.

• sendRedirect(java.lang.string type) - sends a temporary redirect response
to the client using the specified redirect location URL. The URL must be
absolute (for example, https://hostname/path/file.html). Relative URLs
are not permitted here.

HttpSession represents an association between an HTTP client and an
HTTP server. By design, HTTP is a stateless protocol. Over the years, a
number of approaches have been developed to maintain application sessions
88 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

between HTTP requests. HttpSessions are used to maintain application state
and user identity across several page requests from the same user. The
following are some of the key methods provided by this interface:

• putValue(java.lang.String name, java.lang.Object value) - can be used to
store application-specific state data as a name-value pair. The application
server is responsible for storing this information in a hash table and allows
servlets to access this data across HTTP requests.

• getValue(java.lang.String name) - is used to retrieve the
application-specific value from the hash table by referencing the
name-value pair by its name.

• removeValue(java.lang.String name) - is used to remove the name-value
pair from the hash table. In order to manage scarce server resources, it is
important to remove state information that is no longer required.

ServletContext object contains information about the environment in which
the servlet is executing. A servlet can obtain its context by calling the
getServletContext() method. The following is the key method provided by this
interface:

• getRequestDispatcher(java.lang.String urlpath) - takes the URL path of
resources such as other servlets and JSPs as input and returns a
RequestDispatcher object that implements a wrapper around a server
resource. RequestDispatcher is responsible for locating such resources
and also forwarding any requests made by the servlet to the appropriate
resource. As shown below we use them to forward requests from the
servlets to JSPs.

RequestDispatcher rd;
rd = getServletContext().getRequestDispatcher("Sample.JSP");
rd.forward(req, res);

In this example, the servlet retrieves the ServletContext. Using this
context, it obtains the RequestDispatcher to a JSP. Finally it forwards the
request to the JSP by calling the forward() method on the
RequestDispatcher. This invokes the service() method on the target JSP.

WebSphere Application Server V3 supports the Java servlets API 2.1.
Further details of this API can be found at:

http://java.sun.com/products/servlet/2.1.

WebSphere Studio and VisualAge for Java Servlet and JSP Programming,
SG24-5755-00 provides further details and examples of servlet programming.
Chapter 7. Application design guidelines 89

7.2.2 Java Server Pages (JSPs)
JSPs provide a simple yet powerful mechanism for inserting dynamic content
into Web pages. The JSP specification achieves this by defining a number of
HTML-like tags that allow developers to insert server-side Java logic directly
into HTML or XML pages that are sent to HTTP clients.

It is important to note that JSP technology is an extension of the Java Servlet
API. In fact, application servers compile JSPs into HttpServlets before
executing them. Essentially, the JSPs represent the service() method of the
automatically generated HttpServlet. Hence JSPs automatically get access to
certain implicit objects without having to declare them. The following table
lists some of the key implicit objects:

Table 2. JSP implicit objects

For the purposes of this chapter we focus on the following JSP Specification
1.0 tags:

• JSP scriptlet

Syntax: <% code %> .

Scriptlets can be used to insert any code fragment in the specified
scripting language into a JSP. By default, the scripting language is
assumed to be Java.

• JSP expression

Syntax: <%= expression %>.

The expression here stands for any valid operation that can be executed at
runtime. The output from such an operation is converted to into a string
and is emitted into the output stream out.

Object
Name

Object Type Description

request javax.servlet.HttpServletRequest Represents the HTTP request
received from the client.

response javax.servlet.HttpServletResponse Represents the HTTP response to
be sent to the client.

session avax.servlet.HttpSession Represents the session object
created for the requesting client (if
any).

out javax.servlet.jsp.JspWriter Represents the output stream to be
sent to the client as part of the
response.
90 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

• jsp:useBean

Syntax: <jsp: useBean id="beanInstanceName"

scope="page|request|session|application" typespec/>

The server uses id and scope to look for the bean. If it exists it is accessed.
If not, it is created. The typespec is used to specify the bean type.

The jsp:useBean tag is used to declare a JavaBean you would like to use
within a JSP.

• jsp:getProperty

Syntax: <jsp:getProperty name=”beanName” property=”propertyName”/>

The <jsp:getProperty> converts the value of the specified property into a
string and inserts this string into the implicit out object. getProperty on a
bean is usually called after declaring the bean instance using the
jsp:useBean tag.

• jsp:setProperty

Syntax: <jsp:setProperty name=”beanName” property=”propertyName”

value=”propertyValue”/>

<jsp:setProperty> is used to set the bean property value.

WebSphere Application Server V3 supports JSP Specification 1.0 and JSP
Draft Specification 0.91. You have to choose a particular specification level for
a JSP page. We recommend using JSP Specification 1.0. Further details on
these specifications can be found at http://www.java.sun.com/products/jsp/.
In addition, WebSphere supports WebSphere specific tags that allow you to
connect to databases and perform repeats, etc. Details on the WebSphere
extension to the JSP specification can be found in the WebSphere Library at:

http://www.ibm.com/software/webservers/appserv/library.html

7.2.3 JavaBeans and Enterprise JavaBeans
The JavaBeans architecture defines reusable software components that can
be manipulated visually by builder tools. Code written to this architecture,
called Java beans, or beans, are specialized Java classes that support the
following features: properties, methods, events, introspection, and
persistence. Basically, properties are attributes that have set and get
methods. Methods are simple Java methods that can be called from other
components. Events define a framework for one component to notify the other
when something noteworthy happens. The JavaBean specification defines a
set of conventions for defining properties, methods, and events. Using this
convention, builder tools can analyze the bean to allow for visual
Chapter 7. Application design guidelines 91

http://www.java.sun.com/products/jsp/
http://www.ibm.com/software/webservers/appserv/library.html

manipulation. In addition, beans should implement the persistence
mechanism allowing the customized JavaBean state to be stored and
retrieved when necessary. Beans can be either visual or non-visual; however
they should all allow manipulation by visual builder tools. This is usually done
by using Java introspection techniques. Further details on the JavaBean
Specification can be found at:

http://java.sun.com/beans/index.htm

The Enterprise JavaBeans (EJBs) architecture extends the reusable software
component model of JavaBeans to multi-tier, distributed, transactional
computing environments. For the sake of simplicity the design examples
outlined in this chapter primarily use simple beans. However, these guidelines
can be easily extended to Web applications that use EJBs instead of simple
Java beans. WebSphere Application Server V3 provides full support for the
Enterprise JavaBeans™ (EJB) 1.0 specification. Further details on the EJB
Specification can be found at:

http://java.sun.com/products/ejb/index.html

The previous two sections have established a common set of terminology and
a common understanding of the key technologies involved in a
User-to-Business Web application. Based on this understanding, the
subsequent sections of this chapter will:

• Introduce a design challenge.

• Discuss the recommended design pattern solution.

• Explain the motivation for using the recommended design pattern solution.

• Document the implications of the chosen approach on the runtime
topology.

• Provide an example that applies the recommended design technique
using class diagrams, interaction diagrams, and sample code.

• Document the advantages and disadvantages of the proposed solution.

7.3 Application structure

A User-to-Business Web application can be viewed as a set of interactions
between the browser and the Web application server. The interaction begins
with an initial request by the browser for the welcome page of the application.
This is usually done by the user typing in the welcome page URL on the
browser. All subsequent interactions are initiated by the user either by clicking
on a button or a link. This causes a request to be sent to the Web application
92 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

http://java.sun.com/beans/index.html
http://java.sun.com/products/ejb/index.html

server. The Web application server processes the request and dynamically
generates a result page and sends it back to the client along with a set of
buttons and links for the next request.

A closer examination of these interactions reveals a common set of
processing requirements that need to be considered on the server side.
These interactions can be easily mapped to the classical
Model-View-Controller design pattern as shown below. As outlined in the
book Design Patterns: Elements of Reusable Object-Oriented Software the
relationship between the MVC triad classes are composed of Observer,
Composite, and Strategy design patterns. For further details on these
detailed design patterns please refer to the above mentioned design patterns
book.

Figure 21. The Structure of user-to-business Web applications

Model represents the application object that implements the application data
and business logic. The View is responsible for formatting the application
results and dynamic page construction. The Controller is responsible for
receiving the client request, invoking the appropriate business logic, and
based on the results, selecting the appropriate view to be presented to the
user. A number of different types of skills and tools are required to implement
various parts of a Web application. For example the skills and tools required
to design an HTML page are vastly different from the skills and tools required
to design and develop the business logic part of the application. In order to

Web Application Server

Interaction
Controller

Controller
Business Logic

Model

Page
Construction

View

Browser Client

HTML
JavaScript
Chapter 7. Application design guidelines 93

effectively leverage these scarce resources and to promote reuse we
recommend structuring Web applications to follow the Model-View-Controller
design pattern.

7.3.1 Model-View-Controller (MVC) design pattern
Over the years, a number of GUI-based client/server applications have been
designed using the MVC design pattern. This powerful and well-tested design
pattern can be extended to support the user-to-business Web applications as
shown by Figure 21 on page 93. Throughout this chapter, Model is often
referred to as Business Logic, View is referred to as Page Constructor or
Display Page, Controller is referred to as Interaction Controller. This section
further outlines the responsibilities of each of these components and
discusses what technologies could be used to implement the same.

Interaction Controller (Controller) - The easiest way to think about the
responsibility of the interaction controller is that it is the piece of code that ties
protocol independent business logic to a Web application. This means that
the interaction controller's primary responsibility is mapping HTTP protocol-
specific input into the input required by the protocol-independent business
logic (that might be used by several different types of applications), scripting
the elements of business logic together and then delegating to a page
construction component that will create the response page to be returned to
the client. Here's a list of typical functions performed by the interaction
controller:

• Validate the request and session parameters used by the interaction.

• Verify that the client has the necessary privileges to access the requested
business task.

• Transaction demarcation.

• Invoke business logic components to perform the required tasks. This
includes mapping the request and session parameters to the business
logic component's input properties, using the output of the components to
control logic flow and correctly chain the business logic.

• Call the appropriate page construction component based on the output of
one or more of the business logic commands.

Interaction controllers can be implemented using either Java servlets or
JSPs. It is important to note that interaction controller code is primarily Java
code and Java code is easy to develop and maintain using Java Integrated
Development Environments (IDE) such as VisualAge for Java. Since servlets
are also Java classes it is possible to leverage such IDEs to write, compile,
and maintain servlets. JSPs on the other hand provide a simple script-like
94 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

environment. Even though JSPs were primarily developed for dynamic page
construction, they can be used to code interaction controller logic. Due to
their simplicity, JSPs have a broad appeal to script programmers. However
tools available today for JSPs are primarily targeted toward dynamic page
construction.

Finally, it is up to the project team to decide whether to use JSPs, servlets or
both for coding interaction controller logic. What is much more important is to
recognize the need for the separation between interaction controller logic and
page construction logic. Such a separation is necessary under the following
conditions:

• One display page needs to be reusable because it can be called by
multiple interaction controllers. For example an error page may be called
by more than one interaction controller. Under such a scenario if we were
to combine the error page construction logic and the interaction controller
logic then the error page logic would need to be duplicated in several
places throughout the application.

Figure 22. One display page component being called by multiple interaction controllers

• The interaction controller is required to do page selection. There are
several reasons for this, such as the need to include different display
pages depending on runtime results, national language support, different
client browser types, different customer types, etc. For example, the figure
below shows an interaction controller calling either the admin or normal
page constructor, based on the used type.

Interaction
Controller 1

Page Construction

e.g. Error Page

Interaction
Controller 2
Chapter 7. Application design guidelines 95

Figure 23. One interaction controller calling multiple page constructors

• If there is a need to use different tools and skills for coding interaction
controllers and display pages then it is good to separate the two to simplify
the development process. Failing to do so could result in multiple people
having to write different parts of the same file thus complicating the
version control and code management process.

Another common design issue to consider is the relationship between
interactions and interaction controllers. The following is an overview of the
options:

• One interaction to one interaction controller: For every unique interaction,
there is a unique interaction controller. For example, login is handled by
loginServlet, logoff is handled by logffServlet.

• One interaction group to one interaction controller: A group of related Web
interactions are all handled by the same interaction controller. The
interaction controller for the group is passed a parameter to differentiate
which interaction within the group is being performed. For example, login
and logoff both could be handled by authenticateServlet which can get a
parameter called action type that could be either set to login or logoff.

• All interactions to one interaction controller: This approach extends the
interaction group to all interactions and builds a monolithic interaction
controller.

If User=Admin

Interaction Controller

Page Construction 1

e.g. Admin Page

Page Construction 2

e.g. Normal User Page

Else

Hence it is recommended that servlets should be used in most cases to
implement interaction controllers. However, for simple applications where
there is no conditional or transactional logic involved, it is possible to
combine the interaction controller and page construction logic into one
component. Under such conditions, a JSP would be the best choice.

Note
96 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

We recommend the first option in most cases. Occasionally it might be
appropriate to choose the second option and implement one interaction
controller that supports a group of related interactions.

Page Constructor (View) - The page constructor is responsible for
generating the HTML page that will be returned to the client; it is the view
component of the application. Like interaction controllers, WebSphere allows
display pages to be implemented as either Java servlets or Java Server
Pages. JSPs allow template pages to be developed directly in HTML, with
scripting logic inserted for dynamic elements of the page. Hence, JSP is the
best choice for implementing page construction components. In addition,
there are number of visual tools such as WebSphere Page Designer that can
be used to develop dynamic display pages using JSP technology.

In many cases, the interaction controller will pass the dynamic data as
JavaBeans to the display page for formatting. In other cases, the display page
will invoke business logic directly to obtain dynamic data. It makes sense to
have the interaction controller pass the data when it has already obtained it
and when the data is an essential component of the contract between the
interaction controller and the display page. In other cases, the data needed
for display is not an essential part of the interaction and can be obtained
independently by inserting calls to business logic directly in the display page.
However such direct access to business logic from the page construction
component increases the complexity of the display page, since the page
designer must know the details of the business logic methods. For this
reason, care must be taken to minimize such direct access to business logic
from the display pages.

Once the page constructor has obtained the dynamic data, either from the
interaction controller or via its own logic, it will typically format the data. This
can be done in two ways. The simplest mechanism is to format the data using
simple scripting inside the page constructor. An alternative is to develop
reusable formatting components called Formatter beans that will take a data
set and return formatted HTML. 7.5, “Application output formatting” on page
115 further elaborates this concept.

Business Logic (Model) - The business logic part of a Web application is the
piece of code ultimately responsible for satisfying client requests. As a result,
business logic must address a wide range of potential requirements which
include ensuring transactional integrity of application components,
maintaining and quickly accessing application data, supporting the
coordination of business workflow processes, and integrating new application
components with existing applications. To address these requirements,
WebSphere supports business logic written in and using the full facilities of
Chapter 7. Application design guidelines 97

the Java runtime including support for Java servlets, Java beans, EJBs,
JDBC, CORBA, LDAP, MQ, and connectors to CICS, IMS and other
enterprise services.

While a discussion on how business logic should be developed is beyond the
scope of this chapter, it is valuable to consider the interface between the Web
parts of the interaction (interaction controllers and the display pages) and the
business logic. We recommend that the business logic be wrapped with
JavaBeans or EJBs. Such a separation of business logic from the
Web-specific interaction controller and display page logic isolates the
business logic from the details of Web programming, increasing the
reusability of the business logic in both Web and non-Web applications.
Further details on how such a wrapping can be done can be found in 7.6,
“Application business logic granularity” on page 117.

7.3.2 MVC design pattern example
Let us assume that we are interested in designing a simple Web application
that accepts a date from the user and displays the average temperature of the
planet Mars on that day. Figure 24 on page 99 identifies the key classes
necessary to implement the application using the MVC design pattern. They
are:

• RetrievePlanetTemperatureServlet: represents the interaction controller.
This class extends the HttpServlet and implements the doGet() method.

• PlanetBean: represents the business logic. It is a simple Java bean that
has a property called temperature and implements the
getTemperature(date) method. This method takes a date as a parameter
and returns the average temperature of the planet on the specified date. In
a real implementation the getTemperature(date) method may have to read
the temperature data from a database or obtain it from some other
application. In order to hide the complexity we don’t implement these
details in this example.

• PlanetTemperatureJSP: represents the display page. It is a JSP that
constructs the response page to display the temperature of the planet on
the specified date.

• HttpServletRequest: represents the request received from the browser
with the HTTP-specified data. It is passed into the doGet() method of the
servlet as an input parameter.
98 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 24. Class diagram - Model-View-Controller design pattern example

Let us assume that the interaction begins by the user requesting a static
HTML page that allows the user to enter the date for which he or she would
like to get the average temperature of Mars. The following HTML code shows
a typical HTML form that accomplishes this activity:

<FORM METHOD="GET" ACTION="RetrievePlanetTempratureServlet">
Date: <INPUT NAME="Date" TYPE="TEXT" SIZE=12>

<INPUT TYPE="SUBMIT">
</FORM>

When the user clicks on the submit button this form sends an HTTP GET
request to the Web server. The Web server recognizes that the call is
targeted towards a servlet and hands the request over to the WebSphere
Application Server. WebSphere in turn calls the doGet() method on the
Chapter 7. Application design guidelines 99

RetrievePlanetTemperatureServlet. The following object interaction diagram
shows the subsequent key interactions between the various components.

Figure 25. Object interaction diagram - Model-View-Controller example

• The servlet implements the doGet() method that represents the Interaction
Controller logic. It retrieves the user entered value (a date) by calling
getParameter(“date”) method on the request.

• Subsequently, the servlet instantiates the marsBean of type PlanetBean
and calls the getTemperature() method on the marsBean, where
marsBean represents the business logic.

• The servlet stores the temperature retrieved from the marsBean in the
request object.

• Finally, the servlet calls the forward() method to pass control to
planetTemperatureJsp, which represents the display page.

• This JSP inserts the dynamically retrieved Mars temperature for the
specified date by using the following JSP expression:

<%=request.getAttribute(“result”) %>.
100 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

The following code segments show how the MVC interaction outlined above
can be implemented.

Figure 26. RetrievePlanetTemperatureServlet - controller source code

Figure 27. temperature.jsp - view source code

package itso.solarsystem.weatherinformation;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.Date;

public class RetrievePlanetTemperatureServlet extends HttpServlet {
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws javax.servlet.ServletException, java.io.IOException {

String dateString = request.getParameter("date");
Date date = new Date(Date.parse(dateString));

PlanetBean planetBean = new PlanetBean("Mars");
Float temperature = planetBean.getTemperature(date);

request.setAttribute("result", temperature);

RequestDispatcher rd;
rd =getServletContext().getRequestDispatcher("temperature.jsp");
rd.forward(request, response);

}
}

<HTML>
<HEAD><TITLE>Solar System Web application</TITLE></HEAD>
<BODY BGCOLOR="#FFFFFF"><H1>Solar System</H1>

Planet: Mars

Date: <%= request.getParameter("date") %>

Temperature: <%= request.getAttribute("result") %>

</BODY>
</HTML>
Chapter 7. Application design guidelines 101

Figure 28. PlanetBean - model source code

This simple MVC example can be extended to implement more complex Web
applications. For example, based on the results received from the business
logic, a servlet may choose to call a different view page, etc.

7.3.3 Advantages and disadvantages of the MVC design pattern
To summarize, the MVC design pattern recognizes various types of program
logic involved in implementing a typical Web application and advocates the
separation of business logic, page construction logic, and interaction
controller logic. We recommend using Java servlets for implementing
interaction controllers, JSPs for implementing dynamic display pages, and
simple Java beans and/or EJBs for implementing business logic. Such a
separation provides the following advantages compared to a monolithic
implementation:

• Leverage different skill sets:

package itso.solarsystem.weatherinformation;
import java.util.Date;

public class PlanetBean {
private Float temperature = new Float(0.0);
private String name;
private Float humidity = new Float(0.0);
private Float pressure = new Float(0.0);

public PlanetBean(String newPlanetName) {
super();
name = newPlanetName;

}

public Float getHumidity(java.util.Date date) { return humidity;}
public String getName() { return name; }
public Float getPressure(java.util.Date date) { return pressure; }
public Float getTemperature(java.util.Date date) { return temperature;}

public WeatherResultBean getWeather(java.util.Date date) {
return new WeatherResultBean(temperature, pressure, humidity);

}
}

102 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

As discussed earlier, the skill sets required to design an HTML page are
vastly different from the skill sets required to code the business logic in
Java. The separation of concerns outlined here allows for the effective use
of skilled resources.

• Increase reusability:

In a non-trivial application there are usually display pages that can be
called from multiple interaction controllers. For example, an error page
may be called as a result of many interactions. Similarly, based on some
conditions there might be a need to perform page selection. For example,
one might have to display different pages for admin users vs. normal
users. Finally, the business logic could be used by several interactions or
applications. For example, you may have to display the current weather
information on multiple pages of a Web application. Under these
conditions a clear separation of concerns would increase the potential for
reuse.

• Can support multiple user interfaces:

e-business applications often support multiple user interfaces such as
HTML clients for the Internet, application clients for the call center,
wireless handheld PDAs, and voice response units. Separating the
presentation logic from the business logic allows reuse of the business
logic component among these user interface environments. In addition to
providing higher reusability, such a separation also ensures the
consistency of the business logic across these applications.

• Improved maintainability of the site:

Under this scenario it is easy to make changes to the user interface
without affecting the business logic and vice versa. For example, the user
interface can be changed to leverage a new HTML standard such as CSS
without affecting the business logic components making it easy to respond
to the demands of the business in record speed.

• Reduced complexity:

Any non-trivial application implemented without clear separation of
concerns could result in large and complex code. For such applications
the MVC separation reduces the complexity.

On the other hand, it is important to recognize the following disadvantages of
the MVC design pattern:

• Could be an overkill for small applications:

MVC design pattern can introduce extra artifacts that may not be
necessary for very simple cases and in fact increase the complexity of the
Chapter 7. Application design guidelines 103

application. However, if the application is likely to evolve over time, then it
still may be beneficial to “pay now versus pay later” to gain the flexibility
provided by the MVC design pattern.

• High level of communication requirements between various groups:

Since various groups would be typically responsible for implementing the
various parts of the application, there is a need for a defined
communication plan. For example, interaction control developers need to
know display page names and vice versa. They have to agree upon a
naming convention for various parameters and attributes and interaction
control developers need to know the business logic, etc.

7.4 Application component contracts

The previous section outlined issues related to the structure of Web
interactions. Now we turn our focus towards issues related to passing the
data between the various model-view-controller components. In essence,
these are the guidelines for defining the contract between the interaction
controller, business logic, and display pages.

In the previous MVC example, the application always returned the average
temperature of planet Mars for the specified date. In that case the interaction
controller expected a single field back upon executing the business logic
marsBean.getTemperature(date). This single result field was returned as a
simple string. If the interaction controller expects more than one field as a
result of executing the business logic, then we recommend returning a data
bean that wrappers all the result fields. Since this data bean represents the
result of executing business logic, we call it a Result bean. A Result bean
effectively defines the contract between a particular piece of business logic
and a particular interaction controller.

Now let us turn our attention towards the contract between the interaction
controller and the page constructor. For simple interactions the Result bean
itself can be used to define such a contract. However in some cases there
might be a reason to introduce a View bean. A View bean is responsible for
combining the result data and the display-specific attributes. For example, let
us assume that some users of the solar system Web application would like to
see the temperature in Fahrenheit and others would like to see it in Celsius.
The model, PlanetBean, should not be bothered with such unit conversion
details. The PlanetBean.getTemperature() method can be designed to return
the temperature in a base unit such as Kelvin. The conversion from Kelvin to
Fahrenheit or Kelvin to Celsius can be done by the View bean based on the
user preference.
104 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Such Result beans and View beans collect multiple result fields, minimize the
number of calls, and simplify the contract between various components. The
figure below demonstrates the relationship between MVC components,
Result beans and View beans. It is important to note that in simple Web
interactions, both a Result bean and a View bean could be implemented by
the same Java bean.

Figure 29. Result bean and View bean design pattern

7.4.1 Result beans and View beans design pattern
Result bean - defines the contract between the interaction controller and the
business logic. It wrappers all the return values the interaction controller
expects to receive upon executing a piece of business logic. Hence it
provides an easy communication mechanism between the developers of
these two components. Result beans are usually implemented as simple Java
beans. Since Java beans by definition are serializable they can be passed by
value between EJB-based business logic implementations. Whenever
possible, Result bean properties should be implemented as read-only
properties. A constructor could be used to initialize these properties during
instantiation. This prevents the interaction controllers and page constructors
from inadvertently updating the data.

It is important to note that a Result bean can be reused by multiple business
logic methods or objects. For example, based on some condition, the

Web Application Server

Interaction
Controller

Controller
Business Logic

Model

Page
Construction

View

View Bean

Result Bean

Browser Client

HTML
JavaScript
Chapter 7. Application design guidelines 105

controller may decide to call two different business logic methods. If it is
appropriate, both methods could use the same Result bean to return the
results. The reverse can also be true. Multiple controllers may call the same
business logic that returns the same Result bean to all controllers. In our
solar system Web example, the weather Result bean can be returned either
by a PlanetBean.getWeather() or a MoonBean.getWeather()

View bean - defines the contract between the controller and the view. It lists
all the attributes the JSP can display. The main benefit of defining such a
View bean is to make it easy for the JSP page designer to get all the required
data in one place. The display page often contains the data from the following
sources:

• Result bean properties (returned by the business logic)

• HTTP request data (including attributes, parameters, cookies, URL string)

• Session state

• Servlet context

The controller is responsible for instantiating the View bean and initializing all
the properties of the bean. View beans can be designed to be responsible for
view-specific transformations. For example, a View bean can be responsible
for converting the monetary values into the user preferred currency. Such a
View bean can have two properties, the monetary value in a base currency
and the currency display type. The controller can initialize both of these
properties. The View bean can use this information to call a reusable
currency conversion library and get the monetary value in the appropriate
format.

Usually, View beans are tightly coupled with a JSP since its primary purpose
is to provide all the properties the JSP designer would need in one place.
However, under special circumstances one can reuse the View beans by
inheritance.

For example, let us assume that there are two types of users of a banking
system, namely customers and customer service representatives (CSR). A
particular screen in the system allows customers to see the transaction
history. The same screen allows the CSRs to see transaction history and
transaction details, allowing CSRs to answer any customer questions about
the transaction such as where it was conducted, which bank representative
was involved, etc. Since the CSR screen has all the data that the customer is
able to see and has additional information, the
CSRTransactionHistoryViewBean could be inherited from
CustomerTransactionHistoryViewBean. This would ensure that the customers
106 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

and CSRs see the same basic information, with the CSRs seeing additional
details. The following figures depict this scenario:

Figure 30. One interaction controller calling multiple display pages

Figure 31. Class diagram - View bean inheritance example

7.4.2 Result bean and View bean design pattern example
In the MVC example, the solar system Web application always returned the
average temperature of the planet Mars on the specified date. We would like
to extend this application and allow users to get the average weather
information including temperature, humidity, and pressure of planet Mars on
the specified date. In addition, we would like to allow users to select the
measurement system of their choice for displaying these results. For
example, a user from Germany may want to see these results in a metric
measurement system, whereas someone from the UK may want to see these
results in imperial measurement system.

Under this scenario, the system needs to retrieve all the weather-related
information and convert it to the specified measurement system before

If User=Customer

Interaction Controller

Customer
Transaction
History Page

CSR
Transaction History
and Details Page

If User=CSR

CustomerTransaction
HistoryViewBean

CSRTransaction
HistoryViewBean

CustomerTransactionHistroyViewBean

date: Date
transactionType: String
amount: Float

CSRTransactionHistoryViewBean

transactionLocation: String
bankRepresentativeInvolved: String
Chapter 7. Application design guidelines 107

displaying it. For example, the temperature can be obtained in Celsius and
may need to be converted to Fahrenheit based on user preference.

Figure 32. Class diagram - Result bean and View bean example

The class diagram in Figure 32 identifies the key classes required to
implement this application using the MVC, Result bean, and View bean
concepts. The classes are:

• RetrievePlanetWeatherServlet: represents the interaction controller. This
class extends the HttpServlet and implements the doGet() method.

• PlanetBean: represents the business logic. It is a simple Java bean and
has temperature, humidity, and pressure properties. For each of these
properties it implements getter methods. In addition, it implements a
108 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

getWeather(date: Date) method. This method returns all the weather
information wrapped in a Result bean called WeatherResultBean.

• WeatherResultBean: represents the Result bean that the servlet expects
to receive upon executing the business logic. The PlanetBean method
getWeather() creates this bean and populates its properties.

• WeatherViewBean: represents the View bean and lists all the properties
that the JSP expects to display. Its properties include the results received
from the getWeather() information and also the parameters received from
the HTTP request such as measurement system and date. The servlet is
responsible for creating this View bean and populating its properties.

It is important to note that the get methods of a View bean such as
getTemperature() are responsible for converting the temperature from one
measurement system to the other based on user preference. As discussed
earlier, in doing so these methods may internally use a reusable class
library of conversion methods. 7.5, “Application output formatting” on page
115 provides some guidelines for designing reusable Formatter beans.

• PlanetWeatherJSP: represents the display page. It is responsible for
composing the response page that displays the weather information. In
doing so it uses the WeatherViewBean to get the dynamic attributes of the
page. The servlet is responsible for forwarding the request to this JSP.

• HttpServletRequest: represents the request received from the browser
with the HTTP-specified data. It is passed into the doGet() method of the
servlet as an input parameter. The doGet() method retrieves the
user-entered parameters from this object using the getParameter()
method.

Let us assume that the interaction begins by a user requesting a static HTML
page. The page allows the user to enter a date and to choose the preferred
measurement system for displaying the weather information of Mars. The
following HTML code shows a sample HTML FORM that accomplishes this
activity:

<FORM METHOD="GET" ACTION="RetrievePlanetWeatherServlet">
Date: <INPUT NAME="date" TYPE="TEXT" SIZE=12>

Measurement System: <SELECT NAME=”measurementSystem” SIZE=1>
<OPTION>Metric Measurement System
<OPTION>Imperial Measurement System
</SELECT>
<INPUT TYPE="SUBMIT">
</FORM>
Chapter 7. Application design guidelines 109

After entering the required data the user clicks on the submit button that
sends an HTTP GET request to the Web server. That in turn triggers the
doGet() method on the PlanetWeatherServlet object.

Figure 33. Object interaction diagram - Result beans and View beans

The object interaction diagram in Figure 33 shows the subsequent key
interactions between various components.

• The RetrievePlanetWeatherServlet.doGet() method retrieves the user
entered parameters namely “date” and “measurementSystem” from the
HttpServletRequest object using the getParameter() method.
110 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

• Subsequently, the servlet instantiates the marsBean object of type
PlanetBean and sends the getWeather() message by passing the date as
an input parameter.

• The marsBean.getWeather(date) method is responsible for retrieving the
weather information for the specified date from an external source. In
doing so it may use one of the connectors provided by WebSphere. Finally,
this method creates a WeatherResultBean, populates its properties, and
returns this object back to the servlet.

• The servlet, retrieves all the properties (temperature, humidity, and
pressure) from the Result bean using get methods.

• Then the servlet constructs a WeatherViewBean and populates all of its
properties including date, measuremementSystem, temperature, humidity,
and pressure.

It is important to note that the servlet populates the View bean with all the
fields needed by the JSP for display. In doing so, it combines the
parameters received with the HTTP GET request such as date and
measurement system and the results received from the Result bean such
as temperature, humidity, and pressure.

The View bean uses the measurementSystem property to decide if the
weather-related information needs to be returned by the get methods in
the metric measurement system or the imperial measurement system.

• The servlet then stores the WeatherViewBean in the request context using
the setAttribute() method.

• Finally, the servlet calls the forward() method to pass control to
PlanetWeatherJsp, which represents the display page.

• The PlanetWeatherJSP inserts the dynamically retrieved weather
information into the response page using <jsp:useBean> and
<jsp:insertProperty> tags.

The following code segments show how the Result bean and View bean
example outlined above can be implemented. PlanetBean code under this
example remains the same the PlanetBean code under the MVC example.
Therefore we don’t repeat the PlanetBean code below. Please refer to Figure
28 on page 102 for the PlanetBean implementation.
Chapter 7. Application design guidelines 111

Figure 34. RetrievePlanetWeatherServlet.goGet() - controller source code

Figure 35. WeatherResultBean - Result bean source code

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws javax.servlet.ServletException, java.io.IOException {
PlanetBean planetBean = null;
WeatherResultBean resultBean = null;
WeatherViewBean viewBean = null;

String dateString = request.getParameter("date");
Date date = new Date(Date.parse(dateString));
String measurementSystem = request.getParameter("measurementSystem");
planetBean = new PlanetBean("Mars");
resultBean = planetBean.getWeather(date);

viewBean = new WeatherViewBean("Mars",
date,
measurementSystem,
resultBean.getTemperature(),
resultBean.getHumidity(),
resultBean.getPressure());

request.setAttribute("viewBean", viewBean);
RequestDispatcher rd;
rd = getServletContext().getRequestDispatcher("weatherInfo.jsp");
rd.forward(request, response);

}

public class WeatherResultBean {
private Float temperature;
private Float humidity;
private Float pressure;
public WeatherResultBean(Float newTemperature,
Float newPressure, Float newHumidity) {
temperature = newTemperature;
pressure = newPressure;
humidity = newHumidity;

}
public Float getHumidity() {return humidity;}
public Float getPressure() {return pressure;}
public Float getTemperature() {return temperature;}
}

112 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 36. WeatherViewBean - View bean source code

As discussed earlier, the conversion of values from one unit system to the
other can be done by View beans. This hides the formatting complexity from
JSP pages. In implementing such output formatting, View beans can use a
set of reusable objects called Formatter beans. 7.5.1, “Formatter beans” on
page 116 discusses this concept further.

Figure 37 on page 114 shows the corresponding JSP page. It is important to
note that, since we use a View bean in this example, JSP can get all the
required information from one bean. This eliminates the need to insert Java
code directly inside JSPs. When you compare the JSP code below to
temperature.jsp in Figure 27 on page 101 you can see how the use of the
View bean could make the JSP page look more like tag-based HTML code.

public class WeatherViewBean {
// define attributes
//define a constructor

//define get methods
public String getDate() {return date.toString();}
public String getMeasurementSystem() {return measurementSystem;}
public String getPlanetName() {return planetName;}

public String getPressure() {
//Convert the pressure from the base unit to the required
//meassurement system and return the computed value. }

public String getTemperature() {
//Convert the temperature from the base unit to the required
//meassurement system and return the computed value. }

public String getHumidity() {
//Convert the humidity from the base unit to the required
//meassurement system and return the computed value. }

}

Chapter 7. Application design guidelines 113

Figure 37. weatherInfo.jsp - View source code

7.4.3 Advantages and disadvantages of Result beans and View beans
In summary, Result beans define the contract between controllers and model
and View beans define the contract between controllers and view. Both
Result and View beans are implemented using simple Java beans. In some
cases it may make sense to use the same bean as both the Result and the
View bean.

Advantages of Result beans

• Clearly define what the controller expects back from the business logic.

• Once a Result bean is clearly defined the developers of the controller and
the model can develop their components independently. This simplifies
and optimizes the development process and allows for parallel
development.

• Since Result beans can be serialized, they can be sent to remote servers
or received from remote servers such as EJB-based distributed
applications. In addition, they can be stored on a file for persistence
purposes.

• The Result bean data structure can be reused by multiple business logic
objects and interaction controller objects.

<HTML>
<HEAD><TITLE>Solar System Web application</TITLE></HEAD>

<BODY BGCOLOR="#FFFFFF">
<jsp:useBean id="viewBean" scope="request"
class="itso.solarsystem.weatherinformation.WeatherViewBean"/>

<H1>Solar System</H1>
Planet: <jsp:getProperty name="viewBean" property="planetName"/>

Date: <jsp:getProperty name="viewBean" property="date"/>

Measurement system:
<jsp:getProperty name="viewBean" property="measurementSystem"/>

Temperature: <jsp:getProperty name="viewBean" property="temperature"/>

Pressure: <jsp:getProperty name="viewBean" property="pressure"/>

Humidity: <jsp:getProperty name="viewBean" property="humidity"/>

</BODY>
</HTML>
114 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Advantages of View beans

• Clearly define all the fields a view (JSP) can display.

• Once a View bean is clearly defined the developers of the controller and
the view can develop their components independently. This simplifies and
optimizes the development process and allows for parallel development.

• The view (JSP) designer can get all the dynamic data from one View bean
and use <jsp:useBean> and <jsp:getProperty> tags to insert these values.
This allows the JSP designer to concentrate on the look and feel of the
page rather than worrying about gathering data from various sources (for
example, sessions, cookies, Result beans, etc.) and coding complex
view-specific Java code. View beans effectively hide these complexities
from the display page designer.

• Complete separation of the view specific logic from the business logic, for
example, currency conversion based on the user preference.

• Using inheritance as outlined above one can promote View bean reuse
and ensure similar information is received by all users, for example, CSRs
and customers.

• View beans can be used with tools such as WebSphere Page Designer,
which allows a developer to insert JavaBean properties into JSPs.

On the flip side, it is important to recognize the following disadvantages of
introducing Result beans and View beans:

Disadvantages of View beans

• View beans are tightly coupled with display pages and interaction
controllers. This implies that any changes to the dynamic content of the
display page will require a change to the interaction controller. We depend
on the interaction controller to gather all the required information in one
View bean.

• For small applications the introduction of Result beans and View beans
could result in too many individual pieces of code and increase the
complexity of application management.

• The number of artifacts to be coded, managed, and maintained may be
greatly increased.

7.5 Application output formatting

The View bean concept described above tries to minimize the need for
inserting Java code directly inside a display page. For the most part, by using
Chapter 7. Application design guidelines 115

View beans the display page designer can use <jsp:useBean> and
<jsp:setProperty> tags to insert dynamic content. In doing so one can use
tools such a WebSphere Page Designer that allows you to insert JavaBean
properties into JSPs.

In order to insert complex tables or drop down lists, complex conditional loops
may be needed. JSP API 1.0 does not define repeat tags that allow for
looping through an indexed JavaBean property. In order to overcome this
limitation, consider the following options:

• Implement the complex table or drop down list generation code in Java
and wrapper it inside the bean.

• Insert complex conditional loop Java code inside the JSP.

• Use WebSphere specific <tsx:repeat> tag.

Among these options we recommend the first one since it hides the
complexity from the JSP designer and promotes reuse. This allows
non-programmers to design the display page easily.

7.5.1 Formatter beans
It is possible for a number of display pages to share common methods that
dynamically generate table bodies, drop down lists, and radio button lists
based on the values in an indexed field. In addition, it is possible to build
reusable beans that convert values from one unit to the other. We call such
reusable beans Formatter beans.

7.5.2 Formatter bean example
Let us assume that we would like to display the average temperature of Mars
for every day of this year on one display page. To do this we implement an
AllYearMarsTemperatureJSP and AllYearMarsTemperatureViewBean. This
View bean has a method called getAllYearTempratureTable() that loops
through the indexed properties and prints the dynamic content to an out
stream. The JSP can simply retrieve this table by calling this get method and
directing the output from the method to the implicit JSP object out.

In doing so, View beans may internally use a table generation Formatter bean
that takes the indexed fields as input and based on the content returns an
HTML table body. Further description and some sample Formatter beans can
be found at:

http://oss.software.ibm.com/developerworks/opensource/jsp/index.html
116 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

7.5.3 Advantages and disadvantages of Formatter beans
To summarize, a Formatter bean is a bean that wrappers reusable HTML
formatting logic inside a method.

Advantages of Formatter beans

• Eliminate the need for inserting complex scripting logic inside a JSP.

• Promote reusability of the formatting logic.

• Hide the complexity of scripting logic from view designers.

• Promote the ability to drop common information on multiple pages such as
displaying the current weather information and current stock price on all
the pages of the Web application.

Disadvantages of Formatter beans

• Some of the display page functionality that is best expressed in a JSP is
now moved into Java code.

7.6 Application business logic granularity

This section primarily focuses on the design issues related to the Model part
of the MVC design pattern. From our discussions earlier, we recognize that
the business logic part of a Web application is the piece of code ultimately
responsible for satisfying client requests. Hence, it must address a wide
range of potential requirements including transactional integrity, application
data access, workflow support, and integration of new and legacy
applications. In order to achieve this, business logic components may use
various protocols including JDBC, JNDI, IIOP, RMI, DCE, messaging, etc. to
communicate with enterprise applications, enterprise data sources, and
external applications. The Model is not only responsible for implementing the
business logic, but also for hiding the details of the data and application
access protocols. This can be achieved by wrapping the model with a Java
bean.

In implementing such business logic components one can choose between
the following levels of granularity:

• One business logic bean per task:

This approach implements one business logic bean per business task,
offering the lowest granularity. We call these beans Command beans.
7.6.1, “Command beans” on page 118 explains this concept.

• One business logic bean that groups a related set of tasks:
Chapter 7. Application design guidelines 117

This approach implements multiple methods, each representing a piece of
the business logic, and groups related methods under one bean. In doing
so, usually all methods related to a State in the underlying business
process are wrapped together by a bean. Hence these beans are called
State beans. Since only related methods are grouped together, this style
has a medium level of granularity. 7.6.4, “An alternative approach” on page
126 explains this concept further.

• One business logic bean that groups all the tasks:

This approach implements multiple methods, each representing a
business task and groups them all under one bean. This implementation
has the highest level of granularity among all the options listed here. Such
a monolithic approach complicates system development and any
maintenance processes. Hence this style should be avoided.

Among these, we recommend the first two approaches. Both Command and
State bean approaches have advantages over the last approach.

7.6.1 Command beans
Command beans can be defined as Java beans that provide a standard way
to invoke business logic. The following are the key characteristics of
Command beans:

• Each Command bean corresponds to a single business logic task, such as
a query or an update task.

• All Command beans inherit from a single command interface. In essence
they implement the command interface.

• The inherited Command bean defines business domain specific properties
such as account numbers.

• Command execution results are stored as properties of a Command bean,
therefore, Command beans also act as Result beans.

• Commands have a simple, uniform usage pattern:

a. Create an instance of the Command bean.
b. Initialize the bean by setting its properties.
c. Cause the bean to execute its action by calling one of its methods.
d. Access the results of command execution by inspecting its properties.
e. Discard the command object.

• Commands can be serialized.

The figure below shows how such a Command bean would interact with the
other components of the Web application.
118 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 38. Command Beans

7.6.2 Command bean example
Let us say that we would like to implement the example in 7.4.2, “Result bean
and View bean design pattern example” on page 107 using the Command
bean approach. The application allows the user to get the average weather
information including temperature, humidity, and pressure of Mars on the
specified date. In addition, the user can select the measurement system of
choice for displaying these results.

Web Application Server

Interaction
Controller

Controller

Page
Construction

View

View Bean

Command Bean

Also holds the
result data

External Services

Enterprise
Applications

Enterprise
Data Sources

External
Applications

Business Logic
Model

Browser Client

HTML
JavaScript

It is important to note that the Command bean contains the command
execution results; hence there is no need to introduce another Result bean.
In essence, the Command bean encapsulates both the business logic and
result data.

No need for Result beans
Chapter 7. Application design guidelines 119

Figure 39. Class diagram - Command bean example

The above class diagram identifies the key classes required to implement this
application using the MVC, Result bean, and View bean concepts. They are:

• RetrievePlanetWeatherServlet: represents the interaction controller. This
class extends the HttpServlet and implements the doGet() method.

• RetrievePlanetWeatherCommand: represents the business task. It is a
simple Java bean that implements the command interface. It defines
planet name and date properties that represent the input parameters for
the query. In addition, it defines temperature, humidity, and pressure
properties that represent the results received from the query. For each of
these properties it implements getter methods. In addition, it implements
the execute() method that retrieves the data, in our case from a database,
and sets the appropriate result values.
120 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

• WeatherViewBean: represents the View bean and lists all the properties
that the JSP expects to display. Its properties include the results received
from the command execute() method and also the parameters received
from the HTTP request such as measurement system and date. The
servlet is responsible for creating this View bean and populating its
properties.

It is important to note that the get methods of the View bean such as
getTemperature() are responsible for converting the temperature from one
measurement system to the other based on user preference. In doing so,
these methods may internally use a reusable class library of conversion
methods. 7.5, “Application output formatting” on page 115 provides some
guidelines for designing reusable Formatter beans.

• PlanetWeatherJSP: represents the display page. It is responsible for
composing the response page that displays the weather information. In
doing so it uses the WeatherViewBean to get the dynamic attributes of the
page. The servlet is responsible for forwarding the request to this JSP.

• HttpServletRequest: represents the request received from the browser
with the HTTP-specified data. It is passed into the doGet() method of the
servlet as an input parameter. The doGet() method retrieves the
user-entered parameters from this object using the getParameter()
method.

Let us assume that the interaction begins by a user requesting a static HTML
page that allows the user to enter a date and choose the preferred
measurement system for displaying the weather information of Mars. The
following HTML code shows a sample HTML FORM that accomplishes this
activity:

<FORM METHOD="GET" ACTION="RetrievePlanetWeatherServlet">
<INPUT NAME="date" TYPE="TEXT" SIZE=12>

<SELECT NAME=”measurementSystem” SIZE=1>
<OPTION>Metric Measurement System
<OPTION>Imperial Measurement System
</SELECT>
<INPUT TYPE="SUBMIT">
</FORM>

After entering the required data the user clicks on the submit button that
sends an HTTP GET request to the Web server. That in turn triggers the
doGet() method on the RetrievePlanetWeatherServlet.
Chapter 7. Application design guidelines 121

Figure 40. Object interaction diagram - Command beans

The object interaction diagram in above shows the subsequent key
interactions between various components.
122 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

• The RetrievePlanetWeatherServlet.doGet() method retrieves the user
entered parameters namely “date” and “measurementSystem” from the
HttpServletRequest object using the getParameter() method.

• Subsequently, the servlet instantiates the
RetrievePlanetWeatherCommand bean and sets the planet name and
date values.

• Then it calls the execute() method on the Command bean.

• The execute() method is responsible for retrieving the weather information
for the specified date from an external source. In doing so it may use one
of the connectors provided by WebSphere. In the example above this
method obtains a connection with the database driver and sends an SQL
string for execution. Then it releases the database connection. Finally, this
method populates the result properties (temperature, humidity, and
pressure) and returns control to the servlet.

• The servlet retrieves all the properties (temperature, humidity, and
pressure) from the Command bean using get methods.

• Then the servlet constructs a WeatherViewBean and populates all of its
properties including date, measuremementSystem, temperature, humidity,
and pressure.

It is important to note that the servlet populates the View bean with all the
fields needed by the JSP for display. In doing so, it combines the
parameters received with the HTTP GET request such as date and
measurementSystem with the results received from the Result bean such
as temperature, humidity, and pressure.

The View bean uses the measurementSystem property to decide if the
weather-related information needs to returned by the get methods in the
metric measurement system or the imperial measurement system.

• The servlet then stores the WeatherViewBean in the request context using
the setAttribute() method.

• Finally, the servlet calls the forward() method to pass control to
PlanetWeatherJsp, which represents the display page.

• The PlanetWeatherJSP inserts the dynamically retrieved weather
information into the response page using <jsp:useBean> and
<jsp:insertProperty> tags.

The following code segments show how the Command bean example outlined
above can be implemented. RetrievePlanetWeatherServlet,
RetrievePlanetWeatherCommand, WeatherViewBean, weatherInfo.jsp are
the key classes under consideration. This example implements the same use
Chapter 7. Application design guidelines 123

case as the Result bean and View bean example. For that reason,
WeatherViewBean and weatherInfo.jsp code remains the same for both
examples. We don’t repeat those code segments below. Please refer to
Figure 36 on page 113 for WeatherViewBean source code and Figure 37 on
page 114 for weatherInfo.JSP source code.

Figure 41. Modified RetrievePlanetWeatherServlet.doGet() method - Command bean example

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws javax.servlet.ServletException, java.io.IOException {
PlanetBean planetBean = null;
WeatherResultBean resultBean = null;
WeatherViewBean viewBean = null;

String dateString = request.getParameter("date");
Date date = new Date(Date.parse(dateString));
String measurementSystem = request.getParameter("measurementSystem");

RetrievePlanetWeatherCommand command;
command = new RetrievePlanetWeatherCommand();
command.setPlanetName("Mars");
command.setDate(date);
try {
command.execute();

} catch (itso.solarsystem.command.CommandException cmdEx) {

//handle error - e.g. forward the control to an displayError.jsp
return;

}

viewBean = new WeatherViewBean("Mars",
date,
measurementSystem,
resultBean.getTemperature(),
resultBean.getHumidity(),
resultBean.getPressure());

request.setAttribute("viewBean", viewBean);
RequestDispatcher rd;
rd = getServletContext().getRequestDispatcher("weatherInfo.jsp");
rd.forward(request, response);

}

124 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

The key difference between this servlet and the servlet in the Result bean
and View bean example is that this servlet calls a command object to execute
the business logic.

Figure 42. RetrievePlanetWeatherCommand - Command bean source code

The RetrievePlanetWeatherCommand implements the command interface.
The execute() method is responsible for retrieving the required information
from a data source. A downloadable version of the command interface can be
found at:

http://www.ibm.com/software/ebusiness/buildapps/understand.html

import java.util.Date;
import itso.solarsystem.command.*;

public class RetrievePlanetWeatherCommand implements Command {
private java.util.Date date = null;
private PlanetBean planet = null;
private java.lang.String planetName = "";

public Float getHumidity() {return planet.getHumidity(date);}
public Float getPressure() {return planet.getPressure(date);}
public Float getTemperature() {return planet.getTemperature(date);}

public void setDate(java.util.Date newDate) {date = newDate;}
public void setPlanetName(String newPlanetName) {planetName =
newPlanetName;}

public void reset() {planetName = null;date = null;planet = null;}

public boolean isReadyToCallExecute() {
//If required fields are not initialized, return null
return (planetName != null) && (date != null);}

public void execute() throws CommandException {
if (isReadyToCallExecute()):
//Connect to the data base and get the weather information for the
//specified plant and date. }

else {
throw new UnsetInputPropertiesException("required property date");

}
}
}

Chapter 7. Application design guidelines 125

http://www.ibm.com/software/ebusiness/buildapps/understand.html

7.6.3 Advantages and Disadvantages of Command beans
In summary, Command beans are stylized beans that provide a common
interface for executing business logic. In addition to implementing the
business logic, they hide the complexity of data and back-end application
access.

Advantages of Command beans

• Provide a common interface for executing business logic.

• This common interface makes it easier to implement application
development tools. Further releases of WebSphere development tools are
expected to provide significant support based on this framework.

• This common interface can be further extended to support cross-tier
communication and remote execution using the Command Manager
pattern. WebSphere V3.5 is expected to implement this framework and
provide the necessary API for cross-tier communication and remote
execution of commands.

• This structure also makes it easy to implement automatic data caching.
WebSphere V4.0 is expected to further extend the Command Manager
pattern to implement caching.

• It hides the data and application access protocol details from the
interaction controllers and page construction components. This
abstraction layer allows for changing the data access mechanism without
altering other components in the MVC design pattern.

Command beans are ideal where the Web application server acts primarily as
a hub that receives and forwards requests to back-end applications where the
complex business logic is executed. If there is a need to implement complex
business logic locally on the Web application server node, then one could
consider the approach described below.

7.6.4 An alternative approach
This approach provides the medium level of business logic granularity and
implements one business logic bean that groups a related set of tasks. State
beans are an example of this approach. State beans can be defined as
business domain specific objects that group related business tasks
associated with a state in the business process. It is critical to note that the
State bean methods are responsible for accessing data from external
services and should hide any protocol-specific details. Such an
implementation will make it easy to change the back-end interface without
126 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

http://www.ibm.com/software/ebusiness/buildapps/understand.html

affecting interaction controllers and display pages. State beans differ from the
Command beans primarily in their granularity.

The solar system weather information problem domain used throughout this
chapter does not easily lend itself for use as a good example for this
approach. For that reason, we use a discount brokerage application example
to discuss how State beans can be designed. Let’s say that this discount
brokerage application allows users to enter a trade request, execute the
trade, and view the status of the trade. Such an application may have the
following states:

• Trade Entry: This allows the user to get a stock quote and research a
stock, enter the details of the trade including stock ticker symbol, quantity,
buy or sell, limit price, etc., update details of the trade, confirm the trade or
cancel the trade.

• Trade Execution: Here there may be a need for the internal department to
intervene if the required funds are not available. If things flow smoothly,
the trade gets executed. This state may also allow the customer to see the
status of the trade and to cancel the trade if the trade has not been
executed yet.

• Trade Completed: Here the customer will be able to see the trade
execution price, quantity purchased or sold, etc. This state can also allow
the user to query a history of completed trades.

Under the State bean approach one would have three objects, each
representing the state in the business process namely TradeEntryBean,
TradeExecutionBean, and CompletedTradesBean. Each of these beans would
have multiple methods each representing a business task. For example,
TradeExecutionBean may have the following methods cancelTrade(),
getAllOpenTrades() and getTradeStatus(). Each of these methods can take
required parameters as input and return a Result bean.

Designing such a business logic model is very specific to a problem domain.
Such a design follows the traditional object-oriented analysis and design
process. We will not go into detail on object-oriented principals or design
processes. Object-oriented designers are already familiar with modeling such
business logic objects. Currently the Pattern Development Kit does not
provide examples for implementing State beans.

The primary disadvantage of this approach is the lack of a standard interface
for invoking business logic. Hence it does not lend itself to automatic caching
techniques that can be implemented by extending the Command bean
approach. However, the State bean approach is suitable for applications that
require complex modeling on the Web application server node.
Chapter 7. Application design guidelines 127

7.7 Application session management

For the purposes of this discussion, a session is defined as a series of
requests originating from the same user, and the same browser. As discussed
earlier, HTTP is a stateless protocol. Over the years a number of techniques
have been developed to maintain the application state across multiple HTTP
requests from the same user. Cookies and URL rewriting are the most
commonly used techniques. WebSphere Application Server implements the
HttpSession API that hides the complexity of these techniques from the Web
application programmer. In addition, an HttpSession object internally
implements a hash table of name-value pairs. Using the putValue() and
getValue() methods one can store and retrieve application-specific
information in this hash table.

WebSphere Application Server provides various configuration options for
session management. These configuration options can influence the
application behavior, performance, and failover capabilities. Hence we urge
you to consider these options early in the design phase. We discuss some of
these design issues in 7.7.2, “Session management design considerations”
on page 137.

The following figure shows how the Command bean example can be
extended to exploit the session management feature.

Figure 43. Session management

Web Application Server

Interaction
Controller

Controller

Page
Construction

View

View Bean

Command Bean

Also holds the
result data

External Services

Enterprise
Applications

Enterprise
Data Sources

External
Applications

Business Logic
Model

HttpSession

Session
Data

Browser Client

HTML
JavaScript
128 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

7.7.1 Session management example
The example in 7.6.2, “Command bean example” on page 119 expects the
user to enter both the date and the preferred measurement system for every
request. In order to demonstrate the session management issues we modify
this use case as follows. Let us say that the user enters the date and
preferred measurement system during the first request in a session. During
subsequent requests in that session the user enters only the date and
expects the system to use the measurement system entered during the first
request to format the results.

Under this scenario, the system needs to save and use the measurement
system across multiple requests. In order to implement this functionality one
can exploit the HttpSession API.

Figure 44. Class diagram - session management
Chapter 7. Application design guidelines 129

The class diagram above identifies the key classes required to implement this
application. The only difference between this and the Command bean
example class diagram in Figure 39 on page 120 is that it uses the
HttpSession object. Hence we only explain the HttpSession class below. For
details on all other classes please refer back to 7.6.2, “Command bean
example” on page 119.

• HttpSession: represents the session object. During the first request in a
session the doGet() method creates this session object and stores the
measurement system in the session hash table. During subsequent
requests, doGet() retrieves this information and uses it to format the
response page.

Let us assume that the interaction begins by a user requesting a static HTML
page that allows the user to enter a date and choose the preferred
measurement system for displaying the weather information of Mars. The
following HTML code shows a sample HTML FORM that accomplishes this
activity:

<FORM METHOD="GET" ACTION="RetrievePlanetWeatherServlet">
<INPUT NAME="date" TYPE="TEXT" SIZE=12>

<SELECT NAME=”measurementSystem” SIZE=1>
<OPTION>Metric Measurement System
<OPTION>Imperial Measurement System
</SELECT>
<INPUT TYPE="SUBMIT">
</FORM>

After entering the required data, the user clicks on the Submit button that
sends an HTTP GET request to the Web server. That in turn triggers the
doGet() method on the RetrievePlanetWeatherServlet.
130 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 45. Object interaction diagram - session management - first request from the user

The above object interaction diagram captures the key interactions between
various components during this first request from the user:

• The RetrievePlanetWeatherServlet.doGet() method checks to see if the
session object exists by calling getSession(false). This method returns
NULL if the session object does not exist.
Chapter 7. Application design guidelines 131

• Since the session object does not exist, the servlet creates a session
object for this user by calling getSession(true).

• The servlet retrieves the user entered parameters namely “date” and
“measurementSystem” from the HttpServletRequest object using the
getParameter() method.

• Then it stores the measurementSystem in the session object by calling
putValue(“preferredMeasurementSystem”, measurementSystem).

• Subsequent interactions follow the same execution path as the Command
bean example. The servlet instantiates the Command bean, sets its
parameters, calls the execute() method on the Command bean. Then the
servlet retrieves all the properties (temperature, humidity, and pressure)
from the Command bean using get methods. The servlet constructs the
View bean and passes control to the JSP that represents the display page.

The display page presents the results and allows the user to enter a different
date for which he or she would like to see the weather information. The key
difference between this entry page and the initial one is that the system does
not ask the user to enter the measurement system. Once the user enters a
new date and clicks on the Submit button, the doGet() method on the servlet
is invoked again.
132 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 46. Object interaction diagram - session management - subsequent requests from the user

The above object interaction diagram captures the key interactions between
various components during subsequent requests from the user:

• The RetrievePlanetWeatherServlet.doGet() method checks to see if a
session object exists by calling getSession(false). Since a session object
exists for this user, this method returns an HttpSession object.
Chapter 7. Application design guidelines 133

• Since the session object exists, the servlet retrieves only the “date” from
the HttpServletRequest object using the getParameter() method.

• Then it retrieves the measurementSystem from the session object by
calling getValue(“preferredMeasurementSystem”).

• Subsequent interactions follow the same execution path as the Command
bean example. The servlet instantiates the Command bean, sets its
parameters, calls the execute() method on the Command bean. Then the
servlet retrieves all the properties (temperature, humidity, and pressure)
from the Command bean using get methods. The servlet constructs the
View bean and passes the control to the JSP that represents the display
page.

The important classes in this example are RetrievePlanetWeatherServlet,
weatherInfo.jsp, WeatherViewBean, and RetrievePlanetWeatherCommand.
The WeatherViewBean and RetrievePlanetWeatherCommand do not change
from 7.6.2, “Command bean example” on page 119. Hence we don’t duplicate
this code below. Figure 36 on page 113 shows the WeatherViewBean source
code. Figure 42 on page 125 shows the RetrievePlanetWeatherCommand
source code.
134 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 47. Modified RetrievePlanetWeatherServlet.doGet() - session management source code

We would like to store the preferred measurement system in the session
object and use it for subsequent requests. To handle this, the weatherInfo.jsp
needs to be modified so that it can display the results and also accept the
next date. Using this date and the measurement system entered earlier the
system should be able to generate the next response page. This is done by
appending an HTML FORM tag to the end of the JSP. The ACTION attribute
of the FORM tag points back to the RetrievePlanetWeatherServlet. The
weatherInfo.jsp Figure 48 shows how the JSP from the Command bean
example can be modified to handle this scenario.

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws javax.servlet.ServletException, java.io.IOException {
//Insert Code to getParameters from HttpServletRequest

//See if session exists
HttpSession session = request.getSession(false);

if (session == null) {
//SESSION DOES NOT EXIST - FIRST INTERACTION
session = request.getSession(true);
measurementSystem = request.getParameter("measurementSystem");
session.putValue("myMeasurementSystem", measurementSystem);

}
else {
//SESSION EXISTS - SUBSEQUENT INTERACTIONS
measurementSystem =(String) session.getValue("mydMeasurementSystem");
if (measurementSystem == null) {
//INSERT CODE TO HANDLE ERROR
// e.g. forwar request to DisplayError.jsp
return;

}
}
//The rest of the code looks similar to thr Command bean example
//Set command parameters using values from request and session
//execute() command.
//Construct View bean
//Forward request to weatherInfo.jsp.
}
}

Chapter 7. Application design guidelines 135

Figure 48. Modified weatherInfo.JSP - session management source code

The above example demonstrates how HttpSession objects can be used to
carry application-specific information across multiple requests. With this
example, the user preference is stored in the system only until any one of the
following conditions is met: a session times out, user terminates the
connection by closing the browser or the server is restarted.

This example can be extended so that the user registers preferences during
the first visit to the site. The system can store such user preferences in a user
profile database. During subsequent visits, the user can be identified using
mechanisms such as user ID. Based on this ID, the system can retrieve the
user profile information from the database and store that information on the
session object to be used during that particular session. At the end of the
session the Web application should remove the user profile information from
the session pool so as to free up the resources on the Web application
server.

<HTML>
<HEAD><TITLE>Solar System Web application</TITLE></HEAD>

<BODY BGCOLOR="#FFFFFF">
<jsp:useBean id="viewBean" scope="request"
class="itso.solarsystem.weatherinformation.WeatherViewBean"/>

<H1>Solar System</H1>
Planet: <jsp:getProperty name="viewBean" property="planetName"/>

Date: <jsp:getProperty name="viewBean" property="date"/>

Measurement system:
<jsp:getProperty name="viewBean" property="measurementSystem"/>

Temperature: <jsp:getProperty name="viewBean" property="temperature"/>

Pressure: <jsp:getProperty name="viewBean" property="pressure"/>

Humidity: <jsp:getProperty name="viewBean" property="humidity"/>

<FORM ACTION ="RetrievePlanetWeatherServlet">
Query planet's weather information

Enter Next Date (mm/dd/yyyy):
<INPUT size="10" type="text" maxlength="10" name="date">

<INPUT type="submit" name="submit" value="Submit">
</FORM>
</BODY>
</HTML>
136 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

7.7.2 Session management design considerations
Now that we understand the mechanics of session management we will focus
on implementing applications that leverage this feature of WebSphere
Application Server.

7.7.2.1 Cookies and URL rewriting
The WebSphere Application Server can be configured to use cookies, URL
rewriting, or both to maintain sessions across multiple HTTP requests. With
both mechanisms WebSphere creates a Session ID to identify a session
uniquely. With cookies, this Session ID is sent back to the browser as a field
inside the cookie. With URL rewriting the Session ID is appended to the URL
and sent back to the browser. During subsequent requests the browser sends
the Session ID back to the server as part of the cookie or the URL. The server
is responsible for retrieving this Session ID from the HTTP request and using
it to obtain the proper HttpSession for this user.

Early in the high-level design phase it is important to decide whether your
application should be developed to support cookies, URL rewriting, or both.
Such a decision should be made based on the demographics of the end users
of the system. Some users configure their browsers to not accept cookies. If
you suspect this may be the case, consider supporting the URL rewriting
option. For the majority of applications we recommend using only cookies.

The WebSphere Application Server administration console provides a simple
way to configure your applications to support either or both of these session
management techniques. However, in order to maintain session state using
URL rewriting the underlying servlets and JSPs must be coded so that every
URL you send back to the browser is encoded with the session ID. This can
be achieved by using the following techniques:

• Encode all URLs in servlets and JSPs

This can be done using the HttpServletResponse.encodeURL(String url)
method. This method appends the Session ID to the URL that is passed
as an input parameter. For example, if you have a servlet that does not
support URL rewriting and has the following code:

out.println(“ Example Link <a>”);

Then, in order to support URL writing replace all such references to URL
links as shown below:

out.println(“<a href=\””);
out.println(response.encodeURL(“exampleLink.html”);
out.println(“\”> Example Link <a>”);
Chapter 7. Application design guidelines 137

• Use HttpServletResponse.encodeRedirectURL(String url) to encode all
redirects.

• Do not include links to parts of your Web applications in plain HTML files.
In essence, to maintain session state using URL rewriting, every page that
the user requests during the session must be converted to JSPs or
servlets. And all links inside such servlets and JSPs must be encoded
using encodeURL().

These requirements are necessary for URL rewriting to maintain session
state, since all HTTP requests made by the user must have the Session ID
appended to the requesting URL.

From this discussion, it is clear that the decision to support URL rewriting
impacts the code development significantly. This decision also has certain
performance implications, since all display pages including static pages have
to be converted to JSPs or servlets. This adds unnecessary runtime
processing. This also means that all static pages that could have bean hosted
by an information Web server now need to be moved to the Web application
server node since all pages have to be converted to JSPs or servlets.
Therefore it is important to decide early in the high-level design whether you
plan to support URL rewriting.

7.7.2.2 Session persistence and clustering
Chapter 3 “Choosing the runtime topology” on page 19 discussed how Web
application availability and performance can be increased by adding duplicate
Web application server nodes to the runtime topology. This is achieved by
using a load balancer to distribute Web requests across multiple Web
application servers. Under such a scenario, if one Web application server
fails, the load balancer would recognize this event and forward all the
subsequent requests to the remaining Web application servers, which
increases the overall availability of Web applications. Performance should be
improved by distributing the load across multiple machines.

The above scenario can be extended to provide failover support. This is
achieved by enabling WebSphere Application Server session persistence and
session clustering.

When session persistence is enabled WebSphere Application Server stores
all session data in a JDBC-compliant relational database such as DB2 or
Oracle. This is achieved by inserting the session data (name-value pair) into
the database as a result of an HttpSession.putValue() method and retrieving
the same from the database as a result of HttpSession.getValue() method.
The session persistence is automatically managed by WebSphere Application
138 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Server. Application programmers need not write any special code for this
session persistence to occur. However all objects that are being inserted into
the session pool must implement the serializable interface.

Session clustering is a mechanism where more than one instance of the
application servers share a common session pool. Essentially, a cluster is the
binding of two or more application servers that reside on separate nodes.
This allows servlets to execute on any one of these nodes and have access to
session data that was created by another node. WebSphere Application
Server exploits its session persistence feature to implement session
clustering. Therefore, in order to enable session clustering session
persistence must be turned on. Under this configuration, multiple application
server nodes would share the common session database. This allows for
session data created by one application server node to be accessed by
another application server node during subsequent interactions. All changes
to session data are committed to a common session database upon the
completion of servlet execution. Hence, once the transaction is completed
and the changes are committed. The session data is still accessible
regardless of the failure of an individual node. This allows for complete
failover support.

In designing systems that exploit session persistence and clustering features,
we provide the following guidelines:

• Session persistence is implemented using a generalized persistence
mechanism in order to allow for various types of information to persist in
the session pool. Storing large amounts of data in such a generalized
session pool could result in performance degradation. Hence the session
pool must be used only to store data that is essential during subsequent
transactions.

• All objects that must be propagated across the cluster along with the
session must be serializable. We recommend implementing the
serializable interface for all objects that you anticipate being stored in the
session pool. This allows for an easy transition of your applications to a
clustered environment.

Further details on session management issues can be found at:

http://www.ibm.com/software/webservers/appserv/doc/v30/se/web/doc/begin_he

re/index.html
Chapter 7. Application design guidelines 139

http://www.ibm.com/software/webservers/appserv/doc/v30/se/web/doc/begin_here/index.html

7.8 Application Security

The WebSphere Application Server provides a robust security model for
securing Web application resources. Key components of the security
architecture include the security plug-in, security collaborator, security
application and security server. The security model supports various
authentication and authorization techniques. The authentication policy for
performing authentication can be specified in terms of:

• User registry: where the user and group information is stored. WebSphere
provides the following options:

- LDAP directory

- Native operating system user directory

• Authentication Mechanism: validates the authentication data against an
associated user registry. WebSphere supports the following two options:

- Lightweight Third Party Authentication (LTPA): This implies the use of
an LDAP user directory.

- Native operating system user authentication: This implies the use of
NT, AIX, or Solaris user directory.

• Challenge Mechanism: specifies how a server will challenge and retrieve
authentication data from the user. WebSphere supports the following
options for challenge mechanisms:

- None: Security runtime does not challenge the user for authentication
data.

- Basic: A user is challenged for user ID and password using the 401
error code. This results in the browser displaying the user ID and
password dialog box.

- Certificate: Mutual authentication over SSL using client and server-side
certificates.

- Custom: Works similar to basic challenge mechanism. However,
instead of sending a 401 error code, WebSphere redirects the user to a
logon HTML page. The URL for this logon HTML page can be set by
the system administrator using the WebSphere security configuration
options.

• Secure Channel Constraint: specifies if an SSL session is required while
passing the authentication data from the browser to the server.

9.2.4, “Web application security” on page 211 describes the overall
WebSphere security architecture, explaining how various security
140 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

http://www.ibm.com/software/webservers/appserv/doc/v30/se/web/doc/begin_here/index.html

components interact with one another, and discussing configuration options
for securing Web resources.

Enabling basic and certificate challenge mechanisms described above
primarily involves configuring WebSphere security options. Such a setup
does not involve developing specialized login programs for the Web
application. Custom challenge mechanism on the other hand requires a
specialized login program in addition to security configuration. This section
explains best practices for designing custom login servlets.

Custom challenge type can be characterized by the following flow:

• A user who is yet to be authenticated issues a request to access a secure
Web resource that is configured to use custom login challenge type.

• The user is redirected to a URL configured as LoginURL. To perform a
form-based login, this URL points to an HTML file containing an HTML
form requesting a user ID and password. The system administrator is
responsible for specifying the LoginURL during security configuration.

A sample login.html page is listed below:

<FORM METHOD=POST ACTION="/servlet/CustomLoginServlet">
Please Enter:

UserName: <input type="text" size="20" name="user ID">

Password: <input type="password" size="20" name="password">

<input type="submit" name="login" value="Login">
</FORM>

• Submitting the form triggers a servlet that performs a customized login,
including authentication. To do this, the servlet can use the
ServerSideAuthenticator helper class provided by the WebSphere
framework. This class provides a login method that takes the user ID and
password as parameters and performs the authentication using the
specified authentication mechanism. On successful authentication, the
user can be redirected to a Web page, such as a welcome page.

A sample CustomerLogicServlet.doPost() method that implements the
custom authentication is listed below:
Chapter 7. Application design guidelines 141

Figure 49. CustomLoginServlet.doPost() method - source code

Usually the authentication state must be maintained across multiple Web
requests. To do so, one can exploit the WebSphere Single Sign-On (SSO)
framework. As shown above, a custom login servlet can be programmed to
use the com.ibm.websphere.security.SSOAuthenticator class in the SSO
framework. The SSOAuthenticator.login() method from this framework inserts
an SSO cookie. Note, the SSO infrastructure requires LTPA to be the
authentication mechanism. If a custom login is required, but if LTPA cannot be
the authentication mechanism, then it is left to the application developer to
write a servlet to maintain a cookie that contains the user ID and password.

On subsequent interactions, one can use the HttpServletRequest object
passed into the service method of the servlet to obtain information about the
user invoking the method. Invoking the getRemoteUser method on the

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
String userID = null; // user id found on form
String userPw = null; // password
userID = req.getParameter("user ID"); // obtain user ID data form
userPw = req.getParameter("password"); // obtain password from form

ServerSideAuthenticator authenticator;
authenticator = new ServerSideAuthenticator();
org.omg.SecurityLevel2.Credentials retCreds = null;

//Perform Login
try {
retCreds = authenticator.login(userID, userPw, true);

} catch(Exception e) {
throw new ServletException();

}

//Setup Single-Sign On Cookie
SSOAuthenticator ssoAuth = new SSOAuthenticator();
ssoAuth.login(userID, userPw, req, res);

try {
res.sendRedirect(redirectURL);

} catch(Exception e) {
throw new ServletException(“Error redirecting to URL” +redirectURL);

}
}

142 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

HttpRequestObject returns the name of the user. If the user is authenticated,
the method will return the user name, whereas if the user is not
authenticated, it will return the key word “anonymous.” The getRemoteUser
method can be used as shown below:

public void doGet(HttpServletRequest req, HttpServletResponse res) {
// obtain the user name
String userName = req.getRemoteUser();
}

7.8.1 Other design considerations

7.8.1.1 Prevent caching dynamic content
By default, browsers and proxy servers are configured to cache HTML pages
in order to minimize the network traffic and improve performance by avoiding
downloading recently retrieved pages. Such configurations work best with
static content. Dynamic content on the other hand, would need to be
downloaded every time the user requests such information. In order to
prevent dynamic content caching, the best practice is to insert the following
lines of code into the servlet doGet() or doPost() methods. Doing so informs
the browsers and proxy servers to prevent caching the HTTP response under
consideration:

public void doPerform(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
//Set Content Type
res.setContentType("TEXT/HTML");

//Prevent Caching
res.setHeader("Pragma","no-cache");
res.setHeader("Cache-Control","no-cache");
res.setDateHeader("Expires",0);

//Perform the required action
......
}

7.8.1.2 Avoiding duplicate updates - handling the reload problem
When a user presses the reload button or resizes the page, the browser
issues an HTTP request to the URL that generated the current response
page. This results in the re-execution of the interaction controller logic and
the regeneration of the display page. If the interaction controller under
consideration in turn invokes a business logic method that performs an
update, this results in the duplicate update of the model. For example, let us
consider a discount brokerage application that provides a trade entry form.
Let’s also assume that the user enters the trade information and clicks on the
Chapter 7. Application design guidelines 143

Submit button. As a result, a confirmation page is displayed. At this time, the
user resizes the browser or presses the Reload button. As a result, the
browser sends the trade entry request for the second time. This results in the
re-execution of the trade. Clicking on the Back button could also result in such
re-execution of the business logic. To overcome this business logic
re-execution problem, we recommend using the following design pattern for
all interactions that result in an update:

• Interaction controller (update HttpServlet) retrieves the input parameters
and determines the type of update command to be executed.

• The interaction controller (update HttpServlet) then executes the selected
update command.

• Based on the results, the interaction controller (update HttpServlet)
creates a Result bean and inserts it onto the HttpSession pool.

• Finally, the interaction controller (update HttpServlet) invokes the
sendRedirect(URL) on the HttpServletResponse object. This
sendRedirect sends a redirect request to the browser. The browser in turn
sends an HTTP request to the new URL sent by the sendRedirect
command.

• The URL points to an interaction controller (display HttpServlet) that is
capable of creating the final display page. As a result of the sendRedirect
the display interaction controller (display HttpServlet) is invoked.

• The display interaction controller (display HttpServlet), retrieves the
necessary parameters and selects the display page (JSP) to be invoked.

• Subsequently, the display interaction controller (display HttpServlet)
retrieves the Result bean from the HttpSession pool. Using this Result
bean it initializes the View bean associated with the display page (JSP).
Using the HttpRequest.setAttribute() method, it sets the View bean into
the request header.

• Then the display interaction controller (display HttpServlet) uses the
RequestDispatcher to forward the request to the display page (JSP).

• The display page (JSP) retrieves the View bean stored in the HttpRequest
object using the useBean tags.

• Finally, the JSP generates the HTML response page.

This approach to handling updates ensures that the update request is never
inadvertently re-executed as a result of reloads which could happen as a
result of pressing the Resize, Back, Forward, or Reload buttons on the
browser. This is achieved by using the sendRedirect mechanism. As a result
of the sendRedirect, the location on the browser is changed to the display
144 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

interaction controller URL. Hence on subsequent reloads the display
interaction controller is executed.

7.9 Conclusion

In summary, this chapter introduced a number of user-to-business Web
application design challenges, recommended design pattern solutions,
provided examples that apply the recommended design techniques, and
documented the advantages and disadvantages of the proposed solution.
The design techniques presented are derived from the experience of many
developers who have built high-quality, high-performance e-business
applications. The techniques are presented as design patterns so that you
can easily adapt them to your application requirements.

7.10 Where to find more information

IBM Publications:
• For information on the IBM Application Framework for e-business:

http://www.ibm.com/software/ebusiness/

• IBM Application Framework for e-business: Web Application Programming
Model:

http://www.ibm.com/developer/features/framework/framework.html

• WebSphere Application Server Library:

http://www.ibm.com/software/webservers/appserv/library.html

• Developing Dynamic Web Sites Using the WebSphere Application Server,
by Shane Claussen and Mike Conner:

http://service2.boulder.ibm.com/devcon/news0399/artpage2.htm

• AlphaBeans - JSP Format Bean Library Project:

http://oss.software.ibm.com/developerworks/opensource/jsp/index.html

Other Publications:
• Gamma, Erich et al. 1994. Design Patterns Elements of Reusable

Object-oriented (Addison-Wesley Professional computing series),
Addison-Wesley Publishing Company; ISBN 0201633612

• For information about the ECMAScript Language Specification:

http://www.ecma.ch/stand/ECMA-262.htm

• HTML:

http://www.w3.org/MarkUp/
Chapter 7. Application design guidelines 145

http://www.ibm.com/software/ebusiness/
http://www.ibm.com/developer/features/framework/framework.html
http://www.ibm.com/software/webservers/appserv/library.html
http://service2.boulder.ibm.com/devcon/news0399/artpage2.htm
http://oss.software.ibm.com/developerworks/opensource/jsp/index.html
http://www.ecma.ch/stand/ECMA-262.htm
http://www.w3.org/MarkUp/

• To learn more about Java technology:

http://www.javasoft.com/products
146 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

http://www.w3.org/MarkUp/
http://www.w3.org/MarkUp/

Chapter 8. Application development guidelines

The development of an e-business application does not differ very much from
the development of any object-oriented, client/server application. However,
there are some special considerations, which we will outline in this chapter.
We will describe the development process used to build an e-business
application from the start of the development project until its deployment in a
production system. We will also show the usage and handling of the tools
used to produce the development artifacts in the different development
phases.

8.1 The development process

Today it is quite common in the industry to develop object-oriented software
via an iterative and incremental process. This approach has different roots.
For more information refer to the work of Grady Booch, Object-Oriented
Analysis and Design with Applications; Ivar Jacobson, Object-Oriented
Software Engineering; and James Rumbaugh, Object-Oriented Modeling and
Design.

There is no defined standard process for development that everyone uses.
Different teams typically adopt a recognized process using a vendor
methodology or using their services team methodology. IBM Global Services
has its own methodology used in customer engagements that covers the
development process. The development process we follow throughout this
chapter is simplified and more generic than the IBM Global Services
methodology but is similar to it.

The process we will discuss is divided into different phases. Each phase is
done in a sequential manner and is subdivided into further smaller phases.
Some phases are only run through once. Others are done over and over
again, forming the iterative and incremental part of the development process.
The actual process and which phases you use might differ slightly depending
on the development team or organization that uses the process.

We can divide the whole process into the following phases:

• Solution outline

• Macro design

• Micro design

• Build cycle

• Deployment
© Copyright IBM Corp. 2000 147

Figure 50. Development process overview

In the solution outline phase you decide the scope of the project, explore
what the essential business needs are, come up with an idea of the base
architecture, and get the commitment from the project sponsor to start.

Then you start with the macro design which concentrates on the detailed
requirements gathering, business process modelling, high level analysis and
design, the base architecture, and a plan for the following development
phases, including a development release plan. These two phases are usually
done once in a project.

Now the iterative and incremental part of the development starts. For each
release of the developed e-business application, the micro design, build
cycle, and deployment phases are completed. Usually, a certain set of use
cases that have to be developed to meet a part of the system requirements
make up a release. The releases are defined in the project plan produced in
the previous phase. A release can be an internal one that is not deployed to
any users. This is quite common for early stages of big projects. Others, like
alpha or beta releases, might be deployed to a certain number of test users. It
might take several iterations until a first official release of the application is
deployed to the users. In turn, there are often several releases to the users
until all requirements are met, plus maintenance releases to fix errors and
other defects.

8.2 The scope of this chapter

In this chapter we will explain the development process used for e-business
applications and will focus on:

• The results

• The process to get those results

• The tools to produce those results

We chose this structure since some process models, like the IBM Global
Services methodology, suggest this approach. The idea is to drive the whole

Solution
Outline

Macro Design Micro Design Build Cycle Deployment
148 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

process from the results, called work products. The process is divided into
phases as explained before. Each phase is divided into activities. In turn each
activity might include several tasks. Each phase, activity or even task
produces particular work products as output and needs others as input. The
IBM Global Services methodology also provides technical papers
(techniques) that describe how to produce the different work products.

This chapter will give practical advice on how to use certain tools, like
Rational Rose, IBM WebSphere Studio, and IBM VisualAge for Java, to
produce a work product. But it is also possible to use the described
development process and produce the required work products with other
tools.

In Chapter 7, “Application design guidelines” on page 81, we introduced
some examples taken from a problem domain where weather information can
be obtained for the solar system. The same problem domain is used in the
Pattern Development Kit (see Chapter 10, “The Pattern Development Kit and
an example topology” on page 231 for more information). We will use those
examples or at least use the same problem domain, as the Solar System Web
application, in this chapter.

8.3 The application and architecture domains

As we mentioned before, we do not explain a specific methodology in this
chapter. We will describe the process to create the different work products in
a general way, but not go into the work breakdown structure that the IBM
Global Services methodology provides. However, the IBM Global Services
methodology provides a domain concept that will help to position the contents
of this chapter.

A domain is a logical grouping of related work products. Different roles and
skills fit into a domain through enabling specialization. Domains build the
basis for method tailoring which is an important part of the IBM Global
Services methodology.
Chapter 8. Application development guidelines 149

Figure 51. Domain concept in IBM Global Services methodology

Domains span the whole development process. There are six top level
domains. We will concentrate on the application and architecture domains in
this chapter. This does not mean that you should not be concerned with the
other domains; for example the use case model work product in the
application domain is dependent on the business process model work product
from the business domain.

8.4 Solution outline

The first phase of a development project is the startup. This phase normally
begins with a small team of domain experts, analysts and IT architects
exploring the requirements for the new solution. Beyond the pure business
requirements, it is important to explore the existing environment to find out
how the new application can fit. The target audience for the solution has to be
named and their experience has to be determined.

Based on all this initial information an architecture for the application has to
be determined. The team has to decide about the overall strategy of the
solution, that will drive the whole project, based on the business impact the
solution has on the organization.

Micro
Design

Build
Cycle

Deploy-
ment

IBM Global Services methodology

Macro
Design

Business Domain

Organization Domain

Application Domain

Architecture Domain

Operations Domain

Project Management Domain

Solution
Outline
150 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

In the process of making these base architectural decisions the team can use
the assets of the Patterns for e-business:

• First choose a business pattern that best fits your business problem. The
Patterns for e-business home page under
http://www.ibm.com/software/developer/web/patterns/ will help you in
making this decision. For purposes of this discussion, the chosen
business pattern is user-to-business.

• Next review the application topologies for user-to-business and choose the
appropriate one.

There are two different base strategies, depending on the organization,
business domain, and planned solution:

- Web-up, where the premise is to build a Web application from scratch.

- Enterprise-out, where the idea is to Web-enable an enterprise
application, meaning to build an additional Web channel to access an
enterprise application.

Our example is a Web-up strategy because we want to build a new Web
application with new business logic, leading us to the two application
topologies described in Chapter 2, “Choosing the application topology” on
page 11.

The architectural decisions made are a separate work product and should be
well documented. They are used as input for the macro design where the
architecture is driven from the chosen logical application topology.

8.5 Macro design

In the macro design phase the project team is usually extended from the few
domain experts, analysts and IT architects working in the solution outline
phase to a broader skill set. This team works on the refinement of the results
from the solution outline phase. Their task is to do the following:

• Refine the requirements to come up with the business process model by
identifying and describing key business use cases.

• Evaluate various technology options available for the implementation. At
this point you need to choose a set of technologies for application
development. Chapter 6, “Technology options” on page 65 helps you make
this decision.

• At this stage it is also important to plan the deployment model. For that
reason it is important to finalize the operational model. Chapter 3,
“Choosing the runtime topology” on page 19 helps you choose a logical
Chapter 8. Application development guidelines 151

operational architecture. Since such decisions have an implication on the
long-term system management of the deployed application, we urge you to
consider the guidelines provided by Chapter 9, “System management
products and guidelines” on page 197.

• Subsequently the logical operational architecture needs to be mapped to a
physical instantiation. Chapter 4, “Product mapping” on page 43 provides
guidance in achieving this.

As in the solution outline phase, you should document your architectural
decisions as work products because they will serve as input for the following
release cycles.

Other tasks that have to be done in this phase include:

• Design and plan the tests.

• Set up the development environment.

• Create a development plan for the following release cycles.

Based on a chosen business pattern and application topology you can start
with media design, GUI prototyping and the information architecture. These
activities help you understand what the exact business requirements are.
There are four different approaches for these tasks:

• For Web-up:

- Starting from an existing Web site as your prototype

- Starting from an abstract application flow model using techniques like
storyboards

• For enterprise-out:

- Starting from an existing third-tier system

- Starting from a static object model, usually taken from a third-tier
system

Traditional applications usually present only structured data. Web
applications on the other hand have to combine structured data and
unstructured information on the same page. For example, an online
brokerage application not only needs to show the stock price, account
balance, etc., but also has to show research information about these stocks.
This need to combine the structured and unstructured information on the
same application presents some unique challenges. For this reason, early in
the macro design phase it is important to develop an Information Architecture
for the Web application. Creating an information architecture helps in
understanding:
152 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

• What information has to be published.

• Which users are allowed to access that data.

• What experiences the potential users have, and the different roles they
can play when accessing the information.

• How the information is accessed. For example, is the client a browser, a
stand-alone application, a Personal Digital Assistant (PDA) or a
cell-phone?

Based on the information architecture, the business scenarios for the Web
applications can be modelled using storyboards. These scenarios can then
be implemented in GUI prototypes to verify if they meet the business
requirements. Furthermore, the GUI prototypes and media design are used to
find the right look-and-feel for the Web application.

The release cycles start after all architectural decisions have been made and
documented.

8.6 Micro design

The development plan outlines several release cycles to implement the
requirements iteratively and incrementally. After the macro design phase the
requirements of a project are captured in different work products, like the
business process model, domain use cases, domain class models, and
interaction diagrams for those use cases.

Each release cycle starts with the micro design that focuses on transforming
the business model into a design model by taking the selected use cases and
running them through a typical object-oriented development phase.
Transforming means that we use the business model to bring it to such a
technically detailed level that it can be implemented. This is done by adding
all the architecture and implementation-specific classes and components to
the existing business model.

The design patterns explained in Chapter 7, “Application design guidelines”
on page 81 are used for the transition of the business model to the actual
design model. These design recommendations should lead you from your
high-level application design model to a micro design model that is ready to
implement.

The work products we produce in the micro design phase of the development
process are:

• Use cases
Chapter 8. Application development guidelines 153

• Class models

• Interaction diagrams

• State diagrams

• Component model

• Deployment model

Most of the work products are Unified Model Language (UML) artifacts. The
UML specifications are defined by the Object Management Group (OMG,
http://www.omg.org). Refer to the UML specification under
http://www.omg.org/uml, and to UML Distilled: Applying the Standard Object
Modeling Language, by Martin Folwer for further information on UML. We use
UML to express the work products and show the examples in UML notation.
We work with Rational Rose 2000 Professional J Edition as our modelling
tool. Use the documentation and tutorials that come along with the Rational
Rose product to find more details on how to use it. Refer to the Rational Rose
home page under http://www.rational.com/products/rose/, to get the latest
information on the product.

8.6.1 Use case
A use case describes a function that the developed system has to implement
to meet a specific requirement. A function can be as simple as querying the
current weather data of a planet in the solar system or it can be very complex,
for example, journalling the weather information of the planets the user
queries in a database to be able to show the user at logout a summary of all
recorded data.

8.6.1.1 Use case: work products
We create a use case to describe a particular required user function (taken
from the requirements) in a textual manner. The interaction of the user with
the system is modelled in a use case diagram showing actors, systems,
system boundaries, use cases, and the relationships between these
elements.

In our solar system Web application there is a use case that covers the
retrieval of historical weather information.
154 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

http://www.omg.org
http://www.omg.org/uml
http://www.rational.com/products/rose/

The description is kept very simple and is written in the active voice. A rule of
thumb is to concentrate on what the actor does, his/her interaction with the
system, and how the system reacts (the system’s reaction to the user’s
requests).

Since this is a very simple example of a use case, the matching use case
diagram is not very complex.

Figure 52. Retrieve historical weather information use case diagram

The actor, called User, interacts with the use case called Retrieve historical
weather information.

8.6.1.2 Use case: process
Creating use cases for particular functions is a process that starts in the
macro design phase of a project. It is often the case that there is already a
domain use case that has to be divided into more detailed use cases to be
able to capture all the required functionality. Not all requirements are found in
the macro design so you may have to start from a requirement or a desired
function and create a new use case from scratch.

At the creation of a use case a domain expert has to be part of the team
working on the initial description to come up with a meaningful textual

The user specifies a date to retrieve historical weather information for
planet Mars. The user also selects a measurement system, metric or
imperial, for use in displaying the retrieved results. The user starts the
request to get the weather information.

The system fetches the weather information for the given date. The system
converts the fetched data according to the given measurement system. The
system displays the converted temperature, humidity, and pressure along
with the chosen date and measurement system to the user.

Use case: Retrieve historical weather information
Chapter 8. Application development guidelines 155

description of the problem to be solved. It is also a good idea to consult a
domain expert from time to time when a developer is working on the details of
a use case to ensure that the actual user requirements are met.

8.6.1.3 Use case: tools
Rational Rose has a special container called “Use Case View”, to organize
the use case model. All elements of a use case can be created in this view
(actors, use cases, and use case diagrams) and these elements can be
grouped together in logical containers that are sub-views of the Use Case
View.

Figure 53. Rational Rose - Use Case View

With our simple solar system problem domain we have only created one
sub-view under the Use Case View in Rose, called Solar System that holds
all the use cases, actors, relationships, and use case diagrams.

Figure 54 shows the use case description of Retrieve historical weather
information. It is found in the Use Case Specification window under the
General tab in the Documentation text field.
156 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 54. Rational Rose - Use Case Specification window

Some development teams prefer to have a template for use case
documentation. This is not well supported by Rational Rose. If you decide to
use a more powerful tool for use case documentation like a word processor, a
link to that file can be kept in the use case specification. Use the Files tab in
the Use Case Specification Window to create that link. Keep in mind that the
file is not stored inside Rose and you have to maintain it manually.

8.6.2 Class model and class diagram
A class model contains all the classes found in the problem domain. The kind
of classes that are represented depend on the development phase. In the
analysis phase there are usually only the business model classes. In the
design phase there is a more detailed model with not only domain classes,
but also more technical classes like Java beans or servlets and
implementation-specific objects like interfaces.

8.6.2.1 Class model and class diagram: work products
Class diagrams are used to capture the relationships between the different
classes.
Chapter 8. Application development guidelines 157

All the classes found in the micro design phase make up the class model.
Each class is modelled with its attributes, methods, and relationships to other
classes. We also document implementation language specifics. For example,
class and method visibility in classes and role names and multiplicity of
relationship in the relationship details.

The class relationships are modelled in one or more class diagrams. If there
are many classes, it is a good idea to group the related classes in separate
class diagrams. Classes that form a logical or functional unit should be shown
together. It is often a good idea to show a class in different class diagrams
explaining different relationships for specific functionality.

In a class diagram we express the static relationships of the classes, for
example, inheritance, association, dependency, and implementation
relationships. The most important attributes and methods may also be shown
in the diagram if it helps express the described function.

For our solar system Web application example, we will show all the classes
that are needed to implement the Retrieve historical information use case
with their static relationships in Figure 55.
158 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 55. Solar system weather information - overview class diagram

Since we are in the micro design phase the diagram shows all the technical
details that we will use to implement the use case. In 7.1, “Application
elements” on page 82, the Model-View-Controller design pattern is
discussed. The elements of our application relate to the MVC pattern in the
following way:

• Controller

The RetrievePlanetWeatherServlet and
RetrievePlanetTemperatureServlet are responsible for controlling the
interaction of the user with the system.
Chapter 8. Application development guidelines 159

• Model

- PlanetBean and RetrievePlanetWeatherCommand implement the
business logic and data access.

- WeatherResultBean wraps the results of a weather information query
on one object, by implementing the contract between the controller and
the business logic.

• View

- PlanetWeatherJsp, PlanetTemperatureJsp, and ErrorJsp are the page
constructors responsible for displaying the appropriate result
information to the user.

- WeatherViewBean wraps the results of the weather information query
and provides a certain view of this data (for example, a user-preferred
measurement system) by implementing the contract between the
controller and the view.

Figure 56 shows the dependencies between the different classes that
implement the Retrieve historical weather information use case.
160 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 56. Solar System Weather Information - dependencies class diagram

The dependency relationships shown result from the interaction between the
different classes.

The interaction controller, RetrieveWeatherInformationServlet, creates the
model PlanetBean which in turn creates and returns the Result bean,
WeatherResultBean. The servlet then creates the WeatherViewBean with the
properties of the Result bean and with the information about the date and
measurement system taken from the HttpServletRequest helper class,
storing it in the HttpServletRequest for the view. Finally it invokes the
PlanetWeatherJsp page constructor that uses the View bean taken from the
HttpServletRequest to display the weather information in the appropriate
measurement system to the user.

For more information on Result and View beans, see 7.4.2, “Result bean and
View bean design pattern example” on page 107.
Chapter 8. Application development guidelines 161

8.6.2.2 Class model and class diagram: process
After the macro design phase there is a business model containing all the
model classes which is used as an immediate input work product. When the
business model use cases are further detailed and new use cases are
created in the micro design you will find many new classes in the use case
descriptions. New technical or implementation-specific classes will appear in
the design since we are transforming a business model into a design model,
introducing a new level of implementation details.

Starting from the design use cases, using methods like CRC (Class
Responsibility Collaboration) cards to find the class’s responsibilities
(methods, relationships, and attributes) is a good way to come up with an
initial model. Later, in the ongoing process of the micro design we will refine
the class model, especially when modelling the interaction and state of the
classes.

8.6.2.3 Class model and class diagram: tools
A special view, called Logical View, is used in Rational Rose to hold all class
models.

We organize related classes in groups that are packages inside the Logical
View. These logical packages should contain classes that, when grouped
together, form a functional unit or are used to implement a use case. A good
organization of the classes already in the Logical View is especially important
when the project is big, or else you can lose the overview. Base classes, such
as the Java class libraries, that your classes depend on, should also be
incorporated into the model.
162 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 57. Rational Rose - Logical View

In Figure 57, we have created a group called Solar System Query System
that holds all the classes we have identified throughout the design process.
This group, in turn, contains other logical packages like the Weather
Information package. The Weather Information package holds all the classes
and class diagrams we described above.

8.6.3 Interaction diagram
For each use case there is usually at least one interaction diagram that
outlines the main interaction flow for the classes involved. If a use case
covers several scenarios it is likely that there are several interaction
diagrams. All the important dynamic issues of the classes should be captured
in interaction diagrams.

8.6.3.1 Interaction diagram: work products
An interaction diagram shows the end-to-end flow of messages between
different objects that collaborate to fulfill some function, for example,
displaying a planet’s weather information for a certain date. End-to-end flow
Chapter 8. Application development guidelines 163

means that the message flow is shown from its trigger until its completion.
The action is usually triggered by an actor, system or system boundary. The
involved objects are shown with the message they send.

Depending on the stage of the design phase and the level of detail you want
to show, the accuracy of the diagrams will differ. In early stages of the design
we only use the most important objects to show their interaction. The
messages we show are not language-dependent and may not even be
methods implemented by the receiver class, meaning that we use normal
textual descriptions on the message arrows. To be able to use interaction
diagrams as documentation for the build cycle, the diagrams should be made
more accurate. It is acceptable to leave details out, but we use only the
classes which are really involved and the messages sent which are
implemented by their receivers. To be able to generate code from the class
model at the start of the build cycle it is important to have good and detailed
interaction diagrams with all the important methods identified and
documented.

Figure 58. Solar system weather information - interaction diagram
164 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 58 shows the interaction between the classes of our Retrieve planet
weather information use case with the technical details on the data retrieval:

• The RetrievePlanetWeatherServlet controls the whole message flow.

• The RetrievePlanetWeatherCommand encapsulates the business logic
and data access. (More information on Command beans can be found in
7.6.1, “Command beans” on page 118.)

• The DatabaseConnector represents the connector technology used to
access data in a database.

• The PlanetWeatherJsp is the page constructor invoked by the servlet
using the View bean PlanetWeatherViewBean to present the results in the
preferred format to the user.

• The HttpServletRequest is used for data exchange between the servlet
and the JSP.

When you create an interaction diagram, you will use the classes from the
existing class model as input. But, since modelling the interaction between
these classes often assists in determining their responsibilities, the
interaction diagrams are also used as input work products to update the
classes and diagrams of the class model.

8.6.3.2 Interaction diagram: process
A use case has one or more scenarios, or flows, that a user can follow
through the functionality described by that use case. It is a good starting point
to capture these scenarios in interaction diagrams. At the very least, all
important interactions that show the overall picture of a use case should be
created at the beginning of the design. The refinement of existing diagrams
and creation of new ones should go on until you feel comfortable with the
understanding of the system modelled in the interaction diagrams. In other
words, stop modelling when you think you are able to start with the build
cycle.

8.6.3.3 Interaction diagram: tools
We use interaction diagrams as part of the Logical View in Rational Rose to
describe the interaction of the classes. If the diagram is specific to a certain
logical package you should place it inside that package.

When working on an interaction diagram and finding new messages sent
between the participating classes, put those messages in as methods in the
receiver class. Also, try to capture the dependencies between the classes
that result from the different message invocations in the class diagrams (see
Figure 56 on page 161 on how we did this for the Solar System example).
Chapter 8. Application development guidelines 165

This will help create a good class model that includes all the necessary
responsibilities to implement the required functionality.

8.6.4 State diagram
Some classes have complex internal state behavior. For those classes, state
diagrams are a useful representation to capture that complexity.

8.6.4.1 State diagram: work products
A state diagram describes the internal states and the state behavior of a
class. The input for this work product includes the class model, the use case,
and the matching interaction diagrams that describe the state behavior of the
classes. This work product might in turn influence the responsibilities of the
class whose internal state it describes. For example, methods and attributes
or the class’ interaction with other classes (modelled in interaction diagrams)
will change depending on the findings of the created state diagram.

8.6.4.2 State diagram: process
Some classes that are found and modelled in the design phase have very
complex internal state behavior that must be described in order to understand
the class. Use a state diagram to capture these states. State diagrams are
also very helpful while actually implementing a class.

8.6.4.3 State diagram: tools
In Rational Rose, state diagrams can be created for any class. They are held
in the Logical View under the class they belong to.

8.6.5 Component model
A component model contains the software modules that, when put together,
make up the developed application. A component maps one or more classes
or even a whole package from the class model into the appropriate
language-specific component. For example, with Java as the implementation
language, you have to map the classes of the design model to class packages
in the component view.

In the build cycle, the component model is used to map the logical design
model into the actual implementation model (writing source code). A class
can be assigned to various components but those components must have the
same implementation language.

8.6.5.1 Component model: work products
Create components for all classes to map the design model to the
implementation model.
166 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Depending on the complexity of the application and the number of involved
classes and packages in the logical class model, use one or more component
diagrams to show the mapping of classes to components and the
dependency between those components.

Since the implementation language for the e-business applications described
in this book is Java, HTML, and some other scripting languages, like
JavaScript or Java Server Pages (JSP), our example will map the class to
those implementation languages.

The component model is very important for the build cycle, since the initial
source code, usually Java, is created from components. For Java this means
you have to create packages in the component model that correspond to the
actual Java package you want to create and map the model classes to
components that will eventually be used to generate Java classes.

Figure 59. Solar system weather information - component diagram

Figure 59 contains all the components we have created for the solar system
weather information retrieval example in the physical package called
weatherinformation. We made a one-to-one mapping between classes and
Chapter 8. Application development guidelines 167

components. In the package structure we chose, the weatherinformation
package is placed under the solarsystem package which is the topmost
package of our application and holds all the application-specific packages.
This package in turn is placed under the itso package, which we used to
contain all the applications developed within the ITSO organization. This
structure can be seen in Figure 60 on page 169.

8.6.5.2 Component model: process
The component model should not be created before the class model reaches
a rather stable state; otherwise, changes to the class model often lead to
much rework in the component model.

The component model is usually only needed at the end of the design stage
when you start the implementation by generating the initial source code from
the component model.

8.6.5.3 Component model: tools
The Component View is another special container in Rational Rose. It holds
all components and packages (in this case, Java class packages) that are
used to map the class model to the implementation model.
168 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 60. Rational Rose - Component View

As discussed earlier, we use the Component View to organize the physical
package structure of the solar system Web application as shown in Figure 60.

The components and packages in this view are used for Java code
generation. Code generation will be discussed later in 8.7.1.3, “Develop
source code: tools” on page 179.

8.6.6 Deployment model
A deployment model contains the runtime characteristics of the system. The
runtime application is deployed on various processes and devices. These
processes and devices together with their relationships are captured in one
deployment diagram.

8.6.6.1 Deployment model: work products
A deployment diagram is used to explain the deployment scheme of the
application at runtime. In addition to this information, it can be used to show
the mapping of the components to the processes.
Chapter 8. Application development guidelines 169

We use this kind of diagram, shown in Figure 61, to show the deployed
runtime topology of the developed e-business application. For the
user-to-business pattern topology 1 this is quite simple since there are only
two logical layers, presentation and business logic. Application topology 2 can
be more complex, because it contains a third tier that can include multiple
back-end systems or third party applications.

Figure 61. Solar system weather information - deployment diagram

For the solar system Web application we have a quite simple deployment
diagram showing three processors and the components running on those
processors:

• Web browser:

The user works with a Web browser to access the solar system Web
application.

• Web server:

The Web server is accessed by the client Web browser and serves static
view contents, such as HTML, image and multimedia files. It passes any
client access requests for dynamic contents to the application server.

• Application Server:

The application server serves dynamic contents:

- View: the page constructor implemented with JSP technology

- Controller: the interaction controller as Java servlets

- Business logic: using JavaBeans and Java classes

- Data access: using the JDBC connectivity built into WebSphere
Application Server using the appropriate Java connector
170 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

8.6.6.2 Deployment model: process
The deployment model is not very important before you plan for the
deployment phase. But it can be useful to start to model the deployment plan
even before you start the implementation to ensure that the developed
components can actually be deployed with the planned runtime topology.

8.6.6.3 Deployment model: tools
Rational Rose provides a special view, called Deployment View, that holds all
deployment objects, processes and devices. There is one deployment
diagram that shows all the devices and the different processes of the running
system and how they are related. The deployment model is not used for Java
source code generation.

.

Figure 62. Rational Rose - Deployment View

The Deployment View for the solar system Web application is relatively
simple, because we only have three nodes that we show, the Web browser,
Web server, and application server.

The UML specification suggests an approach to map the components to the
deployment nodes. In the future we will see tool integration for this option. For
Chapter 8. Application development guidelines 171

now, we decided to use our own format to explain our runtime topologies (see
Chapter 3, “Choosing the runtime topology” on page 19).

8.7 Build cycle

In each release cycle the micro design is followed by the build cycle. The
designed system is actually coded and tested in several build cycles. As in
the micro design, each build cycle focuses only on the requirements valid for
that particular release. So with every build cycle the developed system is
growing in the functionality implemented.

In the build cycle the results of the micro design are turned into code:

• Write and unit test the source code.

• Build the executable code if necessary, for example, all Java code.

• Perform various tests on the executable code.

• Test the application in a runtime environment.

• Prepare for deployment.

The incremental approach used to run the release cycles is also used for the
different activities of the build cycle. It is run in several iterations for one
release, with each iteration transforming more of the design into tested
executable code that is ready to be deployed.

In this section we will focus on the process of building and testing. Be sure to
refer to Chapter 5, “Performance guidelines” on page 55 while implementing
the source code and when executing your stress and performance tests.

For more detailed information on the following topics including using
WebSphere Studio, VisualAge for Java, and source code management, refer
to WebSphere Studio and VisualAge for Java Servlet and JSP Programming,
SG24-5755-00.

8.7.1 Develop source code
We use the work products of the previous micro design phase as input for the
coding phase. For Java, follow the guidelines outlined in Chapter 7,
“Application design guidelines” on page 81 and in 5.3, “Java and Java Virtual
Machines” on page 60.

8.7.1.1 Develop source code: work products
Both user-to-business application topologies described in this book suggest a
layered approach, where the presentation logic is divided from the business
172 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

logic. The application design detailed in Chapter 7, “Application design
guidelines” on page 81, suggests using the Model-View-Controller (MVC)
pattern for the separation of concerns. We divided the description of the
required work products into three sub-sections that reflect the use of this
pattern.

Controller source code
Interaction controllers coordinate the application flow by accepting requests
from view elements, like HTML pages, invoking the required business logic
from a model element, for example, a Java bean, and invoking a dynamic
view element to show the results to the user, for example, a JSP page.

To implement a controller, a Java servlet or a JSP can be used, depending on
the complexity of the interaction that is controlled. Refer to 7.3.1,
“Model-View-Controller (MVC) design pattern” on page 94 for more details on
when to use what.

View source code
View elements are implemented using different techniques. They reside on
the Web server or Web application server, and are invoked from thin
browser-clients.

For static contents, Web pages are built using hypertext markup language
(HTML) along with multimedia contents, like images, audio, and video files.
Client-side scripting, for example, using JavaScript, can be incorporated into
static pages to perform active tasks on the browser client. Examples of such a
task would be to check the input values of an HTML form or to pop up a help
information window when a help button is pressed.

When the contents of a page change often, possibly determined by user
input, dynamic page construction techniques are used. We call these view
elements page constructors. Java Server Pages (JSP) are used to construct
dynamic contents on the server. For example, in our solar system application,
a JSP is used to construct the page showing the results of a weather
information query on a planet or the journalling results of a specific user
collecting weather information on different planets.

Model source code
The business logic is implemented using Java classes, Java beans, or
enterprise Java beans (EJBs), depending on the complexity and purpose of
the particular model element.

Connectors are used to access data, local or remote databases, or other
applications residing on the third tier. Connectors are Java class libraries that
Chapter 8. Application development guidelines 173

provide an application programming interface (API) to allow easy access to
databases, middleware, or back-end systems like JDBC-accessible
databases, MQSeries, IMS or CICS.

Third tier source code
As explained in 2.2, “Application topology 2” on page 14 there might be a
need to add new components to the third tier to be able to access legacy
systems or third-party applications. It is also possible that these back-end
applications will have to be changed to integrate them with the newly
developed Web application on the second tier.

The work products needed to accomplish this integration task may differ very
much depending on the actual system to be integrated. These tasks may
include things like having simple batch programs run on a back-end host,
enabling database access to a host database, MQSeries integration of
back-end systems, or invocation of new IMS or CICS transactions.

8.7.1.2 Develop source code: process
An e-business application is developed by a multi-disciplinary team. The skills
include graphic artists, Web page designers, client and server-side script
writers, Java programmers, and traditionally skilled programmers. Depending
on the size of the e-business application there might be multiple team
members with each skill or multiple roles performed by one team member.

Whether there is only one person on the team or one hundred, the concept of
the separation of roles and responsibilities is key to the successful
development and maintenance of an e-business application.

First let’s have a look at the overall process of source code development and
the involved roles (skills). We outline the application flow here for both
topology 1 and topology 2 applications, and show the different kinds of source
code work products described earlier.

In Figure 63 on page 175 and in Figure 64 on page 176, the dashed arrows
show what components are produced by each role, the dotted arrows show
what components are consumed by each role, and the straight arrows show
the application’s control flow between components.

Application topology 1
Figure 63 illustrates the basic structure of application topology 1 and how the
components created by each role interact.
174 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

.

Figure 63. Application topology 1: process of source code development

HTTP clients communicate with an interaction controller. The interaction
controller invokes some business logic depending on the user’s request, for
example, a request to obtain a query result or to perform an update operation.
When the business logic has executed, the response page is generated using
the dynamic page construction feature of the Web application server.

Interaction
Control

Page
Construction

Business
Logic

Data
Java classes

Beans
EJBs

JSPs / Servlets

JSPs

HTML
JavaScript

Browser
Client

view
developer

script
developer

business
logic

developer

JDBC /
SQLJ

Consumes

Creates

Control flow

Legend

For simple e-business applications that do not have much business logic,
the process shown in Figure 63 can be modified. The role of the business
logic developer is not needed because there is no complex business logic
to build. This task can be performed by the script developer, who uses tools
to generate the model beans that implement the business logic. This
developer also has enough skill to write simple Java code inside the model
beans.

Variation on application topology 1
Chapter 8. Application development guidelines 175

Application topology 2
Figure 64 illustrates the basic structure of application topology 2 and how the
components created by each role interact.

Figure 64. Application topology 2: process of source code development

The same basic application flow described for topology 1 applies to this
topology. The difference is that connectors are used to access business logic
or data on the third tier residing in legacy systems or third-party applications.

Roles
The roles used in Figure 63 and Figure 64, view developer, script developer,
business logic developer, and third-tier integration developer, reflect the skills
that a developer needs to create the respective component. In fact, a team
member can perform more than one role, for example, a developer might
produce view elements as well as writing scripts.

• View developer:

The view developer role is responsible for the view part of the presentation
logic, usually consisting of display pages written in HTML with JavaScript,
images and other multimedia elements included. A developer performing
this role also generates simple page constructors (JSPs) using
appropriate tools, like WebSphere Page Designer.

Interaction
Control

Page
Construction

Business
Logic

Data

3rd party
applications

Legacy
systems

Java classes
Beans
EJBs

JSPs / Servlets

JSPs

HTML
JavaScript

Browser
Client

view
developer

script
developer

business
logic

developer

3rd tier
integration
developer

JDBC /
SQLJ

C
O
N
N
E
C
T
O
R
S

Consumes

Creates

Control flow

Legend
176 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

The view developer might also be involved in GUI prototyping.

The input for the view developer’s work is the Result beans and View
beans that have been created by the business logic and script developer
respectively. These beans are used to construct the resultant pages.

• Script developer:

Complex dynamic pages that have to be coded fall into the responsibility
of the script developer. This role also includes the creation of the
interaction controllers. These can be implemented using JSPs or servlets.
If servlets are used the developer has to have Java programming skills.

The script developer depends on both the view and the business logic
developer. The script developer writes the code that controls the
interaction between user request, business logic execution, and invocation
of the result display page.

• Business logic developer:

The business logic developer is responsible for implementing the business
logic, including data and third-tier access using skills in Java, Java beans,
enterprise Java beans, and connector programming.

The business logic developer has to pay attention to the interface
specifications of the code to ensure the script developer can safely call the
business logic.

• Third-tier integration developer

If there are components to change or to add on the third tier, the third-tier
integration developer is responsible for developing the required “glue”
code to allow the integration of the new Web application with existing
back-end systems or third-party applications. The skills needed can range
from batch-job programming and database skills, to transaction
application programming.

The business logic and third-tier integration developers have to stick to the
defined interfaces and protocols in order to be able to develop their code
independently.

The process of source code development encompasses the following
activities:

• Writing the source code

• Testing the written code

• Transforming the source code to executable code

• Managing the source and the runtime code
Chapter 8. Application development guidelines 177

These different activities are closely coupled and even though we explain
them each separately and sequentially, they usually are executed in parallel.

Writing the source code

We typically have different input work products for the different types of
artifacts that have to be developed in this phase:

• For the view source code:

As discussed in 8.5, “Macro design” on page 151, GUI prototypes may
have been produced to better understand the requirements and their
possible solution. If so, when writing the view portion of the source code,
there will be something to start with. Typically, there will be a set of static
view contents (for example, HTML pages) that make up the user interface
with no business logic behind it, and an interaction controller built into the
HTML code that provides basic navigational functions to fulfill the tasks of
a GUI prototype.

Now, this built-in interaction controller logic needs to be removed from the
existing prototype code. Then the static content (HTML pages) that serves
as input pages needs to be separated from the dynamic content. The
dynamic content, for example, the result of a complex query, needs to be
written as JSP code.

• For the controller source code:

The interaction controllers of the different use cases were modelled in the
micro design phase. Therefore, there should be good documentation on
these controllers in the design model tool. You can generate the initial
Java source code from this model. The functionality of generated servlet
classes is then programmed by using the design class model and the
interaction diagrams as input work products.

• For the model source code:

The same is true for the business logic. The initial Java beans are
generated. The business logic is added with the documentation of the
design class model and the interaction diagrams.

• For the third-tier source code:

The design of the “glue” code for the third-tier components should produce
the needed input for the coding phase. Use the appropriate process, which
very much depends on the technology used, to implement the relevant
back-end system source code. The process can include tasks like writing
code for the back-end system, enabling access to a host database, or
adding new programs to a transaction system.
178 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Testing the source code
Each development element should be unit tested by the developer who
created and therefore owns the source code. Since the MVC pattern is used
as a base design architecture, each component is unit-tested on its own.
Since some components depend on input from others (for example, a JSP
needs the bean that it is displaying to work properly) it is very important to
write test code that simulates the missing components. Writing test code
during the source code development phase for the dynamic contents and the
Java code helps with this dilemma in the early stages, and allows almost
instant verification of the developed code. You should encourage your
developers to do this along with source code development.

Creating runtime code
The developed work products differ in the way they are deployed. All view
elements, like HTML, images, and JSPs are deployed as is. There is no
difference between source code and runtime code, because they are
interpreted or compiled at runtime. All Java source code has to be compiled
into bytecode before deployment. Therefore it is important that the script and
business logic developer plan for the final build of the runtime code.

For the new or changed third-tier components there may be a different kind of
runtime code build process. We do not go into details of the third-tier
components in this redbook but we mention it for planning purposes.

Managing the source code
When developing as a team it is always crucial to have good source code
management. This issue becomes even more important when developing an
e-business application with all the many different kinds of assets we
described in this section.

Source code management depends very much on the tools used. The
integration between the tools is important to be able to easily share the
assets from one tool to another. The team support and the support of version
control systems are further significant characteristics of development tools.

8.7.1.3 Develop source code: tools
The tool suite for developing e-business applications for WebSphere
Application Server along with its usage and its life cycle is well documented in
Developing an e-business Application for IBM WebSphere Application Server,
SG24-5423-00. We will show an updated version of the tool usage here.

There are two starting points for the source code development phase:

• The design model, captured in Rational Rose
Chapter 8. Application development guidelines 179

• The GUI prototypes, created with an HTML authoring tool, like NetObjects
Fusion

The script and business logic developers generate the initial source code for
the servlets, Java beans, and other Java classes using Rational Rose, and
import it into VisualAge for Java. When they have coded all the logic using
VisualAge for Java, they can create the class files in WebSphere Studio using
a special built-in tool to interface with VisualAge for Java. From then on, the
developers can use the same built-in tool to keep the Java classes in both
tools synchronous.

The view developer imports the static GUI prototypes into WebSphere Studio
and from then on manages the code in the workbench of WebSphere Studio.
The view and script developers use the WebSphere Studio Page Designer to
import code and to create new view code.

WebSphere Studio is also used to publish the developed code to the Web and
application server, for testing purposes, and finally into production. The Web
server may have been used to test and evaluate the GUI prototypes in the
early stages of the project.

Figure 65 shows an overview of the development tools and what they are
used for.
180 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 65. Tool usage in the source code build cycle

If a source code management (SCM) tool is used, the development artifacts
from VisualAge for Java and WebSphere Studio have to be checked in and
out using the appropriate SCM client. The SCM tool should be used to
manage baselines of all source code.

Rational Rose
For the controller and business logic source code we used the code
generation feature of Rational Rose. As described in 8.6.5, “Component
model” on page 166, we mapped our model classes to components in the
Component View of Rose. There is some initial work to be done before you
can start generating the Java source code for those components:

• First you have to define your general Java settings, by selecting Java ->
Project Specification... from the Tools menu.

SCM Tool

VisualAge for
Java

Web
Server

Application
Server

Create and debug
servlets, Java beans
and other Java classes

Deploy controller and
business logic code (servlets,
beans and classes)

WebSphere
Studio Page

Designer

Deploy view code
(HTML, JSP and image files)

Create HTML and
JSP view code

WebSphere
Studio

Create,
then keep in sync

Edit HTML
and JSP files

Publish

Check files in and out,
manage baselines

NetObjects
Fusion

Publish and
review initial
prototype

Rational
Rose

Use design artifacts to
generate initial controller
and business logic code

Import initial Java code for
controller and business logic

Import
Initial
prototype

Use for Initial
prototyping
Chapter 8. Application development guidelines 181

Figure 66. Rational Rose - Java code generation options

• In the Project Specification window, under the Class Path tab, add a
directory, (for our example, c:\itso\codegen\solarSystem), to the
Directories list. This will be the target directory for the code generation.
182 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 67. Rational Rose - Java Project Specification

Further general options for the code generation can be set on the other
two tabs of the Project Specification window.

• Start the code generation for selected components (servlets, beans, and
commands) from the Component View, as shown in Figure 68.
Chapter 8. Application development guidelines 183

Figure 68. Rational Rose - Java code generation

• You have to map the components and/or packages to a directory, as
shown in Figure 69.
184 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 69. Rational Rose - component mapping for Java code generation

For more information on Java code generation with Rational Rose refer to
Rational Rose 2000 - Using Rose J, which comes with the product’s user
documentation.

The approach we used for integrating the work products from the design
phase into the build cycle is rather manual. There is a tool under development
that should ease this task, called XMI Toolkit. It is currently available as beta
Version 1.2. With this tool you can move a Rational Rose model into
VisualAge for Java, modify the source in the IDE, and update the model with
your changes. For more information on this tool refer to:

• http://www.ibm.com/software/vadd

• http://www7.software.ibm.com/vad.nsf/data/document1924

WebSphere Studio
WebSphere Studio is a team-enabled environment, where the other
development tools are integrated. It is used to organize the source code and
runtime code of the entire development project and can be used to launch a
specific tool for any kind of file type. WebSphere Studio has very good
publishing capabilities, making it easy to publish to different destinations, like
a test environment or the production system. Furthermore, it can be used to
automatically publish changed files, or selectively publish parts of the files.

Developers use the WebSphere Studio workbench to create and modify all
their assets, except for the work products created for the third tier. The assets
Chapter 8. Application development guidelines 185

http://www.ibm.com/software/vadd
http://www7.software.ibm.com/vad.nsf/data/document1924

are stored in a shared file system or a version control system (VCS) sitting
underneath WebSphere Studio. Independent of which technology is being
used for sharing the files, WebSphere Studio provides a check out/check in
paradigm, where checked out assets are locked to avoid two users from
simultaneously (unknowingly) updating the same asset.

While the shared file system is the simplest to set up, it doesn't provide the
level of capabilities provided when using one of the VCSs. VCSs provide file
versioning and are easier to manage with finer grained access control.
WebSphere Studio supports Microsoft SourceSafe, Rational ClearCase,
Intersolv PVCS, IBM VisualAge TeamConnection, and Lotus Domino. When
used with Domino's Common Source Code Control Interface (SCC) support,
WebSphere Studio integrates with the provided workflow templates to provide
added value.

Typically assets are created and modified through the WebSphere Studio
workbench, stored in the shared file system or VCS, and are available to all
team members. There are two important cases where this isn't true:

• First, there is the case where you already have GUI prototypes, typically
implemented in static HTML files. These files have been produced in an
earlier phase of the project, using an HTML authoring tool, like NetObjects
Fusion (not using the WebSphere Studio workbench).

To make them available, the view developer either places them into a
folder within the shared file system, or if a VCS is being used, uses the
VCS client to add the new assets to the VCS project. After the assets are
placed into the shared file system or VCS project, the developer can use
the workbench to do an Insert -> File... -> Use Existing or Insert ->
File... -> From External Source and add the assets to the e-business
application so they are available to the entire team.

• The second important case is when the script and business logic
developers are taking advantage of the advanced version and component
management within VisualAge for Java (with its own team support). In this
case, the Java source is maintained in VisualAge for Java's source
repository where it has advanced capabilities such as method versioning
and incremental compiles.

These assets can also be made available in WebSphere Studio. After the
developers use VisualAge for Java to change one or more Java classes,
beans, or enterprise beans, they use the VCS client within VisualAge for
Java to replace the updated class files within the WebSphere Studio
project. If the script or business logic developer creates a new class in
VisualAge for Java, the asset must be added to the VCS project and then
186 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

added to the e-business application as described above for a view
developer.

With Version 3 of WebSphere Studio and VisualAge for Java there is a
new built-in function that allows the developer to directly create Java
assets in WebSphere Studio using the source code repository of
VisualAge for Java. Such assets can then be updated in both directions
using WebSphere Studio.

WebSphere Studio and VisualAge for Java Servlet and JSP Programming,
SG24-5755-00, has a chapter devoted to software configuration management
and how it relates to WebSphere Studio and VisualAge for Java.

WebSphere Studio has the capability to integrate any kind of development
tool, so it is possible to have a special tool for each work product.
Furthermore, WebSphere Studio comes with the WebSphere Page Designer
and three integrated wizards:

• The JavaBean Wizard

• The Database Wizard

• The SQL Wizard

With these wizards it is possible to build very simple applications without
using a Java development environment like VisualAge for Java. You start
using the SQL Wizard to create SQL queries, inserts, updates, and deletes.
With the Database Wizard you can create the input pages, servlets, beans,
and JSP output pages for the database application. Or, you can even drag
and drop the generated input/output form onto an existing page within Page
Designer in cases where the content for the page has already been created.

The JavaBean Wizard is used to create Web pages based on Java beans,
that for example have been provided by a script or business logic developer.
This wizard eases the work of the view developer when having to integrate
any normal beans and the command, navigator and access beans that are
special artifacts produced with VisualAge for Java by the business logic
developer.

For a detailed description of the product refer to WebSphere Studio and
VisualAge for Java Servlet and JSP Programming, SG24-5755-00.

WebSphere Studio Page Designer
The WebSphere Page Designer is a WYSIWYG (What you see is what you
get) tool for page construction. It supports static (HTML) and dynamic (JSP)
contents. There are also two tools for creating images and animations
included in the product.
Chapter 8. Application development guidelines 187

The view developer generates the input pages with Page Designer. The
WYSIWYG view of the Page Designer is used to fine tune the input pages
and the generated JSP templates. The script dialog or source view is used to
add any client-side JavaScript that is needed.

The script developer writes the more complex JSPs using Page Designer’s
source view.

VisualAge for Java
VisualAge for Java is an integrated development environment (IDE) for
developing all kinds of Java code, including normal Java classes, Java beans,
servlets, and enterprise beans. It is repository-based, uses incremental
compiles, and has its own built-in version control management. VisualAge for
Java is perfectly suited for team development, because it has a highly
sophisticated management concept for code developed by a number of
different users. It has a built-in WebSphere application server test
environment which allows the user to test the whole Web application inside
the development environment. The product comes with various Java
connectors for all kinds of systems, ranging from JDBC for database access,
over middleware like CORBA or MQSeries, to back-end systems like IMS and
CICS.

The script developer uses VisualAge for Java to edit, test, and debug the
servlets and JSPs, and may also use the Java programming environment to
monitor the HTML-generated output as the JSPs execute.

The business logic developer creates and edits classes, servlets, and beans
inside the IDE, using smart guides or manually. The developer uses builders
such as the Enterprise Access and Data Access Builder within VisualAge for
Java to specify the details of the beans generated to access the legacy
applications and data (exploiting the services provided by the WebSphere
Application Server Advanced Edition connectors). With VisualAge for Java
the business logic developer can edit, test, and debug all classes, servlets,
and beans inside the development environment.

8.7.2 Testing
An important part of the build cycle is the testing. We talked about unit tests
in the source code development section since unit testing really belongs in
the coding phase. The test methods described here are produced in a
separate process, possibly by different team members in parallel or after the
coding phase.

There are four kinds of tests in this phase that we will elaborate on:
188 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

• Integration test

• Usability test

• System test

• Stress and performance test

8.7.2.1 Testing: work products
It is important to plan for testing as early as in the macro design phase.
Because an e-business application is built for a heterogeneous runtime
environment, including various technologies and platforms, often with no
control over the users (for example, the number of users, education level, and
behavior) the testing must be planned with much caution.

We suggest that the test plans are really work products and that you should
handle them as such.

Test plans
Plan for integration tests whenever a portion of the source code is ready for
deployment. Do not wait until all code is written before starting integration of
the different development assets. It is a good idea to start integrating small
amounts of code very early instead of doing it all at the end. There is always
the danger of a “big bang” where you realize that the components might not
work together, but since everything is already finished the change effort is
huge.

Plan to write test code to simulate missing components. Test the presentation
and business logic code with simulated back-end system test code, and
vice-versa.

If the developed application is for the Internet and the target audience is
virtually any user, it is not easy to run a usability test where the final users
can be easily involved. In intranet environments, you know the users. For
Internet applications, plan for internal usability tests where you use internal
staff to test the look and feel of the application, preferably people who do not
know much about it.

Plan to test all the browser products you to want to support. Test to see what
happens if a feature your application requires is turned off, for example,
cookies, JavaScript or Java.

Plan for an official or unofficial beta Web site where any, or chosen, users can
test the user interface and give you their feedback. For intranet applications
work together with the actual users to explore their impressions about the
usability of your application. Plan to do this task as soon as you have
Chapter 8. Application development guidelines 189

prototypes, even if there is no real functionality behind them. Rerun these
tests after incorporating the users’ feedback.

The system test needs to be performed in a runtime environment that is as
close as possible to the final production environment. It is important to plan
the setup of such an environment early in order to be able to start system
tests as soon as the first of the developed code is ready to run. As for the
integration test, plan to test as early as possible. A good indicator of when to
start is when there is at least one developed component that encompasses all
application elements (view, controller, model and optionally connector), so it
spans over all runtime platforms. For our solar system example, this would be
when we have one scenario where the user enters the name of a planet, the
controller retrieves the model for that input and the page constructor builds an
output page with the weather information of the chosen planet.

The challenge in planning for stress and performance testing is to build an
accurate test environment. You have to plan for many hardware resources,
that must be set up, installed and configured. Access by a large number of
clients can be simulated, but the servers must have the real hardware
configuration you plan to use. Another thing to keep in mind is that for an
overall performance test of the system, the development of all the different
components has to be synchronized, especially the third-tier activities, to be
able to start these kinds of tests.

Plan to create test data for all the different tests.

Test drivers
The methods of running a test, including the setup, the steps, and how to
perform them, has to be well documented. This ensures that you can run the
same test over and over again. It is important to compare the different test
results in order to tell if something has changed. The change could be due to
an error that has been fixed or a new feature that has been added, but it could
also indicate a new bug or some other malfunction that has not been there
before.

Whether you run your test manually or you use a test tool, we recommend
building test drivers that can be rerun over and over again. As stated before
these test drivers have to encompass an exact description of the test system
setup, the steps performed, the expected outcome, the test data and
optionally the test code that simulates missing system components. For
manual tests it is sufficient to have this information in a text format. Keep any
scripts created for test tools.
190 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Test data
An important work product for any test is meaningful test data. Generate test
data from the given use cases, because the use case will describe the
intended scenarios and data for the application. Also add unexpected data
values and values that are not in the correct range. With this data you can test
if the components are handling exceptions correctly.

Test results
The results from the various tests should be recorded and kept so you can
use them as a comparison for later test runs in the build phase or for a later
development cycle.

The test results tell you a lot about the quality of the developed code. As the
project proceeds, comparing test results from different test runs in the same
or different build cycles, will give you a good understanding of how the code
quality has changed.

8.7.2.2 Testing: process
We have talked a lot about the test planning and when it should take place, so
we won’t elaborate on this issue again. The process of test planning should
start early in the project, usually in the macro design when you create your
first project plans. In the build cycle the plans for the various tests should be
reworked to match the scope of the actual developed components for each
cycle. The plan can then be fine-tuned in each test phase.

The unit test of source code has to be done in the development phase.

An integration test on a component basis can take place as soon as all
necessary code elements for such a component are ready. Simulate missing
components. It is often a good idea to test the code of a specific component
while simulating the code of the other components involved. With this
approach you can minimize the complexity of the test and focus on problems
with that component without having to worry about the proper function of the
other components involved. This makes it closely related to the code
development. A final integration test for all components is only needed once
components are interconnected. Otherwise, it is sufficient to have all related
components tested together.

The system test is used to test the application as a whole. It is run in a
production-like environment. You can start with system testing as soon as
there are components available that have to be deployed on all the different
system platforms. After all components are integration tested there should be
a final system test of the whole application.
Chapter 8. Application development guidelines 191

The usability test can start as soon as there are prototypes and should be
rerun after the incorporation of user feedback and whenever new features are
introduced to the user interface. These tests are pretty independent of the
business logic development, since it is okay to have dummy code behind the
GUI that does not do the real work, as long as the user gets a good
impression of the look and feel of the application.

Stress and performance testing should be performed as the development
progresses to eliminate any surprises before it is too late. The final testing
should be done when all components of the development cycle are
completed. These tests have to be done in an environment that is as similar
as possible to the real production environment. This might be difficult for
Internet applications, where you have a long network link from your Web
application server to the client browser. This link can include many unknown
factors, like the network link of your company to the outside world, the
bandwidth of the network, the infrastructure of the Internet in the user’s home
country, the user’s Internet access provider, and even the technique the user
uses to access the Internet access provider. So do not spend too much time
trying to figure out where to fine tune your code before you have some results
of the overall performance test. These results might show that the bottlenecks
are hidden in places or components that you would never have guessed.
Perform stress tests to avoid pitfalls in production when the number of users
increases to an amount you have never even tried to simulate. Considerations
for performance are found in Chapter 5, “Performance guidelines” on page
55.

8.7.2.3 Testing: tools
Unit tests are done in the development environment if possible, for example,
Java code can be tested directly in VisualAge for Java. Use test code, like
special packages with test classes, to unit test Java code. This approach is
very handy since you can organize the test code together with the source
code, but the deployment is only done for the source code.

VisualAge for Java can also be used very effectively for integration testing
because it contains an application server (the WebSphere Test Environment)
where you can test the interaction controller together with the business logic
and page construction (servlets with beans and JSPs). You can even have
your static contents, like HTML, served by the application server built inside
the development environment. As for unit testing, you can write Java code to
perform integration tests.

For black-box tests used in integration and system testing, the usage of
recording/playback test tools is very powerful. You perform a test scenario
192 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

using the application’s user interface, and record all the steps you perform.
Later you can rerun the recorded script as often as required automatically.

Usability tests are, as the name suggests, done by humans who test the
functionality and the look-and-feel of the application. An error reporting and
tracking tool can help support the manual testing. It should have the
capability to record all relevant information about the error and allow the
tester to enter this information together with the error report. The developer
can then use the error report together with the exact error information stored
in the tool to fix the problem.

Try all possible client technology and configurations in usability testing when
developing an Internet application because you cannot control:

• What browser product and version are used

• What features are turned on or off, for example, cookies, JavaScript, Java

For stress and performance testing, tools that can simulate large numbers of
clients, fast and multiple server access, and heavy network load are
indispensable.

8.8 Deployment

Depending on the size of the developed components in the build cycle, the
development team might decide to build it in several iterations. Even though
each build cycle produces executable code, only the final result is usually
deployed. The whole project is also run iteratively. It is up to the development
team to decide which release, built in a development cycle, is going to be
deployed. There might be alpha or beta releases that are deployed only to a
certain number of test users.

Deployment: Work Products
A deployment plan has to be created that encompasses, not only when and
how to install and set up the newly developed application, but it must include
all hardware and prerequisite software requirements.

You also have to plan for system management, taking into consideration what
has to be managed and how, how to establish the required security, and what
has to be done for availability and recovery, before you can deploy the
application into a production environment. More information on systems
management can be found in Chapter 9, “System management products and
guidelines” on page 197.
Chapter 8. Application development guidelines 193

Deployment: Process
When preparing for deployment of a Web application, you have to plan and
execute the hardware setup. In e-business applications with one of the
architectures described in this book, this means server and network
hardware, database and Web application server machines, network routers
and firewall machines. For an intranet application this might also include
client hardware, for example, thin network computers. The software for all this
hardware has to be installed and configured, including any databases used,
Web and application servers, firewall and security software. If the system
uses application topology 2, it needs access to other production systems. In
some cases this means adding or changing components of a running system.
This task must be addressed in the deployment plan.

You also have to plan how to hand over the operations of the production
system to the staff who will be responsible for it.

Deployment: Tools
In WebSphere Application Server, the Web content (HTML, JSPs, GIFs and
other Web assets) must be published to one directory or set of directories
while servlets, beans and EJBs are published to a different set of directories.
The structure for publishing the Web content might be dictated by local site
rules. For example, there may be rules that say all content must be published
to a single directory, all content for each subsite must be published to a single
directory, or that content must be published to directories by type (HTML,
images, etc.). This structure is not always the best way to organize the
content for authoring (inside WebSphere Studio, for example). If the Web
server is separated from the application server, static and dynamic contents
are published to different servers. Finally, for scalability, it is often desirable to
publish some static content, such as images, to a separate server from the
HTML and logic.

There are many options in setting up and configuring the Web application
server, as explained in Chapter 3, “Choosing the runtime topology” on page
19. Deploying the dynamic contents to the WebSphere Application Server
and configuring the deployed contents is a task that has to be planned
thoroughly and executed very carefully.

The WebSphere Studio workbench provides the ability for you to define an
arbitrary directory structure to organize your e-business application’s assets,
view the relationships between the assets, and define how the assets will be
published. Each asset is assigned a publishing target by default, mirroring the
author time directory structure, but you have the ability to override this
behavior and publish individual assets or entire folders to different directories
and even split the content between multiple servers. The workbench adjusts
194 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

the links to ensure that no matter how you publish your site, the links don't
break.

After the deployment of the files you have to configure your Web application
to run under the IBM HTTP Server and the WebSphere Application Server.
Use the IBM HTTP Server Configure Server service and the WebSphere
administrator's console for the configuration.

8.9 Where to find more information

IBM Publications:
• WebSphere Studio and VisualAge for Java Servlet and JSP Programming,

SG24-5755-00

• Developing an e-business Application for IBM WebSphere Application
Server, SG24-5423-00

• VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets -
CICS Connector, SG24-5265-00.

• Connecting e-business to the Enterprise by Example, SG24-5514-00

Other publications:
• Booch, Grady. 1994. Object-Oriented Analysis and Design with

Applications (Addison-Wesley Object Technology Series), Reading, MA;
Addison-Wesley Publishing Company; ISBN 0805353402

• Jacobson, Ivar. 1992. Object-Oriented Software Engineering; A Use Case
Driven Approach, Reading, MA; Addison-Wesley Publishing Company;
ISBN 0201544350

• Rumbaugh, James et al. 1991. Object-Oriented Modeling and Design,
Englewood Cliffs, NJ; Prentice Hall; ISBN 0136298419

• Fowler, Martin, Kendall Scott (Contributor) and Ivar Jacobson. 1997. Uml
Distilled; Applying the Standard Object Modeling Language.Reading, MA;
Addison-Wesley Publishing Company; ISBN 0-201-32563-2

• John Barry, Tom Bridge, Paul Fertig, Tom Guinane, Geoff Hambrick,
Daniel Hu, Tom Kristek, Dave Livesey, Guillermo Lois, Mike Page, Branko
Petch, Frank Seliger, Thomas Wappler, Brian Watt, Martin West, Goerge
Yuan: Developing Object-oriented Software - An Experienced-Based
Approach, Prentice Hall, 1997, ISBN 0137372485
Chapter 8. Application development guidelines 195

196 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Chapter 9. System management products and guidelines

Previous chapters described how you could begin designing an e-business
application by selecting the appropriate application and runtime topology, and
then discussed the application design and development issues typically faced
in e-business implementation.

Once the application development is completed and your users have
successfully tested and accepted the system, it is time to start
implementation of the systems management phase. In this phase, you will
have to deploy and manage the application in a production environment,
which will require early planning. Specifically, we categorize the set of
post-implementation activities that have to be performed on a routine basis
under system management.

What exactly is involved in system management? It typically involves:

• Application management
• Performance monitoring
• Availability management
• Security management
• Disaster recovery
• Operating system and network administration
• Asset management
• Software distribution
• Problem reporting
• Change management

Looking at this list of activities, system management is certainly not trivial. In
fact, each of these activities requires highly specific skills and professional
experience to perform competently. Besides the skills factor, you will also
have to decide on a set of tools to manage the system management activities.
What tools should you select so that they can work in an integrated and
coherent manner?

Beyond the technical challenge that system management poses, there is also
the added pressure from management. In many situations, you will be
bounded by service level agreements (SLAs) to your users. Such agreements
typically cover system availability hours, system utilization and problem
resolution response time. These measurements will be collected, tabulated
and reviewed on a regular basis by management, to ensure accountability
and a well maintained system. Thus, you will also require reporting tools to
facilitate the SLA review.
© Copyright IBM Corp. 2000 197

With all this management focus and these targets to meet, it makes systems
management more daunting and challenging. Since it is important, it is our
recommendation that you start planning early. Incorporate system
management requirements in the early phases of your design since what you
design will affect how you eventually manage it. Conversely, what tools are
available to manage your system also affects your application design.

To explain each system management activity in detail is beyond the focus of
this redbook. What we will focus on are the key system management
activities related to examples in the user-to-business topologies using
WebSphere Application Server Advanced Edition V3.0.2. These include:

• Managing your WebSphere application, which describes how
day-to-day administration can be performed in WebSphere and also the
tools available for generating reports.

• WebSphere end-to-end security, which describes security issues from
the physical, systems, network and application perspectives.

• Backup and recovery, which presents ideas on disaster recovery using
Tivoli Storage Manager.

The following table maps the set of activities we will describe against the list
of system management activities.

Table 3. System Management Activities described

System management activity Described in:

Application Management 9.1, “Managing your WebSphere
application” on page 199

Performance Management

Availability Management

Security Management 9.2, “User-to-business WebSphere
end-to-end security” on page 208

Disaster Recovery 9.3, “Backup and recovery of your
systems” on page 220
198 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

9.1 Managing your WebSphere application

For this discussion we will look at the runtime topology shown in Figure 70. In
this example, the network is divided into three segments, an internal (or
secure) network, a DMZ, and the external network. All external user access
will have to flow through the protocol firewall to the Web server in the DMZ.
Depending on the type of user request, the Web server redirector may
forward the request through the domain firewall to the application server in
the internal network. The application server will process the request and send
any response back to the external customer through the two firewalls.

Figure 70. Managing WebSphere resources

A WebSphere application is a combination of HTML pages, JSPs, servlets
and EJB resources. These resources will be deployed and managed under
the WebSphere Application Server environment. In our scenario shown
above, the Web server redirector will host static HTML pages while the
application server will host JSPs, servlets and EJBs.

In the rest of this discussion, we will refer to the WebSphere specific terms
described in the following table.

Table 4. Description of WebSphere terms

WebSphere Terms Description

Web resources Refers to servlets, JSPs and HTML pages.

Demilitarized Zone (DM Z)Outside w orld

I
N
T
E
R
N
E
T

Dom ain Nam e
Se rver

Public Key
Infrastructure

Retail
Custom er

W eb
Server

R ed irecto r

D irectory

P
ro

to
co

lF
ir

ew
al

l
In ternal netw ork

D
o

m
ai

n
F

ir
ew

al
l

Database

Area of focus

Legend

Application
S erver
Chapter 9. System management products and guidelines 199

9.1.1 WebSphere resource management
WebSphere resources use core underlying services like the servlet engines,
EJB engines, security application and cluster models residing in the
application server. These services manage the Web resources and
applications that are hosted by the Web server and the application server.
Depending on application requirements, you may be managing a single
stand-alone application server or multiple application servers which support
failover capabilities.

The WebSphere administrative console is used to manage, deploy and
configure the WebSphere resources. This console manages each application
server through the administrative server running in each WebSphere
Application Server.

Figure 71 shows a logical view of the WebSphere administrative components.
It consists of an administrative console, the WebSphere Application Server
components (administrative server, application server) and the WebSphere
repository.

Web application Application consisting of Web resources.

Enterprise application Application consisting of Web applications and
EJBs.

Application server A JVM runtime service that handles user requests
to enterprise and Web applications.

WebSphere Terms Description
200 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 71. Managing stand-alone WebSphere Application Server

Note: The administrative server is typically running in each WebSphere
Application Server. The only exceptions would be nodes running as “thin”
servlet redirectors or under administration agent mode. The thin servlet
redirector is discussed in 15.1, “Creating a standalone redirector” on page
297.

9.1.1.1 WebSphere administrative domain
The management challenge grows when you have more than one WebSphere
Application Server. Can you still effectively manage these distributed servers
from a central location? Fortunately, you will still be able to do so from one
WebSphere administrative console. This is possible through a configuration
known as the WebSphere Administrative Domain. When you have more than
one related WebSphere Application Server, they can be configured to be part
of the same WebSphere domain.

Administrative
Server

Application Server

WebSphere
Repository

Administrative
Console

WebSphere Appication Server
Chapter 9. System management products and guidelines 201

Figure 72. Managing multiple WebSphere Application Servers

The characteristic of this domain is the sharing of an administrative repository
by all WebSphere Application Servers. The repository is a DB2 UDB
database and it contains the following types of information:

• Static information including configuration information, node attributes,
JNDI names, and model clone configuration

• Dynamic information including the state of resources while the system is
running

This repository is located on the first WebSphere Application Server during
initial setup. For subsequent WebSphere Application Server installations, you
will have to create a remote database connection to the repository of the first
WebSphere Application Server.

9.1.2 Using the WebSphere administrative console
With an understanding of the various components in WebSphere
administration, we will describe the functions that the administrative console
provides. These functions are categorized under three tabs in the application:

• Tasks
• Types
• Topology

A dm in is tra tive
S e rve r

Ap p lic atio n
S erver

W eb sphe re
R ep osito ry

A dm in is tra tive
C on so le

A dm in istrative
S erve r

A pp lica tion
S e rver
202 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

9.1.2.1 Tasks

Figure 73. Functions under the Tasks tab

There are three main functions you can perform under the Tasks tab.

1. Configuration tasks - This is where you will do your initial configuration of
new application servers. This will include configuring servlet engines,
virtual host definitions, enterprise and Web applications. For a detailed
step-by-step description of the configuration, please refer to the online
administrative console tutorial located at
http://www.ibm.com/software/webservers/appserv/doc/v30/ae/tutorial/guit

ut.htm

2. Performance tasks - You will utilize the WebSphere Resource Analyzer to
measure performance statistics of your application server. It can be
configured to provide a runtime performance view of a variety of
resources, including servlets, enterprise beans, sessions, database pools,
JVM memory and thread pools. When collected over a period of time,
these statistics can help you create a baseline for the performance of your
application. The data is also useful in management SLA reviews.

3. Security tasks - The last task you can perform is configuring security for
an enterprise application. This includes selecting an authentication
mechanism and the type of user registry. The components of application
security are discussed in 9.2.4, “Web application security” on page 211.
Chapter 9. System management products and guidelines 203

http://www.ibm.com/software/webservers/appserv/doc/v30/ae/tutorial/guitut.htm

9.1.2.2 Types

Figure 74. Functions under the Types tab

Under the Types tab you can see the resources that can be configured in the
WebSphere Application Server environment. In addition, it also lists all
existing configured resources.

The Types view also allows you to see the relationships among resources in
the administrative domain. The resources are displayed according to their
hierarchical, parent-child relationships. One useful thing about this hierarchy
is that it shows you the order in which you must configure resource instances.

The Types tab also allows you to set default properties for each resource
type. This is like creating a template with default values. When these
resources are instantiated, the newly created resources will inherit the default
values. This can greatly simplify the configuration process.
204 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

9.1.2.3 Topology

Figure 75. Functions under the Topology tab

Under the Topology tab, you are provided with a physical view of your
WebSphere Application Server deployment. For each application server, it
will list the resources associated with it.

The functions provided here are where most of the day-to-day administrative
operations take place. For example, you can manage at the administrative
domain level by stopping or starting different application servers within your
domain. You could also manage at the application server level, by monitoring
the status of your servlet and EJB engines.

9.1.3 WebSphere Site Analyzer
Beyond managing the WebSphere resources that keep your application up
and running, you will also have to manage another important facet of the
system. This relates to the Web content that you put up on your site. There
are two areas of focus here.

First, remember that the first impression customers have of your company will
be your Web site and you certainly want to leave them with a positive
impression. Thus, you will need to ensure that they do not encounter errors or
unnecessary delays when navigating your Web site.
Chapter 9. System management products and guidelines 205

Second, your Web site becomes a new communication channel which will
allow you to deliver messages to your customers. As more and more
customers visit your Web site, how do you know whether these messages are
received and perceived effectively?

To help you answer the above, WebSphere provides an integrated tool called
the WebSphere Site Analyzer. This tool allows you to analyze your Web site
in two areas, content analysis and usage analysis. These analyses can be
generated and presented in the form of charts for easy understanding.

The truth is that there is a wealth of information hidden in each of the “hits”
and visits to your Web site and this information could:

• Help you understand your customers better by unlocking the secrets that
are in the trails they have left behind.

• Assist you in enhancing your Web site, so that it will help you retain and
attract new customers in your target market.

• Understand the peak periods of customer access, to help you justify
system upgrades or plan for system management activities.

9.1.3.1 Create a WebSphere Site Analyzer project
To utilize WebSphere Site Analyzer to explore the site contents, you first
create a Site Analyzer project. This project will help you organize related
tasks into a single folder. The tasks include:

Content analysis
Content analysis provides structural information about your Web site by
crawling through your site. This structural information includes:

• Broken links

• Unavailable resources

• Inactive files

• Duplicate pages

The crawler collects data and places it in the Site Analyzer database. This is
useful in ensuring structural and policy conformance of your Web site and
hopefully reduces the possibility of visitors encountering errors.

Usage analysis
Usage analysis provides detailed visitor access information about your Web
site. The information is gathered from the logs and helps answer the following
questions:

• Who is using your site?
206 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

• Where are they entering your Web site from?

• What are the top referring sites?

• What are the commonly used browsers?

• What are the commonly used platforms?

• What is the typical customer behavior and usage patterns on your Web
site?

• What individual pages are accessed including time spent?

9.1.3.2 Create an analysis report
After you have created a content or usage analysis project, you will proceed
to perform an analysis. This is done by selecting and creating elements to be
part of the report. The analysis report can be generated either in HTML or
XML format for viewing.

9.1.3.3 Guidelines for using WebSphere Site Analyzer
To optimize this tool, we recommend the following:

1. Each time you have placed new materials on the Web site, perform a
content analysis. This may reveal broken links that you may have
inadvertently introduced.

2. Routinely run the content analysis to check for structural correctness.
Sometimes, certain Web resources become unavailable and you may not
be aware of this.

3. Generate a usage analysis report at routine intervals as part of the
management review of service level agreements. The Web access
information in this report will help management gauge overall access
patterns to your Web site.
Chapter 9. System management products and guidelines 207

9.2 User-to-business WebSphere end-to-end security

Once your application is running in production mode, you can expect a lot of
user access to the system. If we lived in a perfect world where all users were
law abiding, then we would not have to worry about security. Unfortunately,
this is not the case and your system will constantly face security threats, both
external and internal.

The WebSphere application you have developed is only one component of
the total system configuration. The golden rule is that the security strength of
your system is only as strong as its weakest link. Thus, it is necessary to
ensure that the other components in the system are configured securely.

With this in mind, end-to-end security will consist of physical, operating
system, network and application security.

Table 5. Components of end-to-end security

9.2.1 Physical systems security
Physical systems security is the foundation of the end-to-end security building
blocks. Access to the hardware has to be controlled and monitored
proactively. Anyone gaining unauthorized physical access to your servers
could halt your server, steal valuable information from your storage, plant
viruses, install harmful software, etc. All of these activities are disruptive to
your operations and will cause damage to your system.

If the hardware is not secured properly it will void the other security measures
you take.

9.2.2 Operating systems security
After securing your physical systems, you will have to work on securing the
operating system. As the OS grows richer in function and features, new bugs
are discovered or are waiting to be exploited. An example would be a bug that
allows a user with non-privileged access to perform privileged operations.

Security Type Description

Physical Control access to the hardware equipment hosting your
application.

OS Security at the operating system level.

Network Secure connectivity flow between external, DMZ and internal
networks.

Application Configure WebSphere security.
208 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

At the operating system level, we recommend the following practices for
administering your system:

1. Keep yourself updated on new security glitches.

Unfortunately, there are public Web sites that provide detailed information
about newly discovered glitches. Fortunately, there is also a wealth of
public information available which provides temporary or permanent
remedies for these glitches. As an administrator, you need to be warned
quickly about these loopholes and to take immediate actions to rectify the
problem.

As a service to their customers, most OS vendors provide updated
information related to security hacks. A good source of information is the
Web site by CERT (http://www.cert.org). You can subscribe to their
mailing lists to receive regular updates and news flashes by e-mail.

2. Access privilege account needs.

Your OS security policy will have to consider who has access to the
privilege accounts. You will have to determine the roles and level of
responsibility each person has. For example, you may want to separate
the role of an OS administrator from the application administrator.

3. Enforce good password policies.

Many security hacks are the result of simple passwords. You will have to
enforce good password policies and practices for all accounts in your
system, whether they are privileged or non-privileged. Besides having this
policy, educate your users on their role in the overall system security.

4. Enable logging and auditing.

Remember to turn on OS system logging and auditing. In the event of a
system break-in, hopefully you will have some trails to start off your
investigation.

9.2.3 Network security
Once you have the physical hardware and the operating system secured, you
need to turn your attention to security between interconnected systems.

Network security is the act of protecting resources residing in your internal
network and DMZ from the external network. You want to restrict and prevent
unauthorized user access to your internal systems. At the same time, you do
not want to make it difficult for legitimate users to access your systems.
Chapter 9. System management products and guidelines 209

http://www.cert.org

The key technologies available to achieve this network protection include
firewalls, intrusion detection monitors and anti-virus detection. The
SecureWay suite of products provide you with a comprehensive security
solution that will meet most requirements. Information about SecureWay
products can be found at http://www.ibm.com/software/secureway/.

9.2.3.1 WebSphere in a firewall environment
How do you restrict and control network access? You could use a firewall in
between two networks. When properly configured, the firewall acts as a choke
point and will force all traffic to and from the Internet to flow through it. By
doing so, it can then scan the traffic and determine whether to allow or
disallow the packets based on a set of rules.

When designing your firewalls take the following into consideration:

1. Make sure that there is no direct communication channel between the
applications on the intranet and the external Internet. In our example in
Figure 70 on page 199, all external user requests and application responses
flow through the Web server residing in the DMZ. If necessary, the Web
server will forward the request to the server in the internal network.

2. KISS: Keep it short and simple. Reuse pre-configured rules that exist.
Define new rules if necessary. Always remember to include a rule that
excludes everything else.

3. You should not allow information pertaining to the internal network to reach
the Internet. For example, you would not want the IP addresses of your
internal systems to be made available to external users. Hiding this
information will reduce the risks of external security hacks.

4. At a minimum, you will need a firewall between the external network and
your DMZ, and a firewall between the DMZ and the intranet. Introducing a
DMZ configuration creates an additional security barrier which a network
infiltrator would have to overcome.

Note: When you implement this DMZ configuration, it is possible to
implement all three firewalls in the same physical machine with three network
adapter cards.

In our example, the WebSphere Application Server is separated from the Web
server. In this case, you need a servlet redirector to facilitate communication
between the Web server and the WAS. This servlet redirector communicates
with the WebSphere Application Server via IIOP over RMI. Additional ports in
the firewall have to be opened for proper communication to take place with
210 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

http://www.ibm.com/software/secureway/

the WebSphere bootstrap, the WebSphere Location Service Daemon (LSD),
system management, application server and redirector components. In our
scenario, we have configured the following firewall ports. For a more detailed
description see Chapter 16, “Setting up firewalls” on page 305.

Table 6. Firewall ports usage in a servlet redirector configuration

9.2.3.2 Internet and intranet security considerations
The intranet environment may be a LAN-based departmental network or
could even span geographic regions via a WAN-based Virtual Private
Network (VPN). With this distinction in mind, we can see that the WAN-based
intranet environment has similar characteristics to the Internet based
systems. The physical network used in the VPN network is typically outside
your management control. Thus, you should continue to focus on network
security.

For a LAN-based intranet that is segmented along departmental domains,
you could still implement a firewall between the various departments. A good
example would be to separate the production network environment from the
development network environment.

9.2.4 Web application security
The user requests will flow through your firewall to your application. The final
security checkpoint would be application security which will decide who can
invoke specific application function.

WebSphere provides an integrated security model to configure security on
your Web resources. This can be centrally configured through the
WebSphere administrative console.

Firewall Service Port How to configure

Bootstrap 900 Default fixed value.

LSD 9000 Default value. To change, edit the port
parameter of the LSD command.

EJS 12101 No default value. Edit admin.config file in
WebSphere Application Server.

Application Server 12201 No default value. Use the administrative
console to edit the respective application
server configuration.

Redirector 12301 No default value. Edit the redirector batch
file on the redirector machine.
Chapter 9. System management products and guidelines 211

Let us begin by describing the various WebSphere security components listed
in the following table.

Table 7. WebSphere security components

9.2.4.1 Security plug-in
When Web clients try to access Web resources deployed by the WebSphere
Application Server, the security plug-in component will be invoked. The
security plug-in will then send the client requests to the security collaborator
for security decisions. This security plug-in is attached to the Web server
during software installation.

The following table lists the respective Web servers that WebSphere
Application Server currently supports.

Table 8. Supported WebSphere Web servers

9.2.4.2 Security collaborator
The security collaborator is attached to the WebSphere Application Server. It
makes security decisions on remote method calls on servlets or EJBs by
performing

• Authorization checks

• Pre and post security trace logging

• Delegation policy enforcement

Security Component Location

Security plug-in Supported Web server

Security collaborator WebSphere Application Server

Security server Security application

AIX Solaris NT

Apache Server V1.3.6 x x x

Netscape Enterprise Server V3.51 and V3.61 x x x

Microsoft Information Server V4.0 x

Lotus Domino Application Server R5 x x x

Domino Go Webserver R4.6.2.5 and R4.6.2.6 x x x

IBM HTTP Server V1.3.6 x x x
212 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

9.2.4.3 Security application
The security application resides in every WebSphere administrative server. It
provides the means to configure security policies for both Web resources and
EJBs.

In a particular WebSphere Domain, there is a shared repository (db2) which
contains all the security configuration and policy information. Any WebSphere
Application Server in the same WebSphere domain can access this shared
repository.

9.2.4.4 Security server
The security server is found in the security application. Both the security
plug-in and security collaborator will call the security server for
authentication/authorization services. It provides:

• Centralized control over security policies (permissions, delegation)

• Central security services (authentication, authorization)

The security server is a trusted third party for security policy and control. Web
servers and WebSphere Application Servers call on the security server to
provide authentication, authorization and delegation services.

9.2.5 WebSphere Application Server security model and policy
We have described the key infrastructure components in WebSphere security.
Next, we would like to describe the WebSphere security model and policy.
Understanding this allows you to make informed decisions in configuring and
managing WebSphere security. For example, you can decide which of the
authentication methods are supported given a particular user registry.

Specifically, we will describe the authentication, authorization and delegation
models and policies within WebSphere.

9.2.5.1 Authentication
Authentication is the process of proving who the user says he really is. In
WebSphere, authentication between a user and the WAS can be specified in
terms of:

• User registry - This is where the user and group information will be
stored. In our scenario, we used IBM LDAP as the user registry. See
Chapter 13, “Step 3: Securing the PDK application” on page 275 for
details on configuring WebSphere using he LDAP user registry. Note that
each WebSphere administrative domain can have only the user registry.
Chapter 9. System management products and guidelines 213

• Authentication mechanism - After the user has provided the required
data, the authentication mechanism will validate it against an associated
user registry. Two types of authentication mechanism are supported:

a. Lightweight Third Party Authentication (LTPA)

b. Native operating system

• Challenge Mechanisms - The challenge mechanism specifies how a
server will challenge and retrieve authentication data from the user. It can
be of the form:

a. None - Security runtime does not challenge user for authentication
data.

b. Basic - A user is challenged for ID and password.

c. Certificate - Mutual authentication over SSL.

d. Custom - The ability to specify a custom HTML page to retrieve a
user’s ID and password.

Note: The components of the authentication are dependent on one another.
For example, the authentication mechanism is defined based on the user
registry and this choice drives the challenge mechanism. This is illustrated in
the following diagram.

Figure 76. Relationship between authentication components

Challenge
Mechanism

Authentication
Mechanism

User Registry

Authentication Data

Authentication Data Credentials
214 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

In the following table, we illustrate the relationship between the user registry
and the authentication mechanism. If user ID and password are supplied,
then authentication is delegated to a user registry. If digital certificates are
used, then the certificate credentials are mapped to an associated user
registry entry.

Table 9. Mapping between authentication mechanism and user registry

9.2.5.2 Authorization
The authorization model in WebSphere 3.0 is based on the classic capability
model. In this model, the permissions required to perform a particular
operation are associated with a principal. This is different from the security
model in WebSphere V2, which is based on the Access Control Model (ACL).

UNIX Windows NT LDAP

Native OS
(user ID, password)

The supplied
password is
encrypted using
the OS’s crypt
facility. This is then
compared against
the system’s
password
repository.

Authentication is
delegated to the NT
Security Access
Manager via
systems call.

N/A

LTPA
(user ID, password)

N/A N/A An LDAP bind is
performed using
the DN
(Distinguished
Name) and the
password.

LTPA
(digital certificate)

N/A N/A Based on the trust
in the Web server,
certificates are
validated through
successful
establishment of a
mutual SSL
connection. A
credential mapping
is then performed
based on the
information
contained in the
certificate.
Chapter 9. System management products and guidelines 215

To see the difference, let’s take an authorization policy that specifies a
protection matrix as depicted inTable 10.

Table 10. Mapping between principal and resources

The ACL model is a column-based view of the protection matrix. It specifies
that the /sectionaForm.jsp resource can be accessed by Alice and Bob. On
the other hand, a capability model is a row-based view of the matrix. The
capability model specifies that user Alice has permission to perform an
HTTP_GET on the /sectionaForm.jsp resource.

When a principal requests to perform an operation on a resource, the security
runtime considers a set of permissions to be the “required” permissions for
performing the operation on the resources. If the requesting principal has
been granted at least one of the required permissions, then the security
subsystem authorizes the request to be processed.

Take for example the following configuration:

Table 11. Mapping between enterprise application and resource

Table 12. Mapping between method group and resource

User /sectionaForm.jsp /topologyOne/histData /topologyTwo/his
tData

Alice HTTP_GET

Bob HTTP_GET
HTTP_PUT

HTTP_GET HTTP_GET

Charlie HTTP_GET

Enterprise Application Resource

TopologyOneWebApp /sectionaForm.jsp

/topologyOne/histData

TopologyTwoWebApp /topologyTwo/histData

Method Group Resource

ReadMethod HTTP_GET

WriteMethod HTTP_PUT
216 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

The required permissions that will be stored in WebSphere would be:

Table 13. How WebSphere permissions are stored

9.2.5.3 Delegation
Delegation is the process of forwarding a principal’s credentials along with
the cascaded downstream requests that occur within the context of work that
the principal originated or is having performed on its behalf.

When a client uses an intermediary to invoke a method on a target resource,
the intermediary invokes the method assuming a certain identity. The identity
could be:

• Client - identity of client requesting the method invocation

• System - identity of server hosting the intermediary resource which will
eventually invoke the method

• Specified - a different identity

Delegation policy is specified in terms of the RunAs policy. The RunAs policy
consists of two parts:

• RunAsMode
• RunAsIdentity

The RunAsMode specifies whether a method should execute with the identity
of

• The principal of the caller (client identity)

• The principal of the system (system identity)

• A specified principal (specified identity)

If the RunAsMode is set to specified identity, then the RunAsIdentity
specifies the principal identity used.

Let us take an example of how the various WebSphere components work
together to provide security.

Principal Set of Permissions

Alice { (TopologyOneWebApp, ReadMethods) }

Bob { (TopologyOneWebApp, ReadMethods),
(TopologyOneWebApp, WriteMethods),
(TopologyTwoWebApp, ReadMethods) }

Charlie { (TopologyOneWebApp, ReadMethods)}
Chapter 9. System management products and guidelines 217

Figure 77. Security interaction flow

1. A user, Alice, requests /webapp/topologyone/histData through a Web
browser.

2. The Web server will check if this resource is protected.

3. The Web server issues a 401 challenge to Alice asking her to prove who
she is.

4. Alice responds with her user ID and password (authentication mechanism).

5. The Web server plug-in performs authentication by delegating the task to
the security server using the given ID and password.

6. Alice’s ID and password are matched against the entries in the LDAP
server.
218 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

7. Once Alice has been authenticated successfully, the Web server plug-in
consults the security application to determine whether the user has the
required permission to access the requested resource.

8. Upon successful authorization, the Web server plug-in creates a security
context with the user’s credential information and passes the request to the
servlet engine to service the request.

9. Before invoking a method on the servlet, the security collaborator performs
a check by extracting the user’s credential information from the security
context and verifies that the user has the authority to invoke the method on
the servlet.

10. Finally, the method is executed and the results are sent back to Alice’s
Web browser.

9.2.6 HTTP Single Sign-On (SSO)
When you enable HTTP single sign-on, user authentication credentials are
preserved across multiple applications in the same domain, for example:

• Cooperating but disparate Web servers

• Cooperating applications like the IBM OnDemand Server and Windows NT
Suites.

With SSO, your application will then avoid repeated requests of user security
credentials. However, if your application wants to use the SSO feature, then it
must use an LTPA registry, (LDAP for example).

9.2.7 WebSphere V3 security differences with V2
There are some security differences and improvements in WebSphere V3
over WebSphere V2. As a quick reference, Table 14 shows a summary of the
differences.

Table 14. Comparison between security in V3 and V2

WebSphere V3 WebSphere V2

Users and groups must exist in either a
directory server or OS user registry.

Users and groups can be created in WAS,
independent of directory server or OS
user registry.

Security is applied at the application level. Individual resources are secured. No
protection at application level.

EJB methods are protected. Only servlets and Web resources are
protected.
Chapter 9. System management products and guidelines 219

9.3 Backup and recovery of your systems

Backup may seem a mundane and repetitive task you perform routinely, but it
is absolutely necessary. Its importance to you is never emphasized enough
and typically you will only realize it during a disaster. Imagine losing valuable
transactional data due to a hard disk failure and you do not have a backup.

We suggest you consider the following factors when considering a backup
solution:

1. Data to backup

You should consider the solution’s support for the various data you need to
backup. The data includes operating systems, application data,
transaction logs and configuration files.

2. Available backup window time

In most situations, there is a limited window of time to complete the back
up. Thus, you will have to consider the performance of the backup
solution. Consider the performance of the solution as a whole, not the
individual pieces.

3. Required system recovery time

Not only should the backup be fast, but the recovery process should be
equally fast. Consider how the backup solution is able to provide fast
recovery.

4. Support for enterprise backup

Authorization policies are comprised of
application level security and method
groups.

Authorization policies are comprised of
realms and ACLs.

Single realm concept. Multiple realm concept.

Centralized security services for multiple
application servers.

Security services for each application
server runtime.

Wider portfolio of security policies like
SSO, delegation, LTPA and digital
certificates.

Basic security policy and services are
provided.

WebSphere V3 WebSphere V2
220 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

The solution should be scalable to perform backup of new systems that
you may install, as a result of growth and upgrades. You may also want to
use the backup solution for other existing applications.

5. Integration with system management tools

It is very useful if the backup solution can be integrated with existing
system management tools and thus provides a central administration
capability.

6. Support for emerging technology

The software should be able to support emerging storage area network
(SAN) based storage solutions. As your informational needs grow, these
storage solutions will provide large capacity and high performance data
access.

9.3.1 Using Tivoli Storage Manager
Based on the above factors in selecting a comprehensive backup solution, we
recommend the IBM Tivoli Storage Manager (TSM). It is an integrated
storage management solution that will meet the needs of any company, from
small Internet startups to large enterprises. TSM provides the following
features:

• Full support of client platforms

• High performance backup and recovery process

• Wide support for IBM and non-IBM tape/optical technology

• Scalable solution to meet growing storage demands

• Support for SAN-based solution

• Integrated with the Tivoli suite of systems management products

Let’s begin by looking at how you can configure a Tivoli Storage Manager
solution. We recommend that each and every system in your configuration be
backed up. The frequency of backup will vary, depending on the type of
information and the frequency of changes.

Figure 78 shows the recommended Tivoli components for deployment in the
internal network nodes.
Chapter 9. System management products and guidelines 221

Figure 78. TSM server and client setup in the internal network

Referring to Figure 78, let’s assume you install one TSM server in the
scenario. This server should be located in the internal network with no
external Internet access to it.

Once the TSM server setup is completed successfully, install TSM clients at
every system that you would like to back up. For example, we have installed
TSM clients at the directory server, application server and the shared file
system server. Test the connectivity between the TSM clients and the TSM
server by doing a user-initiated backup.

For the servers in the DMZ (see Figure 79), you can also install a TSM client.
To facilitate communication between the TSM client in the DMZ and the TSM
server in the intranet, you will have to open up one port in the firewall. This
port can be pre-configured in both the TSM client and server.

Directory and
TSM Client

Internal network

Application
Server and
TSM Client

TSM
Server

Database
and TSM

Client
222 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 79. TSM server and client setup in the DMZ and internal network

If this additional firewall port is a security issue in your environment, then
there are two viable options to consider:

• Install Tivoli Data Protection for Workgroups (TDPfW) for Windows NT
systems.

TDPfW provides a stand-alone disaster recovery for Windows NT
machines. It can back up entire Windows NT machines or volumes, and if
a disaster occurs, TDPfW can restore the complete machine, including the
boot volume, disk partitions, security, operating systems, and user files
from a locally attached SCSI tape drive.

This is very useful for small LAN environments (for example, the DMZ)
where you have to manage only a few servers. However, this product
currently is supported on Windows NT only.

Demilitarized Zone (DMZ)

Directory and
TSM Client

P
ro

to
co

lF
ir

ew
al

l

Internal network

D
o

m
ai

n
F

ir
ew

al
l

Application
Server and
TSM Client

TSM
Server

Webserver
Redirector

Database
and TSM

Client

TSM ClientTSM Client

TSM Client
Chapter 9. System management products and guidelines 223

Figure 80. TSM server in the internal network with TDPfW in DMZ

• Installing a TSM server in your DMZ

To facilitate a more automated solution, you could install another TSM
server in the DMZ. Keep in mind, that as more servers are added to the
DMZ, the overhead involved in administering each TDPfW server
increases.

Demilitarized Zone (DMZ)

Directory and
TSM Client

P
ro

to
co

lF
ir

ew
al

l

Internal network

D
o

m
ai

n
F

ir
ew

al
l

Application
Server and
TSM Client

TSM
Server

Webserver
Redirector

Database
and TSM

Client

TDPfW

TDPfW
TDPfW
224 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 81. One TSM server in the DMZ and each internal network

9.3.2 Application backup and recovery
We have discussed general architecture for developing a backup solution. In
this section, we will highlight product specific areas to look out for.

9.3.2.1 Operating system
In a total system recovery scenario, the operating system (OS) will be the first
software to be reinstalled. You should refer to your OS instruction manual for
re-install steps. Our checklist below highlights practical tips for OS backup
management:

• Do you have and know where the OS media is located?

• Do you have new updates to the OS?

• Do you have an OS backup after initial system setup?

• Do you do regular OS backup?

• Do you do ad-hoc OS backup before major installation and after major
configuration changes?

9.3.2.2 WebSphere database
When you install and configure the WebSphere Application Server,
SecureWay Directory and WebSphere Site Analyzer, you will notice that they
use DB2 as their database. In this section, we will only briefly illustrate how a

Demilitarized Zone (DMZ)

Directory and
TSM Client

P
ro

to
co

lF
ir

ew
al

l

Internal network

D
om

ai
n

Fi
re

w
al

l

Application
Server and
TSM Client

TSM
Server

Webserver
Redirector

TSM
Server

Database
and TSM

Client
TSM Client

TSM Client

TSM Client
Chapter 9. System management products and guidelines 225

DB2 backup can be performed. For a comprehensive review of DB2 backup
and recovery, please refer to the DB2 administrative guides and references.

In DB2, you can perform either an online or offline backup. When you do an
offline backup, the database needs to be shut down. The command for an
offline backup is:

db2> backup db <instance name> offline=yes

If shutting down the database is not an option, then you will have to perform
an online database backup:

db2> backup db <instance name> online=yes

When performing an online database backup, you will have to take into
consideration how the database logs will be managed, as they need to be
used in a recovery process. Losing the logs will complicate the recovery
process. When you use TSM, you will enjoy an automated database log
backup solution. This can be achieved by:

• Configuring the DB2 user exit program to utilize TSM.

• Turning on the userexit and logretain parameters in DB2 database
manager.

9.3.2.3 LDAP database backup
With the IBM SecureWay Directory, you can back up the LDAP database from
the GUI interface, the command line, or via native DB2 commands.

Using the GUI (see Figure 82 on page 227):

1. Click Database in the Navigation frame.

2. Click Backup in the Working with back-end database in the work area.

3. Type the fully qualified name of the file to be created in the text entry field.
This file will be in LDIF format.

4. Click the Backup database button to start backing up the database.
226 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 82. LDAP database backup GUI

Using the command line, the db2ldif tool can be used to dump entries from a
directory to a text file in LDIF format. The syntax is:

c:\> db2ldif -o <output file> [-s <subtree>]

Note: LDIF format does not honor any ACL settings and all data is available
in readable text.

To use the DB2 database backup, see 9.3.2.2, “WebSphere database” on
page 225.

9.3.3 Guidelines for backup and recovery
Independent of your backup software choice, there are some guidelines you
can follow:

1. Monitor the backup process.

Ensure that the backup process is successful. If the backup process fails,
understand why it fails and take necessary actions to remedy. For
example, is the backup failing due to dirty drives or faulty media? Perhaps,
there is a problem with the hardware? Could it also be a loss of
connectivity between your backup server and the client machines?
Chapter 9. System management products and guidelines 227

2. Properly manage the backup media.

After taking a backup of the system, ensure you have a proper and
systematic tracking system for your backup media. In the event of a
disaster, can you can easily identify and retrieve these backup media for
recovery?

3. Test your backup.

Do not assume that if the backup process is successful, you have a valid
backup. Test your backup! This will give you additional confidence that
your backup can really help you recover from a disaster.

4. Document, test and maintain a recovery plan.

No matter what size your system configuration may be, always have a
documented recovery plan. This will prove useful during a disaster
situation. The plan should describe step-by-step the process you will take
to recover. Test the plan to ensure that it works! For the document to be
useful at all times, you will have to maintain and update it when
configuration changes occur.

9.4 Where to find more information

• Nagaratnam, Nataraj et al., Security Overview of IBM WebSphere
Standard/Advance 3.02, IBM white paper 2000
228 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Part 3. Application topology 1: a working example
© Copyright IBM Corp. 2000 229

230 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Chapter 10. The Pattern Development Kit and an example topology

The next chapters will describe how to take a runtime topology and modify it
to suit your needs. As our example, we will use an extension of the runtime
topology found in 3.2.3, “Emerging variation 2” on page 27. We use that basic
idea and extend it by adding application server clones distributed over
multiple platforms.

Figure 83. Product mapping, extended emerging variation 2 of runtime topology A

In this scenario, a standalone (“thin”) servlet redirector is serving several
clones of an application server on both AIX and Windows NT servers.

• The protocol firewall was configured to be open on port 80 only. Thus, only
HTTP traffic could flow from the Web browsers to the Web server.

• The domain firewall was configured to be open on the ports needed to
allow IIOP traffic to flow between the redirector and the application
servers.

• The application servers were hosting the business logic that accessed
data stored in the database within the internal network.

• User authentication was implemented using WebSphere’s security
features and users had to authenticate against the LDAP server.

Demilitarized Zone (DMZ)Outside world

I
N
T
E
R
N
E
T

Domain Name
Server

Public Key
Infrastructure

User

Directory

Database

P
ro

to
co

lF
ir

ew
al

l

Internal network

D
o

m
ai

n
Fi

re
w

al
l

Application
ServerWeb Server

Redirector

Windows NT 4.0
SecureWay Firewall 4.1

WebSphere App Serv Adv
Ed 3.021
Windows NT 4.0 with JDK
1.1.7 (IBM build n117p)
and DB2 UDB 5.2 (Fixpack
11)

Or
AIX 4.3.3 with JDK 1.1.8
(IY06325) and DB2 UDB
6.1 (Fixpack 2)

Windows NT 4.0
SecureWay
Directory 3.1.1
DB2 UDB 5.2
(Fixpack 11)

Windows NT 4.0
DB2 UDB 5.2
(Fixpack 11)

Windows NT 4.0
IBM HTTP Server 1.3.6
WebSphere App Serv Adv
Ed 3.021
JDK 1.1.7 (IBM build
n117p)
© Copyright IBM Corp. 2000 231

• Each of the application servers had the same data and code installed,
eliminating the need to install a shared file system.

Our example will show the following:

• Modifying the Pattern Development Kit application code using VisualAge
for Java and WebSphere Studio

• Setting up the Web server and servlet redirector

• Setting up the WebSphere Application Server

• Cloning the application server

• Security, including setting up firewalls and configuring WebSphere to use
LDAP

10.1 The Pattern Development Kit

For our sample code we took an application from the IBM Pattern
Development Kit (PDK) and modified it. The Pattern Development Kit is
designed to provide an overview of WebSphere Advanced Edition in a
working environment. The PDK provides a single-machine setup with
applications and product code. The kit is divided into sections, each showing
a different aspect of the Web application.

• Section A shows an example of Web access to a read-only DB2 database
and a writeable DB2 database.

• Section B shows an example of custom authentication using an LDAP
directory.

• Section C shows an example of Web access to a read-only DB2 database.
This section generates a dynamic menu based on a user profile stored in
the LDAP directory.

• Section D shows an example of Web interactivity with MQ and CICS
back-end applications.

• Section E shows an example of Web access to an IMS and DB2 back-end.

• Section F shows the EJB implementation of the command manager
pattern.

The PDK is scheduled to be available in July 2000. When it becomes
available, information about it can be found at:

http://www.ibm.com/software/developer/web/patterns/
232 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

http://www.ibm.com/software/developer/web/patterns/

10.2 PDK section A

Our sample application will be based on the application from Section A of the
Pattern Development Kit, which illustrates application topology 1. We will
show you how we modified it to fit our needs. This included reworking the
application slightly and separating the implementation among several
machines instead of using the single-machine setup used by the PDK.

The original application used by the PDK displays inter-planetary weather
information to the user. Section A is structured in the following way:

1. A splash screen is initially displayed in the user's browser.

Figure 84. PDK initial screen

2. A link on the splash screen leads the user to a frameset (two frames) that
contains a menu on the left and a contents page on the right of the
browser window.
Chapter 10. The Pattern Development Kit and an example topology 233

http://www.ibm.com/software/developer/web/patterns/

Figure 85. PDK menu

The contents page displays basic information about the sample site. In a
production site this page could be replaced with company information, site
information, etc.

The frame on the left of the browser window contains the menu page. By
clicking on a menu item the user can navigate to other areas of the site.

3. The Topology 1 menu item leads the user to a JSP data entry page. From
this point on, you are in WebSphere Web application called "topologyone".
234 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 86. PDK topology 1 application

4. The user enters information in the input fields. The application uses this
input to retrieve the correct data from a DB2 database.

5. For XML-enabled browsers, the weather data will be returned in XML
format. For browsers that are not XML-enabled, the data will be returned
in a simple table.
Chapter 10. The Pattern Development Kit and an example topology 235

Figure 87. Topology 1 application output - table format

10.2.1 PDK application interaction
The following figure illustrates the internal workings of the topologyone
application in the PDK’s section A.

Figure 88. PDK section A application component interaction
236 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

1. A Web user clicks Topology 1 on the vertical menu that is displayed on the
left hand frame of the frameset.

2. After clicking the menu item the user is presented with a JSP form. Once
the input fields have been entered the user clicks the Submit button on
the JSP form.

3. The parameters are passed to the controller servlet via a query string. The
controller servlet is a secured resource; therefore the Web browser
challenges the user to enter a valid user ID and password (basic
authentication).

4. Once the user has been successfully authenticated, the controller servlet
creates two command bean instances.

5. One instance is delegated the responsibility of reading data from a
read-only DB2 database (HISTDATA) and the other is required to write a
journal record to a second DB2 database (JOURNAL).

6. The controller servlet retrieves the required data from the commands and
passes it into the HTTPRequest object.

7. The controller servlet then invokes a JSP to display the retrieved data. If
no data is returned from the appropriate command the controller servlet
will display a no data page. If an error occurs the controller servlet will also
inform the Web user of the error. The Web user can then try the action
again.

8. The Command beans instances use pooled database connections. Their
lifetime is bound to that of the request.

We will change this slightly to fit our runtime topology layout for the emerging
variation 2 discussed in 3.2.3, “Emerging variation 2” on page 27.
Chapter 10. The Pattern Development Kit and an example topology 237

238 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Chapter 11. Step 1: Modifying the PDK application

To be able to better understand the Pattern Development Kit, you should use
the appropriate tools to look inside the source code for all the Pattern
Development Kit’s artifacts. This will be a high-level look at working with the
PDK using VisualAge for Java and WebSphere Studio. Detailed information
on using these tools can be found in WebSphere Studio and VisualAge for
Java Servlet and JSP Programming, SG24-5755.

11.1 Using the Pattern Development Kit in VisualAge for Java

If you are interested in the Java source code (servlets, beans, and other
classes) of the PDK, use VisualAge for Java to view and modify the code.

The following steps are necessary to get the Pattern Development Kit‘s Java
source code inside the IDE of VisualAge for Java:

1. Add the following features to the workspace:

CICS Connector 3.0.4
Data Access Beans 3.0
IBM Common Connector Framework 3.0
IBM EJB Development Environment 3.0
IBM Enterprise Access Builder Library 3.0
IBM Enterprise Data Access Libraries 3.0
IBM IDE Utility class libraries 3.0
IBM Java Record Library 3.0
IBM WebSphere Test Environment 3.0
IMS TOC Connector 1.1
MQSeries Connector 1.1
Sun Servlet API 2.1

2. Get the VisualAge for Java repository file, called U2BTOP.dat, from the
Pattern Development Kit‘s CD, found in
Sdk\U2BTop\TestDrive\coding\artifacts\repository

3. Import the Pattern Development Kit project from the U2BTOP.dat
repository file into the VisualAge for Java repository

4. Add the Pattern Development Kit project to the workspace

11.1.1 Changing the PDK application in VisualAge for Java
In this example, we have used VisualAge for Java to create a simpler version
of PDK Section A. The new version fetches historical data but does not
update the journal. We also had to modify the database call in the Command
© Copyright IBM Corp. 2000 239

bean to use a user ID and password since the database will eventually be
moved to a separate machine.

The portion of the RetrieveHistoricalDataServlet that updated the journal has
been removed. This was for simplicity in the lab environment. The new servlet
looks like the following:
240 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 89. RetrieveHistoricalDataServlet - part 1

package com.ibm.hursley.asg.ws.skeleton.topologyone.sectiona;
/**
* RetrieveHistoricalDataServlet
* * @verionPatterns Solution Kit 1.0.1
* @authorASG IBM Hursley, Florian Hilgenberg IBM GS Germnay
* */
/*
* Packages required by all servlets
*/
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

import com.ibm.hursley.asg.ws.skeleton.view.*;
import com.ibm.hursley.asg.ws.skeleton.command.*;

public class RetrieveHistoricalDataServlet extends HttpServlet{

/**
* RetrieveHistoricalDataServlet constructor comment.
*/
public RetrieveHistoricalDataServlet() {
super();
}
/*
*/

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException{
performTask(req, res);
}
public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
performTask(req, res);
}
public void init(ServletConfig config) throws ServletException {
super.init(config);
}

Chapter 11. Step 1: Modifying the PDK application 241

Figure 90. RetrieveHistoricalDataServlet - part 2

public void performTask(HttpServletRequest req, HttpServletResponse
res) {

RetrieveHistoricalDataCommand dataCommand = null;

try{
try{

dataCommand = (RetrieveHistoricalDataCommand) this.getClass()

.getClassLoader().loadClass("com.ibm.hursley.asg.ws.skeleton.topologyon
e.sectiona.RetrieveHistoricalDataCommand").newInstance();

} catch(Exception e) {

/*
* Uses this call in VAJ Environment
*/
dataCommand = (RetrieveHistoricalDataCommand) java.beans.Beans
.instantiate(this.getClass().getClassLoader(),

"com.ibm.hursley.asg.ws.skeleton.topologyone.sectiona.RetrieveHistorica
lDataCommand");
}

/*
* Retrieve the form fields
*/
dataCommand.setPlanetName(req.getParameter("planetName"));
dataCommand.setStartDate(req.getParameter("startDate"));
dataCommand.setEndDate(req.getParameter("endDate"));

/*
* Retrieve the data
*/
try {

dataCommand.execute();

} catch (CommandException e) {

/*
242 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 91. RetrieveHistoricalDataServlet - part 3

The RetrieveHistoricalDataCommand bean was modified to hard code (for
testing purposes) the user ID and password for the historical database.

conn = ds.getConnection(“USERID”, “PASSWORD”);

In general, it is good idea to get the PDK application code running in the
WebSphere Test Environment of VisualAge for Java for testing.

To deploy the changed application, simply export the changed classes to a
directory as both Java and class files. Then copy these files to their
respective directories in the WebSphere Application Server. Restart the Web

* Display a no data returned page
*/

getServletConfig().getServletContext().getRequestDispatcher("sectionA/n
oreturndata.jsp").forward(req, res);
return;
}

/*
* Set the Request object attribute
*/

req.setAttribute("results", dataCommand.getData());

/* Forward to HTML View JSP */

getServletConfig().getServletContext().getRequestDispatcher("sectionA/s
ectiona.jsp").forward(req, res);

} catch(Throwable t) {
try {

getServletConfig().getServletContext().getRequestDispatcher("sectionA/e
rror.jsp").forward(req, res);
} catch (Exception e){
log(e.getMessage());
}
}
}
}

Chapter 11. Step 1: Modifying the PDK application 243

application server hosting the PDK’s Web application in the WebSphere
administration console.

11.2 Using the PDK in WebSphere Studio

If you are interested in the Web site source code of the Pattern Development
Kit (the HTML files, JSP files, and image files) use WebSphere Studio as the
tool to view and modify the code.

The following steps are necessary to get the Pattern Development Kit‘s Web
site source code inside the IDE of WebSphere Studio:

1. Get the artifacts from the Pattern Development Kit CD located in:
C:Asg\Sdk\U2BTop\TestDrive\config\artifacts

2. Open the project file, called U2BTop.wao, with WebSphere Studio by
double clicking on the file in Windows NT explorer.

11.2.1 Changing the PDK application with WebSphere Studio
We changed the PDK Section A application from using a dynamic start page
(JSP) to using a static page (HTML with JavaScript) because we wanted to
call the servlet from an HTML file and not from a JSP file.

We used the WebSphere Page Designer to edit the HTML and JSP files as
follows:

1. First, we created a sectionaForm.html file to replace the initial interface
into the topologyone application code, using the sectionaForm.jsp file as a
template. We did this by taking sectionaForm.jsp, changing its file type
from .jsp to .html, and deleting all JSP scripts from the file. We then added
JavaScript code into the file to achieve the input format checking locally in
the user’s browser. The resulting HTML source is shown below.
244 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 92. Source code of sectionForm.html file - part 1

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<HEAD>
<META name="GENERATOR" content="IBM WebSphere Page Designer V3.0.1 for
Windows">
<META http-equiv="Content-Style-Type" content="text/css">
<TITLE> WebSphere Skeleton Topology 1 - Historical Data </TITLE>
</HEAD>

<BODY>

<TABLE cellpadding="0" cellspacing="0">
<TBODY>
<TR>
<TD><IMG src="images/T1HistData.jpg" width="450" height="148"

border="0"></TD>
</TR>

</TBODY>
</TABLE>

<P>

<SCRIPT>
function checkData () {
dateRE = new RegExp("\\d{1,2}/\\d{1,2}/\\d{2,4}");
if (!dateRE.test(document.inputForm.startDate.value)) {
alert("Start date not valid.\n(Format is: dd/mm/yyyy)");
return false;
}
if (!dateRE.test(document.inputForm.endDate.value)) {
alert("End date not valid.\n(Format is: dd/mm/yyyy)");
return false;
}
return true;
}
</SCRIPT>
Chapter 11. Step 1: Modifying the PDK application 245

Figure 93. Source code of sectionForm.html file - part 2

<!-- Form begins here -->
<FORM NAME="inputForm" METHOD=GET
ACTION="/webapp/topologyone/histData">

<!-- This table is inside the Form -->
<CENTER>
<TABLE border="0">
<TBODY>
<!-- Row 1 Planet Name -->
<TR>
<TD bgcolor="#cccccc">Planet Name</TD>
<TD bgcolor="#ffff80">
<SELECT name="planetName" onclick="window.status = 'Select A

Planet';">
<OPTION value="Mars" selected>Mars</OPTION>
<OPTION value="Saturn">Saturn</OPTION>
<OPTION value="Mercury">Mercury</OPTION>
<OPTION value="Moon">Moon</OPTION>
<OPTION value="Pluto">Pluto</OPTION>
</SELECT>
</TD>
</TR>
<!-- Row 2 Start Date -->
<TR>
<TD bgcolor="#cccccc">Start Date</TD>
<TD bgcolor="#ffff80"><INPUT size="20" type="text"

onclick="window.status = 'Enter a Start date'; return true;"
name="startDate" value=""></TD>

</TR>
<!-- Row 3 End Date -->
<TR>

<TD bgcolor="#cccccc">End Date</TD>
<TD bgcolor="#ffff80"><INPUT size="20" type="text"

onclick="window.status = 'Enter an End Date'; return true;"
name="endDate" value=""></TD>
</TR>
246 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 94. Source code of sectionForm.html file - part 3

<!-- Blank Row-->
<TR>
<TD height="10"></TD>
<TD height="10"></TD>

</TR>
<!-- User Prompt -->
<TR>
<TD bgcolor="#cccccc"><I>Test Start Date:</I></TD>
<TD bgcolor="#ffff80"><I>01/01/2000</I></TD>

</TR>
<TR>
<TD bgcolor="#cccccc"><I>Test End Date:</I></TD>
<TD bgcolor="#ffff80"><I>01/01/3000</I></TD>

</TR>
<!-- Buttons -->
<TR>
<TD heigth="10"></TD>
<TD>
<CENTER>
<TABLE cellspacing="4" cellpadding="1">
<TBODY>
<TR valign="middle" align="center">
<TD width="60"><INPUT type="submit" onclick="window.status =

'Press To Submit Form'; return checkData();" name="submit"
value="Submit"></TD>

<TD width="60"><INPUT type="reset" onclick="window.status =
'Press To Clear Form'; return true;" name="reset" value="Clear"></TD>

</TR>
</TBODY>

</TABLE>
</CENTER>
</TD>

</TR>

</TBODY>
</TABLE>
</CENTER>

<!-- The form ends here -->
</FORM>
Chapter 11. Step 1: Modifying the PDK application 247

Figure 95. Source code of sectionForm.html file - part 4

2. Next, we copied sectionaForm.html to the Web server in the
IBM HTTP Server\htdocs\u2btopsamplesite directory.

3. Next, we copied the graphic files used by the html form (T1HistData.jpg
and sectionaWhatis.jpg) to the Web server in the
IBM HTTP Server\htdocs\u2btopsamplesite\images directory.

4. Last, we changed the menu.html file on the Web server in the
IBM HTTP Server\htdocs\U2bTopWebApp directory so that every link to
sectionaForm.jsp file (../webapp/topologyone/sectionA/sectionaForm.jsp)
now points to sectionaForm.html.

<P>

<!-- A new table -->
<TABLE border="0">
<TBODY>
<!-- Row 1 -->
<TR>
<TD><H2>What is Happening ?</H2></TD>

</TR>
<!-- Row 2 -->
<TR>
<TD align="center"><IMG src="images/sectionAWhatis.jpg"

width="500" height="264" border="0"></TD>
</TR>
<!-- Row 3 -->
<TR>
<TD></TD>

</TR>
</TBODY>

</TABLE>
</BODY>
</HTML>
248 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Chapter 12. Step 2: Expanding the PDK to multiple machines

The Pattern Development Kit is for demonstration purposes and is designed
to run on a single machine.

Figure 96. PDK Section A application on one machine

Obviously, this setup is not very realistic for production purposes. Normally,
the different components of the Pattern Development Kit would run on
separate machines, with the Web server on one machine, the application
server on another, and the database on a third.

In this chapter we will outline the steps used to spread the topologyone
application function across a distributed environment, including how to create
a Web server, application server, and the database. The business logic
portion of the application usually has access to business data and even
back-end systems. This part of the application should be running in a secure
environment.

Note: This assumes that you have installed the PDK on a test machine and
you are now going to create a new test environment with two new machines.
It also assumes you have made the application changes described in Chapter
11, “Step 1: Modifying the PDK application” on page 239.

12.1 Setting up the network environment

The remaining parts of the example in this and the following chapters assume
that the proper networking environment has been set up. This means that two

SecureWay
Directory

Internal network

DB2WebSphere
IBM HTTP

Server
© Copyright IBM Corp. 2000 249

firewalls have been introduced into the environment, creating three separate
networks:

• The internal (secure) network
• The DMZ
• The outside (unsecure) network

It also assumes that the IBM SecureWay directory will be used for the
security registry and that it has been set up in the secure network.

If you are using these instructions to create your own test environment, you
may choose to do this at any time, but you may have to adjust the following
instructions slightly for your own use.

Directions for setting up this environment can be found in:

• Chapter 15, “Setting up a standalone servlet redirector” on page 297

• Chapter 16, “Setting up firewalls” on page 305

• Chapter 17, “SecureWay Directory Configuration” on page 325

12.2 Separating the application server from the Web server

The first step in our configuration was to create a Web server. We are going
to introduce a new machine (Machine A) into the configuration and install the
Web server and Web server redirector on it.

Figure 97. New configuration

The steps to set up Machine A are:

1. Install the IBM HTTP Server on Machine A.

SecureWay
Directory

Internal network

WebSphere

Machine B

DB2

d
o

m
ai

n
fi

re
w

al
l

Machine A

IB
M

H
T

T
P

S
er

ve
r

DMZ

WebSphere
servlet

redirector

Machine C
250 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

2. Copy the static contents of the Pattern Development Kit from the
application server to the Web server root directory. These files can be
found in the documents directory of the Web server. For the IBM HTTP
Server with the PDK installed, this will be the \IBM HTTP
Server\htdocs\u2btopsamplesite directory. The files are:

- index.html
- menu.html
- content.html
- frameset.html
- \theme\Master.css
- all image files in \images

3. In Chapter 11, “Step 1: Modifying the PDK application” on page 239, we
modified the PDK application code so that the start page was not a JSP,
but an HTML file with JavaScript. The new HTML file calls the servlet.

Copy the following files into the
IBM HTTP Server\htdocs\u2btopsamplesite directory:

- sectionaForm.html
- images/T1HistData.jpg
- images/sectionAWhatis.jpg

12.3 Setting up the application server on Machine B

Next, we need to create an application server machine in the secure network.
This will involve installing the appropriate product code and installing the
modified version of the PDK topologyone application.

The example assumes that you are going to move the HTML files into the
root directory of the Web server (usually htdocs) and the image files into
the images subdirectory. This will replace index.html, making the initial
entry into the Web server the topologyone application index page. As an
alternative, you could copy the u2btopsamplesite directory as a
subdirectory and make an alias in the HTTP Server configuration file
(httpd.conf) to point to it.

Note
Chapter 12. Step 2: Expanding the PDK to multiple machines 251

Figure 98. New configuration

Prepare machine B using the following steps:

1. Install the IBM WebSphere Application Server code.

2. Start the WAS administration server (IBM WS AdminServer) service from
the services window in the Windows NT control panel.

3. Once the service has started, start the WAS configuration console (Start
-> Programs -> IBM WebSphere -> Application Server V3.0 ->
Administrator's Console)

You will use the administrator’s console to perform the next tasks.

12.3.1 Creating the JDBC driver and DataSource definition
In order to use the DB2 application database, you will need to define a JDBC
driver and you will need to define the database as a DataSource.

1. Under the Types tab highlight JDBC Drivers, right click, and select
Create.... Fill in the window with the values shown in Figure 99.

SecureWay
Directory

Internal network

WebSphere

Machine B

DB2

d
o

m
ai

n
fi

re
w

al
l

Machine A
IB

M
H

TT
P

S
er

ve
r

DMZ

WebSphere
servlet

redirector

Machine C
252 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 99. Create a JDBC Driver

Click Create.

2. Under the Types tab highlight DataSources, right click, and select
Create... Fill in the window with the values shown in Figure 100.

Figure 100. Create a DataSource

Specify historicalData as the name of the data source. This name is used
in the RetrieveHistoricalDataCommand Java code.

Use the database name, HISTDATA. This is the name of the database that
comes with the PDK. Later, in 12.4, “Separating the database from the
Web application server” on page 268, you will create this database.

Choose the driver you just defined in step 1 (Figure 99).

Click Create.
Chapter 12. Step 2: Expanding the PDK to multiple machines 253

Note: We do not create a DataSource for the second database in the PDK
application since our modified code does not create journal entries.

12.3.2 Create an application server
The next step is to create an application server called Topology One.

Note: The PDK does not do this. It uses the default server.

1. Under the Tasks tab, expand Configuration. Then select Configure an
application server and click the Start Task button (green circle on the
smart-icon bar).

Figure 101. Configure an application server
254 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

2. On the first page select Web Applications as the needed resource type
(uncheck Enterprise Beans).

Figure 102. Configure an Application server - resource types

Click Next.

3. On the next page, specify a name for the application server. In our case
we chose “Topology One”.
Chapter 12. Step 2: Expanding the PDK to multiple machines 255

Figure 103. Configure an Application server - Application Server Properties

Click Next.
256 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

4. On the next page, take the defaults for the start behavior.

Figure 104. Configure an application server - start behavior

Click Next.

5. On the next page, select the machine's default node. In this case the
machine name is 23bk63z.

Figure 105. Configure an application server - node selection

Click Next.
Chapter 12. Step 2: Expanding the PDK to multiple machines 257

6. On the next page, choose the default_host as the virtual host.

Figure 106. Configure an application server - virtual host selection

Click Next.

7. On the next page, specify a name for the servlet engine. A default name
will be filled in for you. We chose to use the default.

Figure 107. Configure an application server - servlet engine properties

Click Next.
258 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

8. On the next page, specify a name for the Web application (once again, a
default will be filled in for you) and specify /webapp/topologyone for the
application Web path. This is important because it must match the name
coded in the servlet call in sectionaForm.html.

Figure 108. Configure an application server - Web application properties

Click Next.
Chapter 12. Step 2: Expanding the PDK to multiple machines 259

9. On the next page, select Enable File Servlet and Enable JSP 1.0. Click
Finished.

Figure 109. Configure an application server - system servlets properties

12.3.3 Set up the application file structure
Once the application server is defined, switch to the Topology tab. By
expanding the topology structure on the left, find the Topology OneWebApp
application and highlight it. Click the Advanced tab to view the path structure
to be used for the application.
260 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 110. Web application topologyone: advanced properties

Now you need to put the application files where the application server will find
them.

1. Create the document root directory for the newly created application
server. You will find the directory structure in the first line of Figure 110.

c:\WebSphere\AppServer\hosts\default_host\Topology OneWebApp\web

2. Create the directory for Java servlets. You will find the directory structure
in the Classpath field in Figure 110.

c:\WebSphere\AppServer\hosts\default_host\Topology OneWebApp\servlets
Chapter 12. Step 2: Expanding the PDK to multiple machines 261

Figure 111. Directory structure

3. Copy the Java files from the PDK to the application server.

The files will be located on the PDK machine in the subdirectories under:

C:\WebSphere\AppServer\hosts\default_host\topologyone\servlets

-com\ibm\hursley\asg\ws\skeleton\topologyone\sectiona
-com\ibm\hursley\asg\ws\skeleton\command
-com\ibm\hursley\asg\ws\skeleton\view

Copy the com subdirectory structure to the new application server
machine in:

C:\WebSphere\AppServer\hosts\default_host\Topology OneWebApp\servlets\com

4. Copy the JSP files from the PDK to the application server. The files will be
located on the PDK machine under:

C:\WebSphere\AppServer\hosts\default_host\topologyone\web\sectionA

Copy the sectionA subdirectory to the new application server machine
under:

C:\WebSphere\AppServer\hosts\default_host\Topology OneWebApp\web\sectionA

12.3.4 Define the servlet
The next step is to define a servlet.

1. Under the Tasks tab select Add a servlet under Configure a Web
application. Click the Start Task button (green circle on the smart-icon
bar).
262 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 112. Defining a servlet

2. On the first page, select No.

Figure 113. Add a servlet - creation method

Click Next.
Chapter 12. Step 2: Expanding the PDK to multiple machines 263

3. On the next page, select Topology OneWebApp as the Web application.

Figure 114. Add a servlet - select the Web application

Click Next.
264 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

4. On the next page, select Create User-Defined Servlet.

Figure 115. Add a servlet - Type

Click Next.

5. On the next page you define the servlet.

- Specify a servlet name. We used “Retrieve Historical Data Servlet” as
the name.

- Select Topology OneWebApp as Web Application (defined in step 8 on
page 259).

- Specify the servlet class name. This is the fully qualified class name
without the file extension.

com.ibm.hursley.asg.ws.skeleton.topologyone.sectiona.RetrieveHistorical

DataServlet
Chapter 12. Step 2: Expanding the PDK to multiple machines 265

Figure 116. Add a servlet - Properties

Click Add to add an entry to the Servlet Web Path List.

6. In the following pop-up window, specify histData as the Web path of the
servlet. It is important to specify this path just as is, since it must match
what is used by sectionaForm.html.

Figure 117. Add a servlet - add Web path to servlet

Click OK.

Click Next.
266 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

7. On the next page, take the defaults and click Finished.

Figure 118. Add a servlet - more properties

8. Finally restart the Web application. Do this under the Topology tab.
Highlight the Topology OneWebApp under the Topology OneServletEngine
in the Topology One Web application server, right click, and select Restart
Web App.
Chapter 12. Step 2: Expanding the PDK to multiple machines 267

Figure 119. Restarting the Web Application

If the Topology One application server is not running, start it (highlight,
right click, and select Start).

12.4 Separating the database from the Web application server

The next step in distributing the application functions was to put the
application database on a third machine, Machine C.
268 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 120. Separating the DB2 application database

To achieve this we did the following:

1. First we installed DB2 on Machine C. In this case we used Windows NT
with DB2 5.2 + fix pack 11. To be consistent with the PDK, we created a
user ID (USERID) with password PASSWORD which had administrative
privileges and specified this as the DB2 administrative ID.

2. The following procedure was used to create the sample DB2 database:

- Copy the following directories from the PDK machine to a diskette:

c:\ASG\SDK\U2BTop\TestDrive\base\cmd\sectiona

c:\ASG\SDK\U2BTop\TestDrive\base\artifacts\sectiona

- Open a DB2 command window on Machine C:

Start->Programs->DB2 for Windows NT-> Command Window

Execute the following script from the solution kit:

c:\ASG\SDK\U2BTop\TestDrive\base\cmd\sectiona\crthistdata.cmd

This script executes the following DB2 commands:

SecureWay
Directory

Internal network

WebSphere

Machine B

DB2

d
o

m
ai

n
fi

re
w

al
l

Machine A
IB

M
H

T
TP

S
er

ve
r

DMZ

WebSphere
servlet

redirector

Machine C
Chapter 12. Step 2: Expanding the PDK to multiple machines 269

Figure 121. DB2 commands to create the HISTDATA database

Next, execute the script to import the data:

c:\ASG\SDK\U2BTop\TestDrive\base\cmd\sectiona\imphistdata.cmd

3. If it exists, drop the local database on the Web application server (Machine
B). You can do this using the DB2 Control Center.

Start->Programs->DB2 for Windows NT->Administration
Tools->Control Center

Right click the HISTDATA database, and choose Drop.

4. Use the Client Configuration Assistant (CCA) on the Web application
server to create a new database that points to the database on the
database server:

Start->Programs->DB2 for Windows NT->Client Configuration
Assistant

The initial window for the CCA shows the existing DB2 databases. Click
Add to begin defining the remote database you just created.

SET DB2INSTANCE=DB2
DB2START
DB2 CREATE DATABASE HISTDATA
DB2 CONNECT TO HISTDATA
DB2 CREATE TABLE SKELETON.STAFF(STAFF_ID VARCHAR(8) not null,
ACCESS_LEVEL VARCHAR(2), JOB_DESCRIPTION VARCHAR(40), primary key
(STAFF_ID))

DB2 CREATE TABLE SKELETON.PLANETS(PLANET_ID INTEGER not null, NAME
VARCHAR(50), primary key (PLANET_ID))

DB2 CREATE TABLE SKELETON.WEATHER_READINGS(READING_ID INTEGER not null,
PLANET_ID INTEGER, TEMP VARCHAR(3), HUMIDITY VARCHAR(3), WINDSPEED
VARCHAR(3), LOCAL_TIME TIME, LOCAL_DATE DATE, ACCESS_LEVEL VARCHAR(2),
primary key (READING_ID))

DB2 CONNECT RESET
270 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 122. CCA initial window

In the next window, click Manually configure a connection to a DB2
database.

Figure 123. Adding a database connection
Chapter 12. Step 2: Expanding the PDK to multiple machines 271

Choose TCP/IP (or the appropriate protocol) as the communications
protocol. For TCP/IP, the next window will ask for:

- Hostname: We entered the IP address
- Port number: 50000

Figure 124. Defining the communications protocol

The next two windows define the database and its alias. We used the
database name (HISTDATA) for both.

Note: If you have not already dropped the original database you will need
to do this before executing this step.

Figure 125. Defining the database and its alias

The last window gives you the option of registering this database as an
ODBC source.
272 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 126. Register the database to ODBC

Once the database is defined, you are given the option to test the
database connection. This is always a good idea since it ensures that the
connection is defined properly. When you click the Test Connection
button, you will be prompted for a user ID and password (USERID and
PASSWORD in our example) with access to the database.

5. Restart the Web application server on Machine B (see step 8 on page
267).

12.5 Testing the application

At this point, you should have a working application. You can test it by
opening a browser on the Web server machine and typing in the URL:

http://localhost

If you replaced the default files in the IBM HTTP server, as described in 12.2,
“Separating the application server from the Web server” on page 250, you will
see the initial window for the PDK (see Figure 84 on page 233). Follow the
links for the Topology 1 application to verify that you can see the final
inter-planetary data.
Chapter 12. Step 2: Expanding the PDK to multiple machines 273

274 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Chapter 13. Step 3: Securing the PDK application

The next step in our example is to secure our application. The example will
use basic authentication (user ID and password) and the IBM SecureWay
directory as the user registry.

Defining security for the new Topology One application involves:

• Configuring the IBM Secureway Directory. The instructions for this can be
found in Chapter 17, “SecureWay Directory Configuration” on page 325.

• Enabling global security in WebSphere and configuring it to use the
SecureWay Directory.

• Configuring application security in WebSphere.

13.1 Enabling application security in WebSphere

WebSphere security is enabled and configured using the Security task. Using
the WebSphere administrative console, switch to the Tasks tab and expand
the security item.

Figure 127. Security configuration task

There are five tasks listed under security:

• Specify Global Settings
© Copyright IBM Corp. 2000 275

• Configure Application Security
• Work with Method Groups
• Configure Resource Security
• Assign Permissions

Each of these tasks is designed to be performed in the order listed to enable
WebSphere security.

13.2 Enabling WebSphere global security

The first step is to define the global security settings for WebSphere. At the
completion of this step, the administrative server will be protected from
unauthorized access.

In this example, an IBM SecureWay Directory LDAP server is going to serve
as the user registry.

1. Make sure the LDAP server is running.

2. Bring up the WebSphere administrative console. Under the Tasks tab,
highlight Specify Global Settings under the Security item. Then click the
green light to start the security task.

3. In the following window, under the General tab, check the Enable Security
checkbox.

Once you have done this and restarted the administration server, you must
have a working security registry, either LDAP or basic operating system, in
order to bring the administrative console back up. Do not perform this step
until this is done!

Note
276 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 128. WebSphere global security settings

4. In the Application Defaults tab, a Realm Name is automatically entered.
The security realm is the domain in which a security system operates. You
can name the realm anything you like. All applications will need to belong
to this security realm. Under Challenge Type, select the Basic radio
button.
Chapter 13. Step 3: Securing the PDK application 277

Figure 129. WebSphere security: application defaults

5. In the Authentication Mechanism tab specify Lightweight Third Party
Authentication. (For Lightweight Third Party Authentication (LTPA) testing
use the default token expiration of 30 minutes.)
278 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 130. WebSphere security: authentication mechanism

6. Under the User Registry tab in the Global Settings for Security:

- Enter the top level administrator distinguished name (DN) for the
security server ID (cn=USERID) and the corresponding password
(PASSWORD).

- Choose SecureWay for the directory type.
- Enter the SecureWay Directory host name or IP address.
- Port 389 should be selected. This is the default for the IBM SecureWay

Directory. If you changed this, you must reflect that here.
- Enter the base distinguished name that you want to use. The base DN

identifies the point in the directory that you want to start searching. It
could be the root of a tree in the directory (for example, o=ibm, c=uk),
or you could narrow the search down to a particular organizational unit,
as we have done here.

- Enter cn=USERID for the bind DN.
- Enter the password for the bind DN in the bind password field.
- Click Finished.
Chapter 13. Step 3: Securing the PDK application 279

Figure 131. WebSphere security: user registry

You have now enabled security and specified the user registry to use. The
administrative server is currently the only resource protected. The next step is
to protect the application.

Activating global security requires stopping the administrative server and
restarting it.

13.2.1 Protecting the application
In order to be protected by WebSphere security, a Web application has to be
a part of an enterprise application. The first task will be to create an
enterprise application that includes our example application.

1. Bring up the WebSphere administrative console. Under the Tasks tab,
double click Configuration to expand it. Click Configure an enterprise
application. Click the green light to start the task.

2. Give your application a name. Click Next.
280 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 132. Configuring an enterprise application

3. On the next window add the resource Topology OneWebApp. Click Add, then
Finished.

Figure 133. Adding resources to an enterprise application
Chapter 13. Step 3: Securing the PDK application 281

4. Click Finished. If you see any DuplicationRelationInstanceException

warnings, you can safely ignore them.

The next step in defining security is to configure application security. This is
the next item in the GUI under security.

1. Highlight Configure Application Security and click the green start
button.

2. Choose the enterprise application you just created and click Next.

3. You do not need to change anything on the next window but it is important
that you complete this task and click Finished.

If you would like to define a new method group, you can do so with the next
task, Work With Method Groups. For our example, this is not necessary.

You are now ready to configure the resource security. Without doing so, every
application running on the application server will be accessible by anyone.

1. In the Tasks tab, click on the next security task, Configure Resource
Security. Click the green light to start that task.

2. On the right side of the window, expand Virtual Hosts and then
default_host.

3. From the list of resources, select the resource you want to configure. In
our example we click /webapp/topologyone/histData. This is the Web path
for the servlet that retrieves the data. Click Next.
282 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 134. Selecting a resources to be configured

4. When asked if you want to use the default method groups, click Yes.

5. When the next window comes up, click Finished.
Chapter 13. Step 3: Securing the PDK application 283

Figure 135. Adding Default Method Groups to resources

You can repeat the steps described above as many times as needed. Each
time configuring a different resource.

Now that the resources have been configured for security, you will assign
permissions to the enterprise application you created before.

6. In the Tasks tab under Security, highlight Assign Permissions.

7. In the next window, select all entries that begin with Topology One. You can
do this by clicking the first entry and then, while pressing the CTRL key,
select the other entries one at a time. Then click Add.
284 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 136. Selecting an application to be secured

8. Select All Authenticated Users and click on OK.

Figure 137. Selecting users who can access an application
Chapter 13. Step 3: Securing the PDK application 285

The Topology One enterprise application is now secure from unauthorized
access.

You will need to stop and restart the administrative server task.

13.3 Hints and tips

If you turn on security using LDAP, the LDAP server must be available and the
definitions must be correct. If you have made any mistakes, you will not be
able to start the WebSphere administrative console. The IBM WS
AdminServer service will start but the console GUI interface will fail to start.
Unfortunately, you use the administrative console to correct the security
definitions (if that is the problem). This is known as a catch-22.

Tip: If you use the task bar to start the administrative console the messages
appear in a window that closes quickly. Open a command prompt window and
enter adminclient to start the console manually. The advantage of this is that
the error messages will not go away.

Tip: If you have a problem starting the administrative console you can turn
the security feature off manually. Open the DB2 command line processor and
enter the following commands:

•connect to was
•update ejsadmin.securitycfg_table set securityenabled = 0
•commit

Stop and restart IBM WS AdminServer service.

Turning off security this way may not always work. Try this only if everything
else fails. You may have to drop all applications from the database or even
to reboot the machine.

Warning
286 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Chapter 14. Step 4: Cloning an application server

This chapter describes how to set up cloning on the application servers.
Implementation of cloning for this example requires:

1. Creating a model of the Topology One application server.

2. Creating clones of the application server model on both the AIX and the
Windows NT servers.

14.1 Topology and product mapping

Figure 138 shows the environment for our cloning example.

Figure 138. Cloning example

The instructions given here assume that the base products on each node and
their prerequisites have been installed. The initial setup is as follows:

• RS60001 is an AIX 4.3.3 system with WebSphere Application Server
V3.021 and its prerequisites installed.

Demilitarized Zone (DMZ)Outside world

I
N
T
E
R
N
E
T

Domain Name
Server

Public Key
Infrastructure

User P
ro

to
co

lF
ir

ew
al

l

Web Server
Redirector

Windows NT 4.0
SecureWay Firewall 4.1

Windows NT 4.0
IBM HTTP Server 1.3.6.2
(Apache)
WebSphere App Serv
Adv Ed 3.021
JDK 1.1.7 (IBM build
n117p)

Directory

Database

Internal network

D
om

ai
n

F
ir

ew
al

l

Application
Server

WebSphere App Serv Adv
Ed 3.021
Windows NT 4.0

JDK 1.1.7 (IBM build
n117p)

AIX 4.3.3
JDK 1.1.8 (IY06325)

DB2 UDB 5.2 (Fixpack 11)

Windows NT 4.0
SecureWay
Directory 3.1.1
DB2 UDB 5.2
(Fixpack 11)

Windows NT 4.0
DB2 UDB 5.2
(Fixpack 11)

clone1

clone2

23bk63z

rs60001

23-m1720

23bk67d

23-ff412
© Copyright IBM Corp. 2000 287

• 23bk63z is a Windows NT Server V4 system with WebSphere Application
Server V3.021 and its prerequisites installed. No application servers have
been defined.

• Initially, both rs60001 and 23bk63z are in the same WebSphere
administrative domain, meaning they share the same database.

In this example, we will use the Topology One application server created in
12.3, “Setting up the application server on Machine B” on page 251. As an
alternative, if you simply want to try cloning, you can clone the default server
and use the showCfg sample servlet that comes with the WebSphere
examples. This servlet dumps the configuration of the servlet engine it is
running in, including the server name and clone index, making it easy to verify
which clone is actually being used.

14.2 Preparing the WebSphere administrative domain

Notice that we have introduced a WebSphere Application Server machine
(rs60001) into the WebSphere administrative domain. After a node has been
added to the domain, the default_host alias list must be updated to contain
the names, both in short and long form, as well the IP address of all the
nodes in the domain.

To do this, select default_host on the Topology tab and enter the values in
the host alias list and apply the changes. In our case, we have two nodes in
the domain (RS60001 and 23bk63z). In addition we have a servlet redirector
(23bk67d). Our list would include the following:

• localhost
• 127.0.0.1
• 23bk63z
• 23bk63z.itso.ral.ibm.com
• 9.24.104.110 (IP address of 23bk63z)
• rs60001
• rs60001.itso.ral.ibm.com
• 9.24.104.105 (IP address of rs60001)
• 23bk67d
• 23bk67d.itso.ral.ibm.com
• 9.24.104.62 (IP address of the servlet redirector)

This assumes that the firewalls and servlet redirector are in place.

Note
288 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 139. Setting Host Aliases

Changing the host alias list requires a restart of the application servers to
take effect.

14.3 Creating a model

The first step in cloning is to create a model of the application server. This
model serves as a template that can be later cloned. All changes made to this
model are automatically propagated to the clones.

1. If it has been started, stop the Topology One application server. This can
be done under the Topology tab by highlighting the Topology One
application server, right clicking, and selecting Stop.

2. Highlight the Topology One application server. Right click and select
Create->Model.
Chapter 14. Step 4: Cloning an application server 289

Figure 140. Creating a model of the Default Server

3. In the General tab of the Clone Properties window:

- Select Make Topology One a Clone. This makes the original
application server a clone of the new model. All updates to the model
will update this clone.

- Select Recursively Model all instances under Topology One. This
causes all objects in the application server to be cloned as well.

In all of the property windows, make sure all directory paths are valid for
both the AIX node as well as the Windows NT node. Normally, you would
use paths on a shared file system. To make the paths valid for both
Windows NT and AIX we did the following:

• Removed the drive designation (C:) from the directory path and
changed all back slashes (\) to forward slashes (/)

• Created a link on AIX from /WebSphere to /usr/WebSphere.

Note
290 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 141. Clone properties: general properties

4. In the Advanced tab, select any Workload management selection policy
you want. We chose to use a round-robin workload scheme.
Chapter 14. Step 4: Cloning an application server 291

Figure 142. Clone properties: advanced

5. Switch to the Parent tab and highlight Models.

Figure 143. Filling out clone properties

6. After you have filled out the properties, click Create to create the model.

7. In the model, verify that the workload management selection policy is
indeed set to the value (for example, Round Robin) you selected when
creating the model. There is a known defect in WebSphere 3.02 that the
workload management selection is not set during the model create
process. You can check this and change it by highlighting the model
292 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

(Topology One Model) and clicking the Advanced tab in the window. This
will be fixed in a future release.

8. Make sure that each Web application’s document root and class path is
correct. These values should be valid file and directory names. In this case
we had to change the document root and class path to a format that both
AIX and Windows NT could use.

The document root was changed from:

C:\WebSphere\AppServer\hosts\default_host\Topology OneWebApp\web

to:

/WebSphere/AppServer/hosts/default_host/Topology OneWebApp/web

The class path was changed from:

C:/WebSphere/AppServer/hosts/default_host/Topology OneWebApp/servlets

to:

/WebSphere/AppServer/hosts/default_host/Topology OneWebApp/servlets

Figure 144. Verifying important Web Application settings
Chapter 14. Step 4: Cloning an application server 293

14.4 Creating the first clone

You are now ready to create the first clone from the model. The first clone will
be created on the same node as the model (23bk63z). The clone will retain
the application security established earlier.

1. Under the Topology tab, highlight Topology One Model, right click, and
select Create->Clone.

Figure 145. Cloning a model

2. Give the clone a name, for example, DS 1, and select the node for the
clone to run on.
294 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 146. Creating a clone

Click Create to create the clone.

3. Under the Topology tab, highlight the Topology One Model and click the
green button on top of the administrative console to start it.

4. Verify that the application is working by going to a Web browser and
entering the application URL. In our example, the initial window for the
Web server links to the application. See 10.2, “PDK section A” on page
233 for a description of the application.

http://localhost

For the next steps, stop the model (select it and click the red button on top of
the administrative console).

14.5 Creating the next clone

The next step was to create a clone on the AIX system. The AIX system has
been installed with WebSphere and its prerequisites. It is in the same
WebSphere administrative domain as the Windows NT system.

1. Follow the instructions in 14.4, “Creating the first clone” on page 294 to
create a clone of the Topology One Model called DS 2 on rs60001.

2. Next, copy the application files to the AIX system. We created the
necessary directory structure and copied the application files into it. The
file structure for the Topology One application is explained in 12.3.3, “Set
up the application file structure” on page 260. For the AIX machine this
Chapter 14. Step 4: Cloning an application server 295

meant creating the following directory structures and copying the
application files to them:

/WebSphere/AppServer/hosts/default_host/Topology OneWebApp/web

/WebSphere/AppServer/hosts/default_host/Topology OneWebApp/servlets

Note: /WebSphere is linked to /usr/WebSphere.

3. Make a DB2 alias on rs60001 to point to the application database.

On the AIX machine, we used the following commands to do this:

Figure 147. Creating a DB2 alias on AIX

su - db2inst1
DB2
catalog tcpip node histdb remote 23-m1720 server 50000
catalog db HISTDATA as HISTDATA at node histdb
connect to HISTDATA user USERID using PASSWORD

Traffic from the Web server will be alternated among clones on the first
machine (Windows NT). In order for clones on the AIX machine to be used,
a servlet redirector must be set up.

Note
296 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Chapter 15. Setting up a standalone servlet redirector

This chapter describes how to set up the servlet redirector used in the
environment described in Chapter 10, “The Pattern Development Kit and an
example topology” on page 231. The redirector used in the example is a
standalone (“thin”) redirector. Redirectors are described in 4.1.1,
“Implementing a redirector” on page 43.

Figure 148 shows the environment for this example.

Figure 148. Servlet redirector example

15.1 Creating a standalone redirector

In our example, we are using a standalone redirector. The redirector will be
configured on a Windows NT machine, node 23bk67d. Use the custom install

If you are running the servlet redirector, it is recommended that you be at
WebSphere 3.021 level.

Note

Demilitarized Zone (DMZ)Outside world

I
N
T
E
R
N
E
T

Domain Name
Server

Public Key
Infrastructure

User P
ro

to
co

lF
ir

ew
al

l

W eb Server
Redirector

Windows NT 4.0
SecureWay Firewall 4.1

Windows NT 4.0
IBM HTTP Server
1.3.6.2
(Apache)WebSphere
App Serv Adv Ed 3.0.2
JDK 1.1.7 (IBM build
n117p)

Directory

Database

Internal network

D
o

m
ai

n
F

ir
ew

al
l

Application
Server

WebSphere App Serv Adv
Ed 3.0.2
Windows NT 4.0

JDK 1.1.7 (IBM build
n117p)

AIX 4.3.3
JDK 1.1.8 (IY06325)

DB2 UDB 5.2 (Fixpack 11)

Windows NT 4.0
SecureWay
Directory 3.1.1
DB2 UDB 5.2
(Fixpack 11)

Windows NT 4.0
DB2 UDB 5.2
(Fixpack 11)

clone1

clone2

23bk63z

rs60001

23-m1720

23bk67d

23-ff412
© Copyright IBM Corp. 2000 297

for WebSphere to install the application server and the plug-in for your HTTP
server. A standalone redirector does not use a DB2 database.

The Topology One HTML and image files required for the Web server should
also be copied to the redirector machine (see 12.2, “Separating the
application server from the Web server” on page 250).

1. First, you need to add the IP address and hostname of the new servlet
redirector machine to the default_host alias list using the administrative
console on the application server machine (23bk63z). Instructions for this
can be found in 14.2, “Preparing the WebSphere administrative domain”
on page 288.

2. Stop and restart the Topology One Model. This is necessary for the
changes you just made to take effect.

3. On the redirector machine, 23bk67d, create a batch file called
pluginConfig.bat in WebSphere’s bin directory. In our example, this is in
C:\WebSphere\AppServer\bin. A sample file is given in Figure 149. The
three lines that make up the Java command are actually on one line. They
have been broken up here to fit the frame. This file will fetch the plug-in
configuration from the administrative domain.
298 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 149. pluginConfig.bat

4. In WebSphere’s properties directory,
(C:\WebSphere\AppServer\properties), edit the iiopredirector.xml file and
update the admin-node-name and name-service-node-name as shown in Figure
150. The node name should be the same as specified in the
pluginConfig.bat file.

@echo off
setlocal
call setupCmdLine.bat

rem setup the classpath
set WAS_CP=%WAS_HOME%\lib\ibmwebas.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\properties
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\servlet.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\webtlsrn.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\lotusxsl.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\ns.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\ejs.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\ujc.jar
set WAS_CP=%WAS_CP%;%DB2DRIVER%
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\repository.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\admin.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\swingall.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\console.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\tasks.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\xml4j.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\x509v1.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\vaprt.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\iioprt.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\iioptools.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\dertrjrt.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\sslight.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\ibmjndi.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\deployTool.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\databeans.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\classes
set WAS_CP=%WAS_CP%;%JAVA_HOME%\lib\classes.zip
set WAS_CP=%WAS_CP%;%JAVA_HOME%\lib\jsp10.jar
set CLASSPATH=%WAS_CP%

java com.ibm.servlet.engine.oselistener.systemsmgmt.StandalonePluginCfg
-serverRoot \WebSphere\AppServer -adminNodeName 23bk63z -queueProps
\WebSphere\AppServer\properties\iiopredirector.xml

endlocal
Chapter 15. Setting up a standalone servlet redirector 299

Figure 150. iiopredirector.xml

5. In WebSphere’s bin directory, create a batch file called redirector.bat. You
can take the file contents of Figure 151 as an example. This file will be the
actual standalone redirector.

<?xml version=”1.0”?>
<iiop-redirector>

<active-transport>ose</active-transport>
<transport>

<name>ose</name>
<code>com.ibm.servlet.engine.oselistener.SMSQTransport</code>
<arg name=”port” value=”8110”></arg>
<arg name=”queueName” value=”queue1”></arg>
<arg name=”maxConcurrency” value=”50”></arg>
<arg name=”type” value=”local”></arg>
<arg name=”server_root” value=”$server_root$”></arg>
<arg name=”cloneIndex” value=”1”></arg>

</transport>
<admin-node-name>23bk63z</admin-node-name>
<qualify-home-names>true</qualify-home-names>
<name-service-node-name>23bk63z</name-service-node-name>
<name-service-port>900</name-service-port>

</iiop-redirector>
300 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 151. redirector.bat

Note: the first argument in the Java command is required for communication
over a firewall. This is explained in the next section.

15.2 Preparing to use firewalls

The communication between the servlet redirector and the WebSphere
Application Servers is done using RMI/IIOP over TCP. When the WebSphere
process starts, a TCP port is selected to listen on from a range of available
ports. The process registers its port with the WebSphere Location Service
Daemon (LSD), which runs on a well-known port. Processes that need to

@echo off
setlocal
call setupCmdLine.bat

rem setup the classpath

set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\ibmwebas.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\properties
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\servlet.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\webtlsrn.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\lotusxsl.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\ns.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\ejs.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\ujc.jar
set WAS_CP=%WAS_CP%;%DB2DRIVER%
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\repository.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\admin.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\swingall.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\console.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\tasks.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\xml4j.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\x509v1.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\vaprt.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\iioprt.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\iioptools.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\dertrjrt.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\sslight.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\ibmjndi.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\deployTool.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\databeans.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\classes
set WAS_CP=%WAS_CP%;%JAVA_HOME%\lib\classes.zip
set CLASSPATH=%WAS_CP%

java -Dcom.ibm.CORBA.ListenerPort=12301 -Dserver.root=%WAS_HOME%
com.ibm.servlet.engine.ejs.IIOPRedirector

endlocal
Chapter 15. Setting up a standalone servlet redirector 301

communicate with a WebSphere process obtain the port information from the
administrative server.

When you introduce a firewall into the configuration, this process would mean
the firewall would have to be open on the entire range of possible ports. To
avoid this, you will need to assign ports to the WebSphere administrative
server and to the application servers for this communication.

1. First, you need to assign a port for the administrative server on 23bk63z to
listen on. The port chosen should be a valid (unused) TCP port. In this
case, we chose port 12101.

The administrative server is on 23b6k3z. On that node, edit
C:\WebSphere\AppServer\bin\admin.config. Modify the following line:

com.ibm.ejs.sm.util.process.Nanny.adminServerJvmArgs =-mx128m

to:

com.ibm.ejs.sm.util.process.Nanny.adminServerJvmArgs=

-Dcom.ibm.CORBA.ListenerPort=12101 -mx128m

as the first argument. Any other arguments should follow.

2. Next, you need to assign a port for the administration server on rs60001 to
listen on. In this case the port will be 12102.

On rs60001, open the file /usr/WebSphere/bin/admin.config and modify
the line containing com.ibm.ejs.sm.util.process.Nanny.adminServerJvmArgs

and add -Dcom.ibm.CORBA.ListenerPort=12102 as the first argument. The
argument -mx128m should follow.

3. Next, you need to assign a port for the application server’s Object Request
Broker (ORB) to listen on.

Using the administrative console, highlight DS 1 under the Topology tab.
Add -Dcom.ibm.CORBA.ListenerPort=12201 as the first command-line
argument.
302 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 152. Adding ListenerPort to Web servers

4. Make the same changes to DS 2 using port 12202, and to DS 3 using
port 12203.

Note: The ports mentioned in the previous four steps will need to be
configured on the domain firewall when you are setting up your firewall
configuration. The firewall configuration is discussed in Chapter 16, “Setting
up firewalls” on page 305.

5. Stop the standalone redirector on 23bk67d.

6. In the redirector.bat file, add -Dcom.ibm.CORBA.ListenerPort=12301 as the
first parameter of the Java command.

7. Stop the administrative server on both rs60001 and 23bk63z.

8. Start the administrative server on both rs60001 and 23bk63z.

9. Verify that Topology One is running. If this is not the case, start it.

10.Start the standalone redirector on 23bk67d.
Chapter 15. Setting up a standalone servlet redirector 303

11.Configure the domain firewall. The configuration of the firewall should
contain the rules described in Table 15.

Table 15. Firewall configuration

15.3 Testing the redirector

The next step is to test your redirector and application:

1. Stop the Web server on the redirector machine, 23bk67d.

2. Run pluginConfig.bat. You will have to run this batch file each time you
make some changes to the application servers’ configuration. You will
temporarily need to turn off security on the WebSphere Application Server
node.

3. Restart the Web server.

4. Run redirector.bat. If you want to stop the redirector, press CTRL+C.

5. Verify that the servlet redirector is working properly. On the redirector
machine, invoke the URL:

http://localhost/

and follow the path for the Topology One application.

source target port

23bk67d rs60001 900 (bootstrap)

9000 (LSD)

12101 (EJS)

12202 (DS 2)

23bk63z 900 (bootstrap)

9000 (LSD)

12102 (EJS)

12201 (DS 1)

12203 (DS 3)

rs60001 23bk67d 12301 (redirector)

23bk63z
304 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Chapter 16. Setting up firewalls

This chapter will show the definitions used to set up the protocol and domain
firewalls for our example. The firewall software used was IBM SecureWay
Firewall for Windows NT V4.1. This is not an in-depth discussion but is
designed to show firewall security experts what is needed specifically for this
network environment. For more information on the IBM Firewall see the
following two redbooks:

• A Secure Way to Protect Your Network: IBM SecureWay Firewall for AIX
V4.1, SG24-5855-00

• Guarding the Gates Using the IBM eNetwork Firewall V3.3 for Windows
NT, SG24-5209

Figure 153. Setting up firewalls

This scenario consists of three network segments:

• The public network (outside world). This is usually the origin of the client
requests. This network is considered to be non-secure.

• The Demilitarized Zone (DMZ). The DMZ is the network between the two
firewalls. The DMZ is protected from the public network by a protocol

Demilitarized Zone (DMZ)Outside world

I
N
T
E
R
N
E
T

Domain Name
Server

Public Key
Infrastructure

User P
ro

to
co

lF
ir

ew
al

l

Web Server
Redirector Database

Internal network

D
o

m
ai

n
F

ir
ew

al
l

Application
Server

clone1

clone2

23bk63z

rs60001

23-m1720

23bk67d

Directory

23-ff412

17
2.

16
.0

.1

19
2

.1
68

.1
0.

2

19
2.

16
8

.1
0.

1

9.
24

.1
04

.1
17

172.16.0.x 192.168.10.x 9.24.104.x

9.24.104.53

Secure DNS

192.168.10.99

Non-Secure
DNS
© Copyright IBM Corp. 2000 305

firewall, which limits the type of access that passes through the firewall to
the nodes in the DMZ.

• The internal (or enterprise) network. The internal network is where the
resources you want to protect reside. It is separated from the DMZ by a
domain firewall that further limits traffic that has passed through the DMZ.

Before you install the firewall software, please use the Planning and Network
Configuration Planning Worksheet in IBM SecureWay Firewall for Windows
NT User’s Guide V4.1. When installing the software, follow the instructions in
IBM SecureWay Firewall for Windows NT Setup and Installation V4.1.

After installation, there are seven steps to configure the firewall. The
configuration is done using the SecureWay Firewall Configuration Client. The
first time you start the configuration client, a setup wizard will take you
through the configuration steps.

16.1 Designating the network interfaces

The first step is to define which network interfaces the firewall is using and if
they are secure or not. There must be at least one secure and one
non-secure interface.

16.1.1 Domain firewall
The domain firewall is situated between the DMZ, which uses IP addresses in
the range of 192.168.10.xx, and the internal network, which uses addresses
in the range of 9.24.104.xx. The domain firewall machine has two token-ring
network adapters, with one adapter and IP address in each network. In this
instance, the internal network is considered to be the secure network.

Figure 154. Configure interfaces for domain firewall
306 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

16.1.2 Protocol firewall
The protocol firewall is situated between the DMZ, which uses IP addresses
in the range of 192.168.10.xx, and the external network, which uses
addresses in the range of 172.16.0.xx. The protocol firewall machine has two
token-ring network adapters, with one adapter and IP address in each
network. In this instance, the DMZ is considered to be the secure network.

Figure 155. Configure interfaces for protocol firewall

16.2 Setting up the general security policy

The next step is to set up the general security policy. We have selected the
following options as part of the general security policy on both firewalls.

- Permit DNS queries
- Deny broadcast messages
- Deny SOCKs
Chapter 16. Setting up firewalls 307

Figure 156. Security Policy configuration for both domain and protocol firewall

16.3 Creating the network objects

Next, you create the network objects. Network objects will be used as the
source objects and/or the destination objects when you build your firewall
connections. You can create either single objects (a host, firewall, router) or
group objects (a group of single objects).

16.3.1 Domain firewall
Figure 157 shows the network objects created for the domain firewall.
308 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 157. Network objects for the domain firewall

16.3.2 Protocol firewall
Figure 158 shows the network objects created for the protocol firewall.

Figure 158. Network objects for the protocol firewall
Chapter 16. Setting up firewalls 309

16.4 Configuring the domain name service

The next step is to configure domain name service. We used the following
configuration:

• Secure Domain Name - itso.ral.ibm.com
• Secure Domain Name Server - 9.24.104.53
• Non-Secure Domain Name Server - 192.168.10.99

16.5 Creating the firewall rules and services

The next step is to create the firewall rules and services.

16.5.1 Domain firewall rules and services
Each service is described below with the rule definitions that make up the
service.

16.5.1.1 Service name: WAS-Bootstrap

Figure 159. WAS-Bootstrap service in domain firewall
310 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Rule name 1: WAS-Bootstrap in non-secure 1/2

Table 16. WAS-Bootstrap in non-secure 1/2

Rule name 2: WAS-Bootstrap out secure 2/2

Table 17. WAS-Bootstrap in non-secure 2/2

Rule name 3: WAS-Bootstrap ack in secure 1/2

Table 18. WAS-Bootstrap ack in secure 1/2

Rule name 4: WAS-Bootstrap ack out non-secure 2/2

Table 19. WAS-Bootstrap ack out non-secure 2/2

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp gt 1023 eq 900 non-secur
e

route inbound

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp gt 1023 eq 900 secure route outbound

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp/ack eq 900 gt 1023 secure route inbound

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp/ack eq 900 gt 1023 non-secur
e

route outbound
Chapter 16. Setting up firewalls 311

16.5.1.2 Service name: WAS-LSD

Figure 160. WAS-LSD service in domain firewall

Rule name 1: WAS-LSD in non-secure 1/2

Table 20. WAS-LSD in non-secure 1/2

Rule name 2: WAS-LSD out secure 2/2

Table 21. WAS-LSD out secure 2/2

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp gt 1023 eq 9000 non-secur
e

route inbound

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp gt 1023 eq 9000 secure route outbound
312 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Rule name 3: WAS-LSD ack in secure 1/2

Table 22. WAS-LSD ack in secure 1/2

Rule name 4: WAS-LSD ack out non-secure 2/2

Table 23. WAS-LSD ack out non-secure 2/2

16.5.1.3 Service name: WAS-EJS-AIX

Figure 161. WAS-EJS-AIX service in domain firewall

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp eq 9000 gt 1023 secure route inbound

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp eq 9000 gt 1023 non-secur
e

route outbound
Chapter 16. Setting up firewalls 313

Rule name 1: WAS-EJS-AIX in non-secure 1/2

Table 24. WAS-EJS-AIX in non-secure 1/2

Rule name 2: WAS-EJS-AIX out secure 2/2

Table 25. WAS-EJS-AIX out secure 2/2

Rule name 3: WAS-EJS-AIX ack in secure 1/2

Table 26. WAS-EJS-AIX ack in secure 1/2

Rule name 4: WAS-EJS-AIX ack out non-secure 2/2

Table 27. WAS-EJS-AIX ack out non-secure 2/2

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp gt 1023 eq 12101 non-secur
e

route inbound

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp gt 1023 eq 12101 secure route outbound

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp eq 12101 gt 1023 secure route inbound

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp eq 12101 gt 1023 non-secur
e

route outbound
314 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

16.5.1.4 Service name: WAS-DS1 Service

Figure 162. WAS-DS1 service in domain firewall

Rule name 1: WAS-DS1 in non-secure 1/2

Table 28. WAS-DS1 in non-secure 1/2

Rule name 2: WAS-DS1 out secure 2/2

Table 29. WAS-DS1 out secure 2/2

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp gt 1023 eq 12201 non-secur
e

route inbound

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp gt 1023 eq 12201 secure route outbound
Chapter 16. Setting up firewalls 315

Rule name 3: WAS-DS1 ack in secure 1/2

Table 30. WAS-DS1 ack in secure 1/2

Rule name 4: WAS-DS1 ack out non-secure 2/2

Table 31. WAS-DS1 ack out non-secure 2/2

16.5.1.5 Service name: WAS-DS2
Rule name 1: WAS-DS2 in non-secure 1/2

Table 32. WAS-DS2 in non-secure 1/2

Rule name 2: WAS-DS2 out secure 2/2

Table 33. WAS-DS2 out secure 2/2

Rule name 3: WAS-DS2 ack in secure 1/2

Table 34. WAS-DS2 ack in secure 1/2

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp eq 12201 gt 1023 secure route inbound

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp eq 12201 gt 1023 non-secur
e

route outbound

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp gt 1023 eq 12202 non-secur
e

route inbound

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp gt 1023 eq 12202 secure route outbound

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp eq 12202 gt 1023 secure route inbound
316 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Rule name 4: WAS-DS2 ack out non-secure 2/2

Table 35. WAS-DS2 ack out non-secure 2/2

16.5.1.6 Service name: WAS-DS3
Rule name 1: WAS-DS3 in non-secure 1/2

Table 36. WAS-DS3 in non-secure 1/2

Rule name 2: WAS-DS3 out secure 2/2

Table 37. WAS-DS3 out secure 2/2

Rule name 3: WAS-DS3 ack in secure 1/2

Table 38. WAS-DS3 ack in secure 1/2

Rule name 4: WAS-DS3 ack out non-secure 2/2

Table 39. WAS-DS3 ack out non-secure 2/2

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp eq 12202 gt 1023 non-secur
e

route outbound

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp gt 1023 eq 12203 non-secur
e

route inbound

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp gt 1023 eq 12203 secure route outbound

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp eq 12203 gt 1023 secure route inbound

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp eq 12203 gt 1023 non-secur
e

route outbound
Chapter 16. Setting up firewalls 317

16.5.1.7 Service name: WAS-Redirector

Figure 163. WAS-Redirector service in domain firewall

Rule name 1: WAS-Redirector in secure 1/2

Table 40. WAS-Redirector in secure 1/2

Rule name 2: WAS-Redirector out non-secure 2/2

Table 41. WAS-Redirector out non-secure 2/2

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp gt 1023 eq 12301 secure route inbound

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp gt 1023 eq 12301 non-secur
e

route outbound
318 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Rule name 3: WAS-Redirector ack in non-secure 1/2

Table 42. WAS-Redirector ack in non-secure 1/2

Rule name 4: WAS-Redirector ack out secure 2/2

Table 43. WAS-Redirector ack out secure 2/2

16.5.2 Protocol firewall rules and services
The following are the rules and services defined for the protocol firewall.

16.5.2.1 Service name: HTTP Internet to DMZ

Figure 164. HTTP Internet to DMZ service in the protocol firewall

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp eq 12301 gt 1023 non-secur
e

route inbound

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp eq 12301 gt 1023 secure route outbound
Chapter 16. Setting up firewalls 319

Rule name 1: HTTP in non-secure 1/2

Table 44. HTTP in non-secure 1/2

Rule name 2: HTTP out secure 2/2

Table 45. HTTP out secure 2/2

Rule name 3: HTTP ack in secure 1/2

Table 46. HTTP ack in secure 1/2

Rule name 4: HTTP ack out non-secure 2/2

Table 47. HTTP ack out non-secure 2/2

16.5.2.2 Service name: DNS DMZ to Intranet
The rules for this service are pre-defined with the SecureWay Firewall
installation.

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp gt 1023 eq 80 non-secur
e

route inbound

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp gt 1023 eq 80 secure route outbound

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp eq 80 gt 1023 secure route inbound

Action Protocol Operation
at Source

Port #
at
source

operation
at dest

port #
at dest

interface routing direction

permit tcp eq 80 gt 1023 non-secur
e

route outbound
320 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 165. DNS DMZ to intranet

16.6 Building connections on the firewall

The next step is to define the connections on the firewalls. Once the
connections for the various network objects have been built, you have to
enable the connections for the firewall rules to be active.
Chapter 16. Setting up firewalls 321

16.6.1 Domain firewall
Figure 166 shows the connections used for the domain firewall in this
example.

Figure 166. Connection configuration for domain firewall

16.6.2 Protocol firewall
Figure 167 shows the connections used for the domain firewall in this
example.

Figure 167. Connection configuration for the protocol firewall
322 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

16.7 TCP/IP routing

TCP/IP routing plays a very important role in firewall setup. For machines in
the DMZ (for example, the Web server redirector), ensure that their routing
table includes entries to both the protocol and domain firewalls. The firewalls
should allow IP forwarding.

The Web server redirector machine (192.168.10.99) in the DMZ should have
the following routes added:

Table 48. Routing example for DMZ Web server redirector

Destination Mask Gateway Interface

0.0.0.0 0.0.0.0 192.168.10.1 192.168.10.99

0.0.0.0. 0.0.0.0 192.168.10.2 192.168.10.99
Chapter 16. Setting up firewalls 323

324 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Chapter 17. SecureWay Directory Configuration

If you want to use SecureWay Directory for security, you will need to set up
the directory and define the users. Once the IBM SecureWay Directory is
installed, use the following steps as an example of how to configure the
directory.

1. Immediately after installation, the Directory product will need to have the
initial configuration defined. Open the directory configuration GUI by
clicking Start -> Programs -> IBM SecureWay Directory-> SecureWay
Directory Configuration. Select all the components to configure.

Figure 168. Admin console - security

Click Next.

2. Enter a user ID and password for the directory administrator. To stay
consistent with the PDK, we used the distinguished name (DN) of
cn=USERID and password of PASSWORD.
© Copyright IBM Corp. 2000 325

Figure 169. Admin console - security

Click Next.

In the next windows:

3. Use the default database (LDAPDB2).

4. Use the appropriate character set for the database.

5. Choose the radio button to create the default DB2 database.

6. Choose the drive location for the LDAP database.

7. Select the Web server that is already installed on your system. The correct
Web server configuration file and path should be automatically selected.

8. On the confirmation window, click Configure to begin configuration. If
everything goes well, each step will show a success status on the final
window.

9. Click OK. At this point the LDAPDB2 service should have started.

Tip: If the DB2 database creation fails, make sure that any old DB2 and
LDAP directories from previous installs are removed.
326 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 170. Admin console - security

10.Stop and restart the Web server.

11.Start the IBM SecureWay Directory service. You can do this from the
Windows NT Services panel.

17.0.1 Administering the SecureWay Directory LDAP server
The LDAP server can be administered via the Web-based GUI. To bring up
the GUI enter the following URL: http://localhost/ldap in your browser. Enter
the user ID (cn=USERID) and password (PASSWORD), that was entered during the
SecureWay Directory configuration steps. Then click Logon.
Chapter 17. SecureWay Directory Configuration 327

Figure 171. SecureWay Directory Server administration

17.0.2 Working with the directory tree
The first step is to add a suffix. A suffix is a distinguished name that identifies
the top entry in a locally held directory hierarchy. A directory server may have
multiple suffixes, each identifying a locally held directory hierarchy.

To add a suffix using the browser GUI, expand the Suffixes category and
choose Add a suffix. For the sample, enter o=ibm,c=uk as the suffix and click
Add a new suffix.
328 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 172. Adding a suffix

12.After adding the sample suffix, the directory data needs to be imported to
the database.

- Expand the Database category and choose Add entries.
- The sample LDIF (LDAP Data Interchange Format) file and path should

be selected.
- Click Add entries to database.
Chapter 17. SecureWay Directory Configuration 329

Figure 173. Adding entries to the database

Wait until all of the processing is done. If successful, 50 entries should be
added and the message will indicate that.

Close the GUI and restart the server from the NT Services panel.

17.0.3 Using DMT to add your own directory entries
The next step will be to populate the directory with user entries. For our
example, we are only going to add an organizational unit and one new user.
To add entries to the directory:

1. Bring up the Directory Management Tool (DMT):

Start ->Programs ->IBM SecureWay Directory ->Directory
Management Tool

If you go to the Properties window under the Server category, you can see
the port being used by the LDAP server (389). This must match what you
specify in the WebSphere security configuration (see Figure 131 on page
280).
330 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 174. Directory server properties

2. Go to the Rebind window and authenticate yourself. Use cn=USERID for the
user and PASSWORD for the password. Then click OK.
Chapter 17. SecureWay Directory Configuration 331

Figure 175. Rebinding the server

3. As soon as you click OK, the Browse directory tree window will be
displayed. To add your personal entry, highlight the level at which you want
to add and click Add.

For example, to add a new Organizational Unit (OU) of “itso”, in the Entry
RDN text field type ou=itso and choose Organizational unit for the entry
type. Then click Next.
332 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 176. Creating an entry

4. The attributes window will pop up. Enter itso in the ou field. Fill in the
other details you wish and click Create.

Figure 177. Adding an organizational unit
Chapter 17. SecureWay Directory Configuration 333

17.0.4 Use DMT to add a new user and assign a password
Repeat step 3 in 17.0.3, “Using DMT to add your own directory entries” on
page 330 to add an entry.

1. Choose User as the entry type and type the common name in the Entry
RDN field (cn=Carla Sadtler). Click Next.

Figure 178. Adding a user

2. In the attributes window, type in the password and other details. This is the
password you will use when you are challenged. Then click Create.
334 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Figure 179. User attributes

3. You can test your entry and password addition by logging on to the LDAP
server via the Web GUI using the DN (cn=sadtler,ou=ITSO,o=IBM,c=US) that
you just created.

Note: If you want to avoid the hassle of typing in the complete DN, set the uid

property. You can use this one instead of the DN whenever WebSphere
challenges you.
Chapter 17. SecureWay Directory Configuration 335

Figure 180. Logging in with the new user ID

Note: If you use the administrator ID (cn=USERID), you can see the entire
directory tree.
336 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Appendix A. Special notices

This publication is intended to help IT architects and IT specialists in the
design and deployment of e-business applications. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by WebSphere. See the PUBLICATIONS section of the IBM
Programming Announcement for IBM WebSphere Application Server V 3.0.2,
Advanced Edition, 41L0696, for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer's ability to evaluate and integrate
them into the customer's operational environment. While each item may have
© Copyright IBM Corp. 2000 337

been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

This document contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses
used by an actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet

AIX AS/400
CICS DB2
IBM MQSeries
Nways OS/390
OS/400 RS/6000
S/390 SecureWay
SP TeamConnection
VisualAge WebSphere
Wizard Lotus
Approach Domino
Tivoli Tivoli Certified
338 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli
A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Appendix A. Special notices 339

340 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Appendix B. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

B.1 IBM Redbooks publications

For information on ordering these publications see “How to get IBM
Redbooks” on page 345.

• Understanding LDAP, SG24-4986

• Developing an e-business Application for IBM WebSphere Application
Server, SG24-5423-00

• VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets -
CICS Connector, SG24-5265-00.

• WebSphere V3 Performance Tuning Guide for AIX, SG24-5657

• VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets -
CICS Connector, SG24-5265-00

• A Secure Way to Protect Your Network: IBM SecureWay Firewall for AIX
V4.1, SG24-5855-00

• Guarding the Gates Using the IBM eNetwork Firewall V3.3 for Windows
NT, SG24-5209

• WebSphere Studio and VisualAge for Java Servlet and JSP Programming,
SG24-5755-00, available as a redpiece at http://www.redbooks.ibm.com

• Servlet/JSP/EJB Design and Implementation Guide, SG24-5754

B.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044

AS/400 Redbooks Collection SK2T-2849
© Copyright IBM Corp. 2000 341

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com

B.3 Other resources

These publications are also relevant as further information sources:

• John Barry et al, Developing Object-oriented Software - An
Experienced-Based Approach, Prentice Hall, 1997, ISBN 0137372485

• E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns - Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995, ISBN
0201633612

• F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stahl,
Pattern-Oriented Software Architecture - A System of Patterns, Wiley,
1996, ISBN 0471958697

• Coplien, J., Advanced C++ Programming Styles and Idioms,
Addison-Wesley, 1991, ISBN 0201548550

• P. Monday, J. Carey, M. Dangler, San Francisco Component Framework:
An Introduction, Addison-Wesley, 1999, ISBN 0201615878

• C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King,
S. Angel, A Pattern Language. Oxford University Press, 1977, ISBN
0195019199

• J. Vlissides, Pattern Hatching - Design Patterns Applied, Addison Wesley,
1998, ISBN0201432935

• “Enterprise Solutions Structure” in IBM Systems Journal, Volume 38, No.
1, 1999 , available at http://www.research.ibm.com/journal/sj38-1.html)

• L. Bass, P. Clements, R. Kazman, Software Architecture in Practice,
Addison Wesley, 1998, ISBN 0201199300

• Booch, Grady, Object-Oriented Analysis and Design with Applications
(Addison-Wesley Object Technology Series), Addison-Wesley, 1994, ISBN
0805353402

• Jacobson, Ivar, Object-Oriented Software Engineering; A Use Case Driven
Approach, Addison-Wesley, 1992, ISBN 0201544350

Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694

CD-ROM Title Collection Kit
Number
342 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

http://www.research.ibm.com/journal/sj38-1.html

• Rumbaugh, James et al., Object-Oriented Modeling and Design, Prentice
Hall, 1991, ISBN 0136298419

• Fowler, Martin, Kendall Scott (Contributor) and Ivar Jacobson, UML
Distilled; Applying the Standard Object Modeling Language,
Addison-Wesley, 1997, ISBN 0201325632

• Designing e-business Solutions for Performance, white paper by Maggie
Archibald and Mike Schlosser, available at:
http://www.ibm.com/software/developer/library/patterns/performance.html

• JavaSoft: “The Java HotSpot Performance Engine Architecture” white
paper, available at: http://java.sun.com/products/hotspot/whitepaper.html

• IBM Application Framework for e-business: white papers available at:
http://www.ibm.com/software/ebusiness/

• Flanagan, David, JavaScript: The Definitive Guide, Third Edition, O'Reilly
& Associates, Inc., 1998, ISBN 1565923928

• Maruyama, Hiroshi, Kent Tamura and Naohiko Uramoto, XML and Java:
Developing Web Applications, Addison-Wesley, 1999, ISBN 0201485435

• Flanagan, David, Jim Farley, William Crawford and Kris Magnusson, Java
Enterprise in a Nutshell, O’Reilly & Associates, Inc. 1999, ISBN
1565924835

• Booch, Grady, Object-Oriented Analysis and Design with Applications
(Addison-Wesley Object Technology Series), Addison-Wesley, 1994, ISBN
0805353402

• Jacobson, Ivar, Object-Oriented Software Engineering; A Use Case Driven
Approach, Addison-Wesley, 1992, ISBN 0201544350

• Rumbaugh, James et al, Object-Oriented Modeling and Design, Prentice
Hall, 1991, ISBN 0136298419

• Nagaratnam, Nataraj et al. 2000. Security Overview of IBM WebSphere
Standard/Advance 3.02, IBM white paper, available at:
http://www.ibm.com/software/webservers/appserv/whitepapers.html

• Developing Dynamic Web Sites Using the WebSphere Application Server
by Shane Claussen and Mike Conner, available at:

http://service2.boulder.ibm.com/devcon/news0399/artpage2.htm
Appendix B. Related publications 343

http://www.ibm.com/software/developer/library/patterns/performance.html
http://www.ibm.com/software/developer/library/patterns/performance.html
http://www.ibm.com/software/developer/library/patterns/performance.html
http://java.sun.com/products/hotspot/whitepaper.html
http://www.ibm.com/software/ebusiness/
http://www.ibm.com/software/webservers/appserv/whitepapers.html
http://service2.boulder.ibm.com/devcon/news0399/artpage2.htm

17.1 Referenced Web sites

These Web sites are also relevant as further information sources:

• http://www.ibm.com/software/developer/web/patterns. IBM Patterns for
e-business site.

• http://www.ibm.com/software/webservers/appserv/ IBM WebSphere
Application Server

• http://www.as400.ibm.com/Websphere IBM WebSphere for AS/400

• http://www.s390.ibm.com/oe/perform/dgwperf.html Performance
information for the Domino Go Webserver for OS/390

• http://www.ibm.com/software/ebusiness IBM’s Application Framework for
e-business

• http://www.ecma.ch/stand/ECMA-262.htm. Standard ECMA-262
ECMAScript Language Specification

• http://www.javasoft.com/products Java product and API information

• http://www.w3.org/MarkUp W3C’s home page for HTML

• http://oss.software.ibm.com/developerworks/opensource/jsp/index.html

JSP Format Bean Library

• http://www.omg.org Object Management Group (OMG) home page

• http://www.rational.com/products/rose/ Rational Rose product
information

• http://www.ibm.com/software/vadd IBM VisualAge Developer Domain

• (http://www.cert.org CERT home page

• http://www.as400.ibm.com/developer/java/deploy/deployguide.html

Information on deploying Java applications in an AS/400 environment

• http://www.ibm.com/software/secureway/ IBM Secureway products

• http://www.ibm.com/developer/features/framework/framework.html IBM
Application Framework for e-business: Web Application Programming
Model
344 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

http://www.ibm.com/software/developer/web/patterns
http://www.ibm.com/software/webservers/appserv/
http://www.as400.ibm.com/Websphere
http://www.s390.ibm.com/oe/perform/dgwperf.html
http://www.as400.ibm.com/developer/java/deploy/deployguide.html
http://www.ibm.com/software/ebusiness/arch_overview.html
http://www.ibm.com/developer/features/framework/framework.html
http://www.ecma.ch/stand/ECMA-262.htm
http://www.javasoft.com/products/servlet/
http://www.w3.org/MarkUp
http://oss.software.ibm.com/developerworks/opensource/jsp/index.html
http://www.omg.org
http://www.rational.com/products/rose/
http://www.ibm.com/software/vadd
http://www.cert.org
http://www.ibm.com/software/secureway/
http://service2.boulder.ibm.com/devcon/news0399/artpage2.htm

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States or Canada
Outside North America

e-mail address
pubscan@us.ibm.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2000 345

mailto: pubscan@us.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
346 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

Index

A
adaptive compilers 61
AFS 51
application server 23

B
base redirector 43, 51
Bean Managed Persistence (BMP) 78
Business Logic (Model) 94, 97, 102, 160, 173, 178
business logic developer 177

C
caching 56, 59
cascading style sheets (CSS) 68, 103
CGI 56, 57, 58
CGI/WSAPI 58
CICS 174, 188
CICS connectors 85
class diagram 158
class model 166
Class Responsibility Collaboration (CRC) 162
clone 25, 29, 45, 47
cloning 25, 34, 45, 47, 287
Command beans 117, 118, 128, 237
Common Connector Framework (CCF) 78
Common Gateway Interface (CGI) 55
component model 166
component view 183
connectors 65, 78, 85
Container Managed Persistence (CMP) 78
cookies 137
CORBA 39, 40, 188

D
Database server node 21
DataSource 252
DCE 117
Demilitarized Zone (DMZ) 20, 24, 32
deployment model 169
DHTML 21, 66, 67, 68, 69, 83
Directory and security services node 21
Directory Management Tool (DMT) 330
DMZ 22, 27, 28, 29, 30, 33, 36, 39, 51, 199, 209,
223, 305
© Copyright IBM Corp. 2000
Document Object Model (DOM) 69
Document Type Definition (DTD) 69, 75
domain firewall 22, 24, 26, 29, 31, 33, 35, 38, 40,
41, 49, 50, 52, 306, 309, 310, 322
Domain Name Service (DNS) 21

E
EJBs 78, 79, 86, 98, 102, 173, 194, 199
Enterprise Java beans 30, 45, 65, 77
Enterprise JavaBeans (EJBs) 77, 82, 85, 92
Enterprise Solution Structure (ESS) 1, 3, 19
Enterprise-out 11
eXtensible Stylesheet Language (XSL) 69

F
FastCGI 55
Formatter beans 116

G
Garbage Collection (GC) 60

H
horizontal scalability 25, 27, 29, 31, 33, 35, 38, 40
HTML 20, 56, 58, 65, 67, 68, 83, 84, 86
HTTP 22, 29, 73, 83
HttpServlet 86, 90
HttpServletRequest 87
HttpServletResponse 88
HttpSession 88

I
IBM Global Services methodology 1, 147
IIOP 39, 52, 83, 117, 231
IMS 174, 188
IMS connectors 85
integrated development environment (IDE) 188
interaction controller 94, 100, 102, 104, 144, 159,
161, 173, 178
interaction diagram 163
IPSEC 20
ISDN 41

J
Java applets 66, 70
347

Java Message Service (JMS) 79
Java Naming and Directory Interface (JNDI) 79
Java Server Pages 20, 22, 65, 73, 74, 82, 86, 90,
95, 102, 199
Java servlets 65, 86
Java Transaction API (JTA) 79
Java Virtual Machine (JVM) 60, 61, 73, 203
JavaBeans 74, 82, 86, 91, 98
JavaScript 66, 67, 68, 69, 70, 86
JDBC 65, 75, 85, 117, 174, 252
JNDI 85, 117, 202
JScript 69
Just-In-Time (JIT) compiler 60, 61

L
LDAP 49, 50, 52, 79, 85, 140, 213, 276, 326
LDAP Data Interchange Format (LDIF) 329
Lightweight Third Party Authentication (LTPA) 140,
214, 278
load balancer 22, 25, 26, 34, 35, 50, 58
Location Service Daemon (LSD) 301
locking 59

M
memory 29, 31, 38, 40, 56
memory leaks 60
model 25, 34, 45
Model-View-Controller (MVC) 65, 93, 94, 98, 102,
104, 159, 173
MQ 83
MQ connectors 85
MQSeries 174, 188

O
OSE Remote 43, 44

P
Page Construction services 85
Page Constructor (View) 94, 97, 102, 173, 178
Pattern Development Kit (PDK) 2, 4
Personal Digital Assistant (PDA) 14, 21, 81, 84,
103
pervasive computing device 21
presentation node 13
processes 29, 31, 38, 40
protocol firewall 22, 25, 27, 33, 36, 41, 49, 50, 52,
307, 309, 319, 322

Public Key Infrastructure (PKI) 21

R
Rational Rose 82, 154, 162, 181, 185
Remote Method Invocation (RMI) 79
Result bean 104, 105, 114, 144
reverse proxy 22, 29, 38, 43, 44
RMI 30, 39, 40, 52, 79, 117
RMI/IIOP 30, 39, 79, 301

S
SAX API 75
scalability 25, 27, 29, 31, 33, 35, 38, 40, 45
script developer 177
segmenting 58
server-side includes (SSI) 56
server-side Java 57
servlet redirector 22, 43, 51, 52, 297
ServletContext 89
servlets 73, 82, 86, 95, 199
session affinity 47
session beans 30
session clustering 139
session management services 85
session persistence 138
session sharing 46
shared file system 22, 26, 35
Single Sign-On (SSO) 142, 219
sockets 29, 31, 38, 40
SQL 60, 75, 76, 187
SQLJ 65, 76
SSL 20, 21, 44, 52, 85, 140
SSO cookie 142
standalone redirector 44, 297
State beans 118, 126
state diagram 166
static compiler 61
symmetric multiprocessors (SMP) 62

T
thin redirector 51
third-tier integration developer 177
threads 29, 31, 38, 40, 55

U
Unified Model Language (UML) 154
User node 21
348 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

V
VBScript 69
vertical scalability 25, 27, 29, 31, 33, 38, 40, 45
View bean 104, 106, 113, 115
view developer 176
VisualAge for Java 188, 239
VoiceXML 69

W
Web application server 20, 23, 27, 35, 49, 50, 59,
72, 84
Web application server node 20
Web server redirector 22, 36
WebTV 84
Web-up 11
Wireless Application Protocol (WAP) 68, 69
Wireless Markup Language (WML) 68, 69

X
XML 65, 67, 69, 75, 88, 90, 207, 235
XSL 75
349

350 Patterns for e-business: User-to-Business Patterns using WebSphere Advanced Edition

© Copyright IBM Corp. 2000 351

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and
quality as appropriate.

• Use the online Contact us review redbook form found at http://www.redbooks.ibm.com/
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-5864-00
Patterns for e-business: User-to-Business Patterns for Topology 1 and
2 using WebSphere Advanced Edition

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
http://www.ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/

Printed in the U.S.A.

SG24-5864-00

P
atterns

for
e-business:

U
ser-to-B

usiness
P

atterns
for

T
opology

1
and

2
using

W
eb

Sphere
A

dvanced
E

dition
S

G
24-5864-00

®

	Contents
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Introduction to patterns
	1.1 Patterns for e-business
	1.2 How to use these patterns
	1.3 Patterns for e-business Web site
	1.4 The Application Framework for e-business
	1.5 An integrated view of e-business solutions
	1.6 Structure of this redbook

	Part 1. User-to-Business patterns: topologies 1 and 2
	Chapter 2. Choosing the application topology
	2.1 Application topology 1
	2.1.1 Application topology 1: business driver
	2.1.2 Application topology 1: key features
	2.1.3 Application topology 1: considerations

	2.2 Application topology 2
	2.2.1 Application topology 2: business driver
	2.2.2 Application topology 2: key features
	2.2.3 Application topology 2: considerations

	Chapter 3. Choosing the runtime topology
	3.1 An introduction to the node types
	3.1.1 Web application server
	3.1.2 Public Key Infrastructure (PKI)
	3.1.3 Domain Name Service (DNS) node
	3.1.4 User node
	3.1.5 Directory and security services node
	3.1.6 Database server node
	3.1.7 Protocol firewall and domain firewall nodes
	3.1.8 Load balancer node
	3.1.9 Shared file system node
	3.1.10 Web server redirector node
	3.1.11 Application server node
	3.1.12 Existing applications and data node

	3.2 Runtime topology A
	3.2.1 Proven basic topology
	3.2.2 Proven variation 1
	3.2.3 Emerging variation 2
	3.2.4 Emerging multi-tier variation 3

	3.3 Runtime topology B
	3.3.1 Proven basic topology
	3.3.2 Proven variation 1
	3.3.3 Emerging variation 2
	3.3.4 Emerging multi-tier variation 3

	3.4 Intranet vs. Internet runtime topologies

	Chapter 4. Product mapping
	4.1 Runtime topology options
	4.1.1 Implementing a redirector
	4.1.2 Clones running on application servers
	4.1.3 Session sharing across servers
	4.1.4 Achieving HTTP session affinity

	4.2 Product mapping for basic runtime topology�A
	4.3 Product mapping for variation 1 of runtime topology�A
	4.4 Product mapping for variation 2 of runtime topology�A

	Part 2. User-to-Business patterns: guidelines
	Chapter 5. Performance guidelines
	5.1 Web server performance considerations
	5.2 Integration server performance considerations
	5.3 Java and Java Virtual Machines
	5.3.1 Just-In-Time compiler
	5.3.2 Adaptive compilers
	5.3.3 Static compiler
	5.3.4 Selecting JVMs

	5.4 Where to find more information

	Chapter 6. Technology options
	6.1 Web client
	6.1.1 Web browser
	6.1.2 HTML
	6.1.3 Dynamic HTML
	6.1.4 XML (client-side)
	6.1.5 JavaScript
	6.1.6 Java applets

	6.2 Web application server
	6.2.1 Java servlets
	6.2.2 Java Server Pages (JSPs)
	6.2.3 JavaBeans
	6.2.4 XML
	6.2.5 JDBC and SQLJ
	6.2.6 Enterprise JavaBeans
	6.2.7 Connectors
	6.2.8 Additional enterprise Java APIs

	6.3 Where to find more information

	Chapter 7. Application design guidelines
	7.1 Application elements
	7.2 Understanding supporting technologies
	7.2.1 Java servlets
	7.2.2 Java Server Pages (JSPs)
	7.2.3 JavaBeans and Enterprise JavaBeans

	7.3 Application structure
	7.3.1 Model-View-Controller (MVC) design pattern
	7.3.2 MVC design pattern example
	7.3.3 Advantages and disadvantages of the MVC design pattern

	7.4 Application component contracts
	7.4.1 Result beans and View beans design pattern
	7.4.2 Result bean and View bean design pattern example
	7.4.3 Advantages and disadvantages of Result beans and View beans

	7.5 Application output formatting
	7.5.1 Formatter beans
	7.5.2 Formatter bean example
	7.5.3 Advantages and disadvantages of Formatter beans

	7.6 Application business logic granularity
	7.6.1 Command beans
	7.6.2 Command bean example
	7.6.3 Advantages and Disadvantages of Command beans
	7.6.4 An alternative approach

	7.7 Application session management
	7.7.1 Session management example
	7.7.2 Session management design considerations

	7.8 Application Security
	7.8.1 Other design considerations

	7.9 Conclusion
	7.10 Where to find more information

	Chapter 8. Application development guidelines
	8.1 The development process
	8.2 The scope of this chapter
	8.3 The application and architecture domains
	8.4 Solution outline
	8.5 Macro design
	8.6 Micro design
	8.6.1 Use case
	8.6.2 Class model and class diagram
	8.6.3 Interaction diagram
	8.6.4 State diagram
	8.6.5 Component model
	8.6.6 Deployment model

	8.7 Build cycle
	8.7.1 Develop source code
	8.7.2 Testing

	8.8 Deployment
	8.9 Where to find more information

	Chapter 9. System management products and guidelines
	9.1 Managing your WebSphere application
	9.1.1 WebSphere resource management
	9.1.2 Using the WebSphere administrative console
	9.1.3 WebSphere Site Analyzer

	9.2 User-to-business WebSphere end-to-end security
	9.2.1 Physical systems security
	9.2.2 Operating systems security
	9.2.3 Network security
	9.2.4 Web application security
	9.2.5 WebSphere Application Server security model and policy
	9.2.6 HTTP Single Sign-On (SSO)
	9.2.7 WebSphere V3 security differences with V2

	9.3 Backup and recovery of your systems
	9.3.1 Using Tivoli Storage Manager
	9.3.2 Application backup and recovery
	9.3.3 Guidelines for backup and recovery

	9.4 Where to find more information

	Part 3. Application topology 1: a working example
	Chapter 10. The Pattern Development Kit and an example topology
	10.1 The Pattern Development Kit
	10.2 PDK section A
	10.2.1 PDK application interaction

	Chapter 11. Step 1: Modifying the PDK application
	11.1 Using the Pattern Development Kit in VisualAge for Java
	11.1.1 Changing the PDK application in VisualAge for Java

	11.2 Using the PDK in WebSphere Studio
	11.2.1 Changing the PDK application with WebSphere Studio

	Chapter 12. Step 2: Expanding the PDK to multiple machines
	12.1 Setting up the network environment
	12.2 Separating the application server from the Web server
	12.3 Setting up the application server on Machine B
	12.3.1 Creating the JDBC driver and DataSource definition
	12.3.2 Create an application server
	12.3.3 Set up the application file structure
	12.3.4 Define the servlet

	12.4 Separating the database from the Web application server
	12.5 Testing the application

	Chapter 13. Step 3: Securing the PDK application
	13.1 Enabling application security in WebSphere
	13.2 Enabling WebSphere global security
	13.2.1 Protecting the application

	13.3 Hints and tips

	Chapter 14. Step 4: Cloning an application server
	14.1 Topology and product mapping
	14.2 Preparing the WebSphere administrative domain
	14.3 Creating a model
	14.4 Creating the first clone
	14.5 Creating the next clone

	Chapter 15. Setting up a standalone servlet redirector
	15.1 Creating a standalone redirector
	15.2 Preparing to use firewalls
	15.3 Testing the redirector

	Chapter 16. Setting up firewalls
	16.1 Designating the network interfaces
	16.1.1 Domain firewall
	16.1.2 Protocol firewall

	16.2 Setting up the general security policy
	16.3 Creating the network objects
	16.3.1 Domain firewall
	16.3.2 Protocol firewall

	16.4 Configuring the domain name service
	16.5 Creating the firewall rules and services
	16.5.1 Domain firewall rules and services
	16.5.2 Protocol firewall rules and services

	16.6 Building connections on the firewall
	16.6.1 Domain firewall
	16.6.2 Protocol firewall

	16.7 TCP/IP routing

	Chapter 17. SecureWay Directory Configuration
	17.0.1 Administering the SecureWay Directory LDAP server
	17.0.2 Working with the directory tree
	17.0.3 Using DMT to add your own directory entries
	17.0.4 Use DMT to add a new user and assign a password

	Appendix A. Special notices
	Appendix B. Related publications
	B.1 IBM Redbooks publications
	B.2 IBM Redbooks collections
	B.3 Other resources
	17.1 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Index
	IBM Redbooks review

