
ibm.com/redbooks

User-to-Business Patterns Using 
WebSphere Advanced and MQSI
Patterns for e-business Series

Carla Sadtler
Saeed Ahmad
George Flaifel
Mark Jeynes
Steve Young

Select topologies and mappings to 
build U2B e-business solutions

Gain insight into the latest 
technologies, design guidelines

Learn to implement the 
solution from examples

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/




User-to-Business Patterns Using
WebSphere Advanced and MQSI
Patterns for e-business Series

December 2000

SG24-6160-00

International Technical Support Organization



© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (December 2000)

This edition applies to IBM WebSphere Application Server Advanced Edition Version 3 Release 5,
Program Number 5648-C84 and MQSeries Integrator Version 2.0.1

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix C, “Special notices” on page 401.

Take Note!

This book is based on a pre-GA version of a product and may not apply when the product becomes
generally available. We recommend that you consult the product documentation or follow-on versions
of this redbook for more current information.

Note



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xi
The team that wrote this redbook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xi
Comments welcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Patterns for e-business . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Components of the Patterns for e-business . . . . . . . . . . . . . . . . . 2
1.1.2 Defined Patterns for e-business . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 How to use these patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4 Patterns for e-business Web site . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 The User-to-Business Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 IBM MQSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 IBM MQSeries Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Part 1. User-to-Business Patterns: topology 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2. Choosing the application topology . . . . . . . . . . . . . . . . . . . 11
2.1 Application topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Web-up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Enterprise-out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Application topology 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Application topology 5: business driver . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Application topology 5: key features . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Application topology 5: considerations . . . . . . . . . . . . . . . . . . . . 16

Chapter 3. Choosing the runtime topology. . . . . . . . . . . . . . . . . . . . . . 17
3.1 An introduction to the node types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Runtime topology A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Topology A variation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 4. Product mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1 Product mappings for the basic topology . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Runtime topology variation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Extending the topologies with workload management. . . . . . . . . . . . . 29

4.3.1 MQSeries and MQSeries Integrator . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 WebSphere Advanced Edition . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Part 2. User-to-Business Patterns: guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 5. Technology options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1 Web client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
© Copyright IBM Corp. 2000 iii



5.1.1 Web browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.2 HTML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.3 Dynamic HTML (DHTML) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.4 XML (client-side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.5 JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.6 Java applets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Web application server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.1 Java servlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.2 JavaServer Pages (JSP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.3 JavaBeans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.4 XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.5 JDBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.6 Enterprise JavaBeans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Integration server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.1 Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.2 Message-oriented middleware . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Additional enterprise Java APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5 References and where to find more information . . . . . . . . . . . . . . . . . 53

Chapter 6. Java application design: using commands and MQSeries 55
6.1 Command framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1.1 What are commands?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.2 The command package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1.3 Command caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.1.4 Command classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1.5 Command shipping example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.1.6 Compensable commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1.7 Local command example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 Using MQSeries to send and retrieve data . . . . . . . . . . . . . . . . . . . . . 95
6.2.1 MQSeries classes for Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.2 Java Messaging Service (JMS). . . . . . . . . . . . . . . . . . . . . . . . . . 99

Chapter 7. MQSI application design guidelines . . . . . . . . . . . . . . . . . 103
7.1 MQSeries and MQSI as message-oriented middleware . . . . . . . . . . 103

7.1.1 MQSeries - the MOM transport layer . . . . . . . . . . . . . . . . . . . . 103
7.1.2 MQSeries Integrator - transformation and integration . . . . . . . . 103

7.2 MQSeries Integrator topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2.1 WebSphere-to-MQSI connection options . . . . . . . . . . . . . . . . . 105
7.2.2 Queue manager roles and relationships . . . . . . . . . . . . . . . . . . 108
7.2.3 Placement of MQSI databases . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3 MQSI message flow design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.3.1 Design contract with the application . . . . . . . . . . . . . . . . . . . . . 115
7.3.2 Message flow structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
iv User-to-Business Patterns with WebSphere Advanced and MQSI



7.3.3 Defining document types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.4 Message flow components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.4.1 Message flow inputs and outputs . . . . . . . . . . . . . . . . . . . . . . . 117
7.4.2 IBM primitive nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.4.3 Transformation nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.4.4 Database nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.4.5 Logic control nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.4.6 Reusable message flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.4.7 Testing message flow components . . . . . . . . . . . . . . . . . . . . . . 139

Chapter 8. Application development guidelines. . . . . . . . . . . . . . . . . 141
8.1 The scope of this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.2 Application development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.2.1 Rational Rose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.2.2 VisualAge for Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.2.3 WebSphere Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.2.4 How these tools fit together . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.3 WebBank problem domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.4 Solution outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.5 Macro design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.5.1 Creating a business process model . . . . . . . . . . . . . . . . . . . . . 147
8.5.2 Information architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.5.3 Technology choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.5.4 Deployment model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.6 Micro design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.6.1 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.6.2 Storyboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.6.3 Activity diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.6.4 Class models and class diagrams. . . . . . . . . . . . . . . . . . . . . . . 164
8.6.5 Interaction diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
8.6.6 Component model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
8.6.7 Deployment model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Chapter 9. Developing the MQSI application . . . . . . . . . . . . . . . . . . . 183
9.1 The contract with WebSphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
9.2 Design considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

9.2.1 Customer profile lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
9.2.2 Customer profile update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9.3 Operational entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
9.3.1 Application databases and tables . . . . . . . . . . . . . . . . . . . . . . . 185
9.3.2 Messages and documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

9.4 Identify the general operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
9.4.1 Customer profile lookup operational components . . . . . . . . . . . 188
v



9.4.2 Customer profile update operational components . . . . . . . . . . . 188
9.5 Identify the operational components . . . . . . . . . . . . . . . . . . . . . . . . . 189

9.5.1 Customer profile lookup functional components . . . . . . . . . . . . 189
9.5.2 Customer profile update functional components . . . . . . . . . . . . 191

9.6 Building the message flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
9.6.1 Creating a message flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
9.6.2 Organizing message flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
9.6.3 Message flow: “ITSO Cache Lookup: Profile from Request” . . . 195
9.6.4 Message flow: “ITSO Cache Update: from Profile” . . . . . . . . . . 200
9.6.5 Message flow: “ITSO Accounts from Request” . . . . . . . . . . . . . 204
9.6.6 Message flow: “ITSO First Account From Accounts” . . . . . . . . . 206
9.6.7 Message flow: “ITSO Profile from Savings”. . . . . . . . . . . . . . . . 212
9.6.8 Message flow: “ITSO Profile from Checking” . . . . . . . . . . . . . . 214
9.6.9 Message flow: “ITSO Profile: add Accounts” . . . . . . . . . . . . . . . 218
9.6.10 Message flow: “ITSO Looper” . . . . . . . . . . . . . . . . . . . . . . . . . 220
9.6.11 Message flow: “ITSO Updates from Profile w/accounts” . . . . . 221
9.6.12 Message flow: “ITSO Update Router” . . . . . . . . . . . . . . . . . . . 223
9.6.13 Message flow: “ITSO Update Savings: from Update” . . . . . . . 224
9.6.14 Message flow: “ITSO Update Checking: from Update” . . . . . . 226

9.7 Piecing together the lookup components . . . . . . . . . . . . . . . . . . . . . 228
9.7.1 Customer profile lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
9.7.2 Customer profile update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

9.8 Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Chapter 10. System management guidelines . . . . . . . . . . . . . . . . . . . 239
10.1 MQSeries system management . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

10.1.1 MQSeries administration interfaces . . . . . . . . . . . . . . . . . . . . 240
10.1.2 Remote administration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
10.1.3 Administration interface guidelines . . . . . . . . . . . . . . . . . . . . . 248
10.1.4 Overview of the MQSeries clustering feature . . . . . . . . . . . . . 249
10.1.5 MQSeries security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
10.1.6 MQSeries monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
10.1.7 MQseries restart and recovery . . . . . . . . . . . . . . . . . . . . . . . . 262

10.2 .MQSeries Integrator system management . . . . . . . . . . . . . . . . . . . 265
10.2.1 Message brokers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
10.2.2 The Configuration Manager . . . . . . . . . . . . . . . . . . . . . . . . . . 269
10.2.3 The Control Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
10.2.4 The User Name Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
10.2.5 MQSeries guidelines for MQSI . . . . . . . . . . . . . . . . . . . . . . . . 271
10.2.6 MQSI databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
10.2.7 MQSeries Integrator commands and operations . . . . . . . . . . . 274
10.2.8 Control Center operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
10.2.9 Resource definition management . . . . . . . . . . . . . . . . . . . . . . 288
vi User-to-Business Patterns with WebSphere Advanced and MQSI



10.2.10 MQSeries Integrator security . . . . . . . . . . . . . . . . . . . . . . . . 290
10.2.11 MQSeries Intergrator backup and recovery. . . . . . . . . . . . . . 294
10.2.12 MQSeries Integrator monitoring . . . . . . . . . . . . . . . . . . . . . . 300

Part 3. Working example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Chapter 11. Introduction to the working example . . . . . . . . . . . . . . . 303
11.1 Sample application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

11.1.1 Application flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
11.2 Runtime topologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

11.2.1 Product documentation, software, and support . . . . . . . . . . . . 307
11.3 Web application server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

11.3.1 Web application server running on Windows NT . . . . . . . . . . . 309
11.3.2 Web application server running on AIX . . . . . . . . . . . . . . . . . . 310

11.4 MQSI broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
11.4.1 Running the broker on Windows NT . . . . . . . . . . . . . . . . . . . . 311
11.4.2 Running the broker on AIX . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
11.4.3 MQSI service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

11.5 MQSI Configuration Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
11.6 User Name Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

11.6.1 Running the User Name Server on Windows NT. . . . . . . . . . . 313
11.7 Database server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

11.7.1 Running DB2 on Windows NT. . . . . . . . . . . . . . . . . . . . . . . . . 314
11.7.2 Running DB2 on AIX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

11.8 Planning user IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
11.8.1 User IDs for the Windows NT mapping . . . . . . . . . . . . . . . . . . 316
11.8.2 User IDs for the AIX mapping . . . . . . . . . . . . . . . . . . . . . . . . . 317

Chapter 12. MQSeries and MQSI implementation. . . . . . . . . . . . . . . . 319
12.1 Lab environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

12.1.1 Windows NT test configuration . . . . . . . . . . . . . . . . . . . . . . . . 319
12.1.2 AIX test configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
12.1.3 MQSeries and MQSI configuration methods . . . . . . . . . . . . . . 322

12.2 Defining user IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
12.2.1 MQSI: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
12.2.2 DB2 server: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

12.3 MQSI database setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
12.4 MQSI User Name Server setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

12.4.1 Create the queue manager . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
12.4.2 Create the MQSI User Name Server. . . . . . . . . . . . . . . . . . . . 328
12.4.3 Starting the User Name Server . . . . . . . . . . . . . . . . . . . . . . . . 330

12.5 MQSI Configuration Manager setup . . . . . . . . . . . . . . . . . . . . . . . . 330
12.5.1 Define the databases to the local system . . . . . . . . . . . . . . . . 331
vii



12.5.2 Create the queue manager . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
12.5.3 Create the MQSI Configuration Manager . . . . . . . . . . . . . . . . 334

12.6 Define the MQSeries cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
12.7 MQSI broker setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

12.7.1 Define the database to the local system . . . . . . . . . . . . . . . . . 345
12.7.2 Create the queue manager . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
12.7.3 Creating the MQSI broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

12.8 Using the Control Center to deploy an application . . . . . . . . . . . . . 355
12.8.1 Connecting to the broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
12.8.2 Creating an execution group . . . . . . . . . . . . . . . . . . . . . . . . . . 359
12.8.3 Importing message flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
12.8.4 Assigning the message flows to the execution group . . . . . . . 362
12.8.5 Saving the configuration and deploying it to the broker . . . . . . 363

12.9 Preparing the broker for the application . . . . . . . . . . . . . . . . . . . . . 366
12.9.1 Create the application databases . . . . . . . . . . . . . . . . . . . . . . 366
12.9.2 Define the required MQSeries queues . . . . . . . . . . . . . . . . . . 367

Chapter 13. WebSphere Application Server setup . . . . . . . . . . . . . . . 371
13.1 MQSeries SupportPac MA88 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

13.1.1 Classpath settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
13.1.2 Configuring JMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

13.2 Deploying the application to WebSphere . . . . . . . . . . . . . . . . . . . . 375
13.3 Copy the DTDs to the operating system . . . . . . . . . . . . . . . . . . . . . 378

Appendix A. Rational Rose 2000e and VisualAge for Java . . . . . . . . . 381
A.1 Forward and reverse engineering with Rational Rose . . . . . . . . . . . . . . 381

13.3.1 Integration with IBM VisualAge for Java . . . . . . . . . . . . . . . . . 381
A.1.1 Rose to Java mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

A.2 Installation notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
A.3 Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

A.3.1 VisualAge for Java configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 384
A.3.2 Rational Rose configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

13.4 Linking a Rose model to a VisualAge for Java project . . . . . . . . . . 388
A.4 Forward engineering with Rose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

A.4.1 Generating code from classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
A.4.2 Generating code from components . . . . . . . . . . . . . . . . . . . . . . . . 389

A.5 Reverse engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

Appendix B. Sample code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
B.1 GetCurrentProfileCommandMQJava: retrieveProfile() method . . . . . . . 393
B.2 GetCurrentProfileCommandJMS: retrieveProfile() method. . . . . . . . . . . 397
viii User-to-Business Patterns with WebSphere Advanced and MQSI



Appendix C. Special notices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

Appendix D. Related publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
D.1 IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
D.2 IBM Redbooks collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
D.3 Other resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
D.4 Referenced Web sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

Appendix E. Using the additional material . . . . . . . . . . . . . . . . . . . . . . 409
E.1 Locating the additional material on the Internet . . . . . . . . . . . . . . . . . . . 409
E.2 Using the Web material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

E.2.1 System requirements for downloading the Web material . . . . . . . . 409
E.2.2 How to use the Web material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

How to get IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
IBM Redbooks fax order form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

IBM Redbooks review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
ix



x User-to-Business Patterns with WebSphere Advanced and MQSI



Preface

Patterns for e-business are a group of proven, reusable assets that can help
speed the process of developing applications. The pattern discussed in this
book, the User-to-Business Pattern, is the general case of users interacting
with enterprise transactions and data. In particular it is relevant to those
enterprises that deal with goods and services that cannot be listed and sold from
a catalog.

This redbook discusses application topology 5 of the User-to-Business
Patterns. Application topology 5 links multiple presentation tiers to any
back-end client, but the back-end is not hidden to the user.

The topologies are illustrated using WebSphere Application Server Advanced
Edition V3.5, MQSeries V5.1, and MQSeries Integrator V2. The sample
application uses the Command Manager Framework, included with
WebSphere V3.5.

Part 1 of this redbook takes you through the process of choosing an
application topology and a runtime topology. It then gives you possible
product mappings for implementation of the chosen runtime topology.

Part 2 provides a set of guidelines for building your e-business application. It
includes information on technology options, application design and
application development.

Part 3 takes you through a working example, showing the implementation of
an e-business application using application topology 5.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

The overall manager for Patterns:

Jonathan Adams is an IT consultant with the IBM Software Group and the
leader of the Patterns for e-business initiative. He works closely with all areas of
IBM and industry consultants. His commitment to the idea of a systematic
approach to end-to-end e-business architecture is based on his many years of
work in the field with major IBM customers in the United Kingdom.
© Copyright IBM Corp. 2000 xi



The ITSO team:

Carla Sadtler is a Senior Software Engineer at the International Technical
Support Organization, Raleigh Center. She writes extensively in many areas
including WebSphere, SecureWay Communications Servers, network
integration, and Web-to-host integration products. Before joining the ITSO 14
years ago, Carla worked in the Raleigh branch office as a Program Support
Representative. She holds a degree in mathematics from the University of
North Carolina at Greensboro.

Saeed Ahmad is an IT Architect working in the Knowledge and Content
Management practice of IBM Global Services in the UK. His area of expertise
is in using object-oriented methods and technologies. He has worked
extensively in enterprise application integration projects and has helped
corporate customers to design and build scalable Web services. Saeed has
cross-industry experience, providing consultancy in the adoption of new
technologies, and performing architect or lead development roles on systems
integration projects. Saeed holds a Masters Degree in Engineering,
Manufacturing and Management from the University of Manchester.

George Flaifel is a senior IT Specialist in e-business Services and Consulting in
IBM Canada. He joined IBM in 1985 as a Software Customer Engineer. His
areas of expertise include S/390, CICS, and MQSeries systems programming
and technical support, OS/390 UNIX System Services implementation and
integration, and most recently WebSphere, specializing in WebSphere
administration and back-end integration.

Mark Jeynes is an IT Specialist in the IBM Software Group Services at IBM
Laboratories, Hursley. He provides a range of technical services for the EAI
product suite offerings including the design and deployment of solutions
based on MQSeries, MQSeries Integrator and MQSeries Everyplace. He has
experience on the Windows NT, AIX, Solaris, Linux and OS/390 platforms,
Java and Perl, and extensive COBOL/CICS/JCL experience from earlier work
on what is now OS/390. His IT career spans 16 years, having worked mainly
for IT software services companies and also in the finance and retail
industries. He is currently studying at Oxford University for an MSc degree in
Software Engineering.

Steve Young is a Software Engineer working in the UK Advanced Solutions
Group in Hursley, England. He has worked at IBM for two years, producing fully
functional demos and test drives. He started out working on CICS for OS/390
demos, and has recently taken over the Pattern Development Kit (PDK). His
skills are predominantly Java and WebSphere Application Server. Steve holds
xii User-to-Business Patterns with WebSphere Advanced and MQSI



an Honours degree in Drama from the University of Manchester, and a Masters
in Computer Science from the University of Bristol.

Thanks to the following people for their invaluable contributions to this project:

Geert Van de Putte
International Technical Support Organization, Raleigh Center

Geoffrey Hambrick
IBM Austin

Michael Conner
IBM Austin

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks review” on page 419 to
the fax number shown on the form.

• Use the online evaluation form found at ibm.com/redbooks

• Send your comments in an Internet note to redbook@us.ibm.com
xiii

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html


xiv User-to-Business Patterns with WebSphere Advanced and MQSI



Chapter 1. Introduction

This book is a part of the Patterns for e-business Redbook series. It will
discuss User-to-Business Pattern application topology 5. An application
topology 5 example will be used to illustrate the use of the command package
included in WebSphere Application Server Advanced Edition Version 3.5 and
to introduce the use of MQSeries Integrator (MQSI) as a router.

This information will build on what was introduced in Patterns for e-business:
User-to-Business Patterns for Topology 1 and 2 using WebSphere Advanced
Edition, SG24-5864. We will refer to that book often and it is highly
recommended that you have a copy handy when reading this book.

Another book in the series, User-to-Business Patterns Using WebSphere
Enterprise Edition, SG24-6151, addresses the use of Component Broker in a
topology 5 and 6 situation. This can be considered optional reading.

In addition, there are four other books with supporting technical information
on application development that we will reference several times:

1. Servlet and JSP Programming with IBM WebSphere Studio and VisualAge
for Java, SG24-5755

2. Design and Implement Servlets, JSPs, and EJBs for IBM WebSphere
Application, SG24-5754

3. CCF Connectors and Database Connections Using WebSphere Advanced
Edition, SG24-5514

4. Business Integration Solutions with MQSeries Integrator, SG24-6154

1.1 Patterns for e-business

The Patterns for e-business aim is to communicate in a highly accessible
fashion the business pattern, systems architecture (application and runtime
topologies), product mappings, and guidelines required for different classes
of applications. For some patterns there is also an associated Pattern
Development Kit (PDK), which provides sample application code to illustrate
effective use of those patterns.

The goal is to provide the smallest number of Patterns for e-business that will
allow IT architects in 80% of cases to quickly develop 80% of their required
infrastructure by the re-use of proven:

• Architecture patterns
• Design patterns
© Copyright IBM Corp. 2000 1



• Runtime patterns
• Application development and systems management patterns
• Design, development, and deployment guidelines
• Code

1.1.1 Components of the Patterns for e-business

Figure 1. Patterns for e-business

Business patterns describe the interaction between the participants in an
e-business solution. The following make up the basic structure of a pattern:

• Application topologies illustrate the various ways to configure the
interaction between users, applications, and data. Choosing an application
topology will lead to an underpinning runtime topology.

• Runtime topologies use nodes to group functional requirements. The
nodes are interconnected to solve a business problem.

• Product mappings show possible combinations of products used to
instantiate the runtime topology.

• Guidelines outline and define the processes used to build the e-business
application.

Runtime
Topology

Application
Topology

Business
Pattern

Guidelines
Application Design Application Development

Technology ChoicesSystems Management

Product
Mappings

Pattern
Development
Kit

Reference
implementation
of application code
and products
2 User-to-Business Patterns with WebSphere Advanced and MQSI



1.1.2 Defined Patterns for e-business
There are currently six defined Patterns for e-business:

• User-to-Business is the general case of users (internal or external)
interacting with enterprise transactions and data. In particular it is relevant
to those enterprises that deal with goods and services that cannot be
listed and sold from a catalog. It can also be thought of as covering all
user-to-business interactions not covered by the User-to-Online Buying
pattern.

• User-to-Online Buying is used to describe the special case (a subset of
the User-to-Business Pattern) where packaged goods, say, are sold
through a catalog using a shopping cart, a wallet, etc. This includes both
consumers purchasing goods and online buyers purchasing goods from a
single supplier. It can also include links to back-end systems to allow for
inventory updates and credit checking.

• Business-to-Business is used to describe two styles of inter-business to
business (Intra-business to business is covered under Application
Integration below):

- The first style (B2Bi) covers programmatic links between arms-length
businesses (where potentially a trading partner agreement may be
appropriate). A good example of this would be supply chain
applications.

- The second style covers the e-Marketplace where the model supports
B2M2B. The “M” represents the e-Marketplace, which supports multiple
buyers and suppliers. The buying function may be performed online or
programmatically.

• User-to-User is used to describe users collaborating with one another by
e-mail, shared documents, etc.

• User-to-Data is used to describe users needing to take large volumes of
data, text, images, video, etc. and use tools to extract useful information
from it.

• Application Integration is used to link applications together within a
business (such as ERP with existing applications). This can be used within
a business pattern or between business patterns.

IBM views e-business as an integration of many application domains into
systems that connect a business with its customers, partners, and suppliers.
These systems are not confined to Web interfaces, although increasingly
many of the user interfaces to the combined system will use Web technology.
Chapter 1. Introduction 3



The common set of node descriptions in the Patterns for e-business enable
communication between architects and designers from very different
application domains and will suggest areas for shared nodes and
infrastructure.

This is similar to the process of using design patterns to solve a programming
design problem, where classes in the composed pattern play multiple roles,
derived from the source patterns. It is different, however, in that design
pattern composition is based on class diagrams and white box by nature,
whereas composing architectural patterns is more component-based.

The Patterns for e-business may be applied to e-business solution areas.
Here is a guide to where you may find them most applicable:

Table 1. Patterns for e-business and e-business solutions

1.1.3 How to use these patterns
The Patterns for e-business are particularly focused upon addressing
common business application problems and providing answers to frequent
architecture, design, and implementation questions.

We recommend that you can use the Patterns for e-business in a number of
ways according to your needs:

• As a starting point for an end-to-end system architecture.
• As a detailed example and prescriptive approach, following the product

mappings and guidance provided.
• As a way to design more complex, multi-channel systems, when several

patterns are used together.

e-business solution area Business pattern

Customer relationship management User-to-Business Pattern

e-commerce User-to-Online Buying Pattern

Supply chain management,
e-Marketplace

Business-to-Business Pattern

Collaboration User-to-User Pattern

Business Intelligence; Knowledge
Management

User-to-Data Pattern

Business application integration Application Integration Pattern
4 User-to-Business Patterns with WebSphere Advanced and MQSI



As with the design patterns and ESS work, we anticipate that architects and
designers will want to combine these patterns to compose solutions to more
complex system architectures.

We recommend that you use the Patterns for e-business together with an
appropriate development methodology that considers the full set of
requirements that are to be understood and implemented, whether these
requirements concern the function of the solution or its operational
characteristics such as availability, scalability, or performance.

1.1.4 Patterns for e-business Web site
The Patterns for e-business are published on IBM developerWorks, a portal
for developers, and can be located at:

http://www.ibm.com/software/developer/web/patterns.

This interactive patterns site acts as a guide to aid you in the selection of the
pattern and topologies most relevant to your needs. While you can navigate
via shortcuts to the information you most need, the site is structured to enable
you to “drill down” into the material as you:

1. Select a business pattern.

2. Select an application topology.

3. Review runtime topologies.

4. Review product mappings.

5. Review guidelines.

At the time of writing, the Web site has material for the User-to-Business and
User-to-Online Buying Patterns, with material for the other business patterns
in the process of development.

You can also register at this site for pattern-related updates, which will include
information about the Pattern Development Kit for User-to-Business.

1.2 The User-to-Business Pattern

As mentioned earlier, the User-to-Business Pattern covers the general case
of users interacting with enterprise transactions and data. In particular it is
relevant to those enterprises that deal with goods and services that cannot be
listed and sold from a catalog. It can also be thought of as covering all
user-to-business interactions not covered by the User-to-Online Buying
Pattern.
Chapter 1. Introduction 5

http://www.ibm.com/software/developer/web/patterns


1.3 IBM MQSeries

IBM MQSeries provides messaging and queueing capability, allowing
programs on a variety of platforms to communicate with each other across a
network of unlike components. Applications place messages on an MQSeries
queue for delivery to a target application. At that point, MQSeries takes over,
providing the transport mechanism and ensuring delivery to the target
application. If the target application is not available, the message stays on the
queue until it can be delivered.

Two communication models exist with MQSeries. In a point-to-point
application, the sending application knows the destination of the message.
These applications can send messages that do not require a response, or
they may specify a destination for the response message. This book will be
using a point-to-point application to illustrate the routing capabilities of
MQSeries.

Publish/subscribe applications have a publisher that distributes information
by sending it to a broker. Subscribers tell the broker what topics of
information they are interested in and the broker sends published information
to the subscribers for that topic. Brokers can exchange subscription
information and publications with each other, allowing subscribers to receive
published information from any broker on topics they have subscribed to.
Publish/subscribe applications are more appropriate for personalization
scenarios described by application topology 7, which is not covered in this
book.

Applications communicate with each other by using a local MQSeries queue
manager to put messages on, or receive messages from, a queue. MQSeries
provides several application programming interfaces:

• Message Queue Interface (MQI) provides a consistent application
programming interface that enables programs to talk to the local queue
manager in order to send and receive data.

• Application Messaging Interface (AMI) provides a simple interface for
application programmers to MQI. AMI is available in the C, COBOL, C++
and Java programming languages.

• MQSeries C++ allows you to write MQSeries application programs in C++.

• MQSeries classes for Java (MQ base Java) allows a program written in
Java to connect to MQSeries as a client using TCP/IP or directly to an
MQSeries server.
6 User-to-Business Patterns with WebSphere Advanced and MQSI



• MQSeries classes for Java Message Service (MQ JMS) implements Sun’s
Java Message Service (JMS) interfaces to enable JMS programs to
access MQSeries systems. JMS is an open standard and offers some
additional features that are not present in MQ base Java. MQ JMS
supports both the point-to-point and publish/subscribe communication
models.

MQSeries messaging and queueing is supported on over 35 platforms.
MQSeries also provides a number of connectors and gateways to other
products, such as Lotus Domino, Microsoft Exchange, SAP/R3, CICS, and
IMS.

Details on MQSeries connectivity can be found at:

http://www.ibm.com/software/ts/mqseries/platforms/.

1.4 IBM MQSeries Integrator

MQSeries Integrator (MQSI) Version 2.0 extends the messaging capabilities
of MQSeries by adding message broker functionality driven by business
rules. It provides the intelligence to route and transform messages, the
possibility to filter messages (topic-based or content-based), and database
capabilities for enrichment of the messages or for warehousing the
messages. It also provides a framework for extending the functionality with
plug-ins to user-written or third-party solutions for specific requirements.

MQSI is built on MQSeries. Applications using MQSeries to communicate
with other applications put messages on a queue. MQSI can retrieve
messages from the queue, perform some action based on business rules,
and put the resulting message on an output queue to be sent to the target
application. Message flows in MQSI are responsible for performing the
desired actions. For example, with message flows, you can:

• Transform the format of a message, allowing dissimilar applications to
exchange information.

• Route messages to their destination based on the message or message
header contents.

• Store and retrieve information in a database.

• Modify the contents of a message.

• Publish a message to make it available to other applications.

• Create structured topic names, topic-based access control functions,
content-based subscriptions, and subscription points.
Chapter 1. Introduction 7



In other words, MQSI is a simple yet effective way of processing messages
en-route to their destination. It is designed to allow customers to extend their
technology without changing existing applications.

MQSI V2.0.1 is currently available on the following platforms:

• AIX
• Sun Solaris
• Windows NT

MQSI V1.1 is available on the following platforms:

• AIX
• AS/400
• HP-UX
• Windows NT
• OS/390
• Sun Solaris

In this book we will be discussing MQSI V2.0.1. For the latest information on
MQSI availability, check
http://www.ibm.com/software/ts/mqseries/integrator/.
8 User-to-Business Patterns with WebSphere Advanced and MQSI



Part 1. User-to-Business Patterns: topology 5
© Copyright IBM Corp. 2000 9



10 User-to-Business Patterns with WebSphere Advanced and MQSI



Chapter 2. Choosing the application topology

After identifying the business pattern, in this case, the User-to-Business
Pattern, the next step in planning an e-business application is to choose the
logical application topology that applies to your situation. We will give you a
brief overview of the eight defined application topologies for the
User-to-Business Pattern. The rest of the book will concentrate specifically on
application topology 5.

2.1 Application topologies

The following are typical User-to-Business application topologies. These
application topologies do not show middleware, but focus on the shape of the
application, the application logic, and associated data.

Figure 2. User-to-Business pattern application topologies

3.
synch

App.

Pres.
synch

4. App.

6.

5. synch
Router

synch
Pres2

Pres1

App 2

App17.

WIP

Agent

CRM
LOB

Pres2
Pres1

synch/
asynch

synch/
asynch

8.

CRM

LOB

'Enterprise-out'

synch/asynchsynch

Pres2

Pres1 Agent

App.

App 2

App1

App 2

App1

Decomp

Pres2
Pres1 synch synch/

asynch

App 2

App1

Application node
containing new or
modified components

Application node containing
existing components with
no need for modification
or which cannot be changed

Read / Write data Read only data

Transient data
- Work in progress
- Cached committed data
- Staged data (data replication flow)

1. Pres.
synch

App.

2.
Pres.

Pres.
synch App.

App. App.synch/
asynch

'Web-up'

App.

App.
© Copyright IBM Corp. 2000 11



2.1.1 Web-up
Web-up is used to represent both an attitude of mind (Web-centric) and the
consequent implementation of new Web browser-centric applications
focussing only on the Web channel. The data may be acquired by replication
from existing sources or typed in by new users from the Web. The two
Web-up application topologies (1 and 2) are covered in detail in Patterns for
e-business: User-to-Business Patterns for Topology 1 and 2 using
WebSphere Advanced Edition, SG24-5864.

Topology 1 links a presentation node to business logic residing on the
second tier. The second tier can access a local database maintaining the
application data.

Topology 1 represents the target topology for most Web-up application server
vendors. It aims to fix the scalability problems of client/server and at the same
time provide re-use of the business logic and data by all styles of Web browsers.
Many vendors promote ease of development by a mixture of scripting and
components with little attention to layering the application with separate
presentation and business logic layers. This should be avoided. It should also be
noted that where the business logic and data are held outside the glasshouse
there will be a significant system management cost to manage this asset. The
business driver for this is currently to extend the current Web-enabled publishing
capability with an e-commerce capability with no back-end integration, a classic
Web-up strategy.

Topology 2 is similar to topology 1, but the business logic on the second tier
can access existing applications and data on the third tier.

Topology 2 represents an extension to the Web-up strategy in topology 1. It
allows for one or more point-to-point connections to back-end heritage
applications or databases so that Web applications can be integrated with
existing back-end applications (for example, an e-commerce application
integrated with a back-end inventory management applications).

One of the key issues to address is how this topology will be deployed to avoid
systems management complexity arising from corporate data on more than one
tier.

2.1.2 Enterprise-out
Enterprise-out is used to represent an enterprise-centric attitude of mind and
the consequent extension of existing applications out to the new Web
channel. Hence support for multiple channels is required.
12 User-to-Business Patterns with WebSphere Advanced and MQSI



Topology 3 represents a very thin client with a 3270/5250/ASCII emulator or
Host On-Demand accessing an existing application. The business driver for this
is to provide intranet access to existing green-screen applications without having
to rewrite/re-engineer these applications. It is a very simplistic enterprise-out
scenario.

Topology 4 represents a thin client (for example, a CICS ECI bean or IBM Host
Publisher) accessing an existing application. The business driver for this is to
provide a customized presentation of existing centralized applications without
having to rewrite/re-engineer these applications. Care should be taken in the
physical implementation so as not to cause an unsupportable number of
connections from the Web. Like topology 1, it is a very simplistic enterprise-out
scenario.

Topology 5 links multiple presentation tiers to any back-end client, but the
back-end is not hidden from the user, for example a call center or Web
browser (multiple presentation) linked to the back-end through an application
router.

Topology 5 represents a typical topology used to Web-enable existing robust,
highly scalable transactions. The extra scalability requirements generated by
enabling thousands of Web users may involve security, protocol conversion,
session concentration and routing. The business driver for this design is fast,
highly scalable, highly available Web-enablement of existing business
transactions, that is, a classic Web server enterprise-out strategy. The key
feature is the one-to-one-to-one relationship between the tiers at runtime. This
design is also valuable in the case of company mergers and takeovers.

Topology 6 is similar to topology 5, but the mechanics of the back-end
applications are hidden. A business request from one of the presentation tiers
can be decomposed on the middle tier into multiple back-end transactions,
which are then recomposed on the middle tier to return a single business
response to the presentation tier.

Topology 6 represents a step beyond topology 5 for the enterprise that wants to
make third-tier applications seamless by integrating the business logic at the
intermediate tier. This design is increasingly valuable because it can support
multiple styles of thin client with a common intermediate tier. The key feature is
the one-to-one-to-many relationship between the tiers at runtime. The business
driver is to provide customer-oriented support systems rather than
product-oriented systems.

Topology 7 represents mass customization. For example when someone
uses a browser to check an insurance claim, the application does cross
Chapter 2. Choosing the application topology 13



selling based on personal data. For example, an insurance customer contacts
an insurance company to check the status of an insurance claim. While
answering his query the system can also retrieve any information about his
family, house, car, birthdays, etc. from the corporate data repositories. This
data can be held as work-in-progress on the intermediate tier and used to
prompt the insurance customer with cross-selling opportunities. The key
feature is the provision of a push mechanism from the second to first tier. The
business driver for this design is customizing goods and services to a market
of one (mass customization).

Topology 8 is similar to topology 7 but the customer data is on a different
machine/platform from the application server.

In topology 7 the customer relationship management (CRM) data and the line
of business (LOB) data are both held on the same third tier. In topology 8 the
CRM data is held on the third tier that owns the customer relationship, while
the LOB data is accessed from the third tier of various third-party suppliers.
The business driver for this design is the need to support virtual enterprises,
intermediaries, or portals on the Web.

2.2 Application topology 5

Topology 5 represents a typical topology used to Web-enable existing, robust,
highly scalable transactions. The extra scalability requirements generated by
enabling thousands of Web users may involve security, protocol conversion,
session concentration, and routing. Topology 5 links multiple delivery channels
to any back-end client, but the back-end is not hidden to the user (for example
a call center or Web browser linked to the back-end through an application
router).

2.2.1 Application topology 5: business driver
The business driver for this design is fast, highly scalable, highly available Web
enablement of existing business transactions. There are multiple delivery
channels and multiple back-end applications. Each application stands on its own.
There is no need to combine information or features from multiple applications
into a single response to the user.

For example, a business could provide access to an order entry application
from customer server representatives in a call center. At the same time, it
could provide access to inventory data to suppliers using an intranet
connection.
14 User-to-Business Patterns with WebSphere Advanced and MQSI



2.2.2 Application topology 5: key features
The key feature of topology 5 is the one-to-one-to-one relationship between the
tiers at runtime. The application is divided into three logical tiers: a presentation
tier, a router tier, and a back-end application tier.

Figure 3. Application topology 5

The presentation tier is responsible for the interface into the Web application.
It is responsible for all the presentation logic of the application.

The router tier links a node in the presentation tier to a particular application
in the back-end application tier. The router tier provides a common interface
to multiple back-end applications, facilitating the connection, but containing
no business logic to combine the application data. It has access to data that
can affect the routing decision or that can be used to modify the message that
is routed. The true application topology 5 calls for this data to be read/only. A
variation on this is also possible, allowing the data to be used by the router for
caching, logging, or staging data.

The back-end application tier is responsible for all the business logic and data
access of the application. It may be a new application developed specifically
for the Web application, or it may be an existing legacy application that may
or may not require modification.

Router

Pres2

Pres1 synch synch/
asynch

App 2

App1

Application node

containing new or

modif ied components

A pplication node containing

ex is ting components w ith

no need for modif ication
or w hich cannot be changed

Read / Write data

Trans ient data
- Work in progress

- Cached committed data
- Staged data (data replication f low )

Read only data
The items in this box are not part of the
bas ic pattern, but can be added as a
variation.

synch - The application logic issues a call/return
(or blocking) request.

asynch - The application logic issues a send
(non-blocking) request.
Chapter 2. Choosing the application topology 15



The communication between the presentation and router tiers is
synchronous, meaning that the application logic issues a call/return (or
blocking) request.

The connection between the router tier and the back-end application tier can
be a fast asynchronous or synchronous connection, depending on the
characteristics and capabilities of the back-end system. Asynchronous
communication means the application logic issues a send (non-blocking)
request. If using synchronous communication, the application must be highly
available and scalable, qualities usually found in robust transaction
processing systems.

Since the presentation logic and business logic are separated, it is easy to
adapt the presentation node to new kinds of clients. The easiest approach is
to use thin browser-based clients. But it is also possible to extend the
presentation logic to new client platforms, for example, client Java
applications or Web appliances such as Web-enabled cellular phones or
personal digital assistants (PDAs), without the need to change the business
logic in the application node.

2.2.3 Application topology 5: considerations
Traditional transaction monitors have been typically used to support the
application router on the middle tier. These may still be appropriate unless
you have a requirement to move rapidly to application topology 6 and beyond.
For this level of functionality more advanced middleware is required, for
example, WebSphere Enterprise Edition or decomposition/recomposition
support anticipated in future releases of MQSI.
16 User-to-Business Patterns with WebSphere Advanced and MQSI



Chapter 3. Choosing the runtime topology

Application topology 5 represents a starting point for delivering a
sophisticated e-business application that delivers information from back-end
systems to multiple delivery channels, while exploiting the data integrity and
performance of legacy applications.

Now that the application topology has been chosen, it is time to choose the
runtime topology that most closely matches the requirements of the
application. A runtime topology uses nodes to group functional and
operational components. The nodes are interconnected to solve a business
problem. Each application topology leads to one or more underlying runtime
topologies.

3.1 An introduction to the node types

A runtime topology will consist of several nodes representing specific
functions. Most topologies will consist of a core set of common nodes, with
the addition of one or more nodes unique to that topology. To understand the
runtime topologies, you will need to review the following node definitions.

Integration server
An integration server hosts application logic that can access and use
information from existing databases, transaction functions from transaction
monitor systems, and application capabilities from application packages. The
integration server can access back-end applications individually or combine
this information and function in new ways.

At a minimum, the integration server acts as an integration point for multiple
presentation tiers (for example, call centers, branch offices, Web browsers)
so that they can share the infrastructure and applications on tiers 2 and 3.

Web application server
A Web application server node is an application server that includes an HTTP
server (also known as a Web server) and is typically designed for access by
HTTP clients and to host both presentation and business logic.

The Web application server node is a functional extension of the informational
(publishing-based) Web server. It provides the technology platform and
contains the components to support access to both public and user-specific
information by users employing Web browser technology. For the latter, the
node provides robust services to allow users to communicate with shared
© Copyright IBM Corp. 2000 17



applications and databases. In this way it acts as an interface to business
functions, such as banking, lending, and HR systems.

This node would be provided by the company on company premises, or
hosted in the enterprise network inside a demilitarized zone (DMZ) for
security reasons. In most cases, access to this server would be in secure
mode, using services such as SSL or IPSec.

In the simplest design, this node can provide the management of hypermedia
documents and diverse application functions. For more complex applications
or those demanding stronger security, it is recommended that the application
be deployed on a separate Web application server node inside the internal
network.

Data that may be contained on the node includes:

• HTML text pages, images, multimedia content to be downloaded to the
client browser

• JavaServer Pages (JSP) files

• Servlets, enterprise beans

• Application program libraries, for example, Java applets for dynamic
downloading to client workstations.

Public Key Infrastructure (PKI)
PKI is a collection of standards-based technologies and commercial services
to support the secure interaction of two unrelated entities (for example, a
public user and a corporation) over the Internet. In the context of the
topologies defined in this redbook, PKI supports the authentication of the
server to the browser client, using the SSL protocol.

Domain Name Service (DNS) node
The DNS node assists in determining the physical network address
associated with the symbolic address (URL) of the requested information.
The DNS is that of the Internet Service Provider, although DNS is
implemented on the accessed site, too.

User node
This node is most frequently a personal computing device (PC, etc.)
supporting a commercial browser, for example, Netscape Navigator or
Internet Explorer. The level of the browser is expected to support SSL and
some level of DHTML. Increasingly, designers should also consider that this
node may be a pervasive computing device, such as a Personal Digital
Appliance (PDA).
18 User-to-Business Patterns with WebSphere Advanced and MQSI



Directory and security services node
This node supplies information on the location, capabilities and various
attributes (including user ID/password pairs and certificates) of resources and
users known to this Web application system. The node may supply
information for various security services (authentication and authorization)
and may also perform the actual security processing, for example, to verify
certificates. The authentication in most current designs validates the access
to the Web application server part of the Web server, but it can also
authenticate for access to the database server.

Protocol firewall and domain firewall nodes
Firewalls provide services that can be used to control access from a less
trusted network to a more trusted network. Traditional implementations of
firewall services include:

• Screening routers (the protocol firewall in this design)

• Application gateways (the domain firewall)

The two firewall nodes provide increasing levels of protection at the expense
of increasing computing resource requirements. The protocol firewall is
typically implemented as an IP router, while the domain firewall is a dedicated
server node.

Web server redirector node
In order to separate the Web server from the application server, a so-called
Web server redirector node (or just redirector for short) is introduced. The
Web server redirector is used in conjunction with a Web server. The Web
server serves HTTP pages and the redirector forwards servlet and JSP
requests to the application servers. The advantage of using a redirector is
that you can move the application server behind the domain firewall into the
secure network, where it is more protected than within the demilitarized zone
(DMZ). Static pages can be served from the DMZ by this node.

The redirector can be implemented, for example, by either a reverse proxy
server or by a Web server plug-in such as the remote OSE function of IBM
WebSphere Application Server Advanced Edition.

Existing applications and data node
Existing applications are run and maintained on nodes that are installed in
the internal network. These applications provide for business logic that uses
data maintained in the internal network. The number and topology of these
existing application and data nodes is dependent on the particular
configuration used by these legacy systems.
Chapter 3. Choosing the runtime topology 19



3.2 Runtime topology A

Runtime topology A for application topology 5 consists of a basic topology
and one variation. In application topology 5, the router tier serves as an
integration point for delivery channels in the presentation tier, allowing access
to individual back-end applications. In runtime topology A, the functions of the
router tier are performed by an integration server. The functions of the
presentation tier are performed by a Web application server.

The basic runtime topology features a single Web application server
physically located in the DMZ. The integration server, third-tier applications,
and data are located in the internal network.

Figure 4. Runtime topology A - basic

The Web application server contains the presentation and controller logic.
This includes the HTML pages and JSPs required for interaction with the
users, and the controlling servlets required to access the back-end
applications. The primary business logic resides in the back-end applications,
with just enough logic in the integration server to route the request to the
appropriate destination.

Internal networkDemilitarized zone (DMZ)Outside world

Integration
Server

P
ro

to
co

lF
ir

ew
al

l

D
o

m
ai

n
F

ir
ew

al
l

Directory and
Security
Services

I
N
T
E
R
N
E
T

Public Key
Infrastructure

User
Node

Web
Application

Server

Existing
Applications

and Data

Pres2

Pres1 synch synch/
asynch

App 2

App1

Domain Name
Server

Router
20 User-to-Business Patterns with WebSphere Advanced and MQSI



The Web application server builds a request based on user input and passes
it to the integration server. The integration server examines the request,
determines the appropriate destination, and forwards it to the chosen
back-end application. This may involve making minor changes to the request.

Access to the Web application server resources is protected by the Web
application server’s security features, while access to the integration server’s
resources is protected by the integration server’s security features. User
information that is needed for authentication and authorization by both
servers is stored in the directory and security services node behind the
domain firewall in the internal network.

3.2.0.1 Benefits and limitations
This runtime topology offers the following benefits:

• All sensitive persistent data is stored behind the DMZ.

• Business logic can completely reside in the secure network.

Although this topology has limited availability and failover capability,
individual products offer features that could be folded into this topology,
allowing duplicate servers that can take over in the event of a server failure.
Horizontal scalability is also not shown, but there again, individual products
may offer workload management features that could be folded into this
topology to allow duplicate servers for distributed workload. Vertical
scalability can be achieved by adding memory or processors, and/or creating
multiple servers on the Web application server and integration server.

The number of clients that access the Web server simultaneously is limited by
the capacity of the Web server. The actual numbers depend on the software
and hardware platform used. Load balancing among the Web servers is a
possibility.

Since the Web server is not separated from the application server, there is no
additional security available and the business logic in the Web application
server is protected only by the protocol firewall.

3.3 Topology A variation 1

This variation introduces a new layer of security by putting all application
logic behind the firewall. Only a portion of the presentation function is left in
the DMZ.
Chapter 3. Choosing the runtime topology 21



Figure 5. Runtime topology A - variation 1

If you remember from our definitions, a Web application server node is a
combination of an HTTP server and an application server on one machine. To
provide an even more secure environment than the basic topology provides, it
is possible to separate the Web server function from the application server,
creating two new nodes. This allows you to leave the HTTP server in the
DMZ, but move the application server into the internal network, where it is in
a secure environment.

This separation of the Web server from the application server is done by
using a Web server redirector node (or redirector for short). A Web server
redirector combines the HTTP server, which serves static HTTP pages, with a
mechanism for forwarding dynamic servlet and JSP requests to a dedicated
server.

The presentation logic will span across both the Web server and the
application server. The primary business logic resides in the back-end
applications, with just enough logic in the integration server to determine the
appropriate destination for a request.

Internal networkDemilitarized zoneOutside world

Integration
Server

P
ro

to
co

lF
ir

ew
al

l

Existing
Applications

and Data

D
o

m
ai

n
Fi

re
w

al
l

Directory and
Security
Services

I
N
T
E
R
N
E
T

Public Key
Infrastructure

User
Node

Web Server
Redirector

Web
Application

Server

Pres2

Pres1 synch synch
asynch

App 2

App1

Domain Name
Server

Router
22 User-to-Business Patterns with WebSphere Advanced and MQSI



3.3.0.1 Benefits and limitations
Since the Web server is separated from the application server, additional
security is available. All business logic and the bulk of the presentation logic
is protected by both the protocol and the domain firewall.

As with the basic topology, there is limited availability, failover capability, and
scalability. Individual products may offer features that could be folded into this
topology, allowing duplicate servers and workload management features.

Since the requests to the application server need to be forwarded, you could
see a performance degradation, depending on the redirector solution chosen.
Chapter 3. Choosing the runtime topology 23



24 User-to-Business Patterns with WebSphere Advanced and MQSI



Chapter 4. Product mapping

Once the runtime topology is chosen, you will be ready to determine what
products and platforms will fit your needs. This chapter outlines our product
recommendations.

4.1 Product mappings for the basic topology

These mappings show the products and platforms used in the implementation
of the basic runtime topology A. The basic topology features a Web
application server between two firewalls and an integration server in the
secure network. Figure 6 shows the mapping for an environment where
Windows NT is used as the platform of choice for the Web application server
and integration server.

Figure 6. Basic runtime topology: Windows NT

IBM WebSphere Application Server Advanced Edition is used as the
application server. Security for the Web applications is provided by
WebSphere Advanced’s security features. Users must authenticate using the
LDAP server or the local operating system security.

Internal networkDemilitarized zone (DMZ)Outside world

Integration
Server

P
ro

to
co

lF
ir

ew
al

l

D
o

m
ai

n
F

ir
ew

al
l

Directory and
Security
Services

I
N
T
E
R
N
E
T

Public Key
Infrastructure

User
Node

Web
Application

Server

Existing
Applications

and Data

Windows NT 4.0
IBM SecureWay Firewall 4.1

Domain Name
Server

Windows NT 4.0
SecureWay Directory 3.1.1
DB2 UDB 5.2 (Fixpak 11)

Windows NT 4.0 + Service Pack 6A
WebSphere App Serv Adv Ed 3.5
JDK 1.2.2
IBM HTTP Server 1.3.12
DB2 6.1 + Fixpak 4
MQSeries SupportPac MA88

Windows NT 4.0+ Service Pack 6a
MQSeries 5.1 + CSD5
MQSeries Integrator 2.0.1
DB2 6.1 + Fixpak 4

Windows NT 4.0
DB2 6.1 + Fixpak 4

Windows NT 4.0
MQSeries 5.1
MQSeries Link for SAP 1.2
SAP R3
© Copyright IBM Corp. 2000 25



The integration server is implemented using IBM’s MQSeries and MQSeries
Integrator. Both the data and the integration server are protected behind the
domain firewall.

The back-end data and applications can be anything that supports a
connection to MQSeries, for example:

• CICS
• IMS
• SAP R/3
• Lotus Notes
• PeopleSoft
• Baan

Network security is provided by the two firewalls. The firewall between the
Internet and the DMZ is called the protocol firewall. It is configured to be open
on port 80 only, thus allowing only traffic using the HTTP protocol to flow from
the clients in the Internet to the Web application server in the DMZ.

The domain firewall restricts traffic based not only by protocol, but by host
name. The domain firewall is configured to be open on one port to allow the
Web application server to access the LDAP server, implemented with the IBM
SecureWay Directory. The number of ports open to allow access to the
integration server depends on the API method used to access MQSeries and
whether you choose to use MQSeries client or server functions on the Web
application server.

Our examples assume that an MQSeries client is used on the Web
Application Server, putting messages directly on remote queues. For
performance reasons (especially if you are not using persistent sessions),
you may choose to have the messages put on a local queue in the Web
application server for transmission by MQSeries to the remote broker. In this
case the open ports needed on the firewall will be those needed to allow
MQSeries to transmit traffic to another queue.

Figure 7 shows the mapping for an environment where AIX is used as the
platform of choice for the Web application server and integration server. The
products on the other nodes were implemented on Windows NT but are also
available on AIX.
26 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 7. Basic runtime topology: AIX

4.2 Runtime topology variation 1

Variation 1 features separating the Web server functions from the application
server functions. The application server and the integration server are placed
in the secure network. Requests are routed from the Web server to the
application server using a Web server redirector. Figure 8 shows the mapping
for an environment where Windows NT is used as the platform of choice for
the Web application server and integration server.

Internal networkDemilitarized zone (DMZ)Outside world

P
ro

to
co

lF
ir

ew
al

l

D
o

m
ai

n
F

ir
ew

al
l

I
N
T
E
R
N
E
T

Public Key
Infrastructure

User
Node

Web
Application

Server

Windows NT 4.0
IBM SecureWay Firewall 4.1

Domain Name
Server

AIX 4.3.3 + ML4
WebSphere App Serv Adv Ed 3.5
JDK 1.2.2
IBM HTTP Server 1.3.12
DB2 6.1 + Fixpak 4
MQSeries SupportPac MA88

Integration
Server

Directory and
Security
Services

Windows NT 4.0
SecureWay Directory 3.1.1
DB2 UDB 5.2 (Fixpak 11)

AIX 4.3.3 + ML4
MQSeries 5.1 + CSD5
MQSeries Integrator 2.0.1
DB2 6.1 + Fixpak 4

Existing
Applications

and Data

AIX 4.3.3
DB2 6.1 + Fixpak 4

AIX 4.3.3
MQSeries 5.1
MQSeries Link for SAP 1.2
SAP R3
Chapter 4. Product mapping 27



Figure 8. Runtime variation 1: Windows NT

In this product mapping the Web server redirector is implemented by the OSE
Remote feature of WebSphere Advanced. More information about this feature
can be found in WebSphere’s Remote OSE, a redpaper available at
http://www.ibm.com/redbooks.

As with the basic topology, IBM WebSphere Application Server Advanced
Edition is used as the application server, which provides Web application
security. The integration server is implemented using IBM MQSeries and
MQSeries Integrator.

The protocol firewall is identical to that in the basic topology, though the
requirements for the domain firewall have changed. A minimum of two ports
need to be open on the domain firewall to allow traffic to flow from the
redirector to the application server. This number would increase by one for
each application server. Additional ports may be needed depending on the
the method used to configure the redirector.

Figure 9 shows the mapping for an environment where AIX is used as the
platform of choice for the Web application server and integration server. The
products on the other nodes were implemented on Windows NT but are also
available on AIX.

Internal networkDemilitarized zoneOutside world

Integration
Server

P
ro

to
co

lF
ir

ew
al

l

D
om

ai
n

F
ir

ew
al

l

Directory and
Security
Services

I
N
T
E
R
N
E
T

Public Key
Infrastructure

User
Node

Web Server
Redirector

Application
Server

Windows NT 4.0
IBM SecureWay Firewall 4.1 Windows NT 4.0

SecureWay Directory 3.1.1
DB2 UDB 5.2 (Fixpak 11)

Windows NT 4.0 + Service Pack 6a
WebSphere App Serv Adv Ed 3.5
JDK 1.2.2
IBM HTTP Server 1.3.12

Domain Name
Server

Windows NT 4.0+ Service Pack 6a
MQSeries 5.1 + CSD5
MQSeries Integrator 2.0.1
DB2 6.1 + Fixpak 4

Existing
Applications

and Data

Windows NT 4.0
DB2 6.1 + Fixpak 4

Windows NT 4.0
MQSeries 5.1
MQSeries Link for SAP 1.2
SAP R3

Windows NT 4.0+ Service Pack 6a
WebSphere App Serv Adv Ed 3.5
JDK 1.2.2
DB2 + Fixpak 4
MQSeries Product Extension MA88
28 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 9. Runtime variation 1: AIX

4.3 Extending the topologies with workload management

The runtime topologies we have been working with do not show any
provisions for workload management. The possibilities are largely dependent
on the products used to implement the pattern. In our product mappings, we
use IBM WebSphere Application Server Advanced Edition, IBM MQSeries,
and IBM MQSeries Integrator. Each of these products offers workload
management features.

4.3.1 MQSeries and MQSeries Integrator
MQSeries 5.1 has a feature called clustering, which allows you to reduce the
complexity of an MQSeries network while reducing the administration
overhead required to maintain it. Clustering also allows you to balance
workload among queue managers on a round-robin basis. We talk more
about MQSeries clustering in 10.1.4, “Overview of the MQSeries clustering
feature” on page 249.

Internal networkDemilitarized zoneOutside world

Integration
Server

P
ro

to
co

lF
ir

ew
al

l

D
o

m
ai

n
F

ir
ew

al
l

Directory and
Security
Services

I
N
T
E
R
N
E
T

Public Key
Infrastructure

User
Node

Web Server
Redirector

Application
Server

Windows NT 4.0
SecureWay Directory 3.1.1
DB2 UDB 5.2 (Fixpak 11)

Domain Name
Server

Existing
Applications

and Data

AIX 4.3.3 + ML4
DB2 6.1 + Fixpak 4

AIX 4.3.3 + ML4
WebSphere App Serv Adv Ed 3.5
JDK 1.2.2
IBM HTTP Server 1.3.12

AIX 4.3.3 + ML4
WebSphere App Serv Adv Ed 3.5
JDK 1.2.2
DB2 6.1 + Fixpak 4
MQSeries Product Extension MA88

AIX 4.3.3 + ML4
MQSeries 5.1 + CSD5
MQSeries Integrator 2.0.1
DB2 6.1 + Fixpak 4

AIX 4.3.3
MQSeries 5.1
MQSeries Link for SAP 1.2
SAP R3

Windows NT 4.0
IBM SecureWay Firewall 4.1
Chapter 4. Product mapping 29



MQSI networks have one or more brokers that run the message flow logic,
providing the routing, transformation, etc. functions. Workload management
can be implemented by building your MQSI network on an MQSeries cluster
and defining the application queues to be hosted as local queues on multiple
brokers.

This is covered in more detail in Business Integration Solutions with
MQSeries Integrator, SG24-6154.

4.3.2 WebSphere Advanced Edition
The IBM WebSphere Application Server allows you to leverage processor
capacity or additional processors by means of application cloning. Cloning
means that a given application is duplicated such that the clients cannot
distinguish between the clones. In addition, each WebSphere Application
Server (this is WebSphere’s term for grouping a servlet engine and related
resources) is running in its own JVM. This allows the use of more than one
JVM with WebSphere.

Before cloning, you first have to create a model of that resource. Clones are
created from a model. After you clone a resource, modifying the model
automatically propagates the same changes to all of the clones. You can
efficiently administer several copies of a server or other resource by
administering its model.

You can also clone servlets, servlet engines, Web applications, EJB
containers, and enterprise beans.

The application server balances the workload of the clones running on a
server automatically. Thus, you do not have to worry about the machine’s
utilization. All of that is done automatically by the application server.

There are circumstances where cloning is desirable even if you have only one
processor installed. This can be the case if you have an application that is
spending most of its time waiting for some resources. During this time,
additional requests can be served by the application’s clones. Also, if
automatic tasks such as garbage collection take too long to complete, cloning
may prove a viable alternative on a single-processor machine.

In addition to all the above-mentioned advantages, cloning also increases the
availability of a particular Web application as well as the failover capability. If
any of the clones fails, the other clones take over the workload.

Overall, it is highly application dependent as to whether a performance
improvement can be achieved by cloning of applications.
30 User-to-Business Patterns with WebSphere Advanced and MQSI



As with all alternatives, there are also disadvantages that you have to
consider:

1. If you do not require session affinity and want all session-related
information to be transparent to the users, there is some performance
penalty because all session information needs to be saved and retrieved
from a database. Depending on the amount of data, this penalty may
prove to be very expensive.

2. If your application assumes that it is running on a dedicated machine
(even on a dedicated JVM), cloning will not be an issue for you because it
cannot be determined in advance on which machine your application will
execute the next time a request is served.

See WebSphere Scalability: WLM and Clustering Using WebSphere
Application Server Advanced Edition, SG24-6153 for more information on
using clones in a WebSphere Advanced environment.
Chapter 4. Product mapping 31



32 User-to-Business Patterns with WebSphere Advanced and MQSI



Part 2. User-to-Business Patterns: guidelines
© Copyright IBM Corp. 2000 33



34 User-to-Business Patterns with WebSphere Advanced and MQSI



Chapter 5. Technology options

This chapter looks at some of the technologies that you should consider for
Web applications based upon the open standards and Java-based
programming model of the IBM Application Framework for e-business. We
will look at the technologies as they apply to both the client and the server
side of the application. Some technologies, such as Java and XML, can apply
to both. Also, the selection of client-side technologies used in your design will
require consideration for the server side such as whether to store, or
dynamically create, elements for the client side.

For an outline of the technologies recommended by the IBM Application
Framework, see the IBM Application Framework for e-business Architecture
Overview Web page at:

http://www.ibm.com/software/ebusiness/arch_overview.html

The sections that follow detail a number of technologies that you will want to
consider in your design.

We recommend the following as technologies that are central to the
Application Framework and its programming model:

• HTML
• Java servlets and JavaServer Pages
• XML
• Connectors
• Enterprise JavaBeans
• JDBC
• Additional enterprise Java APIs

These technologies are used in the context of the following logical model for
an e-business application. This model, which has similarities to the
Model-View-Controller approach in GUI development, characterizes the
presentation logic as consisting of interaction control (implemented by Java
servlets) and page construction (implemented by JavaServer Pages). The
business logic may be implemented using beans and/or enterprise beans,
depending on the transactional characteristics of the application. The
business logic may need to access external resources using the appropriate
connector technology.
© Copyright IBM Corp. 2000 35

http://www.ibm.com/software/ebusiness/arch_overview.html


Figure 10. The logical structure of an e-business application using the recommended core technologies

We also include some discussion of the following technologies and the
limitations involved in their usage:

• DHTML
• JavaScript
• Java applets

For more information, see the IBM Application Framework for e-business
Architecture Overview: Understanding Technology Choices Web page, upon
which significant portions of this chapter are based:

http://www.ibm.com/software/ebusiness/buildapps/understand.html

5.1 Web client

The Application Framework recommends the following technology model for
a Web client.

Interaction
Control

Page
Construction

JSPs / Servlets

JSPs

HTML
JavaScript

Browser
Client

Command
Bean Business

Logic

EJBs

Data

JDBC

A
d
a
p
t
o
r
s

36 User-to-Business Patterns with WebSphere Advanced and MQSI

http://www.ibm.com/software/ebusiness/buildapps/understand.html


Figure 11. Web client technology model

The clients are “thin clients” with little or no application logic. Applications are
managed on the server and downloaded to the requesting clients. The client
portions of the applications should be implemented in HTML, dynamic HTML
(DHTML), XML, and Java applets.

The following sections outline some of the possible technologies that you
should consider, but remember that your choices may be constrained by the
policy of your customer or sponsor. For example, for security reasons, only
HTML is allowed on the Web client at some government agencies.

Although the Application Framework recommends thin clients, there is also
opportunity for developing applications geared toward other client types.

5.1.1 Web browser
A Web browser is a fundamental component of the Web client. For PC-based
clients, the browser typically incorporates support for HTML, DHTML,
JavaScript, and Java. Some browsers are beginning to add support for XML
as well. Under user control, there is a whole range of additional technologies

Browser/Web Top

Java VM

Applets
and

JavaBeans

Protocols - HTTP, IIOP, ...

Network Infrastructure

Native Apps
Shrink
Wrapped
Custom

CREDIT CARD

1234 5678 90121234 5678 9012
VALID FROM GOODTHRU

XX/XX/XX XX/XX/XX

PAUL FISCHER

XX/XX/XX XX/XX/XX

PAULFISCHER

Pervasive

NC

Managed PC

PC

TCP/IP, WAP ...

HTML, DHTML, XML, WML
Chapter 5. Technology options 37



that can be configured as “plug-ins”, such as RealPlayer from RealNetworks
or Macromedia Flash.

As an application designer you must consider the level of technology you can
assume will be available in the user’s browser, or you can add logic to your
application to enable slight modifications based upon the browser level.
Regarding plug-ins, you need to consider what portion of your intended user
community will have that capability.

For an e-business application that is to be accessed by the broadest set of
users with varying browser capabilities, the client is often written in HTML
with no other technologies. On an exception basis, limited use of other
technologies, such as using JavaScript for simple edit checks, can then be
considered based on the value to the user and the policy of the organization
for whom the project is being developed.

The emergence of pervasive devices introduces new considerations to your
design with regard to the content streams that the device can render and the
more limited capabilities of the browser. For example, Wireless Application
Protocol (WAP) enabled devices render content sent in Wireless Markup
Language (WML).

5.1.2 HTML
HTML is a document markup language with support for hyperlinks, that is
rendered by the browser. It includes tags for simple form controls. Many
e-business applications are assembled strictly using HTML. This has the
advantage that the client-side Web application can be a simple HTML
browser, enabling a less-capable client to execute an e-business application.

The HTML specification defines user interface (UI) elements for text with
various fonts and colors, lists, tables, images, and forms (text fields, buttons,
checkbooks, and radio buttons). These elements are adequate to display the
user interface for most applications. The disadvantage, however, is that these
elements have a generic look and feel, and they lack customization. As a
result, some e-business application developers augment HTML with other
user interface technologies to enhance the visual experience, subject to
maintaining access by the intended user base and compliance with company
policy on Web client technologies.

Because most Web browsers can display HTML Version 3.2, this is the lowest
common denominator for building the client side of an application.
38 User-to-Business Patterns with WebSphere Advanced and MQSI



5.1.3 Dynamic HTML (DHTML)
DHTML allows a high degree of flexibility in designing and displaying a user
interface. In particular, DHTML includes cascading style sheets (CSS) that
enable different fonts, margins, and line spacing for various parts of the
display to be created. These elements can be accurately positioned using
absolute coordinates.

Another advantage of DHTML is that it increases the level of functionality of
an HTML page through a document object model and event model. The
document object enables scripting languages such as JavaScript to control
parts of the HTML page. For example, text and images can be moved about
the window, and hidden or shown, under the command of a script. Also,
scripting can be used to change the color or image of a link when the mouse
is moved over it, or to validate a text input field of a form without having to
send it to the server.

Unfortunately there are several disadvantages with using DHTML. The
greatest of these is that two different implementations (Netscape and
Microsoft) exist and are found only on the more recent browser versions. A
small, basic set of functionality is common to both, but differences appear in
most areas. The significant difference is that Microsoft allows the content of
the HTML page to be modified by using either JScript or VBScript, while
Netscape allows the content to be manipulated (moved, hidden, shown) only
using JavaScript.

Because of browser compatibility issues, DHTML is not recommended in
environments where mixed levels and brands of browsers are present.

5.1.4 XML (client-side)
XML allows you to specify your own markup language with tags specified in a
Document Type Definitions (DTDs). Actual content streams are then
produced that use this markup. The content streams can be transformed to
other content streams by using XSL (eXtensible Stylesheet Language).

For PC-based browsers, HTML is well established for both document content
and formatting. The leading browsers have significant investments in
rendering engines based on HTML and a Document Object Model (DOM)
based on HTML for manipulation by JavaScript.

XML seems to be evolving to a complementary role for active content within
HTML documents for the PC browser environment.
Chapter 5. Technology options 39



For new devices, such as WAP-enabled phones and voice clients, the data
content and formatting is being defined by new XML schema (DTD), WML for
WAP phone, and VoiceXML for voice interfaces.

For most Web application designs, you should focus your attention on the use
of XML on the server side. See 5.2.4, “XML” on page 45 for additional
discussion of the server side use of XML.

5.1.5 JavaScript
JavaScript is a cross-platform object-oriented scripting language. It has great
utility in Web applications because of the browser and document objects that
the language supports. Client-side JavaScript provides the capability to
interact with HTML forms. You can use JavaScript to validate user input on
the client and help improve the performance of your Web application by
reducing the number of requests that flow over the network to the server.

ECMA, a European standards body, has published a standard (ECMA-262)
that is based on JavaScript (from Netscape) and JScript (from Microsoft)
called ECMAScript. The ECMAScript standard defines a core set of objects
for scripting in Web browsers. JavaScript and JScript implement a superset of
ECMAScript. You can find the ECMAScript Language Specification at:
http://www.ecma.ch.

To address various client-side requirements, Netscape and Microsoft have
extended their implementations of JavaScript in Version 1.2 by adding new
browser objects. Because Netscape's and Microsoft's extensions are different
from each other, any script that uses JavaScript 1.2 extensions must detect
the browser being used, and select the correct statements to run.

The use of JavaScript on the server side of a Web application is not
recommended, given the alternatives available with Java. Where your design
indicates the value of using JavaScript, for example for simple edit checking,
use JavaScript 1.1, which contains the core elements of the ECMAScript
standard.

JavaScript: The Definitive Guide, Third Edition, by David Flanagan, is an
excellent book on JavaScript that details the JavaScript objects and methods
listing their origin and JavaScript level.

5.1.6 Java applets
The most flexible of the user interface (UI) technologies that can be run in a
Web browser is offered by the Java applet. Java provides a rich set of UI
elements that include an equivalent for each of the HTML UI elements. In
40 User-to-Business Patterns with WebSphere Advanced and MQSI

http://www.ecma.ch/stand/ECMA-262.htm


addition, because Java is a programming language, an infinite set of UI
elements can be built and used. There are many widget libraries available
that offer common UI elements, such as tables, scrolling text, spreadsheets,
editors, graphs, charts, etc.

A Java applet is a program written in Java that is downloaded from the Web
server and run on the Web browser. The applet to be run is specified in the
HTML page using an APPLET tag:

<APPLET CODEBASE="/mydir" CODE="myapplet.class" width=400 height=100>
<PARAM NAME="myParameter" VALUE="myValue">

</APPLET>

For this example, a Java applet called myapplet will run. An effective way to
send data to an applet is with the use of the PARAM tag. The applet has
access to this parameter data and can easily use it as input to the display
logic.

Java can also request a new HTML page from the Web application server.
This provides an equivalent function to the HTML FORM submit function. The
advantage is that an applet can load a new HTML page based upon the
obvious (a button being clicked), or the unique (the editing of a cell in a
spreadsheet).

A characteristic of Java applets is that they seldom consist of just one class
file. On the contrary, a large applet may reference hundreds of class files.
Making a request for each of these class files individually can tax any server
and also tax the network capacity. However, packaging all of these class files
into one file reduces the number of requests from hundreds to just one. This
optimization is available in many Web browsers in the form of either a JAR
file or a CAB file. Netscape and HotJava support JAR files simply by adding
an ARCHIVE="myjarfile.jar" variable within the APPLET tag. Internet Explorer
uses CAB files specified as an applet parameter within the APPLET tag. In all
cases, executing an applet contained within a JAR/CAB file exhibits faster
load times than individual class files. While Netscape and Internet Explorer
use different APPLET tags to identify the packaged class files, a single HTML
page containing both tags can be created to support both browsers. Each
browser simply ignores the other's tag.

A disadvantage of using Java applets for UI generation is that the required
version of Java must be supported by the Web browser. Thus, when using
Java, the UI part of the application will dictate which browsers can be used for
the client-side application. Note that the leading browsers support variants of
the JDK 1.1 level of Java and they have different security models for signed
applets.
Chapter 5. Technology options 41



A second disadvantage of Java applets is that any classes such as widgets
and business logic that are not included as part of the Java support in the
browser must be loaded from the Web server as they are needed. If these
additional classes are large, the initialization of the applet may take from
seconds to minutes, depending upon the speed of the connection to the
internet.

Because of the above shortcomings the use of Java applets is not
recommended in Internet environments where mixed levels and brands of
browsers are present. Small applets may be used in rare cases where HTML
UI elements are insufficient to express the semantics of the client-side Web
application user interface. If it is absolutely necessary to use an applet in an
Internet environment, care should be taken to include UI elements that are
core Java classes whenever possible. Applets work better in an intranet
environment, where there is some expectation of consistent browser levels.

5.2 Web application server

The Application Framework recommends the following technology model for
a Web application server.

Figure 12. Web application server technology model

Native Platform
Services

Web Application Server

Java VM

Dynamic
Content
Services

Enterprise Java
Libraries

e-business Applications

Enterprise JavaBeans

Java Servlets

Java Server Pages

Protocols - HTTP, IIOP, ...

Network Infrastructure

Existing
Data &

Applications

NSF

IMS

CICS

RDB

Persistent Store

File
RDB

Connectors
42 User-to-Business Patterns with WebSphere Advanced and MQSI



We will assume in this section that you will be using a Web application server
and server-side Java. While there have been many other models for a Web
application server, this is the one that is experiencing widespread industry
adoption. For more details on the Java APIs discussed in this section see
Java Enterprise in a Nutshell by David Flanagan, Jim Farley, William
Crawford and Kris Magnusson.

Before looking at the technologies and APIs available in the Web application
programming environment, let’s have a word about two fundamental
operational components on this node, the HTTP server and the Java Virtual
Machine (JVM). For production applications, these essential components
should be chosen for their operational characteristics in areas such as
robustness, performance, and availability.

Relating the Model-View-Controller design structure so often used in user
interfaces to the Web application programming model:

• The View is generally best implemented using JavaServer Pages.

• The Interaction Controller, which is primarily concerned with processing
the HTTP request and invoking the correct business or UI logic, often
lends itself to implementation as a servlet.

• The Model is represented to the View and Interaction Controller via a set
of JavaBeans or Enterprise JavaBeans components.

5.2.1 Java servlets
Servlets provide a replacement for CGI-based techniques in Web
programming. Servlets are small Java programs that run on the Web
application server. They interact with the servlet engine running on the Web
application server through HTTP requests and responses, which are
encapsulated as objects in the servlet.

One of the attractions of using servlets is that the API is a very accessible
one for a Java programmer to master. The most current level of the servlet
API is 2.2. To learn more about the servlet API visit:
http://www.javasoft.com/products/servlet/.

Servlets are a core technology in the Web application programming model.
They are the recommended choice for implementing the “Interaction
Controller” classes that handle HTTP requests received from the Web client.
Chapter 5. Technology options 43

http://www.javasoft.com/products/servlet/


5.2.2 JavaServer Pages (JSP)
JSP files were designed to simplify the process of creating pages by
separating Web presentation from Web content. In the page construction
logic of a Web application, the response sent to the client is often a
combination of template data and dynamically generated data. In this
situation, it is much easier to work with JSP files than to do everything with
servlets.

The chief advantage JSP files have over Java servlets is that they are closer
to the presentation medium. A JavaServer Page is basically an HTML page.
JSP files can contain all the HTML tags that Web authors are familiar with. A
JSP may contain fragments of Java code that encapsulate the logic that
generates the content for the page. These code fragments may call out to
beans to access re-usable components and back-end data. To learn more
about JSP files visit:
http://www.javasoft.com/products/jsp/.

JSP files are compiled into servlets before being executed on the Web
application server. The most current level of the JSP API is 1.1.

JSP files are the recommended choice for implementing the “View” that is
sent back to the Web client. For those cases where the code required on the
page will be a large percentage of the page, and the HTML only a small
percentage, writing a Java servlet will make the Java code much easier to
read and therefore maintain.

5.2.3 JavaBeans
JavaBeans is an architecture developed by Sun Microsystems, Inc.
describing an API and a set of conventions for re-usable, Java-based
components. Code written to Sun’s JavaBeans architecture is called Java
beans or just beans. One of the design criteria for the JavaBean API was
support for builder tools that can compose solutions that incorporate beans.
Beans may be visual or non-visual.

Beans are recommended for use in conjunction with servlets and JSP files in
the following ways:

• As the client interface to the “Model” layer. An interaction controller servlet
will use this bean interface.

• As the client interface to other resources. In some cases this may be
generated for you by a tool.
44 User-to-Business Patterns with WebSphere Advanced and MQSI

http://www.javasoft.com/products/jsp/


• As a component that incorporates a number of property-value pairs for use
by other components or classes. For example, the JavaServer Pages
specification includes a set of tags for accessing JavaBean properties.

5.2.4 XML
XML and XSL style sheets can be used on the server side to encode content
streams and parse them for different clients, thus enabling you to develop
applications for both a range of PC browsers and for the emerging pervasive
devices. The content is in XML and an XML parser is used to transform it to
output streams based on XSL style sheets.

This general capability is known as transcoding and is not limited to
XML-based technology. The appropriate design decision here is how much
control over the content transforms you need in your application. You will
want to consider when it is appropriate to use this dynamic content
generation and when there are advantages to having servlets or JSP files
specific to certain device types.

XML is also used as a means to specify the content of messages between
servers, whether the two servers are within an enterprise or represent a
business-to-business connection. The critical factor here is the agreement
between parties on the message schema, which is specified as an XML DTD.
An XML parser is used to extract specific content from the message stream.
Your design will need to consider whether to use an event-based approach,
for which the SAX API is appropriate, or to navigate the tree structure of the
document using the DOM API.

For more detail on the use of XML in the server side of your Web
applications, see XML and Java: Developing Web Applications by Maruyama,
Hiroshi, Kent Tamura and Naohiko Uramoto.

5.2.5 JDBC
The business logic in a Web application will access information in a database
for a database-centric scenario. JDBC is a Java API for
database-independent connectivity. It provides a straightforward way to map
SQL types to Java types. With JDBC, you can connect to your relational
databases, and create and execute dynamic SQL statements in Java.

JDBC drivers are RDBMS specific, provided by the vendor, but implement the
standard set of interfaces defined in the JDBC API. Given common schemas
between two databases, an application can be switched between one and the
other by changing the JDBC driver name and URL. A common practice is to
Chapter 5. Technology options 45



place the JDBC driver name and URL information in a property or
configuration file.

There are four types of JDBC drivers from which you can choose, based on
the characteristics of your application:

• Type 1: JDBC-ODBC bridge drivers. This type of driver, packaged with the
JDK, requires an ODBC driver and was introduced to enable database
access for Java developers in the absence of any other type of driver.

• Type 2: Native API Partly Java drivers. This type of driver uses the client
API of the DBMS and requires the binaries for the database client
software. This type of driver offers performance advantages but introduces
native calls from the JVM.

• Type 3: Net-protocol All Java drivers. A generic network protocol is used
with this type of driver. Portability is a major advantage of this type of
driver, but it has the limitation that it requires intermediate middleware to
convert the Net-protocol to the DBMS protocol.

• Type 4: Native-protocol All Java drivers. This type of driver is portable and
uses the protocol of the DBMS. Type 3 and 4 drivers are well suited for
applets that access a database server on an intranet, as they only require
Java code to be downloaded.

An important technique used to enhance the scalability of Web applications is
connection pooling, which may be provided by the application server. When
application logic in a user session needs access to a database resource,
rather than establishing and later dropping a new database connection, the
code requests a connection from an established pool, returning it to the pool
when no longer required.

The most recent level of the JDBC specification is 2.0, but many JDBC
drivers you use will still implement 1.0.

5.2.6 Enterprise JavaBeans
“Enterprise JavaBeans” is Sun's trademarked term for their EJB architecture
(or “component model”). When writing to the EJB specification you are
developing “enterprise beans” (or, if you prefer, “EJB beans”).

The EJB framework specifies clearly the responsibilities of the EJB developer
and the EJB container provider. The intent is that the “plumbing” required to
implement transactions or database access can be implemented by the EJB
container. The EJB developer specifies the required transactional and
security characteristics of an EJB in a deployment descriptor (this is
sometimes referred to as declarative programming). In a separate step, the
46 User-to-Business Patterns with WebSphere Advanced and MQSI



EJB is then deployed to the EJB container provided by the application server
vendor of your choice.

There are two types of Enterprise JavaBeans:

• Session beans
• Entity beans

A typical session bean has the following characteristics:

• Executes on behalf of a single client.
• Can be transactional.
• Can update data in an underlying database.
• Is relatively short lived.
• Is destroyed when the EJB server is stopped. The client has to establish a

new session bean to continue computation.
• Does not represent persistent data that should be stored in a database.
• Provides a scalable runtime environment to execute a large number of

session beans concurrently.

A typical entity bean has the following characteristics:

• Represents data in a database.
• Can be transactional.
• Shared access from multiple users.
• Can be long lived (lives as long as the data in the database).
• Survives restarts of the EJB server. A restart is transparent to the client.
• Provides a scalable runtime environment for a large number of

concurrently active entity objects.

Typically an entity bean is used for information that has to survive system
restarts, while in session beans, the data is transient and does not survive
when the client's browser is closed. For example, a shopping cart containing
information that may be discarded uses a session bean, and an invoice
issued after the purchase of the items is an entity bean.

An important design choice when implementing entity beans is whether to
use Bean Managed Persistence (BMP), in which case you must code the
JDBC logic, or Container Managed Persistence (CMP), where the database
access logic is handled by the EJB container.

The business logic of a Web application often accesses data in a database.
EJB entity beans are a convenient way to wrap the relational database layer
in an object layer, hiding the complexity of database access. Because a
single business task may involve accessing several tables in a database,
Chapter 5. Technology options 47



modeling rows in those tables with entity beans makes it easier for your
application logic to manipulate the data.

The latest EJB specification is 1.1. The most significant changes from EJB
1.0 are the use of XML-based deployment descriptors and the need for
vendors to implement entity bean support to claim EJB compliance.

To learn more about Enterprise JavaBeans, visit:
http://www.javasoft.com/products/ejb/index.html

5.3 Integration server

The Application Framework defines the application integration component as
that which allows disparate applications to communicate with each other. In
this case, we are going to be using the IBM MQSeries and MQSeries
Integrator as the integration server and will base this discussion on those
products.

5.3.1 Connectors
e-business connectors are gateway products that enable you to access
enterprise and legacy applications and data from your Web application.
Connector products provide Java interfaces for accessing database, data
communications, messaging and distributed file system services.

IBM provides a significant set of e-business connectors with tool support, for
CICS, Encina, IMS, MQSeries, SAP R/3, Lotus Domino, DB2 and other
relational databases. IBM is basing its tool support for most of these
connectors on a Common Connector Framework (CCF). For resources on
System/390, IBM is delivering native connectors based on CCF. The
command bean model of the CCF allows you to code to the specific
connector interface(s) of your choice while hiding the connector logic from the
rest of the Web application.

5.3.1.1 Common Connector Framework (CCF)
The task of connecting an application to a back-end data store is relatively
standard and follows the same basic pattern whether you are considering the
interactions between applications, servlets, EJBs, message queueing
systems, relational databases, transactional systems or some other pieces of
enterprise infrastructure. The typical approach to integration has been to
hand-craft the code required to drive each component of a system.

IBM’s Common Connector Framework (CCF) recognizes that most
interactions follow a standard pattern and provides a standard Java-based
48 User-to-Business Patterns with WebSphere Advanced and MQSI

http://www.javasoft.com/products/ejb/index.html


infrastructure for integrating various system components together. The CCF
is a framework made up of client and server interfaces. IBM provides an
implementation of the CCF in VisualAge for Java.

The CCF simplifies enterprise connectivity development by providing:

• A common client programming model for connectors that greatly reduces
the learning curve for an application developer

• A common infrastructure programming model for connectors

• A plug-in interface for higher-level tools, making them independent of a
particular connector

VisualAge for Java provides the Enterprise Access Builder (EAB) tool,
allowing you to create an EAB command that hides the complexities of
enterprise connectivity. The programmer can easily use this EAB command
as a bean that provides enterprise access functionality in the same manner
for all the connectors.

Connectors currently exist for:

• CICS—both External Call Interface (ECI) and External Presentation
Interface (EPI) modes

• IMS
• MQSeries
• Host On-Demand
• Encina DE-Light
• SAP R/3

CCF connectors use three main interfaces:

1. ConnectionSpec: A ConnectionSpec implementation uniquely identifies a
connection and holds all connection-relevant attributes of a CCF
Connector such as host name, port number, and timeout specifications. It
may also encapsulate connector-specific connection data. For example,
an MQSeries connector would require a channel identifier.

2. InteractionSpec: An InteractionSpec retains all interaction-relevant
attributes of a CCF connector such as a program name argument to a
CCF Connector Communication when a particular interaction has to be
carried out.

3. Communication: An implementation of Communication “drives” a
particular interaction along via its execute method. Three arguments are
passed to the execute method to carry out an interaction via a
Communication. An instance of an InteractionSpec must be provided to
Chapter 5. Technology options 49



identify the concrete interaction characteristics. The other arguments are
an input and an output record that are used to carry the exchanged data.

In addition, it is necessary to specify input/output records to allow data to flow
through the framework. These represent the parameters to, and data returned
from, the addressed Enterprise Information System (EIS). They may be a
simple byte array but are usually a Java bean. Each bean is either based on
the Java Record Library (a number of helper classes in the com.ibm.record,
com.ibm.record.ctypes, and com.ibm.record.util packages intended to
facilitate working with both fixed-length and variable-length records), or is
defined specifically for a particular connector.

Applying the connector is relatively straightforward, even if performed by
hand, but the preferred way of using the CCF connectors is through the
integrated tools.

The CCF is easily applied within a feature-rich component environment such
as that provided by WebSphere Application Server to support servlets or
enterprise beans. However, it is not restricted to such environments and can
be readily applied within applets or “fat” client applications. In these
situations, it is necessary for the application to directly supply an
implementation of the CCF runtime support infrastructure, since this is
normally provided by the supporting component environment.

More information on CCF can be found in CCF Connectors and Database
Connections Using WebSphere Advanced Edition, SG24-5514.

5.3.1.2 The MQSeries Connector
VisualAge for Java MQSeries Common Connector Framework (CCF)
Connector classes provide a higher-level Java interface that conforms to the
IBM CCF. This interface simplifies some of the programming tasks associated
with the MQSeries Client Classes for Java native programming interface and
is consistent with the CCF interfaces implemented by other IBM connectors.

Programs written using the MQSeries CCF Connector classes can
communicate with programs that use the standard MQSeries programming
interface (the MQI), or with programs that use the MQSeries Client Classes
for Java interface. The other applications can be executing on any of the
systems to which MQSeries has been ported.

The connector does not make direct calls to the basic MQSeries interfaces.
Instead, it makes use of the MQSeries classes for Java (MQ base Java)
facility. MQ base Java allows a program written in Java to connect to
MQSeries as an MQSeries client using TCP/IP, or directly to an MQSeries
50 User-to-Business Patterns with WebSphere Advanced and MQSI



server (bindings mode) using JNI to call directly into the underlying MQSeries
queue manager API.

5.3.2 Message-oriented middleware
In this redbook, we shall be studying the role and use of message-oriented
middleware (MOM) as the integration component of the topology.

First, we will look at the principles of MOM, then examine the products we will
use to illustrate its role in the e-business pattern.

5.3.2.1 Technology principles
To understand the role of MOM and its component technologies, we must
examine the problem for which it is the answer.

The need for Enterprise Application Integration (EAI) in a typical back-office
distributed systems environment presents a problem that can be split into
distinct parts:

• How to transport information between systems

• How to translate information so that the output of one system can be
accepted and understood by another.

It is important to be clear about how these issues differ from each other.

Clearly the former requires that the network infrastructure be in place to
support the transport. In addition, and in the absence of an MOM solution,
applications must contain code that can open the right connections across
the network and send or receive information over them. In a typical MOM
solution, the transport layer handles this function on behalf of the application.
A transformation and routing application is used where information output
from an application must be changed in order to be of use to receiving
applications.

Transport layer
To use the MOM transport layer, a sending application packages its
information in the form of a message, labels it to an addressee and hands it
to the transport layer for delivery to the intended recipient. The receiving
application gets the messages by simply connecting to the transport layer
with a request for its messages. The use of the transport layer enables (but
does not require) an interface (messaging) to become an asynchronous
operation between applications.

Each node forming part of the transport layer is configured with the necessary
network connections and other definitions that enable it to either store
Chapter 5. Technology options 51



messages, or when possible, forward messages. In this context, we use the
word node to describe a functional control point of the transport layer.

The transport layer encapsulates the business of message transportation,
and potentially translation, between networking protocols and character
encoding standards as messages are transported between hosts in a
distributed network.

It also provides an Application Programming Interface (API) to enable
applications to send and receive messages through conversation with the
transport layer alone.

The transport layer does not, however, handle any message transformation
that may be required to make output from one system acceptable to another.

Transformation and routing
Where the output from one system is required in a different form by another
system, message transformation is required. Transformation is handled by a
specialist application, which gets messages from the transport layer, applies
the required transformations, then hands the transformed message back to
the transport layer for delivery to the final recipient.

Where transformation is required, the sending application sends its message
to the transformation application, which adjusts the message as required and
reroutes it to the intended location. The content of a single incoming message
may be selectively extracted and routed in differing forms to many
destinations.

From this basic concept, the latest specialist applications of this genre have
extended the messaging paradigm to provide rich functionality beyond simple
message transformation and routing. Messages can be distributed not only in
a point-to-point fashion, as in the scenario described so far, but also by
“publication and subscription” style through the services of a broker.

Message broker services
A message broker ,as the name suggests, is a service that holds messages
that are published to given topics so that client applications may obtain these
upon subscription. This method of message distribution further alleviates an
application from the responsibilities associated with exchange of data
between it and other applications.

Message enrichment and transaction coordination
An added feature of many modern transformation applications is the ability to
perform database operations as part of the message transformation and
routing process.
52 User-to-Business Patterns with WebSphere Advanced and MQSI



Such database operations can be used to look up and add additional data to
a message before onward delivery is made.

More significantly, data from the message can be used to update the content
of a database as part of the process. This inevitably leads to the need for
transactional capability, where all related transformations, routing, and
database operations (collectively termed a message flow) may be
coordinated as a single unit-of-work that may be committed if completely
successful or rolled back completely if any part fails.

5.4 Additional enterprise Java APIs

In developing a server-side application, you may also need to be familiar with
the following enterprise Java class libraries:

• Java Naming and Directory Interface (JNDI). This package provides a
common API to a directory service. Service provider implementations
include those for LDAP directories, RMI and CORBA object registries.
Sample uses of JNDI include:

- Accessing a user profile from an LDAP directory

- Locating and accessing an EJB Home

• Remote Method Invocation (RMI). RMI and RMI over IIOP are part of the
EJB specification as the access method for clients accessing EJB
services. RMI can also be used to implement limited function Java
servers.

• Java Message Service (JMS). The JMS API enables a Java programmer
to access message-oriented middle ware such as MQSeries from the Java
programming model. Such messaging middle-ware is a popular choice for
accessing existing enterprise systems and is one of your options if you are
implementing a solution based on application topology 2.

• Java Transaction API (JTA). This Java API for working with transaction
services, is based on the XA standard. With the availability of EJB servers,
you are less likely to use this API directly.

5.5 References and where to find more information

For more information on topics discussed in this chapter see:

• Servlet and JSP Programming with IBM WebSphere Studio and VisualAge
for Java, SG24-5755
Chapter 5. Technology options 53



• Design and Implement Servlets, JSPs, and EJBs for IBM WebSphere
Application, SG24-5754

• CCF Connectors and Database Connections Using WebSphere Advanced
Edition, SG24-5514

• Building e-business Solutions, SC09-4432

• Flanagan, David, JavaScript: The Definitive Guide, Third Edition, O'Reilly
& Associates, Inc., 1998

• Maruyama, Hiroshi, Kent Tamura and Naohiko Uramoto, XML and Java:
Developing Web Applications, Addison-Wesley 1999

• Flanagan, David, Jim Farley, William Crawford and Kris Magnusson, Java
Enterprise in a Nutshell, O’Reilly & Associates, Inc., 1999

• For information on the IBM Application Framework for e-business:
http://www.ibm.com/software/ebusiness/

• For information about the ECMAScript language specification:
http://www.ecma.ch/

• To learn more about Java technology:

http://www.javasoft.com/products
54 User-to-Business Patterns with WebSphere Advanced and MQSI

http://www.ibm.com/software/ebusiness/
http://www.ecma.ch/stand/ECMA-262.htm
http://www.javasoft.com/products


Chapter 6. Java application design: using commands and MQSeries

Designing an e-business application presents many design challenges. We
have addressed many of these challenges in Patterns for e-business:
User-to-Business Patterns for Topology 1 and 2 using WebSphere Advanced
Edition, SG24-5864. This updates the Command bean information presented
in that book, with the new command package available with WebSphere 3.5.

This chapter will also address using MQSeries to exchange data between the
Java application and the back-end systems.

As we progress through this chapter and the following guidelines, we will be
discussing a WebSphere application example developed specifically for this
book. The layout and function of the application, referred to as the WebBank
application, is discussed in more detail in Chapter 8, “Application
development guidelines” on page 141. For now, we will just be looking at
coding techniques that will be used to accomplish specific tasks.

6.1 Command framework

This section discusses the motivation for using the command model in
e-business applications. For a full discussion of the WebSphere command
framework see Design and Implement Servlets, JSPs, and EJBs for IBM
WebSphere Application, SG24-5754. More information on the command
pattern is available in Design Patterns - Elements of Reusable Object
Oriented Software.

6.1.1 What are commands?
The command model addresses the need in software to perform an operation
without having to understand how or where that operation is completed. It
makes it possible to serialize data to ship and cache it. There are also
patterns that add compensation, allowing a second command to undo the
actions of the first command.

Commands are stylized Java beans that are used to represent requests or
actions. They allow us to keep the implementation of business actions, such
as querying a database or running a transaction, separate from our servlet
code. This allows servlet code to act solely as a controller in the
Model-View-Controller paradigm.

In their most basic form, commands simply encapsulate some request for
information or action. Commands are particularly useful for significant
© Copyright IBM Corp. 2000 55



program boundaries, such as the boundary between presentation code and
business logic.

To use commands you must perform the following steps:

1. Create (instantiate).

2. Initialize by setting some of the command’s properties. This may be done
in one of the command's constructors (all commands must have a
no-argument constructor to comply with the JavaBeans standard, but they
may also have convenience constructors that take initial values for the
command’s properties), by calling some of the command’s set methods, or
by a combination of two mechanisms.

3. Call the command’s execute() method. This is a no-argument method that
makes the command's output properties ready for access.

And optionally:

4. Inspect the command’s output properties by calling get methods.
Depending on how you implement your commands, some operations may
not require any output parameters.

Commands can be reset so they can be reused, minimizing the number of
creates.

Beans, of which commands are a special case, are the favored component
for many visual tools. For example, WebSphere Studio provides visual
support for accessing beans within a JavaServer Page (JSP) file. In fact,
JSPs provide special support for beans that allows them to be used via
special tags without requiring any code.

Commands use a “set property”/”get property” model for arguments, which
scales better to complex requests than the list of parameters model. In the
set property model each of the arguments has a different name so ordering is
not critical. The set-property model handles optional arguments easily by
providing default values for properties. In the list of parameters model the
caller must pass in a special illegal value, such as null or -1, for optional
parameters.

The get property model for obtaining the results easily accommodates
multiple result values, whereas the single result model of method or
procedure invocation is limited to a single value unless output parameters
(which are not Java’s strong suit) are used.
56 User-to-Business Patterns with WebSphere Advanced and MQSI



6.1.2 The command package
With the release of WebSphere 3.5 the command model is formalized in the
command package (com.ibm.websphere.command) and extended to
accommodate command shipping (called TargetableCommands). The
concept behind command shipping is to intercept the execute method, ship
the command to a better execution point (say on a remote server), execute it
there and then ship it back to the caller.

The command package is available to any WebSphere Java application. For
example, you can implement command shipping by using an entity bean.
When execute() is called on a command,
performExecute(TargetableCommand targetableCommand) is called on the
entity bean. Or for example, you could also implement command shipping by
using a “catcher servlet”. In this approach, the CommandTarget class would
construct and send an HttpServletRequest to a servlet on the EJB server. The
servlet would retrieve the command from the request, execute it, then store
the executed command in the HttpServletResponse object for return to the
CommandTarget.

Both these approaches are valid. The choice of which to use may depend on
whether or not you want your servlet and EJB environments completely
separate. Security is also a factor. The EJB approach transports over IIOP,
which may present a problem in environments with strict firewall rules. The
servlet catcher uses HTTP for the protocol, but in some environments
Internet protocols are not allowed to pass through the firewall between the
presentation layer to the application layer.

The command shipping model has several compelling advantages:

1. It is a direct extension of the base command model and therefore
maintains the same programming style and tooling advantages.

2. It isolates application logic from communication protocols and routing
polices. This allows the best protocol to be selected without requiring
extensive application changes. Indeed, using techniques such as dynamic
class loading, new protocols can be supported “on-the-fly” without the
need to change or recompile existing code.

3. It supports an agent-oriented service definition model in which the service
provider provides a functional interface without consideration for
distribution overhead. The service client then defines commands based on
the service interface. The commands are shipped to the service and run
there. This allows the service client to control the granularity of remote
communication and avoids many of the performance and complexity
issues associated with remote interfaces.
Chapter 6. Java application design: using commands and MQSeries 57



4. In an EJB environment, command shipping allows multiple EJB calls to be
made without the need for multiple round trips to the EJB server. All calls
are made locally by the command server.

And some disadvantages.

1. The simplest implementation of command shipping uses Java serialization
to generate the messages that flow between servers. This may hamper
the use of a messaging infrastructure such as MQSI, since it is difficult to
interpret a serialized bean at an intermediate point. However, command
shipping does not dictate an encoding for requests. It is perfectly
reasonable to provide a command target that encodes the command in
XML, or even SOAP for transport. Currently this will require per-command
encoding logic, but this logic would be required on a per-request basis
with any approach.

2. The simplest implementation of command shipping uses the same class
for both the server-side and the client-side implementation of the
command. Thus, if the server-side implementation of the execute method
needed to be changed, it would be necessary to redeploy the command
class to all clients as well, for example, by including the command classes
in a deployed EJB JAR file. Given the goal of agent-oriented service
definitions, this does not seem like a serious issue. However, if this is a
concern, then a simple dynamic delegation pattern can be followed where
the execute method of a command is implemented by delegation to a
dynamically linked (via classForName) helper class. In this way the helper
class can be changed at any time with no impact on the client code.

6.1.3 Command caching
Command caching is beyond the scope of this book. However, it warrants a
brief discussion to show future direction and to further justify the use of the
command model.

Command caching extends the command model to allow executed
commands to be saved in a cache and then retrieved when they are needed,
thus avoiding the cost of re-executing the command. To do this, commands
are extended with IDs and other metadata such as dependencies. The usage
model for cacheable commands is exactly like that for non-cacheable
commands. However, when execute() is called on the command the caching
infrastructure checks to see if a command with exactly the same ID is already
in the cache. If it is, then the contents of the cached command are copied into
the newly executed command using the setOutputProperties() method added
by TargetableCommand. Execute() then simply returns without really
executing the command.
58 User-to-Business Patterns with WebSphere Advanced and MQSI



The advantages of command caching are:

1. Caching is transparent to application code.

2. It is a true caching model. The application works correctly if items are not
in the cache. Just as an application using a command does not know or
care how the action is carried out, an application using a caching
command does not know or care if the action is carried out. It interacts
with the command in the same way, regardless of implementation.

3. It provides a unified caching model. The model is the same for expensive
computations, remote requests, database queries, etc.

4. A consistent caching model helps to contain the complexity of invalidation.

The disadvantages of command caching are:

1. It mixes logic and data solution by using data objects for output properties
of commands.

2. It requires the application developer to implement invalidation logic;
however:

- Time-outs work very well for most non-user specific commands.
- There is a special pattern for user-specific commands that keeps things

quite simple.
- A consistent, regular framework is better than ad hoc caching, which is

the only real alternative.

6.1.4 Command classes
The complete command hierarchy is shown in Figure 13. This shows the
Command interface as the base for all commands. Each command has to
implement at least the Command interface. When using the base Command
interface, the command is executed locally in the same JVM as the calling
servlet. An application that requires a command to be executed remotely (a
shippable command) needs to implement the TargetableCommand and
TargetableCommandImpl interfaces. Finally, if a command is to undo the work
done by another command then it must implement the
CompensableCommand interface.
Chapter 6. Java application design: using commands and MQSeries 59



Figure 13. Command hierarchy

6.1.5 Command shipping example
The example addressed in this section shows the implementation of a
shippable command for a client and server target. This example is used here
only as a guide for the command shipping section. It is not used in the
Personal Profile Services WebBank solution described at the end of this
chapter and in Chapter 8, “Application development guidelines” on page 141.

This example uses an entity bean with Container Managed Persistence
(CMP) called CheckingAccountBean. It allows a client to deposit money,
withdraw money, set a balance, get a balance, and retrieve the name on the
account.

In order to write a targetable command there are three steps involved:

1. Create the command interface

2. Implement the command

3. Implement the target

Command

execute()
isReadyToCallExecute()
reset()

TargetableCommand

getCommandTarget()
setCommandTarget()
getCommandTargetName()
setCommandTargetName()
performExecute()
hasOutputProperties()
setOutputProperties()

CompensableCommand

getCompensatingCommand()

<<Interface>>
Serializable

TargetableCommandImpl
60 User-to-Business Patterns with WebSphere Advanced and MQSI



To write a command interface, it is necessary to extend one of the three
interfaces included in the command package. The base interface for all
commands is the Command interface. This provides the client-side interface
for generic commands and declares the three following basic methods:

• isReadyToCallExecute()- This method is called on the client side before the
command is passed to the server for execution.

• execute() - This method passes the command to the target and returns
any data.

• reset() - This method reverts any output properties to the values they had
before the execute method was called so that the object can be reused.

The implementation classes for the interface must contain implementations
for the isReadyToCallExecute() and reset() methods. The execute() method is
implemented for you elsewhere (see 6.1.5.2, “Implementing the command” on
page 62).

Most commands, however, do not extend Command directly but use one or
both of its extensions, the TargetableCommand interface and the
CompensableCommand interface.

6.1.5.1 Creating the command interface
As mentioned above, in practice, a command interface is extended by the
TargetableCommand interface and, if required, the CompensableCommand
interface.

Figure 14 shows the most common implementation, which is that of a
command interface for a targetable command.

Figure 14. AccountUpdateCmd interface for a targetable command

import com.ibm.websphere.exception.*;
import com.ibm.websphere.command.*;
public interface AccountUpdateCmd extends TargetableCommand {

float getAmount();
float getBalance();
float getOldBalance();
float setBalance(float amount);
float setBalance(int amount);
CheckingAccount getCheckingAccount();
void setCheckingAccount(CheckingAccount newCheckingAccount);
TargetPolicy getCmdTargetPolicy
.......

}

Chapter 6. Java application design: using commands and MQSeries 61



In addition, the TargetableCommand interface declares the methods shown in
Table 2.

Table 2. TargetableCommand methods

The performExecute() method is the only method that must be implemented
by the application developer. The remaining are implemented by the
TargetableCommandImpl class, which also implements the execute() method
declared in the Command interface.

6.1.5.2 Implementing the command
If a command is to be shipped, it must implement the TargetableCommand
class by extending the TargetableCommandImpl class. This class implements
all of the methods in the TargetableCommand interface except the
performExecute() method. This method must be written by the application
developer. It also implements the execute() method from the Command
interface.

Continuing our example, the AccountUpdateCmdImpl must do the following:

• Define instance and class variables

• Implement Command specific methods

• Implement methods from the Command interface

• Implement methods from the TargetableCommand interface

Method Purpose

setCommandTarget() Specify the target object of a command

getCommandTarget() Returns the target object of a command

setCommandTargetName() Specify the target name to a command

getCommandTargetName() Returns the target name of a command

hasOutputProperties() Indicates whether the command has output that
must be copied back to the client (The
implementation class also provides a method,
setHasOutputProerties(), for setting the output of
this method. By default, hasOutputProperties()
returns true.

setOutputProperties() Saves output values from the command for return
to the specific client

performExecute() Encapsulates the application specific work. It is
called by the execute() method declared in the
Command Interface.
62 User-to-Business Patterns with WebSphere Advanced and MQSI



Let’s take a look at each of these items.

Defining instance and class variables
The AccountUpdateCmdImpl class declares the variables used by the
methods in the class, including the remote interfaces for the
CheckingAccount entity bean, the variables used to capture operations on the
checking account, and a compensating command.

Figure 15. Declare variables

Implementing command-specific methods
The AccountUpdateCmd interface defines several command-specific
methods in addition to extending other interfaces in the command package.
The command-specific methods are implemented in AccountUpdateCmdImpl.

The command developer must also provide a way of instantiating the
command. The command package does not specify the mechanism, so there
are number of options available to the developer. The fastest and most
efficient is to use constructors; the most flexible is to use a factory; and since
the commands are implemented as a JavaBeans component, the standard
Beans.instantiate() method may also be used. The constructor also sets the
Target policy (we cover this later in 6.1.5.3, “Implementing targets” on page
67).

Figure 16 shows two constructors used by this class. The difference between
the two is that the first constructor uses the default target policy and the
second allows a custom policy to be specified. They both take a
CommandTarget object as an argument and cast it to the CheckingAccount
type. The CheckingAccount interface extends both the CommandTarget
interface and the EJBObject (see Figure 20 on page 69). The resulting
checkingAccount object routes the command to the desired server using the
bean’s remote interface.

public class AccountUpdateCmdImpl extends TargetableCommandImpl
implements AccountUpdateCmd {

// Define Variables
public float balance;
public float amount;
public CheckingAccount checkingAccount;
....

}

Chapter 6. Java application design: using commands and MQSeries 63



Figure 16. Constructors in the AccountUpdateCmdImpl class

In addition to the constructors, there are also business-specific methods that
fall into this category. Figure 17 shows the following methods:

• setBalance() - Sets the balance of the account
• getAmount() - Returns the amount of the deposit or withdrawal.
• getCmdTargetPolicy() - Retrieves the current target policy
• setCheckingAccount() and getCheckingAccount() - Sets and retrieves the

current checking account

public class AccountUpdateCmdImpl extends TargetableCommandImpl
implements AccountUpdateCmd {

// Define Variables
.....
// Constructors
// First Constructor: relies on default target policy
public AccountUpdateCmdImpl(CommandTarget target, float
newAmount)
{

amount = newAmount;
checkingAccount = (CheckingAccount)target;
setCommandTarget(target);

}
// Second Constructor: allows for a customized target policy
public AccountUpdateCmdImpl(CommandTarget target, float
newAmount, TargetPolicy targetPolicy)
{

setTargetPolicy(targetPolicy);
amount = newAmount;
checkingAccount = (CheckingAccount)target;
setCommandTarget(target);

}
.....

}

64 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 17. Business-specific methods in the AccountUpdateCmdImpl class

The AccountUpdateCmd command is a stylized JavaBean, meaning that its
input and output properties are managed using standard JavaBean

public class AccountUpdateCmdImpl extends TargetableCommandImpl
implements AccountUpdateCmd {

// Define Variables
.....

// Constructors
.....

// Business Methods
public float getAmount() {

return amount();
}
public float getBalance() {

return balance;
}
public float getOldBalance() {

return oldbalance;
}
public float setBalance(float amount) {

balance = balance + amount;
return balance;

}
public float setBalance(int amount) {

balance += amount;
return balance;

}
public TargetPolicy getCmdTargetPolicy() {

return getTargetPolicy();
}
public void setCheckingAccount(CheckingAccount
newCheckingAccount) {

if (checkingAccount == null) {
checkingAccount = newCheckingAccount;

}
else

System.out.println(“Incorrect Checking Account (“ +
newCheckingAccount + “) specified”);

}
public CheckingAccount getCheckingAccount() {

return checkingAccount;
}

}

Chapter 6. Java application design: using commands and MQSeries 65



techniques such as “getter” and “setter” methods. The getter methods do not
work until after the command’s execute method has been called.

Implementing methods from other interfaces
There are potentially methods from three other interfaces that need to be
implemented.

Command interface
This declares two methods that require implementation,
isReadyToCallExecute() and reset().

Figure 18. Implementing methods from the Command interface

TargetableCommand Interface
This declares one method that needs to be implemented, performExecute(). It
may also be appropriate to override the default implementation of
setOutputProperties() since it does not save final, transient or static fields.

{
.....
//Methods from the Command Interface
public boolean isReadyToCallExecute() {

if (checkingAccount != null)
return true;

else
return false;

}
public void reset() {

amount =0 ;
balance = 0;
checkingAccount = null;
targetPolicy = new TargetPolicyDefault();

}
......

}

66 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 19. Implementing methods from the TargetableCommand interface

6.1.5.3 Implementing targets
The object that is the target of a TargetableCommand must implement the
CommandTarget interface. This object can be an actual server-side object,
such as an entity bean, or it can be a client-side adapter for a server. The
implementer of the CommandTarget interface is responsible for ensuring the
proper execution of a command in the desired target server environment.
This typically requires the following steps:

1. Copying the command to the target server by using a server-specific
protocol.

2. Running the command in the server.

public class AccountUpdateCmdImpl extends TargetableCommandImpl
implements AccountUpdateCmd
{

...
// Method from the TargetableCommand interface
public void performExecute() throws Exception {

CheckingAccount checkingAccount = getCheckingAccount();
oldBalance = checkingAccount.getBalance();
balance = oldBalance+amount;
checkingAccount.setBalance(balance);
setHasOutputProperties(true);

}
public void setOutputProperties(TargetableCommand fromCommand) {

try {
if (fromCommand != null) {

AccountUpdateCmd accountUpdateCmd =
(AccountUpdateCmd) fromCommand;

this.oldBalance = accountUpdateCmd.getOldBalance();
this.balance = accountUpdateCmd.getBalance();
this.checkingAccount =

accountUpdateCmd.getCheckingAccount();
this.amount = accountUpdateCmd.getAmount();

}
}
catch (Exception ex) {

System.out.println("Error in setOutputProperties.");
}

}
...

}

Chapter 6. Java application design: using commands and MQSeries 67



3. Copying the executed command from the target server to the client by
using a server-specific protocol.

Common ways to implement the CommandTarget interface include:

• A local target, which runs in the client's JVM.

• A client-side adapter for a server.

• An enterprise bean (either a session bean or an entity bean). Figure 20 on
page 69 shows the structure of the remote interface and enterprise bean
class for an entity bean that implements the CommandTarget interface.

Since targetable commands can be run remotely in another JVM, the
command package provides mechanisms for determining where to run the
command. A target policy associates a command with a target and is
specified through the TargetPolicy interface. You can design customized
target policies by implementing this interface, or you can use the provided
TargetPolicyDefault class. We will discuss this in 6.1.5.4, “Targets and target
policies” on page 75.

The following two sections will show how to implement a server-side
command target followed by a client-side adapter.

Writing a command target (server)
In order to accept commands the server must implement the single method of
the CommandTarget interface, the executeCommand() method. This can be
implemented in an enterprise bean (session or entity beans) or a servlet.

We shall concentrate on an entity bean for the remainder of this example. It is
possible to write a target enterprise bean that forwards the commands to a
specific server, such as another entity bean, in which case all commands
directed to a specific target go through the target enterprise bean. Or we can
write a target enterprise bean that does the work of the command locally.

In order to make an enterprise bean the target of a command, it is necessary
to:

• Extend the CommandTarget interface when you define the bean’s remote
interface, which must also extend the EJBObject interface.

• Implement the CommandTarget interface when you implement the bean
class, which must also implement either the SessionBean or EntityBean
interface.

The target in this example is an enterprise bean called
CheckingAccountBean. The bean’s remote interface, CheckingAccount,
68 User-to-Business Patterns with WebSphere Advanced and MQSI



extends the CommandTarget interface in addition to the EJBObject interface.
This is shown in Figure 20. The methods declared in the remote interface are
independent of those used by the command. The executeCommand() is
declared in neither the bean’s home or remote interfaces.

Figure 20. The remote interface of the CheckingAccount entity bean also a command target

Figure 21 shows the CheckingAccountBean implementing the EntityBean
interface as well as the CommandTarget interface. The class contains the
business logic for the methods in the remote interface, the necessary life
cycle methods (ejbActivate, ejbStore, etc.), and the executeCommand()
declared by the CommandTarget interface. This method is the only
command-specific code in the enterprise bean class. It attempts to run the
performExecute() method on the command and throws a CommandException
if an error occurs. If the performExecute() method runs successfully, the
executeCommand() method uses the hasOutputProperties() method to
determine if there are output properties that must be returned. If the
command has output properties, the method returns the command object to
the client.

...
import com.ibm.websphere.command.*;
import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface CheckingAccount extends CommandTarget, EJBObject
{

float deposit (float amount) throws RemoteException;
float deposit (int amount) throws RemoteException;
String getAccountName() throws RemoteException;

float getBalance() throws RemoteException;
float setBalance(float amount) throws RemoteException;

float withdrawal (float amount) throws RemoteException,
Exception;
float withdrawal (int amount) throws RemoteException,
Exception;
....

}

Chapter 6. Java application design: using commands and MQSeries 69



Figure 21. Implementing the CommandTarget

Writing a client-side adapter
Commands can be used with any Java application, but the means of sending
the command from the client to the server varies. The application we have
been describing uses enterprise beans. Now we will take a look at an
example that shows how to send a command to a servlet over the HTTP
protocol.

In this example, the client implements the CommandTarget interface locally.
Figure 22 shows the structure of the client-side class; it implements the
CommandTarget interface by implementing the executeCommand method.

...
public class CheckingAccountBean implements EntityBean, CommandTarget
{

// Bean variables
...
// Business methods from remote interface
...
// Life-cycle methods for CMP entity beans
...
// Method from the CommandTarget interface
public TargetableCommand executeCommand(TargetableCommand

command)throws RemoteException, CommandException {
try {

command.performExecute();
}
catch (Exception ex) {

if (ex instanceof RemoteException) {
RemoveException remoteException = (RemoteException)ex;
if (remoteException.detail != null) {

throw new CommandException(remoteException.detail);
}
throw new CommandException(ex);

}
}
if (command.hasOutputProperties()) {

return command;
}
return null;

}
}

70 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 22. The structure of a client-side adapter for a target

The main method in the client-side adapter constructs and initializes the
CommandTarget object, shown in Figure 23.

...
import java.io.*;
import java.rmi.*;
import com.ibm.websphere.command.*;
public class ServletCommandTarget implements CommandTarget,
Serializable
{

protected String hostName = "localhost";
public static void main(String args[]) throws Exception
{

....
}
public TargetableCommand executeCommand(TargetableCommand command)

throws CommandException
{

....
}
public static final byte[] serialize(Serializable serializable)

throws IOException {
... }

public String getHostName() {
... }

public void setHostName(String hostName) {
... }

private static void showHelp() {
... }

}

Chapter 6. Java application design: using commands and MQSeries 71



Figure 23. Instantiating the client-side adapter

Implementing a client-side adapter
The CommandTarget interface declares one method, executeCommand(),
which the client implements. The executeCommand() method takes a
TargetableCommand object as input and also returns a TargetableCommand.
Figure 24 shows the implementation of the method used in the client-side
adapter. This implementation does the following:

• Serializes the command it receives

• Creates an HTTP connection to the servlet

• Creates input and output streams, to handle the command as it is sent to
the server and returned

• Places the command on the output stream

• Sends the command to the server

• Retrieves the returned command from the input stream

• Returns the returned command to the caller of the executeCommand
method

public static void main(String args[]) throws Exception
{

String hostName = InetProfile.getLocalHost().getHostName();
String fileName = "MyServletCommandTarget.ser";
// Parse the command line
...
// Create and initialize the client-side CommandTarget adapter
ServletCommandTarget servletCommandTarget = new

ServletCommandTarget();
servletCommandTarget.setHostName(hostName);
...
// Flush and close output streams
... }

}

72 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 24. A client-side implementation of the executeCommand() method

Running the command in the servlet
The servlet that runs the command is shown in Figure 25. The service
method retrieves the command from the input stream and runs the
performExecute() method on the command. The resulting object, with any
output properties that must be returned to the client, is placed on the output
stream and sent back to the client.

public TargetableCommand executeCommand(TargetableCommand command)
throws CommandException {
try {

// Serialize the command
byte[] array = serialize(command);
// Create a connection to the servlet
URL url = new URL

("http://" + hostName +
"/servlet/com.ibm.websphere.command.servlet.CommandServlet");

HttpURLConnection httpURLConnection =
(HttpURLConnection) url.openConnection();

// Set the properties of the connection
...
// Put the serialized command on the output stream
OutputStream outputStream =

httpURLConnection.getOutputStream();
outputStream.write(array);
// Create a return stream
InputStream inputStream = httpURLConnection.getInputStream();
// Send the command to the servlet
httpURLConnection.connect();
ObjectInputStream objectInputStream =

new ObjectInputStream(inputStream);
// Retrieve the command returned from the servlet
Object object = objectInputStream.readObject();
if (object instanceof CommandException) {
throw ((CommandException) object);

}
// Pass the returned command back to the calling method

return (TargetableCommand) object;
}

// Handle exceptions
....

}

Chapter 6. Java application design: using commands and MQSeries 73



Figure 25. Running the command in the servlet

...
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.ibm.websphere.command.*;
public class CommandServlet extends HttpServlet
{

...
public void service(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException

{
try {

...
// Create input and output streams
InputStream inputStream = request.getInputStream();
OutputStream outputStream = response.getOutputStream();
// Retrieve the command from the input stream
ObjectInputStream objectInputStream =

new ObjectInputStream(inputStream);
TargetableCommand command = (TargetableCommand)

objectInputStream.readObject();
// Create the command for the return stream
Object returnObject = command;

// Try to run the command's performExecute method
try {

command.performExecute();
}
// Handle exceptions from the performExecute method
...
// Return the command with any output properties

ObjectOutputStream objectOutputStream =
new ObjectOutputStream(outputStream);

objectOutputStream.writeObject(returnObject);
// Flush and close output streams
...

}
catch (Exception ex) {

ex.printStackTrace();
}

}
}

74 User-to-Business Patterns with WebSphere Advanced and MQSI



In this example, the target invokes the performExecute() method on the
command, but this is not always necessary. In some applications, it can be
preferable to implement the work of the command locally. For example, the
command can be used to send input data to the target, which retrieves the
data and runs a local database procedure based on the input. You must
decide the appropriate way to use commands in your application.

6.1.5.4 Targets and target policies
As we have discussed, a targetable command extends the
TargetableCommand interface, which allows the client to direct a command to
a particular server. The TargetableCommand interface and the
TargetableCommandImpl class provide two ways for a client to specify a
target: the setCommandTarget() and setCommandTargetName() methods.
The setCommandTarget() method allows the client to set the target object
directly on the command. The setCommandTargetName() method allows the
client to refer to the server by name, an approach that is useful when the
client is not directly aware of server objects. A targetable command also has
corresponding getCommandTarget() and getCommandTargetName()
methods.

The command package needs to be able to identify the target of a command.
Because there is more than one way to specify the target and because
different applications can have different requirements, the command package
does not specify a selection algorithm. Instead, it provides a TargetPolicy
interface with one method, getCommandTarget(), and a default
implementation. This allows applications to devise custom algorithms for
determining the target of a command when appropriate.

The default target policy
The command package provides a default implementation of the TargetPolicy
interface in the TargetPolicyDefault class. If you use this default
implementation, the command determines the target by looking through an
ordered sequence of four options:

1. The CommandTarget value

2. The CommandTargetName value

3. A registered mapping of a target for a specific command

4. A defined default target

If it finds no target, it returns null.

The TargetPolicyDefault class provides methods for managing the
assignment of commands with targets (registerCommand,
Chapter 6. Java application design: using commands and MQSeries 75



unregisterCommand, and listMappings) and a method for setting a default
name for the target (setDefaultTargetName). The default target name is
com.ibm.websphere.command.LocalTarget, where LocalTarget is a class that
runs the command's performExecute() method locally. Figure 26 shows the
relevant variables and the methods in the TargetPolicyDefault class.

Figure 26. The TargetPolicyDefault class

Setting the command target
The AccountUpdateCmdImpl class shown in Figure 16 on page 64 provides
two command constructors. The first constructor takes a command target as
an argument and implicitly uses the default target policy to locate the target.

In Figure 32 on page 81 we see this constructor used with a null target,
causing the default target policy to step through its choices and eventually
find the default target name, LocalTarget.

The example in Figure 27 uses the same constructor to set the target
explicitly. This differs from using a null target as follows:

• The command target is set to checkingAccount rather than null. The
default target policy starts to step through its choices and finds the target
in the first place it looks.

...
public class TargetPolicyDefault implements TargetPolicy, Serializable
{

...
protected String defaultTargetName =

"com.ibm.websphere.command.LocalTarget";
public CommandTarget getCommandTarget(TargetableCommand command) {

... }
public Dictionary listMappings() {

... }
public void registerCommand(String commandName, String targetName)

{
... }

public void unregisterCommand(String commandName) {
... }

public void seDefaultTargetName(String defaultTargetName) {
... }

}

76 User-to-Business Patterns with WebSphere Advanced and MQSI



• It does not have to call the setCheckingAccount method to indicate the
account on which the command should operate; the constructor uses the
target variable as both the target and the account.

Figure 27. Identifying a target with CommandTarget

Setting the command target name
If a client needs to set the target of the command by name, it can use the
command's setCommandTargetName() method. Figure 28 illustrates this
technique. This example compares with Figure 32 on page 81 as follows:

• Both explicitly set the command target in the constructor to null.

• Both use the setCheckingAccount method to indicate the account on
which the command should operate.

• This example sets the target name explicitly by using the
setCommandTargetName() method. When the default target policy
examines its choices, it finds a null for the first choice and a name for the
second.

...
CheckingAccount checkingAccount
....
try {

AccountUpdateCmd cmd =
new AccountUpdateCmdImpl(checkingAccount, 1000);

cmd.execute();
}
catch (Exception e) {

System.out.println(e.getMessage());
}
...
Chapter 6. Java application design: using commands and MQSeries 77



Figure 28. Identifying a target with CommandTargetName

Mapping the command to a target name
The default target policy also permits commands to be registered with
targets. Mapping a command to a target is an administrative task that is most
appropriately done through a configuration tool. The WebSphere Application
Server administrative console does not yet support the configuration of
mappings between commands and targets. Applications that require support
for the registration of commands with targets must supply the tools to manage
the mappings. These tools can be visual interfaces or command-line tools.

Figure 29 shows the registration of a command with a target. The names of
the command class and the target are explicit in the code, but in practice,
these values would come from fields in a user interface or arguments to a
command-line tool. If a program creates a command with null specified for the
target, when the default target policy examines its choices, it finds a null for
the first and second choices and a mapping for the third.

Figure 29. Mapping a command to a target in an external application

...
CheckingAccount checkingAccount
....
try {

AccountUpdateCmd cmd =
new AccountUpdateCmdImpl(null, 1000);

cmd.setCheckingAccount(checkingAccount);

cmd.setCommandTargetName("com.ibm.sfc.cmd.test.CheckingAccountBean");
cmd.execute();

} catch (Exception e) {
System.out.println(e.getMessage());

}
...

...
targetPolicy.registerCommand(

"com.ibm.sfc.cmd.test.ModifyCheckingAccountImpl",
"com.ibm.sfc.cmd.test.CheckingAccountBean");

...
78 User-to-Business Patterns with WebSphere Advanced and MQSI



Customizing target policies
You can define custom target policies by implementing the TargetPolicy
interface and providing a getCommandTarget() method appropriate for your
application. The TargetableCommandImpl class provides setTargetPolicy and
getTargetPolicy methods for managing custom target policies.

So far, the target of all the commands has been a checking account entity
bean. Suppose that someone introduces a session enterprise bean
(MySessionBean) that can also act as a command target. Figure 30 shows a
simple custom policy that sets the target of every command to
MySessionBean.

Figure 30. Creating a custom target policy

Since commands are implemented as JavaBeans components, using custom
target policies requires importing the java.beans package and writing some
elementary JavaBeans code. Also, your custom target-policy class must also
implement the java.io.Serializable interface.

Using a custom target policy
The second constructor shown in Figure 16 on page 64 takes a target policy
object as an argument, allowing you to use a custom target policy. The
example in Figure 31 uses this constructor, passing it a null target and a

...
import java.io.*;
import java.util.*;
import java.beans.*;
import com.ibm.websphere.command.*;
public class CustomTargetPolicy implements TargetPolicy, Serializable
{

public CustomTargetPolicy {
super();

}
public CommandTarget getCommandTarget(TargetableCommand command) {

CommandTarget = null;
try {

target = (CommandTarget)Beans.instantiate(null,
"com.ibm.sfc.cmd.test.MySessionBean");

}
catch (Exception e) {

e.printStackTrace();
}

}
}

Chapter 6. Java application design: using commands and MQSeries 79



custom target policy, so the custom policy is used to determine the target.
After the command is executed, the code uses the reset() method to return
the target policy to the default.

Figure 31. Using a custom target policy

6.1.5.5 Using shippable commands
To use a command, the client creates an instance of the command and calls
the command's execute() method. Depending on the command, calling other
methods may be necessary. The specifics will vary with the application.

In our example application, the server is the CheckingAccountBean, an entity
enterprise bean. In order to use this enterprise bean, the client gets a
reference to the bean's home interface. The client then uses the reference to
the home interface and one of the bean's finder methods to obtain a
reference to the bean's remote interface. If there is no appropriate bean, the
client can create one using a create method on the home interface. All of this
work is standard enterprise bean programming.

Figure 32 illustrates the use of the AccountUpdateCmd command. This work
takes place after an appropriate CheckingAccount bean has been found or
created. The code instantiates a command, setting the input values by using
one of the constructors defined for the command. The null argument indicates
that the command should look up the server using the default target policy,
and 1000 is the amount the command should attempt to add to the balance of
the checking account. After the command is instantiated, the code calls the
setCheckingAccount method to identify the account to be modified. Finally,
the execute() method on the command is called.

...
CheckingAccount checkingAccount
....
try {

CustomTargetPolicy customPolicy = new CustomTargetPolicy();
AccountUpdateCmd cmd =

new AccountUpdateCmdImpl(null, 1000, customPolicy);
cmd.setCheckingAccount(checkingAccount);
cmd.execute();
cmd.reset();

}
catch (Exception e) {

System.out.println(e.getMessage());
}

80 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 32. Using the AccountUpdateCmd command

6.1.6 Compensable commands
A compensable command is one that has another command (a compensator)
associated with it, so that the work of the first can be undone by the
compensator. For example, a command that attempts to make an airline
reservation followed by a hotel reservation can offer a compensating
command that allows the user to cancel the airline reservation if the hotel
reservation cannot be made.

The stages involved in implementing a compensable command are:

• Creating the interface

• Implementing the interface methods

• Writing the compensating command

6.1.6.1 Creating the interface
The first step in creating a compensable command is to write an interface that
extends the CompensableCommand interface. Such interfaces typically
extend the TargetableCommand interface as well.

The CompensableCommand interface extends the Command interface. It
declares one method, the getCompensatingCommand() method. This method
returns the command that can be used to undo the effects of the original
command.

Looking at our example, the declaration for the AccountUpdateCmd would
look like that in Figure 33.

{
...
CheckingAccount checkingAccount
...
try {

AccountUpdateCmd cmd =
new AccountUpdateCmdImpl(null, 1000);

cmd.setCheckingAccount(checkingAccount);
cmd.execute();

}
catch (Exception e) {

System.out.println(e.getMessage());
}

Chapter 6. Java application design: using commands and MQSeries 81



Figure 33. Updated AccountUpdateCmd to show CompensableCommand

6.1.6.2 Implement the interface methods
The getCompensatingCommand() method must be implemented by the
application programmer. In our example, this is done in the
AccountUpdateCmdImpl class shown in Figure 34.

Figure 34. Implementing the getCompensatingCommand method in AccountUpdateCmdImpl.

This implementation shows the method simply returning an instance of the
AccountUpdateCompensatorCmd command associated with the current
command.

....
public interface AccountUpdateCmd extends TargetableCommand,
CompensableCommand {
..// Continue with declarations & methods
.....
}

...
public class AccountUpdateCmdImpl extends TargetableCommandImpl
implements AccountUpdateCmd
{

// Variables
public AccountUpdateCmdCompensatorCmd accountUpdate

CompensatorCmd;

...remaining variables declared here i.e. (Figure 15 in appdes)

// Method from CompensableCommand interface
public Command getCompensatingCommand() throws CommandException {

accountUpdateCompensatorCmd =
new AccountUpdateCompensatorCmd(this);

return (Command)accountUpdateCompensatorCmd;
}
// Remaining methods from the interface impplemented here.
......... i.e. Figures 16 to 19 in appdes.

}

82 User-to-Business Patterns with WebSphere Advanced and MQSI



6.1.6.3 Write the compensating command
An application that uses a compensable command requires two separate
commands: the primary command (declared as a CompensableCommand)
and the compensating command. In the example application, the primary
command is declared in the AccountUpdateCmd interface and implemented
in the AccountUpdateCmdImpl class. Because this command is also a
compensable command, there is a second command associated with it that is
designed to undo its work. When you create a compensable command, you
also have to write the compensating command.

Writing a compensating command can require exactly the same steps as
writing the original command: writing the interface and providing an
implementation class. In some cases, it may be simpler. For example, the
command to compensate for the AccountUpdateCmd does not require any
methods beyond those defined for the original command, so it does not need
an interface. The compensating command, called
AccountUpdateCompensatorCmd, simply needs to be implemented in a class
that extends the TargetableCommandImpl class. This class must:

• Provide a way to instantiate the command (our example uses a
constructor)

• Implement the three required methods:

- isReadyToCallExecute() and reset(), both from the Command interface

- performExecute() from the TargetableCommand interface

Figure 35 shows the structure of the implementation class, its variables
(references to the original command and to the relevant checking account),
and the constructor. The constructor simply instantiates the references to the
primary command and account.
Chapter 6. Java application design: using commands and MQSeries 83



.

Figure 35. Variables and constructor in the AccountUpdateCompensatorCmd

Figure 36 shows the implementation of the inherited methods. The
implementation of the isReadyToCallExecute() method ensures that the
checkingAccount variable has been instantiated.

The performExecute() method verifies that the actual checking account
balance is consistent with what the original command returns. If so, it
replaces the current balance with the previously stored balance by using the
AccountUpdateCmd command. Finally, it saves the most recent balances in
case the compensating command needs to be undone. The reset() method
has no work to do.

...
public class AccountUpdateCompensatorCmd extends TargetableCommandImpl
{

public AccountUpdateCmdImpl accountUpdateCmdImpl;
public CheckingAccount checkingAccount;

public AccountUpdateCompensatorCmd(
AccountUpdateCmdImpl originalCmd)

{
// Get an instance of the original command
accountUpdateCmdImpl = originalCmd;
// Get the relevant account
checkingAccount = originalCmd.getCheckingAccount();

}
// Methods from the Command and Targetable Command interfaces
....

}

84 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 36. Methods in the AccountUpdateCompensatorCmd class

...
public class AccountUpdateCompensatorCmd extends TargetableCommandImpl
{

// Variables and constructor
....
// Methods from the Command and TargetableCommand interfaces
public boolean isReadyToCallExecute() {

if (checkingAccount != null)
return true;

else
return false;

}
public void performExecute() throws CommandException
{

try {
AccountUpdateCmdImpl originalCmd =
accountUpdateCmdImpl;
// Retrieve the checking account modified by the original command
CheckingAccount checkingAccount = originalCmd.getCheckingAccount();
if (accountUpdateCmdImpl.balance ==
checkingAccount.getBalance()) {

// Reset the values on the original command
checkingAccount.setBalance(originalCmd.oldBalance);
float temp = accountUpdateCmdImpl.balance;
originalCmd.balance = originalCmd.oldBalance;
originalCmd.oldBalance = temp;

}
else {

// Balances are inconsistent, so we cannot compensate
throw new CommandException(

"Object modified since this command ran.");
}

}
catch (Exception e) {

System.out.println(e.getMessage());
}

}
public void reset() {}

}

Chapter 6. Java application design: using commands and MQSeries 85



6.1.6.4 Using a compensable command
To use a compensating command, you must retrieve the compensator
associated with the primary command and call its execute() method. Figure
37 shows the code used to run the original command and to give the user the
option of undoing the work by running the compensating command.

Figure 37. Using the AccountUpdateCompensatorCmd command

6.1.7 Local command example
In our example application, WebBank, we have identified the need to retrieve
data (a user profile) from a database. We will use a command to retrieve this
data by sending a request (place a message on an MQSeries queue) to
MQSI. The command will be executed locally (no command shipping used for
now).

{
...
CheckingAccount checkingAccount
....
try {

AccountUpdateCmd cmd =
new AccountUpdateCmdImpl(null, 1000);

cmd.setCheckingAccount(checkingAccount);
cmd.execute();
...
System.out.println("Would you like to undo this work? Enter Y or N");
try {

// Retrieve and validate user's response
...

}
...
if (answer.equalsIgnoreCase(Y)) {

Command compensatingCommand = cmd.getCompensatingCommand();
compensatingCommand.execute();

}
}
catch (Exception e) {

System.out.println(e.getMessage());
}
...

}

86 User-to-Business Patterns with WebSphere Advanced and MQSI



In addition to showing an example of using commands, the code shows two
common ways of connecting to MQSeries, namely the use of the Java
Messaging Service (JMS) and MQSeries classes for Java.

Figure 38. Example application

6.1.7.1 GetCurrentProfileServlet
Figure 39 shows the core function of the performtask() method of the
GetCurrentProfileServlet servlet. The servlet is responsible for:

• Instantiating the command

This is shown by the command = statement. The commandClass parameter
is set by the init() method of the servlet and is retrieved from a properties
file. The value determines whether the MQSeries classes for Java or JMS
API is used to construct the XML message sent to and received from the
command to the message queues.

• Setting the command properties

These include the user name in the session and MQSeries message
queue parameters.

• Calling the command’s execute method

This executes locally in the same JVM as the servlet.

• Retrieving the results of the command

The contents of the XML message returned are used to populate the
StandardProfileBean, which in turn is used by the profileViewBean bean to
be returned to the view.

User

GetCurrentProfileServlet GetCurrentProfileCommand

MQSI
broker

MQSeries queue
manager

MQ classes for
Java or JMS

set command properties
command.execute() get command properties

retrieveProfile()

JSP

request
queue

Profile
data

response
queue

StandardProfile bean
Chapter 6. Java application design: using commands and MQSeries 87



Figure 39. Core function of the performtask() method of the GetCurrentProfileServlet servlet

// Do session check, get username from the string added to session by logon servlet
// Instantiate Command

........... more code here ...............
GetCurrentProfileCommand command = null;
try{

command = (GetCurrentProfileCommand)Class.forName(commandClass).newInstance();
}catch(Exception e){

writeToLog("Exception trying to load the command class");
}
// Set command's properties from file read at initialization time
command.setHostname(properties.getProperty("brokerHostname"));
command.setChannel(properties.getProperty("brokerChannel"));
command.setPort(properties.getProperty("brokerPort"));
command.setQueueManagerName(properties.getProperty("brokerQueueManagerName"));
command.setRequestQueueName(properties.getProperty("brokerSetRequestQueueName"));
command.setReplyQueueName(properties.getProperty("brokerSetReplyQueueName"));

command.setMessageTimeout(Long.parseLong(properties.getProperty("messageTimeout")));
command.setUser((String)session.getValue("user"));

// Now execute
try{

command.execute();
if(command.getMessage().startsWith("ERROR")){
writeToLog("ERROR detected in command message string");
throw new CommandException(command.getMessage());

}
}catch(CommandException ce){

writeToLog("Command exception - message returned by Command is " + ce);
try{

RequestDispatcher rd = getServletContext().getRequestDispatcher(errorPage);
rd.forward(req, res);
return;

}catch(ServletException se){
writeToLog("[performTask] - ServletException " + se.getMessage());
return;

}catch(IOException ioe){
writeToLog("[performTask] - IOException " + ioe.getMessage());
return;

} }
.... more code ...
// Add Profile object to StandardProfile bean to be accessed by the view bean & JSPs
req.setAttribute("profile", command.getProfile());
88 User-to-Business Patterns with WebSphere Advanced and MQSI



6.1.7.2 GetCurrentProfileCommand
Figure 40 shows the class hierarchy for the GetCurrentProfileCommand.

Figure 40. GetCurrentProfileCommand class hierarchy

MessagingCommand

channel
hostname
message
messageTimeout
port
queueManagerName
replyQueueName
requestQueueName

MessagingCommand()
execute()
reset()
isReadyToCallExecute()
getChannel()
setChannel()
...()

GetCurrentProfileCommand

profile
user
XMLreplyMessage
XMLrequestMessage

GetCurrentProfileCommand()
retrieveProfile()
setProfile()
getProfile()
...()

GetCurrentProfileCommandJMS

GetCurrentProfileCommandJMS()
retrieveProfile()

GetCurrentProfileCommandMQJava

GetCurrentProfileCommandMQJava()
retrieveProfile()
Chapter 6. Java application design: using commands and MQSeries 89



MessagingCommand
The abstract class MessagingCommand is a superclass that implements the
Command and Serializable interfaces. Table 3 shows its member field values
and their descriptions.

Table 3. Member Fields for MessagingCommand Class

As a command, MessagingCommand has the execute(), reset() and
isReadyToCallExecute() methods, as shown in Table 4. Note there is no logic
in the execute() method. This is supplied by the GetCurrentProfileCommand
subclass. It also has “getter” and “setter” methods for each of the fields listed
in Table 3.

Table 4. Methods of the MessagingCommand class

Field name initial value Purpose

channel NULL The name of the server
channel used to connect to
the queue manager

hostname localhost Host where queue
manager lives

message ““ Message field for error
conditions

messageTimeout 10000 (ms) How long to wait for the
message response

port 1414 Port of remote machine

queueManagerName NULL Name of the queue
manager - used only by
MQ classes for Java

replyQueueName NULL Reply queue name

requestQueueName NULL Request queue name

Method Declaration Purpose

MessagingCommand() public
MessagingCommand() {
super();
}

Default Constructor
90 User-to-Business Patterns with WebSphere Advanced and MQSI



GetCurrentProfileCommand
The GetCurrentProfileCommand is an abstract class that extends the
MessagingCommand class. Its declaration, constructor method, and field
declarations are shown in Figure 41.

execute() public void execute()
throws
CommandException {
}

Declares the work done by
the command and throws a
CommandException. The
logic is implemented by an
overriding execute()
method in its subclass.

reset() public void reset() {
}

This allows the properties
to be reset.

isReadyToCallExecute() public boolean
isReadyToCallExecute()
{
return true;
}

Confirms that the variables
and properties have been
set and returns true if the
command is ready to
execute.

Method Declaration Purpose
Chapter 6. Java application design: using commands and MQSeries 91



Figure 41. GetCurrentProfileCommand (abstract and method)

Table 5 shows the setter and getter methods for the fields listed above.

package com.ibm.raleigh.pdk.banking.commands;
import com.ibm.websphere.command.*;
import java.rmi.*;
import java.io.*;
import com.ibm.mq.*;
import com.ibm.pdk.banking.StandardProfile;
import com.ibm.xml.parser.*;
import org.w3c.dom.*;
import com.ibm.mq.*;
import java.io.*;
import java.net.*;
import java.rmi.RemoteException;
import java.security.Identity;
import java.util.*;
import java.util.Properties;
import javax.ejb.*;
import javax.jms.*;
import javax.naming.*;
import javax.naming.directory.*;
public abstract class GetCurrentProfileCommand extends MessagingCommand {
/*

* user = The user whose profile we are retrieving
* XMLrequestmessage = The XML message sent to MQSI
* XMLreplyMessage = The XML message we get back from MQSI
* profile = The profile object that encapsulates a user's personal details
*/
public String user = null;
public String XMLrequestMessage = null;
public String XMLreplyMessage = null;
public com.ibm.pdk.banking.StandardProfile profile = null;

public GetCurrentProfileCommand() {
super();

}

92 User-to-Business Patterns with WebSphere Advanced and MQSI



Table 5. “Setter” and ‘”getter” methods for GetCurrentProfileCommand

Method Declaration

setProfile public void setProfile(com.ibm.pdk.banking.StandardProfile newProfile)
{
Profile = newProfile;
}

getProfile public com.ibm.pdk.banking.StandardProfile getProfile() {

// Create a new Profile object from the XML retrieved by MQ

if(Profile == null){
Profile = new StandardProfile(getXMLreplyMessage());
}
return Profile;
}

setUser() public void setUser(java.lang.String newUser) {
user = newUser;
}

getUser() public java.lang.String getUser() {
return user;
}

setXMLreques
tMessage()

public void setXMLrequestMessage(java.lang.String
newXMLrequestMessage) {
XMLrequestMessage = newXMLrequestMessage;
}

getXMLreques
tMessage()

public java.lang.String getXMLrequestMessage() {
StringBuffer buffer = new StringBuffer();
buffer.append("<?xml version=\"1.0\" encoding=\"us-ascii\" ?>");
buffer.append("<!DOCTYPE customerrequest SYSTEM
\"customerrequest.dtd\">");
buffer.append("<customerrequest>");
buffer.append("<userid>");
buffer.append(user);
buffer.append("</userid>");
buffer.append("</customerrequest>");
return buffer.toString();
}

setXMLReply
Message()

public void setXMLreplyMessage(java.lang.String newXMLreplyMessage) {
XMLreplyMessage = newXMLreplyMessage;
}

Chapter 6. Java application design: using commands and MQSeries 93



Figure 42 shows the execute() method called by the servlet. This method
calls the setter method for XMLReplyMessage with the argument of the
retrieveProfile() method.

Figure 42. execute()

From Figure 40 on page 89 you can see that the retrieveProfile() method is
overridden by either of the concrete subclasses, depending on which method
(JMS or MQ base Java) is chosen.

The retrieveProfile() method does the following:

• Builds an XML message based on the user name and other properties set
by the servlet.

The message is constructed by calling the getXMLRequestMessage()
method.

• Puts the message on the request queue and waits for a response on the
output queue.

If the response message doesn’t appear on the queue in time there is a
CommandException thrown. Otherwise, the XML message is returned
from the queue.

At this point the servlet takes control and calls the getProfile() method of the
command. This creates the StandardProfile bean and populates it with the
XML message using the getXMLReplyMessage() method.

Table 6 shows the remaining methods defined in the command.

Table 6. Remaining methods in GetCurrentProfileCommand

getXMLReply
Message()

public java.lang.String getXMLreplyMessage() {
return XMLreplyMessage;
}

Method Declaration Purpose

reset() public void reset() {
}

This allows the properties
to be reset.

Method Declaration

public void execute() throws CommandException {
// Retrieve the XML message from MQSI and return it as a String
setXMLreplyMessage(retrieveProfile());
}

94 User-to-Business Patterns with WebSphere Advanced and MQSI



6.2 Using MQSeries to send and retrieve data

In addition to the command package, this pattern introduces the use of
MQSeries and MQSI. We will take a look at two different programming APIs
we can use to exchange messages between our Java application and a
back-end application using MQSeries.

To illustrate the procedure, we will take a look at some code from a sample
application. Our application will request data from a back-end application by
building a request for the data in XML format and placing that request on an
MQSeries queue. The requested data will be sent back to our application in
the form of an XML message on a reply queue. These tasks are performed by
a method called retrieveProfile(). This method is a part of a command called
GetCurrentProfileCommandMQJava in our MQSeries classes for Java
example and a part of the GetCurrentProfileCommandJMS command in our
JMS example.

The procedure for both APIs is basically the same:

1. Establish a connection.

2. Create an XML message.

3. Put the message on the MQSeries queue.

4. Wait for a response to appear in the output queue.

5. Get the reply message from the queue.

6. Return control back to the calling method.

6.2.1 MQSeries classes for Java
The MQSeries classes for Java allow a program written in the Java
programming language to connect to MQSeries as an MQSeries client, or

isReadyToCallExecute() public boolean
isReadyToCallExecute()
{
return true;
}

Confirms that the variables
and properties have been
set and returns true if the
command is ready to
execute.

writeToLog() System.out.println("[G
etCurrentProfileComman
d] - " + message);
}

Logging method.

Method Declaration Purpose
Chapter 6. Java application design: using commands and MQSeries 95



directly to an MQSeries server. It enables Java applets, applications, and
servlets to issue calls and queries to MQSeries giving access to mainframe
and legacy applications, typically over the Internet, without necessarily
having any other MQSeries code on the client machine. With the MQSeries
classes for Java the user of an Internet terminal can become a true
participant in transactions, rather than just a giver and receiver of information.

6.2.1.1 Initialization
The first step in the method is to define the name of the MQ objects to
connect to, in this case the “request” and the “reply” queues:

String requestQueueName = "ITSO.ADDR.REQ.IN";
String replyQueueName = "ITSO.ADDR.REPLY";

All message queues are managed by queue managers, so actual MQ Java
object references need to be defined for them. MQQueue provides inquire,
set, put, and get operations for MQSeries queues. The MQQueueManager
object provides resources for querying and manipulating the queue manager:

com.ibm.mq.MQQueueManager qMgr = null;
com.ibm.mq.MQQueue requestQueue = null;
com.ibm.mq.MQQueue replyQueue = null;

MQEnvironment contains static member variables which control the
environment in which an MQQueueManager object (and its corresponding
connection to MQSeries) is constructed. Values set in the MQEnvironment
class take effect when the MQQueueManager constructor is called, so you
should set the values in the MQEnvironment class before constructing an
MQQueueManager instance:

MQEnvironment.hostname = hostname;
MQEnvironment.channel = channel;
MQEnvironment.port = port;

6.2.1.2 Connect to the queue manager
To place a message on an MQSeries queue, we first need to connect to the
queue manager that has the queue:

qMgr = new MQQueueManager(queueManagerName);

Next, we need to open the queue. The first step is to determine the options
needed to open the queue. If we are using one queue for both input and
output (requestQueueName = replyQueueName) then we want to open that
queue for both put and get operations. Otherwise, we want to open the
request queue for put operations only:

if(requestQueueName.equals(replyQueueName)){
96 User-to-Business Patterns with WebSphere Advanced and MQSI



openOptions = MQC.MQOO_INPUT_AS_Q_DEF | MQC.MQOO_OUTPUT;
}
else{

openOptions = MQC.MQOO_OUTPUT; // Open queue to perform MQPUTs
}

The MQC interface defines all the constants used by the MQSeries classes
for Java. To refer to one of these constants from within your programs, prefix
the constant name with "MQC."

MQC.MQOO_OUTPUT and MQC.MQ00_INPUT_AS_Q_DEF are interfaces
in the MQQueueManager class (MQSeries classes for Java).
MQC.MQOO_OUTPUT opens a queue to put messages on it.
MQC.MQ00_INPUT_AS_Q_DEF opens a queue to get messages using the
queue-defined default.

Now we specify the queue we wish to open (the request queue) and the open
options determined in the previous code:

requestQueue = qMgr.accessQueue(requestQueueName, openOptions,
null, // default q manager
null, // no dynamic q name
null); // no alternate user id

6.2.1.3 Send a message
Now that the queue is open we need to construct the message and put it on
the queue. The construction is done with the following code:

MQMessage requestMessage = new MQMessage();
requestMessage.replyToQueueName = replyQueueName;
requestMessage.replyToQueueManagerName = queueManagerName;
requestMessage.writeString(getXMLrequestMessage());

MQMessage represents both the message descriptor and the data for an
MQSeries message. Having created requestMessage, we need specify
where our application will be looking for a reply with replyToQueueName()
and replyToQueueManagerName.

The writeString() method writes a string into the message buffer at the current
position. In this case it uses the getXMLrequestMessage() method of the
GetCurrentProfileCommand Command to compose the request to be put on
the queue in XML format (see Table 5 on page 93).

Finally the queue options need to be set and the message can be put on the
request queue:

MQPutMessageOptions pmo = new MQPutMessageOptions();
Chapter 6. Java application design: using commands and MQSeries 97



requestQueue.put(requestMessage, pmo);

This code accepts the default options.

6.2.1.4 Get the reply message
Having put the request message in the queue, the method waits for a
response from the output queue. The first thing that needs to be done is that
the reply queue needs to be identified, much like the request queue:

replyQueue = qMgr.accessQueue(replyQueueName,
openOptions,
null, // default q manager
null, // no dynamic q name
null); // no alternate userid

An object needs to be created for the reply message with its properties set to
include the original request message. This is done using the correlation ID
property of the message queue:

MQMessage replyMessage = new MQMessage();
replyMessage.correlationId = requestMessage.messageId;

We set the message options and issue a get with wait indicating the
maximum amount of time (2000 milliseconds) that we will wait for the
message to arrive:

MQGetMessageOptions gmo = new MQGetMessageOptions();
gmo.options = MQC.MQGMO_WAIT;
gmo.waitInterval = 2000;
replyQueue.get(replyMessage,gmo);

When the get has been executed, the XML document is extracted from the
message and returned to the calling method:

int msglen = replyMessage.getMessageLength();
String msgText = replyMessage.readString(msglen);
return msgText;

6.2.1.5 Clean up
After catching any exceptions and error trapping, the final thing to do is to
close the queue and disconnect from the queue manager:

requestQueue.close();
qMgr.disconnect();

The complete method, showing the program flow and error trapping can be
found in B.1, “GetCurrentProfileCommandMQJava: retrieveProfile() method”
on page 393.
98 User-to-Business Patterns with WebSphere Advanced and MQSI



6.2.2 Java Messaging Service (JMS)
One of the architectural objectives of JMS is to provide a common way for
Java applications to interact with enterprise Message Oriented Middleware
(MOM) systems. JMS defines a generic view of a message passing service. It
is important to understand this view and how it maps onto the underlying
MQSeries transport. The generic JMS model is based around the following
interfaces that are defined in Sun's javax.jms package:

• Connection: Provides access to the underlying transport, and is used to
create sessions.

• Session: Provides a context for producing and consuming messages,
including the methods used to create MessageProducers and
MessageConsumers.

• MessageProducer: Used to send messages.

• MessageConsumer: Used to receive messages.

It is important to note that a Connection is thread safe, but Sessions,
MessageProducers and MessageConsumers are not. The recommended
strategy is to use one Session per application thread.

In MQSeries terms:

• Connection: Provides a scope for temporary queues, as well as a place to
hold the parameters that control how to connect to MQSeries (for
example, the name of the queue manager, and the name of the remote
host if using the MQSeries Java client connectivity).

• Session: Contains an HCONN (a handle to a queue manager) and
therefore defines a transactional scope.

• MessageProducer and MessageConsumer: Contains an object handle
(HOBJ) that defines a particular queue for writing to or reading from.

Note that the following normal MQSeries rules apply:

• Only a single operation can be in progress per HCONN at any given time,
so the MessageProducers or MessageConsumers associated with a
Session cannot be called concurrently. This is consistent with the JMS
restriction of a single thread per Session.

• PUTs can use remote queues, but GETs can only be applied to queues on
the local queue manager. The generic JMS interfaces are subclassed into
more specific versions for point-to-point and publish/subscribe behavior.

The point-to-point versions are:
Chapter 6. Java application design: using commands and MQSeries 99



• QueueConnection

• QueueSession

• QueueSender

• QueueReceiver

One of the key ideas in JMS is that it is possible, and strongly recommended,
to write application programs using only references to the interfaces in
javax.jms. All vendor-specific information is encapsulated in implementations
of:

• QueueConnectionFactory

• TopicConnectionFactory

• Queue

• Topic

These are known as administered objects, which are so named because they
can be built using a vendor-supplied administration tool and can be stored in
a JNDI namespace. A JMS application can retrieve these objects from the
namespace and use them without needing to know which vendor provided the
implementation.

Once again, let’s take a look at our sample application, but this time our
retrieveProfile() method will be written using JMS.

6.2.2.1 Initialization
During the initialization phase, you will need to declare the local JMS
variables.

QueueConnection connection = null;
QueueSession session = null;
QueueSender messageProducer = null;
QueueReceiver messageConsumer = null;
TextMessage replyMsg = null;
Queue destQueue=null;
Queue replyQueue=null;

Next we need to obtain a context to look up the JMS admin objects (using
WebSphere CosNaming JNDI service provider).

InitialContext messagingContext = new InitialContext();

Having obtained an initial context, objects are retrieved from the namespace
with the lookup() method. The following code retrieves a
100 User-to-Business Patterns with WebSphere Advanced and MQSI



QueueConnectionFactory named queueuManagerName from an LDAP
based namespace:

MQQueueConnectionFactory cf = (MQQueueConnectionFactory)
messagingContext.lookup(queueManagerName);

The MQQueueConnectionFactory set methods are used to customize the
factory with MQSeries specific information:

cf.setTransportType(JMSC.MQJMS_TP_CLIENT_MQ_TCPIP);
cf.setHostName(hostname);
cf.setQueueManager(queueManagerName);
cf.setChannel(channel);
cf.setPort(port);

MQ JMS can communicate with MQSeries using either the client or bindings
transports. Use of the Java bindings requires the JMS application and the
MQSeries queue manager to be located on the same machine. The client
permits the queue manager to be on a different machine to the application.
Our example uses the client transport and is set in the above code with the
cf.setTransportType(JMSC.MQJMS_TP_CLIENT_MQ_TCPIP)declaration.

The createQueueConnection() method is used on the factory object to create
a connection:

connection = cf.createQueueConnection();

The JMS specification defines that connections should be created in the
“stopped” state. Until the connection is started, no messages can be received
by MessageConsumers that are associated with the connection. To start the
connection, issue the following command:

connection.start();

6.2.2.2 Send a message
To send a message, get the JMS admin objects from the naming provider:

destQueue = (Queue)messagingContext.lookup(requestQueueName);
replyQueue = (Queue)messagingContext.lookup(replyQueueName);
session =
connection.createQueueSession(false,Session.AUTO_ACKNOWLEDGE);

Create a producer of messages:

messageProducer = session.createSender(destQueue);

Create an XML message string:

TextMessage msg = session.createTextMessage();
msg.setText(getXMLrequestMessage());
Chapter 6. Java application design: using commands and MQSeries 101



Set the reply to queue for the message:

msg.setJMSReplyTo(replyQueue);

Put the message on the queue:

messageProducer.send(msg);
String msgID = msg.getJMSMessageID();

6.2.2.3 Get the reply message
Create a consumer for the above message, using the JMSCorrelationID as
the messageSelector:

messageConsumer = session.createReceiver(replyQueue,
"JMSCorrelationID = " + "'" + msgID + "'");

Wait for the reply:

replyMsg = (TextMessage)messageConsumer.receive(messageTimeout);

If null is returned on timeout, throw an exception, otherwise store the XML
string:

return replyMsg.getText();

Last, trap for errors.

6.2.2.4 Clean up
After catching any exceptions and error trapping, close the queue and
disconnect from the queue manager:

messageProducer.close();
messageConsumer.close();
session.close();

The complete method, showing the program flow and error trapping can be
found in B.2, “GetCurrentProfileCommandJMS: retrieveProfile() method” on
page 397.
102 User-to-Business Patterns with WebSphere Advanced and MQSI



Chapter 7. MQSI application design guidelines

In application topology 5, the design principles are geared towards the direct
Web-enablement of back-end system features. In this context, the role of
MQSeries Integrator as the application router is to handle requests from the
presentation-oriented tiers, routing the request to back-end systems in order
to retrieve and/or update information according to the application
requirement.

7.1 MQSeries and MQSI as message-oriented middleware

In Chapter 5, “Technology options” on page 35, we discussed the function of
message-oriented middleware (MOM). Now, let’s look at how MQSeries and
MQSeries Integrator can be combined to provide these functions.

7.1.1 MQSeries - the MOM transport layer
The IBM MQSeries product provides the functionality required in the MOM
transport layer.

The transportation of message data across a network is enabled through
deployment of a set of MQSeries queue managers. Each queue manager
hosts local queues that are containers used to store messages. Through
remote queue definitions and message channels, messages may be
transmitted between queue managers.

To use the services of an MQSeries transport layer, an application must make
a connection to an MQSeries queue manager, the services of which will
enable it to receive (get) messages from local queues, or send (put)
messages to any queue on any queue manager. The application’s connection
may be made directly (where the queue manager runs locally to the
application) or as a client to a queue manager that is accessible over a
network.

7.1.2 MQSeries Integrator - transformation and integration
MQSeries Integrator (MQSI) is the IBM product that fulfills the needs for
message transformation and routing and in addition, provides an integration
architecture that extends well beyond these capabilities.

Message flows
In MQSI, each transformation and routing process is developed as a
message flow. A message flow is built as a sequence of operations, each of
which takes the form of a node. Each type of node has the applicable
© Copyright IBM Corp. 2000 103



connectors that allow its input and output flows to be defined visually. Nodes
can perform a variety of tasks, for example:

• Get a message from an input queue

• Apply transformation rules to a message

• Perform a database operation

• Put a message to a target queue

There is a wide variety of nodes available, many of which are highly
configurable.

Message flows may be configured with generic input and output terminals so
that they may be re-used as components of greater message flows.

Broker topologies
MQSI provides the means to configure and deploy message flows to a
managed network of message brokers. In the MQSI context, a broker is
essentially a container service that manages the operation of message flows.
A typical MQSI network will consist of many brokers.

A broker uses the services of a local MQSeries queue manager to get
messages as input to its message flows and to handle the routing of
messages that are output from message flows. The queue manager is also
used where internal communication with other MQSI components is required.

Configuration management
The management of the operational setup of all brokers is done using a
single, central configuration manager service. The configuration manager is
used to hold details of the broker domain topology, and the definition of all
message flows. It is also used to control assignment and deployment of
message flows to the broker network.

The configuration manager hosts a multi-user configuration management
(and development) platform for broker operations and message flow
definition.

Message formats and transformation
A wide variety of message formats are accepted by MQSI, and a number of
facilities exist to define message format information to MQSI for use in
transformation operations.

Most impressive is the internal ESQL language available to the many node
types. ESQL may be used to interchangeably manage the content of
104 User-to-Business Patterns with WebSphere Advanced and MQSI



structured message or database tables. This is particularly powerful in the
handling of message content held in XML.

7.2 MQSeries Integrator topology

Although topology 5 depicts the application router as a single logical entity,
MQSI is a highly scalable and potentially highly distributed operational
environment unto itself. For this reason, effective implementation of an MQSI
router involves far more than a case of good message flow design. How the
MQSeries infrastructure is built, as well as the distribution of the MQSI
components, will have a definite role in determining how the application
performs.

When designing the MQSeries and MQSI topology, the following topics
should be considered:

• WebSphere-to-MQSI connectivity options used
• MQSeries queue manager roles and relationships
• MQSI services and brokers in the MQSeries network
• Placement of databases within the network

7.2.1 WebSphere-to-MQSI connection options
The request from the application server may originate directly from a servlet,
or may be sent from a command bean or EJB. Regardless of the method
used, the MQSeries message will be sent to a queue manager using one of
the available MQSeries Java APIs. Each API has certain characteristics that
make it appropriate for a situation, depending on the priorities you have.
However, the API chosen can have an effect on the options you have for
distributing the application components.

The two APIs that we will discuss here are:

• The MQSeries classes for Java (MQ base Java) package, com.ibm.mq.jar.
MQ base Java enables Java applets, applications, and servlets to issue
calls and queries to MQSeries.

• The MQSeries classes for Java Message Service (MQ JMS) package,
com.ibm.mqjms.jar. MQ JMS implements Sun’s Java Message Service
(JMS) to enable JMS programs to access MQSeries.

If application portability and vendor independence is of importance, JMS is
the obvious winner for your choice of technology. JMS uses abstracted
concepts of messaging to provide a vendor-independent API to messaging,
while underneath lies the MQSeries implementation of the JMS interfaces.
Chapter 7. MQSI application design guidelines 105



Objects, the real world entities that are MQSeries queue managers and
queues, are defined to JMS through use of a directory naming service
(MQSeries message service). MQ JMS supports both the point-to-point and
publish/subscribe models of JMS.

MQ base Java and MQ JMS provide two connection options to MQSeries:

• Bindings mode to connect to a queue manager directly
• Client mode using TCP/IP to connect to a queue manager

7.2.1.1 Java bindings mode
The fastest link from Java to MQSeries is to use the Java bindings mode. This
provides a direct connection to an MQSeries queue manager that resides on
the same host as the application. The key connection parameter in this case
is the queue manager name.

Figure 43. Java bindings mode

Connecting to the local queue manager has several major advantages. First,
the probability of establishing a connection to a queue manager in your own
host is high as opposed to a connection with a remote queue manager.
Second, the time it takes to establish a network connection to the queue
manager is avoided. Third, the local queue manager can distribute the work
among multiple brokers. If connection performance is a high priority in your
network, then using bindings mode is the clear choice.

Using bindings mode also has the advantage of using MQSeries as an XA
resource coordinator for units of work that involve MQSeries updates and, for
instance, DB2 updates.

7.2.1.2 Java client mode
MQSeries classes for Java and MQSeries classes for JMS provide for
connectivity to MQSeries in client mode. This is similar to bindings mode, but

Broker1

queue manager

queue
manager

application

Application Server

Broker2

queue manager
106 User-to-Business Patterns with WebSphere Advanced and MQSI



the connection to the queue manager is made through a server connection
channel, meaning applications may connect to queue managers on other
hosts. The key connection parameters are host name, TCP/IP port, and
server connection channel name.

The client mode is best used when you do not want MQSeries to reside on
the same machine as the application server, possible for security reasons. It
allows you to connect directly to a remote MQSeries.

Figure 44. Client mode to remote brokers

When you connect directly to a queue manager on a broker, as in Figure 44,
you relinquish any workload distribution the queue manager offers. The
application must decide which broker to send the work to and any workload
distribution would have to be done in the application itself. Even having the
queue managers in a cluster does not help, since a queue manager will
always send the work to the local instance of the broker.

One way around this is to connect to a remote queue manager that does not
have a broker instance, but is there purely for workload distribution, as shown
in Figure 45.

Broker1

queue manager

application

Application Server

Broker2

queue manager
Chapter 7. MQSI application design guidelines 107



Figure 45. Client mode to a remote queue manager

You still have the network connectivity time; in fact, you have made it worse
by introducing an intermediate system. But you do have the advantage of the
queue manager workload distribution and the ability to connect to a remote
queue manager.

The client mode can also be used to connect to the local queue manager by
passing through the internal TCP/IP stack. This is obviously not as efficient
as using the bindings mode, but it does allow your program to be used in a
generic environment where you do not know if the queue manager will be
local or not.

Both JMS and MQ base Java allow you to put MQ messages from the Java
application in WebSphere directly to the remote broker’s queue. If you are
thinking of doing this, you should consider the performance implications. The
cost of creating a network connection is added to the total cost of each
request. For each request, an MQ-to-client session is created. There is no
long-lasting network connection. This will impact the ability to run thousands
of sessions in parallel. If you create a local MQ session for each request, the
overhead will be much lower. The network connection is now maintained by a
sender-receiver channel pair and is then long-running. Ideally, long-running
MQ sessions are preferable. In the next version of MQSeries, the overhead
of creating a local session is expected to be reduced dramatically, making the
performance gap between client and bindings even larger.

7.2.2 Queue manager roles and relationships
Queue managers are the heart of the MQSeries network, providing the
messaging services to the applications. Careful thought should be put into
how the queue managers are defined, their roles with regard to MQSeries
and MQSI, and their relationships to each other.

Broker1

queue manager

Broker2

queue manager

Application Server

application
queue

manager
108 User-to-Business Patterns with WebSphere Advanced and MQSI



7.2.2.1 Application design
To be flexible in design, it is good practice for application code to be
independent of its underlying infrastructure. Use of specific queue manager
and queue names within application code will inevitably lead to high
maintenance overhead in the future.

To avoid this, your application code should use its own aliases for the queue
manager and queues with which it interacts, the interpretation of which is left
to the supporting infrastructure.

When JMS has been used as the API, one option is to use the JMS
configuration detail to handle the translation between application object
names and real object references. Where the MQSeries classes for Java
have been used, queue managers must be commissioned using the
applicable set of queue and queue manager aliases that will enable
messaging functions to target the applicable queues.

Another API, Application Messaging Interface (AMI), is a policy-based
programming interface. With AMI, you send a message to a service according
to a certain policy and AMI will translate this into queue names, queue
manager names, and other MQSeries options. This means the programmer is
shielded from the implementation details of your MQSeries network.

For maximum availability, the application object should be designed to be
able to connect to one of a set of queue managers, so that if the normal point
of connection is not available, an alternative connection may be achieved
without compromising system functionality.

7.2.2.2 Use of clustering
All MQSI components other than the administration client (Control Center)
require the services of an MQSeries queue manager for their
intercommunication (since this is handled using MQSeries messages).

For ease of administration, the queue managers that support the MQSI
components can be configured in a cluster. To establish a clustered network
of queue managers, a pair of queue managers should be configured as the
cluster repository queue managers. These queue managers have a special
role, in that they hold a full record of the queue managers and shared objects
within the cluster. Additional queue managers can be added as members of
the cluster, with a defined cluster-sender channel to one of the repository
queue managers.

To get a better view of how this should be deployed in relation to the network,
we need a good understanding of what we will use the queue managers for.
Chapter 7. MQSI application design guidelines 109



7.2.2.3 Queue manager roles
When designing the queue manager network to support the application
router, we must consider the distinct roles that queue managers will be
expected to fulfill, together with the design priorities we may have from the
application. This will enable us to define templates that can be used to deploy
instances of the roles to a complete network, making scalability easier to
manage.

Some of the queue managers may be required to support the key MQSI
services, the Configuration Manager, User Name Server, or a broker. Other
queue managers may be specifically designed to directly serve the calls from
an application program presentation tier, for example, an EJB container on
WebSphere Application Server Advanced Edition.

A queue manager that serves a broker will need to host local queues that are
used as input source for the broker’s message flows. An application‘s queue
manager has similar requirements, plus we need to consider how the alias
queue definitions deployed to the queue manager relate to the real queue
definitions. We must also consider the channel definitions that will be
necessary when defining a new instance of the role to a network.

In practice, it may be beneficial to deploy more than one role to a single
queue manager for reasons of performance or cost constraint. This is of
course possible, but by keeping the design role-focused, you will achieve
flexibility in deployment.

The application may also have specific design requirements. For example, it
may be vital to achieve maximum performance of message throughput
between EJBs and the message broker. Since performance is affected by
network connectivity issues, hosting the roles on the same queue manager
will usually mean better performance.

Alternatively, performance may be less of a priority but achieving once-only
assured delivery of a given message may be imperative. Where separate
queue managers are used to host the application handler and broker roles,
assured messaging is achieved.

MQSI Configuration Manager role
In any MQSI domain, the Configuration Manager service is the entity that
supports the maintenance of the MQSI configuration. While, strictly
speaking, a Configuration Manager is not required in order for brokers to
operate, the Configuration Manager service is likely to be active at all times.
The volume of message traffic to and from the Configuration Manager's
110 User-to-Business Patterns with WebSphere Advanced and MQSI



queue manager is limited to the messages that are concerned with
management of the broker domain configuration.

Given the high availability requirements and central role this queue manager
plays, it is a clear choice as a cluster repository in the MQSeries network. For
details of how to configure a queue manager as a cluster repository, refer to
10.1.4, “Overview of the MQSeries clustering feature” on page 249.

There are no application-specific MQSeries configuration steps to add to a
given Configuration Manager queue manager.

MQSI User Name Server role
The User Name Server service provides a topic-oriented authentication
mechanism for the publish/subscribe features of MQSI. For this reason, if
publish/subscribe is implemented, all brokers must have access to the User
Name Server at all times.

Given the high availability requirements and central role this queue manager
plays, it is a clear choice as a cluster repository in the MQSeries network. For
details of how to configure a queue manager as a cluster repository, refer to
10.1.4, “Overview of the MQSeries clustering feature” on page 249.

In MQSI environments that do not use publish/subscribe, the User Name
Server service is not required. However it does no harm to implement it at
initial setup and of course makes it easier to introduce a publish/subscribe
architecture at a later stage. Though topology 5 uses MQSI as a router and
does not require publish/subscribe, this is a key feature of MQSI and will most
likely be implemented at some point in time.

MQSI broker role
The broker services are the workhorses of the MQSI product. A typical
implementation of MQSI will involve many brokers that may have different or
identical roles. Deployment of brokers to the network is a design issue in
itself. The location of these will affect their performance according to the
nature of the flows they are configured to handle.

The application involved will have an influence on the design of the broker
topology and the operation of message flows deployed to each broker in the
domain. Typically, a request from the presentation tier will take the form of an
MQSeries message supplied as input to a message flow. This act initiates a
sequence of events that is designed to accomplish a business function of
some kind. The request may or may not require a reply, and where a reply is
expected, the request/reply interaction may need to be handled
synchronously or asynchronously. Clearly where synchronous interaction is
Chapter 7. MQSI application design guidelines 111



required, performance is a key issue that will affect the decisions made on
component distribution.

Applications running on a broker may send (put) reply or output messages to
any remote queue and queue manager in the network, subject to
authorization. However, applications can only retrieve (get) messages from
queues defined to the local queue manager.

To achieve workload balancing, broker queue managers can be duplicated
across the network. Each broker queue manager has a unique name, but will
contain identical local cluster queue definitions. The administration task of
setting up multiple brokers identically is made easy through the use of scripts
using MQSeries commands. You can see this in 10.2.1.1, “Administering
multiple brokers” on page 268.

Proximity to the back-end application data will clearly result in a more efficient
message flow performance where message flows involve interaction with
legacy databases or transactions. Proximity to the client application will gain
a more efficient response when only local operations are performed within the
message flow. Clearly these two dynamics may conflict and the best solution
may be to divide the workload into distinct subflows. Here, more than one
broker would be involved in the complete operation, each handling the work it
is best placed to. In this scenario, your configuration would have more than
one broker queue manager role.

MQSI application request handler role
Queue definitions must be defined to those queue managers that will be
assigned the application request handler role. Input queues for the
application must be defined locally to these queue managers.

Often, it is desirable to define an alias for the real queue names to be used by
the application. This eliminates the need to change and recompile the
application if the real queue name changes. The aliases provide the
translation between queue names as defined to the application and actual
queue names on the MQSeries network.

High availability and load balancing may be achieved here too, through
deployment of many queue managers with a duplicate role. Where an
application finds itself unable to connect to one queue manager, it is possible
for an alternative connection to be made. The responsibility for handling this
routing lies in the application code design itself. For example, a set of hosts
could be deployed, each with an EJB container and queue manager to handle
MQ calls from the EJBs.
112 User-to-Business Patterns with WebSphere Advanced and MQSI



7.2.3 Placement of MQSI databases
The time required to access a database can be a significant factor in
application performance.

There will be both system databases and user databases involved in running
an MQSI application. System databases are required to support the MQSI
system services. User databases will contain the data required by the
application. These can be legacy databases, new databases created for the
application, or databases that are used by the application for temporary
storage (or caching).

The frequency and type of database access, security considerations, and
stability requirements will all factor into the decision of where to place them in
the network.

7.2.3.1 System databases
The MQSI Configuration Manager and MQSI brokers store information in
database tables. Each type of information is stored in a unique table. The
Configuration Manager uses two tables, one as a configuration repository and
one as a message repository. Each broker will also have a unique table where
it stores persistent information.

These tables may be combined in one database or may be separated into
multiple databases. For our discussion and examples we will assume that the
databases have been split into separate databases, referred to as the
configuration database, message repository database, and broker databases.
The configuration and message repository databases must be defined using
DB2. The broker databases can be DB2, Microsoft SQL Server, Oracle, or
Sybase. These databases can be local or remote, though obviously the
highest system performance is achieved when a database is defined on the
same host as the system that uses it.

A broker database may be best situated on the broker machine where
performance is of greater importance due to intense message flow activity.
Management issues raised due to the scattering of these databases, such as
centralized backup capability, are not as much of a concern. If the data in a
broker database becomes corrupt or lost it can be readily redeployed from the
central configuration.

Database performance is a lesser concern in the configuration and message
databases, since these are utilized in development and system management
operations only. It is of greater importance to preserve the integrity of these
databases, so you may elect to hold these in a central repository where
backup and security features are already established.
Chapter 7. MQSI application design guidelines 113



7.2.3.2 User databases
Message flows deployed to reference or update existing application
databases will most likely need to access remote databases. These requests
are often for legacy data and are passed to a back-end system. When this
type of operation involves many steps and perhaps many references to
remote databases, there is clearly some performance penalty. Use of a
“cache” database that is local to the broker as a store for commonly accessed
data can lead to a considerable performance benefit.

A cache database can be used to enable efficient access to data that is used
frequently in the message flows. In this design, a database local to the
broker is used to hold a cache for frequently accessed but seldom changed
information. When designing an application to use a caching database,
consideration must be given to the possibility that there will be duplicate
broker deployment for load-balancing purposes. In this case, it may be
necessary for the brokers to use a common (but not necessarily local) cache.
In this case the issue becomes one of which is faster, the cache or the legacy
database.

7.3 MQSI message flow design

From our logical design (see Chapter 8, “Application development guidelines”
on page 141), we will have a clear understanding of the business operations
(the model) that message flows are required to fulfill. The logical design
describes the requirements at a high level and forms the basis for defining
operational contracts between the WebSphere application components and
the MQSI domain. To implement a solution on MQSI that satisfies an
operational contract may involve several steps of message transformation
and routing. A given process may require the involvement of more than one
broker role.

To design complex message flows, it is helpful to consider the role they play
within the application in a wider context. Essentially, message flows are all
about document exchange, involving actions such as document
transformation and database operations. It is very easy to leap into the
development environment in MQSI and throw together a large set of
interconnected nodes to carry out a complete, complex message
transformation. Unfortunately, this style of message flow development can
lead to high maintenance overhead in the future.

One of the key features of MQSI is its ability to store message flows as
reusable components that can be linked together and used as part of larger
operational message flows (which we will refer to as deployable message
114 User-to-Business Patterns with WebSphere Advanced and MQSI



flows). In this way, each component in a complete operation is developed and
tested in its own right with its own clear specification of its inputs, actions and
outputs. For example, some transformations can require writing complex code
in the form of ESQL. There is a clear benefit to only having to do this once,
and importantly, only having one instance of a given transformation definition
in the MQSI shared configuration. Once the components of a complex
operation are defined in this way, it becomes a straightforward task to string
subflows together to compile a complete business operation.

The golden rule is: keep your individual message flow components as simple
as possible! They will be easier to test and easier to work with later. It can be
very hard to trace a fault in a complex flow with dozens of nodes and many
more connections.

7.3.1 Design contract with the application
As a high-level concept, the application’s contract with MQSI defines the
message document to be supplied, what the expected actions are, and the
expected reply documents. It will include such details as whether an
operation will be carried out synchronously or asynchronously.

From the MQSI end, the process will involve receipt of a message to initiate
the required actions. These may involve retrieving and returning information
in the form of a reply, updating data in other systems, or any combination of
such things according to the details of the contract.

7.3.2 Message flow structure
The complete message flow deployed to handle this contract will be designed
to take the incoming document and perform the required series of functions
that carry out the business operations set out in the contract.

The need to develop standard documents that support communication
between MQSI and the WebSphere application is clear. However, to complete
the entire unit of work, it may be necessary to perform many transformations
of the original document into alternative forms so that individual actions can
be carried out. To this end, there is also a great benefit to be gained from
developing document standards that support the interaction between
subflows.

Common database operations based on a standard incoming document type
can be saved as message flow components. In order to use such
components, common document transformations must also be defined and
saved as message flow components.
Chapter 7. MQSI application design guidelines 115



Here we can begin to visualize how business operations modelled as MQSI
message flow component parts are linked together to form complete business
processes. For example, an incoming message of a “profileupdate” document
type, may involve some transformation to create a “savingsupdate” document
that can be used to perform a “savings account update” database operation.

It is also possible to build a message flow that can analyze the content of the
incoming message and route the message to a subflow that is capable of
working with that type of message.

7.3.3 Defining document types
To enable message flow components to be compatible with each other, the
document types that are exchanged between them must be defined. The
definitions must detail the parser that will be used to interpret the message,
and also the structure and content of the message itself.

For XML documents, this is achieved through using a Document Type
Definition (DTD). In this Redbook, shall assume some prior knowledge of
XML and the use of DTDs. For information on XML, see The XML Files: Using
XML for Business-to-Business and Business-to-Consumer Applications,
SG24-6104.

7.3.3.1 Example DTD
Here is a simple example of an XML DTD. This DTD describes a document
known as “profilemessage”. Notice how the DTD defines the data elements
that make up the profilemessage. You can see that “profilemessage”
comprises three child elements, “userid”, “custname” and “custaddr”. The
DTD then defines each of these child elements. Definitions continue in this
way until leaf elements (the data itself) are defined using a given data
representation. All elements shown here are of type #PCDATA, a term
meaning “parseable character data“... a string, basically.

<!-- profile.dtd -->
<!ELEMENT profilemessage (userid,custname,custaddr)>
<!ELEMENT userid (#PCDATA)>
<!ELEMENT custname (namepref, forename, middlename, surname)>
<!ELEMENT namepref (#PCDATA)>
<!ELEMENT forename (#PCDATA)>
<!ELEMENT middlename (#PCDATA)>
<!ELEMENT surname (#PCDATA)>
<!ELEMENT custaddr (housenum, housename, street, district, city, state,
country, zip, telephone)>
<!ELEMENT housenum (#PCDATA)>
<!ELEMENT housename (#PCDATA)>
116 User-to-Business Patterns with WebSphere Advanced and MQSI



<!ELEMENT street (#PCDATA)>
<!ELEMENT district (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT country (#PCDATA)>
<!ELEMENT zip (#PCDATA)>
<!ELEMENT telephone (#PCDATA)>

7.4 Message flow components

Message flows are implemented as sequences of logically connected events,
defined in the form of message flow nodes. Each node performs a specific
function in the flow. MQSI comes with a set of message flow nodes called the
IBM primitives, which supply a wide range of functions.

MQSI provides a programming interface that allows you to create new nodes
that provide new message processing function or supersede existing function.
You can also create new message parsers to access types of messages not
defined by MQSI.

Message flows are built in the Control Center by using a drag-and-drop user
interface. We will look at how this is done later in Chapter 9, “Developing the
MQSI application” on page 183.

7.4.1 Message flow inputs and outputs
MQSeries Integrator is principally based on the messaging transport layer
provided by the base MQSeries product. Message flows that operate within
MQSI must take MQSeries messages as their input and may result in one or
many MQSeries messages as output.

You should note, however, that MQSI is designed as an extensible message
broker framework and in the future, this framework could potentially be
utilized to take input from other, non-MQSeries sources. Consider, for
example, the potential for an MQSI node that feeds a direct output stream
from an input stream to an EJB.

Given this extensibility, it is always advisable to visit the MQSeries Family
SupportPacs page at http://www.ibm.com/software/ts/mqseries/txppacs/ for
the latest information on supported product extensions.

For this redbook, we shall of course base our discussions around the use of
MQSeries messages as the medium used for communication between the
application server and the application router.
Chapter 7. MQSI application design guidelines 117



7.4.1.1 Message flow nodes
One of the powerful features of MQSI is the ability to define message flows as
reusable objects. By defining a message flow using the InputTerminal and
OutputTerminal primitives as its source of input and output, the message flow
may be used over and over again as a node forming part of greater message
flows.

Message flow nodes cannot be deployed to a broker, since they don’t operate
in a stand-alone fashion. They will only be used as a part of a greater
message flow.

7.4.1.2 Message types
MQSI can be configured to accept a wide variety of message types. As a
starting point, an MQSeries message with a straightforward string message
body is acceptable to MQSI at an MQInput node.

However to be useful within MQSI, the message must be acceptable to one of
its many available parsers. The sending application is responsible for
including sufficient information for MQSI to be able to work with its messages.
To do so, it is possible to include a secondary message header known as the
MQRFH2 header at the beginning of the standard MQSeries message body,
containing details MQSI can use to interpret the message body. In the
absence of an MQRFH2 header, MQSI will attempt to select the most
appropriate parser to interpret the message content.

Full details of the structure and options available in the MQRFH2 header may
be found in the MQSeries Integrator Programming Guide Version 2.0,
SC34-5603.

Message sets and the MRM
In MQSI Version 2, the Message Repository Manager (MRM) is a built-in
graphical tool for defining structured data and message definitions for use in
message flows.

Through definition of individual data elements that can be collated into
compound data types, reusable data structures can be defined and used as
the building blocks in the construction of complete message layouts, thus
enabling rapid GUI-driven development of complex message structures. Such
structures can be grouped into supersets known as message sets.

A particular strength of the MRM is its ability to create message set content
by importing an existing defined message structure that is defined in C or
COBOL.
118 User-to-Business Patterns with WebSphere Advanced and MQSI



The data structures defined in the MRM may be used in conjunction with
more than one parser. This allows the same logical data structure to be used
with different physical representations. The two main options are:

• Custom Wire Format (CWF), where the parser will accept or create a
structured document where each field is defined with a given data type
(and in the case of string data, length attributes)

• Extensible Markup Language (XML), where the parser will accept / create
an XML document of the form described by the MRM structure. Note here
that this is not the same as the generic XML parser we describe later.

Variable-length strings are supported, provided the length value is also
supplied somewhere in the message structure.

When message definitions are defined in the MRM and saved as a message
set, message flow node definition can take advantage of the drag-and-drop
programming abilities of the Control Center.

While the MRM exhibits some strong features, some applications may find its
use restricts the necessary flexibility in handling message field formats. For
instance, in the MQSI 2.0.1 release, there is currently no support for
tag-delimited data or variable-length strings that have no supporting length
field.

NEON formatter
MQSI Version 2 provides the NEON rules and formatter facilities present in
MQSI Version 1, in the form of primitive nodes. This has been done to provide
a direct migration path for customers that have an existing implementation of
MQSI version 1 product.

The NEON formatter is a powerful data format definition tool that provides
similar functionality to that of message sets and the MRM. This tool is
particularly strong when the need is to parse tag-delimited input.

XML
One of the greatest strengths of MQSI is its ability to parse and manage
message data expressed in the form of XML documents.

Message structures defined in the MRM may be parsed as XML messages,
but this does have inherent limitations, since the MRM has been designed
principally to provide compatibility with legacy system data formats, which
defeats the benefits that XML can provide in its flexible, self-defining
representation of data.
Chapter 7. MQSI application design guidelines 119



For this reason, a generic XML document parser is available that is able to
parse any well-formed XML message body. Although it is possible for an
MQRFH2 header to be supplied to explicitly declare a message body as XML,
this is not necessary as MQSI will automatically detect that an incoming
message body is an XML message.

The pace of adoption of XML as the new standard for data representation has
been dramatically high. XML is a truly portable medium for exchange of data,
making it the natural choice for data representation in Web applications. For
this reason, we have chosen to use generic XML message formats in our
topology 5 example.

One current restriction within MQSI Version 2 is that transformation node
programming based on generic XML documents cannot be carried out
graphically alone. It is, however, perfectly possible to code such
transformation logic in the MQSI node programming language, ESQL. This is
in fact much easier than it may first appear.

7.4.1.3 Outputs
The end of the line for many message flows will be to output a new message
that has in some way been derived from the original input.

The MQReply node is one way this can be handled. This node will take the
transformed message body and put a message to the reply-to queue and
queue manager name from the original message.

The MQOutput node will put the transformed message to the queue and
queue manager or destination list specified in the MQOutput node properties.

7.4.2 IBM primitive nodes
At the beginning of any implementation, the MQSI Control Center makes
available a set of fundamental nodes described as the IBM primitives. These
are the basic building blocks that can be combined to make up a complete
message flow.

Each primitive node has a set of input and output terminals that can be used
to connect the outputs from a given node to the input of another. For
example, an MQInput node is a node that can be configured to get a message
from a nominated MQSeries queue. It has an out terminal which can be
connected to the in terminal of a compute node - another type of configurable
function that is designed to facilitate message transformation.

It is possible to set up a connection between a given out terminal and the in
terminals of more than one node, as illustrated in Figure 46 on page 121. In
120 User-to-Business Patterns with WebSphere Advanced and MQSI



this way, one incoming message can be made to cause more than one flow of
events. For instance, a message designed to carry a change of name and
address details of a customer could be connected to several subflows, each
of which is designed to update a different back-end system.

Figure 46. Multiple subflows

The full set of primitive nodes available in MQSeries Integrator is of course
described in detail in the product documentation, and we shall not repeat this
here. We shall, however, highlight certain features we have found useful in
building an example to illustrate topology 5.

7.4.3 Transformation nodes
Transformation nodes perform the task of taking the message and changing it
as required.

7.4.3.1 The compute node
The compute node is one of the most versatile transformation nodes available
from the palette. It is designed to create an output message. In order to do so,
it may take more than one input data source. Obviously the main input source
Chapter 7. MQSI application design guidelines 121



is the incoming message via the node’s input terminal. The node may
optionally refer to a database as part of its function.

A compute node has one input terminal through which an input message is
received, and two output terminals, one to handle output under normal
successful operation and the other to redirect the original message in the
event of failure of the transformation process.

The compute node may be configured through its Properties dialog, shown in
Figure 47.

Let’s look at the layout of the Properties dialog. The main dialog is divided
into two sections, Inputs and Output Messages. The simplest operation a
compute node can perform is to copy the input message to the output
message. This can be achieved simply by checking the Copy entire message
radio button. Checking the Copy message headers radio button automatically
generates code that will copy all parts of the input message prior to the
message body to output.

The code generated to perform these tasks is displayed in the ESQL tab.

Figure 47. Compute node properties
122 User-to-Business Patterns with WebSphere Advanced and MQSI



In each case, a comment line is generated that recommends that any custom
code you may add to the node be added below the comment line. This is done
because the transformation details may be constructed using the GUI. The
effect of these actions will impact the ESQL code that is contained in the
node properties. Automatically generated code remains above the line; user
code may be entered below the line.

In using the Control Center to configure compute nodes, you will soon notice
the limited size of the ESQL pane, which can make it difficult to read the code
that lies behind the node. One technique to make working with ESQL easier
is to use Ctrl+a to select all the code behind a node, Ctrl+c to copy the
selection and Ctrl+v to paste the contents into a text editor such as the
Windows Notepad to perform the editing. When code changes are complete,
the code can be copied/pasted back to the ESQL pane.

One of the features of the ESQL pane is its dynamic validation of the code
syntax as you type. If you choose to edit code in this pane, a red “X” will
appear below the code pane if there are any syntax errors in the code. This is
useful when you try new techniques or combinations of functions within the
structure of your code.

7.4.3.2 Using ESQL for message transformation
ESQL is a powerful data transformation language available to many of the
MQSI transformation nodes including the compute node. It is capable of
manipulating structured data within a message in the same way as
performing regular database operations in an SQL fashion. In this way, data
may be freely interchanged between the message content and database data
sources as part of the Compute operation.

The Root element is the highest level element of a message structure. Since
the compute node has both input and output message terminals, these
elements are referred to as InputRoot and OutputRoot respectively. The
elements that make up the whole document are held as child elements of the
Root element, and are referred to in the following manner:

InputRoot.element1
InputRoot.element2

The following is an example of an MQSeries XML message:

<Trade type='buy'
Company='IBM'
Price='2 .2 '
Date='2 -1-1'
Quantity='1 '/>
Chapter 7. MQSI application design guidelines 123



It has a structure that takes the following form:

Root
Properties

CreationTime=GMTTIMESTAMP '1999-11-24 13:1 :'
(a GMT timestamp field)

..and other fields ...
MQMD

PutDate=DATE '19991124'
(a date field)

PutTime=GMTTIME '131 '
(a GMTTIME field)
...and other fields ...

MQRFH
mcd
msd='xml'

(a character string field)
..and other fields ...

XML
Trade

type='buy'
(a character string field)

Company='IBM'
(a character string field)

Price='2 '
(a character string field)

Date='2 -1-1'
(a character string field)

Quantity='1 '
(a character string field)

Here we can see the various substructures found within a message:

• Generic message properties
• The MQSeries Message Descriptor (MQMD)
• The MQSeries Integrator Rules and Formatting Header (MQRFH2)
• The message body itself, in this case an XML document

To refer to the Trade data element of an input message, we can use the ESQL
expression:

InputRoot.XML.Trade

or

InputRoot.XML.(XML.tag)Trade

The latter shows an example where the Trade node is fully qualified as an
XML tagged element. Although in the above example it is not strictly
124 User-to-Business Patterns with WebSphere Advanced and MQSI



necessary to use this fully qualified notation, it is good practice to include the
(XML.tag) qualifier, because in a well-formed XML document with an XML
document header, the parser may misinterpret your XML message body tag
references as being references to attributes of the XML document header.

The above does little more than introduce the basic shape of data element
references in ESQL. The above example message has been taken from
MQSeries Integrator Using the Control Center Version 2 Release 0,
SC34-5602, which has a comprehensive ESQL reference appendix. The
manual covers the full set of valid constructs you can make in ESQL, which
we will not repeat here. Instead, we shall continue by focusing on the
techniques used in building our example scenario.

Example: copying elements from input to output
Consider the following code extract:

SET "OutputRoot"."XML".(XML.XmlDecl) = "InputBody".(XML.XmlDecl);
SET "OutputRoot"."XML".(XML.tag)"profilemessage"."userid" =
"InputBody".(XML.tag)"customerrequest"."userid";

Here we see two ESQL code statements over three lines. To enhance
readability, statements can wrap to as many lines as you like, but each
statement must end in a semicolon.

The first line of code copies the XML type declaration element from input to
output. The second line copies the “userid” child element of the input
“customerrequest” XML document element of the “userid” child element of the
output “profilemessage” XML document element.

In this kind of assignment operation, the referenced elements may be leaf
elements (that is, they have no child elements themselves) or may contain
substructures of any number of levels of child elements. Whichever applies,
the assignment statement will copy the full element from input location to
output location inclusive of any child elements that may exist.

Example: more complex tasks
Now consider this example:

SET "OutputRoot"."XML".(XML.tag)"profilemessage"."custaddr" = THE
(
SELECT
T."HOUSENO" AS "housenum",
T."HOUSENAME" AS "housename",
T."STREET" AS "street",
T."DISTRICT" AS "district",
T."CITY" AS "city",
Chapter 7. MQSI application design guidelines 125



T."STATE" AS "state",
T."COUNTRY" AS "country",
T."ZIP" AS "zip",
T."TELEPHONE" AS "telephone"
FROM InputBody.(XML.tag)"customerrequest"."savingsqueryresult" AS T
);

This introduces a number of concepts.

ESQL may be used to extract lists of data elements from structured
messages similar to the way that one uses SQL to query a relational
database, such as DB2. In the above example, the target of the select query
is the compound data element “savingsqueryresult” which is itself a child
element of the “customerrequest” XML document. The SELECT statement
assigns the shortname of T to this element, and using this, it extracts the
fields HOUSENO, HOUSENAME, STREET, DISTRICT, CITY, STATE,
COUNTRY, ZIP and TELEPHONE from its child elements, substituting the
values found to new child elements of “housenum”, “housename”, “street”,
“district”, “city”, “state”, “country”, ”zip” and “telephone” within the “custaddr”
element of the output XML document "profilemessage".

We can also see use of the THE predicate. The inclusion of this is an
indication that only one row is expected (and to be taken) from the result of
the query. Omission of the THE predicate indicates more than one row may
result from the query, and so the assignee of the SET statement may be
expected to have multiple occurrences. Where this is the case, the assignee
(in this case “custaddr”) should carry the array [] suffix to indicate more than
one instance of it may be created as a result of the operation.

Note in each of the above examples it is common good practice to wrap all
data element names within “double quotes”. This approach will avoid any
potential confusion that may arise in using special characters in element
names.

If assigning literal string values in code, these should be represented within
‘single quotes’.

7.4.3.3 Using database input
In addition to the input message, input from a data source may be taken by
giving a data source name (ODBC database name) and the table name.

Compute nodes can include any basic, valid SQL operation as part of their
function in the form of ESQL queries to the content of a database. Consider
the example code that follows:
126 User-to-Business Patterns with WebSphere Advanced and MQSI



SET "OutputRoot"."XML".(XML.tag)"customerrequest"."profilequeryresult"[] =
(
SELECT T.*
FROM Database.ITSO_CUSTOMER AS T
WHERE T.USERID = TRIM("InputBody".(XML.tag)"customerrequest"."userid")

);

This is a simple ESQL assignment statement that will select all columns from
the ITSO_CUSTOMER table of our database, and extract all rows where the
USERID column contains the same value as the “userid” element from the
input “customerrequest” XML document. As a precaution, the input document
element is subjected to a TRIM function before it’s used as the selection
criteria of the query. This will eliminate any potential problem with leading or
trailing blanks in the supplied “userid” value.

Note that since more than one row may be returned, the values selected are
loaded to a repeating element described as “profilequeryresult”[]. Due to the
use of “*” in the selection criteria, in the output document the new child
elements will be assigned the same names as the column names found in the
ITSO_CUSTOMER table. Note that we have not specifically declared these to
the compute node at any point.

7.4.4 Database nodes
At points where no message transformation is necessary, but database
operations are required, a better alternative to using a compute node is to
use a database node. In a compute node, ESQL can be included to select,
update, or delete entries in the database data source.

MQSI contains a number of specialized database nodes that are suited to
each of the key SQL operations, the DataInsert, DataUpdate, and DataDelete
nodes. These are most useful when working with message data that can be
manipulated graphically, but above this they have no added benefit.

In our examples, we have used the generic database node for all database
operations. The example message flow shown in Figure 48 includes two
database nodes, the Update Checking Profile node and the Update Savings
Profile Node. These database nodes are constructed to take values from the
message data that passes through the node, and perform a database update
based on those values.
Chapter 7. MQSI application design guidelines 127



Figure 48. Example message flow incorporating database nodes

Let’s take a close look at the Update Checking Profile database node.

Figure 49. Update Checking Profile database node
128 User-to-Business Patterns with WebSphere Advanced and MQSI



The complete ESQL code is shown in Figure 50. Note the use of
SUBSTRING functions and concatenation || operators that are used to
combine several input elements into one column value, but protect the column
from the potential for update using a value that exceeds its maximum string
length value.

Figure 50. ESQL for the database node

7.4.5 Logic control nodes
Several nodes are available to insert logic into the message flow.

7.4.5.1 The filter node
In a message flow, it is useful to control the flow direction according to a
condition that exists at execution time. For this purpose we use a filter node.

You can use ESQL to construct an expression that is evaluated to a true or
false value. Control is propagated to the applicable output terminal based on
the outcome of resolving your expression.

Consider the message flow shown in Figure 51. You will notice there are four
possible output terminals to a filter node. In addition to output on a true or
false condition, the expression may be “unknown”, or a failure.

UPDATE Database.ITSO_CHECKING AS T
SET
NAME = SUBSTRING(

"Body".(XML.tag)"updatemessage"."profile"."custname"."forename" || ' ' ||
"Body".(XML.tag)"updatemessage"."profile"."custname"."middlename" || ' ' ||
"Body".(XML.tag)"updatemessage"."profile"."custname"."surname"
FROM 1 FOR 40),

ADDRESS1 = SUBSTRING(
"Body".(XML.tag)"updatemessage"."profile"."custaddr"."housename" ||

"Body".(XML.tag)"updatemessage"."profile"."custaddr"."housenum" || ', ' ||
"Body".(XML.tag)"updatemessage"."profile"."custaddr"."street"

FROM 1 FOR 40),
ADDRESS2 = "Body".(XML.tag)"updatemessage"."profile"."custaddr"."district",
ADDRESS3 = "Body".(XML.tag)"updatemessage"."profile"."custaddr"."city",
ADDRESS4 = "Body".(XML.tag)"updatemessage"."profile"."custaddr"."state",
ADDRESS5 = "Body".(XML.tag)"updatemessage"."profile"."custaddr"."zip",
TELEPHONE = "Body".(XML.tag)"updatemessage"."profile"."custaddr"."telephone"

WHERE T."NUMBER" = "Body".(XML.tag)"updatemessage"."account"."ACCOUNT";
Chapter 7. MQSI application design guidelines 129



Figure 51. Example message flow using a filter node

In Figure 52, we can see the properties of the filter node. The ESQL
expression describes an element from the message that is input to the node.
The value is tested for a value of “S”. If this condition is true, control is
propagated to the True output terminal.
130 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 52. Filter node properties

You can add further input to the filter node, allowing you to add database
tables as a data source for use in the expression. In this way you can use
incoming data elements to look up values from a database, which can be
tested in the expression.

7.4.5.2 Looping
A database lookup that retrieves many rows can add a very large repeating
element to a message. This is often performed in order to take a set of
elements and make repeated entries to a subflow for each element in the set.

This requires a loop in a message flow that counts the number of entries in
the list and works through them, creating a separate output message at each
iteration of the loop. Take a look at the example message flow shown in
Figure 53.
Chapter 7. MQSI application design guidelines 131



Figure 53. Example message flow showing a loop

The message is prepared by the compute node named Lookup Customer
Accounts. This node contains ESQL that adds a repeating element based on
the output of a database operation as follows:

SET "OutputRoot"."XML".(XML.tag)"groupupdatemessage"."accounts"[] =
(SELECT T.* FROM Database.ITSO_CUSTOMER_ACCOUNTS AS T WHERE T.CUSTOMER =
"InputBody".(XML.tag)"profilemessage"."userid");

This populates the repeating data element “accounts“ with the rows found in
table ITSO_CUSTOMER_ACCOUNTS.

Looping starts with the Initialise Loop compute node. This contains the
following ESQL.

SET OutputRoot = InputRoot;
-- Enter SQL below this line. SQL above this line might be regenerated,
causing any modifications to be lost.
SET OutputRoot.XML.(XML.tag)"Loop"."Count" =
CARDINALITY("InputBody".(XML.tag)"groupupdatemessage"."accounts"[]);
SET OutputRoot.XML.(XML.tag)"Loop"."Index" = 1;
132 User-to-Business Patterns with WebSphere Advanced and MQSI



As you can see, the message is first copied from input to output in an
unchanged form. The code adds a new data element to the message, named
“Loop”. The choice of element name is arbitrary. We have used “Loop” so we
can hold any data pertinent to loop control within the scope of this element,
and recognize it as such. Two child elements are added to “Loop”. These are

• “Count”. This is initialized to the number of entries we have in our list. The
CARDINALITY function is used to return the number of data elements in
the set.

• “Index”. This is initialized to 1, to indicate looping is to start at the
beginning of the list.

Here again, the choice of element names is arbitrary. By keeping the names
relevant to their use, this aids the readability of the code.

Loop control is handled using a filter node, shown in Figure 54.

Figure 54. Example loop condition test

Here we can see that the resolved condition will be True for as long as the
“Index” does not exceed the “Count”. You will see use of the CAST function.
This is particularly important when working with documents in XML, since all
data originates as a string. When working with numbers, CAST may be used
to force interpretation of the value as a numeric data type such as INT.

Other than maintain a check on loop iterations, the filter node simply
propagates the message in full. You will see from Figure 53 on page 132 that
the output is propagated twice, first as output to Create Profile Update
Chapter 7. MQSI application design guidelines 133



Message and second to the Increment Loop Counter compute node shown in
Figure 55.

Figure 55. Incrementing a loop counter

This compute node simply copies the message, but also increments the
“Index” element of the “Loop” construct. The output from this node is piped
back to the in terminal of the Test Loop Counter filter node which repeats its
operation for this new instance of the message.

You will see from the above that this technique can be used to cause many
messages to be propagated to the Create Profile Update Message node, from
a single message that was output from the Lookup Customer Accounts node.

However, we have not finished the job. Every instance of the message sent to
Create Profile Update Message is identical, save the content of the Loop
construct. This compute node will use the value of “Loop”.”Index” value to
select the element it requires from the repeating list. Take a look at this ESQL
code taken from Create Profile Update Message .
134 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 56. ESQL from Create Profile Update Message node

Using the value found in the line InputBody.(XML.tag)"Loop"."Index", the
required element from the repeating group in the input message is added as a
single element to the output document.

Here we should issue a warning: clearly this technique makes it possible to
initiate a single message flow operation that comprises a large number of
individual node-processes, which may exceed the system’s capacity in one
flow execution. Where larger result sets are expected, you may wish to
consider limiting the number of iterations in one message flow execution, and
passing the remaining workload out as a message for input to a further
execution of the message flow.

7.4.6 Reusable message flows
Common operations can be built as reusable message flow components that
may be used as nodes of a greater message flow. Figure 57 shows an
example of how the updates to a set of database tables could be packaged as
a message flow for incorporation in other message flows where needed. The
message flow defined here is saved as a message flow node called ITSO
Profile Updater.

DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;

END WHILE;
-- Enter SQL below this line. SQL above this line might be regenerated,
causing any modifications to be lost.
SET "OutputRoot"."XML".(XML.XmlDecl) = "InputBody".(XML.XmlDecl);
SET "OutputRoot"."XML".(XML.tag)"updatemessage"."account" =
InputBody.(XML.tag)"groupupdatemessage"."accounts"[CAST(InputBody.(XML.
tag)"Loop"."Index" AS INT)];
SET "OutputRoot"."XML".(XML.tag)"updatemessage"."profile" =
"InputBody".(XML.tag)"groupupdatemessage"."profile";
Chapter 7. MQSI application design guidelines 135



Figure 57. Reusable message flow - ITSO Profile Updater

The inputs and outputs are defined using terminal node types InputTerminal
and OutputTerminal. The remainder of the message flow is defined in the
same way as a deployable message flow. From this statement, you can infer
that component message flows are not deployable in isolation, but only as
part of a deployable message flow.

When this message flow is saved, it can be dragged into another message
flow, where it will be displayed as a message flow node. You can see an
example of this in Figure 53 on page 132, where the node named Update
Profiles is an instance of the ITSO Profile Updater component message flow
defined above.

Clearly, use of a message flow node requires that its input is prepared in
accordance with its specification. In the case of the ITSO Profile Updater flow,
it requires an XML document of type "updatemessage", the content of which
matches that which has been prepared by the Create Profile Update Message
compute node of the ITSO Profile Update message flow.
136 User-to-Business Patterns with WebSphere Advanced and MQSI



7.4.6.1 Using property promotion in message flow nodes
Saving commonly used operations as message flow nodes is a useful method
that enables reuse of code. An extension of this feature is the ability to make
message flow nodes configurable through property promotion.

Consider an adaptation of the loop scenario described earlier, shown in
Figure 58. The ITSO Looper message flow node takes the loop scenario from
“Looping” on page 131, and builds a general-purpose version of it for re-use.
In the earlier example, the loop was built from individual nodes, each of which
was configured with ESQL code specific to the application.

Figure 58. The ITSO Looper message flow node

In the ITSO Looper message flow node, we provide the basic construction of
the loop within the message flow itself, and promote those properties that are
involved in re-use of the message flow, so these may be configured in each
re-use scenario. The properties that affect loop operation are:

• The ESQL code from the Loop Initialization compute node

• The ESQL expression that controls loop execution from the Test Loop
Condition filter node
Chapter 7. MQSI application design guidelines 137



• The ESQL code that is executed in the Loop Incrementor compute node

The Promote Property dialog (see Figure 59) allows you to select from the
properties available for promotion and add them to the set of properties that
will be made available for configuration when the message flow node is used.
Here, we see how the properties listed above will be presented to the user of
the ITSO Looper message flow node.

Figure 59. ITSO Looper promoted properties

Figure 60 shows the properties dialog that gets displayed when the ITSO
Looper message flow node is configured as part of a message flow.

Using this technique, it is also possible to configure promoted properties so
that a value entered once as a message flow node property may be utilized in
more than one of its component nodes.
138 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 60. ITSO Looper message flow node configuration

7.4.7 Testing message flow components
By creating complete message flows as a set of smaller and simpler
components, the testing process becomes a less arduous task.

Each subflow can be tested in isolation, through use of a test harness like the
example shown in Figure 61 on page 140. By connecting the message flow
node into a harness like this, you can use a simple MQSeries application to
put a message of the required format to the input queue, and monitor the
result using a simple application that gets a message.

Where a message flow component is designed with more than one terminal in
or out, a variation of this method will be needed.
Chapter 7. MQSI application design guidelines 139



Figure 61. Example test harness

For our testing, we used a simple adaptation of the MQSample application
that is supplied with MQSeries SupportPac MA88. Where database
operations are expected, we used the DB2 Command Center to run test
queries against database contents.
140 User-to-Business Patterns with WebSphere Advanced and MQSI



Chapter 8. Application development guidelines

Now that you are familiar with the application design considerations, it is time
to get down to business and develop the application. We define the stages of
application development as consisting of the following stages:

• Solution outline
• Macro design
• Micro design
• Build cycle
• Deployment model

Figure 62. Development process overview

In the solution outline phase you decide the scope of the project, explore
what the essential business needs are, come up with an idea of the base
architecture, and get the commitment from the project sponsor to start.

Then you start with the macro design, which concentrates on the detailed
requirements gathering, business process modelling, high-level analysis and
design, the base architecture, and a plan for the following development
phases, including a development release plan. The solution outline and
macro design phases are usually done once in a project.

It is likely that there will be multiple releases of an application. New releases
are usually required to add new function, add maintenance, or to improve
processes. The rest of the phases of development are completed for each
release of the application.

The micro design focuses on transforming the business model into a design
model by taking the selected use cases and running them through a typical
object-oriented development phase. Transforming means that we use the
business model to bring it to such a technically detailed level that it can be
implemented. This is done by adding all the architecture and
implementation-specific classes and components to the existing business
model.

In the build cycle the results of the micro design are turned into code:

Solution
Outline

Macro Design Micro Design Build Cycle Deployment
© Copyright IBM Corp. 2000 141



• Write and unit test the source code.

• Build the executable code if necessary, for example, all Java code.

• Perform various tests on the executable code.

• Test the application in a runtime environment.

• Prepare for deployment.

The incremental approach used to run the release cycles is also used for the
different activities of the build cycle. It is run in several iterations for one
release, with each iteration transforming more of the design into tested
executable code that is ready to be deployed.

The last step is to create and execute a deployment plan that encompasses
not only when and how to install and set up the newly developed application,
but it must include all hardware and prerequisite software requirements. The
deployment plan should also include plans for system management, taking
into consideration what has to be managed and how, how to establish the
required security, and what has to be done for availability and recovery.

8.1 The scope of this book

As with the design guidelines, we will be building on to the information
presented in Patterns for e-business: User-to-Business Patterns for Topology
1 and 2 using WebSphere Advanced Edition, SG24-5864, where application
development guidelines for e-business Java applications were introduced. We
will not cover the development cycle processes again here since they have
not changed. Instead, we will expand on those guidelines by using our
WebBank application to illustrate two new concepts.

First, our WebBank application will use the command package introduced in
WebSphere Application Server Advanced Edition 3.5 and VisualAge for Java
3.5.

Second, our application will use MQSeries and MQSI to perform functions
that in previous U2B applications were done with Java classes. This presents
an interesting challenge to the designer using such classic design tools as
Rational Rose.
142 User-to-Business Patterns with WebSphere Advanced and MQSI



8.2 Application development tools

There are many good application development tools available on the market
today and choosing the right tool for your enterprise will depend on many
things. We have chosen to use the following for application development:

• Rational Rose for analysis and design of our application
• VisualAge for Java for developing the Java code
• WebSphere Studio to create the HTML and JavaServer Pages
• MQSeries Control Center to develop the MQSI flows

For more information on how to use VisualAge for Java and WebSphere
Studio to build and deploy the application code, see Servlet and JSP
Programming with IBM WebSphere Studio and VisualAge for Java,
SG24-5755.

Developing the MQSI flows using the MQSeries Control Center is discussed
in detail in Chapter 9, “Developing the MQSI application” on page 183.

8.2.1 Rational Rose
Rational Rose is a visual modeling tool product by Rational Software
Corporation (http://www.rational.com). It is based on the Unified Modelling
Language (UML) .

Building an e-business solution requires careful and detailed design before
the actual code can be developed. Rational Rose provides visual design and
analysis capabilities. Starting with only a concept of what the application
should do, you can go through a logical progression of design activities to
build a detailed model of the application and generate the initial code.

Rational Rose provides the ability to:

• Capture user and business requirements, and present them in a common
format.

• Identify and design business objects.

• Transpose business objects to software components.

• Design the distribution and communications of the components across an
enterprise.

• Forward engineer Java code directly from the model.

• Reverse engineer code from existing components and applications into
Rose models.

• Round-tripping facilities to keep the model and code synchronized.
Chapter 8. Application development guidelines 143



Rose 2000e V2.0 provides a seamless integration between Rose and
VisualAge for Java, including full support of forward engineering Rose models
into the VisualAge for Java workspace as well as reverse engineering from
the VAJ environment into Rose. Prior releases of Rose required the XMI
Toolkit to provide this integration.

8.2.2 VisualAge for Java
VisualAge for Java provides extensive functionality across the entire
development life cycle and includes tools for Java code editing and
debugging, JavaServer Page debugging, and the WebSphere Test
Environment. VisualAge for Java uses a repository to store project source
and compiled code, and an import/export facility that enables interaction with
the file system.

One of the most important features of VisualAge for Java is the WebSphere
Test Environment. This feature provides application and Web server
environments on a development machine, enabling you to test and debug the
resources of a Web site locally. This environment provides much of the
functionality of a full application server, including access to services such as
LDAP and enterprise resources.

8.2.3 WebSphere Studio
WebSphere Studio is used to develop, manage and deploy the resources for
a Web site. It maintains project files in a file system and provides support for
team development and version control tools. The deployment features of
WebSphere Studio enable you to configure the projects to deploy to a number
of locations, such as the WebSphere Application Server or the WebSphere
Test Environment of VisualAge for Java.

WebSphere Studio also contains a number of wizards that guide you through
tasks such as SQL statement generation and creation of Web pages to
interact with databases and Java beans. You can also use the WebSphere
Studio Page Designer to edit these generated pages, or create your own
HTML and JSP pages.

Any Java source code within WebSphere Studio can be compiled using the
supplied Java compiler.

8.2.4 How these tools fit together
These three development tools work nicely together to give you a
comprehensive development environment.
144 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 63. Development tool interaction

In the micro design phase, Rational Rose is used to capture the design
model. The initial code for the servlets, Java beans, and other Java classes in
this model can be generated by Rose and then be imported into VisualAge for
Java (forward engineered). The link between Rose and VisualAge for Java is
discussed in Appendix A, “Rational Rose 2000e and VisualAge for Java” on
page 381.

Development of the code is then continued in VisualAge for Java, producing
the required Java classes. Any changes that would alter the original design
model can be reverse engineered back to the Rose model. The class files are
imported to WebSphere Studio for management and publishing.

WebSphere Studio is used to develop the view element (HTML and JSP)
portions of the code and to manage and publish code. It also interacts with
VisualAge for Java, to exchange source and class files. Imported classes
from VisualAge for Java are extracted from the repository, converted into files,
and stored in the file system structure used by WebSphere Studio. They can
subsequently be published, possibly back to the VisualAge for Java
WebSphere Test Environment for testing.

Java and
class file
exchange

Repository

File
System

Publish

WebSphere
Application

Server

Rational Rose

Generate
code

Rose Model

- Visual analysis & design
- Generate code for import to VA Java

Import
code

Class
Editor

WebSphere Test
Environment

Toolserver API

Project Files

- Update and modify Java code
- Send code back to Rose to update model
(reverse engineer)

VisualAge for Java

WebSphere Studio

File
System

Forward
engineer

Reverse
engineer

Generate
model

Publish to
the test

environemt
Chapter 8. Application development guidelines 145



8.3 WebBank problem domain

The example chosen to demonstrate the development issues in this chapter
is that of a fictitious bank, WebBank. WebBank wishes to provide a number of
services over the Internet for its existing customer base and new customers.
They have decided to implement their expansion into the Web in stages, the
first stage being addressed by our sample application.

The first banking service they have chosen to open up to customers on the
Web is a personal profile service. This service allows customers to review
and update their own personal profiles at the bank. A profile includes
information such as contact address and telephone numbers.

To implement the personal profile service, WebBank would like an application
set that leverages existing investments in its MQSeries and MQSeries
Integrator middleware infrastructure. The goal is to prevent any major
adaptation or rewriting of existing legacy applications and databases.

8.4 Solution outline

The first phase of a development project is the startup. This phase normally
begins with a small team of domain experts, analysts and IT architects
exploring the requirements for the new solution. Beyond the pure business
requirements, it is important to explore the existing environment to find out
how the new application can fit. The target audience for the solution has to be
named and their experience has to be determined.

Based on this initial information an architecture for the application has to be
determined. The team has to decide about the overall strategy of the solution
that will drive the whole project, based on the business impact the solution
has on the organization. The architectural decisions made are a separate
work product and should be well documented.

Because this problem domain is centered around banking customers (users)
interacting with enterprise transactions and data (banking applications and
data), the appropriate business pattern to use is the User-to-Business
Pattern.

In this application, customers will be allowed to view and update their
customer profile. Customer requests need to be routed to the appropriate
back-end systems with the result communicated back to the customer. This
routing mechanism can provide a common interface to the back-end systems,
thus simplifying the connectivity options and reducing the cost of access to
146 User-to-Business Patterns with WebSphere Advanced and MQSI



enterprise data. This suggests topology 5 as described Chapter 2, “Choosing
the application topology” on page 11 as the appropriate choice.

It is also evident that in order to prevent constantly traversing multiple
back-end systems to retrieve commonly used data, some sort of caching
system at the router node needs to be employed. This will improve
performance and further reduce the cost of access.

The outcome of the solution outline feeds into the next phase, which is the
macro design.

8.5 Macro design

In the macro design phase the project team is usually extended from the few
domain experts, analysts and IT architects working in the solution outline
phase to a broader skill set. They will refine the requirements identified in the
solution outline, going into more detail in several design areas.

8.5.1 Creating a business process model
The macro design phase should produce a business process model that
defines what the application needs to accomplish. This is generally done by
identifying the key use cases. In our account services application we have
identified the following as the key use cases:

• Login - This is the same login mechanism used for the Account Services.
It is designed to prevent unauthorized access to the customer profiles and
the banking data.

• Update Profile: This retrieves the customer profile from cache and allows
the customer to update it. The updates are made to the cache and to the
back-end systems.

• Sign Off: The customer logs off the system and all session information is
cleared.

8.5.2 Information architecture
An information architecture will need to be developed that defines what data
needs to be accessed and how. The information architecture is a key
component in any e-business architecture. Its focus is on improving the clarity
and functionality of a Web site or Web application. It is not just concerned
with the design of the user interface. The fundamental questions it addresses
are in four areas, namely presentation, organization, navigation and
adaptability.
Chapter 8. Application development guidelines 147



8.5.2.1 Presentation
This addresses the issues around how the information is to be conveyed;
what words will be used, charts, illustrations, rich multimedia, streaming
technologies, etc. There are a number of issues that, when addressed, will
help with the presentation of information.

Who are the users?
Fundamental to addressing this issue is the need to understand who the
users of the site are. By identifying the target audience, content can be
customized and targeted for that audience, therefore enhancing overall site
experience. Taking this a step further, personalization opens the door to
countless possibilities for e-commerce, e-CRM, Web marketing and other
areas of application. By knowing the audience, it may also be possible to
assume their familiarity with Web technologies and the channels of delivery,
thereby putting in more advanced features.

What are the channels?
Another concern is based on what channels are used to access the site. Are
they PC browser based, PDAs, WAP phones, iTV or maybe a kiosk? Knowing
this allows the content to be tailored for the specific environment. For
example, compare the relative richness of a PC-based Web browser to that of
a WAP phone. In the first instance the real estate is large enough to hold not
only the items of interest but also a very rich set of supporting content, using
the latest multimedia technologies, any number of navigation mechanisms
and advertising features as well. There is a standard keyboard and mouse to
take user input, from simple point-and-click dialog boxes to rich-text areas to
handle copious amounts of typed or pasted information. The WAP phone
offers few luxuries by comparison. The screen can handle a few lines of text
and navigation to other areas and that’s probably the limit. Eliciting
information is probably best done by a series of predetermined lists, requiring
the use of up, down and select functions, limiting the need to use the phone
keypad to type information, an altogether cumbersome and painful
experience for anything more than one or two words.

What are the technology constraints?
Having identified the channels, technology constraints within each channel
also need to be accommodated. Consider again a Web site accessed from a
PC-based browser. Will the site support all Version 3.x and 4.x browsers or
only the latest versions from particular vendors? If the Web site is a corporate
intranet, it’s more than likely that there would be a standard supported version
of a browser. However, as we consider extranets, e-Marketplaces, and
full-access consumer Web sites, we can see the proliferation of browser types
and versions that customers may use. This adds a layer of technical
148 User-to-Business Patterns with WebSphere Advanced and MQSI



complexity as developers need to accommodate the different technologies
supported by browsers, as well as understanding the different interpretation
of what is standard by vendor-specific browsers. This is a significant
consideration when estimating the development and testing effort. Obviously
writing for one browser will take less time and effort than writing for multiple
browsers.

How will it perform?
What are the users expectations of response time and what can you deliver?
This will depend largely on knowing where the users are. Are the majority
accessing the site from a dial-up line or from a corporate network? If it is slow
access, then what are the limitations on page sizes? Consider the fact that on
a 28.8Kbps modem, with no noise or interference on the line, it takes a 10KB
page approximately three seconds to download. Taking these kinds of metrics
into consideration has a profound effect on just how much information is
displayed per page and how it is presented.

8.5.2.2 Organization
This aspect deals with the manner in which the information within the system
needs to be organized. A good organization allows for very quick
identification of where it is on the site and its retrieval, almost intuitive for the
end users.

How will it be arranged?
Will the information be arranged alphabetically, spatially, by time or topic?
Whatever the answer, the nature of the content itself and how people will try
to locate it need to be understood.

So, for example, a site that has a high turnover of news-related items may
wish to show the top 10 news items on the home page, with the remaining
news items accessible in a separate news section. Since the news section
would have a large number of items, it may be worthwhile categorizing along
the lines of interest to the business (financial, R&D, competitors, etc.) to make
them easier to locate. Finally, if we imagine the news archive with almost
thousands of items, that could be arranged in date order.

Is the content structured or unstructured?
News items are fairly well-structured pieces of content; they have a headline,
maybe a sub-headline, opening paragraph and content area, author, release
dates, and maybe expiration dates. We can begin to see how each of these
elements can be used to construct a page. On the home page we could show
our 10 news item headlines and opening paragraphs and then allow users to
click through to get to the remaining article. The experience is quite
predictable and can be easily put together by site developers.
Chapter 8. Application development guidelines 149



Unstructured content presents a different challenge. How do we even begin to
identify content that may be of value to users from a completely unstructured
source that changes day to day? There is, of course, the manual way, where
someone scours endless pages of content for any relevant information and
then brings it into a structured page. Fortunately, there are tools available on
the market that are very sophisticated and will parse all manner of content to
retrieve the relevant information.

Currency
One issue with site credibility is the currency of the content. It is important to
have all content owned so there are clear lines of responsibility for its
maintenance. Also, expiration dates that force turnover of content help ensure
that content is updated.

Security
Probably one of the greatest concerns with Web sites is that of security. Just
what are the access requirements and who should be able to look at what?
It’s clear that there can be no effective definition and enforcement of security
without a clearly stated security policy as a benchmark for system
developers, content providers, and maintainers.

8.5.2.3 Navigation
Next you need to address the question of how users find what they are
looking for. The experience of navigation should allow users to find their way
to the content without, at any point, feeling lost in the maze of pages. Clear
guides on each page showing where they are and where they have come
from and a consistent navigation scheme allows for a better experience.
Again, there are some pointers to keep in mind when designing for
navigation.

Search or navigate?
One of the issues with navigation devices is that on very large or complex
sites, navigation systems aren’t the best way of finding information. In this
case the use of a search engine would be more effective. However, search
engines may return a varying number of responses. In a list of 100
responses, where is the item of interest? There are very advanced search
engines that employ very complex algorithms in order to return more
meaningful responses; however, the problem still remains the same. The
answer in most cases lies with the use of both systems. Navigation should
allow users to easily locate a middle-to-high percentage of content and
search engines should search not only the whole site but targeted portions of
the site.
150 User-to-Business Patterns with WebSphere Advanced and MQSI



What roles do users play?
When designing the navigation path, it may be of value to keep in mind the
roles that users play. Are they authors, approvers, or consumers? What type
of consumers are they? What information are they most interested in? What
other information would they find of use? If we take the example of a stock
share Web site, users are obviously buyers and sellers of stock. They will
have a clear interest in locating the latest stock quotes as quickly possible
and then making the transaction. They would be very interested in information
that would help them make the decision to buy or sell, such as stock reports,
market watch reports, financial statements, latest breaking news, etc.

What are the channels of access?
Depending on the type of device accessing the information the navigation
experience will be different. Once again an obvious comparison is that of the
PC-based browser and WAP phone.

8.5.2.4 Adaptability
One of the great lessons learned in the relatively short history of the Internet
is that sites need to adapt if they are to survive. User expectations of what
technology can deliver and what services should be provided are constantly
being raised. This raises several concerns.

What are the measures for effectiveness?
Is there a clear understanding of what determines if your site is effective and
how to measure the success? Are these measurements the right ones and
have they been tested? How will the metrics be captured?

Site evolution
How will your Web site cope with changes in user demand? Let us say that all
of a sudden there is a surge in interest in the site. Will it be able to cope with
a higher number of concurrent users? How will it cope with a change in user
behavior? What are the inhibitors to a fast effective change? This could be
organizational as well as being technology based.

8.5.3 Technology choices
The design pattern for the application will be based on the
Model-View-Controller (MVC) pattern. In the MVC pattern, the “model”
represents the business logic, while the “view” represents the page displays.
The “controller” is charged with the responsibility of channeling requests to
the appropriate business component (model) and calling the appropriate
page construction component (view) based on the output of the business
logic commands. Technology choices that will best accomplish each of these
Chapter 8. Application development guidelines 151



pieces of the application will need to be made. The options we have
considered are covered in Chapter 5, “Technology options” on page 35.

The client environment is Web browser-based. The supporting technologies
for the view have been identified as HTML, JavaServer Pages, JavaScript and
JavaBeans.

The controller represents server-side code directing requests and returning
responses. Java servlets are platform and protocol independent,
implementing a simple request-and-response framework for communications.
This makes them the ideal choice for the controller function.

When considering the technology choices for the model, we have a more
interesting challenge. The key prerequisites for the model is that it needs to
be built using a server-side component architecture that is distributed,
scalable, secure and reliable. It should allow the portability and re-use of
business logic. In the bank’s case, they are also considering the fact that their
core databases vary in structure and reside on different operating systems. In
addition, they believe there may be a merger with another bank in the near
future, which will introduce even more complexity into the picture.

Although almost anything can be done with Java programming, there are
technologies and products available that will do some tasks much more
efficiently than a Java program, and alleviate the need to program these
complicated tasks.

For WebBank, the decision was made that combining two sets of customers
and sending their requests to the correct back-end systems can best be
handled by using some type of messaging technology as the routing
mechanism. After evaluating the requirements for the model portion of the
application, they chose to implement messaging technology using IBM
MQSeries. They used Java commands to put messages on a queue and to
receive messages from a queue. MQSeries Integrator will be used as a
messaging broker that will route the messages and, if necessary, transform
them to the appropriate format and structure.

8.5.4 Deployment model
Another task is to begin planning the deployment model. This will include:

• Finalizing the operational model. The model chosen will depend primarily
on the technology options chosen and security needs. The runtime models
we chose to consider as final solutions are discussed in Chapter 3,
“Choosing the runtime topology” on page 17.
152 User-to-Business Patterns with WebSphere Advanced and MQSI



• Determining the product mapping from the logical architecture. There will
most likely be several choices of products available for implementing the
chosen runtime topology. While considering the choices you should
consider possible future application expansion. Choose products that offer
enough flexibility and function to accommodate future business growth.
Our decision for these options is covered in Chapter 4, “Product mapping”
on page 25.

• Selecting system management methods and tools. Planning for system
management begins here. It is a crucial piece of the puzzle and must be
considered early in the planning cycle. This includes not only how
applications and servers are controlled, but security issues as well. These
options are covered in Chapter 10, “System management guidelines” on
page 239.

Planning for development phases and testing should also begin in this phase.

8.6 Micro design

In the micro design phase we need to expand the business process model by
refining these into actual work products. These work products will define the
interactions necessary between the external users (actors) and the proposed
system needed to accomplish the business goals. We have chosen to use
Rational Rose to produce the work products.

8.6.1 Use cases
The first step in the macro design phase is to capture the functional
requirements of the system, that is, what the system should provide in terms
of services to its users, in the form of use cases. The main purpose of a use
case model is as a communications tool. It is utilized by end users,
developers and domain experts to establish the boundary of the proposed
system and to fully state the behavior and functional capabilities to be
delivered to end users. It is also the primary basis for defining the user
interface requirements.

The principal use cases should typically represent a piece of functionality that
is complete from beginning to end and delivers value to the user (actor).
Unfortunately there is no formula for identifying good use cases. This comes
from the experience of building systems that employ modelling rigor and from
a good understanding of the problem domain.

The use cases identified in the macro design have been captured in the
Rational Rose use case diagram shown in Figure 64.
Chapter 8. Application development guidelines 153



Figure 64. Rational Rose use case model

The stickman figure in the use case diagram is used to define the actor,
called Customer in our example. The actor is not a part of the system as
such, but interacts with the system to either submit and/or receive information
to/from the system.

Customer, as an actor, is quite easy to identify since it is a “person” role that
most people can empathize with. However, actors may not be, and in many
cases are not, “person” roles, but rather another system that is outside the
boundary of consideration that maintains the interaction.

Typically, the initial list of actors identified will be subject to change as their
interaction with the system is understood. For example, in the case of
154 User-to-Business Patterns with WebSphere Advanced and MQSI



Customer, is a new Customer equivalent to an existing Customer? If the
interaction with the system is different, then a new actor will need to be
defined. If the interaction is the same then the same actor will suffice.

There are three use cases depicted in Figure 64: Login, Update Profile and
Sign Off. To illustrate our development process, the remainder of this chapter
will focus on the Update Profile use case. It will be assumed that the Login
and Sign Off use cases are already implemented.

For each case, there will be a description, or specification, that defines each
aspect of the use case. Table 7 shows the layout of a typical use case. The
title identifies the use case with a name and number that will be referred to
throughout the development cycle. The specification includes a description of
the functionality to be delivered, any relevant assumptions made, definition of
actors, and any necessary preconditions that need to be satisfied before the
use case can begin.

Table 7. Update Profile use case

UC06 - Update Profile

Description This facility will allow Customer to remotely update personal
profile information for all accounts.

Assumptions All accounts have a personal profile.
All profiles held for Customer are the same.

Primary Actor Customer

Preconditions Customer has completed the Login use case and is trusted
by the system.

A Customer Accounts entry exists.

Main Scenario 1. From the main page, Customer is presented with a
number of options and selects the Profile Update.

2. Customer updates the profile and submits the changes.
3. The system responds with a confirmation message that

the request has been received and will be automatically
processed.
Chapter 8. Application development guidelines 155



These specifications can be defined in Rational Rose (see the dialog box
called “Use Case Specification for Update Profile” in Figure 64) or in some
external way, as in our table. Where external methods are used to capture the
information, there is the ability to attach them to Rose use cases as external
files.

The main scenario describes the principal flow of events for the completion of
the use case and the extensions capture alternative paths in the flow.

The second precondition defines a Customer Accounts entry. A single
customer may hold several accounts, each with its own account number. To
simplify things for the customer and to head off any problems in the future
when the two banks merge, each customer is assigned one account number
to keep up with. The Customer Accounts entry is used by the application to
take that number and determine the accounts held by the user and the real
account codes that go with them. The customer profile will need to be
updated at each back-end system where he holds an account.

The Customer Accounts entry is kept in a staged database, which is
synchronized with legacy systems. This allows the application to determine
whether a customer account exists without interrogating each and every
back-end system.

The customer profile is also held here and synchronized with the back-end
systems, although the format of this data may differ in each system. For
instance, it is possible that a customer could hold both a checking and
savings account. However, these two accounts represent different
subsystems that were developed by different teams, over different time
periods. The information held by each type of account is similar but in a
different format. For this reason, provisions have to be made to allow the
synchronization of the staged data with back-end data of various formats. The

Extensions 1a. System is unable to retrieve details. A message is
displayed to that effect with an option to return to the
main menu.

1b. The system returns Customer’s profile details.
The system displays the Customer’s title, name,
address and telephone number. For each address line
entry there is a corresponding input field for updates
and an Update button to submit the changes.

2. The page displays a link back to the main menu page.

UC06 - Update Profile
156 User-to-Business Patterns with WebSphere Advanced and MQSI



customer data format for the two back-end systems in the WebBank example
is illustrated in Table 8.

Table 8. Checking Account table and Savings Account table

The distinction represents the typical problems faced in enterprise
environments in keeping data sets of different formats synchronized.

8.6.2 Storyboard
The storyboard is a visual prototype tool that is used as an aid to validate the
requirements. It can be created using a graphics package or an HTML wizard.
No great length of time should be spent on getting the “look” right. The
functionality is the key point. Storyboards are excellent communication tools
and should be used to play back the requirements to the end users and help
validate use cases.

In our example, from the use case, we can derive five windows that hold
functionality or show pertinent information. Figure 65 shows the storyboard,
which is represented as a flow from window to window cascading down.

Checking Table Savings Table

NUMBER INTEGER NUMBER INTEGER

TITLE CHAR(6)

NAME CHAR(40) SURNAME CHAR(20)

FORENAMES CHAR(20)

ADDRESS1 CHAR(40) HOUSENO CHAR(6)

ADDRESS2 CHAR(40) HOUSENAME CHAR(40)

ADDRESS3 CHAR(40) STREET CHAR(40)

ADDRESS4 CHAR(40) DISTRICT CHAR(40)

ADDRESS5 CHAR(40) CITY CHAR(40)

STATE CHAR(40)

COUNTRY CHAR(40)

ZIP CHAR(8)

TELEPHONE CHAR(20) PHONENUM CHAR(20)

BALANCE DECIMAL(12,2) BALANCE DECIMAL(12,2)
Chapter 8. Application development guidelines 157



Figure 65. Storyboard

8.6.2.1 Page 1
The use case starts with the assumption that the user has already
authenticated. This is reflected in Figure 66, which shows the welcome
message and the user’s name displayed in the top right-hand corner. The first
page shows the option under consideration, in our case, the ability for the
user to view and update his personal profile.

1

2a

3a 3b

2b
158 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 66. Page 1 - main menu

8.6.2.2 Page 2a
Figure 67 shows the next page, Page 2a, where the user profile has been
returned successfully after the selection was made on Page 1. From this page
the user may choose to change his profile. To do this, he updates the fields
and clicks the Update button to submit the changes.
Chapter 8. Application development guidelines 159



Figure 67. Page 2a - personal profile

8.6.2.3 Page 2b
An alternate outcome of the selection from Page 1 is that the system was
unable to retrieve any details, in which case Figure 68 shows the specific
error returned.
160 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 68. Page 2a - error returning profile information

8.6.2.4 Page 3a
Assuming that the user submitted changes to the profile and all has gone
well, an acknowledgement in the form of Figure 69 is displayed to the user,
with the options to log off or go back to the main menu.

Figure 69. Page 3a - update acknowledgment
Chapter 8. Application development guidelines 161



8.6.2.5 Page 3b
If the update from Page 2a is unable to take place then the appropriate error
message is displayed to the user, as in Figure 70.

Figure 70. Page 3b error updating the profile

8.6.3 Activity diagrams
The next set of views in Rose are grouped into a category called Logical
View. In this category, we logically construct the various elements required to
deliver the functionality described in the use cases. This means looking at the
process involved and decomposing them to their various classes and
interactions.

The first diagram we will discuss is the activity diagram, which is used to
further elaborate on the use cases. More specifically it shows a flow of control
from activity to activity, where an activity can be seen to be some behavior
within the workflow. This can be seen as the first steps in documenting the
dynamics of the system.

Activities undergo transitions to other activities; they may encounter decision
points, showing branching of a flow. There may be activities that run in
parallel. The diagram may also show people, organizations or components
responsible for the execution of those activities.

We have used Rational Rose to produce the activity diagram in Figure 71.
162 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 71. Update Profile activity diagram

The view is the point at which the activity begins and terminates. “Dispatch
Option" forwards the request to update the profile to the model. “Get
Customer Profile" attempts to retrieve the profile and returns the result back
to the controller. This operation may have failed to complete, in which case
there is a decision point reached in the controller to either display the "Report
Error Returning Profile” view or the "Show Profile Update Options" view. If the
former is displayed then the flow terminates. The latter view shows the
current profile with the ability to modify any part of it and then to submit the
changes for the "Dispatch Update" activity to redirect.

Once redirected to the model, the update either occurs or there is an error.
"Process Update" returns the response to the "Select Return Options"
Chapter 8. Application development guidelines 163



controller, which decides to display the appropriate error or results view. The
key thing to note about the positive result is that no data is returned, only an
indication that the submission request was successfully received by the
model.

The reason for this is that the model may be responsible for updating any
number of back-end systems and to do so immediately may leave the
customer waiting for a lengthy period of time until the request completed. Or,
if one assumes that the checking account system is not available for the
update when the request is initiated, then what would be the fate of the
request? If an immediate response is required then the system has no choice
but to respond with a failure and the customer will need to try again at some
point in the future, and even then without the assurance that the request
would be processed on the subsequent attempts. This is obviously
unacceptable for a service aimed at providing value and high customer
satisfaction. Ideally, the customer would want to submit the request once and
just forget about it. This needs to be done with the confidence that the
processes initiated will assure that the update occurs whether or not a
particular subsystem was available at the time the request was initiated.

It may be possible, and in some cases recommended, to put a tracking
mechanism in place so that there is clear visibility to the customer of where
the request is in the process, or even a confirmation sent by e-mail or on a
status page to show that the request completed. There are any number of
options available, but for the purposes of this example, we will check the
status by re-initiating this use case to display the updated profile.

8.6.4 Class models and class diagrams
The next stage of the process is to start defining classes that will represent
the functionality of the system. This is seldom an easy process. Our example
business model is quite straightforward and is represented by a customer and
a few account objects. In the real world, a great deal of time would be spent in
defining the objects and the relationships between them. This process is
generally performed without consideration for specific technology
implementation classes, making the business logic clear to see and
technology independent.

The identification of candidate classes will be made easier if the MVC pattern
has been used and there are clear lines of responsibility drawn between the
model, the view and the controller. In most cases the candidate classes are a
starting point from which further iterations of identification and verification of
class definitions occurs until a suitable class model is defined.
164 User-to-Business Patterns with WebSphere Advanced and MQSI



The business model implemented here is quite straight forward and can be
represented by a profile class and a customer class. There are two tasks
performed by the model, retrieve profile and update profile. The point of
interest here is the technology used to support the model. From the choices
we have focused on so far in this book, it is apparent that this part of the class
model covers two implementation technologies: Java classes and message
flows implemented by MQSI.

We have determined that our application will use servlets in conjunction with
a command pattern implemented using the command package, available in
WebSphere Application Server, Advanced Edition 3.5 and VisualAge for Java
3.5.

In order to simplify this discussion, the class diagrams discussed in this
section will not show the command interfaces. Details and coding examples
of the command package are described in 6.1, “Command framework” on
page 55. For information about the MQSI application design please refer to
Chapter 7, “MQSI application design guidelines” on page 103.

8.6.4.1 Analysis diagram
Before diving into the class diagram, it may be a good idea to do an analysis
of the core classes that will make up the function of the application. The
analysis diagram helps us identify the core of the class diagram by hiding
much of the complexity of the implementation. With Rational Rose, we will
produce this analysis diagram as a class diagram, but will only model the
heart of the application program, showing the major classes involved in the
interaction.
Chapter 8. Application development guidelines 165



Figure 72. Update Profile analysis diagram

In this diagram, we show that there are two stages to updating the profile.
First the profile is retrieved and displayed. In this stage, the
GetCurrentProfileServlet is the controller and invokes
GetCurrentProfileCommand, which in turn retrieves the current profile
information. The second stage is the update. The UpdateProfileServlet is the
controller and invokes UpdateProfileCommand, which causes the messaging
broker to update the profile on the staging database and the back-end
databases.

For analysis purposes we can view the MQSI broker role as an object that
encapsulates a number of business methods. The broker is actually a named
166 User-to-Business Patterns with WebSphere Advanced and MQSI



object with a well-defined interface. In Figure 72, the broker object is named
"ITSOBroker". This broker is on the receiving end of the execute() methods of
the two commands. Each command elicits a specific response by calling a
particular method within the broker (in fact, the getProfile() and
updateProfile() methods, respectively).

You may notice it looks different from the more detailed class diagram shown
in Figure 73 on page 169. Rational Rose allows you to do class diagrams
using different notation. In Figure 72, we chose to use the icon notation
option. This is an option available only at the file level, so we made a
“supplemental” file to produce these diagrams.

The icons assigned to each node represent the roles each will play in the
application. The direction of the arrows between icons also have significance.

Table 9. Class stereotype icons

8.6.4.2 Class diagram
When building the class diagram, any components responsible for the MVC
view functions of the program, such as windows that gather user input or
show the results, will be written using HTML and JSPs. These components
will construct HttpServletRequests and display data encapsulated in a Java
bean (a result bean).

The MVC controller component maps user input to tasks in the model and
manages the generation of result presentations. In the activity diagram in
Figure 71 on page 163, this is shown as two pairs of "Dispatch..." and

Icon: A boundary class icon, representing a point where data or
control either enters or exits the application. In our application
these will be implemented with JSP files.

Arrows: The object at the tail of the arrow will send a message (or
pass a parameter list) to the object at the head.

Icon: A control class icon, representing a point at which a
computation or other significant state change is generated. It
models use-case specific behavior.

Arrows: The object at the tail of the arrow will create the object at
the head.

Icon: An entity class icon, used to represent a data object (usually
persistent) and the code that encapsulates it.

Arrows: The object at the tail of the arrow is a specialization of the
object at the head.
Chapter 8. Application development guidelines 167



"Select..." activities. This dispatch/select (send/receive) pairing suggests that
the activity be written as a cohesive unit. The question is whether or not both
pairs should be implemented as a single code object. This will depend on the
application and what seems to be more logical. The choice made here is to
keep the two separate. This is because the function to retrieve a profile is
logically independent from updating a profile. Each matched pair will be
implemented as its own servlet.

There is value in showing the role of the broker in such a diagram for
architects and people interested in the high-level design, as the detailed
interactions and complexities are hidden. However, for this very reason, a
diagram such as this is of little practical use for system implementors and
developers, for whom the complexity of interactions needs to be understood
for the system to be built. So, the broker needs to be decomposed into its
constituent parts and the interfaces and relationships understood for the
interactions to be defined.

In reality, the interface to the broker is actually any number of message
queues managed by an MQSeries queue manager. The message queues are
where applications "put" message requests and "get" message responses.
An application will send a message to a queue manager naming the inbound
queue. The queue manager reads the message destination, determines
where the inbound queue is, and puts the message in the queue if it is local to
itself or hands it off to the queue manager responsible for that queue.

The messages are then involved in a flow within the broker and messaging
network that may trigger decisions points, further lookups of data to augment
the message, and some transformation to the structure and finally result in a
response message in an outbound message queue.

The message flow can be seen as a class of its own that calls a method of the
broker object. In this particular instance, the two ITSOBroker methods
getProfile() and updateProfile() are called by the “ITSOProfileLookup” and
“ITSOProfileUpdate” message flows respectively. The message flows are
defined in Chapter 9, “Developing the MQSI application” on page 183. At this
point we are not interested in capturing how message queues, queue
managers and brokers relate to one another. However, we are interested in
the interface into the messaging infrastructure, that is, the queue manager,
the message flows and how our applications submit and receive information
from them. To take this part of the model to the next level of detail we can
substitute ITSOBroker with a named queue manager, ITSO.QM.BR, and add
the two message flows.
168 User-to-Business Patterns with WebSphere Advanced and MQSI



Retrieve the customer profile class diagram
The class diagram in Figure 73 shows the classes required to retrieve the
customer profile. The class types, shown between << >>, are referred to as
stereotypes in Rose notation. Typically, all methods and properties would be
shown in this diagram. To simplify our discussion, only those we are
concerned with will be shown here.

Figure 73. Retrieve Profile class diagram

getCurrentProfileServlet - This servlet fulfills the controller function. Its
performTask() method checks to see if the session object exists by calling
getSession(false) which returns null if a session doesn’t exist. This means
that the user has not been identified, in which case it redirects to the
logonPage JSP. If the session exists the servlet retrieves the user’s
identification from the session object using the getValue() method. It then
creates an instance of the GetCurrentProfileCommand and executes it. When
the command completes, control is handed back to the servlet which either
shows the success view or error view, depending on the command outcome.
Chapter 8. Application development guidelines 169



GetCurrentProfileCommand - This command is responsible for initiating the
request to the broker and holding the result. The request is actually a
message created by the command and "put" on an MQSeries message
queue. The command then waits for a message response and "gets" it from
the MQSeries output queue. Once it has the message, the command
instantiates a StandardProfile object and populates it with the profile details
in the message using a constructor method in the StandardProfile class. It
then returns control to the servlet.

ITSO.QM.BR - The queue manager that owns all the message flows in
ITSOBroker. Its primary purpose is to locate the target message queues for
the messages.

ITSOProfileLookup - This message flow equates to the getProfile() method of
the ITSOBroker and is owned by the queue manager. The message flow
starts by getting the message from the input queue (placed there by
GetCurrentProfileCommand). It parses the message, doing the necessary
database lookups and transformations to produce a result. The result is then
encapsulated in another message and "put" into the output queue for the
GetCurrentProfileCommand to "get". The implementation details for the
message flow is described in Chapter 9, “Developing the MQSI application”
on page 183.

StandardProfile - This is the result object created by the
GetCurrentProfileCommand and used by the ProfileView bean.

ProfileView - This is a View bean used by the currentProfilePage JSP. A View
bean is responsible for combining the result data and the display-specific
attributes. View beans are described in Patterns for e-business:
User-to-Business Patterns for Topology 1 and 2 using WebSphere Advanced
Edition, SG24-5864.

currentProfilePage - This JSP is presented to the user when there is a
successful retrieval of the profile information.

profileUnavailablePage - This page is presented to the user when there is a
problem with retrieving the profile information.

logonPage - This is a JSP responsible for gathering the user’s login
information. It passes it to the logonServlet, which does the necessary
authentication checks and, if successful, puts the information into the
HttpSession object.

HttpSession and HttpServletRequest - These are the standard objects used
by servlets to hold session and request information.
170 User-to-Business Patterns with WebSphere Advanced and MQSI



Update the customer profile class model
Figure 74 depicts the key classes required to implement the design for the
Profile Update function.

Figure 74. Update Profile class diagram

UpdateProfileServlet - This represents the controller function. It does the
session object check, retrieves the updated profile information from the form,
and reads it into the standard profile. It then instantiates the
UpdateProfileCommand and populates it with the user string from the session
and the StandardProfile object and calls its execute() method. It finally checks
the command’s message string using the getMessage() call to verify that the
command completed successfully. The servlet invokes the
profileUpdateComplete JSP, unless there is an error, in which case it invokes
the profileUpdateFailed JSP.
Chapter 8. Application development guidelines 171



UpdateProfileCommand - This command is similar to the
GetCurrentProfileCommand described earlier in that it puts a message into a
queue (the new profile). However, there is no response message to “get”. The
command checks that the message is sent without error and writes success
or failure to the message string.

ITSO.QM.BR - The queue manager that owns all the message flows in the
ITSOBroker. Its primary purpose is to locate the target message queues for
the messages.

ITSOProfileUpdate - The message flow in this instance represents the
updateProfile() method for ITSOBroker. It takes the inbound message and
updates the various back-end applications as well as updating the cache.
There is no outbound message.

profileUpdateComplete - This JSP is presented to the user on success.

profileUpdateFailed - This JSP is presented to the user if there is an error in
the update.

logonPage - This JSP is presented to the user if they have not been
authenticated.

8.6.5 Interaction diagrams
A more detailed analysis of the relationships between the elements identified
in the class diagrams can be shown by the interaction diagram. There should
be at least one interaction diagram for each use case. A use case, as we have
described, represents a number of scenarios. The interaction diagram takes
the main scenario and captures all the important dynamic issues relevant to
implement that functionality.

Figure 75 shows an interaction diagram in Rose.
172 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 75. Retrieve profile interaction diagram

Unfortunately, the complete diagram is much too large to show here, but we
will list the actions are illustrated:

• The performTask() method of getCurrentProfileServlet checks for a valid
session via a call to getSession(false) indicating that a session reference
should only be returned if one already exists. If null is returned, then no
session exists and the servlet uses the RequestDispatcher to send the
user the logonPage.jsp, forcing the user to log on before using this servlet.

• If a valid session object exists, the user is logged on, and processing
continues.

• An attempt is made to retrieve the user's ID string using the getValue()
method on the AccountDescriptor objects that were stored in the
Chapter 8. Application development guidelines 173



HttpSession by the logon servlet. If the user string does not exist, a new
InvalidUserException is thrown, and the error page is sent to the user.

• The servlet instantiates a concrete subclass of
GetCurrentProfileCommand, based on the servlet init parameter
"commandClass". Depending on which class is used, either JMS or MQ
classes for Java will be used.

• Properties are set using calls to setUser(), setHostname() and setPort().
The latter two properties are set as servlet init parameters and are used to
initialize the JMS/MQ environments.

• Call execute(). This results in an XML message being constructed in a
predetermined format, using the user identification string. The message is
appropriate to the underlying infrastructure (JMS or MQJava classes). The
brokerHostName and brokerPort are used to determine where the
message will be sent.

• The message is sent to the ITSO.QM.BR queue manager and the
command issues a “get with wait” on the reply queue.

• The queue manager reads the incoming message and puts it into the
ITSOProfileLookup inbound queue.

• ITSOProfileLookup runs to completion and a message is put on the
outbound queue.

• If the valid reply is received in time, the XML message is used to construct
a new instance of StandardProfile and the command writes success to the
message string.

• When the command returns, the servlet checks the command's message
string via a call to getMessage() to verify that the command executed
successfully. If the string indicates an error, the request is redirected to the
error page.

• Otherwise, if the command has completed successfully, the
StandardProfile object is retrieved from the command and placed in the
HttpServletRequest:

req.setAttribute("profile", command.getProfile());

• The servlet forwards the request to the currentProfilePage JSP which
creates an instance of ProfileView bean. This bean retrieves the
StandardProfile object from the HttpServletRequest and uses the data in it
to construct a form to display the user's profile, including a button to
submit any updates.

• The following scriptlet allows the Web developer to modify the appearance
or the bean's table, without the risk of editing important form fields.
174 User-to-Business Patterns with WebSphere Advanced and MQSI



<%
profileView.setTD_LABEL_CELL_COLOR("GREEN");
%>

• The getProfileUpdateForm() method is called, which queries the
HttpServletRequest to extract the StandardProfile object. This enables the
view bean to construct an HTML table displaying the profile details, using
the properties set by the Web developer to customize its appearance.

• The user views the profile information.

Figure 76 shows an interaction diagram for updating a profile.

Figure 76. Update Profile interaction diagram
Chapter 8. Application development guidelines 175



Once again, the complete diagram is too large to show here, so we will list the
actions it illustrates:

• The user alters some or all of the profile information displayed in the
profileUpdateForm.jsp, and clicks the Update button to submit the form.

• The performTask method of UpdateProfileServlet performs a session
check (as described in the Retrieve Profile scenario).

• The servlet's createPopulatedProfile(HttpServletRequest req) method
retrieves the user's profile information from the form and reads it into the
StandardProfile object:

profile.setSurname((String)req.getParameter("SURNAME"));

And so on for all profile values.

• The servlet instantiates a concrete subclass of UpdateProfileCommand,
based on the servlet init parameter "commandClass". Depending on which
class is specified, either JMS or MQ classes for Java will be used.

• Properties are set using calls to setUser(), setProfile() (passing the new
StandardProfile object instance), setHostname() and setPort(). The latter
two properties are set as servlet init parameters and are used to initialize
the JMS/MQ environment).

• The servlet calls the command's execute() method.

• An XML message is constructed with the user identification string and the
StandardProfile, to the specification and protocol required. The target
queue manager of the message is determined using the brokerHostname
and brokerPort and is sent.

• If the message is sent without error, then the execution has completed
successfully and the command writes "success" to the message string.

• The ITSO.QM.BR queue manager determines where the
ITSOProfileUpdate’s inbound queue is and "puts" the message. The flow
runs to completion and updates the back-end systems. There is no
outbound message.

• When the command returns, the servlet checks the command's message
string via a call to getMessage() to verify that the command executed
successfully. Depending on the string returned, the request is redirected
either to the profileUpdateComplete.jsp or profileUpdateFailed.jsp.

8.6.6 Component model
The component model is concerned with actual software module organization
that defines the final application. Its purpose is two-fold:
176 User-to-Business Patterns with WebSphere Advanced and MQSI



• Describe the high-level structure of the system.

This entails defining the responsibilities, relationships, and interactions of
components. It specifies how existing, acquired, and developed
components are related and leads to a clearer view of where they have to
be placed on the operational model in order to aid the deployment effort.

• Help organize the development project.

Design and development of large complex systems are simplified as
components encapsulate the complexity of individual classes or
procedures. They can also act as means to allocate work that can be
managed and handed out to build teams for development.

This step takes the model from a logical design, for example the class model,
to a physical partitioning of the system as defined by the component model.
The model maps one or more classes or even whole packages from the class
model to an appropriate language-specific component.

The distinction between a package in the class model and in the component
model is, again, one of logical and physical definition. In the class model a
package represents a logical grouping of classes based on similar business
functionality or technical grouping. It may be true that this maps directly to a
package in the component model. However, this may not necessarily be the
case for any number of reasons. These reasons usually come down to the
constraints of the language, organization of existing models, or the
organization of the units of work for the development teams.

In this specific scenario we are modeling Java and non-Java components.
The Java components will be used to produce skeleton code in a VisualAge
for Java project, with a certain amount of reverse engineering from the project
back into the model as the build phase progresses. The non-Java
components are MQSeries and MQSI-based and should hold enough
information for an MQSeries network engineer and an MQSI developer to
build the necessary message flows and message queues.

The components and their connections are shown on a component diagram.
It is also worthwhile noting that Rose uses the component definitions as its
basis for forward and reverse engineering code.

Figure 77 shows the component view of our model. This view is concerned
with the physical software module organization, showing the runtime and
software components created for the system. The process involves taking the
classes identified in the logical view and mapping them to physical
Chapter 8. Application development guidelines 177



components. The mapping between the logical classes and the components
may or may not be a one-to-one mapping.

Figure 77. Component View from Rational Rose

The left pane shows the design elements in a directory structure. The
directories equate to Java packages for the Java elements, which are all
within com.ibm.pdk.banking.*. The Queue Manager and MessageBroker
entries represent the MQSeries and MQSI elements.

The diagram shows a dependency between the com.* package and the
Queue Manager; and between the MessageBroker and the Queue Manager.

Looking at the Java components we can see that they are organized by type,
i.e. servlets, commands and views (JSPs). The two Java beans,
178 User-to-Business Patterns with WebSphere Advanced and MQSI



StandardProfile and ProfileView, reside within the banking package. From the
names we can clearly identify a one-to-one mapping of these components
with the classes defined in the class models in our earlier analysis (see
Figure 73 on page 169 and Figure 74 on page 171).

The non-Java components shown are encapsulated in the MessageBroker
and Queue Manager packages.

Within the MessageBroker package there are five components defined:

• ITSOBroker

This is the named broker that holds all the message flows and has within
itself all the MQSI nodes defined.

• ITSOProfileLookup.XML

This encapsulates the ITSOProfileLookup message flow defined in the
analysis section

• ITSOProfileUpdate.XML

This encapsulates the ITSOProfileUpdate message flow defined in the
analysis section

• ITSO_DB2Cfg.cmd

This component is a command file responsible for setting up the database
tables and files used by the broker.

• Customer_Table

This represents the DB2 table that holds the customer profile information.

The QueueManager package contains two components:

• ITSO.QM.BR

This is the actual queue manager that delivers messages to the two
message flows.

• ITSO_QMCfg.cmd

This is a command file responsible for setting up the various message
queues, channels and other components required by the MQSeries
network.

8.6.7 Deployment model
This phase is really concerned with the physical makeup and distribution of
the system. It maps the runtime applications to their processing devices. The
applications, devices and their relationships are shown on a deployment
Chapter 8. Application development guidelines 179



diagram. This view takes into consideration other requirements such as
system availability, reliability, scalability and performance.

The diagram illustrates nodes as the runtime processing elements with
associations, indicating communication paths, as the connections between
them. Software and applications are shown as text attached to a node or
group of nodes.

Figure 78. Deployment diagram

From the diagram, five nodes are illustrated with the components running on
them.

• Web browser

This is the standard way of accessing the application, rendering HTML
pages or JSPs.

• Web server

This is a standard HTTP server delivering static HTML pages and
supporting media files. It also forwards all requests for dynamic content to
the application server.

• Application server
180 User-to-Business Patterns with WebSphere Advanced and MQSI



The application server serves dynamic content in the form of:

- View: The page constructor implemented with JSPs

- Controller: The interaction controller as Java servlets

- Business Logic: Java beans and the command framework using JMS
messaging and MQSeries classes for Java to connect to the MQSeries
network.

• MQSeries

The MQSeries network is the messaging transport used between the
application server and the broker. It consists primarily of queue managers
and MQSeries objects such as queues and channels, that are necessary
for the transport functionality.

• MQSI broker

The broker contains the message flows that hold the business logic for
accessing, transforming, augmenting and updating the data in the local
cache database and to the back-end systems.

It also holds the database definitions used by the broker for administration
purposes.
Chapter 8. Application development guidelines 181



182 User-to-Business Patterns with WebSphere Advanced and MQSI



Chapter 9. Developing the MQSI application

In our sample application, we have two use cases that require MQSI to act
upon an instruction from WebSphere. These are:

• The customer profile lookup
• The customer profile update

The role of the MQSI application has been defined in Chapter 8, “Application
development guidelines” on page 141. This chapter will describe the process
of developing the MQSI portion of this application. It will take the design
criteria produced by the modelling work and transform it into a working,
deployable example MQSI application.

Please note that the following sample application scenarios have been
designed to illustrate some of the techniques that may be used to take
advantage of the products that play a role in this redbook. The scenarios
have not been subjected to the full, rigorous design validation and testing
processes that should apply in development of a solution for production use.

9.1 The contract with WebSphere

During the design of the WebBank application, the role of MQSI with regard
to the WebSphere application were defined. These requirements are fairly
simple.

Customer profile lookup: WebSphere will request details of a customer
profile by sending a “customerrequest” XML document containing the “userid”
of the customer. As a synchronous response, it requires a “profilemessage”
XML document containing all details of the customer profile.

Customer profile update: WebSphere will request an update of a customer
profile for all accounts held by that customer by sending a “profilemessage”
XML document containing the new details of the customer profile. The action
is to be performed asynchronously.

9.2 Design considerations

As we progressed through the application design and development phases,
the following facts have been established:

• A locally available database has already been configured to hold details
regarding which accounts each customer holds. This takes the simple
form of a three-column table where customer user ID is matched to an
Chapter 9. Developing the MQSI application 183



account type indicator and an account number. The customer holds a user
ID which is the key to the table. A separate table holds the latest customer
profile information, acting as a cache for the information in the back-end
databases.

• There are currently two remote systems maintained with account details
on them, one for savings accounts and one for checking accounts. The
customer profile details are held in different forms in each case.

• All databases used are DB2 databases.

• All messages exchanged are valid, well-formed XML documents.

9.2.1 Customer profile lookup
For efficiency, the profile lookup will refer to the locally maintained cache of
customer details as its first point of reference. If the details can be found
here, they are returned from the details found in the cache.

If no details are found in the cache, the local database is consulted to
determine the accounts held by the customer and a database lookup is
performed on one of the remote systems where an account is held by that
customer.

The local cache is updated from the details found.

9.2.2 Customer profile update
The update message received will be used to update all of the following:

• The local cache of customer details

• The customer details held on the checking account database

• The customer details held on the savings account database

An audit trail of activity is required for systems purposes, but no synchronous
response is required by the user from the update request.

9.3 Operational entities

The first logical step in developing the application is to get the supporting
structure in place. The databases that will be accessed by the application
need to be created, or if existing, defined to the operating system. Any tables
required should be in place. Any messages to be used as input or output
should also be defined.
184 User-to-Business Patterns with WebSphere Advanced and MQSI



9.3.1 Application databases and tables
Based on the application design, we know we will need a database local to
the broker to act as a cache and local lookup, plus the back-end databases.
The cache database will be a new database. The back-end databases are
assumed to be existing legacy databases, but for the purposes of testing, we
will create two new databases representing a checking and a savings
database.

9.3.1.1 Local (cache) database
A database local to the broker called “ITSOCUST” will hold the following table
definitions:

• ITSO_CUSTOMER, the local customer profile details repository (that is,
the “cache”).

Figure 79. ITSO_CUSTOMER table

• ITSO_CUSTOMER_ACCOUNTS, the local customer accounts repository
(that is, customer user ID-to-account type/number matching table) - see
Figure 80.
Chapter 9. Developing the MQSI application 185



Figure 80. ITSO_CUSTOMER_ACCOUNTS table

9.3.1.2 Savings accounts database
A remote back-end database will contain a table called ITSO_SAVINGS that
will contain the savings accounts information for each customer.

Figure 81. ITSO_SAVINGS table with test data

9.3.1.3 Checking account database
A remote back-end database will contain a table called ITSO_CHECKING
that will contain checking account information for each customer.
186 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 82. ITSO_CHECKING table with test data

9.3.2 Messages and documents
The WebSphere application will work with messages in the form of XML
documents. These must be agreed upon by the MQSI application
programmer and the WebSphere application programmer. Message formats
are defined for MQSI through the Control Center and stored in the message
repository. A DTD can be generated from the message definition to be
passed to the WebSphere application programmer. In our discussions, we will
use the DTDs as a common way to describe the messages used in our
application.

9.3.2.1 DTD for “customerrequest” XML document
The following DTD describes the customerrequest XML document used by
WebSphere and MQSI:

<!-- customerrequest.dtd -->
<!ELEMENT customerrequest (userid)>
<!ELEMENT userid (#PCDATA)>

9.3.2.2 DTD for “profilemessage” XML document.
The following DTD describes the profilemessage XML document used by
WebSphere and MQSI:

<!--profile.dtd -->
<!ELEMENT profilemessage (userid,custname,custaddr)>
<!ELEMENT userid (#PCDATA)>
Chapter 9. Developing the MQSI application 187



<!ELEMENT custname (namepref, forename, middlename, surname)>
<!ELEMENT namepref (#PCDATA)>
<!ELEMENT forename (#PCDATA)>
<!ELEMENT middlename (#PCDATA)>
<!ELEMENT surname (#PCDATA)>
<!ELEMENT custaddr (housenum, housename, street, district, city, state,
country, zip, telephone)>
<!ELEMENT housenum (#PCDATA)>
<!ELEMENT housename (#PCDATA)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT district (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT country (#PCDATA)>
<!ELEMENT zip (#PCDATA)>
<!ELEMENT telephone (#PCDATA)>

9.4 Identify the general operations

Next, we break down each of the application contract requirements into
component operations. From this, we will determine common operational
components, which may be transformations or operations.

9.4.1 Customer profile lookup operational components
The following operational components make up the customer profile lookup
contract.

• Receive the “customerrequest” message
• Find the profile in ITSO_CUSTOMER
• Find the customer accounts list from ITSO_CUSTOMER_ACCOUNTS
• Choose an account for reference
• Get the customer’s savings account information from ITSO_SAVINGS
• Get the customer’s checking account information in ITSO_CHECKING
• Update the profile in ITSO_CUSTOMER
• Create “profilemessage”
• Return “profilemessage” to application

Not all of these may be involved in any one invocation of the process.

9.4.2 Customer profile update operational components
The following operational components make up the customer profile update
contract.

• Receive the “profilemessage”
188 User-to-Business Patterns with WebSphere Advanced and MQSI



• Update customer profile in ITSO_CUSTOMER
• Find the list of customer accounts in ITSO_CUSTOMER_ACCOUNTS
• Update customer profile in ITSO_SAVINGS
• Update customer profile in ITSO_CHECKING
• Write to audit trail

9.5 Identify the operational components

Having defined general operations to be performed we can divide these into
functional components. This is done in order to decide which operations
should be developed as reusable components.

Even in the case of operations that are used only once in a given scenario, it
is a good idea to define the operation in a re-usable form.

9.5.1 Customer profile lookup functional components
The following functions will be required to look up a customer profile:

1. Use “customerrequest” to look up details in ITSO_CUSTOMER and create
“profilemessage”.

2. Use “customerrequest” to look up accounts in
ITSO_CUSTOMER_ACCOUNTS and pass the details on.

3. Transform details from “customerrequest” and row from ITSO_SAVINGS
to create “profilemessage”.

4. Transform details from “customerrequest” and row from ITSO_CHECKING
to create “profilemessage”.

We can see the above is left somewhat open-ended. The main questions are
concerned with how we take what we learn in (2) and use it in either (3) or (4).

9.5.1.1 DTD for “customeraccounts” XML document
New document types will be needed to enable the transformation operations
to be linked together. First, we define a new XML document type that will
combine the details from “customerrequest” and the result of the
ITSO_CUSTOMER_ACCOUNTS table lookup. We call this
“customeraccounts”, and the DTD looks like this:

<!--customeraccounts.dtd -->
<!ELEMENT customeraccounts (userid,account?)>
<!ELEMENT userid (#PCDATA)>
<!ELEMENT account (CUSTOMER, ACCTYPE, ACCOUNT)>
<!ELEMENT CUSTOMER (#PCDATA)>
<!ELEMENT ACCTYPE (#PCDATA)>
Chapter 9. Developing the MQSI application 189



<!ELEMENT ACCOUNT (#PCDATA)>

Note how the structure of the “account” element child elements precisely
match the columns found in the ITSO_CUSTOMER_ACCOUNT table.
“account” has been set up as an optional element (denoted by the ‘?’)
because we do not know how many accounts a customer will hold.

A further transformation will be required, to take the “customeraccounts”
document described above, examine the first child of the “account” element,
and based on the value of the “ACCTYPE” child element, create either a
“savings” document or a “checking” document.

9.5.1.2 DTD for “savings” XML document
We will need a new document type as input to functional component item 3 on
page 189. The new document type, called savings, combines the “userid” with
details we find on the ITSO_SAVINGS table for the customer.

<!-- savings.dtd -->
<!ELEMENT savings (userid,account?)>
<!ELEMENT userid (#PCDATA)>
<!ELEMENT account (NUMBER, TITLE, SURNAME, FORENAMES, HOUSENO, HOUSENAME,
STREET, DISTRICT, CITY, STATE, COUNTRY, ZIP, PHONENUM, BALANCE)>
<!ELEMENT NUMBER (#PCDATA)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT SURNAME (#PCDATA)>
<!ELEMENT FORENAMES (#PCDATA)>
<!ELEMENT HOUSENO (#PCDATA)>
<!ELEMENT HOUSENAME (#PCDATA)>
<!ELEMENT STREET (#PCDATA)>
<!ELEMENT DISTRICT (#PCDATA)>
<!ELEMENT CITY (#PCDATA)>
<!ELEMENT STATE (#PCDATA)>
<!ELEMENT COUNTRY (#PCDATA)>
<!ELEMENT ZIP (#PCDATA)>
<!ELEMENT PHONENUM (#PCDATA)>
<!ELEMENT BALANCE (#PCDATA)>

9.5.1.3 DTD for “checking” XML document
We will need a new document type as input to functional component item 4 on
page 189. The new document type, called checking, combines the “userid”
with details we find on the ITSO_CHECKING table for the customer.

<!-- checking.dtd -->
<!ELEMENT checking (userid,account?)>
<!ELEMENT userid (#PCDATA)>
190 User-to-Business Patterns with WebSphere Advanced and MQSI



<!ELEMENT account (NUMBER, NAME, ADDRESS1, ADDRESS2, ADDRESS3, ADDRESS4,
ADDRESS5, TELEPHONE, BALANCE)>
<!ELEMENT NUMBER (#PCDATA)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT ADDRESS1 (#PCDATA)>
<!ELEMENT ADDRESS2 (#PCDATA)>
<!ELEMENT ADDRESS3 (#PCDATA)>
<!ELEMENT ADDRESS4 (#PCDATA)>
<!ELEMENT ADDRESS5 (#PCDATA)>
<!ELEMENT TELEPHONE (#PCDATA)>
<!ELEMENT BALANCE (#PCDATA)>

9.5.2 Customer profile update functional components
Having defined the general operations for the profile update, we take this and
divide it into functional components. The profile update can be considered to
consist of the following functional steps, using intermediate document types
where necessary:

1. Retrieve the “profilemessage” document containing the updated profile
details.

2. Use the “profilemessage” document to update the customer details in
cache (table ITSO_CUSTOMER of database ITSOCUST).

3. Find the accounts for the customer.

4. Combine “profilemessage” and accounts into one document - call this
“profileaccounts”.

5. Loop through accounts and for each account create an “updatemessage”
containing the account and new profile.

6. Route the “updatemessage” to the correct database update function
according to account type.

7. Apply “updatemessage” to table ITSO_SAVINGS of database ITSOSAVI
where applicable.

8. Apply “updatemessage” to table ITSO_CHECKING of database
ITSOCHEC where applicable.

9. Do all in one coordinated transaction.

A few new entities have been born in this analysis. These are:

• The “profileaccounts” intermediate message - a proposed DTD that is
defined below.
Chapter 9. Developing the MQSI application 191



• An “updatemessage” intermediate document, which contains the account
identifier together with all the details from the original “profilemessage” -
again, the DTD is shown below.

• A looping mechanism that can count through a repeating “account”
element, creating an “updatemessage” for each instance found.

• A filter that can route “updatemessage“ documents based on target
account type.

The “profileaccounts” DTD will look like this:

<!-- profileaccounts.dtd -->
<!ELEMENT profileaccounts (profile,account?)>
<!ELEMENT profile (userid,custname,custaddr)>
<!ELEMENT userid (#PCDATA)>
<!ELEMENT custname (namepref, forename, middlename, surname)>
<!ELEMENT namepref (#PCDATA)>
<!ELEMENT forename (#PCDATA)>
<!ELEMENT middlename (#PCDATA)>
<!ELEMENT surname (#PCDATA)>
<!ELEMENT custaddr (housenum, housename, street, district, city, state,
country, zip, telephone)>
<!ELEMENT housenum (#PCDATA)>
<!ELEMENT housename (#PCDATA)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT district (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT country (#PCDATA)>
<!ELEMENT zip (#PCDATA)>
<!ELEMENT telephone (#PCDATA)>
<!ELEMENT account (CUSTOMER,ACCTYPE,ACCOUNT)>
<!ELEMENT CUSTOMER (#PCDATA)>
<!ELEMENT ACCTYPE (#PCDATA)>
<!ELEMENT ACCOUNT (#PCDATA)>

The “updatemessage” DTD will look like this - note the subtle difference that
the “account” element is not optional:

<!-- updatemessage.dtd -->
<!ELEMENT updatemessage (profile,account)>
<!ELEMENT profile (userid,custname,custaddr)>
<!ELEMENT userid (#PCDATA)>
<!ELEMENT custname (namepref, forename, middlename, surname)>
<!ELEMENT namepref (#PCDATA)>
<!ELEMENT forename (#PCDATA)>
192 User-to-Business Patterns with WebSphere Advanced and MQSI



<!ELEMENT middlename (#PCDATA)>
<!ELEMENT surname (#PCDATA)>
<!ELEMENT custaddr (housenum, housename, street, district, city, state,
country, zip, telephone)>
<!ELEMENT housenum (#PCDATA)>
<!ELEMENT housename (#PCDATA)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT district (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT country (#PCDATA)>
<!ELEMENT zip (#PCDATA)>
<!ELEMENT telephone (#PCDATA)>
<!ELEMENT account (CUSTOMER,ACCTYPE,ACCOUNT)>
<!ELEMENT CUSTOMER (#PCDATA)>
<!ELEMENT ACCTYPE (#PCDATA)>
<!ELEMENT ACCOUNT (#PCDATA)>

A loop construct will be required to take a document of type “profileaccounts”
and transform it into a set of “updatemessage” documents.

A router will examine the content of the “ACCTYPE” child element from the
“account” data element of the “updatemessage” document, and route it to the
correct subflow that updates the applicable account database table.

We now have all the necessary transformations defined. Now let’s start
building message flows.

9.6 Building the message flows

The development decisions are well under way and now it is time to start
building the MQSI message flows. The rest of this chapter shows how the
message flows were built for the WebBank application using the MQSI
Control Center.

9.6.1 Creating a message flow
To create a message flow, select the Message Flows tab of the MQSI
Control Center. In the left pane, right-click Message Flows and select Create
-> Message Flow.
Chapter 9. Developing the MQSI application 193



Figure 83. Building message flows with the Control Center

Message flows are built by dragging message flow nodes from the Message
Flow Types pane (the leftmost pane) to the Message Flow Definition pane
(the rightmost pane) and connecting the input/output terminals of the nodes
together.

It is possible to set up a connection between a given output terminal and the
input terminals of more than one node. In this way, one incoming message
can be made to cause more than one flow of events. For instance, a
message designed to carry a change of name and address details of a
customer could be connected to several subflows, each of which is designed
to update a different back-end system.

9.6.2 Organizing message flows
Since message flow development involves the development of message
flows as components, large sets of message flow components can result. It is
useful to organize message flows into categories. By creating a category,
message flow components can be organized into logical groups according to
their use.
194 User-to-Business Patterns with WebSphere Advanced and MQSI



We will be placing our message flows into the following categories:

• ITSO Deployable Message Flows
• ITSO Flow Control
• ITSO Database Operations
• ITSO Cache Operations
• ITSO Transformations

To create a message flow category, select the Message Flows tab in the
Control Center, right-click Message Flows and select Create -> Message
Flow Category. To create a new message flow within a category, simply
right-click the category folder and select Create -> Message Flow.

You will see these categories in the Message Flows pane (left pane) of the
Control Center as we build our message flows.

9.6.3 Message flow: “ITSO Cache Lookup: Profile from Request”
Figure 84 shows an outline of the message flow for the cache lookup.

Figure 84. The ITSO Cache Lookup: profile from update

The purpose of this message flow is to take a “customerrequest” message
and transform it into a “profilemessage” message, by looking up the customer
Chapter 9. Developing the MQSI application 195



details from the cache, in this case, the ITSO_CUSTOMER table of the
ITSOCUST database.

Input
Input is taken in via the InputTerminal Request in, in the form of a
“customerrequest” XML document.

Output
When an entry can be found in the cache, this message flow creates a
“profilemessage” XML document. The document is passed out through the
OutputTerminal node named Profile out.

When an entry is not found in the cache, the original “customerrequest”
message is passed intact, through the OutputTerminal named Request out.

9.6.3.1 Compute node: “Lookup Profile in Cache”

Figure 85. Compute node: Lookup Profile in Cache

This compute node contains the following ESQL:

DECLARE I INTEGER;
SET I = 1;
196 User-to-Business Patterns with WebSphere Advanced and MQSI



WHILE I < CARDINALITY(InputRoot.*[]) DO
SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;

END WHILE;
-- Enter SQL below this line. SQL above this line might be regenerated,
causing any modifications to be lost.
SET "OutputRoot"."XML".(XML.XmlDecl) = "InputBody".(XML.XmlDecl);
SET "OutputRoot"."XML".(XML.tag)"customerrequest"."userid" =
"InputBody".(XML.tag)"customerrequest"."userid";
SET "OutputRoot"."XML".(XML.tag)"customerrequest"."profilequeryresult"[] =
(
SELECT T.*
FROM Database.ITSO_CUSTOMER AS T
WHERE T.USERID = TRIM("InputBody".(XML.tag)"customerrequest"."userid")

);

In creating the output document, the ESQL

• Copies the message headers (the section before the comment line)

• Copies the XML document header

• Copies the “userid” element

• Adds a new data element document called “profilequeryresult”. This is
populated with the elements retrieved from a query against the database.
The query retrieves all details from the ITSO_CUSTOMER_ACCOUNTS
table for the incoming “userid”.

The result is passed to the out terminal of the node which is connected to the
in terminal of the Was Profile in Cache? node.

All internal failure conditions are wired to an OutputTerminal labelled failure.
Chapter 9. Developing the MQSI application 197



9.6.3.2 Filter node: “Was Profile In Cache?”

Figure 86. Filter node - Was Profile In Cache

This filter node evaluates the expression shown in the above figure.

If the query against ITSO_CUSTOMER_ACCOUNTS has found data,
“profilequeryresult“ will not be null and the expression evaluates to true. If no
data is found, the false condition is met.

On false, the original message is propogated to the OutputTerminal named
Request out.

On true, the transformed message is passed to the in terminal of the Create
Profile Message node.

All internal failure conditions are wired to an OutputTerminal labelled failure.

9.6.3.3 Compute node: “Create Profile Message”
This compute node contains the following ESQL transformation code:

DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;

END WHILE;
-- Enter SQL below this line. SQL above this line might be regenerated,
causing any modifications to be lost.
198 User-to-Business Patterns with WebSphere Advanced and MQSI



SET "OutputRoot"."XML".(XML.XmlDecl) = "InputBody".(XML.XmlDecl);
SET "OutputRoot"."XML".(XML.tag)"profilemessage"."userid" =
"InputBody".(XML.tag)"customerrequest"."userid";
SET "OutputRoot"."XML".(XML.tag)"profilemessage"."custname" = THE
(
SELECT
TRIM(T."TITLE") AS "namepref",
TRIM(T."FORENAME") AS "forename",
TRIM(T."MIDNAME") AS "middlename",
TRIM(T."SURNAME") AS "surname"
FROM InputBody.(XML.tag)"customerrequest"."profilequeryresult" AS T
);
SET "OutputRoot"."XML".(XML.tag)"profilemessage"."custaddr" = THE
(
SELECT
TRIM(T."HOUSENO") AS "housenum",
TRIM(T."HOUSENAME") AS "housename",
TRIM(T."STREET") AS "street",
TRIM(T."DISTRICT") AS "district",
TRIM(T."CITY") AS "city",
TRIM(T."STATE") AS "state",
TRIM(T."COUNTRY") AS "country",
TRIM(T."ZIP") AS "zip",
TRIM(T."TELEPHONE") AS "telephone"
FROM InputBody.(XML.tag)"customerrequest"."profilequeryresult" AS T
);

This is a straightforward message transformation compute node that uses
ESQL to compile an output XML message of document type “profilemessage”
from the input XML message of document type “customerrequest“.

You will see from the complete ESQL properties content included here that
two distinct SELECT operations are used to populate the output data
elements “custname” and “custaddr” from the content of “profilequeryresult”
that was loaded by the database lookup performed in the Lookup Profile in
Cache node.

This technique is described in greater detail in 7.4.3.2, “Using ESQL for
message transformation” on page 123.

On successful transformation, the “profilemessage” document is routed to the
OutputTerminal named Profile out.

All internal failure conditions are wired to an OutputTerminal labelled failure.
Chapter 9. Developing the MQSI application 199



9.6.4 Message flow: “ITSO Cache Update: from Profile”
The purpose of this message flow is to take an XML document of type
“profilemessage” as input and, based on its contents, update the details held
in the table ITSO_CUSTOMER of database ITSOCUST.

This may involve adding a new row to the table if one does not already exist
for the customer, or updating the existing row if a row already exists for the
customer. Figure 87 shows the message flow.

Figure 87. ITSO Cache Update: from Profile

Input
Input is taken via the InputTerminal Profile in, in the form of a
“profilemessage” XML document.

Output
This message flow passes the document unchanged through Profile out.
200 User-to-Business Patterns with WebSphere Advanced and MQSI



9.6.4.1 Filter node: “Profile in Cache?”

Figure 88. Profile in Cache? node

This filter node involves a database select as part of its expression. The
“userid” from the incoming message is used as the search criterion against
the ITSO_CUSTOMER table of the ITSOCUST database. If data is found
matching the “userid”, the select operation evaluates to “not null”, and so the
Filter expression evaluates true. If no row is found, the expression evaluates
false.

In the true condition, the message is routed to the in terminal of the Update
Cache database node. In the false condition, the message is routed to the in
terminal of the Add to Cache database node.
Chapter 9. Developing the MQSI application 201



9.6.4.2 Database node: “Add to Cache”

Figure 89. Add to Cache

This database node takes a “profilemessage” document as input and uses its
contents to add a new entry to the ITSO_CUSTOMER table of the ITSOCUST
database.

The ESQL that performs this transformation is detailed here:

INSERT INTO Database.ITSO_CUSTOMER (
USERID,
TITLE,
SURNAME,
FORENAME,
MIDNAME,
HOUSENO,
HOUSENAME,
STREET,
DISTRICT,
CITY,
STATE,
COUNTRY,
ZIP,
TELEPHONE

) VALUES (
"Body".(XML.tag)"profilemessage"."userid",
"Body".(XML.tag)"profilemessage"."custname"."namepref",
"Body".(XML.tag)"profilemessage"."custname"."surname",
"Body".(XML.tag)"profilemessage"."custname"."forename",
"Body".(XML.tag)"profilemessage"."custname"."middlename",
202 User-to-Business Patterns with WebSphere Advanced and MQSI



"Body".(XML.tag)"profilemessage"."custaddr"."housenum",
"Body".(XML.tag)"profilemessage"."custaddr"."housename",
"Body".(XML.tag)"profilemessage"."custaddr"."street",
"Body".(XML.tag)"profilemessage"."custaddr"."district",
"Body".(XML.tag)"profilemessage"."custaddr"."city",
"Body".(XML.tag)"profilemessage"."custaddr"."state",
"Body".(XML.tag)"profilemessage"."custaddr"."country",
"Body".(XML.tag)"profilemessage"."custaddr"."zip",
"Body".(XML.tag)"profilemessage"."custaddr"."telephone"

);

9.6.4.3 Database node: “Update Cache”

Figure 90. Update Cache

This database node takes a “profilemessage” document as input and uses its
contents to update the matching entry to the ITSO_CUSTOMER table of the
ITSOCUST database.

The ESQL that performs this transformation is detailed here:

UPDATE Database.ITSO_CUSTOMER AS T
SET
TITLE = "Body".(XML.tag)"profilemessage"."custname"."namepref",
SURNAME = "Body".(XML.tag)"profilemessage"."custname"."surname",
FORENAME = "Body".(XML.tag)"profilemessage"."custname"."forename",
MIDNAME = "Body".(XML.tag)"profilemessage"."custname"."middlename",
HOUSENO = "Body".(XML.tag)"profilemessage"."custaddr"."housenum",
HOUSENAME = "Body".(XML.tag)"profilemessage"."custaddr"."housename",
STREET = "Body".(XML.tag)"profilemessage"."custaddr"."street",
DISTRICT = "Body".(XML.tag)"profilemessage"."custaddr"."district",
Chapter 9. Developing the MQSI application 203



CITY = "Body".(XML.tag)"profilemessage"."custaddr"."city",
STATE = "Body".(XML.tag)"profilemessage"."custaddr"."state",
COUNTRY = "Body".(XML.tag)"profilemessage"."custaddr"."country",
ZIP = "Body".(XML.tag)"profilemessage"."custaddr"."zip",
TELEPHONE = "Body".(XML.tag)"profilemessage"."custaddr"."telephone"

WHERE T."USERID" = "Body".(XML.tag)"profilemessage"."userid";

9.6.5 Message flow: “ITSO Accounts from Request”
The purpose of this message flow is to take an input document of type
“customerrequest” and look up all account number details held for that
customer from the ITSO_CUSTOMER_ACCOUNTS table. It uses the result
of this query to create a document of type “customeraccounts” as output.

Figure 91 shows an outline of the message flow.

Figure 91. ITSO Accounts from Request

Input
Input is taken via the InputTerminal Request in, in the form of a
“customerrequest” document.
204 User-to-Business Patterns with WebSphere Advanced and MQSI



Output
This message flow creates a “customeraccounts“ document. The document is
passed out through the OutputTerminal node named Accounts out.

The failure terminal of the internal compute node is wired to a similarly named
OutputTerminal, to allow propagation of the failure condition when required.

9.6.5.1 Compute node: “Lookup Accounts”

Figure 92. Compute node: Lookup Accounts

Here we see a transformation compute node that uses table
ITSO_CUSTOMER_ACCOUNTS from database ITSOCUST as a data
source.

The ESQL behind this compute node is shown here:

DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;

END WHILE;
-- Enter SQL below this line. SQL above this line might be regenerated,
causing any modifications to be lost.
SET "OutputRoot"."XML".(XML.XmlDecl) = "InputBody".(XML.XmlDecl);
Chapter 9. Developing the MQSI application 205



SET "OutputRoot"."XML".(XML.tag)"customeraccounts"."userid" =
"InputBody".(XML.tag)"customerrequest"."userid";
SET "OutputRoot"."XML".(XML.tag)"customeraccounts"."account"[] =
(
SELECT T.*
FROM Database.ITSO_CUSTOMER_ACCOUNTS AS T
WHERE T.CUSTOMER = "InputBody".(XML.tag)"customerrequest"."userid"

);

The ESQL creates a new XML document of type “customeraccounts”. To the
“customeraccounts” data element, the ESQL adds:

• The “userid” data element taken from the input “customerrequest”
document

• A new repeating element called “account”, which is in turn populated by a
query to retrieve all rows from ITSO_CUSTOMER_ACCOUNTS matching
the input “userid”.

The transformed message is routed to the OutputTerminal named Accounts
out.

9.6.6 Message flow: “ITSO First Account From Accounts”
The purpose of this message flow is to take an input document of type
“customeraccounts” and select the first ocurrence of its “account” data
element. The flow will examine the value of the “ACCTYPE” child element
from this occurrence and based on the value found look up the account
details from one or other of the ITSO_SAVINGS or ITSO_CHECKING tables.
According to the route taken at this decision point, the output will either be a
“checking” document at the Checking out OutputTerminal or a “savings”
document at the Savings out OutputTerminal.

Figure 93 shows the message flow.
206 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 93. ITSO First Account from Accounts

Input
Input is taken via the InputTerminal Accounts in, in the form of a
“customeraccounts” document.

Output
If the first account is a savings account, the output via the Savings out
terminal is a “savings” document.

If the first account is a checking account, the output via the Checking out
terminal is a “checking” document.
Chapter 9. Developing the MQSI application 207



9.6.6.1 Filter node: “Is Account Savings?”

Figure 94. Is Account Savings?

This node examines the “ACCTYPE“ child element from the first “account”
element of the incoming “customeraccounts” message. If the value is “S” this
is a savings account and the filter node propagates the incoming message to
its true terminal, sending it on to the Lookup Savings node. If not, the
incoming message is sent to the Is Account Checking node.
208 User-to-Business Patterns with WebSphere Advanced and MQSI



9.6.6.2 Compute node: “Lookup Savings”

Figure 95. Compute node: Lookup Savings

The transformation ESQL behind this node is as follows:

DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;

END WHILE;
-- Enter SQL below this line. SQL above this line might be regenerated,
causing any modifications to be lost.
SET OutputRoot."XML".(XML.XmlDecl) = "InputBody".(XML.XmlDecl);
SET OutputRoot."XML".(XML.tag)"savings"."customer" =
InputBody.(XML.tag)"customeraccounts"."userid";
SET OutputRoot."XML".(XML.tag)"savings"."account" =
THE (
SELECT T.*
FROM "Database"."ITSO_SAVINGS" AS T
WHERE T."NUMBER" =

"InputBody".(XML.tag)"customeraccounts"."account"[1]."ACCOUNT"
);
Chapter 9. Developing the MQSI application 209



The ESQL code creates a new output XML document of type “savings”, into
which it adds the following:

• The incoming “userid” value, to a new element name of “customer”.

• The result of a database query that selects the row from ITSO_SAVINGS
for the account number matching the “ACCOUNT” child element from the
first “account” element of the input “customeraccounts” document.

The transformed message is sent to the OutputTerminal named Savings out.

9.6.6.3 Filter node: “Is Account Checking?”

Figure 96. Is Account Checking?

This node examines the “ACCTYPE“ child element from the first “account”
element of the incoming “customeraccounts” message. If the value is “C”, this
is a checking account, and the filter node propagates the incoming message
to its true terminal, sending it on to the Lookup Checking node.
210 User-to-Business Patterns with WebSphere Advanced and MQSI



9.6.6.4 Compute node: “Lookup Checking”

Figure 97. Compute node: Lookup Checking

The transformation ESQL behind this node is as follows:

DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;

END WHILE;
-- Enter SQL below this line. SQL above this line might be regenerated,
causing any modifications to be lost.
SET OutputRoot."XML".(XML.XmlDecl) = "InputBody".(XML.XmlDecl);
SET OutputRoot."XML".(XML.tag)"checking"."customer" =
InputBody.(XML.tag)"customeraccounts"."userid";
SET OutputRoot."XML".(XML.tag)"checking"."account" =
THE (
SELECT T.*
FROM "Database"."ITSO_CHECKING" AS T
WHERE T."NUMBER" =

"InputBody".(XML.tag)"customeraccounts"."account"[1]."ACCOUNT"
);

The ESQL code creates a new output XML document of type “checking”, into
which it adds:
Chapter 9. Developing the MQSI application 211



• The incoming “userid” value, to a new element name of “customer”.

• The result of a database query that selects the row from
ITSO_CHECKING for the account number matching the “ACCOUNT” child
element from the first “account” element of the input “customeraccounts”
document.

The transformed message is sent to the OutputTerminal named Checking out.

9.6.7 Message flow: “ITSO Profile from Savings”
The purpose of this message flow is to take an input document of type
“savings” and use this to create a document of type “profilemessage”. The
following figure shows an outline of the message flow.

Input
Input is taken via the InputTerminal Savings in, in the form of a “savings”
document.

Output
Output via the Profile out terminal is a “profilemessage” document.
212 User-to-Business Patterns with WebSphere Advanced and MQSI



9.6.7.1 Compute node: Transform Savings to Profile
This is a straightforward message transformation compute node that uses
ESQL to compile an output XML message of document type “profilemessage”
from the input XML message of document type “savings“.

DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;

END WHILE;
-- Enter SQL below this line. SQL above this line might be regenerated,
causing any modifications to be lost.
SET "OutputRoot"."XML".(XML.XmlDecl) = "InputBody".(XML.XmlDecl);
SET "OutputRoot"."XML".(XML.tag)"profilemessage"."userid" =
"InputBody".(XML.tag)"savings"."customer";
SET "OutputRoot"."XML".(XML.tag)"profilemessage"."custname" =
THE (
SELECT
TRIM(T."TITLE") AS "namepref",
TRIM(T."FORENAMES") AS "forename",
'' AS "middlename",
TRIM(T."SURNAME") AS "surname"
FROM InputBody.(XML.tag)"savings"."account" AS T
);
SET "OutputRoot"."XML".(XML.tag)"profilemessage"."custaddr" =
THE (
SELECT
TRIM(T."HOUSENO") AS "housenum",
TRIM(T."HOUSENAME") AS "housename",
TRIM(T."STREET") AS "street",
TRIM(T."DISTRICT") AS "district",
TRIM(T."CITY") AS "city",
TRIM(T."STATE") AS "state",
TRIM(T."COUNTRY") AS "country",
TRIM(T."ZIP") AS "zip",
TRIM(T."TELEPHONE") AS "telephone"
FROM InputBody.(XML.tag)"savings"."account" AS T
);

You will see from the complete ESQL properties content included here that
two distinct SELECT operations are used to populate the output data
elements “custname” and “custaddr” from the content of “savings” that was
loaded by the database lookup performed in the earlier compute node
described in 9.6.6.2, “Compute node: “Lookup Savings”” on page 209.
Chapter 9. Developing the MQSI application 213



This technique is described in greater depth in 7.4.3.2, “Using ESQL for
message transformation” on page 123.

On successful transformation, the “profilemessage” document is routed to the
OutputTerminal named Profile out.

All internal failure conditions are wired to a new OutputTerminal labelled
failure.

9.6.8 Message flow: “ITSO Profile from Checking”
The purpose of this message flow is to take an input document of type
“checking” and use this to create a document of type “profilemessage”. The
following figure shows an outline of the message flow.

Figure 98. ITSO Profile from Checking

Input
Input is taken via the InputTerminal Checking in, in the form of a “checking”
document.

Output
Output via the Profile out terminal is a “profilemessage” document.
214 User-to-Business Patterns with WebSphere Advanced and MQSI



9.6.8.1 Compute node: “Transform Checking to Profile”
This is a more involved transformation node controlled by ESQL, detailed
here:

DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;

END WHILE;
-- Enter SQL below this line. SQL above this line might be regenerated,
causing any modifications to be lost.
SET "OutputRoot"."XML".(XML.XmlDecl) = "InputBody".(XML.XmlDecl);
SET "OutputRoot"."XML".(XML.tag)"profilemessage"."userid" =
"InputBody".(XML.tag)"checking"."customer";

DECLARE Pos INT;
DECLARE Len INT;
DECLARE NameField CHAR;
DECLARE NamePart CHAR;
DECLARE HouseThing CHAR;

/**
* this code parses the name field
*/
SET "OutputRoot"."XML".(XML.tag)"profilemessage"."custname"."namepref" =
'';

SET NameField = TRIM(InputBody.(XML.tag)"checking"."account"."NAME");

SET Pos = POSITION(' ' IN NameField);
SET Len = LENGTH(NameField);
IF Pos > 0 THEN
SET "OutputRoot"."XML".(XML.tag)"profilemessage"."custname"."forename" =

SUBSTRING(NameField FROM 1 FOR (Pos - 1));
SET NameField = SUBSTRING(NameField FROM (Pos + 1) FOR (Len - Pos));
SET Pos = POSITION(' ' IN NameField);
SET Len = LENGTH(NameField);
IF Pos > 0 THEN
SET

"OutputRoot"."XML".(XML.tag)"profilemessage"."custname"."middlename" =
SUBSTRING(NameField FROM 1 FOR (Pos - 1));

SET NameField = SUBSTRING(NameField FROM (Pos + 1) FOR (Len - Pos));
SET Pos = POSITION(' ' IN NameField);
SET Len = LENGTH(NameField);

END IF;
END IF;
Chapter 9. Developing the MQSI application 215



SET "OutputRoot"."XML".(XML.tag)"profilemessage"."custname"."surname" =
NameField;

/**
* this code parses the first line of the address
* if there is a comma, the substring is used either as a "housenum" or
"housename" based on its length
**/
SET Pos = POSITION(',' IN
InputBody.(XML.tag)"checking"."account"."ADDRESS1");
SET Len = LENGTH(InputBody.(XML.tag)"checking"."account"."ADDRESS1");
IF Pos > 0 THEN
SET HouseThing =
SUBSTRING(InputBody.(XML.tag)"checking"."account"."ADDRESS1"
FROM 1 FOR (Pos - 1)

);
IF LENGTH(HouseThing) <= 6 THEN
SET "OutputRoot"."XML".(XML.tag)"profilemessage"."custaddr"."housenum"

= HouseThing;
SET "OutputRoot"."XML".(XML.tag)"profilemessage"."custaddr"."housename"

= '';
ELSE
SET "OutputRoot"."XML".(XML.tag)"profilemessage"."custaddr"."housenum"

= '';
SET "OutputRoot"."XML".(XML.tag)"profilemessage"."custaddr"."housename"

= HouseThing;
END IF;

END IF;
SET "OutputRoot"."XML".(XML.tag)"profilemessage"."custaddr"."street" =
TRIM(
SUBSTRING(
InputBody.(XML.tag)"checking"."account"."ADDRESS1"
FROM (Pos + 1) FOR (Len - Pos)
)
);

/**
* this code populates the remainder of the address fields
**/
SET "OutputRoot"."XML".(XML.tag)"profilemessage"."custaddr" =
THE (
SELECT
TRIM(T."ADDRESS2") AS "district",
TRIM(T."ADDRESS3") AS "city",
TRIM(T."ADDRESS4") AS "state",
TRIM(T."ADDRESS5") AS "country",
'' AS "zip",
216 User-to-Business Patterns with WebSphere Advanced and MQSI



TRIM(T."TELEPHONE") AS "telephone"
FROM InputBody.(XML.tag)"checking"."account" AS T
);

This compute node uses ESQL to compile an output message of document
type “profilemessage” from the input message of document type “checking“.

You will see from the complete ESQL properties content included here that
some complex code is used to populate the output data elements “custname”
and “custaddr” from the content of “checking” that was loaded by the
database lookup performed in the earlier compute node described in 9.6.6.4,
“Compute node: “Lookup Checking”” on page 211.

You will observe the use of the DECLARE function to create internal variables
that are used to help manage the transformation logic.

The SUBSTRING, POSITION and LENGTH functions are used to facilitate
string manipulation.

The TRIM function is used to remove leading and trailing spaces from strings.

On successful transformation, the “profilemessage” document is routed to the
OutputTerminal named Profile out.

All internal failure conditions are wired to a new OutputTerminal labelled
failure.
Chapter 9. Developing the MQSI application 217



9.6.9 Message flow: “ITSO Profile: add Accounts”

Figure 99. ITSO Profile: add Accounts

Input
At the Profile in InputTerminal, the flow will receive a “profilemessage”
document.

Output
At the Profile w/accounts out OutputTerminal, the flow will output a
“profileaccounts” document.
218 User-to-Business Patterns with WebSphere Advanced and MQSI



9.6.9.1 Compute node: “add Accounts”

Figure 100. add Accounts

This node performs a database lookup of the
ITSO_CUSTOMER_ACCOUNTS table of the ITSOCUST database, based on
the “userid” element of the input “profilemessage”. The ESQL code that
performs the full operation is as follows:

DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;

END WHILE;
-- Enter SQL below this line. SQL above this line might be regenerated,
causing any modifications to be lost.
SET "OutputRoot"."XML".(XML.XmlDecl) = "InputBody".(XML.XmlDecl);
SET OutputRoot."XML".(XML.tag)"profileaccounts"."profile" =
InputBody.(XML.tag)"profilemessage";
SET OutputRoot."XML".(XML.tag)"profileaccounts"."account"[] =
(
SELECT T.*
FROM Database.ITSO_CUSTOMER_ACCOUNTS AS T
WHERE T.CUSTOMER = "InputBody".(XML.tag)"profilemessage"."userid"

);
Chapter 9. Developing the MQSI application 219



Here you can see the output “profileaccounts” document comprises the input
“profilemessage” document as its “profile” element, and a repeating element
named “account” is used to hold the result of the database query.

9.6.10 Message flow: “ITSO Looper”

Figure 101. ITSO Looper

Input
ITSO Looper is a re-usable message flow that is designed for general re-use.

It is comprised of:

• A compute node called Initialise Loop that can be configured at re-use
time to set the loop initialization code.

• A filter node called Test Loop Condition which may be configured at re-use
time. The condition described here governs whether control will reiterate
or cease.

• A compute node that performs the operation that takes place on loop
iteration. The node is perhaps wrongly named Loop Incrementor, since
this makes the coarse assumption that all loops are controlled using
220 User-to-Business Patterns with WebSphere Advanced and MQSI



counters that are incremented. The code that controls the actions in a loop
iteration can be configured at message flow re-use time.

The method used to make the ITSO Looper message flow node configurable
at re-use time is described in 7.4.6.1, “Using property promotion in message
flow nodes” on page 137.

9.6.11 Message flow: “ITSO Updates from Profile w/accounts”

Figure 102. ITSO Updates from Profile w/accounts

Input
At the Profile w/accounts in InputTerminal, this message flow receives a
“profileaccounts” document.

Output
This message flow is designed to send to the Update out OutputTerminal
node one or many “updatemessage” documents.

9.6.11.1 Message Flow node: “Account Count”
This is an instance of the ITSO Looper Message Flow node. It has been
configured to loop so that a copy of the input “profileaccounts“ message is
Chapter 9. Developing the MQSI application 221



repeatedly sent as output with an added index value incremented in each
instance to make it unique.

The configuration options available are shown in detail here:

Figure 103. Account Count (ITSO Looper) configuration

9.6.11.2 Compute node: “Create Update”
This node makes the simple XML document transformation from
“profileaccounts” to “updatemessage”, by selecting the required instance of
the repeating “account” element from input, to become the fixed and singular
“account” element in the output message.

The ESQL code that controls this transformation is detailed below

DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;

END WHILE;
-- Enter SQL below this line. SQL above this line might be regenerated,
causing any modifications to be lost.
SET "OutputRoot"."XML".(XML.XmlDecl) = "InputBody".(XML.XmlDecl);
SET "OutputRoot"."XML".(XML.tag)"updatemessage"."profile" =
InputBody.(XML.tag)"profileaccounts"."profile";
SET "OutputRoot"."XML".(XML.tag)"updatemessage"."account" =
InputBody.(XML.tag)"profileaccounts"."account"[CAST(InputBody.(XML.tag)"Lo
op"."Index" AS INT)];
222 User-to-Business Patterns with WebSphere Advanced and MQSI



9.6.12 Message flow: “ITSO Update Router”

Figure 104. ITSO Updates Router

Input
Input is taken via the InputTerminal Update in, in the form of an
“updatemessage” document.

Output
This node simply routes the message to either Update out - Checking or
Update out - Savings based on the operation of the filter nodes described
below.

9.6.12.1 Filter node: “Savings?”
This node evaluates the following expression:

Body.(XML.tag)"updatemessage"."account"."ACCTYPE" = 'S'

When this expression evaluates to true, the update is routed to the Update
out Savings OutputTerminal.

When this expression evaluates to false, the update is routed to the next filter
node.
Chapter 9. Developing the MQSI application 223



9.6.12.2 Filter node: “Checking?”
This filter node evaluates the following expression:

Body.(XML.tag)"updatemessage"."account"."ACCTYPE" = 'C'

When this expression evaluates to true, the update is routed to the Update
out Checking OutputTerminal.

9.6.13 Message flow: “ITSO Update Savings: from Update”

Figure 105. ITSO Update Savings from Update

Input
Input is taken in through Update in, in the form of an “updatemessage”
document.

Output
This node routes the same message to the OutputTerminal node Update out.

9.6.13.1 Database node: “Update Savings”
This database node takes the incoming “updatemessage” and executes
ESQL to update the ITSO_SAVINGS table of the ITSOSAVI database based
on the content of the input document.
224 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 106. Update Savings from Update

The full ESQL behind this process is listed here:

UPDATE Database.ITSO_SAVINGS AS T
SET
TITLE = "Body".(XML.tag)"updatemessage"."profile"."custname"."namepref",
SURNAME = "Body".(XML.tag)"updatemessage"."profile"."custname"."surname",
FORENAMES = SUBSTRING(

"Body".(XML.tag)"updatemessage"."profile"."custname"."forename"
|| ' ' ||

"Body".(XML.tag)"updatemessage"."profile"."custname"."middlename"
FROM 1 FOR 20),

HOUSENO =
"Body".(XML.tag)"updatemessage"."profile"."custaddr"."housenum",
HOUSENAME =

"Body".(XML.tag)"updatemessage"."profile"."custaddr"."housename",
STREET = "Body".(XML.tag)"updatemessage"."profile"."custaddr"."street",
DISTRICT =

"Body".(XML.tag)"updatemessage"."profile"."custaddr"."district",
CITY = "Body".(XML.tag)"updatemessage"."profile"."custaddr"."city",
STATE = "Body".(XML.tag)"updatemessage"."profile"."custaddr"."state",
ZIP = "Body".(XML.tag)"updatemessage"."profile"."custaddr"."zip",
PHONENUM =

"Body".(XML.tag)"updatemessage"."profile"."custaddr"."telephone"
WHERE T."NUMBER" = "Body".(XML.tag)"updatemessage"."account"."ACCOUNT";
Chapter 9. Developing the MQSI application 225



9.6.14 Message flow: “ITSO Update Checking: from Update”

Figure 107. ITSO Update Checking from Update

Input
Input is taken via the InputTerminal Update in, in the form of an
“updatemessage” document.

Output
This node routes the same message to the OutputTerminal node Update out .

9.6.14.1 Database node: “Update Checking”
This database node takes the incoming “updatemessage” and executes
ESQL to update the ITSO_CHECKING table of the ITSOCHEC database
based on the content of the input document.
226 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 108. Update Checking from Update

The full ESQL behind this operation is shown here:

UPDATE Database.ITSO_CHECKING AS T
SET
NAME = SUBSTRING(

"Body".(XML.tag)"updatemessage"."profile"."custname"."forename" ||
' ' ||

"Body".(XML.tag)"updatemessage"."profile"."custname"."middlename"
|| ' ' ||

"Body".(XML.tag)"updatemessage"."profile"."custname"."surname"
FROM 1 FOR 40),

ADDRESS1 = SUBSTRING(
"Body".(XML.tag)"updatemessage"."profile"."custaddr"."housename"

||
"Body".(XML.tag)"updatemessage"."profile"."custaddr"."housenum" || ', '

||
"Body".(XML.tag)"updatemessage"."profile"."custaddr"."street"

FROM 1 FOR 40),
ADDRESS2 =

"Body".(XML.tag)"updatemessage"."profile"."custaddr"."district",
ADDRESS3 = "Body".(XML.tag)"updatemessage"."profile"."custaddr"."city",
ADDRESS4 = "Body".(XML.tag)"updatemessage"."profile"."custaddr"."state",
ADDRESS5 = "Body".(XML.tag)"updatemessage"."profile"."custaddr"."zip",
TELEPHONE =

"Body".(XML.tag)"updatemessage"."profile"."custaddr"."telephone"
WHERE T."NUMBER" = "Body".(XML.tag)"updatemessage"."account"."ACCOUNT";
Chapter 9. Developing the MQSI application 227



9.7 Piecing together the lookup components

We have created the basic message flow components needed to perform the
customer profile lookup functions. Each of these message flows has been
saved as a message flow node, allowing us to re-use these flows and
combine them into larger flows.

9.7.1 Customer profile lookup
In this section, we will describe how the component message flows just
described are put together to form the deployable message flow named ITSO
Profile Lookup. This message flow will perform the tasks of the customer
profile lookup portion of the application, defined in 9.1, “The contract with
WebSphere” on page 183.

This message flow will receive an XML message of document type
“customerrequest”. From this document, it will examine the local cache of
customer details to see if an entry exists. If one exists, this entry is used to
construct a “profilemessage” XML document that is returned to the specified
reply queue. If there is no matching entry in the local cache, the message
flow will determine the accounts the customer holds on remote systems, pick
one of these accounts, and look up the customer details on the applicable
system. From the account details retrieved from the remote system, a
“profilemessage” is constructed that is used to update the local cache, before
being sent to the specified reply queue.

The following figure shows an outline of the complete message flow.
228 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 109. ITSO Profile Lookup

Input
Input is taken in the form of a “customerrequest” document. The Profile
Request node is an MQInput node. It defines the MQSeries queue it will use
to receive the input message.

Output
This message flow creates an XML “profilemessage” document.

9.7.1.1 Message flow node: “Get Profile from Cache”
This is a message flow node of the type documented in 9.6.3, “Message flow:
“ITSO Cache Lookup: Profile from Request”” on page 195.

The “userid” element from the input “customerrequest” XML document is
used to look up the customer details in the cache. If these are found, a
“profilemessage” XML document is built from the findings and passed to the
SET XML DOCTYPE compute node detailed below. If no details are found,
the original “customerrequest” message is sent to the Lookup Accounts node.
Chapter 9. Developing the MQSI application 229



9.7.1.2 Message Flow node: “Lookup Accounts”
This is a message flow node of the type documented in 9.6.5, “Message flow:
“ITSO Accounts from Request”” on page 204.

The “userid” data element from the input “customerrequest” message is used
to look up details of accounts held by this customer. These details are
transformed into a “customeraccounts” XML document and passed to the
Identify First Account message flow node.

9.7.1.3 Message Flow node: “Identify First Account”
This is a message flow node of the type documented in 9.6.6, “Message flow:
“ITSO First Account From Accounts”” on page 206.

The first account in the list stored in the “customeraccounts” XML document
is selected. Based on its account type, this node creates either a “savings”
document, which is sent to the Derive Profile from Savings message flow
node, or a “checking” document, which is sent to the Derive Profile from
Checking message flow node.

9.7.1.4 Message flow node: “Derive Profile from Checking”
This is a message flow node of the type documented in 9.6.8, “Message flow:
“ITSO Profile from Checking”” on page 214.

This takes the “checking” document and transforms this into a generic
“profilemessage”, which is passed on to the Set XML DOCTYPE compute
node detailed below.

9.7.1.5 Message flow node: “Derive Profile from Savings”
This is a message flow node of the type documented in 9.6.7, “Message flow:
“ITSO Profile from Savings”” on page 212.

This takes the “savings” document and transforms this into a generic
“profilemessage”, which is passed on to the Set XML DOCTYPE compute
node detailed below.

9.7.1.6 Compute node: “Set XML DOCTYPE”
This is a straightforward compute node that processes the following ESQL:

SET OutputRoot = InputRoot;
-- Enter SQL below this line. SQL above this line might be regenerated,
causing any modifications to be lost.
SET OutputRoot.XML.(XML.DocTypeDecl)profilemessage='';
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.SystemId)='profilemessage.dtd';
230 User-to-Business Patterns with WebSphere Advanced and MQSI



The code is designed to add the DOCTYPE descriptor to the XML document,
for the benefit of the application.

9.7.1.7 Message flow node: “Update Cache”
This is a message flow node of the type documented in 9.6.4, “Message flow:
“ITSO Cache Update: from Profile”” on page 200.

The “profilemessage” document is used to perform a database update to the
locally held cache of customer details.

9.7.1.8 Reset Content Descriptor node: “Enable JMS”
The Reset Content Descriptor node adds message definition attributes in the
MQRFH2 message header. This usage of the node creates the header
necessary to be compatible with the JMS receive operation.

The settings are detailed in the figure below.

Figure 110. Enable JMS

9.7.1.9 MQReply node: “Send Reply”
The MQReply message takes the message received at its in terminal (in our
case a “profilemessage” document) and puts it on the reply-to queue defined
in the original message header.

9.7.2 Customer profile update
In this section, we describe how the component message flows described in
9.7.2, “Customer profile update” on page 231 are put together to form the
deployable message flow named ITSO Profile Update. This message flow will
Chapter 9. Developing the MQSI application 231



perform the tasks defined for the customer profile update portion of the
application, defined in 9.1, “The contract with WebSphere” on page 183.

This message flow will receive an XML message of document type
“profilemessage”. It saves these details in the locally held cache. It also
performs a database lookup to determine the number of accounts held for
that customer. When this list is obtained, it works through the list, generating
individual update documents for each account. These are routed to the
correct node for their processing. The whole operation takes place as a single
unit of work.

The full message flow is shown in the figure below.

Figure 111. ITSO Profile Update

Input
Input is taken in the form of a “profilemessage” document.

Output
This message flow creates a number of messages that are finally used for
database updates to ITSO_CUSTOMER, ITSO_SAVINGS and
ITSO_CHECKING. These are nominally routed to a named output queue
used as input to an audit trail. This feature has not been implemented in the
sample.
232 User-to-Business Patterns with WebSphere Advanced and MQSI



9.7.2.1 Message flow node: “Update Cache”
This is an instance of the message flow node described in 9.6.4, “Message
flow: “ITSO Cache Update: from Profile”” on page 200.

It takes a “profilemessage” from the main input node, updates the local cache
(ITSO_CUSTOMER) and puts the message to the audit trail.

9.7.2.2 Message flow node: “Extract Accounts”
This is an instance of the message flow node described in 9.6.9, “Message
flow: “ITSO Profile: add Accounts”” on page 218.

It takes a “profilemessage” from the main input node, performs a database
lookup to retrieve the list of accounts held by the customer and puts a
“profileaccounts” document as output to the Generate Updates node
described below.

9.7.2.3 Message flow node: “Generate Updates”
This is an instance of the message flow node described in 9.6.11, “Message
flow: “ITSO Updates from Profile w/accounts”” on page 221.

It takes a “profileaccounts” document and uses this to create a sequence of
“updatemessage” documents as output, which are each passed to the
Distribute Updates message flow node described below.

9.7.2.4 Message flow node: “Distribute Updates”
This is an instance of the message flow node described in 9.6.12, “Message
flow: “ITSO Update Router”” on page 223.

By this stage in the process more than one incoming message may form part
of the same unit of work. Each incoming message is routed either to the
Update Checking or Update Savings nodes, based on the account type held
in the “updatemessage”. Both nodes are detailed below.

9.7.2.5 Message flow node: “Update Savings”
This is an instance of the message flow node described in 9.6.13, “Message
flow: “ITSO Update Savings: from Update”” on page 224. The
“updatemessage” details are used to update the customer profile details as
held on the savings account database.

9.7.2.6 Message flow node: “Update Checking”
This is an instance of the message flow node described in 9.6.14, “Message
flow: “ITSO Update Checking: from Update”” on page 226. The
Chapter 9. Developing the MQSI application 233



“updatemessage” details are used to update the customer profile details as
held on the checking account database.

9.7.2.7 MQOutput node: “Audit Trail”
A nominal queue has been defined to hold all “profilemessage” and
“updatemessage” documents that have been processed by this message
flow.

9.8 Tracing

As you develop your message flows, it will often be useful to view the content
of intermediate data in the message flow. To do this, you can use the trace
node to extract the data you wish to monitor and write the result to a file.

Figure 112. Trace node as part of a message flow

Add the trace node to your message flow and define the type of output you
want to see.
234 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 113. Configuring a trace node

The trace node decribed above will always produce trace output.

Another type of tracing provides a more general view of broker domain
operations in a trace log. Here, you may switch tracing on for an entire
broker, an execution group, or an individual message flow in the Operations
view of the Control Center. Right-click the item you want to have traced (as
shown in Figure 114), and select User Trace -> Normal. Debug trace is a
greater level of detail again.
Chapter 9. Developing the MQSI application 235



Figure 114. Switching on trace from operations

The trace produced is similar to that detailed in Figure 115. However, in order
to produce this listing, you have to use the rather involved commands
mqsireadlog and mqsiformatlog. These commands provide all the flexibility in
targeting and formatting the trace you may require.

On Windows NT, to provide an easy route to getting hold of the trace listing
but sacrificing full flexibility, we used the a custom-built batch file called
readtrace, which is executed at the command line using two parameters:
brokername and executiongroupname.

C:\>type readtrace.bat

del trace.xml
del trace.txt
mqsireadlog %1 -u -e %2 -o trace.xml
mqsiformatlog -i trace.xml -o trace.txt
start notepad trace.txt
mqsichangetrace %1 -u -e %2 -r

C:\>
236 User-to-Business Patterns with WebSphere Advanced and MQSI



The mqsichangetrace command at the tail end of this batch file clears the
system’s trace file, so that the next execution of readtrace does not repeat
the same detail.

Figure 115 shows the type of operations trace produced by readtrace. As you
can see, the output is extensive even though this was a trace at normal level.
The debug version is very detailed indeed.

Figure 115. Example operations trace listing
Chapter 9. Developing the MQSI application 237



238 User-to-Business Patterns with WebSphere Advanced and MQSI



Chapter 10. System management guidelines

Systems management is an important phase of application design and
continues to be a factor in the day-to-day operations of the business.
Systems management covers many areas, typically involving:

• Application management
• Performance monitoring
• Availability management
• Security management
• Disaster recovery
• Operating system and network administration
• Asset management
• Software distribution
• Problem reporting
• Change management

Many of these are general considerations that span entire enterprise
operations. We will not attempt to cover all of these topics here, but will focus
on system management techniques specific to MQSeries and MQSeries
Integrator.

System management guidelines for WebSphere Advanced Edition V3.5 can
be found in the User-to-Business Patterns Systems Management Guidelines
redpaper, available at the IBM Redbooks home page at
http://www.ibm.com/redbooks.

10.1 MQSeries system management

The degree of complexity of MQSeries system management is directly
proportional to the size of the MQSeries network you are trying to manage. In
its simplest form, an MQSeries network is comprised of a single MQSeries
queue manager and its resources, but can grow to hundreds or even
thousands of queue managers spread throughout the enterprise.

To add to the complexity, given MQSeries’ middleware functionality,
MQSeries networks could span many platforms with different networks,
hardware, operating systems, and applications. Each platform possesses its
unique specific systems management needs and requirements, not to
mention a varying level of support for the MQSeries administration tools and
interfaces.
© Copyright IBM Corp. 2000 239



It is of no surprise, then, to see the growth of MQSeries system management
tools available in the marketplace today that strive in some way, shape, or
form to deliver one or many combinations of the following MQSeries system
management tasks:

• Configuration management - The ability to deploy MQSeries code, and
create and delete MQSeries objects including queue managers, queues,
channels and processes, from a single point of control.

• Operational management - The ability to start and stop resources such
as queue managers, channels, trigger monitors, channel listeners, and
initiators from a single point.

• Problem management - The ability to detect, track, and resolve problems
with MQSeries objects from a single point of control.

• Performance management - The ability to determine performance of
MQSeries objects from a single point of control.

in this book we will not be focusing on the growing system management tools
available on the market today. Instead, we will focus on introducing the
reader to the basic MQSeries system management guidelines along with an
introduction to the MQSeries facilities and tools that are available out of the
box. It suffices to say that if your MQSeries system management needs
surpass those that are delivered with the product, the chosen system
management tool should be an extension, or at the least, a good fit with your
enterprise-wide system management framework.

The following references discuss MQSeries system management:

• Managing MQSeries - MQSeries expert Les Yeamans of NASG
investigates the MQSeries systems management market, and provides an
independent assessment of the major products available. At
http://www.software.ibm.com/ts/mqseries/library/independent/nasg/vendor

.html

• MQSeries SupportPac MS08 - Evaluation of MQSeries System
Management Products at
http://www.software.ibm.com.ts/mqseries/txppacs

• MQSeries SupportPac MS0D - Selecting MQSeries System Management
tools, available at http://www.software.ibm.com.ts/mqseries/txppacs

• MessageQ.Com at http://www.messageq.com

10.1.1 MQSeries administration interfaces
MQSeries administration tasks include creating, starting, altering, viewing,
stopping, and deleting MQSeries objects including:
240 User-to-Business Patterns with WebSphere Advanced and MQSI



• MQSeries queue managers
• MQSeries queues
• Process definitions
• Channels
• Clusters
• Namelists

Each MQSeries network has one or more instance of a queue manager
known by a name within the network of interconnected queue managers. For
all other object types, each object has a name associated with it and can be
referenced by that name. These names must be unique within one queue
manager and object type. For example, you can have a queue and a process
with the same name, but you cannot have two queues with the same name.

These objects are managed by MQSeries administration tasks that can be
performed by using any of the following MQSeries interfaces:

• Control commands
• MQSeries commands (MQSC)
• Programmable Command Format (PCF)
• MQSeries Administration Interface (MQAI)
• MQSeries Explorer (available on Windows NT only)
• MQSeries Services ‘snap-in’ (available on Windows NT only)
• WEB Administration (available on Windows NT only)

10.1.1.1 Control commands
You use control commands to perform operations on queue managers,
command servers, and channels. Control commands can be divided into
three categories as shown in Table 10.

Table 10. Control command categories

Category Description

Queue manager
commands

Queue manager control commands include commands
for creating, starting, stopping, and deleting queue
managers and command servers

Channel commands Channel commands include commands for starting and
ending channels and channel initiators
Chapter 10. System management guidelines 241



MQSeries System Administration, SC33-1873, contains a description of each
control command and its syntax.

10.1.1.2 MQSC commands
MQSC commands are used to perform operations on queue manager
objects. They are issued using the runmqsc command. This can be done
interactively from a keyboard, or by redirecting the standard input device
(stdin) to run a sequence of commands from an ASCII text file. In both cases,
the format of the commands is the same.

MQSeries Command Reference, SC33-1369, contains a description of each
MQSC command and its syntax. An example of using MQSC commands can be
seen in 10.2.1.1, “Administering multiple brokers” on page 268.

10.1.1.3 PCF and MQSeries Administration Interface (MQAI)
The purpose of MQSeries programmable command format (PCF) commands
is to allow administration tasks to be programmed into an administration
program. In this way you can create queues and process definitions, and
change queue managers, from a program.

PCF commands cover the same range of functions provided by the MQSC
facility. Each PCF command is a data structure that is embedded in the
application data part of an MQSeries message. Each command is sent to the
target queue manager using the MQI function, MQPUT, in the same way as any
other message. The command server on the queue manager receiving the
message interprets it as a command message and runs the command. To get a
reply, the application issues an MQGET call and the reply data is returned in
another data structure. The application can then process the reply and act
accordingly.

Utility commands Utility commands include commands associated with:

- Running MQSC commands
- Conversion exits
- Authority management
- Recording and recovering media images of queue

manager resources
- Displaying and resolving transactions
- Trigger monitors
- Displaying the file names of MQSeries objects

Category Description
242 User-to-Business Patterns with WebSphere Advanced and MQSI



You can use MQAI to obtain easier programming access to PCF messages,
that are considered cumbersome to work with.

MQSeries Programmable System Management, SC33-1482, and MQSeries
Administration Interface Programming Guide, SC33- 5390 contain more
information about PCF and MQAI respectively.

10.1.1.4 MQSeries Explorer
MQSeries for Windows NT Version 5.1 provides an administration interface
called the MQSeries Explorer to perform administration tasks as an
alternative to using control or MQSC commands.

The MQSeries Explorer allows you to perform remote administration of your
network from a computer running Windows NT simply by pointing the
MQSeries Explorer at the queue managers and clusters you are interested in.

The platforms and levels of MQSeries that can be administered using the
MQSeries Explorer, and the configuration steps you must perform on remote
MQSeries queue managers to allow the MQSeries Explorer to administer
them, are outlined in 10.1.2, “Remote administration” on page 246.

Unlike MQSC commands, PCF commands and their replies are not in a
text format that you can read.

Note
Chapter 10. System management guidelines 243



Figure 116. MQSeries Explorer

With the MQSeries Explorer, you can:

• Start and stop a queue manager (on your local machine only).
• Define, display, and alter the definitions of MQSeries objects such as

queues and channels.
• Browse the messages on a queue.
• Start and stop a channel.
• View status information about a channel.
• View queue managers in a cluster.
• Create a new queue manager cluster using the Create New Cluster

wizard.
• Add a queue manager to a cluster using the Add Queue Manager to

Cluster wizard.
• Add an existing queue manager to a cluster using the Join Cluster wizard.

For more details on the MQSeries Explorer, please refer to MQSeries System
Administration, SC33-1873.

10.1.1.5 MQSeries Services snap-in
The MQSeries Services snap-in can be used to administer local or remote
MQSeries for Windows NT servers. It also allows you to monitor alerts
created by problems in the local system.
244 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 117. MQSeries Services snap-in

With the MQSeries Services snap-in, you can:

• Start or stop a queue manager (on your local machine or on remote NT
machines).

• Start or stop the command servers, channel initiators, trigger monitors,
and listeners.

• Create and delete queue managers, command servers, channel initiators,
trigger monitors, and listeners.

• Set any of the services to start up automatically or manually during system
start up.

• Modify the properties of queue managers. This function replaces the use
of stanzas in configuration (mqs.ini and qm.ini) files.

• Change the default queue manager.
• Modify the parameters for any service, such as the TCP port number for a

listener, or a channel initiator queue name.
• Modify the behavior of MQSeries if a particular service fails, for example,

retry starting the service x number of times.
• Start or stop the service trace.
• Start or stop MQSeries Web Administration.

For more details on the MQSeries Services snap-in, please refer to the
MQSeries System Administration, SC33-1873.

10.1.1.6 Web Administration
Web Administration enables you to use a Web browser to do everything you
can do using runmqsc.
Chapter 10. System management guidelines 245



In addition, it enables you to construct more sophisticated scripts that can
include conditional logic, looping, nesting, and so on. It also includes a simple
file management capability that you can use to organize your script files in
public and private data stores.

Detailed information about performing these functions can be found in the
online help for MQSeries Web Administration.

Figure 118. Wed Administration on Window NT

The Web server that hosts these new facilities runs only on Windows NT, but
the browser that provides the human interface can run on any platform that
supports a Java-enabled Web browser, such as Netscape Navigator or the
Microsoft Internet Explorer.

For more details on MQSeries Web Administration, please refer to MQSeries
System Administration, SC33-1873.

10.1.2 Remote administration
MQSeries Explorer, Web Administration, and MQSeries Services snap-in all
offer some form of remote administration.
246 User-to-Business Patterns with WebSphere Advanced and MQSI



The MQSeries Explorer can remotely administer MQSeries on the the
following platforms:

Table 11. Remote Management

The platform and command level headings of Table 11 refer to the platform
and command level queue manager attributes. Both must be used to
determine which system control commands are supported. You can see the
platform and command level attributes in the MQSeries Explorer window,
shown in Figure 116 on page 244.

An important point to be aware of is that both the MQSeries Explorer and
Web Administration interfaces can only transmit commands that you would in
the past have entered with runmqsc, or the platform equivalent. That is, you
can't use them to create or delete queue managers. Although MQSeries
Services snap-in allows you to start and stop remote queue managers and
their associated processes, that only works when the remote system is
running on Windows NT.

To remotely administer a queue manager from any of the MQSeries
administration interfaces, you will need the following:

• A command server running for any queue manager being administered.
• A suitable TCP/IP listener for every remote queue manager. This may be

the MQSeries listener or the INETD daemon as appropriate.

Platform Minimum Command Level

AIX, UNIX 221

OS/400 320

OS/2 201

VMS and Tandem 221

MQ/390 Indirectly; see 10.1.3.1, “Points to
consider when using the MQSeries
Explorer” on page 248.

You can do a limited amount of remote operations of queue managers on
non-Windows NT platforms, such as starting and stopping channels, but
full-blown operations in a heterogeneous multi-platform configuration
require more than MQSeries Explorer, MQSeries Services, or Web
Administration can deliver.

Note
Chapter 10. System management guidelines 247



• A server connection channel, called SYSTEM.ADMIN.SVRCONN, on
every remote queue manager. This channel is mandatory for every remote
queue manager being administered.

10.1.3 Administration interface guidelines
Deciding which of the administration interfaces or techniques are the most
appropriate for a particular operation depends mainly on the platform type
and the MQseries task at hand.

On Windows NT, you can carry out most common administration and
operations tasks using the MQSeries Explorer and MQSeries Services
snap-in tools. These tools make Windows NT a very convenient environment
for experimentation and development. However, it is much more efficient to
use one of the scripting techniques to populate and manipulate queue
managers once they have been created.

If your network configuration includes a Windows NT server with MQSeries
Version 5.1 installed on it, you can use a combination of the MQSeries Web
Administration and MQSeries Explorer to carry out limited remote
administration of your non-NT queue managers. Otherwise, you will have to
use the runmqsc facility interactively or with a script file, as you did with
previous versions of MQSeries.

MQSeries script files containing control and MQSC commands are a very
common way of administering MQSeries. A whole MQSeries configuration
can be stored in such a script file and thus can be used, with minor
modifications, to define new queue managers as new MQSeries nodes are
added to the network.

Web Administration enables you to use a Web browser to do everything you
can do using the runmqsc command. In addition, it enables you to construct
more sophisticated scripts that can include conditional logic, looping, nesting,
and so on. It also includes a simple file management capability that you can
use to organize your script files in public and private data stores.

10.1.3.1 Points to consider when using the MQSeries Explorer
When deciding whether to use the MQSeries Explorer at your installation,
bear the following points in mind:

• The MQSeries Explorer works best with small queue managers. If you
have a large number of objects on a single queue manager you may
experience delays while the MQSeries Explorer extracts the required
information to present in a view. As a rough guide as to what a “large
number” is, if your queue managers have more than 200 queues or 100
248 User-to-Business Patterns with WebSphere Advanced and MQSI



channels, you may want to consider using a third-party enterprise console
product instead of the MQSeries Explorer.

• MQSeries clusters can potentially contain hundreds or thousands of
queue managers. Because the MQSeries Explorer presents the queue
managers in a cluster using a tree structure, the view can become
cumbersome for large clusters. The physical size of a cluster does not
affect the speed of the MQSeries Explorer dramatically because the
Explorer does not connect to the queue managers in the cluster until you
select them.

• The message browser displays the first 200 messages on a queue. Only
the first 1000 bytes of message data contained in a message are
formatted and displayed on your screen. Messages containing more than
1000 bytes of message data are not displayed in their entirety.

• The MQSeries Explorer cannot administer a cluster whose repository
queue managers are on MQSeries for OS/390. To avoid this problem,
nominate an additional repository queue manager on a system that the
MQSeries Explorer can administer. By connecting the cluster through this
new repository queue manager, you can administer the queue managers
in the cluster, subject to the MQSeries Explorer’s usual restrictions for
supported levels of MQSeries.

10.1.3.2 Points to consider when using Web Administration
When deciding whether or not to use MQSeries Web Administration at
your installation, bear the following points in mind:

• The MQSeries Web Administration Web server requires a dedicated IP
port number.

• MQSeries Web Administration can be accessed from the Internet if
permitted to do so by your network configuration.

• All users of MQSeries Web Administration require an active Windows NT
user ID on the server computer with sufficient user rights to run MQSC
commands.

• To administer remote queues with Web Administration, MQSeries
message channels or a cluster must be configured between the systems.

10.1.4 Overview of the MQSeries clustering feature
The MQSeries clustering feature has been introduced with Version 5.1 of
MQSeries on Intel and UNIX platforms and with Version 2.1 on OS/390.
Chapter 10. System management guidelines 249



10.1.4.1 Administration benefits of clustering
In a traditional MQSeries network using distributed queuing, every queue
manager is independent. If one queue manager needs to send messages to
another queue manager, it must have defined a transmission queue, a
channel to the remote queue manager, and a remote queue definition for
every queue to which it wants to send messages.

A cluster is a group of queue managers set up in such a way that the queue
managers can communicate directly with one another over a single network
without the need for complex transmission queue, channels, and queue
definitions.

Clusters can be set up easily, and typically contain queue managers that are
logically related in some way and need to share data or applications.

Once a cluster has been created the queue managers within it can
communicate with each other without the need for complicated channel or
remote queue definitions. Even the smallest cluster will reduce system
administration overheads.

Establishing a network of queue managers in a cluster involves fewer
definitions than establishing a traditional distributed queuing environment.
With fewer definitions to make, you can set up or change your network more
quickly and easily, and the risk in making an error in your definitions is
reduced.

10.1.4.2 Clustering details
To set up a cluster, you need to define one cluster sender (CLUSSDR)
definition and one cluster receiver (CLUSRCVR) definition per queue
manager. You do not need to define any transmission or remote queues.

In a cluster environment you should promote one (or ideally two) queue
managers as full repository queue managers. This means that such a queue
manager knows all other queue managers in the cluster. It knows what
clustered objects (local queues or any other type of object) are hosted by
which queue manager and it knows how to reach those queue managers.
This last thing means that the full repository queue manager has a template
definition of a sender and receiver channel definition that can be used to
automatically create a new sender/receiver channel when needed.

To make two queue managers QM1 and QM2 a full repository queue
manager for a cluster named MY_CLUSTER, you need to execute the
following MQSeries commands:
250 User-to-Business Patterns with WebSphere Advanced and MQSI



On QM1:

DEFINE CLUSCHL(TO.QM1) CHLTYPE(CLUSRCVR) +
CONNAME(hostname1) +
CLUSTER(MY_CLUSTER)

DEFINE CLUSCHL(TO.QM2) CHLTYPE(CLUSSDR) +
CONNAME(hostname2) +
CLUSTER(MY_CLUSTER)

ALTER QMGR REPOS(MY_CLUSTER)

On QM2:

DEFINE CLUSCHL(TO.QM2) CHLTYPE(CLUSRCVR) +
CONNAME(hostname2) +
TRPTYPE(TCP) +
CLUSTER(MY_CLUSTER)

DEFINE CLUSCHL(TO.QM1) CHLTYPE(CLUSSDR) +
CONNAME(hostname1) +
TRPTYPE(TCP) +
CLUSTER(MY_CLUSTER)

ALTER QMGR REPOS(MY_CLUSTER)

The object of type CLUSRCVR, or cluster receiver, specifies how a queue
manager wants other queue managers to talk to him, or more technically, how
other queue managers should create a sender channel to send messages to
this queue manager.

The object of type CLUSSDR, or cluster sender, should provide the queue
manager a sender channel to the other full repository queue manager in the
cluster.

The ALTER QMGR command finally makes the queue manager a full repository
queue manager.

As soon as these definitions are in place, you will have two-way
communication between QM1 and QM2. When you now add a local queue to
QM1 and you specify the cluster name MY_CLUSTER, QM1 will pass the
definition of that object to the second full repository queue manager QM2.

DEFINE QLOCAL(CLUSTERED_QUEUE) CLUSTER(MY_CLUSTER)
Chapter 10. System management guidelines 251



Given that QM2 has channels to QM1 and that QM2 now knows that
CLUSTERED_QUEUE exists on QM1, you do not need to define a remote
queue object! Note that we haven’t defined transmission queues so far.
MQSeries cluster channels are using a common, predefined transmission
queue called SYSTEM.CLUSTER.TRANSMIT.QUEUE.

The real benefit of MQSeries clusters becomes clear when adding additional
queue managers to the cluster. To add QM3 to the cluster, one needs to
define a cluster receiver channel to make clear to the cluster how other queue
managers should talk to QM3:

DEFINE CLUSCHL(TO.QM3) CHLTYPE(CLUSRCVR) +
CONNAME(hostname3) +
TRPTYPE(TCP) +
CLUSTER(MY_CLUSTER)

The next and last thing you need to make QM3 part of the cluster is a cluster
sender channel to one full repository queue manager. Because there are two
full repository queue managers, you can choose. Which one you select is not
important.

DEFINE CLUSCHL(TO.QM2) CHLTYPE(CLUSSDR) +
CONNAME(hostname2) +
TRPTYPE(TCP) +
CLUSTER(MY_CLUSTER)

When this object is created, QM3 will start the channel TO.QM2 and give
QM2 the definition of the channel TO.QM3. QM2 will immediately use that
definition to create a sender channel from QM2 to QM3. From this point on
QM3 can use any object in the cluster MY_CLUSTER! When an application
connects to QM3 and opens the queue CLUSTERED_QUEUE, QM3 will not
know where that object lives. At least QM3 knows that it is not hosting this
object itself. Thus, it asks its full repository queue manager QM2 about this
object. QM2 replies with the definition: CLUSTERED_QUEUE is a local
queue hosted by QM1. Because QM3 does not know how to talk to QM1,
QM2 sends another request to QM2 to get the communication parameters of
QM1. Now, QM2 replies with the cluster receiver channel definition that QM3
uses to create automatically a sender channel from QM3 to QM1. At this
point, QM3 is able to send messages to QM1 without any manual definition.

Defining a cluster is even easier if you use the MQSeries Explorer GUI
interface. You will see this in Chapter 12, “MQSeries and MQSI
implementation” on page 319 when we define a cluster for our test
environment.
252 User-to-Business Patterns with WebSphere Advanced and MQSI



10.1.4.3 Workload balancing and take-over
The next big advantage of clustering is the possibilities for workload
balancing and take-over. Assume that we have a local queue WORKLOAD
hosted on QM1 and QM2. The queue is defined into the cluster.

When an application connects to QM3 and opens the queue WORKLOAD, QM3
can now choose to which queue manager it will send messages. QM3 will
select that queue manager to which it was able to set up communication. If
channel TO.QM1 has gone into retry and TO.QM2 is running, QM3 will
choose to send messages to QM2. If both channels are active, QM3 will send
the messages to both queue managers on a round-robin basis, if the
application or administrator has allowed this.

The MQOPEN now has a new option to control the spreading of workload. If
you want to choose the destination at MQOPEN time, you specify the option
MQOO_BIND_AT_OPEN. If you want to spread the workload over the active
systems, you need to use the option MQOO_BIND_NOT_FIXED. By using
one of these options, an application can control if all messages generated
between MQOPEN and MQCLOSE are sent to one system or to each system
that hosts the target queue.

While the above is definitely not a full coverage of MQSeries clustering, we
hope that you now have some basic understanding of this feature and how it
can help the MQSeries administrator to create a more powerful and reliable
MQSeries network with fewer definitions.

For more information on this topic, please refer to the MQSeries product
manual MQSeries: Queue Manager Clusters, SC34-5349, and the redbook
MQSeries Version 5.1 Administration and Programming Examples,
SG24-5849.

10.1.5 MQSeries security
Because MQSeries queue managers handle the transfer of information that is
potentially valuable, you need the safeguard of an authority system. This
ensures that the resources that a queue manager owns and manages are
protected from unauthorized access, which could lead to the loss or
disclosure of the information.

In a secure system, it is essential that none of the following are accessed or
changed by any unauthorized user or application:

• Connections to a queue manager
• Access to MQSeries objects such as queues, clusters, channels, and

processes
Chapter 10. System management guidelines 253



• Commands for queue manager administration, including MQSC
commands and PCF commands

• Access to MQSeries messages
• Context information associated with messages

The following section will briefly present you with an overview of how the
above tasks are accomplished. For a more detailed MQSeries security
overview, please see MQSeries System Administration, SC33-1873.

The mqm group
In MQSeries for UNIX systems, UNIX restrictions mean that all user IDs must
be defined in lowercase. All queue manager processes run with these IDs:

User ID mqm
Group mqm

A user ID with the name mqm whose primary group is mqm is automatically
created during installation. You can create the user ID and group yourself, but
you must do this before you install MQSeries.

On MQseries Windows NT systems, if the local mqm group does not already
exist on the local computer, it is created automatically when MQSeries for
Windows NT is installed. In addition, a domain mqm group may be created on
the domain controller. This global group allows control of mqm user access.
All privileged user IDs active within this domain should be added to the
Domain mqm group.

Administration user ID
You must be a member of the mqm group to administer MQseries. In
particular you need this authority to:

• Use the runmqsc command to run MQSC commands
• Administer authorities using the SETMQAUT command
• Create a queue manager using the crtmqm command

If you are sending channel commands to remote queue managers, you must
make sure that your user ID is a member of group mqm on the target system.

OAM
By default, access to queue-manager resources is controlled through an
authorization service installable component formally called the Object
Authority Manager (OAM) for MQSeries.

OAM is supplied with MQSeries, and is automatically installed and enabled
for each queue manager you create, unless you specify otherwise.
254 User-to-Business Patterns with WebSphere Advanced and MQSI



The OAM manages users’ authorizations to manipulate MQSeries objects,
including queues and process definitions. It also provides a command
interface through which you can grant or revoke access authority to an object
for a specific group of users. The decision to allow access to a resource is
made by the OAM, and the queue manager follows that decision. If the OAM
cannot make a decision, the queue manager prevents access to that resource.

The OAM works by exploiting the security features of the underlying
operating system. In particular, the OAM uses operating system user and
group IDs. Users can access queue manager objects only if they have the
required authority.

Through OAM you can control:

• Access to MQSeries objects through the MQI. When an application
program attempts to access an object, the OAM checks that the user ID
making the request has the authorization for the operation requested. In
particular, this means that queues, and the messages on queues, can be
protected from unauthorized access.

• Permission to use PCF commands.

The OAM provides two control commands that allow you to manage the
authorizations of users. These are:

SETMQAUT Set or reset authority
DSPMQAUT Display authority

Two of the most common authorizations assigned with the SETMQAUT command
are the ability to put a message on a specific queue by issuing an MQPUT
call (put authority) and the ability to retrieve a message from a queue by
issuing an MQGET call (get authority). You will see these authorities
mentioned several times throughout this book.

Using groups, rather than individual principals, for authorization reduces
the amount of administration required.

Try to keep the number of groups as small as possible. For example,
dividing principals into one group for application users and one for
administrators is a good place to start.

Note
Chapter 10. System management guidelines 255



10.1.5.1 MQSeries Explorer security
Before the MQSeries Explorer is enabled, you must ensure that chosen users
have the correct level of authorization. This means being one of the following:

• A member of the mqm group
• A member of the administrator group on the machine running the

MQSeries Explorer
• Logged on using the SYSTEM ID

Furthermore, some operations may require you to have authorization to use
individual objects or object types. The MQSeries Explorer uses existing
MQSeries rules for security to ensure that this happens. For example, you
must have display authority for a queue to be able to view its attributes in the
MQSeries Explorer.

The MQSeries Explorer connects to remote queue managers as an MQI
client application. This means that each remote queue manager must have a
definition of a server connection channel and a suitable TCP/IP listener. If you
do not specify a non-blank value for the MCAUSER attribute of the channel,
or use a security exit, it is possible for a malicious application to connect to
the same server connection channel and gain access to the queue manager
objects with unlimited authority.

The default value of the MCAUSER attribute is a blank. If you specify a
non-blank user name as the MCAUSER attribute of the server connection
channel, all programs connecting to the queue manager using this channel
run with the identity of the named user and have the same level of authority.

10.1.5.2 MQSeries Services security
Access to the MQSeries Services snap-in can be controlled by using the
Windows NT distributed component object model (DCOM) Configuration tool.
We won’t go into the details here, but will just let you know that the facility is
available. For more information on setting up MQSeries Services security,
refer to MQSeries System Administration, SC33-1873.

To start the DCOM customizing facility, click Start - > Run -> dcomcngf. The
first screen will show a list of applications. Choose the MQSeries Services
from the list, click Properties, then select the Security tab.
256 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 119. MQSeries Services security using the DCOM customizing facility

10.1.5.3 MQSeries Web Administration security
Your user ID needs the necessary administration privileges on the MQSeries
server to perform administration tasks. Therefore, before attempting to log on
to MQSeries Web Administration, ensure that you have the correct level of
authorization. This means being one or more of the following:

• A member of the mqm group
• A member of the administrator group on the machine running MQSeries

Web
• Administration
• Logged on using the SYSTEM ID

Some operations may require you to have authorization to use individual
objects or object types. MQSeries Web Administration uses existing
MQSeries rules for security to ensure that this happens.

MQSeries Web Administration connects to remote queue managers using
MQSC. The Web Administration server adopts the user ID of each logged-on
administrator prior to invoking MQSC commands on the administrator’s
behalf. Therefore, administrators have exactly the same privileges from
Chapter 10. System management guidelines 257



MQSeries Web Administration as they would have using the runmqsc

command locally on the Web Administration server.

10.1.6 MQSeries monitoring
You can use MQSeries instrumentation events to monitor the operation of
queue managers.

This section provides a short introduction to instrumentation events, and will
introduce the two Windows NT V5.1 service snap-ins that use MQseries
instrumentation to present the user with a GUI event and monitoring tool.

10.1.6.1 Instrumentation events
Instrumentation events cause special messages, called event messages, to
be generated whenever the queue manager detects a predefined set of
conditions.

For example, the following conditions give rise to a Queue Full event:

• Queue Full events are enabled for a specified queue, and
• An application issues an MQPUT call to put a message on that queue, but

the call fails because the queue is full.

Other conditions that can give rise to instrumentation events include:

• A predefined limit for the number of messages on a queue being reached
• A queue not being serviced within a specified time
• A channel instance being started or stopped
• In MQSeries for UNIX systems, an application attempting to open a queue

and specifying a user ID that is not authorized

If you define your event queues as remote queues, you can put all the event
queues on a single queue manager (for those nodes that support
instrumentation events). You can then use the events generated to monitor a
network of queue managers from a single node.

MQSeries events are categorized as follows:

Queue manager events These events are related to the definitions of
resources within queue managers.

Performance events These events are notifications that a threshold
condition has been reached by a resource.

Channel events These events are reported by channels as a result
of conditions detected during their operation.
258 User-to-Business Patterns with WebSphere Advanced and MQSI



When an event occurs, the queue manager puts an event message on the
appropriate event queue (if such a queue has been defined). The event
message contains information about the event that you can retrieve by writing
a suitable MQI application program.

Each category of event has its own event queue. All events in that category
result in an event message being put onto the same queue as shown in Table
12.

Table 12. Event queues

10.1.6.2 MQseries Alert Monitor (Windows NT)
The MQSeries Alert Monitor is an error detection tool that identifies and
records problems with MQSeries on a local machine. It displays information
about the current status of the local installation of an MQSeries server.

From the MQSeries Alert Monitor, you can:

• Access the MQSeries Services snap-in directly
• View information relating to all outstanding alerts
• Shut down the IBM MQSeries service on the local machine
• Route alert messages over the network to a configurable user account, or

to a Windows NT workstation or server

If the task bar icon indicates that an alert has arisen, double-click the icon to
open the alert monitor display. This dialog shows a tree view, grouped by
queue manager, of all the alerts that are currently outstanding. Expand the
nodes of the tree to see which services are alerted and look at the following
pieces of information relating to the service:

• The date and time of the most recent alert for the service
• The command line that failed
• The error message describing why the service failed

10.1.6.3 Performance Monitor (Windows NT)
The Performance Monitor is a standard component of Windows NT. It enables
you to select and display a variety of data about the performance of the
Windows environment, as tabular reports or graphs. You can use it to monitor

This event queue... Contains messages from:

SYSTEM.ADMIN.QMGR.EVENT Queue manager events

SYSTEM.ADMIN.PERFM.EVENT Performance events

SYSTEM.ADMIN.CHANNEL.EVENT Channel events
Chapter 10. System management guidelines 259



the depth of messages on MQSeries queues, and the rates of message
arrival and removal.

You access the Performance Monitor by clicking Start -> Programs ->
Settings -> control panel -> Administrative Tools -> Performance.

When you first start it, the display is empty. To add a resource that you want,
click the + on the chart pane to add counters as shown in Figure 120.

Figure 120. Performance Monitor

In the Add Counters window (Figure 121) chose what you want to monitor:

• Select MQSeries Queues from the performance object drop-down.
• Select what you want to monitor:

a. The current queue depth, that is, how many messages are in the
queue.

b. The queue depths as a percentage of the maximum queue depth, that
is, how full the queue is.

c. The enqueue rate in messages per second, that is, the number of
messages placed in the queue. This is not necessarily the number of
MQPUTs; each message segment counts as one message.

d. The dequeue rate in messages per second, that is, the number of
messages removed from the queue.
260 User-to-Business Patterns with WebSphere Advanced and MQSI



• Then select a queue from the instance list. The instance list contains only
queues that have had messages inserted or removed before the
Performance Monitor started.

• Click Add for each selected counter.
• Click Close when finished.

Figure 121. Add counter window

The graph is now displayed. Update the graph properties using the menu bar
to control the graph details.
Chapter 10. System management guidelines 261



Figure 122. Example queue depth graph

10.1.7 MQseries restart and recovery
MQSeries ensures that messages are not lost by maintaining records (logs)
of the activities of the queue managers that handle the receipt, transmission,
and delivery of messages. It uses these logs for three types of recovery:

• Restart recovery, when you stop MQSeries in a planned way.
• Crash recovery, when MQSeries is stopped by an unexpected failure.
• Media recovery, to restore damaged objects.

In all cases, the recovery restores the queue manager to the state it was in
when the queue manager stopped, except that any in-flight transactions are
rolled back, removing from the queues any messages that were not
committed at the time the queue manager stopped. Recovery restores all
persistent messages; nonpersistent messages are lost during the process.

MQSeries supports two type of logging:

• Circular logging
• Linear logging
262 User-to-Business Patterns with WebSphere Advanced and MQSI



Each type of logging stores the recorded data in a set of files. The differences
between the two types of logging are the contents and the way that the files
are linked together.

With circular logging, the set of log files are effectively linked together to form
a ring. When data is collected, it is written sequentially into the files in such a
way as to re-use the log files in the ring. You can use circular logging for
crash recovery and restart recovery.

With linear logging, the log is maintained as a continuous sequence of files.
When data is collected, it is written sequentially into the log files; the space in
the files is not re-used, so that you can always retrieve any record from the
time that the queue manager was created.

Because disk space is finite, you might have to plan for some form of
archiving. Also, if you are handling a high volume of persistent messages, all
your log files will eventually be filled. This will result in operator messages
being written to an error log file, and some action will need to be taken by the
system administrator to make more log space available, or to reuse the
existing space. You can use linear logging for all three types of recover.

10.1.7.1 Managing log files
If you are using circular logging, ensure that there is sufficient space to hold
the log files. You do this when you configure your system.The amount of disk
space used by the log does not increase beyond the configured size.
including space for secondary files to be created when required.

If you are using a linear log, the log files are added continually as data is
logged, and the amount of disk space used increases with time. If the rate of
data being logged is high, disk space is consumed rapidly by new log files.

Over time, the older log files for a linear log are no longer required to restart
the queue manager or perform media recovery of any damaged objects.

Periodically, the queue manager issues a pair of messages to indicate which
of the log files is required:

• Message AMQ7467 gives the name of the oldest log file needed to restart
the queue manager. This log file and all newer log files must be available
during queue manager restart.

• Message AMQ7468 gives the name of the oldest log file needed to do
media recovery.

Any log files older than these do not need to be online. You can copy them to
an archive medium such as tape for disaster recovery, and remove them from
Chapter 10. System management guidelines 263



the active log directory. Any log files needed for media recovery but not for
restart can also be off-loaded to an archive.

If any log file that is needed cannot be found, operator message AMQ6767 is
issued. Make the log file, and all subsequent log files, available to the queue
manager and retry the operation.

10.1.7.2 Logging guidelines
Follow these guidelines when placing and managing your MQSeries logs:

• When choosing a location for your log files, remember that operation is
severely impacted if MQSeries fails to format a new log because of lack of
disk space.

• To maximize the efficiency of logging, the logging volumes should be
separated from the data volumes. On small servers, this may not be
practical. However, by doing so, the potential for contention between
logging and writing of the queue data is reduced. This eliminates the
potential of a single point of failure for both the logs and the associated
data.

• Whenever possible, place the log files on multiple disk drives in a mirrored
arrangement. This gives protection against failure of the drive containing
the log. Without mirroring, you could be forced to go back to the last
backup of your MQSeries system.

• Circular logging is the easiest to manage, since the logs are simply
re-used in a circular fashion. However, in some situations, recovery may
be impossible while in this mode. Linear logs guarantee recovery but
require management to prevent filling up all available disk space.
Eventually, linear logs that are no longer required will need to be archived
and/or deleted. This should be automated to prevent unexpected outages.

• If you are using a circular log, ensure that there is sufficient space on the
drive for at least the configured primary log files. You should also leave
space for at least one secondary log file, which is needed if the log has to
grow.

• If you are using a linear log, you should allow considerably more space;
the space consumed by the log increases continuously as data is logged.

10.1.7.3 Backing up MQSeries resources
To take a backup of a queue manager’s data, you must:

1. Ensure that the queue manager is not running. If your queue manager is
running, stop it with the endmqm command.

2. Locate the directories under which the queue manager places its data and
its log files.
264 User-to-Business Patterns with WebSphere Advanced and MQSI



3. Take copies of all the queue manager’s data and log file directories,
including all subdirectories. Make sure that you do not miss any of the
files, especially the log control file and the configuration files. Some of the
directories may be empty, but they will all be required if you restore the
backup at a later date, so it is advisable to save them too.

4. Ensure that you preserve the ownerships of the files. For MQSeries for
UNIX systems, you can do this with the tar command.

On Windows NT, starting with V5.1 of MQSeries, all MQSeries resources are
saved in the NT registry. As a result, make sure that when backing up
MQSeries resources to include a backup of the NT registry as well.

It is a good idea to save MQSeries resource definitions in MQSC command
files, and scripts, so that these resources can be quickly re-defined from
scratch if required.

10.2 .MQSeries Integrator system management

MQSeries Integrator networks are comprised of broker domains. In this
section we will cover the operation and management of the various
components that comprise a broker domain:

• Message brokers

• Configuration Manager

• Control Center

• User Name Server
Chapter 10. System management guidelines 265



Figure 123. The broker domain

Table 13 shows the platform and database support for MQSI V2.0.1
components.

Table 13. MQSI software requirements

MQSI V2.0.1
components

Platform Database software for MQSI
databases

Configuration
Manager

Windows NT 4.0 -DB2 UDB 5.2 + fixpak 12 or 6.11

Control Center Windows NT 4.0

1 Check the readme.txt for fixpak information. DB2 6.1 is the only DBMS supported by
MQSI that permits a database to participate as a Resource Manager in a distributed XA
transaction, and coordinated by MQSeries as the XA Transaction Manager. In MQSI,
this is referred to as supporting a globally coordinated message flow.

Configuration
Manager

Control
Center

MQSeries
Message

Repository

Configuration
Repository

ODBC

JDBC

Developer

B
r
o
k
e
r

DB2
database

Message
Dictionary

Administrative
Agent

Input
node

Filter
node

Output
Node

Compute
Node

Database
Node

Execution group

Broker
persistent

storeController

MQSeries

Client
application

MQSeries

Client
application

MQSeries

ODBC

ODBC

User Name
Server

MQSeries

Message flow engine
266 User-to-Business Patterns with WebSphere Advanced and MQSI



10.2.1 Message brokers
An MQSI application consists of message flows that perform transformation
and routing functions. These message flows are assigned to brokers. Any
number of brokers can be added within a broker domain and more than one
broker may reside on a physical system. Each broker has a unique name,
called the Broker Instance name. Message flows within a broker are grouped
by assigning them to execution groups. Each execution group is assigned to
a separate message flow engine.

Broker Sun Solaris 7 -DB2 6.11

-Oracle 8.1.5
-Sybase 11.5 or 12

AIX V4.3 -DB2 UDB 6.11

-Oracle 8.1.5
-Sybase 11.5 or 12

Windows NT 4.0 -DB2 UDB 5.2 + Fixpak 12 or 6.11

-Microsoft SQL Server 6.5 +SP5a or 7.0 +
SP1
-Oracle 8.1.5
-Sybase 11.5 or 12

User Name Server Sun Solaris 7
AIX V4.3
Windows NT 4.0

Applications Sun Solaris 7 -DB2 6.11

-Oracle 7.3.4 or 8.1.5
-Sybase 11.5 or 12

AIX V4.3 -DB2 UDB 5.2 SP 12 or above, V6.11

-Oracle 7.3.4 or Oracle 8.1.5
-Sybase 11.5 or 12

Windows NT 4.0 -DB2 UDB 5.2 + fixpak 12 or 6.11

-Microsoft SQL Server 6.5 +SP5a or 7.0 +
SP1
-Oracle 7.3.4 or 8.1.5
-Sybase 11.5 or 12

MQSI V2.0.1
components

Platform Database software for MQSI
databases

1 Check the readme.txt for fixpak information. DB2 6.1 is the only DBMS supported by
MQSI that permits a database to participate as a Resource Manager in a distributed XA
transaction, and coordinated by MQSeries as the XA Transaction Manager. In MQSI,
this is referred to as supporting a globally coordinated message flow.
Chapter 10. System management guidelines 267



Each broker has a persistent state datastore, implemented using a unique set
of tables in a relational database. The datastore holds all persistent state data
needed by the broker, including:

• The deployed message flow definitions
• Persistent subscriptions
• Publish/subscribe neighbors

There is one controller in each broker whose main purpose is to ensure that
the defined broker processes are running, including one process for each
execution group and a process for the administrative agent. The controller
uses an internal cached broker definition table created from information it
finds in the persistent datastore. The controller monitors changes to both the
definition table and process state, making sure the process state reflects the
table. If a process dies, it determines the action to take, generally restarting
the process.

The administrative agent manages updates to the broker definition table and
processes messages to start and stop the broker. It sends requests to start or
stop execution engines to the controller and configuration changes to specific
message flow engines. When an engine receives a configuration update from
the administrative agent, it ensures that the changes are fully made,
suspending message processing during the changes and resuming with the
new updates. Configuration changes to multiple brokers can be processed
transactionally, so that all brokers make the updates, or the updates are
backed out. Although the administrative agent can be run in the same
process as the controller, it is advisable to run it as a separate process to
improve the reliability of the monitor.

Each broker requires a set of MQSeries queues on the queue manager
associated with the broker domain. These are created automatically when the
broker is created. Each broker also requires its own queue manager. This
queue manager can also host the Configuration Manager and/or the User
Name Server, but not another broker. If this queue manager does not exist, it
is created for you.

10.2.1.1 Administering multiple brokers
When using duplicate brokers, management of MQSeries definitions can be
easily handled by using packages of MQSeries commands (MQSC). MQSC
can be used to deploy a set of queue definitions that are required on queue
managers that have a broker role. In this way, the same set of commands can
be re-used when you wish to add an additional instance of a broker to the
domain. The following example MQSC extract sets up four cluster queue
definitions used by the broker in our example scenario:
268 User-to-Business Patterns with WebSphere Advanced and MQSI



def ql(MQSI.PROF.REQUESTS) cluster(ITSO.CLUSTER) replace
def ql(MQSI.PROF.UPDATES) cluster(ITSO.CLUSTER) defpsist(YES) replace
def ql(MQSI.FAILURE) cluster(ITSO.CLUSTER) replace
def ql(MQSI.AUDIT) cluster(ITSO.CLUSTER) replace

The following sample MQSC sets up the alias queue definitions used by the
application code in our example. MQSI.PROF.REPLIES is a local queue that
will be used as a reply queue for the application. The remaining definitions
define alias queues, which relate the queue names as used by the application
to the real queue names which will all be visible because they have been
defined as cluster queues either here or elsewhere in the network.

def ql(MQSI.PROF.REPLIES) cluster(ITSO.CLUSTER) replace
def qalias(ITSO.PROF.REQ.IN) targq(MQSI.PROF.REQUESTS)
cluster(ITSO.CLUSTER) replace
def qalias(ITSO.PROF.UPD.IN) targq(MQSI.PROF.UPDATES)
cluster(ITSO.CLUSTER) replace
def qalias(ITSO.PROF.REPLY) targq(MQSI.PROF.REPLIES) cluster(ITSO.CLUSTER)
replace

10.2.2 The Configuration Manager
The components and resources in a broker domain are controlled by the
Configuration Manager, which is responsible for maintaining the broker
domain configuration. It manages the initialization, deployment, and
configuration updates of broker and message processing operations,
including the authorization to perform these actions. These actions are in
response to functions performed using the Control Center.

The Configuration Manager uses relational database tables to store
information. Two sets of tables are used, one for configuration information
known as the configuration repository, and one for message format
information known as the message repository.

The Configuration Manager requires a local MQSeries queue manager to
host its services. This queue manager is identified or created during the
process to create the Configuration Manager and a set of required queues
are defined on it. The queues defined will included a server connection queue
to be used by the Control Center to communicate with the Configuration
Manager and traditional or cluster sender and receiver channels to each
broker in the broker domain.

10.2.3 The Control Center
The Control Center is the business administration tool used to define
message flows for applications and to access the databases and resources
Chapter 10. System management guidelines 269



used by MQSeries Integrator. Any number of Control Center instances can be
installed and invoked.

Figure 124. MQSI Control Center

The Control Center depends on MQSeries classes for Java for its connection
with the Configuration Manager. The Control Center dynamically creates a
client connection to connect to the Configuration Manager’s queue manager
using the information provided at invocation.

Chapter 9, “Developing the MQSI application” on page 183 shows an
example of using the Control Center to build message flows. Chapter 12,
“MQSeries and MQSI implementation” on page 319 shows how to start the
Control Center to a particular Configuration Manager, create broker execution
groups, assign message flows to those groups, and how to deploy a message
flow to the broker.

10.2.4 The User Name Server
The User Name Server is an optional resource used to implement topic
security in a publish/subscribe environment. It monitors the underlying
security subsystem and provides information about users and groups that it
shares with the Configuration Manager and brokers.

Message flows that give publish/subscribe service to applications might
require topic security. This gives the ability to control the authority of the
application, based on the user ID it is running under, to do the following:
270 User-to-Business Patterns with WebSphere Advanced and MQSI



• Publish on topics
• Subscribe to topics
• Request persistent delivery of messages

You can build the User Name Server without defining or implementing any of
the functions. If you think you will be using publish/subscribe and topic
security now or in the future, it may be easier to incorporate the User Name
Server initially, implementing the functions later when they are required.

The User Name Server requires an MQSeries queue manager and a set of
queues. This queue manager may be shared with the Configuration Manager,
broker, or both.

10.2.5 MQSeries guidelines for MQSI
The MQSeries Integrator broker domain is built using MQSeries queue
managers and queues as its infrastructure. The MQSeries components
required for the operation of the broker domain (exclusive of those required
for the applications) are created automatically when the MQSI components
are created.

The MQSI Configuration Manager, User Name Server, and brokers are
created using commands. These commands will create the component’s
associated queue manager if it does not exist, and will always create the
component’s named queues. They do not, however, create the queues
required for communication between the queue managers. Transmission
queues must be defined to the queue managers for communication between
the following:

• Every broker and the Configuration Manager
• Every broker and the User Name Server
• The Configuration Manager and the User Name Server

Table 14 shows which MQSI components require a queue manager and
which of these queue managers can be shared.

Table 14. MQSeries Integrator Queue Managers

MQSI
Component

Needs a
Queue
Manager
?

Can Share a Queue Manager with:

Configuration
Manager

User Name
Server

Broker

Configuration
Manager

Yes N/A 1 Yes Yes
Chapter 10. System management guidelines 271



For each queue manager hosting an MQSI component, you will need to
define traditional sender and receiver channels to any other MQSI component
queue managers it will need to communicate with. If you are using MQSeries
clustering for your queue managers, you will only need to define cluster
sender and receiver channels to one of the cluster repository queue
managers.

Applications that use broker services also use MQSeries to send and receive
messages to the brokers. The MQSeries resources required by your
applications are application specific and must be also be created manually.

10.2.5.1 MQSeries clusters
Consider using MQSeries clustering (see 10.1.4.2, “Clustering details” on
page 250) when you design the MQSeries network underlying your broker
domain. Clustering decreases the amount of MQSeries system administration
significantly, increases availability, and provides workload balancing.

By joining the queue managers for each component to a cluster, you will
simplify the administrative tasks associated with defining the MQSeries
network. This can be a great advantage if you are using a publish/subscribe
collective, which requires total MQSeries interconnection between the
brokers.

There are, however, implications for applications in a clustering environment.
Clustering provides workload management among queue managers by
allowing duplicate queues to exist. Messages can be sent to any queue
manager that hosts a duplicate copy of a queue. In this situation, the
application must be examined for any logic that makes it necessary for
messages (reply and request) to be handled by the same queue manager. If
this requirement exists, steps must be taken to ensure the integrity of the

User Name
Server

Yes Yes Yes Yes

Broker Yes Yes Yes No3

Control Center No2 N/A N/A N/A

1There is only one Configuration manager in a broker domain
2Client/Server connection to Configuration Manager’s queue manager
3Each broker defined will require a unique MQSeries queue manager

MQSI
Component

Needs a
Queue
Manager
?

Can Share a Queue Manager with:

Configuration
Manager

User Name
Server

Broker
272 User-to-Business Patterns with WebSphere Advanced and MQSI



message flow. To find out how to handle this see MQSeries Queue Manager
Clusters, SC34-5349.

Note: SYSTEM.BROKER queues are created automatically to support the
MQSI components. They are not defined as cluster queues. Do not change
this attribute.

10.2.6 MQSI databases
We have already mentioned the way MQSI uses databases for its
administrative functions. Three different types of information are stored in
distinct tables in relational databases to be used by the MQSI components.
The Configuration Manager stores information in two sets of tables called the
configuration repository and message repository. Each broker also has a set
of tables to be used as a persistent datastore. In order to understand the
systems management implications of how these databases are set up, we will
take a quick look at how the databases are used.

When you create and modify resources, for example a message flow, in a
broker domain using the Control Center, the changes are initially stored in
your local system. When you deploy these changes, the Configuration
Manager updates the configuration repository. The data in this repository can
be viewed and managed using the Control Center, which interacts with the
Configuration Manager on your behalf.

The set of tables known as the message repository is also managed by the
Configuration Manager. It contains all the message and message set
definitions you have created using the Control Center and deployed in your
broker domain. If you import externally defined message definitions using the
Control Center, these are also stored in this repository.

When changes are made to the broker’s environment, the Configuration
Manager sends messages to the broker to update its local persistent store.
For example, if you assign and deploy a new message flow to the broker, the
data is updated.

The database products that can be used for each type of database storage
can be seen in Table 13 on page 266. The message repository and the broker
databases are accessed using ODBC. ODBC drivers for DB2 and SQL Server
are provided with the database products. ODBC drivers for Oracle and
Sybase are provided by MQSeries Integrator. A JDBC connection is required
for the Configuration Manager access to the configuration repository. An
example of setting up these connections can be seen in Chapter 12,
“MQSeries and MQSI implementation” on page 319.
Chapter 10. System management guidelines 273



MQSI can use tables in a database, whether that database is local or remote
to the MQSI component. You can set up a database for each component if
you choose, or you can set up a central database on a shared server. The
placement of these databases can have an impact on systems performance
and systems management. The issues related to performance are discussed
in 7.2.3, “Placement of MQSI databases” on page 113.

Where systems management is concerned, there are advantages and
disadvantages to using remote databases (see Table 15). You must refer to
the documentation supporting the database type you are using to determine
the best options for your specific environment.

Table 15. Remote database access advantages vs. disadvantages

10.2.7 MQSeries Integrator commands and operations
Now that we have all functional requirements in place, MQSI commands will
be used to create, configure, and control the various MQSI components.

10.2.7.1 MQSI commands
MQSI components can be created, deleted, and configured by using MQSI
commands. These commands can be entered from the command line or they
can be generated by using the MQSI Command Assistant (Windows NT
only). MQSI components can be controlled (started or stopped) using
commands or if on Windows NT, using the Windows NT services window.

Note that:

• Each command must be issued on the system on which the resource it
relates to is defined (or is to be created).

• All MQSI commands have dependencies on MQSeries functions. You
must ensure that MQSeries is available before issuing these commands.

Advantages of using a remote db Disadvantages

-A central, shared, DB server is easier to
manage, back up, and restore.
-A central shared DB server can be
optimally tuned for data access workloads
-A remote database offloads database
processor cycles and utilization
-Using a remote database means you only
need a thin database client, vs.
installing a full DB server on the MQSI
node

-Performance may be an issue depending
on the network and number of database
accesses from different components

-Increases network traffic
274 User-to-Business Patterns with WebSphere Advanced and MQSI



With each command, there are flags used to specify parameters. Let’s take a
brief look at some of these commands. To see the syntax and flags for these
commands, refer to the MQSeries Integrator Administration Guide,
SC34-5792.

Commands to create and delete components
The MQSI commands to create the MQSI components are:

•mqsicreateconfigmgr

• mqsicreatebroker (for each broker)
• mqsicreateusernameserver

These commands have parameters that are needed to bind the MQSI
component to its resources, including:

• Queue manager name to host the component. If the queue manager does
not exist, it will be created.

• Database (or data source) name (broker and Configuration Manager). The
appropriate tables will be defined in the database.

• User ID and passwords needed to access the database or to run the
Windows NT service under.

MQSI commands are also available to delete the MQSI components. Flags
will determine if the underlying queue manager and database tables are also
deleted.

• mqsideleteconfigmgr

• mqsideletebroker (for each broker)
• mqsideleteusernameserver

Commands to change components
Once the MQSI components have been created, the MQSI change
commands are used to change the MQSI components “bindings”, such as the
queue manager name or user ID and password used to access the database
or for the Windows NT service.

•mqsichangeconfigmgr
•mqsichangebroker
•mqsichangeusernameserver

Operational (start and stop) commands
MQSI commands exist to start and stop MQSI components. On Windows NT
the MQSI components run as Windows NT services and can also be
managed as such.

The logical order and commands to start the MQSI components are:
Chapter 10. System management guidelines 275



• mqsistart UserNameServer

•mqsistart <broker_instance_name>
•mqsistart ConfigMgr

The logical order to stop MQSI components

•mqsistop <broker_instance_name>
•mqsistop ConfigMgr
•mqsistop UserNameServer

Remember, the commands must be entered on the system hosting the
component.

List and trace commands
List and trace commands are available to list MQSI components and to format
and read MQSI traces:

•mqsilist
•mqsichangetrace
•mqsiformatlog
•mqsilcc
•mqsireadlog
•mqsireporttrace

10.2.7.2 The Command Assistant (Windows NT only)
The Command Assistant is a graphical interface that supports MQSI
commands to create, delete, or change a component. It provides a series of
easy-to-use windows that significantly simplify the task of creating and
changing components. The create commands, in particular, have a large
number of parameters. The Command Assistant displays all the parameters
with meaningful labels and provides integrated, context-sensitive help
information, and indicates whether each parameter is mandatory or optional.

To invoke the command assistant select Start -> Programs -> IBM
MQSeries Integrator 2.0 -> Command Assistant.

10.2.7.3 Command results and MQSI messages
For Windows NT, the command results and MQSI messages appear in the
Windows NT event application viewer. To open the event viewer select Start -
> Programs -> Administrative Tools ( common) -> Event Viewer. Then
select Log -> application.
276 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 125. Windows NT Event Viewer

Double-click an event to see the details. As you can see from Figure 126, the
information in the events can be quite useful for debugging purposes.

Figure 126. MQSI event
Chapter 10. System management guidelines 277



In AIX, all MQSI V2 messages not generated by the command line utilities are
written to the syslog, but the syslog daemon (syslogd) must be configured to
write all “user” messages to a file.

To configure the syslog you need to (as root) edit the file /etc/syslog.conf.
This file contains the definitions specifying where to write messages written
to the syslog. All MQSI messages are written to the “user” facility so you need
to add a line starting with the text “user” and then select the level of
messages you want to see. For example, to direct all user facility messages to
/var/log/syslog.user, add the following line to the end of the syslog.conf file:

user.debug /var/log/syslog.user

Before committing the changes by restarting syslogd you must create the
syslog.user file:

touch /var/log/syslog.user
chown root:mqbrkrs /var/log/syslog.user
chmod 75 //var/log/syslog.user

You must restart the syslog daemon for your changes to take effect, using the
command:

refresh -s syslogd

10.2.8 Control Center operations
The Control Center can be used to:

• Develop, modify, assign, and deploy message flows.
• Develop, modify, assign, and deploy message sets.
• Define the broker domain topology and create collectives.
• Create and modify access control lists (ACLs) to control publish/subscribe

security.
• View status information.

As you can see, the above tasks will most likely be performed by different
people in your organization. For instance you would have an MQSI developer
develop and modify your message MQSI message flows, but the action of
deploying these message flows to a production broker for execution would
most likely be performed by the MQSI administration.

MQSI operational roles address the above situation. The role determines
what the user can view within the Control Center, and therefore limits the
tasks that are available to that user. Later, in 10.2.10, “MQSeries Integrator
278 User-to-Business Patterns with WebSphere Advanced and MQSI



security” on page 290, we will see how to map the MQSI roles to the MQSI
security groups.

The Control Center roles are:

• All
• Message flow and message set developer
• Message flow and message set assigner
• Operational domain controller
• Topic security administrator

To chose a role click File -> Preferences -> User’s role and select the role
you are fulfilling. Be sure to check the Show Log box.

Figure 127. Control Center role selection

The roles that the Control Center user chooses (and is allowed to perform)
will determine what Control Center views, and thus functionality, the user has
access to. The views are represented as tabs at the top of the window.
Chapter 10. System management guidelines 279



Figure 128. Control Center views

The Control Center Views are:

• Message Sets
• Message Flows
• Assignments
• Topology
• Topics
• Subscriptions
• Operations
• Log (available if Show Log is checked as shown in Figure 127 on page

279)

The following table shows the Control Center role to Control Center view
mapping.

Control Center View Tabs
280 User-to-Business Patterns with WebSphere Advanced and MQSI



Table 16. Control Center role authorities

10.2.8.1 Change control
It is certainly possible that there will be multiple people involved in the design
and control of an MQSI network. There are multiple roles that these people
will fill, and most likely, there will be multiple people assigned to each role.
This makes management of the changes in the MQSI network an important
aspect of systems management.

In addition to the roles described earlier and limiting who can make changes,
the control center exerts change management control by enforcing a
check in/ check out method for preventing simultaneous updates to
resources.

There are three different versions of configuration data:

Local A copy of configuration data on which a user is working. When
the Control Center is started, the local version of the
configuration data is presented. To work with the local copy of
configuration data, you need to check out the resources from
the shared copy. While checked out, other users are prevented
from updating the resource.

Any changes made to a local version will not be visible to other

M
essag

e
sets

M
essag

e
flo

w
s

A
ssig

n
m

en
ts

To
p

o
lo

g
y

To
p

ics

S
u

b
scrip

tio
n

s

O
p

eratio
n

All Y Y Y Y Y Y Y

Message
developer

Y Y

Message
assigner

Y

Operational
controller

Y Y Y Y Y

Subscription
admin

Y Y
Chapter 10. System management guidelines 281



users until the status of the resource is changed by checking in
the resource.

Shared A version of the configuration data that is shared by all the users
of the Control Center. Once resources are checked out to the
local workspace, they can be modified, and once modified
checked in.

Deployed This is the active version of configuration data that is
operational at the broker.

10.2.8.2 Managing message sets
MQSI applications are based on receiving messages from a queue, parsing
the contents in order to perform some function, then placing the message
back on a queue to go to the target application. The sending and receiving
applications know the format of the message. In order for MQSI to be able to
process the message, it also has to have an understanding of the message
structure.

There are two ways MQSI views a message: the logical view and the physical
view. The physical view is the physical content of the message. The logical
view of a message is the structure of a message: its fields, the order and the
relationship between the fields. In MQSI terms this is the message type.
Message types are grouped in message sets. You can think of a message set
as the collection of messages types used in a single application or project.

MQSI makes a distinction between self-defined messages and predefined
messages. Self-defined messages use the XML standard to structure their
content. We will also refer to this type of messages as generic XML
messages. To use self-defined messages you do not have to do anything
specific. For predefined messages, you need to make MQSI aware of the
logical view and the physical view of the message.

In MQSI, a message domain identifies the parser to use when a broker needs
to interpret message. There are four message domains:

• XML for self-defining messages
• MRM for messages defined using the Control Center
• NEON for messages defined using the NEONFormatter
• BLOB for messages that have no definition

Messages managed by the Message Repository Manager (MRM) domain are
managed in the Control Center using the Message Sets tab, shown in Figure
129. The definitions built here are stored in the message repository.
282 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 129. Message sets view

This view allows you to define the format of the messages using message
components, and group them into message sets. This will include the
specification of the custom wire format, and importing and exporting C
structures or COBOL copybooks. The left-hand pane shows a tree view of the
message sets in your workspace. The right-hand pane displays the properties
of the currently selected entry.

Once the message sets are built, they need to be deployed to the brokers that
will need them. The MRM builds a message dictionary for each message set
needed and sends it to the broker.

For detailed information on building message definitions, see MQSeries
Integrator Using the Control Center, SC34-5602.

10.2.8.3 Managing message flows
The logic of the MQSI application is structured using message flows.
Message flows are built, maintained, and deployed using the Control Center.
To create message flows or to work with their content, choose the Message
Flows tab. This view is shown in Figure 130.
Chapter 10. System management guidelines 283



Figure 130. The Message Flows view

The left-hand pane shows a tree view of the message flows and nodes, both
user defined and the IBM primitives, in your workspace. The right-hand pane
contains an arrangement of graphical symbols that represent the message
flow nodes in a selected message flow. Message flows are built by taking
nodes in from the left pane, dragging them to the right pane, defining their
properties, and then connecting their input and output terminals to other
nodes.

Message flow nodes are discussed in 7.4, “Message flow components” on
page 117. Creating message flows is discussed in 9.6, “Building the message
flows” on page 193.

10.2.8.4 Using the Topology view
The Topology view allows you specify the brokers you will be deploying
applications to. The broker is identified by its broker instance name. The
MQSeries queue name hosting the broker service is identified, giving MQSI a
way to communicate with the broker service. An example of this is shown in
12.8.1, “Connecting to the broker” on page 357.
284 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 131. The Topology view

The left-hand pane of the Topology view shows a tree view of the topology of
this broker domain. The right-hand pane contains an arrangement of
graphical symbols that represent the current topology.

In addition to defining the brokers to use, this tab also allows for the creation
of collectives. Once a broker has been defined within the Control Center, this
tab can be used to assign it to a collective, for it to be a part of a connected
publish/subscribe network. Once a broker has been assigned to a collective,
it can be connected to a broker in another collective to ensure that the
network of collectives is connected together.

10.2.8.5 Assigning message sets and message flows to a broker
Message flows need to be assigned to the brokers that will execute them.
Depending on the type of input the message flow will receive, the broker may
also need to have the appropriate message sets assigned to it. Message
flows are assigned to execution groups within a broker. A default execution
group exists, but you can define more.

The Assignments view allows you to assign message sets to a broker, create
execution groups, and assign message flows to an execution group.
Chapter 10. System management guidelines 285



Figure 132. The Assignments view

The left-hand pane of the Assignments view shows the current hierarchy of
brokers, execution groups, message flows, and message sets in your
workspace. The center pane shows the message sets and message flows in
your workspace. The right-hand pane shows the current assignment of
execution groups to brokers, of message flows to execution groups, and of
message sets to brokers in your workspace.

An example of creating an execution group and assigning a message flow to
it can be seen in 12.8, “Using the Control Center to deploy an application” on
page 355.

10.2.8.6 Deploying applications
The last step in building and activating an application is deployment. So far,
all the activities discussed under each Control Center view have only taken
place in the local copy of the configuration. In order for the broker to perform
any of the functions defined, they must be deployed to the broker. Data that
must be deployed includes assignments, topics data (publish/subscribe), and
topology data.

A complete deployment of any type of data deletes all the existing
configuration data for that data type from all brokers and creates a new
configuration.

A delta deployment deploys only the configuration data that has changed
from the currently deployed configuration. This is obviously a much less
286 User-to-Business Patterns with WebSphere Advanced and MQSI



drastic action and can save you a lot of time, depending on the size of the
data to be deployed and the number of brokers in the domain.

10.2.8.7 Operations
The Operations view provides a basic systems management interface for
managing the broker operations. This view will allow an authorized user to
see whether brokers, execution groups, and message flows are active or
quiesced, and will be able to perform the appropriate operations on these
entities.

Figure 133. The Operations view

The left-hand pane shows a tree view of the brokers in your broker domain.
The execution groups and message sets assigned to a broker are displayed
when you expand the broker. The message flows assigned to an execution
group are displayed when you expand the execution group.

The right-hand pane contains an arrangement of graphical symbols that
represent the current broker domain. Execution groups and message sets
appear inside the brokers to which they have been assigned. Message flows
appear inside the execution groups to which they have been assigned. The
brokers shown in the Operations view are those to which configuration data
has been deployed.

The color of the small icons to the right of the resource names indicate the
status, either running (green), stopped (red), or unknown (yellow).

In addition to monitoring the status of the MQSI broker domain, you can
perform the following actions from the Operations view:
Chapter 10. System management guidelines 287



• Start or stop:

- All message flows in all execution groups assigned to a specified
broker

- All message flows in a specified execution group
- A single message flow

• Control tracing for:

- For all message flows in a specified execution group
- For a single message flow

10.2.9 Resource definition management
The Control Center allows you to export and import the following resource
definitions types created for your broker domain:

• Topology definitions
• Topics
• Message flow definitions

When you export these definitions, an XML file is generated containing the
information retrieved from the configuration repository. You can use
definitions exported in this way to populate another configuration repository in
another broker domain by using the import function in the Control Center.

10.2.9.1 Exporting resources
When you export a workspace, all resources currently displayed in your
current workspace, including topology, message flows, and topics (but
excluding message sets), and all resources that they depend on, are
exported to an XML file, along with the workspace itself. The export file can
then be imported by other Control Center users.

Export does not permit the selection of resource types to export. You can only
export a complete workspace.

You export the workspace by selecting File->Export.

Message set definitions can also be exported and imported, but not from
the Control Center. You must use the MQSeries Integrator command,
mqsimrmimpexp, instead.

Note
288 User-to-Business Patterns with WebSphere Advanced and MQSI



10.2.9.2 Importing resources
You can import resources from an exported file into the local repository. To
import resources:

1. Click File -> Import. The import dialog is displayed as shown in Figure
134:

Figure 134. Resource import dialog

2. Specify the fully qualified name of the file to be imported in the Filename
field. The import file is examined and you are given a choice of what types
of resources to import (see the Import Resources panel inset in Figure
134). You cannot import individual resources. The import action imports all
the message flows, all the topics, or all the topology data, depending on
the type of resource you select.

3. Select the resource types and click Import. The file contents will be
imported and your current workspace will be replaced with the workspace
in the export file.

When the import action has completed, a report is displayed indicating how
many resources have been imported.

10.2.9.3 Message flow versioning utilities
If the application development standards and procedures at your site include
a source library system for source control and versioning, then consider
downloading and using MQSeries Integrator SupportPac IC01. IC01, called
the “MQSeries Integrator V2 - Message flow versioning utilities”, is comprised
of the following three utilities that enable you to manage your MQSeries
message flows in a source library system, such as CMVC:

• mqsifiltermsgflows takes an export file (exported from the Control
Center) and the name of a message flow, and creates a filtered export file
Chapter 10. System management guidelines 289



containing just the named message flow. It does not modify the original
export file. This filtered file may then be checked into a library system.

• mqsicombinemsgflows takes a list of filtered export files produced by
mqsifiltermsgflows and combines them into a single export file.

• mqsideletemsgflows looks at the message flows defined in the
workspace inside an export file, and deletes them directly from the
configuration repository (as long as none of the message flows are
locked).

A typical use of these utilities would allow you to save your message flows in
a source library system and then apply them as a set to a particular broker
domain. For example:

• On your development broker domain:

- Each time you modify message flows in the configuration repository,
export them to an export file using the Control Center.

- For each message flow in the export file, run mqsifiltermsgflows on the
export file and check the resulting file into your library system.

• On your production broker domain:

- Extract the latest version of all message flows from your library system
and merge them into a single export file using mqsicombinemsgflows.

- Run mqsideletemsgflows to remove existing message flows from the
configuration repository.

A comprehensive list of downloadable MQSeries Integrator SupportPacs,
including IC01, is available at:

http://www.software.ibm.com/ts/mqseries/txppacs/txpm4.html#mqi

10.2.10 MQSeries Integrator security
An important part of planning your broker domain is considering the security
controls that are available and the levels of security you want to implement
for those controls.

MQSeries Integrator exploits MQSeries and the operating system facilities to
control security for components and tasks:

• Topic-based security.

The MQSeries Integrator User Name Server interacts with the operating
system security system to control user and group access to publications
and subscriptions.
290 User-to-Business Patterns with WebSphere Advanced and MQSI



• Operational control of components.

MQSeries Integrator uses the operating system access control.

• Operational roles used in the Control Center.

MQSeries Integrator uses Windows NT access control. (The Control
Center runs on Windows NT only.)

The following sections describe the controls that are available, and how they
affect the operation of your broker domain.

10.2.10.1 Security and principals
Security control of MQSeries Integrator components, resources, and tasks
depends on the definition of users and groups of users (principals) to the
security subsystem of the operating system (the Windows NT User Manager
or the UNIX user/group database).

When MQSI is installed it automatically creates five groups in the operating
system’s security mechanism. Assigning a user to one or more of these
groups determines the MQSI tasks they are allowed to perform. The MQSI
groups are:

• mqbrkrs
• mqbrasgn
• mqbrdevt
• mqbrops
• mqbrtpic

In a UNIX environment, a user assigned to the MQSI mqbrkrs group and the
MQSeries mqm group is authorized to do the following tasks:

• Install/un-install MQSI. A superuser ID (root) is required.
• Create MQSI components using the MQSI create command.
• Start/stop MQSeries components.
• Run MQSI components (the service ID).

In a Windows NT environment:

• Users in the Administrators group can:

- Install and un-install MQSI
- Create MQSI components
- Start/stop MQSI components

• Users in the MQSI mqbrkrs group and MQSeries mqm group can:

- Run MQSI components (the service ID).
Chapter 10. System management guidelines 291



• A user must be assigned to at least one of the MQSI groups other than
mqbrkrs to run the Control Center. The particular group (or groups) the
user is assigned to maps to a Control Center role, determining the MQSI
authority the user possesses. MQSI roles are discussed in 10.2.8, “Control
Center operations” on page 278. Table 17 maps this relationship.

Table 17. Principal to role relationship

10.2.10.2 Using Windows NT security domains
MQSI draws principals from either a Windows NT local account security
domain, a Windows NT primary domain, or a Windows NT trusted domain.
For more information about Windows NT security domains, refer to the
Microsoft Web site at:

http://www.microsoft.com/ntserver/security/deployment/default.asp

In particular, review the contents of the Security Deployment Resources
Roadmap on this Web page.

10.2.10.3 MQSeries security
MQSI depends on a number of MQSeries resources to operate successfully.
You must control access to these resources to ensure that MQSI can access
the resources it needs, while limiting access to other users. Some
authorizations are granted automatically on your behalf when commands are
issued, primarily the authority to put messages on a queue and to retrieve
(get) messages from a queue. Others depend on the configuration of your
broker domain.

The transmission queues handling the message traffic between the MQSI
component queue managers must have put and setall authority granted to the
local mqbrkrs group or to the service user ID of the MQSI component.

Role Group

Message developer mqbrasgn

Message Assigner mqbrdev

Operational Controler mqbrops

subscription admin mqbrtpic

All mqbrasgn
mqbrdev
mqbrops
mqbrtpic
292 User-to-Business Patterns with WebSphere Advanced and MQSI



When you create, assign, and deploy a message flow you must grant the
following:

• get authority to each input queue identified in an MQInput node, for the
broker’s service user ID.

• put authority to each output queue identified in an MQOutput node, or by
an MQReply node, for the broker’s service user ID.

• get authority to each output queues identified in an MQOutput node or an
MQReply node to the user ID under which a receiving or subscribing client
application runs.

• put authority to each input queue identified in an MQInput node to the user
ID under which a sending or publishing client application runs.

MQSI security is discussed in more detail in MQSeries Integrator
Administration Guide, SC34-5792.

10.2.10.4 Database security
The Configuration Manager service user ID must be authorized for create and
update tasks on the database in which both configuration and message
repositories are defined.

Each broker service user ID must be authorized for create and update tasks
on the database that contains the broker internal tables. Each broker service
user ID must also be authorized for the appropriate access for every
database referenced and accessed by a message processing node in any
deployed message flow.

Of course, access to the above databases must be controlled and limited to
the designated Configuration Manager, broker and User Name Server service
IDs.

10.2.10.5 Application security
When you deploy a message flow on one or more brokers, applications can
start to feed messages into the message flow by putting messages to the
queue that is identified as the input queue. You set up the association
between the input node and the queue by setting the queue name as a
property of the node.

Similarly, applications access queues to receive messages placed on those
queues by MQOutput or Publication nodes, when the message flow has
completed processing for those messages.
Chapter 10. System management guidelines 293



The user IDs under which applications are executing must therefore be
authorized to write to, or read from, the queues used by the message flow the
applications are interacting with.

10.2.11 MQSeries Intergrator backup and recovery
This section describes the actions needed to recover from errors and restart
some or all of the components of your broker domain. It covers the following
topics:

• Making sure that messages aren’t lost
• Restart scenarios
• Backup
• Recovery scenarios

10.2.11.1 Making sure messages are not lost
It is important to safeguard messages flowing through your broker domain,
both application-generated messages and those used internally for
inter-component communication. MQSeries provides two techniques that
protect against message loss:

• Message persistence

If a message is persistent, MQSeries ensures it is not lost when a failure
occurs, by hardening it to disk.

• Syncpoint control

An application can request that a message is processed in an atomic
manner in a synchronized unit-of-work (UOW).

For more information about how to use these options, refer to MQSeries
System Administration, SC33-1873.

Broker internal messages
MQSeries Integrator components use MQSeries messages to communicate
events and data between broker processes and subsystems. The broker
exploits the available MQSeries to protect against message loss. Therefore,
you do not need to take any additional steps to configure MQSeries or
MQSeries Integrator to protect against loss of internal messages.

Application messages
If delivery of application messages is critical, you must design application
programs and the message flows they use to ensure that messages are not
lost.
294 User-to-Business Patterns with WebSphere Advanced and MQSI



The default action of a message flow is to respect the persistence of each
incoming message. The client program must specify the required message
persistence when it puts the message to the input queue of a message flow.

The default action of a message flow is to process incoming messages under
syncpoint in a broker-controlled transaction. This means that a message that
fails to be processed for any reason is backed out by the broker. Because it
was received under syncpoint, the failing message is reinstated on the input
queue and can be processed again.

If the error condition persists, the message continues to be passed through
the message flow and backed out, causing a processing loop. This is
repeated until the value of the MQMD BackoutCount parameter equals or
exceeds the value of the backout threshold for the input queue ( BOTHRESH
attribute). The BackoutCount is incremented automatically by MQSeries
every time a message is backed out.

MQSeries Integrator invokes backout processing by attempting to propagate
the message as follows:

1. To the failure terminal of the current node.
2. To the queue specified as the input queue’s backout requeue name

(BOQNAME queue attribute).
3. To the queue manager’s dead-letter queue (DLQ).

If none of these queues exist, the message cannot be handled safely without
risk of loss. The message cannot be discarded, so the message flow
continues to attempt to back out the message. It records the error situation by
writing errors to the Windows NT event log, or the AIX syslog.

10.2.11.2 Restart scenarios
This section illustrates the actions you must take to restart the runtime
components of MQSeries Integrator and other software on which they are
dependent.

Broker
If you need to restart a broker and its environment, do the following (in this
order):

1. Stop the broker using the mqsistop command.
2. Stop the broker’s queue manager using the endmqm command.
3. Stop the database manager. Refer to the documentation for your database

for instructions on how to complete this task.
4. When everything has stopped, components must be restarted in the

following order:
Chapter 10. System management guidelines 295



a. Start the database manager.
b. Start the broker using the mqsistart command. This automatically

restarts the queue manager.

The broker does not tolerate abnormal or out-of-sequence termination of the
MQSeries queue manager or the database manager. If this occurs, the broker
must be stopped using the mqsistop command, and all components restarted
in the order listed.

If the problem is caused by the queue manager stopping, reissue the
MQSeries endmqm command specifying the immediate option (i ) before
issuing mqsistop.

You do not have to restart the broker execution group processes if they
terminate abnormally, because the broker does this automatically.

Configuration Manager
The Configuration Manager operates independently of the brokers, and can
be stopped and restarted without affecting the operation of other MQSeries
Integrator components in the broker domain. If you need to restart the
Configuration Manager and its environment, do the following:

1. Stop the Configuration Manager using the mqsistop command.
2. Stop the MQSeries queue manager using the endmqm command.
3. Stop DB2.

It is recommended that you complete these tasks in the order shown, but the
Configuration Manager tolerates the queue manager and DB2 stopping first.

When everything has been stopped, do the following actions in this order:

1. Restart DB2.
2. Restart the Configuration Manager using the mqsistart command. This

automatically restarts the queue manager.

If you restart the Configuration Manager first, it will automatically retry its
initialization until DB2 is started.

The Configuration Manager also tolerates abnormal termination of the
MQSeries queue manager and DB2. If the Configuration Manager detects
that either has terminated abnormally, it restarts automatically. If either DB2
or MQSeries, or both, are not up and running, initialization is automatically
retried every 30 seconds until it is successful.
296 User-to-Business Patterns with WebSphere Advanced and MQSI



User Name Server
The User Name Server operates independently of the brokers, and can be
stopped and restarted without affecting the operation of other MQSeries
Integrator components in the broker domain. If you need to restart the User
Name Server and its environment, do the following:

1. Stop the User Name Server using the mqsistop command.
2. Stop the MQSeries queue manager using the endmqm command.

It is recommended that you complete these tasks in the order shown, but the
User Name Server tolerates the queue manager stopping first.

When everything has been stopped, restart the User Name Server using the
mqsistart command. This automatically restarts the queue manager.

The User Name Server also tolerates abnormal termination of the MQSeries
queue manager. If this occurs, the User Name Server restarts automatically.
If MQSeries is not up and running, initialization is retried every 30 seconds until
it is successful.

10.2.11.3 Backing up the MQSeries Integrator components
Brokers and the Configuration Manager rely on a database manager to
maintain and control all their configuration data. Brokers, the Configuration
Manager, and the User Name Server rely on MQSeries to transport and
guarantee messages between components. You must establish a backup
process that includes these sources of information to preserve the integrity
and consistency of your broker domain.

• Back up MQSI database tables frequently and on a regular basis to
prevent loss of configuration data if damage occurs. All configuration
repository tables, all message repository tables, and the following broker
database tables should be included in the backup:

- BSUBSCRIPTIONS
- BCLIENTUSER
- BUSERCONTEXT
- BRETAINEDPUBS
- BPUBLISHERS
- BMQPSTOPOLOGY

The remaining broker database tables will be created when the broker
domain is restarted and the Configuration Manager redeploys the
configuration.

These backups should be coordinated so a consistent image is available
for recovery.
Chapter 10. System management guidelines 297



• Back up any user-defined database tables used by the message flows.

• Back up the MQSeries configuration data. See MQSeries System
Administration, SC33-1873 for further details.

• Consider backing up files that are created by users of the Control Center.
When a Control Center user saves a workspace, the workspace XML
document, any newly created objects, and any checked-out objects are
saved to the local file system. Instruct the users to back up this local file
system.

10.2.11.4 Recovery scenarios
You can recover the runtime components of MQSeries Integrator if the
environment becomes damaged (for example, if MQSeries objects used by
the broker are damaged), or if database contents are damaged.

Broker
If the environment for a particular broker becomes damaged, or if one or
more of the broker database tables are unusable, you must perform the
following sequence of operations to recover it:

1. Ensure that no Control Center users are deploying to brokers. You must
wait until these actions have completed.

2. Stop the broker using the mqsistop command.
3. Stop the broker’s queue manager using the endmqm command.
4. If there is no damage to any of the broker database tables listed in

10.2.11.3, “Backing up the MQSeries Integrator components” on page
297, take a backup of these tables. These tables are interdependent and
must all be in a consistent state when restored. You cannot back up or
restore individual tables.

5. Delete the broker using the mqsideletebroker command or the Command
Assistant.

6. Recreate the broker using the mqsicreatebroker command or the
Command Assistant.

7. Restore the broker database tables saved in step 4, or from a previous
backup if necessary.

8. Start the broker using the mqsistart command.
9. Restart the Control Center if it is not currently running. Select the Topology

view.
10.Redeploy the domain configuration by selecting File->Deploy->Complete

configuration (all types)->Normal to ensure that the configuration
across the broker domain is consistent.
298 User-to-Business Patterns with WebSphere Advanced and MQSI



Configuration Manager
If the Configuration Manager environment is damaged, or one or more of the
database tables are corrupted, you must perform the following sequence of
operations to recover it:

1. Ensure that all Control Center sessions are stopped.
2. Stop the Configuration Manager using the mqsistop command.
3. Stop the Configuration Manager’s queue manager using the endmqm

command.
4. Delete the Configuration Manager using the mqsideleteconfigmgr

command or the Command Assistant:
a. If you are recovering the Configuration Manager because one or more

of the configuration repository or message repository tables is
damaged, you must include the .n and . m flags on the
mqsideleteconfigmgr command.

b. If the database tables are undamaged, you must omit the .n and . m 
flags. This preserves your configuration data in both repositories.

5. If you are recovering the Configuration Manager because one or more of
the configuration repository or message repository tables is damaged, you
must restore both repositories from a previously successful backup
version. The data in the two repositories is interdependent, and you must
restore the entire contents of both. You cannot restore individual tables.

6. Recreate the Configuration Manager using the mqsicreateconfigmgr

command or the Command Assistant.
7. Start the Configuration Manager using the mqsistart command.
8. Start the Control Center, and select the Topology view.
9. If you have completed Steps 4a and 5 you must also redeploy the domain

configuration by selecting File->Deploy->Complete configuration (all
types)->Normal to ensure that the configuration across the broker domain
is consistent.

User Name Server
If the User Name Server environment becomes damaged, you must perform
the following sequence of operations to recover it:

1. Stop the User Name Server using the mqsistop command.
2. Stop the User Name Server’s queue manager using the endmqm command.
3. Delete the User Name Server using the mqsideleteusernameserver

command or the Command Assistant.
4. Recreate the User Name Server using the mqsicreateusernameserver

command or the Command Assistant.
5. Start the User Name Server using the mqsistart command.
Chapter 10. System management guidelines 299



10.2.12 MQSeries Integrator monitoring
MQSeries Integrator provides facilities that assist in centralized system
management. These facilities support the following tasks:

• Monitoring of the status and activity of MQSeries Integrator system
components (brokers, the Configuration Manager and the User Name
Server). For example, reports are generated whenever a broker starts or
stops.

• Monitoring of the status and activity of execution groups.

• Monitoring of the status and activity of message flows.

MQSeries Integrator generates reports (similar in function to MQSeries
events in 10.1.6.1, “Instrumentation events” on page 258) to provide
information about the operation and status of the broker domain. The nature
and format of these report messages, in XML, is described in detail in
Appendix A, “Event reporting” of the MQSeries Integrator Administration
Guide, SC34-5792. The report messages are published with specific
associated topics, enabling a center of competence anywhere in the
MQSeries network to support the broker domain by simply subscribing to
these topics.

There are several vendors that provide MQSI and MQSeries monitors. If your
organization has already invested in an MQSeries monitor, check to see if
that vendor also provides an MQSI monitor. When selecting an MQSI monitor,
make sure it is a good fit within your existing enterprise-wide middleware and
system management framework.
300 User-to-Business Patterns with WebSphere Advanced and MQSI



Part 3. Working example
© Copyright IBM Corp. 2000 301



302 User-to-Business Patterns with WebSphere Advanced and MQSI



Chapter 11. Introduction to the working example

A simple application was developed for this project and implemented on the
base and variation 1 topologies for AIX and Windows NT. The design of the
MQSI portion of this application is discussed in Chapter 9, “Developing the
MQSI application” on page 183. In this part of the book, we will be describing
the methods used to implement the application using WebSphere Advanced
Edition, MQSeries, and MQSI.

11.1 Sample application

The sample WebBank application described in Chapter 8, “Application
development guidelines” on page 141 allows a banking customer to retrieve
and update their customer profile. This application demonstrates how
MQSeries Integrator can be configured to handle multiple updates to
back-end system databases, while also maintaining a local cache of data for
reasons of performance and integrity.

We have two versions of the application. In one, Java servlets and command
beans use the MQSeries classes for Java to put messages onto and get
messages from MQSeries queues. In the second version, the application
uses JMS for MQSeries.

11.1.1 Application flow
The first thing a user will see when accessing the application will be a window
asking for a user ID and password.
© Copyright IBM Corp. 2000 303



Figure 135. Initial login window

Once logged in, the user is presented with a screen showing several options.
The only option we have implemented in this book is option 2a, which allows
you to view your profile and to change it.
304 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 136. Welcome window

When this option is chosen, the profile information is taken from a database
local to the broker used as a cache database, ITSOCUST. If the data has not
been previously cached, it is taken from one of the back-end account
databases. Updates to the address are sent to all three databases. This
illustrates the use of a cache database, and translation to different formats
since the two account back-end databases (savings and checking) store the
profile in different formats.

11.2 Runtime topologies

In our lab we set up an environment that could be used to show the basic
runtime topology and its variation for application topology 5.

The basic runtime topology has the WebSphere Application Server in the
DMZ. The servlet in WebSphere uses MQSI as a router. MQSI is in the
internal network.
Chapter 11. Introduction to the working example 305



Figure 137. Basic topology

The variation moves WebSphere into the internal network for added security
and uses a redirector function in the DMZ to route requests from the Web
server to WebSphere.

Demilitarized Zone
192.168.10.xx

Outside world
172.xx.xx.xx

Fi
re

w
al

l

F
ir

ew
al

l

Internal network
9.24.104.xx

I
N
T
E
R
N
E
T

User
Node

WebSphere
"WEBAPP1"

DB2

"DBSRV"
SecureWay
Directory

"LDAP"

Servlets/JSPs/
command bean

ITSOCMDB
ITSOMRDB

ITSOCUST
ITSOCHEC

ITSOBKDB
ITSOSAVI

"CONFMGR1"
MQSI CM

"BROKER1"

MQSI Broker

"UNAME1"

MQSI User
Name Server
306 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 138. Variation 1

11.2.1 Product documentation, software, and support
Product documentation can be found at the following Web sites:

• Documentation for MQSeries and MQSI can be found at:

http://www.ibm.com/software/ts/mqseries/library/

• Documentation for WebSphere can be found at:

http://www.ibm.com/software/webservers/library.html

• Documentation for DB2 can be found at:

http://www.ibm.com/software/data/pubs/

Product maintenance and upgrades can be found at the following Web sites:

• Software fixes and upgrades for WebSphere Application Server can be
found at:

http://www.ibm.com/software/webservers/appserv/support.html

• Software fixes and upgrades for MQSeries can be downloaded from:

http://www.software.ibm.com/ts/mqseries/support/summary/wnt.html

• The MQSeries support pacs can be downloaded from:

DMZ
192.168.10.xx

Outside world
172.xx.xx.xx

F
ir

ew
al

l

F
ir

ew
al

l

Internal network
9.24.104.xx

I
N
T
E
R
N
E
T

User
Node

WebSphere
"WEBAPP1"

Scenario 2
Servlets/JSPs

DB2

"DBSRV"
SecureWay
Directory

"LDAP"

ITSOCMDB
ITSOMRDB

ITSOCUST
ITSOCHEC

ITSOBKDB
ITSOSAVI

Redirector

"CONFMGR1"
MQSI CM

"BROKER1"

MQSI Broker

"UNAME1"

MQSI User
Name Server
Chapter 11. Introduction to the working example 307



http://www-ibm.com/software/ts/mqseries/txppacs/

The MQSeries SupportPac MA88 providing the MQSeries classes for Java
and MQSeries classes for Java Message Service (JMS) can be found
under category 3 product extensions.

• Microsoft patches can be downloaded from:

http://support.microsoft.com/directory/

• MQSeries Integrator patches can be found at:

http://www.ibm.com/software/ts/mqseries/support/summary/mqsi.html

11.3 Web application server

The system labeled WEBAPP1 represents the Web application server in the
basic topology (Figure 137 on page 306) and the application server in
variation 1 (Figure 138 on page 307). WEBAPP1 will provide the interface to
the user and will host servlets, JSPs, and EJBs.

Regardless of whether WEBAPP1 is in the DMZ, as in the basic topology, or
in the internal network as shown in variation 1, the install is basically the
same. The exception will be in the Web server plug-in. You will need the
plug-in in the basic configuration, since the Web server and WebSphere are
on the same machine. In variation 1, WEBAPP1 is acting only as an
application server and will not require the plug-in. In this case, the plug-in and
Web server both reside on the redirector node.

In this instance our application is acting as an MQSeries client, meaning the
application places messages directly on MQSeries queues on remote
systems. This may not always be preferable. You could install MQSeries on
the WebSphere machine and have the application place the messages on a
local queue. This would add the full benefits of MQSeries to the WebSphere
machine (load balancing, asynchronous messaging, etc.).
308 User-to-Business Patterns with WebSphere Advanced and MQSI



11.3.1 Web application server running on Windows NT
The following table summarizes the software used to implement our
application on the Web application server running on Windows NT.

Table 18. Web application server requirements for Windows NT

Product Installed Instructions

Windows NT 4.0 + SP6a

DB2 6.1 + Fixpak 4 Included with the WebSphere Advanced install.
DB2 is needed for the WebSphere administrative
repository. The database can be local to WebSphere or
remote. WebSphere 3.5 also includes the option to use
install InstantDB instead of the full DB2, which gives you
just enough function for WebSphere to operate.

JDK 1.2.2 Included with the WebSphere Advanced 3.5 install.

IBM HTTP Server 1.3.12 Included with the WebSphere Advanced 3.5 install.

WebSphere Advanced
3.5

Choose full installation for the basic topology.
For variation 1 choose Custom Installation and
select:
- Application and Administrative Server
- Administrator's Console
- Samples
- IBM JDK 1.2.2
- Configure default server and Web application

MQSeries SupportPac
MA88

The application will need these classes. They can be
copied in with the application or installed as a package.

Banking application See Chapter 13, “WebSphere Application Server setup”
on page 371.

Note: The software shown here reflects the software levels we chose to use,
sometimes exceeding the minimum requirements. Check the product installation
manuals for the minimum software requirements.
Note: For variation 1 you will also need to install build a Web server redirector.
Chapter 11. Introduction to the working example 309



11.3.2 Web application server running on AIX
The following table summarizes the software used to implement our
application on the Web application server running on AIX.

Table 19. Web application server requirements for AIX

11.4 MQSI broker

The system labeled BROKER1 in Figure 137 on page 306 and Figure 138 on
page 307 is an MQSI broker running on an MQSeries cluster. It has access to
a DB2 database used for caching updated customer profiles and for looking
up bank account access information based on the user ID entered by the
user.

Product Installed Instructions

AIX 4.3.3 + maintenance
level 4

DB2 6.1 DB2 is needed for the WebSphere administrative
repository. The database can be local to WebSphere or
remote.

IBM HTTP Server 1.3.12 Included with the WebSphere Advanced 3.5 install.

WebSphere Advanced
3.5

From the Install Options window, select Custom
Installation and select:
- Production Application Server
- Administrator's Console
- Documentation
- Samples
- Configure admin domain with the default applications
- The appropriate Web server plug-in.

MQSeries SupportPac
MA88

The application will need these classes. They can be
copied in with the application or installed as a package.

Banking application See Chapter 13, “WebSphere Application Server setup”
on page 371.

Note: The software shown here reflects the software levels we chose to use,
sometimes exceeding the minimum requirements. Check the product installation
manuals for the minimum software requirements.
310 User-to-Business Patterns with WebSphere Advanced and MQSI



11.4.1 Running the broker on Windows NT
The following table summarizes the software installed for the MQSI broker
running on Windows NT.

Table 20. MQSI broker requirements for Windows NT

11.4.2 Running the broker on AIX
The following table summarizes the software we installed on the AIX system
to run the MQSI broker.

Table 21. MQSI broker requirements for AIX

Product Installed Instructions

Windows NT 4.0 + SP6a

DB2 6.1 + Fixpak 4 Included on the MQSI CD and can be installed as part
of the MQSI install process. DB2 is needed for the
broker database. The database can be local or remote.

MQSeries 5.1 + CSD05 Choose Typical Install
The MQSeries install will call for the following prereqs:
-Active Directory Service (ADSI) V2.0
-Microsoft Management Console 1.1
Both are included on the MQSeries CD.

MQSeries Integrator 2.0.1
+ IC27806

Choose Custom Install:
- Broker Only
- Choose appropriate database type for Neon support
For configuration setup see:
12.3, “MQSI database setup” on page 322
12.7, “MQSI broker setup” on page 345

Banking application See Chapter 12, “MQSeries and MQSI implementation”
on page 319.

Note: The software shown here reflects the software levels we chose to use,
sometimes exceeding the minimum requirements. Check the product installation
manuals for the minimum software requirements.

Product Installed Instructions

AIX V4.3.3 + maintenance
level 4

DB2 6.1 + Fixpak 4 Included with the MQSI.
DB2 is needed for the broker database. The database
can be local or remote.
Chapter 11. Introduction to the working example 311



11.4.3 MQSI service
There are two APARs open for the Windows NT and UNIX environment that
should be installed on the MQSI broker when available. They fix a problem
that occurs when doing a full deployment of an application to the broker. For
Windows NT, the APAR number is IC27806. For AIX, the APAR number is
IY12651. You can circumvent the problem by always performing a delta
deployment from the Control Center.

11.5 MQSI Configuration Manager

The MQSI Configuration Manager only runs on Windows NT. The following
table summarizes the software used for our application on the Configuration
Manager running on Windows NT.

Table 22. MQSI Configuration Manager requirements for Windows NT

MQSeries 5.1 + CSD05 Minimum level is CSD04. In our lab we installed CSD05
(U69691) downloaded from:
http://www.software.ibm.com/ts/mqseries/suppo
rt/summary/aix.html.

JDK 1.1.8 + minimum
service level PTF8

Included with AIX 4.3.3

MQSeries Integrator 2.0.1
+ IY12651

Banking application See Chapter 12, “MQSeries and MQSI implementation”
on page 319.

Note: The software shown here reflects the software levels we chose to use,
sometimes exceeding the minimum requirements. Check the product installation
manuals for the minimum software requirements.

Product Installed Instructions

Windows NT 4.0 + SP6a SP5 is the minimum required level.

DB2 6.1 + Fixpak 4 Included with the MQSI.
DB2 is needed for the broker database. The database
can be local or remote.

Product Installed Instructions
312 User-to-Business Patterns with WebSphere Advanced and MQSI



11.6 User Name Server

The system labeled UNAMEx represents a User Name Server. It is used for
publish/subscribe and in this case as a second cluster repository. It is not
required for this sample, but we included it in the Windows NT scenario
because it is likely that a full MQSI installation will use publish/subscribe and
thus will need a User Name Server.

11.6.1 Running the User Name Server on Windows NT
The following table summarizes the software used for the MQSI User Name
Server running on Windows NT.

Table 23. MQSI User Name Server requirements for Windows NT

MQSeries 5.1 + CSD05 CSD04 is the minimum required level.
Choose Typical Install.
The MQSeries install will call for the following prereqs:
-Active Directory Service (ADSI) V2.0
-Microsoft Management Console 1.1
Both are included on the MQSeries CD.

MQSeries Integrator 2.0.1 Custom install:
- Configuration Manager
For setup information see:
12.3, “MQSI database setup” on page 322
12.5, “MQSI Configuration Manager setup” on page 330

Banking application See Chapter 12, “MQSeries and MQSI implementation”
on page 319.

Note: The software shown here reflects the software levels we chose to use,
sometimes exceeding the minimum requirements. Check the product installation
manuals for the minimum software requirements.

Product Installed Instructions

Windows NT 4.0 + SP6a SP5 is the minimum required level.

** The Control Center can be installed on any Windows NT system.

Note: The software shown here reflects the software levels we chose to use,
sometimes exceeding the minimum requirements. Check the product installation
manuals for the minimum software requirements.

Product Installed Instructions
Chapter 11. Introduction to the working example 313



11.7 Database server

The DB2 server logically represents one or more database servers. In our
example we use one DB2 server for all DB2 requirements, including the
databases required by MQSI and the application.

11.7.1 Running DB2 on Windows NT
The following table summarizes the software installed for the DB2 server
running on Windows NT.

Table 24. DB2 Server requirements for Windows NT

MQSeries 5.1 + CSD05 CSD04 is the minimum required level.
Choose Typical Install.
The MQSeries install will call for the following prereqs:
-Active Directory Service (ADSI) V2.0
-Microsoft Management Console 1.1
Both are included on the MQSeries CD.

MQ base Java from
MQSeries SupportPac
MA88

Needed for the Control Center

MQSeries Integrator 2.0.1 Custom install:
- User Name Server
- Control Center **
For setup information see:
12.4, “MQSI User Name Server setup” on page 324

Product Installed Instructions

Windows NT 4.0 + SP6a SP5 is the minimum required level.

DB2 6.1 + Fixpak 4 Included with MQSI.

Banking application and
MQSI databases

See 12.3, “MQSI database setup” on page 322 and
12.9.1, “Create the application databases” on page 366.

Note: The software shown here reflects the software levels we chose to use,
sometimes exceeding the minimum requirements. Check the product installation
manuals for the minimum software requirements.

Product Installed Instructions

** The Control Center can be installed on any Windows NT system.

Note: The software shown here reflects the software levels we chose to use,
sometimes exceeding the minimum requirements. Check the product installation
manuals for the minimum software requirements.
314 User-to-Business Patterns with WebSphere Advanced and MQSI



11.7.2 Running DB2 on AIX
The following table summarizes the software installed for the DB2 server
running on AIX.

Table 25. DB2 Server requirements for AIX

11.8 Planning user IDs

When planning the user IDs for this lab setup, we decided to keep things
simple by using a small number of user IDs that had a wide range of authority.
This is an acceptable approach in a test environment; however, in a
production system, user IDs and authorities should be carefully thought out.
More information on the required IDs and authorities can be found in the
MQSeries Integrator Administration Guide, SC34-5792.

There are several roles in this pattern that need to be identified and a user ID
assigned:

• System administrator user ID. This will be used primarily to install the
products and to set up system security.

• MQM administrator user ID. This will be used to administer the MQSeries
environment.

• DB2 administrative user ID. This will be used to define the repository and
application databases.

• MQSI service ID. This will be used to run the MQSI components.

• MQSI developer IDs. These are the people who will perform different
development roles in the MQSI Control Center.

• WebSphere service ID. The WebSphere administrative server and
application servers will run under this ID. It will be used by the operating
system to determine access to resources such as files and sockets. If you

Product Installed Instructions

AIX 4.3.3 + maintenance
level 4

DB2 6.1 + Fixpak 4 Included with MQSI.

Banking application and
MQSI databases

See 12.3, “MQSI database setup” on page 322 and
12.9.1, “Create the application databases” on page 366.

Note: The software shown here reflects the software levels we chose to use,
sometimes exceeding the minimum requirements. Check the product installation
manuals for the minimum software requirements.
Chapter 11. Introduction to the working example 315



are using the operating system registry as the authentication mechanism
for checking the identity, then:

- On UNIX platforms, the account must have administrative privileges.
- On Windows NT, the account must be a member of the Administrators

group and must have the rights to "Log on as a service" and to "Act as
part of the operating system."

Do not use an account whose name matches the name of your machine or
Windows domain. The WebSphere administrative server will not work in
such a case.

If you are using an LDAP directory service for authentication, then the
process identity does not need any special privileges.

11.8.1 User IDs for the Windows NT mapping
The first ID we defined is itsouser , which will play multiple roles in our
environment, including all administrator and service roles with the exception
of DB2. This ID can either be defined on each system or be known to the
Windows NT security domain. This ID is a member of the following groups:

• Administrators:

- This allows th user to install software, create/delete/change/start the
MQSI components (broker, etc.).

• mqm:

- Allows the user to administer MQSeries queues, issue MQSeries
control commands, and use MQSeries Explorer (being in the
adminstrator group will accomplish this too). For remote queue
administration, itsouser must also be authorized on the remote
systems.

• mqsibrkrs:

- Allows the user to run the components (act as the service ID).
Membership in both mqsibrkrs and mqm is required to act as the
service ID for the Configuration Manager, and if fastpath is set on, the
broker.

- List and trace components

• mqbrasgn, mqbrdevt, mqbrops, mqbrtpic:

- Allows the user to run the Control Center. Different roles require
specific group membership. See 10.2.10, “MQSeries Integrator
security” on page 290 and 10.2.8, “Control Center operations” on page
278 for more information.
316 User-to-Business Patterns with WebSphere Advanced and MQSI



The itsouser ID is also granted the required access to the MQSI
administrative databases and application databases.

The second user ID we identified is db2admin, which will act as the DB2
administrator. This ID is created during DB2 installation. It is a member of the
Administrators group.

A third user ID, MUSR_MQADMIN is automatically created and put in the
mqm group during MQSeries installation. This requires no action on your
part.

11.8.2 User IDs for the AIX mapping
The first ID we defined in our AIX environment is mqsi. This ID will be created
on all the systems and will play multiple roles in our environment, including
MQSeries, and MQSI administrator. On the DB2 system, it is granted access
to the MQSI and user databases.

In the AIX broker, we have the following groups:

• mqsibrkrs:

- Allows the mqsi user ID to run the components (act as the service ID)
and act as the MQSI administrator.

- List and trace components

• mqm:

- Allows the mqsi user ID to administer MQSeries queues and issue
MQSeries control commands. For remote queue administration
itsouser must also be authorized on the remote systems.

Note: For convenience, we added root to mqsibrkrs.

Two IDs are automatically created during product installation. During DB2
installation, a user ID, db2inst1 in our case, is created as the DB2
administrator. The user ID mqm in group mqm is automatically created during
MQSeries installation.

The MQSI Configuration Manager and Control Center both run on Windows
NT, so the mqsi user ID must also be defined to the Windows NT domain.
Chapter 11. Introduction to the working example 317



An overview of the user IDs in the AIX broker is shown in Table 26.

Table 26. MQSI broker user IDs and groups

Users
Groups

mqm mqbrkrs

root x x

mqm x

mqsi x x
318 User-to-Business Patterns with WebSphere Advanced and MQSI



Chapter 12. MQSeries and MQSI implementation

To verify that the sample application would work in the recommended runtime
topologies, we set up four environments, using each topology (basic and
variation 1) in both a Windows NT and an AIX environment. This chapter
documents the steps taken to set up the MQSeries and MQSI systems. The
setup is the same for each topology since the MQSeries/MQSI systems
always reside in the internal network. Once you get past the system
considerations involving installation, the setup is basically the same for both
operating systems used. Therefore, we will cover the setup steps once,
pointing out any differences between Windows NT and AIX.

12.1 Lab environment

In our test lab we implemented the following:

• A Configuration Manager on Windows NT
• A User Name Server on Windows NT (optional - needed for

publish/subscribe)
• Brokers on Windows NT and AIX
• Database servers on Windows NT and AIX

Our MQSI networks were built using a cluster of MQSeries queue managers.

12.1.1 Windows NT test configuration
In the Windows NT test environment, we chose to include a User Name
Server, even though we were not using publish/subscribe. Our thinking is that
publish/subscribe is an important feature for many MQSI installations and
readers would benefit from seeing the User Name Server included. We will
not, however, cover the User Name Server implementation.

In this scenario, the MQSeries cluster repository queue managers will be
located on the same machines hosting the MQSI User Name Server and the
Configuration Manager. One queue manager on each machine will support
both the cluster repository and the MQSI administrative functions. To support
the broker service, a third queue manager is created as a member of the
cluster, and is configured to refer to the User Name Server queue manager
for its repository information.
© Copyright IBM Corp. 2000 319



Figure 139. Variation 1 using Windows NT

We will use topology variation 1 to illustrate our environment for Windows NT.

12.1.2 AIX test configuration
Our configuration for the AIX environment is slightly different in that we did
not choose to install a User Name Server. The MQSeries cluster repository
will be held by the queue managers that will also be performing the MQSI
Configuration Manager and broker duties.

Not all of the MQSI components are available on AIX. The MQSI
Configuration Manager and Control Center must run in a Windows NT
environment. See Table 27 for a summary of the installation options for AIX.

DMZ
192.168.10.xx

Outside world
172.xx.xx.xx

Fi
re

w
al

l

Fi
re

w
al

l

Internal network
9.24.104.xx

I
N
T
E
R
N
E
T

User
Node

"CONFMGR"

MQSI
Configuration

Manager

Cluster
Repository

DB2

"DB2SRVR"

SecureWay
Directory

"23-FF412"

MQSIBKDB

Redirector

"UNAME"

MQSI Control Center
MQSI User Name Server

Custer Repository

"23BK60H" ITSOCUST
ITSOCHEC
ITSOSAVI

MQSICFG
MQSIMRM

WebSphere

Servlets/JSPs
"BROKER1"

MQSI broker

ITSO.CLUSTER
320 User-to-Business Patterns with WebSphere Advanced and MQSI



Table 27. Summary of installation options

Figure 140. AIX Variation 1

Product Component System Install on

MQSI For AIX V2.0.1 Configuration Manager Windows NT only

Control Center Windows NT only

Broker AIX only

User Name Server AIX or Windows NT

SDK AIX only

Windows NT
Documentation

Windows NT only

UNIX Documentation Copy from
mqsi_aix_documentation
on CD

DMZ
192.168.10.xx

Outside world
172.xx.xx.xx

F
ir

ew
al

l

F
ir

ew
al

l

Internal network
9.24.104.xx

I
N
T
E
R
N
E
T

User
Node

WebSphere

"RS600036"

Servlets/JSPs "RS600014"

MQSI Broker

SecureWay
Directory

"23-FF412"

Redirector

"23BK60H"

"23BK59Z"

MQSI
Configuration

Manager
MQSI Control

Center

DB2

"RS600033"

MQSIBKDB

PROFILE
CHECKING
SAVINGS

ITSOCUST
ITSOCHEC
ITSOSAVI

MQSICFG
MQSIMRM

MQSI_CLUSTER
Chapter 12. MQSeries and MQSI implementation 321



12.1.3 MQSeries and MQSI configuration methods
There are several ways of actually configuring the machines for MQSeries
and MQSI. To configure MQSeries components (queue managers, channels,
etc) and to control them (start/stop) you can use several methods.

• MQSeries Explorer
• Control commands
• MQSC commands

MQSI provides a Control Center for configuration and operation and also has
line commands available. For a discussion on these methods see 10.1.1,
“MQSeries administration interfaces” on page 240.

In this chapter we will use a mixture. In addition, we have created scripts that
can be used to set up the environment multiple times. See Appendix E,
“Using the additional material” on page 409 for information on how to obtain
these scripts.

12.2 Defining user IDs

Before starting the configuration of your MQSeries and MQSI network, it is
important to choose the user IDs that will be used to fulfill each role. Some of
these user IDs will need to be defined before installation. Others will not need
to be in place until configuring each product.

Our decisions on which user IDs to use and the roles they will play are
discussed in 11.8, “Planning user IDs” on page 315.

12.2.1 MQSI:
The user IDs needed for MQSI will need to be defined on each machine
before creating the MQSI components. The MQSI groups will be defined
automatically during installation.

12.2.2 DB2 server:
The DB2 administrator ID is chosen and defined at DB2 install time. Any
users you grant database authority to must be known to the DB2 server.

12.3 MQSI database setup

The MQSI Configuration Manager and broker services use databases for
administration. The options for defining these databases and combining them
are discussed in 10.2.6, “MQSI databases” on page 273. In our scenario we
322 User-to-Business Patterns with WebSphere Advanced and MQSI



chose to create a distinct DB2 database for each component, message
repository, configuration repository, and broker persistent store.

These databases can be local to the MQSI component or remote. We chose
to put all of these databases on a DB2 server and define them to DB2 clients
on each MQSI system. There are performance implications to consider when
deciding where to locate the MQSI databases. In our test lab, performance
was not an issue, but in a real network, performance is one of the most
important issues. See 7.2.3, “Placement of MQSI databases” on page 113 for
more information on this.

The following privileges need to be granted for the user ID that the MQSI
service will run under to each database:

• connect
• createtab
• bindadd
• create_not_fenced

DB2 commands can be used to create the databases and grant the required
authority.

The DB2 commands shown in Figure 141 should be executed on the DB2
server for each MQSI component database.

DB2 commands can be executed from the DB2 command line processor
window by selecting:

Start->DB2 for Windows NT->Command Line Processor

Windows NT DB2 server

Log on to the DB2 server machine with the DB2 instance user ID (in our
case db2inst1), or switch to the DB2 instance user ID (su - db2inst1).

Enter:

DB2

You will now be in command line mode and can enter DB2 commands.

AIX DB2 server
Chapter 12. MQSeries and MQSI implementation 323



Figure 141. DB2 commands to create the MQSI administrative databases

In these commands:

• dbname will be the database name chosen for each database.

• db2admin_id and db2admin_pw are the DB2 administrative user ID and
password authorized to create databases on the DB2 server and to grant
authorities. This user ID will have DBADM authority to the databases.

• mqsiuser is the user ID that the relevant MQSI service will run under. You
will see this in later steps when we create the Configuration Manager
service and the broker service.

The database names chosen for our scenario can be seen in Figure 139 on
page 320 and Figure 140 on page 321. For example, to create the broker
database for the Windows NT scenario shown in Figure 139, we would enter
the following commands:

Figure 142. Create the broker database for the Windows NT basic topology

12.4 MQSI User Name Server setup

The next node to set up is the MQSI User Name Server. In our scenario we
only used this in the Windows NT environment. For our purposes the User
Name Server machine will be used as a cluster repository. It will not
participate in the application.

At the end of the User Name Server setup procedures, you will have the
MQSeries and MQSI infrastructure shown in white in Figure 143.

create db dbname
connect to dbname user db2admin_id using db2admin_pw
grant connect, createtab, bindadd, create_not_fenced on database to user mqsiuser
connect reset

create db mqsibkdb
connect to mqsibkdb user db2admin using db2admin
grant connect, createtab, bindadd, create_not_fenced on database to user itsouser
connect reset
324 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 143. User Name Server

The first step in setting up the User Name Server is to set up the MQSeries
infrastructure.

12.4.1 Create the queue manager
The first step involves using the MQSeries Explorer to define the MQSeries
infrastructure needed on this system. This involves creating a default queue
manager, which we called ITSO.QM.US.

The following steps were used to define the MQSeries definitions required for
the MQSI User Name Server.

1. Click Start->Programs->IBM MQSeries->MQSeries Explorer.

2. Right-click Queue Managers and select New->Queue Manager.

MQSI Configuration
Manager

MQSI Broker
MQSI Control Center

MQSIBKDB

ITSO.CLUSTER

MQSI User Name Server

QM: ITSO.QM.US

User Name Server service

Listener: port 1881
SYSTEM.ADMIN.SVRCONN

MQSICFG

MQSIMRM
Chapter 12. MQSeries and MQSI implementation 325



Figure 144. Defining a queue manager - window 1

3. Enter the following in the Create Queue Manager window:

- ITSO.QM.US (queue manager name is case sensitive)
- Check Make this the default queue manager
- SYSTEM.DEAD.LETTER.QUEUE for the DLQ name

Click Next to continue.

Figure 145. Defining a queue manager - window 2
326 User-to-Business Patterns with WebSphere Advanced and MQSI



4. Accept the defaults for logging and click Next to continue.

Figure 146. Defining a queue manager - window 3

5. Make sure that Start Queue Manager and Create Server Connection
Channel are both checked. Click Next to continue.

Figure 147. Defining a queue manager - window 4
Chapter 12. MQSeries and MQSI implementation 327



6. Check Create listener configured for TCP/IP and enter a listener port
number. We chose 1881.

7. Click Finish to complete the queue manager creation dialog. Your new
queue manager will show up in the MQSeries Explorer window.

Figure 148. New queue manager in Explorer

12.4.2 Create the MQSI User Name Server
Now that we have all the underlying components installed and configured, we
can create the MQSI User Name Server. The User Name Server is created
using the mqsicreateusernameserver command. You can enter this from a DOS
prompt if you know the correct parameters, or you can use the MQSI
Command Assistant to build and execute the command.

We elected to have the Command Assistant generate the User Name Server:

A listener uses a TCP/IP port to monitor for connection requests from
channels that are started from the other end. When it receives a connection
request, it starts the channel at its end.

If there are multiple queue managers with listeners on one machine, each
listener will require a unique port number. MQSeries defaults to port 1414,
the “well-known” port for MQSeries when a listener is created, but you can
choose any valid TCP/IP port.

A listener is associated with a queue manager and is started and stopped
automatically with the queue manager. You can check the status of the
listener by using the MQSeries Services window.

Choosing listener ports
328 User-to-Business Patterns with WebSphere Advanced and MQSI



1. Select Start -> Programs -> MQSeries Integrator Version 2.0 ->
Command Assistant -> Create User Name Server

Figure 149. Creating the User Name Server

The darker boxes indicate the required parameters. As you enter the
parameters, you can see the command that will execute being built at the
bottom of the window.

For our scenario, we will use the queue manager created in the previous
step, ITSO.QM.US.

The User Name Server runs as a Windows NT service. The user ID and
password specified are used to start the service. This means the service
will operate under any authorities assigned to this ID. See 12.2, “Defining
user IDs” on page 322 for information on defining this user ID.

2. Click Next and then Finish.

In case of errors, you can go to the Windows NT event viewer and
review the error messages. To do so:

- Start->Programs->Adminstrative Tools(Common)->Event Viewer

- Then Select LOG->Application to see any MQSI messages

Note
Chapter 12. MQSeries and MQSI implementation 329



12.4.3 Starting the User Name Server
Now we can start the User Name Server, either from a DOS prompt or from
the Windows NT services window. From a DOS prompt you would enter:

mqsistart usernameserver

Check for errors in the Window NT event viewer.

12.5 MQSI Configuration Manager setup

There is one Configuration Manager per broker domain and it must run on
Windows NT. It maintains configuration information in the configuration
repository, manages the initialization and deployment of brokers and
message processing operations in response to actions initiated through the
Control Center, and checks the authority of defined user IDs to initiate those
actions.

We have already defined the MQSI databases and created a User Name
Server. Now, we will create the Configuration Manager, giving us the
environment shown in white in Figure 150.

Figure 150. Configuration Manager

MQSI Broker
MQSI Control Center

MQSIBKDB

ITSO.CLUSTER

MQSI User Name Server

QM: ITSO.QM.US

User Name Server service

Listener: port 1881
SYSTEM.ADMIN.SVRCONN

MQSICFG

MQSIMRM

QM: ITSO.QM.CM

Configuration Manager
service

Listener: port 1882
SYSTEM.ADMIN.SVRCONN

MQSI Configuration Manager
330 User-to-Business Patterns with WebSphere Advanced and MQSI



12.5.1 Define the databases to the local system
In 12.3, “MQSI database setup” on page 322, two databases were defined for
the Configuration Manager on a remote DB2 server. Now, we need to define
these databases to the DB2 client on the Configuration Manager system and
you register them as ODBC resources.

12.5.1.1 For remote databases
If the database is remote, as in our case, you can use the DB2 Client
Configuration Assistant to perform the necessary tasks. The first step is to
define the configuration repository database.

1. Start the DB2 Client Configuration Assistant on the Configuration Manager
machine:

Start->Programs->DB2 for windows NT->Client Configuration
Assistant

2. From the main window click the Add button.

3. On the first tab of the Configuration Assistant, select option Manually
configure a connection.

4. Select TCP/IP.

5. Provide the following information about the remote DB2 server in the next
tab:

- Hostname: The TCP/IP host name for our DB2 server is DB2SRVR.
- Port number: We are using the default DB2 port number of 50000. This

is determined when the DB2 server is installed.

6. On the next tab, enter the database name as both the database name and
and the alias. In our Windows NT scenario shown in Figure 139 on page
320 the configuration database is called MQSICFG.

7. Finally, check the box on the ODBC tab to register the database to ODBC
as a system data source. This is mandatory for the message repository
and optional for the configuration repository.

8. Click Done.

9. You may test the connection by selecting Test Connection. This is a good
time to make sure the database can be accessed using the user ID and
password you have chosen for the Configuration Manager database
access.

Repeat the process for the message repository database (MQSIMRM in our
scenario).
Chapter 12. MQSeries and MQSI implementation 331



12.5.1.2 Bind the database
On multi-way machines you will need to bind the databases to the db2cli
package. To do this, open a DB2 command line processor window and
execute the following for each database:

db2 CONNECT TO MQSICFG USER userid USING password
db2 BIND C:\SQLLIB\BND\@DB2CLI.LST BLOCKING ALL GRANT PUBLIC
db2 CONNECT RESET

12.5.1.3 For local databases
If you defined the Configuration Manager repository on your local machine,
you will still need to register it as an ODBC resource:

1. Start the DB2 Client Configuration Assistant on the Configuration Manager
machine:

Start->Programs->DB2 for windows NT->Client Configuration
Assistant

Figure 151. Client Configuration Assistant

You can check the DB2 connection port for a DB2 server on AIX by
scanning the AIX /etc/services file or on Windows NT by scanning the
\Winnt\system32\drivers\etc\services file. In this example, the DB2
connection service is db2cdb2inst1 on the default TCP port 50000.

db2cdb2inst1 50000/tcp # Connection port for instance db2inst1
db2idb2inst1 50001/tcp # Interrupt port for instance db2inst1

Finding the DB2 server port number
332 User-to-Business Patterns with WebSphere Advanced and MQSI



2. From the main window select the database and click the Properties
button.

Figure 152. Registering a database as an ODBC resource

3. Check Register this database for ODBC and click OK.

12.5.2 Create the queue manager
The next step is to build the MQSeries infrastructure required for the
Configuration Manager. The steps are the same as for the User Name Server
and can be seen in 12.4.1, “Create the queue manager” on page 325. We will
call the queue manager for this system ITSO.QM.CM.

The following steps were used to define the MQSeries definitions required for
the MQSI Configuration Manager:

1. Click Start->Programs->IBM MQSeries->MQSeris Explorer.

2. Right-click Queue Managers and select New->Queue Manager.

3. Enter the following in the Create Queue Manager window:

- ITSO.QM.CM (queue manager name is case sensitive)
- Check Make this the default queue manager
- SYSTEM.DEAD.LETTER.QUEUE for the DLQ name

Click Next to continue.

4. Accept the defaults for logging and click Next to continue.
Chapter 12. MQSeries and MQSI implementation 333



5. Make sure that Start Queue Manager and Create Server Connection
Channel are both checked. Click Next to continue.

6. Check Create listener configured for TCP/IP and enter a listener port
number. We chose 1882.

7. Click Finish to complete the queue manager creation dialog. The new
queue manager can now be seen in the MQSeries Explorer window.

Note: There is still no connection defined between the two queue managers
on the User Name Server and Configuration Manager. You will only see the
local queue manager from the MQSeries Explorer window. We will connect
the two later by putting them both in the same MQSeries cluster.

12.5.3 Create the MQSI Configuration Manager
Now that we have all the underlying components installed and configured, we
can create an MQSI Configuration Manager. The Configuration Manager is
created using the mqsicreateconfigmgr command. You can enter this from a
DOS prompt, or you can use the MQSI Command Assistant to build and
execute the command. We elected to have the Command Assistant generate
the Configuration Manager:

1. Select Start -> Programs -> MQSeries Integrator Version 2.0 ->
Command Assistant -> Create Configuration Manager.

Figure 153. Create Configuration Manager window 1
334 User-to-Business Patterns with WebSphere Advanced and MQSI



The darker boxes indicate the required parameters. As you enter the
parameters, you can see the command that will execute being built at the
bottom of the window.

For our scenario, we will use the queue manager created in the previous
step, ITSO.QM.CM.

The Configuration Manager runs as a Windows NT service. The user ID
and password specified are used to start the service. This means the
service will operate under any authorities assigned to this ID. See 12.2,
“Defining user IDs” on page 322 for information on defining this user ID.

Click Next to continue.

Figure 154. Create Configuration Manager window 2

2. Unlike the User Name Server, the Configuration Manager requires two
databases. The next panel configures the database names and the user
ID / password used to access them. These databases were created on a
remote DB2 server earlier in 12.3, “MQSI database setup” on page 322,
and defined to the local system in 12.5.1, “Define the databases to the
local system” on page 331.

Click Next to continue.
Chapter 12. MQSeries and MQSI implementation 335



Figure 155. mqsicreateconfigmgr command

3. The final window shows the mqsicreateconfigmgr command that will
execute. Click Finish to run the command and create the Configuration
Manager.

4. Now we can start the Configuration Manager, from either a DOS prompt or
the Windows NT services window. From a DOS prompt enter:

mqsistart configmgr

Check for errors in the Window NT event viewer. Open the MQSeries
Services to see the status of the listener. It should start automatically
when the queue manager starts.

12.6 Define the MQSeries cluster

At this point you have two MQSeries systems and queue managers defined,
but no connection between them. We are going to put our MQSeries
managers in a common cluster. This will automatically build the definitions
needed to connect them. The advantages of clustering is discussed in 10.1.4,
“Overview of the MQSeries clustering feature” on page 249.

In case of errors, go to the Windows NT event viewer to see the error
messages:

- Start->Programs->Adminstrative Tools(Common)->Event Viewer

- Select LOG->Application to see any MQSI messages

Note
336 User-to-Business Patterns with WebSphere Advanced and MQSI



A cluster needs two systems to act as primary and secondary cluster
repositories. In our Windows NT scenario, we have chosen to use the User
Name Server and Configuration Manager queue managers as the cluster
repository queue managers. Since the MQSeries structure exists on both, this
is an appropriate time to build the cluster.

We will define our cluster from the Configuration Manager system using the
Create Cluster Wizard, started from the MQSeries Explorer.

Note: In the AIX scenario, we don’t build a User Name Server so this step is
performed later, after the broker is built. However, since we will be defining
the cluster from the Configuration Manager in both cases, which only runs on
Windows NT, the steps will look the same. Just substitute the broker where
you see references to the User Name Server.

The Create Cluster Wizard will actually define all the channels and queues
required for the cluster on both the local queue manager and on the second,
remote, queue manager. For this remote MQSeries management to work a
few things have to be in place:

• The user ID we are running under, itsouser, has to be defined on the
second machine and must be a member of the Windows NT “mqm” group
(created during MQSeries install).

• Each queue manager must be able to resolve the connection name of the
cluster partner queue manager. For TCP/IP this means the connection
name has to be in a domain name server or in the /etc/hosts file of each
system.

• The remote queue manager has to have:

- A running command server
- A running TCPIP listener
- An MQSeries SRVCONN type channel

All of these were created in 12.5.2, “Create the queue manager” on page
333 and started automatically when the queue manager was started.

The status of the command server can be seen from the MQSeries
Services window by clicking the queue manager.
Chapter 12. MQSeries and MQSI implementation 337



Figure 156. Queue manager command server

A special queue is used by the command server for receiving remote
requests. This queue is called the SYSTEM.ADMIN.COMMAND QUEUE.
This queue can be seen in the MQSeries Explorer window by clicking on
Queues under the queue manager name. It is considered to be a system
object, so you will first need to select View->Show System Objects.

Figure 157. SYSTEM.ADMIN.COMMAND.QUEUE

Remote administration is discussed in 10.1.2, “Remote administration” on
page 246.

At the end of the procedures to create a cluster, we will have the
configuration shown in white in Figure 158.
338 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 158. Cluster

To create the new cluster, which we will call ITSO.CLUSTER, do the
following:

1. On the Configuration Manager Windows NT system select:

Start -> Programs -> IBM MQSeries ->MQSeries Explorer

2. Right click Cluster and select New->Cluster to start the Create Cluster
Wizard. The first window describes the process you are about to go
through. After reading this window, click Next.

3. Enter the cluster name. In our scenario we chose ITSO.CLUSTER for our
cluster name.

MQSI Broker
MQSI Control Center

MQSIBKDB

ITSO.CLUSTER

MQSI User Name Server

QM: ITSO.QM.US

User Name Server service

Listener: port 1881
SYSTEM.ADMIN.SVRCONN

MQSICFG
MQSIMRM

QM: ITSO.QM.CM

User Name Server service

Listener: port 1882
SYSTEM.ADMIN.SVRCONN

MQSI Configuration Manager

(cluster repository)(cluster repository)

TO_ITSO.QM.CM (cluster receiver)
TO_ITSO.QM.US (cluster sender)

TO_ITSO.QM.CM (cluster sender)
TO_ITSO.QM.US (cluster receiver)
Chapter 12. MQSeries and MQSI implementation 339



Figure 159. Create cluster window 2

Click Next to continue.

4. Enter the first repository queue manager (ITSO.QM.CM in our example).

Figure 160. Create cluster window 3

Click Next to continue.
340 User-to-Business Patterns with WebSphere Advanced and MQSI



5. Enter the second repository queue manager. In our case we are using the
User Name Server queue manager, ITSO.QM.US.

The connection name specifies the IP address or TCP/IP host name and
the port the queue manager’s listener is running on (defined in 12.4.1,
“Create the queue manager” on page 325.

Figure 161. Create cluster window 4

Click Next to continue.

6. This next window informs you that you will be defining a cluster sender
and a receiver channel on each cluster repository queue manager. Read
the information here.
Chapter 12. MQSeries and MQSI implementation 341



Figure 162. Create cluster window 5

Click Nextto continue.

7. This panel defines the cluster receiver channel for the primary repository
queue manager. The Wizard pre-fills the channel name,
TO_ITSO.QM.CM, and the connection name here. Make sure the
connection name can be resolved by TCP/IP on both systems.

Figure 163. Create cluster window 6
342 User-to-Business Patterns with WebSphere Advanced and MQSI



Click Next to continue.

8. This panel defines the cluster receiver channel for the secondary
repository queue manager. The Wizard pre-fills the channel name,
TO_ITSO.QM.US, and the connection name here. Once again, make sure
the connection name can be resolved by TCP/IP on both systems.

Figure 164. Create cluster window 7

Click Next to continue.

9. Confirm your choices and click Finish to create the definitions.
Chapter 12. MQSeries and MQSI implementation 343



Figure 165. Create cluster window 8

At this point the repository queue managers will contact each other and you
will see the current definitions for both in the MQSeries Explorer window.

Figure 166. The cluster definitions in the Explorer
344 User-to-Business Patterns with WebSphere Advanced and MQSI



12.7 MQSI broker setup

The next step will be to build one or more MQSI brokers to execute the
message flows. Your applications communicate with the broker to take
advantage of the services provided by these message flows.

You can install, create, and start any number of brokers within a broker
domain. In our scenario, we are installing and configuring a single broker,
ITSO.QM.BR, on rs600014 (AIX) and BROKER1 (Windows NT).

12.7.1 Define the database to the local system
Each broker requires a database for internal processing. Multiple brokers can
share a database. Earlier, in 12.3, “MQSI database setup” on page 322, we
showed you how to create the databases. In our scenarios, we have one
broker and one database. The database, MQSIBKDB, has been created on a
remote DB2 server. We now need to define that database to the DB2 client
and register it as an ODBC resource on each broker system.

12.7.1.1 Defining the database to AIX
We used the following steps to define the remote broker database,
MQSIBKDB, to the DB2 client and to register it as an ODBC resource on the
AIX system that will host the broker:

1. As root, edit the /etc/services file to add the db2cdb2inst1 service. this
should match the the service defined on the database remote node.
Finding the correct entry is discussed in 12.5.1, “Define the databases to
the local system” on page 331.

2. Log on as the DB2 administrator or switch to that user ID:

su - db2inst1

For performance reasons, you may want to consider putting the broker
databases on the same system as the broker. See 7.2.3, “Placement of
MQSI databases” on page 113 for more information.

Note

db2cdb2inst1 50000/tcp # Connection port for instance db2inst1
Chapter 12. MQSeries and MQSI implementation 345



3. To define the database to the DB2 client we first need to define, or catalog,
the remote DB2 server to the client. This requires giving the server a local
name and associating that name with an IP address and DB2 instance.

Assuming the database is on a remote server at host name “RS600014”
and that we are going to give our node a local name of “tcpnode”, do the
following from an AIX terminal window:

db2 catalog tcpip node tcpnode remote rs600014 server db2cdb2inst1
db2 catalog db MQSIBKDB as MQSIBKDB at node tcpnode

4. Now bind the DB2 Call Level Interface ( CLI ) to the database:

db2 connect to MQSIBKDB user db2inst1 using db2inst1
db2 bind /home/db2inst1/sqllib/bnd/@db2cli.lst grant public CLIPKG 5
db2 terminate

5. The MQSI broker uses ODBC to access its database, so we have to define
an ODBC data source for it. In our case we called the data source
MQSIBKDB.

Edit /var/mqsi/odbc/.odbc.ini (notice the dot before odbc.ini ) to add the
required information for the broker database:

6. Make sure that the “root” and “mqsi” user IDs (or any other ID that will be
issuing MQSI commands) have access to the DB2 environment.

[ODBC Data Sources]
MQSIBKDB=IBM DB2 ODBC Driver
ITSOCUST=IBM DB2 ODBC Driver
ITSOCHEC=IBM DB2 ODBC Driver
ITSOSAVI=IBM DB2 ODBC Driver
MYDB=IBM DB2 ODBC Driver
ORACLEDB=MERANT 3.60 Oracle 8 Driver
ORACLE7DB=MERANT 3.60 Oracle 7 Driver
SYBASEDB=MERANT 3.60 Sybase 11 Driver

[MQSIBKDB]
Driver=/home/db2inst1/sqllib/lib/db2.o
Description=MQSIBKDB DB2 ODBC Database
Database=MQSIBKDB

[ITSOCUST]
Driver=/home/db2inst1/sqllib/lib/db2.o
Description=ITSOCUST DB2 ODBC Database
Database=ITSOCUST
CURRENTSQLID=ITSOUSER
346 User-to-Business Patterns with WebSphere Advanced and MQSI



12.7.1.2 Windows NT
To define the broker database to a Windows NT client, use the method
described in 12.5.1, “Define the databases to the local system” on page 331.
You will need to define the database to the client, register it as an ODBC
resource, and bind it to the db2cli package.

12.7.2 Create the queue manager
Now that the broker database is in place and the operating system hosting
the broker can find it, the next step is to define the MQSeries infrastructure
required for the broker. Initially that means defining a queue manager and
joining it to the existing MQSeries cluster.

12.7.2.1 Create the queue manager on Windows NT
The broker queue manager is defined on the broker system in the same
manner that we defined the User Name Server and the Configuration
Manager. The windows for this process can be seen in 12.4.1, “Create the
queue manager” on page 325.

1. Click Start->Programs->IBM MQSeries->MQSeries Explorer.

2. Right-click Queue Managers and select New->Queue Manager.

3. Enter the following in the Create Queue Manager window:

• ITSO.QM.BR (queue manager name is case sensitive)
• Check Make this the default queue manager
• SYSTEM.DEAD.LETTER.QUEUE for the DLQ name

Click Next to continue.

4. Accept the defaults for logging and click Next to continue.

5. Make sure that Start Queue Manager and Create Server Connection
Channel are both checked. Click Next to continue.

The DB2 environment can be initialized for a logged-in user by running the
/home/db2inst1/sqllib/db2profile shell script.

If a user ID is going to be issuing DB2 commands often, it is recommended
that you add /home/db2inst1/sqllib/db2profile to either /etc/profile or the
user’s /<home>/.profile (dot profile), so the DB2 environment is
automatically set up when the user logs in.

Executing DB2 commands
Chapter 12. MQSeries and MQSI implementation 347



6. Check Create listener configured for TCP/IP and enter a listener port
number (we chose 1881). Click Finish.

Joining the cluster
Since the cluster for the Windows NT test environment has been created, we
will need to join this new queue manager to the existing cluster. We will use
the MQSeries Explorer on the broker system to start the Join Cluster Wizard.

1. From the Explorer window, right click on the queue manager and select All
Tasks->Join Cluster.

Figure 167. Joining a cluster - window 1

The first window gives you overview information on the steps required.
Click Next on this window.

2. Enter the cluster name. Our cluster, ITSO.CLUSTER, was created in 12.6,
“Define the MQSeries cluster” on page 336. Click Next.

3. Enter the queue name and connection information for one of the cluster
repository queue managers. In our scenario we will point to ITSO.QM.CM.

In the basic topology, the WebSphere Application server is in the DMZ
and the broker is in the internal network. If this is your topology, you will
need to open the listener port chosen in step 6 for TCP on the firewall.

Firewall note
348 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 168. Joining a cluster - window 4

Click Next.

4. The next window contains information about the cluster receiver and
sender channels required. Read this information and click Next.

5. The cluster receiver channel name and connection name are pre-filled in
for you. Accept these defaults if they are satisfactory.

Figure 169. Joining a cluster - window 6
Chapter 12. MQSeries and MQSI implementation 349



Click Next.

6. The next window identifies the repository cluster’s receiver channel. If you
took the default earlier when creating the cluster, you can take the default
here.

Figure 170. Joining a cluster - window 7

Click Next and then click Finish to join the broker queue manager to the
cluster.

The necessary channels will be created and all the queue managers in the
cluster can now be seen in the MQSeries Explorer window.

Figure 171. Joining a cluster
350 User-to-Business Patterns with WebSphere Advanced and MQSI



12.7.2.2 Defining the MQSeries queue manager on AIX
There is no MQSeries Explorer for AIX, so you will need to use control
commands to define the broker’s queue manager (ITSO.QM.BR), and
prepare it to participate in an MQSeries cluster with the Configuration
Manager’s queue manager (ITSO.QM.CM).

From the broker system, enter the following to define the queue manager and
required resources:

1. Create the queue manager : crtmqm -q ITSO.QM.BR

2. Start the the queue manager : strmqm

3. Create a file (we will call it broker.mq) with the following MQSC
commands:

Run the commands in this file by entering: runmqsc < broker.mq

4. Start the command server : strmqcsv

5. Start the MQSeries TCP/IP listener : runmqlsr -t TCP -p 1444 -m

ITSO.QM.BR &

Defining the cluster
Remember that in the AIX lab setup we did not use a User Name Server and
have not defined a cluster yet. The cluster can now be defined from the
Configuration Manager NT node, using the MQSeries Explorer and Cluster
Wizard. This will be the same process followed in 12.6, “Define the MQSeries
cluster” on page 336.

****************************************
****Broker queue manager definitions****
****************************************

** Set up the Dead Letter queue ********
ALTER QMGR DEADQ(SYSTEM.DEAD.LETTER.QUEUE

** SRVCONN Channel for remote management from NT MQ explorer**
DEFINE CHANNEL(SYSTEM.ADMIN.SVRCONN) +
CHLTYPE(SVRCONN) TRPTYPE(TCP) REPLACE

In the basic topology, the WebSphere Application server is in the DMZ
and the broker is in the internal network. If this is your topology, you will
need to open the listener port chosen in step 6 for TCP on the firewall.

Firewall note
Chapter 12. MQSeries and MQSI implementation 351



12.7.3 Creating the MQSI broker
The next step is to create the MQSI broker.

12.7.3.1 MQSI broker on Windows NT
Creating the MQSI broker on Windows NT is similar to creating the User
Name Server and the Configuration Manager. The command used is the
mqsicreatebroker command and can be entered from a DOS prompt, or can
be created with the MQSI Command Assistant. We chose to use the
Command Assistant.

1. Select Start->Programs->IBM MQSeries Integrator 2.0->Command
Assistant->Create Broker

Figure 172. Creating a broker - window 1

The darker boxes in Figure 172 indicate the required fields. Each broker
has a unique name assigned. We will call this one ITSOBroker. The user
ID and password to be used to run the service are required, as is the
MQSeries queue manager name to be used. We will use the default
queue, ITSO.QM.BR.

Click Next to continue.

2. Enter the name of the broker database created earlier.
352 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 173. Creating a broker - window 2

Click Next to continue.

3. The last window shows the mqsicreatebroker command that will execute.

Figure 174. Creating a broker - window 3

Click Finish to create the broker.

ODBC return code -1: make sure the bind was done for the broker
database.

Common error
Chapter 12. MQSeries and MQSI implementation 353



Start the broker service
Start the broker service from the Windows NT Services window.

Figure 175. Starting the broker service

12.7.3.2 MQSI broker on AIX

Now we are ready to create an MQSI broker. In AIX the only option we have
to do so is by using the mqsicreatebroker command.

We will execute this command while logged in with the user ID, mqsi (see
11.8, “Planning user IDs” on page 315). Remember that mqsi has to be a
member of the mqbrkrs and mqm groups, and should have access to the DB2
environment.

1. Execute the following command:

mqsicreatebroker ITSO.QM.BR -i mqsi -a mqsipw -u mqsi -p mqsipw -q
ITSO.QM.BR -n MQSIBKDB

-i The broker will run under this user ID
-a Password for the broker’s user ID
-u User ID for access to the broker database
-p Password for database access
-q Queue manager name
-n Database name (or alias)

Before creating a broker on AIX, it is recommended that you configure
syslog to write all user messages to a file. See 10.2.7.3, “Command results
and MQSI messages” on page 276 for instructions on how to do this.

Note
354 User-to-Business Patterns with WebSphere Advanced and MQSI



2. Check for status messages in the MQSI syslog file.

3. Start the MQSI Broker

mqsistart ITSO.QM.BR

Check for status messages in the MQSI syslog file.

12.8 Using the Control Center to deploy an application

Our scenario uses the application we created in Chapter 9, “Developing the
MQSI application” on page 183. After creating the MQSI application with the
Control Center, we exported the message flows to make it easier to set up the
various lab scenarios we were using. This means that any time we set up a
new MQSI network (including a new Control Center), we only had to import
the message flows and deploy them to the appropriate brokers.

The Control Center only runs on Windows NT but can be used to deploy and
monitor applications on brokers on any platform.

You may encounter the following error on an mqsicreatebroker

command:

BIP8040E: Unable to connect to the database

This probably means the database cannot be accessed with the user ID
and password that were specified when the broker was created. Check
that the database is running, that an ODBC connection has been
created, and that the user ID/password specified for database access
on the mqsicreatebroker command are capable of being used to connect
to the database.

You may need to execute the following command to set up the DB2
environment for your session:

. /home/db2inst1/sqllib/db2profile

(Notice the dot and space preceding /home)

Note
Chapter 12. MQSeries and MQSI implementation 355



Start the Control Center by selecting:

Start -> Program Files -> IBM MQSeries Integrator 2.0 -> Control Center

A Configuration Manager Connection dialog box should appear as shown in
Figure 176, prompting you for details required to connect to the Configuration
Manager.

Figure 176. Configuration Manager Connection

These fields tell the Control Center how to connect to the appropriate
Configuration Manager. These values were determined when the
Configuration Manager was created in 12.5.3, “Create the MQSI
Configuration Manager” on page 334.

If this does not appear, you may get an error dialog that reports a problem
connecting to the Configuration Manager. This can be the case if the Control
Center has been used to work with a different Configuration Manager
instance which is no longer active or if this is the first time you have opened
the Configuration Manager. You may see no dialog appear at all. This
indicates the connection to the Configuration Manager has worked. If the
connection dialog has not appeared, you can go to
File->choose Connection, and the required dialog box will appear.

Click OK and the Control Center will open.

Before starting the Control Center, you will need to go to EVERY MQSI
system and add the user ID you are running the Control Center under. Be
sure to add the user ID to the MQSI groups that match the roles you will be
using (see 10.2.8, “Control Center operations” on page 278).

Note
356 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 177. Starting the Control Center

12.8.1 Connecting to the broker
Next, we need to tell the Configuration Manager where its brokers are. In our
case we have one broker, called ITSOBroker, that resides on a queue
manager called ITSO.QM.BR.

1. In the Control Center, select the Topology tab. In the Domain Hierarchy
pane (the left-most pane), right-click the Topology node and select Check
Out as in Figure 178.

Figure 178. Check out the topology

If the connection times out, go to the Windows NT services window and
make sure the Configuration Manager service is started.

Possible error
Chapter 12. MQSeries and MQSI implementation 357



Note: If you get an authorization failure, make sure the user ID you are
operating under is a member of the mq security groups on all the system
in the broker domain.

A key symbol appears next to the Topology node to indicate that you have
control of it.

Figure 179. Defining the broker to the Configuration Manager

2. Now right-click the Topology node again, and select Create->Broker. The
following dialog will appear requesting details for the broker.

Figure 180. Broker definition

The fields here tell the Control Center how to reach the broker. The broker
name was determined when the broker was created in 12.7.3, “Creating
the MQSI broker” on page 352. The Control Center will communicate with
it by using the MQSeries queue ITSO.QM.BR.

3. Click Finish to define the broker to the topology. The newly created broker
will appear in the Topology pane.
358 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 181. Broker

12.8.2 Creating an execution group
Next, we will create an execution group in the broker to run our application’s
message flows.

1. Click the Assignments tab. In the Domain Hierarchy pane (the left-most
pane), right-click ITSOBroker, and choose Create -> Execution Group.

Figure 182. Create an Execution Group

2. In the dialog that appears, enter the name of the new execution group (we
entered ITSO Execution Group).
Chapter 12. MQSeries and MQSI implementation 359



Figure 183. New execution group name

3. Click Finish. The new execution group will now appear in the Domain
Topology panel in the box for ITSOBroker.

Figure 184. New execution group

12.8.3 Importing message flows
For lab purposes, our message flows were developed in the Control Center
and then exported to a file. This allowed us to set up the lab many times,
importing the message flow definitions each time to recreate our
environment. Importing and exporting definitions is discussed in 10.2.9,
“Resource definition management” on page 288.

To import the message flows to our workspace:

1. From the File menu, choose Import.
360 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 185. Import message flows

2. Click Browse and navigate to the supplied XML file containing the
message flows. Then click Import to import the message flows.

You will be prompted with a dialog that asks if you wish to save your
changes. This is a good time to save your workspace to a configuration file
of your choice. The file will be saved as an XML file.

3. Switch to the Message Sets tab to see the imported message flows. In
Figure 186, everything you see in the Message Flows pane except the IBM
Primitives has been imported.

Figure 186. The imported example message flows
Chapter 12. MQSeries and MQSI implementation 361



12.8.4 Assigning the message flows to the execution group
Next, we must assign the message flows to the broker.

1. Click the Assignments tab.

In the Assignable Resources pane (the middle pane), click the + symbol
next to the Message Flows entry to see all the defined message flows.

Figure 187. Add message flow

The message flows for our application are listed under ITSO Deployable
Message Flows. These two message flows provide the total function of the
MQSI portion of the application. The other message flows listed are used
as message flow nodes and are included as nodes in the deployable
message flows. See 9.7, “Piecing together the lookup components” on
page 228 for information on the way this is done.

In the Domain Topology pane (the right-most pane) you will see the broker
we added (ITSOBroker) and its execution groups. Right click the desired
execution group and select Add -> Message Flow.

2. In the dialog that appears, use the mouse and the Ctrl key to select the
two message flows shown in Figure 188, and click Finish.
362 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 188. Select the message flows to add

12.8.5 Saving the configuration and deploying it to the broker
Our configuration changes are now complete. Two tasks remain. First we
must save our configuration to the shared repository held by the
Configuration Manager. Finally we will deploy the changes to the broker
domain so they may become operational.

1. From the File menu, select Check In -> All (Save to Shared). This will
take all components that exist only in your workspace and check the latest
version into the shared configuration.

Figure 189. Saving changes to the shared configuration

Next, we must deploy the changes to the broker domain.
Chapter 12. MQSeries and MQSI implementation 363



2. From the File menu, select Deploy -> Delta configuration (all types).

Figure 190. Deploying to the broker domain

3. A dialog will appear acknowledging your deployment request. This is
characteristic of the asynchronous operation of MQSI. It simply means
that the request has been placed on the MQSeries queue, not that the
deployment is complete. When the deployment is complete, the results
can be reviewed in the log pane, as shown in Figure 191.

There are two types of deployment, complete and delta. See 10.2.8.6,
“Deploying applications” on page 286 for a description of each. Before
deploying your application make sure you have the following MQSI fixes
applied:

• Windows NT: IC27806
• AIX: IY12651

Note
364 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 191. The Log tab, showing successful deployment

It may take a few seconds for the message to be returned. If no message
is shown, right-click the Log tab content and select Refresh.

4. Switch to the Operations tab to see the current operational status of the
broker domain. It is always necessary to click the Refresh button to get a
view of the current operational position. If you find that the Refresh button
is disabled, click the blank Domain Topology pane (the right-most pane)
and then click the Refresh button.
Chapter 12. MQSeries and MQSI implementation 365



Figure 192. Current broker domain operations

The color of the traffic light symbols indicate the status of the brokers,
execution groups and message flows.

12.9 Preparing the broker for the application

The last step in our exercise is to prepare the brokers for the application. Our
application will require the following:

• DB2 databases that contain customer account information

• MQSeries queues to handle the requests

12.9.1 Create the application databases
The databases required by our test application are:

• A DB2 database called ITSOCUST that contains customer profile
information. This database will reside on the broker machine, since it is
primarily used as an intermediate storage hold.

• A DB2 database called ITSOCHEC that contains customer checking
account information. This database simulates a legacy banking database
and is remote to the broker.

• A DB2 database called ITSOSAVI that contains customer savings account
information. This database simulates a legacy banking database and is
remote to the broker.

Refresh
button

Status
indicators
366 User-to-Business Patterns with WebSphere Advanced and MQSI



The mechanics of how these databases are created is not important to this
discussion. If you are curious as to the process or database layout, see 9.3.1,
“Application databases and tables” on page 185.

12.9.2 Define the required MQSeries queues
The next step is to define the MQSeries queues required for the application.
Our application will need five queues:

• MQSI.PROF.REQUESTS
• MQSI.PROF.UPDATES
• MQSI.FAILURE
• MQSI.AUDIT
• MQSI.PROF.REPLIES

These queues will be local queues on the broker and will be shared within the
cluster. Often, MQSeries administrators will choose to create queues with
one name and then create an alias to that queue. The application uses the
alias name, thus insulating the application from any real queue name
changes that may need to take place. In our scenario, we will do this as well.

First make the real queues:

1. From the MQSeries Explorer right click Queues (under the broker queue
manager) and select New->Local Queue.

Figure 193. Create a new local queue
Chapter 12. MQSeries and MQSI implementation 367



You will see a panel with several tabs available for defining the queue.

Figure 194. Creating a local queue

2. Enter the queue name on the General tab. On the Cluster tab click Shared
in cluster and enter the cluster name. Take the defaults for the rest of the
fields and click OK.

3. Repeat this until you have added all the required queues.

Next we will define alias queues.

1. Right click on Queues under the broker and select New->Alias Queue.

Enter the alias name and the base queue name. For example, the alias
name for the first queue is ITSO.PROF.REQ.IN. The application will use
this queue name, but the actual queue used will be the base queue,
MQSI.PROF.REQUESTS.
368 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 195. Defining an alias

2. We repeat this procedure, creating the following alias queues:

• ITSO.PROF.UPD.IN as an alias of MQSI.PROF.UPDATES
• ITSO.PROF.REPLY as an alias of MQSI.PROF.REPLIES

When done, both the alias and base queue names can be seen in the
MQSeries Explorer.
Chapter 12. MQSeries and MQSI implementation 369



Figure 196. Alias and base queues

At this point, MQSeries and MQSI are ready to run the application. The only
thing missing is the WebSphere piece. See Chapter 13, “WebSphere
Application Server setup” on page 371 for information on setting up the rest of
the application.
370 User-to-Business Patterns with WebSphere Advanced and MQSI



Chapter 13. WebSphere Application Server setup

For this project we used WebSphere Application Server Advanced Edition
V3.5. When installing WebSphere, check for available fixes at
http://www.ibm.com/software/webservers/appserv/support.html.

WebSphere 3.5 installs a basic library called the InfoCenter. The full library,
which includes search facilities, must be downloaded from:

http://www.ibm.com/software/webservers/appserv/library.html

We highly recommend that you download the full InfoCenter and install it.

13.1 MQSeries SupportPac MA88

The Web application code developed for this project required Java classes
provided by MQSeries to allow the Java application to put and retrieve
messages from an MQSeries queue. These classes include:

• MQSeries classes for Java (MQ base Java)
• MQSeries classes for Java Message Service (JMS or MQ JMS)

They must be present on both the application development machine and on
the WebSphere Application Server.

The Java classes are obtained by installing the MQSeries Product Extension
MA88 (also called MQSeries SupportPac MA88). The installation allows you
to choose from the following components:

- Java programming interface, which installs MQ base Java V5.1.2.
- JMS programming interface, which installs MQ JMS. It requires MQ

base Java to be installed.
- Documentation.

For this example, we installed all three.

Not all classes are available for all platforms. Before installing, see
MQSeries Using Java, SG34-5456 It contains product and platform specific
information about obtaining and using these classes.

This chapter deals specifically with the Windows NT and AIX platforms.

Note
© Copyright IBM Corp. 2000 371



13.1.1 Classpath settings
MQ base Java supplies the following JAR files:

• com.ibm.mq.jar - provides support for all connection options
• com.ibm.mq.iiop.jar - provides support for Visibroker (IIOP) connections,

Windows only
• com.ibm.mqbind.jar - provides support for bindings connection. This is not

recommended for new application.

MQ JMS adds the following JAR files:

• com.ibm.mqjms.jar
• fscontext.jar
• jms.jar
• jndi.jar
• ldap.jar
• providerutil.jar

After installation, ensure that the JAR files supporting the functions you are
using are placed in the CLASSPATH. Include the “lib” directory itself in order
to access the properties files used by the base Java API. Include
providerutil.jar and either fscontext.jar or ldap.jar if you need to access a
JNDI namespace.

Our test application was written in a way that allowed us to switch between
the two methods. The methods used to connect Java applications to
MQSeries are discussed in 7.2.1, “WebSphere-to-MQSI connection options”
on page 105.

These classes need to be available to the WebSphere application server at
runtime. There are two approaches: you can install the SupportPac on the
WebSphere machine, or you can manually copy the classes to a directory
and add that directory to the WebSphere node’s dependent classpath.

For MQ base Java acting as an MQSeries client, the following dependent
classpath should include com.ibm.mq.jar and the MQ Java lib directory.
372 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 197. Dependent classpath for MQ base Java

If you are using JMS, using the WebSphere, we add the several JAR files to
the dependent classpath. The new classpath is:

C:\MQSeries\Java\lib\com.ibm.mq.jar;C:\MQSeries\Java\lib\com.ibm.mqjms.jar
;C:\MQSeries\Java\lib\jms.jar;C:\MQSeries\Java\lib\jndi.jar;C:\MQSeries\Ja
va\lib

The classes required may vary, depending on the programming options you
are using. Check MQSeries Using Java, SG34-5456, for complete information
on the settings for the classpath and other variables.

13.1.2 Configuring JMS
JMS has an administration tool that allows you to define the properties of four
types of JMS objects and to store them within a JNDI namespace. JMS
clients can retrieve these objects and use them.

13.1.2.1 Prepare the operating system
The administration tool can be invoked in interactive or batch mode. To use
JMS classes and the JMS administration tool, you will need to set up the
Chapter 13. WebSphere Application Server setup 373



CLASSPATH and PATH variables to include the MQ JMS classes and
directories.

In the next figure, you can see an example of calling the administration tool in
batch mode. It will take a JMS configuration file (.config) and a script file (.scp
file) containing administration commands as input.

The configuration file used for our example is shown next.

Figure 198. Banking_JMSAdmin.config

The configuration input for the administration tool is shown in Figure 199. Our
configuration will define the properties for:

SET classpath=%classpath%;C:\MQSeries\Java\lib;
C:\MQSeries\Java\lib\com.ibm.mqjms.jar; C:\MQSeries\Java\lib\com.ibm.mq.jar;
C:\MQSeries\Java\lib\jms.jar;C:\MQSeries\Java\lib\jndi.jar;
C:\MQSeries\Java\lib\providerutil.jar;C:\MQSeries\Java\lib\ldap.jar;
C:\WebSphere\AppServer\lib\ujc.jar;C:\WebSphere\AppServer\lib\nc.jar

SET path=C:\WebSphere\AppServer\jdk\bin;%path%;C:\MQSeries\Java\lib

java -DMQJMS_TRACE_LEVEL=ON -DMQJMS_LOG_DIR=. -DMQJMS_TRACE_DIR=. -DMQJMS_INSTALL_
PATH=C:\MQSeries\Java\com.ibm.mq.jms.admin.JMSAdmin
-cfg Banking_JMSAdmin.config < PDK_Banking_JMS_defs.scp

# Specify which JNDI service provider is in use: LDAP, file system
# context, or WebSphere’s COSNaming repository (our choice).
#
INITIAL_CONTEXT_FACTORY=com.ibm.ejs.ns.jndi.CNInitialContextFactory
#
# Specify the URL of the service provider's initial context: LDAP,
# file system context, or WebSphere’s COSNaming namespace (our choice)
#
PROVIDER_URL=iiop://
#
# Specifies whether security credentials are passed to the service #
provider by JNDI (LDAP only): ‘none' (anonymous authentication),
#'simple', or 'CRAM-MD5'.
#
SECURITY_AUTHENTICATION=none
374 User-to-Business Patterns with WebSphere Advanced and MQSI



• An MQQueueConnectionFactory (QCF) object. This represents a factory
object for creating connections in the point-to-point domain of JMS.

• Three MQQueue (Q) objects. These represent a destination for messages
in the point-to-point domain of JMS.

Figure 199. PDK_Banking_JMS_defs.scp

13.2 Deploying the application to WebSphere

The sample application consists of servlets, command beans, and JSP files
that have been created either manually or using tools such as VisualAge for
Java and WebSphere Studio. The files produced by these tools can be
published using WebSphere Studio, or manually copied to the correct
libraries. In our small test environment, we did this manually.

1. The first step is to create a directory structure to store the WebSphere
application on the WebSphere application server. We will used “webbank”
as the application directory name. We created three new directories under
the default_hosts directory:

- webbank
- webbank\servlets
- webbank\web

def QCF(ITSO.QM.BR) qmanager(ITSO.QM.BR)
def Q(ITSO.PROF.REQ.IN) qmanager(ITSO.QM.BR) queue(ITSO.PROF.REQ.IN)
def Q(ITSO.PROF.REPLY) qmanager(ITSO.QM.BR) queue(ITSO.PROF.REPLY)
def Q(ITSO.PROF.UPD.IN) qmanager(ITSO.QM.BR) queue(ITSO.PROF.UPD.IN)
end
Chapter 13. WebSphere Application Server setup 375



Figure 200. Application directory structure

2. The servlets and command beans were created using VisualAge for Java
and combined into one JAR file, we called pdk_ejb.jar. This file is copied
into the webbank\servlets directory.

3. The application reads text files for parameter settings, such as the
MQSeries queue name and port. These properties files are placed in the
webbank\servlets directory.

Figure 201. GetCurrentProfile properties

# GetCurrentProfile.properties
# This properties file is used by the GetCurrentProfile Servlet
# to initialize the GetCurrentProfileCommand
brokerHostname=9.24.104.62
brokerChannel=ITSO.SVRCONN
brokerPort=1881
brokerQueueManagerName=ITSO.QM.BR
brokerSetRequestQueueName=ITSO.ADDR.REQ.IN
brokerSetReplyQueueName=ITSO.ADDR.REPLY
messageTimeout=10000
# End of properties file
376 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 202. UpdateProfile properties

4. Next, copy the JSP files (produced by WebSphere Studio) into the
webbank\web directory.

5. We will use XMLConfig to define the Web application to the application
server. We will use a command file to call the XMLConfig tool and another
for the XML input. This will create definitions for the webbank Web
application and its servlets.

The command file used to call the XMLConfig tool is shown in Figure 203.

Figure 203. Calling the xmlconfig tool

A section of the XML input is shown in Figure 204.

# UpdateProfile.properties
# This properties file is used by UpdateProfileServlet
# to initialize the UpdateProfileCommand
brokerHostname=broker1.itso.ral.ibm.com
brokerChannel=SYSTEM.DEF.SVRCONN
brokerPort=1881
brokerQueueManagerName=ITSO.QM.BR
brokerSetRequestQueueName=ITSO.PROF.UPD.IN
messageTimeout=10000
# End of properties file

@ECHO OFF
TITLE Creating Web Application
SET NODENAME=m78pyw57
SET WSAPPSERV=C:\WebSphere\AppServer
echo env vars set...
echo.
CALL %WSAPPSERV%\bin\xmlconfig -import webapp.xml -adminNodeName
%NODENAME% -substitute "NODE_NAME=%NODENAME%"
PAUSE
REM EXIT
Chapter 13. WebSphere Application Server setup 377



Figure 204. XMLConfig tool input

13.3 Copy the DTDs to the operating system

The MQSeries client Java program needs access to the DTDs that describe
the message format to be exchanged with MQSI. The servlet in our
application used the default location for DTDs. On Windows NT, these DTDs

<?xml version="1.0"?>
<!DOCTYPE websphere-sa-config SYSTEM "$server_root$$dsep$bin$dsep$xmlconfig.dtd" >
websphere-sa-config>
<node name="$NODE_NAME$" action="locate">
<application-server name="Default Server" action="locate">
<servlet-engine name="Default Servlet Engine" action="locate">

<web-application name="webbank" action="update">
<description>User to Business Topology One</description>

<document-root>C:\WebSphere\AppServer\hosts\default_host\webbank\web</document-root>
<classpath>
<path value="C:/WebSphere/AppServer/hosts/default_host/webbank/servlets"/>

</classpath>
<error-page>/ErrorReporter</error-page>
<filter-list/>
<group-attributes/>
<auto-reload>true</auto-reload>
<reload-interval>3000</reload-interval>
<enabled>true</enabled>
<root-uri>default_host/webapp/webbank</root-uri>
<shared-context>false</shared-context>
<shared-context-jndi-name>SrdSrvltCtxHome</shared-context-jndi-name>
<isclone>false</isclone>

<servlet name="Error Reporting Facility" action="update">
<description>Auto-Generated - Default error reporter servlet</description>
<code>com.ibm.servlet.engine.webapp.DefaultErrorReporter</code>
<init-parameters/>
<load-at-startup>true</load-at-startup>
<debug-mode>0</debug-mode>
<uri-paths>
<uri value="/ErrorReporter"/>

</uri-paths>
<enabled>true</enabled>
<isclone>false</isclone>

</servlet>
378 User-to-Business Patterns with WebSphere Advanced and MQSI



are copied to the WINNT\SYSTEM32 directory. This is the default directory for
file access from servlets. The DTD needed is described in 9.5.2, “Customer
profile update functional components” on page 191.
Chapter 13. WebSphere Application Server setup 379



380 User-to-Business Patterns with WebSphere Advanced and MQSI



Appendix A. Rational Rose 2000e and VisualAge for Java

Rational Rose 2000e offers seamless integration between Rose and
VisualAge for Java. This appendix discusses the process of taking a
complete or partial Rational Rose model and generating Java code into a
VisualAge for Java repository (forward engineering). Then it follows the steps
involved in reverse engineering the Java code from a VisualAge for Java
project into a Rational Rose model. These actions are made possible by the
RoseLink Plugin Toggle.

A.1 Forward and reverse engineering with Rational Rose

From our modelling exercise, we can see that it would be of great use for
architects and developers alike to be able to use the model as a source for
producing the initial skeleton and outline code for development teams to work
with. Then as the development goes through its various phases and the initial
skeleton is developed into a more detailed implementation, it would be useful
to be able to update the model to reflect the latest stage’s code changes.

The process of generating source code from a Rose model, then modifying
the code and updating the model with the changes, is what we refer to as
“round tripping”.

Forward and reverse engineering with Rational Rose allows us to do just that.
Forward engineering allows Java source code to be generated from one or
more classes, packages or components in a Rose model. Reverse
engineering involves the analysis of Java source code, mapping it to Rose
components and finally storing these components in a Rose model.

13.3.1 Integration with IBM VisualAge for Java
The RoseLink Plugin is the bridge between IBM VisualAge for Java and
Rational Rose. Once activated, it enables the code generation of a VisualAge
project from a Rose model and the reverse engineering of code from a
VisualAge project to a Rose model.

Both forward and reversing engineering is initiated from Rose. It is important
to note that Rose is actually doing all the work here, while VisualAge for Java
is the passive partner.

When generating the code from the model, Rose first stages the code in a
directory called \Rose\java\YourProjectName. VisualAge then imports the
code into its repository.
© Copyright IBM Corp. 2000 381



Similarly when reverse engineering a VisualAge project into a Rose model,
the project is first written to the \Rose\java directory, then the code from the
file is reverse engineered into the specified model.

A.1.1 Rose to Java mapping

Although Rose models incorporate classes, forward engineering in Rose is
component-centric. This means that Java code generation is based on the
component specification as opposed to the class specification. It is still
possible to generate Java code from a class. However, the class needs to be
assigned to a valid Java component. Rose can create that component for
you.

There is a mapping process that takes place between Rose model elements
and the corresponding Java constructs when forward and reverse
engineering. For example, Rose classes are mapped to Java classes and
Rose components are mapped to .java files. Table 28 shows this mapping.

Table 28. Java to Rose mapping

Java element Rose model element

Package Package in the Component view.

import -Dependencies between components and
packages in the Component view (forward and
reverse engineering).
-Relationships between classes that are not
located in the same package. In forward
engineering, generates a Java import.

Compilation unit Component (module specification) in the
Component view.

Class Class.

Interface Class with stereotype of “interface”.

Implements relationship Realizes relationship between Java class
(subclass) and Java interface (superclass).

Extends relationship -Generalization relationship between Java
classes.
-Generalization relationship between Java
interfaces.
382 User-to-Business Patterns with WebSphere Advanced and MQSI



A.2 Installation notes

If you are planning to use the Rose-VisualAge link, the correct order to install
the products is to install VisualAge for Java first, then Rational Rose. If you
have already installed Rational Rose, you can install VisualAge for Java later,
but you will need to get the Rational Rose J to IBM VisualAge for Java link
patch from the following Rational support site:

http://www.rational.com/support/downloadcenter/

A.3 Configuration

The following section covers the configuration of both VisualAge for Java and
Rational Rose environments. What follows is an overview of the minimum
configuration required to get the link to function.

Field Attribute or supplier relationship between Rose
classes.
-Java instance variables have Static property
value set to FALSE.
-Java class variables have Static property set to
TRUE.

Method Operation.

Class modifiers Properties on classes (e.g. Class.Final).
Abstract modifier is an element of a Rose class
specification.

Field modifiers Properties on fields and roles (e.g. Role.Final,
Attribute.Volatile, etc.). Static modifier is an
element of a Rose role and attribute
specification.

Method modifiers Properties on operations (e.g. Operation.Static,
Operation.Final, etc.)

{public, private, protected}
access

Public, private, protected access.

package-level access Implementation class.

Java element Rose model element
Appendix A. Rational Rose 2000e and VisualAge for Java 383



A.3.1 VisualAge for Java configuration

Forward engineering means we are going to take a Rose model, generate
code from it, and then have VisualAge import that code. It is not possible to
create a new VisualAge for Java project from Rose, so the first step to take is
to create the project in VisualAge to be used.

The next step is to start the RoseLink Plug-in itself. This is done from the
VisualAge Quick Start menu.

1. Click File --> Quick Start (F2).

Figure 205. Start the Roselink Plugin Toggle

2. From the Quick Start dialog box choose Basic and RoseLink Plugin
Toggle and click OK.

3. A message confirms that the link has successfully established.

A.3.2 Rational Rose configuration

There are also configuration tasks to do in Rose.
384 User-to-Business Patterns with WebSphere Advanced and MQSI



A.3.2.1 Language specification
There may be situations in a model where certain components are not Java
based and should not be considered by the code generation process. In our
modelling exercise we showed queue managers, command files, and queues
as components. These were all ignored in the code generation process.

Rose is able to discern between Java and non-Java components by setting
the language specification for the components. The language specification
can be set for the whole model or for individual components.

Model Language Specification
To set the default language for the whole model:

1. Select Tools -> Model Properties -> Edit... or press F4.

2. Choose the Notation tab of the dialog box (see Figure 206).

Figure 206. Set the model language specification

3. Select Java as the default language and click OK.

Note: This will not change the default language of a component if it was
created before this property was set.

Component Language Specification
To set the language specification for an individual component:

1. Select the component from either the left-hand browser navigation pane or
from an open diagram.

2. Right-click the component and select Open Standard Specification from
the menu.
Appendix A. Rational Rose 2000e and VisualAge for Java 385



3. Select Java as the language from the drop-down box (see Figure 207).

4. Select Ok or Apply for the changes to take effect.

Figure 207. Component language specification

A.3.2.2 Syntax check
You can syntax check your components before attempting to generate Java
source from them. This is optional since Rose automatically does a syntax
check when it generates the Java code, but checking this earlier may save
you some time in the long run.

A.3.2.3 Project specifications
For each model, the project properties that affect code generation can be
customized. To customize the properties, from the Tools menu select Java ->
Project Specification.

Class Path tab
Rose allows the classpath to be set for every model to be used when forward
and reverse engineering code. Check to make sure the appropriate libraries
are included.
386 User-to-Business Patterns with WebSphere Advanced and MQSI



Detail tab
Out of all the options listed in this section the only mandatory one is the
Virtual Machine setting. In order to integrate Rose with VisualAge for Java the
Virtual Machine specification needs to be set to IBM.

Figure 208. Project Specification options

The other options are:

• Stop On Error - When selected, code generation is halted at the first error
encountered. By default this is not selected and code generation
continues regardless of errors. All errors can be viewed in the Rose log
window.

• Create Missing Directories - This is the default behavior and will create
any undefined directories that are referenced as packages in the model.
Appendix A. Rational Rose 2000e and VisualAge for Java 387



• Automatic Synchronization mode - This option automatically updates the
code every time a Java element is created, deleted, renamed or modified.
By default this behavior is not enabled.

13.4 Linking a Rose model to a VisualAge for Java project

Having configured both the VisualAge and Rose environments and started
the RoseLink Plugin Toggle, we can now link the model to the project. To do
this:

1. From the Tools menu select Java ->IBM VisualAge for Java Project.

2. A dialog box entitled VisualAge Link Settings appears showing a list of all
the projects within VisualAge. Select the appropriate project and click OK.
Rose creates a new model property setting called VAJavaProject where it
sets the project name specified.

The link between Rose and VisualAge is now active.

Figure 209. Linking the Rose model to the VisualAge project

A.4 Forward engineering with Rose

In order to generate code it is necessary for classes defined in the Rose
model to be assigned to Java components in the component view. In Table 28
on page 382, the compilation unit in VisualAge (a .java file) is mapped to a
component in Rose. From this we can see that the component view models
the physical file structure of the code generated.
388 User-to-Business Patterns with WebSphere Advanced and MQSI



There are two ways of generating code from within Rose, either from classes
or from the components.

A.4.1 Generating code from classes

Generating the code from classes relies on Rose creating the components
from the class diagrams. The components are created automatically in the
code generation process. For this to happen Rose makes the following
assumptions:

• Every class directly maps to one component and therefore one .java file is
generated.

• If the class is within a package, Rose will create a package in the
components view and the .java file will reside in a directory of the same
name as the package.

The steps involved in generating the code are:

1. Select one or more classes from a Class Diagram or from the View pane.

2. Right click and select Java ->Generate Java.

A timer box will appear, closely followed by a message box confirming the
success of the operation.

A.4.2 Generating code from components

The drawback with the previous method is that it may be desirable to have
more than one class in a .java file. This can be achieved by manually creating
the components in the component view and then assigning the classes to the
components by hand.

The manner in which classes are assigned to a component is:

1. Right-click the component from the Component Diagram or the View pane.

2. Select Open Standard Specification... and click the Realizes tab.

3. From the classes listed, select those required.

4. Right-click to bring up a menu and select Assign. This will result in a red
tick being displayed on the assigned classes.

The same result can be achieved by following the same steps but for classes,
and assigning components to them.

Once assigned, code generation can be started. To do this:
Appendix A. Rational Rose 2000e and VisualAge for Java 389



1. Select one or more components from a Component Diagram or from the
View Pane.

2. Right-click and select Java ->Generate Java.

A timer box will appear, closely followed by a message box confirming the
success of the operation.

A.5 Reverse engineering

The reverse engineering process analyzes Java source code, maps it to
Rose classes and components, and then stores them in a Rose model.

The source can be either:

• Java source code (.java files)

• Java bytecode (.class files)

• .zip, .cab, or.jar files

There are two ways in which reverse engineering can be initiated.

1. Drag and drop files into a Rose class diagram or component diagram. This
will automatically decompress any .zip, .cab or .jar files. However, it will
not recompress these files if code is subsequently generated from these
classes.

2. Use the Tools->Java->Reverse Engineer option or right-click the classes
or components and use the shortcut menu.

Either way, the reverse engineering dialog box shown in Figure 210 is
displayed.
390 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 210. Reverse engineering control

From this dialog box the first selection is the directory that holds the source
and the second is the source itself, either .java or .class files. The selected
files are then added to the bottom box and from there reverse engineering
can begin on the chosen files. After the process is complete the components
are visible in the View pane but will not be shown in the component diagrams.
They will need to be added to any diagrams manually.

It is also possible to view and edit the Java source code behind the
component. This can be done with either the built-in Rose editor or any other
user-specified tool. If the AutoSynchronization feature is set, the model will
be automatically updated as changes are saved. If not, then the reverse
engineering process needs to be done again.

If changes are made in this way (by reverse engineering), it will be necessary
to forward engineer again to make sure that the code in the VisualAge
repository is also up to date.
Appendix A. Rational Rose 2000e and VisualAge for Java 391



392 User-to-Business Patterns with WebSphere Advanced and MQSI



Appendix B. Sample code

In this appendix we have placed code listings that were referenced in other
parts of the book.

B.1 GetCurrentProfileCommandMQJava: retrieveProfile() method

Figure 211. retrieveProfile()

/**
*/
public String retrieveProfile() {

// *** MQ Variables ***
// Define names of MQ objects

//String requestQueueName = "ITSO.ADDR.REQ.IN";
//String replyQueueName = "ITSO.ADDR.REPLY";
// Actual MQ Java object refs.
com.ibm.mq.MQQueueManager qMgr = null;
com.ibm.mq.MQQueue requestQueue = null;
com.ibm.mq.MQQueue replyQueue = null;
// Holds reply queue name for use in MQ message options etc.
int openOptions;
int getOptions;
byte sentmessage[];

MQEnvironment.hostname = hostname;
MQEnvironment.channel = channel;
MQEnvironment.port = port;

writeToLog("port = " + port);
writeToLog("hostname = " + hostname);
writeToLog("channel = " + channel);
writeToLog("queueManagerName = " + queueManagerName);
writeToLog("requestQueueName = " + requestQueueName);
writeToLog("replyQueueName = " + replyQueueName);

try {
/*
* Connect to queue manager
*/
qMgr = new MQQueueManager(queueManagerName);
writeToLog("Connected to QManager " + queueManagerName);
© Copyright IBM Corp. 2000 393



Figure 212. retrieveProfile()

// If the name of the request queue is the same as the reply queue...
if(requestQueueName.equals(replyQueueName)){

openOptions = MQC.MQOO_INPUT_AS_Q_DEF | MQC.MQOO_OUTPUT;
}
else{

openOptions = MQC.MQOO_OUTPUT ; // Open queue to perform MQPUTs
}
openOptions = MQC.MQOO_INPUT_AS_Q_DEF | MQC.MQOO_OUTPUT ;

/* Request queue */
requestQueue = qMgr.accessQueue(requestQueueName, openOptions,

null, // default q manager
null, // no dynamic q name
null); // no alternate user id

writeToLog("Connected to requestQueue " + requestQueue);
/*
* Create a request message and set its properties
*/
MQMessage requestMessage = new MQMessage();
requestMessage.replyToQueueName = replyQueueName;
requestMessage.replyToQueueManagerName = queueManagerName;
writeToLog("MQMessage created and properties set");
requestMessage.writeString(getXMLrequestMessage());
writeToLog("MQMessage content written as " + getXMLrequestMessage());

// Put message to queue with options
MQPutMessageOptions pmo = new MQPutMessageOptions();
requestQueue.put(requestMessage, pmo );
writeToLog("MQMessage written to queue");

/* Reply message */
replyQueue = qMgr.accessQueue(replyQueueName,

openOptions,
null, // default q manager
null, // no dynamic q name
null); // no alternate user id

writeToLog("Connected to replyQueue " + replyQueue);
394 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 213. retrieveProfile()

/*
* Create the reply message and set its properties
* including the ID of the original request message
*/
MQMessage replyMessage = new MQMessage();
writeToLog("reply message created");
replyMessage.correlationId = requestMessage.messageId;
writeToLog("ID for sent message = " + requestMessage.messageId.toString());
writeToLog("Correlation ID stored = " + replyMessage.correlationId.toString());
/*
* Put message to queue with options
*/
MQGetMessageOptions gmo = new MQGetMessageOptions(); // accept the defaults

// same as MQGMO_DEFAULT
gmo.options = MQC.MQGMO_WAIT;
gmo.waitInterval = 2000;
writeToLog("Waiting for reply...");
replyQueue.get(replyMessage,gmo);
writeToLog("Reply received");

/*
* Extract message data
*/
int msglen = replyMessage.getMessageLength();
writeToLog("reply is " + msglen + " long");

String msgText = replyMessage.readString(msglen);
writeToLog("message is = '" + msgText +"'");

setMessage("GetCurrentProfileCommandMQJava completed successfully");

// Store the message data
return msgText;

}catch (MQException ex){
writeToLog("MQException occurred : Completion code " +

ex.completionCode + "\n>MQStatus: Reason code " + ex.reasonCode);
Appendix B. Sample code 395



Figure 214. retrieveProfile()

//throw new CommandException("MQException occurred during MQ operations");
//Detail is " + e.getMessage);

setMessage("ERROR - GetCurrentProfileCommandMQJava MQException ");
return "ERROR";

}catch (Exception e){
writeToLog("Exception occurred - " + e.toString());

//throw new CommandException("General Exception during MQ operations");
//Detail is " + e.getMessage);

setMessage("ERROR - GetCurrentProfileCommandMQJava:Exception ");
return "ERROR";

}finally{
/*
* Tidy up
*/
try {

// Close the queue
if(requestQueue != null ){

writeToLog("MQQueue closed");
requestQueue.close();

}
// Disconnect from the queue manager
if(requestQueue != null ){

writeToLog("disconnected from QueueManager ");
qMgr.disconnect();

}
}catch(MQException mqe){

writeToLog("EXCEPTION closing queue or disconnecting from QueueManager ");
setMessage("ERROR - GetCurrentProfileCommandMQJava: RemoteException");
return "ERROR";

}
}

}

396 User-to-Business Patterns with WebSphere Advanced and MQSI



B.2 GetCurrentProfileCommandJMS: retrieveProfile() method

Figure 215. retrieveProfile()

/**
* Insert the method's description here.
* Creation date: (14/09/00 19:59:25)
*/
public String retrieveProfile() {

/*
* Declare local JMS variables
*/
QueueConnection connection = null;
QueueSession session = null;
QueueSender messageProducer = null;
QueueReceiver messageConsumer = null;
TextMessage replyMsg = null;
Queue destQueue=null;
Queue replyQueue=null;

try {

// Obtain context to look up JMS admin objects (websphere cos naming)
//messagingContext = ContextHelper.createWebsphereContext();
InitialContext messagingContext = new InitialContext();
System.out.println("Context OK: create connection factory " + messagingContext);
MQQueueConnectionFactory cf = (MQQueueConnectionFactory)

messagingContext.lookup(queueManagerName);
writeToLog("OK 'ConnectionFactory is " + cf);

writeToLog("Going to setupClientConnection " + hostname);
cf.setTransportType(JMSC.MQJMS_TP_CLIENT_MQ_TCPIP);
cf.setHostName(hostname);
cf.setQueueManager(queueManagerName);
cf.setChannel(channel);
cf.setPort(port);
writeToLog("done setupClientConnection " + hostname);
writeToLog("About to create Connection ");
connection = cf.createQueueConnection();
writeToLog("Connection is " + connection);
connection.start();
writeToLog("Connection started OK");
Appendix B. Sample code 397



retrieveProfile()

//****************************************************
//****************INIT ENDS - MESSAGE SEND BEGINS*******
//****************************************************

//get JMS admin objects from cos naming provider
destQueue = (Queue)messagingContext.lookup(requestQueueName);
replyQueue = (Queue)messagingContext.lookup(replyQueueName);
session = connection.createQueueSession(false,Session.AUTO_ACKNOWLEDGE);
writeToLog("destQueue = " + destQueue);
writeToLog("replyQueue = " + replyQueue);
writeToLog("session = " + session);
// create a producer of messages
messageProducer = session.createSender(destQueue);
writeToLog("messageProducer = " + messageProducer);

// create xml message string
TextMessage msg = session.createTextMessage();
msg.setText(getXMLrequestMessage());
writeToLog("msg text set to = " + getXMLrequestMessage());

// set the reply to queue for the message
msg.setJMSReplyTo(replyQueue);

// put ('send') message to queue
messageProducer.send(msg);
String msgID = msg.getJMSMessageID();
writeToLog("msg sent with ID = " + msgID);

/******************************
* Get reply message
******************************/
// Create a consumer for the above message,
// Use JMSCorrelationID as messageSelector
messageConsumer = session.createReceiver(replyQueue, "JMSCorrelationID = " + "'"

+ msgID + "'");
398 User-to-Business Patterns with WebSphere Advanced and MQSI



Figure 216. retrieveProfile()

//wait for reply
writeToLog("Waiting for reply...");
replyMsg = (TextMessage)messageConsumer.receive(messageTimeout);
writeToLog("reply received as = " + replyMsg);

//if null returned on timeout
if(replyMsg == null){

throw new CommandException("Timeout waiting for reply message");
}
setMessage("GetCurrentProfileCommandJMS completed successfully");

// store the XML string
return replyMsg.getText();

}catch(Throwable t){
writeToLog("Exception JMS message operations clean up was " + t);
t.printStackTrace();

setMessage("ERROR - GetCurrentProfileCommandJMS encountered an Exception");
return "No data available";

}
// clean up JMS objects
finally {

writeToLog("clean up stage");

try {
if( messageProducer != null) {

messageProducer.close();
}
if( messageConsumer != null) {

messageConsumer.close();
}
if( session != null) {

session.close();
}

} catch(Throwable t) {
writeToLog("Exception during clean up was " + t);
t.printStackTrace();
setMessage("ERROR - GetCurrentProfileCommandJMS encountered an Exception");
return "No data available";

}
}

Appendix B. Sample code 399



400 User-to-Business Patterns with WebSphere Advanced and MQSI



Appendix C. Special notices

This publication is intended to help IT architects and IT specialists in the
design and deployment of e-business applications. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by WebSphere. See the PUBLICATIONS section of the IBM
Programming Announcement for IBM WebSphere Application Server V 3.5
Advanced Edition for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
© Copyright IBM Corp. 2000 401



attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli
A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

IBM �

AIX
AS/400
CICS
DB2
Lotus
Lotus Notes
Domino
MQSeries
OS/2
OS/390
OS/400
RETAIN

Redbooks
Redbooks Logo
S/390
SecureWay
SP
SP1
Storyboard
SupportPac
System/390
VisualAge
WebSphere
Wizard
402 User-to-Business Patterns with WebSphere Advanced and MQSI



ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Appendix C. Special notices 403



404 User-to-Business Patterns with WebSphere Advanced and MQSI



Appendix D. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

D.1 IBM Redbooks

For information on ordering these publications see “How to get IBM
Redbooks” on page 411.

• Patterns for e-business: User-to-Business Patterns for Topology 1 and 2
using WebSphere Advanced Edition, SG24-5864

• User-to-Business Patterns Using WebSphere Enterprise Edition,
SG24-6151

• Business Integration Solutions with MQSeries Integrator, SG24-6154

• Design and Implement Servlets, JSPs, and EJBs for IBM WebSphere
Application, SG24-5754

• Servlet and JSP Programming with IBM WebSphere Studio and VisualAge
for Java, SG24-5755

• WebSphere Scalability: WLM and Clustering Using WebSphere
Application Server Advanced Edition, SG24-6153

• CCF Connectors and Database Connections Using WebSphere Advanced
Edition, SG24-5514

• The XML Files: Using XML for Business-to-Business and
Business-to-Consumer Applications, SG24-6104

• MQSeries Version 5.1 Administration and Programming Examples,
SG24-5849

D.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at ibm.com/redbooks for information about all the CD-ROMs offered,
updates and formats.

CD-ROM Title CollectionKit
Number

IBM System/390 Redbooks Collection SK2T-2177
IBM Networking Redbooks Collection SK2T-6022
IBM Transaction Processing and Data Management Redbooks Collection SK2T-8038
IBM Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
© Copyright IBM Corp. 2000 405

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/


D.3 Other resources

These publications are also relevant as further information sources:

• MQSeries Primer, found at http://www.redbooks.ibm.com

• WebSphere’s Remote OSE, a redpaper available at
http://www.redbooks.ibm.com

• Choosing the Right EJB Type: Some Design Criteria, technical article
available at http://www7.software.ibm.com/

• Building Business Solutions with WebSphere, SC09-4432, available at
http://www.ibm.com/software/webservers/appserv/library.html

• Flanagan, David, Jim Farley, William Crawford and Kris Magnusson, Java
Enterprise in a Nutshell, O’Reilly & Associates, Inc. 1999, ISBN
1565924835

• Erich Gamma et al, Design Patterns - Elements of Reusable
Object-Oriented Software, Addison Wesley, 1995, ISBN: 0201633612

• Maruyama, Hiroshi, Kent Tamura and Naohiko Uramoto, XML and Java:
Developing Web Applications, Addison-Wesley, 1999, ISBN 0201485435

• Flanagan, David, JavaScript: The Definitive Guide, Third Edition, O'Reilly
& Associates, Inc., 1998, ISBN 1565923928

• Nagaratnam, Nataraj et al. 2000. Security Overview of IBM WebSphere
Standard/Advance 3.02, IBM white paper, available at:
http://www.ibm.com/software/webservers/appserv/whitepapers.html

• Developing Dynamic Web Sites Using the WebSphere Application Server
by Shane Claussen and Mike Conner, available at:

http://service2.boulder.ibm.com/devcon/news0399/artpage2.htm

• IBM Application Framework for e-business: white papers available at:
http://www.ibm.com/software/ebusiness/

• Designing e-business Solutions for Performance, white paper by Maggie
Archibald and Mike Schlosser, available at:
http://www.ibm.com/software/developer/library/patterns/performance.html

IBM AS/400 Redbooks Collection SK2T-2849
IBM Netfinity Hardware and Software Redbooks Collection SK2T-8046
IBM RS/6000 Redbooks Collection SK2T-8043
IBM Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694

CD-ROM Title CollectionKit
Number
406 User-to-Business Patterns with WebSphere Advanced and MQSI

http://www.ibm.com/software/webservers/appserv/whitepapers.html
http://service2.boulder.ibm.com/devcon/news0399/artpage2.htm
http://www.ibm.com/software/ebusiness/
http://www.ibm.com/software/developer/library/patterns/performance.html
http://www.ibm.com/software/developer/library/patterns/performance.html
http://www.ibm.com/software/developer/library/patterns/performance.html


These IBM MQSeries and MQSeries Integrator publications are available at
http://www.ibm.com/software/ts/mqseries/library/:

• MQSeries Using Java, SG34-5456

• MQSeries MQSC Command Reference, SC33-1369

• MQSeries Programmable System Management, SC33-1482

• MQSeries Administration Interface Programming Guide and Reference,
SC34-5390

• MQSeries System Administration, SC33-1873

• MQSeries: Queue Manager Clusters, SC34-5349

• MQSeries Integrator Version 2.0 Technical White Paper

• MQSeries Integrator Programming Guide Version 2.0, SC34-5603

• MQSeries Integrator Using the Control Center, SC34-5602

• MQSeries Integrator Administration Guide, SC34-5792

D.4 Referenced Web sites

These Web sites are also relevant as further information sources:

• http://www.ibm.com/software/ebusiness/ For information on the IBM
Application Framework for e-business

• http://www.ecma.ch/ ECMA home page

• http://www.javasoft.com/products To learn more about Java technology

• http://www.ibm.com/redbooks IBM Redbooks home page

• http://www7.software.ibm.com/ VisualAge Developer Domain home
page

• http://www.ibm.com/software/ts/mqseries/ IBM MQSeries family home
page

• http://www.ibm.com/software/developer/ PartnerWorld for Developers

• http://www.rational.com Rational home page

• http://www.microsoft.com Microsoft home page

• http://www.messageq.com ebizQ.net online publication dedicated to
information about creating and managing messaging infrastructures

• http://www.ibm.com/software/webservers/appserv/ WebSphere
Application Server home page
Appendix D. Related publications 407

http://www.ecma.ch/stand/ECMA-262.htm
http://www.javasoft.com/products
http://www.ibm.com/software/ebusiness/


• http://www.ibm.com/software/data/pubs IBM database and data
management publications

• http://support.microsoft.com/directory Microsoft product support
services
408 User-to-Business Patterns with WebSphere Advanced and MQSI



Appendix E. Using the additional material

This redbook also contains additional material on the Internet. See the
appropriate section below for instructions on using or downloading this
material.

E.1 Locating the additional material on the Internet

The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246160

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number.

E.2 Using the Web material

The additional Web material that accompanies this redbook includes the
following:

File name Description
6160scripts.zip Zipped file containing MQSI configuration scripts

E.2.1 System requirements for downloading the Web material

The following system configuration is recommended for downloading the
additional Web material.

Hard disk space: 19 KB
Operating System: Windows NT

E.2.2 How to use the Web material

Create a subdirectory (folder) on your workstation, copy, and unzip the
contents of the Web material into this folder. The MQSI configuration scripts
can be used as examples for your own configuration scripts. They are
intended to serve as examples only and must be modified to suit your own
environment. Read the readme.pdf document first for information on how to
use the files.
© Copyright IBM Corp. 2000 409

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/


410 User-to-Business Patterns with WebSphere Advanced and MQSI



How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site ibm.com/redbooks

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States or Canada
Outside North America

e-mail address
pubscan@us.ibm.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2000 411

mailto: pubscan@us.ibm.com 
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com/
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.redbooks.ibm.com/


IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
412 User-to-Business Patterns with WebSphere Advanced and MQSI



Index

Symbols
/etc/syslog.conf 278

A
ACL 278
activity diagram 162, 167
actor 153, 154
administrative agent 268
alias 110, 112, 269, 331, 354, 367, 368, 369
AMQ6767 264
analysis diagram 165, 166
applet 36, 37, 40, 41, 42, 50
Application Framework 35, 36, 37, 42, 48
Application Messaging Interface (AMI) 6, 109
application server 22, 25, 27, 28, 180, 181
ARCHIVE 41
asynchronous 16, 51, 111, 115, 183, 364

B
Baan 26
back-end application tier 15, 16
BackoutCount 295
BCLIENTUSER 297
Bean Managed Persistence (BMP) 47
bindings 51, 101, 106, 275
bindings mode 106
BLOB 282
BMQPSTOPOLOGY 297
BOTHRESH 295
boundary class 167
BPUBLISHERS 297
BRETAINEDPUBS 297
broker database 113
broker instance name 284
broker persistent store 323
BSUBSCRIPTIONS 297
build cycle 141, 142
BUSERCONTEXT 297

C
C structures 283
CAB 41
cache 59, 114, 147, 184, 185, 196, 303
CARDINALITY 132, 133
© Copyright IBM Corp. 2000
cascading style sheets (CSS) 39
CAST 133
catcher servlet 57
category 194
CCF 48, 49, 50
CGI 43
channel events 258
check in 281, 282, 363
check out 281, 357
CICS 26, 48, 49
circular logging 262, 263, 264
class diagram 164, 165, 167, 169, 172
class model 164
classForName 58
CLASSPATH 372, 374
client mode 107, 108
cloning 30
CLUSRCVR 250, 251
CLUSSDR 250, 251
cluster 109, 111, 249, 250, 252, 253, 268, 272,
310, 313, 319, 324, 334, 336, 337, 338, 339, 340,
341, 342, 343, 344, 347, 348, 349, 350, 351, 368
cluster receiver 250, 251
cluster sender 109, 250, 251, 269, 272
clustering 29
COBOL copybooks 283
collective 285
com.ibm.mq.iiop.jar 372
com.ibm.mq.jar 372, 373
com.ibm.mqbind.jar 372
com.ibm.mqjms.jar 372, 373, 374
com.ibm.record.ctypes 50
com.ibm.record.util 50
Command Assistant 274, 276, 299, 328, 329, 334,
352
command bean 105
command caching 58
Command interface 59
command package 1, 55, 57, 75, 95, 165
command pattern 55
command shipping 57, 60
CommandTarget 63, 64, 67, 68, 69, 70, 71, 72,
75, 77
CommandTargetName 75, 78
Common Connector Framework (CCF) 48
Communication 49
CompensableCommand 59, 61
413



component diagram 177
component model 176, 177
compute node 120, 121, 122, 123, 127, 132, 134,
138, 196, 198, 199, 205, 213, 220, 230
Configuration Manager 110, 113, 265, 266, 268,
269, 270, 271, 273, 275, 293, 296, 297, 299, 312,
319, 320, 321, 322, 324, 330, 331, 332, 334, 335,
336, 337, 347, 351, 356, 357, 363
ConnectionSpec 49
connector 35, 48, 49, 50
container 46, 47, 110, 112
Container Managed Persistence (CMP) 47, 60
Control Center 109, 117, 119, 120, 123, 143, 193,
195, 265, 269, 272, 273, 278, 282, 283, 286, 288,
290, 291, 298, 299, 314, 316, 320, 321, 322, 330,
355, 356, 357, 358, 360
control class 167
controller 268
CORBA 53
crtmqm 254, 351
Custom Wire Format (CWF) 119
customer relationship management (CRM) 14

D
database node 127, 128, 129, 201, 202, 203, 224
DataDelete 127
DataInsert 127
DataUpdate 127
db2cli 347
DBMS 46, 266
DCOM 256
DECLARE 217
demilitarized zone 18, 19
deployable message flows 114
deployment diagram 179, 180
deployment model 141, 152, 179
DHTML 18, 36, 37, 39
Directory and security services node 19
directory naming service 106
DLQ 326, 347
DMZ 19, 20, 21, 22, 26, 306, 308
docmcngf 256
DOCTYPE 231
Document Object Model (DOM) 39
Document Type Definition (DTD) 39

See also DTD
domain firewall 19, 21, 23, 26, 28
Domain Name Service (DNS) node 18

DSPMQAUT 255
DTD 116, 187, 189, 190, 191, 192, 378
dynamic HTML (DHTML) 37, 39

E
ECMA 40
ECMA-262 40
ECMAScript 40
EJB 46, 47, 48, 53, 105, 110, 112, 117, 308
eMarketPlace 3
e-Marketplaces 148
Encina 48
Encina DE-Light 49
endmqm 264, 295, 296, 297, 298, 299
Enterprise Access Builder (EAB) 49
Enterprise Application Integration (EAI) 51
Enterprise Information System (EIS) 50
Enterprise JavaBeans 35, 43, 48
Enterprise-Out 12
entity bean 47, 57, 60, 63, 67, 68, 69, 70, 79
entity class 167
ESQL 104, 115, 120, 122, 123, 124, 125, 126,
127, 129, 130, 132, 134, 137, 196, 197, 198, 199,
202, 203, 205, 206, 209, 210, 211, 213, 215, 217,
219, 222, 224, 225, 226, 227
ESS 5
execute() 56, 57, 61, 62, 77, 78, 80, 81, 86, 88,
90, 91, 94
execution group 287
export 288, 360
Extensible Markup Language 119
eXtensible Stylesheet Language 39

See also XSL 39
External Call Interface (ECI) 49
External Presentation Interface (EPI) 49

F
filter node 129, 130, 131, 133, 137, 201, 208, 210,
220, 223
firewall 19, 21, 23, 25, 26
FORM 41
forward engineer 143, 145
fscontext.jar 372
full repository queue manager 250

G
generic XML messages 282
414 User-to-Business Patterns with WebSphere Advanced and MQSI



get authority 255
getCommandTarget() 62, 75, 76, 79
getCommandTargetName() 62, 75

H
hasOutputProperties() 62, 69, 70
horizontal scalability 21
Host On-Demand 13, 49
HTML 35, 37, 38, 39, 40, 41, 42, 44
HttpServletRequest 57, 167
HttpServletResponse 57

I
IDX1543 263
IIOP 53, 372
import 288, 289, 360
IMS 26, 48, 49
INETD 247
InfoCenter 371
information architecture 147
InputBody 125
InputRoot 123, 124
InputTerminal 118, 136, 196
instrumentation 258
INT 133
integration server 17, 20, 21, 22, 26, 27, 28, 48
interaction diagram 172, 175
InteractionSpec 49
IPSEC 18
isReadyToCallExecute() 61, 66, 83, 84, 85, 90,
91, 95
iTV 148

J
Java applet 40
Java Message Service (JMS) 53
Java Naming and Directory Interface (JNDI) 53
Java Record Library 50
Java Transaction API (JTA) 53
JavaBeans 44
JavaScript 36, 37, 38, 40, 152
JavaServer Pages 35, 43, 44, 143, 144, 152
JDBC 35, 45, 46, 273
JDK 41
JMS 7, 53, 87, 94, 99, 100, 101, 105, 106, 108,
109, 181, 231, 303, 308, 371, 373, 374, 375
jms.jar 372, 373, 374

JMSCorrelationID 102
JNDI 53, 100, 372, 373
jndi.jar 372, 373, 374
JNI 51
JScript 39, 40
JSP 44, 56, 145, 167, 169, 170, 171, 172, 178,
180, 181, 308
JTA 53
JVM 30, 31, 43, 59, 68

K
kiosk 148

L
LDAP 25, 26, 53, 144
ldap.jar 372
LENGTH 217
linear logging 262, 263
listener 247, 256, 328, 334, 336, 337, 341, 348,
351
load balancing 112
local queue 110, 250, 308
Logic control nodes 129
Logical View 162
lookup() 100
loop 131, 137, 191, 192, 193, 221
Lotus Domino 48
Lotus Notes 26

M
macro design 141, 147, 153
Macromedia Flash 38
MCAUSER 256
message broker

instance name 267
message domain 282
message flow 53, 103, 104, 114
message flow category 195
message flow node 136, 137, 138, 228, 229, 230,
231, 233, 284
Message Queue Interface (MQI) 6
Message Repository Manager 118, 282

See also MRM
message set 282
message-oriented middleware (MOM)

See also MOM 51
103
415



messaging 51
micro design 141, 153
mirror 264
model 30
Model-View-Controller 35, 43, 55, 151
MOM 51, 99, 103
MQ base Java 94, 106, 108, 314, 371, 372
MQ JMS 371, 372, 374
MQAI 242, 243
mqbrasgn 291, 316
mqbrdevt 291, 316
mqbrkrs 291, 354
mqbrops 291, 316
mqbrtpic 291, 316
MQGET 242, 255
MQInput 118, 120, 229, 293
MQMD 295
MQOO_BIND_AT_OPEN 253
MQOO_BIND_NOT_FIXED 253
MQOPEN 253
MQOutput 120, 234, 293
MQPUT 242, 255, 258
MQQueue 375
MQQueueConnectionFactory 375
MQReply 120, 231, 293
MQRFH2 118, 120, 124, 231
MQSC 242, 243, 248, 249, 254, 265, 268, 322,
351
MQSeries Administration Interface (MQAI)

See also MQAI 242
MQSeries Alert Monitor 259
MQSeries C++ 6
MQSeries classes for Java 6, 50, 87, 95, 105, 106,
181, 270, 303, 308, 371

See also MQ base Java
MQSeries classes for Java Message Service 7,
371
MQSeries Client Classes for Java 50
MQSeries Connector 50
MQSeries Explorer 243, 244, 246, 247, 248, 249,
256, 322, 328, 350, 351
MQSeries Integrator SupportPacs 290

IC01 Message flow versioning utilities 289
MQSeries Message Descriptor (MQMD) 124

See also MQMD
MQSeries Services snap-in 244, 245, 246, 247,
248, 256, 259
MQSeries SupportPacs

MA88 MQSeries classes for Java and MQSeries

classes for JMS 140, 308, 309, 310, 314, 371
MS08 Evaluation of MQSeries System Manage-
ment Products 240
MS0D Selecting MQSeries System Manage-
ment tools 240

mqsibrkrs 316, 317
mqsichangebroker 275
mqsichangeconfigmgr 275
mqsichangetrace 237, 276
mqsichangeusernameserver 275
mqsicombinemsgflows 290
mqsicreatebroker 275, 298, 352, 353, 354, 355
mqsicreateconfigmgr 275, 299, 334, 336
mqsicreateusernameserver 275, 299, 328
mqsideletebroker 275, 298
mqsideleteconfigmgr 275, 299
mqsideletemsgflows 290
mqsideleteusernameserver 275, 299
mqsifiltermsgflows 289
mqsiformatlog 236, 276
mqsilcc 276
mqsilist 276
mqsireadlog 236, 276
mqsireporttrace 276
mqsistart 276, 296, 297, 298, 330, 336, 355
mqsistop 276, 295, 296, 297, 298, 299
MRM 118, 119, 283

message domain 282
MVC 164, 167

N
NEON 119

message domain 282

O
OAM 254, 255
Object Authority Manager (OAM) 254
ODBC 126, 273, 331, 332, 333, 345, 346, 347,
353, 355
Oracle 267, 273
OSE Remote 28
OutputRoot 123, 125, 127
OutputTerminal 118, 136, 196, 205, 206

P
Page Designer 144
PARAM 41
416 User-to-Business Patterns with WebSphere Advanced and MQSI



PATH 374
Pattern Development Kit (PDK) 1, 5
PCF 242, 243, 254, 255
PDA 16, 18, 148
PeopleSoft 26
performance events 258
Performance Monitor 259
performExecute() 57, 62, 66, 67, 69, 70, 73, 74,
75, 76, 83, 84, 85
persistence 294
persistent data store 273
persistent state datastore 268
Personal Digital Appliance (PDA) 18
pervasive 38
plug-in 38, 308
POSITION 217
predefined messages 282
presentation tier 15, 20, 111
primitive 118, 120, 121, 284
promote property 138
protocol firewall 19, 21, 26, 28
providerutil.jar 372, 374
Public Key Infrastructure (PKI) 18
Publication node 293
publish/subscribe 6, 111, 268, 271, 272, 285, 286,
313, 319
put authority 255

Q
Queue Full event 258
queue manager events 258

R
RDBMS 45
readtrace 237
RealPlayer 38
redirector 19, 22, 308
Remote Method Invocation (RMI) 53
remote OSE 19
remote queue 250, 256, 258
repository 109, 111, 113, 249, 250, 272, 273, 288,
299, 313, 319, 320, 323, 324, 330, 331, 332, 340,
341, 342, 343, 344, 348, 350, 363
Reset Content Descriptor node 231
reset() 61, 66, 83, 91
result bean 167
reverse engineer 143, 144, 145, 177
RMI 53

role 151, 154, 166, 278, 279, 280, 281, 316
Root element 123
Rose 143, 144, 145, 153, 156, 162, 165, 167, 169,
172, 177
round-tripping 143
router tier 15, 16, 20
runmqlsr 351
runmqsc 248, 258, 351

S
SAP R/3 26, 48, 49
SAX 45
SELECT 126, 213
self-defined messages 282
session bean 47, 68
SET 126
setCommandTarget() 62, 64, 75
setCommandTargetName() 62, 75, 77, 78
setHasOutputProperties() 67
SETMQAUT 254, 255
setOutputProperties() 58, 62
SOAP 58
solution outline 141, 146, 147
SQL 45
SSL 18
storyboard 157
strmqcsv 351
strmqm 351
SUBSTRING 129, 217
SVRCONN 351
Sybase 267, 273
synchronous 16, 111, 115, 183, 184
syncpoint 294
syslog daemon 278
syslogd 278
SYSTEM.ADMIN.SVRCONN 248
SYSTEM.BROKER 273

T
TargetableCommand 57, 58, 59, 61, 62, 66, 67,
70, 71, 72, 73, 74, 75, 79, 81, 82, 85
TargetableCommandImpl 59, 62, 63, 64, 65, 67,
75, 79, 82, 83, 84, 85
TargetPolicy 68
TargetPolicyDefault 68
THE 126
thin client 13, 37
topic 52, 271, 286, 290, 300
417



trace node 234, 235
transformation 52, 103, 115, 116, 120, 121, 123,
188, 190, 199, 205, 209, 211, 213, 214, 215, 217,
267
transport layer 52
TRIM 127

U
ujc.jar 374
use case 147, 153, 154, 155, 156, 157, 158, 172
User Name Server 110, 111, 265, 267, 268, 270,
271, 272, 293, 297, 299, 314, 319, 320, 321, 324,
325, 328, 329, 330, 333, 334, 335, 337, 347, 351
User node 18

V
VBScript 39
versioning 289
vertical scalability 21
View bean 170
Visibroker 372
VisualAge for Java 49, 50, 143, 144, 145, 165,
177, 375, 376
VoiceXML 40

W
WAP 40, 148, 151
Web Administration 245, 246, 247, 248, 249, 257
Web application server 17, 20, 21, 22, 27, 28, 42
Web server redirector 19, 22, 27, 28
WebSphere Studio 56, 144, 145, 377

development environment 144
WebSphere Test Environment 144, 145
Web-Up 12
widget 41, 42
Wireless Application Protocol (WAP) 38
Wireless Markup Language (WML) 38
workload balancing 112
workload management 29
writeToLog() 95

X
XA resource coordinator 106
XMI Toolkit 144
XML 35, 37, 39, 40, 45, 48, 58, 87, 94, 95, 102,
105, 116, 119, 123, 124, 125, 126, 127, 133, 136,
176, 183, 184, 187, 189, 190, 196, 197, 199, 200,

206, 211, 213, 222, 228, 230, 232, 282, 288, 298,
300, 361

message domain 282
XML.tag 125
XMLConfig 377
XSL 45
418 User-to-Business Patterns with WebSphere Advanced and MQSI



© Copyright IBM Corp. 2000 419

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and
quality as appropriate.

• Use the online Contact us review redbook form found at ibm.com/redbooks
• Fax this form to: USA International Access Code + 1 845 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-6160-00
User-to-Business Patterns Using WebSphere Advanced and MQSI
Patterns for e-business Series

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.redbooks.ibm.com/
http://www.ibm.com/privacy/yourprivacy/




(0.5” spine)
0.475”<->0.875”

250 <-> 459 pages

User-to-Business Patterns Using W
ebSphere Advanced and M

QSI 

 







®

SG24-6160-00 ISBN 0738418307

INTERNATIONAL 
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE 

IBM Redbooks are developed by 
the IBM International Technical 
Support Organization. Experts 
from IBM, Customers and 
Partners from around the world 
create timely technical 
information based on realistic 
scenarios. Specific 
recommendations are provided 
to help you implement IT 
solutions more effectively in 
your environment.

For more information:
ibm.com/redbooks

User-to-Business Patterns Using
WebSphere Advanced and MQSI
Patterns for e-business Series

Select topologies 
and mappings to 
build U2B e-business 
solutions

Gain insight into the 
latest technologies, 
design guidelines

Learn to implement 
the solution from 
examples

Patterns for e-business are a group of proven, reusable assets 
that can help speed the process of developing applications. 
The pattern discussed in this book, the User-to-Business 
Pattern, is the general case of users interacting with 
enterprise transactions and data. In particular it is relevant to 
those enterprises that deal with goods and services that 
cannot be listed and sold from a catalog. 
This redbook discusses application topology 5 of the 
User-to-Business Patterns. Application topology 5 links 
multiple presentation tiers to any back-end client, but the 
back-end is not hidden to the user. 
The topologies are illustrated using WebSphere Application 
Server Advanced Edition V3.5, MQSeries V5.1, and MQSeries 
Integrator V2. The sample application uses the Command 
Manager Framework, included with WebSphere V3.5.
Part 1 of this redbook takes you through the process of 
choosing an application topology and a runtime topology. It 
then gives you possible product mappings for implementation 
of the chosen runtime topology.
Part 2 provides a set of guidelines for building your e-business 
application. It includes information on technology options, 
application design and application development.
Part 3 takes you through a working example, showing the 
implementation of an e-business application using 
application topology 5.

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Introduction
	1.1 Patterns for e-business
	1.1.1 Components of the Patterns for e-business
	1.1.2 Defined Patterns for e-business
	1.1.3 How to use these patterns
	1.1.4 Patterns for e-business Web site

	1.2 The User-to-Business Pattern
	1.3 IBM MQSeries
	1.4 IBM MQSeries Integrator

	Part 1. User-to-Business Patterns: topology 5
	Chapter 2. Choosing the application topology
	2.1 Application topologies
	2.1.1 Web-up
	2.1.2 Enterprise-out

	2.2 Application topology 5
	2.2.1 Application topology 5: business driver
	2.2.2 Application topology 5: key features
	2.2.3 Application topology 5: considerations


	Chapter 3. Choosing the runtime topology
	3.1 An introduction to the node types
	3.2 Runtime topology A
	3.3 Topology A variation 1

	Chapter 4. Product mapping
	4.1 Product mappings for the basic topology
	4.2 Runtime topology variation 1
	4.3 Extending the topologies with workload management
	4.3.1 MQSeries and MQSeries Integrator
	4.3.2 WebSphere Advanced Edition


	Part 2. User-to-Business Patterns: guidelines
	Chapter 5. Technology options
	5.1 Web client
	5.1.1 Web browser
	5.1.2 HTML
	5.1.3 Dynamic HTML (DHTML)
	5.1.4 XML (client-side)
	5.1.5 JavaScript
	5.1.6 Java applets

	5.2 Web application server
	5.2.1 Java servlets
	5.2.2 JavaServer Pages (JSP)
	5.2.3 JavaBeans
	5.2.4 XML
	5.2.5 JDBC
	5.2.6 Enterprise JavaBeans

	5.3 Integration server
	5.3.1 Connectors
	5.3.2 Message-oriented middleware

	5.4 Additional enterprise Java APIs
	5.5 References and where to find more information

	Chapter 6. Java application design: using commands and MQSeries
	6.1 Command framework
	6.1.1 What are commands?
	6.1.2 The command package
	6.1.3 Command caching
	6.1.4 Command classes
	6.1.5 Command shipping example
	6.1.6 Compensable commands
	6.1.7 Local command example

	6.2 Using MQSeries to send and retrieve data
	6.2.1 MQSeries classes for Java
	6.2.2 Java Messaging Service (JMS)


	Chapter 7. MQSI application design guidelines
	7.1 MQSeries and MQSI as message-oriented middleware
	7.1.1 MQSeries - the MOM transport layer
	7.1.2 MQSeries Integrator - transformation and integration

	7.2 MQSeries Integrator topology
	7.2.1 WebSphere-to-MQSI connection options
	7.2.2 Queue manager roles and relationships
	7.2.3 Placement of MQSI databases

	7.3 MQSI message flow design
	7.3.1 Design contract with the application
	7.3.2 Message flow structure
	7.3.3 Defining document types

	7.4 Message flow components
	7.4.1 Message flow inputs and outputs
	7.4.2 IBM primitive nodes
	7.4.3 Transformation nodes
	7.4.4 Database nodes
	7.4.5 Logic control nodes
	7.4.6 Reusable message flows
	7.4.7 Testing message flow components


	Chapter 8. Application development guidelines
	8.1 The scope of this book
	8.2 Application development tools
	8.2.1 Rational Rose
	8.2.2 VisualAge for Java
	8.2.3 WebSphere Studio
	8.2.4 How these tools fit together

	8.3 WebBank problem domain
	8.4 Solution outline
	8.5 Macro design
	8.5.1 Creating a business process model
	8.5.2 Information architecture
	8.5.3 Technology choices
	8.5.4 Deployment model

	8.6 Micro design
	8.6.1 Use cases
	8.6.2 Storyboard
	8.6.3 Activity diagrams
	8.6.4 Class models and class diagrams
	8.6.5 Interaction diagrams
	8.6.6 Component model
	8.6.7 Deployment model


	Chapter 9. Developing the MQSI application
	9.1 The contract with WebSphere
	9.2 Design considerations
	9.2.1 Customer profile lookup
	9.2.2 Customer profile update

	9.3 Operational entities
	9.3.1 Application databases and tables
	9.3.2 Messages and documents

	9.4 Identify the general operations
	9.4.1 Customer profile lookup operational components
	9.4.2 Customer profile update operational components

	9.5 Identify the operational components
	9.5.1 Customer profile lookup functional components
	9.5.2 Customer profile update functional components

	9.6 Building the message flows
	9.6.1 Creating a message flow
	9.6.2 Organizing message flows
	9.6.3 Message flow: “ITSO Cache Lookup: Profile from Request”
	9.6.4 Message flow: “ITSO Cache Update: from Profile”
	9.6.5 Message flow: “ITSO Accounts from Request”
	9.6.6 Message flow: “ITSO First Account From Accounts”
	9.6.7 Message flow: “ITSO Profile from Savings”
	9.6.8 Message flow: “ITSO Profile from Checking”
	9.6.9 Message flow: “ITSO Profile: add Accounts”
	9.6.10 Message flow: “ITSO Looper”
	9.6.11 Message flow: “ITSO Updates from Profile w/accounts”
	9.6.12 Message flow: “ITSO Update Router”
	9.6.13 Message flow: “ITSO Update Savings: from Update”
	9.6.14 Message flow: “ITSO Update Checking: from Update”

	9.7 Piecing together the lookup components
	9.7.1 Customer profile lookup
	9.7.2 Customer profile update

	9.8 Tracing

	Chapter 10. System management guidelines
	10.1 MQSeries system management
	10.1.1 MQSeries administration interfaces
	10.1.2 Remote administration
	10.1.3 Administration interface guidelines
	10.1.4 Overview of the MQSeries clustering feature
	10.1.5 MQSeries security
	10.1.6 MQSeries monitoring
	10.1.7 MQseries restart and recovery

	10.2 .MQSeries Integrator system management
	10.2.1 Message brokers
	10.2.2 The Configuration Manager
	10.2.3 The Control Center
	10.2.4 The User Name Server
	10.2.5 MQSeries guidelines for MQSI
	10.2.6 MQSI databases
	10.2.7 MQSeries Integrator commands and operations
	10.2.8 Control Center operations
	10.2.9 Resource definition management
	10.2.10 MQSeries Integrator security
	10.2.11 MQSeries Intergrator backup and recovery
	10.2.12 MQSeries Integrator monitoring


	Part 3. Working example
	Chapter 11. Introduction to the working example
	11.1 Sample application
	11.1.1 Application flow

	11.2 Runtime topologies
	11.2.1 Product documentation, software, and support

	11.3 Web application server
	11.3.1 Web application server running on Windows NT
	11.3.2 Web application server running on AIX

	11.4 MQSI broker
	11.4.1 Running the broker on Windows NT
	11.4.2 Running the broker on AIX
	11.4.3 MQSI service

	11.5 MQSI Configuration Manager
	11.6 User Name Server
	11.6.1 Running the User Name Server on Windows NT

	11.7 Database server
	11.7.1 Running DB2 on Windows NT
	11.7.2 Running DB2 on AIX

	11.8 Planning user IDs
	11.8.1 User IDs for the Windows NT mapping
	11.8.2 User IDs for the AIX mapping


	Chapter 12. MQSeries and MQSI implementation
	12.1 Lab environment
	12.1.1 Windows NT test configuration
	12.1.2 AIX test configuration
	12.1.3 MQSeries and MQSI configuration methods

	12.2 Defining user IDs
	12.2.1 MQSI:
	12.2.2 DB2 server:

	12.3 MQSI database setup
	12.4 MQSI User Name Server setup
	12.4.1 Create the queue manager
	12.4.2 Create the MQSI User Name Server
	12.4.3 Starting the User Name Server

	12.5 MQSI Configuration Manager setup
	12.5.1 Define the databases to the local system
	12.5.2 Create the queue manager
	12.5.3 Create the MQSI Configuration Manager

	12.6 Define the MQSeries cluster
	12.7 MQSI broker setup
	12.7.1 Define the database to the local system
	12.7.2 Create the queue manager
	12.7.3 Creating the MQSI broker

	12.8 Using the Control Center to deploy an application
	12.8.1 Connecting to the broker
	12.8.2 Creating an execution group
	12.8.3 Importing message flows
	12.8.4 Assigning the message flows to the execution group
	12.8.5 Saving the configuration and deploying it to the broker

	12.9 Preparing the broker for the application
	12.9.1 Create the application databases
	12.9.2 Define the required MQSeries queues


	Chapter 13. WebSphere Application Server setup
	13.1 MQSeries SupportPac MA88
	13.1.1 Classpath settings
	13.1.2 Configuring JMS

	13.2 Deploying the application to WebSphere
	13.3 Copy the DTDs to the operating system

	Appendix A. Rational Rose 2000e and VisualAge for Java
	A.1 Forward and reverse engineering with Rational Rose
	13.3.1 Integration with IBM VisualAge for Java
	A.1.1 Rose to Java mapping

	A.2 Installation notes
	A.3 Configuration
	A.3.1 VisualAge for Java configuration
	A.3.2 Rational Rose configuration

	13.4 Linking a Rose model to a VisualAge for Java project
	A.4 Forward engineering with Rose
	A.4.1 Generating code from classes
	A.4.2 Generating code from components

	A.5 Reverse engineering

	Appendix B. Sample code
	B.1 GetCurrentProfileCommandMQJava: retrieveProfile() method
	B.2 GetCurrentProfileCommandJMS: retrieveProfile() method

	Appendix C. Special notices
	Appendix D. Related publications
	D.1 IBM Redbooks
	D.2 IBM Redbooks collections
	D.3 Other resources
	D.4 Referenced Web sites

	Appendix E. Using the additional material
	E.1 Locating the additional material on the Internet
	E.2 Using the Web material
	E.2.1 System requirements for downloading the Web material
	E.2.2 How to use the Web material


	How to get IBM Redbooks
	IBM Redbooks fax order form

	Index
	IBM Redbooks review

