
GIF2PNG(1) GIF2PNG(1)

NAME
gif2png − convert GIFs to PNGs

SYNOPSIS
gif2png [-bdfghinprsvwO] [file[.gif]...]

DESCRIPTION
The gif2png program converts files in the obsolescent and patent-encumbered Graphic Interchange For-
mat (GIF) to Portable Network Graphics (PNG) format, an open W3C standard.

Normally gif2png converts each file named on the command line, leaving the original in place. If a
name does not have a .gif extension, the unmodified name will be tried first, followed by the name with
.gif appended. For each file named ‘foo.gif’, a foo.png will be created.

When a multi-image GIF file named foo.gif is converted, gif2png creates multiple PNG files, each con-
taining one frame; their names will be foo.png, foo.p01, foo.p02 etc.

If no source files are specified and stdin is a terminal, gif2png lists a usage summary and version infor-
mation, then exits.

If no source files are specified, and stdin is a device or pipe, stdin is converted to noname.png. (The
program can’t be a normal stdin-to-stdout filter because of the possibility that the input GIF might have
multiple images).

However, if filter mode is forced (with -f) stdin will be converted to stdout, with gif2png returning an
error code if the GIF is multi-image.

The program will preserve the information contained in a GIF file as closely as possible, including GIF
comment and application-data extension blocks. All graphics data (pixels, RGB color tables) will be
converted without loss of information. Transparency is also preserved. There is one exception; GIF
plain-text extensions are skipped.

The program automatically converts interlaced GIFs to interlaced PNGs. It detects images in which all
colors are gray (equal R, G, and B values) and converts such images to PNG grayscale. Other images
are converted to use the PNG palette type. Duplicate color entries are silently preserved. Unused
color-table entries cause an error message.

The action of the program can be modified with the following command-line switches:

-b {#}RRGGBB
Background. Replace transparent pixels with given RGB value, six hexadecimal digits inter-
preted as two hexits each of red, green, and blue value. The value may optionally be led with
a #, HTML-style.

-d Delete source GIF files after successful conversion.

-f Filter mode. Convert GIF on stdin to PNG on stdout, return error if the GIF is multi-image.

-g Write gamma=1/2.2 and sRGB chunks in the PNG.

-h Generate PNG color-frequency histogram chunks into converted color files.

-i Force conversion to interlaced PNG files.

-n Force conversion to non-interlaced PNG files.

-p Display progress of PNG writing.

-r Try to recover data from corrupted GIF files.

-s Do not translate the GIF Software chunk to a PNG annotation.

-t Change behavior of web-probe (-w) mode to accept GIFs with transparency.

-v Verbose mode; show summary line, -vv enables conversion-statistics and debugging messages.

20 September 1999 1

GIF2PNG(1) GIF2PNG(1)

-w Web-probe switch; list GIFs that do not have multiple images or transparency to stdout. GIFs
that fail this filter cause error messages to stderr.

-O Optimize; remove unused color-table entries. Normally these trigger an error message and
disable -d (but conversion is completed anyway). Also, use zlib compression level 9 (best
compression) instead of the default level.

The recovery algorithm enabled by -r is as follows: Unused color table entries will not trigger
an error message as they normally do, but will still be preserved unless -O is also on, in which
case they will be discarded. Missing color tables will be patched with a default that puts black
at index 0, white at index 1, and supplies red, green, blue, yellow, purple and cyan as the
remaining color values. Missing image pixels will be set to 0. Unrecognized or corrupted
extensions will be discarded.

PROBLEMS
Naively converting all your GIFs at one go with gif2png is not likely to give you the results you want.
The problem is not with PNG itself or with gif2png, but with the poor-to-nonexistent support for PNG
transparency and animation in most browsers.

The web-probe switch is intended to be used with scripts for converting web sites. All PNGs generated
from the pathnames it returns will be properly rendered in Netscape Navigator 4.04+, Internet Explorer
versions 4.0b1+, and all other current web browsers. Note: in future releases of gif2png, the meaning
of this switch may change to reflect the capabilities of prevalent browsers.

PATENT ISSUES
The GIF format is encumbered by a Unisys patent (see
<http://www.patents.ibm.com/details?pn=US04558302__>) for the Lempel-Ziv-Welch compression
algorithm. Use of any GIF image generator not licensed by Unisys can make you liable to lawsuit.
Unisys apparently refuses to issue licenses for use of LZW in open-source programs, and in 1999 stated
that its policy is to require a $5000 fee from websites that carry GIF images made by unlicensed soft-
ware -- even nonprofit websites created and displayed with free software. See
<http://corp2.unisys.com/LeadStory/lzw-license.html> for details.

The patent probably does not cover LZW decompressors such as the one gif2png uses; legal opinions
are divided on this, there has been no court test, and Unisys refuses to commit itself. It is possible that
you may be liable if you distribute gif2png in a commercial program, or distribute gif2png on a for-
profit basis.

For a history of the GIF patent controversy, see <http://lpf.ai.mit.edu/Patents/Gif/Gif.html>. To avoid
legal problems, it would be a good idea to convert all GIFs on your websites and elsewhere to PNGs
without delay. See <http://burnallgifs.org/> for discussion.

STANDARDS AND SPECIFICATIONS
Copies of the GIF89 specification are widely available on the Web; search for "GRAPHICS INTER-
CHANGE FORMAT". The Graphics Interchange Format(c) is the Copyright property of CompuServe
Incorporated. GIF(sm) is a Service Mark property of CompuServe Incorporated.

The PNG home site at <http://www.libpng.org/pub/png/> has very complete information on the PNG
standard, PNG libraries, and PNG tools.

SEE ALSO
web2png(1)

AUTHORS
Code by Alexander Lehmann <alex@hal.rhein-main.de>, 1995. Auto-interlace conversion and tRNS
optimization by Greg Roelofs <newt@pobox.com>, 1999. Man page, -O, -w, and production packag-
ing by Eric S. Raymond <esr@thyrsus.com>, 1999.

2 20 September 1999

PNGMETA(1) PNGMETA(1)

NAME
pngmeta − extract metadata from Portable Network Graphics (PNG) image files

SYNOPSIS
pngmeta [−-soif] [−-html] [−-xrdf] [−-all] [−-quiet] [−-uri URI] [filename]

DESCRIPTION
The pngmeta filter outputs the metadata from Portable Network Graphics (PNG) format image files in
one of these formats:

1. Simple key: value

2. SOIF format (as used by the Harvest system, version 1.4).

As such it can be used as a Summarizer for the Harvest Essence system. It could also be used
by other indexers to extract data for indexing PNG images.

3. HTML page With each element as an element in a descriptive (DL) list

4. XML/RDF With each element as an RDF property on the source URI.

In the absence of options, the program operates as a filter, accepting input from stdin and sending out-
put to stdout. If a single file name is given, it is assumed to correspond to a PNG file, and is processed.

FORMAT OPTIONS
−-soif Format output using (Harvest) SOIF format. This is the default if the program is called

PngImage.sum.

−-html Format output in HTML, with each field/value as an element in a descriptive (DL) list.

−-xrdf Format output in RDF/XML, with each field/value as an element in an rdf:Description block
inside the outer rdf:RDF wrapper element. If an XMLRDFDAT A field is found, it is assumed
to be RDF/XML content and is emitted in a second rdf:Description block.

OTHER OPTIONS
−-all Output all the information about the image size, depth etc. even if not usually printed.

−-quiet Suppress the output of the banner for plain text output. −-uri URI Set the URI that is used for
the SOIF and XML/RDF outputs. By default this will be the filename, or "stdin" if this is the
program is used as a filter.

−-help Show a usage message

−-version
Show the program and library versions

FILES
pngmeta executable

SEE ALSO
gif2png(1), libpng(3), pbm(1), pgm(1), pngcheck(1), pngtopnm(1), pnm(5), pnmgamma(1), pnm-
topng(1), ptot(1), tiff2png(1), zlib(3)

For information about Harvest and its SOIF format:

http://harvest.cs.colorado.edu/

For PNG

http://www.libpng.org/pub/png/

For libpng library:

http://www.libpng.org/pub/png/libpng.html
http://libpng.sourceforge.net

For zlib-zlib library

http://www.info-zip.org/pub/infozip/zlib/
http://www.mirror.ac.uk/sites/ftp.freesoftware.com/pub/infozip/zlib/

10 March 1998 3

PNGMETA(1) PNGMETA(1)

AUTHORS
Version 1.10. Dave Beckett, ILRT, University of Bristol, http://purl.org/net/dajobe/

The zlib(3) library required by pngmeta is copyright (C) 1995-1996 Jean-loup Gailly and Mark Adler.
Some code was modified from the code for the libpng(3) library function png_read_end() which is
copyright (c) Guy Eric Schalnat, Andreas Dilger, Glenn Randers-Pehrson and others -- see the source
for details.

Original UNIX manual page by R. P. C. Rodgers, U.S. National Library of Medicine
(rodgers@nlm.nih.gov).

4 10 March 1998

pngtopnm(1) pngtopnm(1)

NAME
pngtopnm - convert a Portable Network Graphics file into a portable anymap

SYNOPSIS
pngtopnm [-verbose] [-alpha | -mix] [-background color]
[-gamma value] [-text file] [-time] [pngfile]

DESCRIPTION
Reads a Portable Network Graphics as input. Produces a portable anymap as output. The type of the
output file depends on the input file - if it’s black & white, a pbm file is written, else if it’s grayscale a
pgm file, else a ppm file.

OPTIONS
-verbose

Display the format of the input file and the type of the output file. If the chunks are part of the
png-file, the alpha, transparency and gamma-values will be indicated.

-alpha Output the alpha channel or transparency mask of the image. The result is either a pbm file or
pgm file, depending on whether different levels of transparency appear.

-mix Compose the image with the transparency or alpha mask against a the background. When a
background chunk is available that color is taken, else black will do.

-background color
If no background color chunck is present in the png-file, or when another color is required this
parameter can be used to set the background color of images. This is especially useful for
alpha-channel images or those with transparency chunks. The format, to specify the color in,
is either (in the case of orange) "1.0,0.5,0.0", where the values are floats between zero and
one, or with the syntax "#RGB", "#RRGGBB" or "#RRRRGGGGBBBB" where R, G and B
are hexa-decimal numbers.

-gamma value
Converts the image to a new display-gamma value. When a gAMA chunk is present in the
png-file, the image-gamma value will be used. When not, the image-gamma is considered to
be 1.0. Based on the image-gamma and the display-gamma given with this option the colors
written to the pnm-file will be adjusted.
Because the gamma’s of uncompensated monitors are around 2.6, which results in an image-
gamma of 0.45, some typical situations are: when the image-gamma is 0.45 (use -verbose to
check) and the picture is too light, your system is gamma-corrected, so convert with "-gamma
1.0". When no gAMA chunk is present or the image-gamma is 1.0, use 2.2 to make the pic-
ture lighter and 0.45 to make the picture darker.

-text file
Writes the tEXt and zTXt chunks to a file, in a format as described in the pnmtopng man-page.

-time Prints the tIME chunk to stderr.

All flags can be abbreviated to their shortest unique prefix.

SEE ALSO
pnmtopng(1), ptot(1), pnmgamma(1), pnm(5)

NOTE
Instead of pngtopnm|pnmtoxxx, a specific converter should be used, if available. E.g. ptot (PNG to
TIFF conversion), etc.

BUGS
There could be an option to read the comment text from pnm comments instead of a separate file.

The program could be much faster, with a bit of code optimizing.

AUTHORS
Copyright (C) 1995-1997 by Alexander Lehmann

and Willem van Schaik.

6 January 1997 5

pnmtopng(1) pnmtopng(1)

NAME
pnmtopng - convert a portable anymap into a Portable Network Graphics file

SYNOPSIS
pnmtopng [-verbose] [-downscale] [-interlace] [-alpha file]
[-transparent color] [-background color] [-gamma value]
[-hist] [-chroma wx wy rx ry gx gy bx by] [-phys x y unit]
[-text file] [-ztxt file] [-time [yy]yy-mm-dd hh:mm:ss]
[-filter type] [-compression level] [-force] [pnmfile]

DESCRIPTION
Reads a portable pixmap as input. Produces a Portable Network Graphics file as output.

Color values in PNG files are either eight or sixteen bits wide, so pnmtopng will automatically scale
colors to have a maxval of 255 or 65535. Grayscale files will be produced with bit depths 1, 2, 4, 8 or
16. An extra pnmdepth step is not necessary.

OPTIONS
-verbose

Display the format of the output file.

-downscale
Enables scaling of maxvalues of more then 65535 to 16 bit. Since this means loss of image
data, the step is not performed by default.

-interlace
Creates an interlaced PNG file (Adam7).

-alpha file
The alpha channel of pixel (or image) specifies the transparency of a pixel. To create this
fourth pixel value a separate .pbm- or .pgm-file is needed. In this file black (0) stands for fully
transparant and white (1) will become opaque. The sizes of both pbm/pgm/ppm-files must be
the same. If the information contained in the alpha mask can also be represented as a trans-
parency index, it will be used, since this should result in a smaller image file.

-transparent color
Allows to make one particular color fully transparent. The format to specify the color is either
(when for example orange) "1.0,0.5,0.0", where the values are floats between zero and one, or
with the syntax "#RGB", "#RRGGBB" or "#RRRRGGGGBBBB" where R, G and B are hexa-
decimal numbers.

-background color
To create a background color chunck in the png-file, which can be used for subsequent alpha-
channel or transparent-color conversions. See -transparent for format of color.

-gamma value
Creates an gAMA chunk. By providing the gamma-value of the pnm-file the software that lat-
eron will display the png-file will be able to do the necessary gamma-corrections. A good rule-
of-thumb is that when the file is created by a software program (like a CAD-program or a ray-
tracer) the value is probably 1.0. When the pnm-file looks good on a non-gamma corrected PC
display (which has itself a gamma-value of 2.2 - 2.8), a value of 0.45 should be given.

-hist Use this parameter to create a chunk that specifies the frequency (or histogram) of the colors
in the image.

-chroma white point X and Y, red X and Y, green X and Y, and blue X and Y
To specify the white point and rgb values following the CIE-1931 spec.

-phys x y unit
When your image should not be displayed with square but with rectangular pixels this option
should be used to create a pHYS chunk. When the unit-value is 0 the x and y only gives the
ratio of pixel width and height. When it is 1 the x and y specify the number of pixels per
meter.

-text file
Allows to include comments in the text-chunk of the png-file. The format of the text-file is as
follows: when the first column does not contain a blank or a tab, the first word is considered to

6 6 January 1997

pnmtopng(1) pnmtopng(1)

be the keyword. For keywords to contain spaces, enclose them in double-quotes.
When the first character on a line is a blank or tab, the rest of the line is a new line of the cur-
rent comment. Note that the initial spaces are not considered to be part of the comment line.

Here is an example:

Title PNG-file
Author your name
Description how to include a text-chunk

into a PNG file
"Creation date" 3-feb-1987
Software pnmtopng

-ztxt file
The same as -text, but now the text will be compressed.

-time yy-mm-dd hh:mm:ss or -time yyyy-mm-dd hh:mm:ss
This option allows you to specify the (modification)time. The year parameter can be given as a
two- or a four-digit value.

-filter type
When the types of filters must be restricted you can specify here which filter you want to use.
Allowed values are: 0 (none), 1 (sub), 2 (up), 3 (avg) and 4 (paeth).

-compression level
To explicitly set the compression level of zlib use this parameter. Select a level between 0 for
no compression (max speed) and 9 for maximum compression.

-force When set, -force limits the optimizations of pnmtopng. A png-file similar to the pnm-input is
as much as possible enforced. For example no paletted files will be created and alpha-channel
images will not be converted to images with a transparency chunck.

All flags can be abbreviated to their shortest unique prefix.

SEE ALSO
pngtopnm(1), gif2png(1), pnmgamma(1), pnm(5)

NOTE
Instead of xxxtopnm|pnmtopng, a specific converter should be used, if available. E.g. gif2png (GIF
conversion), etc.

BUGS
There could be an option to read the comment text from pnm comments instead of a separate file.

The program could be much faster, with a bit of code optimizing.

AUTHORS
Copyright (C) 1995-1997 by Alexander Lehmann

and Willem van Schaik.

6 January 1997 7

WEB2PNG(1) WEB2PNG(1)

NAME
web2png − convert a web tree from using GIFs to using PNGs

SYNOPSIS
web2png [-adnrv] [directory...]

DESCRIPTION
Web2png is a front end for gif2png(1) that automatically converts entire web page hierarchies from
using GIFs to using PNGs. It does image conversion and patches IMG SRC references in web pages.

The arguments to web2png must be directories; if none are given, the current directory is assumed.

In each directory, web2png tries to convert every GIF to a PNG. It leaves alone GIFs that have either
multiple images or transparency, because these will not display properly in all current browsers. It also
does not reconvert GIFs that already have corresponding PNGs (e.g. the same name except for the .gif
file extension). The original GIFs are left in place.

Web2png tracks successful conversions. It then looks at each HTML, secure HTML, HTML inclusion,
PHP page, JavaScript program or Cascading Style Sheet under the argument directories (extensions
html, shtml, each successful converted GIF to point at the PNG. References in relative HREF and
BACKGROUND tags are recognized by filename and fixed (any base directory declared by a BASE tag
will be be prepended to the relative URL). References that are HTTP URLs are matched against the
list of convertible GIFs by basename; if there is such a match, the contents of the URL is retrieved and
compared to the convertible GIF. If both basename and data match, the HTTP reference is fixed.

If the pages are under RCS version control, they’re checked out for modification before being altered;
otherwise, a copy of the original of each modified web page is left in the same directory, with the addi-
tional extension .bak.

The following options change the behavior of the program:

-a Convert all GIF files, including those with multiple images and/or transparency.

-d Delete originals. Removes all GIFs with corresponding PNGs, and all .bak files.

-n Make no changes. With this option, web2png reports on what needs to be done (and on GIFs
that use transparency or hav e multiple images), but neither converts GIFs nor touches web
pages.

-r Reverse. Restore all HTML/SHTML/PHP pages from the .bak files created by a previous run
(or, if the files were under version control, revert them). Remove PNGs with corresponding
GIFs.

-t Convert transparent GIFs (for use with IE 5.0+. Netscape 6.0+, and Mozilla).

-v Verbose. Utter more trace information about the conversion process.

Web2png can be run on a directory that has already been partly converted by previous runs; it
will do the minimum necessary amount of work. The changes it makes will be fully reversible
with -r until you run it in -d mode.

Web2png is written in Python. Python 1.5.2 or better must be installed and accessible on your
system in order for web2png to run.

NOTE
Sometimes it’s possible to convert transparent GIFs without altering the appearance of the page, by
knowing from context that they will always place within an area of fixed and solid color. Web2png
can’t deduce when this will be, so it doesn’t try; but it may be useful to apply gif2png with the -b
option by hand.

8 6 October 1999

WEB2PNG(1) WEB2PNG(1)

KNOWN PROBLEMS
The algorithm for fixing HTTP URLs is not foolproof. It could be confused into incorrectly patching an
HTTP URL reference to a GIF into an invalid reference to a PNG if the GIF matches a local target GIF
by both basename and binary content, but actually lives on another host.

This program does not automatically convert CGIs; you’ll have to do that by hand. Other dynamic-
content methods (such as server-side inclusions) may also require hand-hacking.

The program cannot tell converted from preexisting PNGs; if you have PNGs with the same stem name
as corresponding GIFs but carrying different information, the -r mode will clobber them.

SEE ALSO
gif2png(1)

AUTHORS
Eric S. Raymond <esr@thyrsus.com>, October 1999.

6 October 1999 9

LIBPNG(3) LIBPNG(3)

NAME
libpng − Portable Network Graphics (PNG) Reference Library 1.2.2

SYNOPSIS
#include <png.h>

png_uint_32 png_access_version_number (void);

int png_check_sig (png_bytep sig, int num);

void png_chunk_error (png_structp png_ptr, png_const_charp error);

void png_chunk_warning (png_structp png_ptr, png_const_charp message);

void png_convert_from_struct_tm (png_timep ptime, struct tm FAR * ttime);

void png_convert_from_time_t (png_timep ptime, time_t ttime);

png_charp png_convert_to_rfc1123 (png_structp png_ptr, png_timep ptime);

png_infop png_create_info_struct (png_structp png_ptr);

png_structp png_create_read_struct (png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn);

png_structp png_create_read_struct_2(png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr, png_malloc_ptr malloc_fn,
png_free_ptr free_fn);

png_structp png_create_write_struct (png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn);

png_structp png_create_write_struct_2(png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr, png_malloc_ptr malloc_fn,
png_free_ptr free_fn);

10 April 15, 2002

LIBPNG(3) LIBPNG(3)

int png_debug(int level, png_const_charp message);

int png_debug1(int level, png_const_charp message, p1);

int png_debug2(int level, png_const_charp message, p1, p2);

void png_destroy_info_struct (png_structp png_ptr, png_infopp info_ptr_ptr);

void png_destroy_read_struct (png_structpp png_ptr_ptr, png_infopp info_ptr_ptr, png_infopp
end_info_ptr_ptr);

void png_destroy_write_struct (png_structpp png_ptr_ptr, png_infopp info_ptr_ptr);

void png_error (png_structp png_ptr, png_const_charp error);

void png_free (png_structp png_ptr, png_voidp ptr);

void png_free_chunk_list (png_structp png_ptr);

void png_free_default(png_structp png_ptr, png_voidp ptr);

void png_free_data (png_structp png_ptr, png_infop info_ptr, int num);

png_uint_32 png_get_asm_flags (png_structp png_ptr);

png_byte png_get_bit_depth (png_structp png_ptr, png_infop info_ptr);

png_uint_32 png_get_bKGD (png_structp png_ptr, png_infop info_ptr, png_color_16p *back-
ground);

png_byte png_get_channels (png_structp png_ptr, png_infop info_ptr);

April 15, 2002 11

LIBPNG(3) LIBPNG(3)

png_uint_32 png_get_cHRM (png_structp png_ptr, png_infop info_ptr, double *white_x, double
*white_y, double *red_x, double *red_y, double *green_x, double *green_y, double *blue_x, double
*blue_y);

png_uint_32 png_get_cHRM_fixed (png_structp png_ptr, png_infop info_ptr, png_uint_32
*white_x, png_uint_32 *white_y, png_uint_32 *red_x, png_uint_32 *red_y, png_uint_32 *green_x,
png_uint_32 *green_y, png_uint_32 *blue_x, png_uint_32 *blue_y);

png_byte png_get_color_type (png_structp png_ptr, png_infop info_ptr);

png_byte png_get_compression_type (png_structp png_ptr, png_infop info_ptr);

png_byte png_get_copyright (png_structp png_ptr);

png_voidp png_get_error_ptr (png_structp png_ptr);

png_byte png_get_filter_type (png_structp png_ptr, png_infop info_ptr);

png_uint_32 png_get_gAMA (png_structp png_ptr, png_infop info_ptr, double *file_gamma);

png_uint_32 png_get_gAMA_fixed (png_structp png_ptr, png_infop info_ptr, png_uint_32
*int_file_gamma);

png_byte png_get_header_ver (png_structp png_ptr);

png_byte png_get_header_version (png_structp png_ptr);

png_uint_32 png_get_hIST (png_structp png_ptr, png_infop info_ptr, png_uint_16p *hist);

png_uint_32 png_get_iCCP (png_structp png_ptr, png_infop info_ptr, png_charpp name, int
*compression_type, png_charpp profile, png_uint_32 *proflen);

png_uint_32 png_get_IHDR (png_structp png_ptr, png_infop info_ptr, png_uint_32 *width,

12 April 15, 2002

LIBPNG(3) LIBPNG(3)

png_uint_32 *height, int *bit_depth, int *color_type, int *interlace_type, int *compression_type, int
*filter_type);

png_uint_32 png_get_image_height (png_structp png_ptr, png_infop info_ptr);

png_uint_32 png_get_image_width (png_structp png_ptr, png_infop info_ptr);

png_byte png_get_interlace_type (png_structp png_ptr, png_infop info_ptr);

png_voidp png_get_io_ptr (png_structp png_ptr);

png_byte png_get_libpng_ver (png_structp png_ptr);

png_voidp png_get_mem_ptr(png_structp png_ptr);

png_byte png_get_mmx_bitdepth_threshold (png_structp png_ptr);

png_uint_32 png_get_mmx_flagmask (int flag_select, int *compilerID);

png_uint_32 png_get_mmx_rowbytes_threshold (png_structp png_ptr);

png_uint_32 png_get_oFFs (png_structp png_ptr, png_infop info_ptr, png_uint_32 *offset_x,
png_uint_32 *offset_y, int *unit_type);

png_uint_32 png_get_pCAL (png_structp png_ptr, png_infop info_ptr, png_charp *purpose,
png_int_32 *X0, png_int_32 *X1, int *type, int *nparams, png_charp *units, png_charpp
*params);

png_uint_32 png_get_pHYs (png_structp png_ptr, png_infop info_ptr, png_uint_32 *res_x,
png_uint_32 *res_y, int *unit_type);

float png_get_pixel_aspect_ratio (png_structp png_ptr, png_infop info_ptr);

April 15, 2002 13

LIBPNG(3) LIBPNG(3)

png_uint_32 png_get_pixels_per_meter (png_structp png_ptr, png_infop info_ptr);

png_voidp png_get_progressive_ptr (png_structp png_ptr);

png_uint_32 png_get_PLTE (png_structp png_ptr, png_infop info_ptr, png_colorp *palette, int
*num_palette);

png_byte png_get_rgb_to_gray_status (png_structp png_ptr)

png_uint_32 png_get_rowbytes (png_structp png_ptr, png_infop info_ptr);

png_bytepp png_get_rows (png_structp png_ptr, png_infop info_ptr);

png_uint_32 png_get_sBIT (png_structp png_ptr, png_infop info_ptr, png_color_8p *sig_bit);

png_bytep png_get_signature (png_structp png_ptr, png_infop info_ptr);

png_uint_32 png_get_sPLT (png_structp png_ptr, png_infop info_ptr, png_spalette_p *splt_ptr);

png_uint_32 png_get_sRGB (png_structp png_ptr, png_infop info_ptr, int *intent);

png_uint_32 png_get_text (png_structp png_ptr, png_infop info_ptr, png_textp *text_ptr, int
*num_text);

png_uint_32 png_get_tIME (png_structp png_ptr, png_infop info_ptr, png_timep *mod_time);

png_uint_32 png_get_tRNS (png_structp png_ptr, png_infop info_ptr, png_bytep *trans, int
*num_trans, png_color_16p *trans_values);

png_uint_32 png_get_unknown_chunks (png_structp png_ptr, png_infop info_ptr,
png_unknown_chunkpp unknowns);

png_voidp png_get_user_chunk_ptr (png_structp png_ptr);

14 April 15, 2002

LIBPNG(3) LIBPNG(3)

png_voidp png_get_user_transform_ptr (png_structp png_ptr);

png_uint_32 png_get_valid (png_structp png_ptr, png_infop info_ptr, png_uint_32 flag);

png_int_32 png_get_x_offset_microns (png_structp png_ptr, png_infop info_ptr);

png_int_32 png_get_x_offset_pixels (png_structp png_ptr, png_infop info_ptr);

png_uint_32 png_get_x_pixels_per_meter (png_structp png_ptr, png_infop info_ptr);

png_int_32 png_get_y_offset_microns (png_structp png_ptr, png_infop info_ptr);

png_int_32 png_get_y_offset_pixels (png_structp png_ptr, png_infop info_ptr);

png_uint_32 png_get_y_pixels_per_meter (png_structp png_ptr, png_infop info_ptr);

png_uint_32 png_get_compression_buffer_size (png_structp png_ptr);

int png_handle_as_unknown (png_structp png_ptr, png_bytep chunk_name);

void png_init_io (png_structp png_ptr, FILE *fp);

DEPRECATED: void png_info_init (png_infop info_ptr);

DEPRECATED: void png_info_init_2 (png_infopp ptr_ptr, png_size_t png_info_struct_size);

png_voidp png_malloc (png_structp png_ptr, png_uint_32 size);

png_voidp png_malloc_default(png_structp png_ptr, png_uint_32 size);

April 15, 2002 15

LIBPNG(3) LIBPNG(3)

voidp png_memcpy (png_voidp s1, png_voidp s2, png_size_t size);

png_voidp png_memcpy_check (png_structp png_ptr, png_voidp s1, png_voidp s2, png_uint_32
size);

voidp png_memset (png_voidp s1, int value, png_size_t size);

png_voidp png_memset_check (png_structp png_ptr, png_voidp s1, int value, png_uint_32 size);

int png_mmx_support (void);

DEPRECATED: void png_permit_empty_plte (png_structp png_ptr, int empty_plte_permitted);

void png_process_data (png_structp png_ptr, png_infop info_ptr, png_bytep buffer, png_size_t
buffer_size);

void png_progressive_combine_row (png_structp png_ptr, png_bytep old_row, png_bytep
new_row);

void png_read_destroy (png_structp png_ptr, png_infop info_ptr, png_infop end_info_ptr);

void png_read_end (png_structp png_ptr, png_infop info_ptr);

void png_read_image (png_structp png_ptr, png_bytepp image);

DEPRECATED: void png_read_init (png_structp png_ptr);

DEPRECATED: void png_read_init_2 (png_structpp ptr_ptr, png_const_charp user_png_ver,
png_size_t png_struct_size, png_size_t png_info_size);

void png_read_info (png_structp png_ptr, png_infop info_ptr);

16 April 15, 2002

LIBPNG(3) LIBPNG(3)

void png_read_png (png_structp png_ptr, png_infop info_ptr, int transforms, png_voidp params);

void png_read_row (png_structp png_ptr, png_bytep row, png_bytep display_row);

void png_read_rows (png_structp png_ptr, png_bytepp row, png_bytepp display_row,
png_uint_32 num_rows);

void png_read_update_info (png_structp png_ptr, png_infop info_ptr);

png_set_asm_flags (png_structp png_ptr, png_uint_32 asm_flags);

void png_set_background (png_structp png_ptr, png_color_16p background_color, int back-
ground_gamma_code, int need_expand, double background_gamma);

void png_set_bgr (png_structp png_ptr);

void png_set_bKGD (png_structp png_ptr, png_infop info_ptr, png_color_16p background);

void png_set_cHRM (png_structp png_ptr, png_infop info_ptr, double white_x, double white_y,
double red_x, double red_y, double green_x, double green_y, double blue_x, double blue_y);

void png_set_cHRM_fixed (png_structp png_ptr, png_infop info_ptr, png_uint_32 white_x,
png_uint_32 white_y, png_uint_32 red_x, png_uint_32 red_y, png_uint_32 green_x, png_uint_32
green_y, png_uint_32 blue_x, png_uint_32 blue_y);

void png_set_compression_level (png_structp png_ptr, int level);

void png_set_compression_mem_level (png_structp png_ptr, int mem_level);

void png_set_compression_method (png_structp png_ptr, int method);

void png_set_compression_strategy (png_structp png_ptr, int strategy);

April 15, 2002 17

LIBPNG(3) LIBPNG(3)

void png_set_compression_window_bits (png_structp png_ptr, int window_bits);

void png_set_crc_action (png_structp png_ptr, int crit_action, int ancil_action);

void png_set_dither (png_structp png_ptr, png_colorp palette, int num_palette, int maximum_col-
ors, png_uint_16p histogram, int full_dither);

void png_set_error_fn (png_structp png_ptr, png_voidp error_ptr, png_error_ptr error_fn,
png_error_ptr warning_fn);

void png_set_expand (png_structp png_ptr);

void png_set_filler (png_structp png_ptr, png_uint_32 filler, int flags);

void png_set_filter (png_structp png_ptr, int method, int filters);

void png_set_filter_heuristics (png_structp png_ptr, int heuristic_method, int num_weights,
png_doublep filter_weights, png_doublep filter_costs);

void png_set_flush (png_structp png_ptr, int nrows);

void png_set_gamma (png_structp png_ptr, double screen_gamma, double default_file_gamma);

void png_set_gAMA (png_structp png_ptr, png_infop info_ptr, double file_gamma);

void png_set_gAMA_fixed (png_structp png_ptr, png_infop info_ptr, png_uint_32 file_gamma);

void png_set_gray_1_2_4_to_8(png_structp png_ptr);

void png_set_gray_to_rgb (png_structp png_ptr);

18 April 15, 2002

LIBPNG(3) LIBPNG(3)

void png_set_hIST (png_structp png_ptr, png_infop info_ptr, png_uint_16p hist);

void png_set_iCCP (png_structp png_ptr, png_infop info_ptr, png_charp name, int compres-
sion_type, png_charp profile, png_uint_32 proflen);

int png_set_interlace_handling (png_structp png_ptr);

void png_set_invalid (png_structp png_ptr, png_infop info_ptr, int mask);

void png_set_invert_alpha (png_structp png_ptr);

void png_set_invert_mono (png_structp png_ptr);

void png_set_IHDR (png_structp png_ptr, png_infop info_ptr, png_uint_32 width, png_uint_32
height, int bit_depth, int color_type, int interlace_type, int compression_type, int filter_type);

void png_set_keep_unknown_chunks (png_structp png_ptr, int keep, png_bytep chunk_list, int
num_chunks);

void png_set_mem_fn(png_structp png_ptr, png_voidp mem_ptr, png_malloc_ptr malloc_fn,
png_free_ptr free_fn);

png_set_mmx_thresholds (png_structp png_ptr, png_byte mmx_bitdepth_threshold, png_uint_32
mmx_rowbytes_threshold);

void png_set_oFFs (png_structp png_ptr, png_infop info_ptr, png_uint_32 offset_x, png_uint_32
offset_y, int unit_type);

void png_set_packing (png_structp png_ptr);

void png_set_packswap (png_structp png_ptr);

void png_set_palette_to_rgb(png_structp png_ptr);

April 15, 2002 19

LIBPNG(3) LIBPNG(3)

void png_set_pCAL (png_structp png_ptr, png_infop info_ptr, png_charp purpose, png_int_32 X0,
png_int_32 X1, int type, int nparams, png_charp units, png_charpp params);

void png_set_pHYs (png_structp png_ptr, png_infop info_ptr, png_uint_32 res_x, png_uint_32
res_y, int unit_type);

void png_set_progressive_read_fn (png_structp png_ptr, png_voidp progressive_ptr, png_progres-
sive_info_ptr info_fn, png_progressive_row_ptr row_fn, png_progressive_end_ptr end_fn);

void png_set_PLTE (png_structp png_ptr, png_infop info_ptr, png_colorp palette, int
num_palette);

void png_set_read_fn (png_structp png_ptr, png_voidp io_ptr, png_rw_ptr read_data_fn);

void png_set_read_status_fn (png_structp png_ptr, png_read_status_ptr read_row_fn);

void png_set_read_user_transform_fn (png_structp png_ptr, png_user_transform_ptr
read_user_transform_fn);

void png_set_rgb_to_gray (png_structp png_ptr, int error_action, double red, double green);

void png_set_rgb_to_gray_fixed (png_structp png_ptr, int error_action png_fixed_point red,
png_fixed_point green);

void png_set_rows (png_structp png_ptr, png_infop info_ptr, png_bytepp row_pointers);

void png_set_sBIT (png_structp png_ptr, png_infop info_ptr, png_color_8p sig_bit);

void png_set_sCAL (png_structp png_ptr, png_infop info_ptr, png_charp unit, double width, dou-
ble height);

void png_set_shift (png_structp png_ptr, png_color_8p true_bits);

20 April 15, 2002

LIBPNG(3) LIBPNG(3)

void png_set_sig_bytes (png_structp png_ptr, int num_bytes);

void png_set_sPLT (png_structp png_ptr, png_infop info_ptr, png_spalette_p splt_ptr, int
num_spalettes);

void png_set_sRGB (png_structp png_ptr, png_infop info_ptr, int intent);

void png_set_sRGB_gAMA_and_cHRM (png_structp png_ptr, png_infop info_ptr, int intent);

void png_set_strip_16 (png_structp png_ptr);

void png_set_strip_alpha (png_structp png_ptr);

void png_set_strip_error_numbers (png_structp png_ptr,

png_uint_32 strip_mode);

void png_set_swap (png_structp png_ptr);

void png_set_swap_alpha (png_structp png_ptr);

void png_set_text (png_structp png_ptr, png_infop info_ptr, png_textp text_ptr, int num_text);

void png_set_tIME (png_structp png_ptr, png_infop info_ptr, png_timep mod_time);

void png_set_tRNS (png_structp png_ptr, png_infop info_ptr, png_bytep trans, int num_trans,
png_color_16p trans_values);

void png_set_tRNS_to_alpha(png_structp png_ptr);

png_uint_32 png_set_unknown_chunks (png_structp png_ptr, png_infop info_ptr,
png_unknown_chunkp unknowns, int num, int location);

April 15, 2002 21

LIBPNG(3) LIBPNG(3)

void png_set_unknown_chunk_location(png_structp png_ptr, png_infop info_ptr, int chunk, int
location);

void png_set_read_user_chunk_fn (png_structp png_ptr, png_voidp user_chunk_ptr,
png_user_chunk_ptr read_user_chunk_fn);

void png_set_user_transform_info (png_structp png_ptr, png_voidp user_transform_ptr, int
user_transform_depth, int user_transform_channels);

void png_set_write_fn (png_structp png_ptr, png_voidp io_ptr, png_rw_ptr write_data_fn,
png_flush_ptr output_flush_fn);

void png_set_write_status_fn (png_structp png_ptr, png_write_status_ptr write_row_fn);

void png_set_write_user_transform_fn (png_structp png_ptr, png_user_transform_ptr
write_user_transform_fn);

void png_set_compression_buffer_size(png_structp png_ptr, png_uint_32 size);

int png_sig_cmp (png_bytep sig, png_size_t start, png_size_t num_to_check);

void png_start_read_image (png_structp png_ptr);

void png_warning (png_structp png_ptr, png_const_charp message);

void png_write_chunk (png_structp png_ptr, png_bytep chunk_name, png_bytep data, png_size_t
length);

void png_write_chunk_data (png_structp png_ptr, png_bytep data, png_size_t length);

void png_write_chunk_end (png_structp png_ptr);

void png_write_chunk_start (png_structp png_ptr, png_bytep chunk_name, png_uint_32 length);

22 April 15, 2002

LIBPNG(3) LIBPNG(3)

void png_write_destroy (png_structp png_ptr);

void png_write_end (png_structp png_ptr, png_infop info_ptr);

void png_write_flush (png_structp png_ptr);

void png_write_image (png_structp png_ptr, png_bytepp image);

DEPRECATED: void png_write_init (png_structp png_ptr);

DEPRECATED: void png_write_init_2 (png_structpp ptr_ptr, png_const_charp user_png_ver,
png_size_t png_struct_size, png_size_t png_info_size);

void png_write_info (png_structp png_ptr, png_infop info_ptr);

void png_write_info_before_PLTE (png_structp png_ptr, png_infop info_ptr);

void png_write_png (png_structp png_ptr, png_infop info_ptr, int transforms, png_voidp params);

void png_write_row (png_structp png_ptr, png_bytep row);

void png_write_rows (png_structp png_ptr, png_bytepp row, png_uint_32 num_rows);

voidpf png_zalloc (voidpf png_ptr, uInt items, uInt size);

void png_zfree (voidpf png_ptr, voidpf ptr);

DESCRIPTION
The libpng library supports encoding, decoding, and various manipulations of the Portable Network
Graphics (PNG) format image files. It uses the zlib(3) compression library. Following is a copy of the
libpng.txt file that accompanies libpng.

April 15, 2002 23

LIBPNG(3) LIBPNG(3)

LIBPNG.TXT
libpng.txt - A description on how to use and modify libpng

libpng version 1.2.2 - April 15, 2002
Updated and distributed by Glenn Randers-Pehrson
<randeg@alum.rpi.edu>
Copyright (c) 1998-2002 Glenn Randers-Pehrson
For conditions of distribution and use, see copyright
notice in png.h.

based on:

libpng 1.0 beta 6 version 0.96 May 28, 1997
Updated and distributed by Andreas Dilger
Copyright (c) 1996, 1997 Andreas Dilger

libpng 1.0 beta 2 - version 0.88 January 26, 1996
For conditions of distribution and use, see copyright
notice in png.h. Copyright (c) 1995, 1996 Guy Eric
Schalnat, Group 42, Inc.

Updated/rewritten per request in the libpng FAQ
Copyright (c) 1995, 1996 Frank J. T. Wojcik
December 18, 1995 & January 20, 1996

I. Introduction
This file describes how to use and modify the PNG reference library (known as libpng) for your own
use. There are five sections to this file: introduction, structures, reading, writing, and modification and
configuration notes for various special platforms. In addition to this file, example.c is a good starting
point for using the library, as it is heavily commented and should include everything most people will
need. We assume that libpng is already installed; see the INSTALL file for instructions on how to
install libpng.

Libpng was written as a companion to the PNG specification, as a way of reducing the amount of time
and effort it takes to support the PNG file format in application programs.

The PNG-1.2 specification is available at <http://www.libpng.org/pub/png> and at
<ftp://ftp.uu.net/graphics/png/documents/>.

The PNG-1.0 specification is available as RFC 2083 <ftp://ftp.uu.net/graphics/png/documents/> and as
a W3C Recommendation <http://www.w3.org/TR/REC.png.html>. Some additional chunks are
described in the special-purpose public chunks documents at <ftp://ftp.uu.net/graphics/png/docu-
ments/>.

Other information about PNG, and the latest version of libpng, can be found at the PNG home page,
<http://www.libpng.org/pub/png/> and at <ftp://ftp.uu.net/graphics/png/>.

Most users will not have to modify the library significantly; advanced users may want to modify it
more. All attempts were made to make it as complete as possible, while keeping the code easy to
understand. Currently, this library only supports C. Support for other languages is being considered.

Libpng has been designed to handle multiple sessions at one time, to be easily modifiable, to be
portable to the vast majority of machines (ANSI, K&R, 16-, 32-, and 64-bit) available, and to be easy
to use. The ultimate goal of libpng is to promote the acceptance of the PNG file format in whatever
way possible. While there is still work to be done (see the TODO file), libpng should cover the major-
ity of the needs of its users.

Libpng uses zlib for its compression and decompression of PNG files. Further information about zlib,

24 April 15, 2002

LIBPNG(3) LIBPNG(3)

and the latest version of zlib, can be found at the zlib home page, <http://www.info-
zip.org/pub/infozip/zlib/>. The zlib compression utility is a general purpose utility that is useful for
more than PNG files, and can be used without libpng. See the documentation delivered with zlib for
more details. You can usually find the source files for the zlib utility wherever you find the libpng
source files.

Libpng is thread safe, provided the threads are using different instances of the structures. Each thread
should have its own png_struct and png_info instances, and thus its own image. Libpng does not pro-
tect itself against two threads using the same instance of a structure. Note: thread safety may be
defeated by use of some of the MMX assembler code in pnggccrd.c, which is only compiled when the
user defines PNG_THREAD_UNSAFE_OK.

II. Structures
There are two main structures that are important to libpng, png_struct and png_info. The first,
png_struct, is an internal structure that will not, for the most part, be used by a user except as the first
variable passed to every libpng function call.

The png_info structure is designed to provide information about the PNG file. At one time, the fields
of png_info were intended to be directly accessible to the user. Howev er, this tended to cause problems
with applications using dynamically loaded libraries, and as a result a set of interface functions for
png_info (the png_get_*() and png_set_*() functions) was developed. The fields of png_info are still
available for older applications, but it is suggested that applications use the new interfaces if at all pos-
sible.

Applications that do make direct access to the members of png_struct (except for png_ptr->jmpbuf)
must be recompiled whenever the library is updated, and applications that make direct access to the
members of png_info must be recompiled if they were compiled or loaded with libpng version 1.0.6, in
which the members were in a different order. In version 1.0.7, the members of the png_info structure
reverted to the old order, as they were in versions 0.97c through 1.0.5. Starting with version 2.0.0, both
structures are going to be hidden, and the contents of the structures will only be accessible through the
png_get/png_set functions.

The png.h header file is an invaluable reference for programming with libpng. And while I’m on the
topic, make sure you include the libpng header file:

#include <png.h>

III. Reading
We’ll now walk you through the possible functions to call when reading in a PNG file sequentially,
briefly explaining the syntax and purpose of each one. See example.c and png.h for more detail. While
progressive reading is covered in the next section, you will still need some of the functions discussed in
this section to read a PNG file.

Setup
You will want to do the I/O initialization(*) before you get into libpng, so if it doesn’t work, you don’t
have much to undo. Of course, you will also want to insure that you are, in fact, dealing with a PNG
file. Libpng provides a simple check to see if a file is a PNG file. To use it, pass in the first 1 to 8 bytes
of the file to the function png_sig_cmp(), and it will return 0 if the bytes match the corresponding bytes
of the PNG signature, or nonzero otherwise. Of course, the more bytes you pass in, the greater the
accuracy of the prediction.

If you are intending to keep the file pointer open for use in libpng, you must ensure you don’t read
more than 8 bytes from the beginning of the file, and you also have to make a call to
png_set_sig_bytes_read() with the number of bytes you read from the beginning. Libpng will then
only check the bytes (if any) that your program didn’t read.

April 15, 2002 25

LIBPNG(3) LIBPNG(3)

(*): If you are not using the standard I/O functions, you will need to replace them with custom func-
tions. See the discussion under Customizing libpng.

FILE *fp = fopen(file_name, "rb");
if (!fp)
{

return (ERROR);
}
fread(header, 1, number, fp);
is_png = !png_sig_cmp(header, 0, number);
if (!is_png)
{

return (NOT_PNG);
}

Next, png_struct and png_info need to be allocated and initialized. In order to ensure that the size of
these structures is correct even with a dynamically linked libpng, there are functions to initialize and
allocate the structures. We also pass the library version, optional pointers to error handling functions,
and a pointer to a data struct for use by the error functions, if necessary (the pointer and functions can
be NULL if the default error handlers are to be used). See the section on Changes to Libpng below
regarding the old initialization functions. The structure allocation functions quietly return NULL if
they fail to create the structure, so your application should check for that.

png_structp png_ptr = png_create_read_struct
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn);

if (!png_ptr)
return (ERROR);

png_infop info_ptr = png_create_info_struct(png_ptr);
if (!info_ptr)
{

png_destroy_read_struct(&png_ptr,
(png_infopp)NULL, (png_infopp)NULL);

return (ERROR);
}

png_infop end_info = png_create_info_struct(png_ptr);
if (!end_info)
{

png_destroy_read_struct(&png_ptr, &info_ptr,
(png_infopp)NULL);

return (ERROR);
}

If you want to use your own memory allocation routines, define PNG_USER_MEM_SUPPORTED and
use png_create_read_struct_2() instead of png_create_read_struct():

png_structp png_ptr = png_create_read_struct_2
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn, (png_voidp)
user_mem_ptr, user_malloc_fn, user_free_fn);

The error handling routines passed to png_create_read_struct() and the memory alloc/free routines
passed to png_create_struct_2() are only necessary if you are not using the libpng supplied error han-
dling and memory alloc/free functions.

26 April 15, 2002

LIBPNG(3) LIBPNG(3)

When libpng encounters an error, it expects to longjmp back to your routine. Therefore, you will need
to call setjmp and pass your png_jmpbuf(png_ptr). If you read the file from different routines, you will
need to update the jmpbuf field every time you enter a new routine that will call a png_*() function.

See your documentation of setjmp/longjmp for your compiler for more information on setjmp/longjmp.
See the discussion on libpng error handling in the Customizing Libpng section below for more infor-
mation on the libpng error handling. If an error occurs, and libpng longjmp’s back to your setjmp, you
will want to call png_destroy_read_struct() to free any memory.

if (setjmp(png_jmpbuf(png_ptr)))
{

png_destroy_read_struct(&png_ptr, &info_ptr,
&end_info);

fclose(fp);
return (ERROR);

}

If you would rather avoid the complexity of setjmp/longjmp issues, you can compile libpng with
PNG_SETJMP_NOT_SUPPORTED, in which case errors will result in a call to PNG_ABORT() which
defaults to abort().

Now you need to set up the input code. The default for libpng is to use the C function fread(). If you
use this, you will need to pass a valid FILE * in the function png_init_io(). Be sure that the file is
opened in binary mode. If you wish to handle reading data in another way, you need not call the
png_init_io() function, but you must then implement the libpng I/O methods discussed in the Cus-
tomizing Libpng section below.

png_init_io(png_ptr, fp);

If you had previously opened the file and read any of the signature from the beginning in order to see if
this was a PNG file, you need to let libpng know that there are some bytes missing from the start of the
file.

png_set_sig_bytes(png_ptr, number);

Setting up callback code
You can set up a callback function to handle any unknown chunks in the input stream. You must supply
the function

read_chunk_callback(png_ptr ptr,
png_unknown_chunkp chunk);

{
/* The unknown chunk structure contains your

chunk data: */
png_byte name[5];
png_byte *data;
png_size_t size;

/* Note that libpng has already taken care of
the CRC handling */

/* put your code here. Return one of the
following: */

return (-n); /* chunk had an error */
return (0); /* did not recognize */
return (n); /* success */

}

April 15, 2002 27

LIBPNG(3) LIBPNG(3)

(You can give your function another name that you like instead of "read_chunk_callback")

To inform libpng about your function, use

png_set_read_user_chunk_fn(png_ptr, user_chunk_ptr,
read_chunk_callback);

This names not only the callback function, but also a user pointer that you can retrieve with

png_get_user_chunk_ptr(png_ptr);

At this point, you can set up a callback function that will be called after each row has been read, which
you can use to control a progress meter or the like. It’s demonstrated in pngtest.c. You must supply a
function

void read_row_callback(png_ptr ptr, png_uint_32 row,
int pass);

{
/* put your code here */

}

(You can give it another name that you like instead of "read_row_callback")

To inform libpng about your function, use

png_set_read_status_fn(png_ptr, read_row_callback);

Unknown-chunk handling
Now you get to set the way the library processes unknown chunks in the input PNG stream. Both
known and unknown chunks will be read. Normal behavior is that known chunks will be parsed into
information in various info_ptr members; unknown chunks will be discarded. To change this, you can
call:

png_set_keep_unknown_chunks(png_ptr, info_ptr, keep,
chunk_list, num_chunks);

keep - 0: do not keep
1: keep only if safe-to-copy
2: keep even if unsafe-to-copy

chunk_list - list of chunks affected (a byte string,
five bytes per chunk, NULL or ’ ’ if
num_chunks is 0)

num_chunks - number of chunks affected; if 0, all
unknown chunks are affected

Unknown chunks declared in this way will be saved as raw data onto a list of png_unknown_chunk
structures. If a chunk that is normally known to libpng is named in the list, it will be handled as
unknown, according to the "keep" directive. If a chunk is named in successive instances of
png_set_keep_unknown_chunks(), the final instance will take precedence.

The high-level read interface
At this point there are two ways to proceed; through the high-level read interface, or through a
sequence of low-level read operations. You can use the high-level interface if (a) you are willing to
read the entire image into memory, and (b) the input transformations you want to do are limited to the
following set:

PNG_TRANSFORM_IDENTITY No transformation
PNG_TRANSFORM_STRIP_16 Strip 16-bit samples to

8 bits

28 April 15, 2002

LIBPNG(3) LIBPNG(3)

PNG_TRANSFORM_STRIP_ALPHA Discard the alpha channel
PNG_TRANSFORM_PACKING Expand 1, 2 and 4-bit

samples to bytes
PNG_TRANSFORM_PACKSWAP Change order of packed

pixels to LSB first
PNG_TRANSFORM_EXPAND Perform set_expand()
PNG_TRANSFORM_INVERT_MONO Invert monochrome images
PNG_TRANSFORM_SHIFT Normalize pixels to the

sBIT depth
PNG_TRANSFORM_BGR Flip RGB to BGR, RGBA

to BGRA
PNG_TRANSFORM_SWAP_ALPHA Flip RGBA to ARGB or GA

to AG
PNG_TRANSFORM_INVERT_ALPHA Change alpha from opacity

to transparency
PNG_TRANSFORM_SWAP_ENDIAN Byte-swap 16-bit samples

(This excludes setting a background color, doing gamma transformation, dithering, and setting filler.)
If this is the case, simply do this:

png_read_png(png_ptr, info_ptr, png_transforms, NULL)

where png_transforms is an integer containing the logical OR of some set of transformation flags. This
call is equivalent to png_read_info(), followed the set of transformations indicated by the transform
mask, then png_read_image(), and finally png_read_end().

(The final parameter of this call is not yet used. Someday it might point to transformation parameters
required by some future input transform.)

After you have called png_read_png(), you can retrieve the image data with

row_pointers = png_get_rows(png_ptr, info_ptr);

where row_pointers is an array of pointers to the pixel data for each row:

png_bytep row_pointers[height];

If you know your image size and pixel size ahead of time, you can allocate row_pointers prior to call-
ing png_read_png() with

row_pointers = png_malloc(png_ptr,
height*sizeof(png_bytep));

for (int i=0; i<height, i++)
row_pointers[i]=png_malloc(png_ptr,

width*pixel_size);
png_set_rows(png_ptr, info_ptr, &row_pointers);

Alternatively you could allocate your image in one big block and define row_pointers[i] to point into
the proper places in your block.

If you use png_set_rows(), the application is responsible for freeing row_pointers (and row_pointers[i],
if they were separately allocated).

If you don’t allocate row_pointers ahead of time, png_read_png() will do it, and it’ll be free’ed when
you call png_destroy_*().

April 15, 2002 29

LIBPNG(3) LIBPNG(3)

The low-level read interface
If you are going the low-level route, you are now ready to read all the file information up to the actual
image data. You do this with a call to png_read_info().

png_read_info(png_ptr, info_ptr);

This will process all chunks up to but not including the image data.

Querying the info structure
Functions are used to get the information from the info_ptr once it has been read. Note that these fields
may not be completely filled in until png_read_end() has read the chunk data following the image.

png_get_IHDR(png_ptr, info_ptr, &width, &height,
&bit_depth, &color_type, &interlace_type,
&compression_type, &filter_method);

width - holds the width of the image
in pixels (up to 2ˆ31).

height - holds the height of the image
in pixels (up to 2ˆ31).

bit_depth - holds the bit depth of one of the
image channels. (valid values are
1, 2, 4, 8, 16 and depend also on
the color_type. See also
significant bits (sBIT) below).

color_type - describes which color/alpha channels
are present.

PNG_COLOR_TYPE_GRAY
(bit depths 1, 2, 4, 8, 16)

PNG_COLOR_TYPE_GRAY_ALPHA
(bit depths 8, 16)

PNG_COLOR_TYPE_PALETTE
(bit depths 1, 2, 4, 8)

PNG_COLOR_TYPE_RGB
(bit_depths 8, 16)

PNG_COLOR_TYPE_RGB_ALPHA
(bit_depths 8, 16)

PNG_COLOR_MASK_PALETTE
PNG_COLOR_MASK_COLOR
PNG_COLOR_MASK_ALPHA

filter_method - (must be PNG_FILTER_TYPE_BASE
for PNG 1.0, and can also be
PNG_INTRAPIXEL_DIFFERENCING if
the PNG datastream is embedded in
a MNG-1.0 datastream)

compression_type - (must be PNG_COMPRESSION_TYPE_BASE
for PNG 1.0)

interlace_type - (PNG_INTERLACE_NONE or
PNG_INTERLACE_ADAM7)

Any or all of interlace_type, compression_type, of
filter_method can be NULL if you are
not interested in their values.

channels = png_get_channels(png_ptr, info_ptr);
channels - number of channels of info for the

color type (valid values are 1 (GRAY,

30 April 15, 2002

LIBPNG(3) LIBPNG(3)

PALETTE), 2 (GRAY_ALPHA), 3 (RGB),
4 (RGB_ALPHA or RGB + filler byte))

rowbytes = png_get_rowbytes(png_ptr, info_ptr);
rowbytes - number of bytes needed to hold a row

signature = png_get_signature(png_ptr, info_ptr);
signature - holds the signature read from the

file (if any). The data is kept in
the same offset it would be if the
whole signature were read (i.e. if an
application had already read in 4
bytes of signature before starting
libpng, the remaining 4 bytes would
be in signature[4] through signature[7]
(see png_set_sig_bytes())).

width = png_get_image_width(png_ptr,
info_ptr);

height = png_get_image_height(png_ptr,
info_ptr);

bit_depth = png_get_bit_depth(png_ptr,
info_ptr);

color_type = png_get_color_type(png_ptr,
info_ptr);

filter_method = png_get_filter_type(png_ptr,
info_ptr);

compression_type = png_get_compression_type(png_ptr,
info_ptr);

interlace_type = png_get_interlace_type(png_ptr,
info_ptr);

These are also important, but their validity depends on whether the chunk has been read. The
png_get_valid(png_ptr, info_ptr, PNG_INFO_<chunk>) and png_get_<chunk>(png_ptr, info_ptr, ...)
functions return non-zero if the data has been read, or zero if it is missing. The parameters to the
png_get_<chunk> are set directly if they are simple data types, or a pointer into the info_ptr is returned
for any complex types.

png_get_PLTE(png_ptr, info_ptr, &palette,
&num_palette);

palette - the palette for the file
(array of png_color)

num_palette - number of entries in the palette

png_get_gAMA(png_ptr, info_ptr, &gamma);
gamma - the gamma the file is written

at (PNG_INFO_gAMA)

png_get_sRGB(png_ptr, info_ptr, &srgb_intent);
srgb_intent - the rendering intent (PNG_INFO_sRGB)

The presence of the sRGB chunk
means that the pixel data is in the
sRGB color space. This chunk also
implies specific values of gAMA and
cHRM.

png_get_iCCP(png_ptr, info_ptr, &name,
&compression_type, &profile, &proflen);

April 15, 2002 31

LIBPNG(3) LIBPNG(3)

name - The profile name.
compression - The compression type; always

PNG_COMPRESSION_TYPE_BASE for PNG 1.0.
You may give NULL to this argument to
ignore it.

profile - International Color Consortium color
profile data. May contain NULs.

proflen - length of profile data in bytes.

png_get_sBIT(png_ptr, info_ptr, &sig_bit);
sig_bit - the number of significant bits for

(PNG_INFO_sBIT) each of the gray,
red, green, and blue channels,
whichever are appropriate for the
given color type (png_color_16)

png_get_tRNS(png_ptr, info_ptr, &trans, &num_trans,
&trans_values);

trans - array of transparent entries for
palette (PNG_INFO_tRNS)

trans_values - graylevel or color sample values of
the single transparent color for
non-paletted images (PNG_INFO_tRNS)

num_trans - number of transparent entries
(PNG_INFO_tRNS)

png_get_hIST(png_ptr, info_ptr, &hist);
(PNG_INFO_hIST)

hist - histogram of palette (array of
png_uint_16)

png_get_tIME(png_ptr, info_ptr, &mod_time);
mod_time - time image was last modified

(PNG_VALID_tIME)

png_get_bKGD(png_ptr, info_ptr, &background);
background - background color (PNG_VALID_bKGD)

valid 16-bit red, green and blue
values, regardless of color_type

num_comments = png_get_text(png_ptr, info_ptr,
&text_ptr, &num_text);

num_comments - number of comments
text_ptr - array of png_text holding image

comments
text_ptr[i].compression - type of compression used

on "text" PNG_TEXT_COMPRESSION_NONE
PNG_TEXT_COMPRESSION_zTXt
PNG_ITXT_COMPRESSION_NONE
PNG_ITXT_COMPRESSION_zTXt

text_ptr[i].key - keyword for comment. Must contain
1-79 characters.

text_ptr[i].text - text comments for current
keyword. Can be empty.

text_ptr[i].text_length - length of text string,
after decompression, 0 for iTXt

text_ptr[i].itxt_length - length of itxt string,
after decompression, 0 for tEXt/zTXt

text_ptr[i].lang - language of comment (empty

32 April 15, 2002

LIBPNG(3) LIBPNG(3)

string for unknown).
text_ptr[i].lang_key - keyword in UTF-8

(empty string for unknown).
num_text - number of comments (same as

num_comments; you can put NULL here
to avoid the duplication)

Note while png_set_text() will accept text, language,
and translated keywords that can be NULL pointers, the
structure returned by png_get_text will always contain
regular zero-terminated C strings. They might be
empty strings but they will never be NULL pointers.

num_spalettes = png_get_sPLT(png_ptr, info_ptr,
&palette_ptr);

palette_ptr - array of palette structures holding
contents of one or more sPLT chunks
read.

num_spalettes - number of sPLT chunks read.

png_get_oFFs(png_ptr, info_ptr, &offset_x, &offset_y,
&unit_type);

offset_x - positive offset from the left edge
of the screen

offset_y - positive offset from the top edge
of the screen

unit_type - PNG_OFFSET_PIXEL, PNG_OFFSET_MICROMETER

png_get_pHYs(png_ptr, info_ptr, &res_x, &res_y,
&unit_type);

res_x - pixels/unit physical resolution in
x direction

res_y - pixels/unit physical resolution in
x direction

unit_type - PNG_RESOLUTION_UNKNOWN,
PNG_RESOLUTION_METER

png_get_sCAL(png_ptr, info_ptr, &unit, &width,
&height)

unit - physical scale units (an integer)
width - width of a pixel in physical scale units
height - height of a pixel in physical scale units

(width and height are doubles)

png_get_sCAL_s(png_ptr, info_ptr, &unit, &width,
&height)

unit - physical scale units (an integer)
width - width of a pixel in physical scale units
height - height of a pixel in physical scale units

(width and height are strings like "2.54")

num_unknown_chunks = png_get_unknown_chunks(png_ptr,
info_ptr, &unknowns)

unknowns - array of png_unknown_chunk
structures holding unknown chunks

unknowns[i].name - name of unknown chunk
unknowns[i].data - data of unknown chunk
unknowns[i].size - size of unknown chunk’s data
unknowns[i].location - position of chunk in file

April 15, 2002 33

LIBPNG(3) LIBPNG(3)

The value of "i" corresponds to the order in which the
chunks were read from the PNG file or inserted with the
png_set_unknown_chunks() function.

The data from the pHYs chunk can be retrieved in sev eral convenient forms:

res_x = png_get_x_pixels_per_meter(png_ptr,
info_ptr)

res_y = png_get_y_pixels_per_meter(png_ptr,
info_ptr)

res_x_and_y = png_get_pixels_per_meter(png_ptr,
info_ptr)

res_x = png_get_x_pixels_per_inch(png_ptr,
info_ptr)

res_y = png_get_y_pixels_per_inch(png_ptr,
info_ptr)

res_x_and_y = png_get_pixels_per_inch(png_ptr,
info_ptr)

aspect_ratio = png_get_pixel_aspect_ratio(png_ptr,
info_ptr)

(Each of these returns 0 [signifying "unknown"] if
the data is not present or if res_x is 0;
res_x_and_y is 0 if res_x != res_y)

The data from the oFFs chunk can be retrieved in sev eral convenient forms:

x_offset = png_get_x_offset_microns(png_ptr, info_ptr);
y_offset = png_get_y_offset_microns(png_ptr, info_ptr);
x_offset = png_get_x_offset_inches(png_ptr, info_ptr);
y_offset = png_get_y_offset_inches(png_ptr, info_ptr);

(Each of these returns 0 [signifying "unknown" if both
x and y are 0] if the data is not present or if the
chunk is present but the unit is the pixel)

For more information, see the png_info definition in png.h and the PNG specification for chunk con-
tents. Be careful with trusting rowbytes, as some of the transformations could increase the space
needed to hold a row (expand, filler, gray_to_rgb, etc.). See png_read_update_info(), below.

A quick word about text_ptr and num_text. PNG stores comments in keyword/text pairs, one pair per
chunk, with no limit on the number of text chunks, and a 2ˆ31 byte limit on their size. While there are
suggested keywords, there is no requirement to restrict the use to these strings. It is strongly suggested
that keywords and text be sensible to humans (that’s the point), so don’t use abbreviations. Non-print-
ing symbols are not allowed. See the PNG specification for more details. There is also no requirement
to have text after the keyword.

Ke ywords should be limited to 79 Latin-1 characters without leading or trailing spaces, but non-consec-
utive spaces are allowed within the keyword. It is possible to have the same keyword any number of
times. The text_ptr is an array of png_text structures, each holding a pointer to a language string, a
pointer to a keyword and a pointer to a text string. The text string, language code, and translated
keyword may be empty or NULL pointers. The keyword/text pairs are put into the array in the order
that they are received. However, some or all of the text chunks may be after the image, so, to make
sure you have read all the text chunks, don’t mess with these until after you read the stuff after the
image. This will be mentioned again below in the discussion that goes with png_read_end().

34 April 15, 2002

LIBPNG(3) LIBPNG(3)

Input transformations
After you’ve read the header information, you can set up the library to handle any special transforma-
tions of the image data. The various ways to transform the data will be described in the order that they
should occur. This is important, as some of these change the color type and/or bit depth of the data,
and some others only work on certain color types and bit depths. Even though each transformation
checks to see if it has data that it can do something with, you should make sure to only enable a trans-
formation if it will be valid for the data. For example, don’t swap red and blue on grayscale data.

The colors used for the background and transparency values should be supplied in the same for-
mat/depth as the current image data. They are stored in the same format/depth as the image data in a
bKGD or tRNS chunk, so this is what libpng expects for this data. The colors are transformed to keep
in sync with the image data when an application calls the png_read_update_info() routine (see below).

Data will be decoded into the supplied row buffers packed into bytes unless the library has been told to
transform it into another format. For example, 4 bit/pixel paletted or grayscale data will be returned 2
pixels/byte with the leftmost pixel in the high-order bits of the byte, unless png_set_packing() is called.
8-bit RGB data will be stored in RGB RGB RGB format unless png_set_filler() is called to insert filler
bytes, either before or after each RGB triplet. 16-bit RGB data will be returned RRGGBB RRGGBB,
with the most significant byte of the color value first, unless png_set_strip_16() is called to transform it
to regular RGB RGB triplets, or png_set_filler() is called to insert filler bytes, either before or after
each RRGGBB triplet. Similarly, 8-bit or 16-bit grayscale data can be modified with png_set_filler() or
png_set_strip_16().

The following code transforms grayscale images of less than 8 to 8 bits, changes paletted images to
RGB, and adds a full alpha channel if there is transparency information in a tRNS chunk. This is most
useful on grayscale images with bit depths of 2 or 4 or if there is a multiple-image viewing application
that wishes to treat all images in the same way.

if (color_type == PNG_COLOR_TYPE_PALETTE)
png_set_palette_to_rgb(png_ptr);

if (color_type == PNG_COLOR_TYPE_GRAY &&
bit_depth < 8) png_set_gray_1_2_4_to_8(png_ptr);

if (png_get_valid(png_ptr, info_ptr,
PNG_INFO_tRNS)) png_set_tRNS_to_alpha(png_ptr);

These three functions are actually aliases for png_set_expand(), added in libpng version 1.0.4, with the
function names expanded to improve code readability. In some future version they may actually do dif-
ferent things.

PNG can have files with 16 bits per channel. If you only can handle 8 bits per channel, this will strip
the pixels down to 8 bit.

if (bit_depth == 16)
png_set_strip_16(png_ptr);

If, for some reason, you don’t need the alpha channel on an image, and you want to remove it rather
than combining it with the background (but the image author certainly had in mind that you *would*
combine it with the background, so that’s what you should probably do):

if (color_type & PNG_COLOR_MASK_ALPHA)
png_set_strip_alpha(png_ptr);

In PNG files, the alpha channel in an image is the level of opacity. If you need the alpha channel in an
image to be the level of transparency instead of opacity, you can invert the alpha channel (or the tRNS
chunk data) after it’s read, so that 0 is fully opaque and 255 (in 8-bit or paletted images) or 65535 (in
16-bit images) is fully transparent, with

April 15, 2002 35

LIBPNG(3) LIBPNG(3)

png_set_invert_alpha(png_ptr);

PNG files pack pixels of bit depths 1, 2, and 4 into bytes as small as they can, resulting in, for example,
8 pixels per byte for 1 bit files. This code expands to 1 pixel per byte without changing the values of
the pixels:

if (bit_depth < 8)
png_set_packing(png_ptr);

PNG files have possible bit depths of 1, 2, 4, 8, and 16. All pixels stored in a PNG image have been
"scaled" or "shifted" up to the next higher possible bit depth (e.g. from 5 bits/sample in the range [0,31]
to 8 bits/sample in the range [0, 255]). However, it is also possible to convert the PNG pixel data back
to the original bit depth of the image. This call reduces the pixels back down to the original bit depth:

png_color_8p sig_bit;

if (png_get_sBIT(png_ptr, info_ptr, &sig_bit))
png_set_shift(png_ptr, sig_bit);

PNG files store 3-color pixels in red, green, blue order. This code changes the storage of the pixels to
blue, green, red:

if (color_type == PNG_COLOR_TYPE_RGB ||
color_type == PNG_COLOR_TYPE_RGB_ALPHA)
png_set_bgr(png_ptr);

PNG files store RGB pixels packed into 3 or 6 bytes. This code expands them into 4 or 8 bytes for win-
dowing systems that need them in this format:

if (color_type == PNG_COLOR_TYPE_RGB)
png_set_filler(png_ptr, filler, PNG_FILLER_BEFORE);

where "filler" is the 8 or 16-bit number to fill with, and the location is either PNG_FILLER_BEFORE
or PNG_FILLER_AFTER, depending upon whether you want the filler before the RGB or after. This
transformation does not affect images that already have full alpha channels. To add an opaque alpha
channel, use filler=0xff or 0xffff and PNG_FILLER_AFTER which will generate RGBA pixels.

If you are reading an image with an alpha channel, and you need the data as ARGB instead of the nor-
mal PNG format RGBA:

if (color_type == PNG_COLOR_TYPE_RGB_ALPHA)
png_set_swap_alpha(png_ptr);

For some uses, you may want a grayscale image to be represented as RGB. This code will do that con-
version:

if (color_type == PNG_COLOR_TYPE_GRAY ||
color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
png_set_gray_to_rgb(png_ptr);

Conversely, you can convert an RGB or RGBA image to grayscale or grayscale with alpha.

if (color_type == PNG_COLOR_TYPE_RGB ||
color_type == PNG_COLOR_TYPE_RGB_ALPHA)
png_set_rgb_to_gray_fixed(png_ptr, error_action,

int red_weight, int green_weight);

error_action = 1: silently do the conversion
error_action = 2: issue a warning if the original

36 April 15, 2002

LIBPNG(3) LIBPNG(3)

image has any pixel where
red != green or red != blue

error_action = 3: issue an error and abort the
conversion if the original
image has any pixel where
red != green or red != blue

red_weight: weight of red component times 100000
green_weight: weight of green component times 100000

If either weight is negative, default
weights (21268, 71514) are used.

If you have set error_action = 1 or 2, you can later check whether the image really was gray, after pro-
cessing the image rows, with the png_get_rgb_to_gray_status(png_ptr) function. It will return a
png_byte that is zero if the image was gray or 1 if there were any non-gray pixels. bKGD and sBIT
data will be silently converted to grayscale, using the green channel data, regardless of the error_action
setting.

With red_weight+green_weight<=100000, the normalized graylevel is computed:

int rw = red_weight * 65536;
int gw = green_weight * 65536;
int bw = 65536 - (rw + gw);
gray = (rw*red + gw*green + bw*blue)/65536;

The default values approximate those recommended in the Charles Poynton’s Color FAQ,
<http://www.inforamp.net/˜poynton/> Copyright (c) 1998-01-04 Charles Poynton poyn-
ton@inforamp.net

Y = 0.212671 * R + 0.715160 * G + 0.072169 * B

Libpng approximates this with

Y = 0.21268 * R + 0.7151 * G + 0.07217 * B

which can be expressed with integers as

Y = (6969 * R + 23434 * G + 2365 * B)/32768

The calculation is done in a linear colorspace, if the image gamma is known.

If you have a grayscale and you are using png_set_expand_depth(), png_set_expand(), or
png_set_gray_to_rgb to change to truecolor or to a higher bit-depth, you must either supply the back-
ground color as a gray value at the original file bit-depth (need_expand = 1) or else supply the back-
ground color as an RGB triplet at the final, expanded bit depth (need_expand = 0). Similarly, if you are
reading a paletted image, you must either supply the background color as a palette index (need_expand
= 1) or as an RGB triplet that may or may not be in the palette (need_expand = 0).

png_color_16 my_background;
png_color_16p image_background;

if (png_get_bKGD(png_ptr, info_ptr, &image_background))
png_set_background(png_ptr, image_background,
PNG_BACKGROUND_GAMMA_FILE, 1, 1.0);

else
png_set_background(png_ptr, &my_background,
PNG_BACKGROUND_GAMMA_SCREEN, 0, 1.0);

The png_set_background() function tells libpng to composite images with alpha or simple transparency

April 15, 2002 37

LIBPNG(3) LIBPNG(3)

against the supplied background color. If the PNG file contains a bKGD chunk (PNG_INFO_bKGD
valid), you may use this color, or supply another color more suitable for the current display (e.g., the
background color from a web page). You need to tell libpng whether the color is in the gamma space
of the display (PNG_BACKGROUND_GAMMA_SCREEN for colors you supply), the file
(PNG_BACKGROUND_GAMMA_FILE for colors from the bKGD chunk), or one that is neither of
these gammas (PNG_BACKGROUND_GAMMA_UNIQUE - I don’t know why anyone would use
this, but it’s here).

To properly display PNG images on any kind of system, the application needs to know what the display
gamma is. Ideally, the user will know this, and the application will allow them to set it. One method of
allowing the user to set the display gamma separately for each system is to check for a
SCREEN_GAMMA or DISPLAY_GAMMA environment variable, which will hopefully be correctly
set.

Note that display_gamma is the overall gamma correction required to produce pleasing results, which
depends on the lighting conditions in the surrounding environment. In a dim or brightly lit room, no
compensation other than the physical gamma exponent of the monitor is needed, while in a dark room a
slightly smaller exponent is better.

double gamma, screen_gamma;

if (/* We hav e a user-defined screen
gamma value */)

{
screen_gamma = user_defined_screen_gamma;

}
/* One way that applications can share the same

screen gamma value */
else if ((gamma_str = getenv("SCREEN_GAMMA"))

!= NULL)
{

screen_gamma = (double)atof(gamma_str);
}
/* If we don’t hav e another value */
else
{

screen_gamma = 2.2; /* A good guess for a
PC monitor in a bright office or a dim room */

screen_gamma = 2.0; /* A good guess for a
PC monitor in a dark room */

screen_gamma = 1.7 or 1.0; /* A good
guess for Mac systems */

}

The png_set_gamma() function handles gamma transformations of the data. Pass both the file gamma
and the current screen_gamma. If the file does not have a gamma value, you can pass one anyway if
you have an idea what it is (usually 0.45455 is a good guess for GIF images on PCs). Note that file
gammas are inverted from screen gammas. See the discussions on gamma in the PNG specification for
an excellent description of what gamma is, and why all applications should support it. It is strongly
recommended that PNG viewers support gamma correction.

if (png_get_gAMA(png_ptr, info_ptr, &gamma))
png_set_gamma(png_ptr, screen_gamma, gamma);

else
png_set_gamma(png_ptr, screen_gamma, 0.45455);

If you need to reduce an RGB file to a paletted file, or if a paletted file has more entries then will fit on
your screen, png_set_dither() will do that. Note that this is a simple match dither that merely finds the
closest color available. This should work fairly well with optimized palettes, and fairly badly with

38 April 15, 2002

LIBPNG(3) LIBPNG(3)

linear color cubes. If you pass a palette that is larger then maximum_colors, the file will reduce the
number of colors in the palette so it will fit into maximum_colors. If there is a histogram, it will use it
to make more intelligent choices when reducing the palette. If there is no histogram, it may not do as
good a job.

if (color_type & PNG_COLOR_MASK_COLOR)
{

if (png_get_valid(png_ptr, info_ptr,
PNG_INFO_PLTE))

{
png_uint_16p histogram;

png_get_hIST(png_ptr, info_ptr,
&histogram);

png_set_dither(png_ptr, palette, num_palette,
max_screen_colors, histogram, 1);

}
else
{

png_color std_color_cube[MAX_SCREEN_COLORS] =
{ ... colors ... };

png_set_dither(png_ptr, std_color_cube,
MAX_SCREEN_COLORS, MAX_SCREEN_COLORS,
NULL,0);

}
}

PNG files describe monochrome as black being zero and white being one. The following code will
reverse this (make black be one and white be zero):

if (bit_depth == 1 && color_type == PNG_COLOR_TYPE_GRAY)
png_set_invert_mono(png_ptr);

This function can also be used to invert grayscale and gray-alpha images:

if (color_type == PNG_COLOR_TYPE_GRAY ||
color_type == PNG_COLOR_TYPE_GRAY_ALPHA)

png_set_invert_mono(png_ptr);

PNG files store 16 bit pixels in network byte order (big-endian, ie. most significant bits first). This
code changes the storage to the other way (little-endian, i.e. least significant bits first, the way PCs store
them):

if (bit_depth == 16)
png_set_swap(png_ptr);

If you are using packed-pixel images (1, 2, or 4 bits/pixel), and you need to change the order the pixels
are packed into bytes, you can use:

if (bit_depth < 8)
png_set_packswap(png_ptr);

Finally, you can write your own transformation function if none of the existing ones meets your needs.
This is done by setting a callback with

png_set_read_user_transform_fn(png_ptr,
read_transform_fn);

April 15, 2002 39

LIBPNG(3) LIBPNG(3)

You must supply the function

void read_transform_fn(png_ptr ptr, row_info_ptr
row_info, png_bytep data)

See pngtest.c for a working example. Your function will be called after all of the other transformations
have been processed.

You can also set up a pointer to a user structure for use by your callback function, and you can inform
libpng that your transform function will change the number of channels or bit depth with the function

png_set_user_transform_info(png_ptr, user_ptr,
user_depth, user_channels);

The user’s application, not libpng, is responsible for allocating and freeing any memory required for the
user structure.

You can retrieve the pointer via the function png_get_user_transform_ptr(). For example:

voidp read_user_transform_ptr =
png_get_user_transform_ptr(png_ptr);

The last thing to handle is interlacing; this is covered in detail below, but you must call the function
here if you want libpng to handle expansion of the interlaced image.

number_of_passes = png_set_interlace_handling(png_ptr);

After setting the transformations, libpng can update your png_info structure to reflect any transforma-
tions you’ve requested with this call. This is most useful to update the info structure’s rowbytes field so
you can use it to allocate your image memory. This function will also update your palette with the cor-
rect screen_gamma and background if these have been given with the calls above.

png_read_update_info(png_ptr, info_ptr);

After you call png_read_update_info(), you can allocate any memory you need to hold the image. The
row data is simply raw byte data for all forms of images. As the actual allocation varies among appli-
cations, no example will be given. If you are allocating one large chunk, you will need to build an
array of pointers to each row, as it will be needed for some of the functions below.

Reading image data
After you’ve allocated memory, you can read the image data. The simplest way to do this is in one
function call. If you are allocating enough memory to hold the whole image, you can just call
png_read_image() and libpng will read in all the image data and put it in the memory area supplied.
You will need to pass in an array of pointers to each row.

This function automatically handles interlacing, so you don’t need to call png_set_interlace_handling()
or call this function multiple times, or any of that other stuff necessary with png_read_rows().

png_read_image(png_ptr, row_pointers);

where row_pointers is:

png_bytep row_pointers[height];

You can point to void or char or whatever you use for pixels.

If you don’t want to read in the whole image at once, you can use png_read_rows() instead. If there is
no interlacing (check interlace_type == PNG_INTERLACE_NONE), this is simple:

40 April 15, 2002

LIBPNG(3) LIBPNG(3)

png_read_rows(png_ptr, row_pointers, NULL,
number_of_rows);

where row_pointers is the same as in the png_read_image() call.

If you are doing this just one row at a time, you can do this with a single row_pointer instead of an
array of row_pointers:

png_bytep row_pointer = row;
png_read_row(png_ptr, row_pointer, NULL);

If the file is interlaced (interlace_type != 0 in the IHDR chunk), things get somewhat harder. The only
current (PNG Specification version 1.2) interlacing type for PNG is (interlace_type == PNG_INTER-
LACE_ADAM7) is a somewhat complicated 2D interlace scheme, known as Adam7, that breaks down
an image into seven smaller images of varying size, based on an 8x8 grid.

libpng can fill out those images or it can give them to you "as is". If you want them filled out, there are
two ways to do that. The one mentioned in the PNG specification is to expand each pixel to cover
those pixels that have not been read yet (the "rectangle" method). This results in a blocky image for the
first pass, which gradually smooths out as more pixels are read. The other method is the "sparkle"
method, where pixels are drawn only in their final locations, with the rest of the image remaining what-
ev er colors they were initialized to before the start of the read. The first method usually looks better,
but tends to be slower, as there are more pixels to put in the rows.

If you don’t want libpng to handle the interlacing details, just call png_read_rows() seven times to read
in all seven images. Each of the images is a valid image by itself, or they can all be combined on an
8x8 grid to form a single image (although if you intend to combine them you would be far better off
using the libpng interlace handling).

The first pass will return an image 1/8 as wide as the entire image (every 8th column starting in column
0) and 1/8 as high as the original (every 8th row starting in row 0), the second will be 1/8 as wide (start-
ing in column 4) and 1/8 as high (also starting in row 0). The third pass will be 1/4 as wide (every 4th
pixel starting in column 0) and 1/8 as high (every 8th row starting in row 4), and the fourth pass will be
1/4 as wide and 1/4 as high (every 4th column starting in column 2, and every 4th row starting in row
0). The fifth pass will return an image 1/2 as wide, and 1/4 as high (starting at column 0 and row 2),
while the sixth pass will be 1/2 as wide and 1/2 as high as the original (starting in column 1 and row 0).
The seventh and final pass will be as wide as the original, and 1/2 as high, containing all of the odd
numbered scanlines. Phew!

If you want libpng to expand the images, call this before calling png_start_read_image() or
png_read_update_info():

if (interlace_type == PNG_INTERLACE_ADAM7)
number_of_passes

= png_set_interlace_handling(png_ptr);

This will return the number of passes needed. Currently, this is seven, but may change if another inter-
lace type is added. This function can be called even if the file is not interlaced, where it will return one
pass.

If you are not going to display the image after each pass, but are going to wait until the entire image is
read in, use the sparkle effect. This effect is faster and the end result of either method is exactly the
same. If you are planning on displaying the image after each pass, the "rectangle" effect is generally
considered the better looking one.

If you only want the "sparkle" effect, just call png_read_rows() as normal, with the third parameter
NULL. Make sure you make pass over the image number_of_passes times, and you don’t change the
data in the rows between calls. You can change the locations of the data, just not the data. Each pass
only writes the pixels appropriate for that pass, and assumes the data from previous passes is still valid.

April 15, 2002 41

LIBPNG(3) LIBPNG(3)

png_read_rows(png_ptr, row_pointers, NULL,
number_of_rows);

If you only want the first effect (the rectangles), do the same as before except pass the row buffer in the
third parameter, and leave the second parameter NULL.

png_read_rows(png_ptr, NULL, row_pointers,
number_of_rows);

Finishing a sequential read
After you are finished reading the image through either the high- or low-level interfaces, you can finish
reading the file. If you are interested in comments or time, which may be stored either before or after
the image data, you should pass the separate png_info struct if you want to keep the comments from
before and after the image separate. If you are not interested, you can pass NULL.

png_read_end(png_ptr, end_info);

When you are done, you can free all memory allocated by libpng like this:

png_destroy_read_struct(&png_ptr, &info_ptr,
&end_info);

It is also possible to individually free the info_ptr members that point to libpng-allocated storage with
the following function:

png_free_data(png_ptr, info_ptr, mask, seq)
mask - identifies data to be freed, a mask

containing the logical OR of one or
more of
PNG_FREE_PLTE, PNG_FREE_TRNS,
PNG_FREE_HIST, PNG_FREE_ICCP,
PNG_FREE_PCAL, PNG_FREE_ROWS,
PNG_FREE_SCAL, PNG_FREE_SPLT,
PNG_FREE_TEXT, PNG_FREE_UNKN,

or simply PNG_FREE_ALL
seq - sequence number of item to be freed

(-1 for all items)

This function may be safely called when the relevant storage has already been freed, or has not yet been
allocated, or was allocated by the user and not by libpng, and will in those cases do nothing. The "seq"
parameter is ignored if only one item of the selected data type, such as PLTE, is allowed. If "seq" is not
-1, and multiple items are allowed for the data type identified in the mask, such as text or sPLT, only
the n’th item in the structure is freed, where n is "seq".

The default behavior is only to free data that was allocated internally by libpng. This can be changed,
so that libpng will not free the data, or so that it will free data that was allocated by the user with
png_malloc() or png_zalloc() and passed in via a png_set_*() function, with

png_data_freer(png_ptr, info_ptr, freer, mask)
mask - which data elements are affected

same choices as in png_free_data()
freer - one of

PNG_DESTROY_WILL_FREE_DAT A
PNG_SET_WILL_FREE_DAT A
PNG_USER_WILL_FREE_DAT A

This function only affects data that has already been allocated. You can call this function after reading
the PNG data but before calling any png_set_*() functions, to control whether the user or the

42 April 15, 2002

LIBPNG(3) LIBPNG(3)

png_set_*() function is responsible for freeing any existing data that might be present, and again after
the png_set_*() functions to control whether the user or png_destroy_*() is supposed to free the data.
When the user assumes responsibility for libpng-allocated data, the application must use png_free() to
free it, and when the user transfers responsibility to libpng for data that the user has allocated, the user
must have used png_malloc() or png_zalloc() to allocate it.

If you allocated your row_pointers in a single block, as suggested above in the description of the high
level read interface, you must not transfer responsibility for freeing it to the png_set_rows or
png_read_destroy function, because they would also try to free the individual row_pointers[i].

If you allocated text_ptr.text, text_ptr.lang, and text_ptr.translated_keyword separately, do not transfer
responsibility for freeing text_ptr to libpng, because when libpng fills a png_text structure it combines
these members with the key member, and png_free_data() will free only text_ptr.key. Similarly, if you
transfer responsibility for free’ing text_ptr from libpng to your application, your application must not
separately free those members.

The png_free_data() function will turn off the "valid" flag for anything it frees. If you need to turn the
flag off for a chunk that was freed by your application instead of by libpng, you can use

png_set_invalid(png_ptr, info_ptr, mask);
mask - identifies the chunks to be made invalid,

containing the logical OR of one or
more of
PNG_INFO_gAMA, PNG_INFO_sBIT,
PNG_INFO_cHRM, PNG_INFO_PLTE,
PNG_INFO_tRNS, PNG_INFO_bKGD,
PNG_INFO_hIST, PNG_INFO_pHYs,
PNG_INFO_oFFs, PNG_INFO_tIME,
PNG_INFO_pCAL, PNG_INFO_sRGB,
PNG_INFO_iCCP, PNG_INFO_sPLT,
PNG_INFO_sCAL, PNG_INFO_IDAT

For a more compact example of reading a PNG image, see the file example.c.

Reading PNG files progressively
The progressive reader is slightly different then the non-progressive reader. Instead of calling
png_read_info(), png_read_rows(), and png_read_end(), you make one call to png_process_data(),
which calls callbacks when it has the info, a row, or the end of the image. You set up these callbacks
with png_set_progressive_read_fn(). You don’t hav e to worry about the input/output functions of
libpng, as you are giving the library the data directly in png_process_data(). I will assume that you
have read the section on reading PNG files above, so I will only highlight the differences (although I
will show all of the code).

png_structp png_ptr; png_infop info_ptr;

/* An example code fragment of how you would
initialize the progressive reader in your
application. */

int
initialize_png_reader()
{

png_ptr = png_create_read_struct
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn);

if (!png_ptr)
return (ERROR);

info_ptr = png_create_info_struct(png_ptr);
if (!info_ptr)

April 15, 2002 43

LIBPNG(3) LIBPNG(3)

{
png_destroy_read_struct(&png_ptr, (png_infopp)NULL,

(png_infopp)NULL);
return (ERROR);

}

if (setjmp(png_jmpbuf(png_ptr)))
{

png_destroy_read_struct(&png_ptr, &info_ptr,
(png_infopp)NULL);

return (ERROR);
}

/* This one’s new. You can provide functions
to be called when the header info is valid,
when each row is completed, and when the image
is finished. If you aren’t using all functions,
you can specify NULL parameters. Even when all
three functions are NULL, you need to call
png_set_progressive_read_fn(). You can use
any struct as the user_ptr (cast to a void pointer
for the function call), and retrieve the pointer
from inside the callbacks using the function

png_get_progressive_ptr(png_ptr);

which will return a void pointer, which you have
to cast appropriately.

*/
png_set_progressive_read_fn(png_ptr, (void *)user_ptr,

info_callback, row_callback, end_callback);

return 0;
}

/* A code fragment that you call as you receive blocks
of data */

int
process_data(png_bytep buffer, png_uint_32 length)
{

if (setjmp(png_jmpbuf(png_ptr)))
{

png_destroy_read_struct(&png_ptr, &info_ptr,
(png_infopp)NULL);

return (ERROR);
}

/* This one’s new also. Simply give it a chunk
of data from the file stream (in order, of
course). On machines with segmented memory
models machines, don’t giv e it any more than
64K. The library seems to run fine with sizes
of 4K. Although you can give it much less if
necessary (I assume you can give it chunks of
1 byte, I haven’t tried less then 256 bytes
yet). When this function returns, you may
want to display any rows that were generated
in the row callback if you don’t already do
so there.

44 April 15, 2002

LIBPNG(3) LIBPNG(3)

*/
png_process_data(png_ptr, info_ptr, buffer, length);
return 0;

}

/* This function is called (as set by
png_set_progressive_read_fn() above) when enough data
has been supplied so all of the header has been
read.

*/
void
info_callback(png_structp png_ptr, png_infop info)
{

/* Do any setup here, including setting any of
the transformations mentioned in the Reading
PNG files section. For now, you _must_ call
either png_start_read_image() or
png_read_update_info() after all the
transformations are set (even if you don’t set
any). You may start getting rows before
png_process_data() returns, so this is your
last chance to prepare for that.

*/
}

/* This function is called when each row of image
data is complete */

void
row_callback(png_structp png_ptr, png_bytep new_row,

png_uint_32 row_num, int pass)
{

/* If the image is interlaced, and you turned
on the interlace handler, this function will
be called for every row in every pass. Some
of these rows will not be changed from the
previous pass. When the row is not changed,
the new_row variable will be NULL. The rows
and passes are called in order, so you don’t
really need the row_num and pass, but I’m
supplying them because it may make your life
easier.

For the non-NULL rows of interlaced images,
you must call png_progressive_combine_row()
passing in the row and the old row. You can
call this function for NULL rows (it will just
return) and for non-interlaced images (it just
does the memcpy for you) if it will make the
code easier. Thus, you can just do this for
all cases:

*/

png_progressive_combine_row(png_ptr, old_row,
new_row);

/* where old_row is what was displayed for
previously for the row. Note that the first
pass (pass == 0, really) will completely cover
the old row, so the rows do not have to be

April 15, 2002 45

LIBPNG(3) LIBPNG(3)

initialized. After the first pass (and only
for interlaced images), you will have to pass
the current row, and the function will combine
the old row and the new row.

*/
}

void
end_callback(png_structp png_ptr, png_infop info)
{

/* This function is called after the whole image
has been read, including any chunks after the
image (up to and including the IEND). You
will usually have the same info chunk as you
had in the header, although some data may have
been added to the comments and time fields.

Most people won’t do much here, perhaps setting
a flag that marks the image as finished.

*/
}

IV. Writing
Much of this is very similar to reading. However, everything of importance is repeated here, so you
won’t hav e to constantly look back up in the reading section to understand writing.

Setup
You will want to do the I/O initialization before you get into libpng, so if it doesn’t work, you don’t
have anything to undo. If you are not using the standard I/O functions, you will need to replace them
with custom writing functions. See the discussion under Customizing libpng.

FILE *fp = fopen(file_name, "wb");
if (!fp)
{

return (ERROR);
}

Next, png_struct and png_info need to be allocated and initialized. As these can be both relatively
large, you may not want to store these on the stack, unless you have stack space to spare. Of course,
you will want to check if they return NULL. If you are also reading, you won’t want to name your read
structure and your write structure both "png_ptr"; you can call them anything you like, such as
"read_ptr" and "write_ptr". Look at pngtest.c, for example.

png_structp png_ptr = png_create_write_struct
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn);

if (!png_ptr)
return (ERROR);

png_infop info_ptr = png_create_info_struct(png_ptr);
if (!info_ptr)
{

png_destroy_write_struct(&png_ptr,
(png_infopp)NULL);

return (ERROR);
}

46 April 15, 2002

LIBPNG(3) LIBPNG(3)

If you want to use your own memory allocation routines, define PNG_USER_MEM_SUPPORTED and
use png_create_write_struct_2() instead of png_create_write_struct():

png_structp png_ptr = png_create_write_struct_2
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn, (png_voidp)
user_mem_ptr, user_malloc_fn, user_free_fn);

After you have these structures, you will need to set up the error handling. When libpng encounters an
error, it expects to longjmp() back to your routine. Therefore, you will need to call setjmp() and pass
the png_jmpbuf(png_ptr). If you write the file from different routines, you will need to update the
png_jmpbuf(png_ptr) every time you enter a new routine that will call a png_*() function. See your
documentation of setjmp/longjmp for your compiler for more information on setjmp/longjmp. See the
discussion on libpng error handling in the Customizing Libpng section below for more information on
the libpng error handling.

if (setjmp(png_jmpbuf(png_ptr)))
{

png_destroy_write_struct(&png_ptr, &info_ptr);
fclose(fp);
return (ERROR);

}
...
return;

If you would rather avoid the complexity of setjmp/longjmp issues, you can compile libpng with
PNG_SETJMP_NOT_SUPPORTED, in which case errors will result in a call to PNG_ABORT() which
defaults to abort().

Now you need to set up the output code. The default for libpng is to use the C function fwrite(). If you
use this, you will need to pass a valid FILE * in the function png_init_io(). Be sure that the file is
opened in binary mode. Again, if you wish to handle writing data in another way, see the discussion on
libpng I/O handling in the Customizing Libpng section below.

png_init_io(png_ptr, fp);

Write callbacks
At this point, you can set up a callback function that will be called after each row has been written,
which you can use to control a progress meter or the like. It’s demonstrated in pngtest.c. You must
supply a function

void write_row_callback(png_ptr, png_uint_32 row,
int pass);

{
/* put your code here */

}

(You can give it another name that you like instead of "write_row_callback")

To inform libpng about your function, use

png_set_write_status_fn(png_ptr, write_row_callback);

You now hav e the option of modifying how the compression library will run. The following functions
are mainly for testing, but may be useful in some cases, like if you need to write PNG files extremely
fast and are willing to give up some compression, or if you want to get the maximum possible compres-
sion at the expense of slower writing. If you have no special needs in this area, let the library do what
it wants by not calling this function at all, as it has been tuned to deliver a good speed/compression

April 15, 2002 47

LIBPNG(3) LIBPNG(3)

ratio. The second parameter to png_set_filter() is the filter method, for which the only valid values are 0
(as of the July 1999 PNG specification, version 1.2) or 64 (if you are writing a PNG datastream that is
to be embedded in a MNG datastream). The third parameter is a flag that indicates which filter type(s)
are to be tested for each scanline. See the PNG specification for details on the specific filter types.

/* turn on or off filtering, and/or choose
specific filters. You can use either a single
PNG_FILTER_VALUE_NAME or the logical OR of one
or more PNG_FILTER_NAME masks. */

png_set_filter(png_ptr, 0,
PNG_FILTER_NONE | PNG_FILTER_VALUE_NONE |
PNG_FILTER_SUB | PNG_FILTER_VALUE_SUB |
PNG_FILTER_UP | PNG_FILTER_VALUE_UP |
PNG_FILTER_AVE | PNG_FILTER_VALUE_AVE |
PNG_FILTER_PAETH | PNG_FILTER_VALUE_PAETH|
PNG_ALL_FILTERS);

If an application wants to start and stop using particular filters during compression, it should start out
with all of the filters (to ensure that the previous row of pixels will be stored in case it’s needed later),
and then add and remove them after the start of compression.

If you are writing a PNG datastream that is to be embedded in a MNG datastream, the second parame-
ter can be either 0 or 64.

The png_set_compression_*() functions interface to the zlib compression library, and should mostly be
ignored unless you really know what you are doing. The only generally useful call is png_set_com-
pression_level() which changes how much time zlib spends on trying to compress the image data. See
the Compression Library (zlib.h and algorithm.txt, distributed with zlib) for details on the compression
levels.

/* set the zlib compression level */
png_set_compression_level(png_ptr,

Z_BEST_COMPRESSION);

/* set other zlib parameters */
png_set_compression_mem_level(png_ptr, 8);
png_set_compression_strategy(png_ptr,

Z_DEFAULT_STRATEGY);
png_set_compression_window_bits(png_ptr, 15);
png_set_compression_method(png_ptr, 8);
png_set_compression_buffer_size(png_ptr, 8192)

extern PNG_EXPORT(void,png_set_zbuf_size)

Setting the contents of info for output
You now need to fill in the png_info structure with all the data you wish to write before the actual
image. Note that the only thing you are allowed to write after the image is the text chunks and the time
chunk (as of PNG Specification 1.2, anyway). See png_write_end() and the latest PNG specification
for more information on that. If you wish to write them before the image, fill them in now, and flag that
data as being valid. If you want to wait until after the data, don’t fill them until png_write_end(). For
all the fields in png_info and their data types, see png.h. For explanations of what the fields contain,
see the PNG specification.

Some of the more important parts of the png_info are:

png_set_IHDR(png_ptr, info_ptr, width, height,
bit_depth, color_type, interlace_type,

48 April 15, 2002

LIBPNG(3) LIBPNG(3)

compression_type, filter_method)
width - holds the width of the image

in pixels (up to 2ˆ31).
height - holds the height of the image

in pixels (up to 2ˆ31).
bit_depth - holds the bit depth of one of the

image channels.
(valid values are 1, 2, 4, 8, 16
and depend also on the
color_type. See also significant
bits (sBIT) below).

color_type - describes which color/alpha
channels are present.
PNG_COLOR_TYPE_GRAY

(bit depths 1, 2, 4, 8, 16)
PNG_COLOR_TYPE_GRAY_ALPHA

(bit depths 8, 16)
PNG_COLOR_TYPE_PALETTE

(bit depths 1, 2, 4, 8)
PNG_COLOR_TYPE_RGB

(bit_depths 8, 16)
PNG_COLOR_TYPE_RGB_ALPHA

(bit_depths 8, 16)

PNG_COLOR_MASK_PALETTE
PNG_COLOR_MASK_COLOR
PNG_COLOR_MASK_ALPHA

interlace_type - PNG_INTERLACE_NONE or
PNG_INTERLACE_ADAM7

compression_type - (must be
PNG_COMPRESSION_TYPE_DEFAULT)

filter_method - (must be PNG_FILTER_TYPE_DEFAULT
or, if you are writing a PNG to
be embedded in a MNG datastream,
can also be
PNG_INTRAPIXEL_DIFFERENCING)

png_set_PLTE(png_ptr, info_ptr, palette,
num_palette);

palette - the palette for the file
(array of png_color)

num_palette - number of entries in the palette

png_set_gAMA(png_ptr, info_ptr, gamma);
gamma - the gamma the image was created

at (PNG_INFO_gAMA)

png_set_sRGB(png_ptr, info_ptr, srgb_intent);
srgb_intent - the rendering intent

(PNG_INFO_sRGB) The presence of
the sRGB chunk means that the pixel
data is in the sRGB color space.
This chunk also implies specific
values of gAMA and cHRM. Rendering
intent is the CSS-1 property that
has been defined by the International
Color Consortium
(http://www.color.org).

April 15, 2002 49

LIBPNG(3) LIBPNG(3)

It can be one of
PNG_sRGB_INTENT_SATURATION,
PNG_sRGB_INTENT_PERCEPTUAL,
PNG_sRGB_INTENT_ABSOLUTE, or
PNG_sRGB_INTENT_RELATIVE.

png_set_sRGB_gAMA_and_cHRM(png_ptr, info_ptr,
srgb_intent);

srgb_intent - the rendering intent
(PNG_INFO_sRGB) The presence of the
sRGB chunk means that the pixel
data is in the sRGB color space.
This function also causes gAMA and
cHRM chunks with the specific values
that are consistent with sRGB to be
written.

png_set_iCCP(png_ptr, info_ptr, name, compression_type,
profile, proflen);

name - The profile name.
compression - The compression type; always

PNG_COMPRESSION_TYPE_BASE for PNG 1.0.
You may give NULL to this argument to
ignore it.

profile - International Color Consortium color
profile data. May contain NULs.

proflen - length of profile data in bytes.

png_set_sBIT(png_ptr, info_ptr, sig_bit);
sig_bit - the number of significant bits for

(PNG_INFO_sBIT) each of the gray, red,
green, and blue channels, whichever are
appropriate for the given color type
(png_color_16)

png_set_tRNS(png_ptr, info_ptr, trans, num_trans,
trans_values);

trans - array of transparent entries for
palette (PNG_INFO_tRNS)

trans_values - graylevel or color sample values of
the single transparent color for
non-paletted images (PNG_INFO_tRNS)

num_trans - number of transparent entries
(PNG_INFO_tRNS)

png_set_hIST(png_ptr, info_ptr, hist);
(PNG_INFO_hIST)

hist - histogram of palette (array of
png_uint_16)

png_set_tIME(png_ptr, info_ptr, mod_time);
mod_time - time image was last modified

(PNG_VALID_tIME)

png_set_bKGD(png_ptr, info_ptr, background);
background - background color (PNG_VALID_bKGD)

png_set_text(png_ptr, info_ptr, text_ptr, num_text);

50 April 15, 2002

LIBPNG(3) LIBPNG(3)

text_ptr - array of png_text holding image
comments

text_ptr[i].compression - type of compression used
on "text" PNG_TEXT_COMPRESSION_NONE

PNG_TEXT_COMPRESSION_zTXt
PNG_ITXT_COMPRESSION_NONE
PNG_ITXT_COMPRESSION_zTXt

text_ptr[i].key - keyword for comment. Must contain
1-79 characters.

text_ptr[i].text - text comments for current
keyword. Can be NULL or empty.

text_ptr[i].text_length - length of text string,
after decompression, 0 for iTXt

text_ptr[i].itxt_length - length of itxt string,
after decompression, 0 for tEXt/zTXt

text_ptr[i].lang - language of comment (NULL or
empty for unknown).

text_ptr[i].translated_keyword - keyword in UTF-8 (NULL
or empty for unknown).

num_text - number of comments

png_set_sPLT(png_ptr, info_ptr, &palette_ptr,
num_spalettes);

palette_ptr - array of png_sPLT_struct structures
to be added to the list of palettes
in the info structure.

num_spalettes - number of palette structures to be
added.

png_set_oFFs(png_ptr, info_ptr, offset_x, offset_y,
unit_type);

offset_x - positive offset from the left
edge of the screen

offset_y - positive offset from the top
edge of the screen

unit_type - PNG_OFFSET_PIXEL, PNG_OFFSET_MICROMETER

png_set_pHYs(png_ptr, info_ptr, res_x, res_y,
unit_type);

res_x - pixels/unit physical resolution
in x direction

res_y - pixels/unit physical resolution
in y direction

unit_type - PNG_RESOLUTION_UNKNOWN,
PNG_RESOLUTION_METER

png_set_sCAL(png_ptr, info_ptr, unit, width, height)
unit - physical scale units (an integer)
width - width of a pixel in physical scale units
height - height of a pixel in physical scale units

(width and height are doubles)

png_set_sCAL_s(png_ptr, info_ptr, unit, width, height)
unit - physical scale units (an integer)
width - width of a pixel in physical scale units
height - height of a pixel in physical scale units

(width and height are strings like "2.54")

png_set_unknown_chunks(png_ptr, info_ptr, &unknowns,

April 15, 2002 51

LIBPNG(3) LIBPNG(3)

num_unknowns)
unknowns - array of png_unknown_chunk

structures holding unknown chunks
unknowns[i].name - name of unknown chunk
unknowns[i].data - data of unknown chunk
unknowns[i].size - size of unknown chunk’s data
unknowns[i].location - position to write chunk in file

0: do not write chunk
PNG_HAVE_IHDR: before PLTE
PNG_HAVE_PLTE: before IDAT
PNG_AFTER_IDAT : after IDAT

The "location" member is set automatically according to what part of the output file has already been
written. You can change its value after calling png_set_unknown_chunks() as demonstrated in
pngtest.c. Within each of the "locations", the chunks are sequenced according to their position in the
structure (that is, the value of "i", which is the order in which the chunk was either read from the input
file or defined with png_set_unknown_chunks).

A quick word about text and num_text. text is an array of png_text structures. num_text is the number
of valid structures in the array. Each png_text structure holds a language code, a keyword, a text value,
and a compression type.

The compression types have the same valid numbers as the compression types of the image data. Cur-
rently, the only valid number is zero. However, you can store text either compressed or uncompressed,
unlike images, which always have to be compressed. So if you don’t want the text compressed, set the
compression type to PNG_TEXT_COMPRESSION_NONE. Because tEXt and zTXt chunks don’t
have a language field, if you specify PNG_TEXT_COMPRESSION_NONE or PNG_TEXT_COM-
PRESSION_zTXt any language code or translated keyword will not be written out.

Until text gets around 1000 bytes, it is not worth compressing it. After the text has been written out to
the file, the compression type is set to PNG_TEXT_COMPRESSION_NONE_WR or
PNG_TEXT_COMPRESSION_zTXt_WR, so that it isn’t written out again at the end (in case you are
calling png_write_end() with the same struct.

The keywords that are given in the PNG Specification are:

Title Short (one line) title or
caption for image

Author Name of image’s creator
Description Description of image (possibly long)
Copyright Copyright notice
Creation Time Time of original image creation

(usually RFC 1123 format, see below)
Software Software used to create the image
Disclaimer Legal disclaimer
Warning Warning of nature of content
Source Device used to create the image
Comment Miscellaneous comment; conversion

from other image format

The keyword-text pairs work like this. Keywords should be short simple descriptions of what the com-
ment is about. Some typical keywords are found in the PNG specification, as is some recommenda-
tions on keywords. You can repeat keywords in a file. You can even write some text before the image
and some after. For example, you may want to put a description of the image before the image, but
leave the disclaimer until after, so viewers working over modem connections don’t hav e to wait for the
disclaimer to go over the modem before they start seeing the image. Finally, keywords should be full
words, not abbreviations. Keywords and text are in the ISO 8859-1 (Latin-1) character set (a superset
of regular ASCII) and can not contain NUL characters, and should not contain control or other unprint-
able characters. To make the comments widely readable, stick with basic ASCII, and avoid machine

52 April 15, 2002

LIBPNG(3) LIBPNG(3)

specific character set extensions like the IBM-PC character set. The keyword must be present, but you
can leave off the text string on non-compressed pairs. Compressed pairs must have a text string, as
only the text string is compressed anyway, so the compression would be meaningless.

PNG supports modification time via the png_time structure. Tw o conversion routines are provided,
png_convert_from_time_t() for time_t and png_convert_from_struct_tm() for struct tm. The time_t
routine uses gmtime(). You don’t hav e to use either of these, but if you wish to fill in the png_time
structure directly, you should provide the time in universal time (GMT) if possible instead of your local
time. Note that the year number is the full year (e.g. 1998, rather than 98 - PNG is year 2000 compli-
ant!), and that months start with 1.

If you want to store the time of the original image creation, you should use a plain tEXt chunk with the
"Creation Time" keyword. This is necessary because the "creation time" of a PNG image is somewhat
vague, depending on whether you mean the PNG file, the time the image was created in a non-PNG
format, a still photo from which the image was scanned, or possibly the subject matter itself. In order
to facilitate machine-readable dates, it is recommended that the "Creation Time" tEXt chunk use RFC
1123 format dates (e.g. "22 May 1997 18:07:10 GMT"), although this isn’t a requirement. Unlike the
tIME chunk, the "Creation Time" tEXt chunk is not expected to be automatically changed by the soft-
ware. To facilitate the use of RFC 1123 dates, a function png_convert_to_rfc1123(png_timep) is pro-
vided to convert from PNG time to an RFC 1123 format string.

Writing unknown chunks
You can use the png_set_unknown_chunks function to queue up chunks for writing. You giv e it a
chunk name, raw data, and a size; that’s all there is to it. The chunks will be written by the next follow-
ing png_write_info_before_PLTE, png_write_info, or png_write_end function. Any chunks previously
read into the info structure’s unknown-chunk list will also be written out in a sequence that satisfies the
PNG specification’s ordering rules.

The high-level write interface
At this point there are two ways to proceed; through the high-level write interface, or through a
sequence of low-level write operations. You can use the high-level interface if your image data is pre-
sent in the info structure. All defined output transformations are permitted, enabled by the following
masks.

PNG_TRANSFORM_IDENTITY No transformation
PNG_TRANSFORM_PACKING Pack 1, 2 and 4-bit samples
PNG_TRANSFORM_PACKSWAP Change order of packed

pixels to LSB first
PNG_TRANSFORM_INVERT_MONO Invert monochrome images
PNG_TRANSFORM_SHIFT Normalize pixels to the

sBIT depth
PNG_TRANSFORM_BGR Flip RGB to BGR, RGBA

to BGRA
PNG_TRANSFORM_SWAP_ALPHA Flip RGBA to ARGB or GA

to AG
PNG_TRANSFORM_INVERT_ALPHA Change alpha from opacity

to transparency
PNG_TRANSFORM_SWAP_ENDIAN Byte-swap 16-bit samples
PNG_TRANSFORM_STRIP_FILLER Strip out filler bytes.

If you have valid image data in the info structure (you can use png_set_rows() to put image data in the
info structure), simply do this:

png_write_png(png_ptr, info_ptr, png_transforms, NULL)

where png_transforms is an integer containing the logical OR of some set of transformation flags. This
call is equivalent to png_write_info(), followed the set of transformations indicated by the transform
mask, then png_write_image(), and finally png_write_end().

April 15, 2002 53

LIBPNG(3) LIBPNG(3)

(The final parameter of this call is not yet used. Someday it might point to transformation parameters
required by some future output transform.)

The low-level write interface
If you are going the low-level route instead, you are now ready to write all the file information up to the
actual image data. You do this with a call to png_write_info().

png_write_info(png_ptr, info_ptr);

Note that there is one transformation you may need to do before png_write_info(). In PNG files, the
alpha channel in an image is the level of opacity. If your data is supplied as a level of transparency, you
can invert the alpha channel before you write it, so that 0 is fully transparent and 255 (in 8-bit or palet-
ted images) or 65535 (in 16-bit images) is fully opaque, with

png_set_invert_alpha(png_ptr);

This must appear before png_write_info() instead of later with the other transformations because in the
case of paletted images the tRNS chunk data has to be inverted before the tRNS chunk is written. If
your image is not a paletted image, the tRNS data (which in such cases represents a single color to be
rendered as transparent) won’t need to be changed, and you can safely do this transformation after your
png_write_info() call.

If you need to write a private chunk that you want to appear before the PLTE chunk when PLTE is pre-
sent, you can write the PNG info in two steps, and insert code to write your own chunk between them:

png_write_info_before_PLTE(png_ptr, info_ptr);
png_set_unknown_chunks(png_ptr, info_ptr, ...);
png_write_info(png_ptr, info_ptr);

After you’ve written the file information, you can set up the library to handle any special transforma-
tions of the image data. The various ways to transform the data will be described in the order that they
should occur. This is important, as some of these change the color type and/or bit depth of the data,
and some others only work on certain color types and bit depths. Even though each transformation
checks to see if it has data that it can do something with, you should make sure to only enable a trans-
formation if it will be valid for the data. For example, don’t swap red and blue on grayscale data.

PNG files store RGB pixels packed into 3 or 6 bytes. This code tells the library to strip input data that
has 4 or 8 bytes per pixel down to 3 or 6 bytes (or strip 2 or 4-byte grayscale+filler data to 1 or 2 bytes
per pixel).

png_set_filler(png_ptr, 0, PNG_FILLER_BEFORE);

where the 0 is unused, and the location is either PNG_FILLER_BEFORE or PNG_FILLER_AFTER,
depending upon whether the filler byte in the pixel is stored XRGB or RGBX.

PNG files pack pixels of bit depths 1, 2, and 4 into bytes as small as they can, resulting in, for example,
8 pixels per byte for 1 bit files. If the data is supplied at 1 pixel per byte, use this code, which will cor-
rectly pack the pixels into a single byte:

png_set_packing(png_ptr);

PNG files reduce possible bit depths to 1, 2, 4, 8, and 16. If your data is of another bit depth, you can
write an sBIT chunk into the file so that decoders can recover the original data if desired.

/* Set the true bit depth of the image data */
if (color_type & PNG_COLOR_MASK_COLOR)
{

sig_bit.red = true_bit_depth;

54 April 15, 2002

LIBPNG(3) LIBPNG(3)

sig_bit.green = true_bit_depth;
sig_bit.blue = true_bit_depth;

}
else
{

sig_bit.gray = true_bit_depth;
}
if (color_type & PNG_COLOR_MASK_ALPHA)
{

sig_bit.alpha = true_bit_depth;
}

png_set_sBIT(png_ptr, info_ptr, &sig_bit);

If the data is stored in the row buffer in a bit depth other than one supported by PNG (e.g. 3 bit data in
the range 0-7 for a 4-bit PNG), this will scale the values to appear to be the correct bit depth as is
required by PNG.

png_set_shift(png_ptr, &sig_bit);

PNG files store 16 bit pixels in network byte order (big-endian, ie. most significant bits first). This
code would be used if they are supplied the other way (little-endian, i.e. least significant bits first, the
way PCs store them):

if (bit_depth > 8)
png_set_swap(png_ptr);

If you are using packed-pixel images (1, 2, or 4 bits/pixel), and you need to change the order the pixels
are packed into bytes, you can use:

if (bit_depth < 8)
png_set_packswap(png_ptr);

PNG files store 3 color pixels in red, green, blue order. This code would be used if they are supplied as
blue, green, red:

png_set_bgr(png_ptr);

PNG files describe monochrome as black being zero and white being one. This code would be used if
the pixels are supplied with this reversed (black being one and white being zero):

png_set_invert_mono(png_ptr);

Finally, you can write your own transformation function if none of the existing ones meets your needs.
This is done by setting a callback with

png_set_write_user_transform_fn(png_ptr,
write_transform_fn);

You must supply the function

void write_transform_fn(png_ptr ptr, row_info_ptr
row_info, png_bytep data)

See pngtest.c for a working example. Your function will be called before any of the other transforma-
tions are processed.

You can also set up a pointer to a user structure for use by your callback function.

April 15, 2002 55

LIBPNG(3) LIBPNG(3)

png_set_user_transform_info(png_ptr, user_ptr, 0, 0);

The user_channels and user_depth parameters of this function are ignored when writing; you can set
them to zero as shown.

You can retrieve the pointer via the function png_get_user_transform_ptr(). For example:

voidp write_user_transform_ptr =
png_get_user_transform_ptr(png_ptr);

It is possible to have libpng flush any pending output, either manually, or automatically after a certain
number of lines have been written. To flush the output stream a single time call:

png_write_flush(png_ptr);

and to have libpng flush the output stream periodically after a certain number of scanlines have been
written, call:

png_set_flush(png_ptr, nrows);

Note that the distance between rows is from the last time png_write_flush() was called, or the first row
of the image if it has never been called. So if you write 50 lines, and then png_set_flush 25, it will
flush the output on the next scanline, and every 25 lines thereafter, unless png_write_flush() is called
before 25 more lines have been written. If nrows is too small (less than about 10 lines for a 640 pixel
wide RGB image) the image compression may decrease noticeably (although this may be acceptable
for real-time applications). Infrequent flushing will only degrade the compression performance by a
few percent over images that do not use flushing.

Writing the image data
That’s it for the transformations. Now you can write the image data. The simplest way to do this is in
one function call. If you have the whole image in memory, you can just call png_write_image() and
libpng will write the image. You will need to pass in an array of pointers to each row. This function
automatically handles interlacing, so you don’t need to call png_set_interlace_handling() or call this
function multiple times, or any of that other stuff necessary with png_write_rows().

png_write_image(png_ptr, row_pointers);

where row_pointers is:

png_byte *row_pointers[height];

You can point to void or char or whatever you use for pixels.

If you don’t want to write the whole image at once, you can use png_write_rows() instead. If the file is
not interlaced, this is simple:

png_write_rows(png_ptr, row_pointers,
number_of_rows);

row_pointers is the same as in the png_write_image() call.

If you are just writing one row at a time, you can do this with a single row_pointer instead of an array
of row_pointers:

png_bytep row_pointer = row;

png_write_row(png_ptr, row_pointer);

56 April 15, 2002

LIBPNG(3) LIBPNG(3)

When the file is interlaced, things can get a good deal more complicated. The only currently (as of the
PNG Specification version 1.2, dated July 1999) defined interlacing scheme for PNG files is the
"Adam7" interlace scheme, that breaks down an image into seven smaller images of varying size.
libpng will build these images for you, or you can do them yourself. If you want to build them your-
self, see the PNG specification for details of which pixels to write when.

If you don’t want libpng to handle the interlacing details, just use png_set_interlace_handling() and call
png_write_rows() the correct number of times to write all seven sub-images.

If you want libpng to build the sub-images, call this before you start writing any rows:

number_of_passes =
png_set_interlace_handling(png_ptr);

This will return the number of passes needed. Currently, this is seven, but may change if another inter-
lace type is added.

Then write the complete image number_of_passes times.

png_write_rows(png_ptr, row_pointers,
number_of_rows);

As some of these rows are not used, and thus return immediately, you may want to read about interlac-
ing in the PNG specification, and only update the rows that are actually used.

Finishing a sequential write
After you are finished writing the image, you should finish writing the file. If you are interested in
writing comments or time, you should pass an appropriately filled png_info pointer. If you are not
interested, you can pass NULL.

png_write_end(png_ptr, info_ptr);

When you are done, you can free all memory used by libpng like this:

png_destroy_write_struct(&png_ptr, &info_ptr);

It is also possible to individually free the info_ptr members that point to libpng-allocated storage with
the following function:

png_free_data(png_ptr, info_ptr, mask, seq)
mask - identifies data to be freed, a mask

containing the logical OR of one or
more of
PNG_FREE_PLTE, PNG_FREE_TRNS,
PNG_FREE_HIST, PNG_FREE_ICCP,
PNG_FREE_PCAL, PNG_FREE_ROWS,
PNG_FREE_SCAL, PNG_FREE_SPLT,
PNG_FREE_TEXT, PNG_FREE_UNKN,

or simply PNG_FREE_ALL
seq - sequence number of item to be freed

(-1 for all items)

This function may be safely called when the relevant storage has already been freed, or has not yet been
allocated, or was allocated by the user and not by libpng, and will in those cases do nothing. The
"seq" parameter is ignored if only one item of the selected data type, such as PLTE, is allowed. If "seq"
is not -1, and multiple items are allowed for the data type identified in the mask, such as text or sPLT,
only the n’th item in the structure is freed, where n is "seq".

April 15, 2002 57

LIBPNG(3) LIBPNG(3)

If you allocated data such as a palette that you passed in to libpng with png_set_*, you must not free it
until just before the call to png_destroy_write_struct().

The default behavior is only to free data that was allocated internally by libpng. This can be changed,
so that libpng will not free the data, or so that it will free data that was allocated by the user with
png_malloc() or png_zalloc() and passed in via a png_set_*() function, with

png_data_freer(png_ptr, info_ptr, freer, mask)
mask - which data elements are affected

same choices as in png_free_data()
freer - one of

PNG_DESTROY_WILL_FREE_DAT A
PNG_SET_WILL_FREE_DAT A
PNG_USER_WILL_FREE_DAT A

For example, to transfer responsibility for some data from a read structure to a write structure, you
could use

png_data_freer(read_ptr, read_info_ptr,
PNG_USER_WILL_FREE_DAT A,
PNG_FREE_PLTE|PNG_FREE_tRNS|PNG_FREE_hIST)

png_data_freer(write_ptr, write_info_ptr,
PNG_DESTROY_WILL_FREE_DAT A,
PNG_FREE_PLTE|PNG_FREE_tRNS|PNG_FREE_hIST)

thereby briefly reassigning responsibility for freeing to the user but immediately afterwards reassigning
it once more to the write_destroy function. Having done this, it would then be safe to destroy the read
structure and continue to use the PLTE, tRNS, and hIST data in the write structure.

This function only affects data that has already been allocated. You can call this function before calling
after the png_set_*() functions to control whether the user or png_destroy_*() is supposed to free the
data. When the user assumes responsibility for libpng-allocated data, the application must use
png_free() to free it, and when the user transfers responsibility to libpng for data that the user has allo-
cated, the user must have used png_malloc() or png_zalloc() to allocate it.

If you allocated text_ptr.text, text_ptr.lang, and text_ptr.translated_keyword separately, do not transfer
responsibility for freeing text_ptr to libpng, because when libpng fills a png_text structure it combines
these members with the key member, and png_free_data() will free only text_ptr.key. Similarly, if you
transfer responsibility for free’ing text_ptr from libpng to your application, your application must not
separately free those members. For a more compact example of writing a PNG image, see the file
example.c.

V. Modifying/Customizing libpng:
There are three issues here. The first is changing how libpng does standard things like memory alloca-
tion, input/output, and error handling. The second deals with more complicated things like adding new
chunks, adding new transformations, and generally changing how libpng works. Both of those are
compile-time issues; that is, they are generally determined at the time the code is written, and there is
rarely a need to provide the user with a means of changing them. The third is a run-time issue: choos-
ing between and/or tuning one or more alternate versions of computationally intensive routines; specifi-
cally, optimized assembly-language (and therefore compiler- and platform-dependent) versions.

Memory allocation, input/output, and error handling

All of the memory allocation, input/output, and error handling in libpng goes through callbacks that are
user-settable. The default routines are in pngmem.c, pngrio.c, pngwio.c, and pngerror.c, respectively.
To change these functions, call the appropriate png_set_*_fn() function.

Memory allocation is done through the functions png_malloc(), png_zalloc(), and png_free(). These

58 April 15, 2002

LIBPNG(3) LIBPNG(3)

currently just call the standard C functions. If your pointers can’t access more then 64K at a time, you
will want to set MAXSEG_64K in zlib.h. Since it is unlikely that the method of handling memory allo-
cation on a platform will change between applications, these functions must be modified in the library
at compile time. If you prefer to use a different method of allocating and freeing data, you can use

png_set_mem_fn(png_structp png_ptr, png_voidp mem_ptr,
png_malloc_ptr malloc_fn, png_free_ptr free_fn)

This function also provides a void pointer that can be retrieved via

mem_ptr=png_get_mem_ptr(png_ptr);

Your replacement memory functions must have prototypes as follows:

png_voidp malloc_fn(png_structp png_ptr,
png_size_t size);

void free_fn(png_structp png_ptr, png_voidp ptr);

Your malloc_fn() can return NULL in case of failure. The png_malloc() function will call png_error()
if it receives a NULL from the system memory allocator or from your replacement malloc_fn().

Input/Output in libpng is done through png_read() and png_write(), which currently just call fread()
and fwrite(). The FILE * is stored in png_struct and is initialized via png_init_io(). If you wish to
change the method of I/O, the library supplies callbacks that you can set through the function
png_set_read_fn() and png_set_write_fn() at run time, instead of calling the png_init_io() function.
These functions also provide a void pointer that can be retrieved via the function png_get_io_ptr(). For
example:

png_set_read_fn(png_structp read_ptr,
voidp read_io_ptr, png_rw_ptr read_data_fn)

png_set_write_fn(png_structp write_ptr,
voidp write_io_ptr, png_rw_ptr write_data_fn,
png_flush_ptr output_flush_fn);

voidp read_io_ptr = png_get_io_ptr(read_ptr);
voidp write_io_ptr = png_get_io_ptr(write_ptr);

The replacement I/O functions must have prototypes as follows:

void user_read_data(png_structp png_ptr,
png_bytep data, png_uint_32 length);

void user_write_data(png_structp png_ptr,
png_bytep data, png_uint_32 length);

void user_flush_data(png_structp png_ptr);

Supplying NULL for the read, write, or flush functions sets them back to using the default C stream
functions. It is an error to read from a write stream, and vice versa.

Error handling in libpng is done through png_error() and png_warning(). Errors handled through
png_error() are fatal, meaning that png_error() should never return to its caller. Currently, this is han-
dled via setjmp() and longjmp() (unless you have compiled libpng with PNG_SETJMP_NOT_SUP-
PORTED, in which case it is handled via PNG_ABORT()), but you could change this to do things like
exit() if you should wish.

On non-fatal errors, png_warning() is called to print a warning message, and then control returns to the
calling code. By default png_error() and png_warning() print a message on stderr via fprintf() unless
the library is compiled with PNG_NO_CONSOLE_IO defined (because you don’t want the messages)
or PNG_NO_STDIO defined (because fprintf() isn’t available). If you wish to change the behavior of

April 15, 2002 59

LIBPNG(3) LIBPNG(3)

the error functions, you will need to set up your own message callbacks. These functions are normally
supplied at the time that the png_struct is created. It is also possible to redirect errors and warnings to
your own replacement functions after png_create_*_struct() has been called by calling:

png_set_error_fn(png_structp png_ptr,
png_voidp error_ptr, png_error_ptr error_fn,
png_error_ptr warning_fn);

png_voidp error_ptr = png_get_error_ptr(png_ptr);

If NULL is supplied for either error_fn or warning_fn, then the libpng default function will be used,
calling fprintf() and/or longjmp() if a problem is encountered. The replacement error functions should
have parameters as follows:

void user_error_fn(png_structp png_ptr,
png_const_charp error_msg);

void user_warning_fn(png_structp png_ptr,
png_const_charp warning_msg);

The motivation behind using setjmp() and longjmp() is the C++ throw and catch exception handling
methods. This makes the code much easier to write, as there is no need to check every return code of
ev ery function call. However, there are some uncertainties about the status of local variables after a
longjmp, so the user may want to be careful about doing anything after setjmp returns non-zero besides
returning itself. Consult your compiler documentation for more details. For an alternative approach,
you may wish to use the "cexcept" facility (see http://cexcept.sourceforge.net).

Custom chunks
If you need to read or write custom chunks, you may need to get deeper into the libpng code. The
library now has mechanisms for storing and writing chunks of unknown type; you can even declare
callbacks for custom chunks. Hoewver, this may not be good enough if the library code itself needs to
know about interactions between your chunk and existing ‘intrinsic’ chunks.

If you need to write a new intrinsic chunk, first read the PNG specification. Acquire a first level of
understanding of how it works. Pay particular attention to the sections that describe chunk names, and
look at how other chunks were designed, so you can do things similarly. Second, check out the sec-
tions of libpng that read and write chunks. Try to find a chunk that is similar to yours and use it as a
template. More details can be found in the comments inside the code. It is best to handle unknown
chunks in a generic method, via callback functions, instead of by modifying libpng functions.

If you wish to write your own transformation for the data, look through the part of the code that does
the transformations, and check out some of the simpler ones to get an idea of how they work. Try to
find a similar transformation to the one you want to add and copy off of it. More details can be found
in the comments inside the code itself.

Configuring for 16 bit platforms
You will want to look into zconf.h to tell zlib (and thus libpng) that it cannot allocate more then 64K at
a time. Even if you can, the memory won’t be accessible. So limit zlib and libpng to 64K by defining
MAXSEG_64K.

Configuring for DOS
For DOS users who only have access to the lower 640K, you will have to limit zlib’s memory usage via
a png_set_compression_mem_level() call. See zlib.h or zconf.h in the zlib library for more informa-
tion.

Configuring for Medium Model
Libpng’s support for medium model has been tested on most of the popular compilers. Make sure
MAXSEG_64K gets defined, USE_FAR_KEYWORD gets defined, and FAR gets defined to far in

60 April 15, 2002

LIBPNG(3) LIBPNG(3)

pngconf.h, and you should be all set. Everything in the library (except for zlib’s structure) is expecting
far data. You must use the typedefs with the p or pp on the end for pointers (or at least look at them
and be careful). Make note that the rows of data are defined as png_bytepp, which is an unsigned char
far * far *.

Configuring for gui/windowing platforms:
You will need to write new error and warning functions that use the GUI interface, as described previ-
ously, and set them to be the error and warning functions at the time that png_create_*_struct() is
called, in order to have them available during the structure initialization. They can be changed later via
png_set_error_fn(). On some compilers, you may also have to change the memory allocators
(png_malloc, etc.).

Configuring for compiler xxx:
All includes for libpng are in pngconf.h. If you need to add/change/delete an include, this is the place
to do it. The includes that are not needed outside libpng are protected by the PNG_INTERNAL defini-
tion, which is only defined for those routines inside libpng itself. The files in libpng proper only
include png.h, which includes pngconf.h.

Configuring zlib:
There are special functions to configure the compression. Perhaps the most useful one changes the
compression level, which currently uses input compression values in the range 0 - 9. The library nor-
mally uses the default compression level (Z_DEFAULT_COMPRESSION = 6). Tests have shown that
for a large majority of images, compression values in the range 3-6 compress nearly as well as higher
levels, and do so much faster. For online applications it may be desirable to have maximum speed
(Z_BEST_SPEED = 1). With versions of zlib after v0.99, you can also specify no compression
(Z_NO_COMPRESSION = 0), but this would create files larger than just storing the raw bitmap. You
can specify the compression level by calling:

png_set_compression_level(png_ptr, lev el);

Another useful one is to reduce the memory level used by the library. The memory level defaults to 8,
but it can be lowered if you are short on memory (running DOS, for example, where you only have
640K). Note that the memory level does have an effect on compression; among other things, lower lev-
els will result in sections of incompressible data being emitted in smaller stored blocks, with a corre-
spondingly larger relative overhead of up to 15% in the worst case.

png_set_compression_mem_level(png_ptr, lev el);

The other functions are for configuring zlib. They are not recommended for normal use and may result
in writing an invalid PNG file. See zlib.h for more information on what these mean.

png_set_compression_strategy(png_ptr,
strategy);

png_set_compression_window_bits(png_ptr,
window_bits);

png_set_compression_method(png_ptr, method);
png_set_compression_buffer_size(png_ptr, size);

Controlling row filtering
If you want to control whether libpng uses filtering or not, which filters are used, and how it goes about
picking row filters, you can call one of these functions. The selection and configuration of row filters
can have a significant impact on the size and encoding speed and a somewhat lesser impact on the
decoding speed of an image. Filtering is enabled by default for RGB and grayscale images (with and
without alpha), but not for paletted images nor for any images with bit depths less than 8 bits/pixel.

The ’method’ parameter sets the main filtering method, which is currently only ’0’ in the PNG 1.2
specification. The ’filters’ parameter sets which filter(s), if any, should be used for each scanline.

April 15, 2002 61

LIBPNG(3) LIBPNG(3)

Possible values are PNG_ALL_FILTERS and PNG_NO_FILTERS to turn filtering on and off, respec-
tively.

Individual filter types are PNG_FILTER_NONE, PNG_FILTER_SUB, PNG_FILTER_UP, PNG_FIL-
TER_AVG, PNG_FILTER_PAETH, which can be bitwise ORed together with ’|’ to specify one or
more filters to use. These filters are described in more detail in the PNG specification. If you intend to
change the filter type during the course of writing the image, you should start with flags set for all of
the filters you intend to use so that libpng can initialize its internal structures appropriately for all of the
filter types. (Note that this means the first row must always be adaptively filtered, because libpng cur-
rently does not allocate the filter buffers until png_write_row() is called for the first time.)

filters = PNG_FILTER_NONE | PNG_FILTER_SUB
PNG_FILTER_UP | PNG_FILTER_AVE |
PNG_FILTER_PAETH | PNG_ALL_FILTERS;

png_set_filter(png_ptr, PNG_FILTER_TYPE_BASE,
filters);

The second parameter can also be
PNG_INTRAPIXEL_DIFFERENCING if you are
writing a PNG to be embedded in a MNG
datastream. This parameter must be the
same as the value of filter_method used
in png_set_IHDR().

It is also possible to influence how libpng chooses from among the available filters. This is done in one
or both of two ways - by telling it how important it is to keep the same filter for successive rows, and by
telling it the relative computational costs of the filters.

double weights[3] = {1.5, 1.3, 1.1},
costs[PNG_FILTER_VALUE_LAST] =
{1.0, 1.3, 1.3, 1.5, 1.7};

png_set_filter_heuristics(png_ptr,
PNG_FILTER_HEURISTIC_WEIGHTED, 3,
weights, costs);

The weights are multiplying factors that indicate to libpng that the row filter should be the same for
successive rows unless another row filter is that many times better than the previous filter. In the above
example, if the previous 3 filters were SUB, SUB, NONE, the SUB filter could have a "sum of absolute
differences" 1.5 x 1.3 times higher than other filters and still be chosen, while the NONE filter could
have a sum 1.1 times higher than other filters and still be chosen. Unspecified weights are taken to be
1.0, and the specified weights should probably be declining like those above in order to emphasize
recent filters over older filters.

The filter costs specify for each filter type a relative decoding cost to be considered when selecting row
filters. This means that filters with higher costs are less likely to be chosen over filters with lower costs,
unless their "sum of absolute differences" is that much smaller. The costs do not necessarily reflect the
exact computational speeds of the various filters, since this would unduly influence the final image size.

Note that the numbers above were invented purely for this example and are given only to help explain
the function usage. Little testing has been done to find optimum values for either the costs or the
weights.

Removing unwanted object code
There are a bunch of #define’s in pngconf.h that control what parts of libpng are compiled. All the
defines end in _SUPPORTED. If you are never going to use a capability, you can change the #define to
#undef before recompiling libpng and save yourself code and data space, or you can turn off individual
capabilities with defines that begin with PNG_NO_.

62 April 15, 2002

LIBPNG(3) LIBPNG(3)

You can also turn all of the transforms and ancillary chunk capabilities off en masse with compiler
directives that define PNG_NO_READ[or WRITE]_TRANSFORMS, or PNG_NO_READ[or
WRITE]_ANCILLARY_CHUNKS, or all four, along with directives to turn on any of the capabilities
that you do want. The PNG_NO_READ[or WRITE]_TRANSFORMS directives disable the extra
transformations but still leave the library fully capable of reading and writing PNG files with all known
public chunks Use of the PNG_NO_READ[or WRITE]_ANCILLARY_CHUNKS directive produces a
library that is incapable of reading or writing ancillary chunks. If you are not using the progressive
reading capability, you can turn that off with PNG_NO_PROGRESSIVE_READ (don’t confuse this
with the INTERLACING capability, which you’ll still have).

All the reading and writing specific code are in separate files, so the linker should only grab the files it
needs. However, if you want to make sure, or if you are building a stand alone library, all the reading
files start with pngr and all the writing files start with pngw. The files that don’t match either (like
png.c, pngtrans.c, etc.) are used for both reading and writing, and always need to be included. The
progressive reader is in pngpread.c

If you are creating or distributing a dynamically linked library (a .so or DLL file), you should not
remove or disable any parts of the library, as this will cause applications linked with different versions
of the library to fail if they call functions not available in your library. The size of the library itself
should not be an issue, because only those sections that are actually used will be loaded into memory.

Requesting debug printout
The macro definition PNG_DEBUG can be used to request debugging printout. Set it to an integer
value in the range 0 to 3. Higher numbers result in increasing amounts of debugging information. The
information is printed to the "stderr" file, unless another file name is specified in the
PNG_DEBUG_FILE macro definition.

When PNG_DEBUG > 0, the following functions (macros) become available:

png_debug(level, message)
png_debug1(level, message, p1)
png_debug2(level, message, p1, p2)

in which "level" is compared to PNG_DEBUG to decide whether to print the message, "message" is the
formatted string to be printed, and p1 and p2 are parameters that are to be embedded in the string
according to printf-style formatting directives. For example,

png_debug1(2, "foo=%d0, foo);

is expanded to

if(PNG_DEBUG > 2)
fprintf(PNG_DEBUG_FILE, "foo=%d0, foo);

When PNG_DEBUG is defined but is zero, the macros aren’t defined, but you can still use
PNG_DEBUG to control your own debugging:

#ifdef PNG_DEBUG
fprintf(stderr, ...

#endif

When PNG_DEBUG = 1, the macros are defined, but only png_debug statements having level = 0 will
be printed. There aren’t any such statements in this version of libpng, but if you insert some they will
be printed.

VI. Runtime optimization
A new feature in libpng 1.2.0 is the ability to dynamically switch between standard and optimized ver-
sions of some routines. Currently these are limited to three computationally intensive tasks when

April 15, 2002 63

LIBPNG(3) LIBPNG(3)

reading PNG files: decoding row filters, expanding interlacing, and combining interlaced or transparent
row data with previous row data. Currently the optimized versions are available only for x86 (Intel,
AMD, etc.) platforms with MMX support, though this may change in future versions. (For example,
the non-MMX assembler optimizations for zlib might become similarly runtime-selectable in future
releases, in which case libpng could be extended to support them. Alternatively, the compile-time
choice of floating-point versus integer routines for gamma correction might become runtime-
selectable.)

Because such optimizations tend to be very platform- and compiler-dependent, both in how they are
written and in how they perform, the new runtime code in libpng has been written to allow programs to
query, enable, and disable either specific optimizations or all such optimizations. For example, to
enable all possible optimizations (bearing in mind that some "optimizations" may actually run more
slowly in rare cases):

#if defined(PNG_LIBPNG_VER) && (PNG_LIBPNG_VER >= 10200)
png_uint_32 mask, flags;

flags = png_get_asm_flags(png_ptr);
mask = png_get_asm_flagmask(PNG_SELECT_READ | PNG_SELECT_WRITE);
png_set_asm_flags(png_ptr, flags | mask);

#endif

To enable only optimizations relevant to reading PNGs, use PNG_SELECT_READ by itself when call-
ing png_get_asm_flagmask(); similarly for optimizing only writing. To disable all optimizations:

#if defined(PNG_LIBPNG_VER) && (PNG_LIBPNG_VER >= 10200)
flags = png_get_asm_flags(png_ptr);
mask = png_get_asm_flagmask(PNG_SELECT_READ | PNG_SELECT_WRITE);
png_set_asm_flags(png_ptr, flags & ˜mask);

#endif

To enable or disable only MMX-related features, use png_get_mmx_flagmask() in place of
png_get_asm_flagmask(). The mmx version takes one additional parameter:

#if defined(PNG_LIBPNG_VER) && (PNG_LIBPNG_VER >= 10200)
int selection = PNG_SELECT_READ | PNG_SELECT_WRITE;
int compilerID;

mask = png_get_mmx_flagmask(selection, &compilerID);
#endif

On return, compilerID will indicate which version of the MMX assembler optimizations was compiled.
Currently two flavors exist: Microsoft Visual C++ (compilerID == 1) and GNU C (a.k.a. gcc/gas, com-
pilerID == 2). On non-x86 platforms or on systems compiled without MMX optimizations, a value of
-1 is used.

Note that both png_get_asm_flagmask() and png_get_mmx_flagmask() return all valid, settable opti-
mization bits for the version of the library that’s currently in use. In the case of shared (dynamically
linked) libraries, this may include optimizations that did not exist at the time the code was written and
compiled. It is also possible, of course, to enable only known, specific optimizations; for example:

#if defined(PNG_LIBPNG_VER) && (PNG_LIBPNG_VER >= 10200)
flags = PNG_ASM_FLAG_MMX_READ_COMBINE_ROW |

PNG_ASM_FLAG_MMX_READ_INTERLACE | PNG_ASM_FLAG_MMX_READ_FIL-
TER_SUB | PNG_ASM_FLAG_MMX_READ_FILTER_UP |
PNG_ASM_FLAG_MMX_READ_FILTER_AVG | PNG_ASM_FLAG_MMX_READ_FIL-
TER_PAETH ;

png_set_asm_flags(png_ptr, flags);
#endif

64 April 15, 2002

LIBPNG(3) LIBPNG(3)

This method would enable only the MMX read-optimizations available at the time of libpng 1.2.0’s
release, regardless of whether a later version of the DLL were actually being used. (Also note that
these functions did not exist in versions older than 1.2.0, so any attempt to run a dynamically linked
app on such an older version would fail.)

To determine whether the processor supports MMX instructions at all, use the png_mmx_support()
function:

#if defined(PNG_LIBPNG_VER) && (PNG_LIBPNG_VER >= 10200)
mmxsupport = png_mmx_support();

#endif

It returns -1 if MMX support is not compiled into libpng, 0 if MMX code is compiled but MMX is not
supported by the processor, or 1 if MMX support is fully available. Note that png_mmx_support(),
png_get_mmx_flagmask(), and png_get_asm_flagmask() all may be called without allocating and ini-
tializing any PNG structures (for example, as part of a usage screen or "about" box).

The following code can be used to prevent an application from using the thread_unsafe features, even if
libpng was built with PNG_THREAD_UNSAFE_OK defined:

#if defined(PNG_USE_PNGGCCRD) && defined(PNG_ASSEMBLER_CODE_SUPPORTED) &&
defined(PNG_THREAD_UNSAFE_OK)

/* Disable thread-unsafe features of pnggccrd */
if (png_access_version() >= 10200)
{
png_uint_32 mmx_disable_mask = 0;
png_uint_32 asm_flags;

mmx_disable_mask |= (PNG_ASM_FLAG_MMX_READ_COMBINE_ROW |
PNG_ASM_FLAG_MMX_READ_FILTER_SUB |
PNG_ASM_FLAG_MMX_READ_FILTER_AVG |
PNG_ASM_FLAG_MMX_READ_FILTER_PAETH);

asm_flags = png_get_asm_flags(png_ptr);
png_set_asm_flags(png_ptr, asm_flags & ˜mmx_disable_mask);

} #endif

For more extensive examples of runtime querying, enabling and disabling of optimized features, see
contrib/gregbook/readpng2.c in the libpng source-code distribution.

VII. MNG support
The MNG specification (available at http://www.libpng.org/pub/mng) allows certain extensions to PNG
for PNG images that are embedded in MNG datastreams. Libpng can support some of these exten-
sions. To enable them, use the png_permit_mng_features() function:

feature_set = png_permit_mng_features(png_ptr, mask)
mask is a png_uint_32 containing the logical OR of the

features you want to enable. These include
PNG_FLAG_MNG_EMPTY_PLTE
PNG_FLAG_MNG_FILTER_64
PNG_ALL_MNG_FEATURES

feature_set is a png_32_uint that is the logical AND of
your mask with the set of MNG features that is
supported by the version of libpng that you are using.

It is an error to use this function when reading or writing a standalone PNG file with the PNG 8-byte
signature. The PNG datastream must be wrapped in a MNG datastream. As a minimum, it must have
the MNG 8-byte signature and the MHDR and MEND chunks. Libpng does not provide support for

April 15, 2002 65

LIBPNG(3) LIBPNG(3)

these or any other MNG chunks; your application must provide its own support for them. You may
wish to consider using libmng (available at http://www.libmng.com) instead.

VIII. Changes to Libpng from version 0.88
It should be noted that versions of libpng later than 0.96 are not distributed by the original libpng
author, Guy Schalnat, nor by Andreas Dilger, who had taken over from Guy during 1996 and 1997, and
distributed versions 0.89 through 0.96, but rather by another member of the original PNG Group, Glenn
Randers-Pehrson. Guy and Andreas are still alive and well, but they hav e moved on to other things.

The old libpng functions png_read_init(), png_write_init(), png_info_init(), png_read_destroy(), and
png_write_destroy() have been moved to PNG_INTERNAL in version 0.95 to discourage their use.
These functions will be removed from libpng version 2.0.0.

The preferred method of creating and initializing the libpng structures is via the png_cre-
ate_read_struct(), png_create_write_struct(), and png_create_info_struct() because they isolate the size
of the structures from the application, allow version error checking, and also allow the use of custom
error handling routines during the initialization, which the old functions do not. The functions
png_read_destroy() and png_write_destroy() do not actually free the memory that libpng allocated for
these structs, but just reset the data structures, so they can be used instead of png_destroy_read_struct()
and png_destroy_write_struct() if you feel there is too much system overhead allocating and freeing the
png_struct for each image read.

Setting the error callbacks via png_set_message_fn() before png_read_init() as was suggested in
libpng-0.88 is no longer supported because this caused applications that do not use custom error func-
tions to fail if the png_ptr was not initialized to zero. It is still possible to set the error callbacks
AFTER png_read_init(), or to change them with png_set_error_fn(), which is essentially the same
function, but with a new name to force compilation errors with applications that try to use the old
method.

Starting with version 1.0.7, you can find out which version of the library you are using at run-time:

png_uint_32 libpng_vn = png_access_version_number();

The number libpng_vn is constructed from the major version, minor version with leading zero, and
release number with leading zero, (e.g., libpng_vn for version 1.0.7 is 10007).

You can also check which version of png.h you used when compiling your application:

png_uint_32 application_vn = PNG_LIBPNG_VER;

IX. Y2K Compliance in libpng
April 15, 2002

Since the PNG Development group is an ad-hoc body, we can’t make an official declaration.

This is your unofficial assurance that libpng from version 0.71 and upward through 1.2.2 are Y2K com-
pliant. It is my belief that earlier versions were also Y2K compliant.

Libpng only has three year fields. One is a 2-byte unsigned integer that will hold years up to 65535.
The other two hold the date in text format, and will hold years up to 9999.

The integer is
"png_uint_16 year" in png_time_struct.

The strings are
"png_charp time_buffer" in png_struct and
"near_time_buffer", which is a local character string in png.c.

66 April 15, 2002

LIBPNG(3) LIBPNG(3)

There are seven time-related functions:

png_convert_to_rfc_1123() in png.c
(formerly png_convert_to_rfc_1152() in error)

png_convert_from_struct_tm() in pngwrite.c, called
in pngwrite.c

png_convert_from_time_t() in pngwrite.c
png_get_tIME() in pngget.c
png_handle_tIME() in pngrutil.c, called in pngread.c
png_set_tIME() in pngset.c
png_write_tIME() in pngwutil.c, called in pngwrite.c

All appear to handle dates properly in a Y2K environment. The png_convert_from_time_t() function
calls gmtime() to convert from system clock time, which returns (year - 1900), which we properly con-
vert to the full 4-digit year. There is a possibility that applications using libpng are not passing 4-digit
years into the png_convert_to_rfc_1123() function, or that they are incorrectly passing only a 2-digit
year instead of "year - 1900" into the png_convert_from_struct_tm() function, but this is not under our
control. The libpng documentation has always stated that it works with 4-digit years, and the APIs
have been documented as such.

The tIME chunk itself is also Y2K compliant. It uses a 2-byte unsigned integer to hold the year, and
can hold years as large as 65535.

zlib, upon which libpng depends, is also Y2K compliant. It contains no date-related code.

Glenn Randers-Pehrson
libpng maintainer
PNG Development Group

NOTE
Note about libpng version numbers:

Due to various miscommunications, unforeseen code incompatibilities and occasional factors outside
the authors’ control, version numbering on the library has not always been consistent and straightfor-
ward. The following table summarizes matters since version 0.89c, which was the first widely used
release:

source png.h png.h shared-lib
version string int version
------- ------ ----- ----------
0.89c ("beta 3") 0.89 89 1.0.89
0.90 ("beta 4") 0.90 90 0.90
0.95 ("beta 5") 0.95 95 0.95
0.96 ("beta 6") 0.96 96 0.96
0.97b ("beta 7") 1.00.97 97 1.0.1
0.97c 0.97 97 2.0.97
0.98 0.98 98 2.0.98
0.99 0.99 98 2.0.99
0.99a-m 0.99 99 2.0.99
1.00 1.00 100 2.1.0
1.0.0 1.0.0 100 2.1.0
1.0.0 (from here on, the 100 2.1.0
1.0.1 png.h string is 10001 2.1.0
1.0.1a-e identical to the 10002 from here on, the
1.0.2 source version) 10002 shared library is 2.V
1.0.2a-b 10003 where V is the source
1.0.1 10001 code version except as

April 15, 2002 67

LIBPNG(3) LIBPNG(3)

1.0.1a-e 10002 2.1.0.1a-e noted.
1.0.2 10002 2.1.0.2
1.0.2a-b 10003 2.1.0.2a-b
1.0.3 10003 2.1.0.3
1.0.3a-d 10004 2.1.0.3a-d
1.0.4 10004 2.1.0.4
1.0.4a-f 10005 2.1.0.4a-f
1.0.5 (+ 2 patches) 10005 2.1.0.5
1.0.5a-d 10006 2.1.0.5a-d
1.0.5e-r 10100 2.1.0.5e-r
1.0.5s-v 10006 2.1.0.5s-v
1.0.6 (+ 3 patches) 10006 2.1.0.6
1.0.6d-g 10007 2.1.0.6d-g
1.0.6h 10007 10.6h
1.0.6i 10007 10.6i
1.0.6j 10007 2.1.0.6j
1.0.7beta11-14 DLLNUM 10007 2.1.0.7beta11-14
1.0.7beta15-18 1 10007 2.1.0.7beta15-18
1.0.7rc1-2 1 10007 2.1.0.7rc1-2
1.0.7 1 10007 2.1.0.7
1.0.8beta1-4 1 10008 2.1.0.8beta1-4
1.0.8rc1 1 10008 2.1.0.8rc1
1.0.8 1 10008 2.1.0.8
1.0.9beta1-6 1 10009 2.1.0.9beta1-6
1.0.9rc1 1 10009 2.1.0.9rc1
1.0.9beta7-10 1 10009 2.1.0.9beta7-10
1.0.9rc2 1 10009 2.1.0.9rc2
1.0.9 1 10009 2.1.0.9
1.0.10beta1 1 10010 2.1.0.10beta1
1.0.10rc1 1 10010 2.1.0.10rc1
1.0.10 1 10010 2.1.0.10
1.0.11beta1-3 1 10011 2.1.0.11beta1-3
1.0.11rc1 1 10011 2.1.0.11rc1
1.0.11 1 10011 2.1.0.11
1.0.12beta1-2 2 10012 2.1.0.12beta1-2
1.0.12rc1 2 10012 2.1.0.12rc1
1.0.12 2 10012 2.1.0.12
1.1.0a-f - 10100 2.1.1.0a-f abandoned
1.2.0beta1-2 2 10200 2.1.2.0beta1-2
1.2.0beta3-5 3 10200 3.1.2.0beta3-5
1.2.0rc1 3 10200 3.1.2.0rc1
1.2.0 3 10200 3.1.2.0
1.2.1beta-4 3 10201 3.1.2.1beta1-4
1.2.1rc1-2 3 10201 3.1.2.1rc1-2
1.2.1 3 10201 3.1.2.1
1.2.2beta1-6 12 10202 12.so.0.1.2.2beta1-6
1.0.13beta1 10 10013 10.so.0.1.0.13beta1
1.0.13rc1 10 10013 10.so.0.1.0.13rc1
1.2.2rc1 12 10202 12.so.0.1.2.2rc1
1.0.13 10 10013 10.so.0.1.0.13
1.2.2 12 10202 12.so.0.1.2.2

Henceforth the source version will match the shared-library minor and patch numbers; the shared-
library major version number will be used for changes in backward compatibility, as it is intended. The
PNG_PNGLIB_VER macro, which is not used within libpng but is available for applications, is an
unsigned integer of the form xyyzz corresponding to the source version x.y.z (leading zeros in y and z).
Beta versions were given the previous public release number plus a letter, until version 1.0.6j; from
then on they were given the upcoming public release number plus "betaNN" or "rcN".

68 April 15, 2002

LIBPNG(3) LIBPNG(3)

SEE ALSO
libpngpf(3), png(5)

libpng:

ftp://ftp.uu.net/graphics/png http://www.libpng.org/pub/png

zlib:

(generally) at the same location as libpng or at
ftp://ftp.uu.net/pub/archiving/zip/zlib
ftp://ftp.info-zip.org/pub/infozip/zlib

PNGspecification:RFC2083

(generally) at the same location as libpng or at
ftp://ds.internic.net/rfc/rfc2083.txt
or (as a W3C Recommendation) at
http://www.w3.org/TR/REC-png.html

In the case of any inconsistency between the PNG specification and this library, the specification takes
precedence.

AUTHORS
This man page: Glenn Randers-Pehrson <randeg@alum.rpi.edu>

The contributing authors would like to thank all those who helped with testing, bug fixes, and patience.
This wouldn’t hav e been possible without all of you.

Thanks to Frank J. T. Wojcik for helping with the documentation.

Libpng version 1.2.2 - April 15, 2002: Initially created in 1995 by Guy Eric Schalnat, then of Group
42, Inc. Currently maintained by Glenn Randers-Pehrson (randeg@alum.rpi.edu).

Supported by the PNG development group
(png-implement@ccrc.wustl.edu).

COPYRIGHT NOTICE, DISCLAIMER, and LICENSE:
(This copy of the libpng notices is provided for your convenience. In case of any discrepancy between
this copy and the notices in the file png.h that is included in the libpng distribution, the latter shall pre-
vail.)

If you modify libpng you may insert additional notices immediately following this sentence.

libpng versions 1.0.7, July 1, 2000, through 1.2.2, April 15, 2002, are Copyright (c) 2000-2002 Glenn
Randers-Pehrson, and are distributed according to the same disclaimer and license as libpng-1.0.6 with
the following individuals added to the list of Contributing Authors

Simon-Pierre Cadieux
Eric S. Raymond
Gilles Vollant

and with the following additions to the disclaimer:

There is no warranty against interference with your
enjoyment of the library or against infringement.
There is no warranty that our efforts or the library
will fulfill any of your particular purposes or needs.
This library is provided with all faults, and the entire

April 15, 2002 69

LIBPNG(3) LIBPNG(3)

risk of satisfactory quality, performance, accuracy, and
effort is with the user.

libpng versions 0.97, January 1998, through 1.0.6, March 20, 2000, are Copyright (c) 1998, 1999 Glenn
Randers-Pehrson Distributed according to the same disclaimer and license as libpng-0.96, with the fol-
lowing individuals added to the list of Contributing Authors:

Tom Lane
Glenn Randers-Pehrson
Willem van Schaik

libpng versions 0.89, June 1996, through 0.96, May 1997, are Copyright (c) 1996, 1997 Andreas Dilger
Distributed according to the same disclaimer and license as libpng-0.88, with the following individuals
added to the list of Contributing Authors:

John Bowler
Kevin Bracey
Sam Bushell
Magnus Holmgren
Greg Roelofs
Tom Tanner

libpng versions 0.5, May 1995, through 0.88, January 1996, are Copyright (c) 1995, 1996 Guy Eric
Schalnat, Group 42, Inc.

For the purposes of this copyright and license, "Contributing Authors" is defined as the following set of
individuals:

Andreas Dilger
Dave Martindale
Guy Eric Schalnat
Paul Schmidt
Tim Wegner

The PNG Reference Library is supplied "AS IS". The Contributing Authors and Group 42, Inc. dis-
claim all warranties, expressed or implied, including, without limitation, the warranties of mer-
chantability and of fitness for any purpose. The Contributing Authors and Group 42, Inc. assume no
liability for direct, indirect, incidental, special, exemplary, or consequential damages, which may result
from the use of the PNG Reference Library, even if advised of the possibility of such damage.

Permission is hereby granted to use, copy, modify, and distribute this source code, or portions hereof,
for any purpose, without fee, subject to the following restrictions:

1. The origin of this source code must not be misrepresented.

2. Altered versions must be plainly marked as such and
must not be misrepresented as being the original source.

3. This Copyright notice may not be removed or altered from
any source or altered source distribution.

The Contributing Authors and Group 42, Inc. specifically permit, without fee, and encourage the use of
this source code as a component to supporting the PNG file format in commercial products. If you use
this source code in a product, acknowledgment is not required but would be appreciated.

A "png_get_copyright" function is available, for convenient use in "about" boxes and the like:

printf("%s",png_get_copyright(NULL));

70 April 15, 2002

LIBPNG(3) LIBPNG(3)

Also, the PNG logo (in PNG format, of course) is supplied in the files "pngbar.png" and "pngbar.jpg
(88x31) and "pngnow.png" (98x31).

Libpng is OSI Certified Open Source Software. OSI Certified Open Source is a certification mark of
the Open Source Initiative.

Glenn Randers-Pehrson randeg@alum.rpi.edu April 15, 2002

April 15, 2002 71

LIBPNGPF(3) LIBPNGPF(3)

NAME
libpng − Portable Network Graphics (PNG) Reference Library 1.2.2 (private functions)

SYNOPSIS
#include <png.h>

void png_build_gamma_table (png_structp png_ptr);

void png_build_grayscale_palette (int bit_depth, png_colorp palette);

void png_calculate_crc (png_structp png_ptr, png_bytep ptr, png_size_t length);

void png_check_chunk_name (png_structp png_ptr, png_bytep chunk_name);

png_size_t png_check_keyword (png_structp png_ptr, png_charp key, png_charpp new_key);

void png_combine_row (png_structp png_ptr, png_bytep row, int mask);

void png_correct_palette (png_structp png_ptr, png_colorp palette, int num_palette);

int png_crc_error (png_structp png_ptr);

int png_crc_finish (png_structp png_ptr, png_uint_32 skip);

void png_crc_read (png_structp png_ptr, png_bytep buf, png_size_t length);

png_voidp png_create_struct (int type);

png_voidp png_create_struct_2 (int type, png_malloc_ptr malloc_fn, png_voidp mem_ptr);

png_charp png_decompress_chunk (png_structp png_ptr, int comp_type, png_charp chunkdata,
png_size_t chunklength, png_size_t prefix_length, png_size_t *data_length);

72 April 15, 2002

LIBPNGPF(3) LIBPNGPF(3)

void png_destroy_struct (png_voidp struct_ptr);

void png_destroy_struct_2 (png_voidp struct_ptr, png_free_ptr free_fn, png_voidp mem_ptr);

void png_do_background (png_row_infop row_info, png_bytep row, png_color_16p trans_values,
png_color_16p background, png_color_16p background_1, png_bytep gamma_table, png_bytep
gamma_from_1, png_bytep gamma_to_1, png_uint_16pp gamma_16, png_uint_16pp
gamma_16_from_1, png_uint_16pp gamma_16_to_1, int gamma_shift);

void png_do_bgr (png_row_infop row_info, png_bytep row);

void png_do_chop (png_row_infop row_info, png_bytep row);

void png_do_dither (png_row_infop row_info, png_bytep row, png_bytep palette_lookup,
png_bytep dither_lookup);

void png_do_expand (png_row_infop row_info, png_bytep row, png_color_16p trans_value);

void png_do_expand_palette (png_row_infop row_info, png_bytep row, png_colorp palette,
png_bytep trans, int num_trans);

void png_do_gamma (png_row_infop row_info, png_bytep row, png_bytep gamma_table,
png_uint_16pp gamma_16_table, int gamma_shift);

void png_do_gray_to_rgb (png_row_infop row_info, png_bytep row);

void png_do_invert (png_row_infop row_info, png_bytep row);

void png_do_pack (png_row_infop row_info, png_bytep row, png_uint_32 bit_depth);

void png_do_packswap (png_row_infop row_info, png_bytep row);

void png_do_read_filler (png_row_infop row_info, png_bytep row, png_uint_32 filler,

April 15, 2002 73

LIBPNGPF(3) LIBPNGPF(3)

png_uint_32 flags);

void png_do_read_interlace (png_row_infop row_info, png_bytep row, int pass, png_uint_32
transformations);

void png_do_read_invert_alpha (png_row_infop row_info, png_bytep row);

void png_do_read_swap_alpha (png_row_infop row_info, png_bytep row);

void png_do_read_transformations (png_structp png_ptr);

int png_do_rgb_to_gray (png_row_infop row_info, png_bytep row);

void png_do_shift (png_row_infop row_info, png_bytep row, png_color_8p bit_depth);

void png_do_strip_filler (png_row_infop row_info, png_bytep row, png_uint_32 flags);

void png_do_swap (png_row_infop row_info, png_bytep row);

void png_do_unpack (png_row_infop row_info, png_bytep row);

void png_do_unshift (png_row_infop row_info, png_bytep row, png_color_8p sig_bits);

void png_do_write_interlace (png_row_infop row_info, png_bytep row, int pass);

void png_do_write_invert_alpha (png_row_infop row_info, png_bytep row);

void png_do_write_swap_alpha (png_row_infop row_info, png_bytep row);

void png_do_write_transformations (png_structp png_ptr);

74 April 15, 2002

LIBPNGPF(3) LIBPNGPF(3)

void *png_far_to_near (png_structp png_ptr,png_voidp ptr, int check);

void png_flush (png_structp png_ptr);

png_int_32 png_get_int_32 (png_bytep buf);

png_uint_16 png_get_uint_16 (png_bytep buf);

png_uint_32 png_get_uint_32 (png_bytep buf);

void png_handle_bKGD (png_structp png_ptr, png_infop info_ptr, png_uint_32 length);

void png_handle_cHRM (png_structp png_ptr, png_infop info_ptr, png_uint_32 length);

void png_handle_gAMA (png_structp png_ptr, png_infop info_ptr, png_uint_32 length);

void png_handle_hIST (png_structp png_ptr, png_infop info_ptr, png_uint_32 length);

void png_handle_IEND (png_structp png_ptr, png_infop info_ptr, png_uint_32 length);

void png_handle_IHDR (png_structp png_ptr, png_infop info_ptr, png_uint_32 length);

void png_handle_iCCP (png_structp png_ptr, png_infop info_ptr, png_uint_32 length);

void png_handle_iTXt (png_structp png_ptr, png_infop info_ptr, png_uint_32 length);

void png_handle_oFFs (png_structp png_ptr, png_infop info_ptr, png_uint_32 length);

void png_handle_pCAL (png_structp png_ptr, png_infop info_ptr, png_uint_32 length);

April 15, 2002 75

LIBPNGPF(3) LIBPNGPF(3)

void png_handle_pHYs (png_structp png_ptr, png_infop info_ptr, png_uint_32 length);

void png_handle_PLTE (png_structp png_ptr, png_infop info_ptr, png_uint_32 length);

void png_handle_sBIT (png_structp png_ptr, png_infop info_ptr, png_uint_32 length);

void png_handle_sCAL (png_structp png_ptr, png_infop info_ptr, png_uint_32 length);

void png_handle_sPLT (png_structp png_ptr, png_infop info_ptr, png_uint_32 length);

void png_handle_sRGB (png_structp png_ptr, png_infop info_ptr, png_uint_32 length);

void png_handle_tEXt (png_structp png_ptr, png_infop info_ptr, png_uint_32 length);

void png_handle_tIME (png_structp png_ptr, png_infop info_ptr, png_uint_32 length);

void png_handle_tRNS (png_structp png_ptr, png_infop info_ptr, png_uint_32 length);

void png_handle_unknown (png_structp png_ptr, png_infop info_ptr, png_uint_32 length);

void png_handle_zTXt (png_structp png_ptr, png_infop info_ptr, png_uint_32 length);

void png_info_destroy (png_structp png_ptr, png_infop info_ptr);

void png_init_mmx_flags (png_structp png_ptr);

void png_init_read_transformations (png_structp png_ptr);

void png_process_IDAT_data (png_structp png_ptr, png_bytep buffer, png_size_t buffer_length);

76 April 15, 2002

LIBPNGPF(3) LIBPNGPF(3)

void png_process_some_data (png_structp png_ptr, png_infop info_ptr);

void png_push_check_crc (png_structp png_ptr);

void png_push_crc_finish (png_structp png_ptr);

void png_push_crc_skip (png_structp png_ptr, png_uint_32 length);

void png_push_fill_buffer (png_structp png_ptr, png_bytep buffer, png_size_t length);

void png_push_handle_tEXt (png_structp png_ptr, png_infop info_ptr, png_uint_32 length);

void png_push_handle_unknown (png_structp png_ptr, png_infop info_ptr, png_uint_32 length);

void png_push_handle_zTXt (png_structp png_ptr, png_infop info_ptr, png_uint_32 length);

void png_push_have_end (png_structp png_ptr, png_infop info_ptr);

void png_push_have_info (png_structp png_ptr, png_infop info_ptr);

void png_push_have_row (png_structp png_ptr, png_bytep row);

void png_push_process_row (png_structp png_ptr);

void png_push_read_chunk (png_structp png_ptr, png_infop info_ptr);

void png_push_read_end (png_structp png_ptr, png_infop info_ptr);

void png_push_read_IDAT (png_structp png_ptr);

April 15, 2002 77

LIBPNGPF(3) LIBPNGPF(3)

void png_push_read_sig (png_structp png_ptr, png_infop info_ptr);

void png_push_read_tEXt (png_structp png_ptr, png_infop info_ptr);

void png_push_read_zTXt (png_structp png_ptr, png_infop info_ptr);

void png_push_restore_buffer (png_structp png_ptr, png_bytep buffer, png_size_t buffer_length);

void png_push_save_buffer (png_structp png_ptr);

void png_read_data (png_structp png_ptr, png_bytep data, png_size_t length);

void png_read_filter_row (png_structp png_ptr, png_row_infop row_info, png_bytep row,
png_bytep prev_row, int filter);

void png_read_finish_row (png_structp png_ptr);

void png_read_push_finish_row (png_structp png_ptr);

void png_read_start_row (png_structp png_ptr);

void png_read_transform_info (png_structp png_ptr, png_infop info_ptr);

void png_reset_crc (png_structp png_ptr);

void png_save_int_32 (png_bytep buf, png_int_32 i);

void png_save_uint_16 (png_bytep buf, unsigned int i);

void png_save_uint_32 (png_bytep buf, png_uint_32 i);

78 April 15, 2002

LIBPNGPF(3) LIBPNGPF(3)

void png_write_bKGD (png_structp png_ptr, png_color_16p values, int color_type);

void png_write_cHRM (png_structp png_ptr, double white_x, double white_y, double red_x, dou-
ble red_y, double green_x, double green_y, double blue_x, double blue_y);

void png_write_cHRM_fixed (png_structp png_ptr, png_uint_32 white_x, png_uint_32 white_y,
png_uint_32 red_x, png_uint_32 red_y, png_uint_32 green_x, png_uint_32 green_y, png_uint_32
blue_x, png_uint_32 blue_y);

void png_write_data (png_structp png_ptr, png_bytep data, png_size_t length);

void png_write_filtered_row (png_structp png_ptr, png_bytep filtered_row);

void png_write_find_filter (png_structp png_ptr, png_row_infop row_info);

void png_write_finish_row (png_structp png_ptr);

void png_write_gAMA (png_structp png_ptr, double file_gamma);

void png_write_gAMA_fixed (png_structp png_ptr, png_uint_32 int_file_gamma);

void png_write_hIST (png_structp png_ptr, png_uint_16p hist, int num_hist);

void png_write_iCCP (png_structp png_ptr, png_charp name, int compression_type, png_charp
profile, int proflen);

void png_write_IDAT (png_structp png_ptr, png_bytep data, png_size_t length);

void png_write_IEND (png_structp png_ptr);

void png_write_IHDR (png_structp png_ptr, png_uint_32 width, png_uint_32 height, int bit_depth,
int color_type, int compression_type, int filter_type, int interlace_type);

April 15, 2002 79

LIBPNGPF(3) LIBPNGPF(3)

void png_write_iTXt (png_structp png_ptr, int compression, png_charp key, png_charp lang,
png_charp translated_key, png_charp text));

void png_write_oFFs (png_structp png_ptr, png_uint_32 x_offset, png_uint_32 y_offset, int
unit_type);

void png_write_pCAL (png_structp png_ptr, png_charp purpose, png_int_32 X0, png_int_32 X1,
int type, int nparams, png_charp units, png_charpp params);

void png_write_pHYs (png_structp png_ptr, png_uint_32 x_pixels_per_unit, png_uint_32 y_pix-
els_per_unit, int unit_type);

void png_write_PLTE (png_structp png_ptr, png_colorp palette, png_uint_32 num_pal);

void png_write_sBIT (png_structp png_ptr, png_color_8p sbit, int color_type);

void png_write_sCAL (png_structp png_ptr, png_charp unit, double width, double height);

void png_write_sCAL_s (png_structp png_ptr, png_charp unit, png_charp width, png_charp
height);

void png_write_sig (png_structp png_ptr);

void png_write_sRGB (png_structp png_ptr, int intent);

void png_write_sPLT (png_structp png_ptr, png_spalette_p palette);

void png_write_start_row (png_structp png_ptr);

void png_write_tEXt (png_structp png_ptr, png_charp key, png_charp text, png_size_t text_len);

void png_write_tIME (png_structp png_ptr, png_timep mod_time);

80 April 15, 2002

LIBPNGPF(3) LIBPNGPF(3)

void png_write_tRNS (png_structp png_ptr, png_bytep trans, png_color_16p values, int number,
int color_type);

void png_write_zTXt (png_structp png_ptr, png_charp key, png_charp text, png_size_t text_len,
int compression);

DESCRIPTION
The functions listed above are used privately by libpng and are not recommended for use by applica-
tions. They are not "exported" to applications using shared libraries. They are listed alphabetically
here as an aid to libpng maintainers. See png.h for more information on these functions.

SEE ALSO
libpng(3), png(5)

AUTHOR
Glenn Randers-Pehrson

April 15, 2002 81

PNG(5) PNG(5)

NAME
png − Portable Network Graphics (PNG) format

DESCRIPTION
PNG (Portable Network Graphics) is an extensible file format for the lossless, portable, well-com-
pressed storage of raster images. PNG provides a patent-free replacement for GIF and can also replace
many common uses of TIFF. Indexed-color, grayscale, and truecolor images are supported, plus an
optional alpha channel. Sample depths range from 1 to 16 bits.

PNG is designed to work well in online viewing applications, such as the World Wide Web, so it is
fully streamable with a progressive display option. PNG is robust, providing both full file integrity
checking and fast, simple detection of common transmission errors. Also, PNG can store gamma and
chromaticity data for improved color matching on heterogeneous platforms.

SEE ALSO
libpng(3),zlib(3),deflate(5),andzlib(5)

PNG 1.2 specification, July 1999:

http://www.libpng.org/pub/png
or ftp://ftp.uu.net/graphics/png/documents

PNG 1.0 specification, October 1996:

RFC 2083

ftp://ds.internic.net/rfc/rfc2083.txt
or (as a W3C Recommendation) at
http://www.w3.org/TR/REC-png.html

AUTHORS
This man page: Glenn Randers-Pehrson

Portable Network Graphics (PNG) Specification Version 1.2 (July 8, 1999): Glenn Randers-Pehrson
and others (png-list@ccrc.wustl.edu).

Portable Network Graphics (PNG) Specification Version 1.0 (October 1, 1996): Thomas Boutell and
others (png-list@ccrc.wustl.edu).

COPYRIGHT NOTICE
The PNG-1.2 specification is copyright (c) 1999 Glenn Randers-Pehrson. See the specification for con-
ditions of use and distribution.

The PNG-1.0 specification is copyright (c) 1996 Massachussets Institute of Technology. See the speci-
fication for conditions of use and distribution.

82 April 15, 2002

	GIF2PNG (1)
	PNGMETA (1)
	pngtopnm (1)
	pnmtopng (1)
	WEB2PNG (1)
	LIBPNG (3)
	LIBPNGPF (3)
	PNG (5)

