— Page 1 of 379

Page 2 of 379 — IBM TCP/IP for 4690 Application Interface Guide

IBM Transmission Control Protocol/ Internet Protocol for 4690
Application Interface Guide

Document Number (TCPAPPIF-SCRIPT)

Version Code: 1.2
Copy Printed: November 6, 1997 at 2:39 p.m.

— Page 1 of 379

Note

Before using this information and the products it supports, be sure to read the general information under
“Notices and Format Information” on page 13.

Second Edition (June 1996)

This is the first edition of théBM Transmission Control Protocol/ Internet Protocol for 4690 Application Interface
Guide This edition applies to Version 1 of the licensed program IBM 4690 Operating System, program number
5696-538, and to all subsequent releases and modifications until otherwise indicated in new editions. Changes are
made periodically to the information herein.

Requests for additional copies of this document may be directed to Bob Niedergerke, at (919) 301-5781, or via
e-mail at bobn@vnet.ibm.com. Mike Yawn is the management contact for this document, and may be reached at
(919) 301-5465, or via e-mail at cmyawn@vnet.ibbom.com. The fax transmission number is (919) 301-5891.

You can also order this document through your IBM representative or the IBM branch office serving your locality.
They may retrieve a softcopy from the DSSFORUM repository, as TCPAPPIF LIST3820.

Written requests or comments may be addressed to:

IBM Corporation

Department CYR, Building 650

PO Box 12195

Research Triangle Park, North Carolina, 27709-2195 USA.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute whatever information
you supply in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Page 2 of 379 — IBM TCP/IP for 4690 Application Interface Guide

Contents

1.0 General Information 15.
2.0 Functional Specifications and Design. L 17
2.1 High-Level Functional Description. 17
2.2 SEUP . . . e 19.
2.3 Deliverables 19.
2.3.1 Operation e 19.
2.3.1.1 BOOTP client 19.
2.3.1.2 BOOTP Server. e 19.
2.3.1.3 FTP cclient 19.
2.3.1.4 FTP SeIver 20.
2.3.1.5 TETP server e 20.
2.3.1.6 Network File System (NFS) server. 20
2.3.1.7 Telnet Server. 20.
2.3.1.8 Enhanced Telnet Server 20
2.3.1.9 LPRclient 20.
2.3.1.10 SNMP DPI 21
2.3.1.11 FTP APL . e 21.
2.4 4690 TCP/IP File Index 21
2.5 System Hardware and Software Requirementso 24
251 Hardware 24.
2.5.2 Software 24.
2.6 Installation 24.
2.7 Configuration 24
2.7.1 Driver Initialization 24.
2.7.2 Network Data Files 24
2.7.3 SNMP Data Files 25
2.7.4 INETD Data File 25
2.7.5 Logical and Physical Names 25
2.7.5.1 System-Defined 25,
2.75.2 User-Defined. 25.
2.8 Operation L 25.
2.8.1 DriVer 26 .
2.8.1.1 SNMP Agent 26.
2.9 Socket Programming Interface Library 26
2.9.1 Supported socket calls. 26
2.10 SNMP Agent - ADX_SPGM:ADXHSI1L.286 27
2.10.1 Management Information Base Il (MIB-II). 28
2.10.2 TRAPS . . 28.
2.11 Internet Superserver (INETD) - ADX_SPGM:ADXHSIOL.286 28
2.12 Compiling and Linking considerations. 28
2.13 Miscellaneous 29.
2.13.1 Network Support Programs 29
3.0 Users Information 31.
3.1 Hardware and Software Requirements 31
3.1.1 Hardware Requirements. 31
3.1.1.1 Adapter - Token-Ring. 31
3.1.1.2 Adapter - Ethernet. 31
3.1.1.3 Fixed Disk e 31.

Contents — Page 3 of 379

3.1.1.4 Memory e 31.

3.2 Software Requirements 32
3.2.1 4690 TCP/IP Files 32
3.2.2 4690 TCP/IP installation, setup and configuration. 33
3.2.3 Installing 4690 TCP/IP in 4690 DDA LAN system - Configuration A. 33
3.2.4 Installing 4690 TCP/IP in 4690 non-DDA system - Configuraton B 33
3.2.5 Configuring the interface. L 34
3.2.6 Identifying a network router. 35
3.2.7 Using TCP/IP host names. 35
3.2.8 Resolvfile e 35.
3.2.9 hostsfile 35.
3.3 Setup and Usage of other TCP/IP applications 36
3.3.1 INETD superserver - ADXHSIOL.286 36
3.3.2 FTP client - ADXHSIGL.286 36
3.3.3 FTP server - ADXHSIFL.286 37
3.3.3.1 FTP Server TImeout e 38
3.3.4 NFS server - ADXHSINL.286. 38
3.3.5 Experiences with 4690 NFS server 39
3.3.5.1 Read/Write Block Size 39
3.3.5.2 Performance L 39.
3.3.6 Telnetclient 40.
3.3.7 BOOTP client - ADXHSIBL.286 40
3.3.7.1 Using bootp to update/create the SNMP trap destination file.. 41
3.3.8 BOOTP server - ADXHSIAL.286. 41
3.3.9 TFTP server - ADXHSITL.286 41
3.3.10 SNMP agent - ADXHSILL.286. 41
3.3.10.1 Community Names File. 42
3.3.10.2 SNMP agent environment NaMes. o i 42
3.3.10.3 SNMP Trap destination file. 43
3.3.10.4 MIB-II . . o 43,
3.3.11 Telnet server - ADXHSIIL.286. 43
3.3.11.1 Operation 44,
3.3.11.2 Logging On and Off / Userids and Passwords 44
3.3.11.3 Keyboard 44,
3.3.11.4 Locking out the local keyboard 44
3.3.11.5 Terminfo/Termcap files 45
3.3.11.6 Logfiles e 45,
3.3.11.7 Telnet server considerations. 45
3.3.12 Enhanced Telnet server - ADXHSIUL.286 45
3.3.12.1 Operation 46.
3.3.12.2 Logging On and Off / Userids and Passwords 46
3.3.12.3 Keyboard 46.
3.3.12.4 Locking out the local keyboard 47
3.3.12.,5 Terminfo/Termcap files a7
3.3.12.6 Logfiles e 47.
3.3.12.7 Telnet server considerations. 47
3.3.13 LPR client - ADXHSIRL.286 a7
3.3.14 Rexec client - ADXHSIXL.286 47
3.4 Error mesSsages. 48.
4.0 Commands 53.
4.1 adxhsibl(bootp) 53.
411 SYNtAX e 53.
4.2 adxhsial(bootpd) 54.

Page 4 of 379 — IBM TCP/IP for 4690 Application Interface Guide

B2 SYNMAX . o o oo 54.

4.3 adxhsi7I(finger) 55.
4.3.1 Syntax 55.
4.4 adxhsigl(ftp) 56.
441 SYNEAX e 56.
4.4.2 Subcommands. 57.
4.4.2.1 'Subcommand. 57.
4,422 $Subcommand, 57
4.4.2.3 account Subcommand 57
4.4.2.4 append Subcommand. 58
4,425 ascii Subcommand 58
4.4.2.6 bell Subcommand 58
4.4.2.7 binary Subcommand L 58
4.4.2.8 bye Subcommand. 58
4,429 cd Subcommand. 58
4.4.2.10 cdup Subcommand 59
4.4.2.11 close Subcommand 59
4.4.2.12 cr Subcommand L 59
4.4.2.13 debug Subcommand. 59
4.4.2.14 delete Subcommand. 59
4.4.2.15 dir Subcommand. 60
4.4.2.16 disconnect Subcommand. L 60
4.4.2.17 form Subcommand. 60
4.4.2.18 get Subcommand. 60
4.4.2.19 glob Subcommand. 61
4.4.2.20 hash Subcommand, 61
4.4.2.21 help Subcommand. 62
4,4.2.22 lcd Subcommand. 62
4.4.2.23 Is Subcommand 62
4.4.2.24 macdef Subcommand. 63
4.4.2.25 mdelete Subcommand. 63
4.4.2.26 mget Subcommand 63
4.4.2.27 mkdir Subcommand L 63
4.4.2.28 mode Subcommand 64
4.4.2.29 mput Subcommand L 64
4.4.2.30 nmap Subcommand 65
4.4.2.31 ntrans Subcommand. L 65
4.4.2.32 open Subcommand 65
4.4.2.33 prompt Subcommand 65
4.4.2.34 proxy Subcommand 66
4.4.2.35 put Subcommand. 66
4.4.2.36 pwd Subcommand. 66
4.4.2.37 quit Subcommand, 67
4.4.2.38 quote Subcommand 67
4.4.2.39 recv Subcommand. 67
4.4.2.40 remotehelp Subcommand.68
4.4.2.41 rename Subcommand. 68
4.4.2.42 reset Subcommand 68
4.4.2.43 rmdir Subcommand 68
4.4.2.44 runique Subcommand. 69
4.4.2.45 send Subcommand 69
4.4.2.46 sendport Subcommand 70
4.4.2.47 site Subcommand L L 70
4.4.2.48 status Subcommand. 70

Contents — Page 5 of 379

4.4.2.49 struct Subcommand 70

4.4.2.50 sunigue Subcommand. 71
44251 trace Subcommand 71
4.4.2.52 type Subcommand. 71
4.4.2.53 user Subcommand. 71
4.4.2.54 verbose Subcommand. 72
44255 ? Subcommand. 12

4.5 adxhsifl(ftpd) e 73.
451 SYNtaX e 73.
4.6 adxhsi3l(ifconfig) 74.
4.6.1 Syntaxo 74 .
4.7 adxhsiol(inetd) 77 .
A7.0 SYNtAX e 77 .
4.8 adxhsirl(Ipr) 78.
4.8.1 Syntax 78.
4.9 adxhsi6l(netstat), 79.
4.9.1 SYNAX 79.
4.10 adxhsinl(nfsd) 80.
4.10.1 Syntax e 80.
411 adxhsi5l(ping) 81.
A 111 SYNAX . . . o 81.
4.12 adxhsipl(portmap) 82.
4.12.1 SYNtaxo 82.
413 adxhsixXI(rexeC) 83.
4131 SYNAX 83.
4.14 adxhsidl(route) 84.
4141 SYNtax e 84.
4.15 adxhsirl(rpcinfo) 85.
4151 SYNtaX 85.
4.16 adxhsill(snmpd). 86.
4.16.1 Syntax 86.
4.17 adxhsitl(tftpd) 87.
A17.0 SYNAX 87.
4.18 ADXHSIVL(VTL00) 89.
5.0 SoCKets 91
5.1 Programming with Sockets 91
5.1.1 Socket Programming CONCepts. 91
5.1.1.1 What Is a Socket?. 91
5.1.1.2 Socket TYPES. 91.
5.1.1.2.1 Guidelines for Choosing Socket Types. 92

5.1.1.3 Address Family 92
5.1.1.4 Socket ADdress 92
5.1.1.4.1 Addressing within an Internet Domain 93

5.1.1.5 Internet Address. L 93
5.1.1.6 POrts e 93.
5.1.1.7 Network Byte Order.093
5.1.2 How to Apply Socket Calls 94
5.1.2.1 A Typical TCP Socket Session 99
5.1.2.2 A Typical UDP Socket Session. 101
5.1.2.3 Network Utility Routines 102
5.1.2.3.1 Host Names Information 102
5.1.2.3.2 Network Names Information 102
5.1.2.3.3 Protocol Names Information 102

Page 6 of 379 — IBM TCP/IP for 4690 Application Interface Guide

5.1.2.3.4 Service Names Information. 103

5.1.2.3.5 Network Byte Order Translation. 103
5.1.2.3.6 Internet Address Manipulation. 103
5.1.2.3.7 Domain Name Resolution 103

5.2 C Socket Library e 104
5.3 Porting a Socket APl Application 104
5.4 C Socket Calls 106
5.4.1 accept()o 107
542 bind() 110
543 bswap() 113
544 connect() 114
545 dn_comp() 118
546 dn_expand() 119
5.4.7 endhostent() 120
5.4.8 endnetent(). 121
5.4.9 endprotoent() 122
5.4.10 endservent() 123
5.4.11 gethostbyaddr() 124
5.4.12 gethostbyname(). 126
5.4.13 gethostent(). 128
5.4.14 gethostid() 129
5.4.15 getnetbyaddr() 130
5.4.16 getnetbyname(). L 132
5.4.17 getnetent() L 133
5.4.18 getpeername() 134
5.4.19 getprotobyname() L 135
5.4.20 getprotobynumber() 136
5.4.21 getprotoent() L 137
5.4.22 getservbyname(). 138
5.4.23 getservbyport(). 140
5.4.24 getservent(). 142
5.4.25 getsockname() 143
5.4.26 getsockopt() 145
5.4.27 htonl() 149
5.4.28 htons() 150
5.4.29 inet_addr() 151
5.4.30 inet_Inaof() 153
5.4.31 inet_makeaddr() 154
5.4.32 inet_ netof() 155
5.4.33 inet_network() 156
5434 inet_ ntoa() 157
5.4.35 0octl) 158
5.4.36 listen() 162
5437 Iswap() 164
5.4.38 ntohl() 165
5439 ntohs() 166
5.4.40 port_cancel() 167
5441 readv() 168
5442 recv() 170
5.4.43 recvirom() 172
5444 res_init() 174
5.4.45 res_mkquery() 175
5446 res_send() 177
5447 rexec()o 178

Contents — Page 7 of 379

5448 select() 180

5449 send() 182
5450 sendto() 184
5.4.51 sethostent(). 186
5.4.52 setnetent() L 187
5.4.53 setprotoent() 188
5.4.54 setservent(). 189
5.4.55 setsockopt() 190
5.4.56 shutdown() 193
5457 sock _init() 194
5.4.58 socket() 195
5.4.59 soclose() 198
5.4.60 writev() 199
6.0 Remote Procedure Calls (RPCs) 201
6.1 The RPC Interface 201
6.2 Remote Programs and Procedures 204
6.3 Portmapper 204
6.3.1 Registering and Unregistering a Port with Portmapper. 204
6.3.2 Contacting Portmapper. 205
6.3.3 Portmapper Procedures 205
6.4 eXternal Data Representation (XDR) e 206
6.4.1 Basic Block Size 206
6.4.2 The XDR Subroutine Format 206
6.4.3 XDR Data Types and their Filter Primitives. 206
6.4.3.1 Integer Filter Primitives. 208
6.4.3.2 Enumeration Filter Primitives 208
6.4.3.3 Floating-Point Filter Primitives. 209
6.4.3.4 Opaque Data Filter Primitive. 209
6.4.3.5 Array Filter Primitives 209
6.4.3.5.1 GeneriC Arrays 209
6.4.3.5.2 Byte Arrays e 209

6.4.3.6 String Filter Primitives 210
6.4.3.7 Primitive for Pointers to Structures. 210
6.4.3.8 Primitive for Discriminated Unions 210
6.4.3.9 Passing Routines without Data 210
6.4.4 XDR Nonfilter Primitives 210
6.4.4.1 Creating and Using XDR Data Streams. 210
6.4.4.1.1 Standard I/O Streams. 211
6.4.4.1.2 Memory Streams. e 211
6.4.4.1.3 Record Streams 211

6.4.4.2 Manipulating an XDR Data Stream. 212
6.4.4.3 Implementing an XDR Data Stream 212
6.4.4.4 Destroying an XDR Data Stream. 213

6.5 RPC Intermediate Layer. 213
6.6 RPC Lowest Layer. 215
6.6.1.1 Server Side Program 215
6.6.1.2 Client Side Program. 218

6.7 rpcgen Command. L L 221
6.8 rpcinfo Command L 223
6.9 adxhsirl(rpcinfo) 223
6.9.1 SyntaxX 223
6.9.1.1.1 Example 1 224
6.9.1.1.2 Example 2 224

Page 8 of 379 — IBM TCP/IP for 4690 Application Interface Guide

6.9.1.1.3 Example 3 224

6.9.1.1.4 Example 4 224
6.10 enum cint_stat Structure. L 224
6.11 Remote Procedure Call Library. 225
6.12 Porting an RPC API Application 226
6.13 Remote Procedure and eXternal Data Representation Calls 226

6.13.1 auth_destroy() 227
6.13.2 authnone create(). 228
6.13.3 authunix_create() L 229
6.13.4 authunix_create_default(). 230
6.13.5 callrpc() 231
6.13.6 cInt_broadcast() 233
6.13.7 cInt_call) 235
6.13.8 cInt_destroy() 237
6.13.9 cInt_ freeres(). L 238
6.13.10 cInt_geterr(). 239
6.13.11 cInt_pcreateerror() 241
6.13.12 cInt_perrno() 242
6.13.13 cInt_perror() 243
6.13.14 cIntraw_create() 244
6.13.15 cInttcp_create(). 245
6.13.16 cIntudp_create() 247
6.13.17 get myaddress() 249
6.13.18 pmap_getmaps(). 250
6.13.19 pmap_getport() 252
6.13.20 pmap_rmtcall() 253
6.13.21 pmap_set() 255
6.13.22 pmap_unset(). 256
6.13.23 registerrpC(). 257
6.13.24 rpc_cCreateerr 259
6.13.25 svc_destroy() 260
6.13.26 svc_freeargs(). 261
6.13.27 svc_getargs() 262
6.13.28 svc_getcaller() 264
6.13.29 svc_getreq(). 265
6.13.30 svc_register() 266
6.13.31 svC_run() 268
6.13.32 svc_sendreply(). 270
6.13.33 svC_SOCKS []. 272
6.13.34 svc_unregister(). 273
6.13.35 svcerr_auth() 274
6.13.36 svcerr_decode() 275
6.13.37 sveerr_noproc(). 276
6.13.38 svcerr_noprog(). 277
6.13.39 svcerr_progvers().o 278
6.13.40 svcerr_systemerr().o 279
6.13.41 svcerr_weakauth() 280
6.13.42 svcraw_create(). 281
6.13.43 svctep_create() L 282
6.13.44 sveudp_create(). 283
6.13.45 xdr_accepted _reply(). 284
6.13.46 xdr_array() 285
6.13.47 xdr_authunix_parms() 287
6.13.48 xdr_bool() 288

Contents — Page 9 of 379

6.13.49 XAr DYES() . .« o o o e 289

6.13.50 xdr_callhdr() 291
6.13.51 xdr_callmsg() 292
6.13.52 xdr_double() 293
6.13.53 xdr_enum() 294
6.13.54 xdr_float() 296
6.13.55 xdr_getpos() 297
6.13.56 xdr_inline() 298
6.13.57 xdr_int() 299
6.13.58 xdr_long() 300
6.13.59 xdr_opaque() 301
6.13.60 xdr_opaque_auth(). 302
6.13.61 xdr_pmap() 303
6.13.62 xdr_pmaplist() 304
6.13.63 xdr_reference(). 305
6.13.64 xdr_rejected_reply() 306
6.13.65 xdr_replymsg() L 307
6.13.66 Xdr_setpos(). 308
6.13.67 xdr_short() 309
6.13.68 xdr_string() 310
6.13.69 xdr_u_int() 311
6.13.70 xdr_u_long() 312
6.13.71 xdr_u_short() 313
6.13.72 xdr_union() 314
6.13.73 xdr_vector() 315
6.13.74 xdr_void() 316
6.13.75 xdr_wrapstring() 317
6.13.76 xdrmem_create(). 318
6.13.77 xdrrec_create() 319
6.13.78 xdrrec_endofrecord(). 320
6.13.79 xdrrec_eof(). 321
6.13.80 xdrrec_skiprecord(). 322
6.13.81 xdrstdio_create() 323
6.13.82 xprt_register(). 324
6.13.83 xprt_unregister() 325
7.0 File Transfer Protocol Application Programming Interface 327
7.1 FTP API Call Library e 327
7.2 Return Values 327
7.3 FTP API Calls 328
7.3.1 ftpappend() 329
7.3.2 ftped() ... 330
7.3.3 ftpdelete() 331
7.3.4 ftpdir() . . . 332
7.35 ftpget()o 334
7.3.6 ftplogoff() 336
7.3.7 ftpls() . . . 337
7.3.8 ftpmkd() 339
7.3.9 ftpproxy() 340
7.3.10 ftpput() 342
7.3.11 ftpputunique() 343
7.3.12 ftpquote() 345
7.3.13 ftprename() 346
7.3.14 ftprmd() 347

Page 10

of 379 — IBM TCP/IP for 4690 Application Interface Guide

7315 PSHE() - . o o v oo 348

7.3.16 PING() - - - - . 349
8.0 SNMP Agent Distributed Program Interface (DPl) 351
8.1 SNMP Agents and Subagents L 351
8.2 Processing DPI Requests. 351

8.2.1 Processing a GET Request. L 351

8.2.2 Processing a SET Request 352

8.2.3 Processing a GETNEXT Request 352

8.2.4 Processing a REGISTER Request. 353

8.2.5 Processing a TRAP Request 353
8.3 DPI Library 353
8.4 DPI Library Routines 354

8.4.1 fDPIparse() 355

8.4.2 mKDPIregister() 356

8.4.3 MKDPIresponse() 357

8.4.4 mKDPIset() 359

8.4.5 mKDPItrap() 360

8.4.6 pDPIpacket() 361

8.4.7 query DPIL port() 364
Appendix A. Sample socket application: Echo server 365
A.1l Compiling and linking 365
A.2 Source code: CLIENT.C e 365
A.3 Source code: SERVER.C. 368
Appendix B. Index 379

Contents — Page 11 of 379

Page 12 of 379 — IBM TCP/IP for 4690 Application Interface Guide

Notices and Format Information

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these
available in all countries in which IBM operates. Any reference to an IBM product, program, or service in this
publication is not intended to state or imply that only IBM’s product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of the intellectual property rights of
IBM may be used instead of the IBM product, program, or service. The evaluation and verification of operation in
conjunction with other products, programs, or services, except those expressly designated by IBM, are the user’s
responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of
this document does not give you any license to these patents. You can send license inquiries, in writing, to the
IBM Director of Licensing, IBM Corporation, 208 Harbor Drive, Building 1, Stamford, CT 06904 USA.

Trademarks

The following terms are trademarks of IBM Corporation in the United States or other countries:

AlX IBM 0s/2
AT Operating System/2 Presentation Manager

The following terms are trademarks of other companies:

Trademark Owned By

DEC Digital Equipment Corporation

High C MetaWare Inc.

IEEE Institute of Electrical and Electronics Engineers
Network File System Sun Microsystems, Inc.

NFS Sun Microsystems, Inc.

Project Athena Massachusetts Institute of Technology
Portmapper Sun Microsystems, Inc.

UNIX UNIX System Laboratories, Inc.

VT100 Digital Equipment Corporation

VT220 Digital Equipment Corporation

X Window System Massachusetts Institute of Technology
Windows Microsoft Corporation

Conventions Used in This Book

The following conventions appear throughout this book:
e Commands are presented in lowercase bold, but you can enter them in either uppercase or lowercase.
e Subcommands are presented in lowercase bold, and you must enter them in lowercase.
e File names are presented in uppercase, but you can enter them in either uppercase or lowercase.
e Periods in numbers separate the whole and the decimal portions of the numerals.

e Numbers over four digits appear in metric style. A space is used, rather than a comma, to separate groups of
three digits. For example, the number sixteen thousand, one hundred forty-seven is written 16 147.

Notices and Format Information — Page 13 of 379

How to Read a Syntax Diagram

The syntax diagram shows you how to specify a command or subcommand so that the operating system can
correctly interpret what is being typed. Read the syntax diagram from left to right and from top to bottom,
following the horizontal line (the main path).
Syntax diagrams use the following symbols:
Symbol Description
> Marks the beginning of the command or subcommand syntax
> Marks the continuation of the command or subcommand
Marks the beginning and end of a fragment or part of the command or subcommand syntax
> Marks the end of the command or subcommand syntax

Required parameters are displayed on the main path. Optional parameters are displayed below the main path.
Default parameters are displayed above the main path.

Parameters are classified as keywords or variables. Keywords appear in uppercase or lowercase, but you must type
them as they are shown in the syntax diagram. A command or a subcommand, for example, is a keyword. See
“Conventions Used in This Book” on page 13 for the guidelines about entering commands and subcommands.

Variables are italicized, appear in lowercase letters, and represent names or values you supply. For example, a file
name is a variable.

In the following exampleinfile is a variable. Replace it with the value that you want.
»>—rpcgen—infile—»><
Include all punctuation such as colons, semicolons, commas, quotation marks, and minus signs shown in the

diagram.

Choose One Required Item from a Stack:A stack of parameters with a parameter on the main path means that
you must choose one from the stack.

> nmp—l:get
nex

—_I—hos t—communit y_name—Lmib_variableJ—><
t

Choose One Optional Item from a Stack: A stack of parameters without a parameter on the main path means
that you do not have to choose any from the stack; but if you do, you cannot choose more than one.

»»—mode <
ascii
binary

Specify a Sequence More Than OnceAn arrow above the main path that returns to a previous point means the
sequence of items included by the arrow can be specified more than once.

»»—mkfontd directory <

Page 14 of 379 — IBM TCP/IP for 4690 Application Interface Guide

1.0 General Information

This document specifies the functional description and major design points for the implementation of TCP/IP
(Transmission Control Protocol/Internet Protocol) support for the 4690 Operating System.

TCP/IP Support of 46900S Store Controllers

The following TCP/IP functions are provided as part of the the TCP/IP Support of 46900S Store Controllers:
e TCP/IP on Token Ring

This allows the 4690 controller with TCP/IP to communicate via token ring with other TCP/IP enabled
platforms.

e TCP/IP on Ethernet

This allows the 4690 controller with TCP/IP to communicate via ethernet with other TCP/IP enabled
platforms.

e SNMP Agent

Provides the basis for network management within a TCP/IP internetworking environment. SNMP defines
the communication protocols between network resources and a network manager in order to control and
exchange information within the network. The list of available information which the SNMP agent can
provide is referred to as the MIB or Management Information Base. Requests from the SNMP manager to
SNMP agent are used to retrieve status of a network resource. The SNMP agent can also provide an
unsolicited notification of significant events referred to as traps.

e NETSTAT
Command used to query TCP/IP about network status of the local host.
e PING
Sends out an ICMP datagram to a specified destination and just waits for it to come back.
e ROUTE
Used to define network routers.
e IFCONFIG
Used to configure network interfaces.
e Socket Library (C-Language)

A socket is a logical connection between two or more applications. Application interface to sockets via the
socket library.

e BOOTP Client/Server
This allows the 4690 to obtain (BOOTP Client) or provide (BOOTP Server) network initialization data.
e SNMP DPI

The SNMP agent distributed program interface (RFC 1128) allows C language programs to extend the
standard MIB to include customer specific variables and generate enterprise specific traps.

e Telnet Client
This allows the 4690 to remotely logon to another platform using Telnet protocols and VT100 emulation.

¢ Telnet Server

General Information — Page 15 of 379

This allows another platform to remotely logon to the 4690 using Telnet protocols and VT100, IBM3151,
or ANSI emulation.

e LPR Client
This allows the 4690 to send print jobs to a remote printer.
e File Transfer Protocol (FTP) Client and Server
This allows file transfer between TCP/IP hosts.
e Trivial File Transfer Protocol (TFTP) Server
This allows a client on another platform to transfer files using the TFTP protocol.
* File Transfer Protocol (FTP) Application Programming Interface Library
This provides C language routines for some FTP client functions.
¢ SUN Remote Procedure Call Library (RPC) (C Language)
* Network File System (NFS) Server

This allows NFS clients to transparently access files on a 4690 disk as if they were local. Only
byte-stream access is provided. There is no record level function in NFS.

Page 16 of 379 — IBM TCP/IP for 4690 Application Interface Guide

2.0 Functional Specifications and Design

2.1 High-Level Functional Description

TCP/IP support within the 4690 Operating System is implemented as a communications device driver, similar to the
SNA driver and the Netbios driver. The TCP/IP protocol is supported on the 4690 token-ring and ethernet data link
control (DLC) and can execute concurrently with Netbios, TCC, and SNA protocols.

User-level access to the driver is provided through the socket programming interface. A socket runtime library will
be provided that can be linked to user-written applications.

In addition to the TCP/IP driver and socket library, a Simple Network Management Protocol (SNMP) agent (server)
is implemented.

The Internet superserver, INETD, is also supported. This allows a single server to be active awaiting clients
requests for other servers. INETD will start the server program on behalf of the client request.

BOOTP client/server - allows 4690 to obtain (BOOTP client) or provide (BOOTPD server) network initialization
data.

SNMP DPI - SNMP agent Distributed Program Interface (RFC 1128) allows C language programs to extend the
standard MIB to include customer specific variables and generate enterprise specific traps.

Telnet Server - allows Telnet clients to remotely logon to 4690 using the telnet protocols and VT100 emulation.

LPR client - allows 4690 to send print jobs to a remote printer. Implemented as command line interface, as well
as addressability through the 4690 print spooler.

File Transfer Protocol (FTP) - allows file transfer between TCP/IP hosts. Implement client and server functions.

Trivial File Transfer Protocol (TFTP) - allows TFTP clients to transfer files from 4690. Implement server
functions.

File Transfer Protocol (FTP) API - provides C language routines for some FTP client functions.

Network File System (NFS) server - allows NFS clients to transparently access files on a 4690 disk as if they were
local. Byte-stream access only is offered. No record-level functions are supported with NFS.

Sun Remote Procedure Call Library (RPC) is supported for the C Language.

The following diagram depicts the entire suite of protocols.

Functional Specifications and Design — Page 17 of 379

A O A O N O N N Fe H= I F= FH F= W Fe

User Appls
NFSD
Sun RPC

Clients

o°

FTP %
API

N AP° o

<O — W

%

%

%

%

%

%

%
Socket
Library
Driver

TCP/UDP/IP
||l||
NET

Network Interface Driver

Servers

iddddsasaasdsasiaaaadasdsaaaasagigaaanaadiaaaaasaiaaaaagad
idddsaaaaddgdaaaaadadasaaaagdaaaaanagdsaaaaa i e gd b

S O° oOF oF = e I e I H Ik H= e I e I: Ik H:

Page 18 of 379 — IBM TCP/IP for 4690 Application Interface Guide

2.2 4690 TCP/IP Setup

Assuming the 4690 TCP/IP driver is installed and operational, most of the 4690 TCP/IP deliverables can be started
by an operator or program control (in the case of client programs) or as background tasks (servers) setup through
4690 controller background application configuration or initiated by the INETD superserver. Some servers have
dependencies on data files for start-up, e.g. FTPD requires a TRUSERS file which provides userid, password and
access rights for FTP users. In addition, some servers have dependencies on other executables, e.g. NFSD requires
an active PORTMAPPER process to register its procedures.

2.3 4690 TCP/IP Deliverables

2.3.1 Operation

For the most part, client programs will operate under manual or program control and servers will operate as
background processes. This section examines the operation of each of the deliverables at a more detailed level.

2.3.1.1 BOOTP client

The BOOTP client program (ADX_SPGM:ADXHSIBL.286) is used to access TCP/IP host initialization data from a
BOOTP server in the network. Specifically it is used to obtain the host's IP address, domain name, name server |IP
address, and network router address. The client sends a broadcast request indicating its hardware (token-ring
adapter address) to a BOOTP server on the network and waits for a reply. If no reply is received from a server in
25 seconds, the client gives up and does not update any network initialization data.

When a server does reply, the BOOTP client will take the following actions:

1. Generate a batch file named ADX_SDT1:ADXBPxxZ.BAT containing an IFCONFIG command with the
received host IP address and subnet mask as parameters. In addition, if the gateway (router) IP address was
sent by the server, a ROUTE command is also added to this batch file.

2. Update the RESOLYV file with the name of the domain and IP address of the name server for the host.

Note: The BOOTP client does not execute the IFCONFIG and ROUTE commands. It only builds the
ADXBPxxZ.BAT batch file. That file must be run after BOOTP completes execution if network initialization is to
occur.

2.3.1.2 BOOTP server

The BOOTP server (BOOTPD) is named ADX_SPGM:ADXHSIAL.286. It services requests from BOOTP clients
and supplies network initialization data which it gathers from the BOOTPTAB (ADX_SDT1:ADXHSIAF.DAT).

The BOOTPTAB is a data file that contains the network initialization data for specific hosts, either based on
hardware adapter address or host IP address. A sample BOOTPTAB is delivered with the BOOTP server program.

2.3.1.3 FTP client

The FTP client program, ADX_SPGM:ADXHSIGL.286, is used for file transfer between two TCP/IP hosts. It has
a command line interface for interpreting user requests for file transfer settings and specifications.

In addition, the FTP client can access the NETRC file (ADX_SDT1: ADXHSIGF.DAT) for auto-login and macro
definition.

Functional Specifications and Design — Page 19 of 379

2.3.1.4 FTP server

The FTP server (FTPD) is named ADX_SPGM:ADXHSIFL.286. It implements the FTP protocol and services the
FTP client for file transfers.

Client access is validated by FTPD by searching the TRUSERS file, ADX_SDT1:ADXHSIUF.DAT, for userid,
password, and access privileges. A sample TRUSERS file is delivered with the FTP server.

Under control of INETD, a separate instance of the FTP server will be initiated per client. If INETD is not used
and the FTP server is currently connected to a client, other client connection requests will be rejected.

2.3.1.5 TFTP server

The TFTP server (TFTPD) is named ADX_SPGM:ADXHSITL.286. It implements the TFTP protocol and services
TFTP clients for file transfers.

2.3.1.6 Network File System (NFS) server

The NFS server program (ADX_SPGM:ADXHSINL.286) provides transparent data access to NFS clients. A 4690
directory can be mounted by a remote host and file access granted to the remote user/application.

NFSD grants access based upon the contents of the EXPORTS file, ADX_SDT1:ADXHSIXF.DAT. This file
contains the exported directories and the users which have access to them. A sample EXPORTS file is delivered
with the NFS server.

Upon program start-up, NFSD registers its procedures with the PORTMAPPER program,
ADX_SPGM:ADXHSIPL.286. It is essential that PORTMAPPER is executing before the NFS server is started.
NFSD will not execute without the PORTMAPPER.

2.3.1.7 Telnet Server

The telnet server program is implemented on top of the existing 4690 remote operator system driver. It executes as
a controller application and provides control of the 4690 main console and keyboard to a telnet client. Access is
limited to a single client at any given time.

VT100, IBM3151, and ANSI terminal emulation are supported by the telnet server. Some keyboard mapping may
be necessary to allow entry of control and function key sequences from a VT100 client.

2.3.1.8 Enhanced Telnet Server

The enhanced telnet server is implemented on top of the existing 4690 auxiliary console driver. It executes as a
controller application and provides control of a 4690 auxiliary console to a telnet client. A maximum of eight
clients can be connected at one time, which are configured via Controller Configuration.

VT220, VT100, ANSI, and HFT terminal emulation are supported by the enhanced telnet server. Non-USA
keyboards are supported, and a user-configurable keying sequence to generate Alt+SysR(q is available.

2.3.1.9 LPR client

The remote printer client program LPR (ADX_SPGM:ADXHSIRL.286) is implemented to support a command line
interface as well as addressability through the 4690 print spooler driver.

As part of the 4690 print spooler, LPR will be invoked as a result of a print request to one of the 4690 printers.
LPR is implemented in the back-end of the driver, i.e. the despool portion, so that it can implicitly be initiated by a
"print" command. Once a file is queued by the spooler for the remote printer, LPR will send the file to the print

Page 20 of 379 — IBM TCP/IP for 4690 Application Interface Guide

server for printing. The printing of the file will be considered complete and removed from the print queue as soon
as its data has been sent to the remote host. Printing status at the remote server will not be available from the
4690.

2.3.1.10 SNMP DPI

The SNMP Distributed Program Interface (DPI) is a set of C language runtimes which provide functions to extend
the network management capabilities of the 4690 SNMP agent.

User programs which use the SNMP DPI interface directly with the SNMP agent to define enterprise-specific MIB
variables and generate customer-specific TRAPSs.

The SNMP DPI is delivered as ADXHSIDL.L86 suitable for linking with C language programs written for the
MetaWare High C language compiler and linked with the 4690 application linker, LINK86.286.

2.3.1.11 FTP API

The FTP Application Programming Interface (API) is a set of C language runtimes which provide several of the
FTP client capabilities to an application program.

The FTP API is delivered as ADXHSITL.L86 suitable to linking with C language programs written for the
MetaWare High C language compiler and linked with the 4690 application linker, LINK86.286.

2.4 4690 TCP/IP File Index

Table 1 (Page 1 of 3). 4690 TCP/IP File Index
4690 Physical File Name 4690 System-Defined Logical Description
Name
ADX_SPGM:ADXHSIOL.286 (none) TCP/IP Driver
ADX_SPGM:ADXHSI1L.286 (none) SNMP Agent
ADX_SPGM:ADXHSI2L.286 (none) TCPSTART.286 Driver Init
ADX_SPGM:ADXHSI3L.286 IFCONFIG IFCONFIG.286 Driver Init
ADX_SPGM:ADXHSI4L.286 ROUTE ROUTE.286 Driver Init
ADX_SPGM:ADXHSI5L.286 PING PING.286 Network Support
Program
ADX_SPGM:ADXHSI6L.286 NETSTAT NETSTAT.286 Network Support
Program
ADX_SPGM:ADXHSI7L.286 FINGER FINGER.286 Network Support
Program
ADX_SPGM:ADXHSI8L.286 (none) MAKE_PW.286 Network Support
Program
ADX_SPGM:ADXHSIOL.286 INETD INETD Superserver
ADX_UPGM:ADXHSISL.L86 (none) C Language Socket Library
ADX_SDT1:ADXIPxxZ.BAT (none) Driver Initialization Batch File,
xx= Controller ID

Functional Specifications and Design — Page 21 of 379

Table 1 (Page 2 of 3). 4690 TCP/IP File Index

4690 Physical File Name 4690 System-Defined Logical Description
Name

ADX_SDT1:ADXHSIPF.DAT PROTOCOL protocol File
ADX_SDT1:ADXHSISF.DAT SERVICES servicesFile
ADX_SDT1:ADXHSINF.DAT NETWORKS networksFile
ADX_SDT1:ADXHSIRF.DAT RESOLV resolv File
ADX_SDT1:ADXHSIHF.DAT HOSTS hostsFile
ADX_SDT1:ADXHSIDF.DAT (none) SNMP TRAP destination file
ADX_SDT1:ADXHSIQF.DAT (none) SNMP ASCII text community

name file
ADX_SDT1:ADXHSIEF.DAT (none) SNMP encrypted community

name file
ADX_SDT1:ADXHSIIF.DAT (none) INETD data file
ADX_SPGM:ADXHSIAL.286 BOOTPD BOOTP server
ADX_SPGM:ADXHSIBL.286 BOOTP BOOTP client
ADX_SPGM:ADXHSIFL.286 (none) FTP server
ADX_SPGM:ADXHSIGL.286 FTP FTP client
ADX_SPGM:ADXHSINL.286 (none) NFS server
ADX_SPGM:ADXHSIPL.286 (none) Portmapper
ADX_SPGM:ADXHSIRL.286 LPR LPR client
ADX_SPGM:ADXHSIIL.286 (none) Telnet server (keyboard process)
ADX_SPGM:ADXHSISL.286 (none) Telnet server (screen process)
ADX_SPGM:ADXHSIUL.286 (none) Enhanced Telnet server
ADX_SPGM:ADXHSITL.286 TFTPD TFTP server
ADX_SPGM:ADXHSIXL.286 REXEC REXEC client
ADX_UPGM:ADXHSIDL.L86 (none) SNMP DPI Library
ADX_UPGM:ADXHSITL.L86 (none) FTP API Library
ADX_SDT1:ADXBPxxZ.BAT (none) BOOTP client batch file output,

xx = Controller ID
ADX_SDT1:ADXHSIAF.DAT (none) BOOTPD Bootptab File
ADX_SDT1:ADXHSIGF.DAT (none) FTP client NETRC File
ADX_SDT1:ADXHSIUF.DAT (none) FTP server TRUSERS File
ADX_SDT1:ADXHSIXF.DAT (none) NFSD EXPORTS File
ADX_SDT1:ADXHSITF.DAT (none) NFSD MTAB File
ADX_SDT1:ADXHSIMF.DAT (none) Telnet Server messages File

Page 22 of 379 — IBM TCP/IP for 4690 Application Interface Guide

Table 1 (Page 3 of 3). 4690 TCP/IP File Index

4690 Physical File Name 4690 System-Defined Logical Description
Name
ADX_SDT1:ADXHSIZF.DAT (none) Optional SNMP environment
variable definitions file
ADX_SDT1:ADXHSIRL.286 (none) LPR Print Spooler
ADX_SDT1:ADXHSIVL.286 VT100 VT100 Client

The TCP/IP software components are all derived from Berkeley Software Distribution (BSD) 4.3 UNIX. The
software was ported from the TCP/IP for OS/2 EE product and modified to operate on the 4690 Operating System.

Functional Specifications and Design — Page 23 of 379

2.5 System Hardware and Software Requirements

2.5.1 Hardware

4690 TCP/IP requires controller memory to support the load and use of the communications driver. In addition,
memory must also be available to execute the SNMP application. At a minimum, an estimated 350K bytes of
memory will be required for the initialized driver (install size is about 100K and dynamic memory allocation is
between 100-200K byte) and an estimated 200K bytes of memory will be required for SNMP. Additional controller
memory must be available for each of the client and server applications executing in the controller. For instance,
controller memory for user-written applications is not included in these estimates. There are more detailed
estimates in Chapter 3.

4690 TCP/IP is be implemented for use on a Token-Ring or Ethernet network.

2.5.2 Software

4690 TCP/IP will require 4690 Version 1 Release 1 level of Operating System.

2.6 4690 TCP/IP Installation

Initial installation of the 4690 TCP/IP driver and applications will be done via a batch file, INSTALL.BAT, and
4690 Apply Software Maintenance. Updating existing installations can be performed using 4690 Apply Software
Maintenance.

2.7 4690 TCP/IP Configuration

2.7.1 Driver Initialization

A single configuration batch file (ADX_SDT1:ADXIPxxZ.BAT) containing three commands and their parameters is
used by the TCP/IP driver to initialize itself. This file is built by the user with a standard ASCII text editor and
contains the ADXHSI2L.286 (TCPSTART), ADXHSI3L.286 (IFCONFIG) and ADXHSI4L.286 (ROUTE)

commands with their parameters.

The TCPSTART command does not require any parameters. It must be the first command in the configuration file
and is used to indicate to the driver it should allocate memory for operation. (At IPL the driver is loaded, but does
not become operational until TCPSTART is executed.) The IFCONFIG and ROUTE commands will be executed
next by the driver during its initialization.

2.7.2 Network Data Files

In addition to the driver initialization configuration file, there are several other data files required:

e ADX SDT1:ADXHSIPF.DAT -protocolfile
¢ ADX_SDT1:ADXHSISF.DAT -servicesfile
e ADX SDT1:ADXHSIRF.DAT -resolvfile
e ADX SDT1:ADXHSIHF.DAT - hostsfile

The protocol file specifies to the driver which protocols are available, e.g. TCP, UDP, ICMP sefhieesfile is
static and does not necessarily require user modification; it lists all servers and their well-known port numbers.

Page 24 of 379 — IBM TCP/IP for 4690 Application Interface Guide

The data in theesolvandhostsfiles is created by the user. Thesolvfile provides the name and location of a
network name server (if one exists) to resolve host names to IP addressd®stBfite contains a local list of
host names and addresses and is used if resolution through a name server failsresdlutfile does not exist.

2.7.3 SNMP Data Files

When SNMP is to be used, two data files may be created by the user.

If TRAPs are to be sent by the 4690 SNMP agent (server) to the SNMP monitor (client), a data file must be created
by the user listing the name or address of that SNMP monitor and the transport protocol used to send the TRAP.
This file is named ADX_SDT1:ADXHSIDF.DAT.

Also, if access to the 4690 network management objects is to be restricted to certain SNMP monitors, a community
name file can be generated by the user containing address masks and network management passwords.

This community name file can be encrypted for secure access to 4690 management objects by network monitors.
The program used to generate the encrypted community name file is called ADX_SPGM:ADXHSI8L.286

(MAKE_PW). The input file is an ASCII text file named ADX_SDT1:ADXHSIQF.DAT (PW.SRC) created by the
user. The encrypted output file is named ADX_SDT1:ADXHSIEF.DAT (SNMP.PW).

2.7.4 INETD Data File

The Internet superserver requires a data file to identify the available server applications, protocol, and server names
that can be activated by INETD. Modifications to this data file are required if user-written server applications are
to be activated by INETD.

The file name for the INETD data file is ADX_SDT1:ADXHSIIF.DAT.

2.7.5 Logical and Physical Names
2.7.5.1 System-Defined

Logical names are defined for use by the driver and applications when the driver is loaded at IPL. When possible,
logical names reflecting the UNIX standard filenames are system-defined as their actual 4690 physical filename,
e.g.hostsis a logical name for ADX_SDT1:ADXHSIHF.DAT (physical filename). The 4690 file naming

convention is used for all files associated with TCP/IP, its applications and servers.

2.7.5.2 User-Defined

The user can define logical names for glyscontsyslo¢ andhostnameenvironment variables used by the SNMP
agent.

The logical name assignments do not necessarily have to be unique. Refer to the section on 'SNMP agent
environment names' in the Users Information section of this document.

2.8 4690 TCP/IP Operation

Functional Specifications and Design — Page 25 of 379

2.8.1 Driver

The 4690 TCP/IP driver will be loaded at IPL time based on the existence of the configuration batch file,
ADX_SDT1:ADXIPxxZ.BAT, which contains the TCPSTART, IFCONFIG, and ROUTE commands. If that file
exists, the driver will be installed and will initialize itself by invoking the batch file to run. As a result, the driver
initialization commands will execute.

Note that the link monitoring application, ADXHSNLL.286, will NOT have knowledge of any activity of TCP/IP
nor can the driver be started by that program.

Once loaded, the driver will remain resident. Real-time removal of the driver is not possible.
2.8.1.1 SNMP Agent

The SNMP agent, ADX_SPGM:ADXHSI1L.286, can be started in command mode by invoking the program by
name. Alternately, it can be configured as a background application to be started manually or automatically at IPL.

2.9 Socket Programming Interface Library

The 4690 TCP/IP driver is accessible by C language applications exclusively through the socket programming
interface. The socket library is delivered as an L86 module named ADX_UPGM:ADXHSISL.L86. 4690 TCP/IP
applications written in the C programming language and compiled with the MetaWare High C compiler can be
linked with the socket library to produce executable code.

The MetaWare High C compiler with the C language runtime library for developing 4690 C applications is
available from Integrated Systems, Inc., as the EPOS Developer's Kit.

A socket library for linking 4690 POS BASIC applications is not provided.

2.9.1 Supported socket calls

The supported set of C language socket calls for 4690 TCP/IP are listed below.

Page 26 of 379 — IBM TCP/IP for 4690 Application Interface Guide

Table 2. 4690 C Language Socket Calls

accept() bind() bswap(}
connect() dn_comp() dn_expand()
endhostent() endnetent() endprotoent()
endservent() gethostbyaddr() gethostbyname()
gethostent() gethostid() getnetbyaddr()
getnetbyname() getnetent() getpeername()
getprotobyname() getprotoent() getservbyname()
getservbyport() getservent() getsockname()
getsockopt() htonl() htons()
inet_addr()) inet_Inaof() inet_makeaddr()
inet_netof() inet_network() inet_ntoa()
ioctl() listen() Iswap(}

ntohl() ntohs() port_cancel@
readv() recv() recvfrom()
res_init() res_mkquery() res_send()
rexec() select() send()

sendto() sethostent() setnetent()
setprotoent() setservent() setsockopt()
shutdown() sock_init(} socket()
soclose(writev()

2.10 SNMP Agent - ADX_SPGM:ADXHSI1L.286

The SNMP agent is a UDP server application primarily driven by a SNMP monitor. The SNMP agent maintains
several network management objects which can be accessed by the SNMP monitor. Objects compose the
Management Information Base and are divided into eight groups. 4690 TCP/IP will support the objects in seven of
the eight groups (Exterior Gateway Protocol group will not be supported). Those groups are:

1. System

Interfaces

Address Translation

Internet Protocol

Internet Control Message Protocol

abrwpd

1 0S/2 and 4690 socket extension call. Not a BSD 4.3 socket call.
24690 socket extension call.

3 Used instead of BSD 4.3 close() socket call.

Functional Specifications and Design — Page 27 of 379

6. Transmission Control Protocol
7. User Datagram Protocol

2.10.1 Management Information Base Il (MIB-I1I)

The objects supported for each group represent the MIB. The 4690 SNMP agent will provide objects corresponding
to the MIB-II definition. Management objects in the 4690 cannot be SET by an SNMP monitor; they must be
accessed read-only.

2.10.2 TRAPs

The SNMP TRAPs that are supported are the following:

e Cold Start - notifies an SNMP monitor that the agent has just been started and initialized and all management
variables and tables are in the reset state.

e Authentication Failure - indicates an attempt by an unauthorized network management station to access the
SNMP agent's objects.

2.11 Internet Superserver (INETD) -
ADX_SPGM:ADXHSIOL.286

INETD is implemented as a server application which awaits incoming requests from client applications. If possible,
the INETD superserver will start the server application requested by the client and pass control to it. This allows a
single application to service all clients and replaces the need to have multiple servers concurrently active.

2.12 Compiling and Linking considerations

4690 TCP/IP applications may be compiled with the Metaware High C** compiler usirmigtimeemory model.
The following variables should be defined with the -def option on the compiler (e.g. HCDX860) command line:

e OS2
o far
e near

An executable program may then be created using the LINK86 program. You should link with the following
libraries:

HCBE.L86 High C big memory model library

ADXHSISL.L86 4690 TCP/IP Socket library

Depending on what type of TCP/IP application you are developing, you may also need to link with the following
libraries:

ADXHSIDL.L86 4690 SNMP DPI library
ADXHSIRL.L86 4690 Sun RPC library
ADXHSITL.L86 4690 FTP API library
FLEXLIB.L86 FlexOS library

Page 28 of 379 — IBM TCP/IP for 4690 Application Interface Guide

Notes:
1. For information about the use of a particular API, see the chapter on that API.
2. For more information about the compile and link options, refer to the High C compiler documentation.

3. For a sample socket application, see Appendix A, “Sample socket application: Echo server” on page 365.

2.13 Miscellaneous

2.13.1 Network Support Programs

Along with the TCP/IP driver, socket library, and SNMP agent, several network support programs are delivered.

1. ADXHSI5L.286 (PING) - a diagnostic tool that sends an echo request to a foreign host to determine if it is
accessible.

2. ADXHSI6L.286 (NETSTAT) - provides information about local system, TCP connections, UDP and IP
statistics, driver memory usage, and socket information.

3. ADXHSI7L.286 (FINGER) - client application to obtain information about users on a foreign host.
4. ADXHSI8L.286 (MAKE_PW) - SNMP password encryption program for community name file.

Functional Specifications and Design — Page 29 of 379

Page 30 of 379 — IBM TCP/IP for 4690 Application Interface Guide

3.0 Users Information

This is the User's Guide for 4690 TCP/IP services. This document contains:
1. Hardware and Software Requirements
2. Identification of Software components of this package
3. Installation and Setup instructions
4. Configuration and Usage of TCP/IP applications
5

. Error messages

3.1 Hardware and Software Requirements

3.1.1 Hardware Requirements
3.1.1.1 Adapter - Token-Ring

4690 TCP/IP was designed to operate with the IBM Token-Ring adapter installed on the 4690 Controller. PS/2
token-ring adapters can be used. Additionally, 4690 TCP/IP can concurrently operate with the Multiple Controller
Feature, i.e. Distributed Data Application (DDA) and/or SNA protocols on the token-ring network. Note that
increasing the token-ring adapter shared-ram can help network performance when running multiple protocols on the
token-ring. Adapter shared ram can be set on the IBM Token-Ring Adapter/2 16/4 (PS/2 only) to 16K (default),
32K, and 64K, but only to the extent that it does not conflict with other adapters installed in the 4690 controller.
Refer to the Adapter/2 16/4 installation and setup for more information on how to change the shared ram for your
adapter using the PS/2 hardware reference diskette.

3.1.1.2 Adapter - Ethernet

Beginning with 4690 Operating System maintenance level 9500 and together with 4690 TCP/IP level 9505, the
TCP/IP protocols are supported on the ethernet network. Contact your IBM representative for a current list of
ethernet adapters supported by the 4690 Operating System. All 4690 TCP/IP functions and applications are
available on the ethernet LAN, however only one LAN type can be selected for the 4690 Operating System.
Therefore, 4690 TCP/IP can only use a single interface at any given time.

3.1.1.3 Fixed Disk
4690 TCP/IP requires approximately 3M bytes of free fixed-disk storage.
3.1.1.4 Memory

Memory requirements for 4690 TCP/IP vary depending on the number and type of TCP/IP applications which are
active, however, at a minimum approximately 500K bytes of RAM should be available. This allows for about
400K for the TCP/IP driver (code and data), and one or two TCP/IP applications, e.g. FTP and Telnet. Specific
memory requirements per function are provided in the Table 1. Note that TCP/IP driver memory is required as a
minimum and all other memory calculations for optional applications should be added to the driver memory.

Users Information — Page 31 of 379

Function Memory (Kbytes)

TCP/IP driver 400 (note 1)
FTP client 220
FTP server 200
TFTP server 200
INETD superserver 50
BOOTP client 120
BOOTP server 200
Telnet client

- VT100+ 200
Telnet server

- ADXHSTIL 375

- ADXHSTIUL 104
SNMP agent 230
Portmapper= 220
NFS* server 275
Rexec client 200
LPR client 180

Note 1. Driver memory is 400K for default of up to 48 maximum sockets. The maximum number of sockets is
configurable up to 128. Each socket above 48 allocates another 2K of memory. (To configure more than 48
sockets, see the section below on "Configuring the interface".)

3.2 Software Requirements

4690 TCP/IP requires Version 1 Release 1 (V1R1) of the 4690 Operating System. The support for ethernet
networks is provided in 4690 Operating System maintenance 9500. The support for the enhanced telnet server is
provided in 4690 Operating System maintenance 9630.

4690 TCP/IP can operate in one of two 4690 system configurations:

e Configuration A

4690 LAN environment in which DDA (Distributed Data Application) is being used for controller
communications, file mirroring, and file services. In this environment the 4690 controller can have a role of
Master, File Server, Alternate Master, Alternate File Server or Subordinate.

e Configuration B

Non-DDA LAN environment in which the store controller operates independent of any other controller on the
LAN. Typically, this environment consists of a single store controller connected on the LAN with other
machines. It is normally designated as the Master controller although it has no knowledge of Alternate or
Subordinate controllers.

3.2.1 4690 TCP/IP Files

Most 4690 TCP/IP software program files, data files and programming libraries adhere to the 4690 Operating
System file naming conventions allowing this software to be maintained through 4690 Apply Software Maintenance
(local) and ADCS/HCP (remote). In some cases logical names are defined when 4690 TCP/IP is loaded.

Page 32 of 379 — IBM TCP/IP for 4690 Application Interface Guide

3.2.2 4690 TCP/IP installation, setup and configuration

In order to use 4690 TCP/IP, you should perform the following steps:
e Install the program and data files from diskette
e Configure the interface

e optionally define remote host names or remote name server

3.2.3 Installing 4690 TCP/IP in 4690 DDA LAN system - Configuration
A

Follow these instructions for installing 4690 TCP/IP on a 4690 system configured to use 4690 DDA on the LAN as
described in "Software Requirements - Configuration A" above.

4690 TCP/IP is installed using 4690 Apply Software Maintenance (ASM). Insert diskette #1 into drive A: and
invoke ainstall from a 4690 command prompt. When asked if installation is local or remote, select local. If the
install program completes successfully, you can proceed with the installation using 4690 ASM using the steps
below:

1. From System Main Menu select Installation and Update Aids
2. Select Apply Software Maintenance

3. Select Transfer Maintenance from Diskette

4. Select 4690 TCP/IP

5. Insert diskette #1 and continue with additional diskettes as prompted
6. When transfer completes, select Activate Maintenance

7

. Select 4690 TCP/IP - Accept (if this is first installation, accept is equivalent to Test since there is nothing to
backup)

8. Remove the diskette in drive A and prepare for IPL

Once the 4690 controller IPLs, TCP/IP will be installed.

3.2.4 Installing 4690 TCP/IP in 4690 non-DDA system - Configuration B

Follow these instructions for installing 4690 TCP/IP on a 4690 non-DDA environment as described in "Software
Requirements - Configuration B" above.
You must run store controller configuration to use 4690 TCP/IP in a non-DDA environment:

¢ From System Main Menu select Installation and Update Aids

e Select Change Configuration

e Select Controller Configuration. Answer N (no) and press enter to the following question on the screen:

Are you configuring a Store System that uses the IBM 4690 Multiple Controller Feature (LAN) to support the
Data Distribution Application?

e Select LAN media type, either ethernet or token-ring
e Answer Y (yes) and press enter to the following question on the screen:

Are you configuring a store system that uses SNA communication on a LAN?

Users Information — Page 33 of 379

You can optionally do any other store controller configuration from this point on, however it is not necessary to

run 4690 TCP/IP.

¢ When finished with controller configuration, press ESC to return to the CONFIGURATION screen and select
Activate Configuration.

* Select Controller Configuration

Controller configuration should successfully activate the changes you just made. You can then exit (F3=QUIT)

the configuration application and continue with 4690 TCP/IP installation.

4690 TCP/IP is installed using 4690 Apply Software Maintenance (ASM). Insert diskette #1 into drive A: and
invoke a:install from a 4690 command prompt. When asked if installation is local or remote, select local. If the
install program completes successfully, you can proceed with the installation using 4690 ASM using the steps
below:

1. From System Main Menu select Installation and Update Aids
2. Select Apply Software Maintenance

3. Select Transfer Maintenance from Diskette

4. Select 4690 TCP/IP

5. Insert diskette #1 and continue with additional diskettes as prompted
6. When transfer completes, select Activate Maintenance

7

. Select 4690 TCP/IP - Accept (if this is first installation, accept is equivalent to Test since there is nothing to
backup)

8. Remove the diskette in drive A and prepare for IPL

Once the 4690 controller IPLs, the controller configuration will become active and TCP/IP will be installed.

3.2.5 Configuring the interface

The 4690 TCP/IP protocol driver is loaded during controller IPL based on the existence of one file named
ADXIPxxZ.BAT in subdirectory C:\ADX_SDT1, whenex is the 2 character 4690 controller ID. This file has local
distribution attribute and during installation it is copied onto the master controller ONLY.

IMPORTANT!

You must have the configuration batch file ADXIPxxZ.BAT on each machine that you want the run 4690 TCP/IP.
An example batch file is copied onto the master controller during 4690 TCP/IP installation, however you should

update it for your particular network configuration.

The file C:\ADX_SDT1\ADXIPxxZ.BAT should contain (at a minimum) the following lines:

where the ip_address field contains this machine's (host) internet address in dotted decimal form, for example

9.67.39.81 is a valid internet address. The assignment of internet addresses for a proprietary network are enterprise

defined. Internet addresses for the public Internet must be obtained from the administrators of the Internet. All
TCPI/IP hosts in the network should have a unique internet address.

Page 34 of 379 — IBM TCP/IP for 4690 Application Interface Guide

The ADXHSI2L command is equivalent to the tcpstart command, however ADXHSI2L can accept a single

parameter which indicates the maximum number of sockets that can be active at any one time. If no parameter is
specified (as shown above), the default is 48 sockets. For most cases this is sufficient. If more sockets are desired,
enter a value between 49 and 128 after the ADXHSI2L command. Note that additional memory allocated for each
socket above 48 (about 2K per socket) regardless of whether or not the socket has an active connection. Also, once
set to a value, the maximum number of sockets cannot be changed by a subsequent invocation of ADXHSI2L, i.e.
the maximum can be set only once after a machine IPL. The maximum sockets value represents the combined total
of both UDP and TCP sockets.

3.2.6 Identifying a network router

If your network contains an IP router, file ADXIPxxZ.BAT can identify it using the route command, for example:

where the router_ip_address identifies the internet address of the network router in dotted decimal form. The route
command should follow the ifconfig command in the configuration batch file ADXIPxxZ.BAT.

3.2.7 Using TCP/IP host names

It is usually difficult to remember internet addresses in dotted decimal form, therefore TCP/IP allows a host name

to be used in place of the internet address. To resolve a name to an internet address, TCP/IP does the following:
1. contact the name server host designated in the resolv file using the domain name system (DNS) protocols.

2. lookup the name in the local hosts file.

3.2.8 Resolv file

An attempt will be made to contact the name server ONLY if the resolv file CAADX_SDT1\ADXHSIRF.DAT
exists and identifies the domain and the address of the name server. During the installation of 4690 TCP/IP a
sample resolv file is copied onto the 4690 controller.

IMPORTANT!

You should either update the resolv file C:\ADX_SDT1\ADXHSIRF.DAT with the domain name and internet
address of your name server or erase this file. If you do not erase (or rename) this file or if it contains incorrect
information (i.e. the internet address of a name server that does not exist), name resolution will be attempted
anyway resulting in unnecessary delays.

Note: A 4690 controller CANNOT be a name server, therefore the resolv file should not identify a 4690 host
internet address.

3.2.9 hosts file

If a resolv file does not exist, or if the name server cannot resolve the name to an internet address, the local hosts
file C:\ADX_SDT1\ADXHSIHF.DAT is searched for a match. The hosts file correlates a hostname to an internet
address. You may have many host name and internet address pairs in the hosts file. If you are not using a hame
server, you should update the hosts file with names and addresses of those hosts with whom this machine will
normally communicate.

Users Information — Page 35 of 379

A hosts file C:\ADX_SDT1\ADXHSIHF.DAT might consist of the following entries:

%5%% % %% % %% %% %% %% % %% %% % % % % % %% %% %% % % % %% %% % % % % % %% %% %% % %%
% 9.67.39.80 cc # 4690 controller CC %
% 9.67.39.81 dd # 4690 controller DD %
% 9.67.39.82 isp # TCP/IP In-Store Processor %
%%%%% %% %% %% %% % % % % % % % % % % % % % % % % % %% %% % % % % % % % % % % % % % %5 %5 %5 %%

A sample host file is copied onto the controller when 4690 TCP/IP is installed.

3.3 Setup and Usage of other TCP/IP applications

3.3.1 INETD superserver - ADXHSIOL.286

TCP/IP servers are designed to be "ready" to accept client connections whenever they are listening to their port
number. Standard servers, e.g. ftp, telnet, listen to well-known ports awaiting incoming connections from clients.

The inetd superserver is a TCP/IP server that can listen to multiple TCP ports awaiting incoming client connections
for specific servers, e.g. ftp server, telnet server. When a client attempts to connect to that server, inetd
automatically starts the server as a 4690 background application. Using inetd allows you to have a single server
continuously running instead of many servers resulting in a savings of resources. In addition, if using inetd to start
servers, multiple instances of the same server can be concurrently active.

The file that identifies which servers inetd can start is C:\ADX_SDTI1\ADXHSIIF.DAT. This file is copied onto
the controller during 4690 TCP/IP installation and contains an entry for ftp server and the regular telnet server. It
is necessary to change this file to use the enhanced telnet server, as described in the section on the server below.

Getting the inetd superserver started can be accomplished by configuring it as a 4690 background application which
gets started when the controller IPLs. The inetd superserver executable filename is ADX_SPGM:ADXHSI9L.286.
For information about defining 4690 background applications, see the IBM 4690 Store Systems User's Guide.

IMPORTANT!

The inetd superserver can only start TCP servers. UDP servers must be started by other means, e.g. configuring as
a 4690 background application which starts at IPL. Therefore if you add servers to the inetd data file, ensure that
they are TCP based. Also, if the server is a user written TCP socket application and you would like inetd to start it
on demand, the application should be coded to expect the socket number passed to it as the second input parameter
(the first being the string "BACKGRND") in the argument list.

3.3.2 FTP client - ADXHSIGL.286

The ftp client is an interactive file transfer program invoked at the 4690 command line by issuing the command
ADXHSIGL, or using the logical name FTP.

Once invoked, the ftp client presents the user an ftp prompt. File Transfer commands/settings can be issued at the
ftp prompt. For a list of valid commands type 'help’ at the ftp prompt.

The netrc file is an optional file which can be used by the ftp client to automate logon to certain servers and
provide macro definition for frequently used command strings. The 4690 netrc file is named
C:\ADX_SDTI1\ADXHSIGF.DAT. A sample netrc file is copied onto the controller during 4690 TCP/IP
installation.

Page 36 of 379 — IBM TCP/IP for 4690 Application Interface Guide

Note: Some ftp client operations can also be invoked with user-written applications through the use of the FTP
Application Programming Interface (FTP API). See the section below regarding FTP API for more information.

3.3.3 FTP server - ADXHSIFL.286

The 4690 ftp server extends file transfer capabilities to an ftp client. Only a single ftp client may be logged on at
any given time to the ftp server. Under control of the inetd superserver, a new instance of the ftp server will be
started for each client logon request thus allowing multiple clients to be concurrently connected to multiple servers.
However, if inetd is not used and the ftp server is currently connected to a client, additional client requests will be
rejected until the server concludes its connection and again begins to await incoming connections.

The client must first logon to the server using a userid and (optional) password. The client userid and password is
validated by the server when it finds a matching entry in the TRUSERS file. This file is named
C:\ADX_SDT1\ADXHSIUF.DAT and should contain an entry for each client with whom the server will maintain

an ftp session. Connection requests from unauthorized clients will be rejected. You should update this file with the
ftp clients you wish to grant access.

In addition to userid and password information in the TRUSERS file, each entry lists the read/write access
privileges for that user. In this way certain users can be limited to more restricted access, e.g. read-only, or more
liberal access, e.g. read-write. Access can be granted per drive/directory for physical drives A: C: D: and RAM
drives T: U: V: W:. In addition, the 4690 printer can be used as a file transfer destination for copying files directly
from the client to prn device.

A sample TRUSERS file is copied onto the controller during 4690 TCP/IP installation. It contains an entry for user
‘anonymous' (no password required) and gives read/write access to C:\ and its subdirectories.

IMPORTANT!

The TRUSERS file must exist in order for the ftp server to successfully initialize. If the server cannot access file
C:\ADX_SDTI1\ADXHSIUF.DAT it will reject the client logon request, log a system message and then terminate.

An additional command has been added to the 4690 ftp server to support the starting of 4690 background
applications from an ftp client. This capability is provided through the use of the "quote" ftp client command with
the ADXSTART server command provided the user at the client has the necessary execution authorization.

An example of starting background application named testpgm.286 is:

ftp> quote adxstart testpgm.286
The previous command would cause the 4690 ftp server to start testpgm.286 as a 4690 background application.
Note that the ftp server returns a message to the ftp client stating that the program has been started. The server
does not wait for the background program to complete.
Also, note that the program name must be fully path-qualified and is limited to 22 characters. If using
path-qualified program names from a unix client, you may need to surround the entire quote string in double quotes
if the backslash character is required. Optionally you can use forward slash for the path name delimiter.
Program parameters can be specified immediately following the program name, each separated by at least one

blank. The length of the parameter list cannot exceed 46 characters. The program will be started with default
priority of 200 and cannot be changed.

Users Information — Page 37 of 379

User authority to start background applications using the 'quote’ command is granted through the TRUSERS file. A
special execution access privilege is granted to clients using the 'ex:' tag for the user. This tag is similar to the 'rd:'
and ‘'wr:' tags used to grant read and write privileges to users. The sample TRUSERS file, ADXHSIUF.DAT,
contains an entry for user=anonymous (no password required) and grants write access (wr:) for drive c:\ (and all
subdirectories of the root directory) and read access (rd:) for drive c:\ (and all subdirectories of the root directory)
and background application initiation access (ex:). This entry is shown as:

Note that the 'ex:' tag does not require additional parameters. Any user without execution authority will be
returned a message by the ftp server indicating they are not authorized to start background applications.

3.3.3.1 FTP Server Timeout

A receive_data timeout has been added to the 4690 FTP server to prevent a server hang condition in the event that
either the FTP client has crashed or the physical link between the client and server is disconnected.

The timeout is set by the definition of a User-Defined Logical Filename. To define the logical name, use 4690
Controller Configuration to add the name ADXFTPTO. The definition for this name can be a value between 1 and
14400 and represents the maximum number of SECONDS to wait for a client to transmit data to the server. Note
that this timeout value is only relevant to the server while it is receiving data. It does not affect either the ftp
control connection IDLE time (which is also configurable from the client using the ftp site command) or have any
bearing on retransmission of data when the server is sending data to a client that may not be responding.

If the ADXFTPTO logical filename is not defined, or it is defined with an invalid value, a default timeout of 2
hours is used. If the timeout expires, the FTP server closes all connections with the client and terminates.

3.3.4 NFS server - ADXHSINL.286

The Network File System server is a UDP-based server which allows remote access to files located in 4690
directories. An NFS client mounts an exported 4690 directory and accesses files as if they were local to the client
machine. Multiple NFS clients can mount the same or different 4690 exported directories all at the same time,
however, only a single NFS server is required to be active to handle and keep track of all client requests.

Note: 4690 TCP/IP contains an NFS server capability only. No NFS
client support is included.

The NFS server determines which 4690 directories it can export and which users can mount them using the exports
file.

A sample exports file is copied onto the controller during 4690 TCP/IP installation as
C:\ADX_SDTI1\ADXHSIXF.DAT. You should modify this file to add/change/delete exported directories and access
privileges as well as list additional users.

IMPORTANT!

Page 38 of 379 — IBM TCP/IP for 4690 Application Interface Guide

The exports file is REQUIRED in order for the 4690 NFS server to initialize successfully. If the 4690 NFS server
cannot obtain access to the exports file, it will log an error in the system log and terminate.

IMPORTANT!

The remote procedure call (RPC) Portmapper is a mandatory prerequisite for the NFS server. It must be active
before the NFS server is started so that NFS procedures can be registered. The Portmapper is program file
C:\ADX_SPGM\ADXHSIPL.286 and can be started during a controller IPL. Likewise, you can configure the NFS
server to start during IPL, however ENSURE THAT YOU DEFINE THE PORTMAPPER BACKGROUND
APPLICATION FIRST FOLLOWED BY THE NFS SERVER. The NFS server must be started after the
Portmapper is active. Defining the Portmapper first in the configuration will cause it to get started before the NFS
server. The NFS server program file name is C:\ADX_SPGM\ADXHSINL.286.

3.3.5 Experiences with 4690 NFS server
3.3.5.1 Read/Write Block Size

The NFS client decides the maximum block size for reads and writes when it mounts the remote filesystem (drive).

Some systems may attempt a block size of 8K bytes by default. 4690 NFS server cannot support a block size of
8K, however if larger block sizes are required above the typical 4K blocks, the 4690 server will support up to 8000

bytes (not 8192) for read/write block size.

3.3.5.2 Performance

In many cases, a typical NFS server (unix-based) will be running on a high-performance network server machine
with multiple clients concurrently mounted to multiple filesystems. In addition, the high-performance server might
be a dedicated file server in the network and therefore may have little or no other contention for its CPU.

Be aware that NFS clients are designed with this in mind, i.e. that there is a high-performance server available. It
is therefore highly likely that a client (especially for large data transfers) will send multiple block-read requests
almost simultaneously (if reading from the 4690 files) or transmit multiple block-write requests almost
simultaneously (if writing to the 4690 files). In addition, most clients have relatively short timeout values if a
response from the server is not received. When the timeout expires, a retransmission of the block-read or
block-write occurs. This timeout/retransmission sequence may actually make the load worse on the potentially
already loaded server. Performance of the 4690 NFS server can be degraded under these conditions, especially
considering the 4690 controller may be executing many applications of higher priority than NFS and also that the
machine characteristics, i.e. processor and disk, may be on different ends of the performance spectrum. For
example, consider an RS/6000 NFS client and a 4690 store controller PC/AT NFS server whose processor, CPU,
and disk speeds are significantly different.

There are two approaches you might take if you suspect that your NFS performance could stand room for
improvement.

First, to help alleviate potential performance degradation, you should change the NFS read/write timeout for the
mounted filesystem (4690 drive) to a higher value than the default. (Of course, trying the default first may be
worthwhile to determine if there is cause for suspicion.) For example, on AlX V3.2 the NFS client timeout is 0.7

seconds. A recommended timeout of 7-10 seconds might help keep retransmissions low due to timer expiration.

Second, consider using ftp when large file transfer is required.

Users Information — Page 39 of 379

3.3.6 Telnet client

The telnet client support in 4690 TCP/IP allows a 4690 to logon to a remote system using the telnet protocol. The
remote system must have a telnet server capable of supporting VT100 type terminals. The telnet client is a VT100
emulator and the program file name is C:\ADX_SPGM\ADXHSIVL.286.

Invocation of the 4690 telnet client is done from a 4690 command prompt using the ADXHSIVL command, or
logical name VT100.

While in a telnet session, the escape sequence is CTRL-], i.e. hold down the Ctrl key and press the] (right
bracket) key at the same time. This allows you to set/display different telnet operating parameters. You can also
exit the emulator by typing 'quit' at the VT100 prompt.

3.3.7 BOOTP client - ADXHSIBL.286

The bootp client program (C:\ADX_SPGM\ADXHSIBL.286) is used to access TCP/IP host initialization data from

a bootp server in the network. Specifically, it can be used to obtain the 4690 IP address, domain nhame, name
server IP address, and network router address. The bootp client sends a broadcast request indicating its hardware
(LAN adapter address) to a bootp server on the network and waits for a reply. If no reply is received from a
server within 25 seconds, the client gives up and does not update any network initialization data.

When a server does reply, the BOOTP client will take the following actions:

1. Generate a batch file named C:\ADX_SDTI\ADXBPxxZ.BAT containing an ifconfig command that will
configure the token-ring lan0 interface for the received host IP address and, optionally, the subnet mask if one
was sent. In addition, if a network router (gateway) IP address was sent by the bootp server, a route command
is also added to this batch file.

2. Update the resolv file with the name of the domain and IP address of the name server this host should use to
resolve hostnames to internet addresses.

IMPORTANT!

The BOOTP client does not actually execute the ifconfig and route commands. It only builds the ADXBPxxZ.BAT
batch file. That file must be run after BOOTP completes execution if network initialization is to occur.
An example of how to use the 4690 bootp client is the following:

1. Copy the ifconfig and route (if used) commands contained in the configuration batch file
C:\ADX_SDTI1\ADXIPxxZ.BAT to another batch file nhamed C:\ADX_SDT1\ADXBPxxZ.BAT. (You do not
need to copy the adxhsi2l command to ADXBPxxZ.BAT file.)

2. Delete the ifconfig and route (if used) commands from file ADXIBAT and replace with a single
command which invokes the bootp client, i.e. adxhsibl. Follow that with a call to the bootp batch file
ADXBPxxZ, wherexx is the 2 character 4690 controller ID.

The two batch files would then look like this, for controller CC:

ADXIPCCZ.BAT contents:

ADXBPCCZ.BAT contents:

Page 40 of 379 — IBM TCP/IP for 4690 Application Interface Guide

% %
% ifconfig lanO <ip_address> . %
% route add default <router_ip_address> %
S 655555 5 666565 5 6 665 65 5 6 66666 65 66 66 %

Using this example, when the bootp server is available and does respond, the bootp client updates batch file
ADXBPxxZ.BAT. It then returns control to the configuration batch file ADXIPxxZ.BAT which then invokes the
newly created configuration.

However, in the event that the bootp server is unavailable and/or does not respond to the bootp client request in the
timeout period, the 4690 would be able to initialize its interface based on current contents of file ADXBPxxZ.BAT.

3.3.7.1 Using bootp to update/create the SNMP trap destination file.

The 4690 bootp client can recognize a generic tag which specifies the host destination for SNMP traps. The
generic tag is placed in the bootptab file on the server; it can be specified as Tnnn: where nnn is any integer
between 128 and 254. The string associated with the generic tag must begin with the characters snmp: followed by
the host name or IP address of the SNMP trap destination.

When the 4690 bootp client recognizes the generic tag and determines that it is being used to specify the SNMP
trap destination, it creates or updates the SNMP trap destination file, C:\ADX_SDT1\ADXHSIDF.DAT, with the
name or IP address of the host which follows the snmp: prefix in the tag string. This allows automatic setting of
the trap destination host during network initialization.

3.3.8 BOOTP server - ADXHSIAL.286

The 4690 bootp server program name is C\ADX_SPGM\ADXHSIAL.286. It services requests from BOOTP
clients and supplies network initialization data which it gathers from the bootptab file which is named
C:\ADX_SDT1\ADXHSIAF.DAT. Since it is a UDP-based server, it cannot be directly started from the inetd
superserver. You can, however, configure it to be a 4690 background application which starts during controller
IPL.

The bootptab file is a data file that contains the network initialization data for specific hosts, either based on
hardware adapter address or host IP address. A sample bootptab is copied onto the controller during 4690 TCP/IP
installation.

3.3.9 TFTP server - ADXHSITL.286

TFTP is a simple file transfer protocol. The TFTP server services requests from TFTP clients by transferring files
to or from the clients. TFTP is mainly used for bootpstrapping medialess clients. FTP should continue to be used
for normal file transfer purposes. In addition, the 4690 TFTP server supports multicast file transfer.

Since the TFTP server is a UDP-based server, it cannot be directly started from the inetd superserver. You can,
however, configure it to be a 4690 background application which starts during controller IPL.

3.3.10 SNMP agent - ADXHSI1L.286

The 4690 Simple Network Management (SNMP) agent (server) is designed to operate with an SNMP network
management station (client). Fundamentally, the SNMP network management station polls or queries the SNMP
agent for information about the network, e.g number of UDP datagrams transmitted. The information is stored by
the agent in a database called the Management Information Base, or MIB. The 4690 SNMP agent supports the
MIB-II definition for managed objects (excluding the Exterior Gateway Protocol group) for GET and GET-NEXT

Users Information — Page 41 of 379

requests. The setting (SET-request) of MIB objects is not supported. In addition to providing access to MIB-II
network objects, the SNMP agent can asynchronously send TRAPs to the network management station whenever a
significant network event occurs.
Currently there are two different types of TRAPs which can be sent by the SNMP agent:
e Cold-Start - notifies the network management station that this SNMP agent has just been started.
e Authentication Failure - indicated that an attempt was made by an unauthorized network management station to
access this SNMP agent's MIB objects.

Since the SNMP agent is a UDP-based server, it cannot be started by the inetd superserver, however it can be
configured as a 4690 background application that starts during controller IPL. See the IBM 4690 Store Systems
User's Guide for information about configuring background applications.

3.3.10.1 Community Names File

Access to the 4690 MIB-II objects is only afforded to authorized network management stations. Those stations are
defined in the community names file.

The 4690 SNMP agent uses an encrypted community names file to validate a network management station. That
file is named C:\ADX_SDT1\ADXHSIEF.DAT. The encrypted file is built from an ascii text file created by the
user. The ascii text file is named C:\ADX_SDT1\ADXHSIQF.DAT.

To build the encrypted community names file do the following:

1. create the ascii text community names file as file C:\ADX_SDT1\ADXHSIQF.DAT. (A sample file is copied
onto the controller during 4690 TCP/IP installation.

2. Invoke the encryption program ADXHSI8L from a 4690 command line. This program assumes the input file is
C:\ADX_SDTI1\ADXHSIQF.DAT and creates the encrypted output file C:\ADX_SDTI1\ADXHSIEF.DAT.

It is recommended that you build and maintain the ascii text community names file in a secure location. Only the
encrypted community names file needs to exist on the 4690 controller.

IMPORTANT!

The encrypted community names file must exist in order for the 4690 SNMP agent to successfully initialize. If the
SNMP agent cannot access the encrypted community names file, it will log a system message and terminate.

3.3.10.2 SNMP agent environment names

In addition to the community names file, three environment names must be defined to the 4690 system. These
names correspond directly to MIB objects and are user-definable.

The names are the following:

syscont - specifies who to contact in case of problems,
for example, Joe Smith
sysloc - specifies the physical location of this host,
for example, Store 101CC
hostname - specifies name of host on which you are running.

This name must be able to be resolved to an
IP address either by a hame server or using
the hosts file.

Page 42 of 379 — IBM TCP/IP for 4690 Application Interface Guide

These three environment names are defined by one of two methods:
1) User-Defined Logical Filenames in 4690
Controller Configuration or,
2) Listed in file C:\ADX_SDT1\ADXHSIZF.DAT.

The format of the SNMP environment names file, CAADX_SDT1\ADXHSIZF.DAT, is the following:

A sample SNMP environment names file, C:\ADX_SDT1\ADXHSIZF.DAT, is copied onto the 4690 controller
during 4690 TCP/IP installation. Note that precedence is given to the logical filename definition of the SNMP
environment name before determining if the name is defined in the SNMP environment names file.

IMPORTANT!

The three SNMP environment names must exist on each machine in which the 4690 SNMP agent is to run either as
user-defined logical filenames or within the SNMP environment names file (or some combination of both).
However, the assignment for each name does not have to be unique across all machines, e.g. a syscont of Joe Smith
may be the same on every machine.

3.3.10.3 SNMP Trap destination file

The SNMP trap destination file identifies the network management station to which traps will be sent. This file is
named C:\ADX_SDT1\ADXHSIDF.DAT. A sample trap destination file is copied onto the controller during 4690
TCP/IP installation.

If the trap destination file does not exist, traps will not be sent.
3.3.10.4 MIB-II

Extension of the MIB objects can be accomplished using the SNMP Distributed Program Interface (SNMP DPI) for
4690. The SNMP DPI allows enterprise-specific MIB objects to be created and also provides an application the
capability to generate traps. More information about the SNMP DPI can be found in Programming Interfaces
section below.

3.3.11 Telnet server - ADXHSIIL.286

The 4690 telnet server can support a VT100, ANSITERM, or IBM 3151 telnet client. It is important to note the
following characteristics of the 4690 telnet server:
1) Only ONE client can access the 4690 telnet server at a time.
2) Once logged on to the 4690, the client shares the main system
keyboard and display. This operation is similar to the
4690 Remote Operator capabilities.

For an alternative telnet server which does not have these limitations refer to the section below on "Enhanced
Telnet Server".

Users Information — Page 43 of 379

3.3.11.1 Operation

A telnet entry should be included in the inetd data file, C:\\ADX_SDT1\ADXHSIIF.DAT, so that the inetd
superserver can start the telnet server when a client attempts a connection. The example inetd data file copied onto
the controller during 4690 TCP/IP installation already contains a telnet entry. Note that the inetd superserver will
start the telnet server automatically whenever a client issues a connection request.

3.3.11.2 Logging On and Off / Userids and Passwords

The telnet server uses the 4690 system userids and passwords to grant login access to telnet clients. For example,
the default 4690 system userid is 99999999 with password of 99999999. When the telnet client is prompted for
userid: and password:, the server will validate the input against the 4690 system maintained userids and passwords.

To log off normally, enter the telnet command mode on the client terminal using the telnet escape sequence (usually
ctrl-right bracket) and type quit. Note that ctrl-d will not close the connection. In addition, telnet sessions which
are idle can be automatically disconnected by the 4690 telnet server. The timeout for disconnection due to
inactivity can be set by defining a user-defined logical flename of ADXTNDTO and assigning it a value (greater
than 0) that corresponds to the number of idle minutes telnet server will wait before automatic disconnect. The
default timeout is infinite and is used if the ADXTNDTO logical filename does not exist or is defined to an invalid
value.

If a client attempts to logon to the server and someone else is already logged on, an option of killing the active
telnet server process is provided. If you choose to kill the other process, the active session will be disconnected
and you will receive a message telling you to try to log in again.

3.3.11.3 Keyboard
The 4690 Sys-Req function is mapped to the tilda-backquote key transmitted by the telnet client.

Other function keys transmitted from PS/2 style keyboards are known to operate consistent with function keys
entered from the 4690 keyboard.

Note: Due to time delays in some network environments (i.e. WANS), the Telnet server may need to issue more
than one read to get an entire function key sequence. For most networks (LANs), a 50ms delay is plenty of time
for the entire key sequence to arrive. If you are running over a WAN or a slow network, you may need to define
the logical name TNDESCTO to the number of milliseconds you want the Telnet server to wait for an entire
function key sequence. The default is 50ms. Suggested values would be anywhere from 25 to 1000 milliseconds
(1/4 to 1 full second).

3.3.11.4 Locking out the local keyboard

When logged in through the Telnet server, it is possible to lock the local keyboard. This allows only the remotely
logged in user to have control of the console. The executable file is ADX_SPGM:ADXHSILL.286. The local
keyboard can be locked by issuing the following command:

ADXHSILL LOCK

The local keyboard will be implicitly unlocked upon normal or abnormal termination of the Telnet server, or it can
be unlocked explicitly with the following command:

ADXHSILL UNLOCK

Also, you can lock and unlock the local keyboard from any screen without using the ADXHSILL command
directly. Typing Ctrl-B will (b)lock the local keyboard and typing Ctrl-U will un(b)lock it.

Page 44 of 379 — IBM TCP/IP for 4690 Application Interface Guide

3.3.11.5 Terminfo/Termcap files

The 4690 telnet server does not use terminfo or termcap files. There are three basic terminal types supported
(correspond to TERM environment variable in unix):

e Vvt100
e ansi

e ibm3151

Also, terminal types of aixterm, xterm, vtl00-am are supersets of vt100 and are supported using the vt100
protocols. If an attempt is made to logon to the 4690 telnet server from an unknown terminal type, the connection
will be closed and the client is sent a message indicating that the 4690 telnet server cannot support the terminal.

3.3.11.6 Log files

The 4690 telnet server is actually composed of two processes working together. Program ADXHSIIL.286 is the
keyboard input process, and program ADXHSISL.286 is the screen output process. Both of these programs can log
messages (information or otherwise) into files ADXHSIIL.LOG and ADXHSISL.LOG in subdirectory
ADX_UPGM.

3.3.11.7 Telnet server considerations

"Real" vt100 terminals are 24 rows by 80 columns displays. Unfortunately, stuffing 25 rows into 24 rows is not

possible, and no trade-off seems prudent in trying to decide which row to omit. Therefore, it is best if a 25 row
vt100 emulator is used. Using a 24 row emulator will work, but display results appear unpredictable when the 25th
row is received, e.g. sometimes it is displayed and row 1 scrolls off the display, other times row 25 is not displayed
at all. Some terminal definitions of vt100-am (auto margins) are defined with 25 rows.

Most ansi terminal types are 25 row by 80 column displays. These seem to work well with 4690 telnet server. In
addition, if the connection is made to the server from an ansi terminal type, the color attributes of fields (if you
have a color display) will be sent to the terminal.

One disadvantage to ansi terminal types is that there appears to be no consistent definition of function keys and
other special keys, e.g. PgUp, PgDn. If you have an ansi terminal type and the function keys are not working, we
will try to support it. We will handle these requests on a case-by-case basis.

Included on the installation diskette is an ansi terminfo file for the AIX operating system on RS/6000. It is called
ansiterm.ti and can be compiled using tic in /ust/lib/terminfo directory (must have root access to do this). You can
use this terminfo file to define your terminal as ansi, i.e. export TERM=ansi. If your client is on a color display,

use ansi to allow color information to be sent from the 4690 telnet server. VT100 terminal emulation is
black-and-white only.

3.3.12 Enhanced Telnet server - ADXHSIUL.286

The 4690 enhanced telnet server supports VT220, VT100, ANSI and HFT. It may also support other terminal
types, especially where they are similar to any of the above types.

Unlike the regular telnet server, the enhanced server allows multiple clients to be connected simultaneously. This is
configured through the auxiliary console section of controller configuration.

To use this telnet server the 4690 Operating System must have 9630 or later maintenance applied.

Users Information — Page 45 of 379

3.3.12.1 Operation

A telnet entry should be included in the inetd data file, C:\\ADX_SDT1\ADXHSIIF.DAT, so that the inetd
superserver can start the telnet server when a client attempts a connection. The example inetd data file copied onto
the controller during 4690 TCP/IP installation already contains an entry for the regular telnet server, as follows

teTnet tcp ADX_SPGM:ADXHSIIL.286

This should be changed for the enhanced telnet server as follows
telnet tcp ADX_SPGM:ADXHSIUL.286

Note that the inetd superserver will start the telnet server automatically whenever a client issues a connection
request.

3.3.12.2 Logging On and Off / Userids and Passwords

When a connection is made to the telnet server, the logon screen is presented, and you must logon as if you were at
the main console, or another auxiliary console.

To log off normally, enter the telnet command mode on the client terminal using the telnet escape sequence (usually
ctrl-]) and type quit.

Only the number of sessions configured using Controller Auxiliary Console configuration can be supported. If an
additional client attempts to connect when there are already the maximum number of sessions in operation, then the
connection is automatically refused.

From the Background Application Control menu you can see a separate copy of ADXHSIUL.286 operating for each
connected session. It is also possible to terminate connections from this screen using F8 STOP.

By default the telnet server will request a device status report from the telnet client after a minute of inactivity.
Most clients will automatically respond to this, and the server will keep the connection open. If after a further time
interval there is no response, the server will terminate the connection on the assumption that the client has gone
away.

If you should wish to change the time interval at which this request is sent, or disable it altogether, this can be done
by defining the user logical name ADXTNDTO to the number of minutes you wish the interval to be, or to 0 to
disable.

3.3.12.3 Keyboard

By default the backquote characté} {s mapped to the 4690 SysRq function but this can be changed by defining a
User Logical File Name of '"ADXTNDSR' which contains the ASCII value for the single character you would rather
be mapped to 4690 SysRq. Also, if you are using a VT220 client, you may u se ALT+F12 as an alternative way
to generate a 4690 SysRg.

For example, use Controller Configuration, User Logical File Names, and define the name ADXTNDSR to have the
value 1. Now when you telnet into the 4690 controller CTRL+A will take you to the system keys menu.

Note: Due to time delays in some network environments (i.e. WANS), the telnet server may need to issue more
than one read to get an entire function key sequence. For most networks (LANs), a 50ms delay is plenty of time
for the entire key sequence to arrive. If you are running over a WAN or a slow network, you may need to define
the logical name TNDESCTO to the number of milliseconds you want the telnet server to wait for an entire
function key sequence. The default is 50ms. Suggested values would be anywhere from 250 to 1000 milliseconds
(1/4 to 1 full second).

Page 46 of 379 — IBM TCP/IP for 4690 Application Interface Guide

3.3.12.4 Locking out the local keyboard

The enhanced telnet server operates in the same fashion as an auxiliary console. It does not lock out the local
keyboard.

3.3.12.5 Terminfo/Termcap files

The 4690 enhanced telnet server does not use terminfo or termcap files. It has been tested with the following
terminal types:

e Vi220
e vt100
e ansi
e HFT

Other terminal types which are similar may also work. The enhanced telnet server does not reject connections
based upon the terminal type. A valid terminal type must be selected at the client.

3.3.12.6 Log files

The enhanced 4690 telnet server does not log messages to any files. Information messages will be displayed on the
background application control screen in the MESSAGE field for the corresponding telnet server.

3.3.12.7 Telnet server considerations

See the comments on the regular telnet server about 24 row displays. Furthermore, during testing several telnet
clients were found not to correctly support insert and delete escape sequences. This is most noticeable in 4690
Command Mode where the output on the client window when using the delete key may not accurately reflect what

has actually happened on the 4690 system.

The IBM OS/2 Warp telnet client correctly supports both 25 row displays, and the necessary insert and delete
escape sequences. Furthermore, since it supports VT220, Alt+F12 can be used to emulate 4690 SysRq.

The telnet client in IBM TCP/IP for DOS and Windows 2.1.1.4 will work in ANSI mode; however, it presently
does not interpret the insert and delete escape sequences correctly. It is hoped this will be fixed in a future CSD.

Presently all support in the enhanced telnet server is black and white.

3.3.13 LPR client - ADXHSIRL.286

The lpr client program is invoked from a 4690 command line as ADXHSIRL or logical name LPR, and accepts the
same input parameters as the lpr command. All required command parameters must be explicitly provided to the
4690 Ipr program. Type lpr -? for a list of valid command line parameters.

3.3.14 Rexec client - ADXHSIXL.286

The rexec client program is invoked from a 4690 command line as ADXHSIXL or logical name REXEC, and
accepts the same input parameters as the rexec program. All required command parameters must be explicitly
provided to the 4690 rexec program. Type rexec -? for a list of valid command line parameters.

Users Information — Page 47 of 379

3.4 Error messages

The following list of messages can be logged by components of 4690 TCP/IP. The message text and explanation is
provided below.

The TCP/IP driver can log the following system messages:
W875 TCP/IP INITIALIZATION FAILURE
B4/S005/E001 FN=nnnnnnnn RC=rrrrrrrr

This message will be logged if there is an error executing the
the initialization batch file, ADX_SDT1:ADXIPxxZ.BAT. Unique

Data is formatted as:

FN Indicates filename of initialization file that cannot
be executed.

RC Indicates return code from the driver.

W876 TCP/IP TOKEN RING NETWORK ERROR
B4/S005/Exxx FN=nnnnnnnn RC=rrrrrrrr

This message will be logged if the TCP/IP driver is notified of a
token-ring network error by the token-ring driver. Unique data
is formatted as:
EXXX Events 002 thru 005 indicate the following:
o 002 - Token-Ring adapter check.
This indicates that the token-ring adapter has

failed (usually hardware). This is a non-
recoverable error.

o0 003 - Set_User_Appendage failed.

This indicates that the TCP/IP driver cannot reg-
ister itself with the token-ring network driver.

0 004 - Open Service_Access_Point (SAP) failed.
This indicates that the Open SAP request issued by
the TCP/IP driver to the token-ring driver failed.

No TCP/IP network data can be sent or received on
the token-ring when the Open SAP request fails.

0 005 - Receive_Modify failed.

This indicates that the TCP/IP driver cannot reg-
ister its receive data location with the token-ring

driver. No TCP/IP data can be sent or received.

FN Indicates network operation in progress when error
occurred.

Page 48 of 379 — IBM TCP/IP for 4690 Application Interface Guide

RC Indicates return code from the driver.

W877 TCP/IP CRITICAL COMMUNICATIONS FAILURE
B4/S005/Exxx RC=rrrrrrrr

This message indicates that the executing TCP/IP driver has
detected an internal critical error. This error is non-
recoverable. Unique data is formatted as:

EXXX Events 006 and 007 indicate the following:
0 006 - Out of memory buffers.

This indicates that the TCP/IP driver has run out
of internal memory buffers and cannot obtain any
more.

o 007 - Memory Allocation failure.

This indicates that the TCP/IP driver cannot obtain
system memory when it attempts to allocate the
storage for its own use.

RC Indicates return code from the driver.

W878 TCP/IP FILE ACCESS ERROR
B4/S005/E001 FN= ssssssss RC=rrrrrrrr

This message indicates that a component of TCP/IP (driver or
appl) cannot access a file or successfully complete certain
functions. FN is the name of the file or function detecting

the error. RC is the operating system or driver return code.

The SNMP agent can log the following system messages:

W879 SNMP TRAP - COLD STARTED
B4/S003/E001

This message will be logged when the SNMP agent is started. It
indicates that the Cold-Start trap has been sent to the SNMP
network monitor. This is a severity 4 message.

W880 SNMP TRAP - AUTHENTICATION FAILURE
B4/S003/E002 IP ADDR=XXX.XXX.XXX.XXX

This message will be logged if the SNMP agent detects that an
unauthorized SNMP network monitor has attempted to access its MIB
variables. The Authentication-Failure trap is sent to the

agent's authorized network monitor and this severity 3 message is
logged. The ungiue data identifies the internet address of the
unauthorized host in dotted-decimal format.

w881 SNMP CRITICAL MEMORY FAILURE

Users Information — Page 49 of 379

B4/S003/E003 RC-=rrrrrrrr

This message indicates that the SNMP agent cannot allocate suffi-
cient memory to execute. The agent program will log this
severity 2 message and exit.

RC Indicates return code from the agent application.

W882 SNMP COMMUNITY NAME FILE NOT FOUND
B4/S003/E004 FN=ssssssss

This message indicates that the SNMP agent could not locate the
community name file in encrypted form. This file should be gen-

erated using ADXHSI8L.286 from the un-encrypted community name

file ADX_SDT1:ADXHSIQF.DAT. The encrypted file output is named
ADX_SDT1:ADXHSIEF.DAT and must be build before the SNMP agent is
started. The agent program will log this severity 2 message and

exit.

W883 SNMP LOGICAL NAME NOT FOUND
B4/S003/E004 NAME=ssssssss

This message indicates that the SNMP agent cannot find an entry
in the 4690 configuration for the logical name identified in the
NAME field of the unique data. The agent program will log this
severity 2 message and exit.

Certain applications can log the following system messages:

W978 TCPIP APPLICATION EXPERIENCED UNEXPECTED FAILURE
B4/S019/Eddd RC=rrrrrrrr CALL=bbcc INFO=ssSSSSSSSSSS

This message indicates that the 4690 TCP/IP application
experienced an non-recoverable error before exiting.

W979 TCPIP APPLICATION DETECTED USER ERROR
B4/S019/Eddd RC=rrrrrrrr CALL=bbcc INFO=ssssssssssss

This message indicates that the 4690 TCP/IP application
detected a user error. The application may or may not
continue.

W980 TCPIP APPLICATION CONTINUES WITH ERROR
B4/S019/Eddd RC=rrrrrrrr CALL=bbcc INFO=ssssssssssss

This message indicated that the 4690 TCP/IP application
detected a non-fatal system error. The application
continues.

Eddd ddd is the decimal value of an 8-bit binary number
ppppeeee.
pppp is the program number of the 4690 TCP/IP application
that logged this message.

Page 50 of 379 — IBM TCP/IP for 4690 Application Interface Guide

eeee is the event number.

RC=rrrrrrrr
rrrrrrrr is a 32-bit number in hex. This could be
the return code a of a function call that failed.

CALL=bbcc
bbcc is a 16-bit number is hex. The upper 8-bits
identifies the type of a function call and the lower 8-bits
identifies the specific function call.

INFO=5S555555SSSS
SSSSSSSSSSSs is any additional information that
does not have fixed format.

Users Information — Page 51 of 379

Page 52 of 379 — IBM TCP/IP for 4690 Application Interface Guide

bootp

4.0 Commands

This section describes the commands and subcommands used with TCP/IP for 46900S. The commands are listed
alphabetically.

4.1 adxhsibl(bootp)

The bootp command finds the internet address for a client host from a server.bofite command causes the
local host hardware address (which has been uniquely assigned to the interface hardware adapter) to broadcast over
the local TCP/IP network.

4.1.1 Syntax

»»—hootp—>«

Displaying bootp Help

»—bhootp— -7—>«

-? Displays the list of parameters and their meanings.

Commands — Page 53 of 379

bootpd

4.2 adxhsial(bootpd)

The bootpd command starts the BOOTP server. The BOOTP server receives the hardware address and looks for a
match in the ADX_SDT1:ADXHSIAF (BOOTPTAB) file. When the server finds a match, it sends an internet
address, a subnetwork, and other information to the client. The boot protocol works over a single network, but not
through a router. A BOOTPTAB table must be configured with the hardware and internet address pairs plus
network parameters. A sample ADXHSIAF.DAT (BOOTPTAB) file resides in the ADX_SDT1 directory.

The services file in the ADX_SDT1 directory must include:

bootps 67/udp #bootp server
bootpc 68/udp #bootp client

4.2.1 Syntax
»—bootpd—m—m

-d Displays debugging information, such as hardware address, on the server terminal. You can specify more than
one -d parameter to display any debug information. Each additional -d increases the amount of debugging
information displayed. You can specify -d up to five times.

Page 54 of 379 — IBM TCP/IP for 4690 Application Interface Guide

finger

4.3 adxhsi7I(finger)

The finger command displays information about the users on a remote host.

4.3.1 Syntax

»»—finger ! |_ . hostJ—N
usere

Displaying finger Help

»»—finger— -7—»><

user@ Specifies the user name to be queried on the remote host. This parameter is optional; however, if you
specify a user, the host must be followed by an @. Withsat@ the finger command displays all
users currently logged on at the host. Wiei@, only detailed information about the user will be

displayed.

Note: A space is required between multipisei@hostentries.
host Specifies a host from which you request user information. This parameter is required.
-? Displays help information.

Commands — Page 55 of 379

ftp

4.4 adxhsigl(ftp)
The ftp command transfers files between your workstation and a remote host that is running an FTP server.

4.4.1 Syntax
»»—ftp |_ _d—l |_ _gJ |_ _n_l |_ —'iJ |_ _V—l LhOSt—m'_‘

port

|
»><4

Displaying ftp Help

»—ftp— -7—><

-d Enables debugging.
-g Disables file name globbing (extension).

-n Specifies that FTP does not look in the NETRC file. You must enter the user ID and password for the
remote host.

-i Disables interactive prompting.
Y Toggles verbose mode on. When verbose mode is on, FTP displays all responses from the remote server.
host Specifies the remote host to which you are connecting.

port Specifies the destination port to which you are connectingpolf is not specified, you are connected by
default to the well-known FTP port as specified in the services file.

-? Displays help information.

Page 56 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ftp

4.4.2 Subcommands
The following subcommands can be used in the FTP command shell.
4.4.2.1 ! Subcommand

The ! subcommand enters the 46900S command processor while keeping the FTP command shell in resident
memory. This subcommand can also invoke the 4690 command shell to issue a single command and immediately
return to FTP.

»—!

»d
>4

|

l—command B]
parameters

command Specifies the 46900S command that you want to issue
parameters Specifies any parameters required by the 46900S command

If you enter thd subcommand without parameters, you will enter a 46900S command shell. To return to the FTP
command shell from the 46900S command shell, typet.

4.4.2.2 $ Subcommand

The $ subcommand issues FTP macros created witmaledef subcommand.

»—9

>
| >

l—ITI(J cro_name l_

parameters—]

macro_name Specifies the macro name.
parameters Specifies any parameters to be passed to the macro. You can specify more than one parameter.

4.4.2.3 account Subcommand

The account subcommand sends the account information to the remote host. You can issaecdhat
subcommand with the abbreviatiaw.

>
>4

»»—account
l—crccoun t_name—l

account_name Specifies the account name on the remote host. If you do not specify the account name, FTP
prompts you for it in non-echo mode.

Commands — Page 57 of 379

ftp

4.4.2.4 append Subcommand

The append subcommand adds a file on your workstation to a file on the remote hpgiend transfers a file
from your workstation to the remote host and adds it to the specified file or to a file of the same name. You can
issue theappend subcommand with the abbreviatiap.

<
<4

»»—append

»
| g

|—source_filc B N
destination_file

source_file Specifies the name of the file on your workstation that is to be transferred and appended to a file
on the remote host. If you do not specify this value, FTP will prompt you for it.

destination_file Specifies the name of the remote host file to which you want to appesdutee_file
4.4.2.5 ascii Subcommand

The ascii subcommand sets the file transfer type to ASCIIl. Usingatitéi subcommand is the same as issuing the
type subcommand with the ascii parameter. You can issuagtiesubcommand with the abbreviatian

»>—asCii—r<

4.4.2.6 bell Subcommand

The bell subcommand toggles the bell sound on and off. Iftdléis on, it will sound after each file transfer is
complete. You can issue thell subcommand with the abbreviatibe.

»»—hell—>«

4.4.2.7 binary Subcommand

The binary subcommand sets the file transfer type to binary. Binary file transfer type is useful for image
transfers, such as executable files. Using lilmary subcommand is the same as issuing tifpe subcommand
with the binary parameter. You can issue bitgary subcommand with the abbreviatibn

»»—hinary—»<

4.4.2.8 bye Subcommand
The bye subcommand ends the FTP session and leaves the FTP command shdlie Shbcommand closes any

open connection. Usingye is the same as issuing tlyeit subcommand. You can issue thge subcommand
with the abbreviatiorby.

»»—bye—>»«

4.4.2.9 cd Subcommand

The cd subcommand changes the working directory on the remote host.

»»——cd

>
>4

l—di rectory_nameJ

directory_name Specifies the name of the file directory on the remote host that becomes the current working
directory for file transfer tasks. If you do not specify this value, FTP will prompt you for it.

Page 58 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ftp

4.4.2.10 cdup Subcommand

The cdup subcommand changes the current working directory on the remote host to the current parent directory on
the remote host. You can issue tttup subcommand with the abbreviatiodu.

»»>—cdup—><«

4.4.2.11 close Subcommand

The close subcommand ends the FTP connection but does not leave the FTP command shell. Usiogethe
subcommand is the same as issuing dlsgonnectsubcommand. You can issue tblese subcommand with the
abbreviationcl.

»»—close—>«

4.4.2.12 cr Subcommand
The cr subcommand strips the carriage return character from a carriage return or line feed sequence when receiving

records during ASCII-type file transfers. Issue thesubcommand to set carriage return stripping off. Issuerthe
subcommand again to set carriage return stripping on.

»r—Cr—r><«

4.4.2.13 debug Subcommand

The debug subcommand sets debugging on or off. The initial setting iglébug to be off. You can issue the
debug subcommand with the abbreviatideb.

»»—debug—>«

4.4.2.14 delete Subcommand

The delete subcommand deletes a file from the remote host. You can issudektie subcommand with the
abbreviationdel.

-file_name

file_name Specifies the name of the file to be deleted from the remote host. If you do not specify this value,
FTP will prompt you for it.

Commands — Page 59 of 379

ftp

4.4.2.15 dir Subcommand

The dir subcommand displays a listing of the files and directories in the directory on the remote host.

»»—dir >«

path [

pattern—— |—fi le_name—
path—pattern—

path Specifies a path to a different directory, a specific file, or both.

pattern Specifies the pattern of the file names to be listed. Patterns are any combination of ASCII characters.
The following two characters have special meaning:

* The asterisk means that any character or group of characters can occupy that position in the
pattern.

? The question mark means that any single character can occupy that position in the pattern.

file_name Specifies the name of a file on your workstation to which you want to write the output. If you specify
a file name, you must also specify a path or pattern. If you do not specify a file name or if you
specify a hyphen (-), the output is displayed on the screen.

4.4.2.16 disconnect Subcommand
The disconnect subcommand ends the FTP connection but does not leave the FTP command shell. Using the

disconnectsubcommand is the same as issuingdbsesubcommand. You can issue tisconnectsubcommand
with the abbreviatiordis.

»»—disconnect—>«

4.4.2.17 form Subcommand

The form subcommand sets the file transfer format. You can issutie subcommand with abbreviatidn

»»—form—format—»<

format Specifies the file transfer format (only nonprint is supported).
4.4.2.18 get Subcommand

The get subcommand transfers a file from a remote host to your workstation. The current settingsyfpe #ed
struct subcommands are used wght

\ 4
A

»»—qet

on
prn

|—sour‘ce_]‘ile
Edestination_file—
o

source_file Specifies the name of the file on the remote host that is to be transferred to your workstation. If you
do not specify this value, FTP will prompt you for it.

destination_file
Specifies the name given to the source file when it is stored on your workstatidastitfation_file
is not specified, thesource filename is used and changed, if necessary, to conform to 46900S
file-naming conventions. If the name of the file being received is the same as a file that already

Page 60 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ftp

exists on your workstation, your existing file is overwritten by the incoming file, unlgggue is

set to on. Ifrunique is set to on, a unique file name is created for the incoming file, and your
existing file is unchanged. If you are unsure whethamique is set to on, use thstatus
subcommand to check the setting.

con Specifies that the file is to be displayed on your screen.

prn Specifies that the file is to be sent to a printer or special device.
4.4.2.19 glob Subcommand

The glob subcommand toggles the file name expansion fomritielete mget andmput subcommands. You can
use patterns wheglob is on; this is the initial setting. You can issue tfieb subcommand with the abbreviation
gl.

»»—glob—>«

4.4.2.20 hash Subcommand
The hash subcommand toggles hash mark printing. Whashis on, FTP displays hash marks (#) to indicate data

transfer progress. You can issue ttesh subcommand with the abbreviatiba.

»»—hash—»«

Commands — Page 61 of 379

ftp

4.4.2.21 help Subcommand

The help subcommand displays help information for the FTP command shell. Usingelihesubcommand is the
same as issuing ti2subcommand. You can issue thelp subcommand with the abbreviatibe.

»»—help

>
»<4

|—s ubcommandJ

subcommand Specifies the subcommand for which you are requesting help.
4.4.2.22 lcd Subcommand

Thelcd subcommand changes or displays the current working directory on your workstation. You can iksiie the
subcommand with the abbreviatitm

>
>4

»»—1cd
|—Zocal_path—l

local_path Specifies the name of a directory on your workstation that you want to make your current directory.
If you do not specify a local path, the name of the current working directory on your workstation is
displayed.

4.4.2.23 Is Subcommand

Thels subcommand provides a listing of the files in the current working directory on the remote host.
»—I1s >«

e
pattern—— |—file_name—
path—pattern—

path Specifies a path to a different directory, specific file, or both.

pattern Specifies the pattern of the file names to be listed. Patterns are any combination of ASCII characters.
The following two characters have special meaning:

* The asterisk means that any character or group of characters can occupy that position in the
pattern.

? The question mark means that any single character can occupy that position in the pattern.

file_name Specifies the name of a file on your workstation to which you want to write the output. If you specify
a file name, you must also specify a path or pattern. If you do not specify a file name, or if you
specify a hyphen (-), the output is displayed on the screen.

Page 62 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ftp

4.4.2.24 macdef Subcommand

The macdef subcommand defines a macro name and begins macro input mode. Macros remain defined until you
issue theclosesubcommand. FTP limits you to 16 macros and a total 4096 characters in all defined macros. You
can issue thenacdef subcommand with the abbreviatiom.

»»—macdef
|—mac ro_nameJ

»
>4

macro_name Specifies the macro name.
4.4.2.25 mdelete Subcommand

The mdelete subcommand deletes a group of files from the remote host.gldhesubcommand must be set to on
to use this subcommand. If you are unsure whegihan is set to on, use thstatus subcommand to check the
setting. You can issue thmdelete subcommand with the abbreviatiomde.

»»—mdelete lL

patternJ

>
>

pattern Specifies the name pattern of the files to be deleted from the remote host. Patterns are any combination
of ASCII characters. The following two characters have special meaning:

* The asterisk means that any character or group of characters can occupy that position in the
pattern.

? The question mark means that any single character can occupy that position in the pattern.
You can specify more than one pattern with thdelete subcommand. If you do not specify this
value, FTP will prompt you for it.

4.4.2.26 mget Subcommand

The mget subcommand transfers a group of files from the remote host to your workstatiorglobrsibcommand
must be set to on to use this subcommand. If you are unsure whkthés set to on, use th&tatus subcommand
to check the setting. You can issue thget subcommand with the abbreviatiamg.

.._mgetg_,<
attern

14

pattern Specifies the name pattern of the files to be transferred from the remote host to your workstation.
Patterns are any combination of ASCII characters. The following two characters have special meaning:

* The asterisk means that any character or group of characters can occupy that position in the
pattern.

? The question mark means that any single character can occupy that position in the pattern.

You can specify more than one pattern with thget subcommand. If you do not specify this value,
FTP will prompt you for it.

4.4.2.27 mkdir Subcommand

The mkdir subcommand creates a directory on the remote host. You can issekdinesubcommand with the
abbreviationmk.

Commands — Page 63 of 379

ftp

<
<4

»—mkdir >
|—dir‘ectoryJ

directory Specifies the path to the directory that you are creating. If you do not specify a directory, FTP prompts
you for the path.

4.4.2.28 mode Subcommand

The mode subcommand sets the file transfer mode. You can issuedlde subcommand with the abbreviation
mo.

»»>—mode—mode_name—»<

mode_name Specifies the file transfer mode (only stream is supported).
4.4.2.29 mput Subcommand

The mput subcommand transfers a group of files from your workstation to a remote hosiglobh&ubcommand
must be set to on to use this subcommand. If you are unsure whkthes set to on, use th&atus subcommand
to check the setting. You can issue thput subcommand with the abbreviatiamp.

»_mpuHFl_N
attern

D

pattern Specifies the name pattern of the files to be copied from your workstation to the remote host. Patterns
are any combination of ASCII characters. The following two characters have special meaning:

* The asterisk means that any character or group of characters can occupy that position in the
pattern.

? The question mark means that any single character can occupy that position in the pattern.

You can specify more than one pattern with thput subcommand. If you do not specify this value,
FTP will prompt you for it.

Page 64 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ftp

4.4.2.30 nmap Subcommand

The nmap subcommand toggles file name mapping. The initial settinguiwap is off. File name mapping occurs
with the put and mput subcommands and with thget and mget subcommands when they are issued without a
local file name. You can issue thenap subcommand with the abbreviatiom.

|
» <4

>>—nmap
|-—inpattern——outpattern—-|

inpattern Specifies the character pattern of the file names.
outpattern Specifies the character pattern of the remote host file names.

4.4.2.31 ntrans Subcommand
The ntrans subcommand toggles file hame character translation. The initial settimirdois is off. If you do not

specify inchars with the ntrans subcommand, the current statusntfans is displayed. You can issue thérans
subcommand with the abbreviation.

»»—ntrans L_

»d
| >«

inchars
|—outchars—l

inchars Specifies the character for the file name on the workstation
outchars Specifies the character for the remote file name

4.4.2.32 open Subcommand

The open subcommand establishes a connection to a remote host. You can issperttsabcommand with the
abbreviationo.

»>—o0pen |—h .
osﬁJ
ort

Y

»
>4

host Specifies the remote host to which you want to connect. If you do not spesifyFTP prompts you for a
host.

port Specifies the destination port to which you are connecting. If you do not specify a port, you are connected
by default to the well-known FTP port as specified in the services file.

4.4.2.33 prompt Subcommand

The prompt subcommand toggles interactive prompting. The initial settingpfompt is on. You can issue the
prompt subcommand with the abbreviatipnrom.

»>—prompt—»><

Commands — Page 65 of 379

ftp

4.4.2.34 proxy Subcommand

The proxy subcommand forwards subcommands to another server to allow logical connections between two servers;
this connection allows file transfers between the servers. You can issupradye subcommand with the
abbreviationprox.

»d
L |

>>—proxy
|—s ubcommandJ

subcommand Specifies an FTP subcommand. If you do not specify this value, FTP will prompt you for it.
4.4.2.35 put Subcommand

The put subcommand transfers a file from your workstation to a remote host. Usimuttteibcommand is the
same as issuing treendsubcommand. You can issue that subcommand with the abbreviatipn.

»»—oput |_ l >«
source_file
estination_file—
con
prn
source_file Specifies the name of the file on your workstation that is to be transferred to the remote host. If

you do not specify this value, FTP will prompt you for it.

destination_file Specifies the name given to theource_file when it is stored on the remote host. If
destination_fileis not specified, thesource_file name is used and changed, if necessary, to
conform to 46900S file-naming conventions. If the name of the file being received is the same
as a file that already exists on the remote host, the existing file is overwritten by the incoming
file, unlesssunique is on. If sunique is on, a unique file name is created for the incoming file,
and the existing file is unchanged.

con Specifies that the file is to be displayed on the server screen.

prn Specifies that the file is to be sent to a destination printer or special device.
4.4.2.36 pwd Subcommand

The pwd subcommand displays the name of the current working directory on the remote host. You can issue the
pwd subcommand with the abbreviatipm.

»>—pwd—><

Page 66 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ftp

4.4.2.37 quit Subcommand

The quit subcommand ends the FTP session and exits the FTP command shell. Usjaij fudbbcommand is the
same as issuing theye subcommand. You can issue tipgit subcommand with the abbreviatigni.

»>—quit—><

4.4.2.38 quote Subcommand

The quote subcommand sends the specified text to the remote host verbatim.
Note: Using quote with commands that involve data transfers can produce unpredictable results.

You can issue thguote subcommand with the abbreviatigoo.

»»—quote
|—argumen t—J

»d
>

argument Specifies the information to send to the remote host. If you do not specify this value, FTP will prompt
you for it.

4.4.2.39 recv Subcommand

The recv subcommand transfers a file from a remote host to your workstation. The current settingstype the
andstruct subcommands are used witty. You can issue theecv subcommand with the abbreviatiogc.

»p>—Trecyv |— |)
source_file
destination_file—
con
prn
source_file Specifies the name of the file on the remote host that is to be transferred to your workstation. If

you do not specify this value, FTP will prompt you for it.

destination_file Specifies the name given to tteource_file when it is stored on your workstation. If
destination_fileis not specified, thesource_file name is used and changed, if necessary, to
conform to 46900S file-naming conventions. If the name of the file being received is the same
as a file that already exists on your workstation, your existing file is overwritten by the incoming
file, unlessrunique is set to on. Ifrunique is set to on, a unique file name is created for the
incoming file, and your existing file is unchanged. If you are unsure whaihéjue is set to
on, use thestatus subcommand to check the setting.

con Specifies that the file is to be displayed on your screen.

prn Specifies that the file is to be sent to a printer or special device.

Commands — Page 67 of 379

ftp

4.4.2.40 remotehelp Subcommand

The remotehelp subcommand identifies the services and their respective syntax specifications. You can issue the
remotehelp subcommand with the abbreviatioem.

»>—remotehelp [><
commandJ

command Identifies the host command for which you want to view help information.
4.4.2.41 rename Subcommand

The rename subcommand renames a file on the remote host. You can issuentdmae subcommand with the
abbreviationren.

»>—rename >
|—o ldname |

Lnewname—l

<
<4

oldname Specifies the current name of a file in the working directory of the remote host.

newname Specifies the new name for the file. If the file name specified bynéwenamealready exists, an error
message is displayed.

If you do not specify either of these parameters, FTP will prompt you for them.
4.4.2.42 reset Subcommand

The reset subcommand clears the reply queue and resets the command reply sequencing between the local
processor and the remote server. You can issueetiet subcommand with the abbreviatioss.

»»>—reset—»«
4.4.2.43 rmdir Subcommand

The rmdir subcommand removes a directory from the remote host. You can issuedihesubcommand with the
abbreviationrm.

»»—rmdir >
|—dir‘ectoryJ

<
<4

directory Specifies the directory that you want to remove from the remote host. If you do not specify a
directory, FTP prompts you for one.

Page 68 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ftp

4.4.2.44 runiqgue Subcommand

The runique subcommand toggles the creation of unique file names for local destination files durge, theget,
andrecv operations. The initial setting founique is off.

If runique is set to off, FTP will overwrite existing files. ttinique is set to on, FTP will not overwrite existing
files. You can issue theuinique subcommand with the abbreviatiom.

»—runique—»<«

4.4.2.45 send Subcommand

The send subcommand transfers a file from your workstation to a remote host. Usisgriieubcommand is the
same as issuing thaut subcommand.

»»—send |_ | »><
source_file
Edestination_file—
con
prn
source_file Specifies the name of the file on your workstation that is to be transferred to the remote host. If

you do not specify this value, FTP will prompt you for it.

destination_file Specifies the name given to theource_file when it is stored on the remote host. If
destination_fileis not specified, thesource_file name is used and changed, if necessary, to
conform to 46900S file-naming conventions. If the name of the file being received is the same
as a file that already exists on the remote host, the existing file is overwritten by the incoming
file, unlesssunique is on. If sunique is on, a unigue file name is created for the incoming file,
and the existing file is unchanged.

con Specifies that the file is to be displayed on the server screen or console.

prn Specifies that the file is to be sent to a destination printer or special device.

Commands — Page 69 of 379

ftp

4.4.2.46 sendport Subcommand

The sendport subcommand toggles the use of FTP PORT commands. The initial settisgnfdport is to use
PORT commands. You can issue #sndport subcommand with the abbreviatisendp

»»>—sendport—»><

4.4.2.47 site Subcommand

The site subcommand sends service-specific information to a remote host. You can issite thdcommand
with the abbreviatiorsi.

»»—site—parameters—»«

parameters Specifies the service-specific information. To identify services and their respective syntax
specifications, issue themotehelp subcommand.

4.4.2.48 status Subcommand
The status subcommand displays the following information:

e Connection status
¢ Transfer mode

e Transfer type

e Form

e Structure

e Flags

You can issue thetatus subcommand with the abbreviatista.

»»—status—r«

4.4.2.49 struct Subcommand

The struct subcommand specifies the file transfer structure. You can issustring subcommand with the
abbreviationstr.

»—struct—l:ﬁ 1 e—_l—><
record

file Specifies a file structure that is a continuous sequence of data bytes. This structure is supported for both
ASCII and binary file transfer types.

record Specifies a file structure that is not currently supported by TCP/IP.

Page 70 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ftp

4.4.2.50 sunique Subcommand

The sunique subcommand toggles the creation of unique file names for the destination files gltrimgput, and
send operations. The initial setting slinique is off.

If sunique is off, FTP will overwrite existing files. ISunique is on, FTP will not overwrite existing files. You
can issue theunique subcommand with the abbreviatisn.

»>—sunique—>»<«

4.4.2.51 trace Subcommand

The trace subcommand toggles the flag that determines whether transmitted packets are traced. The initial setting
for trace is off. You can issue theace subcommand with the abbreviatitm

»»—trace—»<«

4.4.2.52 type Subcommand

The type subcommand sets the file transfer type. You can issug/peesubcommand with the abbreviation
»—type
kascﬁﬂ
binary

The setting that you specify will remain in effect until you either change it or quit FTP. If you spguify
without a parameter, FTP will display a message indicating the current transfer type.

»
>

ascii Specifies the file transfer type as ASCIl. ASCII is the initial setting for FTP’s file transfer type.
Specifying thetype subcommand with the ascii parameter is the same as issuiagdihsubcommand.

binary Specifies the file transfer type as binary (image). Specifyingythe subcommand with the binary
parameter is the same as issuinglimary subcommand.

4.4.253 user Subcommand

The user subcommand identifies you to the remote host. You can issueudbe subcommand with the
abbreviationu.

<
<

>
>

»>—user

|

|—user‘id '_ J
password-

userid Specifies your name to the remote host.
password Specifies the password associated with your user ID.

Commands — Page 71 of 379

ftp

4.4.2.54 verbose Subcommand

The verbose subcommand toggles the flag that determines whether responses from the FTP server are displayed.
The initial setting forverboseis on. You can issue theerbosesubcommand with the abbreviation

»»—verbose—»«

4.4.2.55 ? Subcommand

The ? subcommand displays help information for the FTP command shell. Usirgstiiecommand is the same as
issuing thehelp subcommand.

»—7?

>
>4

l—s ubcommandJ

subcommand Specifies the subcommand for which you are requesting help.

Page 72 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ftpd

4.5 adxhsifl(ftpd)

The ftpd command uses the FTPD.EXE program to start the FTP server. It runs as a task until you shut down the
server.

4.5.1 Syntax

»»—ftpd—>«

Commands — Page 73 of 379

ifconfig

4.6 adxhsi3l(ifconfig)

Theifconfig command assigns an address to a network interface and configures the network interface parameters.

4.6.1 Syntax
—metric O tu 1500 -trailers—
»—ifconfig—interface] ™ | Address Family | [>
—metric n |—mtu n trailers—
—arp— [—bridge— —Snhap—
> B n T broadcast broadcast_address >
— -arp— -bridge— '~ -snap— -allrs

\ 4

— -802.3— |—1' cmpred—-

\ 4
A

—802.3—— L -icmpred—
Address Family:
]
I—afJ |—addr‘ess B] | |—down— |—netmask maskJ
dest_address

interface The name of the interface you are configuring (lanO or lo).
Note: Specifying lo creates a local loopback interface. The local loopback interface bypasses the
network interface drivers to provide a direct internal connection back to the internet protocol support.
For example, if you typéfconfig 1o 2.2.2.2, you can use the address 2.2.2.2 as a local loopback.

metricn Sets the metric for the interface o The value fom is a number (1-15). The default is O (directly
connected). This routing metric is used by the Routing Information Protocol (RIP).
The higher the metric, the greater the number of hops to the destination network or host.

mtu n Sets the maximum transmission unit of the interface.toThe valuen represents a number. The
default is 1500. The maximum is 2000.

af Specifies the name of the address family supported.
Because an interface can receive transmissions in different protocols, with each protocol requiring a
separate naming scheme, you must specify the address family. However, specifying the address
family can change the interpretation of the remaining parameters. The only address family currently
supported is inet.

address Specifies the address assigned to a particular interface in the standard dotted-decimal notation.

dest_address Specifies the address of the correspondent on the receiving end of a point-to-point link.

up Enables an interface after the interface has been marked as being down with an ifconfig statement.
Interfaces are automatically marked as being up when the first address is set on an interface.

down Marks an interface as being down. When an interface is marked as being down, the system does not
attempt to transmit messages through that interface. In some cases, the reception of messages is also
disabled.
This action does not automatically disable routes using the interface.

netmaskmask

Specifies how much of the internet address to reserve for use as a subnetwork address. This
parameter is used for networks only.

Page 74 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ifconfig

For example, the subnetwork capability of TCP/IP divides a single network into multiple logical
networks. An organization can have a single internet network address that is known to users outside
the organization, but it can configure its internal network into different departmental subnetworks.
The subnetwork portion of an internet address is then divided into a subnetwork number and a host
number, for example:

network _number subnet_number host_number
where:

network_number Is the network portion of the internet address
subnet_number Is the subnetwork portion of the local address
host_number Is the host portion of the local address

The maskvalue includes the network portion of the local address and the subnetwork portion, which
is taken from the host field of the address. The mask can be specified as a single hexadecimal
number with a leading X0' or with a dotted-decimal notation address.

The mask contains a 1 for each bit position of the 32-bit address that is to be used for the network
and subnetwork and a O for the bit position to be used by the host. The mask should contain at least
the standard network portion, but the bits of the mask do not have to be contiguous. The subnetwork
field should be contiguous with the network portion.

-trailers Disables trailer-link level encapsulation. This is the default.
trailers Requests the use of trailer-link level encapsulation when sending.

For example, if a network interface supports trailers, the system, when possible, encapsulates
outgoing messages, which minimizes the number of memory-to-memory copy operations that the
receiver must perform.

On networks that support ARP, this parameter indicates that the system should request that other
systems use trailers when sending to this host. Trailer encapsulations are sent to other hosts that
have made such requests.

arp Enables ARP in mapping between network level addresses and physical or station addresses. This is
the default.

ARP is currently used for mapping between internet addresses and Ethernet addresses or IBM
token-ring addresses.

-arp Disables ARP.

bridge Enables routing field support. This is the default.

-bridge Disables routing field support.

shap Sends token-ring headers with the extended snap format. This is the Institute of Electrical and

Electronic Engineers (IEEE) standard and is necessary to communicate with workstations using the
extended snap format, such as AlXThis is the default.

-snap Does not send token-ring headers with the extended snap format.

-allrs Sets the token-ring broadcast indicator to single-route broadcast. The default is all-routes broadcast.
See thelBM LAN Technical ReferenceSC30-3383, for more information about all-routes and
single-route broadcasting.

broadcasbroadcast_address
Specifies the address to use to represent broadcasts to the network. The default broadcast address is
an internet address with a local address that has a value of all 1s.

-802.3 Disables IEEE 802.3. Enables Ethernet DIX 2. This is the default.

Commands — Page 75 of 379

ifconfig

802.3 Enables IEEE 802.3.
icmpred Allows TCP/IP to add routes obtained by ICMP redirects. This is the default.
-icmpred Prevents TCP/IP from adding routes obtained by ICMP redirects.

Theifconfig command displays the current configuration for a network interface when only an interface is supplied.
If an address family is specified usiafj ifconfig reports only the details specific to that address family.

To receive help for the command syntax, useift@enfig command alone, without specifying an interface, address,
or parameter.

Page 76 of 379 — IBM TCP/IP for 4690 Application Interface Guide

inetd

4.7 adxhsi9l(inetd)

The inetd command enables a super server that allows you to start more than one server from a single 46900S
session and to use a specific server when neededin@&titecommand supports the following servers:

« adxhsifl (FTPD)
« adxhsiil(TELNETD)

Note: INETD will start the servers listed in the adxhsiif.dat file located in subdirectory ADX_SDT1.

4.7.1 Syntax

»»>—inetd—>«

Commands — Page 77 of 379

Ipr

4.8 adxhsirl(lpr)

The lpr command allows you to transfer the contents of a file on your workstation to a network host that provides
print spooling services.

4.8.1 Syntax
»»—1pr |__f_l |——nJ

\4
A

L -p printer‘J

L -s serverJ
—filename
Displaying Ipr Help
»—Ipr— -7—><
-f When the print server is running on a UNiXsystem, the -f parameter formats the file using the
UNIX pr command. When the print server is running under 46900S, LPR passes the file through
unchanged.
-n Displays no messages unless an error occurs.

-p printer Specifies the name of the printer to which the file is sent. Optionally, the LPR_PRT logical name
may be defined to specify a default printer to use when -p is not specified.

-s server Specifies the name or internet address of a network host with print spooling capabilities. Optionally,
the LPR_SRYV logical name may be defined to specify a default print server to use when -s is not
specified.

If a print server is not specified with thgr command, LPR displays an error message and ends.
filename Specifies the name of the file to be sent to the printer.

-? Displays help information.

Page 78 of 379 — IBM TCP/IP for 4690 Application Interface Guide

netstat

4.9 adxhsi6l(netstat)

The netstat command displays the network status of the local workstation. riEtgtat command provides
information about TCP connections, user datagram protocol (UDP) and internal protocol (IP) statistics, memory
buffers, and sockets.

4.9.1 Syntax

»—netstat I)
— M
— -t_
L
i
L
o
e
e
L

Displaying netstat Help

»»—netstat— -7—>«

More than one parameter can be specified withnitstat command. Do not enter spaces between the parameters
when you use thaetstat command with multiple parameters. Thetstat command ignores any entry after a
space.

-m Information about memory buffer usage

-t Information about TCP connections

-u Information about UDP statistics

-i Information about IP statistics

-S Information about sockets

-r Routing tables and corresponding network interfaces
-C Information about internet control message protocol (ICMP) statistics
-n Information about LAN interfaces

-a The address of the network interfaces

-p Contents of the address resolution protocol table

-? Help information

Commands — Page 79 of 379

nfsd

4.10 adxhsinl(nfsd)

The nfsd command starts the NFS (adxhsinl) server. Verify that PORTMAP (adxhsipl) is running before starting
the NFS server.

4.10.1 Syntax

»»—nfsd—»«

Page 80 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ping

4.11 adxhsi5I(ping)

The ping command sends an echo request to a remote host to determine if the host is accessible.

4.11.1 Syntax

v
A

»>—ping

T T T ot se

Displaying ping Help

»»—ping— -7—><

-d

-r

-V
host

data_size

npackets

Starts the socket-level debugging process.

Bypasses the routing tables and sends packets directly to a host on an attached network. If the host is
not on a directly-connected network, PING cannot make a connection. This parameter can be used to
ping a local host through an interface that no longer has a route through it.

Specifies verbose output.
Specifies the IP address or host name of the remote host to which you want to send the echo request.

Sets the number of data bytes for the echo request (the default number of data bytes is 56, with an
additional 8-byte header attached).

Sets the number of echo requests that are sent to the remote host.

These parameters are position dependent; you cannot specify the number of packets without specifying
the data size.

Note: If you do not specifynpacketsthe echo request is sent continuously until one of the following
actions stops the echo request:

¢ Pressing the Ctrl and C keys simultaneously
¢ Pressing the Ctrl and Break keys simultaneously
¢ Closing the task

Displays help information.

Commands — Page 81 of 379

portmap

4.12 adxhsipl(portmap)

The portmap command starts a protocol to define a network service that permits clients to look up the port number
of any remote program supported by the server.

4.12.1 Syntax

»>—portmap—><«

Page 82 of 379 — IBM TCP/IP for 4690 Application Interface Guide

rexec

4.13 adxhsixl(rexec)

The rexec command issues a command on a remote host. r@tex command sends a single command to the
remote host.

4.13.1 Syntax

»»—rexec—host command—<
L -1 Zoginname—l L -p password—l L —kJ L -n—l

Displaying rexec Help

»>—rexec— -7—>»<

host Specifies the remote host on which the command is to be issued.

-I loginname
Specifies the user ID orhost If you do not specify a login name, the values in the
ADX_SDT1:ADXHSIGF.DAT file are used.

-p password

Specifies the password that is associated with the login name. If you do not specify a password, the

values in the ADX_SDT1:ADXHSIGF.DAT file are used. If the ADX_SDT1:ADXHSIGF.DAT file
does not provide the password valtexec prompts you for the password. You can enter the password
in a nonecho mode.

-k Ignores the local keyboard input. This is helpful for running noninteractive input, especially from a
batch file.
-n Specifies not to use the ADX_SDT1:ADXHSIGF.DAT file for automatic login.

command Specifies the command to be issued on the remote host. The command must be in the syntax used by

the remote host.

-? Displays help information.

Commands — Page 83 of 379

route

4.14 adxhsidl(route)

The route command is used to modify the network routing tables. Usedtite command only if you are an
experienced TCP/IP user.

4.14.1 Syntax

Adding to the Route Table

»»—route add net destination router—metric—»<
L -fJ L -hJ i:subnet— |—defau]t——,_
host——

Deleting from the Route Table

»—route delete net —Edestination router
L —fJ L -hJ Esubnet— defau]t—l LmetricJ

host—

Route Table Help

»»—route—?—><

-f Empties the routing tables of all network and subnet route entries. If this is used in conjunction with
another parameter, the tables are emptied before the other parameters take effect.

-h Empties the routing tables of all host route entries. If this is used in conjunction with another
parameter, the tables are emptied before other parameters take effect.

add Adds a route. If you specify the add parametetric is required.

delete Deletes a route.

net Specifies that a network is to be added or deleted.

subnet Specifies that a subnet is to be added or deleted.

host Specifies that a host is to be added or deleted.

destination Specifies the internet address of the host, network, or subnet.

default Specifies all destinations not defined with another routing table entry.

router Specifies the internet address of the next hop in the path to the destination.

metric Specifies the number of hops to the destination. fedric parameter is required for adding to the
route table.

? Displays help information.

Page 84 of 379 — IBM TCP/IP for 4690 Application Interface Guide

rpcinfo

4.15 adxhsirl(rpcinfo)

Therpcinfo command makes an RPC call to the RPC server and reports the status of the server, which is registered
and operational with the Portmapper.

4.15.1 Syntax

rpcinfo for a Host
|—10ca1_host—

\ 4
A

»»—rpcinfo— -p

|—hos t————

rpcinfo for a Host Using UDP

»»—rpcinfo -u host prognum—L—m_l—N
L -n port&num—l versnu

rpcinfo for a Host Using TCP

»»—rpcinfo -t host prognum
L -n por‘tnum—l |—versnumJ

»d
>4

rpcinfo for a Broadcast to Hosts Using UDP
»—rpcCi nfo—l_—_l—prognum—ver‘snum—><
-b

-p host Queries the Portmapper about the specified host and prints a list of all registered RPC programs. If the
host is not specified, the system defaults to the local host name.

-n portnum
Specifies the port number to be used for the -t and -u parameters. This value replaces the port number
that is given by the Portmapper.

-u host prognunmversnum
Sends an RPC call to procedure 0pwbgnum and versnumon the specified host using UDP and
reports whether a response is received.

-t host prognumversnum
Sends an RPC call to procedure Qoafgnumandversnumon the specified host using TCP and reports
whether a response is received.

-b prognum versnum
Sends an RPC broadcast to procedure 0 of the spepifgghumandversnumusing UDP and reports
all hosts that respond.

Commands — Page 85 of 379

snmpd

4.16 adxhsill(snmpd)

The snmpd command starts the SNMP agent. Bmenpd command runs as a task until you shut down the server.

4.16.1 Syntax

»>—snmpd—>»<«

Page 86 of 379 — IBM TCP/IP for 4690 Application Interface Guide

tftpd

4.17 adxhsitl(tftpd)

The tftpd command starts the Internet Trivial File Transfer (TFTP) server as defined in RFC1350. While the
RFC1350 TFTP server unicasts files to a single client lockstep, the MTFTP server multicasts files to multiple
clients, lockstepped with a single acknowledging client. The MTFTP server is started IF AND ONLY IF either the
-m or the -n options are used.

The TFTP server operates at the port indicated byftheservice description iservices If the port number is not
present inservices the default (Assigned Numbers RFC) of 69 is used.

The MTFTP service names are:
mtftps- MTFTP Server listening port
mtftpc- MTFTP Client destination port

If the ports are absent froservices the default values of mtftps = 75 and mtftpc = 76 are used. In addition, the
MTFTP server requires a configuration file that specifies the IP multicast address for each file that is expected to be
multicasted. The configuration file has the same formabastptalh except that only thed, hd, bf, and the

MTFTP tags are recognized. For each file the fields must be specified in the same entry (withotaghe

The 4690 TFTP implementation allows at most one file transfer at one time. In order to support bootstrapping of
multiple clients, the 4690 TFTP also allows concurrent transfer of boot images by caching parts of the images.
This way one boot image can be transferred to multiple clients at the same time, allowing them to boot
concurrently. The files allowed for concurrent transfer are those found in the configuration file.

Tftpd can be invoked at the command prompt like any other regular command, or defined as a background process.
The program automatically detects whether it was invoked at the command prompt or the background and
automatically selects the appropriate mode.

The use of TFTP does not require an account or password on the remote system. Due to the lack of authentication
information, the client must specify the full path. "/../* as parts of filenames are discarded. The client is allowed to
create new files or write to existing files unless tbdlag is used. Each directory on the path of the filename must
already exist. Thep flag is used to further restrict access. The files requested by the clients must be in one of the
paths specified by the flagTftpd can transfer only one file at a time.

All requests to the MTFTP server are regarded as read requests of binary files. MTFTP supports only sending of
binary files for bootstrapping purposes. The multicast address used to transfer a file is determined by the MTFTP
tag and the bootfile name in the configuration file. If the last character in the request file name is numeric, the last
character is not matched against the last character in the configuration file, and the multicast address defined in the
MTFTP tag is incremented by the value of the numeric character. The resulting IP multicast address is used to
transfer the boot file. For example, if the configuration has file "bootimgl" with multicast address "225.2.10.0", a
request for "bootimg4" will cause the file "bootimg4" to be multicast to the address "225.2.10.4".

If more than one server is set up as an MTFTP server, the multicast address used by each file must be unique.
Eachmtftpd still multicasts only one file at a time.

4.17.1 Syntax
»—tftpd

L -b num-of—pagesJ L -f config-file—l L -d debugJ L -g hosz L -mJ
" L -n—] L -oJ L -p secure-dirJ L -s size—] L -uJ L -v—] L -W wait-timeJ a

Commands — Page 87 of 379

tftpd

-b number-of-pages

-d debug-level

-f config-file

-g hops

-p secure-dirs

-s size

-W wait-time

Sets the number of 32K pages used for caching for concurrent TFTP transfer. The default and

mininum number is 2, and 10 is max.

Sets thedebug-levelvariable that controls the amount of debugging messages generated. For
example,-d4 or -d 4 will set the debugging level to 4. For compatibility, omitting the numeric
parameter (i.e. just -d) will simply increment the debug level by one. Levels above 4 do not
generate more messages than level 4.

Sets the configuration file to be used by TFTPD for concurrent transfer of bootfiles, and also by
MTFTPD. The default idootptab (ADX_SDT1:ADXHSIAF.DAT). Both physical and logical
filenames may be specified.

Sets the number of gateway hops between the MTFTP server and clients.
file transfer cannot be routed through a gateway.

By default, MTFTP

Starts the MTFTP server, in addition to the TFTP server.

Starts the MTFTP server, instead of the TFTP server.
flags.

This flag overrides both the -u and -v

Prohibits overwriting of existing files.

Enables security. Limit TFTP accesses to ¢keure-dirdirectories.
allowed. The directory names are case-sensitive.

Up to five directories are

Increases the transfer size from the default of 518z® Sizeshould be a multiple of 16. The
maximum is 1456. This option applies only to the MTFTP server.

Allow TFTP server for concurrent and non-concurrent transfer of boot files defined in the
bootptab. TFTP transfers of files absent from the bootptab are also allowed. This flag is
overridden by the -n flag.

Only allow TFTP server for concurrent transfer of boot files defined in the bootptab. TFTP
transfers of files absent from the bootptab are disabled. This flag is overridden by the -n flag.

Delays the start of an MTFTP transfer tait-time seconds after a request is received. The
default is 0.

Page 88 of 379 — IBM TCP/IP for 4690 Application Interface Guide

4.18 ADXHSIVL(VT100)

The VT100 command logs you on to a remote host, emulating a VT100.

If you do not specify a host on thér100 command, you enter the Telnet command shell. In the command shell,
you can establish the operating environment and designate the host and port to which you want to connect.

Commands — Page 89 of 379

Page 90 of 379 — IBM TCP/IP for 4690 Application Interface Guide

5.0 Sockets

This chapter describes the C socket API provided with TCP/IP for 46900S. Use the socket routines to interface
with the TCP, UDP, ICMP, and IP protocols. These socket routines let a program communicate across networks
with other programs. For example, you can use socket routines when you write a client program that communicates
with a server program running on another computer.

To use the sockets, you must know C language programming. For more information about C socket$Bkke the
AIX Operating System Technical Reference, Volume 1

5.1 Programming with Sockets

The 46900S socket API provides a standard interface to the transport and internetwork layer interfaces of TCP/IP
for 46900S. It supports three socket types: stream, datagram, and raw. Stream and datagram sockets interface to
the transport layer protocols, and raw sockets interface to the network layer protocols. The programmer chooses the
most appropriate interface for an application.

5.1.1 Socket Programming Concepts
Before programming with the sockets API, consider the concepts in this section.
5.1.1.1 What Is a Socket?

A socket is an endpoint for communication that can be named and addressed in a network. From an application
program perspective, it is a resource allocated by the operating system. It is represented by an integer called a
socket descriptor.

The socket interface provides applications with a network interface that hides the details of the physical network.

5.1.1.2 Socket Types
The socket types are defined in #8YS\SOCKET.H header file.

The stream socket (SOCK_STREAM) interface defines a reliable connection-oriented service. Data is sent without
errors or duplication and is received in the same order as it is sent. Flow control is built in to avoid data overruns.
No boundaries are imposed on the data; it is considered to be a stream of bytes. An example of an application that
uses stream sockets is the File Transfer Protocol (FTP).

The datagram socket (SOCK_DGRAM) interface defines a connectionless service. Datagrams are sent as
independent packets. The service provides no guarantees; data can be lost or duplicated, and datagrams can arrive
out of order. The size of a datagram is limited to the size that can be sent in a single transaction (currently the
default is 8192 and the maximum is 32768). No disassembly and reassembly of packets is performed. An example
of an application that uses datagram sockets is the Network File Sy$hrs™.)

The raw socket (SOCK_RAW) interface allows direct access to lower layer protocols such as IP and Internet

Control Message Protocol (ICMP). The interface is often used for testing new protocol implementations or for
gaining access to some of the more advanced facilities of an existing protocol.

Sockets — Page 91 of 379

You can extend the socket interface and therefore, define new socket types to provide additional services. An
example of this is the transaction-type socket defined for interfacing to the Versatile Message Transfer Protocol
(VMTP).# Transaction-type sockets are not supported by TCP/IP for 46900S.

Because socket interfaces isolate you from the communication functions of the various protocol layers, the
interfaces are largely independent of the underlying network. In the 4690 implementation of sockets, stream sockets
interface to TCP, datagram sockets interface to UDP, and raw sockets interface to ICMP and IP.

In the future, the underlying protocols might change, but the socket interface will stay the same. For example,
stream sockets may eventually interface to the International Standards Organization (ISO) Open System
Interconnection (OSI) transport class 4 protocol. This means that applications will not have to be rewritten as
underlying protocols change

5.1.1.2.1 Guidelines for Choosing Socket Types: If you are communicating with an existing application,
you must use the same protocols as the existing application. For example, if you interface to an application that
uses TCP, you must use stream sockets. For new applications, consider the following factors:

e Consider reliability. Stream sockets provide the most reliable connection. Datagram, or raw sockets, are
unreliable because packets can be discarded, corrupted, or duplicated during transmission. This may be
acceptable if the application does not require reliability, or if the application implements the reliability on top
of the socket’s interface. The tradeoff is the increased performance available over stream sockets.

e Consider performance. The overhead associated with reliability, flow control, packet reassembly, and
connection maintenance degrades the performance of stream sockets so that they do not perform as well as
datagram sockets.

e Consider the amount of data to be transferred. Datagram sockets limit the amount of data transferred but
stream sockets do not. If you send less than 2048 bytes at a time, use datagram sockets. As the amount of
data in a single transaction increases, use stream sockets.

If you are writing a new protocol on top of IP or wish to use the ICMP protocol, then you must choose raw
sockets.

5.1.1.3 Address Family

An address family defines different styles of address or communication domain. All hosts in the same address
family understand and use the same scheme of address socket endpoints. TCP/IP for 46900S supports one address
family: AF_INET. The AF_INET domain defines address in the internet domain. AF_INET is also referred to as

a PF_INET. Both are equivalent (PF stands for Protocol Family). The address families are defined in the
<SYS\SOCKET.H header file.

5.1.1.4 Socket Address

The sockaddrstructure in the<SYS\SOCKET.H header file defines a socket address. It has two fields, as shown
in the following example:

4 David R. Cheriton and Carey L. Williamson, “VMTP as the Transport Layer for High-Performance Distributed Systems,”
IEEE CommunicationsJune 1989, Vol. 27, No. 6.

5 This does not imply an IBM statement of direction.

Page 92 of 379 — IBM TCP/IP for 4690 Application Interface Guide

struct sockaddr

{
u_short sa_family; /* address family */
char sa_data[14]; /* up to 14 bytes of direct address */

}s

The sa_familyfield contains the address family. It is AF_INET for the internet domain. sSkhelatafield is
different for each address family. Each address family defines its own structure, which can be overlaid on the
sockaddrstructure.

5.1.1.4.1 Addressing within an Internet Domain: A socket address in an internet address family comprises
four fields: the address family (AF_INET), an internet address, a port, and a character array. The following
sockaddr_instructure, which is in theNETINET\IN.H> header file, defines the structure of an internet socket
address.

struct in_addr

{
}s

u_Tong s_addr;

struct sockaddr_in

{
short sin family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

}s

The sin_family field is set to AF_INET. Thesin_portfield is the port used by the application, in network byte
order. Thesin_addrfield is the internet address of the network interface used by the application. It is also in
network byte order. Thein_zerofield should be set to all zeros.

5.1.1.5 Internet Address

An internet address is a 32-bit quantity that represents a network interface. Every internet address within an
administered AF_INET domain must be unique. A common misunderstanding is that every host must have only
one internet address. In fact, a host has as many internet addresses as it has network interfaces. For more
information about internet address formats, lsgernetworking With TCP/IP Volume I: Principles, Protocols, and
Architecture

5.1.1.6 Ports

The system software uses a port to differentiate between different applications using the same protocol (TCP or
UDP). It is an additional qualifier that the software uses to get data to the correct application. Physically, a port is
a 16-bit integer. Some ports are reserved for particular applications and arewsdli&down ports For more
information, see the ADX_SDT1:ADXHSISF.DAT file.

5.1.1.7 Network Byte Order

You usually specify ports and addresses to calls using the network-byte ordering convention. Network byte order is
also known adig endian byteordering, as in Motorofa microprocessors (compared wiitile endian byteordering

in Intef* microprocessors). Using network byte ordering for data exchanged between hosts allows hosts using
unique architectures to exchange address information. See pages 94, 96, and 98 for examples of using the htons()
call to put ports into network byte order. For more information about network byte order, see: 5.4.1, “accept()” on

Sockets — Page 93 of 379

page 107, 5.4.2, “bind()" on page 110, 5.4.27, “htonl()” on page 149, 5.4.28, “htons()” on page 150, 5.4.38,
“ntohl()” on page 165, and 5.4.39, “ntohs()” on page 166.

Note: The sockets interface does not handle application data byte ordering differences. Application writers must
handle byte order differences themselves or use higher-level interfaces, such as Remote Procedure Calls (RPC).

5.1.2 How to Apply Socket Calls

With a few socket calls, you can write a powerful network application as in the following steps and examples:

1. First, you initialize the application with sockets using the sock_init() call, as shown in Figure 1. For a more
detailed description, see 5.4.57, “sock_init()” on page 194.

int rc;
int sock_init();

rc = sock_init();

Figure 1. An Application Uses the sock_init() Call

The code fragment shown in Figure 1 initializes the process with the socket library and checks whether
INET.SYS is running.

2. Next, you must get a socket descriptor for the application using the socket() call, as shown in Figure 2. For a
more detailed description, see: 5.4.58, “socket()” on page 195.

int socket(int domain, int type, int protocol);
int s;

s = socket (AF_INET, SOCK STREAM, 0);

Figure 2. An Application Uses the socket() Call

The code fragment shown in Figure 2 allocates a socket descsiptorthe internet address family. The
domain parameter is a constant that specifies the domain where the communication is taking place. A domain
is the collection of applications using the same naming convention. TCP/IP for 46900S supports one address
family: AF_INET. The type parameter is a constant that specifies the type of socket, which can be
SOCK_STREAM, SOCK_DGRAM, or SOCK_RAW. Tharotocol parameter is a constant that specifies the
protocol to use. The parameter is ignored untgpsis set to SOCK_RAW. If therotocol field is set to 0,

the system selects the default protocol number for the domain and socket type requested. If successful, socket()
returns a positive integer socket descriptor.

3. Once an application has a socket descriptor, it can explicitly bind() a unigue name to the socket, as shown in
the example in Figure 3. For a more detailed description, see 5.4.2, “bind()” on page 110.

Page 94 of 379 — IBM TCP/IP for 4690 Application Interface Guide

int rc;

int s;

struct sockaddr_in myname;

int bind(int s, struct sockaddr *name, int namelen);

/* clear the structure so that the sin_zero field is clear */

memset (&myname, 0 sizeof(myname));

myname.sin_family = AF_INET;

myname.sin_addr.s_addr = inet_addr("129.5.24.1"); /*specific interface*/
myname.sin_port = htons(1024);

rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));

Figure 3. An Application Uses the bind() Call

For a server to be able to listen() for connections on a stream socket, or recvfrom() on a datagram socket, the
server must first bind() a socket to a specific address family, port, and interface. This examplayiade

to sockets. The name specifies that the application is in the internet domain (AF_INET) at internet address
129.5.24.1 and is bound to port 1024. Figure 3 shows two useful network utility routines:

e inet_addr() takes an internet address in dotted decimal form and returns it in network byte order. For a
more detailed description, see 5.4.29, “inet_addr()” on page 151.

e htons() takes a port number in host byte order and returns the port in network byte order. For a more
detailed description, see 5.4.28, “htons()” on page 150.

Figure 4 shows how the bind() call on the server side uses the network utility routine getservbyname() to find
a well-known port number for specific service from the ADX_SDT1:ADXHSISF.DAT file. It also shows
wildcard value INADDR_ANY. If a host has several network addresses (multihomed host), messages sent to
any of the addresses should be deliverable to a socket.

int rc;

int s;

struct sockaddr_in myname;

int bind(int s, struct sockaddr_in name, int namelen);
struct servent #*sp;

sp = getservbyname("Togin","tcp"); /* get application specific */
/* well-known port */

/* clear the structure to be sure the sin_zero field is clear */
memset (&myname,0,sizeof (myname)) ;

myname.sin_family = AF_INET;

myname.sin_addr.s_addr = INADDR_ANY;

myname.sin_port = sp->s_port;

rc = bind(s, (struct sockaddr *)&myname,sizeof (myname));

Figure 4. A bind() Call Uses the getservbyname() Call

4. After binding a name to a socket, a server using stream sockets must indicate its readiness to accept
connections from clients. The server does this with the listen() call as shown in Figure 5.

Sockets — Page 95 of 379

int s;

int backlog;

int rc;

int listen(int s, int backlog);

rc = listen(s, 5);

Figure 5. An Application Uses the listen() Call

The listen() call tells the TCP/IP software that the server is ready to accept connections and that a maximum of

five connection requests can be queued for the server. The system ignores additional requests.
detailed description, see 5.4.36, “listen()” on page 162.

5. Clients using stream sockets call connect() to start a connection request as shown in Figure 6.

For a more

int s;

struct sockaddr_in servername;

int rc;

int connect(int s, struct sockaddr *name, int namelen);

memset (&servername, 0,sizeof(servername));
servername.sin_family = AF_INET;
servername.sin_addr.s_addr = inet_addr("129.5.24.1");
servername.sin_port = htons(1024);

rc = connect(s, (struct sockaddr *) &servername,
sizeof(servername));

Figure 6. An Application Uses the connect() Call

The connect() call tries to connect sockeb the server with namservername This could be the server used
in the previous bind() example. The caller optionally blocks until the server accepts the connection. On
successful return from the server, the system associates sogitetthe connection to the server. For a more

detailed description, see 5.4.4, “connect()” on page 114.

Page 96 of 379 — IBM TCP/IP for 4690 Application Interface Guide

int s;

struct sockaddr_in servername;

char *hostname = "serverhost";

int rc;

int connect(int s, struct sockaddr_in *name, int namelen);
struct servent #*sp;

struct hostent *hp;

sp
/* well-known port

hp = gethostbyname (hostname);

/* clear the structure so that the sin_zero field is clear */
memset (&servername,0,sizeof (servername));
servername.sin_family = AF_INET;

servername.sin_addr.s_addr = *((u_long *)hp->h_addr);
servername.sin_port = sp->s_port;

getservbyname("Togin","tcp"); /* get application specific */

*/

rc = connect(s, (struct sockaddr *)&servername,sizeof(servername));

Figure 7. An Application Uses the gethostbyname() Call

Figure 7 shows an example of a network utility routine, the gethostbyname() call, to find out the internet
address oterverhosffrom the name server or the ADX_SDT1:ADXHSIHF.DAT file.

6. Servers using stream sockets accept a connection request with the accept() call as shown in Figure 8.

int clientsocket;

int s;

struct sockaddr clientaddress;

int addrlen;

int accept(int s, struct sockaddr *addr, int *addrlen);

addrlen = sizeof(clientaddress);

clientsocket = accept(s, &clientaddress, &addrlen);

Figure 8. An Application Uses the accept() Call

If connection requests are not pending on soekéhe accept() call optionally blocks the server. When the
server accepts a connection request on sagketeturns the name of the client and length of the client name,
along with a new socket descriptor. The new socket descriptor is associated with the client that initiated the

connection, ands is again available to accept new connections.

“accept()” on page 107.

For a more detailed description, see 5.4.1,

7. Clients and servers have many calls from which to choose for data transfer. The readv(), writev(), and send()
calls can be used only on sockets that are in the connected state. The sendto() and recvfrom() calls can be used

at any time. Figure 9 illustrates the use of send().

Sockets — Page 97 of 379

int bytes_sent;

int bytes_received;

char data_sent[256];

char data_received[256];

int send(int socket, char *buf, int buflen, int flags);
int recv(int socket, char *buf, int buflen, int flags);
int s;

bytes_sent = send(s, data_sent, sizeof(data_sent), 0);

bytes_received = recv(s, data_received, sizeof(data_received), 0);

Figure 9. An Application Uses the send(). Calls

Figure 9 also shows an application sending data on a connected socket and receiving data in response. You
can use thdlags field to specify additional options to send(), such as sending out-of-band data.

8. If the socket is not in a connected state, additional address information must be passed to sendto() and may be
optionally returned from recvfrom(). An example of the use of the sendto() and recvfrom() calls is shown in
Figure 10.

int bytes_sent;

int bytes received;

char data_sent[256];

char data_received[256];

struct sockaddr_in to;

struct sockaddr from;

int addrlen;

int sendto(int socket, char *buf, int buflen, int flags,
struct sockaddr *addr, int addrlen);

int recvfrom(int socket, char *buf, int buflen, int flags,
struct sockaddr *addr, int *addrlen);

int s;

to.sin_family = AF_INET;
to.sin_addr inet_addr("129.5.24.1");
to.sin_port = htons(1024);

bytes sent = sendto(s, data_sent, sizeof(data_sent), 0,
&to, sizeof(to));

addrlen = sizeof(from); /* must be initialized =/
bytes received = recvfrom(s, data received,
sizeof(data_received), 0, &from, &addrlen);

Figure 10. An Application Uses the sendto() and recvfrom() Calls

The sendto() and recvfrom() calls take additional parameters that allow the caller to specify the recipient of the
data or to be notified of the sender of the data. See 5.4.43, “recvfrom()” on page 172 and 5.4.50, “sendto()”
on page 184 for more information about these additional parameters. You usually use sendto() and recvfrom()
for datagram sockets and send() for stream sockets.

9. Use the writev() and readv() calls to scatter and gather data. Scattered data can be located in multiple data
buffers. The writev() call gathers the scattered data and sends it. The readv() call receives data and scatters it
into multiple buffers.

Page 98 of 379 — IBM TCP/IP for 4690 Application Interface Guide

10. Applications can handle multiple sockets. In such situations, use the select() call to determine the sockets that

have data to be read, those that are ready for data to be written, and the sockets that have pending exceptional
conditions.

11. In addition to select(), applications can use the ioctl() call to help perform asynchronous (nonblocking) socket
operations.

12. You deallocate a socket descriptor, s, with the soclose() call. For a more detailed description, see 5.4.59,
“soclose()” on page 198. Figure 11 shows the soclose() call.

/* close the socket =/
soclose(s);

Figure 11. An Application Uses the soclose() Call
5.1.2.1 A Typical TCP Socket Session

You can use TCP sockets for both passive (server) and active (client) processes. While some commands are
necessary for both types, some are role-specific.

When you make a connection, it exists until you close the socket. During the connection, either data is delivered or
TCP/IP returns an error code.

See Figure 12 for the general sequence of calls to follow for most socket routines using TCP sockets.

Sockets — Page 99 of 379

Client

Server

Create stream socket s with the socket()

Create stream socket s with the socket()
call.

call.
_______ l
(optional)
Bind socket s to a Tocal address with the
bind() call.
.- - 1

Bind socket s to a local address with the

bind() call.

With the Tisten() call, alert the TCP/IP
machine of your willingness to accept
connections.

Connect socket s to a foreign host with the
connect() call.

Accept the connection and receive a second
socket, for example ns, with the accept()
call.

For the server, socket s remains available
to accept new connections. Socket ns
is dedicated to the client.

Read and write data on socket s, using the
send() and recv() calls, until all data is
exchanged.

Read and write data on socket ns, using the
send() and recv() calls, until all data is

exchanged.

Close socket s and end the TCP/IP session
with the soclose() call.

Close socket ns with the soclose() call.

Figure 12. A Typical TCP Socket Session

|

Accept another connection from a client, or
close the original socket s with the soclose()
call.

Page 100 of 379 — IBM TCP/IP for 4690 Application Interface Guide

5.1.2.2 A Typical UDP Socket Session

You cannot clearly distinguish UDP socket processes by server and client roles, as you can with TCP socket
processes. Instead, the distinction is between connected and unconnected sockets. An unconnected socket can
communicate with any host; but a connected socket, because it has a dedicated destination, can send data to and
receive data from only one host.

Both connected and unconnected sockets send their data over the network without verification. Consequently, when
the UDP interface accepts a packet, the arrival of the packet and the integrity of the packet cannot be guaranteed.

See Figure 13 for the general sequence of calls to follow for most socket routines using UDP sockets.

Client

Create datagram socket s with the socket()
call.

Server

(optional)
Bind socket s to a local address with the
bind() call.

(optional)
Connect socket s using the connect() call to
associate s with the server address.

Create datagram socket s with the socket()

call.

Bind socket s to a local address with the
bind() call.

Send and receive data on socket s, using the
sendto() and recvfrom() calls, until all data
is exchanged. Use the send() and recv()
calls if connect() was called.

—
(optional)

Connect socket s using the connect() call to
associate s with the client address.

Send and receive data on socket s, using the
sendto() and recvfrom() calls, until all data
is exchanged. Use the send() and recv()
calls if connect() was called.

Close socket s and end the session with the
soclose() call.

|

Figure 13. A Typical UDP Socket Session

Close socket s and end the session with the
soclose() call.

Sockets — Page 101 of 379

5.1.2.3 Network Utility Routines

The 46900S socket API also provides a set of network utility routines to perform useful tasks such as internet
address translation, domain name resolution, network byte order translation, and access to the database of useful
network information. This section describes a few network utility routines.

5.1.2.3.1 Host Names Information: The following is a list of host calls:

e gethostbyname()
e gethostbyaddr()
e sethostent()

e gethostent()

» endhostent()

The gethostbyname() call takes an internet host name and rethosteatstructure, which contains the name of
the host, aliases, host address family, and host addresshos$temtstructure is defined in the <NETDB.H> header
file. The gethostbyaddr() call maps the internet host address hdetentstructure.

The database for these calls is provided by the name server or the ADX_SDT1:ADXHSIHF.DAT file if a name
server is not present or is unable to resolve the host name. Because of the differences in the databases and their
access protocols, the information returned can differ.

The sethostent(), gethostent(), and endhostent() calls provide sequential access to the ADX_SDT1:ADXHSIHF.DAT
file.

5.1.2.3.2 Network Names Information: The following is a list of network calls:

e getnetbyname()
e getnetbyaddr()
e setnetent()

e getnetent()

e endnetent()

The getnetbyname() call takes a network name and returreteat structure, which contains the name of the
network, aliases, network address family, and network number. ndtemtstructure is defined in the <NETDB.H>
header file. The getnetbyaddr() call maps the network number inéteatstructure.

The database for these calls is provided by the ADX_SDT1:ADXHSINF.DAT file.

The setnetent(), getnetent(), and endnetent() calls provide sequential access to the ADX_SDT1:ADXHSINF.DAT
file.
5.1.2.3.3 Protocol Names Information: The following is a list of protocol calls:

e getprotobyname()
e setprotoent()
e getprotoent()
e endprotoent()

The getprotobyname() call takes the protocol name and retyraentstructure, which contains the name of the
protocol, aliases, and protocol number. Tnetoentstructure is defined in the <NETDB.H> header file.

The database for these calls is provided by the ADX_SDT1:ADXHSIPF.DAT file.

Page 102 of 379 — IBM TCP/IP for 4690 Application Interface Guide

The setprotoent(), getprotoent(), and endprotoent() calls provide sequential access to the
ADX_SDT1:ADXHSIPF.DAT file.

5.1.2.3.4 Service Names Information: The following is a list of service calls:

e getservbyname()
e getservbyport()
e setservent()

e getservent()

e endservent()

The getservbyname() call takes the service name and protocol, and resermsrdastructure that contains the name
of the service, aliases, port number, and protocol. SEmeentstructure is defined in the <NETDB.H> header file.
The getservbyport() call maps the port number and protocol in&ventstructure.

The database for these calls is provided by the ADX_SDT1:ADXHSIPS.DAT file.

The setservent(), getservent(), and endservent() calls provide sequential access to the ADX_SDT1:ADXHSIPS.DAT
file.

5.1.2.3.5 Network Byte Order Translation: Ports and addresses are usually specified to calls using the
network byte ordering convention. The following calls translate integers from host to network byte order and from
network to host byte order.

htonl() Translates host to network, long integer (32-bit)
htons() Translates host to network, short integer (16-bit)
ntohl() Translates network to host, long integer (32-bit)
ntohs() Translates network to host, short integer(16-bit)

5.1.2.3.6 Internet Address Manipulation: The following calls convert internet addresses and decimal notation

and manipulate the network number and local network address portions of an internet address.

inet_addr() Translates dotted decimal notation to a 32-bit internet address (network byte order)

inet_network() Translates dotted decimal notation to a network number (host byte order), and zeros in the
host part

inet_ntoa() Translates 32-bit internet address (network byte order) to dotted decimal notation

inet_netof() Extracts network number (host byte order) from 32-bit internet address (network byte order)

inet_Inaof() Extracts local network address (host byte order) from 32-bit internet address (network byte
order)

inet_makeaddr() Constructs internet address (network byte order) from network number and local network
address

5.1.2.3.7 Domain Name Resolution: Resolver calls are used to resolve the symbolic host name into an

internet address and to extract more information about the host from the database.

The resolver calls determine whether the name server is present by referencing the ADX_SDT1:ADXHSIRF.DAT
file. To resolve a name with no name server present, the resolver calls check the ADX_SDT1:ADXHSIHF.DAT
file. file for an entry that maps the name to an address. To resolve a name in a name server network, the resolver
calls query the domain name server database. If this query fails, the calls then check for an entry in the local
ADX_SDT1:ADXHSIHF.DAT file.

The following resolver calls are used to make, send, and interpret packets for name servers in the internet domain:

Sockets — Page 103 of 379

res_mkquery()
res_init()

5.2 C Socket Library

To use the socket routines described in this chapter, you must have the following header files available on your
system:

Socket Header File What It Contains

Internet name server definition

NERRNO.H Network error code definitions
NETDB.H Data definitions for network utility calls
NET\IF.H Definition for the Network Interface structure

NET\IF_ARP.H Definition for the ARP protocol
NET\ROUTE.H Definition for the routing table structure
NETINET\IN.H Definition for Internet constants and structures
RESOLV.H Resolver global definitions and variables
SYSMIOCTL.H Definition for input-output control

Definition for fd_setstructure and FDxxx macros

SYS\SOCKET.H Data definitions and the socket structure

SYS\TIME.H Definition of thetimeval structure
TYPES.H Data type definitions
UTILS.H Definitions for byte swapping routines

To use the socket routines described in this chapter, you must have the socket library, ADXHSISL.L86, on your
system.

5.3 Porting a Socket API Application

The IBM 46900S socket implementation differs from the Berkeley socket implementation as follows:

Sockets are not 46900S files or devices. Socket numbers have no relationship to 46900S file handles.
Therefore, read(), write(), and close() do not work for sockets. Using read(), write(), or close() gives incorrect
results. Use the send(), and soclose() functions instead.

Some socket calls require that you call the sock init() routine before you call them. Therefore, always call
sock_init() at the beginning of programs using the socket interface.

Error codes are accessed by ttyerrnovariable. you can definerrno to tcperrno using
#define errno tcperrno.

Include <NERRNO.H> for TCP/IP errno values.

The select() call has a different interface. Unlike the Berkeley select() call, you cannot use the 46900S select()
call to wait for activity on devices other than sockets.

ioctl() implementation might differ from the current Berkeley ioctl() implementation. For example, IBM has
added alendata parameter, which the current Berkeley ioctl() implementation does not support. Other
functions of the IBM ioctl() call might also differ from the current Berkeley ioctl() implementation. In
addition, the getsockopt() and setsockopt() might provide different support. See 5.4.35, “ioctl()” on page 158,
5.4.26, “getsockopt()” on page 145, and 5.4.55, “setsockopt()” on page 190 for more information.

You must define the variable OS2 by doing one of the following:

Page 104 of 379 — IBM TCP/IP for 4690 Application Interface Guide

* Place#define 0S2 at the top of each file that includes TCP/IP header files.
Note this is really 'OS2', not '4690'.

Sockets — Page 105 of 379

5.4 C Socket Calls

This section provides the syntax, parameters, and other appropriate information for each C socket call supported by
TCP/IP for 46900S.

Page 106 of 379 — IBM TCP/IP for 4690 Application Interface Guide

accept()

5.4.1 accept()

The accept() call accepts a TCP connection request from a remote host.

5411

Syntax

int s;

#include <types.h>
#include <sys\socket.h>

int accept(s, name, namelen)

struct sockaddr *name;
int *namelen;

5.4.1.2

S

name

namelen

5.4.1.3

Parameters

The socket descriptor

The socket address of the connecting client that is filled by accept() before it returns. The format of
nameis determined by the domain in which the client resides. This parameter can be NULL if the caller
is not interested in the client address.

Initially points to an integer that contains the size in bytes of the storage pointechamnby On return,
that integer contains the size of the data returned in the storage pointedaméylf nameis NULL,
thennamelenis ignored and can be NULL.

Return Values

A non-negative socket descriptor indicates success; the valiricates an error. Get the specific error code by
accessing therrno variable.

Possible

Error Code Description

ENOTSOCK Thes parameter is not a valid socket descriptor.

EFAULT Using nameandnamelenwould result in an attempt to copy the address into a portion of
the caller’'s address space into which information cannot be written.

EINVAL listen() was not called for sockst

ENOBUFS Not enough buffer space is available to create the new socket.

EOPNOTSUPP The parameter is not of type SOCK_STREAM.

EWOULDBLOCK Thes parameter is in nonblocking mode and no connections are on the queue.

ECONNABORTED The software caused a connection abend.

Sockets — Page 107 of 379

accept()

5.4.1.4 Description

A server uses the accept() call to accept a connection request from a client. The call accepts the first connection on
its queue of pending connections. The accept() call creates a new socket descriptor with the same pragperties as
and returns it to the caller. If the queue has no pending connection requests, accept() blocks the calies imless
nonblocking mode. If no connection requests are queued anih nonblocking mode, accept() returrk and sets

the error code to EWOULDBLOCK. The new socket descriptor cannot be used to accept new connections. The
original sockets, remains available to accept more connection requests.

The s parameter is a stream socket descriptor created with the socket() call. It is usually bound to an address with
the bind() call and is made capable of accepting connections with the listen() call. The listen() call marks the

socket as one that accepts connections and allocates a queue to hold pending connection requests. The listen() call
allows the caller to place an upper boundary on the size of the queue.

The nameparameter is a pointer to a buffer into which the connection requester’'s address is placedmdhe
parameter is optional and can be set to be the NULL pointer. If set to NULL, the requester’'s address is not copied
into the buffer. The exact format ohmedepends on the addressing domain from which the communication

request originated. For example, if the connection request originated in the AF_INET dusmnaépoints to a
sockaddr_instructure as defined in the header &METINET\IN.H>. The namelenparameter is used only ifame

is not NULL. Before calling accept(), you must set the integer pointed tmimelento the size, in bytes, of the

buffer pointed to byname On successful return, the integer pointed tanagnelencontains the actual number of

bytes copied into the buffer. If the buffer is not large enough to hold the addresspampetenbytes of the

requester’'s address are copied.

You use this call only with SOCK_STREAM sockets. You cannot screen clients without calling accept(). The
application cannot tell the system from which requesters it will accept connections, but the caller can choose to
close a connection immediately after discovering the requester’s identity.

Use the select() call and set the bit in the read descriptor array to check the socket for incoming connection
requests.

Page 108 of 379 — IBM TCP/IP for 4690 Application Interface Guide

accept()

5.4.1.5 Examples
Two examples of the accept() call follow. In the first, the caller wants the client's address to be returned; in the
second, the caller does not.

int clientsocket;

int s;

struct sockaddr clientaddress;

int addrlen;

int accept(int s, struct sockaddr *addr, int *addrlen);
/* socket(), bind(), and listen() have been called =/

/* EXAMPLE 1: I want the address now */
addrlen = sizeof(clientaddress);
clientsocket = accept(s, &clientaddress, &addrlen);

/* EXAMPLE 2: I can get the address later using getpeername() =*/
addrlen = 0;
clientsocket = accept(s, (struct sockaddr *) 0, (int *) 0);

5.4.1.6 Related Calls

bind()
connect()
getpeername()
listen()
socket()

Sockets — Page 109 of 379

bind()

5.4.2 bind()

The bind() call binds a local name to the socket.

5.4.2.1 Syntax

int s;

int namelen;

#include <types.h>
#include <sys\socket.h>

int bind(s, name, namelen)

struct sockaddr *name;

5.4.2.2 Parameters

S

Socket descriptor of any type that was returned by a previous socket() call

name

Pointer to asockaddrstructure (buffer) containing the name that is to be boursd to

namelen

Size of the buffer pointed to hyamein bytes

5.4.2.3 Return Values

The value 0O indicates success; the valliandicates an error.

Possible
Error Code

EADDRINUSE

EADDRNOTAVAIL

EAFNOSUPPORT
ENOTSOCK
EFAULT

EINVAL

ENOBUFS

Description

The address is already in use. See the SO_REUSEADDR option described under 5.4.26,
“getsockopt()” on page 145 and the SO_REUSEADDR option described under 5.4.55,
“setsockopt()” on page 190.

The address specified is not valid on this host. For example, the internet address does
not specify a valid network interface.

The address family is not supported.
Thes parameter is not a valid socket descriptor.

Using nameandnamelenwould result in an attempt to copy the address into a
nonwriteable portion of the caller’'s address space.

The socket is already bound to an address. For example, you cannot bind a name to a
socket that is in the connected state. This value is also returnathélenis not the
expected length.

No buffer space is available.

Page 110 of 379 — IBM TCP/IP for 4690 Application Interface Guide

bind()

5.4.2.4 Description

The bind() call binds a unique local name to the socket with desceptéfter calling socket(), a descriptor does

not have a name associated with it. However, it does belong to a particular addressing family as specified when
socket() is called. The exact format of a name depends on the addressing family. The bind() procedure also allows
servers to specify from which network interfaces they wish to receive UDP packets and TCP connection requests.

Becauses was created in the AF_INET domain, the format of the name buffer is expecteddokiaeldr_inas
defined in the header fileNETINET\IN.H>:

struct in_addr

{
}s

u_long s_addr;

struct sockaddr_in

{
short sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

}s

The sin_familyfield must be set to AF_INET. Th&n_portfield is set to the port to which the application must

bind. It must be specified in network byte order.sili_portis set to 0, the caller leaves it to the system to assign
an available port. The application can call getsockname() to discover the port number assignsid. atldefield

is set to the internet address and must be specified in network byte order. On hosts with more than one network
interface (called multihomed hosts), a caller can select the interface with which it is to bind.

Subsequently, only UDP packets and TCP connection requests from this interface (which match the bound name)
are routed to the application. d$fn_addris set to the constant INADDR_ANY, as definediKETINET\IN.H>,

the caller is requesting that the socket be bound to all network interfaces on the host. Subsequently, UDP packets
and TCP connections from all interfaces (which match the bound name) are routed to the application. This
becomes important when a server offers a service to multiple networks. By leaving the address unspecified, the
server can accept all UDP packets and TCP connection requests made for its port, regardless of the network
interface on which the requests arrived. Bie zerofield is not used and must be set to all zeros.

5.4.2.5 Examples

Note the following about the bind() call examples:

e Put the internet address and port in network byte order. To put the port into network byte order, a utility
routine, htons(), is called to convert a short integer from host byte order to network byte order.

e Set theaddressfield using the inet_addr() utility routine, which takes a character string representing the dotted
decimal address of an interface and returns the binary internet address representation in network byte order.

e Zero the structure before using it to ensure that the name requested does not set any reserved fields.

See 5.4.4, “connect()” on page 114 for examples of how a client might connect to servers.

Sockets — Page 111 of 379

bind()

int rc;

int s;

struct sockaddr_in myname;

int bind(int s, struct sockaddr *name, int namelen);

/* Bind to a specific interface in the internet domain =*/

/* make sure the sin_zero field is cleared */

memset (&myname, 0, sizeof(myname));

myname.sin_family = AF_INET;

myname.sin_addr.s_addr = inet_addr("129.5.24.1"); /* specific interface */
myname.sin_port = htons(1024);

rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));

/* Bind to all network interfaces in the internet domain */
/* make sure the sin_zero field is cleared */

memset (&myname, 0, sizeof(myname));

myname.sin_family = AF_INET;

myname.sin_addr.s_addr = INADDR_ANY; /* all interfaces =*/
myname.sin_port = htons(1024);

rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));

/* Bind to a specific interface in the internet domain.
Let the system choose a port */
/* make sure the sin_zero field is cleared */
memset (&myname, 0, sizeof(myname));
myname.sin_family = AF_INET;
myname.sin_addr.s_addr = inet_addr("129.5.24.1"); /* specific interface */
myname.sin_port = 0;

rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));

The binding of a stream socket is not complete until a successful call to bind(), listen(), or connect() is made.
Applications using stream sockets should check the return values of bind(), listen(), and connect() before using any
function that requires a bound stream socket.

5.4.2.6 Related Calls

connect()
gethostbyname()
getsockname()
htons()
inet_addr()
listen()
port_cancel()
socket()

Page 112 of 379 — IBM TCP/IP for 4690 Application Interface Guide

5.4.3 bswap()

The bswap() call swaps bytes in a short integer.

5.4.3.1 Syntax

bswap()

#include <types.h>
#include <utils.h>

u_short bswap(a)
u_short a;

5.4.3.2 Parameter

a
Unsigned short integer whose bytes are to be swapped

5.4.3.3 Return Value

The bswap() call returns the translated short integer.
5.4.3.4 Description

The bswap() call swaps bytes in a short integer.

5.4.3.5 Related Calls

htonl()
htons()
Iswap()
ntohl()
ntohs()

Sockets — Page 113 of 379

connect()

5.4.4 connect()
The connect() call requests a connection to a remote host.

5.4.4.1 Syntax

#include <types.h>
#include <sys\socket.h>

int connect(s, name, namelen)
int s;

struct sockaddr *name;

int namelen;

5.4.4.2 Parameters

S
Socket descriptor

name
Pointer to asocket addresstructure that contains the address of the socket to which a connection will be
attempted

namelen

Size, in bytes, of theocket addrespointed to byname
5.4.4.3 Return Values

The value O indicates success; the valliandicates an error.

Possible
Error Code Description

EADDRNOTAVAIL The calling host cannot reach the specified destination.

EAFNOSUPPORT The address family is not supported.

EALREADY The sockets is marked nonblocking, and a previous connection attempt has not
completed.

ENOTSOCK Thes parameter is not a valid socket descriptor.

ECONNREFUSED The connection request was rejected by the destination host.

EFAULT Using nameandnamelenwould result in an attempt to copy the address into a portion of
the caller’'s address space to which data cannot be written.

EINPROGRESS The sockstis marked nonblocking, and the connection cannot be completed
immediately. The EINPROGRESS value does not indicate an error condition.

EISCONN The sockes is already connected.

ENETUNREACH The network cannot be reached from this host.

ETIMEDOUT The connection establishment timed out before a connection was made.

ENOBUFS No buffer space available.

EOPNOTSUPP The operation is not supported on the socket.

Page 114 of 379 — IBM TCP/IP for 4690 Application Interface Guide

connect()

5.4.4.4 Description

For stream sockets, the connect() call attempts to establish a connection between two sockets. For UDP sockets,
the connect() call specifies the peer for a socket.

The connect() call performs two tasks when called for a stream socket. First, it completes the binding necessary for
a stream socket (in case it has not been previously bound using the bind() call). Second, it attempts to make a
connection to another socket.

The connect() call on a stream socket is used by the client application to establish a connection to a server. The
server must have a passive open pending. If the server is using sockets, this means the server must successfully
call bind() and listen() before a connection can be accepted by the server with accept(). Otherwise, connect()
returns-1 and sets the error code to ECONNREFUSED.

If sis in blocking mode, the connect() call blocks the caller until the connection is set up, or until an error is
received. If the socket is in nonblocking mode, connect() retdtnsith the error code set to EINPROGRESS if
the connection can be initiated (no other errors occurred). The caller can test the completion of the connection
setup by calling select() and testing for the ability to write to the socket.

When called for a datagram or raw socket, connect() specifies the peer with which this socket is associated. This
lets the application use data transfer calls reserved for sockets that are in the connected state. In this case, readv(),
writev(), send(), sendto(), and recvfrom() are available. Stream sockets can call connect() only once, but datagram
sockets can call connect() multiple times to change their association. Datagram sockets can dissolve their
association by connecting to an incorrect address such as the null address (all fields zeroed).

The s parameter is the socket used to originate the connection requeshami@arameter is a pointer to a buffer
containing the name of the peer to which the application needs to connecharbknparameter is the size, in
bytes, of the buffer pointed to mame

If the server is in the AF_INET domain, the format of tleemebuffer is expected to b&ockaddr_in as defined in
the header file<NETINET\IN.H>.

struct in_addr

{
s

u_long s_addr;

struct sockaddr_in

{
short sin family;
u_short sin _port;
struct in_addr sin_addr;
char sin_zero[8];

}s

Set thesin_familyfield to AF_INET. Set thesin_portfield to the port to which the server is bound, and specify it
in network byte order. Do not use thim_zerofield; set it to all zeros.

Sockets — Page 115 of 379

connect()

5.4.4.5 Examples

Note the following about these connect() call examples:

e Put the internet address and port in network byte order. To put the port into network byte order, a utility
routine, htons(), is called to convert a short integer from host byte order to network byte order.

e Set the address field using the inet_addr() utility routine, which takes a character string representing the dotted
decimal address of an interface and returns the binary internet address representation in network byte order.

e To ensure that the name requested does not set any reserved fields, zero the structure before using it .

These examples could be used to connect to the servers shown in the examples listed with 5.4.2, “bind()” on
page 110.

int s;

struct sockaddr_in servername;

int rc;

int connect(int s, struct sockaddr *name, int namelen);

/* Connect to server bound to a specific interface in the internet domain =*/
/* make sure the sin_zero field is cleared */

memset (&servername, 0, sizeof(servername));

servername.sin_family = AF_INET;

servername.sin_addr.s_addr = inet_addr("129.5.24.1"); /* specific interface */
servername.sin_port = htons(1024);

rc = connect(s, (struct sockaddr *) &servername, sizeof(servername));

Page 116 of 379 — IBM TCP/IP for 4690 Application Interface Guide

5.4.4.6 Related Calls

accept()
bind()
htons()
inet_addr()
listen()
select()
socket()

connect()

Sockets — Page 117 of 379

dn_comp()

5.4.5 dn_comp()
The dn_comp() call compresses the expanded domain name.

5.4.5.1 Syntax

#include <types.h>
#include <netinet\in.h>
#include <arpa\nameser.h>
#include <resolv.h>

int dn_comp(exp_dn, comp dn, length, dnptrs, lastdnptr)
u_char *exp_dn;

u_char *comp_dn;

int length;

u_char =**dnptrs;

u_char =**lastdnptr;

5.4.5.2 Parameters

exp_dn
Pointer to the location of an expanded domain name
comp_dn
Pointer to an array containing the compressed domain name
length
Length in bytes of the array pointed to by tleenp_dnparameter
dnptrs
List of pointers to previously compressed names in the current message
lastdnptr

Pointer to the end of the array pointed todmptrs
5.4.5.3 Return Values

When successful, the dn_comp() call returns the size of the compressed domain name. If it fails, the call returns a
value of-1.

5.4.5.4 Description

The dn_comp() call compresses the domain name pointed to lexghdnparameter and stores it in the area
pointed to by theomp_dnparameter. It uses the globaks structure, which is defined in thdRESOLV.H>
header file.

5.455 Related Calls

dn_expand()
res_init()
res_mkquery()
res_send()

Page 118 of 379 — IBM TCP/IP for 4690 Application Interface Guide

dn_expand()

5.4.6 dn_expand()
The dn_expand() call expands a compressed domain name to a full domain name.

5.4.6.1 Syntax

#include <types.h>
#include <netinet\in.h>
#include <arpa\nameser.h>
#include <resolv.h>

int dn_expand(msg, eomorig, comp_dn, exp_dn, length)
u_char *msg;

u_char xeomorig;

u_char *comp_dn;

u_char *exp_dn;

int length;

5.4.6.2 Parameters

msg
Pointer to the beginning of a message
eomorig
Pointer to the end of the original message that contains the compressed domain name
comp_dn
Pointer to the compressed domain name
exp_dn
Pointer to a buffer that holds the resulting expanded domain name
length

Length in bytes of the buffer pointed to by #ag_dnparameter
5.4.6.3 Return Values

If it succeeds, the dn_expand() call returns the size of the expanded domain name. If it fails, the call returns a
value of-1.

5.4.6.4 Description

The dn_expand() call expands a compressed domain name to a full domain name, converting the expanded name to
all uppercase letters. It uses the globads structure, which is defined in the <RESOLV.H> header file.

5.4.6.5 Related Calls

dn_comp()
res_init()
res_mkquery()
res_send()

Sockets — Page 119 of 379

endhostent()

5.4.7 endhostent()

The endhostent() call closes the HOSTS file.

5.4.7.1 Syntax

void endhostent()

5.4.7.2 Description

The endhostent() call closes the ADX_SDT1:ADXHSIHF.DAT file, which contains information about known hosts.
5.4.7.3 Related Calls

gethostbyaddr()

gethostbyname()

gethostent()
sethostent()

Page 120 of 379 — IBM TCP/IP for 4690 Application Interface Guide

endnetent()

5.4.8 endnetent()
The endnetent() call closes the NETWORKS file.

5.4.8.1 Syntax

void endnetent()

5.4.8.2 Description

The endnetent() call closes the ADX_SDT1:ADXHSINF.DAT file, which contains information about known
networks.

5.4.8.3 Related Calls

getnetbyaddr()
getnetbyname()
getnetent()
setnetent()

Sockets — Page 121 of 379

endprotoent()

5.4.9 endprotoent()
The endprotoent() call closes the PROTOCOL file.

5.4.9.1 Syntax

void endprotoent()

5.4.9.2 Description

The endprotoent() call closes the ADX_SDT1:ADXHSIPF.DAT file, which contains information about known
protocols.

5.4.9.3 Related Calls
getprotobyname()

getprotoent()
setprotoent()

Page 122 of 379 — IBM TCP/IP for 4690 Application Interface Guide

5.4.10 endservent()

The endservent() call closes the SERVICES file.

5.4.10.1 Syntax

endservent()

void endservent()

5.4.10.2 Description

The endservent() call closes the ADX_SDT1:ADXHSISF.DAT file, which contains information about known

services.
5.4.10.3 Related Calls

getservbyname()
getservbyport()
getservent()
setservent()

Sockets — Page 123 of 379

gethostbyaddr()

5.4.11 gethostbyaddr()

The gethostbyaddr() call returns information about a host specified by an internet address.

5.4.11.1 Syntax

#include <netdb.h>

struct hostent *gethostbyaddr(eddr, addrien, domain)
char *addr;
int addrlen;
int domain;

5.4.11.2 Parameters

addr

Pointer to a 32-bit internet address in network byte order
addrlen

Size ofaddr in bytes
domain

Address domain supported (AF_INET)
5.4.11.3 Return Values

This call returns a pointer tohstentstructure for the host address specified on the call. <Nt€TDB.H> header
file defines thehostentstructure and contains the following elements:

Element Description

h_name Official name of the host

h_aliases Zero-terminated array of alternative names for the host
h_addrtype Type of address being returned, always set to AF_INET
h_length Length of the address in bytes

h_addr Pointer to the network address of the host

The return value points to static data that later calls overwrite. A pointehdstantstructure indicates success. A
NULL pointer indicates an error or EOF. The valueho&rrnoindicates the specific error.

h_errno Value Code Description

HOST_NOT_FOUND 1 The host specified by thadr parameter is not found.

TRY_AGAIN 2 The local server does not receive a response from an
authorized server. Try again later.

NO_RECOVERY 3 This error code indicates an unrecoverable error.

NO_DATA 4 The requestedddr is valid but does not have an

internet address at the name server.

NO_ADDRESS 4 The requestedldr is valid but does not have an
internet address at the name server.

Page 124 of 379 — IBM TCP/IP for 4690 Application Interface Guide

gethostbyaddr()

5.4.11.4 Description

The gethostbyaddr() call tries to resolve the host internet address through a name server, if one is present. If a
name server is not present or cannot resolve the host name, gethostbyaddr() sequentially searches the
ADX_SDT1:ADXHSIHF.DAT file until a matching host address is found or an EOF marker is reached.

5.4.11.5 Related Calls
endhostent()
gethostbyname()

gethostent()
sethostent()

Sockets — Page 125 of 379

gethostbyname()

5.4.12 gethostbyname()

The gethostbyname() call returns information about a host specified by a host name.

5.4.12.1 Syntax

#include <netdb.h>

struct hostent *gethostbyname (name)
char *name;

5.4.12.2 Parameter

name
Name of the host being queried

5.4.12.3 Return Values

This call returns a pointer toleostentstructure for the host name specified on the call. IWETDB.H> header
file defines thehostentstructure, which contains the following elements:

Element Description

h_name Official name of the host

h_aliases Zero-terminated array of alternative names for the host
h_addrtype Type of address being returned, always set to AF_INET
h_length Length of the address in bytes

h_addr Pointer to the network address of the host

The return value points to static data that later calls overwrite. A pointehastantstructure indicates success. A
NULL pointer indicates an error or EOF. The valuehogrrnoindicates the specific error.

h_errno Value Code Description

HOST_NOT_FOUND 1 The host specified by the@meparameter is not found.

TRY_AGAIN 2 The local server does not receive a response from an
authorized server. Try again later.

NO_RECOVERY 3 This error code indicates an unrecoverable error.

NO_DATA 4 The requestedameis valid but does not have an

internet address at the name server.

NO_ADDRESS 4 The requestedmeis valid but does not have an
internet address at the name server.

5.4.12.4 Description

The gethostbyname() call tries to resolve the host name through a name server, if one is present. If a name server
is not present or cannot resolve the host name, gethostbyname() sequentially searches the
ADX_SDT1:ADXHSIHF.DAT file until it finds a matching host name or reaches an EOF marker.

Page 126 of 379 — IBM TCP/IP for 4690 Application Interface Guide

gethostbyname()

5.4.12.5 Related Calls

endhostent()
gethostbyaddr()
gethostent()
sethostent()

Sockets — Page 127 of 379

gethostent()

5.4.13 gethostent()

The gethostent() call returns a pointer to the next entry in the HOSTS file.

5.4.13.1 Syntax

#include <netdb.h>

struct hostent *gethostent()

5.4.13.2 Return Values

The return value points to static data that later calls overwrite. A pointehdstantstructure indicates success. A
NULL pointer indicates an error or EOF. TRBIETDB.H> header file defines thieostentstructure, which
contains the following elements:

Element Description

h_name Official name of the host

h_aliases Zero-terminated array of alternative names for the host
h_addrtype Type of address being returned, always set to AF_INET
h_length Length of the address in bytes

h_addr Pointer to the network address of the host

5.4.13.3 Description

The gethostent() call reads the next line of the ADX_SDT1:ADXHSIHF.DAT file and returns a pointer to the next
entry in the HOSTS file.

5.4.13.4 Related Calls
endhostent()
gethostbyaddr()

gethostbyname()
sethostent()

Page 128 of 379 — IBM TCP/IP for 4690 Application Interface Guide

gethostid()

5.4.14 gethostid()

The gethostid() call returns the unique 32-bit identifier of the current host.

5.4.14.1 Syntax

#include <types.h>

u_long gethostid()

5.4.14.2 Return Values

The gethostid() call returns the 32-bit identifier, in host byte order of the current host, which should be unique
across all hosts.

5.4.14.3 Description

The gethostid() call gets the unique 32-bit identifier for the current host.

Sockets — Page 129 of 379

getnetbyaddr()

5.4.15 getnetbyaddr()

The getnetbyaddr() call returns the NETWORKS file entry that contains the specified address.

5.4.15.1 Syntax

#include <netdb.h>

struct netent *getnetbyaddr(net, type)
u_long net;
int type;

5.4.15.2 Parameters

net
Network address

type
Address domain supported (AF_INET)

5.4.15.3 Return Values

The return value points to static data that later calls overwrite. A pointengteatstructure indicates success.

NULL pointer indicates an error or EOF.

The netentstructure is defined in theNETDB.H> header file and contains the following elements:
Element Description

n_name Official name of the network

n_aliases Array, terminated with a NULL pointer, of alternative nhames for the network
n_addrtype Type of network address being returned, always set to AF_INET

n_net Network number, returned in host byte order
5.4.15.4 Description

The getnetbyaddr() call searches the ADX_SDT1:ADXHSINF.DAT file for the specified network address.

Page 130 of 379 — IBM TCP/IP for 4690 Application Interface Guide

A

getnetbyaddr()

5.4.15.5 Related Calls

endnetent()
getnetbyname()
getnetent()
setnetent()

Sockets — Page 131 of 379

getnetbyname()

5.4.16 getnetbyname()
The getnetbyname() call returns the NETWORKS file entry that contains the specified name.

5.4.16.1 Syntax

#include <netdb.h>

struct netent *getnetbyname (name)
char *name;

5.4.16.2 Parameter

name
Pointer to a network name

5.4.16.3 Return Values

The getnetbyname() call returns a pointer teetentstructure for the network name specified on the call. The
netentstructure is defined in theNETDB.H> header file; it contains the following elements:

Element Description

n_name Official name of the network

n_aliases Array, terminated with a NULL pointer, of alternative names for the network

n_addrtype Type of network address being returned, always set to AF_INET

n_net Network number, returned in host byte order

The return value points to static data that later calls overwrite. A pointendtentstructure indicates success; a
NULL pointer indicates an error or EOF.

5.4.16.4 Description

The getnetbyname() call searches the ADX_SDT1:ADXHSINF.DAT file for the specified network name.
5.4.16.5 Related Calls

endnetent()

getnetbyaddr()

getnetent()
setnetent()

Page 132 of 379 — IBM TCP/IP for 4690 Application Interface Guide

getnetent()

5.4.17 getnetent()
The getnetent() call returns the next entry in the NETWORKS file.

5.4.17.1 Syntax

#include <netdb.h>

struct netent *getnetent()

5.4.17.2 Return Values

The getnetent() call returns a pointer to the next entry in the ADX_SDT1:ADXHSINF.DAT file. The return value
points to static data that later calls overwrite.

A pointer to anetentstructure indicates success. A NULL pointer indicates an error or EOF.

The netentstructure is defined in theNETDB.H> header file, and it contains the following elements:
Element Description

n_name Official name of the network

n_aliases Array, terminated with a NULL pointer, of alternative names for the network
n_addrtype Type of network address being returned, always set to AF_INET

n_net Network number, returned in host byte order

5.4.17.3 Description

The getnetent() call returns the next entry of the ADX_SDT1:ADXHSINF.DAT file.
5.4.17.4 Related Calls

endnetent()

getnetbyaddr()

getnetbyname()
setnetent()

Sockets — Page 133 of 379

getpeername()

5.4.18 getpeername()
The getpeername() call returns the name of the peer connected tossocket

5.4.18.1 Syntax

#include <types.h>
#include <sys\socket.h>

int getpeername(s, name, namelen)
int s;

struct sockaddr *name;

int *namelen;

5.4.18.2 Parameters

S
Socket descriptor.

name
Internet address of the connected socket that is filled by getpeername() before it returns. The exact
format of nameis determined by the domain in which communication occurs.

namelen

Size of the address structure pointed tnbgnelen in bytes.
5.4.18.3 Return Values

The value O indicates success; the valliandicates an error.

Possible

Error Code Description

ENOTSOCK Thes parameter is not a valid socket descriptor.

EFAULT Using thenameandnamelenparameters as specified would result in an attempt to access
storage outside of the caller’'s address space.

ENOTCONN The socket is not in the connected state.

ENOBUFS No buffer space is available.

5.4.18.4 Description

The getpeername() call returns the name of the peer connected tossonkeielenmust be initialized to indicate
the size of the space pointed tofmeand is set to the number of bytes copied into the space before the call
returns. If the buffer of the local host is too small, the peer name is truncated.

5.4.18.5 Related Calls

accept()
connect()
getsockname()
socket()

Page 134 of 379 — IBM TCP/IP for 4690 Application Interface Guide

getprotobyname()

5.4.19 getprotobyname()
The getprotobyname() call returns a protocol entry specified by a hame in the PROTOCOL file.

5.4.19.1 Syntax

#include <netdb.h>

struct protoent *getprotobyname (name)
char *name;

5.4.19.2 Parameter

name
Pointer to the specified protocol

5.4.19.3 Return Values

The getprotobyname() call returns a pointer fwr@oentstructure for the network protocol specified on the call.
The protoentstructure is defined in theNETDB.H> header file and contains the following elements:

Element Description
p_name Official name of the protocol
p_aliases Array, terminated with a NULL pointer, of alternative names for the protocol

p_proto Protocol number

The return value points to static data that later calls overwrite. A pointeprim@entstructure indicates success.
A NULL pointer indicates an error or EOF.

5.4.19.4 Description

The getprotobyname() call searches the ADX_SDT1:ADXHSIPF.DAT file for the specified protocol name.
5.4.19.5 Related Calls

endprotoent()

getprotoent()
setprotoent()

Sockets — Page 135 of 379

getprotobynumber()

5.4.20 getprotobynumber()
The getprotobynumber() call returns a protocol entry specified by a number in the PROTOCOL file.

5.4.20.1 Syntax

#include <netdb.h>

struct protoent * getprotobynumber(proto)
int proto;

5.4.20.2 Parameter

proto
Protocol number

5.4.20.3 Return Values

The getprotobynumber() call returns a pointer fr@oentstructure for the network protocol specified on the call.
The protoentstructure is defined in theNETDB.H> header file and contains the following elements:

Element Description

p_name Official name of the protocol

p_aliases Array, terminated with a NULL pointer, of alternative names for the protocol

p_proto Protocol number

The return value points to static data that later calls overwrite. A pointeprimt@entstructure indicates success.
A NULL pointer indicates an error or EOF.

5.4.20.4 Description

The getprotobynumber() call searches the ADX_SDT1:ADXHSIPF.DAT file for the specified protocol number.
5.4.20.5 Related Calls

endprotoent()

getprotobyname()

getprotoent()
setprotoent()

Page 136 of 379 — IBM TCP/IP for 4690 Application Interface Guide

getprotoent()

5.4.21 getprotoent()

The getprotoent() call returns the next entry in the PROTOCOL file.

5.4.21.1 Syntax

#include <netdb.h>

struct protoent xgetprotoent()

5.4.21.2 Return Values
The getprotoent() call returns a pointer to the next entry in the file, ADX_SDT1:ADXHSIPF.DAT.

The protoentstructure is defined in theNETDB.H> header file and contains the following elements:
Element Description

p_name Official name of the protocol

p_aliases Array, terminated with a NULL pointer, of alternative names for the protocol

p_proto Protocol number

The return value points to static data that later calls overwrite. A pointeprict@ntstructure indicates success.
A NULL pointer indicates an error or EOF.

5.4.21.3 Description

The getprotoent() call searches for the next line in the ADX_SDT1:ADXHSIPF.DAT file.
5.4.21.4 Related Calls

endprotoent()

getprotobyname()
setprotoent()

Sockets — Page 137 of 379

getservbyname()

5.4.22 getservbyname()
The getservbyname() call returns a service entry specified by a name in the SERVICES file.

5.4.22.1 Syntax

#include <netdb.h>

struct servent *getservbyname(name, proto)
char *name;
char *proto;

5.4.22.2 Parameters

name
Pointer to the service name

proto
Pointer to the specified protocol

5.4.22.3 Return Values

The call returns a pointer tosgrventstructure for the network service specified on the call. Sérgentstructure
is defined in the<NETDB.H> header file and contains the following elements:

Element Description

S_hame Official name of the service

s_aliases Array, terminated with a NULL pointer, of alternative names for the service

s_port Port number of the service

S_proto Required protocol to contact the service

The return value points to static data that later calls overwrite. A pointesa@ovantstructure indicates success. A
NULL pointer indicates an error or EOF.

5.4.22.4 Description

The getservbyname() call searches the ADX_SDT1:ADXHSISF.DAT file for the specified service name, which
must match the protocol if a protocol is stated.

Page 138 of 379 — IBM TCP/IP for 4690 Application Interface Guide

getservbyname()

5.4.22.5 Related Calls

endservent()
getservbyport()
getservent()
setservent()

Sockets — Page 139 of 379

getservbyport()

5.4.23 getservbyport()
The getservbyport() call returns a service entry specified by a port number in the SERVICES file.

5.4.23.1 Syntax

#include <netdb.h>

struct servent *getservbyport(port, proto)
int port;
char *proto;

5.4.23.2 Parameters

port
Specified port

proto
Pointer to the specified protocol

5.4.23.3 Return Values

The getservbyport() call returns a pointer teeaventstructure for the port number specified on the call. The
serventstructure is defined in theNETDB.H> header file and contains the following elements:

Element Description

S_hame Official name of the service

s_aliases Array, terminated with a NULL pointer, of alternative names for the service

s_port Port number of the service

S_proto Required protocol to contact the service

The return value points to static data that later calls overwrite. A pointesa@ovantstructure indicates success. A
NULL pointer indicates an error or EOF.

5.4.23.4 Description

The getservbyport() call sequentially searches the ADX_SDT1:ADXHSISF.DAT file for the specified port number,
which must match the protocol if a protocol is stated.

Page 140 of 379 — IBM TCP/IP for 4690 Application Interface Guide

getservbyport()

5.4.23.5 Related Calls

endservent()
getservbyname()
getservent()
setservent()

Sockets — Page 141 of 379

getservent()

5.4.24 getservent()
The getservent() call returns the next entry in the SERVICES file.

5.4.24.1 Syntax

#include <netdb.h>

struct servent *getservent()

5.4.24.2 Return Values

The getservent() call returns a pointer to the next entry in the ADX_SDT1:ADXHSISF.DAT file seFhent
structure is defined in theNETDB.H> header file and contains the following elements:

Element Description

S_hame Official name of the service

s_aliases Array, terminated with a NULL pointer, of alternative names for the service

s_port Port number of the service

S_proto Required protocol to contact the service

The return value points to static data that later calls overwrite. A pointesdovantstructure indicates success. A
NULL pointer indicates an error or EOF.

5.4.24.3 Description

The getservent() call searches for the next line in the ADX_SDT1:ADXHSISF.DAT file.
5.4.24.4 Related Calls

endservent()

getservbyname()

getservbyport()
setservent()

Page 142 of 379 — IBM TCP/IP for 4690 Application Interface Guide

getsockname()

5.4.25 getsockname()
The getsockname() call gets the local socket name.

5.4.25.1 Syntax

#include <types.h>
#include <sys\socket.h>

int getsockname(s, name, namelen)
int s;

struct sockaddr *name;

int *namelen;

5.4.25.2 Parameters

s

Socket descriptor.
name

Address of the buffer into which getsockname() copies the narae of
namelen

Must initially point to an integer that contains the size in bytes of the storage pointesch@amby Upon
return, that integer contains the size of the data returned in the storage pointethtoeby

5.4.25.3 Return Values

The value 0 indicates success; the vallieandicates an error. You can get the specific error code by calling
sock_errno().

Possible

Error Code Description

ENOTSOCK Thes parameter is not a valid socket descriptor.

EFAULT Using thenameandnamelenparameters as specified would result in an attempt to access
storage outside the caller's address space.

ENOBUFS No buffer space is available.

5.4.25.4 Description

The getsockname() call stores the current name for the socket specifiedshyatlameter into the structure pointed

to by thenameparameter. It returns the address to the socket that has been bound. If the socket is not bound to an
address, the call returns with the family set, and the rest of the structure is set to 0. For example, an inbound
socket in the internet domain would cause the name to poinsackaddr_instructure with thesin_familyfield set

to AF_INET and all other fields zeroed.

Stream sockets are not assigned a name until after a successful call to either bind(), connect(), or accept().
The getsockname() call is often used to discover the port assigned to a socket after the socket has been implicitly
bound to a port. For example, an application can call connect() without previously calling bind(). In this case, the

connect() call completes the binding necessary by assigning a port to the socket. This assignment can be
discovered with a call to getsockname().

Sockets — Page 143 of 379

getsockname()

5.4.25.5 Related Calls

accept()

bind()
connect()
getpeername()
sock_errno()
socket()

Page 144 of 379 — IBM TCP/IP for 4690 Application Interface Guide

getsockopt()

5.4.26 getsockopt()
The getsockopt() call gets socket options associated with a socket.

5.4.26.1 Syntax

#include <types.h>
#include <sys\socket.h>

int getsockopt(s, level, optname, optval, optlen)
int s;

int level;

int optname;

char *optval;

int xoptlen;

5.4.26.2 Parameters

(S
Socket descriptor.
level
Level for which the option is set. Only SOL_SOCKET is supported.
optname
Name of a specified socket option.
optval
Pointer to option data.
optlen

Pointer to the length of the option data.
5.4.26.3 Return Values

The value 0 indicates success; the valliendicates an error. You can get the specific error code by calling
sock_errno().

Possible

Error Code Description

EADDRINUSE The address is already in use.

ENOTSOCK Thes parameter is not a valid socket descriptor.

EFAULT Using optval andoptlen parameters would result in an attempt to access memory outside
the caller's address space.

ENOPROTOOPT Theptnameparameter is not recognized, or teeel parameter is not SOL_SOCKET.

5.4.26.4 Description

The getsockopt() call gets options associated with a socket. It can be called only for sockets in the AF_INET
domain. Options can exist at multiple protocol levels; they are always present at the highest socket level.

When manipulating socket options, you must specify the name of the option and the level at which the option
resides. To manipulate options at the socket levelleted parameter must be set to SOL_SOCKET, as defined in

Sockets — Page 145 of 379

getsockopt()

<SYS\SOCKET.H. To manipulate options at any other level, such as the TCP or IP level, supply the appropriate
protocol number for the protocol controlling the option. Currently, only the SOL_SOCKET level is supported. The
getprotobyname() call can be used to return the protocol number for a named protocol.

The optval andoptlen parameters return data used by the particular get commandopila parameter points to a
buffer that is to receive the data requested by the get commandopiiée parameter points to the size of the
buffer pointed to by theptval parameter. It must be initially set to the size of the buffer before calling
getsockopt(). On return it is set to the actual size of the data returned.

All of the socket-level options except SO_LINGER, SO_SNDBUF, and SO_RCVBUF, exutgat to point to an
integer andptlento be set to the size of an integer. When the integer is nonzero, the option is enabled. When it
is 0, the option is disabled. The SO_LINGER option expeptsal to point to dinger structure, as defined in
<SYS\SOCKET.H. The SO_SNDBUF and SO_RCVBUF options expaaitval to point to a long integer. This
structure is defined in the following example:

struct Tinger

{
int 1 _onoff; /% option on/off */
int I linger; /* Tinger time * /

}s

Thel_onofffield is set to 0 if the SO_LINGER option is being disabled. A nonzero value enables the option. The
|_linger field specifies the amount of time to linger on close.

The following options are recognized at the socket level:
Option Description

SO_BROADCAST Toggles the ability to broadcast messages. Enabling this option lets the application send
broadcast messages oweiif the interface specified in the destination supports
broadcasting of packets. This option has no meaning for stream sockets.

SO_DEBUG Toggles recording of debugging information.

SO_DONTROUTE Toggles the routing bypass for outgoing messages. Enabling this option causes outgoing
messages to bypass the standard routing algorithm and be directed to the appropriate
network interface, according to the network portion of the destination address. When
enabled, packets can be sent only to directly connected networks (networks for which
this host has an interface). This option has no meaning for stream sockets.

SO_ERROR Returns any pending error on the socket and clears the error status. You can use it to
check for asynchronous errors on connected datagram sockets or for other asynchronous
errors (errors that are not returned explicitly by one of the socket calls).

SO_KEEPALIVE Toggles keep connection alive. TCP uses a timer called the keepalive timer. This timer
is used to monitor idle connections that might have been disconnected because of a peer
time-out or abnormal termination. If this option is toggled, a keepalive packet is sent to
the peer every 120 minutes. This is used mainly to enable servers to close connections
that have already disappeared as a result of clients going away without closing
connections. This option has meaning only for stream sockets.

SO_LINGER Lingers on close if data is present. Enabling this option when unsent data is present and
when soclose() is called causes the calling application to be blocked during that call until
the data is transmitted or the connection times out. If this option is disabled, INET waits
to try to send the data. The data transfer is usually successful, but cannot be guaranteed,
because INET waits only a finite amount of time trying to send the data. The soclose()
call returns without blocking the caller. This option has meaning only for stream
sockets.

Page 146 of 379 — IBM TCP/IP for 4690 Application Interface Guide

getsockopt()

SO_OOBINLINE Toggles reception of out-of-band data. Enabling this option causes out-of-band data to
be placed in the normal data input queue as it is received, making it available to both
recv() and recvfrom() without having to specify the MSG_OOB flag in those calls.
Disabling this option causes out-of-band data to be placed in the priority data input queue
as it is received, making it available to both recv() and recvfrom() only by specifying the
MSG_OOB flag in those calls. This option has meaning only for stream sockets.

SO_RCVBUF Sets the size of the receive buffer to the value contained in the buffer pointed to by
optval This lets you change the size to meet specific application needs, such as
increasing its size for high-volume connections and input.

SO_RCVLOWAT Retrieves receive low-water mark information.
SO_RCVTIMEO Retrieves receive time-out information.
SO_REUSEADDR Toggles local address reuse. Enabling this option enables local addresses that are already

in use to be bound. This alters the normal algorithm used in the bind() call. At connect
time, the system checks that no local address and port have the same foreign address and
port, and returns the error code EADDRINUSE if the association already exists.

SO_SNDBUF Sets the size of the send buffer to the value contained in the buffer pointezpteaby
This lets you change the size to meet specific application needs. For example, you could
increase the size for high-volume connections and output.

SO_SNDLOWAT Retrieves send low-water mark information.
SO_SNDTIMEO Retrieves send time-out information.
SO_TYPE Returns the type of the socket. On return, the integer pointedofmvayis set to one

of the following: SOCK_STREAM, SOCK_DGRAM, or SOCK_RAW.
SO_USELOOPBACK Bypasses hardware when possible.

5.4.26.5 Example

Examples of the getsockopt() call follow. See 5.4.55, “setsockopt()” on page 190 for examples of how the
setsockopt() call options are set.

int rc;

int s;

int optval;

int optlen;

struct linger 1;

int getsockopt(int s, int level, int optname, char *optval, int xoptlen);

/* Is out of band data in the normal input queue? */
optlen = sizeof(int);
rc = getsockopt(
s, SOL_SOCKET, SO _OOBINLINE, (char =*) &optval, &optlen);
if (rc == 0)
{
if (optlen == sizeof(int))
{
if (optval)
/* yes it is in the normal queue */
else
/* no it is not */

Sockets — Page 147 of 379

getsockopt()

/* Do I Tinger on close? x/
optlen = sizeof(1);
rc = getsockopt(
s, SOL_SOCKET, SO _LINGER, (char *) &1, &optlen);
if (rc == 0)
{
if (optlen == sizeof(1))
{
if (1.1_onoff)
/* yes I linger x/
else
/* no I do not =/

}
5.4.26.6 Related Calls

getprotobyname()
setsockopt()
sock_errno()
socket()

Page 148 of 379 — IBM TCP/IP for 4690 Application Interface Guide

htonl()

5.4.27 htonl()

The htonl() call translates a long integer from host byte order to network byte order.

5.4.27.1 Syntax

#include <types.h>
#include <utils.h>

u_long htonl(a)
u_long a;

5.4.27.2 Parameter

a
Unsigned long integer to be put into network byte order

5.4.27.3 Return Value

The htonl() call returns the translated long integer.

5.4.27.4 Description

The htonl() call translates a long integer from host byte order to network byte order.
5.4.27.5 Related Calls

bswap()

htons()

Iswap()

ntohl()
ntohs()

Sockets — Page 149 of 379

htons()

5.4.28 htons()

The htons() call translates a short integer from host byte order to network byte order.

5.4.28.1 Syntax

#include <types.h>
#include <utils.h>

u_short htons(a)
u_short a;

5.4.28.2 Parameter

a
Unsigned short integer to be put into network byte order

5.4.28.3 Return Value

The htons() call returns the translated short integer.

5.4.28.4 Description

The htons() call translates a short integer from host byte order to network byte order.
5.4.28.5 Related Calls

bswap()

htonl()

Iswap()

ntohl()
ntohs()

Page 150 of 379 — IBM TCP/IP for 4690 Application Interface Guide

inet_addr()

5.4.29 inet_addr()

The inet_addr() call constructs an internet address from character strings representing numbers expressed in standard
dotted-decimal notation.

5.4.29.1 Syntax

#include <types.h>

u_long inet_addr(cp)
char *cp;

5.4.29.2 Parameter

cp
A character string in standard dotted-decimal notation

5.4.29.3 Return Value
The internet address is returned in network byte order.

5.4.29.4 Description

The inet_addr() call interprets character strings representing numbers expressed in standard dotted-decimal notation
and returns numbers suitable for use as an internet address.

Values specified in standard dotted-decimal notation take one of the following forms:

a.b.c.d
a.b.c
a.b

a

When a four-part address is specified, each part is interpreted as a byte of data and assigned, from left to right, to
one of the four bytes of an internet address.

When a three-part address is specified, the last part is interpreted as a 16-bit quantity and placed in the two
rightmost bytes of the network address. This makes the three-part address format convenient for specifying Class B
network addresses as 128.net.host.

When a two-part address is specified, the last part is interpreted as a 24-bit quantity and placed in the three
rightmost bytes of the network address. This makes the two-part address format convenient for specifying Class A
network addresses as net.host.

When a one-part address is specified, the value is stored directly in the network address space without any
rearrangement of its bytes.

Numbers supplied as address parts in standard dotted-decimal notation can be decimal, hexadecimal, or octal.

Numbers are interpreted in C language syntax. A leading Ox implies hexadecimal; a leading O implies octal. A
number without a leading 0 implies decimal.

Sockets — Page 151 of 379

inet_addr()

5.4.29.5 Related Calls

inet_Inaof()
inet_makeaddr()
inet_netof()
inet_network()
inet_ntoa()

Page 152 of 379 — IBM TCP/IP for 4690 Application Interface Guide

inet_Inaof()

5.4.30 inet_Inaof()

The inet_Inaof() call returns the local network portion of an internet address.

5.4.30.1 Syntax

#include <types.h>
#include <netinet\in.h>

u_long inet_1naof(in)
struct in_addr in;

5.4.30.2 Parameter
in
Host internet address

5.4.30.3 Return Value

The inet_Inaof() call returns the local network address in host byte order.

5.4.30.4 Description

The inet_Inaof() call breaks apart the internet host address and returns the local network address portion.
5.4.30.5 Related Calls

inet_addr()

inet_makeaddr()

inet_netof()

inet_network()
inet_ntoa()

Sockets — Page 153 of 379

inet_makeaddr()

5.4.31 inet_makeaddr()
The inet_makeaddr() call constructs an internet address from a network number and a local address.

5.4.31.1 Syntax

#include <types.h>
#include <netinet\in.h>

struct in_addr inet_makeaddr(net, Ina)
u_long net;
u_long lna;

5.4.31.2 Parameters

net
Network number

Ina
Local network address

5.4.31.3 Return Value

The inet_makeaddr() call returns the internet address in network byte order.

5.4.31.4 Description

The inet_makeaddr() call takes a network number and a local network address and constructs an internet address.
5.4.31.5 Related Calls

inet_addr()

inet_Inaof()

inet_netof()

inet_network()
inet_ntoa()

Page 154 of 379 — IBM TCP/IP for 4690 Application Interface Guide

inet_netof()

5.4.32 inet_netof()

The inet_netof() call returns the network number portion of the internet host address.

5.4.32.1 Syntax

#include <types.h>
#include <netinet\in.h>

u_long inet netof(in)
struct in_addr in;

5.4.32.2 Parameter
in
Internet address in network byte order

5.4.32.3 Return Value

The inet_netof() call returns the network number in host byte order.

5.4.32.4 Description

The inet_netof() call breaks apart the internet host address and returns the network number portion.
5.4.32.5 Related Calls

inet_addr()

inet_Inaof()

inet_makeaddr()

inet_network()
inet_ntoa()

Sockets — Page 155 of 379

inet_network()

5.4.33 inet_network()

The inet_network() call constructs a network number from character strings representing numbers expressed in
standard dotted-decimal notation.

5.4.33.1 Syntax

#include <types.h>

u_long inet_network(cp)
char *cp;

5.4.33.2 Parameter

cp
A character string in standard dotted-decimal notation

5.4.33.3 Return Value
The inet_network() call returns the network number in host byte order.

5.4.33.4 Description

The inet_network() call interprets character strings representing numbers expressed in standard dotted-decimal
notation and returns numbers suitable for use as a network number.

5.4.33.5 Related Calls

inet_addr()
inet_Inaof()
inet_makeaddr()
inet_netof()
inet_ntoa()

Page 156 of 379 — IBM TCP/IP for 4690 Application Interface Guide

inet_ntoa()

5.4.34 inet_ntoa()
The inet_ntoa() call returns a pointer to a string in dotted-decimal notation.

5.4.34.1 Syntax

#include <types.h>
#include <netinet\in.h>

char *inet_ntoa(in)
struct in_addr in;

5.4.34.2 Parameter
in
Host internet address

5.4.34.3 Return Value
The inet_ntoa() call returns a pointer to the internet address expressed in dotted-decimal notation.

5.4.34.4 Description

The inet_ntoa() call returns a pointer to a string expressed in the dotted-decimal notation. inet_ntoa() accepts an
internet address expressed as a 32-bit quantity in network byte order and returns a string expressed in
dotted-decimal notation.

5.4.34.5 Related Calls

inet_addr()
inet_Inaof()
inet_makeaddr()
inet_network()
inet_ntoa()

Sockets — Page 157 of 379

ioctl()

5.4.35 ioctl()

The ioctl() call performs special operations on socket descisptor

5.4.35.1 Syntax

#include <types.h>
#include <sys\ioctl.h>
#include <net\route.h>
#include <net\if.h>
#include <net\if_arp.h>

int ioctl(s, cmd, data, lendata)
int s;

int cmd;

char * data;

int lendata;

5.4.35.2 Parameters

S
Socket descriptor
cmd
Command to perform
data
Pointer to the data associated witind
lendata

Length of the data in bytes
5.4.35.3 Return Values

The value 0 indicates success; the valliendicates an error. You can get the specific error code by calling
sock_errno().

Possible

Error Code Description

ENOTSOCK Thes parameter is not a valid socket descriptor.
EINVAL The request is not valid or not supported.

EOPNOTSUPP The operation is not supported on the socket.

EFAULT Using thedata andlendataparameters would result in an attempt to access memory outside
the caller’'s address space.

Page 158 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ioctl()

5.4.35.4 Description

Use the ioctl() call to control the operating characteristics of sockets. The operations to be controlled are
determined bycmd The data parameter is a pointer to data associated with the particular command, and its format
depends on the command requested. The following are valid ioctl() commands:

Option
FIOASYNC

FIONBIO

FIONREAD

SIOCADDRT

SIOCATMARK

SIOCDARP

SIOCDELRT

SIOCGARP

SIOCGIFADDR

SIOCGIFBRDADDR

SIOCGIFCONF

SIOCGIFDSTADDR

SIOCGIFFLAGS

SIOCGIFMETRIC

SIOCGIFNETMASK

SIOCSARP

Description

Sets or clears asynchronous input-output for a socksa is a pointer to an integer. If the
integer is 0, asynchronous input-output on the socket is cleared. Otherwise, the socket is set
for asynchronous input-output.

Sets or clears nonblocking input-output for a sockigta is a pointer to an integer. If the
integer is 0, nonblocking input-output on the socket is cleared. Otherwise, the socket is set
for nonblocking input-output.

Gets the number of immediately readable bytes for the soditd.is a pointer to an
integer. Sets the value of the integer to the number of immediately readable characters for
the socket.

Adds a routing table entrydatais a pointer to atentry structure, as defined in
<NET\ROUTE.H-. The routing table entry, passed as an argument, is added to the routing
tables.

Queries whether the current location in the data input is pointing to out-of-bandddédas
a pointer to an integer. Sets the argument to 1 if the socket points to a mark in the data
stream for out-of-band data. Otherwise, sets the argument to 0.

Deletes an arp table entjatais a pointer to arpreqas defined ikNET\IF_ARP.H>-.
The arp table entry passed as an argument is deleted from the arp tables, if it exists.

Deletes a routing table entrglata is a pointer to atentry structure, as defined in
<NET\ROUTE.H-. If it exists, the routing table entry passed as an argument is deleted from
the routing tables.

Gets the arp table entrigfatais a pointer to aarpreq as defined ikNET\IF_ARP.H>.
The arp table entry passed as an argument is returned from the arp tables if it exists.

Gets the network interface addredata is a pointer to aifreq structure, as defined in
<NET\IF.H>. The interface address is returned in the argument.

Gets the network interface broadcast addmsta is a pointer to affreq structure, as
defined in<NET\IF.H>. The interface broadcast address is returned in the argument.

Gets the network interface configuratioata is a pointer to aifconf structure, as defined
in <NET\IF.H>. The interface configuration is returned in the argument.

Gets the network interface destination addréata is a pointer to aifreq structure, as
defined in<NET\IF.H>. The interface destination (point-to-point) address is returned in the
argument.

Gets the network interface flagiata is a pointer to aifreq structure, as defined in
<NET\IF.H>. The interface flags are returned in the argument.

Gets the network interface routing metiiata is a pointer to aifreq structure, as defined
in <NET\IF.H>. The interface routing metric is returned in the argument.

Gets the network interface network madhtais a pointer to aifreq structure, as defined
in <NET\IF.H>. The interface network mask is returned in the argument.

Sets an arp table entdata is a pointer to aarpreq as defined ikNET\IF_ARP.H-. The
arp table entry passed as an argument is added to the arp tables.

Sockets — Page 159 of 379

ioctl()

SIOCSIFADDR Sets the network interface addredata is a pointer to aifreq structure, as defined in
<NET\IF.H>. Sets the interface address to the value passed in the argument.

SIOCSIFBRDADDR Sets the network interface broadcast adddss.is a pointer to aifreq structure, as
defined in<NET\IF.H>. Sets the interface broadcast address to the value passed in the
argument.

SIOCSIFDSTADDR Sets the network interface destination addidssts is a pointer to aifreq structure, as
defined in<NET\IF.H>. Sets the interface destination (point-to-point) address to the value
passed in the argument.

SIOCSIFFLAGS Sets the network interface flagkata is a pointer to aifreq structure, as defined in
<NET\IF.H>. Sets the interface flags to the values passed in the argument.

SIOCSIFMETRIC Sets the network interface routing metdata is a pointer to aifreq structure, as defined
in <NET\IF.H>. Sets the interface routing metric to the value passed in the argument.

SIOCSIFNETMASK Sets the network interface network mad#tais a pointer to aifreq structure, as defined
in <NET\IF.H>. Sets the interface network mask to the value passed in the argument.

Page 160 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ioctl()

5.4.35.5 Example

int s;

int dontblock;

int rc;

/* Place the socket into nonblocking mode */

dontblock = 1;
rc = ioctl(s, FIONBIO, (char *) &dontblock, sizeof(dontblock));

5.4.35.6 Related Call

sock_errno()

Sockets — Page 161 of 379

listen()

5.4.36 listen()

The listen() call completes the binding necessary for a socket and creates a connection request queue for incoming
requests.

5.4.36.1 Syntax

#include <types.h>
#include <sys\socket.h>

int listen(s, backlog)
int s;
int backlog;

5.4.36.2 Parameters

s
Socket descriptor

backlog
Maximum length for the queue of pending connections

5.4.36.3 Return Values

The value 0 indicates success; the valliendicates an error. You can get the specific error code by calling
sock_errno().

Possible

Error Code Description

ENOTSOCK Thes parameter is not a valid socket descriptor.

EOPNOTSUPP The parameter is not a socket descriptor that supports the listen() call.

5.4.36.4 Description

The listen() call applies only to stream sockets. It performs two tasks: It completes the binding necessary for a
sockets, if bind() has not been called fer and it creates a connection request queue of ldvagtklogto queue
incoming connection requests. After the queue is full, additional connection requests are ignored.

The listen() call indicates a readiness to accept client connection requests. It transforms an active socket into a
passive socket. Once callegsican never be used as an active socket to initiate connection requests. Calling listen()
is the third of four steps that a server performs to accept a connection. It is called after allocating a stream socket
with socket(), and after binding a hamestwith bind(). It must be called before calling accept().

If backlogis less than 0, it is set to 0. b&cklogis greater than SOMAXCONN, as defined<8YS\SOCKET.H,
it is set to SOMAXCONN.

Page 162 of 379 — IBM TCP/IP for 4690 Application Interface Guide

listen()

5.4.36.5 Related Calls

accept()
bind()
connect()
sock_errno()
socket()

Sockets — Page 163 of 379

Iswap()

5.4.37 Iswap()
The Iswap() call swaps bytes in a long integer.

5.4.37.1 Syntax

#include <types.h>
#include <utils.h>

u_long Tswap(a)
u_long a;

5.4.37.2 Parameter

a
Unsigned long integer whose bytes are to be swapped

5.4.37.3 Return Value

The Iswap() call returns the translated long integer.
5.4.37.4 Description

The Iswap() call swaps bytes in a long integer.
5.4.37.5 Related Calls

bswap()

htonl()

htons()

ntohl()
ntohs()

Page 164 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ntohl()

5.4.38 ntohl()

The ntohl() call translates a long integer from network byte order to host byte order.

5.4.38.1 Syntax

#include <types.h>
#include <utils.h>

u_long ntohl(a)
u_long a;

5.4.38.2 Parameter

a
Unsigned long integer to be put into host byte order

5.4.38.3 Return Value

The ntohl() call returns the translated long integer.

5.4.38.4 Description

The ntohl() call translates a long integer from network byte order to host byte order.
5.4.38.5 Related Calls

bswap()

htonl()

htons()

Iswap()
ntohs()

Sockets — Page 165 of 379

ntohs()

5.4.39 ntohs()

The ntohs() call translates a short integer from network byte order to host byte order.

5.4.39.1 Syntax

#include <types.h>
#include <utils.h>

u_short ntohs(a)
u_short a;

5.4.39.2 Parameter

a
Unsigned short integer to be put into host byte order

5.4.39.3 Return Value

The ntohs() call returns the translated short integer.

5.4.39.4 Description

The ntohs() call translates a short integer from network byte order to host byte order.
5.4.39.5 Related Calls

bswap()

htonl()

htons()

Iswap()
ntohl()

Page 166 of 379 — IBM TCP/IP for 4690 Application Interface Guide

port_cancel()

5.4.40 port_cancel()

The port_cancel() call shuts down all sockets that are bound to a port, and frees resources allocated to those
sockets.

5.4.40.1 Syntax

#include <types.h>
#include <sys\socket.h>

int port_cancel(p)
int p;

5.4.40.2 Parameter

p
Number of the port to clear

5.4.40.3 Return Values
The call returns the number of sockets that were closed.
5.4.40.4 Description

The port_cancel() call shuts down all sockets that are bound to thp @odt frees resources allocated to those
sockets.

5.4.40.5 Related Calls
bind()

socket()
soclose()

Sockets — Page 167 of 379

readv()

5.4.41 readv()
The readv() call reads data on a socket and stores it in a set of specified buffers.

5.4.41.1 Syntax

#include <types.h>
#include <sys\socket.h>

int readv(s, iov, iovcnt)
int s;

struct iovec *iov;

int iovent;

5.4.41.2 Parameters

S
Socket descriptor
iov
Pointer to an array of iovec structure
iovent

Number of buffers pointed to by thev parameter
5.4.41.3 Return Values
If successful, the call returns the number of bytes read into the buffers. The value 0 indicates the connection is

closed; the valuel indicates an error. You can get the specific error code by calling sock_errno().

Possible
Error Code Description

SOCENOTSOCK Thes parameter is not a valid socket descriptor.

SOCEFAULT Usingiov andiovcntwould result in an attempt to access memory outside the caller’s
address space.

SOCEINVAL iovent was not valid, or one of the fields in tlw array was not valid.

SOCEWOULDBLOCK

The s parameter is in nonblocking mode, and no data is available to read.

Page 168 of 379 — IBM TCP/IP for 4690 Application Interface Guide

readv()

5.4.41.4 Description

The readv() call reads data on a socket with descripamid stores it in a set of buffers. The data is scattered into
the buffers specified by iov[0]..iov[iovcht]. Theiovecstructure is defined irRSYS\SOCKET.H and contains
the following fields:

Element Description
iov_base Pointer to the buffer
iov_len Length of the buffer

The readv() call returns up to the number of bytes in the buffers pointed to loy t@rameter. This number is

the sum of aliov_lenfields. If less than the number of bytes requested is available, the call returns the number
currently available. If data is not available at the socket, the readv() call waits for data to arrive and blocks the
caller, unless the socket is in nonblocking mode. See 5.4.35, “ioctl()” on page 158 for a description of how to set
nonblocking mode.

The readv() call applies only to connected sockets.

5.4.41.5 Related Calls

connect()
getsockopt()
ioctl()

recv()
recvfrom()
select()
send()
sendto()
setsockopt()
sock_errno()
socket()
writev()

Sockets — Page 169 of 379

recv()

5.4.42 recv()
The recv() call receives data on a connected socket.

5.4.42.1 Syntax

#include <types.h>
#include <sys\socket.h>

int recv(s, buf, len, flags)
int s;

char xbuf;

int len;

int flags;

5.4.42.2 Parameters

S
Socket descriptor.
buf
Pointer to the buffer that receives the data.
len
Length in bytes of the buffer pointed to by tg parameter.
flags

Set by specifying one or more of the following flags. If you specify more than one flag, use the logical
OR operator (]) to separate them. Setting this parameter is supported only for sockets in the AF_INET
domain. The flags are as follows:

MSG_0OOB
Reads any out-of-band data on the socket.

MSG_PEEK
Peeks at the data present on the socket; the data is returned but not consumed, so that a later receive
operation sees the same data.

5.4.42.3 Return Values

If successful, the call returns the length (in bytes) of the message or datagram. The value 0 indicates that the
connection is closed; the valud indicates an error. You can get the specific error code by calling sock_errno().

Possible

Error Code Description

ENOTSOCK Thes parameter is not a valid socket descriptor.

EFAULT Using thebuf andlen parameters would result in an attempt to access memory outside the

caller's address space.

EWOULDBLOCK Thes parameter is in nonblocking mode, and no data is available to read.

Page 170 of 379 — IBM TCP/IP for 4690 Application Interface Guide

recv()

5.4.42.4 Description

The recv() call receives data on a socket with descripord stores it in a buffer. The recv() call applies only to
connected sockets.

The recv() call returns the length of the incoming message or data. If a datagram packet is too long to fit in the
supplied buffer, datagram sockets discard excess bytes. If data is not available at the socket with deiwgiptor
recv() call waits for a message to arrive and blocks the caller, unless the socket is in nonblocking mode. See
5.4.35, “ioctl()” on page 158 for a description of how to set nonblocking mode.

5.4.42.5 Related Calls

connect()
getsockopt()
ioctl()
readv()
recvfrom()
select()
send()
sendto()
setsockopt()
sock_errno()
socket()
writev()

Sockets — Page 171 of 379

recvirom()

5.4.43 recvfrom()
The recvfrom() call receives data on a datagram socket, regardless of its connection status.

5.4.43.1 Syntax

#include <types.h>
#include <sys\socket.h>

int recvfrom(s, buf, len, flags, name, namelen)
int s;

char xbuf;

int len;

int flags;

struct sockaddr *name;

int *namelen;

5.4.43.2 Parameters

S
Socket descriptor.
buf
Pointer to the buffer that receives the data.
len
Length in bytes of the buffer pointed to by th& parameter.
flags
Set by specifying one or more of the following flags. This parameter is supported only for sockets in
the AF_INET domain. The flags are as follows:
MSG_0OB
Reads any out-of-band data on the socket.
MSG_PEEK
Peeks at the data present on the socket; the data is returned but not consumed, so that a later receive
operation sees the same data.
name
Pointer to asocket addresstructure from which data is received.
namelen

Pointer to the size afamein bytes.
5.4.43.3 Return Values

If successful, the call returns the length, in bytes, of the message or datagram. The vatlieates an error; you
can get the specific error code by calling sock_errno().

Possible

Error Code Description

ENOTSOCK Thes parameter is not a valid socket descriptor.

EFAULT Using thebuf andlen parameters would result in an attempt to access memory outside the
caller's address space.

EWOULDBLOCK Thes parameter is in nonblocking mode, and no data is available to read.

Page 172 of 379 — IBM TCP/IP for 4690 Application Interface Guide

recvirom()

5.4.43.4 Description

The recvfrom() call receives data on a socket with descripdmd stores it in a buffer. The recvfrom() call applies
to any datagram socket, whether connected or unconnected.

If nameis nonzero, the source address of the message is returaeelenis first initialized to the size of the
buffer associated withame on return, it is modified to indicate the actual number of bytes stored there.

The recvfrom() call returns the length of the incoming message or data. If a datagram packet is too long to fit in

the supplied buffer, datagram sockets discard excess bytes. If datagram packets are not available at the socket with
descriptors, the recvfrom() call waits for a message to arrive and blocks the caller, unless the socket is in
nonblocking mode. See 5.4.35, “ioctl()” on page 158 for a description of how to set nonblocking mode.

5.4.43.5 Related Calls

getsockopt()
ioctl()
readv()
recv()
select()
send()
sendto()
setsockopt()
sock_errno()
socket()
writev()

Sockets — Page 173 of 379

res_init()

5.4.44 res_init()

The res_init() call reads the RESOLYV file for the default domain name.

5.4.44.1 Syntax

include <types.h>
#include <netinet\in.h>
#include <arpa\nameser.h>
#include <resolv.h>

void res_init()

5.4.44.2 Description

The res_init() call reads the ADX_SDT1:ADXHSIRF.DAT file for the default domain name and for the internet
address of the initial hosts running the name server. If that file does not exist, the call attempts name resolution
using the ADX_SDT1:ADXHSIHF.DAT file. One of these files should be operational.

The call stores domain name information in the glolak structure, which is defined in thRdRESOLV.H> header
file.

5.4.44.3 Related Calls

dn_comp()
dn_expand()
res_mkquery()
res_send()

Page 174 of 379 — IBM TCP/IP for 4690 Application Interface Guide

res_mkaquery()

5.4.45 res_mkquery()
The res_mkquery() call makes a query message for the name servers in the Internet domain.

5.4.45.1 Syntax

#include <types.h>
#include <netinet\in.h>
#include <arpa\nameser.h>
#include <resolv.h>

int res_mkquery(op, dname, class, type, data, datalen, newrr,
buf, buflen)

int op;

char *dname;

int class;

int type;

char =*data;

int datalen;

struct rrec *newrr;

char *buf;

int buflen;

5.4.45.2 Parameters

op
The usual type is QUERY, but you can set the parameter to any query type defined in the
<ARPA\NAMESER.H> header file.
dname
Pointer to the domain name. dhamepoints to a single label and the RES_DEFNAMES bit in the
_resstructure defined in the <RESOLV.H> header file is set, the call appieraaseto the current
domain name. The current domain name is defined in the ADX_SDT1:ADXHSIRF.DAT file.
class
One of the following values:
C_IN ARPA Internet
C_CHAOQOS Chaos network at MIT
type
One of the following type values for resources and queries:
TA Host address
T NS Authoritative server

T _MD Mail destination

T_MF Mail forwarder
T_CNAME Canonical name
T_SOA Start of authority zone

T _MB Mailbox domain name
T_MG Mail group member
T MR Mail rename name

T _NULL NULL resource record
T _WKS Well-known service
T_PTR Domain name pointer

Sockets — Page 175 of 379

res_mkquery()

T _HINFO Host information
T_MINFO Mailbox information

T _MX Mail routing information
T _UINFO User information

T _UID User ID

T_GID Group ID

data

Pointer to the data sent to the name server as a search key.
datalen

Size of the paramet@latain bytes.
newrr

Reserved for future updates; currently an unused parameter.
buf

Pointer to the query message.
buflen

Length in bytes of the buffer pointed to by thef parameter.
5.4.45.3 Return Values

If it succeeds, the res_mkquery() call returns the size of the query. If the query is larger than the lualeq of
the call fails and returns a value -€f.

5.4.45.4 Description

The res_mkquery() call makes a query message for the name servers in the Internet domain and puts that query
message in the location pointed by thé parameter. It uses globaftes structure, which is defined in the
<RESOLV.H> header file.

5.4.45.5 Related Calls
dn_comp()
dn_expand()

res_init()
res_send()

Page 176 of 379 — IBM TCP/IP for 4690 Application Interface Guide

res_send()

5.4.46 res_send()

The res_send() call sends a query to a local name server.

5.4.46.1 Syntax

#include <types.h>
#include <netinet\in.h>
#include <arpa\nameser.h>
#include <resolv.h>

int res_send(msg, msglen, ans, anslen)
char *msg;
int msglen;
char *ans;
int anslen;

5.4.46.2 Parameters

msg

Pointer to the beginning of a message
msglen

Length in bytes of the buffer pointed to by timsgparameter
ans

Pointer to the location where the received response is stored
anslen

Length in bytes of the buffer pointed by thes parameter
5.4.46.3 Return Values
If it succeeds, the call returns the length of the message. If it fails, the call returns a vdlue of

5.4.46.4 Description

The res_send() call sends a query to the local name server and calls the res_init() call if the RES_INIT option of
the global_resstructure is not set. It also handles time-outs and retries. It uses the gkdbstructure, which is
defined in the <RESOLV.H> header file.

5.4.46.5 Related Calls
dn_comp()
dn_expand()

res_init()
res_mkquery()

Sockets — Page 177 of 379

rexec()

5.4.47 rexec()

The rexec() call allows command execution on a remote host.

5.4.47.1 Syntax

#include <utils.h>

int rexec(host, port, user, passwd, cmd, err_sdZp)
char **host;

int port;

char *user, *passwd, *cmd;

int *err-sd2p;

5.4.47.2 Parameters

host
Contains the name of a remote host.
port
Specifies the well-known DARPA Internet port to use for the connection. A pointer to the structure that
contains the necessary port can be obtained by issuingetts®rvbyname ("exec","tcp") library call.
user
Points to a user ID valid at the remote host.
passwd
Points to a password valid at the remote host.
cmd
Points to the name of the command to be executed at the remote host.
err_sd2p

Points to error socket descriptor. An auxiliary channel to a control process is set up, and a descriptor for it
is placed in thesrr_sd2pparameter. The control process provides diagnostic output from the remote
command on this channel. This diagnostoc information does not include remote authorization failure, since
this connection is set up after authorization has been verified.

5.4.47.3 Return Values

Upon successful completion, the system returns a socket to the remote command.

If the rexec subroutine is unsuccessful, the system returns a -1 indicating that the specified host name does not
exist.

Page 178 of 379 — IBM TCP/IP for 4690 Application Interface Guide

rexec()

5.4.47.4 Description
The rexec subroutine allows the calling process to start commands on a remote host.

If the rexec connection succeeds, a socket in the Internet domain of type SOCK_STREAM is returned to the calling
process.

5.4.47.5 Example

int normsock;
char *host = NULL, *luser = NULL, *password = NULL, *cmd;
struct servent *sp;

sp = getservbyname("exec", "tcp");

host = "remote _host";
Tuser = "my userid";
password = "my passwd";
cmd = "rempte_host cmd"";

normsock = rexec(&host, sp->s_port, luser, password, cmd, &errsock);

if (normsock == -1)
exit(-1);

Sockets — Page 179 of 379

select()

5.4.48 select()

The select() call monitors read, write, and exception status on a group of sockets.

5.4.48.1 Syntax

#include <types.h>
#include <sys\socket.h>

int select(s, noreads, nowrites, noexcepts, timeout)
int *s;

int noreads;

int nowrites;

int noexcepts;

long timeout;

5.4.48.2 Parameters

S Pointer to an array of socket numbers in which the write socket numbers and the exception socket
numbers follow the read socket numbers

noreads Number of sockets to be checked for readability
nowrites Number of sockets to be checked for readiness for writing
noexcepts Number of sockets to be checked for exceptional pending conditions exceptional pending conditions

timeout Maximum interval, in milliseconds, to wait for the selection to be complete

Page 180 of 379 — IBM TCP/IP for 4690 Application Interface Guide

select()

5.4.48.3 Return Values

The select() call returns the number of ready sockets. The valirdicates an error, and the value 0 indicates an
expired time limit. If the return value is greater than 0, the socket numbsrthan were not ready are set-tb.
You can get the specific error code by calling sock_errno().

Possible

Error Code Description

ENOTSOCK Thes parameter is not a valid socket descriptor.
EFAULT The address is not valid.

5.4.48.4 Description

The select() call monitors activity on a set of various sockets until a time-out expires, to verify if any sockets are
ready for reading or writing or if any exceptional conditions are pending.

If the time-out value is 0, select() does not wait before returning. If the time-out vallie select() does not time
out; but it returns when a socket becomes ready. If the time-out value is a number of milliseconds, select() waits
for the specified interval before returning.

See 5.3, “Porting a Socket API Application” on page 104, for information on how the 46900S implementation of
the select() call differs from the Berkeley implementation.

5.4.48.5 Example
#define MAX_TIMEOUT 1000

/* input_ready(insock)- Check to see if there is available input on
* socket insock.

Returns 1 if input is available.

* 0 if input is not available.

* -1 on error.

*/

*

int input_ready(insock)
int insock; /* input socket descriptor */

{

int socks[]; /* array of sockets =/
long timeout = MAX_TIMEOUT;

/* put sockets to check in socks[] */
socks[0] = insock;

/* check for READ availability on this socket =*/
return select(socks, 1, 0, 0, timeout);

}
5.4.48.6 Related Calls

accept()
connect()
recv()
send()
sock_errno()

Sockets — Page 181 of 379

send()

5.4.49 send()

The send() call sends data on a connected socket.

5.4.49.1 Syntax

#include <types.h>
#include <sys\socket.h>

int send(s, msg, len, flags)
int s;

char *msg;

int len;

int flags;

5.4.49.2 Parameters

S
Socket descriptor.
msg
Pointer to the buffer containing the message to transmit.
len
Length of the message pointed to by thegparameter. The maximum is 32768.
flags

Set by specifying one or more of the following flags. If you specify more than one flag, use the logical
OR operator (]) to separate them. Setting this parameter is supported only for sockets in the AF_INET
domain. The flags are as follows:

MSG_0OOB
Sends out-of-band data on sockets that support it. Only SOCK_STREAM sockets created in the
AF_INET address family support out-of-band data.

MSG_DONTROUTE
The SO_DONTROUTE option is turned on for the duration of the operation. Usually only diagnostic
or routing programs use this.

5.4.49.3 Return Values

No indication of failure to deliver is implicit in a send() routine. The valliendicates locally detected errors; you
can get the specific error code by calling sock_errno().

Possible

Error Code Description

ENOTSOCK Thes parameter is not a valid socket descriptor.

EFAULT Using themsgandlen parameters would result in an attempt to access memory outside the
caller’'s address space.

EINVAL len is not the size of a valid address for the specified family.

ENOBUFS No buffer space is available to send the message.

EWOULDBLOCK Thes parameter is in nonblocking mode, and no data is available to read.

Page 182 of 379 — IBM TCP/IP for 4690 Application Interface Guide

send()

5.4.49.4 Description
The send() call sends packets on the socket with descsiptbhe send() call applies to all connected sockets.

If buffer space is not available at the socket to hold the message to be sent, the send() call normally blocks, unless
the socket is in nonblocking mode. (See 5.4.35, “ioctl()” on page 158 for a description of how to set nonblocking
mode.) The select() call can be used to determine when to send more data.

5.4.495 Related Calls

connect()
getsockopt()
ioctl()
readv()
recv()
recvfrom()
select()
sendto()
sock_errno()
socket()
writev()

Sockets — Page 183 of 379

sendto()

5.4.50 sendto()
The sendto() call sends packets on a datagram socket, regardless of its connection status.

5.4.50.1 Syntax

#include <types.h>
#include <sys\socket.h>

int sendto(s, msg, len, flags, to, tolen)
int s;

char *msg;

int len;

int flags;

struct sockaddr =*to;

int tolen;

5.4.50.2 Parameters

S
Socket descriptor.
msg
Pointer to the buffer containing the message to transmit.
len
Length of the message pointed to by thegparameter.
flags
Set to 0 or MSG_DONTROUTE. Setting this parameter is supported only for sockets in the AF_INET
domain.
MSG_DONTROUTE
The SO_DONTROUTE option is turned on for the duration of the operation. This is usually used
only by diagnostic or routing programs.
to
Address of the target.
tolen

Size of the address pointed to by tbgparameter.
5.4.50.3 Return Values

If it succeeds, sendto() returns the number of characters sent. The-Ydhdicates an error; you can get the
specific error code by calling sock_errno(). The return value of this call when used with datagram sockets does not
imply failure to deliver.

Possible

Error Code Description

ENOTSOCK Thes parameter is not a valid socket descriptor.

EFAULT Using themsgandlen parameters would result in an attempt to access memory outside
the caller’'s address space.

EINVAL tolenis not the size of a valid address for the specified address family.

Page 184 of 379 — IBM TCP/IP for 4690 Application Interface Guide

sendto()

EMSGSIZE The message was too big to be sent as a single datagram. The default size is 8192 and
the maximum size is 32768.

ENOBUFS No buffer space is available to send the message.

EWOULDBLOCK Thes parameter is in honblocking mode and no data is available to read.

ENOTCONN The socket is not connected.

EDESTADDRREQ A destination address is required.

5.4.50.4 Description

The sendto() call sends packets on the socket with descsipfbine sendto() call applies to any datagram socket,
whether connected or unconnected.

5.4.50.5 Related Calls

readv()
recv()
recvfrom()
send()
select()
sock_errno()
socket()
writev()

Sockets — Page 185 of 379

sethostent()

5.4.51 sethostent()
The sethostent() call opens and rewinds the HOSTS file.

5.4.51.1 Syntax

void sethostent (stayopen)
int stayopen;

5.451.2 Parameter

stayopen
Allows the ADX_SDT1:ADXHSIHF.DAT file to stay open after each call

5.4.51.3 Return Value
A NULL pointer indicates an error or EOF.
5.4.51.4 Description

The sethostent() call opens and rewinds the ADX_SDT1:ADXHSIHF.DAT file. Istagopenparameter is
nonzero, the ADX_SDT1:ADXHSIHF.DAT file stays open after each of the gethost calls.

5.4.51.5 Related Calls
endhostent()
gethostbyaddr()

gethostbyname()
gethostent()

Page 186 of 379 — IBM TCP/IP for 4690 Application Interface Guide

setnetent()

5.4.52 setnetent()
The setnetent() call opens and rewinds the NETWORKS file.

5.4.52.1 Syntax

void setnetent(stayopen)
int stayopen;

5.452.2 Parameter

stayopen
Causes the ADX_SDT1:ADXHSINF.DAT file to stay open after each call

5.4.52.3 Return Value

A NULL pointer indicates an error or EOF.

5.4.52.4 Description

The setnetent() call opens and rewinds the ADX_SDT1:ADXHSINF.DAT file, which contains information about
known networks. If thestayopenparameter is nonzero, the ADX_SDT1:ADXHSINF.DAT file stays open after
each of the getnet calls.

5.4.52.5 Related Calls

endnetent()

getnetbyaddr()

getnetbyname()
getnetent()

Sockets — Page 187 of 379

setprotoent()

5.4.53 setprotoent()
The setprotoent() call opens and rewinds the PROTOCOL file.

5.4.53.1 Syntax

void setprotoent(stayopen)
int stayopen;

5.4.53.2 Parameter

stayopen
Causes the ADX_SDT1:ADXHSIPF.DAT file to stay open after each call

5.4.53.3 Return Value

A NULL pointer indicates an error or EOF.

5.4.53.4 Description

The setprotoent() call opens and rewinds the ADX_SDT1:ADXHSIPF.DAT file, which contains information about
known protocols. If thestayopenparameter is nonzero, the ADX_SDT1:ADXHSIPF.DAT file stays open after each
of the getproto calls.

5.4.53.5 Related Calls

endprotoent()

getprotobyname()

getprotobynumber()
getprotoent()

Page 188 of 379 — IBM TCP/IP for 4690 Application Interface Guide

setservent()

5.4.54 setservent()
The setservent() call opens and rewinds the SERVICES file.

5.4.54.1 Syntax

void setservent(stayopen)
int stayopen;

5.454.2 Parameter

stayopen
Causes the ADX_SDT1:ADXHSISF.DAT file to stay open after each call

5.4.54.3 Return Value

A NULL pointer indicates an error or EOF.

5.4.54.4 Description

The setservent() call opens and rewinds the ADX_SDT1:ADXHSISF.DAT file, which contains information about
known services and well-known ports. If teeyopenparameter is nonzero, the ADX_SDT1:ADXHSISF.DAT file
stays open after each of the getserv calls.

5.454.5 Related Calls

endservent()
getservbyname()
getservbyport()
getservent()

Sockets — Page 189 of 379

setsockopt()

5.4.55 setsockopt()
The setsockopt() call sets options associated with a socket.

5.4.55.1 Syntax

#include <types.h>
#include <sys\socket.h>

int setsockopt(s, level, optname, optval, optlen)
int s;

int level;

int optname;

char *optval;

int optlen;

5.4.55.2 Parameters

(S
Socket descriptor.
level
Level for which the option is being set. Only SOL_SOCKET is supported.
optname
Name of a specified socket option.
optval
Pointer to option data.
optlen

Length of the option data.
5.4.55.3 Return Values

The value 0 indicates success; the valliendicates an error. You can get the specific error code by calling
sock_errno().

Possible

Error Code Description

EADDRINUSE The address is already in use.

ENOTSOCK Thes parameter is not a valid socket descriptor.

EFAULT Using optval andoptlen parameters would result in an attempt to access memory outside
the caller's address space.

ENOPROTOOPT Theptnameparameter is unrecognized, or tbgel parameter is not SOL_SOCKET.

EINVAL optlenis not a valid size.

ENOBUFS No buffer space is available.

Page 190 of 379 — IBM TCP/IP for 4690 Application Interface Guide

setsockopt()

5.4.55.4 Description

The setsockopt() call sets options associated with a socket. It can be called only for sockets in the AF_INET
domain. Options can exist at multiple protocol levels; they are always present at the highest socket level.

When manipulating socket options, you must specify the name of the option and the level at which the option
resides. To manipulate options at the socket levelletred parameter must be set to SOL_SOCKET, as defined in
<SYS\SOCKET.H. To manipulate options at any other level, such as the TCP or IP level, supply the appropriate
protocol number for the protocol controlling the option. Currently, only the SOL_SOCKET level is supported. The
getprotobyname() call can be used to return the protocol number for a named protocol.

The optval andoptlen parameters are used to pass data used by the particular set commaiogtvahmarameter
points to a buffer containing the data needed by the set commandopiMaéparameter is optional and can be set
to the NULL pointer, if data is not needed by the command. offtien parameter must be set to the size of the
data pointed to bpptval

When you use socket-level options other than SO_LINGER, SO_SNDBUF, or SO_RCWB\&l,points to an

integer andoptlenis set to the size of the integer. When the integer is nonzero, the option is enabled. When it is
0, the option is disabled. When you use the SO _LINGER optigival points to dinger structure, as defined in
<SYS\SOCKET.H. This structure is defined in the following example:

struct Tinger

{
int l_onoff; /* option on/off */
int [linger; /* linger time */

}s

The|l_onofffield is set to 0 to disable the SO _LINGER option. A nonzero value enables the optioh. lifider
field specifies the amount of time to linger on close. The unitslimiger are seconds.

The following options are recognized at the socket level:
Option Description

SO_BROADCAST Toggles the ability to broadcast messages. If you enable this option, the application can
send broadcast messages avdf the interface specified in the destination supports
broadcasting of packets. This option has no meaning for stream sockets.

SO_DONTROUTE Toggles the routing bypass for outgoing messages. When you enable this option, outgoing
messages bypass the standard routing algorithm and are directed to the appropriate network
interface according to the network portion of the destination address. When enabled, this
option lets you send packets only to directly connected networks (networks for which this
host has an interface). This option has no meaning for stream sockets.

SO_KEEPALIVE Toggles keep connection alive. TCP uses a timer called the keepalive timer, which is used
to monitor idle connections that might have been disconnected because of a peer failure or
time-out. If you toggle this option, a keepalive packet goes to the peer every 120 minutes.
This is used mainly to allow servers to close connections that have already disappeared as a
result of clients going away without closing connections. This option has no meaning for
stream sockets.

SO_LINGER Lingers on close if data is present. If you enable this option while unsent data is present
and soclose() is called, the calling application is blocked during the soclose() call until the
data is transmitted or the connection has timed out. If this option is disabled, INET waits
to try to send the data. Data transfer is usually successful, but it cannot be guaranteed
because INET waits only a finite amount of time trying to send the data. The soclose() call
returns without blocking the caller. Use this option only for stream sockets.

Sockets — Page 191 of 379

setsockopt()

SO_OOBINLINE Toggles the reception of out-of-band data. When you enable this option, out-of-band data
is placed in the normal data input queue as it is received, making it available to recv() and
recvfrom() without having to specify the MSG_OOB flag in those calls. Disabling this
option causes out-of-band data to be placed in the priority data input queue as it is
received, making it available to recv() and recvfrom() only by specifying the MSG_OOB
flag in those calls. Use this option only for stream sockets.

SO_DEBUG Toggles recording of debugging information.

SO_RCVBUF Sets buffer size for input. This option sets the size of the receive buffer to the value
contained in the buffer pointed to loptval This lets you change the buffer size for
specific application needs, such as increasing the buffer size for high-volume connections.

SO_RCVLOWAT Sets receive low-water mark.
SO_RCVTIMEO Sets receive time-out.

SO_REUSEADDR Toggles local address reuse. When enabled, this option allows local addresses that are
already in use to be bound. This alters the normal algorithm used in the bind() call. The
system verifies at connect time that no local address and port have the same foreign address
and port and returns the error EADDRINUSE if the association already exists.

SO_SNDBUF Sets buffer size for output. This option sets the size of the send buffer to the value
contained in the buffer pointed to loptval This lets you change the send buffer size for
specific application needs, such as increasing the buffer size for high-volume connections.

SO_SNDLOWAT Sets send low-water mark.
SO_SNDTIMEO Sets send time-out.
SO_USELOOPBACK Bypasses when possible.

5.4.55.5 Example

int rc;

int s;

int optval;

struct linger 1;

int setsockopt(int s, int level, int optname, char *optval, int optlen)

/* 1 want out of band data in the normal input queue */

optval = 1;

rc = setsockopt(s, SOL SOCKET, SO OOBINLINE, (char *) &optval,
sizeof(int));

/* 1 want to linger on close */

1.1 _onoff = 1;

1.1_linger = 100;

rc = setsockopt(s, SOL SOCKET, SO LINGER, (char =*) &1, sizeof(1));

See 5.4.26, “getsockopt()” on page 145 for examples of how the getsockopt() options set are queried.

5.4.55.6 Related Calls

getprotobyname()
getsockopt()
ioctl()
sock_errno()
socket()

Page 192 of 379 — IBM TCP/IP for 4690 Application Interface Guide

shutdown()

5.4.56 shutdown()

The shutdown() call shuts down all or part of a duplex connection.

5.4.56.1 Syntax

int shutdown(s, how)
int s;
int how;

5.4.56.2 Parameters

s
Socket descriptor

how
Condition of the shutdown

5.4.56.3 Return Values

The value 0 indicates success; the valliendicates an error. You can get the specific error code by calling
sock_errno().

Possible

Error Code Description

ENOTSOCK Thes parameter is not a valid socket descriptor.
EINVAL The how parameter was not set to a valid value.

5.4.56.4 Description

The shutdown() call shuts down all or part of a duplex connection. hdWweparameter sets the condition for
shutting down the connection to socket

The how parameter can have a value of 0, 1, or 2, where:

0 Ends communication from socket
1 Ends communication to socket
2 Ends communication both to and from socket

5.4.56.5 Related Calls

accept()
connect()
sock_errno()
socket()
soclose()

Sockets — Page 193 of 379

sock_init()

5.4.57 sock_init()

The sock_init() call initializes the socket data structures and checks whether INET.SYS is running.

5.4.57.1 Syntax

int sock_init()

5.4.57.2 Return Values
The value O indicates success; the value 1 indicates an error.
5.4.57.3 Description

The sock_init() call initializes the socket data structures and checks whether INET.SYS is running. Therefore,
sock_init() must be called at the beginning of each program that uses socket().

Page 194 of 379 — IBM TCP/IP for 4690 Application Interface Guide

socket()

5.4.58 socket()

The socket() call creates an endpoint for communication and returns a socket descriptor representing the endpoint.

5.4.58.1 Syntax

#include <types.h>
#include <sys\socket.h>

int socket(domain, type, protocol)
int domain;

int type;

int protocol;

5.4.58.2 Parameters

domain

The address domain requested. It must be AF_INET.
type

Type of socket created: SOCK_STREAM, SOCK_DGRAM, or SOCK_RAW.
protocol

The protocol requested. Some possible values are 0, IPPROTO_UDP, or IPPROTO_TCP.
5.4.58.3 Return Values

A non-negative socket descriptor indicates success. The valualicates an error; you can get the specific error
code by calling sock_errno().

Possible

Error Code Description

EPROTONOSUPPORT Therotocol is not supported in thidomain or thisprotocol is not supported for this
sockettype

EPROTOTYPE Theprotocol is the wrong type for the socket.

5.4.58.4 Description

The socket() call creates an endpoint for communication and returns a socket descriptor representing the endpoint.
Different types of sockets provide different communication services.

The domainparameter specifies a domain within which communication is to take place. This parameter selects the
address family (format of addresses within a domain) which is used. The only family supported is AF_INET,
which is the internet domain. This constant is defined in<B¥S\SOCKET.H header file.

The type parameter specifies the type of socket created. The type is analogous with the semantics of the
communication requested. These socket type constants are defineckBYIR&SOCKET.H header file. The
types supported are:

SOCK_STREAM
Provides sequenced, duplex byte streams that are reliable and connection-oriented. They support a mechanism
for out-of-band data.

Sockets — Page 195 of 379

socket()

SOCK_DGRAM
Provides datagrams, which are connectionless messages of a fixed maximum length whose reliability is not
guaranteed. Datagrams can be corrupted, received out of order, lost, or delivered multiple times.

SOCK_RAW
Provides the interface to internal protocols (such as IP and ICMP).

The protocol parameter specifies a particular protocol to be used with the socket. In most cases, a single protocol
exists to support a particular type of socket in a particular addressing family (not true with raw sockets). If the
protocol field is set to 0, the system selects the default protocol number for the domain and socket type requested.
Protocol numbers are found in the ADX_SDT1:ADXHSIPF.DAT file. Alternatively, the getprotobyname() call can
be used to get the protocol number for a protocol with a known name. Curpgothycol defaults are TCP for

stream sockets and UDP for datagram sockets. There is no default for raw sockets.

SOCK_STREAM sockets model duplex byte streams. They provide reliable, flow-controlled connections between
peer applications. Stream sockets are either active or passive. Active sockets are used by clients that initiate
connection requests with connect(). By default, socket() creates active sockets. Passive sockets are used by servers
to accept connection requests with the connect() call. An active socket is transformed into a passive socket by
binding a name to the socket with the bind() call and by indicating a willingnhess to accept connections with the
listen() call. Once a socket is passive, it cannot be used to initiate connection requests.

In the AF_INET domain, the bind() call applied to a stream socket lets the application specify the networks from
which it is willing to accept connection requests. The application can fully specify the network interface by setting
the internet addres$ield in the addressstructure to the internet address of a network interface. Alternatively, the
application can use a wildcard to specify that it wants to receive connection requests from any network. The
application does this by setting the#ernet addresdield in theaddressstructure to the constant INADDR_ANY, as
defined in<SYS\SOCKET.H-.

After stream sockets become connected to each other, any of the data transfer calls can be used (send(), recv(),
readv(), writev(), sendto(), or recvfrom()). Usually, a send-recv pair is used for sending data on stream sockets.

SOCK_DGRAM sockets model datagrams. They provide connectionless message exchange with no guarantees on
reliability. Messages sent have a maximum size.

Unlike stream sockets, datagram sockets do not have active and passive uses. Servers must still call bind() to name
a socket and to specify from which network interfaces it wants to receive packets. Wildcard addressing, as
described for stream sockets, applies for datagram sockets also. Because datagram sockets are connectionless, the
listen() call has no meaning for them and must not be used with them.

After an application receives a datagram socket, it can exchange datagrams using the sendto() and recvfrom() calls.
If the application goes one step further by calling connect() and fully specifying the name of the peer with which all
messages will be exchanged, then the other data transférceallalso be used. For more information about

placing a socket into the connected state, see 5.4.4, “connect()” on page 114.

Datagram sockets allow messages to be broadcast to multiple recipients. Setting the destination address to be a
broadcast address is network interface dependent (depends on the class of address and whether subnets are being
used). The constant INADDR_BROADCAST, defined<i8YS\SOCKET.H, can be used to broadcast to the

primary network if the primary configured network supports broadcasting.

6 readv(), writev(), send() and recv()

Page 196 of 379 — IBM TCP/IP for 4690 Application Interface Guide

socket()

SOCK_RAW sockets give the application an interface to lower-layer protocols, such as IP and ICMP. The
application often uses this interface to bypass the transport layer when direct access to lower-layer protocols is
needed and to test new protocols.

Raw sockets are connectionless; the data transfer abilities are the same as those described previously for datagram
sockets. The connect() call can be used similarly to specify the peer.

Outgoing packets have an IP header prefixed to them. IP options can be set and inspected using the setsockopt()
and getsockopt() calls respectively. Incoming packets are received with the IP header and options intact.

The soclose() call deallocates sockets.

5.4.58.5 Example

int s;

struct protoent *p;

struct protoent *getprotobyname(char *name);
int socket(int domain, int type, int protocol);

/* Get stream socket in internet domain with default protocol */
s = socket(AF_INET, SOCK STREAM, 0);

/* Get raw socket in internet domain for ICMP protocol =/
p = getprotobyname("icmp");
s = socket (AF_INET, SOCK RAW, p->p proto);

5.4.58.6 Related Calls

accept()

bind()
connect()
getprotobyname()
getsockname()
getsockopt()
ioctl()
port_cancel()
readv()

recv()
recvfrom()
select()

send()
sendto()
shutdown()
sock_errno()
soclose()
writev()

Sockets — Page 197 of 379

soclose()

5.4.59 soclose()
The soclose() call shuts down a socket and frees resources allocated to that socket.

5.4.59.1 Syntax

#include <types.h>
#include <sys\socket.h>

int soclose(s)
int s;

5.4.59.2 Parameter

s
Descriptor of the socket to discard

5.4.59.3 Return Values

The value 0 indicates success; the valliendicates an error. You can get the specific error code by calling
sock_errno().

Possible

Error Code Description

ENOTSOCK Thes parameter is not a valid socket descriptor.

EALREADY The sockets is marked nonblocking, and a previous connection attempt has not completed.

ENOTCONN The socket is not connected.

5.4.59.4 Description

The soclose() call shuts down the socket associated with the socket desaipdofrees resources allocated to the
socket. Ifsrefers to an open TCP connection, the connection is closed.

5.459.5 Related Calls

accept()
port_cancel()
sock_errno()
socket()

Page 198 of 379 — IBM TCP/IP for 4690 Application Interface Guide

writev()

5.4.60 writev()
The writev() call writes data on a socket with descrigtor

5.4.60.1 Syntax

#include <types.h>
#include <sys\socket.h>

int writev(s, iov, iovcnt)
int s;

struct iovec *iov;

int iovent;

5.4.60.2 Parameters

S

Socket descriptor
iov

Pointer to an array of iovec buffers
iovent

Number of buffers pointed to by thev parameter
5.4.60.3 Return Values
If it succeeds, the call returns the number of bytes written from the buffers. The-tailndicates an error. You

can get the specific error code by calling sock_errno().

Possible
Error Code Description

SOCENOTSOCK sis not a valid socket descriptor.

SOCEFAULT Using theov andiovcnt parameters would result in an attempt to access memory outside
the caller’'s address space.

SOCEINVAL iovent was not valid, or one of the fields in tlee array was not valid.

SOCENOBUFS Buffer space is not available to send the message.

SOCEWOULDBLOCK sis in nonblocking mode, and data is not available to read.

SOCEMSGSIZE The message was too big to be sent as a single datagram. The default size is 8192 and
the maximum size is 32768.

SOCEDESTADDRREQ A destination address is required.

5.4.60.4 Description
The writev() call writes data on a socket with descrigtoThe data is gathered from the buffers specified by
iov[Q]..iov[iovcnt-1]. Theiovecstructure is defined in SYS\SOCKET.H and contains the following fields:

Element Description
iov_base Pointer to the buffer
iov_len Length of the buffer

Sockets — Page 199 of 379

writev()

The writev() call applies only to connected sockets.

This call writesiov_lenbytes of data. If there is not enough available buffer space to hold the socket data to be
transmitted, and the socket is in blocking mode, writev() blocks the caller until additional buffer space becomes
available. If the socket is in a nonblocking mode, writev() returA$ and sets the error code to
SOCEWOULDBLOCK. See 5.4.35, “ioctl()” on page 158 for a description of how to set nonblocking mode.

For datagram sockets, this call sends the entire datagram, providing the datagram fits into the TCPIP buffers.
Stream sockets act like streams of information with no boundaries separating data. For example, if an application
sends 1000 bytes, each call to this function can send 1 byte, or 10 bytes, or the entire 1000 bytes. Therefore,
applications using stream sockets must place this call in a loop, calling this function until all data has been sent.

5.4.60.5 Related Calls

connect()
getsockopt()
ioctl()
readv()
recv()
recvfrom()
select()
send()
sendto()
setsockopt()
sock_errno()
socket()

Page 200 of 379 — IBM TCP/IP for 4690 Application Interface Guide

6.0 Remote Procedure Calls (RPCs)

This chapter describes the high-level remote procedure calls (RPCs) implemented in TCP/IP for 46900S, including
the RPC programming interface to the C language and communication between processes.

The RPC protocol enables remote execution of subroutines across a TCP/IP network. RPC, together with the
eXternal Data Representation (XDR) protocol, defines a standard for representing data that is independent of
internal protocols or formatting. RPCs can communicate between processes on the same or different hosts.

The RPC protocol enables users to work with remote procedures as if the procedures were local. The remote
procedure calls are defined through routines contained in the RPC protocol. Each call message is matched with a
reply message. The RPC protocol is a message-passing protocol that implements other non-RPC protocols, such as
batching and broadcasting remote calls. The RPC protocol also supports callback procedures and the select
subroutine on the server side.

RPC provides an authentication process that identifies the server and client to each other. RPC includes a slot for
the authentication parameters on every remote procedure call so that the caller can identify itself to the server. The
client package generates and returns authentication parameters. RPC supports various types of authentication, such
as the UNIX* systems.

In RPC, each server supplies a program that is a set of procedures. The combination of a host address, a program
number, and a procedure number specifies one remote service procedure. In the RPC model, the client makes a
procedure call to send a data packet to the server. When the packet arrives, the server calls a dispatch routine,
performs whatever service is requested, and sends a reply back to the client. The procedure call then returns to the
client.

RPC is divided into two layers: intermediate and lowest. Generally, you use the RPC interface to communicate
between processes on different workstations in a network. However, RPC works just as well for communication
between different processes on the same workstation.

The Portmappér program maps RPC program and version numbers to a transport-specific port number. The
Portmapper program makes dynamic binding of remote programs possible.

To write network applications using RPC, programmers need a working knowledge of network theory and C
programming language. For most applications, understanding the RPC mechanisms usually hidden by the RPCGEN
protocol compiler is also helpful. However, RPCGEN makes understanding the details of RPC unnecessary.

Figure 14 on page 202 and Figure 15 on page 203 give an overview of the high-level RPC client and server
processes from initialization through cleanup.

For more information about the RPC and XDR protocols, see the Sun Microsystems pubhitti@rking on the
Sun Workstation: Remote Procedure Call Programming GURdeC 1057 and RFC 1014.

6.1 The RPC Interface

The RPC model is similar to the local procedure call model. In the local model, the caller places the argument to a
procedure in a specified location such as a result register. Then, the caller transfers control to the procedure. The
caller eventually regains control, extracts the results of the procedure, and continues the execution.

RPC works in the same way: One thread of control winds logically through the caller and server processes as
follows:

Remote Procedure Calls (RPCs) — Page 201 of 379

1. The caller process sends a call message that includes the procedure parameters to the server process and then
waits for a reply message (blocks).

2. A process on the server side, which is dormant until the arrival of the call message, extracts the procedure
parameters, computes the results, and sends a reply message. Then the server waits for the next call message.

3. A process on the caller side receives the reply message and extracts the results of the procedure. The caller
then resumes the execution.

See Figure 14 and Figure 15 on page 203 for an illustration of the RPC model.

(Begin)
TCP, UDP, or RAW get_myaddress UDP only
pmap_rmtcall
tcp
cint [:udp] _create
raw
Initialize
none— _create
auth [:um‘x] _Create
unix— _create_default
success error
v
cInt_call cInt_pcreateerror callrpc
v
Process XDR routines XDR routines
Call
success error success error
cInt_perrno
cInt_perror
c]nt_Teterr
Free v
Resources cInt_freeres
v
Final auth_destroy
Cleanup cInt_destroy

(End)

Figure 14. Remote Procedure Call (Client)

Page 202 of 379 — IBM TCP/IP for 4690 Application Interface Guide

TCP, UDP, or RAW

tep
sve [udp] _create
raw

xprt_register
svc_register

Initialize

UDP only
—>

A\
registerrpc

'

svc_run———>

svc_getargs

decode routines

}

success

svc_sendreply

y

pmap_set
Receive
Request
svc_getreq
Process XDR encode
error
Reply
svecerr_xxx
y
Cleanup &
Final \
Cleanup

4

pmap_unset

xprt_unregister
svc_unregister

(End)

Figure 15. Remote Procedure Call (Server)

Remote Procedure Calls (RPCs) — Page 203 of 379

6.2 Remote Programs and Procedures

The RPC call message has three unsigned fields:

e Remote program number
e Remote program version number
¢ Remote procedure number

The three fields uniquely identify the procedure to be called. The program number defines a group of related
remote procedures, each of which has a different procedure number. Each program also has a version number.

The central system authority administers the program number. A remote program number is assigned by groups of
0x20000000, as shown in the following list:

Program Number Description of Each Group

0-LXXXXXXX Is predefined and administered by the 46900S TCP/IP system.
20000000-3XXXXXXX Represents the user defined numbers

40000000-5XXXXXXX Represents transient numbers

60000000-7XXXXXXX Reserved

80000000-9XXXXXXX Reserved

a0000000-bxxxxxxx Reserved

c0000000-dXXXXXXX Reserved

€0000000-fXXXXXXX Reserved

6.3 Portmapper

The Portmapper protocol defines a network service that clients use to look up the port number of any remote
program supported by the server. The client programs must find the port numbers of the server programs that they
intend to use.
The Portmapper program:

e Maps RPC program and version numbers to transport specific port numbers.

* Makes dynamic binding of remote programs. This is desirable because the range of reserved port numbers is
small, and the number of potential remote programs is large. When running only the Portmapper program on a
reserved port, you can determine the port numbers of other remote programs by querying Portmapper.

e Supports both the UDP and TCP protocols.

The RPC client contacts Portmapper on port number 111 on either of these protocols.

6.3.1 Registering and Unregistering a Port with Portmapper

Portmapper is the only network service that must have a dedicated port (111). Other RPC network services can be
assigned port numbers statically or dynamically, if the services register their ports with the host’s local Portmapper.
The RPC server can register or unregister their services by using the following calls:

svc_register() Associates a program with the service dispatch routine

Page 204 of 379 — IBM TCP/IP for 4690 Application Interface Guide

svc_unregister() Removes all local mappings to dispatch routines and port nhumbers

registerrpc() Registers a procedure with the local Portmapper and creates a control structure to remember
the server procedure and its XDR routine

6.3.2 Contacting Portmapper

To find the port of a remote program, the client sends an RPC request to well-known port 111 of the server’s host.
If Portmapper has a port number entry for the remote program, Portmapper provides the port number in the RPC
reply. The client then requests the remote program by sending an RPC request to the port number provided by
Portmapper.

Clients can save port numbers of recently called remote programs to avoid having to contact Portmapper for each
request to a server.

RPC also provides the following calls for interfacing with Portmapper:

pmap_getmaps() Returns a list of current program-to-port mappings on the foreign host

pmap_getport() Returns the port number associated with the remove program, version, and transport protocol
pmap_rmtcall() Instructs Portmapper to make an RPC call to a procedure on the host

pmap_set() Sets the mapping of a program to a port on the local machine

pmap_unset() Removes mappings associated with the program and version number on the local machine
xdr_pmap() Translates an RPC procedure identification

xdr_pmaplist() Translates a variable number of RPC procedure identifications

6.3.3 Portmapper Procedures

The Portmapper program supports the following procedures:

Procedure Description

PMAPPROC_NULL Has no parameters. A caller can use the return code to determine if Portmapper is
running.

PMAPPROC_SET Registers itself with the Portmapper program on the same machine. It passes the:

e Program number

e Program version number
e Transport protocol number
e Port number

The procedure has successfully established the mapping if the return value is TRUE.
The procedure does not establish a mapping if one already exists.

PMAPPROC_UNSET Unregisters the program and version numbers with Portmapper on the same machine.

PMAPPROC_GETPORT Returns the port number when given a program number, version number, and transport
protocol number. A port value of 0 indicates the program has not been registered.

PMAPPROC_DUMP Takes no input, but returns a list of program, version, protocol, and port humbers.

PMAPPROC_CALLIT Allows a caller to call another remote procedure on the same machine without knowing
the remote procedure’s port number. The PMAPPROC_CALLIT procedure sends a
response only if the procedure is successfully run.

Remote Procedure Calls (RPCs) — Page 205 of 379

6.4 eXternal Data Representation (XDR)

An eXternal Data Representation (XDR) is a data representation standard that is independent of languages,
operating systems, manufacturers, and hardware architecture. This standard enables networked computers to share
data regardless of the machine on which the data is produced or consumed. The XDR language permits transfer of
data between diverse computer architectures and has been used to communicate data between diverse machines.

An XDR approach to standardizing data representations is canonical. That is, XDR defines a single byte (big
endian), a single floating-point representation (IEEE), and so on. Any program running on any machine can use
XDR to create portable data by translating its local representation to the XDR standards. Similarly, any program
running on any machine can read portable data by translating the XDR standard representations to its local
equivalents.

The XDR standard is the backbone of the RPC, because data for remote procedure calls is sent using the XDR
standard.

To use XDR routines, C programs must include the <RPC\XDR.H> header file, which is automatically included by
the <RPC\RPC.H> header file.

6.4.1 Basic Block Size

The XDR language is based on the assumption that bytes (an octet) can be ported to, and encoded on, media that
preserve the meaning of the bytes across the hardware boundaries of data. XDR does not represent bit fields or bit
maps; it represents data in blocks of multiples of 4 bytes (32 bits). If the bytes needed to contain the data are not a
multiple of four, enough (0 to 3) bytes to make the total byte count a multiple of four followhiytes. The

bytes are read from, or written to, a byte stream in order. The order dictates thatpgieedesn+l. Bytes are

ported and encoded from low order to high order in local area networks (LANs). Representing data in standardized
formats resolves situations that occur when different byte-ordering formats exist on networked machines. This also
enables machines with different structure-alignment algorithms to communicate with each other.

6.4.2 The XDR Subroutine Format

An XDR routine is associated with each data type. XDR routines have the following format:

xdr_xxx (xdrs,dp)
XDR *xdrs;
XXX *dp;

{

}

The routine has the following parameters:
XXX XDR data type.

xdrs Opaque handle that points to an XDR stream. The system passes the opaque handle pointer to the
primitive XDR routines.

dp Address of the data value that is to be encoded or decoded.

If they succeed, the XDR routines return a value of 1; if they do not succeed, they return a value of O.

6.4.3 XDR Data Types and their Filter Primitives

The following basic and constructed data types are defined in the XDR standard:

Page 206 of 379 — IBM TCP/IP for 4690 Application Interface Guide

* Integers » Structures

e Enumeration e Discriminated unions
e Booleans ¢ Void

* Floating-point decimals e Constants

e Opaque data e Typedef

e Arrays ¢ Optional data

e Strings ¢ Pointers

The XDR filter primitives are routines that define the basic and constructed data types. The XDR language
provides RPC programmers with a specification for uniform representation that includes filter primitives for basic
and constructed data types.

Remote Procedure Calls (RPCs) — Page 207 of 379

The basic data types include:

e Integers e Void

e Enumeration e Constants

e Booleans e Typedef

e Floating point decimals ¢ Optional data

The constructed data types include:

e Arrays e Structures
e Opaque data ¢ Discriminated unions
e Strings e Pointers

e Byte arrays

The XDR standard translates both basic and constructed data types. For basic data types such as integer, XDR
provides basic filter primitives that:

e Serialize information from the local host's representation to XDR representation

e Deserialize information from the XDR representation to the local host’s representation
For constructed data types, XDR provides constructed filter primitives that allow the use of basic data types (such
as integers and floating-point numbers) to create more complex constructs (such as arrays and discriminated
unions).
6.4.3.1 Integer Filter Primitives

The XDR filters cover signed and unsigned integers, as well as signed and unsigned short and long integers.

The routines for XDR integer filters are:

xdr_int() Translates between C integers and their external representations

xdr_u_int() Translates between C unsigned integers and their external representations
xdr_long() Translates between C long integers and their external representations
xdr_u_long() Translates between C unsigned long integers and their external representations
xdr_short() Translates between C short integers and their external representations

xdr_u_short() Translates between C unsigned short integers and their external representations
6.4.3.2 Enumeration Filter Primitives
The XDR library provides a primitive for generic enumerations based on the assumption that a C enumeration value

(enum) has the same representation. A special enumeration in XDR, knownBa®lian provides a value of O
or 1 represented internally in a binary notation.

Page 208 of 379 — IBM TCP/IP for 4690 Application Interface Guide

The routines for the XDR library enumeration filters are:
xdr_enum() Translates between C language enums and their external representations

xdr_bool() Translates between Booleans and their external representations
6.4.3.3 Floating-Point Filter Primitives

The XDR library provides primitives that translate between floating-point data and their external representations.
Floating-point data encodes an integer with an exponent. Floats and double-precision numbers compose
floating-point data.

Note: Numbers are represented as Institute of Electrical and Electronics Engineers (IEEE) standard floating points.
Routines might fail when decoding IEEE representations into machine specific representations.

The routines for the XDR floating-point filters are:

xdr_float() Translates between C language floats and their external representations

xdr_double() Translates between C language double-precision humbers and their external representations
6.4.3.4 Opague Data Filter Primitive

Opaque data is composed of bytes of a fixed size that are not interpreted as they pass through the data streams.
Opague data bytes, such as handles, are passed between server and client without being inspected by the client.
The client uses the data as it is and then returns it to the server. By definition, the actual data contained in the
opaque object is not portable between computers.

The XDR library includes the following routine for opaque data:

xdr_opaque() Translates between opaque data and its external representation
6.4.3.5 Array Filter Primitives

Arrays are constructed filter primitives that can be generic arrays or byte arrays. The XDR library provides filter
primitives for handling both types of arrays.

6.4.3.5.1 Generic Arrays: These consist of arbitrary elements. You use them in much the same way as byte
arrays, which handle a subset of generic arrays where the size of the elements is 1 and their external descriptions
are predetermined. The primitive for generic arrays requires an additional parameter to define the size of the
element in the array and to call an XDR routine to encode or decode each element in the array.

The XDR library includes the following routines for generic arrays:

xdr_array() Translates between variable-length arrays and their corresponding external representations
xdr_vector() Translates between fixed-length arrays and their corresponding external representations
6.4.3.5.2 Byte Arrays: These differ from strings by having a byte count. That is, the length of the array is set
to an unsigned integer. They also differ in that byte arrays do not end with a null character. The XDR library
provides a primitive for byte arrays. External and internal representations of byte arrays are the same.

The XDR library includes the following routine for byte arrays:

xdr_bytes() Translates between counted byte string arrays and their external representations

Remote Procedure Calls (RPCs) — Page 209 of 379

6.4.3.6 String Filter Primitives

A string is a constructed filter primitive that consists of a sequence of bytes terminated by a null byte. The null
byte does not figure into the length of the string. Externally, strings are represented by a sequence of American
Standard Code Information Interchange (ASCII) characters. Internally, XDR represents them as pointers to
characters with the designatichar =*.

The XDR library includes primitives for the following string routines:

xdr_string() Translates between C language strings and their external representations

xdr_wrapstring() Calls the xdr_string subroutine
6.4.3.7 Primitive for Pointers to Structures

The XDR library provides the primitive for pointers so that structures referenced within other structures can be
easily serialized, deserialized, and released.
The XDR library includes the following routine for pointers to structures:

xdr_reference() Provides pointer chasing within structures
6.4.3.8 Primitive for Discriminated Unions

A discriminated union is a C language union, which is an object that holds several data types. One arm of the
union contains an enumeration value (enum_t), or discriminant, that holds a specific object to be processed over the
system first.

The XDR library includes the following routine for discriminated unions:

xdr_union() Translates between discriminated unions and their external representations
6.4.3.9 Passing Routines without Data
Sometimes an XDR routine must be supplied to the RPC system, but no data is required or passed. The XDR

library provides the following primitive for this function:

xdr_void() Supplies an XDR subroutine to the RPC system without sending data

6.4.4 XDR Nonfilter Primitives

Use the XDR nonfilter primitives to create, manipulate, implement, and destroy XDR data streams. These
primitives allow you to:

e Describe the data stream position
e Change the data stream position
* Destroy a data stream

6.4.4.1 Creating and Using XDR Data Streams

You get XDR data streams by calling creation routines that take arguments specifically designed to the properties of
the stream. There are existing XDR data streams for serializing or deserializing data in standard input and output
streams, memory streams, and record streams.

Note: RPC clients do not have to create XDR streams, because the RPC system creates and passes these streams
to the client.

Page 210 of 379 — IBM TCP/IP for 4690 Application Interface Guide

The types of data streams include:

e Standard I/O streams
e Memory streams
e Record streams

6.4.4.1.1 Standard I/O Streams: XDR data streams serialize and deserialize standard input/output(1/0) by
calling the standard 1/O creation routine to initialize the XDR data stream pointed to Xgrstparameter.

The XDR library includes the following routine for standard 1/O data streams:

xdrstdio_create() Initializes the XDR data stream pointed to bxdheparameter

6.4.4.1.2 Memory Streams: XDR data streams serialize and deserialize data from memory by calling the XDR
memory creation routine to initialize, in local memory, the XDR stream pointed at byglthparameter. In RPC,

the UDP/IP implementation of remote procedure calls uses this routine to build entire call and reply messages in
memory before sending the message to the recipient.

The XDR library includes the following routine for memory data streams:

xdrmem_create() Initializes, in local memory, the XDR stream pointed to bydtseparameter

6.4.4.1.3 Record Streams: Record streams are XDR streams built on top of record fragments, which are built

on TCP/IP streams. TCP/IP is a connection protocol for transporting large streams of data at one time rather than
transporting a single data packet at a time.

The primary use of a record stream is to interface remote procedure calls to TCP connections. It can also be used
to stream data into or out of normal files.

Remote Procedure Calls (RPCs) — Page 211 of 379

XDR provides the following routines for use with record streams:

xdrrec_create() Provides an XDR stream that can contain long sequences of records
xdrrec_endofrecord() Causes the current outgoing data to be marked as a record

xdrrec_skiprecord() Causes the position of an input stream to move to the beginning of the next record

xdrrec_eof() Checks the buffer for an input stream that identifies the end of file (EOF)
6.4.4.2 Manipulating an XDR Data Stream

XDR provides the following routines for describing the data stream position and changing the data stream position:

the current position in the data stream
6.4.4.3 Implementing an XDR Data Stream

You can create and implement XDR data streams. The following example shows the abstract data types (XDR
handle) required for you to implement your own XDR streams. They contain operations applied to the stream (an
operation vector for the particular implementation) and two private fields for using that implementation.

enum xdr_op { XDR_ENCODE=0, XDR DECODE=1, XDR_FREE=2 };
typedef struct xdr {
enum xdr_op Xx_op;
struct xdr_ops {
bool t (*x_getlong) (struct xdr *, Tong *);
bool t (*x_putlong) (struct xdr *, long *);
bool t (*x_getbytes)(struct xdr *, caddr_t, u_int);
/* get some bytes from " */
bool t (*x_putbytes)(struct xdr *, caddr_t, u_int);
/* put some bytes to " =%/
u_int (*x_getpostn) (struct xdr =*);
bool_t (*x_setpostn) (struct xdr *,u_int);
Tong * (*x_inline)(struct xdr *,u_int);

void (*x_destroy) (struct xdr *);
} *x_ops;
caddr_t X_public;
caddr_t x_private;
caddr_t x_base;
int X_handy;

} XDR;

Page 212 of 379 — IBM TCP/IP for 4690 Application Interface Guide

The following parameters are pointers to XDR stream manipulation routines:

Parameter Description

Xx_getlong Gets long integer values from the data stream.
X_putlong Puts long integer values into the data stream.
x_getbytes Gets bytes from the data streams.

X_putbytes Puts bytes into the data streams.

X_getpostn Returns the stream offset.

X_setpostn Repositions the offset.

x_inline Points to an internal data buffer, used for any purpose.
x_destroy Frees the private data structure.
X_0ps Specifies the current operation being performed on the stream. This field is important to the XDR

primitives, but the stream’s implementation does not depend on the value of this parameter.

The following fields are specific to a stream’s implementation:

Field Description

x_public Specific user data that is private to the stream’s implementation and that is not used by the XDR
primitive

X_private Points to the private data

x_base Contains the position information in the data stream that is private to the user implementation

x_handy Data can contain extra information as necessary
6.4.4.4 Destroying an XDR Data Stream

XDR provides a routine that destroys the XDR stream pointed to bydtkgarameter and frees the private data
structures allocated to the stream.

xdr_destroy() Destroys the XDR stream pointed to byxtirs parameter

The use of the XDR stream handle is undefined after it is destroyed.

6.5 RPC Intermediate Layer

The calls of the RPC intermediate layer are:

registerrpc() Registers a procedure with the local Portmapper
callrpc() Calls a remote procedure on the specified system
svc_run() Accepts RPC requests and calls the appropriate service using svc_getreq()

The transport mechanism is the User Datagram Protocol (UDP). The UDP transport mechanism handles only
arguments and results that are less than 8K bytes in length. At this level, RPC does not allow time-out
specifications, choice of transport, or process control, in case of errors. If you need this kind of control, consider
the lowest layer of RPC.

Remote Procedure Calls (RPCs) — Page 213 of 379

With only these three RPC calls, you can write a powerful RPC-based network application. The sequence of events
follows:

1. Use the registerrpc() call to register your remote program with the local Portmapper. See 6.3, “Portmapper” on
page 204 for more information. The following is an example of an RPC server:

/* define remote program number and version x/

#define RMTPROGNUM (u_long)Ox3fffffffL
#define RMTPROGVER (u_Tlong)0x1
#define RMTPROCNUM (u_long)0x1

#include <stdio.h>
#include <rpc\rpc.h>

main()

{
int *rmtprog();

/* register remote program with portmapper */
registerrpc (RMTPROGNUM, RMTPROGVER, RMTPROCNUM, rmtprog,
xdr_int, xdr_int);

/* infinite loop, waits for RPC request from client */

svc_run();
printf("Error: svc_run should never reach this point \n");
exit(1);
}
int *
rmtprog(inproc) /* remote program */

int *inproc;

{

int *outproc;
/* Process request */

return (outproc);

}

The registerrpc() call registers a C procedure rmtprog, which corresponds to a given RPC procedure number.
The registerrpc() call has six parameters:

e The first three parameters, RMTPROGNUM, RMTPROGVER, and RMTPROCNUM, are the program,
version, and procedure numbers of the remote procedure to be registered.

e The fourth parameter, rmtprog, is the name of the local procedure that implements the remote procedure.
e The last two parameters, xdr_int, are the XDR filters for the remote procedure’s arguments and results.
After registering a procedure, the RPC server goes into an infinite loop waiting for a client request to service.

2. The RPC client uses callrpc() to make a service request to the RPC server. The following is an example of an
RPC client using the callrpc() call:

/* define remote program number and version */

Page 214 of 379 — IBM TCP/IP for 4690 Application Interface Guide

#define RMTPROGNUM (u_long)Ox3fffffffL
#define RMTPROGVER (u_Tong)0xl
#define RMTPROCNUM (u_long)0x1

#include <stdio.h>
#include <rpc\rpc.h>

main()

{

int inproc=100, outproc, rstat;

/* service request to host RPCSERVER HOST =*/
if (rstat = callrpc("RPCSERVER_HOST", RMTPROGNUM,
RMTPROGVER, RMTPROCNUM, xdr_int, (char =*)&inproc,
xdr_int, (char *)&outproc)!= 0)
{
cint_perrno(rstat); /* Why callrpc() failed ? */
exit(1);
}

}
The callrpc() call has eight parameters:
e The first is the name of the remote server machine.
¢ The next three parameters are the program, version, and procedure numbers.

¢ The fifth and sixth parameters are an XDR filter, and an argument to be encoded and passed to the remote
procedure.

e The final two parameters are a filter for decoding the results returned by the remote procedure, and a
pointer to the place where the procedure’s results are to be stored.

You handle multiple arguments and results by embedding them in structures. The callrpc() call returns O if it
succeeds, otherwise nonzero. The exact meaning of the returned code is in the <RPC\CLNT.H> header file
and is an enunaint_statstructure cast into an integer.

6.6 RPC Lowest Layer

Use the lowest layer of RPC in the following situations:

e You need to use TCP. The intermediate layer uses UDP, which restricts RPC calls to 8K bytes of data. TCP
permits calls to send long streams of data.

e You want to allocate and free memory while serializing or deserializing messages with XDR routines. No RPC
call at the intermediate level explicitly permits freeing memory. XDR routines are used for memory allocation
as well as for serializing and deserializing.

e You need to perform authentication on the client side or the server side by supplying credentials or verifying
them.

6.6.1.1 Server Side Program
The following is an example of the lowest layer of RPC on the server side program:

Remote Procedure Calls (RPCs) — Page 215 of 379

#define RMTPROGNUM (u_long)Ox3fffffffL
#define RMTPROGVER (u_Tong)Ox1L
#define LONGPROC 1

#define STRINGPROC 2

#define MAXLEN 100
#include <stdio.h>
#include <rpc\rpc.h>

#include <sys\socket.h>

main(argc, argv)

int argc;
char *argv[];
{

int rmtprog();
SVCXPRT =*transp;

/* create TCP transport handle */
transp = svctcp_create(RPC_ANYSOCK, 1024*10, 1024*10);
/* or create UDP transport handle */
/* transp = svcudp_create(RPC_ANYSOCK); =*/
if (transp == NULL) /% check transport handle creation */
{
fprintf(stderr, "can't create an RPC server transport\n");
exit(-1);
}

/* If exists, remove the mapping of remote program and port x/
pmap_unset (RMTPROGNUM, RMTPROGVER);

/* register remote program (TCP transport) with Tocal portmapper */
if (!svc_register(transp, RMTPROGNUM, RMTPROGVER, rmtprog,
IPPROTO_TCP))
/* or register remote program (UDP transport) with Tocal portmapper */
/* if (!svc_register(transp, RMTPROGNUM, RMTPROGVER, rmtprog,=*/
/* IPPROTO_UDP)) =*/
{

fprintf(stderr, "can't register rmtprog() service\n");
exit(-1);
1

svc_run();
printf("Error:svc_run should never reaches this point \n");
exit(1l);

}

rmtprog(rqgstp, transp) /* code for remote program =*/
struct svc_req *rgstp;
SVCXPRT =*transp;
{
long in_long,out_long;
char buf[100], *in_string=buf, *out_string=buf;

Page 216 of 379 — IBM TCP/IP for 4690 Application Interface Guide

switch((int)rgstp->rq_proc) /* Which procedure ? */
{
case NULLPROC:

if (!Isvc_sendreply(transp,xdr_void, 0))
{
fprintf(stderr,"can't reply to RPC call\n");
exit(-1);
}

return;
case LONGPROC:

/* Process the request */
if (!svc_sendreply(transp,xdr_Tong,&out Tong))
{
fprintf(stderr,"can't reply to RPC call\n");
exit(-1);
}

return;

case STRINGPROC: /* send received "Hello" message back */
/* to client */
svc_getargs(transp,xdr_wrapstring, (char *)&in_string);
strcpy(out_string,in_string);

/* send a reply back to a RPC client x/
if (!svc_sendreply(transp,xdr_wrapstring,
(char *)&out_string))
{

fprintf(stderr,"can't reply to RPC call\n");
exit(-1);
}
return;
case ... :

/* Any Remote procedure in RMTPROGNUM program */
default:
/* Requested procedure not found */

svcerr_noproc(transp);
return;

}

The following steps describe the lowest layer of RPC on the server side program:

1. Service the transport handle.

The svctcp_create() and svcudp_create() calls create TCP and UDP transport handles (SVCXPRT) respectively,
used for receiving and replying to RPC messages. The SVCXPRT transport handle structure is defined in the
<RPC\SVC.H> header file.

If the argument of the svctcp_create() call is RPC_ANYSOCK, the RPC library creates a socket on which to
receive and reply to remote procedure calls. The svctcp_create() and cinttcp_create() calls cause the RPC
library calls to bind the appropriate socket, if it is not already bound.

If the argument of the svctcp_create() call is not RPC_ANYSOCK, the svctcp_create() call expects its argument
to be a valid socket number. If you specify your own socket, it can be bound or unbound. If it is bound to a
port by you, the port numbers of the svctcp_create() and cinttcp_create() calls must match.

Remote Procedure Calls (RPCs) — Page 217 of 379

If the send and receive buffer size parameter of svctcp_create() is 0, the system selects a reasonable default.

. Register the rmtprog service with Portmapper.

If the rmtprog service terminated abnormally the last time it was used, the pmap_unset() call erases any trace of
it before restarting. The pmap_unset() call erases the entry for RMTPROGNUM from the Portmapper’s table.

A service can register its port number with the local Portmapper service by specifying a nonzero protocol
number in the svc_register() call. A programmer at the client machine can determine the server port number by
consulting Portmapper at the server machine. You can do this automatically by specifying O as the port
number in the cintudp_create() or cinttcp_create() calls.

Finally, the program and version number are associated with the rmtprog procedure. The final argument to the
svc_register() call is the protocol being used, which in this case is IPPROTO_TCP. Register at the program
level, not at the procedure level.

. Run the remote program RMTPROG.

The rmtprog service routine must call and dispatch the appropriate XDR calls based on the procedure number.
Unlike the registerrpc() call, which performs them automatically, the rmtprog routine requires two tasks:

e When the NULLPROC procedure (currently 0) returns with no results, use it as a simple test for detecting
whether a remote program is running.

e Check for incorrect procedure numbers. If you detect one, call the svcerr_noproc() call to handle the error.

As an example, the procedure STRINGPROC has an argument for a character string and returns the character
string back to the client. The svc_getargs() call takes an SVCXPRT handle, the xdr_wrapstring() call, and a
pointer that indicates where to place the input.

The user service (rmtprog) serializes the results and returns them to the RPC caller through the svc_sendreply()
call.

Parameters of the svc_sendreply() call include the:

e SVCXPRT handle
¢ XDR routine, which indicates return data type
e Pointer to the data to be returned

6.6.1.2 Client Side Program

The following is an example of the lowest layer of RPC on the client side program:

#define RMTPROGNUM (u_long)Ox3fffffffL
#define RMTPROGVER (u_long)Ox1L
#define STRINGPROC (u_Tlong)2

#include <stdio.h>
#include <rpc\rpc.h>
#include <sys\socket.h>
#include <netdb.h>

main(argc, argv)
int argc;
char *argv[];

{

struct hostent *hp;

struct timeval pertry timeout, total timeout;

struct sockaddr_in server_addr;

int sock = RPC_ANYSOCK;

static char buf[100], *strc_in= "Hello", *strc_out=buf;
char xparrc_in, #*parrc_out;

Page 218 of 379 — IBM TCP/IP for 4690 Application Interface Guide

register CLIENT *clnt;
enum clInt_stat cs;

/* get the Internet address of RPC server host */
if ((hp = gethostbyname("RPCSERVER HOST")) == NULL)
{
fprintf(stderr,"Can't get address for %s\n","RPCSERVER HOST");
exit (-1);
}

pertry timeout.tv_sec = 3;
pertry timeout.tv_usec = 0;

/* set sockaddr_in structure =/

bcopy (hp->h_addr, (caddr_t)&server_addr.sin_addr.s_addr,
hp->h_length);

server_addr.sin_family = AF_INET;

server_addr.sin_port = 0;

/* create cInt TCP handle */
if ((cInt = cInttcp_create(&server_addr, RMTPROGNUM, RMTPROGVER,
&sock, 1024x10, 1024%10)) == NULL)

{
cint_pcreateerror("cinttcp create fail"); /+ Why failed ? */
exit(-1);
}
* create cInt UDP handle
* if ((cInt = cIntudp_create(&server_addr, RMTPROGNUM, RMTPROGVER,
* pertry timeout, &sock)) == NULL)
*
{
* cInt_pcreateerror("cintudp_create fail");
* exit(-1);
*)
*/

total_timeout.tv_sec = 10;
total timeout.tv_usec = 0;

/*call the remote procedure STRINGPROC associated with =/
/*client handle (clInt) =/
cs=cInt_call(cInt, STRINGPROC,xdr wrapstring,
(char *)&strc_in[j],
xdr_wrapstring, (char *)&strc_out,total timeout);
if (cs !'= RPC_SUCCESS)
printf("*Error* cint_call fail :\n");

cInt_destroy(cint); /* deallocate any memory associated =*/
/* with cInt handle */

Remote Procedure Calls (RPCs) — Page 219 of 379

The following steps describe the lowest layer of RPC on the client side program:
1. Determine the internet address of the RPC server host.

Use the gethostbyname() call to determine the internet address of the host, which is running the RPC server.
Initialize thesocaddr_instructure, found in the <NETINET\IN.H> header file.

If you are not familiar with socket calls, see 5.0, “Sockets.”
2. Use the client RPC handle.

The cinttcp_create() and cIntudp_create() calls create TCP and UDP client RPC handles (CLIENT),
respectively. The CLIENT structure is defined in the <RPC\CLNT.H> header file.

There are six parameters for the cinttcp_create() call:

e Server address

e Program number

e Version number

e Pointer to a valid socket descriptor
Send buffer size

e Receive buffer size

Use the same parameters for the cIntudp_create() call, except for the send and receive buffer size. Instead,
specify a time-out value (between tries).

3. Call the remote procedure.
The low-level version of the callrpc() call is the cInt_call(), which has seven parameters:

e CLIENT pointer

e Remote procedure number (STRINGPROC)

e XDR call for serializing the argument

e Pointer to the argument

e XDR call for deserializing the return value from the RPC server
e Pointer to where the return value is to be placed

e Total time in seconds to wait for a reply

For UDP transport, the number of tries is the cint_call() time-out divided by the cIntudp_create() time-out.

The return code RPC_SUCCESS indicates a successful call; otherwise, an error has occurred. You find the
RPC error code in the <RPC\CLNT.H> header file.

The cInt_destroy() call always deallocates the space associated with the client handle. If the RPC library
opened the socket associated with the client handle, the cInt_destroy() call closes it. If you open the socket, it
stays open.

Page 220 of 379 — IBM TCP/IP for 4690 Application Interface Guide

6.7 rpcgen Command

Use therpcgen command to generate C code to implement an RPC protocol. The input to RPCGEN is a language
similar to C, known as RPC language.

You normally useapcgen infile to generate the following four output files. For example, ifittiige is named
PROTO.X,rpcgen generates:

¢ A header file called PROTO.H

e XDR routines called PROTOX.C

e Server-side stubs called PROTOS.C
¢ Client-side stubs called PROTOC.C

6.7.1 Syntax

»»—rpcgen—infile—><

|
»><4

»— ! -
rpesen E-:j L -0 out‘fileJ l—infileJ

»>—rpcgen— -S transport |_ il J l_- o J > <
-0 outfile infile

-C Compiles into XDR routines.
-h Compiles into C data definitions (a header file).

-l Compiles into client-side stubs.

-m Compiles into server-side stubs without generating a main routine.

-0 outfile Specifies the name of the output file. If none is specified, standard output is used for -c, -h, -I, -m, and
-s modes.

infile Specifies the name of the input file written in the RPC language.

-s transport
Compiles into server-side stubs, using the given transport.

Remote Procedure Calls (RPCs) — Page 221 of 379

For more information on thepcgen command, see the Sun Microsystems publicati@tyworking on the Sun
Workstation: Remote Procedure Call Programming Guide

Page 222 of 379 — IBM TCP/IP for 4690 Application Interface Guide

rpcinfo

6.8 rpcinfo Command

Therpcinfo command makes an RPC call to the RPC server and reports the status of the server, which is registered
and operational with Portmapper

6.8.1 Syntax

6.9 adxhsirl(rpcinfo)

The rpcinfo command makes an RPC call to the RPC server and reports the status of the server, which is registered
and operational with the Portmapper.

6.9.1 Syntax

rpcinfo for a Host
|—10ca1_host—

\ 4
A

»»—rpcinfo— -p

|—hos t————

rpcinfo for a Host Using UDP

»»—rpcinfo -u host prognum
L -n por‘tnum—l |—versnumJ

\ 4
A

rpcinfo for a Host Using TCP

»»—rpcinfo -t host prognum—l_—m_l—N
L -n por*tnum—l versnu

rpcinfo for a Broadcast to Hosts Using UDP
»—rpcCi nfo—l_—_l—prognum—versnum—><

-p host Queries the Portmapper about the specified host and prints a list of all registered RPC programs. If the
host is not specified, the system defaults to the local host name.

-n portnum
Specifies the port number to be used for the -t and -u parameters. This value replaces the port number
that is given by the Portmapper.

-u host prognumversnum
Sends an RPC call to procedure Qpadgnumandversnumon the specified host using UDP and
reports whether a response is received.

-t host prognumversnum
Sends an RPC call to procedure Qpadgnumandversnumon the specified host using TCP and reports
whether a response is received.

-b prognum versnum
Sends an RPC broadcast to procedure 0 of the spepifigthumandversnumusing UDP and reports
all hosts that respond.

Remote Procedure Calls (RPCs) — Page 223 of 379

rpcinfo

The prognumargument can be either a name or a number. If you speeiysaum therpcinfo command tries to
call that version of the specified program. Otherwise, it tries to find all the registered version numbers for the
program you specify by calling version 0O; then it tries to call each registered version.

The following file is associated with thipcinfo command:

ADX_UPGM\RPC.DAT Contains a list of server names and their corresponding RPC program numbers and
aliases

6.9.1.1.1 Example 1: Use therpcinfo command as follows to display RPC services registered on the local host:

rpcinfo -p

6.9.1.1.2 Example 2: Use therpcinfo command as follows to display RPC services registered on a remote host

namedcharm;

rpcinfo -p charm

6.9.1.1.3 Example 3: Use therpcinfo command as follows to display the status of a particular RPC program on

the remote host nametharm:

rpcinfo -u charm 100003 2

or

rpcinfo -u charm nfs 2

In the previous examples, thpcinfo command shows one of the following:

Program 100003 Version 2 ready and waiting

or

Program 100003 Version 2 is not available

6.9.1.1.4 Example 4: Use therpcinfo command as follows to display all hosts on the local network that are
running a certain version of a specific RPC server:

rpcinfo -b 100003 2

or

rpcinfo -b nfsprog 2

In these examples, thpcinfo command lists all hosts that are running Version 2 of the NFS daemon.

Note: The version number is required for the -b parameter.

6.10 enum cint_stat Structure

The enunxint_statstructure is defined in theRPC\CLNT.H- file. RPCs frequently return enuaint_stat
information. The format of the enunint_statstructure follows:

enum cInt_stat {

RPC_SUCCESS=0, /* call succeeded */

/*

* Jocal errors

*/

RPC_CANTENCODEARGS=1, /* can't encode arguments */
RPC_CANTDECODERES=2, /* can't decode results */
RPC_CANTSEND=3, /* failure in sending call =*/

Page 224 of 379 — IBM TCP/IP for 4690 Application Interface Guide

rpcinfo

RPC_CANTRECV=4, /* failure in receiving result */
RPC_TIMEDOUT=5, /* call timed out */

/*

* remote errors

*/

RPC_VERSMISMATCH=6, /* RPC versions not compatible */
RPC_AUTHERROR=7, /* authentication error =/
RPC_PROGUNAVAIL=8, /* program not available */
RPC_PROGVERSMISMATCH=9, /* program version mismatched =/
RPC_PROCUNAVAIL=10, /* procedure unavailable */
RPC_CANTDECODEARGS=11, /* decode arguments error */
RPC_SYSTEMERROR=12, /* generic "other problem" =*/

/*

* callrpc errors

*/

RPC_UNKNOWNHOST=13, /* unknown host name */

/*

* Ccreate errors

*/

RPC_PMAPFAILURE=14, /* the pmapper failed in its call */
RPC_PROGNOTREGISTERED=15, /* remote program is not registered =*/
/*

* unspecified error

*/

RPC_FAILED=16
}s

6.11 Remote Procedure Call Library

To use the RPCs described in this chapter, you must have the following header files on your system:
RPC Header File What It Contains

RPC\AUTH.H Authentication interface

RPC\AUTH_UNI.H Protocol for UNIX-style authentication parameters for RPC

RPC\CLNT.H Client-side remote procedure call interface

RPC\PMAP_CLN.H Supplies C routines to get to PORTMAP services

RPC\PMAP_PRO.H Protocol for the local binder service, or pmap

RPC\RPC.H Includes the RPC header files necessary to do remote procedure calling
RPC\RPC_MSG.H Message definitions

RPC\RPCNETDB.H Data definitions for network utility calls

RPC\RPCTYPES.H RPC additions 4@ YPES.H-

RPC\SVC.H Server-side remote procedure call interface

RPC\SVC_AUTH.H Service side of RPC authentication

RPC\XDR.H eXternal Data Representation serialization routines
The RPC routines are in the ADXHSIRL.L86 file.

Put the following statement at the beginning of any file using RPC code:

Remote Procedure Calls (RPCs) — Page 225 of 379

rpcinfo

#include <rpc\rpc.h>

You must define the OS2 variable by doing one of the following:
e Place#define 0S2 at the top of each file that includes TCP/IP header files.

e Use the-def 0S2 option when compiling the source for your application.

Note this is really 'OS2', not '4690'.

6.12 Porting an RPC API Application

The IBM 46900S RPC implementation differs from the Sun Microsystems RPC implementation as follows:

e The global variablesvc_socks[Jandnoregisteredare used in place of ttevc_fdsglobal variable. See 6.13.33,
“svc_socks []” on page 272 for the use of these variables.

e Functions that rely on file descriptor structures are not supported.

e The svc_getreq() call supports thecksandnoavail global variables. In the Sun Microsystems
implementation, the svc_getreq() call supportsrttids global variable.

e TYPES.H for RPC has been renamed to RPCTYPES.H.

6.13 Remote Procedure and eXternal Data Representation
Calls

This section provides the syntax, parameters, and other appropriate information for each remote procedure and
eXternal Data Representation call supported by TCP/IP for 46900S.

Page 226 of 379 — IBM TCP/IP for 4690 Application Interface Guide

auth_destroy()

6.13.1 auth_destroy()

The auth_destroy() call destroys authentication information.

6.13.1.1 Syntax

#include <rpc\rpc.h>

void
auth_destroy(auth)
AUTH *auth;

6.13.1.2 Parameter

auth
Pointer to authentication information

6.13.1.3 Description

The auth_destroy() call deletes the authentication informatioauibr After you call this procedurguth is
undefined.

6.13.1.4 Related Calls
authnone_create()

authunix_create()
authunix_create_default()

Remote Procedure Calls (RPCs) — Page 227 of 379

authnone_create()

6.13.2 authnone_create()
The authnone_create() call creates and returns a NULL RPC authentication handle.

6.13.2.1 Syntax

#include <rpc\rpc.h>

AUTH =*
authnone_create()

6.13.2.2 Description

The authnone_create() call creates and returns an RPC authentication handle. The handle passes the NULL
authentication on each call.

6.13.2.3 Related Calls
auth_destroy()

authunix_create()
authunix_create_default()

Page 228 of 379 — IBM TCP/IP for 4690 Application Interface Guide

authunix_create()

6.13.3 authunix_create()
The authunix_create() call creates and returns a UNIX-based authentication handle.

6.13.3.1 Syntax

#include <rpc\rpc.h>

AUTH =*

authunix_create(host, uid, gid, len, aup_gids)
char *host;

int uid;

int gid;

int len;

int *aup gids;

6.13.3.2 Parameters

host
Pointer to the symbolic name of the host where the desired server is located
uid
User’s user ID
gid
User’s group ID
len
Length of the information pointed to ayp_gids
aup_gids

Pointer to an array of groups to which the user belongs
6.13.3.3 Description

The authunix_create() call creates and returns an authentication handle that contains UNIX-based authentication
information.

6.13.3.4 Related Calls
auth_destroy()

authnone_create()
authunix_create_default()

Remote Procedure Calls (RPCs) — Page 229 of 379

authunix_create_default()

6.13.4 authunix_create default()
The authunix_create_default() call calls authunix_create() with default parameters.

6.13.4.1 Syntax

#include <rpc\rpc.h>

AUTH =*
authunix_create_default()

6.13.4.2 Description

The authunix_create_default() call calls authunix_create() with default parameters.
6.13.4.3 Related Calls

auth_destroy()

authnone_create()
authunix_create()

Page 230 of 379 — IBM TCP/IP for 4690 Application Interface Guide

callrpc()

6.13.5 callrpc()

The callrpc() call calls remote procedures.

6.13.5.1 Syntax

#include <rpc\rpc.h>

enum cInt_stat

callrpc(host, prognum, versnum, procnum, inproc, in, outproc, out)
char xhost;

u_long prognum;

u_long versnum;

u_long procnum;

xdrproc_t inproc;

char *in;

xdrproc_t outproc;

char *out;

6.13.5.2 Parameters

host

Pointer to the symbolic name of the host where the desired server is located
prognum

Program number of the remote procedure
versnum

Version number of the remote procedure
procnum

Procedure number of the remote procedure
inproc

XDR procedure used to encode the arguments of the remote procedure
in

Pointer to the arguments of the remote procedure
outproc

XDR procedure used to decode the results of the remote procedure
out

Pointer to the results of the remote procedure
6.13.5.3 Return Values

RPC_SUCCESS indicates success; otherwise, an error has occurred. The results of the remote procedure call return
to out

Remote Procedure Calls (RPCs) — Page 231 of 379

callrpc()

6.13.5.4 Description

The callrpc() call calls the remote procedure describegrbdgnum versnum andprocnumrunning on théhost
system. It encodes and decodes the parameters for transfer.

Notes:
1. You can use cint_perrno() to translate the return code into messages.
2. callrpc() cannot call the procedure xdr_enum. See 6.13.53, “xdr_enum()” on page 294 for more information.

3. This procedure uses UDP as its transport layer. See 6.13.16, “clntudp_create()” on page 247 for more
information.

6.13.5.5 Example

#define RMTPROGNUM (u_long)0Ox3ffffffflL
#define RMTPROGVER (u_Tlong)0x1
#define RMTPROCNUM (u_long)0x1

int inproc=100, outproc, rstat;

/* service request to host RPCSERVER HOST */
if (rstat = callrpc("RPCSERVER_HOST", RMTPROGNUM, RMTPROGVER, RMTPROCNUM,
xdr_int, (char *)&inproc, xdr_int,
(char *)&outproc)!= 0)
{
cint_perrno(rstat);
exit(1);
}

6.13.5.6 Related Calls

cint_call()
clnt_perrno()
cintudp_create()

Page 232 of 379 — IBM TCP/IP for 4690 Application Interface Guide

cInt_broadcast()

6.13.6 cInt_broadcast()

The cInt_broadcast() call broadcasts a remote program to all locally connected broadcast networks.

6.13.6.1 Syntax

#include <rpc\rpc.h>

enum cInt_stat

cInt_broadcast(prognum, versnum, procnum, inproc, in,
outproc, out, eachresult)

u_long prognum;

u_long versnum;

u_long procnum;

xdrproc_t inproc;

caddr_t in;

xdrproc_t outproc;

caddr_t out;

resultproc_t eachresult;

6.13.6.2 Parameters

prognum
Program number of the remote procedure
versnum
Version number of the remote procedure
prochum
Procedure number of the remote procedure
inproc
XDR procedure used to encode the arguments of the remote procedure
in
Pointer to the arguments of the remote procedure
outproc
XDR procedure used to decode the results of the remote procedure
out
Pointer to the results of the remote procedure
eachresult

Procedure called after each response
Note: resultproc_t is a type definition:

typedef bool t (*resultproc_t) ();
6.13.6.3 Return Values

If eachresult() returns 0, cInt_broadcast() waits for more replies; otherwise, eachresult() returns the appropriate
status.

Note: Broadcast sockets are limited in size to the maximum transfer unit of the data link.

Remote Procedure Calls (RPCs) — Page 233 of 379

cInt_broadcast()

6.13.6.4 Description

The cInt_broadcast() call broadcasts a remote program descri@ddnum versnum andprocnumto all locally
connected broadcast networks. Each time clInt_broadcast() receives a response, it calls eachresult(). The format of
eachresult() is:

#include <netinet\in.h>
#include <rpc\rpctypes.h>

bool t eachresult(out, addr)
char *out;
struct sockaddr_in xaddr;

6.13.6.5 Parameters

out
Has the same function as it does for cInt_broadcast(), except that the output of the remote procedure is
decoded

addr
Pointer to the address of the machine that sent the results

6.13.6.6 Example

enum clnt_stat cs;
u_long prognum, versnum;

cs = clnt_broadcast(prognum, versnum, NULLPROC, xdr_void,
(char *)NULL, xdr_void, (char *)NULL, eachresult);
if ((cs != RPC_SUCCESS) && (cs != RPC_TIMEDOUT))
{
fprintf(" broadcast failed: \n");

exit(-1);
}
bool_t
eachresult(out, addr)
void *out; /* Nothing comes back */
struct sockaddr_in *addr; /* Reply from whom */
{
register struct hostent =*hp;
hp = gethostbyaddr((char *) &addr->sin_addr, sizeof addr->sin_addr,
AF_INET);
printf("%s %s\n", inet ntoa(addr->sin_addr), hp->h name);
return(FALSE);
}

6.13.6.7 Related Calls

callrpc()
cint_call()

Page 234 of 379 — IBM TCP/IP for 4690 Application Interface Guide

cint_call()

6.13.7 cint_call()

The cInt_call() call calls the remote procedure associated with the client handle.

6.13.7.1 Syntax

#include <rpc\rpc.h>

enum cInt_stat

cint_call(clnt, procnum, inproc, in, outproc, out, tout)
CLIENT *clnt;

u_long procnum;

xdrproc_t inproc;

char *in;

xdrproc_t outproc;

char *out;

struct timeval tout;

6.13.7.2 Parameters

clnt
Pointer to a client handle that was previously obtained using clntraw_create(), clnttcp_create(), or
clntudp_create()
procnum
Remote procedure number
inproc
XDR procedure used to encogeochums arguments
in
Pointer to the remote procedure’s arguments
outproc
XDR procedure used to decode the remote procedure’s results
out
Pointer to the remote procedure’s results
tout

Time allowed for the server to respond, in units of 0.1 seconds
6.13.7.3 Return Values

RPC_SUCCESS indicates success; otherwise, an error has occurred. The results of the remote procedure call are
returned toout

6.13.7.4 Description

The ciInt_call() call calls the remote proceduyseotnun) associated with the client handtdng).

Remote Procedure Calls (RPCs) — Page 235 of 379

cint_call()

6.13.7.5 Example

u_long procnum;

register CLIENT xclnt;

enum cInt_stat cs;

struct timeval total_timeout;
int intsend, intrecv;

cs=cInt_call(cInt, procnum, xdr_int, &intsend,
xdr_int, &intrecv, total timeout);
if (cs != RPC_SUCCESS)
printf("*Error* cInt_call fail :\n");

6.13.7.6 Related Calls

callrpc()
clnt_perror()
clntraw_create()
cinttcp_create()
clntudp_create()

Page 236 of 379 — IBM TCP/IP for 4690 Application Interface Guide

cInt_destroy()

6.13.8 cInt_destroy()

The cInt_destroy() call destroys a client's RPC handle.

6.13.8.1 Syntax

#include <rpc\rpc.h>

void
cInt_destroy(clnt)
CLIENT =*clnt;

6.13.8.2 Parameter

cint
Pointer to a client handle that was previously created using clntudp_create(), cinttcp_create(), or
clntraw_create()

6.13.8.3 Description

The cInt_destroy() call deletes a client RPC transport handle. This procedure involves the deallocation of private
data resources, includirant. After you use this procedurelnt is undefined. Open sockets associated wliti
must be closed.

6.13.8.4 Related Calls
clntraw_create()

clnttcp_create()
clntudp_create()

Remote Procedure Calls (RPCs) — Page 237 of 379

cint_freeres()

6.13.9 cInt freeres()

The cInt_freeres() call deallocates resources assigned for decoding the results of an RPC.

6.13.9.1 Syntax

#include <rpc\rpc.h>

bool _t

cint_freeres(clnt, outproc, out)
CLIENT =*clnt;

xdrproc_t outproc;

char *out;

6.13.9.2 Parameters

cint
Pointer to a client handle that was previously obtained using clntraw_create(), clnttcp_create(), or
clntudp_create()

outproc
XDR procedure used to decode the remote procedure’s results

out

Pointer to the results of the remote procedure
6.13.9.3 Return Values
The value 1 indicates success; the value 0 indicates an error.

6.13.9.4 Description

The ciInt_freeres() call de-allocates any resources that were assigned by the system to decode the results of an RPC.
6.13.9.5 Related Calls
clntraw_create()

clnttcp_create()
clntudp_create()

Page 238 of 379 — IBM TCP/IP for 4690 Application Interface Guide

cint_geterr()

6.13.10 ciInt_geterr()
The cInt_geterr() call copies the error structure from a client’'s handle to the local structure.

6.13.10.1 Syntax

#include <rpc\rpc.h>

void

cint_geterr(cint, errp)
CLIENT =*clnt;

struct rpc_err xerrp;

6.13.10.2 Parameters

clnt
Pointer to a client handle that was previously obtained using cintraw_create(), cinttcp_create(), or
cintudp_create()

errp
Pointer to the address into which the error structure is copied

6.13.10.3 Description
The cInt_geterr() call copies the error structure from the client handle to the structure at exuldress

6.13.10.4 Example

u_long procnum;

register CLIENT *clInt;

enum clnt_stat cs;

struct timeval total_timeout;
int intsend = 100, intrecv;
struct rpc_err error;

total timeout.tv_sec = 20;
total_timeout.tv_usec = 0;

cs=cInt_call(cInt, procnum, xdr_int, &intsend,
xdr_int, &intrecv, total timeout);
if (cs != RPC_SUCCESS)
{

cint_geterr(cint, &error);
cInt_perror(cint, "recv from server");

6.13.10.5 Related Calls

clnt_call()
cInt_pcreateerror()
clnt_perrno()
clnt_perror()
clntraw_create()

Remote Procedure Calls (RPCs) — Page 239 of 379

cint_geterr()

clnttcp_create()
clntudp_create()

Page 240 of 379 — IBM TCP/IP for 4690 Application Interface Guide

cInt_pcreateerror()

6.13.11 cInt_pcreateerror()
The cInt_pcreateerror() call indicates why a client handle cannot be created.

6.13.11.1 Syntax

#include <rpc\rpc.h>

void
cInt_pcreateerror(s)
char *s;

6.13.11.2 Parameter

s
Pointer to a string that is to be printed in front of the message. The string is followed by a colon.

6.13.11.3 Description

The cInt_pcreateerror() call writes a message to the standard error device, indicating why a client handle cannot be
created. Use this procedure after the cIntraw_create(), clnttcp_create(), or cintudp_create() call fails.

For an example of the cInt_pcreateerror() call, see 6.13.15, “cInttcp_create()” on page 245.

6.13.11.4 Related Calls

cint_geterr()
clnt_perrno()
clnt_perror()
clntraw_create()
cinttcp_create()
clntudp_create()

Remote Procedure Calls (RPCs) — Page 241 of 379

clnt_perrno()

6.13.12 cint_perrno()

The cInt_perrno() call writes a message to the standard error device corresponding to the condition indicated by
stat

6.13.12.1 Syntax

#include <rpc\rpc.h>

void
cInt_perrno(stat)
enum cInt_stat stat;

6.13.12.2 Parameter

stat
The client status

6.13.12.3 Description

The cInt_perrno() call writes a message to the standard error device corresponding to the condition indicated by
stat Use this procedure after callrpc() and cint_broadcast() if there is an error.

6.13.12.4 Related Calls

callrpc()
cint_geterr()
clnt_pcreateerror()
clnt_perror()

Page 242 of 379 — IBM TCP/IP for 4690 Application Interface Guide

cint_perror()

6.13.13 cint_perror()
The cInt_perror() call writes an error message indicating why RPC failed.

6.13.13.1 Syntax

#include <rpc\rpc.h>

void
cint_perror(cint, s)
CLIENT =*clnt;

char *s;

6.13.13.2 Parameters

clnt
Pointer to a client handle that was previously obtained using clntudp_create(), clnttcp_create(), or
clntraw_create().

Pointer to a string that is to be printed in front of the message. The string is followed by a colon.
6.13.13.3 Description

The cInt_perror() call writes a message to the standard error device, indicating why an RPC failed. Use this
procedure after cInt_call() if there is an error.

For an example of the cInt_perror() call, see 6.13.10, “cInt_geterr()” on page 239.
6.13.13.4 Related Calls

cint_call()
cint_geterr()
clnt_pcreateerror()
clnt_perrno()
cintraw_create()
cinttcp_create()
clntudp_create()

Remote Procedure Calls (RPCs) — Page 243 of 379

clntraw_create()

6.13.14 cintraw_create()
The cintraw_create() call creates a client transport handle to use in a single task.

6.13.14.1 Syntax

#include <rpc\rpc.h>

CLIENT =*
cIntraw_create(prognum, versnum)
u_long prognum;

u_long versnum;

6.13.14.2 Parameters

prognum
Remote program number

versnum
Version number of the remote program

6.13.14.3 Return Value
NULL indicates failure.
6.13.14.4 Description

The cintraw_create() call creates a dummy client for the remote dqurbgn(m, versnuin Because messages are
passed using a buffer within the address space of the local process, the server should also use the same address
space, which simulates RPC programs within one address space. See 6.13.42, “svcraw_create()” on page 281 for
more information.

6.13.14.5 Related Calls

clnt_call()
cInt_destroy()
cInt_pcreateerror()
cinttcp_create()
clntudp_create()
svcraw_create()

Page 244 of 379 — IBM TCP/IP for 4690 Application Interface Guide

cinttcp_create()

6.13.15 clinttcp_create()

The clinttcp_create() call creates an RPC client transport handle for the remote program using TCP transport.

6.13.15.1 Syntax

#include <rpc\rpc.h>

CLIENT =

cInttcp_create(addr, prognum, versnum, sockp, sendsz, recvsz)
struct sockaddr_in xaddr;

u_long prognum;

u_long versnum;

int *sockp;

u_int sendsz;

u_int recvsz;

6.13.15.2 Parameters

addr

prognum

versnum

sockp

sendsz

recvsz

Pointer to the internet address of the remote prograraddf points to a port number of @ddr is set
to the port on which the remote program is receiving.

Remote program number.

Version number of the remote program.

Pointer to the socket. Hockpis RPC_ANYSOCK, then this routine opens a new socket and sets
sockp

Size of the send buffer. Specify 0 to have cinttcp_create() pick a suitable default size.

Size of the receive buffer. Specify 0 to have cinttcp_create() pick a suitable default size.

6.13.15.3 Return Value

NULL indicates failure.

6.13.15.4 Description

The cinttcp_create() call creates an RPC client transport handle for the remote program speqifieginioyn(
versnunm). The client uses TCP as the transport layer.

6.13.15.5 Example

#define RMTPROGNUM (u_long)Ox3fffffffL
#define RMTPROGVER (u_long)Ox1L

register CLIENT xclnt;
int sock = RPC_ANYSOCK; /* can be also valid socket descriptor */

Remote Procedure Calls (RPCs) — Page 245 of 379

cinttcp_create()

struct hostent =*hp;
struct sockaddr_in server addr;

/* get the internet address of RPC server =/
if ((hp = gethostbyname("RPCSERVER HOST") == NULL)
{
fprintf(stderr,"Can't get address for %s\n",argv[2]);
exit (-1);
}

bcopy (hp->h_addr, (caddr_t)&server_addr.sin_addr.s_addr, hp->h_length);
server_addr.sin_family = AF_INET;
server_addr.sin_port = 0;

/* create TCP handle */
if ((cInt = cInttcp_create(&server_addr, RMTPROGNUM, RMTPROGVER,
&sock, 1024x10, 1024%10)) == NULL)
{

cInt_pcreateerror("cinttcp create");
exit(-1);
}

6.13.15.6 Related Calls

cInt_destroy()
cInt_pcreateerror()
clntraw_create()
clntudp_create()

Page 246 of 379 — IBM TCP/IP for 4690 Application Interface Guide

clntudp_create()

6.13.16 ciIntudp_create()
The cIntudp_create() call creates an RPC client transport handle for the remote program using UDP transport.

6.13.16.1 Syntax

#include <rpc\rpc.h>
#include <netdb.h>

CLIENT =*

cIntudp_create(addr, prognum, versnum, wait, sockp)
struct sockaddr_in *addr;

u_long prognum;

u_long versnum;

struct timeval wait;

int *sockp;

6.13.16.2 Parameters

addr
Pointer to the internet address of the remote prograraddf points to a port number of @ddr is set
to the port on which the remote program is receiving. The remote PORTMAP service is used for this.
prognum
Remote program number.
versnum
Version number of the remote program.
wait
Interval at which UDP resends the call request, until either a response is received or the call times out.
Set the time-out length using the cInt_call() procedure.
sockp

Pointer to the socket. Hockpis RPC_ANYSOCK, this routine opens a new socket andssetg
6.13.16.3 Return Value
NULL indicates failure.
6.13.16.4 Description

The cIntudp_create() call creates a client transport handle for the remote prpgrgnuiy) with version
(versnunm. UDP is used as the transport layer.

Note: Do not use this procedure with procedures that use large arguments or return large results. UDP RPC
messages can contain only 2K bytes of encoded data.

Remote Procedure Calls (RPCs) — Page 247 of 379

clntudp_create()

6.13.16.5 Example

#define RMTPROGNUM (u_long)Ox3fffffffL
#define RMTPROGVER (u_Tong)Ox1L

register CLIENT *clInt;

int sock = RPC_ANYSOCK; /* can be also valid socket descriptor */
struct hostent =*hp;

struct timeval pertry timeout;

struct sockaddr_in server_addr;

/* get the internet address of RPC server =/
if ((hp = gethostbyname("RPC_HOST") == NULL)
{
fprintf(stderr,"Can't get address for %s\n",argv[2]);
exit (-1);
}

pertry timeout.tv_sec = 3;

pertry_timeout.tv_usec = 0;

bcopy (hp->h_addr, (caddr t)&server addr.sin_addr.s_addr, hp->h_length);
server_addr.sin_family = AF_INET;

server_addr.sin_port = 0;

/* create UDP handle */
if ((cInt = cIntudp_create(&server_addr, RMTPROGNUM, RMTPROGVER,
pertry timeout, &sock)) == NULL)
{

cInt_pcreateerror("clntudp create");
exit(-1);
}

6.13.16.6 Related Calls

clnt_destroy()
cInt_pcreateerror()
clntraw_create()
clnttcp_create()

Page 248 of 379 — IBM TCP/IP for 4690 Application Interface Guide

get_myaddress()

6.13.17 get_myaddress()

The get_myaddress() call returns the local host’s internet address.

6.13.17.1 Syntax

#include <rpc\rpc.h>

void
get_myaddress (addr)
struct sockaddr_in xaddr;

6.13.17.2 Parameter

addr
Pointer to the location where the local internet address is placed

6.13.17.3 Description

The get_myaddress() call puts the local host’s internet addressdishto The port numberaddr—>sin_por) is set
to htons (PMAPPORT), which is 111.

Remote Procedure Calls (RPCs) — Page 249 of 379

pmap_getmaps()

6.13.18 pmap_getmaps()

The pmap_getmaps() call returns a list of current program-to-port mappings on a specified remote host’s
Portmapper.

6.13.18.1 Syntax

#include <rpc\rpc.h>

struct pmaplist *
pmap_getmaps (addr)
struct sockaddr_in *addr;

6.13.18.2 Parameter

addr
Pointer to the internet address of the remote host

6.13.18.3 Description

The pmap_getmaps() call returns a list of current program-to-port mappings on the remote host's Portmapper
specified byaddr.

6.13.18.4 Example

struct hostent =*hp;
struct sockaddr_in pmapper_addr;
struct pmaplist *my_pmaplist = NULL;

if ((hp = gethostbyname("PMAP_HOST") == NULL)
{

fprintf(stderr,"Can't get address for %s\n","PMAP_HOST");
exit (-1);
}

bcopy (hp->h_addr, (caddr_t)&pmapper_addr.sin_addr.s _addr, hp->h_length);
pmapper_addr.sin_family = AF_INET;
pmapper_addr.sin_port = 0;

/*
get the list of program, version, protocol and port number
from remote portmapper

*
*
*
* struct pmap {

* long unsigned pm_prog;
* long unsigned pm_vers;
* long unsigned pm_prot;
* long unsigned pm_port;
% .

}’

Page 250 of 379 — IBM TCP/IP for 4690 Application Interface Guide

* struct pmaplist {

* struct pmap pml_map;

* struct pmaplist *pml_next;
* }s

*/

my_pmaplist = pmap_getmaps (&pmapper_addr);

6.13.18.5 Related Calls

pmap_getport()
pmap_rmtcall()

pmap_set()
pmap_unset()

pmap_getmaps()

Remote Procedure Calls (RPCs) — Page 251 of 379

pmap_getport()

6.13.19 pmap_getport()
The pmap_getport() call returns the port number associated with a remote program.

6.13.19.1 Syntax

#include <rpc\rpc.h>

u_short

pmap_getport (addr, prognum, versnum, protocol)
struct sockaddr_in xaddr;

u_long prognum;

u_long versnum;

u_long protocol;

6.13.19.2 Parameters

addr

Pointer to the internet address of the remote host
prognum

Program number to be mapped
versnum

Version number of the program to be mapped
protocol

Transport protocol used by the program
6.13.19.3 Return Values

The value 0 indicates that the mapping does not exist or that the remote PORTMAP could not be contacted. If
Portmapper cannot be contacteat; createerrcontains the RPC status.

6.13.19.4 Description

The pmap_getport() call returns the port number associated with the remote progrgnurf), the version
(versnunm), and the transport protocgrotocol).

6.13.19.5 Related Calls

pmap_getmaps()
pmap_rmtcall()
pmap_set()
pmap_unset()

Page 252 of 379 — IBM TCP/IP for 4690 Application Interface Guide

pmap_rmtcall()

6.13.20 pmap_rmtcall()
The pmap_rmtcall() call instructs Portmapper to make an RPC call to a procedure on a host on your behalf.

6.13.20.1 Syntax

#include <rpc\rpc.h>
#include <netdb.h>

enum clnt_stat

pmap_rmtcall(addr, prognum, versnum, procnum, inproc, in,
outproc, out, tout, portp)

struct sockaddr_in *addr;

u_long prognum;

u_long versnum;

u_long procnum;

xdrproc_t inproc;

char *in;

xdrproc_t outproc;

char *out;

struct timeval tout;

u_long *portp;

6.13.20.2 Parameters

addr
Pointer to the internet address of the foreign host
prognum
Remote program number
versnum
Version number of the remote program
procnum
Procedure to be called
inproc
XDR procedure that encodes the arguments of the remote procedure
in
Pointer to the arguments of the remote procedure
outproc
XDR procedure that decodes the results of the remote procedure
out
Pointer to the results of the remote procedure
tout
Time-out period for the remote request
portp

Port number of the triplepfognum versnum procnun), if the call from the remote PORTMAP service
succeeds

Remote Procedure Calls (RPCs) — Page 253 of 379

pmap_rmtcall()

6.13.20.3 Return Values

RPC_SUCCESS indicates success; otherwise, an error has occurred. The results of the remote procedure call return
to out

6.13.20.4 Description

The pmap_rmtcall() call instructs Portmapper to make an RPC call to a procedure on a host, on your behalf. Use
this procedure only for ping-type functions.

6.13.20.5 Example

int inproc, outproc,rc;
u_long portp;

struct timeval total_timeout;
struct sockaddr_in *addr;

get_myaddress(addr);

total timeout.tv_sec = 20;
total_timeout.tv_usec = 0;

rc = pmap_rmtcall(addr,RMTPROGNUM,RMTPROGVER,RMTPROCNUM,xdr_int,
&inproc,xdr_int,&outproc,total_timeout,&portp);
if (rc !'= 0)
{
fprintf(stderr,"error: pmap_rmtcall() failed: %d \n",rc);
cInt_perrno(rc);
exit(1);
}

6.13.20.6 Related Calls

pmap_getmaps()

pmap_getport()
pmap_set()

pmap_unset()

Page 254 of 379 — IBM TCP/IP for 4690 Application Interface Guide

pmap_set()

6.13.21 pmap_set()

The pmap_set() call sets the mapping of a server program to a port on the local machine’s Portmapper.

6.13.21.1 Syntax

#include <rpc\rpc.h>

bool _t

pmap_set (prognum, versnum, protocol, port)
u_long prognum;

u_long versnum;

u_long protocol;

u_short port;

6.13.21.2 Parameters

prognum
Local program number

versnum

Version number of the local program
protocol

Transport protocol used by the local program
port

Port to which the local program is mapped
6.13.21.3 Return Values
The value 1 indicates success; the value 0 indicates an error.

6.13.21.4 Description

The pmap_set() call sets the mapping of the program (specifipdogypum versnum andprotoco)) to port on the
local machine’s Portmapper. This procedure is automatically called by the svc_register() procedure.

6.13.21.5 Related Calls

pmap_getmaps()

pmap_getport()
pmap_rmtcall()

pmap_unset()

Remote Procedure Calls (RPCs) — Page 255 of 379

pmap_unset()

6.13.22 pmap_unset()
The pmap_unset() call removes the mappings on the local machine’s Portmapper.

6.13.22.1 Syntax

#include <rpc\rpc.h>

bool _t

pmap_unset (prognum, versnum)
u_long prognum;

u_long versnum;

6.13.22.2 Parameters

prognum
Local program number

versnum
Version number of the local program
6.13.22.3 Return Values
The value 1 indicates success; the value 0 indicates an error.

6.13.22.4 Description

The pmap_unset() call removes the mappings associateggneghumandversnumon the local machine’s
Portmapper. All ports for each transport protocol currently mappingriignumandversnumare removed from
the PORTMAP service.

6.13.22.5 Example
#define RMTPROGNUM (u_long)Ox3fffffffL
#define RMTPROGVER (u_long)Ox1L

/* remove the mapping of remote program */
/* and its port from local portmapper */
pmap_unset (RMTPROGNUM, RMTPROGVER);

6.13.22.6 Related Calls

pmap_getmaps()

pmap_getport()
pmap_rmtcall()

pmap_set()

Page 256 of 379 — IBM TCP/IP for 4690 Application Interface Guide

registerrpc()

6.13.23 registerrpc()

The registerrpc() call registers a procedure with the local Portmapper.

6.13.23.1 Syntax

#include <rpc\rpc.h>

int

registerrpc(prognum, versnum, procnum, procname, inproc, outproc)
u_long prognum;

u_long versnum;

u_long procnum;

char *(*procname) ();

xdrproc_t inproc;

xdrproc_t outproc;

6.13.23.2 Parameters

prognum
Program number to register.

versnum
Version number to register.

procnum
Procedure number to register.

prochame
Procedure that is called when the registered program is requ@stesthamemust accept a pointer to
its arguments and return a static pointer to its results.

inproc
XDR procedure that decodes the arguments.

outproc

XDR procedure that encodes the results.

Note: You cannot use xdr_enum() as an argument to registerrpc(). See 6.13.53, “xdr_enum()” on page 294 for
more information.

6.13.23.3 Return Values

The value 0 indicates success; the valliendicates an error.

6.13.23.4 Description

The registerrpc() call registers a procedure with the local Portmapper and creates a control structure to remember

the server procedure and its XDR routine. The svc_run() call uses the control structure. Procedures registered
using registerrpc() are accessed using the UDP transport layer.

Remote Procedure Calls (RPCs) — Page 257 of 379

registerrpc()

6.13.23.5 Example

#define RMTPROGNUM (u_long)Ox3fffffffL
#define RMTPROGVER (u_Tong)0x1
#define RMTPROCNUM (u_long)0x1

main()

{
int *rmtprog();

/* register remote program with portmapper =*/
registerrpc (RMTPROGNUM, RMTPROGVER, RMTPROCNUM, rmtprog,
xdr_int, xdr_int);

/* infinite loop, waits for RPC request from client */
svc_run();

printf("Error: svc_run should never reach this point \n");
exit(1);

}

int *
rmtprog(inproc) /* remote program */
int *inproc;

{

int *outproc;
/* Process request */

return (outproc);

}
6.13.23.6 Related Calls

svc_register()
svc_run()

Page 258 of 379 — IBM TCP/IP for 4690 Application Interface Guide

rpc_createerr

6.13.24 rpc_createerr
rpc_createerr is a global variable set when any RPC client creation routine fails.

6.13.24.1 Syntax

#include <rpc\rpc.h>

struct rpc_createerr rpc_createerr;

6.13.24.2 Description

rpc_createerr is a global variable that is set when any RPC client creation routine fails. Use cInt_pcreateerror() to
print the message.

Remote Procedure Calls (RPCs) — Page 259 of 379

svc_destroy()

6.13.25 svc_destroy()

The svc_destroy() call destroys the RPC service transport handle.

6.13.25.1 Syntax

#include <rpc\rpc.h>

void
svc_destroy(xprt)
SVCXPRT =*xprt;

6.13.25.2 Parameter

xprt
Pointer to the service transport handle

6.13.25.3 Description

The svc_destroy() call deletes the RPC service transport hgmdlevhich becomes undefined after this routine is
called.

6.13.25.4 Related Calls
svcraw_create()

svctcp_create()
svcudp_create()

Page 260 of 379 — IBM TCP/IP for 4690 Application Interface Guide

svc_freeargs()

6.13.26 svc_freeargs()
The svc_freeargs() call frees storage allocated for argument decoding.

6.13.26.1 Syntax

#include <rpc\rpc.h>

bool _t

svc_freeargs(xprt, inproc, in)
SVCXPRT =*xprt;

xdrproc_t inproc;

char *in;

6.13.26.2 Parameters

xprt

Pointer to the service transport handle
inproc

XDR routine that decodes the arguments
in

Pointer to the input arguments
6.13.26.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.26.4 Description
The svc_freeargs() call frees storage allocated to decode the arguments received by svc_getargs().
6.13.26.5 Related Calls

svc_getargs()

Remote Procedure Calls (RPCs) — Page 261 of 379

svc_getargs()

6.13.27 svc_getargs()
The svc_getargs() call decodes arguments from an RPC request.

6.13.27.1 Syntax

#include <rpc\rpc.h>

bool _t

svc_getargs(xprt, inproc, in)
SVCXPRT =*xprt;

xdrproc_t inproc;

char *in;

6.13.27.2 Parameters

xprt

Pointer to the service transport handle
inproc

XDR routine that decodes the arguments
in

Pointer to the decoded arguments
6.13.27.3 Return Values
The value 1 indicates success; the value 0 indicates an error.

6.13.27.4 Description

The svc_getargs() call uses the XDR rouiimgroc to decode the arguments of an RPC request associated with the
RPC service transport handtprt. The results are placed at addrass

6.13.27.5 Example

#define RMTPROGNUM (u_long)Ox3fffffffL
#define RMTPROGVER (u_long)Ox1L

SVCXPRT =*transp;

transp = svcudp_create(RPC_ANYSOCK) ;
if (transp == NULL)
{
fprintf(stderr, "can't create an RPC server transport\n");
exit(-1);
}
pmap_unset (RMTPROGNUM, RMTPROGVER);
if (!svc_register(transp, RMTPROGNUM, RMTPROGVER, rmtprog, IPPROTO_UDP))
{
fprintf(stderr, "can't register rmtprog() service\n");
exit(-1);

Page 262 of 379 — IBM TCP/IP for 4690 Application Interface Guide

svc_getargs()

}

printf("rmtprog() service registered.\n");

svce_run();
printf("Error:svc_run should never reach this point \n");
exit(1);

rmtprog(rgstp, transp)
struct svc_req *rqstp;
SVCXPRT =*transp;

{
int intrecv;
switch((int)rgstp->rq_proc)
{
case PROCNUMI:
svc_getargs(transp, xdr_int, &intrecv);
return;
case PROCNUMZ:
}
}

6.13.27.6 Related Call

svc_freeargs()

Remote Procedure Calls (RPCs) — Page 263 of 379

svc_getcaller()

6.13.28 svc_getcaller()
The svc_getcaller() call gets the network address of the client associated with the service transport handle.

6.13.28.1 Syntax

#include <rpc\rpc.h>

struct sockaddr_in =
svc_getcaller(xprt)
SVCXPRT =*xprt;

6.13.28.2 Parameter

xprt
Pointer to the service transport handle

6.13.28.3 Description

This call gets the network address of the client associated with the service transport handle.

Page 264 of 379 — IBM TCP/IP for 4690 Application Interface Guide

svc_getreq()

6.13.29 svc_getreq()

The svc_getreq() call implements asynchronous event processing and returns control to the program after all sockets
have been serviced.

6.13.29.1 Syntax

#include <rpc\rpc.h>

void

svc_getreq(socks, noavail)
int socks[];

int noavail;

6.13.29.2 Parameters

socks
Array of socket descriptors

noavalil
Integer specifying the number of socket descriptors in the array

6.13.29.3 Description

Use the svc_getreq() call rather than svc_run() to do asynchronous event processing. The routine returns control to
the program when all sockets in tbecksarray have been serviced.

6.13.29.4 Related Calls

svc_run()
svc_socks|[]

Remote Procedure Calls (RPCs) — Page 265 of 379

svc_register()

6.13.30 svc_register()
The svc_register() call registers procedures on the local Portmapper.

6.13.30.1 Syntax

#include <rpc\rpc.h>
#include <netdb.h>

bool t

svc_register(xprt, prognum, versnum, dispatch, protocol)
SVCXPRT =*xprt;

u_long prognum;

u_long versnum;

void (*dispatch) ();

int protocol;

6.13.30.2 Parameters

xprt
Pointer to the service transport handle.
prognum
Program number to be registered.
versnum
Version number of the program to be registered.
dispatch
Dispatch routine associated wipnhognumandversnum The structure of the dispatch routine is as
follows:
dispatch(request, xprt)
struct svc_req *request;
SVCXPRT =*xprt;
protocol

Protocol used. The value is generally one of the following:

e 0 (zero)
e IPPROTO_UDP
e |IPPROTO_TCP

When you use a value of 0, the service is not registered with Portmapper.
6.13.30.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.30.4 Description

The svc_register() call associates the specified program with the service dispatchdisptiteh

Note: When you use a toy RPC service transport created with svcraw_create(), make a call to xprt_register()
immediately after a call to svc_register().

Page 266 of 379 — IBM TCP/IP for 4690 Application Interface Guide

svc_register()

6.13.30.5 Example

#define RMTPROGNUM (u_Tong)Ox3ffffffflL
#define RMTPROGVER (u_long)Ox1L

SVCXPRT =*transp;

/* register the remote program with Tocal portmapper */
if (!svc_register(transp, RMTPROGNUM, RMTPROGVER, rmtprog, IPPROTO_UDP))

fprintf(stderr, "can't register rmtprog() service\n");
exit(-1);
}
/* code for remote program; rmtprog =*/
rmtprog(rqgstp, transp)
struct svc_req *rgstp;
SVCXPRT =*transp;
{

}
6.13.30.6 Related Calls
registerrpc()

svc_unregister()
xprt_register()

Remote Procedure Calls (RPCs) — Page 267 of 379

svc_run()

6.13.31 svc_run()
The svc_run() call accepts RPC requests and calls the appropriate service.

6.13.31.1 Syntax

#include <rpc\rpc.h>

void
svc_run()

6.13.31.2 Description

The svc_run() call accepts RPC requests and calls the appropriate service using svc_getreq(). The svc_run() call
does not return control to the caller.

6.13.31.3 Example

#define RMTPROGNUM (u_long)Ox3fffffffL
#define RMTPROGVER (u_Tong)Ox1L

SVCXPRT *transp;

transp = svcudp_create(RPC_ANYSOCK) ;
if (transp == NULL)
{
fprintf(stderr, "can't create an RPC server transport\n");
exit(-1);
}
pmap_unset (RMTPROGNUM, RMTPROGVER) ;
if (!svc_register(transp, RMTPROGNUM, RMTPROGVER, rmtprog, IPPROTO_UDP))
{
fprintf(stderr, "can't register rmtprog() service\n");
exit(-1);
}

printf("rmtprog() service registered.\n");
svc_run();

printf("Error:svc_run should never reach this point \n");
exit(1);

Page 268 of 379 — IBM TCP/IP for 4690 Application Interface Guide

svc_run()

rmtprog(rqgstp, transp)
struct svc_req *rqstp;
SVCXPRT =*transp;

{

}

6.13.31.4 Related Calls

registerrpc()
svc_getreq()

Remote Procedure Calls (RPCs) — Page 269 of 379

svc_sendreply()

6.13.32 svc_sendreply()
The svc_sendreply() call sends the results of an RPC to the caller.

6.13.32.1 Syntax

#include <rpc\rpc.h>

bool _t

svc_sendreply(xprt, outproc, out)
SVCXPRT =*xprt;

xdrproc_t outproc;

char *out;

6.13.32.2 Parameters

xprt

Pointer to the caller’'s transport handle
outproc

XDR procedure that encodes the results
out

Pointer to the results
6.13.32.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.32.4 Description
The service dispatch routine calls the svc_sendreply() call to send the results of the call to the caller.

6.13.32.5 Example

#define RMTPROGNUM (u_long)Ox3ffffffflL
#define RMTPROGVER (u_Tong)Ox1L

SVCXPRT =*transp;

transp = svcudp_create(RPC_ANYSOCK) ;
if (transp == NULL)
{
fprintf(stderr, "can't create an RPC server transport\n");
exit(-1);
}
pmap_unset(RMTPROGNUM, RMTPROGVER) ;
if (!svc_register(transp, RMTPROGNUM, RMTPROGVER, rmtprog, IPPROTO_UDP))
{
fprintf(stderr, "can't register rmtprog() service\n");
exit(-1);
}

printf("rmtprog() service registered.\n");

Page 270 of 379 — IBM TCP/IP for 4690 Application Interface Guide

svc_sendreply()

svc_run();

printf("Error:svc_run should never reach this point \n");
exit(1);

rmtprog(rqgstp, transp)
struct svc_req *rqstp;
SVCXPRT =*transp;

{

int intrecv;
int replysend;
switch((int)rqstp->rq_proc)

{
case PROCNUMO:
svc_getargs(transp, xdr_int, &intrecv);
/* process intrecv parameter */
replysend = (intrecv * 1000) + 100;
/* send reply to client */
if (!svc_sendreply(transp, xdr_int, &replysend))
{
fprintf(stderr,"can't reply to RPC call\n");
exit(-1);
}
return;
case PROCNUML:
1

Remote Procedure Calls (RPCs) — Page 271 of 379

svc_socks []

6.13.33 svc_socks []

svc_socks[] is an array of socket descriptors being serviced.

6.13.33.1 Syntax

#include <rpc\rpc.h>

int svc_socks[];

#include <rpc\rpc.h>

int noregistered;

6.13.33.2 Description

svc_socks[] is an array of socket descriptors being servicerkgistereds an integer that specifies the number of
socket descriptors in svc_socks[].

6.13.33.3 Related Call

svc_getreq()

Page 272 of 379 — IBM TCP/IP for 4690 Application Interface Guide

svc_unregister()

6.13.34 svc_unregister()
The svc_unregister() call removes the local mapping.

6.13.34.1 Syntax

#include <rpc\rpc.h>

void

svc_unregister(prognum, versnum)
u_long prognum;

u_long versnum;

6.13.34.2 Parameters

prognum
Program number of the removed program

versnum
Version number of the removed program

6.13.34.3 Description

The svc_unregister() call removes all local mappingpaighum versnum to dispatch routines angrognum
versnum;) to port numbers.

6.13.34.4 Example

#define RMTPROGNUM (u_long)Ox3fffffffL
#define RMTPROGVER (u_long)Ox1L

/* unregister remote program from local portmapper =*/
svc_unregister(RMTPROGNUM, RMTPROGVER);

6.13.34.5 Related Call

svc_register()

Remote Procedure Calls (RPCs) — Page 273 of 379

svcerr_auth()

6.13.35 svcerr_auth()

The svcerr_auth() call sends an error reply when the service dispatch routine cannot execute an RPC request
because of authentication errors.

6.13.35.1 Syntax

#include <rpc\rpc.h>

void

svcerr_auth(xprt, why)
SVCXPRT =*xprt;

enum auth_stat why;

6.13.35.2 Parameters

xprt
Pointer to the service transport handle

why
Reason why the call is refused
6.13.35.3 Description
A service dispatch routine that refuses to run an RPC request because of authentication errors calls svcerr_auth().

6.13.35.4 Related Calls

svcerr_decode()
svcerr_noproc()
svcerr_noprog()
svcerr_progvers()
svcerr_systemerr()
svcerr_weakauth()

Page 274 of 379 — IBM TCP/IP for 4690 Application Interface Guide

svcerr_decode()

6.13.36 svcerr_decode()

The svcerr_decode() call sends an error reply when the service dispatch routine cannot decode its parameters.

6.13.36.1 Syntax

#include <rpc\rpc.h>

void
svcerr_decode(xprt)
SVCXPRT =*xprt;

6.13.36.2 Parameter

xprt
Pointer to the service transport handle

6.13.36.3 Description
A service dispatch routine that cannot decode its parameters calls svcerr_decode().

6.13.36.4 Related Calls

svcerr_auth()
svcerr_noproc()
svcerr_noprog()
svcerr_progvers()
svcerr_systemerr()
svcerr_weakauth()

Remote Procedure Calls (RPCs) — Page 275 of 379

svcerr_noproc()

6.13.37 svcerr_noproc()
The svcerr_noproc() call sends an error reply when the service dispatch routine cannot call the procedure requested.

6.13.37.1 Syntax

#include <rpc\rpc.h>

void
svcerr_noproc (xprt)
SVCXPRT =*xprt;

6.13.37.2 Parameter

xprt
Pointer to the service transport handle

6.13.37.3 Description
A service dispatch routine that does not implement the requested procedure calls the svcerr_noproc() call.

6.13.37.4 Related Calls

svcerr_auth()
svcerr_decode()
svcerr_noprog()
svcerr_progvers()
svcerr_systemerr()
svcerr_weakauth()

Page 276 of 379 — IBM TCP/IP for 4690 Application Interface Guide

svcerr_noprog()

6.13.38 svcerr_noprog()
The svcerr_noprog() call sends an error code when the requested program is not registered.

6.13.38.1 Syntax

#include <rpc\rpc.h>

void
svcerr_noprog(xprt)
SVCXPRT =*xprt;

6.13.38.2 Parameter

xprt
Pointer to the service transport handle

6.13.38.3 Description
Use the svcerr_noprog() call when the desired program is not registered.

6.13.38.4 Related Calls

svcerr_auth()
svcerr_decode()
svcerr_noproc()
svcerr_progvers()
svcerr_systemerr()
svcerr_weakauth()

Remote Procedure Calls (RPCs) — Page 277 of 379

svcerr_progvers()

6.13.39 svcerr_progvers()

The svcerr_progvers() call sends the low version number and high version number of RPC service when the version
numbers of two RPC programs do not match.

6.13.39.1 Syntax

#include <rpc\rpc.h>

void

svcerr_progvers(xprt, low vers, high vers)
SVCXPRT =*xprt;

u_long low_vers;

u_long high_vers;

6.13.39.2 Parameters

xprt

Pointer to the service transport handle
low_vers

Low version number
high_vers

High version number
6.13.39.3 Description

A service dispatch routine calls the svcerr_progvers() call when the version numbers of two RPC programs do not
match. The call sends the supported low version and high version of RPC service.

6.13.39.4 Related Calls

svcerr_decode()
svcerr_noproc()
svcerr_noprog()
svcerr_progvers()
svcerr_systemerr()
svcerr_weakauth()

Page 278 of 379 — IBM TCP/IP for 4690 Application Interface Guide

svcerr_systemerr()

6.13.40 svcerr_systemerr()

The svcerr_systemerr() call sends an error reply when the service dispatch routine detects a system error that has
not been handled.

6.13.40.1 Syntax

#include <rpc\rpc.h>

void
svcerr_systemerr(xprt)
SVCXPRT =*xprt;

6.13.40.2 Parameter

xprt
Pointer to the service transport handle

6.13.40.3 Description

A service dispatch routine calls the svcerr_systemerr() call when it detects a system error that is not handled by the
protocol.

6.13.40.4 Related Calls

svcerr_auth()
svcerr_decode()
svcerr_noproc()
svcerr_noprog()
svcerr_progvers()
svcerr_weakauth()

Remote Procedure Calls (RPCs) — Page 279 of 379

svcerr_weakauth()

6.13.41 svcerr_weakauth()

The svcerr_weakauth() call sends an error reply when the service dispatch routine cannot run an RPC because of
weak authentication parameters.

6.13.41.1 Syntax

#include <rpc\rpc.h>

void
svcerr_progvers (xprt)
SVCXPRT =*xprt;

6.13.41.2 Parameter
xprt
Pointer to the service transport handle
6.13.41.3 Description
A service dispatch routine calls the svcerr_weakauth() call when it cannot run an RPC because of correct but weak
authentication parameters

Note: This is the equivalent ofvcerr_auth(xprt, AUTH_TOOWEAK) .
6.13.41.4 Related Calls

svcerr_auth()
svcerr_decode()
svcerr_noproc()
svcerr_noprog()
svcerr_progvers()
svcerr_systemerr()

Page 280 of 379 — IBM TCP/IP for 4690 Application Interface Guide

svcraw_create()

6.13.42 svcraw_create()
The svcraw_create() call creates a local RPC service transport handle to simulate RPC programs within one host.

6.13.42.1 Syntax

#include <rpc\rpc.h>

SVCXPRT =*
svcraw_create()

6.13.42.2 Return Value
NULL indicates failure.
6.13.42.3 Description

The svcraw_create() call creates a local RPC service transport used for timings, to which it returns a pointer.
Because messages are passed using a buffer within the address space of the local process, the client process must
also use the same address space. This allows the simulation of RPC programs within one host. See 6.13.14,
“cIntraw_create()” on page 244 for more information.

6.13.42.4 Related Calls

clntraw_create()
svc_destroy()
svctcp_create()
svcudp_create()

Remote Procedure Calls (RPCs) — Page 281 of 379

svctcp_create()

6.13.43 svctcp create()
The svctcp_create() call creates a TCP-based service transport.

6.13.43.1 Syntax

#include <rpc\rpc.h>

SVCXPRT =

svctcp _create(sock, send buf size, recv_buf size)
int sock;

u_int send buf size;

u_int recv_buf size;

6.13.43.2 Parameters

sock
Socket descriptor. I§ockis RPC_ANYSOCK, a new socket is created. If the socket is not
bound to a local TCP port, it is bound to an arbitrary port.

send_buf_size
Size of the send buffer. Specify 0 if you want the call to pick a suitable default value.

recv_buf_size
Size of the receive buffer. Specify 0 if you want the call to pick a suitable default value.

6.13.43.3 Return Value
NULL indicates failure.
6.13.43.4 Description

The svctcp_create() call creates a TCP-based service transport to which it returns a ymirterxp_sock
contains the transport’s socket descriptqrt—>xp_port contains the transport’s port number.

6.13.43.5 Example

SVCXPRT *transp;

transp = svctcp_create(RPC_ANYSOCK, 1024%10, 1024*10);

6.13.43.6 Related Calls

svc_destroy()
svcraw_create()
svcudp_create()

Page 282 of 379 — IBM TCP/IP for 4690 Application Interface Guide

svcudp_create()

6.13.44 svcudp_create()
The svcudp_create() call creates a UDP-based service transport.

6.13.44.1 Syntax

#include <rpc\rpc.h>

SVCXPRT =*
svcudp_create(sockp)
int sockp;

6.13.44.2 Parameter
sockp
The socket number associated with the service transport handleckifis RPC_ANYSOCK, a new
socket is created. If the socket is not bound to a local port, it is bound to an arbitrary port.
6.13.44.3 Return Value
NULL indicates failure.

6.13.44.4 Description

The svcudp_create() call creates a UDP-based service transport to which it returns a xjmirterxp_sock
contains the transport’s socket descriptapri—s>xp_port contains the transport’s port number.

6.13.44.5 Example
éQéXPRT *transp;

transp = svcudp_create(RPC_ANYSOCK) ;

6.13.44.6 Related Calls

svc_destroy()
svcraw_create()
svctcp_create()

Remote Procedure Calls (RPCs) — Page 283 of 379

xdr_accepted_reply()

6.13.45 xdr_accepted_reply()
The xdr_accepted_reply() call translates between an RPC reply message and its external representation.

6.13.45.1 Syntax

#include <rpc\rpc.h>

bool _t
xdr_accepted_reply(xdrs, ar)
XDR *xdrs;

struct accepted reply =*ar;

6.13.45.2 Parameters

xdrs
Pointer to an XDR stream

ar
Pointer to the reply to be represented

6.13.45.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.45.4 Description

The xdr_accepted_reply() call translates between an RPC reply message and its external representation.

Page 284 of 379 — IBM TCP/IP for 4690 Application Interface Guide

xdr_array()

6.13.46 xdr_array()

The xdr_array() call translates between an array and its external representation.

6.13.46.1 Syntax

#include <rpc\rpc.h>

bool _t

xdr_array(xdrs, arrp, sizep, maxsize, elsize, elproc)
XDR *xdrs;

char **xarrp;

u_int *sizep;

u_int maxsize;

u_int elsize;

xdrproc_t elproc;

6.13.46.2 Parameters

xdrs

Pointer to an XDR stream
arrp

Address of the pointer to the array
sizep

Pointer to the element count of the array
maxsize

Maximum number of elements accepted
elsize

Size of each of the array’s elements, found using sizeof()
elproc

XDR routine that translates an individual array element
6.13.46.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.46.4 Description
The xdr_array() call translates between an array and its external representation.

6.13.46.5 Example

struct myarray

{

int =*arrdata;
u_int arrlength;
}s
void

xdr_myarray (xdrsp,arrp)
XDR *xdrsp;

Remote Procedure Calls (RPCs) — Page 285 of 379

xdr_array()

struct myarray *arrp;
{
xdr_array(xdrsp, (caddr_t *)&arrp->arrdata,&arrp->arrlength,
MAXLEN,sizeof (int),xdr_int);

static int arrc_in[10],arrc_out[10];

u_long procnum;

register CLIENT *clInt;

enum clnt_stat cs;

struct timeval total_timeout;

total_timeout.tv_sec = 20;
total_timeout.tv_usec = 0;

myarrc_in.arrdata = & arrc_in[0];

myarrc_in.arrlength = (sizeof(arrc_in) / sizeof (int));
myarrc_out.arrdata = & arrc_out[0];

myarrc_out.arrlength = (sizeof(arrc_out) / sizeof (int));

cs=cInt_call(clnt, procnum, xdr myarray, (char *) &myarrc_in, xdr_myarray,
(char =*)&myarrc_out, total timeout);
if (cs != RPC_SUCCESS)
printf("*Error* cint _call fail :\n");

Page 286 of 379 — IBM TCP/IP for 4690 Application Interface Guide

xdr_authunix_parms()

6.13.47 xdr_authunix_parms()

The xdr_authunix_parms() call translates between UNIX-based authentication information and its external
representation.

6.13.47.1 Syntax

#include <rpc\rpc.h>

bool_t
xdr_authunix_parms (xdrs, aupp)
XDR *xdrs;

struct authunix_parms =*aupp;

6.13.47.2 Parameters

xdrs
Pointer to an XDR stream

aupp
Pointer to the authentication information

6.13.47.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.47.4 Description

The xdr_authunix_parms() call translates between UNIX-based authentication information and its external
representation.

Remote Procedure Calls (RPCs) — Page 287 of 379

xdr_bool()

6.13.48 xdr_bool()

The xdr_bool() call translates between a Boolean and its external representation.

6.13.48.1 Syntax

#include <rpc\rpc.h>

bool_t
xdr_bool(xdrs, bp)
XDR *xdrs;

bool t =*bp;

6.13.48.2 Parameters

xdrs
Pointer to an XDR stream

bp
Pointer to the Boolean

6.13.48.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.48.4 Description

The xdr_bool() call translates between a Boolean and its external representation.

Page 288 of 379 — IBM TCP/IP for 4690 Application Interface Guide

xdr_bytes()

6.13.49 xdr_bytes()
The xdr_bytes() call translates between byte strings and their external representations.

6.13.49.1 Syntax

#include <rpc\rpc.h>

bool _t

xdr_bytes(xdrs, sp, sizep, maxsize)
XDR *xdrs;

char **sp;

u_int *sizep;

u_int maxsize;

6.13.49.2 Parameters

xdrs

Pointer to an XDR stream
sp

Pointer to a pointer to the byte string
sizep

Pointer to the byte string size
maxsize

Maximum size of the byte string
6.13.49.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.49.4 Description
The xdr_bytes() call translates between byte strings and their external representations.

6.13.49.5 Example

struct mybytes

{
char *bytdata;
u_int bytlength;
bs

void

xdr_mybytes (xdrsp,arrp)
XDR *xdrsp;

struct mybytes =*arrp;

{
}

xdr_bytes(xdrsp,(caddr_ t *)&arrp->bytdata,&arrp->bytlength,MAXLEN);

char *bytc_in ,*bytc_out;

Remote Procedure Calls (RPCs) — Page 289 of 379

xdr_bytes()

u_long procnum;

register CLIENT xclnt;

enum clnt_stat cs;

struct timeval total_timeout;

total_timeout.tv_sec = 20;
total timeout.tv_usec = 0;

mybytc_in.bytdata = bytc_in;
mybytc_in.bytlength = strlen(bytc_in)+1;
cs=cInt_call(cInt, procnum, xdr mybytes, (caddr t *) &mybytc in,
xdr_mybytes, (caddr_t *)&mybytc out, total timeout);
if (cs != RPC_SUCCESS)
printf("*Error* clnt _call fail :\n");

Page 290 of 379 — IBM TCP/IP for 4690 Application Interface Guide

xdr_callhdr()

6.13.50 xdr_callhdr()

The xdr_callhdr() call translates between an RPC message header and its external representation.

6.13.50.1 Syntax

#include <rpc\rpc.h>

void

xdr_callhdr(xdrs, chdr)
XDR *xdrs;

struct rpc_msg *chdr;

6.13.50.2 Parameters

xdrs
Pointer to the XDR stream

chdr
Pointer to the call header

6.13.50.3 Description

The xdr_callhdr() call translates between an RPC message header and its external representation.

Remote Procedure Calls (RPCs) — Page 291 of 379

xdr_callmsg()

6.13.51 xdr_callmsg()

The xdr_callmsg() call translates between RPC call messages (header and authentication, not argument data) and
their external representations.

6.13.51.1 Syntax

#include <rpc\rpc.h>

void

xdr_callmsg(xdrs, cmsg)
XDR *xdrs;

struct rpc_msg *cmsg;

6.13.51.2 Parameters

xdrs
Pointer to the XDR stream

cmsg
Pointer to the call message

6.13.51.3 Description

The xdr_callmsg() call translates between RPC call messages (header and authentication, not argument data) and
their external representations.

Page 292 of 379 — IBM TCP/IP for 4690 Application Interface Guide

xdr_double()

6.13.52 xdr_double()

The xdr_double() call translates between C double-precision numbers and their external representations.

6.13.52.1 Syntax

#include <rpc\rpc.h>

bool _t
xdr_double(xdrs, dp)
XDR *xdrs;

double *dp;

6.13.52.2 Parameters

xdrs
Pointer to the XDR stream

dp
Pointer to a double-precision number

6.13.52.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.52.4 Description

The xdr_double() call translates between C double-precision numbers and their external representations.

Remote Procedure Calls (RPCs) — Page 293 of 379

xdr_enum()

6.13.53 xdr_enum()

The xdr_enum() call translates between C-enumerated groups and their external representations.

6.13.53.1 Syntax

#include <rpc\rpc.h>

bool _t
xdr_enum(xdrs, ep)
XDR *xdrs;

enum_t *ep;

6.13.53.2 Parameters

xdrs
Pointer to the XDR stream

ep
Pointer to the enumerated number

6.13.53.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.53.4 Description

The xdr_enum() call translates between C-enumerated groups and their external representations. When you call the
procedures callrpc() and registerrpc(), create a stub procedure for both the server and the client before the procedure
of the application program using xdr_enum(). Verify that this procedure looks like the following:

#include <rpc\rpc.h>

void

static xdr_enum_t(xdrs, ep)
XDR *xdrs;

enum_t =ep;

{

}

The xdr_enum_t procedure is used asitipgoc andoutprocin both the client and server RPCs.

xdr_enum(xdrs, ep)

Page 294 of 379 — IBM TCP/IP for 4690 Application Interface Guide

xdr_enum()

For example, an RPC client would contain the following lines:

error = callrpc(argv[1],ENUMRCVPROG,VERSION,ENUMRCVPROC,
xdr_enum_t,&innumber,xdr_enum_t,&outnumber) ;

An RPC server would contain the following line:

registerrpc (ENUMRCVPROG, VERSION, ENUMRCVPROC, xdr_enum_t,
xdr_enum_t);

Remote Procedure Calls (RPCs) — Page 295 of 379

xdr_float()

6.13.54 xdr_float()

The xdr_float() call translates between C floating-point numbers and their external representations.

6.13.54.1 Syntax

#include <rpc\rpc.h>

bool _t
xdr_float(xdrs, fp)
XDR *xdrs;

float *fp;

6.13.54.2 Parameters

xdrs
Pointer to the XDR stream

fp
Pointer to the floating-point number

6.13.54.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.54.4 Description

The xdr_float() call translates between C floating-point numbers and their external representations.

Page 296 of 379 — IBM TCP/IP for 4690 Application Interface Guide

xdr_getpos()

6.13.55 xdr_getpos()

The xdr_getpos() call starts the get-position routine associated with the XDR stdeam,

6.13.55.1 Syntax

#include <rpc\rpc.h>

u_int
xdr_getpos (xdrs)
XDR *xdrs;

6.13.55.2 Parameter

xdrs
Pointer to the XDR stream

6.13.55.3 Return Value

The xdr_getpos() call returns an unsigned integer, which indicates the position of the XDR byte stream.
6.13.55.4 Description

The xdr_getpos() call starts the get-position routine associated with the XDR stdzam,

6.13.55.5 Related Call

xdr_setpos

Remote Procedure Calls (RPCs) — Page 297 of 379

xdr_inline()

6.13.56 xdr_inline()
The xdr_inline() call returns a pointer to a continuous piece of the XDR stream’s buffer.

6.13.56.1 Syntax

#include <rpc\rpc.h>

long =*
xdr_inline(xdrs, len)
XDR *xdrs;

int len;

6.13.56.2 Parameters

xdrs
Pointer to the XDR stream

len
Length in bytes of the desired buffer

6.13.56.3 Return Values
The value 1 indicates success; the value O indicates an error.

6.13.56.4 Description

The xdr_inline() call returns a pointer to a continuous piece of the XDR stream’s buffer. The Vialng is
rather tharchar *, because the external data representation of any object is always an integer multiple of 32 bits.

Note: xdr_inline() might return NULL if there is not enough space in the stream buffer to satisfy the request.

Page 298 of 379 — IBM TCP/IP for 4690 Application Interface Guide

xdr_int()

6.13.57 xdr_int()

The xdr_int() call translates between C integers and their external representations.

6.13.57.1 Syntax

#include <rpc\rpc.h>

bool_t
xdr_int(xdrs, ip)
XDR *xdrs;

int *ip;

6.13.57.2 Parameters

xdrs
Pointer to the XDR stream

ip
Pointer to the integer
6.13.57.3 Return Values
The value 1 indicates success; the value 0 indicates an error.

6.13.57.4 Description

The xdr_int() call translates between C integers and their external representations.

Remote Procedure Calls (RPCs) — Page 299 of 379

xdr_long()

6.13.58 xdr_long()

The xdr_long() call translates between C long integers and their external representations.

6.13.58.1 Syntax

#include <rpc\rpc.h>

bool _t
xdr_Tong(xdrs, lp)
XDR *xdrs;

long *Ip;

6.13.58.2 Parameters

xdrs
Pointer to an XDR stream

Ip
Pointer to the long integer

6.13.58.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.58.4 Description

The xdr_long() call translates between C long integers and their external representations.

Page 300 of 379 — IBM TCP/IP for 4690 Application Interface Guide

xdr_opaque()

6.13.59 xdr_opaque()

The xdr_opaque() call translates between fixed-size opaque data and its external representation.

6.13.59.1 Syntax

#include <rpc\rpc.h>

bool _t

xdr_opaque(xdrs, cp, cnt)
XDR *xdrs;

char *cp;

u_int cnt;

6.13.59.2 Parameters

xdrs
Pointer to an XDR stream

cp
Pointer to the opaque object

cnt
Size of the opaque object

6.13.59.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.59.4 Description

The xdr_opaque() call translates between fixed-size opaque data and its external representation.

Remote Procedure Calls (RPCs) — Page 301 of 379

xdr_opaque_auth()

6.13.60 xdr_opaque_auth()

The xdr_opaque_auth() call translates between RPC message authentications and their external representations.

6.13.60.1 Syntax

#include <rpc\rpc.h>

bool _t
xdr_opaque_auth(xdrs, ap)
XDR *xdrs;

struct opaque_auth =*ap;

6.13.60.2 Parameters

xdrs
Pointer to an XDR stream

ap
Pointer to the opaque authentication information

6.13.60.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.60.4 Description

The xdr_opaque_auth() call translates between RPC message authentications and their external representations.

Page 302 of 379 — IBM TCP/IP for 4690 Application Interface Guide

xdr_pmap()

6.13.61 xdr_pmap()

The xdr_pmap() call translates an RPC procedure identification, such as is used in calls to Portmapper.

6.13.61.1 Syntax

#include <rpc\rpc.h>

bool _t

xdr_pmap (xdrs, regs)
XDR *xdrs;

struct pmap =*regs;

6.13.61.2 Parameters

xdrs
Pointer to an XDR stream

regs
Pointer to the PORTMAP parameters

6.13.61.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.61.4 Description

The xdr_pmap() call translates an RPC procedure identification, such as is used in calls to Portmapper.

Remote Procedure Calls (RPCs) — Page 303 of 379

xdr_pmaplist()

6.13.62 xdr_pmaplist()

The xdr_pmaplist() call translates a variable number of RPC procedure identifications, such as those Portmapper
creates.

6.13.62.1 Syntax

#include <rpc\rpc.h>

bool_t
xdr_pmaplist(xdrs, rp)
XDR *xdrs;

struct pmaplist *xrp;

6.13.62.2 Parameters

xdrs
Pointer to an XDR stream

rp
Pointer to a pointer to the PORTMAP data array

6.13.62.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.62.4 Description

The xdr_pmaplist() call translates a variable number of RPC procedure identifications, such as those Portmapper
creates.

Page 304 of 379 — IBM TCP/IP for 4690 Application Interface Guide

xdr_reference()

6.13.63 xdr_reference()

The xdr_reference() call provides pointer chasing within structures.

6.13.63.1 Syntax

#include <rpc\rpc.h>

bool _t

xdr_reference(xdrs, pp, size, proc)
XDR *xdrs;

char **pp;

u_int size;

xdrproc_t proc;

6.13.63.2 Parameters

xdrs
Pointer to an XDR stream

pp

Pointer to a pointer
size

Size of the target
proc

XDR procedure that translates an individual element of the type addressed by the pointer
6.13.63.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.63.4 Description

The xdr_reference() call provides pointer chasing within structures.

Remote Procedure Calls (RPCs) — Page 305 of 379

xdr_rejected_reply()

6.13.64 xdr_rejected_reply()

The xdr_rejected_reply() call translates between rejected RPC reply messages and their external representations.

6.13.64.1 Syntax

#include <rpc\rpc.h>

bool _t

xdr_rejected reply(xdrs, rr)
XDR *xdrs;

struct rejected reply *rr;

6.13.64.2 Parameters

xdrs
Pointer to an XDR stream

rre
Pointer to the rejected reply

6.13.64.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.64.4 Description

The xdr_rejected_reply() call translates between rejected RPC reply messages and their external representations.

Page 306 of 379 — IBM TCP/IP for 4690 Application Interface Guide

xdr_replymsg()

6.13.65 xdr_replymsg()

The xdr_replymsg() call translates between RPC reply messages and their external representations.

6.13.65.1 Syntax

#include <rpc\rpc.h>

bool _t
xdr_replymsg(xdrs, rmsg)
XDR *xdrs;

struct rpc_msg *rmsg;

6.13.65.2 Parameters

xdrs
Pointer to an XDR stream

rmsg
Pointer to the reply message

6.13.65.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.65.4 Description

The xdr_replymsg() call translates between RPC reply messages and their external representations.

Remote Procedure Calls (RPCs) — Page 307 of 379

xdr_setpos()

6.13.66 xdr_setpos()

The xdr_setpos() starts the set-position routine associated with a XDR stdram,

6.13.66.1 Syntax

#include <rpc\rpc.h>

int

xdr_setpos (xdrs, pos)
XDR *xdrs;

u_int pos;

6.13.66.2 Parameters

xdrs
Pointer to an XDR stream

pos
Position value obtained from xdr_getpos()

6.13.66.3 Return Values

The value 1 indicates success; the value 0 indicates an error.

6.13.66.4 Description

The xdr_setpos() call starts the set-position routine associated with the XDR stieam,
6.13.66.5 Related Call

xdr_getpos

Page 308 of 379 — IBM TCP/IP for 4690 Application Interface Guide

xdr_short()

6.13.67 xdr_short()

The xdr_short() call translates between C short integers and their external representations.

6.13.67.1 Syntax

#include <rpc\rpc.h>

bool_t

xdr_short (xdrs, sp)
XDR *xdrs;

short *sp;

6.13.67.2 Parameters

xdrs
Pointer to an XDR stream

Sp
Pointer to the short integer

6.13.67.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.67.4 Description

The xdr_short() call translates between C short integers and their external representations.

Remote Procedure Calls (RPCs) — Page 309 of 379

xdr_string()

6.13.68 xdr_string()

The xdr_string() call translates between C strings and their external representations.

6.13.68.1 Syntax

#include <rpc\rpc.h>

bool _t

xdr_string(xdrs, sp, maxsize)
XDR *xdrs;

char **sp;

u_int maxsize;

6.13.68.2 Parameters

xdrs

Pointer to an XDR stream
sp

Pointer to a pointer to the string
maxsize

Maximum size of the string
6.13.68.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.68.4 Description

The xdr_string() call translates between C strings and their external representations.

Page 310 of 379 — IBM TCP/IP for 4690 Application Interface Guide

xdr_u_int()

6.13.69 xdr_u_int()

The xdr_u_int() call translates between C unsigned integers and their external representations.

6.13.69.1 Syntax

#include <rpc\rpc.h>

bool _t
xdr_u_int(xdrs, up)
XDR *xdrs;
unsigned *up;

6.13.69.2 Parameters

xdrs
Pointer to an XDR stream

up
Pointer to the unsigned integer

6.13.69.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.69.4 Description

The xdr_u_int() call translates between C unsigned integers and their external representations.

Remote Procedure Calls (RPCs) — Page 311 of 379

xdr_u_long()

6.13.70 xdr_u_long()

The xdr_u_long() call translates between C unsigned long integers and their external representations.

6.13.70.1 Syntax

#include <rpc\rpc.h>

bool _t
xdr_u_long(xdrs, ulp)
XDR *xdrs;

u_long *ulp;

6.13.70.2 Parameters

xdrs
Pointer to an XDR stream

ulp
Pointer to the unsigned long integer

6.13.70.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.70.4 Description

The xdr_u_long() call translates between C unsigned long integers and their external representations.

Page 312 of 379 — IBM TCP/IP for 4690 Application Interface Guide

xdr_u_short()

6.13.71 xdr_u_short()

The xdr_u_short() call translates between C unsigned short integers and their external representations.

6.13.71.1 Syntax

#include <rpc\rpc.h>

bool _t
xdr_u_short(xdrs, usp)
XDR *xdrs;

u_short =*usp;

6.13.71.2 Parameters

xdrs
Pointer to an XDR stream

usp
Pointer to the unsigned short integer

6.13.71.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.71.4 Description

The xdr_u_short() call translates between C unsigned short integers and their external representations.

Remote Procedure Calls (RPCs) — Page 313 of 379

xdr_union()

6.13.72 xdr_union()

The xdr_union() call translates between a discriminated C union and its external representation.

6.13.72.1 Syntax

#include <rpc\rpc.h>

bool _t

xdr_union(xdrs, dscmp, unp, choices, dfault)
XDR *xdrs;

int *dscmp;

char *unp;

struct xdr_discrim *choices;

xdrproc_t dfault;

6.13.72.2 Parameters

xdrs
Pointer to an XDR stream
dscmp
Pointer to the union’s discriminant
unp
Pointer to the union
choices
Pointer to an array detailing the XDR procedure to use on each arm of the union
dfault

Default XDR procedure to use
6.13.72.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.72.4 Description

The xdr_union() call translates between a discriminated C union and its external representation.

Page 314 of 379 — IBM TCP/IP for 4690 Application Interface Guide

xdr_vector()

6.13.73 xdr_vector()

The xdr_vector() call translates between a fixed-length array and its external representation.

6.13.73.1 Syntax

#include <rpc\rpc.h>

bool t

xdr_vector(xdrs, basep, nelem, elemsize, xdr_elem)
XDR *xdrs;

char *basep;

u_int nelem;

u_int elemsize;

xdrproc_t xdr_elem

6.13.73.2 Parameters

xdrs
Pointer to the XDR stream
basep
Pointer to the base of the array
nelem
Element count of the array
elemsize
Size of each of the array’s elements, found by using the sizeof() operator
xdr_elem

Pointer to the XDR routine that translates an individual array element
6.13.73.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.73.4 Description

The xdr_vector() call translates between a fixed-length array and its external representation. Unlike variable-length
arrays, the storage of fixed-length arrays is static and unfreeable.

Remote Procedure Calls (RPCs) — Page 315 of 379

xdr_void()

6.13.74 xdr_void()
The xdr_void() call returns a value of 1.

6.13.74.1 Syntax

#include <rpc\rpc.h>

bool _t
xdr_void()

6.13.74.2 Return Value
The xdr_void() call always returns a value of 1.
6.13.74.3 Description

The xdr_void() call is used like a command that does not require any other XDR functions. You can place this call
in theinproc or outproc parameter of the cint_call() function when you do not need to move data.

6.13.74.4 Related Calls

callrpc()
cInt_broadcast()
cint_call()
cint_freeres()
pmap_rmtcall()
registerrpc()
svc_freeargs()
svc_getargs()
svc_sendreply()

Page 316 of 379 — IBM TCP/IP for 4690 Application Interface Guide

xdr_wrapstring()

6.13.75 xdr_wrapstring()

The xdr_wrapstring() call translates between strings and their external representations.

6.13.75.1 Syntax

#include <rpc\rpc.h>

bool _t
xdr_wrapstring(xdrs, sp)
XDR *xdrs;

char **sp;

6.13.75.2 Parameters

xdrs
Pointer to an XDR stream

Sp
Pointer to a pointer to the string

6.13.75.3 Return Values

The value 1 indicates success; the value 0 indicates an error.

6.13.75.4 Description

The xdr_wrapstring() call is the same as calling xdr_string() with a maximum size of MAXUNSIGNED. It is

useful because many RPC procedures implicitly start two-parameter XDR routines, and xdr_string() is a
three-parameter routine.

Remote Procedure Calls (RPCs) — Page 317 of 379

xdrmem_create()

6.13.76 xdrmem_create()
The xdrmem_create() call initializes the XDR stream pointed tadoy

6.13.76.1 Syntax

#include <rpc\rpc.h>

void

xdrmem_create(xdrs, addr, size, op)
XDR *xdrs;

char *addr;

u_int size;

enum xdr_op op;

6.13.76.2 Parameters

xdrs
Pointer to an XDR stream

addr
Pointer to the memory location

size
Maximum size ofaddr, in multiples of 4

op
The direction of the XDR stream (either XDR_ENCODE, XDR_DECODE, or XDR_FREE)

6.13.76.3 Description

The xdrmem_create() call initializes the XDR stream pointed trdog Data is written to, or read fronaddr.

Page 318 of 379 — IBM TCP/IP for 4690 Application Interface Guide

xdrrec_create()

6.13.77 xdrrec_create()
The xdrrec_create() call initializes the XDR stream pointed tadog

6.13.77.1 Syntax

#include <rpc\rpc.h>

void

xdrrec_create(xdrs, sendsize, recvsize, handle, readit, writeit)
XDR *xdrs;

u_int sendsize;

u_int recvsize;

char *handle;

int (*readit)();

int (xwriteit)();

6.13.77.2 Parameters

xdrs

Pointer to an XDR stream.
sendsize

Size of the send buffer. Specify 0 to choose the default.
recvsize

Size of the receive buffer. Specify 0 to choose the default.
handle

First parameter passed eadit) andwriteit().
readit()

Called when a stream’s input buffer is empty.
writeit()

Called when a stream’s output buffer is full.
6.13.77.3 Description

The xdrrec_create() call initializes the XDR stream pointed tadog

Note: The caller must set thep field in thexdrs structure.

Warning: This XDR procedure implements an intermediate record string. Additional bytes in the XDR stream
provide record boundary information.

Remote Procedure Calls (RPCs) — Page 319 of 379

xdrrec_endofrecord()

6.13.78 xdrrec_endofrecord()

The xdrrec_endofrecord() call marks the data in the output buffer as a completed record.

6.13.78.1 Syntax

#include <rpc\rpc.h>

bool _t

xdrrec_endofrecord(xdrs, sendnow)
XDR *xdrs;

int sendnow;

6.13.78.2 Parameters

xdrs
Pointer to an XDR stream

sendnow
Specifies nonzero to write out data in the output buffer

6.13.78.3 Return Values
The value 1 indicates success; the value 0 indicates an error.
6.13.78.4 Description

You can start the xdrrec_endofrecord() call only on streams created by xdrrec_create(). Data in the output buffer is
marked as a complete record.

Page 320 of 379 — IBM TCP/IP for 4690 Application Interface Guide

xdrrec_eof()

6.13.79 xdrrec_eof()

The xdrrec_eof() call marks the end of the file, after using the rest of the current record in the XDR stream.

6.13.79.1 Syntax

#include <rpc\rpc.h>

bool _t
xdrrec_eof (xdrs)
XDR *xdrs;

int empty;

6.13.79.2 Parameter

xdrs
Pointer to an XDR stream

6.13.79.3 Return Values

The value 1 indicates the current record has been consumed; the value 0 indicates continued input on the stream.
6.13.79.4 Description

You can start the xdrrec_eof() call only on streams created by xdrrec_create().

Remote Procedure Calls (RPCs) — Page 321 of 379

xdrrec_skiprecord()

6.13.80 xdrrec_skiprecord()

The xdrrec_skiprecord() call discards the rest of the XDR stream’s current record in the input buffer.

6.13.80.1 Syntax

#include <rpc\rpc.h>

bool _t
xdrrec_skiprecord(xdrs)
XDR *xdrs;

6.13.80.2 Parameter

xdrs
Pointer to an XDR stream

6.13.80.3 Return Values
The value 1 indicates success; the value O indicates an error.
6.13.80.4 Description

You can start the xdrrec_skiprecord() call only on streams created by xdrrec_create(). The XDR implementation is
instructed to discard the remaining data in the input buffer.

6.13.80.5 Related Call

xdrrec_create()

Page 322 of 379 — IBM TCP/IP for 4690 Application Interface Guide

xdrstdio_create()

6.13.81 xdrstdio_create()

The xdrstdio_create() call initializes the XDR stream pointed tadog

6.13.81.1 Syntax

#include <rpc\rpc.h>
#include <stdio.h>

void

xdrstdio_create(xdrs, file, op)
XDR *xdrs;

FILE *file;

enum xdr_op op;

6.13.81.2 Parameters

xdrs
Pointer to an XDR stream

file
File name for the input and output stream

op
The direction of the XDR stream (either XDR_ENCODE, XDR_DECODE, or XDR_FREE)

6.13.81.3 Description

The xdrstdio_create() call initializes the XDR stream pointed tgdog Data is written to or read from the
standard I/O stream or file.

Remote Procedure Calls (RPCs) — Page 323 of 379

xprt_register()

6.13.82 xprt_register()
The xprt_register() call registers service transport handles with the RPC service package.

6.13.82.1 Syntax

#include <rpc\rpc.h>

void
xprt_register(xprt)
SVCXPRT =*xprt;

6.13.82.2 Parameter

xprt
Pointer to the service transport handle

6.13.82.3 Description

The xprt_register() call registers service transport handles with the RPC service package. This routine also modifies
the global variable svc_socks][].

6.13.82.4 Related Call

svc_register()

Page 324 of 379 — IBM TCP/IP for 4690 Application Interface Guide

xprt_unregister()

6.13.83 xprt_unregister()
The xprt_unregister() call unregisters the RPC service transport handle.

6.13.83.1 Syntax

#include <rpc\rpc.h>

void
xprt_unregister(xprt)
SVCXPRT =*xprt;

6.13.83.2 Parameter

xprt
Pointer to the service transport handle

6.13.83.3 Description

The xprt_unregister() call unregisters an RPC service transport handle. A transport handle should be unregistered
with the RPC service package before it is destroyed. This routine also modifies the global variable svc_socks]].

Remote Procedure Calls (RPCs) — Page 325 of 379

Page 326 of 379 — IBM TCP/IP for 4690 Application Interface Guide

7.0 File Transfer Protocol Application Programming
Interface

This chapter describes the FTP API routines supported by TCP/IP for 46900S. The File Transfer Protocol (FTP)
API allows applications to have a client interface for file transfer. Applications written to this interface can
communicate with multiple FTP servers at the same time. The interface supports a maximum of 256 simultaneous
connections and enables third-party proxy transfers between pairs of FTP servers. Consecutive third-party transfers
are allowed between any sequence of pairs of FTP servers.

The FTP API tracks the servers to which an application is currently connected. When a new request for FTP
service is requested, the API checks whether a connection to the server exists and establishes one if it does not
exist. If the server has dropped the connection since last use, the API re-establishes it.

7.1 FTP API Call Library

To use the FTP API described in this chapter, you must haveFReAPI.H> header file on your system. The
FTP API routines are in the ADXHSITL.L86 file.

Put the following statement at the top of any file using FTP API code:

#include <ftpapi.h>

Define the 4690 variable to the compiler by doing the following:
* Place#define 0S2 at the top of each file that includes TCP/IP header files.

7.2 Return Values

Most functions return a value efl to indicate failure and a value of O to indicate success. Two functions do not
return 0 and-1 values: ftplogoff(), which is of type void, and ping(), which returns an error code rather than
storing the return value ifiperrna When the value is1, the global integer variabfégperrnois set to one of the
following codes:

Return Code Description

FTPSERVICE Unknown service.
FTPHOST Unknown host.
FTPSOCKET Unable to obtain socket.
FTPCONNECT Unable to connect to server.
FTPLOGIN Login failed.

FTPABORT Transfer aborted.

FTPLOCALFILE Problem opening the local file.
FTPDATACONN Problem initializing data connection.
FTPCOMMAND Command failed.

FTPPROXYTHIRD Proxy server does not support third party.
FTPNOPRIMARY No primary connection for proxy transfer.

File Transfer Protocol Application Programming Interface — Page 327 of 379

7.3 FTP API Calls

This section provides the syntax, parameters, and other appropriate information for each FTP API call supported by
TCP/IP for 46900S.

Page 328 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ftpappend()

7.3.1 ftpappend()

The ftpappend() call appends information to a remote file.

7.3.1.1 Syntax

#include <ftpapi.h>

int ftpappend(host, userid, passwd, acct, local,
remote, transfertype)

char xhost;

char *userid;

char *passwd;

char =*acct;

char *local;

char xremote;

int transfertype;

7.3.1.2 Parameters

host Host running the FTP server.

userid ID used for logon.

passwd Password of the user ID.

acct Account (when needed); can be NULL.
local Local file name.

remote Remote file name.

transfertype Specifies a binary or ASCII transfer. T_ASCII is for ASCIl, T_BINARY is for binary.
7.3.1.3 Return Values

The value 0 indicates success; the valliendicates an error. The value fperrno indicates the specific error.
7.3.1.4 Description

The ftpappend() call appends information to a remote file.

7.3.1.5 Example

int rc;
rc=ftpappend("conypc","jason","ehgrl",NULL,"abc.doc","new.doc",T ASCII);

The local ASCII fileabc.doc is appended to the fileew.doc in the current working directory at the hasinypc.

File Transfer Protocol Application Programming Interface — Page 329 of 379

ftpcd()

7.3.2 ftpcd()

The ftpcd() call changes the current working directory on a host.

7.3.2.1 Syntax

#include <ftpapi.h>

int ftpcd(host, userid, passwd, acct, dir)
char *host;

char *userid;

char *passwd;

char =*acct,

char *dir;

7.3.2.2 Parameters

host Host running the FTP server

userid ID used for logon

passwd Password of the user ID

acct Account (when needed); can be NULL

dir New working directory

7.3.2.3 Return Values

The value 0 indicates success; the valliendicates an error. The value ftperrno indicates the specific error.
7.3.2.4 Description

The ftpcd() call changes the current working directory.

7.3.2.5 Example

int rc;
rc=ftpcd("conypc","jason","ehgrl" ,NULL,"mydir");

The current working directory is changedmgdir on the hostonypc using the user Iason and the password
ehgrl.

Page 330 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ftpdelete()

7.3.3 ftpdelete()

The ftpdelete() call deletes files on a remote host.

7.3.3.1 Syntax

#include <ftpapi.h>

int ftpdelete(host, userid, passwd, acct, name)
char *host;

char *userid;

char *passwd;

char =*acct;

char *name;

7.3.3.2 Parameters

host Host running the FTP server

userid ID used for logon

passwd Password of the user ID

acct Account (when needed); can be NULL

name File to be deleted

7.3.3.3 Return Values

The value 0 indicates success; the valliendicates an error. The value ftperrno indicates the specific error.
7.3.3.4 Description

The ftpdelete() call deletes a file on a host.

7.3.3.5 Example

int rc;
rc=ftpdelete("conypc","jason","ehgrl" ,NULL,"abc.1");

The file abc.1 is deleted on the hosbnypc using the user IDjason and the passworehgrl.

File Transfer Protocol Application Programming Interface — Page 331 of 379

ftpdir()

7.3.4 ftpdir()

The ftpdir() call gets a directory in wide format from a host.

7.3.4.1 Syntax

#include <ftpapi.h>

int ftpdir(host, userid, passwd, acct, local, pattern,)
char *host;

char *userid;

char *passwd;

char =*acct;

char *local;

char *pattern;

7.3.4.2 Parameters

host Host running the FTP server.

userid ID used for logon.

passwd Password of the user ID.

acct Account (when needed); can be NULL.
local Local file name.

pattern The file name or pattern of the files to be listed on the foreign host. Patterns are any combination of
ASCII characters. The following two characters have special meaning:

* Shows that any character or group of characters can occupy that position in the pattern.

? Shows that any single character can occupy that position in the pattern.
7.3.4.3 Return Values

The value 0 indicates success; the valliendicates an error. The value ftperrno indicates the specific error.
7.3.4.4 Description

The ftpdir() call gets a directory in wide format from a host.

Page 332 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ftpdir()

7.3.4.5 Example

int rc;
rc=ftpdir("conypc","jason","ehgrl" ,NULL,"conypc.dir","*.c");

ftpdir() gets a directory of.c files in wide format, and stores the directory in a local filmypc.dir.

File Transfer Protocol Application Programming Interface — Page 333 of 379

ftpget()

7.3.5 ftpget()

The ftpget() call gets a file from an FTP server.

7.3.5.1 Syntax

#include <ftpapi.h>

int ftpget(host, userid, passwd, acct, local, remote,
mode, transfertype)

char xhost;

char *userid;

char *passwd;

char =*acct;

char *local;

char xremote;

char *mode;

int transfertype;

7.3.5.2 Parameters

host Host running the FTP server.

userid ID used for logon.

passwd Password of the user ID.

acct Account (when needed); can be NULL.
local Local file name.

remote Remote file name.

mode Eitherw for write ora for append.

transfertype Specifies a binary or ASCII transfer. T_ASCII is for ASCIl, T_BINARY is for binary.
7.3.5.3 Return Values

The value 0 indicates success; the valliendicates an error. The value ftperrno indicates the specific error.
7.3.5.4 Description

The ftpget() call gets a file from an FTP server.

Page 334 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ftpget()

7.3.5.5 Example
int rc;

rc=ftpget("conypc","jason","ehgrl" ,NULL,"new.doc","abc.doc","w",T_ASCII);

The system copies the ASCII fikbc.doc on the hostconypc into the local current working directory as the file
new.doc. If the file new.doc already exists in the local current working directory, the contents of thebfileloc
overwrite the filenew.doc.

File Transfer Protocol Application Programming Interface — Page 335 of 379

ftplogoff()

7.3.6 ftplogoff()

The ftplogoff() call closes all current connections.

7.3.6.1 Syntax

#include <ftpapi.h>

void ftplogoff()

7.3.6.2 Description

The ftplogoff() call closes all current connections. An application must call this before terminating.

Page 336 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ftpls()

7.3.7 ftpls()

The ftpls() call gets directory information in short format from a remote host and writes it to a local file.

7.3.7.1 Syntax

#include <ftpapi.h>

int ftpls(host, userid, passwd, acct, local, pattern)
char *host;

char *userid;

char *passwd;

char =*acct;

char *local;

char *pattern;

7.3.7.2 Parameters

host Host running the FTP server.

userid ID used for logon.

passwd Password of the user ID.

acct Account (when needed); can be NULL.

local Local file into which the information is placed.

pattern The file name or pattern of the files to be listed on the foreign host. Patterns are any combination of
ASCII characters. The following two characters have special meaning:

* Shows that any character or group of characters can occupy that position in the pattern.

? Shows that any single character can occupy that position in the pattern.
7.3.7.3 Return Values
The value 0 indicates success; the valliendicates an error. The value ftperrno indicates the specific error.
7.3.7.4 Description

The ftpls() call gets directory information in short format from a host and writes it to a local file.

File Transfer Protocol Application Programming Interface — Page 337 of 379

ftpls()

7.3.7.5 Example

int rc;
rc=ftpls("conypc","jason","ehgrl" ,NULL,"conypc.dir","*.c");

ftpls() gets a directory of.c files in short format and stores the names in the locatibgpc.dir.

Page 338 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ftpmkd()

7.3.8 ftpmkd()

The ftpmkd() call creates a new directory on a target machine.

7.3.8.1 Syntax

#include <ftpapi.h>

int ftpmkd(host, userid, passwd, acct, dir)
char *host;

char *userid;

char *passwd;

char =*acct;

char *dir;

7.3.8.2 Parameters

host Host running the FTP server

userid ID used for logon

passwd Password of the user ID

acct Account (when needed); can be NULL

dir Directory to be created

7.3.8.3 Return Values

The value 0 indicates success; the valliendicates an error. The value ftperrno indicates the specific error.
7.3.8.4 Description

The ftpmkd() call creates a new directory on a host.

7.3.8.5 Example

int rc;
rc=ftpmkd("conypc","jason","ehgrl" ,NULL, "mydir");

The directorymydir is created on the hosbnypc, using the user Iason and the passworehgrl.

File Transfer Protocol Application Programming Interface — Page 339 of 379

ftpproxy()

7.3.9 ftpproxy()
The ftpproxy() call transfers a file between two remote servers without sending the file to the local host.

7.3.9.1 Syntax

#include <ftpapi.h>

int ftpproxy(hostl, useridl, passwdl, acctl, host2, userid?,
passwd2, acct2, fnl, fn2, transfertype)

char xhostl;

char *useridl;

char *passwdl;

char *acctl;

char *host2;

char *xuserid?;

char *passwdZ;

char =*acct2;

char *fnl;

char *fn2;

int transfertype;

7.3.9.2 Parameters

host1 Target host running the FTP server.

useridl ID used for logon on host 1.

passwdl Password of the user ID on host 1.

acctl Account for host 1 (when needed); can be NULL.
host2 Source host running the FTP server.

userid2 ID used for logon on host 2.

passwd?2 Password of the user ID on host 2.

acct2 Account for host 2 (when needed); can be NULL.
fnl File to be written on host 1.

fn2 File to be copied from host 2.

transfertype Specifies a binary or ASCII transfer. T_ASCII is for ASCII, T_BINARY is for binary.
7.3.9.3 Return Values

The value 0 indicates success; the valliendicates an error. The value fgperrno indicates the specific error.
7.3.9.4 Description

The ftpproxy() call copies a file on a specified source host directly to a specified target host, without involving the
requesting host in the file transfer. This call is functionally the same as the FTP client subcqmomgnmut

Note: For ftpproxy() to complete successfully, both the source and the target hosts must be running the FTP
servers.

Page 340 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ftpproxy()

7.3.9.5 Example

int rc;
rc=ftpproxy("pcl","oleg","erst",NULL, /* target host information=*/
"pc2","yan", "dssal", NULL, /* source host information*/

"\tmp\newdoc.1", /* target file name */
"\tmp\doc.1", /* source file name =/
T ASCII); /* ascii transfer */

The ASCII file \tmp\doc.1 on the hospc? is copied to hospcl as the file\tmp\newdoc.1.

File Transfer Protocol Application Programming Interface — Page 341 of 379

ftpput()

7.3.10 ftpput()

The ftpput() call transfers a file to a host.

7.3.10.1 Syntax

#include <ftpapi.h>

int ftpput(host, userid, passwd, acct, local, remote, transfertype)
char *host;

char *userid;

char *passwd;

char =*acct;

char *local;

char *remote;

int transfertype;

7.3.10.2 Parameters

host Host running the FTP server.

userid ID used for logon.

passwd Password of the user ID.

acct Account (when needed); can be NULL.
local Local file name.

remote Remote file name.

transfertype Specifies a binary or ASCII transfer. T_ASCII is for ASCII, T_BINARY is for binary.
7.3.10.3 Return Values

The value 0 indicates success; the valliendicates an error. The value ftperrno indicates the specific error.
7.3.10.4 Description

The ftpput() call transfers a file to an FTP server.

7.3.10.5 Example

int rc;
rc=ftpput("conypc","jason","ehgrl" ,NULL,"abc.doc","new.doc",T ASCII);

The system copies the ASCII fikbc.doc on the local current working directory to the current working directory

of the hostconypc as filenew.doc. If the file new.doc already exists, the contents of the fidbc.doc overwrite
the file new.doc.

Page 342 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ftpputunique()

7.3.11 ftpputunique()
The ftpputunique() call transfers a file to a host and ensures it is created with a unique name.

7.3.11.1 Syntax

#include <ftpapi.h>

int ftpputunique(host, userid, passwd, acct, local, remote,
transfertype)

char xhost;

char *userid;

char *passwd;

char =*acct;

char *local;

char xremote;

int transfertype;

7.3.11.2 Parameters

host Host running the FTP server.

userid ID used for logon.

passwd Password of the user ID.

acct Account (when needed); can be NULL.
local Local file name.

remote Remote file name.

transfertype Specifies a binary or ASCII transfer. T_ASCII is for ASCII, T_BINARY is for binary.

7.3.11.3 Return Values

The value 0 indicates success; the valliendicates an error. The value fperrno indicates the specific error.
7.3.11.4 Description

The ftpputunique() call copies a local file to a file on a specified host. It guarantees that the new file will have a

unique name and that the new file will not overwrite a file with the same name. If the file already exists on the
host, a new and unique file name is created and used as the target of the file transfer.

File Transfer Protocol Application Programming Interface — Page 343 of 379

ftpputunique()

7.3.11.5 Example
int rc;
rc=ftpputunique(
"conypc","jason","ehgrl" ,NULL,"abc.doc", "new.doc",T ASCII);

The ASCII file abc.doc is copied to the current working directory of the hastypc as filenew.doc, unless the
file new.doc already exists. If the filaew.doc already exists, the fil@ew.doc is given a new name unique within
the current working directory on the hasinypc. The name of the new file is displayed upon successful
completion of the file transfer.

Page 344 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ftpquote()

7.3.12 ftpquote()

The ftpquote() call sends a string to the server verbatim.

7.3.12.1 Syntax

#include <ftpapi.h>

int ftpquote(host, userid, passwd, acct, quotestr)
char *host;

char *userid;

char *passwd;

char =*acct;

char *quotestr;

7.3.12.2 Parameters

host Host running the FTP server

userid ID used for logon

passwd Password of the user ID

acct Account (when needed); can be NULL

guotestr Quote string to be passed to the FTP server verbatim

7.3.12.3 Return Values

The value 0 indicates success; the valliendicates an error. The value ftperrno indicates the specific error.
7.3.12.4 Description

The ftpquote() call sends a string to the server verbatim.

7.3.12.5 Example

int rc;
rc=ftpquote("conypc","jason","ehgrl" ,NULL,"site idle 2000");

The idle is set to time out in 2000 seconds. Your server might not support that amount of idle time.

File Transfer Protocol Application Programming Interface — Page 345 of 379

ftprename()

7.3.13 ftprename()
The ftprename() call renames a file on a remote host.

7.3.13.1 Syntax

#include <ftpapi.h>

int ftprename(host, userid, passwd, acct, namefrom, nameto)
char *host;

char *userid;

char *passwd;

char =*acct;

char *namefrom;

char *nameto;

7.3.13.2 Parameters

host Host running the FTP server

userid ID used for logon

passwd Password of the user ID

acct Account (when needed); can be NULL
namefrom Original file name

nameto New file name

7.3.13.3 Return Values

The value 0 indicates success; the valliendicates an error. The value ftperrno indicates the specific error.
7.3.13.4 Description

The ftprename() call renames a file on a host.

7.3.13.5 Example

int rc;
rc=ftprename("conypc","jason","ehgrl" ,NULL,"abc.1","cd.fg");

The file abc.1 is renamed t@d.fg on hostconypc, using user IDjason, with passwordehgrl.

Page 346 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ftprmd()

7.3.14 ftprmd()

The ftprmd() call removes a directory on a target machine.

7.3.14.1 Syntax

#include <ftpapi.h>

int ftprmd(host, userid, passwd, acct, dir)
char *host;

char *userid;

char *passwd;

char =*acct;

char *dir;

7.3.14.2 Parameters

host Host running the FTP server

userid ID used for logon

passwd Password of the user ID

acct Account (when needed); can be NULL

dir Directory to be removed

7.3.14.3 Return Values

The value 0 indicates success; the valliendicates an error. The value ftperrno indicates the specific error.
7.3.14.4 Description

The ftprmd() call removes a directory on a host.

7.3.14.5 Example

int rc;
rc=ftprmd("conypc","jason", "ehgrl" ,NULL, "mydir");

The directorymydir, is removed on the hostonypc, using the user IDjason, and the passwor@hgrl.

File Transfer Protocol Application Programming Interface — Page 347 of 379

ftpsite()

7.3.15 ftpsite()

The ftpsite() call executes thsite command. (For more information about gite command, see 4.4,
“adxhsigl(ftp)” on page 56.

7.3.15.1 Syntax

#include <ftpapi.h>

int ftpsite(host, userid, passwd, acct, sitestr)
char *host;

char *userid;

char *passwd;

char =*acct;

char xsitestr;

7.3.15.2 Parameters

host Host running the FTP server

userid ID used for logon

passwd Password of the user ID

acct Account (when needed); can be NULL

sitestr Site string to be executed

7.3.15.3 Return Values

The value 0 indicates success; the valliendicates an error. The value fgperrno indicates the specific error.
7.3.15.4 Description

The ftpsite() call executes the site command.

7.3.15.5 Example

int rc;
rc=ftpsite("conypc","jason","ehgrl" ,NULL,"idle 2000");

The idle is set to time out in 2000 seconds. Your server might not support that amount of idle time.

Page 348 of 379 — IBM TCP/IP for 4690 Application Interface Guide

ping()

7.3.16 ping()

The ping() call sends a ping to the remote host to determine if that host is responding.

7.3.16.1 Syntax

#include <ftpapi.h>

int ping(addr, len)
unsigned long addr;
int len;

7.3.16.2 Parameters
addr Internet address of the host in network byte order

len Length of the ping packets
7.3.16.3 Return Values

If the return value is positive, the return value is the number of milliseconds it took for the echo to return. If the
return value is negative, it contains an error code.

The following are ping() call return codes and their corresponding descriptions:

Return Code Description

PINGREPLY Host does not reply
PINGSOCKET Unable to obtain socket
PINGPROTO Unknown protocol ICMP
PINGSEND Send failed

PINGRECV Recv failed

7.3.16.4 Description
The ping() call sends a ping to the host with ICMP Echo Request. The ping() call is useful to determine whether

the host is alive before attempting FTP transfers, because time-out on regular connections is more than a minute.
The ping() call returns within 3 seconds, at most, if the host is not responding.

File Transfer Protocol Application Programming Interface — Page 349 of 379

ping()

7.3.16.5 Example

#include <stdio.h>
#include <netdb.h>
#include <ftpapi.h>

struct hostent *hp; /* Pointer to host info */

main(argc, argv, envp)
int argc;

char *argv[];

char *envp[];

{
int i;
unsigned long addr;
if (argc!=2) {
printf("Usage: p <host>\n");
exit(1);
}
hp = gethostbyname(argv[1]);
if (hp) {
memcpy((char *)&addr, hp->h_addr, hp->h_Tength);
i = ping(addr,256);
printf("ping reply in %d milliseconds\n",i);
} else {
printf("unknown host\n");
exit(2);
}
ftplogoff(); /* close all connections =*/
1

Page 350 of 379 — IBM TCP/IP for 4690 Application Interface Guide

8.0 SNMP Agent Distributed Program Interface (DPI)

This chapter describes the SNMP DPI routines supported by TCP/IP for 46900S. The Simple Network
Management Protocol (SNMP) agent distributed program interface (DPI) permits end users to dynamically add,
delete, or replace management variables in the local Management Information Base (MIB) without requiring you to
recompile the SNMP agent.

8.1 SNMP Agents and Subagents

SNMP agents are responsible for performing network management functions by network management stations.
Examples of management functions are GET, GETNEXT, and SET, performed on the MIB elements.

A subagent extends the functionality provided by the SNMP agent. With the subagent, you define MIB variables
useful in your own environment and register them with the SNMP agent.

When the agent receives a request for a MIB variable, it passes the request to the subagent. The subagent then
returns a response to the agent. The agent creates an SNMP response packet and sends the response to the remote
network management station that initiated the request. The existence of the subagent is transparent to the network
management station.

To allow the subagents to perform these functions, the agent binds to an arbitrarily chosen TCP port and listens for
connection requests. A well-known port is not used. Every invocation of the SNMP agent could potentially use a
different TCP port.

A subagent of the SNMP agent determines the port number by sending a GET request for an MIB variable, which
represents the value of the TCP port. The subagent is not required to create and parse SNMP packets, because the
DPI API has a library routine query_DPI_port(). After the subagent obtains the value of the DPI TCP port, it

should make a TCP connection to the appropriate port. After a successful connect(), the subagent registers the set
of variables it supports with the SNMP agent. When all variable classes are registered, the subagent waits for
requests from the SNMP agent.

8.2 Processing DPI Requests

The SNMP agent can initiate three DPI requests: GET, SET, and GETNEXT. These requests correspond to the

three SNMP requests that a network management station can make. The subagent responds to a request with a
response packet. The response packet can be created using the mkDPIresponse() library routine, which is part of
the DPI API library.

The following section describes the requests that the SNMP subagent can initiate.

8.2.1 Processing a GET Request

The DPI packet is parsed to get the object ID of the requested variable. If the subagent does not support the
specified object ID, the subagent returns an error indication of SNMP_NO_SUCH_NAME. Name, type, or value
information is not returned. For example:

u_char =*cp;

cp = mkDPIresponse(SNMP_NO SUCH NAME,O0);

SNMP Agent Distributed Program Interface (DPl) — Page 351 of 379

If the object ID of the variable is supported, the subagent does not return an error; it returns the name, type, and
value of the object ID, using the mkDPIset() and mkDPIresponse() routines. The following is an example of an
object ID, whose type is string, being returned:

char *obj _id;

u_char =*cp;
struct dpi_set_packet *ret_value;
char =data;

/* obj_id = object ID of variable, Tike 1.3.6.1.2.1.1.1 */

/* should be identical to object ID sent in GET request */

data = "a string to be returned";

ret_value = mkDPIset(obj id,SNMP_TYPE STRING,
strlen(data)+1,data);

cp = mkDPIresponse(0,ret value);

8.2.2 Processing a SET Request

Processing a SET request is similar to processing a GET request, but you must pass additional information to the
subagent. This additional information consists of the type, length, and value to be set.

If the subagent does not support the object ID of the variable, it returns an error indication of
SNMP_NO_SUCH_NAME. If the object ID of the variable is supported but cannot be set, the subagent returns an
error indication of SNMP_READ_ONLY. If the object ID of the variable is supported and is successfully set, the
subagent returns the message SNMP_NO_ERROR.

8.2.3 Processing a GETNEXT Request

Parsing a GETNEXT request yields two parameters: the object ID of the requested variable and the reason for this
request. This allows the subagent to return the name, type, and value of the next supported variable, whose name
lexicographically follows that of the passed object ID.

Subagents can support several different groups of the MIB tree, but they cannot jump from one group to another.
You must first determine the reason for the request in order to determine the path to traverse in the MIB tree. The
second parameter contains this reason and is the group prefix of the MIB tree that the subagent supports.

If the object ID of the next variable supported by the subagent does not match this group prefix, the subagent must
return SNMP_NO_SUCH_NAME. If required, the SNMP agent calls on the subagent again and passes a different
group prefix.

For example, if you have two subagents, the first subagent registers two group prefixes, A and C, and supports
variables A.1, A.2, and C.1. The second subagent registers the group prefix B and supports variable B.1.

When a remote management station begins dumping the MIB, starting from A, the following sequence of queries is
performed:

1. Subagent 1 is called:

get-next(A,A) == A.1
get-next(A.1,A) == A.2
get-next(A.2,A) == error(no such name)

2. Subagent 2 is then called:
get-next(A.2,B) == B.1

get-next(B.1,B) == error(no such name)

Page 352 of 379 — IBM TCP/IP for 4690 Application Interface Guide

3. Subagent 1 is then called:

get-next(B.1,C) == C.1
get-next(C.1,C) == error(no such name)

8.2.4 Processing a REGISTER Request

A subagent must register the variables that it supports with the SNMP agent. Packets can be created using the
mkDPIregister() routine. For example:

u_char =cp;

cp = mkDPIregister("1.3.6.1.2.1.1.2.");
Note: Object IDs are registered with a trailing dot (“.”).

8.2.5 Processing a TRAP Request

A subagent can request that the SNMP agent generate a TRAP for it. The subagent must provide the desired values
for the generic and specific parameters of the TRAP. The subagent can optionally provide a name, type, and value
parameter. The DPI API library routines mkDPItrap() and mkDPltrape() can be used to generate TRAP packets.

8.3 DPI Library

To use the DPI library routines provided with TCP/IP for 46900S, you must hae®BIESNMP_DPI.H- header
file on your system.

The ADXHSIDL.L86 file contains the DPI library routines.

SNMP Agent Distributed Program Interface (DPl) — Page 353 of 379

You must define the 4690 variable to the compiler by doing the following:

e Place#define 0S2 at the top of each file that includes TCP/IP header files.

For more information about SNMP, see 3.0, “Users Information” on page 31.

8.4 DPI Library Routines

This section provides the syntax, parameters, and other appropriate information for each DPI routine supported by
TCP/IP for 46900S.

Page 354 of 379 — IBM TCP/IP for 4690 Application Interface Guide

fDPIparse()

8.4.1 fDPIparse()
The fDPIparse() routine frees a parse tree that was previously created by a call to pDPIpacket().

8.4.1.1 Syntax

#include <dpi\snmp_dpi.h>
#include <types.h>

void fDPIparse(hdr)
struct snmp_dpi_hdr =*hdr;

8.4.1.2 Parameter

hdr Parse tree
8.4.1.3 Description

The fDPIparse() routine frees a parse tree that was previously created by a call to pDPIpacket(). After calling
fDPIparse(), no further references to the parse tree can be made.

8.4.1.4 Related Call

pDPIpacket()

SNMP Agent Distributed Program Interface (DPl) — Page 355 of 379

mkDPIregister()

8.4.2 mkDPlregister()
The mkDPIregister() routine creates a register request packet and returns a pointer to a static buffer.

8.4.2.1 Syntax

#include <dpi\snmp_dpi.h>
#include <types.h>

u_char *mkDPIregister(oid name)
char *oid_name;

8.4.2.2 Parameter

oid_name Pointer to the object identifier of the variable to be registered. Object identifiers are registered with a
trailing period.

8.4.2.3 Return Values

If successful, mkDPIregister() returns a pointer to a static buffer containing the packet contents. A NULL pointer is
returned if an error is detected during the creation of the packet.

8.4.2.4 Description

The mkDPIregister() routine creates a register request packet and returns a pointer to a static buffer, which holds
the packet contents. The length of the remaining packet is stored in the first two bytes of the packet.

8.4.2.5 Example

unsigned char *packet;
int len;

/* register sysDescr variable =/
packet = mkDPIregister("1.3.6.1.2.1.1.1.");

Ten = *packet * 256 + *(packet + 1);
Ten += 2; /* include length bytes */

Page 356 of 379 — IBM TCP/IP for 4690 Application Interface Guide

mkDPIresponse()

8.4.3 mkDPlIlresponse()
The mkDPIresponse() routine creates a response packet.

8.4.3.1 Syntax

#include <dpi\snmp_dpi.h>
#include <types.h>

u_char *mkDPIresponse(ret code, value list)
int ret_code;
struct dpi_set packet *value list;

8.4.3.2 Parameters
ret code Error code to be returned

value_list Pointer to a parse tree containing the name, type, and value information to be returned
8.4.3.3 Return Values

If successful, mkDPIresponse() returns a pointer to a static buffer containing the packet contents. This is the same
buffer used by mkDPIregister(). A NULL pointer is returned if an error is detected during the creation of the
packet.

8.4.3.4 Description
The mkDPIresponse() routine creates a response packetreflltedeparameter is the error code to be returned.

Zero indicates no error. Possible errors include the following:

+ SNMP_NO_ERROR
« SNMP_TOO _BIG

« SNMP_NO_SUCH_NAME
« SNMP_BAD_VALUE

« SNMP_READ_ONLY

¢ SNMP_GEN_ERR

See the<DP\SNMP_DPI.H header file for a description of these messages.

If ret_codedoes not indicate an error, thealue_listpoints to a parse tree created by mkDPlIset(), which represents
the name, type, and value information being returned. If an error is indieated, listis passed as a NULL
pointer.

The length of the remaining packet is stored in the first two bytes of the packet.

Note: mkDPIresponse() always frees the passed parse tree.

8.4.3.5 Example

unsigned char *packet;

int error_code;
struct dpi_set_packet *ret_value;

packet = mkDPIresponse(error_code, ret value);

SNMP Agent Distributed Program Interface (DPl) — Page 357 of 379

mkDPIresponse()

len = *packet * 256 + *(packet + 1);
Ten += 2; /* include length bytes */

Page 358 of 379 — IBM TCP/IP for 4690 Application Interface Guide

mkDPIset()

8.4.4 mkDPlset()

The mkDPIset() routine creates a representation of a parse tree name and value pair.

8.4.4.1 Syntax

#include <dpi\snmp_dpi.h>
#include <types.h>

struct dpi_set packet *mkDPIset(oid name, type, len, value)
char *oid_name;

int type;

int len;

char *value;

8.4.4.2 Parameters

oid_name Pointer to the object identifier

type Type of the object identifier
len Length of the value
value Pointer to the first byte of the value of the object identifier

8.4.4.3 Return Values
The mkDPIset() routine returns a pointer to a parse tree containing the name, type, and value information.
8.4.4.4 Description

The mkDPIset() routine can be used to create the portion of a parse tree that represents a name and value pair (as
would normally be returned in a response packet). It returns a pointer to a dynamically allocated parse tree
representing the name, type, and value information. If an error is detected while creating the parse tree, a NULL
pointer is returned.

The type parameter can have the following values (defined inkibBNSNMP_DPI.H- header file):

« SNMP_TYPE_NUMBER
¢ SNMP_TYPE_STRING
« SNMP_TYPE_OBJECT
e SNMP_TYPE_INTERNET
« SNMP_TYPE_COUNTER
« SNMP_TYPE_GAUGE

s SNMP_TYPE_TICKS

The value parameter is always a pointer to the first byte of the object ID’s value.

Note: The parse tree is dynamically allocated, and copies are made of the passed parameters. After a successful
call to mkDPlIset(), the application can dispose of the passed parameters without affecting the contents of the parse
tree.

SNMP Agent Distributed Program Interface (DPl) — Page 359 of 379

mKkDPItrap()

8.4.5 mkDPltrap()
The mkDPItrap() routine creates a TRAP request packet.

8.4.5.1 Syntax

#include <dpi\snmp_dpi.h>
#include <types.h>

u_char *mkDPItrap(generic, specific, value list)
int generic;

int specific;

struct dpi_set_packet *value_list;

8.4.5.2 Parameters
generic Generic field in the SNMP TRAP packet
specific Specific field in the SNMP TRAP packet

value_list The name and value pair to be placed into the SNMP packet
8.4.5.3 Return Values

If the packet can be created, a pointer to a static buffer containing the packet contents is returned. This is the same
buffer that is used by mkDPIregister(). If an error is encountered while creating the packet, a NULL pointer is
returned.

8.4.5.4 Description

The mkDPItrap() routine creates a TRAP request packet. The information contawaddnlistis passed as the
set_packet portion of the parse tree.

The length of the remaining packet is stored in the first two bytes of the packet.

Note: mkDPItrap() always frees the passed parse tree.

8.4.5.5 Example

struct dpi_set_packet *if_index_value;
unsigned long data;

unsigned char *packet;

int Ten;

data = 3; /* interface number = 3 %/

if_index_value = mkDPIset("1.3.6.1.2.1.2.2.1.1", SNMP_TYPE NUMBER,
sizeof(unsigned long), &data);

packet = mkDPItrap(2, 0, if_index value);

len = *packet * 256 + x(packet + 1);

len += 2; /* include length bytes */

write(fd,packet,len);

Page 360 of 379 — IBM TCP/IP for 4690 Application Interface Guide

pDPIpacket()

8.4.6 pDPlIpacket()
The pDPIpacket() routine parses a DPI packet and returns a parse tree representing its contents.

8.4.6.1 Syntax

#include <dpi\snmp_dpi.h>
#include <types.h>

struct snmp_dpi_hdr *pDPIpacket(packet)
u_char =*packet;

8.4.6.2 Parameter
packet Pointer to the DPI packet to be parsed

8.4.6.3 Return Values

If pDPIpacket() is successful, a parse tree is returned. If an error is encountered during the parse, a NULL pointer
is returned.

Note: The parse tree structures are defined indbENSNMP_DPI.H header file.
8.4.6.4 Description

The pDPIlpacket() routine parses a DPI packet and returns a parse tree representing its contents. The parse tree is
dynamically allocated and contains copies of the information within the DPI packet. After a successful call to
pDPIpacket(), the packet can be disposed of in any manner the application chooses, without affecting the contents
of the parse tree.

The root of the parse tree is represented bgremp_dpi_hdistructure.

struct snmp_dpi_hdr {
unsigned char proto_major;
unsigned char proto_minor;
unsigned char proto_release;

unsigned char packet type;

union {
struct dpi_get packet *dpi_get;
struct dpi_next_packet *dpi_next;

struct dpi_set packet *dpi_set;
struct dpi_resp_packet *dpi_response;
struct dpi_trap_packet *dpi_trap;
} packet body;
bs
The packet_typdield can have one of the following values, defined in<B&®NSNMP_DPI.H header file:

« SNMP_DPI_GET
« SNMP_DPI_GET_NEXT
« SNMP_DPI_SET

SNMP Agent Distributed Program Interface (DPl) — Page 361 of 379

pDPIpacket()

The packet_typdield indicates the request that is being made of the DPI client. For each of these requests, the
remainder of thgacket_bodywill be different. If a GET request is indicated, the object ID of the desired variable
is passed in dpi_get packestructure.

struct dpi_get packet {
char *object_id;

}s

A GETNEXT request is similar, but thpi_next_packestructure also contains the object ID prefix of the group
that is currently being traversed.

struct dpi_next_packet {
char *object_id;
char *group_id;

}s

If the next object, whose object ID lexicographically follows the object ID indicatembj@ct id does not begin
with the suffix indicated by thgroup_id the DPI client must return an error indication of
SNMP_NO_SUCH_NAME.

A SET request has the most data associated with it and is containeipiirsat _packestructure.

struct dpi_set packet {

char *object_id;
unsigned char type:
unsigned short value_Ten;
char *value;

struct dpi_set_packet #next;

}s

The object ID of the variable to be modified is indicatetbbject id The type of the variable is providedtype
and can have one of the following values:

« SNMP_TYPE_NUMBER
¢ SNMP_TYPE_STRING

« SNMP_TYPE_OBJECT
¢ SNMP_TYPE_EMPTY

¢ SNMP_TYPE_INTERNET
¢ SNMP_TYPE_COUNTER
« SNMP_TYPE_GAUGE

« SNMP_TYPE_TICKS

Page 362 of 379 — IBM TCP/IP for 4690 Application Interface Guide

pDPIpacket()

The length of the value to be set is storeddhue len andvalue contains a pointer to the value.

Note: The storage pointed to yalueis reclaimed when the parse tree is freed. The DPI client must make
provision for copying the value contents.

SNMP Agent Distributed Program Interface (DPl) — Page 363 of 379

query_DPI_port()

8.4.7 query DPI_port()
The query_DPI_port() routine determines what TCP port is associated with DPI.

8.4.7.1 Syntax

#include <dpi\snmp_dpi.h>

int query DPI_port(host_name, community name)
char *host_name;
char xcommunity name;

8.4.7.2 Parameters
host_name Pointer to the SNMP agent’s host name or internet address

community_name Pointer to the community name to be used when making a request
8.4.7.3 Return Values

If it succeeds, the routine returns an integer representing the TCP port number; it retuiifishe port cannot be
determined.

8.4.7.4 Description
A DPI client uses the query_DPI_port() routine to determine the TCP port number associated with the DPI. The

client needs this port number to connect to the SNMP agent. The port number is obtained through an SNMP GET
request. host_namendcommunity_namare the arguments that are passed to the query DPI_port() routine.

Page 364 of 379 — IBM TCP/IP for 4690 Application Interface Guide

Appendix A. Sample socket application: Echo server

The following is a simple socket application that demonstrates the use of the 46900S TCP/IP socket API. It is
made up of two parts, a client (CLIENT.C) and a server (SERVER.C).

A.1 Compiling and linking
The MetaWare High C** compiler was used to create these programs. The following commands were used to
compile CLIENT.C and SERVER.C:
¢ hcdx86 client.c -def ON4680 -def OS2 -def IS_MAIN
e hcdx86 server.c -def ON4680 -def OS2 -def IS_MAIN
To create executable files CLIENT.286 and SERVER.286, the following link commands were used:
* 1ink86 client[stack[add[1000]]]=client, adxhsisl.I86 [s], hcbe.I86 [s], flexlib.I86 [s]
¢ |ink86 server[stack[add[1000]]]=server, adxhsisl.I86 [s], hcbe.I86 [s], flexlib.I86 [s], adxapacl.l86

Note that the server application uses the ADX_CSERVE call to display messages to the background process status
screen, thus necessitating the use of the adxapacl.I86 library. Your link command may vary depending on which
libraries you need for your application, and where these libraries are located on your system.

A.2 Source code: CLIENT.C
/*

* Include Files.

*/

#ifdef ON4680

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <h\types.h>
#include <h\utils.h>
#include <netinet\in.h>
#include <h\sys\socket.h>
#include <h\ioctl.h>
#include <h\netdb.h>

extern tcperrno;
#include <errno.h>
#include <h\nerrno.h>
#define errno tcperrno

extern void sock init();
extern int soclose();

void tcperror();
#define perror tcperror

#endif

#ifdef UNIX
#include <stdio.h>

Appendix A. Sample socket application: Echo server — Page 365 of 379

#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <netdb.h>
#include <fcntl.h>
#include <errno.h>

extern int close();
#endif

extern u_short bswap();
extern int connect();
extern int recv();
extern int send();
extern int socket();
extern void exit();

/* Client Main. =/

main(argc, argv)

int argc;

char **argv;

{

unsigned short port; /* port client will connect to
char buf[550]; /* data buffer for sending and receiving
struct hostent *hostnm; /* server host name information
struct sockaddr_in server; /* server address

int s; /* client socket

char message[100];

int i;

unsigned long in;

int rc;

/* Check Arguments Passed. Should be hostname and port. */
if (argc < 3)
{
printf("Usage: %s hostname port\n", argv[0]);
exit(1);
}
if (argc == 3) strcpy(message,"Hello World");
else
{
strcpy (message,"");
for (i =3; i < argc; i++)
{
strcat(message,argv[i]);
strcat(message," ");
}
}

#ifdef ON4680

/* Initialize with sockets. */
sock_init();

#endif

Page 366 of 379 — IBM TCP/IP for 4690 Application Interface Guide

*/
*/

*/
*/

/* The host name is the first argument. Get the server address. */

/* First see if internet address was entered x/
in = inet_addr(argv[1]);
hostnm=gethostbyaddr((char *) &in,sizeof(struct in_addr),AF _INET);
if (hostnm == (struct hostent x*) 0)
{
/* See if host name was entered =*/
hostnm = gethostbyname(argv[1]);
if (hostnm == (struct hostent *) 0)
{
printf("inet_addr returned %8.81x\n",in);
printf("gethostbyaddr failed\n");
printf("gethostbyname failed\n");
exit(2);
1
}

/* The port is the second argument. =*/
port = (unsigned short) atoi(argv[2]);

/* Put a message into the buffer. */
strcpy (buf,message) ;

/* Put the server information into the server structure. x/
/* The port must be put into network byte order. =*/
server.sin_family AF_INET;

server.sin_port htons (port);

server.sin_addr.s_addr = *((unsigned long *)hostnm->h_addr);

/* Get a stream socket. */
if ((s = Socket(AF_INET, SOCK_STREAM, 0)) <0)
{
perror("Socket()");
exit(3);
}

/* Connect to the server. =/
if (connect(s, &server, sizeof(server)) < 0)
{
perror("Connect()");
exit(4);
}

/* send message to server =*/
printf("\nSending message to server \n\n==> %s\n\n",buf);
if (send(s, buf, strlen(buf), 0) < 0)

{

perror("Send()");

exit(5);

}

/* Receive the message returned by the server =/
printf("receiving message returned by server \n");
rc = recv(s, buf, sizeof(buf), 0);
if (rc < 0)

{

Appendix A. Sample socket application: Echo server — Page 367 of 379

perror("Recv()");
exit(6);
}

buf[rc]=0x00;

printf("\n==> %s\n\n",buf);

/* Close the socket. =/
printf("closing socket\n");
#ifdef ON4680

soclose(s);

#else

close(s);

#endif

printf("Client Ended Successfully\n");
return 0;

}

#ifdef ON4680
void tcperror(msg)

char *msg;

{

printf("%s: errno = %d\n",msg,errno);
}

#endif

A.3 Source code: SERVER.C

/***/

/* */
/* */
/* */
/* */
/* */
/* */
/***/
/*

* Include Files.

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <h\types.h>
#include <h\utils.h>
#include <netinet\in.h>
#include <h\sys\socket.h>
#include <h\ioctl.h>
#include <h\netdb.h>

extern tcperrno; /* tcp/ip errno returned as tcperrno */

#include <errno.h>

#include <h\nerrno.h>

#define errno tcperrno /* refer to tcperrno as errno for portability */

Page 368 of 379 — IBM TCP/IP for 4690 Application Interface Guide

extern void sock_init(); /* socket Tibrary routines */
extern int soclose();

extern u_short bswap();

extern int recv();

extern int send();

extern int socket();

extern void exit();

extern int accept();

extern int bind();

extern int listen();

extern int port_cancel();
extern int select();

extern ADX_CSERVE();

/% extern ADX_CTIMER SET(); */

void dispmsg();
void tcperror();
#define perror tcperror

int tcpip_open(); /* routine to open tcpip link */

int tcpip_recv(); /* routine to receive message from tcpip link */
int tcpip_send(); /* routine to send message to tcpip Tink */

int tcpip_close(); /* routine to close tcpip Tink */

void ctl_break(); /* routine to intercept Ctrl-Break key seq */

extern void s_exit();
extern long e termevent();

int s=0; /* socket for accepting connections */
int ns=0; /* socket connected to client x/
unsigned short port; /* port server binds to */
char message[80]; /* character array for displaying messages */
int debug = FALSE; /* indicates debug mode or not */

int backgrnd = FALSE; /* indicates running as background task or not x/
int inetd = FALSE; /* if initiated by inetd */

/*

* Server Main.

*/
main(argc, argv)

int argc;

char **argv;

{

char msg_in[550] = "";

char msg_out[550] = "";

int rc;

int first_time = TRUE; /* first open includes socket/bind/Tisten */
int last_time = FALSE; /* close both sockets */

int end_session = FALSE; /* session terminated by client */

int end_prog = FALSE; /* end the program */

long emask; /* event mask for trapping ctrl-c */

int i; /* loop counter =/

int digit = FALSE; /* used to test parameters for all digits =*/
char work[100]; /* work string */

Appendix A. Sample socket application: Echo server — Page 369 of 379

/* set up a clean up routine in case this programn is aborted */
emask = e _termevent(ctl break,0L);
if (emask < OL)
{
sprintf(message,"e_terminate failed rc %1x.",emask);
dispmsg(message);
s_exit(emask);

}

[*xkkrrR*HRR***k*%% Determine if runnjng in foreground R A

if(argc > 1)

{
if((stremp("backgrnd", argv[1]) == 0) || (strcmp("BACKGRND", argv[1]) == 0))

{
backgrnd = TRUE;
dispmsg ("Running in background mode");

}
}

[*xkkrxhhkkxkkkkxx Determine if running debug mode kkkkRRRIRII*KR [

if ((argc > 1) && (!backgrnd)) /* no debug in backgrnd mode */
{
for (i = 13 i < argc; i++)
{
if (strcmp("-d",argv[i]) == 0) debug = TRUE;
if (strcmp("-D",argv[i]) == 0) debug = TRUE;
if (debug) dispmsg("Running in background mode");
}
}

/* default port number is 10001 =/
port = 10001;

[*xxkrxkkrkxkkxkxx Check for port number over ride kkkkkkkrkhkhk [

if (argc > 1)
{
for (i = 1; i < argc; i++)
{
if ((strncmp("-p",argv[il,2) == 0) || (strncmp("-P",argv[i],2) == 0))

{
port = atoi((argv[i]+2));
}

}

sprintf(message,"Using port %d",port);
dispmsg(message);

[***xxxx%%* Determine if initiated by inetd KhkRRRRRRR KKK **K*K* K% [

if (backgrnd) /* if running as a background task =/

{

strcpy (work,argv[2]);
digit=TRUE;

for (i=0ji<strlen(work);i++)

Page 370 of 379 — IBM TCP/IP for 4690 Application Interface Guide

{

if (lisdigit(work[i])) digit=FALSE;

1

if (digit)

{

ns=atoi(argv[2]);

if ((ns >= 0) && (ns < 256))
{
inetd=TRUE;
sock_init();
printf("Initiated by inetd, pf");
if (debug) dispmsg("Initiated by inetd");
rc=0;

}
}

while (!end_prog)
{

if (linetd)
{
/* wait for connection */
/* first _time = 1 if socket is to be opened & bound to port =/
/* 0 if socket and port are already bound */
rc = tcpip_open(first _time);
if (rc < 0)

{
sprintf(message,"tcpip_open failed - rc = %d, errno = %d",rc,errno);
dispmsg(message) ;
last_time = TRUE;
first _time = TRUE;
}

else
{
first_time = FALSE;
last time = FALSE;
strcpy(msg_in,"");
}

}

if (rc >= 0) /* if open successful or initiated by inetd */
{
/* Toop until session closed */
end_session = FALSE;
while (!end_session)
{
/* receive message from socket */
rc = tcpip_recv(msg_in, sizeof(msg_in));
if (rc < 0)
{
sprintf(message,"tcpip_recv failed - rc = %d, errno = %d",rc,errno);
dispmsg(message);
}
else if (rc == 0)
{
sprintf(message,"connection closed from client end");
dispmsg(message);
end_session = TRUE;

Appendix A. Sample socket application: Echo server — Page 371 of 379

}

else
{
msg_in[rc] = 0x00;
sprintf(message,"%d bytes received",rc);
dispmsg(message);
sprintf(message,"==> |%s|",msg_in);
dispmsg(message);

}
/* if message received */
if (rc > 0)

{

strcpy(msg_out, msg_in);
strcat(msg _out," is returned");
rc = tcpip_send(msg _out, strlen(msg_out));
if (rc < 0)
{
sprintf(message,"tcpip_send failed - rc = %d, errno = %d",rc,errno);
dispmsg(message);
}
1
} /* end of while waiting for EOT =*/
if (debug)
{
sprintf(message,"session closed");
dispmsg(message);
}
/* end of rc from tcpip_open 0K */

}
rc = tcpip_close(last_time);
(

sprintf(message,"tcpip_close failed - rc = %d, errno = %d",rc,errno);
dispmsg(message);
}

if (inetd) end prog=TRUE;

} /% end prog is FALSE */

return 0;

}

/**/
/* tcpip_open - opens tcpip link if neccesary & waits for connect */
/**/
/* wait for connection */
/* parameters */
/* first time - 1 if socket is to be opened & bound to port x/
/* - 0 if socket and port are already bound */

/**/
int tcpip_open(first_time)
int first time;

{

struct sockaddr_in client; /* client address information */
struct sockaddr_in server; /* server address information */
int namelen; /* length of client name */
int rc=1;

if (first_time)
{

Page 372 of 379 — IBM TCP/IP for 4690 Application Interface Guide

/* Initialize with sockets. */
sock_init();

/* Get a socket for accepting connections. */
rc = socket(AF_INET, SOCK STREAM, 0);
if (rc < 0)

{

printf("rc = %d ",rc);

perror("Socket()");

1
else
{
S = rc;
if (debug)
{
sprintf(message,"Socket %d received from socket()",s);
dispmsg(message) ;
}
}
/* Bind the socket to the server address. */
if (rc >= 0)
{
server.sin_family = AF_INET;
server.sin_port = htons(port);

server.sin_addr.s_addr = INADDR_ANY;

if (debug)
{
sprintf(message,"Binding to port %d to socket %d",port,s);
dispmsg(message) ;

}

rc = bind(s, &server, sizeof(server));
if (rc < 0) /* if bind fails =/
{
if (debug)
{
sprintf(message,"Canceling sockets bound to port %d",port);
dispmsg(message);
}
rc = port_cancel (htons(port)); /* kick anyone off of our port =*/
rc = bind(s, &server, sizeof(server));
if (rc < 0) perror("Bind()");
}
1

} /* end of first_time processing

/* Listen for connections. Specify the backlog as 1. */
if (rc >= 0)
{
if (debug)
{
sprintf(message,"Listening to socket %d",s);
dispmsg(message);
1
rc = listen(s, 0);
if (rc !'= 0)

Appendix A. Sample socket application: Echo server — Page 373 of 379

{
perror("Listen()");
}

}

/* Accept a connection. */
if (rc >= 0)
{
namelen = sizeof(client);
sprintf(message,"Accepting connection on socket %d",s);
dispmsg(message);
rc = accept(s, &client, &namelen);

if (rc<0)
{
perror("Accept()");
}

else
{
ns = rc;
if (debug)

{

sprintf(message,"Connection accepted on socket %d",ns);
dispmsg(message);

}

1
return rc;
/**/
/* tcpip_recv - receive message from client */
/* parameters */
/* buf - address of buffer to receive data read */
/* buflen - length of buffer */

/**/
int tcpip_recv(buf,buflen)

char *buf;

int buflen;

{

int rc;

int sa[l];

/* wait for socket to become ready to read */
rc = 0;
while (rc == 0)

{

sa[0] = ns;
printf("ns = %d %d\n",ns, sa[0]);
if (debug)

{

sprintf(message,"initiating select() waiting on socket %d",ns);
dispmsg(message);
}
rc = select(&sa,1,0,0,(Tong) 10000);
if (debug)
{

sprintf(message,"returned from select(), rc = %d",rc);

Page 374 of 379 — IBM TCP/IP for 4690 Application Interface Guide

dispmsg(message);
}

if (rc < 0)
{
perror("select()");
}

}

/* Receive the message on connected socket. */
if (rc > 0)
{
if (debug)
{
sprintf(message,"Receiving with an %d byte buffer",buflen);
dispmsg(message);

}
rc = recv(ns, buf, buflen, 0);
if (rc < 0)
{
perror("recv()");
}
}
return rc;
}
/**/
/* tcpip_send - send message to client */
/* parameters */
/* buf - address of buffer containing data to send */
/* buflen - length of buffer */

/**/
int tcpip_send(buf,buflen)

char *buf;

int buflen;

{

int rc;

/* Send the message back to the client. */
if (debug)
{
sprintf(message,"Sending a %d byte buffer on socket %d",buflen,ns);
dispmsg(message);
}
rc = send(ns, buf, buflen, 0);
if (rc < 0)
{
perror("Send()");
}

return rc;

}
/**/
/* tcpip_close - close session socket &, if requested, port socket */
/**/
/* close the connection */
/* parameters */
/* last_time - 1 if both sockets are to be closed */
/* - 0 if session socket only is to be closed */

Appendix A. Sample socket application: Echo server — Page 375 of 379

/* */
/**/
int tcpip_close(last_time)
int last_time;
{
int rc;
if (debug)
{
if (last_time)
{
dispmsg("Last time - closing both sockets");
}

else

{

dispmsg("NOT Last time - only closing session socket");

}

if (debug)
{
sprintf(message,"closing socket %d",ns);
dispmsg(message);
}
rc = soclose(ns);
if (rc < 0)
{
perror("soclose(ns)");

}

if (Tast_time)

{

if (debug)
{
sprintf(message,"closing socket %d",s);
dispmsg(message);
}

rc = soclose(s);

if (rc < 0)
{
perror("soclose(s)");
}

}

return rc;

}

/***/
/* Ct1-Break handler */
/***/
void ctl_break()
{
sprintf(message,"Server ending due to Ct1-Break.");
dispmsg(message) ;
soclose(ns); /* close the sockets */
soclose(s);
s_exit(01);
}

Page 376 of 379 — IBM TCP/IP for 4690 Application Interface Guide

/**/

/* DISPMSG - Routine to display a message on the background screen or on =*/

/* the foreground screen */
/**/

void dispmsg(msg)
char *msg;

{

long rc;

int msg_size;

if (backgrnd)
{
msg_size=strlen(msg);
if (msg_size > 46)
{
msg_size = 46;
msg[msg_size] = 0x00;
}
ADX_CSERVE(&rc,26,msg,msg_size);
}
else
{
printf("%s\n",msg);
}
/* ADX_CTIMER_SET(&rc, (unsigned int) 0,(long) 5000); */ /x delay 5 sec */
return;

}

/***/

/* perror routine */
/***/
void tcperror(msg)

char *msg;

sprintf(message,"%s: errno = %d",msg,errno);

dispmsg(message);

}

Appendix A. Sample socket application: Echo server — Page 377 of 379

Page 378 of 379 — IBM TCP/IP for 4690 Application Interface Guide

Appendix B. Index

A

accept()
call 107
example 97, 109
address
get_myaddress() 249
gethostbyaddr() 124
getnetbyaddr() 130
inet_addr() 151
inet_makeaddr() 154
internet 93
socket 92
address family 92
address manipulation calls 103
agent
SeeSNMP agent distributed program interface
(DPI)
API
Seeapplication program interface (API)
application program interface (API)
DPlI 351365
FTP 326—351
RPC 201326
socket 89-201
array filter primitives 209
auth_destroy() 227
authnone_create() 228
authunix_create_default() 230
authunix_create() 229

B

Berkeley socket implementation 104
big endian byte ordering 93
bind()
call 110
example 94, 111
broadcast sockets 233
bswap() 113
byte order 93, 103
See alsdig endian byte ordering

C

C socket calls
Seesocket calls

C socket library 104
callrpc()

call 231

example 232, 294
calls

See alsd-TP API calls, remote procedure calls,

socket calls

address manipulation 103

host 102

network 102

protocol 102

resolver 103

service 103
cint_broadcast() 233
cint_call() 235
clnt_destroy() 237
cint_freeres() 238
cint_geterr() 239
clnt_pcreateerror() 241
cint_perrno() 242
cint_perror() 243
cintraw_create() 244
cinttcp_create() 245
cintudp_create() 247
compiling and linking

general 28

sample 365
connect()

call 114

example 96, 116

D

datagram sockets 92

See alsi6OCK_DGRAM sockets
destroying an XDR data stream 213
discriminated union 210
Distributed Program Interface (DPI) 351
dn_comp() 118
dn_expand() 119
domain

concept of 94

name 103
DPI

library 353

requests 351353

Appendix B. Index — Page 379 of 379

E

eachresult() 234

endhostent() 120

endnetent() 121

endprotoent() 122

endservent() 123

enum cint_stat structure 224

enumeration filter primitives 208

error codes 104

eXternal Data Representation (XDR) 201, 26813

F

fDPIparse() 355

filter primitive 206

floating-point filter primitives 209

FTP
server 327, 340

FTP API calls
ftpappend() 329
ftpcd() 330
ftpdelete() 331
ftpdir() 332
ftpget() 334
ftplogoff() 336
ftpls() 337
ftpmkd() 339
ftpproxy() 340
ftpput() 342
ftpputunique() 343
ftpquote() 345
ftprename() 346
ftprmd() 347
ftpsite() 348
ping() 349

FTP API overview 327

G
gathering data 98, 199
get_myaddress() 249
GET, SNMP DPI request 351
gethostbyaddr() 124
gethostbyname()

call 126

example 97
gethostent() 128
gethostid() 129
getnetbyaddr() 130

getnetbyname() 132
getnetent() 133
GETNEXT, SNMP DPI request 352
getpeername() 134
getprotobyname() 135
getprotobynumber() 136
getprotoent() 137
getservbyname()

call 138

example 95
getservbyport() 140
getservent() 142
getsockname() 143
getsockopt() 145

H

header files
FTP APl 327
remote procedure calls 225
SNMP DPI 353

host calls 102

hostent structure 102

htonl() 149

htons() 150

I
ICMP (Internet Control Message Protocol) 91, 92
idle
connections 146
time-out 345, 348
inet_addr() 95, 103, 151
inet_Inaof() 103, 153
inet_makeaddr() 103, 154
inet_netof() 103, 155
inet_network() 103, 156
inet_ntoa() 103, 157
integer filter primitives 208
internet
address 93
Internet Control Message Protocol (ICMP) 91, 92
ioctl()
call 158
commands 159, 161
example 99, 161
implementation 104

Page 380 of 379 — IBM TCP/IP for 4690 Application Interface Guide

jumping by subagents, restriction 352

K

keepalive timer 146, 191

L

library files 225

linger structure 146

linking and compiling
general 28
sample 365

listen() 96, 162

Iswap() 164

M

Management Information Base (MIB) 351, 352

memory streams 211

MIB (Management Information Base) 351
mkDPIregister() 356

mkDPIresponse() 357

mkDPlset() 359

mkDPItrap() 360

multihomed host 95

N

netent structure 130
network

byte order 93

calls 102

utility routines 102
nonblocking socket mode 159
nonfilter primitives 210

ntohl() 165
ntohs() 166
@)

opaque data 209

0OS/2 variable 28
RPC APl 226
socket APl 104

P

pDPIpacket() 361
performance 92
ping() 349
pmap_getmaps() 250

pmap_getport() 252
pmap_rmtcall() 253
pmap_set() 255
pmap_unset() 256
port
concept of 93
registering 204
port number 205
port_cancel() 167
porting
remote procedure calls 226
sockets 104
PORTMAP 205
Portmapper 201, 264205
primitives
discriminated unions 210
filter 206
nonfilter 210
pointers to structures 210
processing DPI Requests 35853
program number 204
protocol calls 102
protocol family 92
protoent structure 135

Q

query DPI_port() 364

R

raw sockets 92
See als&OCK_RAW sockets
readv() 168
record streams 211
recv()
call 170
example 97
recvfrom()
call 172
example 98
REGISTER, SNMP DPI request 353
registering, port 204
registerrpc()
call 257
example 258, 294
xdr_enum, restriction 257
remote procedure call library 225
remote procedure calls
auth_destroy() 227
authnone_create() 228

Appendix B. Index — Page 381 of 379

remote procedure cal{sontinued) remote procedure cal{sontinued)

authunix_create_default() 230 xdr_array() 285
authunix_create() 229 xdr_authunix_parms() 287
callrpc() xdr_bool() 288
call 231 xdr_bytes() 289
example 232, 294 xdr_callhdr() 291
cint_broadcast() 233 xdr_callmsg() 292
cint_call() 235 xdr_double() 293
cint_destroy() 237 xdr_enum() 294
cint_freeres() 238 xdr_float() 296
cint_geterr() 239 xdr_getpos() 297
clnt_pcreateerror() 241 xdr_inline() 298
cint_perrno() 242 xdr_int() 299
clnt_perror() 243 xdr_long() 300
cintraw_create() 244 xdr_opaque_auth() 302
cinttcp_create() 245 xdr_opaque() 301
clntudp_create() 247 xdr_pmap() 303
get_myaddress() 249 xdr_pmaplist() 304
library 225 xdr_reference() 305
overview 201 xdr_rejected_reply() 306
pmap_getmaps() 250 xdr_replymsg() 307
pmap_getport() 252 xdr_setpos() 308
pmap_rmtcall() 253 xdr_short() 309
pmap_set() 255 xdr_string() 310
pmap_unset() 256 xdr_u_int() 311
registerrpc() 257 xdr_u_long() 312
example 258, 294 xdr_u_short() 313
xdr_enum, restriction 257 xdr_union() 314
rpc_createerr 259 xdr_vector() 315
svc_destroy() 260 xdr_void() 316
svc_freeargs() 261 xdr_wrapstring() 317
svc_getargs() 262 xdrmem_create() 318
svc_getcaller() 264 xdrrec_create() 319
svc_getreq() 265 xdrrec_endofrecord() 320
svc_register() 266 xdrrec_eof() 321
svc_run() 268 xdrrec_skiprecord() 322
svc_sendreply() 270 xdrstdio_create() 323
svc_socks[] 272 xprt_register() 324
svc_unregister() 273 xprt_unregister() 325
svcerr_auth() 274 remote program
svcerr_decode() 275 determining the internet address 220
svcerr_noproc() 276 registering 214
svcerr_noprog() 277 RPC handle, client 220
svcerr_progvers() 278 requests, DPlI 35%353
svcerr_systemerr() 279 res_init() 174
svcerr_weakauth() 280 res_mkquery() 175
svcraw_create() 281 res_send() 177
svctcp_create() 282 resolver calls 103
svcudp_create() 283 rexec() 178

xdr_accepted_reply() 284

Page 382 of 379 — IBM TCP/IP for 4690 Application Interface Guide

RPC
application, example of 214
client interface, summary 202
client side program, example of 218
commands
Seerpcgen command, rpcinfo command
interface 201
intermediate layer 201, 213
layers 213-224
library 225
lowest layer 201, 215
paradigm 202
porting 226
server interface, summary 203
server side program, example of 215
rpc_createerr() 259
rpcgen command 221
rpcinfo command 223

S

scattering data 98, 169
select()

46900S version 180

call 180

example 181
send()

call 182

example 97
sendto()

call 184

example 98
servent structure 138
server

remote procedure calls 202, 203

sockets 95
service calls 103
SET, SNMP DPI request 352
sethostent() 186
setnetent() 187
setprotoent() 188
setservent() 189
setsockopt() 190
shutdown() 193

Simple Network Management Protocol (SNMP) 351

SNMP

SeeSimple Network Management Protocol (SNMP)
SNMP agent distributed program interface (DPI) 351

SNMP DPI
overview 351
requests 351354

SNMP DPI(continued)
routines
fDPIparse() 355
mkDPIregister() 356
mkDPIresponse() 357
mkDPlset() 359
mkDPItrap() 360
pDPIpacket() 361
query_DPI_port() 364
SOCK_DGRAM sockets 94, 196
sock_init()
call 194
example 94
SOCK_RAW sockets 94, 196
SOCK_STREAM sockets 94, 196
sockaddr structure 92
accept() example 97
bind() example 94, 95
connect() example 96
gethostbyname() example 97
recvfrom() example 98
sendto() example 98
sockaddr_in structure 93
bind() example 94, 95
connect() example 96
gethostbyname() example 97
recvfrom() example 98
sendto() example 98
socket 94
address 92
broadcast 233
datagram 92
definitions 91
descriptor 94
options
Seesetsockopt()
raw 92
session
TCP 99
UDP 101
stream 92
types 9192
SOCK_DGRAM 196
SOCK_RAW 196
SOCK_STREAM 196
transaction 92
socket calls
accept()
call 107
example 97, 109

Appendix B. Index — Page 383 of 379

socket call{continued)
bind()
call 110
example 94, 111
bswap() 113
connect()
call 114
example 96, 116
dn_comp() 118
dn_expand() 119
endhostent() 120
endnetent() 121
endprotoent() 122
endservent() 123
examples 94
gethostbyaddr() 124
gethostbyname()
call 126
example 97
gethostent() 128
gethostid() 129
getnetbyaddr() 130
getnetbyname() 132
getnetent() 133
getpeername() 134
getprotobyname() 135
getprotobynumber() 136
getprotoent() 137
getservbyname()
call 138
example 95
getservbyport() 140
getservent() 142
getsockname() 143
getsockopt() 145
htonl() 149
htons() 150
inet_addr() 151
inet_Inaof() 153
inet_makeaddr() 154
inet_netof() 155
inet_network() 156
inet_ntoa() 157
ioctl() 158
commands 159, 161
example 99, 161
implementation 104
listen() 162
Iswap() 164
ntohl() 165

socket call{continued)
ntohs() 166
port_cancel() 167
readv() 168
recv()
call 170
example 97
recvfrom()
call 172
example 98
res_init() 174
res_mkquery() 175
res_send() 177
rexec() 178
select() 180
46900S version 180
example 181
send()
call 182
example 97
sendto()
call 184
example 98
sethostent() 186
setnetent() 187
setprotoent() 188
setservent() 189
setsockopt() 190
shutdown() 193
sock_init() 194
socket()
call 195
example 94, 197
soclose()
call 198
example 99
writev() 199
socket()
call 195
example 94, 197
sockets
Seesocket
soclose()
call 198
example 99
software requirements
FTP APl 327
remote procedure calls 226
standard I/O streams 211

Page 384 of 379 — IBM TCP/IP for 4690 Application Interface Guide

start of authority zone 175
stream sockets 92

See als&OCK_STREAM sockets
string filter primitives 210
structure

See als®@ockaddr structure, sockaddr_in structure

enum cint_stat 224

hostent 102

iovec 169

linger 146

netent 130

protoent 135

serventr 138
stubs 221
subagent 351
Sun Microsystems RPC implementation 226
svc_destroy() 260
svc_freeargs() 261
svc_getargs() 262
svc_getcaller() 264
svc_getreq() 265
svc_register() 266
svc_run() 268
svc_sendreply() 270
svc_socks[] 272
svc_unregister() 273
svcerr_auth() 274
svcerr_decode() 275
svcerr_noproc() 276
svcerr_noprog() 277
svcerr_progvers() 278
svcerr_systemerr() 279
svcerr_weakauth() 280
svcraw_create() 281
svctep_create() 282
svcudp_create() 283

T

TCP socket session 99

timer, keepalive 146, 191
trademarks 13
transaction-type sockets 92
translating byte order 93, 103
TRAP, SNMP DPI request 353

U

UDP (User Datagram Protocol) 101
UDP socket session 101

UNIX 201, 229
User Datagram Protocol (UDP) 101
utility routines 102

V

Versatile Message Transfer Protocol (VMTP) 92
version number 278
VMTP (Versatile Message Transfer Protocol) 92

W

well-known ports 93
writev() 199

X

XDR (eXternal Data Representation) 201, 26513
xdr_accepted_reply() 284
xdr_array() 285
xdr_authunix_parms() 287
xdr_bool() 288
xdr_bytes() 289
xdr_callhdr() 291
xdr_callmsg() 292
xdr_double() 293
xdr_enum() 294
xdr_float() 296
xdr_getpos() 297
xdr_inline() 298
xdr_int() 299
xdr_long() 300
xdr_opaque_auth() 302
xdr_opaque() 301
xdr_pmap() 303
xdr_pmaplist() 304
xdr_reference() 305
xdr_rejected_reply() 306
xdr_replymsg() 307
xdr_setpos() 308
xdr_short() 309
xdr_string() 310
xdr_u_int() 311
xdr_u_long() 312
xdr_u_short() 313
xdr_union() 314
xdr_vector() 315
xdr_void() 316
xdr_wrapstring() 317
xdrmem_create() 318

Appendix B. Index — Page 385 of 379

xdrrec_create() 319
xdrrec_endofrecord() 320
xdrrec_eof() 321
xdrrec_skiprecord() 322
xdrstdio_create() 323
xprt_register() 324
xprt_unregister() 325

Page 386 of 379 — IBM TCP/IP for 4690 Application Interface Guide

