NAME

jbgtopbm - JBIG to portable bitmap file converter

SYNOPSIS

jbgtopbm [options] [input-file | — [output-file 1]

DESCRIPTION

OPTIONS

BUGS

Reads in a JBIG bi-level image entity (BIE) from a file or standard input, decompresses it, and outputs a
portable bitmap (PBM) file.

JBIG is a highly effective lossless compression algorithm for bi-level images (one bit per pixel), which is
particularly suitable for scanned document pages.

A JBIG encoded image can be stored in several resolutions in one or several BIEs. All resolution layers
except the lowest one are stored efficiently as differences to the next lower resolution layer. Options -x and
-y can be used to stop the decompression at a specified maximal output image size. The input file can con-
sist of several concatenated BIEs which contain different increasing resolution layers of the same image.

If more than one bit per pixel is stored in the JBIG file, then a PGM file will be produced.

A single hyphen instead of an input file name will cause jbgtopbm to read the data from
standard input instead from a file.

=X number Decode only up to the largest resolution layer which is still not more than number pixels
wide. If no such resolution layer exists, then use the smallest one available.

-y number Decode only up to the largest resolution layer which is still not more than number pixels
high. If no such resolution layer exists, then use the smallest one available. Options —x
and -y can also be used together in which case the largest layer that satisfies both limits
will be selected.

-b Use binary values instead of Gray code words in order to decode pixel values from multi-
ple bitplanes. This option has only an effect if the input has more than one bitplane and a
PGM output file is produced. Note that the decoder has to be used in the same mode as
the encoder and cannot determine from the BIE, whether Gray or binary code words were
used by the encoder.

-d Diagnose a BIE. With this option, jbgtopbm will only print a summary of the header infor-
mation found in the input file and then exit.

—p number If the input contains multiple bitplanes, then extract only the specified single plane as a
PBM file. The first plane has number 0.

Using standard input and standard output for binary data works only on systems where there is no differ-
ence between binary and text streams (e.g., Unix). On other systems (e.g., MS-DOS), using standard input
or standard output may cause control characters like CR or LF to be inserted or deleted and this will dam-
age the binary data.

STANDARDS

This program implements the JBIG image coding algorithm as specified in ISO/IEC 11544:1993 and ITU-
T T.82(1993).

AUTHOR

The jbgtopbm program is part of the JBIG-KIT package, which has been developed by Markus Kuhn. The
most recent version of this portable JBIG library and tools set is freely available on the Internet from
anonymous ftp server ftp.informatik.uni-erlangen.de in directory pub/doc/ISO/JBIG/. Bug reports should be
sent to <mkuhn@acm.org>.

SEE ALSO

pbm(5), pgm(5), pbmtojbg(1)

PBMTOJBG(L) PBMTOJBG()

NAME
pbmtojbg — portable bitmap to JBIG file converter

SYNOPSIS
pbmtojbg [options] [input-file | = [output-file]]

DESCRIPTION
Reads in a portable bitmap (PBM) from a file or standard input, compresses it, and outputs the image as a
JBIG bi-level image entity (BIE) file.

JBIG is a highly effective lossless compression algorithm for bi-level images (one bit per pixel), which is
particularly suitable for scanned document pages.

A JBIG encoded image can be stored in several resolutions (progressive mode). These resolution layers
can be stored all in one single BIE or they can be stored in several separate BIE files. All resolution layers
except the lowest one are stored merely as differences to the next lower resolution layer, because this
requires less space than encoding the full image completely every time. Each resolution layer has twice the
number of horizontal and vertical pixels than the next lower layer. JBIG files can also store several bits per
pixel as separate bitmap planes, and pbmtojbg can read a PGM file and transform it into a multi-bitplane
BIE.

OPTIONS
- A single hyphen instead of an input file name will cause pbmtojbg to read the data from
standard input instead from a file.

—-q Encode the image in one single resolution layer (sequential mode). This is usually the
most efficient compression method. By default, the number of resolution layers is chosen
automatically such that the lowest layer image is not larger than 640 x 480 pixels.

=X number Specify the maximal horizontal size of the lowest resolution layer. The default is 640 pix-
els.

-y number Specify the maximal vertical size of the lowest resolution layer. The default is 480 pixels.

=l number Select the lowest resolution layer that will be written to the BIE. It is possible to store the
various resolution layers of a JBIG image in progressive mode into different BIEs.
Options —I and —h allow to select the resolution-layer interval that will appear in the cre-
ated BIE. The lowest resolution layer has number 0 and this is also the default value. By
default all layers will be written.

—h number Select the highest resolution layer that will be written to the BIE. By default all layers will
be written. See also option -I.

-b Use binary values instead of Gray code words in order to encode pixel values in multiple
bitplanes. This option has only an effect if the input is a PGM file and if more than one
bitplane is produced. Note that the decoder has to make the same selection but cannot
determine from the BIE, whether Gray or binary code words were used by the encoder.

—d number Specify the total number of differential resolution layers into which the input image will
be split in addition to the lowest layer. Each additional layer reduces the size of layer 0 by
50 %. This option overrides options —x and —y which are usually a more comfortable way
of selecting the number of resolution layers.

=S number The JBIG algorithm splits each image into a number of horizontal stripes. This option
specifies that each stripe shall have number lines in layer 0. The default value is selected
so that approximately 35 stripes will be used for the whole image.

—m number Select the maximum horizontal offset of the adaptive template pixel. The JBIG encoder
uses a number of neighbour pixels in order to get statistical a priori knowledge of the
probability, whether the next pixel will be black or white. One single pixel out of this tem-
plate of context neighbor pixels can be moved around. Especially for dithered images it

2 1998-04-10

PBMTOJBG(L)

—t number

—0 number

—p number

-V

PBMTOJBG()

can be a significant advantage to have one neighbor pixel which has a distance large
enough to cover the period of a dither function. By default, the adaptive template pixel
can be moved up to 8 pixels away. This encoder supports up to 23 pixels, however as
decoders are only required to support at least a distance of 16 pixels by the standard, no
higher value than 16 for number is recommended in order to maintain interoperability
with other JBIG implementations. The maximal vertical offset of the adaptive template
pixel is always zero.

Encode only the specified number of most significant bit planes. This option allows to
reduce the depth of an input PGM file if not all bits per pixel are needed in the output.

JBIG separates an image into several horizontal stripes, resolution layers and planes, were
each plane contains one bit per pixel. One single stripe in one plane and layer is encoded
as a data unit called stripe data entity (SDE) inside the BIE. There are 12 different possi-
ble orders in which the SDEs can be stored inside the BIE and number selects which one
shall be used. The order of the SDEs is only relevant for applications that want to decode
a JBIG file which has not yet completely arrived from e.g. a slow network connection.
For instance some applications prefer that the outermost of the three loops (stripes, layers,
planes) is over all layers so that all data of the lowest resolution layer is transmitted first.
The following values for number select these loop arrangements for writing the SDEs
(outermost loop first):

planes, layers, stripes
layers, planes, stripes
layers, stripes, planes
stripes, planes, layers
planes, stripes, layers
stripes, layers, planes

ool wWNO

All loops count starting with zero, however by adding 8 to the above order code, the layer
loop can be reversed so that it counts down to zero and then higher resolution layers will
be stored before lower layers. Default order is 3 which writes at first all planes of the first
stripe and then completes layer 0 before continuing with the next layer and so on.

This option allows to activate or deactivate various optional algorithms defined in the
JBIG standard. Just add the numbers of the following options which you want to activate
in order to get the number value:

4 deterministic prediction (DPON)

8 layer 0 typical prediction (TPBON)
16 diff. layer typ. pred. (TPDON)

64 layer 0 two-line template (LRLTWO)

Except for special applications (like communication with JBIG subset implementations)
and for debugging purposes you will normally not want to change anything here. The
default is 28, which provides the best compression result.

The adaptive template pixel movement is determined as suggested in annex C of the stan-
dard. By default the template change takes place directly in the next line which is most
effective. However a few conformance test examples in the standard require the adaptive
template change to be delayed until the first line of the next stripe. This option selects this
special behavior, which is normally not required except in order to pass some confor-
mance test suite.

After the BIE has been created, a few technical details of the created file will be listed
(verbose mode).

1998-04-10 3

PBMTOJBG(L) PBMTOJBG()

BUGS
Using standard input and standard output for binary data works only on systems where there is no differ-
ence between binary and text streams (e.g., Unix). On other systems (e.g., MS-DOS), using standard input
or standard output may cause control characters like CR or LF to be inserted or deleted and this will dam-
age the binary data.

STANDARDS
This program implements the JBIG image coding algorithm as specified in ISO/IEC 11544:1993 and ITU-
T T.82(1993).

AUTHOR
The pbmtojbg program is part of the JBIG-KIT package, which has been developed by Markus Kuhn. The
most recent version of this portable JBIG library and tools set is freely available on the Internet from
anonymous ftp server ftp.informatik.uni-erlangen.de in directory pub/doc/ISO/JBIG/. Bug reports should be
sent to <mkuhn@acm.org>.

SEE AL SO
pbm(5), pgm(5), jbgtopbm(1)

4 1998-04-10

pbm(5) pbm(5)

NAME
pbm - portable bitmap file format

DESCRIPTION
The portable bitmap format is a lowest common denominator monochrome file format. It was originally
designed to make it reasonable to mail bitmaps between different types of machines using the typical stupid
network mailers we have today. Now it serves as the common language of a large family of bitmap conver-
sion filters. The definition is as follows:

- A "magic number" for identifying the file type. A pbm file’s magic number is the two characters "P1".
- Whitespace (blanks, TABs, CRs, LFs).

- A width, formatted as ASCII characters in decimal.

- Whitespace.

- A height, again in ASCII decimal.

- Whitespace.

- Width * height bits, each either 1’ or *0’, starting at the top-left corner of the bitmap, proceeding in nor-
mal English reading order.

- The character ’1” means black, 0’ means white.

- Whitespace in the bits section is ignored.

- Characters from a "#" to the next end-of-line are ignored (comments).
- No line should be longer than 70 characters.

Here is an example of a small bitmap in this format:
P1

feep.pbm

247
000000000000000000000000
011110011110011110011110
010000010000010000010010
011100011100011100011110
010000010000010000010000
010000011110011110010000
000000000000000000000000

Programs that read this format should be as lenient as possible, accepting anything that looks remotely like
a bitmap.

There is also a variant on the format, available by setting the RAWBITS option at compile time. This vari-
ant is different in the following ways:

- The "magic number" is "P4" instead of "P1".
- The bits are stored eight per byte, high bit first low bit last.

- No whitespace is allowed in the bits section, and only a single character of whitespace (typically a new-
line) is allowed after the height.

- The files are eight times smaller and many times faster to read and write.

SEE ALSO
atktopbm(1), brushtopbm(1), cmuwmtopbm(1), g3topbm(1), gemtopbm(1), icontopbm(1), macptopbm(1),
mgrtopbm(1), pi3topbm(1), xbmtopbm(1), ybmtopbm(1), pbmto10x(1), pnmtoascii(1), pbmtoatk(1), pbm-
tobbnbg(1), pbmtocmuwm(1), pbmtoepson(1), pbmtog3(1), pbmtogem(1), pbmtogo(1), pbmtoicon(1),
pbmtolj(1), ppbmtomacp(1), pomtomgr(1), pbmtopi3(1), pbmtoplot(1), pbmtoptx(1), pbmtox10bm(1), pbm-
toxbm(1), pbmtoybm(1), pbmtozinc(1), pbmlife(1), pbmmake(1), pbmmask(1), pbmreduce(1), pbmtext(1),
pbmupc(1), pnm(5), pgm(5), ppm(5)

27 September 1991 5

pbm(5) pbm(5)

AUTHOR
Copyright (C) 1989, 1991 by Jef Poskanzer.

6 27 September 1991

pgm(5) pgm(5)

NAME
pgm - portable graymap file format

DESCRIPTION
The portable graymap format is a lowest common denominator grayscale file format. The definition is as
follows:

A "magic number" for identifying the file type. A pgm file’s magic number is the two characters "P2".
- Whitespace (blanks, TABs, CRs, LFs).

- A width, formatted as ASCII characters in decimal.

- Whitespace.

- A height, again in ASCII decimal.

- Whitespace.

- The maximum gray value, again in ASCII decimal.

- Whitespace.

- Width * height gray values, each in ASCII decimal, between 0 and the specified maximum value, sepa-
rated by whitespace, starting at the top-left corner of the graymap, proceeding in normal English reading
order. A value of 0 means black, and the maximum value means white.

- Characters from a "#" to the next end-of-line are ignored (comments).
- No line should be longer than 70 characters.
Here is an example of a small graymap in this format:

P2

feep.pgm

247

15

00000000000O00O0OO0O00OOOOOOOODO
033330077770011111111 00151515150
030000070000011000001500150
0333000777000111111 000151515150
03000007000001100000150000
030000077770011111121100150000
00000000000O00O0O0OO0O00OOOOOOOOO
Programs that read this format should be as lenient as possible, accepting anything that looks remotely like
a graymap.

There is also a variant on the format, available by setting the RAWBITS option at compile time. This vari-
ant is different in the following ways:

- The "magic number" is "P5" instead of "P2".
- The gray values are stored as plain bytes, instead of ASCII decimal.

- No whitespace is allowed in the grays section, and only a single character of whitespace (typically a
newline) is allowed after the maxval.

- The files are smaller and many times faster to read and write.

Note that this raw format can only be used for maxvals less than or equal to 255. If you use the pgm library
and try to write a file with a larger maxval, it will automatically fall back on the slower but more general
plain format.

SEE ALSO
fitstopgm(1), fstopgm(1), hipstopgm(1), lispmtopgm(1), psidtopgm(1), rawtopgm(1), pgmbentley(1), pgm-
crater(1), pgmedge(1), pgmenhance(1), pgmhist(1), pgmnorm(1), pgmoil(1), pgmramp(1), pgmtexture(1),
pgmtofits(1), pgmtofs(1), pgmtolispm(1), pgmtopbm(1), pnm(5), pbm(5), ppm(5)

12 November 1991 7

pgm(5) pgm(5)

AUTHOR
Copyright (C) 1989, 1991 by Jef Poskanzer.

8 12 November 1991

	JBGTOPBM (1)
	PBMTOJBG (1)
	pbm (5)
	pgm (5)

