
NAME
aliastorle − Convert Alias™ raster files to RLE format.

SYNOPSIS
aliastorle [−v] [−o outfile] [infile]

DESCRIPTION
This program converts an image in Alias™ "pix" format to RLE(5) format. Since "pix" and RLE differ on
the origin location, the program flips the image top to bottom.

OPTIONS
−o outfile

If specified, the output will be written to this file. If outfile is "−", or if it is not specified, the out-
put will be written to the standard output stream. −v Verbose output.

infile The input will be read from this file. If infile is "−" or is not specified, the input will be read from
the standard input stream.

SEE ALSO
rletoalias(1), urt(1), RLE(5).

AUTHOR
Raul Rivero, Mathematics Department, University of Oviedo.

1

APPLYMAP(1) APPLYMAP(1)

NAME
applymap − Apply the color map in an RLE file to the pixel data

SYNOPSIS
applymap [−l] [−o outfile] [infile]

DESCRIPTION
This program takes the color map in an RLE(5) file and modifies the pixel values by applying the color map
to them. If there is more than one color channel in the input file, the color map in the input file should have
the same number of channels. If the input file has a single color channel, the output file will have the same
number of color channels as the color map.

Each pixel in the input file is mapped as follows: For a multi-channel input file, a pixel in channel i is
mapped as map[i][pixel] >> 8, producing a pixel in output channel i. The right shift takes the 16 bit color
map value to an 8 bit pixel value. For a single channel input file, to produce a pixel in output channel i is
produced from the corresponding input pixel value as map[i][pixel] >> 8.

OPTIONS
−l This option will cause a linear (identity) color map to be loaded into the output file. Otherwise,

the output file will have no color map.

infile The input will be read from this file, otherwise, input will be taken from stdin.

−o outfile
If specified, output will be written to this file, otherwise it will go to stdout.

SEE ALSO
rleldmap(1), urt(1), RLE(5).

AUTHOR
Spencer W. Thomas, University of Utah

BUGS
If the image data and color map channels in the input file do not conform to the restriction stated above
(N→N or 1→N) the program will most likely core dump.

2 Nov 12, 1986 1

AV G4(1) AVG4(1)

NAME
avg4 − Downfilter an image by simple averaging.

SYNOPSIS
avg4 [−o outfile] [infile]

DESCRIPTION
Avg4 downfilters an RLE image into a resulting image of 1/4th the size, by simply averaging four pixel val-
ues in the input image to produce a single pixel in the output. If the original image does not contain an al-
pha channel, avg4 creates one by counting the number of non-zero pixels in each group of four input pixels
and using the count to produce a coverage value. While the alpha channel produced this way is crude (only
four levels of coverage) it is enough to make a noticeable improvement in the edges of composited images.

OPTIONS
infile The input will be read from this file, otherwise, input will be taken from stdin.

−o outfile
If specified, output will be written to this file, otherwise it will go to stdout.

SEE ALSO
fant(1), rlecomp(1), smush(1), urt(1), RLE(5).

AUTHOR
Rod Bogart, John W. Peterson

BUGS
Very simple minded − more elaborate filters could be implemented.

1 Nov 12, 1986 3

CROP(1) CROP(1)

NAME
crop − Change the size of an RLE image

SYNOPSIS
crop [−b] [xmin ymin xmax ymax] [−o outfile] [infile]

DESCRIPTION
Crop changes the size of an RLE image. The command line numbers xmin ymin xmax ymax specify the
bounds of the resulting image. If the resulting image is larger than the original, crop supplies blank pixels,
otherwise pixels are thrown away.

OPTIONS
−b The input image is cropped to the enclosing box. Extra rows and columns of black pixels are re-

moved. The infile must be a file; no piped input is allowed for this option.

−o outfile
If specified, output will be written to this file, otherwise it will go to stdout.

infile The input will be read from this file, otherwise, input will be taken from stdin.

SEE ALSO
repos(1), urt(1), RLE(5).

AUTHOR
Rod Bogart

BUGS
Could be combined with repos. Does not check to see if the input and output regions are disjoint.

4 Nov 12, 1986 1

CUBITORLE(1) CUBITORLE(1)

NAME
cubitorle − Convert cubicomp image to an RLE format file.

SYNOPSIS
cubitorle [−o outfile] inprefix

DESCRIPTION
Cubitorle converts a set of files in the Cubicomp image format to a raster file in the Utah Raster Toolkit
RLE format. Cubitorle expects as input a set of files of the form "inprefix.r8", "inprefix.g8", and "inpre-
fix.b8". These files are combined to form a single RLE(5) file. The output is written to stdout unless an
output file name is given using the −o option.

OPTIONS
−o Allows specification of an output file name.

SEE ALSO
rleflip(1), urt(1), RLE(5).

AUTHOR
Rod Bogart

1 6 February 1988 5

DVIRLE(1) DVIRLE(1)

NAME
dvirle − convert dvi version 2 files, produced by TeX82, to RLE images

SYNOPSIS
dvirle [−m number] [−h] [−s] [−d number] [−x xfilter] [−y yfilter] infile.dvi

DESCRIPTION
Dvirle converts .dvi files produced by TeX(1) to RLE(5) format. The basic process involves two passes. In
the first pass, the .dvi file is converted into a list of characters. The second pass takes this list and converts
it to RLE. The image is filtered to produce gray-scale letters. 300dpi fonts are used, producing an unfil-
tered page size of approximately 2500×3500 pixels. The default is to average this by 5 pixels in the X di-
rection and 5 in the Y, producing a 510×708 image. The filtering parameters can be altered with the −x and
−y flags.

The −m number option is used to change the device magnification (which is in addition to any magnifica-
tion defined in the TeX source file). Number should be replaced by an integer which is 1000 times the mag-
nification you want. for example, −m 1315 would produce output magnified to 131.5% of true size. The
default is no magnification (1000). Note, however, that a site will only support particular magnifications. If
you get error messages indicating that fonts are missing when using this option, you probably have picked
an unsupported magnification.

The −h flag, when supplied, causes the image to be converted "on its side" (rotated by 90 degrees).

Normally the first pass prints the page numbers from the .dvi file. The −s flag suppresses these.

The default maxdrift parameter is 2 pixels (1/100th of an inch); the −d option may be used to alter this.
The maxdrift parameter determines just how much font spacing is allowed to influence character position-
ing. The default value 2 allows a small amount of variation within words without allowing any letters to
become too far out of position.

The output file contains a number of separate RLE images concatenated, one for each page in the input.
These can be separated with rlesplit(1). The output images have a single image channel and an identical
"alpha" channel. For compositing with a colored background, it will be necessary to use rleswap(1) to ex-
pand it to 3 color channels.

The shell script topcrop will crop off the top 384 lines of the output image (assuming the default LaTeX
page size and dvirle filtering parameters), making it suitable for viewing on a (384×512) frame buffer.

topcrop <file.rle >cropfile.rle

A better solution is to use something like the following LaTeX macros to set the page size so that, with the
default filter parameters, the output images will be 510×384.
\newcommand{\maxpage}{%% Make page as large as possible

\setlength{\topmargin}{0in}
\setlength{\oddsidemargin}{0pt}
\setlength{\evensidemargin}{0pt}
\setlength{\marginparwidth}{0pt}
\setlength{\marginparsep}{0pt}
\setlength{\headheight}{0pt}
\setlength{\headsep}{0pt}
\setlength{\textwidth}{6.5in}}

\newcommand{\plainpage}{%% Page with space for headers
\pagestyle{plain}
\setlength{\textheight}{4.0667in}
\setlength{\footheight}{12pt}
\setlength{\footskip}{24pt}
\maxpage}

6 May 12, 1987 1

DVIRLE(1) DVIRLE(1)

\newcommand{\headingspage}{%% Page with headers
\pagestyle{headings}
\setlength{\textheight}{4.0667in}
\setlength{\footheight}{12pt}
\setlength{\footskip}{24pt}
\maxpage}

\newcommand{\emptypage}{%% Page with no headers
\pagestyle{empty}
\setlength{\textheight}{4.4in}
\setlength{\footheight}{0pt}
\setlength{\footskip}{0pt}
\maxpage}

FILES
dvirle1 first pass
dvirle2 second pass

SEE ALSO
rleflip(1), rlesplit(1), rleswap(1), urt(1), RLE(5).

AUTHOR
The original (Versatec) version was written by Janet Incerpi of Brown University. Richard Furuta and Carl
Binding of the University of Washington modified the programs for DVI version 2 files. Chris Torek of the
University of Maryland rewrote both passes in order to make them run at reasonable speeds. Spencer W.
Thomas of the University of Utah converted it to produce RLE images as output.

BUGS
The −h option doesn’t work properly. Use rleflip(1) instead.

Truncates pages wider than 2550 pixels (8.5 inches).

Doesn’t handle missing fonts gracefully.

Should be a single program, instead of a shell script and two programs. Doesn’t use the usual RLE argu-
ment and file name conventions. Should output the TeX page numbers as picture comments.

1 May 12, 1987 7

FANT(1) FANT(1)

NAME
fant − perform simple spatial transforms on an image

SYNOPSIS
fant [−a angle] [−b blurfactor] [−o outfile] [−p xoff yoff] [−s xscale yscale] [−S xsize ysize] [−v] [

infile]

DESCRIPTION
Fant rotates or scales an image by an arbitrary amount. It does this by using pixel integration (if the image
size is reduced) or pixel interpolation if the image size is increased. Because it works with subpixel preci-
sion, aliasing artifacts are not introduced (hah! see BUGS). Fant uses a two-pass sampling technique to
perform the transformation. If infile is "−" or absent, input is read from the standard input.

OPTIONS
−a angle

Amount to rotate image by, a real number from 0 to 45 degrees (positive numbers rotate clock-
wise). Use rleflip(1) first to rotate an image by larger amounts.

−b blur_factor
Control the amount of blurring in the output image. If the blur factor is greater than one, image
blurring will increase. If the blur factor is smaller than one, image blurring will decrease but alias-
ing artifacts may be visible.

−o outfile
Specifies where to place the resulting image. The default is to write to stdout. If outfile is "−", the
output will be written to the standard output stream.

−p xoff yoff
Specifies where the origin of the image is − the image is rotated or scaled about this point. If no
origin is specified, the center of the image is used.

−s xscale yscale
The amount (in real numbers) to scale an image by. This is often useful for correcting the aspect
of an image for display on a frame buffer with non square pixels. For this use, the origin should be
specified as 0, 0 (see −p above). If an image is only scaled in Y and no rotation is performed, fant
only uses one sampling pass over the image, cutting the computation time in half.

−S xsize ysize
An alternate method of specifying the scale factors. xsize and ysize give the desired output image
size.

The −S option can not be used in combination with −a, −p, or −s.

−v Verbose output. Primarily for debugging.

SEE ALSO
avg4(1), rleflip(1), rlezoom(1), urt(1), RLE(5),
Fant, Karl M. "A Nonaliasing, Real-Time, Spatial Transform Technique", IEEE CG&A, January, 1986, p.
71.

AUTHORS
John W. Peterson, James S. Painter

BUGS
Fant uses a rather poor anti-aliasing filter (a triangle filter). This is usually good enough but will exhibit
noticeable aliasing artifacts on nasty input images.

8 Dec 4, 1990

GET4D(1) GET4D(1)

NAME
get4d − get RLE images to a Silicon Graphics Iris/4D display

SYNOPSIS
get4d [−D] [−f] [−{GS}] [−g disp_gamma] [−{iI} image_gamma] [−n] [−p xpos ypos] [−s xsize
ysize] [−w] [infile]

DESCRIPTION
This program displays an RLE(5) file on a Silicon Graphics Iris/4D display or IBM RS6000 with the GL li-
brary.

The default behavior is to display the image in RGB color. An option is provided to force black and white
display. There is currently no support in get4D for non-24-bit color (lookup table modes), but the getmex
(1) program should work on 8-bit 4D’s which cannot do RGB display.

The GT graphics fast pixel access routines are used by default on 4D/GT and GTX machines, and Personal
Irises. The −G option is provided to force this mode, if the string returned by the gversion(3g) function
changes, or is different on future 4D’s.

The penalty of GT mode is not being able to resize or pan the window, but redisplay is so fast that there is
no need to do so. You can also go into "slow mode" on GT machines by giving the −S flag. Slow mode al-
lows resizing the window and panning with the mouse.

OPTIONS
−p xpos ypos

Position of the lower left corner of the window.

−s xsize ysize
Initial size of the window (slow mode only.)

−f Normally, get4d will fork itself after putting the image on the screen, so that the parent process
may return the shell, leaving an "invisible" child to keep the image refreshed. If −f is specified,
get4d will remain attached to the shell, whence it may be killed with an interrupt signal. In either
case the window manager "quit" menu button can be used to kill get4d.

−g display_gamma
Specify the gamma of the display monitor. If this flag is not specified, get4d looks in the user’s
home directory for a .gamma file. This file is produced by the gamma(1g) SGI command (This is
not done on the IBM R6000). The value in the .gamma file is used to determine the gamma of the
display by calculating (2.4 / gamma_value) and using that as the disp_gamma.

−i image_gamma
Specify the gamma (contrast) of the image. A low contrast image, suited for direct display with-
out compensation on a high contrast monitor (as most monitors are) will have a gamma of less
than one. The default image gamma is 1.0. Image gamma may also be specified by a picture com-
ment in the RLE (5) file of the form image_gamma=gamma. The command line argument will
override the value in the file if specified.

−I image_gamma
An alternate method of specifying the image gamma, the number following −I is the gamma of the
display for which the image was originally computed (and is therefore 1.0 divided by the actual
gamma of the image). Image display gamma may also be specified by a picture comment in the
RLE (5) file of the form display_gamma=gamma. The command line argument will override the
value in the file if specified.

−n Do not draw a window border.

−w This flag forces get4d to produce a gray scale dithered image instead of a color image. Color input
will be transformed to black and white via the NTSC Y transform.

1 June 20, 1989 9

GET4D(1) GET4D(1)

−D "Debug mode". The operations in the input RLE(5) file will be printed as they are read.

file Name of the RLE(5) file to display. If not specified, the image will be read from the standard in-
put.

In "slow mode" You can "pan" a small window around in an image by clicking the left mouse button in the
image. The position in the image under the cursor will jump to the center of the window. The F9 key or Alt
keys reset the view to position the center of the image in the center of the window. Furthermore, control-F9
(or control-Alt) saves the current view, and shift-F9 (or shift-Alt) restores it.

NOTE
If you have a shaded image that looks "too dark", it is probably because the gamma is not set on the display.
(The default gamma is 1, which assumes that gamma compensation will be done once and for all by pro-
grams producing images.) gamma 2 is better when the image producing program does not do the gamma
correction. You may want to put a gamma command in your .login file.

SEE ALSO
getmex(1), urt(1), gversion(3g), gamma(1g), RLE(5).

AUTHOR
Russ Fish, University of Utah. Based on getX, by Spencer W. Thomas.

10 June 20, 1989 1

GET_ORION(1) GET_ORION(1)

NAME
get_orion − get RLE images to an Orion graphics display

SYNOPSIS
get_orion [−D] [−b] [−f] [−g gam] [−l] [−r] [infile]

DESCRIPTION
This program displays an RLE(5) file on a High Level Hardware Orion graphics display running the Star-
Point graphics system. It uses a dithering technique to take a full-colour or grey scale image into the limit-
ed number of colours available.

The default behavior is to display the image in colour using a 216 colour map (6 intensities per primary).
However, an RLE(5) file with 1 colour and 3 colour map channels is treated as a special case with the
colour map in the header loaded as the graphics colour map and the data used to index this map. In this
mode of operation no dithering is done as the file is assumed to be the output of some program which has
selected the "best" possible colours for the image and has already corrected some of the errors produced by
the quantization. An option is provided to force a grey scale display of colour images.

Get_orion uses the standard window manager creation procedure to create a window at a particular location
on the screen. The size of the window is the size of the image.

OPTIONS
−D "Debug mode". The operations in the input RLE(5) file will be printed as they are read.

−b Forces getOrion to produce a grey scale dithered image instead of a colour image using 128
shades of grey. Colour input will be transformed to grey lev el using the NTSC Y transform.

−f Normally get_orion will only use entries 0-239 of the graphics device colour map, as the others
are used by the window manager for background, icons, etc. This option will force it to use all
256 entries and is useful only when the image has been specified with a 24-bit colour map

−g gam Specifies, as a floating point number, the gamma correction factor to be used when correcting the
colour map.

−l Use a linear colour map. Identical to having a gamma of 1.

−r Use "reverse" mode for display. The scanlines are by default displayed from the bottom-up, this
option displays them from the top-down. Useful for applications which have produced the scan-
lines starting from the top one.

infile Name of file to display. If none specified, the image will be read from standard input.

SEE ALSO
urt(1), RLE(5).

AUTHOR
Gianpaolo Tommasi, Computer Laboratory, University of Cambridge. The code is based on other "get"
routines.

DEFICIENCIES
The window cannot be moved whilst the image is being displayed.

Because of the way the graphics memory is organized displaying images in GM_BW mode is slow.

1 July 20, 1987 11

GETAMI(1) GETAMI(1)

NAME

getami − display an RLE image on a Commodore Amiga and optionally save it as an IFF ILBM file.

SYNOPSIS
getami [−w width] [−h height] [−o IFFfile] [−fdlb3H] [input_file]

DESCRIPTION
Getami displays an RLE(5) image on a Commodore Amiga. The program tries to display the image in the
best possible way, using HAM mode and overscan when appropriate. Both NTSC and PAL Amigas are
catered for. In addition, the program allows you to save the displayed picture in IFF format, using Christian
Weber’s iff.library.

OPTIONS
−w width

Override the screen width computed by getami. Eg., use -w 640 if getami selects a screen resolu-
tion of 320x400 (because the picture will fit in it), but what you really want is 640x400.

-h height
Override the screen height computed by getami.

Apart from the example mentioned above, these two options are probably obsolete.

-o file Make getami act as an RLE->IFF converter: after rendering the RLE file, getami saves the image
in IFF form in the file specified, then exits.

-f Render the image flipped vertically. This option is necessary, because rleflip -v often requires more
memory than available on the amiga.

-d This option causes getami to dump the color map it computes into file "cmap".

-l This option causes getami to ignore the color map it computes, and to replace it with the color map
stored in file "cmap".

These two options must be used if you are using getami to create IFF files to be used as frames for an AN-
IM file, as all frames have to hav e the same color map.

-b Render the image in black and white. This allows you to display pictures at full resolution. (To dis-
play in color a 640x400 picture with more than 16 colors, you need to scale it down to 320x400,
not to mention the unavoidable blurriness introduced by Hold And Modify.)

-3 Render the image in 4096 colors without using HAM. This is achieved by rendering the image in
three screens, one for each of its r,g,b components, then flipping through them in rapid succession.
Because of this rapid flipping, the image flickers. This is especially noticeable in conjunction with
interlace. If you are sensitive to screen flicker, please do not use this option.

-H Force rendering of the image in HAM mode. Useful in rendering animation frames, if getami hap-
pens to render some of the frames in HAM mode and some in another mode.

MENU OPERATIONS
You can select the following actions from the menu bar:

SAVE Save the rendered picture in an IFF ILBM file. The picture will be saved in a file with the exten-
sion ".ILBM". Eg., if you are rendering a.rle, the picture will be saved in a.ILBM. If the picture
you are rendering comes from the standard input, you will be asked to specify the name of the IFF
file. This action can also be invoked by pressing right Amiga-S.

SAVE AS
Same as SAVE, but you are always asked for the name of the IFF file. To cancel the save, simply
give a null file name. This action can also be invoked by pressing right Amiga-A.

These two operations can only be invoked if you have Christian Weber’s iff.library in your LIBS: directory.
If you save a picture which has been rendered with the -3 option, you will actually create three files, with
extensions ".r", ".g", and ".b", respectively. You can view this image using the show3(1) program.

12 February, 1992 1

GETAMI(1) GETAMI(1)

QUIT Exit the program. This action can also be invoked by pressing right Amiga-Q, or by clicking on
the invisible gadget at the top left corner.

AUTHORS
Eleftherios Koutsofios (ek@ulysses.att.com) wrote the original version of this program, including the HAM
rendering algorithm.

Kriton Kyrimis (kyrimis%theseas@csi.forth.gr) added support for intuition, overscan, saving files, the
B&W and 4096 color display modes, and all the minor items selectable through switches.

1 February, 1992 13

GETAP(1) GETAP(1)

NAME
getap − get RLE images to an Apollo display

SYNOPSIS
getap [−b] [−g gamma] [−l] [−n] [−r] [−t text] [−w] [−x left] [−y top] [file]

DESCRIPTION
This program displays an RLE(5) file on an Apollo workstations running the Display Manager. It uses a
dithering technique to take a full-color or gray scale image into the limited number of colors typically avail-
able, unless "borrow mode" is specified. Under borrow mode, the 24 bit mode of the Apollo hardware is
used (if it’s available). On bitmap displays, getap converts the image to black and white and uses bitmap
dithering.

OPTIONS
−b This tells getap to use "borrow mode" instead of an apollo window, if the hardware supports it.

The only hardware that supports this are the DN550, DN560 and the DN660. The bottom portion
of the image is chopped off on workstations without square screens.

−g gamma
This loads a color map with the specified gamma.

−l Loads a linear color map.

−n "No border" mode. The Apollo window will have no border or annotation drawn.

−r On black and white displays, this flips the orientation of black and white.

−t text Displays the text string at the bottom of the image.

−w Convert the image to grays before displaying. On 4-bit displays, this produces a significantly nicer
looking image.

−x left Specify position of the left edge of the window.

−y top Specify position of the top edge of the window.

SEE ALSO
urt(1), RLE(5).

AUTHOR
John W. Peterson

BUGS
Getap is pretty sloppy about dealing with the color map, particularly in window mode.

Since Apollo workstations now support the X window system, getap is mostly subsumed by getx11.

14 Feb 3, 1987 1

GETBOB(1) GETBOB(1)

NAME
getbob − Display RLE files on HP Bobcat screens.

SYNOPSIS
getbob [−l] [−g gamma] [−p x y] [−d display] [−x driver] [infile]

DESCRIPTION
Getbob reads a file in RLE(5) format and displays it on an HP bobcat screen. It uses a dithering technique
to take a full-color or gray scale image into the limited number of colors typically available.

OPTIONS
−l Use a linear map.

−g gamma
Use a gamma correction value of gamma.

−d device
Use the device specified. The default is /dev/graphics.

−x driver
Use the driver specified. The default is hp98710.

−p x y Position image lower left hand corner on the display. The x and y position is given in pixels with
the origin taken as the lower left hand corner of the display. This flag is only useful with the −d,
and −x flags.

infile This option is used to name the input file. If not present, input is taken from stdin.

SEE ALSO
urt(1), RLE(5).

AUTHOR
Mark Bloomenthal, University of Utah

1 Jun 24, 1988 15

GETCX3D(1) GETCX3D(1)

NAME
getcx3d − display an RLE(5) image on the Chromatics

SYNOPSIS
getcx3d [−O] [−B] [−d] [−t] [−p x y] [−l] [infile

DESCRIPTION
This program displays an RLE(5) image on a Chromatics CX 1536 (raster dimensions 1536×1152×24) run-
ning CX3D.

Getcx3d will display black and white and full color images, ignoring the alpha channel if present. All three
background styles of the RLE(5) format are supported: (0) write every pixel, (1) do not write background
pixels (overlay) and (2) clear to background; see the −O and −B options. You may position an image at
some place other than (0, 0) on the screen; see the −p option. The −d and −t options magnify the image;
see below. The bounding box of the image is the only part of the image that is ever displayed (i.e. clear to
background will only clear the area within the bounding box, not the entire screen.) The color maps within
the CX are not changed. Colors are passed through a gamma correction map (gamma_value = 2.5 in
round(255 * ((x / 255) ˆ (1 / gamma_value))), judged best for the monitor connected to the CX) on the host
before they are sent to the CX. Use −l to pass colors through a linear map. Finally, any color maps speci-
fied by the RLE file are ignored. This is a bug.

OPTIONS
−O Force overlay background style. Ignoring the background style indicated in the RLE file this op-

tion will overlay the RLE image, causing the previous image on the CX to show through pixels of
background color of the present image.

−B Force clear to background style. Ignoring the background style indicated in the RLE file this op-
tion will clear the bounding box area of the RLE file before displaying the image.

−d Double the image size. Display four pixels for every one pixel of the RLE file.

−t Triple the image size. Display nine pixels for every one pixel of the RLE file.

−p x y Reposition the image. Place the left corner of the image (0, 0) at some place other than the left
corner of the CX. Note that the left corner of the image is (0, 0), which may be different from the
left corner of the bounding box of the image. The bounding box is the only area of the image that
is ever displayed.

−l Use a linear map. By default all colors are passed through a gamma correction map on the host
before they are sent to the CX. This option causes no mapping to take place.

infile Name of file to display. If not specified or if −, an RLE encoded image is read from the standard
input.

Any number of images may be displayed with one invocation of getcx3d .

FILES
/dev/dr0

SEE ALSO
urt(1), RLE(5).

AUTHOR
W. Thomas McCollough, Jr., University of Utah

BUGS
Color maps are not loaded.

If interrupted with a catchable signal, getcx3d will close the CX gently, allowing future access without re-
booting. If getcx3d is stopped, however, and then (before it is continued) killed with any signal, then the
CX may be left in a bad state.

16 June 24, 1986 1

GETFB(1) GETFB(1)

NAME
getfb − display an RLE file on a BRL libfb frame buffer.

SYNOPSIS
getfb [−d] [infile]

DESCRIPTION
This program displays an RLE(5) file on any frame buffer supported by the BRL libfb. The option −d
prints the image header information and turns on debugging of the RLE file. All of the RLE opcodes will
be printed as they are read from the input file. If an input rlefile is not specified, input will be taken from
standard input.

SEE ALSO
urt(1), RLE(5).

AUTHOR
Paul Stay, Ballistic Research Laboratory.

LIMITATIONS
Will only display images up to 1024 pixels wide. Will not display black and white (single channel) images
correctly. Ignores color map in RLE file.

1 Feb 12, 1987 17

GETGMR(1) GETGMR(1)

NAME
getgmr − Restore an RLE image to a Grinnell GMR-27 frame buffer.

SYNOPSIS
getgmr [−q] [−d] [−{BO}] [−{pP} x y] [−c channel [into]] [infile]

DESCRIPTION
Displays an RLE(5) file on a Grinnell GMR-27 frame buffer.

−q Query the given file. Determine if it is an RLE(5) file. Does not affect the frame buffer.

−D Debug the given file. Print information about each command in the input file. Displays as it
prints.

−B If the file was saved with −B or −O, restore the background color before restoring the image data.

−O If the file was saved with −B or −O, restore the image data in overlay mode. Only areas of the
original image which were not the background color are restored. The rest of the image already in
the frame buffer is undisturbed.

−p x y Reposition the image. The original lower left corner is positioned at [x, y] before restoring the im-
age. A warning: A saved image should not be repositioned so that any sav ed data wraps around
the X borders. If the file was not saved with −B or −O, this includes background areas.

−P x y Reposition the image incrementally, that is, x and y are taken as offsets from the original position
of the image.

−c channel [into]
Put only the given color channel into the frame buffer. If into is specified, loads it into that chan-
nel. If the input file is black and white (one channel), then −c channel is equivalent to −c 0 chan-
nel.

infile Name of file to display. If not specified, input is read from stdin.

SEE ALSO
RLE(5).

AUTHOR
Spencer W. Thomas, Todd Fuqua

BUGS
Seems to interact poorly with Grinnell hardware bugs at times.

18 9/14/82 1

GETIRIS(1) GETIRIS(1)

NAME
getiris − display an RLE image on a Silicon Graphics Iris Workstation.

SYNOPSIS
getiris [infile]

DESCRIPTION
This program displays an RLE(5) file on a Silicon Graphics Iris that is not running the window manager. It
uses the full 24 bits of color available on an iris. After the picture is displayed, press any mouse button to
erase the screen. Getiris does not work on the 4D series, only on the 2400 (or, I assume, 3000) series ma-
chines.

OPTIONS
infile Name of the RLE(5) file to display. If not specified, the image will be read from the standard in-

put.

SEE ALSO
get4d(1), getmex(1), urt(1), RLE(5).

AUTHOR
Glenn McMinn and Rod Bogart, University of Utah.

1 Jan 20, 1987 19

GETMAC(1) GETMAC(1)

NAME
getmac − Display RLE images on a MacIntosh display.

SYNOPSIS
getmac [−d] [infile]

DESCRIPTION
This program displays an RLE(5) file on a MacIntosh display. It uses a dithering technique to take a full-
color or gray scale image into the limited number of colors available.

Clicking on the close box or typing a q exits the program and returns to the MPW shell. All other event
processing is suspended until the program exits.

OPTIONS
−d Disables dithering.

infile Name of the RLE(5) file to display. If not specified, the image will be read from the standard in-
put.

SEE ALSO
urt(1), RLE(5).

AUTHOR
Spencer W. Thomas, University of Utah

John Peterson, Apple Computer Inc.

BUGS
Behaves unpredictably when it runs out of memory. If you have 2mb or less, don’t run under multifinder.

DEFICIENCIES
Ignores the color map.

20 Jun 22, 1988 1

GETMEX(1) GETMEX(1)

NAME
getmex − get RLE images to an Iris display under the window manager

SYNOPSIS
getmex [−f] [−w] [−D] [−m mapstart] [infile]

DESCRIPTION
This program displays an RLE(5) file on a Silicon Graphics Iris display running the mex or 4Sight window
manager. It uses a dithering technique to take a full-color or gray scale image into the limited number of
colors typically available under mex. Its default behavior is to try to display the image in color, an option is
provided to force black and white display. Sev eral getmex processes running simultaneously will share col-
or map entries.

getmex uses the standard window creation procedure to create a window with a location and size specified
by the user, with the restriction that the window will be no larger than the input image. If the window is
smaller than the image, the center of the image will be visible in the window.

You can "pan" a small window around in an image by attaching the mouse to the window using mex or
4Sight and clicking the left mouse button in the image. The position in the image under the cursor will
jump to the center of the window. The SETUP key resets the view to position the center of the image in the
center of the window. Furthermore, control-SETUP saves the current view, and shift-SETUP restores it.

OPTIONS
−f Normally, getmex will fork itself after putting the image on the screen, so that the parent process

may return the shell, leaving an "invisible" child to keep the image refreshed. If −f is specified,
getmex will remain attached to the shell, whence it may be killed with an interrupt signal or via
the window manager.

−w This flag forces getmex to produce a gray scale dithered image instead of a color image. Color in-
put will be transformed to black and white via the NTSC Y transform. Since a 128-step greyscale
is used, this will produce a much smoother looking image than color dithering.

−D "Debug mode". The operations in the input RLE(5) file will be printed as they are read.

−m mapstart
Specifies the starting location of the block of color map to be used by getmex . (There are 1024
colors available on the Iris 2400/3000s under mex.) The default for color images is a block of 512
rgb colors starting at location 512 in the color map. Black-and-white images default to a block of
128 grey shades starting at location 128. Both the rgb and grey ramps are gamma-corrected in the
same way as the makemap program in the /usr/gifts/mextools/tools directory. You probably want
to set up your initial color map using makemap .

infile Name of the RLE(5) file to display. If not specified, the image will be read from the standard in-
put.

SEE ALSO
get4d(1), getiris(1), urt(1), RLE(5).

AUTHOR
Russ Fish, University of Utah.

1 Jan 20, 1987 21

GETQCR(1) GETQCR(1)

NAME
getqcr − Photograph an RLE image with the Matrix QCR-Z camera

SYNOPSIS
getqcr [−v] [−c] [−d] [−f] [−p xpos ypos] [−e exposures] infile

DESCRIPTION
Getqcr photographs an image on the Matrix QCR-Z camera. The program reads the image once for each
channel, and displays this on QCR-Z, moving the filter wheel as appropriate. The colormap is currently ig-
nored, so one must be applied first if needed (see applymap(1)). Since the QCR supports large images (2K
or 4K pixels in size), most images will need to be stretched to fill the QCR-Z’s image area. Both fant(1)
and rlezoom(1) perform this function.

The current support library assumes the QCR-Z is connected to an HP Series 300 machine, the library may
need modifications for other HPIB interfaces.

OPTIONS
−v This enables verbose output. Since exposing large images takes several minutes, this is generally

useful to monitor progress.

−e exposures
Expose the film exposures number of times. This is much faster than running getqcr multiple
times.

−d Double expose (same as "−e 2").

−f Select high resolution (4K) mode. Default is low resolution (2K).

−c Center the image. This ignores the position values in RLE header, and centers the image in the
middle of the QCR-Z’s camera field. The proper resolution (2K or 4K) is automatically selected
depending on the image size (-f is ignored if -c is specified).

−p xpos ypos
Position the image at a specific point. Note getqcr uses the RLE coordinate system (origin at the
bottom left) instead of the QCR-Z coordinate system.

SEE ALSO
applymap(1), rlezoom(1), fant(1), rleflip(1), urt(1), RLE(5).

AUTHOR
John W. Peterson

BUGS
The color map should be applied automatically.

Currently uses "row" mode, it may run faster in "raw" mode.

Single channel images should be photographed in black and white (they currently come out red).

It was written for the 4x5 film back. Shutter and film advance controls for the 35mm and Oxberry backs
are not implemented.

22 Jan 25, 1988 1

GETREN(1) GETREN(1)

NAME
getren − get RLE images to an HP98721 ("Renaissance") display

SYNOPSIS
getren [−p xpos ypos] [−O] [−P xoff yoff] [−d display] [−x driver] [infile]

DESCRIPTION
This program displays an RLE(5) file on an HP 98721 "Renaissance" display configured with at least 24
bits per pixel. If a color map exists in the file, it is loaded into the display, otherwise a linear map is used.

OPTIONS
−p xpos ypos

position the image at xpos, ypos.

−P xoff yoff
Offset the image position by xoff yoff

−O Don’t clear the screen (overlay mode)

−d display
Gives the name of the display device to which the image is to be displayed. The default is
"/dev/hp98721".

−x driver
Gives the name of the device driver to be used to communicate with the display device. The de-
fault is "hp98721".

infile The input will be read from this file. If infile is "−" or is not specified, the input will be read from
the standard input stream.

SEE ALSO
read98721(1), urt(1), RLE(5).

AUTHOR
John W. Peterson, University of Utah, with input from Filippo Tampieri of Cornell and Eric Haines of
3D/Eye.

BUGS
The program assumes a full 24 bit Renaissance display. The HP graphics library supports automatically
dithering for displays with fewer bitplanes, but getren ignores this.
The device and driver names are compiled in as "/dev/hp98721" and "hp98721", respectively. This may
need changing on systems configured differently (in particular, systems with the Renaissance as their sole
display may use a different name for the device).

1 Nov 1, 1987 23

GETSUN(1) GETSUN(1)

NAME
getsun − get RLE images to a sun window

SYNOPSIS
getsun [−{wW}] [−D] [−l levels] [−{iI} image_gamma] [−g display_gamma] [file]

DESCRIPTION
This program displays an RLE(5) file in a sun window display. It uses a dithering technique to take a full-
color or gray scale image into the limited number of colors available under sun windows. Its default behav-
ior is to try to display the image in color with as many brightness levels as possible (except on a one bit
deep display), options are provided to limit the number of levels or to force black and white display. Sev er-
al getsun processes running simultaneously with the same color resolution will share color map entries.

Other options allow control over the gamma, or contrast, of the image. The dithering process assumes that
the incoming image has a gamma of 1.0 (i.e., a 200 in the input represents an intensity twice that of a 100.)
If this is not the case, the input values must be adjusted before dithering via the −i or −I option. The input
file may also specify the gamma of the image via a picture comment (see below). The output display is as-
sumed to have a gamma of 2.5 (standard for color TV monitors). This may be modified via the −g option if
a display with a different gamma is used.

Getsun creates a sun window the size of the image being displayed. The header of the new window dis-
plays the name of the image being displayed and its size.

OPTIONS
−w This flag forces getsun to produce a gray scale dithered image instead of a color image. Color in-

put will be transformed to black and white via the NTSC Y transform. On a low color resolution
display (a display with only 4 bits, for example), this will produce a much smoother looking image
than color dithering. It may be used in conjunction with −l to produce an image with a specified
number of gray levels.

−W This flag forces getsun to display the image as a black and white bitmap image. This is the only
mode available on monochrome (non gray scale) displays (and is the default there). Black pixels
will be displayed with pixel value 0 and white with pixel value 1.

−D "Debug mode". The operations in the input RLE(5) file will be printed as they are read.

−l levels
Specify the number of gray or color levels to be used in the dithering process. The default is 5 ex-
cept on monochrome (non gray scale) displays. Levels must be in the range .

−i image_gamma
Specify the gamma (contrast) of the image. A low contrast image, suited for direct display with-
out compensation on a high contrast monitor (as most monitors are) will have a gamma of less
than one. The default image gamma is 1.0. Image gamma may also be specified by a picture com-
ment in the RLE (5) file of the form image_gamma=gamma. The command line argument will
override the value in the file if specified.

−I image_gamma
An alternate method of specifying the image gamma, the number following −I is the gamma of the
display for which the image was originally computed (and is therefore 1.0 divided by the actual
gamma of the image). Image display gamma may also be specified by a picture comment in the
RLE (5) file of the form display_gamma=gamma. The command line argument will override the
value in the file if specified.

−g display_gamma
Specify the gamma of the sun display monitor. The default value is 2.5, suitable for most color
TV monitors (this is the gamma value assumed by the NTSC video standard).

infile Name of the RLE(5) file to display. If not specified, the image will be read from the standard in-
put.

24 October 6, 1987 1

GETSUN(1) GETSUN(1)

SEE ALSO
getx11(1), urt(1), RLE(5).

AUTHOR
Philip J. Klimbal, RIACS

BUGS
Single channel input files with color map should be displayed as such by loading the colormap directly, in-
stead of mapping the input to 24 bits and then dithering back to 8.

1 October 6, 1987 25

GETTAAC(1) GETTAAC(1)

NAME
gettaac − display an RLE image on a Sun TAAC-1.

SYNOPSIS
gettaac

DESCRIPTION
This program displays an RLE(5) file on a Sun TAAC-1 that is running in single monitor mode under Sun-
view. It uses the full 24 bits of color available on the TAAC. The RLE file is either read from the standard
input or from the file name entered in the control panel. If the file name is entered from the control panel,
csh(1) style tilde expansion and file name completion are supported. The control panel allows the gamma
to be set and the file to be loaded as either a gray scale or rgb image.

SEE ALSO
urt(1), RLE(5).

AUTHOR
Keith S. Pickens, Southwest Research Institute.

26 July 5, 1990 1

GETX10(1) GETX10(1)

NAME
getx10 − get RLE images to an X display

SYNOPSIS
getx10 [−{bB}] [−{cwW}] [−D] [−f] [−m] [−p] [−z] [−= window_geometry] [−d display] [−{iI}
image_gamma] [−g display_gamma] [−l levels] [infile]

DESCRIPTION
This program displays an RLE(5) file on an X Version 10 display. It uses a dithering technique to take a
full-color or gray scale image into the limited number of colors typically available under X . Its default be-
havior is to try to display the image in color with as many brightness levels as possible (except on a one bit
deep display), options are provided to limit the number of levels or to force black and white display. Sev er-
al getx10 processes running simultaneously with the same color resolution will share color map entries.

Other options allow control over the gamma, or contrast, of the image. The dithering process assumes that
the incoming image has a gamma of 1.0 (i.e., a 200 in the input represents an intensity twice that of a 100.)
If this is not the case, the input values must be adjusted before dithering via the −i or −I option. The input
file may also specify the gamma of the image via a picture comment (see below). The output display is as-
sumed to have a gamma of 2.5 (standard for color TV monitors). This may be modified via the −g option if
a display with a different gamma is used.

Getx10 uses the standard X window creation procedure to create a window with a location and size speci-
fied by the user, with the restriction that the window must be at least as large as the input image. If the win-
dow is turned into an icon, a smaller version of the image will be displayed in the icon. A shifted mouse
click on either the window or icon will cause the image to be removed.

OPTIONS
−b After displaying the image in a window, getx10 will attempt to set your "root" window background

tiling pattern to the image. There are some strict limitations on image size for this to work (at least
in X10). A color or gray-scale image must be smaller than 256x256, and a black and white (−W)
image smaller than about 720x720. If the image is larger than this, a strip from the top of the im-
age will be displayed in the background. Note that if you kill the getx10 window, the color map
entries will not be protected; any other program that asks for a color map entry will likely get one
that is being used by the background image.

−B Loads the image into the background as above, but does not display it in a window. Getx10 exits
after loading the background, leaving the color map unprotected, as above.

−c This flag suppresses all dithering, and causes getx10 to load the color map in the image file direct-
ly into the display. Channel 0 of the image will be treated as a set of indices into the color map. If
there are not enough color map entries available in the display, as many as fit will be loaded and all
other "colors" will be mapped to black. The picture comment color_map_length=maplen can be
used to specify the exact number of relevant color map entries.

−D "Debug mode". The operations in the input RLE(5) file will be printed as they are read.

−f Normally, getx10 will fork itself after putting the image on the screen, so that the parent process
may return the shell, leaving an "invisible" child to keep the image refreshed. If −f is specified,
getx10 will not exit to the shell until the image is removed.

−m Just loads the color map. This may be suitable for fixing up the color map used by the root back-
ground.

−p Getx10 tries to copy the image to an off-screen pixmap for quick refresh. On some displays, this
will fail if no off-screen memory is available. The image will disappear shortly after it is complet-
ed when this happens. You should specify −p to prevent the attempt to use a pixmap.

−w This flag forces getx10 to produce a gray scale dithered image instead of a color image. Color in-
put will be transformed to black and white via the NTSC Y transform. On a low color resolution

1 Jan 20, 1987 27

GETX10(1) GETX10(1)

display (a display with only 4 bits, for example), this will produce a much smoother looking image
than color dithering. It may be used in conjunction with −l to produce an image with a specified
number of gray levels.

−W This flag forces getx10 to display the image as a black and white bitmap image. This is the only
mode available on monochrome (non gray scale) displays (and is the default there). Black pixels
will be displayed with pixel value 0 and white with pixel value 1 (note that these may not be black
and white on certain displays, or if they hav e been modified with xset.)

−z This flag creates a zoom window for the image. The new window is created by the standard X
window creation process. The mouse can be used in the image window to select the area to zoom.
Pressing any button will reset the center of the zoom window to be the selected pixel. A clickdrag
in the image window will resize the zoom window to enclose the selected region. Pressing the left
button in the zoom window will decrease the zoom factor, but will keep the same number of pixels
zoomed. The right button increases the zoom factor. If the middle button is pressed in the zoom
window, position information will be printed for the selected zoom pixel. Note that the info will
be printed only if −f is given with the −z option. One may also resize the zoom window to change
the number of pixels that are zoomed.

−d display
Give the name of the X display to display the image on. Defaults to the value of the environment
variable DISPLAY .

−= window_geometry
Specify the geometry of the window in which the image will be displayed. This is useful mostly
for giving the location of the window, as the size of the window will be at least as large as the size
of the image. The window_geometry specification need not begin with an "=" sign.

−i image_gamma
Specify the gamma (contrast) of the image. A low contrast image, suited for direct display with-
out compensation on a high contrast monitor (as most monitors are) will have a gamma of less
than one. The default image gamma is 1.0. Image gamma may also be specified by a picture com-
ment in the RLE (5) file of the form image_gamma=gamma. The command line argument will
override the value in the file if specified.

−I image_gamma
An alternate method of specifying the image gamma, the number following −I is the gamma of the
display for which the image was originally computed (and is therefore 1.0 divided by the actual
gamma of the image). Image display gamma may also be specified by a picture comment in the
RLE (5) file of the form display_gamma=gamma. The command line argument will override the
value in the file if specified.

−g display_gamma
Specify the gamma of the X display monitor. The default value is 2.5, suitable for most color TV
monitors (this is the gamma value assumed by the NTSC video standard).

−l levels
Specify the number of gray or color levels to be used in the dithering process. If not this many
levels are available, getx10 will try successively fewer levels until it is able to allocate enough col-
or map entries.

infile Name of the RLE(5) file to display. If not specified, the image will be read from the standard in-
put.

SEE ALSO
urt(1), RLE(5).

AUTHOR
Spencer W. Thomas, University of Utah

28 Jan 20, 1987 1

GETX10(1) GETX10(1)

BUGS
It gets an X error when displaying an image only one line high.

DEFICIENCIES
It totally ignores the .Xdefaults file.

1 Jan 20, 1987 29

GETX11(1) GETX11(1)

NAME
getx11 − get RLE images to an X11 display

SYNOPSIS
getx11 [−= window_geometry] [−a] [−d display] [−D] [−f] [−g display_gamma] [−{iI} im-

age_gamma] [−j] [−m [maxframes/sec]] [−n levels] [−s] [−t title] [−v] [−{wW}] [−x
visualtype] [infile ...]

DESCRIPTION
This program displays an RLE(5) file on an X11 display. It uses a dithering technique to take a full-color or
gray scale image into the limited number of colors typically available under X . Its default behavior is to try
to display the image in color with as many brightness levels as possible (except on a one bit deep display).
Several getx11 processes running simultaneously with the same color resolution will share color map en-
tries.

Getx11 uses the standard X window creation procedure to create a window with a location and size speci-
fied by the user, with the restriction that the window must be at least as large as the input image. If the win-
dow is turned into an icon, a smaller version of the image will be displayed in the icon.

If the input image has only a single channel, and has a color map, then this color map will be loaded direct-
ly (if possible) instead of using the normal dithering process. Many images will look better if pre-pro-
cessed by mcut(1) or rlequant(1), both of which produce images reduced to a single channel with a col-
ormap. This is because the colors that are used to display the image are chosen to be a good set of colors
for that particular image, rather than a set of colors that are mediocre for all images. The color map so cre-
ated will not be shared with other windows. The picture comment colormap_length specifies the exact
number of useful entries in the input color map. If this is significantly less than 256, this can save space in
the shared X color map.

OPTIONS
−= window_geometry

Specify the geometry of the window in which the image will be displayed. This is useful mostly
for giving the location of the window, as the size of the window will be at least as large as the size
of the image.

−a "As is", suppress dithering.

−d display
Give the name of the X display to display the image on. Defaults to the value of the environment
variable DISPLAY .

−D "Debug mode". The operations in the input RLE(5) file will be printed as they are read.

−f "No fork." Normally, getx11 will fork itself after putting the image on the screen, so that the par-
ent process may return the shell, leaving an "invisible" child to keep the image refreshed. If −f is
specified, getx11 will not exit to the shell until the image is removed.

−g display_gamma
Specify the gamma of the X display monitor. The default value is 2.5, suitable for most color TV
monitors (this is the gamma value assumed by the NTSC video standard).

−i image_gamma
Specify the gamma (contrast) of the image. A low contrast image, suited for direct display with-
out compensation on a high contrast monitor (as most monitors are) will have a gamma of less
than one. The default image gamma is 1.0. Image gamma may also be specified by a picture com-
ment in the RLE (5) file of the form image_gamma=gamma. The command line argument will
override the value in the file if specified. The dithering process assumes that the incoming image
has a gamma of 1.0 (i.e., a 200 in the input represents an intensity twice that of a 100.) If this is
not the case, the input values must be adjusted before dithering.

30 Jan 28, 1990 1

GETX11(1) GETX11(1)

−I image_gamma
An alternate method of specifying the image gamma, the number following −I is the gamma of the
display for which the image was originally computed (and is therefore 1.0 divided by the actual
gamma of the image). Image display gamma may also be specified by a picture comment in the
RLE (5) file of the form display_gamma=gamma. The command line argument will override the
value in the file if specified.

−j "Jump mode". When reading an image from the standard input, each scan line is normally dis-
played as soon as it is read. This allows a user to monitor the progress of an image generating pro-
gram, for example (common usage is "tail −f image.rle | getx11"). Images read directly from files
are only updated after every 10 lines are read to improve the display speed. This behavior can be
forced for the standard input by specifying jump mode.

−m [maxframes/sec]
"Movie mode." Optional argument is maximum rate at which movies will play, in frames per sec-
ond.

−n levels
Specify the number of gray or color levels to be used in the dithering process. If not this many
levels are available, getx11 will try successively fewer levels until it is able to allocate enough col-
or map entries.

−s "Stingy mode". Normally, getx11 allocates an X server pixmap for each image to speed up the
window refresh. If many images are displayed, the server may run out of memory to store these
pixmaps (or its virtual memory size may get very large). Stingy mode suppresses pixmap alloca-
tion (except in movie mode, where the pixmaps are necessary for reasonable performance).

−t title The window name for an image window normally comes from the input file name or a image_ti-
tle=title comment in the RLE file. The window name can be forced to a particular string with this
option.

−v Verbose. (But less so than with −D.)

−w This flag forces getx11 to produce a gray scale (black-and-white) dithered image instead of a color
image. Color input will be transformed to black and white via the NTSC Y transform. On a low
color resolution display (a display with only 4 bits, for example), this will produce a much
smoother looking image than color dithering. It may be used in conjunction with −n to produce an
image with a specified number of gray levels.

−W This flag forces getx11 to display the image as a bitonal black and white bitmap image. This is the
only mode available on monochrome (non gray scale) displays (and is the default there). Black
pixels will be displayed using the BlackPixel(3X) value and white with the WhitePixel(3X) value
(note that these may not be black and white on certain displays, or when they hav e been modified
by the user.)

−x visual_type
Specify X visual type to be used. The value may be a string or a number. This number is assumed
to be an integer between 0 and 5, denoting staticgray(0),grayscale(1), pseudocolor(2),staticcol-
or(3), truecolor(4), or directcolor(5). The string must match one of these visual types (any capi-
talization is ignored).

infile ... Name(s) of the RLE(5) file(s) to display. If not specified, the image will be read from the standard
input. In movie mode, you get one window, and zooming is disabled. In normal mode, you get
one window per image.

Mouse/key actions (normal mode)
Mouse 1 (left): Increase zoom factor by 1, center on this pixel.

Mouse 2 (middle): Recenter on this pixel.

Mouse 3 (right): Decrease zoom factor by 1, center on this pixel.

1 Jan 28, 1990 31

GETX11(1) GETX11(1)

Shift mouse 1: Show value at this pixel. In B&W, just shows intensity.

Shift mouse 2: Toggle between zoomed and unzoomed.

q,Q,ˆC: Quit.

1,2,3,4,5,6,7,8,9: Set zoom factor.

Arrow keys: Move image (when zoomed). Shifted moves faster.

Mouse/key actions (movie mode)
Mouse 1: Run movie forward.

Shift Mouse 1: Run movie continuously in current direction.

Mouse 2: Step movie one frame in current direction.

Shift Mouse 2: Set movie speed by moving mouse "up" and "down". The speed chosen is dis-
played in the upper right corner of the window.

Mouse 3: Run movie backward.

space: Flip one frame in current direction.

b: "Bounce" image − run it continuously forwards, then backwards, then forwards, ...

c,C: Run move continuously. "c" runs it forward, "C" runs it backward. When the
movie reaches the "end", it will immediately restart from the beginning.

All continuing movie action can be halted by pressing a key or mouse button.

SEE ALSO
urt(1), RLE(5).

AUTHOR
Spencer W. Thomas, University of Utah (X10 version)

Andrew F. Vesper, Digital Equipment Corp. (X11 modifications)

Martin R. Friedmann, University of Michigan (better X11, flipbook, magnification, info)

BUGS
Display to a 24-bit visual is somewhat optimized, but could be faster.

Doesn’t pay any attention to the X resource database (i.e., cannot be customized via the .Xdefaults file).
The options, while standard for the raster toolkit, are non-standard for X.

32 Jan 28, 1990 1

GIFTORLE(1) GIFTORLE(1)

NAME
giftorle − Convert GIF images to RLE format

SYNOPSIS
giftorle [−c] [−o outfile.rle] [infile.gif ...]

DESCRIPTION
Giftorle converts a file from Graphics Interchange Format (GIF) format into RLE format. Multiple input
images may be converted, these will be written sequentially to the output RLE file. The origin of a GIF im-
age is at the upper left, while the origin of an RLE image is at the lower left. This program automatically
flips the image to preserve its orientation.

OPTIONS
−c Preserve the colormap that the GIF image contains, otherwise the colormap is applied to input im-

age.

−o outfile.rle
If specified, the output will be written to this file. If outfile.rle is "−", or if it is not specified, the
output will be written to the standard output stream.

infile.gif ...
The input will be read from these files. If infile.gif is "−" or is not specified, the input will be read
from the standard input stream.

MISC
GIF and Graphics Interchange Format are both trademarks of CompuServe Incorporated.

SEE ALSO
rletogif (1), urt(1), RLE(5).

AUTHOR
David Koblas (koblas@mips.com or koblas@cs.uoregon.edu)

33

GRAYTORLE(1) GRAYTORLE(1)

NAME
graytorle − Merges gray scale images into an RLE format file.

SYNOPSIS
graytorle [−a] [−h hdrsize] [−o outfile] xsize ysize infiles

DESCRIPTION
Graytorle reads a list of 8-bit gray scale images in unencoded binary format and converts them to an
RLE(5) image with the number of channels corresponding to the number of input files. A command line
option allows specifying one of the files as an alpha channel.

OPTIONS
−a Designates the first file in the input list as being information for the alpha channel of the image.

−h hdrsize
Often gray scale image files include some sort of header information. This option allows specifi-
cation of a count of bytes to discard at the beginning of each input file.

xsize Specifies the horizontal resolution of the input files.

ysize Specifies the vertical resolution of the input files.

−o outfile
This option is used to name the output file. Otherwise, output is written to stdout.

infiles List of input files.

SEE ALSO
rletogray(1), urt(1), RLE(5).

AUTHOR
Michael J. Banks, University of Utah.

34 Jun 24, 1988 1

INTO(1) INTO(1)

NAME
into − copy into a file without destroying it

SYNOPSIS
into [−f] outfile

DESCRIPTION
Into copies its standard input into the specified outfile, but doesn’t actually modify the file until it gets EOF.
This is useful in a pipeline for putting stuff back in the "same place." The outfile is not overwritten if that
would make it zero length, unless the −f option is given. That option also forces overwriting of the outfile
ev en if it is not directly writable (as long as the directory is writable).

SEE ALSO
pipe(2)

BUGS
For efficiency reasons, the directory containing the outfile must be writable by the invoker.
The original outfile’s owner is not preserved.

Utah 12/17/84 35

MCUT(1) MCUT(1)

NAME
mcut − Quantize colors in an image using the median cut algorithm

SYNOPSIS
mcut [−n colors] [−d] [−o outfile] infile

DESCRIPTION
Mcut reads an RLE file and tries to choose the "best" subset of colors to represent the colors present in the
original image. A common use for this is to display a 24 bit image on a frame buffer with only eight bits
per pixel using a 24 bit color map. Mcut first quantizes intensity values from eight bits to five bits, and then
chooses the colors from this space.

Mcut runs in two passes; the first pass scans the image to find the color distributions, and the second pass
maps the original colors into color map indices. The output file has a color map containing the colors mcut
has chosen. Mcut also sets the picture comment "color_map_length" equal to the number of colors it has
chosen. The getx11 program (among others) will use this color map instead of dithering.

OPTIONS
−n ncolors

Limit the number of colors chosen to ncolors. The default is 200.

−d Uses Floyd/Steinberg dither to hide contouring. Greatly improves images that have a small num-
ber of colors.

infile The input will be read from this file. If it is a multi-image file, each image will be quantized to its
own colormap. Piped input is not allowed.

−o outfile
If specified, output will be written to this file, otherwise it will go to stdout.

SEE ALSO
getx11(1), rlequant(1), urt(1), RLE(5),
"Color Image Quantization for Frame Buffer Display", by Paul Heckbert, Procedings of SIGGRAPH ’82,
July 1982, p. 297.

AUTHOR
Robert Mecklenburg, John W. Peterson, University of Utah.

BUGS
The initial quantization is hardwired to five bits. This should be an option.

36 Nov 8, 1987 1

MERGECHAN(1) MERGECHAN(1)

NAME
mergechan − merge channels from several RLE files into a single output stream

SYNOPSIS
mergechan [−a] [−o outfile] infiles ...

DESCRIPTION
Mergechan takes input from several RLE files and combines them into a single output stream. Each chan-
nel in the output stream comes from the respective filename specified on the input (i.e., channel zero is tak-
en from the first file, channel one from the next, etc). The same file can be specified more than once. If the
−a flag is given, the channels are numbered from -1 (the alpha channel) instead of zero. All of the input
channels must have exactly the same dimensions (use crop(1) to adjust files to fit each other).

Mergechan is typically used to introduce an alpha mask from another source into an image, or combine col-
or channels digitized independently.

If −o is specified, the output will be written to outfile.

SEE ALSO
crop(1), rleswap(1), urt(1), RLE(5).

AUTHOR
John W. Peterson, University of Utah.

BUGS
Mergechan is totally ignorant of the color maps of the input files.

The restriction that all input files must be the same size could probably be removed.

1 Nov 8, 1987 37

PAINTTORLE(1) PAINTTORLE(1)

NAME
painttorle − Convert MacPaint images to RLE format.

SYNOPSIS
painttorle [−c [red] [green] [blue] [alpha]] [−r] [−o outfile.rle] [infile.paint]

DESCRIPTION
Painttorle converts a file from MacPaint format into RLE format. Because MacPaint and RLE disagree on
which end is up, the output should be sent through rleflip to preserve orientation.

OPTIONS
−c[red] [green] [blue] [alpha]

Allows the color values to be specified (the default is 255).

−r Invert the color of the MacPaint pixels (reverse video).

infile.paint
The input paint data will be read from this file, otherwise, input will be taken from stdin.

−o outfile.rle
If specified, output will be written to this file, otherwise it will go to stdout.

SEE ALSO
rletopaint(1), urt(1), RLE(5).

AUTHOR
John W. Peterson

38 December 20, 1986 1

PGMTORLE(1) PGMTORLE(1)

NAME
pgmtorle − convert a pbmplus/pgm image file into an RLE image file.

SYNOPSIS
pgmtorle [−h] [−v] [−a] [−o outfile] [filename]

DESCRIPTION
This program converts PBMPLUS grayscale (pgm) image files into Utah RLE(5) image files. PBM-
PLUS/pgm image files contain the image dimensions and 8-bit pixels with no matte or alpha data. When
converting to an RLE file, the alpha channel may optionally be computed. The RLE file will contain a
"grayscale" image (8 bits) with no colormap. The origins of PBMPLUS and Utah RLE files are in the up-
per left and lower left corners respectively, so this program automatically "flips" the image. These RLE
files may then be viewed using any RLE image viewer.

OPTIONS
−v This option will cause pgmtorle to operate in verbose mode. The header information is written to

"stderr". Actually, there is not much header information stored in a PBMPLUS file so this infor-
mation is minimal.

−h This option allows the header of the PBMPLUS image to be dumped to "stderr" without convert-
ing the file. It is equivalent to using the −v option except that no file conversion takes place.

−a This option will cause pgmtorle to use the grayscale data to compute an alpha channel in the re-
sulting RLE file. For any non-zero grayscale data, the alpha channel will contain a value of 255.
The resulting RLE image file will contain one color channel and one alpha channel.

−o outfile
If specified, the output will be written to this file. If outfile is "−", or if it is not specified, the out-
put will be written to the standard output stream.

infile.pgm
The name of the PBMPLUS image data file to be converted. This file must end in ".pgm". How-
ev er, it is not necessary to supply the ".pgm" extension as it will be added to the supplied name if
not already there.

EXAMPLES
pgmtorle −v test.pgm −o test.rle

While running in verbose mode, convert test.pgm to RLE format and store resulting data in
test.rle.

pgmtorle −h test
Dump the header information of the PBMPLUS file called test.pgm.

SEE ALSO
ppmtorle(1), rletoppm(1), urt(1), RLE(5).

AUTHOR
Wesley C. Barris
Army High Performance Computing Research Center (AHPCRC)
Minnesota Supercomputer Center, Inc.

1 July 20, 1990 39

PNMTORLE(1) PNMTORLE(1)

NAME
pnmtorle − convert a Netpbm image file into an RLE image file.

SYNOPSIS
pnmtorle [−h] [−v] [−a] [−o outfile] [pnmfile]

DESCRIPTION
This program converts Netpbm image files into Utah RLE(5) image files. You can include an alpha mask.
If the input is a multiple image file, the output consists of several concatenated RLE images.

The RLE file will contain either a three channel color image (24 bits) or a single channel grayscale image
(8 bits) depending upon the pnm file depth. If a converted ppm is displayed on an 8 bit display, the image
must be dithered. In order to produce a better looking image (on 8 bit displays), it is recommended that the
image be quantizing (to 8 bit mapped color) prior to its display. This may be done by piping the output of
this program into the Utah mcut(1) or rlequant(1) utilities. An example of this is shown later.

OPTIONS
−v This option will cause pnmtorle to operate in verbose mode. The header information is written to

"stderr". Actually, there is not much header information stored in a Netpbm file, so this informa-
tion is minimal.

−h This option allows the header of the Netpbm image to be dumped to "stderr" without converting
the file. It is equivalent to using the −v option except that no file conversion takes place.

−a This option causes pnmtorle to include an alpha channel in the output image. The alpha channel is
based on the image: Wherever a pixel is black, the corresponding alpha value is transparent. Ev-
erywhere else, the alpha value is fully opaque.

−o outfile
If specified, the output will be written to this file. If outfile is "−", or if it is not specified, the out-
put will be written to the standard output stream.

pnmfile The name of the Netpbm image data file to be converted. If not specified, standard input is as-
sumed.

EXAMPLES
pnmtorle −v file.ppm −o file.rle

While running in verbose mode, convert file.ppm to RLE format and store resulting data in file.rle.

pnmtorle −h file.pgm
Dump the header information of the Netpbm file called file.pgm.

SEE ALSO
rletopnm(1), urt(1), RLE(5).

AUTHOR
Wes Barris
Army High Performance Computing Research Center (AHPCRC)
Minnesota Supercomputer Center, Inc.

40 March 31, 1994 1

PPMTORLE(1) PPMTORLE(1)

NAME
ppmtorle − convert a PBMPLUS/ppm image file into an RLE image file.

SYNOPSIS
ppmtorle [−h] [−v] [−a] [−o outfile] [infile.ppm]

DESCRIPTION
This program converts PBMPLUS full-color (ppm) image files into Utah RLE(5) image files. PBM-
PLUS/ppm image files contain the image dimensions and image data in the form of RGB triplets. When
converting to an RLE file, the alpha channel may be optionally computed. The origins of PBMPLUS and
Utah RLE files are in the upper left and lower left corners respectively, so this program automatically
"flips" the image. The input can consist of several concatenated ppm images, in which case, the output will
consist of several concatenated RLE images.

The RLE file will contain a "true color" image (24 bits). These RLE files may then be viewed using any
RLE image viewer. When they are displayed on an 8 bit display, the image must be dithered. In order to
produce a better looking image (on 8 bit displays), it is recommended that the image be quantizing (to 8 bit
mapped color) prior to its display. This may be done by piping the output of this program into the Utah
mcut(1) or rlequant(1) utilities. An example of this is shown later.

OPTIONS
−v This option will cause ppmtorle to operate in verbose mode. The header information is written to

"stderr". Actually, there is not much header information stored in a PBMPLUS file, so this infor-
mation is minimal.

−h This option allows the header of the PBMPLUS image to be dumped to "stderr" without convert-
ing the file. It is equivalent to using the −v option except that no file conversion takes place.

−a This option will cause ppmtorle to use the RGB data to compute an alpha channel in the resulting
RLE file. For any non-zero RGB data, the alpha channel will contain a value of 255. The result-
ing RLE image file will contain three color channels and an alpha channel.

−o outfile
If specified, the output will be written to this file. If outfile is "−", or if it is not specified, the out-
put will be written to the standard output stream.

infile.ppm
The name of the PBMPLUS image data file to be converted. This file must end in ".ppm". How-
ev er, it is not necessary to supply the ".ppm" extension as it will be added to the supplied name if
not already there.

EXAMPLES
ppmtorle −v test.ppm −o test.rle

While running in verbose mode, convert test.ppm to RLE format and store resulting data in
test.rle.

ppmtorle test | mcut >test.rle
Convert test.ppm to RLE format and convert to 8 bit mapped color before storing data in test.rle

ppmtorle −h test
Dump the header information of the PBMPLUS file called test.ppm.

SEE ALSO
mcut(1), pgmtorle(1), rlequant(1), rletoppm(1), urt(1), RLE(5).

AUTHOR
Wesley C. Barris
Army High Performance Computing Research Center (AHPCRC)
Minnesota Supercomputer Center, Inc.

1 July 30, 1990 41

PYRMASK(1) PYRMASK(1)

NAME
pyrmask − Blend two images together using Gaussian pyramids.

SYNOPSIS
pyrmask [−l levels] [−o outfile] inmask outmask maskfile

DESCRIPTION
Pyrmask blends two images together by first breaking the images down into separate bandpass images,
combining these separate images, and then adding the new bandpass images back into a single output im-
age. This can produce very seamless blends of digital images. The two images are combined on the basis
of a third "mask" image. The resulting image will contain the inmask image where the mask contains a
maximum value (255) and the outmask image where the mask contains zeros. This is done on a channel by
channel basis, i.e. the maskfile should have data in each channel describing how to combine each channel
of the inmask and outmask images. All three images must have exactly the same dimensions (both image
size and number of channels). For best results, it’s often useful to filter the mask image a little with
smush(1) first.

OPTIONS
−l levels

How many pyramid levels to use (maximum is log(2) of image size).

−o outfile
If specified, output will be written to this file, otherwise it will go to stdout.

SEE ALSO
smush(1), rleswap(1), urt(1), RLE(5),
Burt and Adelson, "A Multiresolution Spline With Applications to Image Mosaics", ACM Transactions on
Graphics, October 1983, V2 #4, p. 217.
Ogden, Adelson, Bergen and Burt, "Pyramid-based Computer Graphics", RCA Engineer, Sept/Oct 1985, p.
4.

AUTHOR
Rod Bogart

BUGS
The current implementation has very strict requirements for image sizes and dimensions. The extensive use
of floating point computation makes it very slow for normal sized images. It also keeps all of the bandpass
images in core at once, which requires considerable amounts of memory.

Pyrmask is built on top of a library of functions for working with Gaussian pyramids. This library has yet
to be documented or fully tested.

42 Nov 8, 1987 1

RASTORLE(1) RASTORLE(1)

NAME
rastorle − Convert sun raster file image to an RLE format file.

SYNOPSIS
rastorle [−a] [−o outfile] [infile.ras]

DESCRIPTION
Rastorle converts a sun raster file to a file in the Utah Raster Toolkit RLE(5) format. It understands both
the original unencoded format and the "type 2" (run length encoded) format raster files. Since Sun raster
files and RLE images disagree on where the origin is, the program automatically flips the image.

OPTIONS
infile.ras

The input sun raster will be read from this file, otherwise, input will be taken from stdin.

−a If specified, an alpha channel will be "faked". That is, the alpha channel will be zero wherever the
input is black (0), and 255 elsewhere. −o outfile If specified, output will be written to this file, oth-
erwise it will go to stdout.

SEE ALSO
rletorast(1), urt(1), RLE(5).

AUTHOR
Berry Kercheval

1 21 June 1988 43

RAWTORLE(1) RAWTORLE(1)

NAME
rawtorle − Convert raw image data to RLE.

SYNOPSIS
rawtorle [−N] [−s] [−r] [−w width] [−h height] [−f header-size] [−t trailer-size] [−n nchannels] [
−a [alpha-value]] [−p scanline-pad] [−l left-scanline-pad] [−o outfile] [infile]

DESCRIPTION
This program is used to convert image data in any of a number of "raw" forms to the RLE(5) format. The
expected input size is computed from the arguments, so that several images may be concatenated together
and will be processed in sequence. In this case, the output file will contain several RLE images.

OPTIONS
−N The input is in non-interleaved order, as might be generated by the command

cat pic.r pic.g pic.b

−s The input is in scanline interleaved order.

−r Reverse the channel order. (E.g., data will be interpreted as ABGR instead of RGBA.)

−w width
Specify the width of the input image.

−h height
Specify the height of the input image.

−f header-size
This many bytes will be skipped before starting to read image data.

−t trailer-size
This many bytes will be skipped at the end of the image data.

−n nchannels
The input data has this many color channels.

−a [alpha-value]
Generate a constant alpha channel. The default value for alpha-value is 255.

−p scanline-pad
This many bytes will be skipped at the end of each scanline.

−l left-scanline-pad
This many bytes will be skipped at the beginning of each scanline.

−o outfile
If specified, output will be written to this file, otherwise it will go to stdout.

infile The input will be read from this file, otherwise, input will be taken from stdin.

The input data is assumed to have an alpha channel if there are 2 or 4 channels. The alpha channel is the
last input channel unless −r is specified, in which case it is the first.

EXAMPLES
512x512 grayscale

rawtorle −w 512 −h 512 −n 1

640x512 raw RGB
rawtorle −w 640 −h 512 −n 3

picture.[rgb]
cat picture.[rgb] | rawtorle −w 640 −h 512 −n 3 −N −r
(I.e., separate red, green, blue image files. This subsumes graytorle(1).)

JPL ODL Voyager pics
rawtorle −w 800 −h 800 −f 2508 −t 1672 −n 1 −p 36

44 1990 1

RAWTORLE(1) RAWTORLE(1)

24bit Sun raster file
rawtorle −f 32 −w ... −h ... −n 3
(But rastorle(1) is easier.)

pic.{000-100}.[rgb]
cat pic.* | rawtorle −w ... −h ... −n 3 −s −r
(I.e., each color of each scanline is in a separate file.)

SEE ALSO
graytorle(1), rastorle(1), urt(1), RLE(5).

AUTHOR
Martin Friedmann

1 1990 45

READ98721(1) READ98721(1)

NAME
read98721 − read an image from the HP−98721 frame buffer

SYNOPSIS
read98721 [−b red green blue] [−d display] [−m] [−o outfile] [−p xpos ypos] [−s xsize ysize] [−x
driver] [−O] [comments]

DESCRIPTION
This program reads an image from a HP−98721 frame buffer and writes it to an RLE(5) file. The file will
contain three channels of 8 bits each for red, green, and blue respectively. If an output file name is not spec-
ified the image will be written to the standard output. The default display device and device driver are re-
spectively /dev/crt98721 and hp98721.

OPTIONS
−b red green blue

Specifies red, green and blue pixel values for the background.

−d display
Gives the name of the display device from which the image is to be read.

−m Saves the device color maps. By default, no color maps are saved.

−o outfile
Writes the image to outfile.

−p xpos ypos
Specifies the lower left corner of the portion of the screen to be saved. The origin is the lower left
corner of the display, which is taken as the default starting position if this option is not specified.

−s xsize ysize
Specifies the size of the image to be read.

−x driver
Gives the name of the device driver to be used to communicate with the display device.

−O Specifies that the image has no background.

The remaining arguments are taken to be comment strings of the form name=value , and are inserted in the
header of the RLE(5) output file.

SEE ALSO
getren(1), urt(1), RLE(5).

AUTHOR
Filippo Tampieri, Program of Computer Graphics, Cornell University.

46 Jun 11, 1987 1

REPOS(1) REPOS(1)

NAME
repos − reposition an RLE image

SYNOPSIS
repos [−p xpos ypos] [−P xinc yinc] [−o outfile] [infile]

DESCRIPTION
repos repositions an RLE image. Repos just changes the coordinates stored in the RLE header (see
RLE(5)), no modification is made to the image itself.

OPTIONS
If neither of the following flags are specified, −p 0 0 is assumed.

−p xpos ypos
Reposition the image to the absolute coordinates xpos ypos.

−P xinc yinc
Move the image by xinc yinc pixels from where it currently is (relative movement).

infile The input will be read from this file, otherwise, input will be taken from stdin.

−o outfile
If specified, output will be written to this file, otherwise it will go to stdout.

DIAGNOSTICS
Repos does not allow the image origin to have neg ative coordinates.

SEE ALSO
rlesetbg(1), urt(1), RLE(5).

AUTHORS
Rod Bogart, John W. Peterson

1 Month DD, YYYY 47

RLATORLE(1) RLATORLE(1)

NAME
rlatorle − convert a Wav efront "rla" or "rlb" image file into an RLE image file.

SYNOPSIS
rlatorle [−b] [−h] [−v] [−m] [−o outfile] [infile.rla]

DESCRIPTION
This program converts Wav efront image files (rla or rlb formats) into Utah RLE(5) image files. Wa vefront
image files store RGB data as well as a matte channel. They also define a "bounding box" containing non-
background pixels which is in many cases smaller than the total image area. Only this non-background
area is run length encoded. When converting to an RLE file, the matte channel is stored as an alpha chan-
nel and the "bounding box" dimensions are ignored. It is for this reason that in general the RLE version of
the file will be larger than its Wav efront counterpart.

The RLE file will contain a "true color" image (24 bits). These RLE files may then be viewed using any
RLE image viewer. When they are displayed on an 8 bit display, the image will be dithered. In order to
produce a better looking image (on 8 bit displays), it is recommended that the image be quantizing (to 8 bit
mapped color) prior to its display. This may be done by piping the output of this program into the Utah
mcut(1) or rlequant(1) utilities. An example of this is shown later.

OPTIONS
−b This option will cause rlatorle to convert from a Wav efront "rlb" image rather than use the default

"rla" conversion.

−v This option will cause rlatorle to operate in verbose mode. The header information is written to
"stderr".

−h This option allows the header of the wav efront image to be dumped to "stderr" without converting
the file. It is equivalent to using the −v option except that no file conversion takes place.

−m This option will cause rlatorle to ignore the RGB data and use the matte channel information to
produce a monochrome image. The resulting RLE image file will contain only one color channel
instead of the usual four (RGB + alpha).

−o outfile
If specified, the output will be written to this file. If outfile is "−", or if it is not specified, the out-
put will be written to the standard output stream.

infile.rla
The name of the Wav efront image data file to be converted. It is not necessary to supply the ".rla"
or ".rlb" extension as it will be added to the supplied name if not already there.

EXAMPLES
rlatorle −v test.0001.rla −o test.rle

While running in verbose mode, convert test.0001.rla to RLE format and store resulting data in
test.rle.

rlatorle test.0001.rla | mcut >test.rle
Convert test.0001.rla to RLE format and convert to 8 bit mapped color before storing data in
test.rle

rlatorle −h test.0001.rla
Dump the header information of the Wav efront file called test.0001.rla.

rlatorle -b test.0001 | get4d
Convert test.0001.rlb to RLE format and display the resulting image.

SEE ALSO
mcut(1), rlequant(1), rletorla(1), urt(1), RLE(5).

AUTHOR
Wesley C. Barris
Army High Performance Computing Research Center (AHPCRC)

48 May 30, 1990 1

RLATORLE(1) RLATORLE(1)

Minnesota Supercomputer Center, Inc.

1 May 30, 1990 49

RLECLOCK(1) RLECLOCK(1)

NAME
rleClock − Generate a clock face in RLE format

SYNOPSIS
rleClock [options] [−o outfile]

DESCRIPTION
This program generates an analog clock face in RLE(5) file format and writes it to outfile or standard out-
put. The picture is a standard clock face with optional digital representation above. The user has control
over the colors of the portions of the clock face, the text, and the text background. The user also has control
over the clock configuration: number of ticks, scale of the big and little hands, the values of the big and lit-
tle hands, and the format used to generate the digital portion.

By default, rleClock generates a standard analog clock face displaying the current time and with no digital
portion. This default face is transparent, that is, the alpha channel is only defined for the clock outline, tick
marks, and the hands.

On those options that expect colors, three numbers must be given after the option switch. These are values
for red, green, and blue on a scale of zero through 255. Those color options that are capitalized indicate the
colors for the filled regions (optional for the clock face and text but default for the hands). Those that are
not capitalized are for lines that either outline or constitute the feature (the clock face is default, but they’re
optional for the hands).

OPTIONS
−help Prints a synopsis of the options.

The options that control the value displayed by the clock are

−ls FLOAT
This specifies the full scale (360 degrees) of the little hand. Default is 12.

−lv FLOAT
This specifies the value of the little hand, expressed in units of the little hand full scale. Default is
the current hour time on a 12-hour scale.

−bs FLOAT
This specifies the full scale (360 degrees) of the big hand. Default is 60.

−bv FLOAT
This specifies the value of the big hand, expressed in units of the big hand full scale. Default is the
current minute time.

The following options manage the display configuration of the clock:

−x INT The INT specifies the width of the clock in pixels. Default is 128.

−cy INT
The INT specifies the height of the clock face (minus text portion) in pixels. The default is 128.

−ty INT
The INT specifies the height in pixels of the text portion of the display. If it is zero (the default),
no text portion is displayed.

−t INT This specifies the number of tick marks to place around the clock. The default is 12.

−lw INT
This specifies the line width in pixels of the clock face, the tick marks, the optional hand borders,
and the text. The default is one, but two or three give better looking clocks.

−tf STR
The string describes how to show the digital portion of the clock. The rules for forming STR are
the same as for printf format strings, that is, a percent sign, optionally followed by field width val-
ues, followed by a key letter. In this case, the key letter may be b, l, B, or L. Lower case b means
to insert the integer value of the big hand and upper case B means to insert the floating point value
of the big hand. Lower case l means to insert the integer value of the little hand and upper case L

50 Dec 11, 1987 1

RLECLOCK(1) RLECLOCK(1)

means to insert the floating point value of the little hand.

−fc R G B
This specifies the color in red, green, and blue, of the clock face.

−Fc R G B
This specifies the color to fill in inside the clock face, under the hands. If this option is not sup-
plied, the clock is generated with no inside-face background (by use of the alpha channel).

−Hc R G B
This specifies the color to draw in the hands with.

−hc R G B
This specifies the color to draw the outlines of the hands. If it is not given, no outlines are drawn
on the edges of the hands.

−tc R G B
This specifies the color of the text above the clock. It only has effect if a text height (-ty) is sup-
plied.

−Tc R G B
This specifies the color of a background field to place behind the text. If omitted, no background
(zero alpha channel) is drawn.

EXAMPLES
rleClock

Generates a transparent clock face showing the current time and no digital representation.

rleClock −ty 32
Generates a current-time clock with digital representation above.

rleClock −Fc 255 0 0 −Hc 0 0 255 −lw 3 −ty 96 −tc 0 255 0 −Tc 128 128 128
Generates a clock with a red inside, white face, blue hands, wide lines, tall text field, green test,
and grey text background.

rleClock −ty 32 −bs 10 −bv 4.51 −ls 100 −lv 45.1 −tf "%2l.%2.2B"
Generates a clock with the scale of the big hand set to 10 and it’s value at 4.51, the scale and value
of the little hand as 100 and 45.1, and the format for the digital portion formatted as %2d.%2.2f
to print the integer little hand value (two spaces) and the floating point big hand value.

SEE ALSO
urt(1), RLE(5).

AUTHOR
Robert L. Brown, RIACS, NASA Ames Research Center

BUGS
Not thoroughly checked when the line width is cranked up. May dump core.

1 Dec 11, 1987 51

RLEADDCOM(1) RLEADDCOM(1)

NAME
rleaddcom − add picture comments to an RLE file.

SYNOPSIS
rleaddcom [−d] [−i] [−o outfile] infile comments

DESCRIPTION
The rleaddcom program will add one or more comments to an RLE(5) file. If infile is "−", it will read from
the standard input. The modified RLE(5) file is written to the standard output if the −o outfile option is not
given. All remaining arguments on the command line are taken as comments. Comments are nominally of
the form name=value or name. Any comment already in the file with the same name will be replaced.

OPTIONS
−d Will cause matching comments to be deleted, no comments will be added in this case.

−i "In place." The input file will be rewritten with the added comments. This argument requires
write permission to the directory containing infile, but does not require write permission for infile.
Of the special file name cases described in urt(1), only compressed files may be updated in place.
(It doesn’t make sense to update the output of a pipe "in place", does it?)

If −o outfile is specified together with −i, then outfile will not be modified until rleaddcom has fin-
ished (this is similar to the way that into(1) works).

SEE ALSO
into(1), rlehdr(1), urt(1), RLE(5).

AUTHOR
Spencer W. Thomas, University of Utah

52 2/2/87 1

RLEADDEOF(1) RLEADDEOF(1)

NAME
rleaddeof − Put an end of image marker on an RLE file.

SYNOPSIS
Superseded by rlecat(1).

1 June 12, 1990 53

RLEBG(1) RLEBG(1)

NAME
rlebg − generate simple backgrounds

SYNOPSIS
rlebg [−l] [−v [top [bottom]]] [−s xsize ysize] [−o outfile] red green blue [alpha]

DESCRIPTION
rlebg generates a simple background. These are typically used for compositing below other images. The
values red green blue specify the pixel values (between 0 and 255) the background will have. If alpha is
not specified, it defaults to 255 (full coverage). rlebg generates both constant backgrounds and back-
grounds with continuous ramps.

OPTIONS
−s xsize ysize

This is the size of the background image. The default is 512×480.

−l Generate a linear ramp of pixel values. If no ramp flag is given, rlebg generates a constant back-
ground.

−v top bottom
Generate a variable ramp, using a quadratic function (this looks best with gamma corrected im-
ages). top and bottom are the fractions of the full color values at the top and bottom of the image.
The defaults are 1.0 0.1, respectively. If both −v and −l are given, then a linear ramp function is
used instead of a quadratic ramp.

−o outfile
If specified, the output will be written to this file. If outfile is "−", or if it is not specified, the out-
put will be written to the standard output stream.

SEE ALSO
rlesetbg(1), urt(1), RLE(5).

AUTHOR
Rod Bogart

54 November 12, 1986 1

RLEBOX(1) RLEBOX(1)

NAME
rlebox − print bounding box for image in an RLE file.

SYNOPSIS
rlebox [−c] [−m margin] [−v] [infile]

DESCRIPTION
This program prints the bounding box for the image portion of an RLE(5) file. This is distinct from the
bounds in the file header, since it is computed solely on the basis of the actual image. All background pix-
els are ignored.

OPTIONS
−c Print the numbers in the order that crop wants them on its command line. The default order is

xmin xmax ymin ymax. If this option is specified, the bounds are printed in the order xmin ymin
xmax ymax. Thus, a file foo.rle could be trimmed to the smallest possible image by the command

crop ‘rlebox −c foo.rle‘ foo.rle

−m margin
Pads the output values by the margin given.

−v Verbose mode: label the numbers for human consumption.

infile Name of the RLE file (defaults to standard input).

SEE ALSO
crop(1), urt(1), RLE(5).

AUTHOR
Spencer W. Thomas, University of Utah

1 Feb 12, 1987 55

RLECAT(1) RLECAT(1)

NAME
rlecat − concatenate and repeat images.

SYNOPSIS
rlecat [−c] [−n repeat-count] [−o outfile] [files ...]

DESCRIPTION
This program will concatenate all the input RLE(5) images, adding titles, and optionally repeating the im-
ages a specified number of times. For each input file, it copies all images to the output file. If an image
does not have a title or TITLE comment, and the input is not coming from the standard input, then the file
name (and an image number, if it is not the first image in the file) is added as a TITLE comment. If the in-
put file were named ’images.rle’, the first image would be given a comment TITLE=images.rle, the second
would get a comment TITLE=images.rle(2), and so on.

OPTIONS
−c With −n, specifies that the output images should be "collated". In other words, the repeat se-

quence will be 1 2 3 ... 1 2 3 ... instead of the default of 1 1 ... 2 2 ... 3 3 ...

−n repeat-count
Specifies that each input image should be repeated repeat-count times. The "repeat unit" (if −c is
specified, this is the entire concatenated sequence of input images, otherwise it is just each image,
separately) is written to a temporary file, and then copied to the output the requisite number of
times.

−o outfile
If specified, the output will be written to this file. If outfile is "−", or if it is not specified, the out-
put will be written to the standard output stream.

files The input will be read from these files. If a file name is "−", or none are specified, the input will
be read from the standard input stream.

EXAMPLES
rlebg 128 128 128 | rlecat -n 25

Generates 25 copies of a gray background; useful for using rlecomp(1) to put background on an
animation sequence (with 25 or fewer frames).

rlecat *.rle | <some processing> | getx11
Adds TITLE comments so the individual images are correctly identified by getx11(1).

rlecat -c -r 3 anim*.rle
Generates an animation with 3 repeats of the action.

rlecat -r 3 anim*.rle
Generates a "triple-framed" animation − each frame is repeated 3 times.

FILES
/tmp/rlecatXXXXXXXX

SEE ALSO
rleaddcom(1), rlehdr(1), urt(1), RLE(5).

AUTHOR
Spencer W. Thomas, University of Michigan

BUGS
If the /tmp directory is not writable, or if there is not sufficient space on /tmp to hold a repeat unit, the pro-
gram will not work correctly.

56 November 12, 1990 1

RLECCUBE(1) RLECCUBE(1)

NAME
rleccube − Make a picture of a color cube.

SYNOPSIS
rleccube [−w squares-wide] [−o outfile] [cube-side]

DESCRIPTION
This program computes an RLE(5) image of slices through the RGB color cube. The arguments control the
size of the cube and the arrangement of the slices into an image. Slices are taken in planes of constant red,
with green varying along the "x" axis and blue along the "y" axis within a slice. The slice for red=0 is
placed in the lower left corner of the image; red increases along the bottom row, then to the left of the next
row, and so on. The rleswap(1) program can be used to get an image with slices of constant green or blue.

OPTIONS
−w squares-wide

The number of slices in a row will be squares-wide. The default is the smallest divisor of cube-
side larger than sqrt(cube-side). If squares-wide is not an exact divisor of cube-side, the top row
will be filled in with slices starting from red near 0.

−o outfile
If specified, the output will be written to this file. If outfile is "−", or if it is not specified, the out-
put will be written to the standard output stream.

cube-side
The number of samples on each side of the cube. Each slice will be cube-sidexcube-side, and
there will be cube-side slices. The default value is 64.

SEE ALSO
rleswap(1), urt(1), RLE(5).

AUTHOR
Spencer W. Thomas

BUGS
It really should fill in the excess space in the last row with black.

1 January 30, 1991 57

RLECOMP(1) RLECOMP(1)

NAME
rlecomp − Digital image compositor

SYNOPSIS
rlecomp [−o outfile] Afile operator Bfile

DESCRIPTION
rlecomp implements an image compositor based on presence of an alpha, or matte channel the image. This
extra channel usually defines a mask which represents a sort of a cookie-cutter for the image. This is the
case when alpha is 255 (full coverage) for pixels inside the shape, zero outside, and between zero and 255
on the boundary. If Afile or Bfile is just a single −, then rlecomp reads that file from the standard input.

The operations behave as follows (assuming the operation is "A operator B"):

over The result will be the union of the two image shapes, with A obscuring B in the region of overlap.

in The result is simply the image A cut by the shape of B. None of the image data of B will be in the
result.

atop The result is the same shape as image B, with A obscuring B where the image shapes overlap.
Note this differs from over because the portion of A outside B’s shape does not appear in the re-
sult.

out The result image is image A with the shape of B cut out.

xor The result is the image data from both images that is outside the overlap region. The overlap re-
gion will be blank.

plus The result is just the sum of the image data. Output values are clipped to 255 (no overflow). This
operation is actually independent of the alpha channels.

minus The result of A − B, with underflow clipped to zero. The alpha channel is ignored (set to 255, full
coverage).

diff The result of abs(A − B). This is useful for comparing two very similar images.

add The result of A + B, with overflow wrapping around (mod 256).

subtract
The result of A - B, with underflow wrapping around (mod 256). The add and subtract operators
can be used to perform reversible transformations.

SEE ALSO
urt(1), RLE(5),
"Compositing Digital Images", Porter and Duff, Proceedings of SIGGRAPH ’84 p.255

AUTHORS
Rod Bogart and John W. Peterson

BUGS
The other operations could be optimized as much as over is.

Rlecomp assumes both input files have the same number of channels.

58 December 20, 1986 1

RLEDITHER(1) RLEDITHER(1)

NAME
rledither − Floyd Steinberg dither an image to the given colors.

SYNOPSIS
rledither [−e edge_factor] [−l nchan length] −{tf} mapfile [−o outfile] [infile]

DESCRIPTION
This program accepts an RLE(5) file and a file of colormap entries, and dithers the image to those colors.
Edge enhancement is also performed, if specified.

OPTIONS
−e edge_factor

An edge_factor of zero means no edge enhancement (the default). A value of 1.0 looks pretty
good for most images.

−l nchan length
Specifies the number of channels in the colormap, and the number of entries in each channel. The
default is 3 channels of 256 entries, which is appropriate for an eight bit color display.

−{tf} mapfile
The mapfile must contain at least nchan*length values in the range 0 to 255. The −t flag causes
mapfile to be read as R G B R G B R G B... The -f flag implies the entries are listed as R R R... G
G G... B B B...

−o outfile
If specified, the output will be written to this file. If outfile is "−", or if it is not specified, the out-
put will be written to the standard output stream.

infile The input will be read from this file. If infile is "−" or is not specified, the input will be read from
the standard input stream.

SEE ALSO
mcut(1), rlehdr(1), rlequant(1), urt(1), RLE(5).

AUTHOR
Rod G. Bogart, University of Michigan

BUGS
It should read colormaps from RLE files, too. For the moment, edit the output from rlehdr -m.

1 Month DD, YYYY 59

RLEFLIP(1) RLEFLIP(1)

NAME
rleflip − Invert, reflect or rotate an image.

SYNOPSIS
rleflip −{rlhv} [−o outfile] [infile]

DESCRIPTION
Rleflip inverts, reflects an image; or rotates left or right by 90 degrees. The picture’s origin remains the
same. If no input file is specified, the image is read from standard input. For rotations of other than 90 de-
grees, use fant(1).

OPTIONS
Exactly one of the following flags must be given:

−r Rotate the image 90 degrees to the right

−l Rotate the image 90 degrees to the left

−h Reflect the image horizontally

−v Flip the image vertically

−o outfile
If specified, the output will be written to this file. If outfile is "−", or if it is not specified, the out-
put will be written to the standard output stream.

SEE ALSO
fant(1), urt(1), RLE(5).

AUTHOR
John W. Peterson

60 Month DD, YYYY 1

RLEGRID(1) RLEGRID(1)

NAME
rlegrid − create grids and checkerboards in rle format

SYNOPSIS
rlegrid [−b bg_color] [−c] [−f fg_color] [−o outfile] [−s xsize ysize] [−w width]

DESCRIPTION
rlegrid generates simple grid and checkboard patterns.

OPTIONS
−b bg_color

Specifies the background color value. Should between 0 and 255. Default is 0.

−c Generate checkboards. With the -c option, rlegrid will generate a checkboard with squares of size
width on a side. Squares will alternate between the foreground and background colors.

Without the -c option, rlegrid will generate a grid. Grid lines will be width apart and will be in the
foreground color. The remainder of the image will be in the background color.

−f fg_color
Specifies the background color value. Should between 0 and 255. Default is 255.

−o outfile
Specifies where to place the resulting image. The default is to write to stdout. If outfile is "−", the
output will be written to the standard output stream.

−s xsize yssize
This is the size of the resulting image. Default is 512x512.

−w width
The spacing between grid lines or checkboard squares. The default is 16.

SEE ALSO
rlebg(1),

AUTHOR
James S. Painter

1 November 26, 1990 61

RLEHDR(1) RLEHDR(1)

NAME
rlehdr − Prints the header of an RLE file

SYNOPSIS
rlehdr [−b] [−ccomment-names] [−d] [−m] [−v] [files ...]

DESCRIPTION
This program prints the header of RLE(5) files in a human readable form. If the optional files argument is
not supplied, input is read from standard input.

OPTIONS
−b Print the information in a "brief" one-line form. The form of the output line is

name: [l,b]+[xs,ys]xnc+A, BG=color, map=NxL, (C)
Where [l,b] is the position of the lower-left corner of the image, [xs,ys] is the size of the image in
pixels, nc is the number of channels saved, +A is present if an alpha channel is saved. BG= or
OV= indicate that a background color was saved; OV= means that the existing background is not
cleared to the background color before the image is read (this was used for a cheap form of com-
positing, but is basically obsolete now). color is the saved background color. The map= entry will
be present only if a color map was saved; N is the number of channels in the color map and L is
the length of the map. Finally (C) is appended if there are comments present.

−c comment-names
If a comment identified by any of the words in the comma-separated list comment-names is pre-
sent in the input file, its first line will be printed. Each name is tried, in turn, and only the first
match is printed. If no match is found, but comments are present, (C) will be printed. The −c flag
implies −b.

−d Dump a very verbose version of the image contents as text to the standard error output stream.

−m Print out the color map information. −v Prints the raster toolkit version and patch level. No input
files will be processed if this option is given.

EXAMPLES
rlehdr image.rle

Print the header information for all images in the file image.rle.

rlehdr -m image.rle
Also print the color map contents, if one is present.

rlehdr -b *.rle
Print one line summaries of all the images in the directory.

rlehdr -c title,TITLE *.rle
Print one line summaries of all the images, and print the title of any that have a title comment.

SEE ALSO
urt(1), RLE(5).

AUTHOR
Spencer W. Thomas, University of Utah

62 Jan 22, 1987 1

RLEHISTO(1) RLEHISTO(1)

NAME
rlehisto − generate histogram of RLE image.

SYNOPSIS
rlehisto [−b] [−c] [−t] [−h height] [−o outfile] [infile]

DESCRIPTION
Rlehisto counts the pixel values in an RLE file, producing an RLE file graphing frequency of occurrence.
The horizontal axis runs from pixel value 0 on the left to pixel value 255 on the right. The height indicates
the number of pixels seen for each pixel value. Histograms are computed independently for each channel,
scaled identically, and then overlaid.

The following options are available:

−b Don’t count the background pixel values when scaling the histogram. This is useful if most pixels
are colored the background color, so that the interesting part of the histogram would be too small.
This option is ignored if −c is specified.

−c Output cumulative values instead of discrete values.

−t Print the totals instead of generating the histogram as an RLE file.

−h height Scale the output image to the specified height. The default is 256.

−o outfile
Direct the output to outfile.

SEE ALSO
urt(1), RLE(5).

AUTHORS
Gregg Townsend, University of Arizona; Rod Bogart, University of Utah.

1 June 25, 1990 63

RLEINTRP(1) RLEINTRP(1)

NAME
rleintrp − Interpolate between 2 RLE images .

SYNOPSIS
rleintrp [−o prefixe-out] [−1 file1] [−2 file2] [−n nbimages]

DESCRIPTION
This program create nbimages files of RLE images resulting of linear interpolati RLE(5) images must have
the same caracteristics (Number of colors, channel alpha, backg

OPTIONS
−o prefixe-out

specify the prefix of the names of output files. The names are composed of this file1 (or of file2) is
used as prefix. If a name cannot be create by the above methods it is arbitra

−1 file1 Specify the name of the file containing the initial image for interpolate. If op -2 exist we interpo-
late between a black image and the existing file (’fondu au noir file1 is ’-’ standard input is used.

−2 file2 Specify the name of the file containing the initial image for interpolate. If op -1 exist we interpo-
late between a black image and the existing file (’fondu au noir file2 is ’-’ standard input is used.

−n nbimages
Specify The number of images to create. By default nbimages = 1. The value is li

EXAMPLES
rleintrp −1 image1 −o fondu.rle −n 5

Interpolate 1 image between image1 and image2.
rleintrp −1 image1 −2 image2

Interpolate 3 images with names of files inter_XXX.rle :
rleintrp −1 image1 −2 image2 -o inter.rle −n 3

SEE ALSO
urt(1), RLE(5).

AUTHOR
Michel Gaudet SLX Onera CHATILLON (France)

64 July 1991 1

RLELDMAP(1) RLELDMAP(1)

NAME
rleldmap − Load a new color map into an RLE file

SYNOPSIS
rleldmap [−{ab}] [−n nchan length] [−s bits] [−l [factor]] [−g gamma] [−{tf} file] [−m files ...] [
−r rlefile] [−o outfile] [infile]

DESCRIPTION
The program will load a specified color map into an RLE(5) file. The color map may be computed by
rleldmap or loaded from a file in one of several formats. The input is read from infile or stdin if no file is
given, and the result is written to outfile or stdout.

The following terms are used in the description of the program and its options:

input map:
A color map already in the input RLE file.

applied map:
The color map specified by the arguments to rleldmap. This map will be applied to or will replace
the input map to produce the output map.

output map:
Unless −a or −b is specified, this is equal to the applied map. Otherwise it will be the composition
of the input and applied maps.

map composition:
If the applied map is composed after the input map, then the output map will be applied map[input
map]. Composing the applied map before the input map produces an output map equal to input
map[applied map]. The maps being composed must either have the same number of channels, or
one of them must have only one channel. If an entry in the map being used as a subscript is larger
than the length of the map being subscripted, the output value is equal to the subscript value. The
output map will be the same length as the subscript map and will have the number of channels that
is the larger of the two. If the input map is used as a subscript, it will be downshifted the correct
number of bits to serve as a subscript for the applied map (since the color map in an RLE(5) file is
always stored left justified in 16 bit words). This also applies to the applied map if it is taken from
an RLE(5) file (−r option below). Note that if there is no input map, that the result of composition
will be exactly the applied map.

nchan: The number of separate lookup tables (channels) making up the color map. This defaults to 3.

length: The number of entries in each channel of the color map. The default is 256.

bits: The size of each color map entry in bits. The default value is the log base 2 of the length.

range: The maximum value of a color map entry, equal to 2**bits − 1.

OPTIONS
−a Compose the applied map after the input map.

−b Compose the applied map before the input map. Only one of −a or −b may be specified.

−n nchan length
Specify the size of the applied map if it is not 3x256. The length should be a power of two, and
will be rounded up if necessary. If applying the map nchan must be either 1 or equal to the num-
ber of channels in the input map. It may have any value if the input map has one channel or is not
present.

−s bits Specify the size in bits of the color map entries. I.e., only the top bits bits of each color map entry
will be set.

Exactly one of the options −l, −g, −t, −f, −m, or −r, must be specified.

1 Nov 12, 1986 65

RLELDMAP(1) RLELDMAP(1)

−l factor
Generate a linear applied map with the nth entry equal to

range * min(1.0, factor*(n/(length−1))).
Factor defaults to 1.0 if not specified. Negative values of factor will generate a map with values
equal to

range * max(0.0, 1.0 − factor*(n/(length−1))).

−g gamma
Generate an applied map to compensate for a display with the given gamma. The nth entry is
equal to

range * (n/(length−1))**(1/gamma).

−t file Read color map entries from a table in a text file. The values for each channel of a particular entry
follow each other in the file. Thus, for an RGB color map, the file would look like:

red0 green0 blue0
red1 green1 blue1
...

Line breaks in the input file are irrelevant.

−f file Reads the applied map from a text file, with all the entries for each channel following each other.
Thus, the input file above would appear as

red0 red1 red2 ... (length values)
green0 green1 green2 ... (length values)
blue0 blue1 blue2 ... (length values)

As above, line breaks are irrelevant.

−m files ...
Read the color map for each channel from a separate file. The number of files specified must
equal the number of channels in the applied map. (Note: the list of files must be followed by an-
other flag argument or by the null flag −− to separate it from the infile specification.

−o outfile
The output will be written to the file outfile if this option is specified. Otherwise the output will go
to stdout.

infile The input will be taken from this file if specified. Otherwise, the input will be read from stdin.

SEE ALSO
applymap(1), urt(1), RLE(5).

AUTHOR
Spencer W. Thomas, University of Utah

66 Nov 12, 1986 1

RLEMANDL(1) RLEMANDL(1)

NAME
rlemandl − Compute images of the Mandelbrot set.

SYNOPSIS
rlemandl [−o outfile] [−s xsize ysize] [−v] real imaginary width

DESCRIPTION
Rlemandl computes images of the Mandelbrot set as an eight bit gray scale image. The real and imaginary
arguments specify the center of the area in the complex plane to be examined. Width specifies the width
area to be examined.

OPTIONS
−o outfile

If specified, output will be written to this file, otherwise it will go to stdout.

−s xsize ysize Specify the resolution of the image (in pixels).

−v Print a message after every 50 lines are generated.

SEE ALSO
urt(1),
"Computer Recreations," Scientific American, August 1985.

AUTHOR
John W. Peterson, University of Utah.

BUGS
What a frob. Gratuitous features are left as exercise to the reader. The command name is spelled incorrect-
ly.

1 Nov 8, 1987 67

RLENOISE(1) RLENOISE(1)

NAME
rlenoise − Add random noise to an image

SYNOPSIS
rlenoise [−n amount] [−o outfile] [infile]

DESCRIPTION
Rlenoise adds uniform random noise to an image. The peak-to-peak amplitude of the noise can be specified
with the −n flag, the default value is 4. This program may be useful for trying to deal with quantization in
an output device, if you are able to trade spatial resolution for color resolution, and you don’t hav e a good
characterization of the quantization function.

OPTIONS
infile The input will be read from this file, otherwise, input will be taken from stdin.

−o outfile
If specified, output will be written to this file, otherwise it will go to stdout.

SEE ALSO
urt(1), RLE(5).

AUTHOR
Spencer W. Thomas, University of Michigan.

BUGS
Of limited utility.

68 June 15, 1988 1

RLEPATCH(1) RLEPATCH(1)

NAME
rlepatch − patch smaller RLE files over a larger image.

SYNOPSIS
rlepatch [−o outfile] infile patchfiles...

DESCRIPTION
Rlepatch puts smaller RLE files on top of a larger RLE image. One use for rlepatch is to place small "fix"
images on top of a larger image that took a long time to compute. Along with repos(1), rlepatch can also
be used as a simple way to build image mosaics.

Unlike rlecomp(1), rlepatch does not perform any arithmetic on the pixels. If the patch images overlap, the
patches specified last cover those specified first.

If the input files each contain multiple images, they are treated as streams of images merging to form a
stream of output images. I.e., the nth image in each input file becomes part of the nth image in the output
file. The process ceases as soon as any input file reaches its end.

OPTIONS
infile The background image will be read from this file. If input is to be taken from stdin, "−" must be

specified here.

−o outfile
If specified, output will be written to this file, otherwise it will go to stdout.

SEE ALSO
rlecomp(1), crop(1), repos(1), urt(1), RLE(5).

AUTHOR
John W. Peterson, University of Utah.

BUGS
Rlepatch uses the "row" interface to the RLE library. It would run much faster using the "raw" interface,
particularly for placing small patches over a large image. Even fixing it to work like rlecomp (which uses
"raw" mode only for non-overlapping images) would make a major improvement.

1 Nov 8, 1987 69

RLEPRINT(1) RLEPRINT(1)

NAME
rleprint − Print the values of all the pixels in the file.

SYNOPSIS
rleprint [−a] [infile]

DESCRIPTION
This program reads an RLE(5) image and prints the values of all the pixels to the standard output. Each
pixel is printed on a single line. For example, a count of all the unique pixel values in the file could be ob-
tained by
rleprint pic.rle | sort −u | wc

infile The input will be read from this file. If infile is "−" or is not specified, the input will be read from
the standard input stream.

OPTIONS
−a Print the alpha value (if available) as the last entry on the line.

SEE ALSO
rlehdr(1), urt(1), RLE(5).

AUTHOR
Spencer W. Thomas

BUGS
This program is of limited utility because of the sheer volume of output it generates.

70 June 12, 1990 1

RLEQUANT(1) RLEQUANT(1)

NAME
rlequant − variance based color quantization for RLE images

SYNOPSIS
rlequant [−b bits] [−c] [−d] [−f] [−i cubeside] [−m] [−n colors] [−r mapfile] [−o outfile] [infile

]

DESCRIPTION
This program quantizes the colors in an RLE image using a variance-based method. See colorquant(3) for
more details on the method.

−b bits The colors in the input image will be "prequantized" to this many bits before applying the vari-
ance-based method. Tw o internal tables of size 2ˆ(3*bits) are allocated, so values of bits greater
than 6 are likely to cause thrashing or may prevent the program from running at all. The default
value of bits is 5. It must be less than or equal to 8 and greater than 0.

−c Only the color map will be output; the image will not be digitized. The output file will be a 0x0
RLE file with a color map, suitable for input to rleldmap(1), rledither(1), or rlequant -r.

−d Floyd Steinberg dithering is performed on the output. This is very helpful for images being quan-
tized to a small number of colors.

−f If this option is specified, a faster approximation will be used. In most cases, the error so intro-
duced will be barely noticeable.

−i cubeside
Initializes the output color map with a "color cube" of size cubesideˆ3. I.e., if -i 2 were specified,
the 8 corners of the color cube (black, red, green, blue, yellow, cyan, magenta, white) would be
added to the output colormap. This reduces the number of colors available for quantization. The
color cube will be used to quantize the output image, but will not otherwise affect the choice of
representative colors.

−m Computes a single color map suitable for quantizing all the input images. This is useful when the
quantized images will be used as a "movie" (e.g., with the −m flag of getx11(1)). The input may
not come from a pipe when this option is specified, unless −c is also specified.

−n colors
The output image will be quantized to at most colors colors. It might have fewer if the input im-
age has only a few colors itself. The default value of colors is 256 − cubesizeˆ3 − mapsize. It
must be less than or equal to 256. If a color cube (−c) or an input map (−r) is giv en, colors may
be 0; otherwise it must be greater than 0.

−r mapfile
The color map from the RLE file mapfile will be added to the output color map. The number of
colors in the input color map, mapsize is calculated as follows: If a color_map_length comment is
present in mapfile, its value is used. If not, the size of the color map (usually 256) is used (the
rlehdr(1) program will display the color map size and the comment, if present). The input color
map will be used to quantize the output image, but will not otherwise affect the choice of represen-
tative colors. If the combination -n 0 -r mapfile is specified, then rlequant will just quantize (and
dither, if requested) the input images to the given colormap. This is usually faster than using
rledither.

−o outfile
The output will be written to the file outfile. If not specified, or if outfile is "−", the output will be
written to the standard output stream.

infile This file contains one or more concatenated RLE images. Each will be processed in turn. A sepa-
rate quantization map will be constructed for each image. If not specified, or if infile is "−", the
image(s) will be read from the standard input stream.

1 June 12, 1990 71

RLEQUANT(1) RLEQUANT(1)

EXAMPLES
rlequant file.rle

Quantizes file.rle to 256 colors using a 5-bit pre-quantization. If file.rle has multiple images, each
will get its own (different) colormap.

rlequant −m file.rle
Quantizes file.rle to 256 colors using a 5-bit pre-quantization. If file.rle has multiple images, they
will all be used to choose the color map, and will all be quantized to the same color map.

cat *.rle | rlequant −m −c >map.rle ;
cat *.rle | rlequant −n 0 −r map.rle

Computes a single colormap based on all the images in the files *.rle, then quantizes each image to
that color map. The output is the stream of quantized images.

rlequant -i 4 -d file.rle
Compute 192 representative colors for each image in file.rle, add a 4x4x4 color cube to the result-
ing color map, and then quantize the image to the resulting set of colors with dithering.

rlequant -b 6 file.rle
Quantize file.rle to 256 colors using a 6-bit prequantization. This provides slightly more precision
in color matching than does a 5-bit prequantization. It also runs significantly slower and requires
approximately 8 times the memory for its intermediate storage.

SEE ALSO
mcut(1), rledither(1), rlehdr(1), urt(1), colorquant(3), RLE(5).

AUTHOR
Spencer W. Thomas
Craig Kolb (Yale University) wrote the color quantization code.
Rod Bogart wrote the dithering code.

72 June 12, 1990 1

RLESCALE(1) RLESCALE(1)

NAME
rlescale − produce gray scale images.

SYNOPSIS
rlescale [−c] [−n nsteps] [−o outfile] [xsize] [ysize]

DESCRIPTION
Rlescale produces an RLE image containing a (more-or-less) standard gray scale image. Along the bottom
are 8 colored patches (in the standard primary and secondary colors). Above these are a sequences of loga-
rithmically scaled gray patches. By default, a 16 step scale is produced. The size of the output file (default
512 by 480) can be set with the xsize and ysize arguments.

OPTIONS
−c Produce red, green, blue, and gray scales.

−n nsteps
Specify the number of steps to be produced.

SEE ALSO
urt(1), RLE(5).

AUTHOR
Spencer W. Thomas, University of Michigan.

BUGS
Can’t make an image narrower than 3 * nsteps pixels wide.

1 Jun 15, 1988 73

RLESELECT(1) RLESELECT(1)

NAME
rleselect − Select images from an RLE file.

SYNOPSIS
rleselect [−i infile] [−o outfile] [−v] [image-numbers ...]

DESCRIPTION
This program selects images from an RLE(5) file containing multiple concatenated images. The selected
images are specified by number; the first image in the file is number 1. A neg ative number in the image-
numbers list means that all images from the previous number in the list to the absolute value of this number
should be included. A zero in the list is taken as ’−infinity’, so that all images from the previous number to
the last image in the file will be included. To try to clarify this, some examples are included below.

OPTIONS
−i infile The input will be read from this file. If infile is "−" or is not specified, the input will be read from

the standard input stream.

−o outfile
If specified, the output will be written to this file. If outfile is "−", or if it is not specified, the out-
put will be written to the standard output stream.

−v Verbose output.

EXAMPLES
rleselect 1 4 5

Selects image 1, 4, and 5.

rleselect 4 1 5
Also selects image 1, 4, and 5.

rleselect 1 −4 5
Selects images 1 through 4 and 5 (i.e., 1 through 5).

rleselect 3 0
Selects images 3 through the last.

rleselect −4
Selects images 1 through 4.

SEE ALSO
rlesplit(1), urt(1), RLE(5).

AUTHOR
Spencer W. Thomas

74 July 11, 1990 1

RLESETBG(1) RLESETBG(1)

NAME
rlesetbg − Set the background value in the RLE header.

SYNOPSIS
rlesetbg [−{DO}] [−c bgcolor ...] [−o outfile] [infile]

DESCRIPTION
rlesetbg sets the background color field in the image header of an RLE(5) image (none of the actual pixels
are changed). If infile isn’t specified, the image is read from stdin.

The background color in the header is used to save space in the run-length encoded file. Runs of back-
ground-colored pixels longer than 2 pixels are simply not saved. (Doing this for runs of 1 or 2 background
pixels can make the saved image larger than if no encoding were done.) Therefore, changing the back-
ground color with rlesetbg may still leave some pixels saved in the original background color. The −D op-
tion will delete the background color altogether from the header; this can be useful in certain circum-
stances, but can also lead to very strange results.

OPTIONS
−D Delete any background specification that might be present.

−O Specifies that the image has no background, it overlays existing images.

−c bgcolor ...
Specifies the color values to set the background to. There should be at least as many values as
there are color channels in the image. Use −− or another option to separate the list of colors from
infile.

−o outfile
If specified, the output will be written to this file. If outfile is "−", or if it is not specified, the out-
put will be written to the standard output stream.

AUTHORS
John W. Peterson and Rod Bogart

SEE ALSO
repos(1), urt(1), RLE(5).

BUGS
This should really be part of a single program that does all header munging...

1 December 20, 1986 75

RLESKEL(1) RLESKEL(1)

NAME
rleskel − A skeleton tool.

SYNOPSIS
rleskel [−o outfile] [infile]

DESCRIPTION
This program reads an RLE(5) image and writes it to the specified output file. All images in the input file
will be copied. The program is not normally compiled and installed, it exists solely to serve as a starting
point for writing simple "filter" tools, just as this man page serves as a starting point for the documentation
of simple tools.

OPTIONS
−o outfile

If specified, the output will be written to this file. If outfile is "−", or if it is not specified, the out-
put will be written to the standard output stream.

infile The input will be read from this file. If infile is "−" or is not specified, the input will be read from
the standard input stream.

SEE ALSO
urt(1), RLE(5).

AUTHOR
Spencer W. Thomas

76 June 12, 1990 1

RLESPIFF(1) RLESPIFF(1)

NAME
rlespiff − Use simple contrast enhancement to "spiff up" an image.

SYNOPSIS
rlespiff [−b blacklevel] [−s] [−t threshold] [−w whitelevel] [−o outfile] [infile]

DESCRIPTION
Rlespiff "spiffs up" an image by stretching the contrast range so that the darkest pixel maps to black and the
lightest to white. If the −s flag is given, the color channels will be treated separately. This will likely cause
some drastic color shifts.

OPTIONS
−b blacklevel

The darkest input pixel will map to this pixel value in the output image. The default is 0.

−s If specified, each color channel will be mapped separately.

−t threshold
This argument controls the number of samples of a pixel value that should be considered insignifi-
cant (and will therefore be ignored). It is specified in pixels/million. A threshold of 4 applied to a
512x512 image would mean that any value that existed at only one pixel would be ignored. The
default value is 10.

−w whitelevel
The lightest input pixel will map to this pixel value in the output image. The default is 255.

−o outfile
If specified, the output will be written to this file. If outfile is "−", or if it is not specified, the out-
put will be written to the standard output stream.

infile The input will be read from this file. If infile is "−" or is not specified, the input will be read from
the standard input stream.

SEE ALSO
urt(1), RLE(5).

AUTHOR
Spencer W. Thomas

1 June 12, 1990 77

RLESPLICE(1) RLESPLICE(1)

NAME
rlesplice − Splice two RLE files together horizontally or vertically.

SYNOPSIS
rlesplice −{hv} [−c] [−o outfile] infile1 infile2

DESCRIPTION
rlesplice splices two RLE images together either vertically or horizontally. If one image is smaller, then its
background value or black is used to pad that image to equal the larger dimension in the other image. The
−c flag is used to specify whether the smaller image should be centered when put next to the larger.
Presently the two images must have the same number of color channels, the same presence of an alpha
channel, and the same colormap size and length. The colormap from the first image is used for the resultant
image.

SEE ALSO
rlecomp(1), rlepatch(1), unslice(1), urt(1), RLE(5).

AUTHOR
Martin R. Friedmann

78 Nov 12, 1986 1

RLESPLIT(1) RLESPLIT(1)

NAME
rlesplit − split a file of concatenated RLE images into separate image files

SYNOPSIS
rlesplit [−n number [digits]] [−o prefix] [infile]

DESCRIPTION
This program will split a file containing a concatenated sequence of RLE(5) images into separate files, each
containing a single image. The output file names will be constructed from the input file name or a specified
prefix, and a sequence number. If an input infile is specified, then the output file names will be in the form
"rlefileroot.#.rle", where rlefileroot is infile with any ".rle" suffix stripped off. If the option −o prefix is
specified, then the output file names will be of the form "prefix.#.rle". If neither option is given, then the
output file names will be in the form "#.rle". Input will be read from infile if specified, from standard input,
otherwise. File names will be printed on the standard error output as they are generated.

The option −n allows specification of an initial sequence number, and optionally the number of digits used
for the sequence number. By default, numbering starts at 1, and numbers are printed with 3 digits (and
leading zeros).

SEE ALSO
rleselect(1), urt(1), RLE(5).

AUTHOR
Spencer W. Thomas

1 May 12, 1987 79

RLESTEREO(1) RLESTEREO(1)

NAME
rlestereo − produce anaglyph from stereo pair

SYNOPSIS
rlestereo [−l leftscale] [−r rightscale] leftimage rightimage

DESCRIPTION
Rlestereo reads the two named RLE files and produces a single image suitable for viewing with red-blue or
red-green glasses.

The ’left’ image is converted to greyscale and written on the red channel. The ’right’ image is converted to
greyscale and written on the blue or green channel. The intensity of the two channels may be scaled in or-
der to compensate for the relative intensities of the two base colors as viewed through the glasses.

OPTIONS
−g The right-eye image is written to the green channel rather than the blue.

−l leftscale
Scale the intensities of the left-eye greyscale image by the given amount. The default value is 0.7.

−r rightscale
Scale the intensities of the right-eye greyscale image by the given amount. The default value is
1.0.

SEE ALSO
urt(1), RLE(5).

Cardboard glasses are available at many comic book stores.

AUTHOR
Craig Kolb, Yale University

80 July 31, 1990 1

RLESWAP(1) RLESWAP(1)

NAME
rleswap − swap the channels in an RLE file.

SYNOPSIS
rleswap [−v] [−f from-channels,...] [−t to-channels,...] [−d delete-channels,...] [−p channel-pairs,...
] [−o outfile] [infile]

DESCRIPTION
This program can be used to select or swap the color channels in a RLE(5) file. The major options provide
four different ways of specifying a mapping between the channels in the input file and the output file. Only
one of the options −f, −t, −d, or −p may be specified. If the optional infile is not given, input will be read
from standard input. A new RLE(5) file will be written to the standard output or to outfile, if specified. The
output image will be similar to the input, except for the specified channel remappings.

OPTIONS
−v Print the channel mappings that will be performed on the standard error output.

−f Following this option is a comma separated list of numbers indicating the input channel that maps
to each output channel in sequence. I.e., the first number indicates the input channel mapping to
output channel 0. The alpha channel will be passed through unchanged if present. Any input
channels not mentioned in the list will not appear in the output.

−t Following this option is a comma separated list of numbers indicating the output channel to which
each input channel, in sequence, will map. I.e., the first number gives the output channel to which
the first input channel will map. No number may be repeated in this list. The alpha channel will
be passed through unchanged if present. Any output channel not mentioned in the list will not re-
ceive image data. If there are fewer numbers in the list than there are input channels, the excess
input channels will be ignored. If there are more numbers than input channels, it is an error.

−d Following this option is a comma separated list of numbers indicating channels to be deleted from
the input file. All other channels will be passed through unchanged. The alpha channel may be
specified as −1.

−p Following this option is a comma separated list of pairs of channel numbers. The first channel of
each pair indicates a channel in the input file that will be mapped to the the channel in the output
file indicated by the second number in the pair. No output channel number may appear more than
once. Any input channel not mentioned will not appear in the output file. Any output channel not
mentioned will not receive image data. The alpha channel may be specified as −1.

SEE ALSO
mergechan(1), urt(1), RLE(5).

AUTHOR
Spencer W. Thomas, University of Utah

1 Jan 22, 1987 81

RLETOABA60(1) RLETOABA60(1)

NAME
rletoabA60 − convert RLE images to Abekas yuv format

SYNOPSIS
rletoabA60 [−c] [−{pP} x y] [−o outfile] [infile]

DESCRIPTION
This program converts an RLE(5) file to a yuv byte file suitable for display on an Abekas A60. Typically
the yuv file is then rcp’d to the Abekas for display. By default rletoabA60 will attempt to place the image
according to the placement values in the image header. If the image is to large to fit in the Abekas format
(720x486), the portion of the image extending off the edge will be cropped.

OPTIONS
−c Center the image on a black background.

−p x y Position the lower left corner of the image at (x y).

−P x y Increment the position of the image by (x y).

At most one of −c, −p, or −P can be specified.

infile The input will be read from this file, otherwise, input will be taken from stdin.

−o outfile
If specified, output will be written to this file, otherwise it will go to stdout.

SEE ALSO
urt(1), RLE(5).

AUTHOR
Thomas Todd Elvins, University of Utah

82 June 05, 1988 1

RLETOABA62(1) RLETOABA62(1)

NAME
rletoabA62 − Convert from RLE Format to Abekas A62 Dump Format

SYNOPSIS
rletoabA62 [−N] [−f n] [−n n] [infile]

DESCRIPTION
RletoabA62 converts a raster file in the Utah Raster Toolkit RLE format into a format suitable for writing to
an Abekas A62 dump tape and subsequent loading onto the Abekas disk. The generated image is 768 pix-
els wide and 512 pixels high. If the input is larger, it is truncated. If it is smaller, it is padded on the top
and right with black. The output is written to stdout, and should be written to a tape in 24K byte blocks
with dd as in the following:

dd of=/dev/rmt8 obs=24k

Normally, the output is processed with a simple digital filter; this feature may be turned off with an option.
RletoabA62 normally writes two consecutive frames, normally starting at frame 1.

Input is taken from stdin unless a file name is given on the command line. Only a single file may be given,
and so if multiple invocations of rletoabA62 are performed in a script, care must be taken to tell the pro-
gram to convert the data for the proper Abekas frame number (1-4). Otherwise, the colors will appear
wrong; they will be rotated on a vector scope diagram.

EXAMPLE
The following example converts all files ending in .rle in the current directory and writes them to a tape.
Tw o frames are written per image and the frame number is incremented accordingly.

frame=1
number=2
for file in *.rle
do

rletoabA62 −f $frame $file
frame=‘expr \(\($frame − 1 \) + $number \) % 4 + 1‘

done |
dd of=/dev/rmt8 obs=24k

OPTIONS
Options are parsed by getopt(3).

−N Do not apply digital filtering.

−f n Create the first frame as Abekas frame number n, having a value from one to four. Consecutive
frames increment this number modulo four. The default is one.

−n n Write n frames of output, incrementing the frame number each time. The default is two.

SEE ALSO
urt(1), RLE(5).

AUTHOR
Bob Brown, RIACS.

BUGS
This program does not preserve the aspect ratio of the input.

1 6 February 1988 83

RLETOALIAS(1) RLETOALIAS(1)

NAME
rletoalias − Convert RLE image to Alias™ pix format.

SYNOPSIS
rletoalias [−v] [−o outfile] [infile]

DESCRIPTION
This program converts an image in RLE(5) format to Alias™ "pix" format. Since "pix" and RLE differ on
the origin location, the program flips the image top to bottom.

OPTIONS
−o outfile

If specified, the output will be written to this file. If outfile is "−", or if it is not specified, the out-
put will be written to the standard output stream. −v Verbose output.

infile The input will be read from this file. If infile is "−" or is not specified, the input will be read from
the standard input stream.

SEE ALSO
aliastorle(1), urt(1), RLE(5).

AUTHOR
Raul Rivero, Mathematics Department, University of Oviedo.

84 March, 1992 1

RLETOASCII(1) RLETOASCII(1)

NAME
rletoascii − Print an RLE image as ASCII chars.

SYNOPSIS
rletoascii [−S asciistr] [−r] [−o outfile] [infile]

DESCRIPTION
Rletoascii reads a file in RLE(5) format, converts it to black and white, then dumps it as ASCII characters.
The 0 to 255 range of pixel values in the image is scaled to the length of asciistr and a the character at that
position in the string is printed for each pixel. Input will be read from infile if specified, from standard in-
put, otherwise. Output dumps to standard output, or outfile, if specified.

Usually, the input will need to be resized by fant(1) or rlezoom(1) to make it small enough to fit on the
screen and to adjust the pixel aspect ratio to the "character aspect ratio" of the terminal. To get it "right side
up", use rleflip(1) with the −v option. Finally, it may be helpful to maximize the dynamic range with
rlespiff (1).

OPTIONS
−S asciistr

Specifies the range of ascii characters for conversion. The default string
(@BR*#$PX0woIcv:+!˜".,) was designed to look good with the X 6x13 font.

−r Reverse video. This causes the 0 to 255 range to be mapped to the reverse of the ascii string.

SEE ALSO
fant(1), rleflip(1), rlespiff (1), rlezoom(1), urt(1), RLE(5).

AUTHOR
Rod G. Bogart, University of Michigan.

DEFICIENCIES
Could be rewritten to use overprinting for output to a real printer.

1 Jun 18, 1990 85

RLETOCGM(1) RLETOCGM(1)

NAME
rletocgm − convert RLE images to ANSI/ISO CGM format

SYNOPSIS
rletocgm [−v] [−d] [−o outfile] [infile]

DESCRIPTION
This program reads an RLE(5) file converts each image to a CGM picture, and writes the result to the speci-
fied output file. All images in the input file will be copied. CGM is an ANSI/ISO standard format for 2D
images. Binary-encoded CGM is produced. The Pittsburgh Supercomputing Center DRAWCGM library is
used to generate the CGM output.

OPTIONS
−v Print information about the pages converted on the standard error output.

−d Print debugging information on the standard error output.

−o outfile
If specified, the output will be written to this file. If outfile is "−", or if it is not specified, the out-
put will be written to the standard output stream.

infile The input will be read from this file. If infile is "−" or is not specified, the input will be read from
the standard input stream.

SEE ALSO
urt(1), RLE(5), ANSI Document X3.122-1986: Computer Graphics − Metafile for the Storage and Trans-
fer of Picture Description Information.

AUTHOR
Joel S. Welling, Pittsburgh Supercomputing Center

86 April 16, 1991 1

RLETOGIF(1) RLETOGIF(1)

NAME
rletogif − Convert RLE files to GIF format.

SYNOPSIS
rletogif [−o outfile.gif] [infile.rle]

DESCRIPTION
This program converts an RLE(5) image file to GIF format. The input file must be a single channel (8 bit)
image. Three channel (24 bit) images can be converted to single channel images using the programs
tobw(1), to8(1), mcut(1), or rlequant(1). The input image will be flipped vertically, since the GIF origin is
in the upper left, and the RLE origin is in the lower left. Only a single image will be converted.

OPTIONS
−o outfile.gif

If specified, the output will be written to this file. If outfile.gif is "−", or if it is not specified, the
output will be written to the standard output stream.

infile.rle
The input will be read from this file. If infile.rle is "−" or is not specified, the input will be read
from the standard input stream.

SEE ALSO
to8(1), mcut(1), rlequant(1), giftorle(1), urt(1), RLE(5).

AUTHOR
Bailey Brown, University of Michigan

1 July 3, 1990 87

RLETOGRAY(1) RLETOGRAY(1)

NAME
rletogray − Splits an RLE format file into gray scale images.

SYNOPSIS
rletogray [−o prefix] [infile]

DESCRIPTION
Rletogray reads a file in RLE(5) format and splits the file into unencoded binary files, one for each channel
in the RLE file. The output file names will be constructed from the input file name or a specified prefix.

If an input infile is specified, then the output file names will be in the form "rlefileroot.{alpha, red, green,
blue}", where rlefileroot is infile with any ".rle" suffix stripped off. If the option −o prefix is specified, then
the output file names will be of the form "prefix.{alpha, red, green, blue}". If neither option is given, then
the output file names will be "out.{alpha, red, green, blue}". Input will be read from infile if specified, from
standard input, otherwise. If more channels than just red, green, blue, and alpha are present in the input,
numeric suffixes will be used for the others.

OPTIONS
−o prefix

Specifies the output file name prefix to be used.

infile This option is used to name the input file. If not present, input is taken from stdin.

SEE ALSO
rletoraw(1), urt(1), RLE(5).

AUTHOR
Michael J. Banks, University of Utah.

88 Jun 24, 1988 1

RLETOPAINT(1) RLETOPAINT(1)

NAME
rletopaint − convert an RLE file to MacPaint format using dithering

SYNOPSIS
rletopaint [−l] [−r] [−g [gamma]] [−o outfile.paint] [infile]

DESCRIPTION
Rletopaint converts a file from RLE(5) format to MacPaint format. The program uses dithering to convert
from a full 24 bit color image to a bitmapped image. If the RLE file is larger than a MacPaint image
(576×720) it is cropped to fit.

Because MacPaint files have their coordinate origin in the upper left instead of the lower left, the RLE file
should be piped through rleflip(1) −v before rletopaint.

The resulting file can be downloaded to a Macintosh in binary mode, and should be given a type of PNTG
and a creator of MPNT , so it will be recognized as a MacPaint file.

OPTIONS
−l Use a linear map in the conversion from 24 bits to bitmapped output.

−g [gamma]
Use a gamma map of gamma (gamma is 2.0 if not specified).

−r Invert the sense of the output pixels (white on black instead of black on white). For normal im-
ages, you probably want this flag.

SEE ALSO
painttorle(1), urt(1), RLE(5).

AUTHOR
John W. Peterson. Byte compression routine by Jim Schimpf.

BUGS
Should use a color map in the file, if present.

1 Month X, YYYY 89

RLETOPNM(1) RLETOPNM(1)

NAME
rletopnm − convert a Utah Raster Tools RLE image file into a PNM image file.

SYNOPSIS
rletopnm [--alphaout={alpha-filename,-}] [--headerdump|-h] [--verbose|-v] [--plain|-p] [rlefile|-]

All options may be abbreviated to their minimum unique abbreviation and options and arguments may be in
any order.

DESCRIPTION
This program converts Utah Raster Toolkit RLE image files into PNM image files. rletopnm handles four
types of RLE files: Grayscale (8 bit data, no color map), Pseudocolor (8 bit data with a color map), Truecol-
or (24 bit data with color map), and Directcolor (24 bit data, no color map). rletopnm generates a PPM file
for all these cases except for the Grayscale file, for which rletopnm generates a PGM file.

rlefile is the RLE input file. If it is absent or -, the input comes from Standard Input.

OPTIONS
--alphaout=alpha-filename

rletoppm creates a PGM (portable graymap) file containing the alpha channel values in the input
image. If the input image doesn’t contain an alpha channel, the alpha-filename file contains all ze-
ro (transparent) alpha values. If you don’t specify --alphaout, rletoppm does not generate an al-
pha file, and if the input image has an alpha channel, rletoppm simply discards it.

If you specify - as the filename, rletoppm writes the alpha output to Standard Output and discards
the image.

See pnmcomp(1) for one way to use the alpha output file.

--verbose
This option causes rletopnm to operate in verbose mode. It prints messages about what it’s doing,
including the contents of the RLE image header, to Standard Error.

--headerdump
This option causes rletopnm to operate in header dump mode. It prints the contents of the RLE
image header to Standard Error, but does not produce any other output.

--plain This option causes the PNM output file to be in the "plain" (text) format, instead of the default
"raw" (binary) format. See ppm(5) and pgm(5) for details on the difference.

EXAMPLES
rletopnm −−verbose lenna.rle >lenna.ppm

While running in verbose mode, convert lenna.rle to PPM format and store the resulting image as
lenna.ppm.

rletopnm −−headerdump file.rle
Dump the header information of the RLE file called file.rle.

rletopnm --alphaout=dartalpha.pgm dart.rle >dart.ppm
Convert RLE file dart.rle to PPM format as dart.ppm. Store the alpha channel of dart.rle as dartal-
pha.pgm (if dart.rle doesn’t hav e an alpha channel, store a fully transparent alpha mask as dartal-
pha.pgm).

SEE ALSO
pnmtorle(1), pnmconvol(1), pnm(5), ppm(5), pgm(5), urt(1), RLE(5)

90 13 April 2000 1

RLETOPNM(1) RLETOPNM(1)

AUTHOR
Wes Barris
Army High Performance Computing Research Center (AHPCRC)
Minnesota Supercomputer Center, Inc.

Modifications by Eric Haines to support raw and plain formats.

Modifications by Bryan Henderson to create alpha files and use mnemonic options.

1 13 April 2000 91

RLETOPPM(1) RLETOPPM(1)

NAME
rletoppm − convert a Utah RLE image file into a PBMPLUS/ppm image file.

SYNOPSIS
rletoppm [−h] [−v] [−p] [infile]

DESCRIPTION
This program converts Utah RLE(5) image files into PBMPLUS full-color (ppm) image files. Rletoppm
will handle four types of RLE files: Grayscale (8 bit data, no color map), Pseudocolor (8 bit data with a col-
or map), Truecolor (24 bit data with color map), and Directcolor (24 bit data, no color map). Since the or-
gins for the RLE and PBMPLUS image file formats are in different locations, this program automatically
"flips" the image when converting.

OPTIONS
−v This option will cause rletoppm to operate in verbose mode. Header information is printed to

"stderr".

−h This option allows the header of the RLE file to be dumped to "stderr" without converting the file.
It is equivalent to using the −v option except that no file conversion takes place.

−p This option will output the ppm data in the "plain" format (P3), instead of the default "raw bits"
format (P6). The plain format is more readable, but takes up more space.

infile The input will be read from this file. If infile is "−" or is not specified, the input will be read from
the standard input stream. The resulting PBMPLUS/ppm data will be sent to "stdout".

EXAMPLES
rletoppm −v lenna.rle >lenna.ppm

While running in verbose mode, convert lenna.rle to PBMPLUS/ppm format and store resulting
data in lenna.ppm.

rletoppm −h test.rle
Dump the header information of the RLE file called test.rle.

rletoppm −p test.rle >lenna.ppm
Convert lenna.rle to PBMPLUS/ppm plain (P3) format and store in lenna.ppm.

SEE ALSO
ppmtorle(1), pgmtorle(1), urt(1), RLE(5)

AUTHOR
Wesley C. Barris
Army High Performance Computing Research Center (AHPCRC)
Minnesota Supercomputer Center, Inc.
Modifications by Eric Haines to support raw and plain formats.

92 July 20, 1990 1

RLETOPS(1) RLETOPS(1)

NAME
rletops − Convert RLE images to PostScript

SYNOPSIS
rletops [−C] [−a aspect] [−c center] [−h height] [−o outfile.ps] [−s] [infile]

DESCRIPTION
Rletops converts RLE(5) images into PostScript. The conversion uses the PostScript image operator, in-
structing the device to reproduce the image to the best of its abilities. If infile isn’t specified, the RLE im-
age is read from stdin. The PostScript output is dumped to stdout, or to outfile.ps, if specified.

OPTIONS
−a aspect

Specify aspect ratio of image. Default is 1.0 (note PostScript uses square pixels).

−C Causes a color PostScript image to be generated. This creates larger files and uses the PostScript
colorimage operator, which is not recognized by all devices. The default is monochrome.

−c center
Centers the images about a point center inches from the left edge of the page (or left margin if −s
is specified). Default is 4.25 inches.

−h height
Specifies the height (in inches) the image is to appear on the page. The default is three inches.
The width of the image is calculated from the image height, aspect ratio, and pixel dimensions.

−s Specifies image is to be generated in "Scribe Mode." The image is generated without a PostScript
showpage operator at the end, and the default image center is changed to 3.25 inches from the
margin (which usually is 1 inch). This is to generate PostScript files that can be included in Scribe
documents with the @Picture command. Images may also be included in LaTex documents with
local conventions like the \special{psfile=image.ps} command.

NOTES
On devices like the Apple LaserWriter, rletops generates large PostScript files that take a non-trivial
amount of time to download and print. A 512x512 image takes about ten minutes. For including images in
documents at the default sizes, 256x256 is usually sufficient resolution.

SEE ALSO
avg4(1), urt(1), RLE(5).

AUTHORS
Rod Bogart, John W. Peterson, Gregg Townsend.

Portions are based on a program by Marc Majka.

BUGS
Due to a mis-understanding with the PostScript interpreter, rletops always rounds the image size up to an
ev en number of scanlines.

1 December 20, 1986 93

RLETORAST(1) RLETORAST(1)

NAME
rletorast − Convert an RLE file to a Sun rasterfile.

SYNOPSIS
rletorast [−o outfile.ras] [infile]

DESCRIPTION
This program converts an RLE(5) file to a Sun raster file.

−o outfile.ras
If specified, the output will be written to this file. If outfile.ras is "−", or if it is not specified, the
output will be written to the standard output stream. The input file should have either 1 or 3 chan-
nels, and may have an alpha channel. Depending on the input, either a gray scale or color raster
file will be generated. If an alpha channel is present, a 32 bit raster will always be made. Since
the Sun raster format and RLE disagree on the origin location, the image is automatically flipped
to maintain its orientation.

infile The input will be read from this file. If infile is "−" or is not specified, the input will be read from
the standard input stream.

The programs mcut(1), rlequant(1), to8(1), and tobw(1) will make a 1 channel RLE image from
an 3 channel (full color) image. If the original image also had an alpha channel, rleswap -d -1 can
be used to delete it.

SEE ALSO
mcut(1), rastorle(1), rlequant(1), rleswap(1), to8(1), tobw(1), urt(1), RLE(5).

AUTHOR
Ed Falk, Sun Microsystems.

94 1990 1

RLETORAW(1) RLETORAW(1)

NAME
rletoraw − Convert RLE file to raw RGB form.

SYNOPSIS
rletoraw [−a] [−[Ns]] [−r] [−f header-size] [−t trailer-size] [−l left-scanline-pad] [−p scanline-pad
[−o outfile] [infile]

DESCRIPTION
This program converts an RLE(5) image to a raw RGB form. The output file is normally a stream of pixels
(RGBRGB...), in left-to-right, bottom-to-top order (this can be changed with the −N or −s flags). The
width and height of the input image will be printed on the standard error stream.

OPTIONS
−a If specified, an alpha channel will be written to the output file. This is the last output channel, un-

less −r is specified, in which case it will be the first.

−N If specified, the output will be written in a non-interleaved order. I.e., all the red pixels will be
written first, then all the green pixels, etc.

−s If specified, the output will be written in a scanline-interleaved order. I.e., all the red pixels for a
scanline will be written, followed by all the green pixels for the scanline, etc. The options −N and
−s are mutually exclusive.

−r Reverse the order of the channels in the output. I.e., output will be written ABGR instead of RG-
BA.

−f header-size
A header of this many zero bytes will be written to the output file.

−t trailer-size
A trailer of this many zero bytes will be written after the output file.

−l left-scanline-pad
The left (beginning) of each scanline will be padded with this many zero bytes.

−p left-scanline-pad
The right (end) of each scanline will be padded with this many zero bytes.

−o outfile
If specified, the output will be written to this file. If outfile is "−", or if it is not specified, the out-
put will be written to the standard output stream.

infile The input will be read from this file. If infile is "−" or is not specified, the input will be read from
the standard input stream.

SEE ALSO
rawtorle(1), urt(1), RLE(5).

AUTHOR
Martin Friedmann

BUGS
Basically handles input files with 1 or 3 channels (plus alpha). Only the first channel of a 2 channel image
will be written.

The header, trailer, and pad options are of dubious utility.

1 1990 95

RLETORLA(1) RLETORLA(1)

NAME
rletorla − convert a Utah RLE image file into a Wav efront "rla" or "rlb" image file.

SYNOPSIS
rletorla [−b] [−h] [−v] [−o outfile] [infile]

DESCRIPTION
This program converts Utah RLE(5) image files into Wav efront "rla" or "rlb" image files. Rletorla will han-
dle four types of RLE files: Grayscale (8 bit data, no color map), Pseudocolor (8 bit data with a color map),
Truecolor (24 bit data with color map), and Directcolor (24 bit data, no color map). In each case the result-
ing Wav efront image file will contain RGB data as well as a matte channel. If no alpha channel is found in
the RLE file, the Wav efront matte channel will be computed using the RGB or mapped data. The entire
area of the Wav efront image will be run length encoded. The size of the Wav efront "bounding box" data
structure will be set to that of the total image area.

NOTE: Even though images of any size can be converted, Wav efront is very fussy about image dimen-
sions. Normally, the converted image must be one of the following sizes or Wav efront will complain with
"ERROR, cannot open image file filename, error -8":

646x485 (0-645x0-484) ntsc_4d
720x486 (0-719x0-485) qtl_ntsc
636x484 (0-635x0-483) iris_ntsc
1024x1024 (0-1023x0-1023) 1k_square

To get around this problem, the aspect ratio field in the Wav efront "rla" file will be "faked" with "ntsc_4d"
for all formats that do not match one of those shown above. This way, Wav efront will find a valid format
string, and any image size will be readable. "rlb" image file do not have this limitation.

OPTIONS
−b This option will cause rletorla to create a Wav efront "rlb" image file instead of using the default

"rla" conversion.

−v This option will cause rletorla to operate in verbose mode. Header information is printed to
"stderr".

−h This option allows the header of the RLE file to be dumped to "stderr" without converting the file.
It is equivalent to using the −v option except that no file conversion takes place.

−o outfile
This option allows the name of the output file to be specified. Re-directing standard output as is
done with most all other toolkit utilities is not permitted here because the resulting "rla" or "rlb"
file is not written sequentially.

infile The name of the RLE image data file to be converted. The name of the resulting Wav efront file
will be derived from the name of the input file (unless the −o option is used) -- the extension will
be changed from "rle" to "rla" or "rlb". (Note: if you use the extended input file names described
in urt(1), this will result in a very strange filename for the Wav efront file.)

EXAMPLES
rletorla −v lenna.rle

While running in verbose mode, convert lenna.rle to Wav efront rla format and store resulting data
in lenna.rla.

rletorla −h test.0001.rle
Dump the header information of the RLE file called test.0001.rle.

rletorla −b -o junk.rlb test.rle
Convert test.rle into a Wav efront "rlb" file called junk.rlb.

SEE ALSO
rlatorle(1), urt(1), RLE(5).

96 May 30, 1990 1

RLETORLA(1) RLETORLA(1)

AUTHOR
Wesley C. Barris
Army High Performance Computing Research Center (AHPCRC)
Minnesota Supercomputer Center, Inc.

1 May 30, 1990 97

RLETOTARGA(1) RLETOTARGA(1)

NAME
rletotarga − Convert an RLE(5) image file to Truevision TARGA format.

SYNOPSIS
rletotarga [infile] outfile

DESCRIPTION
Rletotarga reads a file in RLE(5) format and converts it to Truevision’s TARGA format. If no input file is
specified, the data is read from stdin. The output TARGA file will be in one of three formats, depending on
the contents of the RLE file: 8−bit B/W (format #3), 24− or 32−bit true color (format #2). Only the first
image in the RLE file is read.

SEE ALSO
urt(1), RLE(5).

AUTHOR
Andrew C. Hadenfeldt, University of Nebraska−Lincoln

98 March 16, 1991 1

RLETOTIFF(1) RLETOTIFF(1)

NAME
rletotiff − Convert 24 bit RLE image files to TIFF.

SYNOPSIS
rletotiff [−{cC}] −o outfile.tif [−v] [infile.rle]

DESCRIPTION
This program converts a 24 bit image in RLE(5) format into TIFF form. Only a single image will be con-
verted.

OPTIONS
−{cC} Sets the type of compression used in the output file. −c (the default) will cause the output file to

be compressed using the Lempel-Ziv-Welch (LZW) algorithm. −C will suppress any compres-
sion.

−o outfile.tif
The output will be written to this file. outfile.tif must be a real file, the special cases described in
urt (1) do not apply. Note also that this "option" is not optional. The −o flag is required for con-
sistency with the other tools.

−v Flip image vertically.

infile.rle
The input will be read from this file. If infile.rle is "−" or is not specified, the input will be read
from the standard input stream.

SEE ALSO
tifftorle(1), urt(1), RLE(5).

AUTHOR
Bailey Brown, University of Michigan.

1 July 3, 1990 99

RLEZOOM(1) RLEZOOM(1)

NAME
rlezoom − Magnify an RLE file by pixel replication.

SYNOPSIS
rlezoom factor [y-factor] [−f] [−o outfile] [infile]

DESCRIPTION
This program magnifies (zooms) an RLE(5) file by a floating point factor. Each pixel in the original image
becomes a block of pixels in the output image. If no y-factor is specified, then the image will be magnified
by factor equally in both directions. If y-factor is given, then each input pixel becomes a block of fac-
tor × y-factor pixels in the output. If factor or y-factor is less than 1.0, pixels will be dropped from the im-
age. There is no pixel blending performed. Input is taken from infile, or from the standard input if not
specified. The magnified image is written to the standard output, or outfile, if specified.

You should use rlezoom over fant(1) if you just want a quick magnification of an image with the pixel
boundaries showing. It is significantly faster than fant because it does no arithmetic on the pixel values. If
you need blending between pixels in the magnified image, then fant is the correct program to use. Use
rlezoom −f factor y-factor to produce an image the same size as fant −p 0 0 −s factor y-factor for preview-
ing purposes.

Note: due to the way that scanargs(3) parses the arguments from the command line, if the name of infile is
a number, and it is in the current directory, you should prefix it with "./" so that it will not be confused with
factor or y-factor.

SEE ALSO
fant(1), urt(1), scanargs(3), RLE(5).

AUTHOR
Spencer W. Thomas, Gerald A. Winters.

100 Feb 27, 1987 1

SHOW3(1) SHOW3(1)

NAME
show3 − flip through three IFF ILBM files in rapid succession

SYNOPSIS
show3 redfile greenfile bluefile show3 filename

DESCRIPTION
Show3 will render the three specified IFF ILBM files in three different screens, then flip through them in
rapid succession, thus combining them into a single picture. Its main use is to combine the three r, g, b
components of a picture created by saving a picture rendered using getami −3 into the original picture.

If show3 is called using the second form, then the extensions ".r", ".g", and ".b" will be appended to the file
name given, to produce the required three file names.

Click the left mouse button to exit from this program.

This program will only work if you have Christian Weber’s iff.library in your LIBS: directory.

CAVEAT
As with getami −3, the screen will flicker, especially in conjunction with interlace. If you are sensitive to
screen flicker, please do not use this program.

BUGS
Displaying three images with different resolutions is a sure way to crash the machine. Use this program on-
ly for the purpose for which it is intended.

AUTHOR
Kriton Kyrimis (kyrimis%theseas@csi.forth.gr), based on showiff.c by Christian A. Weber, distributed with
his iff.library.

1 February, 1992 101

SMUSH(1) SMUSH(1)

NAME
smush − defocus an RLE image.

SYNOPSIS
smush [−m maskfile] [−n] [−o outfile] [levels] [infile]

DESCRIPTION
Smush convolves an image with a 5x5 Gaussian mask, blurring the image. One may also provide a mask in
a text file. The file must contain an integer to specify the size of the square mask, followed by size*size
floats. The mask will be normalized (forced to sum to 1.0) unless the −n flag is given.

The resulting image is the same size as the input image, no sub-sampling takes place. The levels option,
which defaults to one, signifies the number of times which the image will be blurred. Each successive blur-
ring is done with a more spread out mask, so a smush of level 2 is blurrier than piping two lev el one smush
calls. If no input file is specified, smush reads from stdin. If no output file is specified with −o it writes the
result to stdout.

SEE ALSO
avg4(1), urt(1), RLE(5).

AUTHOR
Rod G. Bogart

BUGS
Smush should probably automatically generate different sized gaussians and other common filters.

102 March 15, 1987 1

TARGATORLE(1) TARGATORLE(1)

NAME
targatorle − Convert Truevision TARGA images to RLE format.

SYNOPSIS
targatorle [−h headerfile] [−n nchannels] [−o outfile.rle] [infile.tga]

DESCRIPTION
Targatorle converts a file from Truevision’s TARGA format into RLE format. If no input file is specified,
the data is read from stdin. Targatorle recognizes (but cannot necessarily process) all of the image subtypes
defined by the 1989 TARGA 2.0 specification:

0 − Header Only, No Image Data
1 − Uncompressed, Color-mapped Image
2 − Uncompressed, True-color Image
3 − Uncompressed, B/W (gray scale) Image
9 − Run-length encoded, Color-mapped Image

10 − Run-length encoded, True-color Image
11 − Run-length encoded, B/W Image

Targatorle should correctly process images in formats 0, 2, 3, 10, and 11. No support is currently available
for color mapped images.

OPTIONS
−h Allow the program to write TARGA header information to headerfile

−n where nchannels is 3 or 4. If input is a color image, copy only nchannels of the TARGA file; this
allows the alpha channel to be stripped. By default, the alpha channel will be copied if present.

−o Use outfile as output instead of stdout.

LIMITATIONS
The TARGA image descriptor byte is ignored; therefore, the image origin is assumed to be that of RLE(5)
(bottom left). None of the color-mapped TARGA formats (types 1 and 9) are supported. Finally, no at-
tempt has been made to support extensions to the TARGA File Format introduced by Truevision in 1989
(new support for time stamps, comments, user−defined data fields, etc.).

SEE ALSO
urt(1), RLE(5).

AUTHOR
Hann-Bin Chuang
Andrew C. Hadenfeldt, Univ. of Nebraska−Lincoln (modifications)

1 July 12, 1991 103

PROGNAME(1) PROGNAME(1)

NAME
progname − a prog for naming

SYNOPSIS
progname [−l] [−o outfile] [−p x y] [−v] [infile]

DESCRIPTION
This program accepts an RLE(5) file and does something interesting with it. One nice feature is the −l op-
tion.

OPTIONS
−o outfile

If specified, the output will be written to this file. If outfile is "−", or if it is not specified, the out-
put will be written to the standard output stream.

−p x y Reposition the image.

−v Verbose output.

infile The input will be read from this file. If infile is "−" or is not specified, the input will be read from
the standard input stream.

FILES
list files here

SEE ALSO
otherprog(1), urt(1), RLE(5).

AUTHOR
Your name here

BUGS
Dirty laundry here.

104 Month DD, YYYY 1

TIFFTORLE(1) TIFFTORLE(1)

NAME
tifftorle − Convert TIFF image files to RLE.

SYNOPSIS
tifftorle [−o outfile.rle] infile.tif

DESCRIPTION
This program converts a TIFF image to RLE(5) format.

OPTIONS
−o outfile.rle

If specified, the output will be written to this file. If outfile.rle is "−", or if it is not specified, the
output will be written to the standard output stream.

infile.tif The input will be read from this file. infile.tif must be a real file, the special cases described in
urt(1) do not apply here.

LIMITATIONS
Can’t handle RGB TIFF files with a separate planar configuration.
Can’t handle tiled TIFF files.

SEE ALSO
tifftorle(1), urt(1), libtiff, RLE(5).

AUTHOR
Bailey Brown, University of Michigan.
Extended by David R. L. Worthington, SRI International to single channel TIFF files.
Extended by Spencer W. Thomas, University of Michigan to TIFF files with fewer than 8 bits/sample.
Requires libtiff, by Sam Leffler.

BUGS
Doesn’t copy alpha channel when present.

1 July 3, 1990 105

TO8(1) TO8(1)

NAME
to8 − Convert a 24 bit RLE file to eight bits using dithering.

SYNOPSIS
to8 [−g display_gamma] [−{iI} image_gamma] [−o outfile] [infile]

DESCRIPTION
To8 Converts an image with 24 bit pixel values (eight bits each of red, green and blue) to eight bits of color
using a dithered color map (the special color map is automatically written into the output file). If no input
file is specified, to8 reads from stdin. If no output file is specified with −o it writes the result to the standard
output.

Other options allow control over the gamma, or contrast, of the image. The dithering process assumes that
the incoming image has a gamma of 1.0 (i.e., a 200 in the input represents an intensity twice that of a 100.)
If this is not the case, the input values must be adjusted before dithering via the −i or −I option. The input
file may also specify the gamma of the image via a picture comment (see below). The output display is as-
sumed to have a gamma of 2.5 (standard for color TV monitors). This may be modified via the −g option if
a display with a different gamma is used.

To8 will put a picture comment into the output file indicating the display gamma assumed in constructing
the dithering color map.

OPTIONS
−i image_gamma

Specify the gamma (contrast) of the image. A low contrast image, suited for direct display with-
out compensation on a high contrast monitor (as most monitors are) will have a gamma of less
than one. The default image gamma is 1.0. Image gamma may also be specified by a picture com-
ment in the RLE (5) file of the form image_gamma=gamma. The command line argument will
override the value in the file if specified.

−I image_gamma
An alternate method of specifying the image gamma, the number following −I is the gamma of the
display for which the image was originally computed (and is therefore 1.0 divided by the actual
gamma of the image). Image display gamma may also be specified by a picture comment in the
RLE (5) file of the form display_gamma=gamma. The command line argument will override the
value in the file if specified.

−g display_gamma
Specify the gamma of the X display monitor. The default value is 2.5, suitable for most color TV
monitors (this is the gamma value assumed by the NTSC video standard).

−o outfile
If specified, the output will be written to this file. If outfile is "−", or if it is not specified, the out-
put will be written to the standard output stream.

SEE ALSO
tobw(1), getx11(1), mcut(1), rlequant(1), urt(1), dither(3), RLE(5).

AUTHOR
Spencer Thomas

106 Month DD, YYYY 1

TOBW(1) TOBW(1)

NAME
tobw − Convert a 24 bit RLE file to eight bits of gray scale value.

SYNOPSIS
tobw [−t] [−o outfile] [infile]

DESCRIPTION
Tobw converts an image with 24 bit pixel values (eight bits each of red, green and blue) to eight bits of
grayscale information. The NTSC Y transform is used. If the −t flag is given, then the monochrome pixel
values are replicated on all three output channels (otherwise, just one channel of eight bit data is produced).
If no input file is specified, tobw reads from stdin. If no output file is specified with −o, it writes the result
to stdout.

SEE ALSO
to8(1), urt(1), rgb_to_bw(3), RLE(5).

AUTHOR
Spencer Thomas

1 Month DD, YYYY 107

UNEXP(1) UNEXP(1)

NAME
unexp − Convert "exponential" files into normal files.

SYNOPSIS
unexp [−m maxval] [−o outfile] [−p] [−s] [−v] infile

DESCRIPTION
Unexp Converts a file of "exponential" floating point values into an RLE(5) file containing integer valued
bytes. Exponential files have N-1 channels of eight bit data, with the Nth channel containing a common ex-
ponent for the other channels. This allows the values represented by the pixels to have a wider dynamic
range.

If no maximum value is specified, unexp first reads the RLE file to find the dynamic range of the whole file.
It then rewinds the file and scales the output to fit within that dynamic range. If a maximum value is speci-
fied, unexp runs in one pass, and clamps any values exceeding the maximum.

Files containing exponential data are expected to have a "exponential_data" comment; unexp prints a warn-
ing if such a comment doesn’t exist. An exponential file should be unexp’ed before attempting to use any
tools that perform arithmetic on pixels (e.g., rlecomp(1), avg4(1), fant(1), or applymap(1)) or displaying
the image.

Unexp does not allow piped input. The infile must be a real file; the special filenames described in urt(1)
are not allowed. ("−" does work, as long as the input is coming from a real file; this is of minimal utility,
therefore, as typing unexp - <foo.rle is harder than typing unexp foo.rle.)

OPTIONS
−m maxval

Specify the maximum value (i.e., the data in the file is assumed to be in the range 0..maxval). On-
ly the conversion pass is executed, and values found exceeding the maximum are clamped.

−o outfile
If specified, the output will be written to this file. If outfile is "−", or if it is not specified, the out-
put will be written to the standard output stream.

−p Print the maximum value found during the scanning phase

−s Just scan the file to find the maximum, don’t generate any output.

−v Verbose mode, print a message to stderr after scanning or converting every hundred scanlines.

SEE ALSO
float_to_exp(3), urt(1), RLE(5).

AUTHOR
John W. Peterson

BUGS
Unexp is provided because of the lack of floating point or extended precision RLE files.

The −v flag is a historical relict from the slow CPU days.

108 November 8, 1987 1

UNSLICE(1) UNSLICE(1)

NAME
unslice − Quickly assemble image slices

SYNOPSIS
unslice [−f ctlfile] [−y ymax] [−o outfile] infiles ...

DESCRIPTION
Unslice quickly assembles a number of horizontal image strips into a single output image. A typical use for
unslice is to put together portions of an image ("slices") computed independently into a single output pic-
ture. Because unslice uses the "raw" RLE library calls to read and write the images, it runs much faster
than doing the equivalent operations with crop and comp.

unslice has two modes of operation. If given the −f flag, unslice reads a control file telling it how to assem-
ble the images. This is a text file with two decimal numbers on each line, one line for each slice to be as-
sembled into the output image. Each line gives the starting and stopping scanlines (inclusive) for each
slice. These must be in ascending order. This is useful if the slices have excess image area that should be
cropped away.

If no control file is given, the −y flag is used. This tells unslice what the maximum Y value of the output
image is. Unslice reads the files in order, using the RLE headers to determine where to place the slices. If
two slices overlap, the first scanlines from the second slice are thrown away. In both cases, the slices must
be in ascending order, and are expected to be of uniform width.

SEE ALSO
crop(1), rlecomp(1), rlepatch(1), repos(1), urt(1), RLE(5).

AUTHOR
John W. Peterson

BUGS
Unslice has really been superceded by rlepatch(1).

1 May 21, 1987 109

URT(1) URT(1)

NAME
urt − overview of the Utah Raster Toolkit

SYNOPSIS
applymap Apply color map to image data.
avg4 Simple 2x2 downsizing filter.
crop Crop image.
cubitorle Convert Cubicomp format to RLE.
dvirle Typeset TeX ".dvi" files as RLE images.
fant Image scale/rotate with anti-aliasing.
get4d Display on SGI Iris/4D display.
get_orion Display on "Orion" display.
getap Display on Apollo.
getbob Display under HP window system.
getcx3d Display RLE on Chromatics CX3D.
getfb Display using BRL generic fb library.
getgmr Display on Grinnell GMR-27 frame buffer.
getiris Display on SGI 2400/3000 w/o window manager.
getmac Display on Mac under MPW.
getmex Display on SGI under the window manager.
getqcr Display on Matrix QCR camera.
getren Display on HP SRX.
getsun Display using SunTools.
getx10 Display on X10 display.
getx11 Display using X11.
giftorle Convert GIF files to RLE.
graytorle Convert separate rrr ggg bbb files to RLE.
mcut Median cut color quantization.
mergechan Merge colors from multiple images.
painttorle Convert MacPaint to RLE.
pgmtorle Convert PBMPLUS pgm format to RLE.
ppmtorle Convert PBMPLUS ppm format to RLE.
pyrmask Generate "pyramid" filter mask.
rastorle Convert Sun Raster to RLE.
rawtorle Convert various raw formats to RLE.
read98721 Read the screen of an HP 98721 "Renaissance" to an RLE file.
repos Reposition an image.
rlatorle Convert Wav efront RLA format to RLE.
rleClock Draws a clock face.
rleaddcom Add comments to an RLE file.
rleaddeof Add an EOF code to an RLE file.
rlebg Generate a "background".
rlebox Find bounding box of an image.
rlecomp Image composition.
rledither Floyd-Steinberg dither an image to a given colormap.
rleflip Flip an image or rotate it 90.
rlehdr Print info about an RLE file.
rlehisto Make a histogram of an image.
rleldmap Load a new colormap into a file.
rlemandl Make a Mandelbrot image.
rlenoise Add noise to an image.
rlepatch Patch smaller images on a big one.
rleprint Print all pixel values in image.
rlequant Variance based color quantization.
rlescale Generate a "gray scale".

110 June 17, 1990 1

URT(1) URT(1)

rleselect Select images from an RLE file.
rlesetbg Set the background color of an image file.
rleskel Skeleton tool. Programming example.
rlespiff Simple contrast enhancement.
rlesplice Splice two images horizontally or vertically.
rlesplit Split concatenated images into files.
rlestereo Combine two images into a "red-green" stereo pair.
rleswap Swap or select color channels.
rletoabA60 Convert RLE to Abekas A60 format.
rletoabA62 Convert to Abekas A62 format.
rletoascii Make a line-printer/CRT version of an RLE image.
rletogif Convert RLE images to GIF format.
rletogray Convert RLE to separate rrr ggg bbb files.
rletopaint Convert RLE to MacPaint.
rletoppm Convert RLE to PBMPLUS ppm format.
rletops Convert RLE to (B&W) PostScript.
rletorast Convert RLE to Sun Raster.
rletoraw Convert RLE to rgbrgb raw format.
rletorla Convert RLE to Wav efront RLA format.
rletotiff Convert RLE to TIFF 24 bit format.
rlezoom Scale image by sub- or super-sampling.
smush Generic filtering.
targatorle Convert TARGA to RLE.
tifftorle Convert TIFF 24 bit images to RLE.
to8 24 to 8 bit ordered dither color conversion.
tobw Color→B&W conversion.
unexp Convert "exp" format to normal colors.
unslice Paste together "slices" into a full image.
wasatchrle Convert Wasatch paint system to RLE.

DESCRIPTION
The Utah Raster Toolkit is a collection of programs and C routines for dealing with raster images common-
ly encountered in computer graphics. A device and system independent image format stores images and in-
formation about them. Called the RLE(5) format, it uses run length encoding to reduce storage space for
most images.

The programs (tools) currently included in the toolkit are listed above, together with a short description of
each one. Most of the tools read one or more input RLE files and produce an output RLE file. Some gener-
ate RLE files from other information, and some read RLE files and produce output of a different form.

An input file is almost always specified by mentioning its name on the command line. Some commands,
usually those which take an indefinite number of non-file arguments (e.g., rleaddcom) require a −i flag to
introduce the input file name. If the input file name is absent the tool will usually read from the standard
input. An input file name of "−" also signals that the input should be taken from the standard input.

On Unix systems, there are two other specially treated file name forms. A file name starting with the char-
acter ’|’ will be passed to sh(1) to run as a command. The output from the command will be read by the
tool. A file whose name ends in ".Z" (and which does not begin with a ’|’) will be decompressed by the
compress(1) program. Both of these options supply input to the tool through a pipe. Consequently, certain
programs (those that must read their input twice) cannot take advantage of these features. This is noted in
the manual pages for the affected commands.

An output file is almost always specified using the option −o outfile. If the option is missing, or if outfile is
"−", then the output will be written to the standard output.

1 June 17, 1990 111

URT(1) URT(1)

On Unix systems, the special file name forms above may also be used for output files. File names starting
with ’|’ are taken as a command to which the tool output will be sent. If the file name ends in ".Z", then
compress will be used to produce a compressed output file.

Several images may be concatenated together into a single file, and most of the tools will properly process
all the images. Those that will not are noted in their respective man pages.

Picture comments. Images stored in RLE form may have attached comments. There are some comments
that are interpreted, created or manipulated by certain of the tools. In the list below, a word enclosed in <>
is a place-holder for a value. The <> do not appear in the actual comment.

image_gamma=<float number>
Images are sometimes computed with a particular ‘‘gamma’’ value -- that is, the pixel values in the
image are related to the actual intensity by a power law, pixel_value=intensityˆimage_gamma.
Some of the display programs, and the buildmap(3) function will look for this comment and auto-
matically build a "compensation table" to transform the pixel values back to true intensity values.

display_gamma=<float number>
The display_gamma is just 1/image_gamma. That is, it is the ‘‘gamma’’ of the display for which
the image was computed. If an image_gamma comment is not present, but a display_gamma is,
the displayed image will be gamma corrected as above. The to8 program produces a display_gam-
ma comment.

colormap_length=<integer>
The length of the colormap stored in the RLE header must be a power of two. However, the num-
ber of useful entries in the colormap may be smaller than this. This comment can be used to tell
some of the display programs (getx11, in particular) how many of the colormap entries are used.
The assumption is that entries 0 − colormap_length−1 are used. This comment is produced by
mcut, rlequant, and rledither.

image_title=<string>
This comment is used by getx11 to set the window title. If present, the comment is used instead of
the file name. (No other programs currently pay attention to this comment.) The comments IM-
AGE_TITLE, title, and TITLE are also recognized, in that order. No programs produce this com-
ment.

HISTORY=<string>
All toolkit programs (with the exception of rleaddcom) create or add to a HISTORY comment.
Each tool appends a line to this comment that contains its command line arguments and the time it
was run. Thus, the image contains a history of all the things that were done to it. No programs in-
terpret this comment.

exponential_data
This comment should be present in a file stored in ‘‘exponential’’ form. See unexp(1) and
float_to_exp(3) for more information. The unexp program expects to see this comment.

SEE ALSO
compress(1), sh(1), RLE(5).

AUTHOR
Many people contributed to the Utah Raster Toolkit. This manual page was written by Spencer W. Thomas,
University of Michigan.

112 June 17, 1990 1

WASATCHRLE(1) WASATCHRLE(1)

NAME
wasatchrle − Convert Wasatch Systems image files to RLE format

SYNOPSIS
wasatchrle [−o outfile] basename

DESCRIPTION
Wasatchrle converts image files generated by the Wasatch Systems Paint program to RLE format. It ex-
pects to find two files, "basename.lut" (the color look-up table) and "basename.rlc" (the run-length encoded
data).

Wasatchrle generates as output a single channel RLE image with a full color map. Since the Wasatch Paint
program’s origin is the top left of the image, the results should be passed through rleflip −v to correctly ori-
ent the image. If the image is to be used with other toolkit operations (e.g., compositing), it should first be
run through applymap(1) to convert the image to a full color (three channel) RLE file.

SEE ALSO
rleflip(1), applymap(1), urt(1), RLE(5),
Wasatch Systems, "Wasatch Raster Image File Definition for Wasatch Illustration Software (Version 1.2
and Later)"

AUTHOR
John W. Peterson

1 December 20, 1987 113

BUILDMAP(3) BUILDMAP(3)

NAME
buildmap − create a color map array from an RLE file header.

SYNOPSIS
#include <rle.h>

rle_pixel ** buildmap(the_hdr, minmap, orig_gamma, new_gamma)
rle_hdr * the_hdr;
int minmap;
double orig_gamma, new_gamma;

DESCRIPTION
The color map in the rle_hdr(3) structure is not in the most easily used form. The function buildmap re-
turns a pointer to a colormap array with certain minimum dimensions, making it a little easier to implement
color mapping in a program. The color map from first argument, the_hdr, is used to build the result. If no
map is present in the_hdr, then an identity map of the minimum size will be returned.

The returned color map will have at least minmap rows or channels, each of which is at least 256 entries
long (so that indexing into the color map with an 8 bit rle_pixel value will always succeed.)

The color map from the_hdr will be composed with a gamma compensation curve to account for the gam-
ma of the display for which the input color map was presumably computed. The argument orig_gamma
specifies the gamma of the compensation curve. It would typically be the gamma of the original display.

If gamma is 0, then if a picture comment image_gamma=i_gamma is present, gamma will be set to
1.0/i_gamma. Otherwise, if a comment display_gamma=d_gamma is present, gamma will be set to
d_gamma. The gamma compensation value for pixel i is 255*(i/255)ˆgamma.

If this color map will be used directly for another display, the gamma of this new display should be passed
in new_gamma.

The returned value is a pointer to an array of pointers to arrays of rle_pixel values. It may be doubly in-
dexed in C code, so that if cmap is the return value, the RGB color mapping for a pixel pixval is
(cmap[0][pixval], cmap[1][pixval], cmap[2][pixval]).

NOTES
Generally, unless the user explicitly specifies the image or original display gamma (e.g., as with the −i or −I
flags of getx11(1), you should pass 0 for orig_gamma. This lets buildmap use the value from the_hdr, if it
is present.

If you are going to use the result of buildmap to generate values to be dithered, new_gamma should always
be 1.0, and the display gamma (-g in getx11) should be passed to dithermap(3). If you are not planning to
dither, then pass the user supplied display gamma as new_gamma.

The color map storage allocated by buildmap can be released by calling free(map[0]).

SEE ALSO
dithermap(3), rle_hdr(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas, University of Utah

114 3/6/85 3

DITHER(3) DITHER(3)

NAME

dithermap, bwdithermap, make_square, dithergb, ditherbw − functions for dithering color or black and
white images.

SYNOPSIS
dithermap(levels, gamma, rgbmap, divN, modN, magic)
int levels;
double gamma;
int rgbmap[][3], divN[256], modN[256], magic[16][16];

bwdithermap(levels, gamma, bwmap, divN, modN, magic)
int levels;
double gamma;
int bwmap[], int divN[256], modN[256], magic[16][16];

make_square(N, divN, modN, magic)
double N;
int divN[256], modN[256], magic[16][16];

dithergb(x, y, r, g, b, lev els, divN, modN, magic)
int x, y, r, g, b, lev els;
int divN[256], modN[256], magic[16][16];

ditherbw(x, y, val, divN, modN, magic)
int x, y, val, divN[256], modN[256], magic[16][16];

DESCRIPTION
These functions provide a common set of routines for dithering a full color or gray scale image into a lower
resolution color map.

Dithermap computes a color map and some auxiliary parameters for dithering a full color (24 bit) image to
fewer bits. The argument levels tells how many different intensity levels per primary color should be com-
puted. To get maximum use of a 256 entry color map, use levels=6. The computed map uses levelsˆ3 en-
tries. The gamma argument provides for gamma compensation of the generated color map (that is, the val-
ues in the map will be adjusted to give a linear intensity variation on a display with the given gamma). The
computed color map will be returned in the array rgbmap. divN and modN are auxiliary arrays for comput-
ing the dithering pattern (see below), and magic is the magic square dither pattern.

To compute a color map for dithering a black and white image to fewer intensity levels, use bwdithermap.
The arguments are as for dithermap, but only a single channel color map is computed. The value of levels
can be larger than for dithermap, as the computed map only has levels entries.

To just build the magic square and other parameters, use make_square. The argument N should be equal to
255.0 divided by the desired number of intensity levels less one (i.e., N = 255.0 / (levels - 1)). The other ar-
guments are filled in as above.

The color map index for a dithered full color pixel is computed by dithergb. Since the pattern depends on
the screen location, the first two arguments x and y, specify that location. The true color of the pixel at that
location is given by the triple r, g, and b. The number of intensity levels and the dithering parameter matri-
ces computed by dithermap are also passed to dithergb.

The color map index for a dithered gray scale pixel is computed by ditherbw. Again, the screen position is
specified, and the intensity value of the pixel is supplied in val. The dithering parameters must also be sup-
plied.

Alternatively, the dithering may be done in line instead of incurring the extra overhead of a function call,
which can be significant when repeated a million times. The computation is as follows:

3 2/2/87 115

DITHER(3) DITHER(3)

row = y % 16;
col = x % 16;

#define DMAP(v,col,row) (divN[v] + (modN[v]>magic[col][row] ? 1 : 0))
pix = DMAP(r,col,row) + DMAP(g,col,row)*levels +

DMAP(b,col,row)*levels*levels;
For a gray scale image, it is a little simpler:

pix = DMAP(val,row,col);
And on a single bit display (assuming a 1 means white):

pix = divN[val] > magic[col][row] ? 1 : 0

SEE ALSO
rgb_to_bw(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas
University of Utah

116 2/2/87 3

COLORQUANT(3) COLORQUANT(3)

NAME
colorquant − variance-based color quantization

SYNOPSIS
#include <colorquant.h>
int colorquant(red, green, blue, npix, colormap, colors, bits, rgbmap, flags, accum_hist)
unsigned char *red, *green, *blue;
unsigned long npix;
unsigned char *colormap[3];
int colors, bits;
unsigned char *rgbmap;
int flags;
int accum_hist;

DESCRIPTION
Colorquant performs variance-based color quantization on a given image. A representative colormap and a
table for performing RGB to colormap index mapping are computed. The number of colors to which the
image was quantized (the total number of colormap entries computed) is returned. The arguments to col-
orquant are:

red, green, blue
The red, green and blue channels of the image. The ith pixel is represented as the RGB triple
(red[i], green[i], blue[i]). These arrays usually contain values that have been ’prequantized’ (see
below).

npix The length, in bytes, of the red, green and blue arrays. Equal to the total number of pixels in the
image.

colormap
Points to a pre-allocated, three-channel colormap. These arrays will be filled with the colormap
values computed by the variance-based color quantization algorithm. colormap[0][i], col-
ormap[1][i], and colormap[2][i] are, respectively, the red, green and blue components of the ith
colormap entry.

colors The number of pre-allocated colormap entries. The image will be quantized to at most this many
colors.

bits The number of significant bits in each entry of the red, green and blue arrays. Normally, the red,
green and blue arrays contain values that have been prequantized to fewer than eight significant
bits (see flags below). Five significant bits usually represents a good tradeoff between image qual-
ity and running time. Anything above six significant bits will likely lead to excessive paging, as
the size of rgbmap and the internal histogram are proportional to (2ˆbits)ˆ3.

rgbmap A pointer to an array of unsigned chars of size (2ˆbits)ˆ3. This array is used to map from pixels to
colormap entries. The prequantized red, green and blue components of a pixel are used as an in-
dex into this array to retrieve the colormap index that should be used to represent the pixel. The
array is indexed as:

colorindex = rgbmap[(((r << bits) | g) << bits) | b];
where r, g, and b are the prequantized red, green and blue components of the pixel in question.

flags A collection of bit-flags that modify the operation of colorquant. Currently defined values are
CQ_FAST, CQ_QUANTIZE, and CQ_NO_RGBMAP.
If CQ_FAST is set, the construction of rgbmap will be relatively fast. If not, rgbmap will be built
slowly but more accurately. In most cases, the error introduced by the ’fast’ approximation is
barely noticeable.
If CQ_QUANTIZE is set, the values in red, green, and blue are taken as 8-bit values and will be
quantized to bits significant bits by colorquant. If not set, these values are assumed to be prequan-
tized.
If CQ_NO_RGBMAP is set, rgbmap will not be built.

August 14, 1989 117

COLORQUANT(3) COLORQUANT(3)

accum_hist
This argument provides a facility to accumulate multiple images into a single colormap. If ac-
cum_hist is zero, the routine works normally. To build a colormap for several images, accum_hist
should have the value 1 for the first image, and 2 for subsequent images. Finally, after all the im-
ages have been processed, a value of 3 for accum_hist will compute the colormap and rgbmap.
The values of colors and bits should not change during this process. The arguments colormap,
rgbmap, and fast are ignored if accum_hist is 1 or 2, and red , green, blue, and npix are ignored if
accum_hist is 3.

AUTHOR
Craig Kolb, Yale University.
Martin Friedmann, MIT Media Lab did the accum_hist changes.

REFERENCE
Wan, Wong, and Prusinkiewicz, An Algorithm for Multidimensional Data Clustering, Transactions on
Mathematical Software, Vol. 14 #2 (June, 1988), pp. 153-162.

SEE ALSO
rlequant(1), inv_cmap(3).

118 August 14, 1989

DITHER(3) DITHER(3)

NAME

dithermap, bwdithermap, make_square, dithergb, ditherbw − functions for dithering color or black and
white images.

SYNOPSIS
dithermap(levels, gamma, rgbmap, divN, modN, magic)
int levels;
double gamma;
int rgbmap[][3], divN[256], modN[256], magic[16][16];

bwdithermap(levels, gamma, bwmap, divN, modN, magic)
int levels;
double gamma;
int bwmap[], int divN[256], modN[256], magic[16][16];

make_square(N, divN, modN, magic)
double N;
int divN[256], modN[256], magic[16][16];

dithergb(x, y, r, g, b, lev els, divN, modN, magic)
int x, y, r, g, b, lev els;
int divN[256], modN[256], magic[16][16];

ditherbw(x, y, val, divN, modN, magic)
int x, y, val, divN[256], modN[256], magic[16][16];

DESCRIPTION
These functions provide a common set of routines for dithering a full color or gray scale image into a lower
resolution color map.

Dithermap computes a color map and some auxiliary parameters for dithering a full color (24 bit) image to
fewer bits. The argument levels tells how many different intensity levels per primary color should be com-
puted. To get maximum use of a 256 entry color map, use levels=6. The computed map uses levelsˆ3 en-
tries. The gamma argument provides for gamma compensation of the generated color map (that is, the val-
ues in the map will be adjusted to give a linear intensity variation on a display with the given gamma). The
computed color map will be returned in the array rgbmap. divN and modN are auxiliary arrays for comput-
ing the dithering pattern (see below), and magic is the magic square dither pattern.

To compute a color map for dithering a black and white image to fewer intensity levels, use bwdithermap.
The arguments are as for dithermap, but only a single channel color map is computed. The value of levels
can be larger than for dithermap, as the computed map only has levels entries.

To just build the magic square and other parameters, use make_square. The argument N should be equal to
255.0 divided by the desired number of intensity levels less one (i.e., N = 255.0 / (levels - 1)). The other ar-
guments are filled in as above.

The color map index for a dithered full color pixel is computed by dithergb. Since the pattern depends on
the screen location, the first two arguments x and y, specify that location. The true color of the pixel at that
location is given by the triple r, g, and b. The number of intensity levels and the dithering parameter matri-
ces computed by dithermap are also passed to dithergb.

The color map index for a dithered gray scale pixel is computed by ditherbw. Again, the screen position is
specified, and the intensity value of the pixel is supplied in val. The dithering parameters must also be sup-
plied.

Alternatively, the dithering may be done in line instead of incurring the extra overhead of a function call,
which can be significant when repeated a million times. The computation is as follows:

3 2/2/87 119

DITHER(3) DITHER(3)

row = y % 16;
col = x % 16;

#define DMAP(v,col,row) (divN[v] + (modN[v]>magic[col][row] ? 1 : 0))
pix = DMAP(r,col,row) + DMAP(g,col,row)*levels +

DMAP(b,col,row)*levels*levels;
For a gray scale image, it is a little simpler:

pix = DMAP(val,row,col);
And on a single bit display (assuming a 1 means white):

pix = divN[val] > magic[col][row] ? 1 : 0

SEE ALSO
rgb_to_bw(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas
University of Utah

120 2/2/87 3

DITHER(3) DITHER(3)

NAME

dithermap, bwdithermap, make_square, dithergb, ditherbw − functions for dithering color or black and
white images.

SYNOPSIS
dithermap(levels, gamma, rgbmap, divN, modN, magic)
int levels;
double gamma;
int rgbmap[][3], divN[256], modN[256], magic[16][16];

bwdithermap(levels, gamma, bwmap, divN, modN, magic)
int levels;
double gamma;
int bwmap[], int divN[256], modN[256], magic[16][16];

make_square(N, divN, modN, magic)
double N;
int divN[256], modN[256], magic[16][16];

dithergb(x, y, r, g, b, lev els, divN, modN, magic)
int x, y, r, g, b, lev els;
int divN[256], modN[256], magic[16][16];

ditherbw(x, y, val, divN, modN, magic)
int x, y, val, divN[256], modN[256], magic[16][16];

DESCRIPTION
These functions provide a common set of routines for dithering a full color or gray scale image into a lower
resolution color map.

Dithermap computes a color map and some auxiliary parameters for dithering a full color (24 bit) image to
fewer bits. The argument levels tells how many different intensity levels per primary color should be com-
puted. To get maximum use of a 256 entry color map, use levels=6. The computed map uses levelsˆ3 en-
tries. The gamma argument provides for gamma compensation of the generated color map (that is, the val-
ues in the map will be adjusted to give a linear intensity variation on a display with the given gamma). The
computed color map will be returned in the array rgbmap. divN and modN are auxiliary arrays for comput-
ing the dithering pattern (see below), and magic is the magic square dither pattern.

To compute a color map for dithering a black and white image to fewer intensity levels, use bwdithermap.
The arguments are as for dithermap, but only a single channel color map is computed. The value of levels
can be larger than for dithermap, as the computed map only has levels entries.

To just build the magic square and other parameters, use make_square. The argument N should be equal to
255.0 divided by the desired number of intensity levels less one (i.e., N = 255.0 / (levels - 1)). The other ar-
guments are filled in as above.

The color map index for a dithered full color pixel is computed by dithergb. Since the pattern depends on
the screen location, the first two arguments x and y, specify that location. The true color of the pixel at that
location is given by the triple r, g, and b. The number of intensity levels and the dithering parameter matri-
ces computed by dithermap are also passed to dithergb.

The color map index for a dithered gray scale pixel is computed by ditherbw. Again, the screen position is
specified, and the intensity value of the pixel is supplied in val. The dithering parameters must also be sup-
plied.

Alternatively, the dithering may be done in line instead of incurring the extra overhead of a function call,
which can be significant when repeated a million times. The computation is as follows:

3 2/2/87 121

DITHER(3) DITHER(3)

row = y % 16;
col = x % 16;

#define DMAP(v,col,row) (divN[v] + (modN[v]>magic[col][row] ? 1 : 0))
pix = DMAP(r,col,row) + DMAP(g,col,row)*levels +

DMAP(b,col,row)*levels*levels;
For a gray scale image, it is a little simpler:

pix = DMAP(val,row,col);
And on a single bit display (assuming a 1 means white):

pix = divN[val] > magic[col][row] ? 1 : 0

SEE ALSO
rgb_to_bw(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas
University of Utah

122 2/2/87 3

DITHER(3) DITHER(3)

NAME

dithermap, bwdithermap, make_square, dithergb, ditherbw − functions for dithering color or black and
white images.

SYNOPSIS
dithermap(levels, gamma, rgbmap, divN, modN, magic)
int levels;
double gamma;
int rgbmap[][3], divN[256], modN[256], magic[16][16];

bwdithermap(levels, gamma, bwmap, divN, modN, magic)
int levels;
double gamma;
int bwmap[], int divN[256], modN[256], magic[16][16];

make_square(N, divN, modN, magic)
double N;
int divN[256], modN[256], magic[16][16];

dithergb(x, y, r, g, b, lev els, divN, modN, magic)
int x, y, r, g, b, lev els;
int divN[256], modN[256], magic[16][16];

ditherbw(x, y, val, divN, modN, magic)
int x, y, val, divN[256], modN[256], magic[16][16];

DESCRIPTION
These functions provide a common set of routines for dithering a full color or gray scale image into a lower
resolution color map.

Dithermap computes a color map and some auxiliary parameters for dithering a full color (24 bit) image to
fewer bits. The argument levels tells how many different intensity levels per primary color should be com-
puted. To get maximum use of a 256 entry color map, use levels=6. The computed map uses levelsˆ3 en-
tries. The gamma argument provides for gamma compensation of the generated color map (that is, the val-
ues in the map will be adjusted to give a linear intensity variation on a display with the given gamma). The
computed color map will be returned in the array rgbmap. divN and modN are auxiliary arrays for comput-
ing the dithering pattern (see below), and magic is the magic square dither pattern.

To compute a color map for dithering a black and white image to fewer intensity levels, use bwdithermap.
The arguments are as for dithermap, but only a single channel color map is computed. The value of levels
can be larger than for dithermap, as the computed map only has levels entries.

To just build the magic square and other parameters, use make_square. The argument N should be equal to
255.0 divided by the desired number of intensity levels less one (i.e., N = 255.0 / (levels - 1)). The other ar-
guments are filled in as above.

The color map index for a dithered full color pixel is computed by dithergb. Since the pattern depends on
the screen location, the first two arguments x and y, specify that location. The true color of the pixel at that
location is given by the triple r, g, and b. The number of intensity levels and the dithering parameter matri-
ces computed by dithermap are also passed to dithergb.

The color map index for a dithered gray scale pixel is computed by ditherbw. Again, the screen position is
specified, and the intensity value of the pixel is supplied in val. The dithering parameters must also be sup-
plied.

Alternatively, the dithering may be done in line instead of incurring the extra overhead of a function call,
which can be significant when repeated a million times. The computation is as follows:

3 2/2/87 123

DITHER(3) DITHER(3)

row = y % 16;
col = x % 16;

#define DMAP(v,col,row) (divN[v] + (modN[v]>magic[col][row] ? 1 : 0))
pix = DMAP(r,col,row) + DMAP(g,col,row)*levels +

DMAP(b,col,row)*levels*levels;
For a gray scale image, it is a little simpler:

pix = DMAP(val,row,col);
And on a single bit display (assuming a 1 means white):

pix = divN[val] > magic[col][row] ? 1 : 0

SEE ALSO
rgb_to_bw(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas
University of Utah

124 2/2/87 3

DITHER(3) DITHER(3)

NAME

dithermap, bwdithermap, make_square, dithergb, ditherbw − functions for dithering color or black and
white images.

SYNOPSIS
dithermap(levels, gamma, rgbmap, divN, modN, magic)
int levels;
double gamma;
int rgbmap[][3], divN[256], modN[256], magic[16][16];

bwdithermap(levels, gamma, bwmap, divN, modN, magic)
int levels;
double gamma;
int bwmap[], int divN[256], modN[256], magic[16][16];

make_square(N, divN, modN, magic)
double N;
int divN[256], modN[256], magic[16][16];

dithergb(x, y, r, g, b, lev els, divN, modN, magic)
int x, y, r, g, b, lev els;
int divN[256], modN[256], magic[16][16];

ditherbw(x, y, val, divN, modN, magic)
int x, y, val, divN[256], modN[256], magic[16][16];

DESCRIPTION
These functions provide a common set of routines for dithering a full color or gray scale image into a lower
resolution color map.

Dithermap computes a color map and some auxiliary parameters for dithering a full color (24 bit) image to
fewer bits. The argument levels tells how many different intensity levels per primary color should be com-
puted. To get maximum use of a 256 entry color map, use levels=6. The computed map uses levelsˆ3 en-
tries. The gamma argument provides for gamma compensation of the generated color map (that is, the val-
ues in the map will be adjusted to give a linear intensity variation on a display with the given gamma). The
computed color map will be returned in the array rgbmap. divN and modN are auxiliary arrays for comput-
ing the dithering pattern (see below), and magic is the magic square dither pattern.

To compute a color map for dithering a black and white image to fewer intensity levels, use bwdithermap.
The arguments are as for dithermap, but only a single channel color map is computed. The value of levels
can be larger than for dithermap, as the computed map only has levels entries.

To just build the magic square and other parameters, use make_square. The argument N should be equal to
255.0 divided by the desired number of intensity levels less one (i.e., N = 255.0 / (levels - 1)). The other ar-
guments are filled in as above.

The color map index for a dithered full color pixel is computed by dithergb. Since the pattern depends on
the screen location, the first two arguments x and y, specify that location. The true color of the pixel at that
location is given by the triple r, g, and b. The number of intensity levels and the dithering parameter matri-
ces computed by dithermap are also passed to dithergb.

The color map index for a dithered gray scale pixel is computed by ditherbw. Again, the screen position is
specified, and the intensity value of the pixel is supplied in val. The dithering parameters must also be sup-
plied.

Alternatively, the dithering may be done in line instead of incurring the extra overhead of a function call,
which can be significant when repeated a million times. The computation is as follows:

3 2/2/87 125

DITHER(3) DITHER(3)

row = y % 16;
col = x % 16;

#define DMAP(v,col,row) (divN[v] + (modN[v]>magic[col][row] ? 1 : 0))
pix = DMAP(r,col,row) + DMAP(g,col,row)*levels +

DMAP(b,col,row)*levels*levels;
For a gray scale image, it is a little simpler:

pix = DMAP(val,row,col);
And on a single bit display (assuming a 1 means white):

pix = divN[val] > magic[col][row] ? 1 : 0

SEE ALSO
rgb_to_bw(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas
University of Utah

126 2/2/87 3

FLOAT_TO_EXP(3) FLOAT_TO_EXP(3)

NAME

float_to_exp − Convert floating point values into "exponential" pixels.

SYNOPSIS
#include <rle.h>

float_to_exp(count, floats, pixels)
int count;
float * floats;
rle_pixel * pixels;

DESCRIPTION
The function float_to_exp converts count floating point numbers (pointed to by floats) into count+1 bytes
(pointed to by pixels) using an "exponential" format. This format generates count pixels as eight bit "man-
tissa" values, and another byte containing a common exponent for all of the data values. This format has a
wider dynamic range of values with little extra overhead. The inverse mapping is

float expnt, flt_val;
rle_pixel exponent, val;
expnt = ldexp(1/256.0, (int)exponent - 127);
flt_val = (float)val * expnt;

Files containing exponential data may be converted into displayable images using the unexp(1) command.
Unexp should be used before using any tools that perform arithmetic on pixel values, or displaying the im-
age. Unexp expects files containing exponential data to have an "exponential_data" picture comment.

SEE ALSO
unexp(1), rle_putcom(3), librle(3), RLE(5).

AUTHOR
John W. Peterson, based on code by Spencer Thomas.
University of Utah

3 November 10, 1987 127

HILBERT(3) HILBERT(3)

NAME
hilbert_i2c, hilbert_c2i − Compute points on a Hilbert curve.

SYNOPSIS
void hilbert_i2c(dim, bits, idx, coords)
int dim, bits;
long int idx;
int coords[];

void hilbert_c2i(dim, bits, coords, idx)
int dim, bits;
int coords[];
long int *idx;

DESCRIPTION
These procedures map the real line onto a Hilbert curve and vice versa. (A Hilbert curve is a space filling
curve similar to the Peano curve, except it is not closed.) The procedure hilbert_i2c returns the coordinates
of a point on the Hilbert curve, given an index value representing its sequential position on the curve. The
procedure hilbert_c2i reverses the process. The arguments are:

dim The dimensionality of the Hilbert curve. For the usual planar curve case, this would be 2.

bits The resolution to which the Hilbert curve will be computed. The space is quantized to 2ˆbits val-
ues on each axis, so there are 2ˆ(3*bits) points on the curve. The product of dim*bits should be
less than or equal to the number of bits in a long integer (typically 32), and bits should be less than
or equal to the number of bits in an integer.

idx The sequential position of the point along the curve (starting from 0). This is a 3*bits bit integer.

coords The spatial coordinates of the point on the curve. The array should hold dim values. Each is a bits
bit integer.

REFERENCE
A. R. Butz, "Alternative algorithm for Hilbert’s space-filling curve," IEEE Trans. Comput., vol C-20, pp.
424-426, Apr. 1971.

AUTHOR
Spencer W. Thomas

128 3/12/91 3

HILBERT(3) HILBERT(3)

NAME
hilbert_i2c, hilbert_c2i − Compute points on a Hilbert curve.

SYNOPSIS
void hilbert_i2c(dim, bits, idx, coords)
int dim, bits;
long int idx;
int coords[];

void hilbert_c2i(dim, bits, coords, idx)
int dim, bits;
int coords[];
long int *idx;

DESCRIPTION
These procedures map the real line onto a Hilbert curve and vice versa. (A Hilbert curve is a space filling
curve similar to the Peano curve, except it is not closed.) The procedure hilbert_i2c returns the coordinates
of a point on the Hilbert curve, given an index value representing its sequential position on the curve. The
procedure hilbert_c2i reverses the process. The arguments are:

dim The dimensionality of the Hilbert curve. For the usual planar curve case, this would be 2.

bits The resolution to which the Hilbert curve will be computed. The space is quantized to 2ˆbits val-
ues on each axis, so there are 2ˆ(3*bits) points on the curve. The product of dim*bits should be
less than or equal to the number of bits in a long integer (typically 32), and bits should be less than
or equal to the number of bits in an integer.

idx The sequential position of the point along the curve (starting from 0). This is a 3*bits bit integer.

coords The spatial coordinates of the point on the curve. The array should hold dim values. Each is a bits
bit integer.

REFERENCE
A. R. Butz, "Alternative algorithm for Hilbert’s space-filling curve," IEEE Trans. Comput., vol C-20, pp.
424-426, Apr. 1971.

AUTHOR
Spencer W. Thomas

3 3/12/91 129

HILBERT(3) HILBERT(3)

NAME
hilbert_i2c, hilbert_c2i − Compute points on a Hilbert curve.

SYNOPSIS
void hilbert_i2c(dim, bits, idx, coords)
int dim, bits;
long int idx;
int coords[];

void hilbert_c2i(dim, bits, coords, idx)
int dim, bits;
int coords[];
long int *idx;

DESCRIPTION
These procedures map the real line onto a Hilbert curve and vice versa. (A Hilbert curve is a space filling
curve similar to the Peano curve, except it is not closed.) The procedure hilbert_i2c returns the coordinates
of a point on the Hilbert curve, given an index value representing its sequential position on the curve. The
procedure hilbert_c2i reverses the process. The arguments are:

dim The dimensionality of the Hilbert curve. For the usual planar curve case, this would be 2.

bits The resolution to which the Hilbert curve will be computed. The space is quantized to 2ˆbits val-
ues on each axis, so there are 2ˆ(3*bits) points on the curve. The product of dim*bits should be
less than or equal to the number of bits in a long integer (typically 32), and bits should be less than
or equal to the number of bits in an integer.

idx The sequential position of the point along the curve (starting from 0). This is a 3*bits bit integer.

coords The spatial coordinates of the point on the curve. The array should hold dim values. Each is a bits
bit integer.

REFERENCE
A. R. Butz, "Alternative algorithm for Hilbert’s space-filling curve," IEEE Trans. Comput., vol C-20, pp.
424-426, Apr. 1971.

AUTHOR
Spencer W. Thomas

130 3/12/91 3

INV_CMAP(3) INV_CMAP(3)

NAME
inv_cmap − efficiently compute an inverse colormap

SYNOPSIS
void inv_cmap(colors, colormap, bits, dist_buf, rgbmap)

int colors, bits;
unsigned char *colormap[3], *rgbmap;
unsigned long *dist_buf;

DESCRIPTION
Inv_cmap computes an inverse colormap to translate an RGB color to the nearest color in the given col-
ormap. The arguments are

colors The number of colors in the input colormap. Must be 256.

colormap
The input colormap. The ith color is (Colormap[0][i], Colormap[1][i], Colormap[2][i]).

bits Controls the size and precision of the inverse colormap. The resulting colormap will be a cube
2ˆbits on a side, and will therefore contain 2ˆ(3*bits) entries. RGB colors must be quantized to
bits bits before using the inverse colormap.

dist_buf
Temporary storage used by inv_cmap. It should contain at least 2ˆ(3*bits) elements.

rgbmap The inverse colormap. Should be allocated with at least 2ˆ(3*bits) elements. After calling
inv_cmap, an RGB color (r,g,b) can be mapped to its closest representative in colormap by evalu-
ating
#define quantize(p) ((p)>>(8-bits))
rgbmap[(((quantize(r) << bits) | quantize(g)) << bits) | quantize(b)]

Predicted performance is O(2ˆ(3*bits)*log(colors)). The measured performance is sublinear (but not as
good as log) in the number of input colors and also in the size of the output inverse colormap. (I.e., it goes
up more slowly than 2ˆ(3*bits).)

SEE ALSO
colorquant(3).

AUTHOR
Spencer W. Thomas

1 Month DD, YYYY 131

LIBRLE(3) LIBRLE(3)

NAME
librle − Functions to create and read Run Length Encoded image files.

SYNOPSIS
#include <rle.h>

cc ... -lrle

DESCRIPTION
The RLE(5) image file format provides a method for saving and restoring images in a device independent
form. A number of subroutines are available to facilitate writing and reading RLE(5) files. They are de-
scribed separately in their own manual pages (listed below).

SEE ALSO
buildmap(3), bwdithermap(3), colorquant(3), ditherbw(3), dithergb(3), dithermap(3), float_to_exp(3),
make_square(3), rgb_to_bw(3), rle_addhist(3), rle_cp(3), rle_debug(3), rle_delcom(3), rle_freeraw(3),
rle_get_error(3), rle_get_setup(3), rle_get_setup_ok(3), rle_getcom(3), rle_getraw(3), rle_getrow(3),
rle_getskip(3), rle_open_f (3), rle_open_f_noexit(3), rle_put_init(3), rle_put_setup(3), rle_putcom(3),
rle_puteof (3), rle_putraw(3), rle_raw_alloc(3), rle_raw_free(3), rle_rawtorow(3), rle_row_alloc(3),
rle_row_free(3), rle_skiprow(3), scanargs(3), rle_hdr(3), rle_op(3), RLE(5).

AUTHOR
Spencer W. Thomas, Todd Fuqua, and others.

132 3/6/85 3

DITHER(3) DITHER(3)

NAME

dithermap, bwdithermap, make_square, dithergb, ditherbw − functions for dithering color or black and
white images.

SYNOPSIS
dithermap(levels, gamma, rgbmap, divN, modN, magic)
int levels;
double gamma;
int rgbmap[][3], divN[256], modN[256], magic[16][16];

bwdithermap(levels, gamma, bwmap, divN, modN, magic)
int levels;
double gamma;
int bwmap[], int divN[256], modN[256], magic[16][16];

make_square(N, divN, modN, magic)
double N;
int divN[256], modN[256], magic[16][16];

dithergb(x, y, r, g, b, lev els, divN, modN, magic)
int x, y, r, g, b, lev els;
int divN[256], modN[256], magic[16][16];

ditherbw(x, y, val, divN, modN, magic)
int x, y, val, divN[256], modN[256], magic[16][16];

DESCRIPTION
These functions provide a common set of routines for dithering a full color or gray scale image into a lower
resolution color map.

Dithermap computes a color map and some auxiliary parameters for dithering a full color (24 bit) image to
fewer bits. The argument levels tells how many different intensity levels per primary color should be com-
puted. To get maximum use of a 256 entry color map, use levels=6. The computed map uses levelsˆ3 en-
tries. The gamma argument provides for gamma compensation of the generated color map (that is, the val-
ues in the map will be adjusted to give a linear intensity variation on a display with the given gamma). The
computed color map will be returned in the array rgbmap. divN and modN are auxiliary arrays for comput-
ing the dithering pattern (see below), and magic is the magic square dither pattern.

To compute a color map for dithering a black and white image to fewer intensity levels, use bwdithermap.
The arguments are as for dithermap, but only a single channel color map is computed. The value of levels
can be larger than for dithermap, as the computed map only has levels entries.

To just build the magic square and other parameters, use make_square. The argument N should be equal to
255.0 divided by the desired number of intensity levels less one (i.e., N = 255.0 / (levels - 1)). The other ar-
guments are filled in as above.

The color map index for a dithered full color pixel is computed by dithergb. Since the pattern depends on
the screen location, the first two arguments x and y, specify that location. The true color of the pixel at that
location is given by the triple r, g, and b. The number of intensity levels and the dithering parameter matri-
ces computed by dithermap are also passed to dithergb.

The color map index for a dithered gray scale pixel is computed by ditherbw. Again, the screen position is
specified, and the intensity value of the pixel is supplied in val. The dithering parameters must also be sup-
plied.

Alternatively, the dithering may be done in line instead of incurring the extra overhead of a function call,
which can be significant when repeated a million times. The computation is as follows:

3 2/2/87 133

DITHER(3) DITHER(3)

row = y % 16;
col = x % 16;

#define DMAP(v,col,row) (divN[v] + (modN[v]>magic[col][row] ? 1 : 0))
pix = DMAP(r,col,row) + DMAP(g,col,row)*levels +

DMAP(b,col,row)*levels*levels;
For a gray scale image, it is a little simpler:

pix = DMAP(val,row,col);
And on a single bit display (assuming a 1 means white):

pix = divN[val] > magic[col][row] ? 1 : 0

SEE ALSO
rgb_to_bw(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas
University of Utah

134 2/2/87 3

RGB_TO_BW(3) RGB_TO_BW(3)

NAME
rgb_to_bw − convert a color scanline to black and white.

SYNOPSIS
#include <rle.h>

void rgb_to_bw(red, green, blue, bw, length);
rle_pixel * red, * green, * blue, *bw;
int length;

DESCRIPTION
rgb_to_bw converts red/green/blue color information to black and white using the NTSC Y transform:
Y = 0.30 * R + 0.59 * G + 0.11 * B . The arguments point to scanlines with length bytes in each. bw may
be identical to one of red , green, or blue.

SEE ALSO
tobw(1), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas
University of Utah

3 2/2/87 135

RLE_ADDHIST(3) RLE_ADDHIST(3)

NAME
rle_addhist − add a history comment to an RLE file.

SYNOPSIS
#include <rle.h>

void rle_addhist(argv, in_hdr, out_hdr)
char **argv;
rle_hdr *in_hdr, *out_hdr;

DESCRIPTION
rle_addhist is used to add history comments to the RLE(5) file in the form:

HISTORY=cmd arg1 arg2 on Tue Sep 13 01:06:49 WST 1988
where cmd, arg1, etc. are the command line arguments which have been used to generate or filter this RLE
file. The HISTORY comment is always appended to so that an accumulated history is kept along with a
timestamp. Programs which generate RLE files should call rle_addhist as follows:

rle_addhist(argv,(rle_hdr *)0,&out_hdr);
Programs which filter RLE files should call rle_addhist as:

rle_addhist(argv,&in_hdr,&out_hdr);

SEE ALSO
rle_hdr(3), rle_putcom(3), rle_getcom(3), librle(3), RLE(5).

AUTHOR
Andrew Marriott,
Curtin University of Technology (Australia)

136 9/9/88 3

RLE_CP(3) RLE_CP(3)

NAME
rle_cp − Copy the rest of an image to the output.

SYNOPSIS
#include <rle.h>

rle_cp(in_hdr, out_hdr)
rle_hdr *in_hdr, *out_hdr;

DESCRIPTION
This routine copies the image contents of one RLE(5) file to another. The image described by in_hdr will
be copied to the image file described by out_hdr. If any rows hav e been read with rle_getrow(3) or rle_ge-
traw(3), those rows must have also been written with rle_putrow(3) or rle_putraw(3), respectively, in order
for the input and output files to be "in sync". In any case, the header should have been written to the output
file with rle_put_setup(3). When rle_cp returns, the input image file will be positioned at the end of the
image, and an end of image code will have been written to the output image file.

SEE ALSO
rle_hdr(3), rle_getrow(3), rle_getraw(3), rle_putrow(3), rle_putraw(3), rle_put_setup(3), librle(3),
RLE(5).

AUTHOR
Spencer W. Thomas
University of Michigan

3 2/2/87 137

RLE_GET_SETUP(3) RLE_GET_SETUP(3)

NAME
rle_get_setup − Read the header from an RLE file.

rle_get_setup_ok − Print error message and exit if rle_get_setup fails.
rle_get_error − Print error message for rle_get_setup failure.
rle_debug − Turn on or off debugging messages.

SYNOPSIS
#include <rle.h>

rle_get_setup(the_hdr);
rle_hdr * the_hdr;

rle_get_setup_ok(the_hdr, prog_name, file_name);
rle_hdr * the_hdr;
char * prog_name, * file_name;

rle_get_error(code, prog_name, file_name)
int code;
char *prog_name, *file_name;

rle_debug(on_off)
int on_off;

DESCRIPTION
Rle_get_setup is called to initialize the process of reading an RLE(5) file. It will fill in the_hdr with the
header information from the RLE file, and will initialize state for rle_getrow(3) and rle_getraw(3). The
rle_file field of the_hdr should be initialized to the input stream before calling rle_get_setup. The bits field
is initialized by rle_get_setup to enable reading of all the channels present in the input file. To prevent
rle_getrow or rle_getraw from reading certain channels (e.g., the alpha channel), the appropriate bits should
be cleared before calling them. The error codes returned by rle_get_setup are defined in rle.h.

Rle_get_setup_ok invokes rle_get_setup and checks the return code. If an error occurred, it calls
rle_get_error(err_code, pro g_name, file_name) to print the appropriate error message on stderr, and the
program exits with the status code set.

Rle_get_error can be called to print an appropriate error message on the standard error output for the failure
code returned by rle_get_setup. The prog_name and file_name parameters are used for the error message.
If file_name is NULL or "−", the string "Standard input" is substituted.

The function rle_debug is used to enable or disable debug printing for the rle_get functions. If on_off is
non-zero, all input read from any RLE file will be printed in a readable form on the standard error output.
Calling rle_debug(0) will turn off this activity.

SEE ALSO
rle_hdr(3), rle_getrow(3), rle_getraw(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas, Todd Fuqua
University of Utah

138 2/2/87 3

RLE_PUTCOM(3) RLE_PUTCOM(3)

NAME

rle_putcom − set the value of a picture comment in an RLE file.
rle_getcom − get a picture comment from an RLE file.
rle_delcom − delete a picture comment from an RLE file.

SYNOPSIS
#include <rle.h>

char * rle_putcom(value, the_hdr)
char * value;
rle_hdr * the_hdr;

char * rle_getcom(name, the_hdr)
char * name;
rle_hdr * the_hdr;

char * rle_delcom(name, the_hdr)
char * name;
rle_hdr * the_hdr;

DESCRIPTION
Rle_putcom can be used to add a picture comment or change the value of a picture comment in a rle_hdr(3)
structure. The argument value is the string value of the comment, and is generally of the form name=value.
It may also be of the form name. If there is another comment with the same name, it will be replaced with
the new value, and the previous comment will be returned as the value of rle_putcom.

Rle_getcom returns a pointer to the data portion of a picture comment from an RLE file. The comment is
assumed to be in the form name=value; a pointer to value is returned. If the comment is of the form name,
a pointer to the null character at the end of the string is returned. If there is no comment of the above
forms, a NULL pointer is returned. The the_hdr structure contains the picture comments in question.

Rle_delcom is used to delete a picture comment from a rle_hdr(3) structure. It is called with the name of
the comment and the the_hdr structure to be modified. The first comment in the rle_hdr structure of the
form name=value or name will be deleted. The deleted comment will be returned as the function value.

SEE ALSO
rle_addhist(3), rle_hdr(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas
University of Utah

3 2/2/87 139

RLE_GETRAW(3) RLE_GETRAW(3)

NAME
rle_getraw − Read run length encoded data from an RLE file.

rle_freeraw − Free pixel storage allocated by rle_getraw.

SYNOPSIS
#include <rle.h>
#include <rle_raw.h>

unsigned int rle_getraw(the_hdr, scanraw, nraw)
rle_hdr * the_hdr;
rle_op ** scanraw;
int * nraw;

void rle_freeraw(the_hdr, scanraw, nraw);
rle_hdr * the_hdr;
rle_op ** scanraw;
int * nraw;

DESCRIPTION
Rle_getraw can be used to read information from an RLE file in the "raw" form.

The scanraw argument is an array of pointers to arrays of rle_op(3) structures. Each rle_op structure speci-
fies a run or sequence of pixel values. The array nraw gives the number of rle_op structures for each chan-
nel. I.e., nraw[i] is the length of the array pointed to by scanraw[i].

Return value is the current scanline number. Returns 32768 at EOF.

Sufficient space must be allocated in the arrays of rle_op structures to hold the data read from the file. A
function, rle_raw_alloc(3), is provided to make this easier. The storage required by any pixel sequences in
the input will be dynamically allocated by rle_getraw.

The pixel storage allocated dynamically by rle_getraw(3) must be freed to avoid memory leaks. This is
most easily accomplished by calling rle_freeraw. The argument scanraw points to an array of rle_op struc-
tures, with nraw indicating the number of structures in each channel. All pixel data arrays will be freed by
the call to rle_freeraw.

EXAMPLE
The usual code looks something like

rle_hdr in_hdr, out_hdr;
rle_op **raw;
int *nraw;
while (rle_getraw(&in_hdr, raw, nraw) != 32768)
{

/* Process data. */
rle_putraw(&out_hdr, raw, nraw);
rle_freeraw(&in_hdr, raw, nraw);

}

SEE ALSO
rle_hdr(3), rle_op(3), rle_putraw(3), rle_raw_alloc(3), rle_raw_free(3), rle_getrow(3), rle_getskip(3), li-
brle(3), RLE(5).

AUTHOR
Spencer W. Thomas
University of Utah

140 2/2/87 3

RLE_GET_SETUP(3) RLE_GET_SETUP(3)

NAME
rle_get_setup − Read the header from an RLE file.

rle_get_setup_ok − Print error message and exit if rle_get_setup fails.
rle_get_error − Print error message for rle_get_setup failure.
rle_debug − Turn on or off debugging messages.

SYNOPSIS
#include <rle.h>

rle_get_setup(the_hdr);
rle_hdr * the_hdr;

rle_get_setup_ok(the_hdr, prog_name, file_name);
rle_hdr * the_hdr;
char * prog_name, * file_name;

rle_get_error(code, prog_name, file_name)
int code;
char *prog_name, *file_name;

rle_debug(on_off)
int on_off;

DESCRIPTION
Rle_get_setup is called to initialize the process of reading an RLE(5) file. It will fill in the_hdr with the
header information from the RLE file, and will initialize state for rle_getrow(3) and rle_getraw(3). The
rle_file field of the_hdr should be initialized to the input stream before calling rle_get_setup. The bits field
is initialized by rle_get_setup to enable reading of all the channels present in the input file. To prevent
rle_getrow or rle_getraw from reading certain channels (e.g., the alpha channel), the appropriate bits should
be cleared before calling them. The error codes returned by rle_get_setup are defined in rle.h.

Rle_get_setup_ok invokes rle_get_setup and checks the return code. If an error occurred, it calls
rle_get_error(err_code, pro g_name, file_name) to print the appropriate error message on stderr, and the
program exits with the status code set.

Rle_get_error can be called to print an appropriate error message on the standard error output for the failure
code returned by rle_get_setup. The prog_name and file_name parameters are used for the error message.
If file_name is NULL or "−", the string "Standard input" is substituted.

The function rle_debug is used to enable or disable debug printing for the rle_get functions. If on_off is
non-zero, all input read from any RLE file will be printed in a readable form on the standard error output.
Calling rle_debug(0) will turn off this activity.

SEE ALSO
rle_hdr(3), rle_getrow(3), rle_getraw(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas, Todd Fuqua
University of Utah

3 2/2/87 141

RLE_GET_SETUP(3) RLE_GET_SETUP(3)

NAME
rle_get_setup − Read the header from an RLE file.

rle_get_setup_ok − Print error message and exit if rle_get_setup fails.
rle_get_error − Print error message for rle_get_setup failure.
rle_debug − Turn on or off debugging messages.

SYNOPSIS
#include <rle.h>

rle_get_setup(the_hdr);
rle_hdr * the_hdr;

rle_get_setup_ok(the_hdr, prog_name, file_name);
rle_hdr * the_hdr;
char * prog_name, * file_name;

rle_get_error(code, prog_name, file_name)
int code;
char *prog_name, *file_name;

rle_debug(on_off)
int on_off;

DESCRIPTION
Rle_get_setup is called to initialize the process of reading an RLE(5) file. It will fill in the_hdr with the
header information from the RLE file, and will initialize state for rle_getrow(3) and rle_getraw(3). The
rle_file field of the_hdr should be initialized to the input stream before calling rle_get_setup. The bits field
is initialized by rle_get_setup to enable reading of all the channels present in the input file. To prevent
rle_getrow or rle_getraw from reading certain channels (e.g., the alpha channel), the appropriate bits should
be cleared before calling them. The error codes returned by rle_get_setup are defined in rle.h.

Rle_get_setup_ok invokes rle_get_setup and checks the return code. If an error occurred, it calls
rle_get_error(err_code, pro g_name, file_name) to print the appropriate error message on stderr, and the
program exits with the status code set.

Rle_get_error can be called to print an appropriate error message on the standard error output for the failure
code returned by rle_get_setup. The prog_name and file_name parameters are used for the error message.
If file_name is NULL or "−", the string "Standard input" is substituted.

The function rle_debug is used to enable or disable debug printing for the rle_get functions. If on_off is
non-zero, all input read from any RLE file will be printed in a readable form on the standard error output.
Calling rle_debug(0) will turn off this activity.

SEE ALSO
rle_hdr(3), rle_getrow(3), rle_getraw(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas, Todd Fuqua
University of Utah

142 2/2/87 3

RLE_GET_SETUP(3) RLE_GET_SETUP(3)

NAME
rle_get_setup − Read the header from an RLE file.

rle_get_setup_ok − Print error message and exit if rle_get_setup fails.
rle_get_error − Print error message for rle_get_setup failure.
rle_debug − Turn on or off debugging messages.

SYNOPSIS
#include <rle.h>

rle_get_setup(the_hdr);
rle_hdr * the_hdr;

rle_get_setup_ok(the_hdr, prog_name, file_name);
rle_hdr * the_hdr;
char * prog_name, * file_name;

rle_get_error(code, prog_name, file_name)
int code;
char *prog_name, *file_name;

rle_debug(on_off)
int on_off;

DESCRIPTION
Rle_get_setup is called to initialize the process of reading an RLE(5) file. It will fill in the_hdr with the
header information from the RLE file, and will initialize state for rle_getrow(3) and rle_getraw(3). The
rle_file field of the_hdr should be initialized to the input stream before calling rle_get_setup. The bits field
is initialized by rle_get_setup to enable reading of all the channels present in the input file. To prevent
rle_getrow or rle_getraw from reading certain channels (e.g., the alpha channel), the appropriate bits should
be cleared before calling them. The error codes returned by rle_get_setup are defined in rle.h.

Rle_get_setup_ok invokes rle_get_setup and checks the return code. If an error occurred, it calls
rle_get_error(err_code, pro g_name, file_name) to print the appropriate error message on stderr, and the
program exits with the status code set.

Rle_get_error can be called to print an appropriate error message on the standard error output for the failure
code returned by rle_get_setup. The prog_name and file_name parameters are used for the error message.
If file_name is NULL or "−", the string "Standard input" is substituted.

The function rle_debug is used to enable or disable debug printing for the rle_get functions. If on_off is
non-zero, all input read from any RLE file will be printed in a readable form on the standard error output.
Calling rle_debug(0) will turn off this activity.

SEE ALSO
rle_hdr(3), rle_getrow(3), rle_getraw(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas, Todd Fuqua
University of Utah

3 2/2/87 143

RLE_GET_SETUP(3) RLE_GET_SETUP(3)

NAME
rle_get_setup − Read the header from an RLE file.

rle_get_setup_ok − Print error message and exit if rle_get_setup fails.
rle_get_error − Print error message for rle_get_setup failure.
rle_debug − Turn on or off debugging messages.

SYNOPSIS
#include <rle.h>

rle_get_setup(the_hdr);
rle_hdr * the_hdr;

rle_get_setup_ok(the_hdr, prog_name, file_name);
rle_hdr * the_hdr;
char * prog_name, * file_name;

rle_get_error(code, prog_name, file_name)
int code;
char *prog_name, *file_name;

rle_debug(on_off)
int on_off;

DESCRIPTION
Rle_get_setup is called to initialize the process of reading an RLE(5) file. It will fill in the_hdr with the
header information from the RLE file, and will initialize state for rle_getrow(3) and rle_getraw(3). The
rle_file field of the_hdr should be initialized to the input stream before calling rle_get_setup. The bits field
is initialized by rle_get_setup to enable reading of all the channels present in the input file. To prevent
rle_getrow or rle_getraw from reading certain channels (e.g., the alpha channel), the appropriate bits should
be cleared before calling them. The error codes returned by rle_get_setup are defined in rle.h.

Rle_get_setup_ok invokes rle_get_setup and checks the return code. If an error occurred, it calls
rle_get_error(err_code, pro g_name, file_name) to print the appropriate error message on stderr, and the
program exits with the status code set.

Rle_get_error can be called to print an appropriate error message on the standard error output for the failure
code returned by rle_get_setup. The prog_name and file_name parameters are used for the error message.
If file_name is NULL or "−", the string "Standard input" is substituted.

The function rle_debug is used to enable or disable debug printing for the rle_get functions. If on_off is
non-zero, all input read from any RLE file will be printed in a readable form on the standard error output.
Calling rle_debug(0) will turn off this activity.

SEE ALSO
rle_hdr(3), rle_getrow(3), rle_getraw(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas, Todd Fuqua
University of Utah

144 2/2/87 3

RLE_PUTCOM(3) RLE_PUTCOM(3)

NAME

rle_putcom − set the value of a picture comment in an RLE file.
rle_getcom − get a picture comment from an RLE file.
rle_delcom − delete a picture comment from an RLE file.

SYNOPSIS
#include <rle.h>

char * rle_putcom(value, the_hdr)
char * value;
rle_hdr * the_hdr;

char * rle_getcom(name, the_hdr)
char * name;
rle_hdr * the_hdr;

char * rle_delcom(name, the_hdr)
char * name;
rle_hdr * the_hdr;

DESCRIPTION
Rle_putcom can be used to add a picture comment or change the value of a picture comment in a rle_hdr(3)
structure. The argument value is the string value of the comment, and is generally of the form name=value.
It may also be of the form name. If there is another comment with the same name, it will be replaced with
the new value, and the previous comment will be returned as the value of rle_putcom.

Rle_getcom returns a pointer to the data portion of a picture comment from an RLE file. The comment is
assumed to be in the form name=value; a pointer to value is returned. If the comment is of the form name,
a pointer to the null character at the end of the string is returned. If there is no comment of the above
forms, a NULL pointer is returned. The the_hdr structure contains the picture comments in question.

Rle_delcom is used to delete a picture comment from a rle_hdr(3) structure. It is called with the name of
the comment and the the_hdr structure to be modified. The first comment in the rle_hdr structure of the
form name=value or name will be deleted. The deleted comment will be returned as the function value.

SEE ALSO
rle_addhist(3), rle_hdr(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas
University of Utah

3 2/2/87 145

RLE_GETRAW(3) RLE_GETRAW(3)

NAME
rle_getraw − Read run length encoded data from an RLE file.

rle_freeraw − Free pixel storage allocated by rle_getraw.

SYNOPSIS
#include <rle.h>
#include <rle_raw.h>

unsigned int rle_getraw(the_hdr, scanraw, nraw)
rle_hdr * the_hdr;
rle_op ** scanraw;
int * nraw;

void rle_freeraw(the_hdr, scanraw, nraw);
rle_hdr * the_hdr;
rle_op ** scanraw;
int * nraw;

DESCRIPTION
Rle_getraw can be used to read information from an RLE file in the "raw" form.

The scanraw argument is an array of pointers to arrays of rle_op(3) structures. Each rle_op structure speci-
fies a run or sequence of pixel values. The array nraw gives the number of rle_op structures for each chan-
nel. I.e., nraw[i] is the length of the array pointed to by scanraw[i].

Return value is the current scanline number. Returns 32768 at EOF.

Sufficient space must be allocated in the arrays of rle_op structures to hold the data read from the file. A
function, rle_raw_alloc(3), is provided to make this easier. The storage required by any pixel sequences in
the input will be dynamically allocated by rle_getraw.

The pixel storage allocated dynamically by rle_getraw(3) must be freed to avoid memory leaks. This is
most easily accomplished by calling rle_freeraw. The argument scanraw points to an array of rle_op struc-
tures, with nraw indicating the number of structures in each channel. All pixel data arrays will be freed by
the call to rle_freeraw.

EXAMPLE
The usual code looks something like

rle_hdr in_hdr, out_hdr;
rle_op **raw;
int *nraw;
while (rle_getraw(&in_hdr, raw, nraw) != 32768)
{

/* Process data. */
rle_putraw(&out_hdr, raw, nraw);
rle_freeraw(&in_hdr, raw, nraw);

}

SEE ALSO
rle_hdr(3), rle_op(3), rle_putraw(3), rle_raw_alloc(3), rle_raw_free(3), rle_getrow(3), rle_getskip(3), li-
brle(3), RLE(5).

AUTHOR
Spencer W. Thomas
University of Utah

146 2/2/87 3

RLE_GETROW(3) RLE_GETROW(3)

NAME
rle_getrow − Read a scanline of pixels from an RLE file.

SYNOPSIS
#include <rle.h>

rle_getrow(the_hdr, rows);
rle_hdr * the_hdr;
rle_pixel ** rows;

DESCRIPTION
Rle_getrow reads information for a single scanline from the input file each time it is called. The_hdr should
point to the structure initialized by rle_get_setup(3). The array rows should contain pointers to arrays of
characters, into which the scanline data will be written. There should be as many elements in rows as there
are primary colors in the input file (typically 1 or 3), and the scanline arrays must be indexable up to the
maximum X coordinate, as specified by the_hdr→xmax. rle_getrow returns the y value of the scanline just
read. This will always be 1 greater than the y value from the scanline previously read, and starts at
the_hdr→ymin. Only those channels enabled by the_hdr→bits will be returned.

NOTES
If an alpha channel is present in the input and enabled (by RLE_SET_BIT , see rle_hdr(3)), then rows
should include a −1 entry. (I.e., rows[−1] should point to a valid scanline array.) The easiest way to ensure
this is to use rle_row_alloc(3) to allocate rows.

Rle_getrow will continue to return scanlines even after the end of the input file has been reached, incre-
menting the return scanline number each time it is called. The calling program should use some other ter-
mination criterion (such as the scanline number reaching the_hdr→ymax, or explicitly testing testing for
end of file on the input with feof(infile). The second test may fail if rle_getrow has encountered a logical
EOF in the file. The first will always work eventually.)

EXAMPLE
The code below reads the first two 3 color scanlines of 512 pixels from an RLE file on the standard input.

char scanline[2][3][512], *rows[3];
int row, i;
rle_dflt_hdr.rle_file = stdin;
rle_get_setup(&rle_dflt_hdr);
for (row = 0; row < 2; row++)
{

for (i = 0; i < 3; i++)
rows[i] = scanline[row][i];

rle_getrow(&rle_dflt_hdr, rows);
}

SEE ALSO
rle_hdr(3), rle_row_alloc(3), rle_row_free(3), rle_get_setup(3), rle_getraw(3), rle_getskip(3), rle_pu-
trow(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas, Todd Fuqua
University of Utah

3 2/2/87 147

RLE_GETSKIP(3) RLE_GETSKIP(3)

NAME
rle_getskip − Skip the rest of an input image.

SYNOPSIS
#include <rle.h>

unsigned int rle_getskip(in_hdr)
rle_hdr *in_hdr;

DESCRIPTION
This routine skips the unread part of an RLE(5) image. Each time rle_getskip is called, a scanline in the
image described by in_hdr will be skipped. rle_getskip returns the scanline number of the next scanline
that would be read by rle_getrow(3) or rle_getraw(3). When the end of the image is reached, rle_getskip
returns 32768.

SEE ALSO
rle_hdr(3), rle_getrow(3), rle_getraw(3), RLE(5).

AUTHOR
Spencer W. Thomas
University of Utah

148 2/2/87 3

RLE_HDR(3) RLE_HDR(3)

NAME
rle_hdr − Structure for communication with RLE functions.

SYNOPSIS
#include <rle.h>

rle_hdr rle_dflt_hdr;

RLE_SET_BIT(the_hdr,bit)
RLE_CLR_BIT(the_hdr,bit)
RLE_BIT(the_hdr,bit)
rle_hdr the_hdr;

DESCRIPTION
This data structure provides communication to and between all the RLE(5) file routines. It describes the
parameters of the image being saved or read, and contains some variables describing file state that are pri-
vate to the routines. The public components are described below.

typedef unsigned char rle_pixel;
typedef unsigned short rle_map;

rle_hdr {
int ncolors, /* Number of colors being saved */

bg_color, / Background color array */
alpha, /* if ≠ 0, save alpha channel (color -1) */

/* alpha channel background is always 0 */
background, /* if = 0, no background processing */

/* if = 1 or 2, save only non-bg pixels */
/* If 2, set clear-to-bg flag in file */

xmin, /* Min X bound of saved raster */
xmax, /* Max X bound */
ymin, /* Min Y bound */
ymax, /* Max Y bound */
ncmap, /* number of color channels in color map */

/* if = 0, color map is not saved */
cmaplen; /* Log2 of the number of entries in */

/* each channel of the color map */
rle_map *cmap; /* pointer to color map, stored as 16-bit */

/* words, with values left justified */
char **comments; /* Pointer to array of pointers */

/* to comment strings. */
FILE * rle_file; /* I/O to this file */
/*
* Bit map of channels to read/save. Indexed by (channel mod 256).
*/

char bits[256/8];
};

A global variable, rle_dflt_hdr, is available, conveniently initialized with default values.

FIELDS
ncolors The number of colors (exclusive of the alpha channel) in the image. This is one greater than the

largest channel index (i.e., ncolors would be 3 if channels 0, 1, and 2 were saved, or if only chan-
nel 2 were saved.)

3 2/2/87 149

RLE_HDR(3) RLE_HDR(3)

bg_color
A pointer to an array of ncolors integers, defines the background color (if used). The background
alpha value is always 0, so is not included in the bg_color array.

alpha If non-zero, an alpha channel is present as channel −1. This should always be 0 or 1. Rle_get_set-
up and rle_put_setup enforce this constraint. The alpha channel will only be actually read or writ-
ten if the corresponding bit in bits is also set.

background
Controls whether background color processing is done. If 0, no background processing is done at
all (and bg_color is ignored). If 1 or 2, then runs of 3 or more pixels in the background color are
not saved at all. If 2, then these runs will be restored by rle_getrow; if 1, they will not (this can
lead to some strange images).

xmin, xmax, ymin, ymax
The bounds of the image. All pixels from xmin to xmax, inclusive, in rows numbered from ymin to
ymax, inclusive, will be saved. Thus the dimensions of the image are

(xmax - xmin + 1) × (ymax - ymin + 1)

ncmap, cmaplen
The size of the saved colormap (if any). The color map will have ncmap channels, each 2ˆcmaplen
long. If ncmap is zero, no color map is present.

cmap A pointer to colormap data, if present. The data is stored in "channel major" order, so that all the
values for channel 0 precede all the values for channel 1, etc. Each individual value is left-justified
in 16 bits (i.e., the range of values is 0−65535).

comments
A pointer to picture comment data, if present. Use the functions rle_putcom(3), rle_getcom(3),
and rle_delcom(3) to manipulate this field.

rle_file The standard I/O FILE pointer for the file containing this image.

bits A bitmap that selects the channels that are actually written to/read from the file. The macros be-
low are used to modify this bitmap.

MACROS
The macro RLE_BIT will retrieve the state of one of the bits in the bits map. RLE_SET_BIT , and
RLE_CLR_BIT set and clear bits in the bits map. The predefined symbols RLE_RED, RLE_GREEN ,
RLE_BLUE, and RLE_ALPHA, or an integer value from −1 to 254 may be used in these macros.

SEE ALSO
librle(3), RLE(5).

AUTHOR
Spencer W. Thomas, Todd Fuqua

150 2/2/87 3

RLE_OP(3) RLE_OP(3)

NAME
rle_op − Data structure for raw run-length encoded image data.

SYNOPSIS
#include <rle.h>
#include <rle_raw.h>
typedef struct rle_op rle_op;

DESCRIPTION
The rle_op data structure is used to describe a single run of data in a RLE(5) run-length encoded image. It
is filled by the function rle_getraw(3), and is used by the functions rle_putraw(3) and rle_rawtorow(3).

The structure is
struct rle_op {

int opcode; /* One of RByteDataOp or RRunDataOp. */
int xloc; /* X starting location of this data. */
int length; /* Length of run or data array. */
union {

rle_pixel *pixels; /* ByteData case. */
int run_val; /* RunData case. */

} u;
};

If the opcode has the value RByteDataOp, then the u.pixels component points to an array of length pixel
values. If the opcode has the value RRunDataOp, then the u.run_val component contains a pixel value that
is to be repeated length times.

SEE ALSO
rle_hdr(3), rle_getraw(3), rle_putraw(3), rle_rawtorow(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas

3 July, 1990 151

RLE_OPEN_F(3) RLE_OPEN_F(3)

NAME
rle_open_f − Open a binary file for input or output with defaults.

rle_open_f_noexit − Returns error code instead of exiting.

SYNOPSIS
FILE *rle_open_f(prog_name, file_name, mode)
char *prog_name, *file_name, *mode;

FILE *rle_open_f_noexit(prog_name, file_name, mode)
char *prog_name, *file_name, *mode;

DESCRIPTION
The function rle_open_f is provided to simplify the task of opening files in toolkit programs. It works simi-
larly to fopen(3), but it also provides error checking and messages, and default values for input and output.
If the specified file_name cannot be opened, an error message is printed and the program exits. A variant
rle_open_f_noexit is provided which will return NULL if the file cannot be opened. An error message is
still printed.

On those systems which require it, a ’b’ will be appended to the mode string so that the file will be opened
in binary mode.

If the file_name is NULL or "−", then stdin will be returned for input (mode "r") files and stdout will be re-
turned for output (mode "w" or "a") files.

The following two options are available only on systems supporting pipes. If the file_name starts with a "|"
character, then the rest of the file name will be taken as a sh(1) command. If mode is "r", a pipe from the
output of the sh command will be returned. If mode is "w" or "a", a pipe to the input of the sh command
will be returned.

If the file_name ends with the suffix ".Z" (and does not start with "|"), then the compress(1) program will be
invoked to uncompress (mode "r") or compress (mode "w" or "a") the file. The file descriptor returned by
rle_open_f will be a pipe from or to the compress program.

SEE ALSO
fopen(3), popen(3), compress(1).

AUTHOR
Gerald Winter
Spencer W. Thomas
University of Michigan

BUGS
If the command invoked via popen does not exist, the popen still returns successfully, and the underlying sh
prints an error message.

There is no way of telling that a particular FILE pointer has been created by popen, so it isn’t possible to
cleanly close the pipe with pclose. In fact, the eventual output file may not even exist by the time the pro-
gram exits.

152 2/2/87 3

RLE_OPEN_F(3) RLE_OPEN_F(3)

NAME
rle_open_f − Open a binary file for input or output with defaults.

rle_open_f_noexit − Returns error code instead of exiting.

SYNOPSIS
FILE *rle_open_f(prog_name, file_name, mode)
char *prog_name, *file_name, *mode;

FILE *rle_open_f_noexit(prog_name, file_name, mode)
char *prog_name, *file_name, *mode;

DESCRIPTION
The function rle_open_f is provided to simplify the task of opening files in toolkit programs. It works simi-
larly to fopen(3), but it also provides error checking and messages, and default values for input and output.
If the specified file_name cannot be opened, an error message is printed and the program exits. A variant
rle_open_f_noexit is provided which will return NULL if the file cannot be opened. An error message is
still printed.

On those systems which require it, a ’b’ will be appended to the mode string so that the file will be opened
in binary mode.

If the file_name is NULL or "−", then stdin will be returned for input (mode "r") files and stdout will be re-
turned for output (mode "w" or "a") files.

The following two options are available only on systems supporting pipes. If the file_name starts with a "|"
character, then the rest of the file name will be taken as a sh(1) command. If mode is "r", a pipe from the
output of the sh command will be returned. If mode is "w" or "a", a pipe to the input of the sh command
will be returned.

If the file_name ends with the suffix ".Z" (and does not start with "|"), then the compress(1) program will be
invoked to uncompress (mode "r") or compress (mode "w" or "a") the file. The file descriptor returned by
rle_open_f will be a pipe from or to the compress program.

SEE ALSO
fopen(3), popen(3), compress(1).

AUTHOR
Gerald Winter
Spencer W. Thomas
University of Michigan

BUGS
If the command invoked via popen does not exist, the popen still returns successfully, and the underlying sh
prints an error message.

There is no way of telling that a particular FILE pointer has been created by popen, so it isn’t possible to
cleanly close the pipe with pclose. In fact, the eventual output file may not even exist by the time the pro-
gram exits.

3 2/2/87 153

RLE_PUT_SETUP(3) RLE_PUT_SETUP(3)

NAME
rle_put_setup − setup to create an RLE file.

rle_put_init − setup for writing to an RLE file.

SYNOPSIS
#include <rle.h>

void rle_put_setup(the_hdr);
rle_hdr * the_hdr;

void rle_put_init(the_hdr);
rle_hdr * the_hdr;

DESCRIPTION
Rle_put_setup is called to initialize the output and write the image header of an RLE(5) image. The argu-
ment is a pointer to a rle_hdr(3) structure, which has been filled in with appropriate values for the image
being saved.

Rle_put_init is called to initialize the header data structure for writing output to an RLE file. The argument
is a pointer to a rle_hdr(3) structure, which has been filled in with appropriate values for the image being
saved. The "private" elements of the header will be initialized. The header is not written to the file. This
function could be useful for appending image data to an existing file. The new data should have the same
number channels, the same width, etc. as the existing image.

SEE ALSO
rle_hdr(3), rle_putrow(3), rle_putraw(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas, Todd Fuqua

154 2/2/87 3

RLE_PUT_SETUP(3) RLE_PUT_SETUP(3)

NAME
rle_put_setup − setup to create an RLE file.

rle_put_init − setup for writing to an RLE file.

SYNOPSIS
#include <rle.h>

void rle_put_setup(the_hdr);
rle_hdr * the_hdr;

void rle_put_init(the_hdr);
rle_hdr * the_hdr;

DESCRIPTION
Rle_put_setup is called to initialize the output and write the image header of an RLE(5) image. The argu-
ment is a pointer to a rle_hdr(3) structure, which has been filled in with appropriate values for the image
being saved.

Rle_put_init is called to initialize the header data structure for writing output to an RLE file. The argument
is a pointer to a rle_hdr(3) structure, which has been filled in with appropriate values for the image being
saved. The "private" elements of the header will be initialized. The header is not written to the file. This
function could be useful for appending image data to an existing file. The new data should have the same
number channels, the same width, etc. as the existing image.

SEE ALSO
rle_hdr(3), rle_putrow(3), rle_putraw(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas, Todd Fuqua

3 2/2/87 155

RLE_PUTCOM(3) RLE_PUTCOM(3)

NAME

rle_putcom − set the value of a picture comment in an RLE file.
rle_getcom − get a picture comment from an RLE file.
rle_delcom − delete a picture comment from an RLE file.

SYNOPSIS
#include <rle.h>

char * rle_putcom(value, the_hdr)
char * value;
rle_hdr * the_hdr;

char * rle_getcom(name, the_hdr)
char * name;
rle_hdr * the_hdr;

char * rle_delcom(name, the_hdr)
char * name;
rle_hdr * the_hdr;

DESCRIPTION
Rle_putcom can be used to add a picture comment or change the value of a picture comment in a rle_hdr(3)
structure. The argument value is the string value of the comment, and is generally of the form name=value.
It may also be of the form name. If there is another comment with the same name, it will be replaced with
the new value, and the previous comment will be returned as the value of rle_putcom.

Rle_getcom returns a pointer to the data portion of a picture comment from an RLE file. The comment is
assumed to be in the form name=value; a pointer to value is returned. If the comment is of the form name,
a pointer to the null character at the end of the string is returned. If there is no comment of the above
forms, a NULL pointer is returned. The the_hdr structure contains the picture comments in question.

Rle_delcom is used to delete a picture comment from a rle_hdr(3) structure. It is called with the name of
the comment and the the_hdr structure to be modified. The first comment in the rle_hdr structure of the
form name=value or name will be deleted. The deleted comment will be returned as the function value.

SEE ALSO
rle_addhist(3), rle_hdr(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas
University of Utah

156 2/2/87 3

RLE_PUTEOF(3) RLE_PUTEOF(3)

NAME
rle_puteof − write an end of image to an RLE file.

SYNOPSIS
#include <rle.h>

rle_puteof(the_hdr);
rle_hdr * the_hdr;

DESCRIPTION
Call rle_puteof to write an end of image opcode into an RLE(5) file. Rle_puteof also frees some storage al-
located by rle_putrow(3), "flushes" the output file, and generally cleans up.

SEE ALSO
rle_hdr(3), rle_put_setup(3), rle_putrow(3), rle_putraw(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas
University of Utah

3 2/2/87 157

RLE_PUTRAW(3) RLE_PUTRAW(3)

NAME
rle_putraw − write run length encoded data to an RLE file.

SYNOPSIS
#include <rle.h>
#include <rle_raw.h>

rle_putraw(scanraw, nraw, the_hdr);
rle_op ** scanraw;
int * nraw;
rle_hdr * the_hdr;

DESCRIPTION
The function rle_putraw provides a structured method for creating run length encoded output. It is passed
an array, scanraw, of pointers to arrays of rle_op(3) structures, and an array of lengths. Each rle_op struc-
ture specifies a run or sequence of pixel values. The array nraw gives the number of rle_op structures for
each channel. I.e., nraw[i] is the length of the array pointed to by scanraw[i].

SEE ALSO
rle_hdr(3), rle_op(3), rle_put_setup(3), rle_puteof (3), rle_skiprow(3), rle_raw_alloc(3), rle_raw_free(3),
rle_getraw(3), rle_freeraw(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas
University of Utah

158 2/2/87 3

RLE_PUTROW(3) RLE_PUTROW(3)

NAME
rle_putrow − Write a row (scanline) of data to an RLE file.

SYNOPSIS
#include <rle.h>

void rle_putrow(rows, length, the_hdr);
rle_pixel ** rows;
int length;
rle_hdr * the_hdr;

DESCRIPTION
Rle_putrow is called for each output scanline when creating an RLE(5) image. Rows is an array of pointers
to the pixel data for the color components of the scanline. Rows should have the_hdr→ncolors elements.
If an alpha channel is being saved, rows[-1] should point to the alpha channel data. Length is the number of
pixels in the scanline. Rows[i] should point to the the_hdr→xmin element of the scanline.

The function rle_row_alloc(3) will properly allocate memory for use by rle_putrow.

SEE ALSO
rle_hdr(3), rle_skiprow(3), rle_putraw(3), rle_puteof (3), rle_row_alloc(3), rle_row_free(3), librle(3),
RLE(5).

AUTHOR
Spencer W. Thomas, Todd Fuqua

BUGS
Having the scanline indexed from xmin is an incredible botch. Its origin lies in the deep dark history of the
raster toolkit, and it seems it’s too late to change it now.

3 2/2/87 159

RLE_RAW_ALLOC(3) RLE_RAW_ALLOC(3)

NAME

rle_raw_alloc − Allocate memory for rle_getraw or rle_putraw.
rle_raw_free − free memory allocated by rle_raw_alloc.

SYNOPSIS
#include <rle.h>
#include <rle_raw.h>

rle_raw_alloc(the_hdr, scanp, nrawp)
rle_hdr * the_hdr;
rle_op *** scanp;
int ** nrawp;

rle_raw_free(the_hdr, scanp, nrawp)
rle_hdr * the_hdr;
rle_op ** scanp;
int * nrawp;

DESCRIPTION
The function rle_raw_alloc is provided to make it easier to allocate storage for use by the RLE "raw" func-
tions. It examines the the_hdr structure provided and return (via its other arguments) newly allocated space
suitable for reading from or writing to an RLE file described by the the_hdr structure. Rle_raw_alloc allo-
cates (the_hdr→xmax − the_hdr→xmin + 1) elements per channel, which is more than should ever be
needed for a valid RLE file.

Rle_raw_free should be used to free memory allocated by rle_raw_alloc(3). The arguments are pointers to
the allocated storage. This is distinct from rle_freeraw(3), which only frees pixel arrays referenced by indi-
vidual rle_op structures, while rle_raw_free frees the storage consumed by the arrays of pointers and
rle_op structures. In fact, rle_freeraw should be called before calling rle_raw_free.

SEE ALSO
rle_hdr(3), rle_op(3), rle_putraw(3), rle_getraw(3), rle_freeraw(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas
University of Utah

BUGS
The naming confusion between rle_freeraw and rle_raw_free is unfortunate.

160 2/2/87 3

RLE_RAW_ALLOC(3) RLE_RAW_ALLOC(3)

NAME

rle_raw_alloc − Allocate memory for rle_getraw or rle_putraw.
rle_raw_free − free memory allocated by rle_raw_alloc.

SYNOPSIS
#include <rle.h>
#include <rle_raw.h>

rle_raw_alloc(the_hdr, scanp, nrawp)
rle_hdr * the_hdr;
rle_op *** scanp;
int ** nrawp;

rle_raw_free(the_hdr, scanp, nrawp)
rle_hdr * the_hdr;
rle_op ** scanp;
int * nrawp;

DESCRIPTION
The function rle_raw_alloc is provided to make it easier to allocate storage for use by the RLE "raw" func-
tions. It examines the the_hdr structure provided and return (via its other arguments) newly allocated space
suitable for reading from or writing to an RLE file described by the the_hdr structure. Rle_raw_alloc allo-
cates (the_hdr→xmax − the_hdr→xmin + 1) elements per channel, which is more than should ever be
needed for a valid RLE file.

Rle_raw_free should be used to free memory allocated by rle_raw_alloc(3). The arguments are pointers to
the allocated storage. This is distinct from rle_freeraw(3), which only frees pixel arrays referenced by indi-
vidual rle_op structures, while rle_raw_free frees the storage consumed by the arrays of pointers and
rle_op structures. In fact, rle_freeraw should be called before calling rle_raw_free.

SEE ALSO
rle_hdr(3), rle_op(3), rle_putraw(3), rle_getraw(3), rle_freeraw(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas
University of Utah

BUGS
The naming confusion between rle_freeraw and rle_raw_free is unfortunate.

3 2/2/87 161

RLE_RAWTOROW(3) RLE_RAWTOROW(3)

NAME
rle_rawtorow − Convert "raw" RLE data to scanline form.

SYNOPSIS
#include <rle.h>
#include <rle_raw.h>

rle_rawtorow(the_hdr, raw, nraw, outrows)
rle_hdr *the_hdr;
rle_op **raw;
int *nraw;
rle_pixel **outrows;

DESCRIPTION
Rle_rawtorow interprets the "raw" run-length encoded data in raw, such as might be returned by rle_ge-
traw(3), and produces the corresponding scanline data in outrows, such as would have been returned by
rle_getrow(3).

SEE ALSO
rle_hdr(3), rle_op(3), rle_getraw(3), rle_getrow(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas, after code by Rod G. Bogart and John W. Peterson.

162 July, 1990 3

RLE_ROW_ALLOC(3) RLE_ROW_ALLOC(3)

NAME

rle_row_alloc − Allocate scanline memory for rle_putrow or rle_getrow.
rle_row_free − Free scanline memory allocated by rle_row_alloc.

SYNOPSIS
#include <rle.h>

rle_row_alloc(the_hdr, scanp)
rle_hdr * the_hdr;
rle_pixel *** scanp;

rle_row_free(the_hdr, scanp)
rle_hdr * the_hdr;
rle_pixel ** scanp;

DESCRIPTION
The function rle_row_alloc is provided to make it easier to allocate storage for use by the RLE functions.
It examines the the_hdr structure provided and returns (via its other argument) newly allocated space suit-
able for reading from or writing to an RLE file described by the the_hdr structure. rle_row_alloc allocates
(the_hdr→xmax + 1) bytes for each scanline, to allow for rle_getrow usage. Only those rows enabled by
the bit-map in the_hdr will have memory allocated.

To free memory allocated by rle_row_alloc(3), call rle_row_free with the pointer to the allocated storage.

SEE ALSO
rle_hdr(3), rle_getrow(3), rle_putrow(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas
University of Utah

3 2/2/87 163

RLE_ROW_ALLOC(3) RLE_ROW_ALLOC(3)

NAME

rle_row_alloc − Allocate scanline memory for rle_putrow or rle_getrow.
rle_row_free − Free scanline memory allocated by rle_row_alloc.

SYNOPSIS
#include <rle.h>

rle_row_alloc(the_hdr, scanp)
rle_hdr * the_hdr;
rle_pixel *** scanp;

rle_row_free(the_hdr, scanp)
rle_hdr * the_hdr;
rle_pixel ** scanp;

DESCRIPTION
The function rle_row_alloc is provided to make it easier to allocate storage for use by the RLE functions.
It examines the the_hdr structure provided and returns (via its other argument) newly allocated space suit-
able for reading from or writing to an RLE file described by the the_hdr structure. rle_row_alloc allocates
(the_hdr→xmax + 1) bytes for each scanline, to allow for rle_getrow usage. Only those rows enabled by
the bit-map in the_hdr will have memory allocated.

To free memory allocated by rle_row_alloc(3), call rle_row_free with the pointer to the allocated storage.

SEE ALSO
rle_hdr(3), rle_getrow(3), rle_putrow(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas
University of Utah

164 2/2/87 3

RLE_SKIPROW(3) RLE_SKIPROW(3)

NAME
rle_skiprow − Skip output scanlines in an RLE file.

SYNOPSIS
#include <rle.h>

rle_skiprow(the_hdr, nro w)
rle_hdr * the_hdr;
int nrow;

DESCRIPTION
This routine is used to output blank (background) scanlines to an RLE(5) file. It is used in conjunction with
rle_putrow(3) or rle_putraw(3). The number of scanlines indicated by nrow will be blank in the output file.

SEE ALSO
rle_hdr(3), rle_put_setup(3), rle_putrow(3), rle_putraw(3), librle(3), RLE(5).

AUTHOR
Spencer W. Thomas
University of Utah

BUGS
Rle_skiprow should not be called when creating an RLE file with the_hdr→background set to zero. The
specified number of rows will indeed be skipped, but they will not be filled with background when the file
is read.

3 2/2/87 165

SCANARGS(3) SCANARGS(3)

NAME
scanargs, qscanargs - formatted conversion from command argument list

SYNOPSIS
#include <stdio.h>

scanargs(argc, argv, format [, pointer]...)
int argc;
char *argv[];
char *format;

DESCRIPTION
Scanargs reads argc arguments from an argument list pointed to by argv. It converts the argument list ac-
cording to the format string, and stores the results of the conversions in its parameters.

Scanargs expects as its parameters an argument count argc, a pointer to an argument list argv (see exec(2)),
a control string format, described below, and a set of pointer arguments indicating where the converted out-
put should be stored.

The control string contains specifications, which are used to direct interpretation of argument sequences. It
contains the necessary information to describe an acceptable syntax for the argument list, and the expected
meaning of each argument.

If the scanning fails it will print a cryptic message telling why it failed, and generate a usage message from
the control string.

The control string is composed of two parts:

Name: The first characters in the string are assumed to be the calling name of the program being execut-
ed. This is used for generation of usage messages, but is otherwise ignored. If this field is a % sign, it is re-
placed with the contents of argv[0] in the message.

Conversions: Following the name, an optional list of conversion specifications is given, with separating
spaces. The structure of a conversion specification:

label_key_conversion

consists of a label which is a string of non-space characters describing the acceptable argument, a key
which may be either of

% The argument is optional. Its absence is ignored.

! A required argument. If absent, an error return ensues.

The conversion character indicates the interpretation of the argument; the corresponding pointer parameter
must be of a restricted type.

The following conversion characters are supported:

d D
a decimal integer is expected; the corresponding parameter should be an int or a long (if D is specified)
pointer.

o O
an octal integer is expected; the corresponding parameter should be an int or a long pointer.

x X a hexadecimal integer is expected; the corresponding parameter should be an int or a long pointer.

n N
an integer numeric conversion using C language syntax. Numbers beginning 0x are hexadecimal,
numbers beginning 0 are octal, and other numbers are decimal. Negative hex numbers must have the
minus sign following the 0x, i.e. negative 0xa would be given as 0x−a. The corresponding pointer
should point to an int or a long.

f F a floating point number is expected; the corresponding parameter should be a pointer to a float or a
double.

166 7/23/90

SCANARGS(3) SCANARGS(3)

s a character string is expected; the corresponding parameter should be the address of a pointer to char.

− a single character flag is expected; the corresponding parameter should be an int pointer. The occur-
rence of a − followed by the character specified in the label will cause the setting of the least signifi-
cant bit of the integer pointed to by the corresponding parameter. The label may consist of up to six-
teen (actually, up to the number of bits in an int) option characters, in which case one of the bits of the
integer is independently set to reflect which one of the flags was present. (The right most character
corresponds to the LSB of the integer) Only one option may be chosen from each conversion specifi-
cation. The bits which are not set will remain in their previous state. For example, a specification of
abc%− would match one of −a −b or −c in the argument list. −c would cause the corresponding vari-
able to be set to 1, −b to 2, and −a to 4. (Actually, these bits would be ored in, but assuming an initial
value of 0, this is true).

The − may be followed immediately by more label_key_conversion specifications. These should not
be separated by blanks and should not contain any − specifications. They will be processed only if the
flag argument is scanned. This allows optional specification of parameters corresponding to a flag
(e.g. −f file). Corresponding arguments on the command line must appear between the flag which in-
troduces them and the next flag in the command line.

$ This may appear only as the last specifier in the format string, and is used to "eat up" the rest of the
command arguments. The corresponding function argument is an int pointer. An index into argv to
the dividing point between the arguments which have been used, and those which have not is returned.
This index points to the first unused command argument. If there is no such dividing point, an error
will be generated (but $ may match zero arguments, as long as the entire set of arguments has already
been matched).

A string or numeric conversion character may be preceded by a ‘*’ or a ‘,’ to indicate that a list of such ar-
guments is expected. If ‘,’ is used, then the AT&T proposed argument standard is followed, and a single
string is expected, with the individual list elements separated by commas or spaces. Tw o commas in a row
will produce a null entry (0 if numeric, zero-length string if string conversion), but multiple spaces, and
spaces following a comma, are taken as a single separator. If ‘*’ is specified, then multiple arguments are
parsed to produce the list. A format specifier with a ‘*’ or a ‘,’ takes two arguments. The first is an int
pointer, the number of items in the list is returned here. The second is a pointer to pointer to the correct da-
ta type for the format specifier. A pointer to the list of arguments is returned here.

The scanner will process the control string from left to right, and where there are multiple conversions of
the same type, they will be assigned one to one with their order of occurrence in the argument list. Where
the order of the arguments is not ambiguous in the control string, they may occur in any order in the argu-
ment list. (ie. A decimal number will not be confused with a flag, but may be confused with an octal num-
ber or another decimal number. So if an octal and a decimal number are to be arguments, their order will
determine their conversion, while a decimal number and a flag as arguments may occur in any order and
still be converted correctly.)

An argument list that does not match the requirements of the control string will cause the printing of a short
message telling why, and a message telling what the correct usage is. This usage is gleaned from the con-
trol string, and the labels are used directly. The labels should be both terse and descriptive! Spaces, tabs,
and newlines in the format string will be reproduced in the usage message, and can be used for effective
prettyprinting. A single tab (following a newline) will indent the line directly under the command name in
the usage message.

The scanargs function returns 1 when the argument list matched the requirements of the control string, and
returns 0 if there was a failure. Parameters for any conversions not matched are left untouched.
For example, the call

int i; double x; char *name;
scanargs(argc, argv, "% decimal%d floating%F file%s",

&i, &x, &name);

in a C program executed by the shell command

7/23/90 167

SCANARGS(3) SCANARGS(3)

% program 10 3.5397 inputfile

will assign to i the value 10, x the value 3.5397, and name will point to the string "inputfile".

If the program was executed by the shell command

% program 3.4 .7 inputfile

the following would be printed on the standard error:

extra arguments not processed
usage : program [decimal] [floating] [file]

because 3.4 matches the type of ’floating’ and .7 matches the type of ’file’, leaving inputfile unmatched.

Finally, executing the command
% program 10

would assign 10 to i, leaving x and name unaffected.

This call could be used for the diff (1) command

int blanks; int flags; char *file1; char *file2;
scanargs(argc, argv, "diff b%− efh%− file1!s file2!s",

&blanks, &flags, &file1, &file2);

and would only allow one of either −e, −f, or −h to be chosen optionally, with −b as an independent option.
File1 and file2 are both required. The usage message for this version of diff would be

usage : diff [−b] −{efh} file1 file2

This call could be used for a simplified version of the sed(1) command

int efile; int noprint; char *script;
char *file1; char *file2;
scanargs(argc, argv,

"sed n%− f%−editfile!s script%s file%s",
&noprint, &efile, &file1, &script, &file2);

If the −f option is specified, then a file name must be given as the next string argument. The usage message
for this version of sed would be

usage : sed [−n] [−f editfile] [script] file

Further notes on putting together a format string:

It is possible for conditional arguments to be confused with arguments which stand alone. For this reason,
it is recommended that all flags (and associated conditional arguments) be specified first in the scanargs for-
mat string. This ordering is not necessary for the command line arguments, however. The only case which
could still cause confusion if these rules are followed is illustrated below:

format string: "prog d%−num%d othernum%d"
command line: prog −d 9

It is unclear whether the number 9 should be associated with the num parameter or the othernum parameter.
Scanargs assigns it to the num parameter. To force it to be associated with othernum the command could
be invoked as either

prog 9 −d
or prog −d −− 9

The −− in the second example is interpreted as a flag, thereby terminating the scan for arguments intro-
duced by the −d. According to the proposed standard, an argument of −− is to be interpreted as terminating
the optional arguments on a flag.

Note that if the format string in the above example were
"prog othernum%d d%−num%d"

it would be impossible to assign a value to num without also assigning a value to othernum. A command
line of

168 7/23/90

SCANARGS(3) SCANARGS(3)

prog -d 9
would match othernum with 9, leaving nothing to match num.

SEE ALSO
exec(2), scanf(3S)

DIAGNOSTICS
Returns 0 on error, 1 on success.

AUTHOR
Gary Newman — Ampex Corporation
Spencer W. Thomas — University of Utah

BUGS
By its nature a call to scanargs defines a syntax which may be ambiguous, and although the results may be
surprising, they are quite predictable.

7/23/90 169

RLE(5) RLE(5)

NAME
rle − Run length encoded file format produced by the rle library

DESCRIPTION
The output file format is (note: all words are 16 bits, and in PDP-11 byte order):

Word 0
A "magic" number 0xcc52. (Byte order 0x52, 0xcc.)

Words 1-4
The structure (chars saved in PDP-11 order)

{
short xpos, /* Lower left corner

ypos,
xsize, /* Size of saved box
ysize;

}

Byte 10
(flags) The following flags are defined:

H_CLEARFIRST
(0x1) If set, clear the frame buffer to background color before restoring.

H_NO_BACKGROUND
(0x2) If set, no background color is supplied. If H_CLEARFIRST is also set, it should be
ignored (or alternatively, a clear-to-black operation could be performed).

H_ALPHA
(0x4) If set, an alpha channel is saved as color channel -1. The alpha channel does not
contribute to the count of colors in ncolors.

H_COMMENT
(0x8) If set, comments will follow the color map in the header.

Byte 11
(ncolors) Number of color channels present. 0 means load only the color map (if present), 1
means a B&W image, 3 means a normal color image.

Byte 12
(pixelbits) Number of bits per pixel, per color channel. Values greater than 8 currently will not
work.

Byte 13
(ncmap) Number of color map channels present. Need not be identical to ncolors. If this is non-
zero, the color map follows immediately after the background colors.

Byte 14
(cmaplen) Log base 2 of the number of entries in the color map for each color channel. I.e., would
be 8 for a color map with 256 entries.

Bytes 15−...
The background color. There are ncolors bytes of background color. If ncolors is even, an extra
padding byte is inserted to end on a 16 bit boundary. The background color is only present if
H_NO_BACKGROUND is not set in flags. IF H_NO BACKGROUND is set, there is a single filler
byte. Background color is ignored, but present, if H_CLEARFIRST is not set in flags.

If ncmap is non-zero, then the color map will follow as ncmap*2ˆcmaplen 16 bit words. The color
map data is left justified in each word.

If the H_COMMENT flag is set, a set of comments will follow. The first 16 bit word gives the

170 9/14/82 5

RLE(5) RLE(5)

length of the comments in bytes. If this is odd, a filler byte will be appended to the comments.
The comments are interpreted as a sequence of null terminated strings which should be, by con-
vention, of the form name=value, or just name.

Following the setup information is the Run Length Encoded image. Each instruction consists of
an opcode, a datum and possibly one or more following words (all words are 16 bits). The opcode
is encoded in the first byte of the instruction word. Instructions come in either a short or long
form. In the short form, the datum is in the second byte of the instruction word; in the long form,
the datum is a 16 bit value in the word following the instruction word. Long form instructions are
distinguished by having the 0x40 bit set in the opcode byte. The instruction opcodes are:

SkipLines (1)
The datum is an unsigned number to be added to the current Y position.

SetColor (2)
The datum indicates which color is to be loaded with the data described by the following ByteData
and RunData instructions. Typically, 0→red, 1→green, 2→blue. The operation also resets the X
position to the initial X (i.e. a carriage return operation is performed).

SkipPixels (3)
The datum is an unsigned number to be added to the current X position.

ByteData (5)
The datum is one less than the number of bytes of color data following. If the number of bytes is
odd, a filler byte will be appended to the end of the byte string to make an integral number of
16-bit words. The X position is incremented to follow the last byte of data.

RunData (6)
The datum is one less than the run length. The following word contains (in its lower 8 bits) the
color of the run. The X position is incremented to follow the last byte in the run.

EOF (7)
This opcode indicates the logical end of image data. A physical end-of-file will also serve as well.
The EOF opcode may be used to concatenate several images in a single file.

SEE ALSO
librle(3)

AUTHOR
Spencer W. Thomas, Todd Fuqua

5 9/14/82 171

	ALIASTORLE (1)
	APPLYMAP (1)
	AVG4 (1)
	CROP (1)
	CUBITORLE (1)
	DVIRLE (1)
	FANT (1)
	GET4D (1)
	GET_ORION (1)
	GETAMI (1)
	GETAP (1)
	GETBOB (1)
	GETCX3D (1)
	GETFB (1)
	GETGMR (1)
	GETIRIS (1)
	GETMAC (1)
	GETMEX (1)
	GETQCR (1)
	GETREN (1)
	GETSUN (1)
	GETTAAC (1)
	GETX10 (1)
	GETX11 (1)
	GIFTORLE (1)
	GRAYTORLE (1)
	INTO (1)
	MCUT (1)
	MERGECHAN (1)
	PAINTTORLE (1)
	PGMTORLE (1)
	PNMTORLE (1)
	PPMTORLE (1)
	PYRMASK (1)
	RASTORLE (1)
	RAWTORLE (1)
	READ98721 (1)
	REPOS (1)
	RLATORLE (1)
	RLECLOCK (1)
	RLEADDCOM (1)
	RLEADDEOF (1)
	RLEBG (1)
	RLEBOX (1)
	RLECAT (1)
	RLECCUBE (1)
	RLECOMP (1)
	RLEDITHER (1)
	RLEFLIP (1)
	RLEGRID (1)
	RLEHDR (1)
	RLEHISTO (1)
	RLEINTRP (1)
	RLELDMAP (1)
	RLEMANDL (1)
	RLENOISE (1)
	RLEPATCH (1)
	RLEPRINT (1)
	RLEQUANT (1)
	RLESCALE (1)
	RLESELECT (1)
	RLESETBG (1)
	RLESKEL (1)
	RLESPIFF (1)
	RLESPLICE (1)
	RLESPLIT (1)
	RLESTEREO (1)
	RLESWAP (1)
	RLETOABA60 (1)
	RLETOABA62 (1)
	RLETOALIAS (1)
	RLETOASCII (1)
	RLETOCGM (1)
	RLETOGIF (1)
	RLETOGRAY (1)
	RLETOPAINT (1)
	RLETOPNM (1)
	RLETOPPM (1)
	RLETOPS (1)
	RLETORAST (1)
	RLETORAW (1)
	RLETORLA (1)
	RLETOTARGA (1)
	RLETOTIFF (1)
	RLEZOOM (1)
	SHOW3 (1)
	SMUSH (1)
	TARGATORLE (1)
	PROGNAME (1)
	TIFFTORLE (1)
	TO8 (1)
	TOBW (1)
	UNEXP (1)
	UNSLICE (1)
	URT (1)
	WASATCHRLE (1)
	BUILDMAP (3)
	DITHER (3)
	COLORQUANT (3)
	DITHER (3)
	DITHER (3)
	DITHER (3)
	DITHER (3)
	FLOAT_TO_EXP (3)
	HILBERT (3)
	HILBERT (3)
	HILBERT (3)
	INV_CMAP (3)
	LIBRLE (3)
	DITHER (3)
	RGB_TO_BW (3)
	RLE_ADDHIST (3)
	RLE_CP (3)
	RLE_GET_SETUP (3)
	RLE_PUTCOM (3)
	RLE_GETRAW (3)
	RLE_GET_SETUP (3)
	RLE_GET_SETUP (3)
	RLE_GET_SETUP (3)
	RLE_GET_SETUP (3)
	RLE_PUTCOM (3)
	RLE_GETRAW (3)
	RLE_GETROW (3)
	RLE_GETSKIP (3)
	RLE_HDR (3)
	RLE_OP (3)
	RLE_OPEN_F (3)
	RLE_OPEN_F (3)
	RLE_PUT_SETUP (3)
	RLE_PUT_SETUP (3)
	RLE_PUTCOM (3)
	RLE_PUTEOF (3)
	RLE_PUTRAW (3)
	RLE_PUTROW (3)
	RLE_RAW_ALLOC (3)
	RLE_RAW_ALLOC (3)
	RLE_RAWTOROW (3)
	RLE_ROW_ALLOC (3)
	RLE_ROW_ALLOC (3)
	RLE_SKIPROW (3)
	SCANARGS (3)
	RLE (5)

