
AN ABSTRACT OF THE THESIS OF

Harish Pillay for the degree of Master of Science in

Electrical and Computer Engineering presented on March

29, 1990.

Title: An Implementation of the Department of Defense's

Transmission Control protocol/Internet Protocol

(TCP/IP) for the Microsoft OS/2 Operating System

Abstract
M. Murray / /

This thesis discusses an approach whereby

Microsoft's MS OS/2 is provided with a means of running

the Department of Defense's Transmission Control

Protocol/Internet Protocol (TCP/IP).

This is done by developing a Packet Protocol Device

Driver. This device driver complies with the Packet

Driver Specification from FTP Software Inc. and with the

Network Driver Interface Specification (NDIS) from 3Com

and Microsoft Corporations. This packet protocol device

driver co-resides with other protocol device drivers and

shares one medium access control (MAC) device driver as

defined in the NDIS.

Redacted for privacy

With the successful implementation of the packet

protocol device driver, an existing Microsoft MS-DOS

version of a TCP/IP package was ported and with minor

modifications recompiled to run under MS OS/2. This

method allows users to retain utility and use of the OS/2

LAN Manager, a networking strategy provided within MS

OS/2.

-F

Copyright by Harish Pillay

March 29 1990

All Rights Reserved

An Implementation of the
Department of Defense's

Transmission Control Protocol!
Internet Protocol (TCP/IP)

for the
Microsoft OS/2 Operating System

by

Harish Pillay

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed March 29, 1990

Commencement June 1990

APPROVED:

7--ssociate Professor of E1erica1 and Computer
Engineering in charge of major

adVof Department of Electrical and Computer Engineering

Dean of

Date Thesis is presented March 29, 1990

Type by Harish Pillay for Harish Pillav

Redacted for privacy

Redacted for privacy

Redacted for privacy

I would like

given to me by my

His wit, and humor

like to thank the

Bruce D'Ambrosio

assistance.

Acknowledgement

to acknowledge all the help and advise

major professor, Prof. John Murray.

was especially welcome. I would also

members of my graduate committee, Prof.

3nd Prof. James Herzog for all their

A lot of suggestions and hints came from a wide

variety of sources too numerous to mention here.

However, the one source that I would like to specifically

mention is USENET. USENET'S newsgroups such as

comp.protocols.tcp-ip, comp.os.os2, and comp.sys. ibm.pc

were just wonderful in generating ideas and solutions.

There are some very special people who I would like

to record my gratitude. They are my mom and dad, Santha

and Balakrishna Pillay, and my sister and brother-in-law,

Srila and Venugopal Kurup who extended their love,

understanding, encouragement and concern throughout this

venture.

And finally, I would like to dedicate of all of this

work to my nephew, Jeevan, who will grow up in a world

full of peace, understanding, and goodwill achieved

through the wonders of networking.

Table of Contents

Chapter 1 Objectives 1

1.1 Introduction........................ 1

1.2 Implementation Criteria 2

Chapter 2 Alternatives 6

2.1 Background.......................... 6

2.2 Choosing a Solution 10

2.2.1 Writing a Standard MS OS/2
Device Driver (option a) 10

2.2.2 Writing a Protocol Device Driver
(option b)10

2.2.3 Writing a Device Monitor
(optionc) 11

2.3 Final Choice 14

Chapter 3 The Solution............................ 15

3.lMotivation 15

3.2 MAC/PD Interface 15

3.3 PD Upper Boundary Interface 20

3.4 Relationship between
LSAPs/PLDTs/MSAPs 21

3.5 Applications Accessing the LSAPs....23

3.6 Modifications to the Packet Driver
Specification (PDS) 26

Chapter 4 Discusso 28

4.1 Tools for Software Development 28

4.1.1 Hardware.......................... 28

4.1.2 Software.......................... 28

4.1.3 Miscellaneous Tools 29

4.2 The Development Cycle............... 29

4.3 Performance Issues.................. 30

4.4Results 33

Chapter 5 Dire'ctions for Future Work 34

5.1 The Next Stage 34

5.2 Extensions to Current Work.......... 34

Chapter6 Conclusion 36

Bibliography ... 37

Appendix I A Brief Overview of TCP/IP
and OS/2 LAN Manager 39

Appendix II A Brief Overview of MS OS/2 and Intel
80286 Privilege Levels 41

Appendix III Packet Driver Pseudocode 43

Appendix IV DosDevIOCt]. Specification............... 46

List of Pigures

Figure 1 The Privilege Levels of the Intel 80286
Microprocessor and MS OS/2 Kernel Map 4

Figure 2 The Seven Layer OSI Reference Model 7

Figure 3 The Layers within the Data Link Layer 7

Figure 4 Data stream of the Device Monitor moving
through Device Monitors. 9

Figure 5 Vector that deinultiplexes data frames from one
MAC to multiple protocol device drivers 12

Figure 6 Relationship between the OSI Reference
Model, OS/2 LAN Manager, and the TCP/IP
Protocol Suite 17

Figure 7 Protocols, Service Access Points (SAPs)
andservices(ZIMMERMAN198O) 18

List of Tables

Table 1 Medium Access Controller Service
Access Points19

Table 2 Protocol Lower Dispatch Table 20

Table 3 Link Service Access Points21

Table 4 Relationship between LSAPs/PLDTs/MSAPs 22

An Implementation of the Department of Defense's
Transmission control Protocol/Internet Protocol (TCP/IP)

for the Microsoft 08/2 operating System

Chapter 1 Objectives

1.1 Introduction

The goal of the research and development effort of

this thesis is to provide the Microsoft Corporation's MS

OS/2 operating system with the Department of Defense's

Transmission Control Protocol/Internet Protocol (TCP/IP)

computer data communication protocols. The motivation

for this is to allow users of the MS OS/2 operating

system share resources and access to such popular

services to as file transfer, electronic mail, and remote

program execution that are available on machines and

operating systems that have TCP/IP.

TCP/IP (COMER 1988) is a set of computer data

communication protocols that define computer to computer

communication and conventions for interconnecting

networks and routing traffic. The protocols are used

extensively on machines that are presently connected to

the Defense Advanced Research Projects Agency (DARPA)

Internet.

2

Machines that provide TCP/IP vary from single-user,

single-tasking personal computers such as IBM PCs running

Microsoft Corporation's MS-DOS operating system to

supercomputers such as Cray X-MPS running proprietary

operating systems. These machines are interconnected in

a multitude of ways that range from slow serial

connections such as the modems to high-bandwidth

satellite and fiber optic connections [COMER 1988).

In spite of the wide array of machines and operating

environments, TCP/IP has provided a means of

transparently accessing and utilizing these varied

resources. MS OS/2 is a fairly new operating system

(LETWIN 1988), and providing it with TCP/IP capability

will enhance it's utility and appeal to users.

1.2 Implementation Criteria

This effort has to meet the following criteria:

a) be easy to use for end-users and developers,

b) be non-intrusive to the operating system, and

c) co-exist with networking facilities already

provided in the operating system.

Criteria (a) means that applications, such as

electronic mail, file transfer, remote procedure

3

execution, that are written to take advantage of the

TCP/IP suite of protocols (Appendix I), should be just as

easy to use and be consistent with similar

implementations on other operating systems. In this

regard, the similarity is provided by using FTP Software,

Inc.'s public domain network interface standard called

Packet Driver Specification (PDS) Version 1.09 (FTP

1990). This specification was originally meant for

Microsoft Corporation's MS-DOS operating system a single-

taking operating system. As the target operating system

was a multi-tasking system, modifications were made to

the PDS for purposes of this work. These modifications

are very minor and are discussed in Chapter 3.

The second criteria (b) implies that the solution

should be consistent with the philosophy, design and

workings of MS OS/2 [LETWIN 1988]. MS OS/2 was been

designed specifically for the Intel 80286 microprocessor.

The Intel 80286 allows memory to be accessed in two

mutually exclusive modes - real address mode and

protected virtual address mode [INTEL 1988).

Further, the Intel 80286 has a four-level

hierarchical privilege system which controls the use of

privileged instructions and access to memory by an

application. Figure 1 shows the four levels. The levels

.j

MS OS/2

Applications PL = 3

OS Extensions
PL =2

System Services
PL = 1

MS OS,2
Kernel with
Device Drivers

PL =0

Figure 1: The Privilege Levels of the Intel 80286

Microprocessor and MS OS/2 Kernel Map

are numbered from 0 to 3, with level 0 being the most

privileged.

The need to maintain system integrity, especially

with reference to memory access rights of applications

running on the Intel 80286 microprocessor has, therefore,

to be observed religiously. This is assisted greatly by

the design of MS OS/2 as far as access to virtual and

real memory is concerned [LETWIN 1988].

Criteria (C) is perhaps the most stringent. MS OS/2

currently comes with networking capability built-in.

This is called OS/2 LAN Manager (Appendix II). OS/2 LAN

Manager provides the user with remote access to other MS

OS/2 machines. This allows for sharing of resources such

as disks, printers, plotters and modems.

OS/2 LAN Manager, however, is not built upon the

TCP/IP suite of protocols, but rather on another standard

called NetBIOS [SC}IWADERER 1988) and [MICROSOFT 1988].

The services currently provided by OS/2 LAN Manager are

very well implemented and highly desirable to have

running even when TCP/IP capabilities are added to MS

OS/2.

chapter 2 Alternatives

2 1 Background

After extensive literature searches [KOCIiAN 19891,

[MICROSOFT 1989), [DUNCAN 1989), [IOACOBUCCI 1988),

(NGUYEN 1988) and [WESTWATER 1989), the following

alternative implementations were arrived at. They are:

Option A

A standard MS OS/2 device driver that

implements the entire Data Link Layer (Layer 2)

of the OSI Reference Model (Figure 2). The

Data Link Layer provides algorithms for data

framing, error, and flow control between two

adjacent machines (i.e., these machines are

connected by a coaxial cable or a telephone

line). The crucial property is that the

channel makes the data arrive in exactly the

order it was sent [TANENBAUM 1988].

Option B

A protocol device driver that implements

portions of IEEE 802.2 Logical Link Layer (LLC)

Standard [IEEE 1985]. The LLC forms the upper

part of the Layer 2, the Data Link Layer

(Figure 3). The protocol device driver will be

based entirely on the Network Driver Interf ace

7

7 Application

6 Presentation

5 Session

4 Transport

3 Network

2 Data Link

1 Physical

Figure 2: The Seven Layer OSI Reference Nodel

7 Application

6 Presentation

S Session

4 Transport

Tk

1 Physical

Figure 3: The Layers within the Data Link Layer

8

Specification (NDIS) Version 2.0.1 produced by

3Com and Microsoft Corporations (3COM 1990].

Option C

A device monitor that attaches itself to an

existing NDIS protocol or medium access

controller (MAC) device drivers. A device

monitor is a program that allows for the user

to dynamically monitor any device driver that

has been installed in a computer running MS

OS/2 (Figure 4). Such device monitors provide

a high degree of control of data received and

sent by a device driver [LETWIN 1988]. A

device monitor is able to add to and delete

data that a device driver receives before that

device driver passes the data on to any other

application. Device monitors are programs that

the user activates on a machine that has

already been booted up. The monitor therefore

is nothing more than a regular MS OS/2

application. Device monitors are MS OS/2

innovations.

Device Monitor #1 Device Monitor #N

10

Issues relating to the three preceding solutions are

discussed below.

2.2 Choosing a Solution

2.2.1 Writing a Standard MS OS/2 Device Driver (option a)

Writing a standard MS OS/2 device driver that

implements the entire Data Link Layer has a crucial

drawback in that the driver will be specific to a piece

of hardware. Such a task is redundant for it has already

been undertaken by manufacturers of networking hardware.

Also, they write the device drivers to be MAC drivers

that adhere to the NDIS. Such an undertaking would be

good as an exercise but will mean being tied to one

hardware implementation.

2.2.2 Writing a Protocol Device Driver (option b)

The second option is better than the previous option

since it is not tied to a specific networking hardware.

Further, being conforniant to the NDIS, it would mean that

the third criteria mentioned in Chapter One, in which

OS/2 LAN Manager should remain functional, will be met.

11

As all OS/2 LAN Manager device drivers are NDIS

conformant, this solution would leave OS/2 LAN Manager

usable. One possible drawback about writing a packet

protocol driver is in the NDIS itself.

The NDIS provides for a single MAC to be able to

communicate with multiple protocol device drivers. This

is accomplished by a "Vector" inserted at boot time that

demultiplexes the data frames amongst the various

protocol device drivers expecting data frames from one

MAC (Figure 5).

An assumption made here is that the speed of

demultiplexing by the vector will not become a

performance bottleneck that affects the system

throughput. This assumption is justified in that the

switching is done on the basis of comparing only one bit

in the data stream to decide which protocol device driver

to pass the data frame to (Section 4.3 explains this

further).

2.2.3 writing a Device Monitor (option c)

The idea of a device monitor seemed very interesting

and was in fact attempted. This solution called for

tapping into existing device drivers that receive data

12

NDIS NDIS
Protocol Protocol
Device Device
Driver#1 Driver#N

OSI Data
Link Layer
(Level 2)

Vector (Demultiplexes data frames to drivers)

NDIS -type MAC Device Driver

Figure 5: Vector that demultiplexes data frames from

one MAC to multiple protocol device drivers

13

frames from the network. The main advantage of a device

monitor is that it can be activated without having to

reboot the computer. A device monitor is an application

that runs as a standard MS OS/2 application save for the

fact that it accesses a device driver.

A device monitor (Figure 4) monitors a data stream

of a pre-installed device driver. Any data received by

the device driver will either be kept by the device

driver or passed on to an appropriate data stream. The

device monitor can intercept this data stream and can

use/modify/remove/add to the data stream (NGUYEN 1988],

(LETWIN 1988).

A fundamental problem encountered in implementing

this solution was that the existing device drivers must

support device monitor capability. Further, in

supporting a device monitor, the device driver will have

to predefine a data buffer size that it will make

available to a device monitor. There is no guarantee that

any of the current OS/2 LAN Manager device drivers

provide for device monitors as this is not required in

the NDIS.

Also, the speed at which the data winds its way

through various device monitors is critical. To achieve

maximum performance, it is important that the device

14

monitor be the first in the chain. Guaranteeing this in

practice is not easy. Since device monitors are

activated by a command at the MS OS/2 command line, it

becomes inelegant to have to dictate a recommended

sequence of invoking monitors to end-users.

2.3 Final Choice

From the preceding it is apparent that it would be

worthwhile to implement a protocol device driver for it

allows independence of underlying networking hardware and

permits OS/2 LAN Manager to be functional. Such a driver

would provide the following:

a) An NDIS-type interface at the lower level to any

pre-existing MAC device driver.

b) An Packet Driver Specification (PDS)-type

interface at the upper level that can be accessed

by applications that conform to the PDS

interface.

C) Provide a device monitoring capability so that

system profi].ers that track system execution,

and related other related utilities can be

written to monitor performance of the overall

design.

15

Chapter 3 The Solution

3.1 Motivation

As described in Chapter Two Section 2.3, it was

decided that a protocol device driver based on the NDIS

be written. This protocol device driver is called a

packet driver (PD).

Writing a PD immediately provides the ability to

keep any existing OS/2 LAN Manager software functional on

the same computer. Equally important, the PD allows the

reuse of existing TCP/IP software implemented to use the

PDS (with minor modifications as noted below).

The PD should be viewed as a piece of software that

hides the details required in communicating with the MAC

and the networking hardware, from upper level

applications. This is in keeping with the computer

science precept of modular programming.

3.2 MAC/PD Interf ace

The PD provides an interface at the lower boundary

to the MAC as defined in the NDIS. It is worthwhile to

note that this interface definition coincides with the

IEEE 802.2 Logical Link Control Standard [IEEE 1985].

16

The services provided by the PD is a subset of the

services defined in the OSI model [TANENBAUN 1988].

Figure 6 shows the relationship between the MAC and the

PD, how it relates to TCP/IP protocols and MS OS/2.

The MAC provides services to the PD, and the PD

provides services to applications at higher levels

(Network Layer) at Service Access Points (SAPS). A SAP

is a point at a layer, N, that offers a service which

another higher up layer, N+1, can access [ZIMMERMAN

1980]. Each SAP (analogous to a telephone line socket)

has an address (analogous to a telephone number to that

socket) that uniquely identifies it (Figure 7).

The [IEEE 1985] discusses extensively all the

aspects to a 802.2 LLC Standard. The PD only implements

a subset of the 802.2 LLC Standard. For purposes of this

discussion, only the relevant aspects are mentioned.

17

7 Application
MS OS/2 Applications

(running at Privilege
Level 3 of the 80286)

SMTP DNS FTP Telnet

6 Presentation

5 Session

4 Transport OS/2 LAN Manager TCP UDP NVP

3 Network NetBIOS Device Driver
ICMP

IP ARPIRAR]

2 Data Link
Protocol Device Driver Packet Device Driver

_______________ _______________
Medium Access Con Iro! Device Driver

I Physical Ethernet/Token Ring Networking Hardware

Figure 6: Relationship between the OSI Reference Model,
OS/2 LAN Manager, and the TCP/IP Protocol Suite

Legend to Figure 6:

MAC = Medium Access Controller.

NetBIOS = Network Basic Input Output System.

IP = Internet Protocol.

TCP Transmission Control Protocol - A connection-
oriented, reliable, byte-stream protocol.

UDP = User Datagram Protocol - An unacknowledged,
transaction-oriented protocol parallel to TCP.

NVP = Network Voice Protocol Real-time transaction
based service for carrying digitized,
compressed voice.

SMTP = Simple Mail Transfer Protocol - Provides for
sending mail between host machines.

DNS = Domain Name Service - Provides directory
service by mapping a machine name to an IP
address.

FTP = File Transfer Protocol - Allows file transfer
between machines - fairly high speed.

Telnet = Telecommunication Network - Provides virtual
terminal service for interactive access by
terminal servers to hosts.

ICMP = Internet Control Message Protocol - Used by
gateways and hosts on the Internet to appraise
other hosts of conditions related to their IP
services.

ARP = Address Resolution Protocol - Maps an IP
address to its associated Ethernet address.

RARP = Reverse ARP - maps a given Ethernet address to
an associated IP address.

N-
La

NS

N
La

N-i Ser

N-
La

+ 1 Protocols

N SAPs

Protocols

N-i SAPs

-1 Protocols

Figure 7: Protocols, Service Access Points (SAPs)
and Services [ZIMMERMAN 1980)

19

The NDIS defines the MAC SAPS (MSAPs) as providing

the following to the PD:

MSAP 1: Pointer to the Common Characteristics
Table of the MAC device driver

MSAP 2: Address to the Request Function
MSAP 3: Address to the TransmitChain Function
MSAP 4: Address to the TransferData Function
MSAP 5: Address to the ReceiveRelease Function
I4SAP 6: Address to the IndicationOn Function
MSAP 7: Address to the IndicationOff Function

Table 1 - Medium Access Controller Service Access Points

These seven MSAPs are assumed to be available to the

PD. The details of the MSAP specifications are not

pertinent to this discussion and are not elaborated

further. They are defined and explained in the NDIS

(3COM 1990].

The flow of data between the MAC and the PD is also

described in full detail in the NDIS.

The MSAPs, upon completion of service requests from

the PD, calls the PD at specified entry points. A MAC

also calls some of these entry points when it receives

data from the Physical Layer. These entry points are

defined in Protocol Lower Dispatch Table (PLDT) as per

the NDIS and are shown below:

PLDT 1: Pointer to Common Characteristics
Table of the Packet Driver

PLDT 2: Interface Flag (used by the Vector
for data frame dispatch)

PLDT 3: Address of RequestConfjrm Function
PLDT 4: Address of TransmitConfirm Function
PLDT 5: Address of ReceiveLookAhead

Indication Function
PLDT 6: Address of IndicationComplete Function
PLDT 7: Address of ReceiveChain Indication

Function
PLDT 8: Address of Statuslndication Function

Table 2 - Protocol Lower Dispatch Table

It should be reiterated that the PLDT5 are not SAPS

in that these are points to which the MSAPS return their

results after servicing a previous request from the PD or

when the MAC received data.

3.3 PD Upper Boundary Interface

The upper boundary of the PD provides Link Service

Access Points (LSAPs) that interface with OSI Layer 3,

the Network Layer (Figure 2). Applications that access

this interface will be running as an regular MS OS/2

application, that is, an Intel 80286 Privilege Level 3

process [INTEL 1988], (LETWIN 1988) (Figure 1).

21

The LSAPS are defined from the Packet Driver

Specification (PDS). The PDS was originally defined for

Microsoft Corporation's MS-DOS operating system. Hence,

there are some aspects of the PDS that had to be modified

to allow it to be useful in the MS OS/2 environment. The

modifications are discussed in section 3.6.

The following LSAPs are defined:

LSAP 1: Address to Driverinfo Function
LSAP 2: Address to Recejvepkt Function
LSAP 3: Address to ReleaseType Function
LSAP 4: Address to SendPkt Function
LSAP 5: Address to Terminate Function
LSAP 6: Address to GetAddress Function
LSAP 7: Address to Resetlnterface Function
LSAP 8: Address to SetRcvMode Function
LSAP 9: Address to GetRcvMode Function
LSAP 10: Address to SetMulticastList Function
LSAP 11: Address to GetMulticastList Function
LSAP 12: Address to GetStatistics Function
LSAP 13: Address to SetAddress Function

Table 3 - Link Service Access Points

3.4 Relationship between LSAPs/PLDTs/MSAPs

The correspondance between the LSAPs, PLDT5 and

MSAPs are suiiuuarized in the following table (Table 4).

This table groups the services according to their

operational similarities.

MSAP PLDT LSAP

4t]. #1 #1
#2< >#3< >#s6thrul4
#3< >#4< >4t4
#4< >#6< >#2

#5
#5< >#7
#6 #2 #3
#7 #8 #5

Table 4: Relationship between LSAP5/PLDTS/MSAPs

The table shows associations of the various entry

points. Some of these do not have do not have cross

relationships for they are administrative function entry

points. For example, MSAP #1 and PLDT #1 are pointers to

the locations of their respective characteristics tables

that store descriptive information of themselves.

The preceding discussion defined the

the two sublayers of the Data Link Layer,

Medium Access Layer (MAC) and the Logical

layer (the protocol layer). The software

these functions run in the Intel 80286's

0 and is loaded at boot-time.

various SAPs at

namely, the

Link Control

that implements

Privilege Level

22

23

3.5 Applications Accessing the LSAP5

Having defined the PD'S LSAPs, a means of access to

these LSAPS has to be provided. As mentioned in Chapter

One, a crucial criteria was to be able to provide as easy

as possible an access to the network for users and

developers of applications written to the PDS. All

existing TCP/IP implementations written to the PDS will

have to be minimally modified in order to run under MS

OS/2.

To use the PD, it has to be loaded into the system

at boot time. In MS OS/2 terminology, the file that

contains the PD has to be specified in a file called

CONFIG.SYS as shown in the following example:

Fragment from CONFIG.SYS:

device=c: \drivers\protman. os2
device=c: \drivers\macwd. sys
device=c: \drivers\packetdr. sys

The first line loads in a program called PROTMAN.0S2

which is a routine that has to be loaded in before any

other network device drivers are loaded in. It serves to

coordinate the various requests the network drivers may

make. Further, this is the program that inserts a vector

24

should there be more than one protocol driver access on

MAC driver.

The second line shows the MAC device driver that is

to be loaded. This example represents what was loaded

into the development machine (described further in

Chapter Four). This is a device driver that is provided

by the manufacturer of the networking hardware.

The last line in the fragment above is the name of

the file that contains the code for the PD. Successful

loading of this file will mean that subsequent operating

system requests for opening the PD (as discussed below)

will be able to succeed.

Applications can access the PD's LSAPs via a MS OS/2

mechanism called DosDevIOCti (Appendix IV). As this is

the preferred method, the PDS was modified to allow for

this scheme.

For example, in order to access LSAP 1, the command

syntax will be (in C):

25

Size=OL; /* a long variable stating
the sizeof the new file */

FileAttribute=O; /* file attribute */
OpenFlag=Ox000l; 1* Open if it exists, if not

existing, return an error */
OpenMode=0x0042; /* Set to read-write mode by all *1

if ((error=DosOpen(PKTDRVR$, Handle, Action, Size,
FileAttribute, OpenFlag,
OpenMode, Oh))

1= 0)
return error;

DosDevlOCtl(Data, List, Olh, DFh, Handle);

The DosOpen command is a standard MS OS/2 means of

opening a file, in this case the device being opened is

called "PKTDRVR$". The DosOpen command is passed the

appropriate parameters. DosOpen will return an error

number, with which the calling routine can decide if

Dosopen succeeded. This routine need be invoked once at

the start of the application.

The definitions of the various parameters of

DosDevlOCtl command are given in Appendix IV.

3.6 Modifications to Packet Driver Specification (PDS)

The modifications to the PDS are as follows:

a) The software interrupt mechanism in the PDS

Section 3, suggests having the interrupt be in the

range from 60H to 80H. The exact interrupt number

is determined by the application by scanning for a

predefined string "PKT DRVR'. Such a scheme is

fine for MS-DOS. However, in MS OS/2, this is not

an elegant solution and hence, the following will

be defined.

The software interrupt is predefined at 60H+7FH

which gives DFH. The offset 7FH is used because

MS OS/2 requires user defined DosDevIOCtis to be

in the range 80H to FFH (DUNCAN 1989].

The software interrupt DFH is called the Category

Number of the DosDevIOCtl function.

b) The 14 functions defined in the PDS (and

provided at the LSAPs), are accessed via the

DosDevIOCti DFH Category call subroutine. The

function number is specified in the function

number field of the DosDevIOCt]. parameter list.

27

C) The appropriate data structures that each

function needs/returns are also defined (Appendix

IV).

d) The name of the PDS function AccessType is

changed to ReceivePkt to properly reflect its

function.

e) The intent of the Terminate Function is

modified to mean executing a release of data

connection.

Chapter 4 Discussion

4.]. Tools for Software Development

Undertaking this research and development required

investment in hardware and software.

4.1.1 Hardware

The following hardware was added to the development

machine (a Wyse pc286 personal computer):

a) One forty megabyte hard disk drive.

b) Four megabytes of random access memory.

C) One Western Digital Ethernet (IEEE 802.3) network

interface card WD8003E.

d) One standard ASCII terminal connected to the

RS232C port (CON].) of the development machine to

serve as the debugging terminal.

e) One color monitor and video card.

For developing and testing the code, this setup was

attached to the network of the Department of Electrical

and Computer Engineering at Oregon State University.

4.1.2 Software

The following software tools were required:

a) MS OS/2 Device Driver Development Kit.

b) MS OS/2 NDIS Network Driver Development Kit.

29

C) Microsoft C Compiler and Macro Assembler for

MS OS/2.

d) Debugging MS OS/2 Kernel.

4.1.3 Miscellaneous Tools

A network analyser that displays the data sent out

on a cable was used to track and monitor the data frames

and to help in the debugging of the system.

4.2 The Development Cycle

This was the most challenging part of the entire

exercise. Writing a device driver is not a trivial task,

for it involves very tight interaction (mostly

asynchronous) with the host operating system.

Maintenance of operating system integrity is very

critical. The tools provided in the MS OS/2 device

driver development kit helped in this process.

As was alluded to in Chapter Two, the initial thrust

was to try and write device monitors. Very quickly,

however, it was discovered that such a solution would not

work in a general case, for support by NDIS device

drivers of device monitors was optional.

30

The final device driver, the PD (Packet Driver),

proved to be a relatively intricate piece of programming.

The pseudo-code of the packet driver is enclosed in

Appendix III. The packet driver was written entirely in

Intel 80286 assembly code and compiled with Microsoft

Macro Assembler (MASM) version 5.1.

After the PD was completed, the next task was to

modify and recompile an existing MS-DOS TCP/IP

implementation to take advantage of the new system. The

implementation chosen was "KA9Q Internet Protocol

Package" which is used extensively by the amateur radio

community and is available in source code, free of

royalties from the main author, Phil Karn. The necessary

modifications to the code was easily done because the

code was modularly written and the portions to change

were localized to one module.

4.3 Performance Issues

In the definition of the PLDTs (PLDT 2: The

Interface Flag), the PD has to be pre-defined to handle

one of the following data frames from the MAC:

31

a) Flag = OH: Handles non-LLC data frames

b) Flag = lH: Handles specific-LSAP LLC data frames

C) Flag = 2H: Handles non-specific-LSAP LW data

frames

The definition of these flags is crucial only when

there exists more than one protocol device driver that

requires communication with a MAC.

At boot-time, the boot process determines the number

of protocols that request access to a specific MAC. The

program that does this is called PROTMAN.0S2 (as

mentioned in Section 3.5). Should there be more than one

per MAC, then the boot process inserts a demultiplexing

mechanism called a Vector.

In a simple booting process (one protocol device

driver and one MAC), the two device drivers exchange

their MSAPS and PLDTs. However, if 2 or more protocols

per MAC exist, then this scheme will fail. Here is where

the Vector scheme comes in.

The vector will provide the PLDTs to the MAC and

receive the MSAPs from the MAC. When a data frame is

received from the MAC, the Vector will then determine

which of the protocol drivers to send to. The choice is

32

based upon the value of the Interface Flag, as shown in

the following sequence:

a) Protocols handling non-LLC data frames;

b) Protocols handling LLC frames with specific

LSAP5;

c) Protocols handling LLC frames with non-specific

LSAPs.

In the case of the PD, this flag is set to OH,

meaning that it will handle non-LLC data frames.

Although there are defined LSAPs, TCP/IP does not use LLC

data frames (TANENBAUM 1988].

Given the preceding, there is a possible performance

bottleneck at the Vector. As was mentioned earlier, the

assumption can be made that the demultiplexing will be

fast for it is being made on the basis of one bit.

Also, it is conceivable that the most likely

scenario will be a machine running MS OS/2, OS/2 LAN

Manager and the Packet Driver for TCP/IP. Hence, there

will only be two protocol drivers (the PD and the OS/2

LAN Manager) accessing one MAC. It is highly unlikely

that there will be throughput delays in such a

configuration.

33

4.4 Results

As stated earlier, the PD was written entirely in

Intel 80286 Assembly language and compiled using

Microsoft Macro Assembler (MASM) Version 5.1. It

comprises of header definition files, and small modules

that implement each of the LSAP functions. Overall, the

program comprises about 900 lines of code.

The PD and the ported TCP/IP package (written in the

C language and recompiled using Microsoft C Compiler

Version 5.1), currently allows for the successful setting

up of a TELNET session to another host.

Chapter 5 Directions for Future Work

5.1 The Next Stage

The current effort concentrated on the development

of the PD. This is sufficient in allowing existing MS-

DOS TCP/IP implementations to be simply and easily ported

over to MS OS/2. This scheme does not take full

advantage of the extensive multitasking capabilities of

MS OS/2. The next logical step will be to rewrite the

TCP/IP code specifically for MS OS/2.

5.2 Extensions to Current Work

The current implementation of the packet driver

allows for device monitors to be added. Such device

monitors can provide such services as:

a) Data Packet Tracing: Such a capability will

give system and network managers a tool to do

performance analysis of the network. It will

also allow a means of calculating the cost of

usage of the network (by way of number of data

frames sent and correlating it to the address

it was sent to). Further, it can also be used

for security monitoring of the data on the

network.

35

b) Computation of data packet transmission and

reception times and error statistics. This

will be useful for incorporation of dynamic

routing algorithms for optimum usage and fine-

tuning of the network.

C) Provision of data de/encryption and

compression facilities. Such a utility will be

very useful in an environment that requires a

high degree of security with both incoming and

outgoing data packets. The data packets can be

de/encrypted using well-know and highly secure

algorithms such as the Data Encryption Standard

(DES).

36

Chapter 6 Conclusion

The entire undertaking was to prove one simple

point: that it is possible to provide MS OS/2 with

TCP/IP capabilities. Giving MS OS/2 TCP/IP capabilities

means that the end user now can have access to a wide

array of services and resources on a multitude of

computing platforms. This was accomplished with the

development of a protocol device driver that amalgamated

two different interface strategies.

Also, as a final result, now TCP/IP services that

were available to Ms-Dos users are functional in MS OS/2

- with exactly the same user interface.

The learning experience offered in this exercise was

very rewarding. This was because of the need to gain

familiarity with a new operating system, to get

acquainted with the tools involved and to provide a

stable and viable platform to build upon for the future.

37

Bibliography

[3COM 1990) 3Com Corporation and Microsoft
Corporation, Microsoft/3Com LAN
Manager Network Driver Interface
Specification Version 2.0.1
Published February 26, 1990

[COMER 1988] Douglas Corner, Internetworking with
TCP/IP: Principles, protocols, and
architecture, Prentice-Hall, New
Jersey. ISBN 0-13-470154-2

[DAVIDSON 1988) John Davidson, Introduction to
TCP/IP, Springer-Verlag, New York.
ISBN 0-387-96651-X

[DUNCAN 1989] Ray Duncan, Advanced OS/2
Programming, Microsoft Press,
Washington. ISBN 1-55615-045-8

[FTP 1990] FTP Software Inc., PC/TCP Packet
Driver Specification version 1.09,
FTP Software Inc., Massachusetts.
Document is in public domain.

[IACOBUCCI 1988) Ed lacobucci, OS/2 Programmer's
Guide, Osborne McGraw-Hill,
California. ISBN 0-07-88l300-X

(IEEE 1984] IEEE, IEEE Standards for Local Area
Networks: Logical Link Control 802.2,
IEEE mc, New York.
ISBN 0-471-82748-7

[INTEL 1988] Intel Corporation, Microprocessor and
Peripheral Handbook Volume I
Microprocessor, Intel Corporation,
California.
ISBN 1-55512-073-3

38

(KOCHAN 1989) Stephen G. Kochan and Patrick H.
Wood, Unix Networking, Hayden Books,
Indiana. ISBN 0-672-48440-4

(LETWIN 1988) Gordon Letwin, Inside OS/2,
Microsoft Press, Washington.
ISBN 1-55615-117-9

(MICROSOFT 1988] Microsoft Corporation, Prograiturting
Interface for the OS/2 LAN Manager,
Microsoft Corporation, Washington.
Microsoft Part Number 01396

[MICROSOFT 1989] Microsoft Corporation, Network Device
Driver Kit, Microsoft Corporation,
Washington.
Microsoft Document Number:
SY0829-100-000-0389

[NGUYEN 1988) Thuyen Nguyen & Robert Moskal,
Advanced Programmer's Guide to OS/2,
Simon & Schuster, Inc, New York.
ISBN 0-13-642935-1

(SCHWADERER 1988] W. David Schwaderer, C Programmer's
Guide to NetBIOS, Howard W. Sams &
Company, Indiana.
ISBN 0-672-22638-3

[TANENBATJN 1988) Andrew S. Tanenbaum, Computer
Networks Second Edition, Prentice-
Hall, New Jersey. ISBN 0-13-162959-X

(WESTWATER 1989) Raymond Westwater, Writing OS/2
Device Drivers, Addison-Wesley
Publishing Co. mc, Massachusetts.
ISBN 0-201-52234-9

[ZIMMERMAN 1980] Hubert Zimmerman, OSI Reference Model
- The ISO Model of Architecture for
Open Systems Interconnection, IEEE
Transactions on Communications, Vol.
COM-28 No. 4, April 1980 pages 425--
432, IEEE Inc, New York.

Appendices

39

Appendix I

A Brief Overview of TCP/IP and OS/2 LAN Manager

The OSI Reference Model (Figure 1) shows the various

layers in a networking system and describes the functions

they provide. This model actually specifies a

communication service (DAVIDSON 1988]. Each layer

provides a service to the next layer above through SAPS.

Figure 6 shows the various components that is

collectively called the TCP/IP protocols suite. IP

provides services to the Transport Layer from the Network

Layer. IP expects services from the Data Link Layer.

Similarly, TCP provides services to the Session Layer

from the Transport Layer.

The two protocols TCP and IP co-exist with other

protocols such as ICMP, ARP, RARP, UDP and NVP. Despite

these other protocols, the name TCP/IP is used to refer

to all of them, not just TCP and IP.

These protocols are augmented by other services that

run in the Session and higher layers. Popular services

are telnet, riogin (remote login), ftp and, smtp.

The critical issue here is that TCP/IP now has been

implemented on numerous computing platforms used for both

research, academic and commercial purposes.

From Figure 6, it is apparent how the communication

stack of TCP/IP compares with that of OS/2 LAN Manager.

The current interface of OS/2 LAN Manager to the network

is via NetBIOS [SCHWADERER 1988]. In an OS/2 LAN Manager

installation, therefore the protocol driver interacts

with a NetBIOS driver. Conceptually, the NetBIOS driver

resides at the Network Layer like IP.

Both IP and NetBIOS provide totally different

addressing schemes. However, there is now a standard

that allows for the encapsulation of IP datagrains to be

sent over a NetBIOS network (called Request For Comment

(RFC) 1001, RFC 1002 and RFC 1088). These RFCs are

attainable from NIC.DDN.MIL (IP address 26.0.0.76).

41

Appendix II

A Brief Overview of MS 08/2 and Intel 80286 Privilege
Levels

MS OS/2 is an operating system written specifically

for the Intel 80286 microprocessor. The Intel 80286

provides 2 modes of operation - protected and real modes.

When the 80286 is running in protected mode, MS OS/2

is able to access more hardware registers and segment

registers that are otherwise unavailable in the real mode

- the mode in which MS-DOS runs.

Access to these extra registers allows for the

design of an efficient and secure multitasking operating

system. It provides the following:

a) Protection of the code and data of the OS from

applications;

b) Protection of system resources from being

interfered with by each application;

C) Allowing for an address space per application to

up to 1 gigabyte through the use of a virtual

memory system;

d) Providing a fast and efficient task-switching

mechanism.

The protection provided to the system is made

available via an Intel 80286 concept called privilege

levels (or rings). Under this scheme, any code running

under MS OS/2 is automatically assigned a privilege

level. The Intel 80286 provides support for 4 hardware

recognized privilege levels arranged hierarchically from

0 being the highest and 3 the lowest.

Hence, code and data at a higher privilege level is

inaccessible to code at a lower level, but the reverse is

true. Therefore, by having MS OS/2 run at the highest

level, it effectively is protected from other programs.

Of the 4 levels, MS OS/2 only

Level or ring 0 is reserved for MS

2 for programs that need input/out]

level 3 for application programs.

reside at the ring 0 level as they

OS/2 kernel after boot time.

uses 3 (0, 2 and, 3).

OS/2's kernel. Level

Dut privileges and,

Hence, device drivers

become part of the MS

42

43

Appendix III

Packet Driver Pseudocode

The following is the pseudocode of the packet

driver. The packet driver was written in Intel 80286

assembly language using Microsoft Macro Assembler MASM

Version 5.1.

define constants, error and progress messages
define DevHlp function numbers
define structures for packet driver
define standard device driver header
define tables for NDIS - Lower Dispatch Table

and Common Characteristics Table
define driver command table

Standard Device Driver Strategy Routine
Save pointer to data packet for OS kernel
Check for valid function (LSAP);
and call function (LSAP)
else return error code to calling application;

Driverinfo LSAP
Return driver characteristics to calling
application;

ReceivePkt LSAP
Activate data receiver of user application;
If unable to activate, discard data;
Transfer data to data receiver;

ReleaseType LSAP
Close any opened handles to current
application;
If non-existent then return error;

SendPkt LSAP
Accept data frame from application;
Invoke MSAP TransmitChain and pass data frame
and unique handle;

Terminate LSAP
Close data connection if it exists
else return error;

GetAddress LSAP
Return error to calling routine - no match in
NDIS-type MAC;

44

Resetlnterface LSAP
Reset interface associated with handle by
calling MSAP Request Function ResetMAC;
Pass unique handle to MSAP and await it's
return;

SetRcvMode LSAP
Set receiver mode of network device by
calling MSAP Request Function SetPacketFilter;
Pass unique handle to MSAP and await for it
when MSAP returns;

GetRcvMode LSAP
Return error to calling routine - no match in
NDIS-type MAC;

SetNulticastList LSAP
Call MSAP Request Function AddNulticastAddress
with addresses to be added as provided by
calling application;
Pass unique handle to MSAP and await for it
when MSAP returns;

GetNulticastLjst LSAP
Return error to calling routine - no match in
NDIS-type MAC;

GetStatistjcs LSAP
Call MSAP Request Function UpdateStatistics;
Pass unique handle to MSAP and await for it
when MSAP returns, return updated data to
calling application;

SetAddress LSAP
Call MSAP Request Function SetFunctionalAddress
with received address;
Pass unique handle to MSAP and await return;

RequestConfirm PLDT
MAC invokes this routine;
Check for handle returned by MAC if Requests to
MSAP Request Function was initiated.

TransmitConfirm PLDT
MAC invokes this routine after successfully
sending packet of previous SendPkt call;
Check handle returned by MAC for consistency;

ReceiveLookAhead PLDT
MAC invokes this routine upon receipt of
new data on network;
Accept all data by calling MSAP TransferData;

45

IndicationComplete PLDT
Acknowledgement from MAC that data accepted
by Protocol can now be processed;

ReceiveChain PLDT
MAC invokes this routine upon receipt of
new data on network;
Accept all data by calling MSAP ReceiveRelease;

Statuslndication PLDT
MAC calls that are non-data reception
initiated;
Accept data from MAC showing status of
network hardware;

SystemRequest Initialization-time Function
Accept call from PROTMAN.0S2 to perform
binding with specified MAC driver;
Call MAC'S Bind Routine via MAC'S
Common Characteristics Table;
Return to PROTMAN.0S2 binding request
status;

Packet Driver Initialization Function
Invoked at boot-time;
Save addresses to DevHlp, address of
data segment of module;
Perform DosOpen on PROTNAN.0S2;
If DosOpen successful, call PROTMAN.0S2
to RegisterModule and await SystemRequest
call from PROTMAN.0S2

46

Appendix IV

DosDevIOCti Specification

The Packet Driver will be accessed with the

DosDevIOCti function call as defined below:

DosDevlOCtl(Data, PariuList, Function, Category,
DevHandle)

char far *Data;

char far *paLjst;

unsigned Function;

unsigned Category;

unsigned DevHandle;

1* pointer to the data
block to be returned */

1* pointer to the parameter
list *1

/* function number */

1* category number */

1* device handle *1

The first parameter, Data, is a pointer to a memory

block where the device driver returns the data. The

second, ParmList, is a pointer to a memory block

containing the input parameters. The third parameter,

Function, is an unsigned or 2 byte variable the specifies

the function number of the IOCTL function. The function

number is the number of the Link Service Access Point

(LSAP) as defined in Table 3. The fourth parameter,

Category, is another unsigned variable that specifies the

category of the IOCTL function, which in the case of the

packet driver is DFH. The last parameter is a number

that is supplied by the caller. This number was obtained

47

by the caller by issuing a Dosopen call before doing a
DosDevIOCti function call.

An application wanting to use the packet driver will
have to perform a DosOpen on the device called PKTDRVR$.

If this succeeds, then the packet driver is currently
installed and accessible and the application can issue
DosDevIOCti function calls.

The data structures for the various functions that
can be accessed via the DosDevIOCt]. function call are
defined below:

Function 1: driver info
struct driver_info

mt error;
mt version;
mt class;
mt type;
mt number;
mt basic;

I

(

1* same as PDS *1
1* BX in PDS *1
1* CH in PDS *1
/* DX in PDS *1
/* CL in PDS *1

AL in PDS
basic=Ol, extended=02
not installed=FF *1

Function 2: access_type

struct access_type {
mt if_class; /* AL; Interface class */
mt if_type; /* BX; Interface type *1
mt if_number; /* DL; interface number *1
char far * type; 1* DS:SI; access type *1
unsigned typelen; 1* CX; access type length */
mt (far *recejver) ; 1* location of

receiver routine
of application */

mt error; /* same as PDS */
I

Function 3: release_type

struct release_type (
mt handle; /* error if handle has error *1

}

Function 4: send_pkt

struct send_pkt
char far * buffer; /* DS:SI; frame to send *1
unsigned length; /* CS; length of frame */

mt error; /* same as PDS *1
)

Function 5: terminate

struct terminate (
mt handle; 1* BX; unique handle */
mt error; /* same as PDS *1

)

Function 6: get_address

struct get_address {
mt handle; 1* BX; unique handle */
char far * buffer; /* ES:DI; address */
unsigned length; /* CX; address length */
mt error; /* same as PDS *1

}

Function 7: reset_interface

struct reset_interface {
mt handle; 1* BX; unique handle */
mt error; /* same as PDS */

)

Function 8: setrcv_mode

struct set_rcv_mode
mt handle; /* BX; unique handle */
mt mode; 1* CX; mode to set to */
mt error; /* sane as PDS */

}

49

Function 9: get rcv mode

1* structure defined for consistency. Packet driver
ignores data and returns "invalid" error message *1

struct get_rcv_mode
mt handle; 1* BX; unique handle */
mt mode; /* CX; mode currently in *1
mt error; 1* same as PDS *1

)

Function 10: set_multicast_list

struct set_multicast_list {
char far * addrlist; /* ES:DI; address list */
mt length; /* CX; address list length */
irit error; /* same as PDS */

)

Function 11: get_multicast_list

1* structure defined for consistency. Packet driver
ignores data and returns "invalid" error message */

struct get_multicast_list {
char far *addrlist; /* ES:DI; address list */
mt length; /* CX; address list length */
mt error; /* same as PDS */

)

Function 12: get_statistics

struct get_statistics {
mt handle; /* BX; unique handle */
char far * stats; /* DS:SI; same as PDS *1

)

Function 13: set_address

struct set_address {
char far *addr; /* ES:DI; address list */
mt length; 1* CX; length of list */
mt error; /* same as PDS */

}

