
The Library for Systems Solutions
Computing Technology Reference

Document Number GG24-4100-00

August 1994

International Technical Support Organisation
Poughkeepsie Center

Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page xiii.

First Edition (August 1994)

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader′s feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. H52 Mail Station P099
522 South Road
Poughkeepsie, New York 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

This document is part of The Library for Systems Solutions, which is intended for
technical professionals involved in defining solutions to data processing
problems, in multiple configuration environments and multiple software
platforms, including heterogeneous distributed environments.

Several hardware, software, and architecture developments are analyzed to
establish a common base of understanding for concepts, such as software
platform, distributed system structure, open environment, and a distributed
systems environment. The most common IBM software platforms are also
described on the basis of those concepts.

(242 pages)

 Copyright IBM Corp. 1994 iii

iv Computing Technology Reference

Contents

Abstract . i i i

Special Notices . xii i

Preface . xvii
The Library for Systems Solutions . xvii
How This Document is Organized . xix
Related Publications . xx
International Technical Support Organization Publications xxi
Acknowledgments . xxii

Chapter 1. Introduction . 1

Chapter 2. Data Processing Technology . 3
2.1 Data Processing Elements . 4
2.2 Data Processing System Evolution . 6
2.3 Software Layers . 7

2.3.1 Programming Interfaces . 8
2.3.2 Software Layers Visibility . 10
2.3.3 Architecture Layer . 12
2.3.4 Additional Considerations . 12

2.4 IBM S/390* Mainframes . 14
2.5 UNIX** Systems . 18
2.6 RISC* Technology and IBM RISC/6000* . 21
2.7 IBM Application System/400* (AS/400*) . 24
2.8 Personal Computers . 28
2.9 Open Systems . 36

Chapter 3. Distributed Data Processing Technology 41
3.1 Early Data Processing System Structures 41

3.1.1 Operating Systems . 41
3.1.2 Processor Architectures . 42

3.2 Historical Heterogenous System Structures 42
3.2.1 Systems Application Architecture* (SAA*) 43
3.2.2 Advanced Interactive Executive* (AIX*) Family 44
3.2.3 UI-ATLAS** . 45

3.3 Distributed System Structure Evolution . 46
3.3.2 Distributed System Characteristics . 48
3.3.3 The Open Blueprint . 50
3.3.4 Open Blueprint Concepts and Resource Managers 52

3.4 Resource Manager Elements . 59
3.4.1 Network Services . 59
3.4.2 Distributed System Services . 63
3.4.3 Application Enabling Services . 77
3.4.4 Application Development Tools . 88
3.4.5 Systems Management Services . 90

3.5 Other Efforts . 94
3.5.1 MUSIC . 94
3.5.2 X/OPEN** Distributed Computing Services 95
3.5.3 X/OPEN** Portability Guide (XPG) . 96

 Copyright IBM Corp. 1994 v

3.5.4 Open Software Foundation Distributed Computing Environment
(OSF/DCE**) . 97

3.6 Summary . 98
3.6.1 Distribution Concepts Revisited . 98
3.6.2 Local Operating System Services . 99
3.6.3 Descriptive Framework . 99
3.6.4 Conclusion . 102

Chapter 4. Configuration Environments . 103
4.2 Non-programmable Terminal (NPT) Environments 104
4.3 Wide Area Network (WAN) Environments 108
4.4 Local Area Network (LAN) Environments. 110
4.5 Multi-level Server Environments . 113
4.6 Other Interconnected Systems and Peer-to-Peer Environments 115
4.7 Other Application Environments . 117

Chapter 5. Software Environments . 119
5.1 Mainframe Software Environments . 121
5.2 Proprietary Midrange Software Environments 122
5.3 UNIX** Software Environments . 123
5.4 Network Operating Systems Software Environments 125
5.5 DOS and Related Software Environments 126
5.6 Higher-level Software Environments . 128
5.7 Other Software Environments . 129
5.8 Planning Considerations . 129

Chapter 6. IBM Software Platforms . 135
6.1.1 Software Platform Definition . 135

6.2 AIX Version 3 . 138
6.2.1 Local Operating System Services . 139
6.2.2 Network Services . 143
6.2.3 Distributed System Services . 145
6.2.4 Application Enabling Services . 146
6.2.5 Application Development . 148
6.2.6 System Management . 149
6.2.7 Selected APIs, Protocols, and Facilities 150

6.3 AIX/ESA* . 151
6.3.1 Local Operating System Services . 151
6.3.2 Network Services . 155
6.3.3 Distributed System Services . 156
6.3.4 Application Enabling Services . 156
6.3.5 Application Development . 157
6.3.6 System Management . 157
6.3.7 Selected APIs, Protocols, and Facilities 158

6.4 IBM PC DOS . 159
6.4.1 Local Operating System Services . 159
6.4.2 Network Services . 162
6.4.3 Distributed System Services . 163
6.4.4 Application Enabling Services . 164
6.4.5 Application Development . 165
6.4.6 System Management . 165
6.4.7 Selected APIs, Protocols, and Facilities 166

6.5 MVS/ESA* . 167
6.5.1 Local Operating System Services . 168
6.5.2 Network Services . 173

vi Computing Technology Reference

6.5.3 Distributed System Services . 175
6.5.4 Application Enabling Services . 176
6.5.5 Application Development . 179
6.5.6 System Management . 179
6.5.7 Selected APIs, Protocols, and Facilities 182

6.6 OS/2* . 183
6.6.1 Local Operating System Services . 183
6.6.2 Network Services . 190
6.6.3 Distributed System Services . 192
6.6.4 Application Enabling Services . 193
6.6.5 Application Development . 196
6.6.6 System Management . 197
6.6.7 Selected APIs, Protocols, and Facilities 198

6.7 OS/400* . 199
6.7.1 Local Operating System Services . 199
6.7.2 Network Services . 201
6.7.3 Distributed System Services . 202
6.7.4 Application Enabling Services . 203
6.7.5 Application Development . 205
6.7.6 System Management . 205
6.7.7 Selected APIs, Protocols, and Facilities 206

6.8 VM/ESA* . 207
6.8.1 Local Operating System Services . 207
6.8.2 Network Services . 212
6.8.3 Distributed System Services . 214
6.8.4 Application Enabling Services . 214
6.8.5 Application Development . 216
6.8.6 System Management . 216
6.8.7 Selected APIs, Protocols, and Facilities 217

6.9 VSE/ESA* . 218
6.9.1 Local Operating System Services . 218
6.9.2 Network Services . 221
6.9.3 Distributed System Services . 222
6.9.4 Application Enabling Services . 223
6.9.5 Application Development . 224
6.9.6 System Management . 224
6.9.7 Selected APIs, Protocols, and Facilities 225

Appendix A. APIs, Protocols, and Facilities Description 227

List of Abbreviations . 231

Index . 233

Contents vii

viii Computing Technology Reference

Figures

 1. System Model . 3
 2. Software Layers . 7
 3. Communication Between Layers . 8
 4. Software Layers Visibility . 11
 5. Data Processing Software Structure . 12
 6. High End ES/9000 Hardware Structure . 16
 7. S/390 Software Example . 17
 8. UNIX** Model . 20
 9. AS/400* System . 25
10. OS/400* Single-Level Storage . 26
11. AS/400* System Structure . 27
12. Example PC System Software Structure 31
13. Example PC Hardware Structure . 33
14. Early Data Processing Systems . 41
15. Homogeneous Architecture . 42
16. Systems Application Architecture* (SAA*) Structure 43
17. Advanced Interactive Executive* (AIX*) Structure 44
18. UI-ATLAS** Structure . 45
19. Roadmap to a Strategy . 46
20. The Open Blueprint . 50
21. Resource Manager Characteristics . 52
22. Resource Manager Interface Frameworks 53
23. Protocol Layers . 56
24. Role of a Transport Gateway . 57
25. Structure to Support Multiple Protocols . 59
26. Network Services in the Open Blueprint 60
27. Multiprotocol Transport Gateway . 61
28. Universal Naming Examples . 67
29. Concatenated Naming Examples . 68
30. Transaction Manager/Resource Manager Relationships 75
31. Workflow Manager Structure . 82
32. Electronic Mail Model . 84
33. Support for the Heterogeneous File Environment 86
34. Non-DRDA Access to DRDA Data . 88
35. Systems Management Services Structure 90
36. MUSIC Framework . 94
37. X/OPEN** Distributed Computing Services 95
38. X/OPEN** Portability Guides (XPG) . 96
39. Open Software Foundation (OSF**) Distributed Computing Environment

(DCE**) . 97
40. Elements of a Software Platform . 100
41. Configuration Environments . 103
42. Basic Non-programmable Terminals . 105
43. Non-Programmable Terminal Equivalents 106
44. Non-Programmable and Fixed Function Terminals 107
45. Typical Wide Area Network Environment 108
46. Wide Area Network Mail System . 109
47. Simple LAN System . 111
48. More Complex LAN System . 112
49. Multi-level Servers . 114
50. TCP/IP . 115

 Copyright IBM Corp. 1994 ix

51. Peer-to-Peer Applications . 116
52. Software Layers . 120
53. Elements of a Software Platform . 136
54. Elements of the AIX/6000* Software Platform 138
55. AIX/6000* Virtual Storage . 141
56. Elements of the AIX/ESA* Software Platform 151
57. AIX/ESA* Virtual Storage . 153
58. Elements of the PC DOS Software Platform 159
59. DOS Real Storage Addressing Range . 161
60. Elements of the MVS/ESA* Software Platform 167
61. MVS/ESA* Virtual Storage . 168
62. Elements of the OS/2* V 2.1 Software Platform 183
63. OS/2 Structure . 184
64. Elements of the OS/400* Software Platform 199
65. Elements of the VM/ESA* Software Platform 207
66. VM/ESA* Environment . 208
67. VM Software Local Area Network . 209
68. Elements of the VSE/ESA* Software Platform 218
69. VSE/ESA* 1.3 Virtual Storage . 219

x Computing Technology Reference

Tables

 1. AIX/6000* Networking Capabilit ies . 145
 2. AIX/6000* Selected APIs, Protocols, and Facilities 150
 3. AIX/ESA* Networking Capabilit ies . 155
 4. AIX/ESA* Selected APIs, Protocols and Facilities 158
 5. DOS Networking Capabilit ies . 163
 6. IBM PC DOS Selected APIs, Protocols, and Facilities 166
 7. MVS/ESA* Networking Capabilit ies . 175
 8. MVS/ESA* Selected APIs, Protocols, and Facilities 182
 9. OS/2* Networking Capabilit ies . 192
10. OS/2* Selected APIs, Protocols, and Facilities 198
11. OS/400* Networking Capabilities . 202
12. OS/400* Selected APIs, Protocols, and Facilities 206
13. VM/ESA* Networking . 213
14. VM/ESA* Selected APIs, Protocols and Facilities 217
15. VSE/ESA* Networking . 222
16. VSE/ESA* Selected APIs, Protocols and Facilities 225

 Copyright IBM Corp. 1994 xi

xii Computing Technology Reference

Special Notices

This publication is part of the Library for Systems Solutions which is intended for
technical professionals involved in defining solutions to data processing
problems in multiple configuration environments and multiple software platforms.
In particular, this publication contains information about both traditional and
more recent developments in computing technology, and also contains
information that is preparatory to the understanding and use of the other
publications in the Library. When a product is mentioned, the information in this
publication is not intended as the specification of any programming interface that
is provided by that product. See the PUBLICATIONS section of the IBM
Programming Announcement for each named product for more information about
what publications are considered to be product documentation.

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program, or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 208 Harbour Drive, Stamford, CT 06904 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(vendor) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and integrate
them into the customer′s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in other
operating environments may vary significantly. Users of this document should
verify the applicable data for their specific environment.

The following terms, which are denoted by an asterisk (*) in this publication, are
trademarks of the International Business Machines Corporation in the United
States and/or other countries:

ACF/VTAM AD/Cycle
Advanced Function Printing Advanced Peer-to-Peer Networking
AIX AIX/ESA
AIX/6000 AIXwindows

 Copyright IBM Corp. 1994 xiii

AOEXPERT/MVS Application System/400
APPN AS/400
AT CallPath
CallPath CICS/MVS CallPath CICS/VSE
CICS CICS OS/2
CICS/ESA CICS/MVS
CICS/VM CICS/VSE
CICS/400 CICS/6000
COBOL/2 COBOL/370
COBOL/400 Common User Access
CUA Data Propagator
DATABASE 2 DataHub
Dataspace DataTrade
DB2 DB2/2
DB2/6000 DFDSM
DFSMS DFSMS/MVS
DFSMS/VM DFSMSdfp
DFSMSdss DFSMShsm
DFSMSrmm DISTRIBUTED DATABASE CONNECTION

SERVICES/2
Distributed Relational Database
Architecture

DRDA

Enterprise Systems Architecture/370 Enterprise Systems Architecture/390
Enterprise System/3090 Enterprise System/4381
Enterprise System/9000 Enterprise System/9370
Enterprise Systems Connection
Architecture

ES/3090

ES/4381 ES/9000
ES/9370 ESA/370
ESA/390 ESCON
ESCON XDF FORTRAN/2
FORTRAN/400 Hardware Configuration Definition
Hiperspace IMS Client Server/2
IMS CS/2 IMS/ESA
Micro Channel Multimedia Presentation Manager/2
MVS MVS/DFP
MVS/ESA MVS/SP
MVS/XA NetView
NQS/MVS OfficeVision
OfficeVision/MVS OfficeVision/VM
OfficeVision/2 OfficeVision/400
OPC/ESA Operating System/2
Operating System/400 OS/2
OS/400 Person to Person/2
Personal Computer AT Personal Computer XT
Personal System/2 POWER Architecture
PowerPC PowerPC Architecture
PR/SM Presentation Manager
Processor Resource/Systems Manager PROFS
PS/2 QMF
RACF RISC
RISC System/6000 RT PC
RT Personal Computer RT
S/360 S/370
S/370-XA S/390
SAA SNA
SQL SQL/DS
SQL/400 SYSPLEX
Sysplex Timer System/360
System/370 System/370-Extended Architecture
System/370-XA System/390
Systems Application Architecture SystemView

xiv Computing Technology Reference

The following terms, which are denoted by a double asterisk (**) in this
publication, are trademarks of other companies:

ThinkPad Virtual Machine/Enterprise Systems
Architecture

Virtual Machine/Extended Architecture VM/ESA
VM/XA VSE/ESA
VTAM Workplace Shell
3090

Apple Apple Computer Inc.
AT&T American Telephone and Telegraph

Corporation
Best/1 BGS Systems Inc.
BSD Berkeley University, California
Berkeley Software Distribution Berkeley University, California
cc:Mail Lotus Development Corporation
DCE Open Software Foundation, Inc.
DEC, DECnet Digital Equipment Corporation
DEC VT52, DEC VT100 and DEC VT220 Digital Equipment Corporation
EASEL Interactive Images, Inc.
EASEL Workbench Interactive Images, Inc.
EDA/SQL Information Builders, Inc.
Encina Transarc Corporation
Ethernet Xerox Corporation
Fujitsu Fujitsu Limited
Hewlett-Packard Hewlett-Packard Company
Hitachi Hitachi Ltd.
HP Hewlett-Packard Company
HPUX Hewlett-Packard Company
IDMS Computer Associates, Inc.
IEEE Institute of Electrical and Electronics

Engineers
INFORMIX Informix Software Inc.
Ingres Ingres Corporation
Intel Intel Corporation
Intel386 Intel Corporation
Intel486 Intel Corporation
Kerberos Massachussets Institute of Technology
Lotus,Lotus 1-2-3 Lotus Development Corporation
Lotus Notes Lotus Development Corporation
Intel486 Intel Corporation
Macintosh Apple Computer Inc.
Microsoft, Windows Microsoft Corporation
Motif Open Software Foundation, Inc.
Motorola Motorola, Inc.
MS, MS-DOS Microsoft Corporation
NCS Hewlett-Packard Company, Apollo Systems

Division
NEC NEC Corporation
Network File System, NFS Sun Microsystems Inc.
NetWare Novell, Inc.
Novell Novell, Inc.
Omegamon Candle Corporation
Open Software Foundation Open Software Foundation, Inc.
Oracle Oracle Corp.
OSF Open Software Foundation, Inc.
OSF/1 Open Software Foundation, Inc.
Pentium Intel Corporation.
POSIX IEEE
SCO Santa Cruz Operation, Inc.
Sun Microsystem Sun Microsystems, Inc.

Special Notices xv

Sybase Sybase Inc.
Synon Synon Corporation
Texas Instruments Texas Instruments Inc.
UI-Atlas UNIX International
ULTRIX Digital Equipment Corporation
UniTree General Atomics
UNIX UNIX System Laboratories, Inc.
UTS Amdahl Corporation
VAX Digital Equipment Corporation
VMS Digital Equipment Corporation
Windows Microsoft Corporation
XPG3 X/Open Company Limited.
XPG4 X/Open Company Limited.
Xenix Microsoft Corporation
X-Open X/Open Company Limited
X-Windows Massachusetts Institute of Technology
X-Window System Massachusetts Institute of Technology

xvi Computing Technology Reference

Preface

This document is part of The Library for Systems Solutions. It contains technical
information about both traditional and more recent developments in computing
technology. In addition, this document also contains information that is
preparatory to the understanding and use of the Library.

The Library for Systems Solutions
The Library for Systems Solutions is intended for technical professionals involved
in understanding and selecting the components that provide solutions to data
processing problems. Because the solutions may vary with the actual
configuration, multiple configuration scenarios or, simply, environments, are
considered in the Library. Environments range from the totally centralized to
distributed environments with several levels of distribution. When distributed
environments are considered, the involved systems are assumed to be
homogeneous or heterogeneous as far as the hardware, the architecture, and
the software are concerned.

There are various types of books in the Library: a Computing Technology
Reference book, Function Reference books, and Technology Reference books.

The Computing Technology Reference contains technical information about both
traditional and more recent developments in computing technology. Several
hardware, software, and architecture developments are analyzed to establish a
common base of understanding for concepts, such as a software platform, a
distributed system structure, an open environment, and a distributed systems
environment. The most common IBM software platforms are also described on
the basis of those concepts. In addition, the book contains information that is
required for understanding and using the library.

The Function Reference books contain the solutions available, at this date, in
various areas of data processing and business related functions. The areas, or
functions, defined at the time of the initial publication of the Computing
Technology Reference and covered by the individual books are:

• Application Development

• Workload Management

• Data Access

• Security

• Directory, Naming, and Timing

• Systems Management

• Printing and Viewing

• Image

• Office

For the convenience of the reader, each function reference book has a
complimentary structure and is organized in two sections, with an additional
summary section when needed and appropriate.

 Copyright IBM Corp. 1994 xvii

Section 1 is a description of the current state of technology for that function. It
contains, at a high level of technical detail, all the information that is required to
approach the task of building a solution for that function in various environments.

Section 2 describes the solutions, or solution approaches, available for the
function with current technologies and products. To address the problem of
having to deal, in real life, with multiple environments and multiple software
platforms per environment, this section is organized into several chapters, each
of which addresses a specific environment.

Five environments are defined in the Computing Technology Reference book, and
it is expected that they will cover most of the environments that will be
encountered in real life situations. In general these environments are used in
other function books to provide the reader with a consistent reference
framework. If required, additional environments of special interest for a specific
function will also be addressed in a separate chapter called, “Other
Environments.”

Each chapter addressing a specific environment describes the solutions currently
available in that environment for the different software platforms that might be
involved.

The Technology Reference books cover technologies that are an important
component of any solution in any environment. There are currently three
technology reference books in the Library covering the End-user Interface, Open
Networking, and LAN technologies.

The structure of the Library for Systems Solutions allows it to be used in several
ways by technical professionals with different types of skill.

A reader looking for a solution in a specific, familiar, function area is expected to
go directly to Section 2 of the appropriate function reference book to find the
products implementing the requested solution in the applicable environment and
for the applicable software platforms.

Users looking for a solution in an unfamiliar function area are expected to go to
the applicable function reference book and use Section 1 first to get acquainted
with the technology aspects of that function, and then to go to Section 2 of the
book to look for the solution.

The user that requires information on current computing technologies prior to
looking for a solution in a specific environment is expected to use the Library by
reading the Computing Technology Reference book and the Technology
Reference books, before going to the specific Function Reference books.

The objective of the Library for Systems Solutions is to identify the elements that
provide solutions to specific data processing problems in several environments.

It is not the objective of the Library to cover two additional activities that are also
relevant to the process of building a solution. These activities are the design of
the solution, starting from the business requirements of the customer, and the
implementation phase of the chosen solution.

The Library for Systems Solutions is expected to be extended and to be updated
periodically as products and technologies evolve.

xviii Computing Technology Reference

How This Document is Organized
The document is organized as follows:

• Chapter 1, “Introduction,” summarizes the elements of technology and
business evolution that have produced substantial changes to the traditional
paradigms of information systems in the last few years.

• Chapter 2, “Data Processing Technology,” describes several developments
that have characterized the technology evolution in the last few years and
are prerequisite knowledge to define solutions to data processing problems
in today′s environments.

• Chapter 3, “Distributed Data Processing Technology,” describes how the
structure of software is evolving to meet the requirements of a distributed
data processing system based on multiple hardware and software platforms
(heterogeneous systems).

At the time the book was initially developed the Open Blueprint had not yet
been completed. As this work evolved it became clear that there was
significant value in utilising Open Blueprint material in a complementary
way. To this end the original chapter is now replaced by substantial
elements from the Open Blueprint Technical Overview which directly meets
the author′s original objectives for the chapter.

The chapter concludes with a descriptive approach, derived from the Open
Blueprint, identifying the elements that provide solutions to specific data
processing problems in several environments. This descriptive framework is
generally used as a model throughout the Library.

• Chapter 4, “Configuration Environments,” describes several types of data
processing configurations, or environments, starting from environments with
no or minimal distribution up to environments with multiple levels of
distribution. Those environments will generally be referred to and used by
documents in the Library for Systems Solutions to help the user locate the
solution to a specific problem.

• Chapter 5, “Software Environments,” describes the most common types of
software environments available in the industry today, starting with a
traditional mainframe and concluding with a desktop processor. For each
environment, the qualifying software elements are described. A list of items
is also provided that deserve special consideration when a data processing
environment is being expanded to assume the characteristics of a
heterogeneous distributed environment.

• Chapter 6, “IBM Software Platforms,” maps IBM software platforms against
a common structure of software services ranging from support of the
processor architecture to the support of applications and systems
management. Based on the level of service provided, the various software
components are classified as local or distributed.

Preface xix

Related Publications
In addition to the publication you are now reading, The Library for Systems
Solutions contains the following publications:

• Application Development Reference, GG24-4101

• Workload Management Reference, GG24-4102

• Data Reference, GG24-4103

• Directory, Naming, and Timing Reference, GG24-4104

• Printing and Viewing Reference, GG24-4105

• Security Reference, GG24-4106

• End User Interface Reference, GG24-4107

• Image Processing Reference, GG24-4109

• Open Networking Reference, GG24-4110

• LAN Reference, GG24-4111

• Office Reference, GG24-4112

• Systems Management References, GG24-4113 through GG24-4117

The following publications were referenced and provided input during the writing
of this publication. Some of these publications may no longer be available.

• H. Lorin, System Architecture In Transition. An Overview IBM Systems
Journal, Vol.25, Nos.3/4, 1986, G321-0084.

• IBM Journal of Research and Development, Vol.27, N.3, 1983, G322-0129.

• IBM Journal of Research and Development, Vol.36, N.4, 1992, G322-0181.

• IBM Journal of Research and Development, Vol.34, N.1, 1990, G322-0169.

• IBM System Journal, Vol.27, N.3, 1988, G321-0091.

• IBM System Journal, Vol.28, N.1, 1989, G321-0093.

• IBM System Journal, Vol.28, N.3, 1989, G321-0095.

• IBM System Journal, Vol.32, N.4, 1993, G321-0114.

• The Networking Blueprint, SX33-6090.

• Client/Server Computing: The Design and Coding of a Business Application,
GG24-3899.

• Client/Server Computing Application Design Guidelines: A Distributed
Relational Data Perspective , GG24-3737.

• Client/Server Computing Application Design Guidelines: A Transaction
Processing Perspective, GG24-3728.

• Basic Electronic Mail, GG24-3878.

• SAA SystemView Concepts, SC23-0578.

• Open Blueprint Introduction, G326-0395

• Open Blueprint Technical Overview, GC23-3808

xx Computing Technology Reference

International Technical Support Organization Publications
A complete list of International Technical Support Organization publications, with
a brief description of each, may be found in:

Bibliography of International Technical Support Centers Technical Bulletins,
GG24-3070.

To get listings of ITSO technical bulletins (redbooks) online, VNET users may
type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

How to Order Redbooks

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755 or by
faxing 1-800-284-4721. Visa and Master Cards are accepted. Outside the
USA, customers should contact their local IBM office.

Customers may order hardcopy redbooks individually or in customized sets,
called GBOFs, which relate to specific functions of interest. IBM employees
and customers may also order redbooks in online format on CD-ROM
collections, which contain the redbooks for multiple products.

Preface xxi

Acknowledgments
This publication is the result of a residency conducted at the International
Technical Support Organization, Poughkeepsie Center.

The coordinator of this document is:

Fulvio Capogrosso, IBM Italy

The authors of this document are:

Chuck Poland, International Technical Support Organization, Poughkeepsie Center

Franco Meroni, IBM Italy

William Ogden

Special thanks are also due to:

• Deborah Carr

• George Hutfilz

• Lou Thomason

• Jim Colosimo

of IBM Systems Software Structure for their contribution in providing concepts,
documentation, and review for this document.

In particular thanks are due to Matt Schein of the Distribution Systems
Architecture group for allowing the substantial use of his Open Blueprint
Technical Overview to replace the original material in chapter 3.

Thanks are also due to the many members of the International Technical Support
Organization who reviewed and improved this document. In particular, thanks
are due to Adam Jollans, ITSO Boca Raton, for improvements made to the
Personal Computer elements of the book.

Additional coordination was provided by

Ian Crane, International Technical Support Organization, Poughkeepsie Center

xxii Computing Technology Reference

Chapter 1. Introduction

The evolution of data processing technology and the changes in business
organizations and disciplines have both produced substantial changes to the
traditional paradigms of information systems (IS).

Data processing technology has evolved in such a way and in so many
directions that many processor types, architectures, and software offerings are
commercially available today through multiple vendors. Moreover, the level of
performance and the price/performance available with new technologies are
continuously improving and opening areas to data processing that were not
conceivable or affordable in the past.

To quantify the scale of the evolution, recall that in the 60′s, the number of data
processing systems functioning worldwide was approximately in the hundreds
and mostly of the type that is today called the traditional commercial mainframe.
There were a handful of vendors. Processing power, data, and applications were
all concentrated in only one place.

To make those resources available to geographically dispersed users, terminals
and communication lines were used. Terminals had no processing power
(non-intelligent) but only input/output capability through a keyboard and a
display. Accommodation in only one processor of several types of workloads
with different characteristics such as commercial and scientific batch, online
transactions, and interactive users required the processor architecture to be
general purpose and the control program to be increasingly sophisticated to
satisfy the requirement for optimized performance. That type of data processing
organization was essentially dictated by the cost of the hardware (compared to
the cost of communication lines) and by the business organizations which, being
mostly hierarchical, related well to a centralized data processing structure.

Today, the number of commercial mainframes installed worldwide is in the tens
of thousands. In addition, the number of intermediate and departmental
processors is in the order of the hundreds of thousands, and personal computers
and workstations range in the order of the tens of millions. There are literally
thousands of hardware and software vendors. These numbers clearly illustrate
the choices available to data processing organizations today. In addition to
centralized configurations, where the processing power, data, and applications
are concentrated in only one place and on one system, it is now possible to have
configurations where the processing power, data, and applications are
distributed among several interconnected locations (or nodes) and can still
operate as a single data processing system.

A system of this type is called a distributed system. A further qualification of
heterogeneous, as opposed to homogeneous, might also be added when the
individual systems have different characteristics as far as the hardware, the
software, or the architecture are concerned.

Distributed physical resources do not necessarily mean distributed management
and distributed organization. Various types of logical organizations can be
implemented for a distributed system to suit different business requirements.
Examples range from a mostly centralized organization where a system with full
control over data and applications is connected to a periphery of workstations or
personal computers dedicated to individual activities with minimal interaction

 Copyright IBM Corp. 1994 1

with the center, to more de-centralized and complex organizations where
multiple data processing locations, each independently managed, share data,
applications, and processes.

Together with data processing technologies, business organizations and
management philosophies have also changed, and management models
addressing needs beyond the traditional hierarchical and centralized structures
have emerged. Distribution of management responsibilities may derive from
expansion of a business beyond the point where centralized management can
still maintain the required level of efficiency and control. Distribution of
responsibilities often generates the requirement to distribute data processing
resources. Similarly, common business practices, such as intercompany
partnerships, mergers, and acquisitions, also generate the requirement to
integrate multiple, independent data processing organizations into a single
distributed data processing system.

Common business drivers to data processing distribution are:

• The requirement for alternate locations for backup and security purposes.

• The requirement to increase high availability for some applications by
physically isolating them from other applications and still maintaining some
level of logical connection.

• The requirement to improve response times for applications with remote
users that are geographically dispersed. In this case, centralized data can
be a performance bottleneck due to communication delay. The distribution
of data and processing power can remove the constraint.

The evolution of data processing technology and the increasing number of
products that are available every day to address new application areas
represent a challenge for the technical professionals whose responsibility is to
provide solutions to data processing problems. If the environment is also
distributed and the processors in the environment are heterogeneous as far as
the architecture and the software are concerned, it adds an additional level of
complexity to the problem.

This book and its associated volumes in the Library for Systems Solutions is
intended to help technical professionals face these challenges in translating the
increasing number of technology products into solutions for multiple
heterogeneous environments.

Note: In this document, the following terms are used to indicate quantities:

K=kilo=210=1,024
KB=kilobytes=210bytes=1,024 bytes
MB=megabytes=220bytes=1,048,576 bytes
GB=gigabytes=230bytes=1,073,741,824 bytes
TB=terabytes=240bytes=1,099,511,627,776 bytes
PB=petabytes=250bytes=1,125,899,906,842,624 bytes

2 Computing Technology Reference

Chapter 2. Data Processing Technology

A data processing system is described, in general terms, by its main
components. They are users, applications, system software or simply software,
architecture, hardware, and the relationships among these components. An
important type of relationship between the components is the way they
communicate among themselves or, in other words, the type of interfaces that
they have.

For example, the interfaces used by applications to communicate with software
are generally qualified as application programming interfaces (API). The
interface to communicate with the hardware is generally called the
machine-level interface, or machine interface, and the interface used by the user
to access the system is generally referred to as the end-user interface (EUI).

This high-level description of a data processing system is represented in
Figure 1 and will be used throughout this document as a model for a data
processing system. When no ambiguity exists, the term system will also be used
in place of data processing system to represent any hardware equipment
capable of executing applications and system software.

Figure 1. System Model

 Copyright IBM Corp. 1994 3

2.1 Data Processing Elements
Figure 1 on page 3, though quite general, provides most of the elements that
will be used to describe various types of systems available in the industry today.

Architecture is the name traditionally used to describe that set of rules,
principles, and behaviors that a programmer or a code generator has to know
and follow to utilize the hardware components of a computing system. Therefore
the architecture includes the instruction set, the storage addressing scheme, the
interruption structure and priorities, the communication interfaces among the
system components, and the communication interfaces between the hardware
and the software.

For a long time, the word architecture, with no further qualification, has been
closely associated with the processing unit where the instructions are executed.
Because no ambiguity existed, the term was used in place of the more precise
hardware architecture. Today, due to the evolution of the design of data
processing systems, the concept has been extended to other elements of the
system.

Terms like I/O architecture and communications architecture, up to the more
general system architecture, have become common. This extension of the
concept has not altered the original meaning of the term architecture, even
though sometimes it is also used to include elements of hardware and software
design that, according to a strict definition of the word architecture, should be
kept separate.

The hardware represents the physical resources available to the system.

Hardware includes the central processing units for the execution of the
programming instructions; the input, output and storage devices for the
management of data; and the communication lines and controls for the
management of remote units. The structure, components, and internal
organization of the hardware are the result of a design effort aimed to map an
architecture into an available technology in order to achieve the
price/performance targets established for that data processing system.
Elements of design are, for example, the internal structure of each processing
unit (sequential, overlapped, pipeline, parallel, and so on), the arrangements of
the processing units (uniprocessors, dual, n-way, multiprocessor), the structure
of the other elements such as internal buses, storage hierarchy and I/O
controllers. The design determines whether a microcode layer exists between
the hardware and the software. In Figure 1 on page 3, a microcode layer, if
present, is considered to be part of the hardware layer.

The software, or system software, or operating system as it was called in the
early days of data processing, allows applications to execute on the hardware
according to the rules defined by the architecture. The software performs this
function by accepting requests for services from the applications and honoring
them either directly (internally) or by having them serviced by hardware
components.

Directly serviced requests include, for example, requests for physical or logical
resource allocations. Requests passed to the hardware for service include, for
example, requests for access to external storage devices.

4 Computing Technology Reference

To some extent, it might be useful to think of the software as the interpreter of
requests for services coming from the applications and directed to the hardware
and, with a further level of abstraction, as a shield to protect the applications
from the complex technical implications of having to interface directly with the
hardware and architecture.

Based on individual objectives, software can be designed and developed for a
single machine level interface and, therefore, be capable of executing on a
single hardware platform/architecture. It can also be designed and developed to
be portable across multiple hardware platforms and architectures.

MVS/ESA*, OS/400*, and DOS* are examples of the first category, while UNIX**
systems and OSF/1** are examples of the second.

Due to the rather complex relationships among software, hardware, and
architecture, a data processing system is clearly identified when all three
elements are known. For example, the single term S/390* processor identifies
an IBM ES/9000* processor, the ESA/390* architecture, and the ESA/390*
software components. Similarly, a personal computer is normally identified by
the type of processor and the operating system it executes.

The applications represent the programs to be executed and managed to
achieve the business objectives defined for the data processing system. From a
technological point of view, the distinction between applications and software is
quite arbitrary because both the applications and the software are executable
programs. The reason behind the distinction is to highlight some major
differences.

Applications are designed to request services from the software, and the
software is designed to provide services to the applications. Application
evolution is driven by the business strategy of the customer. Software evolution,
however, is driven by information technology. Applications tend to be tailored to
the individual business, while the software services tend to become industry
commodities.

A characteristic that both the applications and the software have in common is
the very fast rate of change they are subject to driven by improvements in
business disciplines and the fast pace of technology innovation. This creates the
requirement for both applications and software to be easily adaptable to
changing requirements.

There is a lively debate in the industry today about the best way to achieve this
adaptability, but a consensus appears to be growing about a structure where the
role of the applications is limited to that of service requesters, and the role of
software is defined as that of service provider.

It appears, therefore, no longer necessary for the business environment to
develop applications where some sort of system services are built in. Those
types of applications, also known as Roll-Your-Own (RYO) applications, were
popular in the past when the spectrum of system services provided by the
software was not as rich as today.

Whenever it is necessary to make a distinction, we will use the term data
processing system, or system, for the hardware, software, and architecture, and
use the term information system for the hardware, software, architecture, and the
applications. This definition implies that the data processing system provides

Chapter 2. Data Processing Technology 5

support to the applications, while the information system provides support
information to the user (or to the business).

2.2 Data Processing System Evolution
The data processing system model in Figure 1 on page 3 has the structure of
the early implementation of commercial computers where the software
component was simply called the operating system and consisted of limited
workload scheduling functions, limited resource management, basic access
methods, and few I/O drivers and programming languages. As an example, we
might think of the early implementation of IBM S/360* systems.

The model is the common origin of several evolutionary paths that have
produced the various data processing systems and technologies available in the
industry today. Among others, we will discuss the following technology
evolutions:

• Software layers

• S/390* mainframes

• UNIX** systems

• RISC* technology

• Open systems

• AS/400* systems

• Personal systems

The software layers are described first because the structure of software is of
primary importance when defining the capabilities and the characteristics of a
data processing system.

In addition, when dealing with heterogeneous distributed systems, it is the
software that primarily determines the ability of the individual systems to
communicate and to interoperate.

Mainframes (using the S/390* mainframe as a reference) are described next from
an historical perspective and also because most of the data processing
evolutions that follow are better understood by describing how they diverge or
what they intend to change relative to mainframe technology.

From this perspective, UNIX** systems are described as an attempt to achieve
application independence from the hardware, and RISC* technology is described
as an attempt to improve the raw performance achievable with the mainframe
processor technology. AS/400* systems are then described as an attempt to
optimize the structure of a system to the requirements of midrange application
environments, and personal systems are described as an attempt to export
traditional business-oriented data processing technologies to everyday private
and work activities.

Finally, open systems are discussed as an attempt to solve the issues that so
many different types of systems and technologies create when they are
combined to form a single, heterogeneous, distributed system.

6 Computing Technology Reference

2.3 Software Layers
In section 2.1, “Data Processing Elements” on page 4, the software has been
described as an interpreter between applications and the machine-level
interface. In fact, software, in addition to providing services to the applications,
also allows the applications to be less involved with the technical details of the
architecture. Software translates the requests for services into the appropriate
sequence of architectural instructions and commands.

The concept of having a layer of software providing services to the applications
and at the same time relieving the applications of the technical language of the
architecture can be replicated n times using additional software layers between
the applications and the operating system. The role of those additional layers,
sometimes called subsystems, is to provide the applications with services of
increasingly higher level, where the term high-level implies greater functional
content and better user orientation. Examples of those layers are transaction
managers, database managers, workload managers, communication managers,
and other service providers.

With the addition of software layers, the structure of a data processing system
has evolved over the time from the model represented in Figure 1 on page 3 to
the model of Figure 2, where the software component is now represented by a
series of overlapping software layers.

As each technology matures, it explores both the relationships between layers
and also between elements within the layers. This is evident today in the
development of personal computer software.

Figure 2. Software Layers

Chapter 2. Data Processing Technology 7

The number of layers and the number of independent software products in a
layer are variables that do not affect the rest of this discussion, and, for
simplicity, we will assume at this point that the terms software layer and software
product are synonymous.

2.3.1 Programming Interfaces
An important element for understanding a data processing system with a layered
software structure is the mechanism used by the layers to communicate among
themselves.

Software elements communicate, horizontally or vertically, through programming
interfaces, and each software layer provides an interface to its users and uses
the interface(s) provided by the layers it intends to use.

If, for convenience, we consider a vertical structure and we number the software
layers progressively starting from the lowest level, we might say that software
layer n provides a programming interface to layer n+1 and above, and uses the
interfaces provided by layers n-1 and below, as shown in Figure 3.

Figure 3. Communication Between Layers

To describe the process by which an application or a software layer uses a
programming interface, it is common practice to use expressions such as
applications written to an interface, or the layers communicate across or through
programming interfaces, with the same meaning.

The interface to a software layer contains all the information required by a
program to access the services provided by that software layer. The attributes
of the programming interfaces have an important role in determining the
usability of a data processing system.

8 Computing Technology Reference

A programming interface may be public, proprietary, or standard. A
programming interface is public when it is fully documented by the owner and is
provided for unrestricted use. Examples of a public interface include the SQL*
language to access a DB2* relational data base, the TCP/IP Socket interface, and
the CICS* command level programming interface. A public interface should
contain some level of explicit or implicit commitment to maintain the interface
across product evolution.

The term proprietary is today used to qualify a public interface developed by a
software vendor according to its own private standards. Any application or
software component that makes use of a proprietary interface can execute only
in data processing environments where the vendor product providing that
interface is also available.

If the term porting is used to describe the activity of transferring an application
from one data processing system to another, an application depending on a
proprietary programming interface can be ported only across systems where the
product providing that interface is also available.

A data processing system in which the software layers provide and use only
proprietary interfaces to communicate among themselves and with the
applications is said to be a proprietary system.

An interface is standard when it is defined by a body entitled to define
standards. Depending on the charter of the standards body, there are national
standards, international standards, industry standards and others. There are
also proprietary interfaces that, intentionally or not, have become accepted as
standard by a vast number of users. Those standards are called de facto
standards to distinguish them from the so called de jure standards. As
examples, in the world of communications protocols, OSI is a de jure standard
defined by the ISO organization; SNA* is a proprietary interface and a de facto
standard developed by IBM and accepted by vast numbers of users, and TCP/IP
is a public interface and a de facto standard.

An application written to a standard interface can be executed or ported to any
data processing system adhering to that standard or, more precisely, to any data
processing system where that standard is available. In current terminology, a
data processing system that provides standard programming interfaces is also
said to be, or is accepted as being, open because it allows portability of the
applications to and from other systems where the same programming standards
are available. The nature of the standard interface provided, national,
international, de jure, or de facto, can also be used to qualify the level of
openness of the data processing system. See section 2.9, “Open Systems” on
page 36 for a more complete discussion and definition of the open system
concept.

There is a common misconception about open and proprietary being mutually
exclusive characteristics of a data processing system. Any proprietary system
with a layered software structure can also be or become an open system with
respect to a standard interface by developing a layer of software that provides
that interface.

As an example, the MVS* platform, traditionally a proprietary platform with
several de facto standard interfaces, has recently taken steps to qualify as an
open system by adding layers of software to support, among others, the

Chapter 2. Data Processing Technology 9

standard POSIX** 1003.1 interface (see section 2.9, “Open Systems” on page 36
for a more complete discussion on open systems and POSIX** standards).

Another important characteristic of an interface is the way it changes when the
software layer is subjected to a technological advance or enhancement. The
changes may be compatible or incompatible.

Changes are compatible when they do not require applications be modified to
continue to function. Incompatible changes force the applications to be modified.
Compatibility can also be further qualified as upward compatibility when the
evolution takes the form of an extension to an existing interface that causes no
alterations or modifications to the existing one. In this case, the applications can
continue to function without modifications unless there is need to make changes
to take advantage of the new features available with the extensions.

2.3.2 Software Layers Visibility
Figure 2 on page 7 shows the software layers piling up in such a way that each
layer does not completely overlap the layer below. This graphical
representation is intended to address an important characteristic of software
layers and programming interfaces which is the visibility of the interface.

An interface is said to be visible when it can be used by other software layers or
applications. In a software structure where several layers overlap, leaving
visibility of interfaces, it is left to the application to determine at which level to
interface with software. In other words, when the software structure provides
visibility of several software layers, the use of each layer is not mandatory for
the applications, but it is an opportunity for the application to use the services
provided by the software instead of having to develop them.

As an example, assume a situation where the application is a query to a
relational database, and the software structure provides the services of a query
manager, a transaction manager, a database manager, and the operating
system with its access methods.

The following options are available to the application designer as in Figure 4 on
page 11 (some of the options are purely theoretical and are used only for the
purpose of the example):

• Develop a query, and provide an interface at the level of the query manager.

The query manager will interface with the lower levels of software to process
the query. As part of the process, the query manager might also provide a
graphic display to the response.

• Write a transaction, and access the database through the services of a
transaction manager.

In this case the application has to develop the required graphic display
services previously provided by the query manager.

• Interface directly with the database manager.

In this case, the application has to provide its own logic to access the
database manager and to qualify as a manageable entity.

• Interface directly with the access method and the operating system, or
interface directly with the machine-level interface.

The additional responsibilities for the applications in these cases are obvious.

10 Computing Technology Reference

Figure 4. Software Layers Visibility

The example clearly demonstrates the role of software as service provider and
the service provider/service requester relationships between the software and
the applications. The higher the level of the software interface used, the lesser
the development effort for the application. This characteristic is the basis for the
term high-level or low-level interface. Among others, the advantages of high
level interfaces are:

• Ease of use

• Investment protection

Ease of use derives from the fact that the higher the level of the interface, the
closer it is to everyday language.

The software layers beneath the interface have to interpret the request and
translate it into the technical language of the lower-level layers. Ease of use can
easily be translated into both user productivity of the user and usability of the
entire information system. With a high-level interface, the application is easier
to design; faster to develop, test, and become productive; and easier to maintain.

Similarly, less skill and training is required for the user to be able to access and
use the system.

High-level interfaces also provide application investment protection, because by
shielding the applications from the technicalities of lower layers, they also
provide protection from changes in the lower levels of software due to
technology evolution. Provided that the applications are based on programming
interfaces that can be maintained across technology evolution, the applications
will not automatically become obsolete because of a technology advance in the

Chapter 2. Data Processing Technology 11

hardware, the software, or the architecture. The higher the level of the interface,
the more likely it is that the software will provide the changes required to convey
the benefits of the technological advances to the application through a
compatible programming interface.

2.3.3 Architecture Layer
The architecture layer in Figure 2 on page 7 is in a unique position with respect
to the software layers. In fact, the software layers overlap in such a way as to
guarantee the applications the visibility of several layers, while the architecture
layer completely overlaps the hardware layer, leaving no visibility of it. The
graphical representation indicates that any hardware component can be used
only according to the rules, principles, and protocols defined by its architecture.

Figure 5. Data Processing Software Structure

2.3.4 Additional Considerations
Finally two general considerations about the layered structure of system
software of Figure 2 on page 7 and the components of a data processing system
as in Figure 1 on page 3.

2.3.4.1 Layered System Software
The graphical representation of Figure 2 on page 7, with several horizontal
layers, illustrates the concept of the software as a service provider for the
applications, the role of the programming interfaces, and the meaning of the
terms high-level and low-level interface. The figure does not intend to imply that
a software structure has necessarily to be horizontal. We have already
mentioned in section 2.3, “Software Layers” on page 7 that the same software

12 Computing Technology Reference

layer may in fact include more than one product and it might well happen that
products functionally belonging to the same layer communicate among
themselves horizontally. Similarly, software services such as security and
systems management, can be invoked by any layer, independent of their position
or level in the structure.

Once the implications of the interfaces, visibility, and structure are understood or
implicitly accepted, other graphical representations can be used to illustrate
other properties of the software structure. For example, Figure 5 on page 12
could be used (like Figure 2 on page 7) to represent the concept of a system
where the applications can benefit from several software services provided by
several software components whose physical relationships among themselves
and between themselves and the applications are not relevant.

2.3.4.2 The components of a Data Processing System
Applications, software, hardware and architecture are the main components of a
data processing system. While it is obvious that complete independence of the
four components is highly desirable for a solution, it is also a fact that technical
constraints and practical considerations are often a limit to that objective.

Several research efforts currently being undertaken in data processing
technology are aimed at removing these constraints and making it practical to
provide a higher level of freedom of choice.

At the level of the architecture-hardware relationship a fair degree of
independence has already been achieved to the extent that the same
architecture (ex. the ESA/390*, or Intel 80X86**) is often available on more than
one hardware implementation. Different hardware implementations providing
the same architecture interface are usually called software compatible to
illustrate that they all provide the same machine level interface and are
therefore all capable of running the same software.

The relationship between the software and the architecture is dependent on the
objectives given to, or defined by, the software developer. As already discussed,
software may be written to exploit a specific architecture, or to be portable
across multiple architectures.

Software portability allows the same software to be executed on various
hardware platforms and, as a consequence, allows applications written for that
software to be executed on various hardware platforms (for example UNIX**
applications). In this environment we can say that there is a tight relation
between the application and the software and a loose relation between the
software and the architecture.

An additional step towards independence of choice for the solution architect may
be achieved by loosening the relationship between the application and the
software and allowing an application, written for specific software, to execute on
different software (for example an Apple** MAC** application to execute under
OS/2* or DOS Windows** or UNIX**).

In addition to the old and traditional method of software emulation, the most
recent developments in software technology address this requirement by
allowing specific software to run foreign applications or, to use current
terminology, to have multiple personalities. WindowsNT**, OS/2* and the
Workplace OS* family of products are examples of this multi-personality
approach.

Chapter 2. Data Processing Technology 13

A software implementation that provides multiple personalities. towards
applications, and portability across architectures and hardware platforms, allows
the highest level of independence between the components a data processing
system.

2.4 IBM S/390* Mainframes
The IBM S/390* system is used to describe that path of the evolution of data
processing that, starting with the system shown in Figure 1 on page 3, has today
arrived at what are usually identified as traditional mainframes or mainframes.

The drivers of the evolution that started in 1964 with the IBM S/360* systems
include:

• Unconstrained growth, or the ability for the customer′s workload to grow in
terms of total applications, concurrent number of users, and volume of data
with no loss in performance due to structural constraints in the hardware,
software, or architecture.

• High level of service and performance, where service includes security,
privacy, and integrity, in addition to programming services. Performance
includes reliability, availability, and serviceability, in addition to application
and processor performance.

• Fully compatible technology evolution to protect customer investments in
corporate applications and data processing skills.

• Fully documented, functionally rich, general-purpose architecture to allow the
development of several operating systems such as MVS/ESA*, VM/ESA*,
VSE/ESA*, TPF*, AIX/ESA*, and several types of applications such as
commercial, scientific, numeric intensive, I/O intensive, interactive, real time,
and time sharing to suit the requirements of a vast population of users.

Among the several technology elements that can be highlighted to demonstrate
the characteristics of a S/390* mainframe are:

• High multiprogramming capability - the ability to manage and control a large
number of concurrently active users requesting system services and sharing
system resources.

• Multiprocessing - the capability of the hardware, software and architecture to
provide processing power in incremental steps without being technologically
constrained by the maximum processing power obtainable with a single
processor.

• Multisystem - the capability of the hardware, software and architecture to
provide processing power in incremental steps without being technologically
constrained by the maximum processing power obtainable with a single
system.

• High bandwidth data paths for data transfers inside the processors and for
data transfer with external storage resources.

• Data sharing - the capability of the system to maintain total data integrity
with many users and applications concurrently accessing the same data.

• High availability - the capability of the system to continue to provide services
to the applications even in the presence of some component failures.

• Resource management algorithms - to allow system resources to be
over-committed by the user and managed by the system in priority order.

14 Computing Technology Reference

• Systems management services - to allow a high level of system management
at a cost that is not impacted by the size and complexity of the installation.

• System integrity - by which system users have visibility and access only to
resources for which they are authorized, and any deviation from this
principle is considered a design error to be eliminated.

The evolution of IBM mainframes has taken place through a continuous update
process to the hardware, software, and architecture of which only the major
steps are discussed here.

The hardware for the S/390* systems is provided, today, by the large family of
Enterprise System/9000* (ES/9000*) processors, including the 9221 low-end
models capable of executing up to a few million instructions per second (MIPS),
the 9121 midrange models, the 9021 high-end models capable of hundreds of
MIPS (average for commercial workloads), and the parallel processing models:
the S/390 Parallel Query Server, and the S/390 Parallel Transaction Server. Both
deliver full data sharing.

This vast range in performance is achieved through several hardware
technologies and through the use of several processor designs. Hardware
technologies vary from low-power CMOS chips to the high-performance bipolar
chips packaged on Thermal Conduction Modules (TCM) and TCM boards.
Processor design includes several uniprocessor designs, several multiprocessor
designs (n-way designs, and symmetric and asymmetric multiprocessors), and
new parallel configurations.

The performance of the high-end processors is achieved through state-of-the-art
design including:

• Superscalar design with multiple instruction execution elements and virtual
register management for parallel instruction processing. (See section 2.6,
“RISC* Technology and IBM RISC/6000*” on page 21 for more on
superscalar design.).

• Sophisticated branch instructions that benefit from advanced technology
branch prediction algorithms.

• Large first-level cache storage for each processor, with separate arrays for
data and instructions.

• Very large, shared, second-level cache storage.

• High internal path bandwidth and high I/O path bandwidth to maintain a
balanced flow of data in and out of the system.

The hardware structure of the high-end members of the ES/9000* family of
processors provides for several units:

• A storage subsystem (storage controller and storage cards) for management
of central storage.

• An Interconnect Communication Unit (ICU) for the management of the
channel subsystem and expanded storage.

• Multiple Central Processors (CP), each with its own first-level cache storage
or High Speed Buffer (HSB).

• A System Controller (SC) to which all the previous units are connected and
that also contains a large, second-level cache storage shared by all CPs.

Chapter 2. Data Processing Technology 15

Figure 6. High End ES/9000 Hardware Structure

The minimum configuration is represented in part A of Figure 6 while part B
represents a maximum configuration. Each ICU can handle up to 128 I/O
channel paths.

The processor and I/O architecture for the S/390* systems is IBM ESA/390*
architecture derived, through a long, compatible evolution, from the IBM S/360*
architecture made available in 1964. The major steps of that evolution (to
mention only the key components of each step) are:

• The System/360* (S/360*), defining the processor architecture (S/360*
instruction set) and the I/O interface protocol (Standard S/360* I/O Interface).

• The System/370* (S/370*), introducing virtual storage and multiprocessing.

• The System/370-Extended Architecture* (S/370-XA*), introducing extended
storage addressing and the independent channel subsystem for connection
to the I/O subsystem.

• The Enterprise System Architecture/370* (ESA/370*) further extending the
storage addressing capability, and introducing Dataspaces* and
Hyperspaces*, in addition to the traditional address spaces.

• The ESA/390* architecture introducing the Enterprise System Connection*
(ESCON*) I/O architecture for extended I/O connectivity, and the SYStem
comPLEXes (Sysplex*) facility to increase the total system capacity.

16 Computing Technology Reference

• The S/390* Parallel Sysplex introducing the Coupling Facility technology 001 to
implement full data sharing, subsystems workload balancing, and rapid
recovery from failures.

Virtual and central (real) storage uses 31-bit addressing to provide addressability
to a maximum of two gigabytes. Up to 16 terabytes of expanded storage are
also accessible by the processor, the actual amount available being processor
dependent. Central and expanded storage are also called processor storage.
The operating system and the architecture allow multiple, independent, 2-GB
spaces to be managed concurrently. The processor architecture provides
facilities for multiprocessing operations, including atomic storage update
instructions, to allow multiple processors to operate concurrently on the same
shared storage, interprocessor hardware and software communication
instructions.

Each evolutionary step of the architecture has been accompanied by a
concurrent evolution of the hardware and software platforms to allow full
compatibility for the applications and smooth (when not transparent) migration
paths.

Figure 7. S/390 Software Example

Multiple software platforms are available to operate on a S/390* system
including the MVS/ESA*, VM/ESA*, VSE/ESA*, and AIX/ESA* operating systems,
plus a long list of software layers or subsystems available on each platform.
(TPF, the specialized, high-performance operating system is not included in this
document). Figure 7 is an example of Figure 2 on page 7, personalized to an

1 The Coupling Facility technology is a combination of hardware and software functions supported by MVS/ESA*.

Chapter 2. Data Processing Technology 17

IBM S/390* mainframe, where, for simplicity, the software layers are limited to a
minimum and include: the operating system (MVS/ESA*), a telecommunication
access method, (VTAM*), a database manager (DB/2*), and a transaction
manager (CICS*). In the figure, the vertical arrows represent the various levels
of programming interfaces available to the applications.

More information about the main steps of the evolution of the S/390 mainframes
can be found in the following publications:

• IBM Journal of Research and Development, Vol.27, N.3, 1983, for a discussion
of System/370 Extended Addressing* architecture and the channel subsystem
design.

• IBM Journal of Research and Development, Vol.36, N.4, 1992, for a discussion
of IBM S/390* architecture and design.

Other vendors who manufacture products that fit into the category of mainframes
are described here. It is useful to distinguish among two families of vendors:

• The software compatible vendors (SCV) that manufacture processors with
some level (or full) compatibility with the IBM mainframes at the level of the
machine interface. In this context, the terms compatible and compatibility
refer to a processor that can execute the software and the applications of the
corresponding IBM mainframe with identical results (the level of
performance achieved by the individual processor does not affect
compatibility).

• The full system vendors (FSV) that, as the name implies, manufacture
processors that have their own architecture, operating system, and software
products. Among the FSVs, it is possible also to distinguish between those
that provide some level of compatibility with the IBM architecture and those
that do not.

Among the SCVs are Amdahl Corp. and Hitachi Ltd. Among the FSVs that
provide their own hardware and software systems with various levels of
compatibility with IBM architecture are Hitachi Ltd. and Fujitsu. FSVs who
manufacture mainframes not compatible with the IBM architecture are not
discussed, because when a specific architecture reference is abandoned, the
same definition of a mainframe becomes questionable and of little practical use.

The levels of performance of the mainframes in the class of the high-end IBM
ES/9000 are the highest achievable by general purpose processors.

2.5 UNIX** Systems
UNIX** is a data processing system that evolved from the model of Figure 1 on
page 3, but along a quite different path from the traditional vendor-provided
proprietary systems. The term UNIX** in this discussion does not represent any
of the multiple implementations of UNIX** available today in the industry, but
rather describes those characteristics that are common across all the
implementations.

UNIX** research started in 1969 at the Bell laboratories in the USA. The focus
was on the structure of the operating system and particularly on the machine
level-interface. The objective of the research was to design an operating system
that would allow independence between the applications and the hardware. In
other words, the UNIX** research was aimed at an operating system that could

18 Computing Technology Reference

be used on any hardware processor and architecture, and at the same time
maintain the same programming interface to the applications.

Referring to Figure 1 on page 3, the UNIX** research dealt mainly with the
software component of the system and the relationships between the software
and the applications on one side, and the software and the hardware on the
other.

The solution to the problem was an operating system, or kernel, with a defined
set of services or system calls for the applications to use (the UNIX** application
programming interface), and another defined set of services for the hardware to
provide. Today, the kernel is generally written in C language. To execute the
kernel, an additional layer of software is required between the kernel and the
hardware.

Such a layer, here called the low-level kernel, is local or private to each
processor and implements the services required by the kernel on that specific
processor, according to the rules of the local architecture. Figure 8 shows that
where the same kernel operating system could be executed on multiple systems,
each is provided with its own local low-level (LL) kernel.

In this design, a UNIX** kernel can be executed on any hardware platform and
on any architecture, provided that an LL kernel is developed and, of course, a C
compiler is available for that hardware and architecture.

In addition to the kernel, the UNIX** system also includes a command interpreter
called the shell and a library of utility programs called utilities. In UNIX**
terminology, everything above the level of kernel, shell, and utilities is
considered an application.

It is important to observe at this point a conceptual difference that exists
between the UNIX** approach to a data processing system and the traditional
proprietary systems. In traditional proprietary systems, the hardware, software,
and architecture all cooperate to achieve the system objectives, and each
component relies on the characteristics of the others. Major advances in
hardware, architecture, or software technology are delivered to the applications
through the complex software structure of the operating system and subsystems,
and always maintain compatibility at the application programming interface
level. As a result, in such environments the applications depend heavily for their
execution and performance on the features, functions, and capabilities provided
by the hardware and the architecture through the software.

A UNIX** system, on the other hand, has the objective of making the applications
independent of the hardware and the architecture. In order to achieve that
independence, the kernel and the applications are not expected to make
assumptions about features being present in the hardware or in the architecture.

Due to the free circulation of the UNIX** source code in the early days of
development and use, several implementations of the UNIX** system exist in
today′s market. Among the most popular are System V** from AT&T
Corporation; Berkeley Software Distribution** (BSD**) from University of
California, Berkeley; HPUX** of HP**; ULTRIX** of DEC**; UTS** from Amdhal**;
and OSF/1** from the Open Software Foundation. The IBM implementation of
UNIX** is the AIX* family of operating systems.

Chapter 2. Data Processing Technology 19

Figure 8. UNIX** Model

The development of various implementations of the UNIX** system, similar but
not identical at the application programming interface level, has impacted one of
the primary characteristics of UNIX**, namely the portability of programs and
applications across different hardware platforms. The increasing need to invest
in porting activity across UNIX** platforms raised, in the UNIX** community, the
requirement to define a standard version of the UNIX** system.

The task has been undertaken by the Technical Committee on Open Systems
(TCOS) of the Institute of Electronic and Electric Engineers (IEEE**) with the
mission to define a standard for the application programming interfaces for
UNIX** and, more generally, to define a set of standard interfaces to satisfy the
requirements of Open Systems (see section 2.9, “Open Systems” on page 36).

As part of the TCOS activities, the standard for the kernel programming interface
has been defined as POSIX** 1003.1, and the standard for the programming
interface of shell and utilities has been defined as POSIX** 1003.2, where
POSIX** stands for Portable Operating System Interface for Computer
Environments (see section 2.9, “Open Systems” on page 36). UNIX**
applications written according to the POSIX** standards do provide portability
across hardware platforms where those standards have been implemented by
the local version of the UNIX** system.

The portability of applications resulting from the UNIX** design is sometimes
used to draw the conclusion that to achieve application portability it is necessary
to adopt a UNIX** system. This conclusion is not correct because, as we have
already discussed in section 2.3.1, “Programming Interfaces” on page 8, the
portability of the applications does not depend on the design of the operating

20 Computing Technology Reference

system, but on the programming interface used by the applications and provided
by the operating system.

Once an application is written using a standard programming interface, that
application can be executed on any platform where that standard interface is
available. For example, an application using the standard POSIX** 1003.1
programming interface can be ported on any UNIX** system where POSIX**
1003.1 is available, and also to an IBM S/390* system running MVS* or VM, or to
an IBM AS/400* system when that interface is available.

2.6 RISC* Technology and IBM RISC/6000*
The RISC* (Reduced Instruction Set Computer) technology is the result of a
project started by IBM in the ′70′s to define the architecture and design of a
processor much faster than available in those days.

The project showed that it was possible to improve the raw speed of a processor
by reducing the complexity of the instruction set, and possible to design a
processor optimized to execute the new instruction set.

Note: The R of RISC* stands for reduced and refers to the complexity, not the
size, of the instruction set.

To describe the basis of RISC* technology, consider that the speed at which a
processor can execute instructions depends on:

• The cycle time of the processor, or the time required by the processor
circuitry to go from a known state to another state.

• The number of cycles required, on average, to execute the instructions of the
instruction set.

• The number of instructions required to execute a specific task.

RISC* research, starting from the then-current mainframe technology of the
S/370* systems, addressed all three areas and defined ways to improve the
performance in each of them to achieve the objective of an instruction execution
rate of one instruction per machine cycle.

Referring to the model of Figure 1 on page 3, RISC* research is concerned with
the components below what we call the machine level interface - the hardware
and architecture. The design of the compiler is also affected by RISC*
technology.

RISC* research reduced both the cycle time of the processor and the number of
cycles per instruction by reviewing the S/370* architecture and reducing certain
levels of complexity that affected processor performance. A new data flow
model of the architecture reduced the levels of logic required to perform a cycle
and, consequently, the cycle time.

Some lengthy S/370 instructions, such as storage-to-storage and data moving
instructions with protection key handling, were eliminated and replaced with
faster register-to-storage and storage-to-register instructions.

It was then left to the compiler or to the program to replace the functions and the
services provided by the eliminated instructions, using both new instructions and
new programming techniques.

Chapter 2. Data Processing Technology 21

The extensive use of registers in the instruction set as fast storage, the
hardwired processor implementation to avoid the delays introduced by
microcode, and the pipelined processor design to increase the instruction
execution rate are additional key elements of the first generation RISC*
machines. The reduced amount of logic required to implement the architecture
also made a compact and efficient processor design possible.

The emphasis on reducing the complexity of the then-current S/370* architecture
has remained in the name RISC* given to the new processors.

Among the first IBM products commercially available that used the RISC*
technology were the IBM RT* System, the internal microprocessors of the IBM
ES/9370* system, and the IBM ES/3090* channel subsystem processor. Those
early implementations of the RISC* technology are known today as first
generation RISC*.

By the time they were put on the market, in 1985, the IBM research on RISC*
technology had resumed to further improve the performance and usability of
RISC* technology. The objective was a superscalar processor capable of
executing more than one instruction per machine cycle.

An additional objective was to extend the architecture to include important
functions not included in the first implementation, such as the floating point
arithmetic. The main results of this second phase of research are the IBM
POWER* (Performance Optimization With Enhanced RISC*) and POWER2*
architectures, the IBM RISC System/6000* (or RISC/6000* or RS/6000*) processor,
also called second-generation RISC*, and the Scalable POWERparallel System.

Among the most important features of the second-generation RISC* research
are:

• Superscalar implementation with multiple, specialized execution units and
multiple instruction dispatch for simultaneous execution

• Separate instruction and data caches to maintain data and instruction
bandwidths sufficiently high to allow simultaneous instruction execution

• Specialized branch architecture to allow highly efficient pipelining

• Floating point unit specialized for high performance.

The RISC System/6000* hardware is distributed among a CPU planar, an I/O
planar, and a standard I/O planar card.

The CPU planar card contains the processor and the storage cards. The number
and size of the storage cards is model dependent.

The I/O planar card contains the slots for attaching MicroChannel* adapters,
such as tape drive adapters, LAN (Ethernet and Token Ring) adapters, display
and graphic adapters, coprocessors, and printer adapters. The I/O planar card
also contains other devices for system control functions, such as the CPU
initialization at IPL, the operator display, the system status, and others.

The standard I/O planar card contains the interfaces and connectors for
non-MicroChannel* devices, such as the keyboard, the mouse, the diskette, and
others.

22 Computing Technology Reference

The RISC System/6000* employs the POWER* architecture for the processor.
Storage addressing provides for a single virtual storage space of 4 PB and a real
storage space of 4 GB. Actual implementation is software dependent.

The I/O architecture is MicroChannel* for most of the I/O operations plus two
high-speed optical serial link adapters (SLA) for high-I/O bandwidth.

The characteristics of the RISC/6000* processors make them suitable and
competitive in the powerful market for intelligent workstations and servers. As
this market is predominantly a UNIX** market, the software support for the IBM
RISC/6000* is provided by the AIX* V.3, which is the IBM version of UNIX** for the
RISC/6000* platform. AIX* V.3 is derived from UNIX** System V, conforms to the
IEEE** standard POSIX** 1003.1 of 1990, and is compatible with Berkeley Software
Distribution** 4.3 (BSD** 4.3).

The Scalable POWERparallel System 9076 SP2 is based on the RISC/6000*
technology and can have up to 128 nodes, where each node is a RISC/6000*
processor. The nodes are connected through a High-Performance Switch (HPS)
that allows any-to-any communication. The Scalable POWERparallel System
enables high performance parallel processing for computational intensive and
UNIX** business critical data query and transaction processing.

More reference information on RISC* technology and the IBM RISC System/6000*
can be found in the IBM Journal of Research and Development, Vol.34, N.1,
January 1990.

Today, the term RISC* is commonly used in the industry to identify a wide range
of microprocessors that share the characteristics of limited size and high
instruction execution rate. Among the various non-IBM processors that are
known as RISC* processors are:

• DEC** Alpha

• MIPS R3000, R4000, and R6000

• HP** Precision Architecture

• Intergraph C4

• Intel i860, and i960

• AMD 29000

• Cypress Pinnacle

• Motorola** 88000

• National 32000

• SGS-Thompson T9000

• SUN Sparc**

The operating system and the software structure of these processors is mostly
UNIX** based.

When the RISC* technology became widely known on the market, the acronym
CISC (Complex Instruction Set Computers) was also adopted to identify the
traditional complex architecture based processors.

Chapter 2. Data Processing Technology 23

2.7 IBM Application System/400* (AS/400*)
AS/400* is used in this discussion to refer to the whole IBM Application
System/400* family of processors.

The AS/400* is the result of a research and development effort by IBM aimed at
building a family of general purpose, mid-range data processing systems
especially suited to support customer applications and to be the successors of
the System/36 and System/38 product families.

In absence of a more precise and commonly accepted definition, we will
assume, for the purpose of this discussion, that mid-range refers to a data
processing environment where the requirements and the size of the installation
(not necessarily the processing power) are between those of a full sized
mainframe and those of a workstation environment.

A typical characteristic of mid-range environments is that the majority of
customers tend to buy ready-made applications from software vendors instead of
developing them internally. As a consequence, vast quantities of ready-to-use
applications are available from thousands of independent, worldwide, software
vendors for those types of systems.

This situation more and more extends the requirement for an easy to use and
efficient application programming interface and for a commitment to
compatibility. Actually, the requirement to maintain compatibility with the
applications running on the hundreds of thousands of System/36 and System/38
processors around the world has been one of the major challenges for the
development of the AS/400*. The strong emphasis on the application orientation
of the AS/400* is reflected in the name Application System.

The most relevant elements of innovation introduced by the AS/400* in terms of
system structure are:

• High-level machine interface

• Object-oriented design

• Single-level storage

The AS/400* system is visible to the operating system and to the users through a
high-level machine interface (MI), where high-level has the meaning described in
section 2.3.2, “Software Layers Visibility” on page 10, and is relative to the
machine interfaces (instruction sets) provided by other industry systems.

Unlike the traditional systems (see Figure 2 on page 7), the AS/400* Machine
Interface implements functions that traditionally are provided by the operating
systems and higher-level software layers. Such functions include, among others,
I/O management including the low-level layers of network communication,
security, integrity, selected office services, database management, storage
management, and task management. As usual, nothing below the level of the
machine interface is visible to the operating system or to the applications.

The implementation of the machine interface is accomplished through two layers
of microcode (or licensed internal code). The hardware and the first layer of
microcode implement a first level of machine interface called the Internal
MicroProgramming Interface (IMPI). The IMPI instruction set is similar to the
S/370* instruction set with the addition of some composite instructions for branch

24 Computing Technology Reference

procedures, such as compare-and-branch and test-and-branch, and other
extensions. The IMPI interface is not directly available or visible to the user.
The IMPI interface is completely overlapped by an additional layer of microcode.
This layer of microcode implements the higher-level machine interface (Machine
Interface or MI) that is used by the OS/400* operating system, and is the lowest
level programming interface available to the application programmer.

The multilayered structure of the AS/400* architecture provides a high level of
flexibility because it provides instructions that are hardware independent. At
execution time, the MI instructions are translated into IMPI instructions by an
internal microcoded component called the translator. With this structure, it is
possible to modify the technology of the low-level layers in the system (hardware
components, instructions implementation) with no impact on the MI interface or
on the applications.

Figure 9. AS/400* System

In AS/400* terminology, objects are the means by which information is stored
and processed. Everything that the user can store, retrieve, or process is known
as an object. The high-level machine interface (MI) allows every object to be
treated the same through the use of a generic object structure that is common to
all the objects (for example, each object has a type identifier that determines
how the object can be used, once retrieved). The internal representation of the
data and attributes of an object are not visible to the user. This approach makes
users independent of the addressing structure defined by the architecture and
the implementation techniques, providing ease of use through consistent
handling of interfaces, and hiding the individual object′s internal complexity.
Other elements that provide a description of the objects include: the owner, the
object size, the creation date, the last reference date, the last update date, the
last medium where the object has been saved, and text describing the object.

Chapter 2. Data Processing Technology 25

The AS/400* system can handle 6-byte virtual addresses, thus providing
addressability to any byte within a 248 byte addressing space or about 281,475
GB of contiguous addressable space. This enormous addressable space is
called single-level storage and is used by the system to hold every program or
data object in the system. The relationships between virtual storage, real
storage, and auxiliary storage (magnetic disk space) are completely transparent
to the user. Whenever an object is addressed by the user (for example the call
to a program), the system ensures that the object is accessible by bringing it
into real storage. This storage addressing scheme permits the applications to
be independent of the stored location of the objects, the storing devices, and the
system I/O configuration. (Actually, the processor architecture has the potential
to expand the addressing capability to 64-bit addressing with no impact on the
applications, should such requirement appear in the future.)

Figure 10 represents the single-level storage of the AS/400* system. The
physical resources (central storage and auxiliary storage) are separated from
the logical object′s databases and programs by the single-level storage
mechanism.

Figure 10. OS/400* Single-Level Storage

The software structure above the machine level interface is also layered and
provides services for the end users, applications, system compilers, and utilities.
The end-user interface, the highest level of access to the system, provides
access to the software and machine-level services through panels and menus
designed for ease of use. As far as the user interface is concerned, the AS/400*
provides the user with an easy to use interface, even towards complex functions,
such as database management systems, communications, security, resource
management, and problem determination.

Two primary user interfaces are provided. They are a menu-driven, interactive,
full- screen, display interface for accessing objects and performing actions on
them, and a command interface for fast-path access to frequently used functions.
Online tutorial and help information, and support for national languages are
additional ease-of-use items.

26 Computing Technology Reference

As far as the hardware structure of the AS/400* is concerned, the system
processors or, simply, the processors, communicate with multiple, independent,
I/O processors over high-speed buses for direct data access. A bus control unit
(BCU) that handles functions such as arbitration error handling and initializations
is located within the processor. The number of processors, I/O buses, and I/O
processors is model and configuration dependent. Figure 11 provides a
simplified representation of the hardware structure of an AS/400* n-way model.

Figure 11. AS/400* System Structure

Depending on the devices to be managed, several types of I/O processors
execute specialized code loaded at initialization time. For example, the
communications I/O processors are initialized for specific protocol tasks and
execute data link control functions according to the communications architecture
in use, and the workstation I/O processors provide end-user oriented functions,
such as field editing, keystroke processing, text processing, and national
language support.

The system processor is also directly connected to main storage, and access is
provided by a hardware component, the Virtual Storage Translator (VTA), that
converts virtual storage addresses to main storage accesses. The I/O
processors have full, Direct Memory Access (DMA) capability to main storage
through the bus.

The processor architecture, as already described, is defined by the Machine
Level interface (MI), which is the lowest level of interface visible to the user.
How MI provides high-level functions that normally are provided by programs,
and not by an instruction set, has also been described. An additional internal
level of processor architecture is provided by the Internal Microprogramming

Chapter 2. Data Processing Technology 27

Interface (IMPI), not visible to the user. MI is implemented over IMPI by two
layers of microcode.

Virtual storage uses 64-bit addressing of which only 48 bits are used at execution
time (48 bits provides addressability to about 281,475 GB). The addressing
capabilities of the AS/400* provides for a single level of (virtual) storage to
maintain all system data, user data, and programs. The MI provides the
services required to map the allocated virtual storage into the existing real
storage and to back up data on auxiliary storage devices.

The operating system for the AS/400* is the OS/400*.

More information on the AS/400* characteristics and technology can be found in
the IBM Systems Journal, Vol 28, No. 3, 1989.

2.8 Personal Computers
Personal computers are the result of the data processing evolution that extended
the computing technology to everyday activities. The appearance of the first
models of personal computers (as they were named at that time) in the middle
70s produced a step forward in the world of data processing comparable in size
to, and perhaps superior to, the appearance of the first computers for
commercial use back in the ′50′s. As the traditional mainframes allowed the
industry to automate everyday commercial processes, such as billing,
accounting, personnel, and order entry, the personal computers allowed
individuals to automate their everyday activities such as, text editing, mail,
messaging, spreadsheet, and games. The qualifier itself used for those
processors, personal, reflects the individual orientation of a computer intended
for the personal use of a single user.

Today, the PC marketplace is characterized by fast growth, intense competition,
a fast rate of technology development by the hardware industry, and a software
industry attempting to keep up with these hardware improvements.

Today there are two major groups of PCs:

• IBM PCs and compatibles . These are all based on the Intel x86 series of
processors. This market is very competitive between a large number of
manufacturers, including IBM, Compaq, and Dell.

• Apple Macintosh . These are based on the Motorola 68xxx series of
microprocessors and are incompatible with the IBM PCs. Apple is the only
manufacturer of this group.

We will discuss the PC arena in the following six areas:

• User Interface
• Applications
• System Software
• Hardware
• Distributed Systems
• Application Development

28 Computing Technology Reference

2.8.1.1 User Interface
One of the reasons for the success of PCs has been their capability to provide a
highly interactive and visual user interface. The standard for PC user interfaces
has become the Graphical User Interface (GUI) , which is characterized by a
large bit-mapped graphics display, a mouse as well as a keyboard, and a style
of interaction using icons, pointing, and direct manipulation.

End users have found this considerably more productive and usable than
character-based terminals. Since the display is local to the PC, the bandwidth
required to transfer large quantities of graphical data between processor,
memory and display is available, and low-cost video adapters and display
hardware have become standard.

Three GUIs currently have significant market-share for PCs

• Apple ′s Macintosh System 7 user interface brought the power and usability
of GUIs into the mainstream of computing. System 7 runs on Apple
Macintosh hardware which may now include POWERPC microprocessors.

• Microsoft ′s Windows 3.1 provides a GUI on top of the DOS operating system,
running on IBM PCs and compatible hardware.

• IBM ′s OS/2 2.1 Workplace Shell provides a GUI as an integral component of
the more powerful OS/2 2.1 operating system for IBM PCs and compatible
hardware.

New technologies currently being absorbed into GUIs include:

• Object-Oriented User Interfaces (OOUIs) , which enable the user to focus on
real-world objects, such as documents and printers, instead of the
application focus of GUIs. Both Macintosh System 7 and the OS/2 Workplace
Shell are OOUIs. Microsoft has indicated their intention to add OOUI
capabilities to future versions of Windows and Windows NT.

• Multimedia , such as digital audio and software motion video, is standard in
OS/2.1 and available as extensions to both Macintosh System 7 and Windows
3.1.

Other user interface technologies are emerging and are expected to enter the
mainstream as the hardware becomes sufficiently powerful and affordable.
These include Pen-based Computing, and Speech Recognition. Both pen and
speech are currently available as extensions to all three GUIs.

2.8.1.2 Applications
In the PC world, application packages are the major type of application software.
Tens of thousands of application packages have been developed by a wide
variety of Independent Software Vendors (ISVs), such as Lotus, Borland,
Wordperfect, and Microsoft. Application packages typically provide functions,
such as spreadsheets, word-processing, graphics, and electronic mail.

Applications can also be classified by the original operating system they were
written for. This includes:

• DOS applications , the major group of PC applications, including both
character-based and graphics applications.

• Windows applications , the most common GUI applications.

• Macintosh applications , the GUI applications for the Apple Macintosh. It is
particularly strong in the desktop publishing and and graphics areas.

Chapter 2. Data Processing Technology 29

• OS/2 applications , an emerging class of 32-bit GUI applications able to
exploit the powerful OS/2 system facilities, such as large flat memory
address spaces and multiple threads.

As new operating systems, such as Windows, Windows NT, and OS/2 have been
developed, it has become essential for them to continue to support the legacy
applications of previous operating systems such as DOS and Windows.
Emerging technologies called Personalities enable applications written for one
operating system to run under another operating system - sometimes better than
under the original operating system.

Interoperability between applications is also becoming increasingly important.
This can be divided into three areas:

• Clipboard provides the ability for the end user to cut and paste data between
applications.

• Dynamic Data Exchange (DDE) provides the ability for applications to
establish program-to-program links to dynamically exchange data.

• Compound Documents enable documents composed of mixed text, graphics
and other components, to be treated as a single document. The appropriate
application is invoked automatically to process each part of the document.
Two standards for compound documents exist:

− Online Linking and Embedding (OLE) has been developed by Microsoft
and is used between Windows applications.

− OpenDoc has been developed by a consortium which includes Apple,
IBM and others, and can be used between applications of different types,
and also across distributed systems.

2.8.1.3 System Software
The system software layer is dominated by a small number of products from a
few vendors, primarily Microsoft, IBM, Apple, and Novell (Digital Research).

For IBM PCs and compatibles, the main system software products today are:

• DOS, which provides a basic set of operating system services, primarily a
file system, a program loader, a command interpreter, a set of basic utilities,
and more recently, task-swapping and menus. Various memory management
extensions are also available to enable DOS applications to use more than
the 640KB memory limitation of the early versions of DOS. Microsoft, IBM,
and Novell (Digital Research) all provide versions of DOS. DOS, a 16-bit
operating system, is the most common operating system.

• Microsoft Windows 3.1 , which provides a GUI environment running on top of
the DOS base. Windows also replaces many of the operating system services
of DOS and provides its own memory management, along with limited
cooperative multitasking. Windows operates within the 16-bit environment of
DOS, and the DOS/Windows combination is the most common GUI operating
system.

• IBM OS/2 2.1 provides an advanced 32-bit operating system with integrated
GUI and full multitasking between applications. OS/2 2.1 is the most common
32-bit GUI operating system.

• Microsoft Windows NT also provides an advanced 32-bit operating system
with integrated GUI and full multitasking, built on a kernel that can be ported
to new hardware.

30 Computing Technology Reference

For Apple Macintosh, the major system software product is:

• Macintosh System 7 , which provides an advanced operating system with
integrated GUI and limited cooperative multitasking.

PC system software typically consists of:

• A user interface
• One or more personalities that provide support for the applications
• The main operating system kernel
• A hardware abstraction layer of BIOS/ABIOS and device drivers.

This is shown in Figure 12.

Figure 12. Example PC System Software Structure

The personality support for different application environments can be provided
either by emulating the legacy application environment on top of the native
application environment, as in Windows NT, or by providing a native legacy
environment alongside the native application environment, as in OS/2 Windows
applications.

Chapter 2. Data Processing Technology 31

The operating system kernel provides the fundamental system software
capabilities, such as starting and multitasking programs, memory management,
interprocess communication, and interrupt handling.

New processors, such as the emerging RISC processors discussed in the next
section, have created a need for the operating system to be portable to different
hardware architectures. This can be solved in two ways - rewriting the operating
system for each new hardware platform, or restructuring the system software so
most of it is portable and only a few components need to be rewritten for each
new hardware platform. Microkernel technology is emerging as a key
technology that can be used to reimplement current operating systems, such as
OS/2, on a portable foundation.

Support for new hardware devices is provided by the device driver layer,
enabling disks, CDs, and video adapters to be added to the system without
rewriting or rebuilding the operating system.

The emerging use of object-oriented technology promises to provide solutions to
the challenges of fast development of complex system software. IBM, Apple,
and HP have sponsored a joint company, called Taligent , which is developing a
fully object-oriented operating system. Technologies from Taligent are expected
to be absorbed into existing IBM, Apple, and other operating systems over time.

2.8.1.4 Hardware
The PC hardware itself can be divided into three areas:

• Processor
• Hardware architecture , such as the adapter bus and BIOS firmware
• Hardware devices , such as disks, video displays, and printers

An example PC hardware structure is shown in Figure 13 on page 33.

Processor: The IBM PC and compatible hardware industry is dominated by the
Intel x86 series of processors, whereas the Apple Macintosh is based around the
Motorola 68xxx series of processors.

The Intel x86 processor family today consists of the 386sx, 386dx, 486sx, 486dx,
and Pentium processors. IBM also manufactures the 386slc and 486slc2 variants
of this family, under license. This family has the following characteristics:

• 32-bit CISC (complex instruction set computer) processor.
• Uses an extended ASCII character set and little-endian byte-ordering mode.
• Hardware support for multitasking and for protected virtual memory.
• Able to operate in real 8086 mode, protected mode, and virtual 8086 mode

(this is especially useful as a basis for emulating DOS and Windows
sessions).

• 386sx processors use a 32-bit instruction set and 24-bit external addressing.
All higher members of the family use a 32-bit instruction set and 32-bit
external addressing.

• 486dx and Pentium processors include integrated floating-point units. For the
other processors, floating-point coprocessors can be added.

• 486sx, 486dx, and Pentium processors include internal memory cache.
• The Pentium processors includes dual instruction paths.

The Motorola 68xxx processor family today consists of the 68020, 68030, and
68040 processors. This family has the following characteristics:

• 32-bit CISC processor

32 Computing Technology Reference

Figure 13. Example PC Hardware Structure

• Uses an extended ASCII character set
• Hardware support for multitasking and for protected virtual memory.

The recently announced PowerPC family of low-cost RISC processors are a joint
development effort by IBM, Apple, and Motorola. The PowerPC processor family
consists initially of the 601, 603, and 604 processors, and all of these have the
following characteristics:

• 32-bit RISC processors, derived from the POWER processors developed and
used by IBM in the RS/6000 workstation family.

• Able to boot in either little-endian or big-endian byte-ordering mode.
• Hardware support for multitasking and for protected virtual memory.

Symmetrical multiprocessing (SMP) PCs are also starting to emerge, containing
more than one processor. Although they use standard microprocessors, such as
the Intel Pentium, other elements of the SMP hardware architecture vary
between manufacturers.

Chapter 2. Data Processing Technology 33

Hardware Architecture.: Apart from the processor, the component that
characterizes the PC most is the bus used to interconnect components and into
which adapter cards can plug. The most common bus today is the ISA bus,
which was originally used in the IBM PC AT. This bus has limitations for more
advanced PCs, but compatibility considerations have enabled it to survive since
1984. Two newer buses, the Micro Channel bus, developed by IBM and used in
most PS/2s; and the Extended ISA (EISA) bus, developed by Compaq and others
and used especially in servers, have had some success. Since then, two new
factors have emerged which are driving the development of the bus; the need for
smaller and interchangeable adapter cards in laptops has spawned the PCMCIA
bus, and the need for very fast video adapters to support GUIs has spawned the
VESA local bus and the PCI bus, both of which provide very fast data transfer
between adapter cards and the processor and memory. The Apple Macintosh
uses its own advanced bus, the NuBus .

On IBM PCs and compatibles, the operating system is insulated from specific
hardware implementations by a defined interface (the BIOS), and by installable
device drivers which either provide an interface to the BIOS or interact directly
with the operating system. The BIOS is a level of firmware, usually provided in
read-only memory (ROM) on the system. BIOS is present on all IBM PCs; in
addition IBM PS/2s using the Micro Channel implement a variant of the BIOS
called ABIOS , which is optimized for use with multitasking operating systems,
such as OS/2.

The BIOS does not provide sufficient insulation from the hardware for SMP.
Therefore, the operating system currently has to be specifically tailored for each
new SMP system. Microsoft provides SMP support in Windows NT, and IBM has
beta-tested a SMP variant of OS/2 2.1.

Hardware Devices: A wide variety of hardware devices are produced by a large
number of Independent Hardware Vendors (IHVs). These devices are normally
connected into the bus either through their own adapter card, or by sharing an
adapter card. Hardware devices include:

• Peripheral buses, such as SCSI. SCSI is a standard bus that enables disks,
CDs, and other storage devices to share the same adapter card.

• Fixed Disks, such as ESDI, IDE, and SCSI. Fixed disks provide fast-access,
read-write permanent storage, with disk sizes typically of a few hundred MB,
and fast access times.

• CD-ROMs , which may be connected using SCSI adapters or their own
adapter or may share another adapter. CD-ROMs provide access to
interchangeable CDs, typically 600MB and containing data or multimedia
information. CDs are usually read-only and have slower access times than
fixed disks.

• Video adapters and displays, such as VGA , XGA , SVGA , and the emerging
accelerated SVGA . Video adapters and display provide high-quality color
bit-mapped graphics, typically up to 1024x768 pixels and 256 colors.
Photo-realistic adapters and screens which can display up to 16 million
colors are emerging, as are higher-resolution and larger displays.

• Printers, such as Postscript and LaserJet , provide letter-quality printing at
low prices. Color printers are also starting to emerge.

• Multimedia devices, such as digital audio or video adapters, are able to
record or playback high-quality sound or video. Video can also be played

34 Computing Technology Reference

back on standard high-resolution video adapters, if it is stored in an
appropriate format.

Support for new hardware devices is provided by the device driver layer of the
system software.

2.8.1.5 Distributed Systems
Today, PCs have matured and can be a major component in distributed systems.
Their main benefits are the powerful user interfaces possible, and the computing
power now available on the desktop dedicated to one user, or in a server shared
between multiple users. However, PCs introduce major new problems in
distributed systems, such as distributing and synchronizing both code and data
across many thousands of nodes.

The motivation for involving PCs in distributed systems comes from three distinct
areas:

• PC users want to share data, share resources (such as printers), and
communicate with other PC users.

• Mainframe or mini users want to provide a better user interface, a faster
response time, or local reliable access to data, while maintaining the
advantages of the host for data security and integrity.

• Mainframe or mini users want to transfer their applications to a PC and LAN
based solution (downsizing).

In the PC area, the primary interconnection method is the Local Area Network
(LAN) , which provides very fast connection between PCs. Typically, most of the
PCs will be end-user workstations, and one or more PCs will be used as servers,
providing shared files, printers, and data. The main LAN technologies currently
are Token-Ring and Ethernet .

On top of the LAN hardware technology runs the LAN software. Novell NetWare
is the leading LAN software for IBM PCs and compatibles, along with IBM′s OS/2
LAN Server , Microsoft′s Windows NT Advanced Server , and TCP/IP which comes
from a Unix background. NetWare uses a communications protocol called IPX,
and OS/2 LAN Server and NT Advanced Server use the NetBIOS protocol.

When PCs need to communicate with other computer systems, such as
mainframes, they can either do so directly if the system can participate in one of
the above networks (for example, a Unix server can participate in the TCP/IP
network), or they can provide an SNA or OSI connection into a Wide Area
Network (WAN) . These connections can be for terminal emulation (such as 3270,
5250 or ASCII), shared data, and program-to-program communication.

Emerging technologies and standards will make it easier to interconnect PCs
with other systems. The Distributed Computing Environment (DCE), originated by
OSF, provides standards for interoperation of both homogeneous and
heterogeneous systems. This includes the Remote Procedure Call (RPC), which
can be used for developing distributed procedural applications.

The Distributed System Object Model (DSOM) technology enables distributed
object-oriented applications and systems to be built, in a similar way to the use
of RPC for building distributed procedural applications. DSOM is built upon the
SOM object technology used for building mixed-language object-oriented

Chapter 2. Data Processing Technology 35

applications, and also upon the RPC technology used for building distributed
procedural systems.

2.8.1.6 Application Development
Today, development of GUI applications is slow, complex, and costly. This is due
to the new application structure that GUI applications written in the C
programming language must conform to, and also due to the complex APIs that
GUI application programmers must use.

Development of client-server and distributed applications adds to the complexity
of the whole application development process.

Despite this, both application development and system software development
are unable to keep up with the demand for new systems and for modifications
and enhancements to existing systems.

Object-oriented technologies are now emerging into the mainstream, and it is
expected that they will provide powerful tools to simplify the software
development process. Some of these technologies are:

• C + + , which is an object-oriented version of the C language

• Class libraries , which are the object-oriented equivalent of procedure
libraries. They enable standard functions to be written once and shared by
many applications

• System Object Model (SOM), which provides a language-neutral and
compiler-neutral way of enabling objects and classes to be shared between
different applications

• Visual builders , such as IBM′s VisualAge and Microsoft′s V i sua l C++ ,
enable applications with major user-interface components to be programmed
interactively on the screen.

• Object-oriented frameworks , which are a development of class libraries
enabling them to be easily used by application programmers, by collecting
them in coordinated structures called frameworks, and by providing a rich
set of default behavior.

2.9 Open Systems
The term open systems identifies a complex set of requirements that are
constantly growing in the data processing industry. They are strictly associated
with the industry trend towards distributed data processing environments that
are multi-vendor and heterogeneous as far as both the processor′s architecture
and the software platforms are concerned.

The following are just a few of the requirements for an open system:

• Data processing users want to access and share information across several
data processing systems without being constrained by hardware, software,
or architecture. The more the customer installation tends to be distributed
and heterogeneous, the more critical becomes the open system requirement.
The more the data processing technologies become vital to the enterprise
activities, the more the relationships among enterprises are dependent on
inter-systems communications or, in other words, on systems
interoperability. The ideal solution to this requirement is a technology that
allows any application to access and share its own local data and any type

36 Computing Technology Reference

of data residing on a remote heterogeneous system, while maintaining the
same level of performance regardless of the location of the data.

• Data processing users want the freedom to choose the best solution that
meets their requirements without being constrained by the existing
hardware, software, or architecture. The ideal solution for this requirement
is a technology that allows any application solution to run at its best
performance on any type of data processing system.

Several definitions exist today for an open system or open-system environment
because many independent bodies are working on definitions.
In addition, multiple versions exist for the definitions developed by the same
body reflecting the long iterative work required to reach an agreement on
matters covering multiple requirements.

For example, in July 1991, the IEEE** draft definition of an Open Systems
Environment, as reported in Guide to the POSIX Open Systems Environments,
was:

“The comprehensive set of interfaces, services, and supporting formats,
plus user aspects, for interoperability or for portability of applications,
data, or people, as specified by information technology standards and
profi les.”

This definition is also known as the draft for the POSIX** 1003.0 standard.

In September 1991, that IEEE** draft definition for an open system had evolved to:

“A comprehensive and consistent set of international information
technology standards and functional standard profiles that specify
interfaces, services and supporting formats to accomplish interoperability
and portability of applications data and people.”

IBM adopted that definition in the announcement of The Open Enterprise.

At the same time, X/Open also had developed a definition for open systems that
refers to a:

“Software environment designed and implemented in accordance with
standards that are vendor independent and that are commonly
available.”

While waiting for the work on the definition to proceed and reach an agreement
widely accepted in the data processing community, it is possible to focus on a
few undisputed elements of open systems namely:

• Open systems is a software concern.

• Open systems require standards.

• Open systems are expected to provide interoperability among heterogeneous
systems

• Open systems are expected to provide portability of applications, people, and
data among heterogeneous systems.

We have already discussed the implications of standard programming interfaces
in section 2.3.1, “Programming Interfaces” on page 8, and how the various types
of standards available in the industry (de jure, de facto, national, international,
and others) might be used to indicate the level of openness of a system. In the
same place, we also discussed how standard programming interfaces affect the

Chapter 2. Data Processing Technology 37

portability of an application from one system to another. The portability of an
application has an immediate affect on the portability of the data and people
associated with that application.

An important consideration about application portability derives from the layered
structure of software and applications already discussed in section 2.3,
“Software Layers” on page 7. For an application to be moved or ported from its
local environment to a remote heterogeneous environment, it is necessary to
make the programming interfaces used by the application available in the
remote environment. This might be accomplished in two ways:

• Porting to the remote location the application AND the products providing the
required programming interfaces,

• Porting to the remote location ONLY the application, and having the remote
software products provide the required programming interfaces.

For example, the requirement to port an existing application that makes use of
the programming interface provided by transaction manager A, for example a
CICS* application, from its native, or local, environment to a remote environment
can be satisfied either by porting the application and the transaction manager to
the remote environment, or by porting the application only and having the
remote transaction manager provide a programming interface compatible with
that of transaction manager A.

The example provides the basis for describing some of the directions taken by
different institutions to satisfy the portability aspects of the open systems
requirement. The following discussion is not intended to cover every
organization involved in open systems standards and specification but only to
show the different approaches to the problem.

The Technical Committee on Open Systems (TCOS) of the Institute of Electrical
and Electronics Engineers (IEEE**) is dedicated to define a set of standard
programming interfaces intended to satisfy the open system requirements.
These standards are known as Portable Operating System Interface for
Computer Environments (POSIX**). POSIX** standards are numbered from
1003.0 upwards, where 1003.0 is the definition of an open system.

Due to the quite complex and lengthy internal TCOS procedures, POSIX**
standards are often quoted as being in the draft position, which means defined
but not yet officially approved.

X/Open**, a nonprofit organization founded in 1984 to solve problems caused by
software and systems incompatibilities, has also started to define standard
programming interfaces. If POSIX** standards are available, they are adopted.
Otherwise, the most widely accepted standard in the industry is selected. The
suite of X/Open** standard programming interfaces define the X/Open** Common
Application Environment** (CAE**) that is currently being implemented by the
X/Open** members and other vendors. X/Open** CAE** is documented in an
X/Open** Portability Guide updated and edited regularly, and commonly referred
to as XPGn, where n is the number of the edition (XPG4 for the fourth edition).
IEEE** standards for Open Systems and X/Open** standards tend to have a high
degree of overlap.

The Open Software Foundation** (OSF**) is a non-profit organization that has
taken a different direction towards open systems. Instead of defining standards,
OSF** has the objective of developing an operating system, OSF/1**, and several

38 Computing Technology Reference

other software layers, or environments, based on existing programming
interfaces that the OSF** members and the users accept as standards. The
OSF/1** operating system is not written for any specific machine interface and
must, therefore, be adapted by any interested hardware manufacturer to run on
its hardware base. For example, IBM AIX/ESA* is based on the OSF/1**
operating system.

Among the best known software layers implemented or in plan by OSF** is the
Distributed Computing Environment** (DCE**), a set of standard interfaces for
distributed computing.

Software vendors have also taken steps to address open system requirements.
The most common approaches are:

• Defined public programming interfaces (as described in 2.3.1, “Programming
Interfaces” on page 8) for unrestricted use by other software vendors like,
for example, the Distributed Relational Database Architecture* (DRDA*) of
IBM.

• Software products that can be executed in several software and hardware
environments (for example CICS* and Oracle**).

• Standard interfaces in software products, in addition to the traditional
proprietary interfaces (for example the POSIX** 1003.1 interface on MVS, the
socket interface in CICS*, the SQL* interface in Oracle**, the selected
OSF**/DCE** interfaces on the IBM software platforms, and others).

• Do both things at the same time. For example, CICS* and Oracle** both
have taken the direction to provide multiple standard interfaces to
applications and at the same time to be able to execute in more than one
hardware and software environment.

Most of what has been said about portability also applies to the interoperability
aspects of open systems.
In fact, the enforcement of standard interfaces on software products is also
beneficial to interoperability if those standards also cover communications
among systems.

An additional interoperability consideration also involves the layered structure of
the software and the multiple options available to the application to operate with
a partner system. For example, if interoperation is required to access some
remote data from a local application, the following alternatives exist, at least in
theory, to do the same thing:

• The two systems interoperate at the communication level (for example, the
two systems both have SNA LU6.2 capabilities),

• The two systems can communicate at the transaction manager level (for
example, the two systems both have CICS capabilities),

• The two systems can interoperate at the database manager level (for
example, the two systems both have distributed RDBMS capabilities).

In the first case, the user has to write two applications (one per side) utilizing a
low level interface, such as the SNA LU6.2 interface. In the second case, the
user has to write two CICS* transactions. In the third case, the user has to write
one query. All three options solve the user problem, but the implications of each
alternative are extremely different.

Chapter 2. Data Processing Technology 39

40 Computing Technology Reference

Chapter 3. Distributed Data Processing Technology

The subject of distributed systems is greatly simplified by using a single
framework for discussion of all types of systems. The specific framework to be
used in the remainder of this document is based on the Open Blueprint (which is
illustrated in section 3.3.3, “The Open Blueprint” on page 50) and is described in
Figure 40 on page 100. However, before examining this framework, we will
discuss some prior examples of system structures. We will then examine in
detail the Open Blueprint which is the base that will be used to develop the
framework.

3.1 Early Data Processing System Structures
In early data processing systems, an application was responsible for providing
all system functions. In the earliest examples, the programs were written
directly at the machine level interface. Somewhat later, assemblers and
compilers were developed to provide some simplification in writing applications.
In either case, each customer had to develop applications with specific logic that
was unique to each model of processor. If a customer had more than one
application, each required processor-specific logic. These systems are
represented by Figure 14.

Figure 14. Early Data Processing Systems

This approach to application development was costly, and simply could not keep
up with the rate of change in computing technology. Two major new concepts in
system structure were developed to address these limitations: operating systems
and processor architectures.

3.1.1 Operating Systems
Operating systems were developed to provide basic management of a processor
and its resources, such as processor time, storage, and I/O equipment, so
applications did not have to perform that task. As operating systems evolved,
they allowed multiple applications to run at the same time. Further extensions to
base operating systems were offered over time, and the collective set of services
became the application programming interface (API) for that operating system.
Examples of differing operating systems from IBM* are OS/2*, MVS/ESA* with
CICS/ESA*, and VSE/ESA*. Examples of other vendor operating systems are
DEC**, VMS**, and Microsoft** DOS with Windows**.

 Copyright IBM Corp. 1994 41

3.1.2 Processor Architectures
Processor architectures define a set of hardware functions that are common
across several processor models. This allows an application to be isolated from
the details of the differences between processor models. An early example of
this is the IBM* System/360 architecture. Some other examples of processor
architectures are the Intel** x86, IBM* RISC/6000* and AS/400*, and DEC**
VAX**. In some cases, several hardware vendors offer processors that conform
to a single processor architecture. These systems are represented by Figure 15.

Figure 15. Homogeneous Architecture

3.2 Historical Heterogenous System Structures
Having operating system functions and APIs greatly simplifies application
development. However, many manufacturers have their own set of proprietary
interfaces and, in some cases, have more than one set of interfaces.
Applications are required to adjust to variances between operating system
interfaces. Standards have been developed to minimize the impact of differing
operating system interfaces. Examples of this are ANSI** compilers, POSIX**
operating system interface definitions, and X/OPEN** Portability Guides. The
UNIX** systems and the more recent POSIX** 1003.x operating system interface
definitions also address this problem. Nevertheless, many differences between
systems are still visible to application programmers and end users. As
computing technology changed, radically different types of structures developed,
and millions of processors came into use.

42 Computing Technology Reference

3.2.1 Systems Application Architecture* (SAA*)
In response to the growing number of processor architectures and the increasing
volumes of systems, IBM* developed SAA*. SAA* was intended to enable
consistent APIs and end-user interfaces across:

• Heterogeneous operating systems:

− OS/2*
− OS/400*
− MVS/ESA*
− VM/ESA*.

VSE/ESA* and DOS also offered a subset of SAA* functions, as do DEC**
HP** and other vendors.

• Heterogeneous processor architectures:

− PS/2*
− AS/400*
− System/390*.

Other hardware vendors offer processors that are largely compatible with
PS/2* and System/390* architectures.

Figure 16. Systems Application Architecture* (SAA*) Structure

Chapter 3. Distributed Data Processing Technology 43

3.2.2 Advanced Interactive Executive* (AIX*) Family
IBM* also developed a set of UNIX** based AIX* systems that provide for
consistent APIs and end-user interfaces across:

• Heterogeneous, but similar, operating systems:

− AIX* PS/2*
− AIX* Version 3 for RISC System/6000*
− AIX/ESA*.

• Heterogeneous processor architectures:

− PS/2*
− RISC/6000*
− System/390*.

Figure 17. Advanced Interactive Executive* (AIX*) Structure

44 Computing Technology Reference

3.2.3 UI-ATLAS**
In contrast to SAA*, which covered several dissimilar operating systems, the
UNIX** SV R4 family is heterogeneous but similar, as is the case with the IBM*
AIX* family. The same basic operating system has been recompiled and
modified (ported) to run on several heterogeneous processor architectures. The
systems are similar, but not identical. There are also several other UNIX** type
systems that have considerable overlap with SV R4, but they were not developed
by porting SV R4.

The UI-ATLAS** structure, defined by Unix International, is intended to provide a
common structure of higher level functions beyond SV R4 itself. They hope that
this structure will be adopted by many UNIX** type systems, in addition to those
based on SV R4. This structure is represented by Figure 18.

Figure 18. UI-ATLAS** Structure

Chapter 3. Distributed Data Processing Technology 45

3.3 Distributed System Structure Evolution
The realities of today′s computing technology demand the ability to address a
wide variety of operating systems and processors. Most customers require a
broader scope than that addressed by SAA*, the AIX* family, or UI-ATLAS**. The
IBM* response, over time, to these needs is shown in Figure 19 culminating in
the identification of a requirement for an open, distributed system structure.

Figure 19. Roadmap to a Strategy

This roadmap has led to what is now known as the IBM* Open Blueprint. The
characteristics leading to and associated with this structure are explored in the
following section. Some definitions associated with these characteristics which
describe an open, heterogeneous, distributed system are:

Open The system defines interfaces that are standard, relatively
stable and publicly described. Users need to be able to choose
elements that make up the system from various suppliers based
on cost, performance, functions, packaging, terms and
conditions, and other factors.

Heterogeneous Users expect to compose systems with offerings from many
different vendors at the same time and may change the
components that make up their system over time. Also, multiple
systems may be connected together forming even more diverse
configurations.

46 Computing Technology Reference

Distributed System elements are separated from one another and are
connected by a communication network.

The structure must accomodate an evolution from existing system structures and
product implementations.

3.3.1.1 Client/Server Terminology
The industry uses the terms client and server with both very specific and very
general meanings, which causes considerable confusion in communicating
structural differences. Our use of the terms is consistent with the industry, but
we will define them carefully to avoid confusion:

• Roles

In general, the terms describe roles that entities can play when a system
performs some work.

− Client refers to the entity on whose behalf the work is done.

− Server refers to the entity that does the work.

The terminology is useful when these roles are in different, and often,
physically separate entities. Often, but not necessarily, the server provides
services to more than one client, either simultaneously or serially, providing
shared or multiplexed access by many clients to a single resource.

The term client is not used just for the end user of work, but is applied to any
entity that is requesting work. Therefore, a single entity often acts in the
client role for some work and the server role for other work. An application
program provides services to a human being, or its client, but is, itself, the
client when it requests work of the operating system.

• Machines

In some machines, particularly workstations used directly by people, the
client role predominates. In others, the server role predominates. Such
machines are often referred to as client machines and server machines, or
physical clients and physical servers, or, confusingly, as just clients and
servers.

• Resource manager

When a resource manager is distributed, we describe the portion of the
resource manager that does the work as the resource manager server and
the portion on whose behalf the work is done as the resource manager
client.

Where necessary, we distinguish the entity that requests services by
interfacing to the resource manager client by calling it the requester.

Chapter 3. Distributed Data Processing Technology 47

3.3.2 Distributed System Characteristics
Many of the characteristics of an open, heterogeneous, distributed system are
essentially the same as those of any computing system. Appropriate
performance for applications, high reliability, a flexible configuration, and system
integrity are all desirable attributes of any system. But the nature of an open
distributed system puts emphasis on certain characteristics that affect its
fundamental design and specific implementation details.

The distributed system must be:

Accessible Users of a distributed system expect to see it as a single,
coherent computing facility, with a single point of access and a
unified logon. Within the distributed system, resources are
accessible to users and to programs through a consistent
universal naming scheme that is independent of location and
method of access.

Transparent Functions should support well-defined, simple, functional
interfaces, where implementation details are not apparent. End
users and their applications do not see the overall complexity of
the distributed system. They view the distributed system as an
extension of their individual workstation.

Many different networking mechanisms are used to support the
interconnection of distributed system. Programs in a distributed
system are provided with several levels of communication
mechanisms and interfaces that insulate them from the
protocols or semantics of the particular network transport being
used. This enables the transparent support of multiple
networks.

Scalable The distributed system can accommodate a choice of
configurations from relatively low cost and few functions, to
many functions and high reliability and performance.

Scalability requires that there be no major design discontinuities
as network size increases.

Manageable Systems management includes the planning, coordination,
operation, and support of a heterogeneous network across a
user ′s enterprise. This includes monitoring systems functions,
scheduling hardware and software changes, configuring system
resources, and tracking system problems and resolutions.

Regardless of how systems management applications monitor
and control system resources, the possible system
administration actions should be available anywhere in the
network.

As the size of a network system increases, the only acceptable
solution to many systems management problems is to have
systems that are self-managing and have automated logic to
recognize and respond to exception conditions, failures, and
changes in system load.

The geographically dispersed nature of large-scale distributed
systems makes hands on management and operation of most
resources impractical. In these cases, the tools for managing

48 Computing Technology Reference

and controlling the resources function entirely with remote
operators and allow unattended operation.

Additional Characteristics

Security Security facilities are available across a distributed system, and
mechanisms exist to permit user authentication, secure
communications, information integrity and confidentiality,
resource access control, security administration, and auditing of
security events.

Reliability and Availability Large distributed systems that serve widespread
populations must be continuously available to be business
justified. The distributed system is designed to degrade
gracefully during failures, and single points of failure of critical
resources are avoided.

Serviceability In large distributed systems, the hardware and software
resources are specifically designed to be serviceable. Built-in
mechanisms are incorporated for monitoring, problem diagnosis
and repair. In large-complex systems it is difficult or impossible
to re-create problem situations. Therefore, system elements are
designed to support the capture of such fault data as trace, logs,
and dumps at the first point at which problems are detected.

Accounting The diverse population served by large-scale distributed
systems requires that the cost of delivering services needs to be
attributed to distinct consumers of the service. The elements of
the distributed system maintain sufficient information to
correlate processing to specific user activities no matter where
the work is performed in a distributed system.

Chapter 3. Distributed Data Processing Technology 49

3.3.3 The Open Blueprint
A significant part of this chapter, including the previous section, is drawn directly
from the Open Blueprint Technical Overview, GC23-3808. This has replaced a
large part of the original material intended for use in this chapter. The
′Technical Overview′ is current, provides a valuable analysis of the issues, and a
thorough description of the Open Blueprint which provides the descriptive base
on which the body of this publication is constructed.

Some condensation has taken place in making use of the ′Technical Overview′
and the reader is requested to consult the original to fully appreciate its
examination of the Open Blueprint.

3.3.3.1 Introduction to the Open Blueprint
The Open Blueprint addresses the challenges of the open environment by
viewing a system as part of a distributed network and viewing the network as if it
were a single system. It is represented in Figure 20.

Figure 20. The Open Blueprint

The Open Blueprint serves four major roles:

• It helps users think about, discuss, and organize products and applications in
an open, distributed environment.

• It describes IBM*′s directions for products and solutions in the open,
distributed environment.

50 Computing Technology Reference

• It guides developers as they meet users′ needs by supplying products and
solutions that include the appropriate function and that can be integrated and
can interoperate with other installed products.

• It provides a context for the incorporation of new technologies into a
distributed environment.

A goal of the Open Blueprint is to provide consistency among IBM products and
related products such that they work together to achieve a high level of systemic
value. Since the wants and needs of users include openness and
product/vendor heterogeneity, the Open Blueprint is based on a combination of
existing and emerging industry standards. The fundamentals that allow this
support are heterogeneous network support as per the IBM Networking
Blueprint; the security and directory protocols and usage as per the Open
Software Foundation OSF** Distributed Computing Environment DCE**;
participation in systems management as per the defined set of standard
interfaces and protocols; and, for object-oriented implementations, adherence to
the Object Management Group Common Object Request Broker Architecture
(OMG CORBA).

It is a structure that enables a network of operating systems to function as a unit,
as a network operating system comprising multiple systems separated from each
other and connected by a communication network.

Just as an operating system provides the management of resources on a single
system, a network operating system provides for the management across the
network of the same types of resources: files, databases, printers, transactions,
software packages, documents and jobs.

It promotes the integration of multivendor systems and simplifies the more
cumbersome aspects of distributed computing. This integration improves the
single system image that the end user and application developer perceive for
the distributed system.

The Open Blueprint describes technical attributes and characteristics of
supporting software, reflects desirable functional modularity, provides software
principles and guidelines, and specifies important boundaries and interfaces.

Much of the function described in the Open Blueprint exists and is being
developed and used in product form. Over time, the Open Blueprint will be
expanded with additional function, and additional product implementations will
be provided. However, it expresses technical direction only. None of it should
be construed as a committment to deliver any of the functions described, nor
should any inference to that effect be made.

In summary, the Open Blueprint is a structure that will help IBM and others
deliver integrated, interoperable products and solutions.

Chapter 3. Distributed Data Processing Technology 51

3.3.4 Open Blueprint Concepts and Resource Managers
This section describes concepts and terminology that apply to open,
heterogeneous, distributed systems and, in particular, to the IBM* Open
Blueprint.

The dictionary definition of a system is “a regularly interacting or interdependent
group of items forming a unified whole,” or “an organization forming a network,
especially for distributing something or serving a common purpose.” In
computing, the term is appropriate at many levels.

In this document, the term system is frequently used for smaller computing
environments, such as single CPUs, CECs, multiprocessors, operating system
images, clusters, and Sysplex*es.

3.3.4.1 Resource Manager Concepts
The resource manager is the principal structuring element of the Open Blueprint.
Resource management is a logical concept. Thus, a specific resource manager
should be though of as a set of programs that maintains the state of a set of
resources. Resource managers provide a set of formal interfaces through which
operations may be performed on their resources. Resource managers support
distribution with separable support for client and server functions. Only resource
managers can directly access the resources they control; that is, they
encapsulate access to their resources. Resource managers request services
from other resource managers through their functional interfaces. In order to
achieve proper integration, resource managers use Open Blueprint networking,
security and directory services, and object management services.

Figure 21. Resource Manager Characteristics

52 Computing Technology Reference

Resources may be distributed and replicated across many systems in the
network. A file system, print server, and database manager are examples of
typical resource managers.

Figure 21 on page 52 depicts a schematic representation of a resource
manager.

Resource Manager Interfaces: Resource managers provide programming
interfaces for the operation, control, and administration of their resources.
Programming interfaces support all required resource manager capabilities; no
operations require human intervention.

Functional interfaces are either application programming interfaces or protocol
boundaries.

• Application Programming Interfaces (APIs) are well-defined and portable
interfaces that are used by user and vendor-written application programs,
and by other resource managers. In the last case, these functional
interfaces are sometimes called system programming interfaces.

• Protocol boundaries are well-defined interfaces for which only the operations
and information passed in the interface are defined, and in which the syntax
is implementation-dependent. Protocol boundaries are generally supported
where performance demands override portability requirements.

Figure 22. Resource Manager Interface Frameworks

In the Open Blueprint, the resource manager interfaces can be structured as a
framework. Frameworks provide a mapping from the functional interface (an API
or protocol boundary) to a service provider interface. The framework permits a
particular implementation of a resource manager to be replaced without changes
to the program that uses it. Frameworks support heterogeneity by allowing
different implementations of resource managers that support the same service

Chapter 3. Distributed Data Processing Technology 53

provider interface to exist at the same time. Figure 22 depicts a schematic
representation of a resource manager interface framework.

The service provider interface defined by a framework should be a distributed
interface so that the service providers can be in different systems than the
requesters. This makes it possible to support configurations where a minimum
amount of function is required on a small, lightweight hardware platform.

Currently, resource manager frameworks are based on traditional procedural
interfaces, but they will evolve over time into object frameworks. The evolution
of these object frameworks will be consistent with the emerging industry
standards, including those from the Object Management Group (OMG).

Resource Managers and Systems Management: Resource managers support
management functions by:

• Defining their management functions and externalizing those functions
through the management interface, so an external entity can monitor and
control their function

• Exploiting the common management services of systems management.

In the management structure, the resources managed by a resource manager
are managed objects. The resource manager, itself, is a managed object.
Management operations on this object include: resource manager initialization
and termination, restart, work prioritization and control, accounting, problem
determination, tracing, configuration management, and performance tuning.

Some of these operations require information that does not flow through the
management interface, such as journals, logs, trace files, and configuration
tables, but may use other systems management services. See section 3.4.5,
“Systems Management Services” on page 90 for more information.

Resource Manager Distribution Support: A resource manager that operates in a
single system is a local resource manager. A distributed resource manager
operates across multiple systems. Distributed resource managers include parts
that support the interface that requesters use, called the client parts, and parts
that perform functions on resources, called the server parts.

The client program may do some of the processing of the request (for example,
validation), and is responsible for determining what instance of the resource
manager ′s server code should process the request. The client program supports
multiple protocols as needed to deal with a heterogeneous environment.

The client and server communicate through an agreed protocol, using one of the
interprocess communication services or the distributed object management
services supported by the Open Blueprint.

A server program of a resource manager may process a request entirely itself,
or it may transparently access other instances of its server program through a
server-to-server protocol.

It is expected that different implementators could supply the client and server
parts of a resource manager. Thus, functional and systems management
protocols are based on standards. Also, each implementation would use the
fundamental Open Blueprint facilities that enable integration, interoperability,
and a single-system image.

54 Computing Technology Reference

Resource Manager Characteristics: Resource managers typically maintain state
information for requesting applications and other resource managers across
invocation. They must maintain the consistency of the resource state
information with underlying system state information.

Resource managers can access environment state information that represents
their requesters. They may, if suitably authorized, change the environment state
information. Communication resource managers support the distribution of the
environment state information by passing it between systems when interprocess
communication occurs.

Resource managers support the serialization and concurrency control needed to
allow multiple requesters to use their resources. This may require
multithreading within the resource manager.

Resource managers manage the integrity, consistency, and reliability of their
resources, including recovery from physical and logical damage. Recovery from
logical damage involves coordination and synchronization with other resource
managers through the use of transaction managers.

Resource managers employ the necessary security mechanism to protect
resources and information from unauthorized use or unintended disclosure. The
access control resource manager provides this function based on information
provided by the identification and authentication resource manager. It is the
responsibility of the resource manager that owns the resource to determine
when the check is to be performed, and the granularity of the resource and
operation to which the check applies.

A resource manager ′s responsibility for problem determination includes
detection of failures and capture of relevant failure data when a failure first
occurs.

Resource Manager Relationships: Resource managers typically depend on
other resource managers for the provision of services. There are two types of
relationships between resource managers:

• Those that are dictated by the structure because they have structural
significance.

For example, resource managers are required to depend on the directory to
present a single namespace to the user, and on the transaction manager to
present a single scope for a logical unit of work.

• Those that are an implementation convenience and are of no structural
significance.

For example, a particular product implementation of the directory may
choose to store its information using the relational database resource
manager. This is transparent to the rest of the distributed system.

Chapter 3. Distributed Data Processing Technology 55

3.3.4.2 Protocol Layering and Gateways
Each program in a pair of programs that work together must have some
understanding of how the other program operates. That is, they must define the
syntax and semantics of the parameters and responses passed between them.
This definition and its encoding is called protocol.2

Protocols are typically nested or contained within each other. For example, the
functional protocol used between two arbitrary resource managers is nested
inside the communication protocol supported by the communication services
they have chosen to use. Likewise, the communication services protocols are
supported on the transport protocols that are supported by the network services
resource managers. Figure 23 illustrates the protocol layering and the need for
the protocols to match at each layer.

Figure 23. Protocol Layers

Normally, when two components communicate, they must use common protocol.
Sometimes, a gateway is used to support existing programs that provide similar
function but do not use a common protocol. Gateways support this
interconnection by converting or translating the protocol of each program into
the one expected by the other. While gateways can be implemented at any
level, a common gateway usage is at the network services level to allow
communication across heterogeneous transport stacks. This is shown in
Figure 24 on page 57. Gateways are a good way to accommodate
heterogeneity, but they are not simple and can be expensive. The system that
provides the gateway must include both of the transport stacks and the code to
do the conversions.

2 The term protocol in this document refers to the common architecture usage of formats and protocols (FAPs) for the encoding
(formats) and the way the encoding is used (protocols).

56 Computing Technology Reference

Figure 24. Role of a Transport Gateway

3.3.4.3 Platforms
An operating system and a set of resource managers constitute a platform that
is part of the distributed system. Platforms can be configured in many different
ways. The Open Blueprint does not demand that any particular set of resource
managers be available, beyond that required by technical prerequisites. We will
examine a number of IBM* platforms in section Chapter 6, “IBM Software
Platforms” on page 135.

Packaging and licensing requirements may limit the configuration flexibility, but
the following items influence the definition of platforms:

Prerequisite Relationships: Every system in the distributed system must have
network services with at least one network driver. For every system it wishes to
communicate with, the system must share a common driver type, or share a
common driver type with another system that contains a transport gateway to
the desired end point.

The communications resource managers have a prerequisite of a transport
network resource manager. They use the directory client and the security client,
which depend on the time client. If each of these uses RPC to communicate with
their respective servers, directory, security, time, and RPC would be a
corequisite set.

The database, file, print, and transaction resource managers have prerequisites
of either the conversation resource manager or RPC. Object-oriented resource
manager implementations require the object management resource manager.

Chapter 3. Distributed Data Processing Technology 57

Client Platforms: Depending upon application support requirements, systems
can be configured to contain primarily the client parts of distributed resource
managers. This would be a typical configuration for an end-user workstation.
The framework for resource managers used by applications must be on the
same platform as the applications. Smaller systems, like mobile computers or
personal digital assistants (PDAs), could be configured to contain only a few
resource manager frameworks and requisite communications support.

Server Platforms: Some platforms in the distributed system are likely to be
configured as specialized servers. Only the server part of a specific resource
manager, such as the file resource manager, together with the client parts of the
resource managers it depends upon, would be present. For an Open Blueprint
distributed system to be functional, the server parts of certain critical resource
managers (like directory, security, and time) must be accessible somewhere in
the network.

Platform Integrity: The distributed system platforms provide integrity when
content control is maintained, that is, as long as content control of the systems is
exercised by some authority to preclude unauthorized tampering. Users will be
precluded from gaining a level of privilege beyond that specifically granted
through security administration. This is not necessarily an easy job. Although it
is desirable to offer autonomy to workstations that have hardware sufficient to
guarantee integrity, it is impractical to require all workstations in the distributed
system to have such hardware, particularly given the installed base of personal
computers, most of which lack sufficient hardware. Therefore, a system installed
on such hardware is content-controlled only through customer procedures.

Existence of viruses on personal computers is ample evidence of the inadequacy
of such procedures. This leads to the requirement to support untrustworthy
workstations, which does not reduce the exposure on the workstation, but
reduces the exposure of the rest of the distributed system to the risks on the
workstation. It is an example of the requirement that resources on secure
systems must not be exposed by exposures in other systems. The IBM*
distributed system platforms support IBM*′s system integrity guidelines.

Structure for Heterogeneity: The Open Blueprint supports a heterogenous
environment. It is a structure that divides system functions into distinct
components. Each component is required to handle any diversity applicable to
its function. Component interfaces are frameworks that are opaque to the
variability inside the component. Each resource manager is defined so that it
can support code implementing several protocols that achieve essentially the
same function.

The interfaces are also a binding point. A binding mechanism is needed to
select the appropriate implementation, depending on the actual circumstance of
the interoperation.The directory plays a key role in determining the correct
implementations to be bound together. The process for selecting
implementations is open, in that the additional implementations to support new
protocols are possible by third parties.

These interface frameworks are the key elements of the structure′s
heterogeneity support. Figure 25 on page 59 emphasizes the support for
multiple protocols.

Using such techniques, selection of a single specific protocol for a resource
manager, such as the selection of OSF** protocols, becomes only a decision on

58 Computing Technology Reference

staging and investment priority. It does not become a commitment to
interoperation solely over that single protocol. It does not require universal
acceptance of that standard for the system to be successful in the open,
heterogeneous, distributed environment.

Figure 25. Structure to Support Mult iple Protocols

3.4 Resource Manager Elements
The following sections describe the Open Blueprint resource managers as
shown in Figure 20 on page 50. References are also made to technologies,
models, and standards described in the Open Blueprint.

3.4.1 Network Services
Communications and networking are at the heart of the infrastructure for a
distributed system. In the more homogeneous world of the 1970s and early
1980s, the communication requirements drove the structure of the
application-enabling services and subsystems. This typically resulted in tying
the enabling services and subsystems to particular communication structures.

In today′s world of heterogeneous, distributed computing, the higher-level
services and resource managers of the distributed system must support multiple
operating system platforms and a variety of networking environments. At the
same time, the higher level resource managers need program-to-program
communication services that are suitable for their particular distribution model.
However, they cannot afford to be tied to specific networking protocols or data
link protocols. This led to the structural separation of communication services
and other transport users from network services, as shown in Figure 20 on
page 50.

Chapter 3. Distributed Data Processing Technology 59

Figure 26. Network Services in the Open Blueprint

In 1992, IBM introduced the Networking Blueprint, its road map for networking in
open, distributed systems, which focuses on the networking services, distributed
services, and systems management portions of the Open Blueprint. The
Networking Blueprint recognizes the need for structurally unifying network
services by providing a common view of transport semantics, to make
higher-level distributed systems services and application enabling services
independent of the underlying transport network. This leads to the structure
shown in Figure 26, in which network services consists of common transport
semantics, transport network services, and subnetworking services.

3.4.1.1 Common Transport Semantics
Common transport semantics (CTS) insulates the higher-level services from the
underlying transport network (TN) by providing a common view of transport
protocols. This common view, coupled with a standard set of compensation
mechanisms, enables all higher-level services to be transport-independent, so
that different transport network drivers can be plugged in under a common
implementation of those services.

Using common transport semantics also enables the integration of networks with
different protocols through transport gateways (see section 3.3.4.2, “Protocol
Layering and Gateways” on page 56). As shown in Figure 27 on page 61,
gateways provide compensation logic, where needed, to account for differences
in the capabilities of the underlying transport network. For example, this enables
the interoperation of client workstations without regard to which LAN media
protocol (such as Token Ring or Ethernet**) or which LAN transport protocol
(such as IPX, NetBIOS, SNA, or TCP/IP) is being used on the particular
workstation.

60 Computing Technology Reference

Figure 27. Multiprotocol Transport Gateway

The transport layer protocol boundary (TLPB) defined by the Multiprotocol
Transport Networking (MPTN) architecture and implemented in AnyNet products,
is at the top edge of the common transport semantics. Sockets, CPIC, and RPC
interfaces can access the multiprotocol transport network through the TLPB.

The TLPB protocol boundary enables higher-level communication services (such
as RPC or Conversational) to support multiple transport protocols transparently3.
It also gives applications and higher-level resource managers the choice of
achieving transport independence by using the TLPB directly, where appropriate,
or by using the higher-level communication services.

The X/Open Transport Interface** (XTI**) provides access to SNA/APPC,
NetBIOS, OSI, and TCP/IP, but does not shield applications or services from
network differences. IBM has developed AnyNet products (based on MPTN
architecture) that shield requesters from network differences. IBM has submitted
the MPTN architecture to X/OPEN.

MPTN architecture includes two transport models:

Connection-oriented
The transport system is aware of a series of interchanges
between the transport end-points. It detects and (if possible)
corrects lost, out of sequence, or duplicated packets of data.

The connection-oriented model enables the transport system
to optimize certain elements, and frees the using program

3 This means that the using system may continue to use its native form of network addressing (such as SNA, NetBIOS, or INET)
though the TLPB.

Chapter 3. Distributed Data Processing Technology 61

from having to deal with certain exceptions (such as
detecting out of sequence packets and reordering them).

Connectionless 4 The transport system regards each packet of data as
independent, leaving it to the program using the transport
system to detect and correct lost, out-of-sequence, or
duplicated packets.

The connectionless model enables “one-shot”
communication without the overhead of connection setup. It
may enable the using program to combine the detection of
packet sequence errors with more efficient correction
semantics than those which could be applied within the
transport system. It also permits other delivery semantics,
such as multicast (sending a packet to many receivers).

The difference between these models is not transparent to the program using
the interface. The program explicitly uses one model or the other. However,
these differences can be masked from applications by their using higher-level
application services or communication services.

3.4.1.2 Transport Network
The Open Blueprint supports a variety of network protocols for transporting
information over both wide area and local area networks. These include:

• Systems Network Architecture/Advanced Peer-to-Peer Networking
(SNA/APPN)

• Transmission Control Protocol/Internet Protocol (TCP/IP)
• Open Systems Interconnection (OSI)
• NetBIOS
• Internet Packet Exchange (IPX).

Each protocol supports interfaces used to access its services. Also included are
various end-to-end network monitoring functions that safeguard data integrity
and help to avoid congestion.

3.4.1.3 Subnetworking
Subnetworking provides a structure to let networks evolve to accommodate and
exploit new high-speed, highly-reliable transmission technologies without
sacrificing business application and network investments.

Subnetworking includes three major types of network connectivity:

• Local Area Network, for example, Ethernet, Token Ring, and FDDI
• Wide Area Network, for example, HDLC, SDLC, X.25, and ISDN
• Channel.

Each type offers a unique set of configurability, connectivity, and performance
options at varying cost levels. This is a rapidly changing field, in which major
extensions to existing technologies are frequent.

In addition, there are a number of rapidly-emerging technologies, such as
wireless communication facilities (which are key to mobile computing),
asynchronous transfer mode (ATM) facilities based on high-speed frame-relay or

4 Another widely-used term is datagram . For example, the Internet datagram is the basic unit of data transfer under the
Internet Protocol, and the fundamental Internet service is the connectionless, packet delivery system.

62 Computing Technology Reference

cell-relay technologies, and very high-speed Synchronous Optical Network
(SONET) technologies.

This structural separation of subnetworking services and transport services
allows customers to separate the choice of transmission technologies from the
choice of networking technologies and protocols, and to optimize each decision
on its own merits.

3.4.2 Distributed System Services
Distributed systems services provide the communication services, object
management services, and distribution services needed by higher-level resource
managers to enable the commonly-used models of client-to-server and
server-to-server distribution.

3.4.2.1 Communication Services
The communication services support three common distribution models. Each
model describes how distributed parts of applications or resource managers
communicate with one another. They are:

• Conversational
• Remote Procedure Call
• Messaging and Queuing.

Conversational Model: In the conversation model, the distributed parts
“converse” with one another and are synchronized in a manner similar to the
speakers in a telephone conversation. This model is based on the
program-to-program communication model defined by SNA APPC, where one
part of a distributed application or resource manager initiates a conversation5

with another, and they then exchange synchronous messages until the user′s
requests are satisfied, at which time the conversation is terminated. Each part
of the distributed application or resource manager is responsible for maintaining
the state of the conversation and abiding by the rules of the conversation
protocol.

The conversational model provides a synchronous service. Applications that use
the conversational model include distributed transaction processing, distributed
relational database access, and bulk data transfer operations involving multiple
transmissions.

ISO has chosen the conversational model as the basis for the OSI Transaction
Processing protocol specification, which is based on the SNA APPC architecture.
X/Open′s Common Programming Interface for Communications (CPI-C) provides
a common interface for the implementation of the conversational model on all
major platforms for access to both LU6.2/APPC conversations and OSI dialogs.

Remote Procedure Call Model: In the RPC model, one part requests a service
from the other part, and awaits a reply. It provides programmers with a familiar
model. Most programming languages support a CALL, and most programmers
are familiar with obtaining services by calling routines from a subroutine library.
The familiar concept of structuring an application into sets of services and users
of the services is extended to a distributed environment.

5 If a session had not been established previously, this must occur first. This involves establishing a logical connection with the
distributed application or resource manager at the target server.

Chapter 3. Distributed Data Processing Technology 63

With RPC, a client program includes a call stub that packages the arguments of
the call, sends them to the server program, and waits for a reply. A companion
server stub unpacks the arguments, invokes the called procedure, packages the
results, and sends a reply back to the client.

RPC has a mechanism for placing (exporting) the definitions of service interfaces
into the directory. It includes a mechanism for operation across machines with
different architectures, which is supported by the stubs. The stubs themselves
are generated by an Interface Definition Language Compiler during the
application development process.

The Open Software Foundation (OSF) chose RPC as the fundamental
communication model for the Distributed Computing Environment (DCE). The
DCE technology for RPC supports connection-oriented and connectionless
transports. Because of the richness of the DCE technology, it was selected as
the basis for RPC services.

The RPC model is synchronous from the point of view of the calling program,
because it must wait until the requested procedure finishes its execution and
returns the results. Applications include engineering and scientific applications
that use RPC to invoke remote, high-performance computing systems, and
applications based on the OSF Distributed File System (DFS). Transactional
processing applications are also being developed based on transactional
extensions to the RPC protocols.

Messaging and Queuing Model: The messaging and queuing model is
characterized by independent execution of the partner programs. The partners
communicate indirectly through message queues, which are analogous to mail
boxes, at the sending and receiving locations. The communicating programs do
not have to be active simultaneously. Messaging and queuing support provides
time-independent communication, with the sender and receiver executing at their
own pace.

The sending application uses the message queue interface (MQI) to place a
message on a queue at the sending system. In the receiving system, the
message is placed on a queue for the receiving application. There can be a
single queue, or separate queues for different types of messages. Multiple
messages (including multiple instances of the same message) can be processed.
After processing, the receiving application can generate a message to be
returned to the sending application or to be forwarded to another application.
Distributed applications may be created by arranging the flow of messages
between serially-reusable message processing programs.

Messaging and queuing provides assured, once-only delivery of messages to the
queues at the receiving system, and can optionally start the target process or
transaction to handle the message. The assured delivery allows work to be
committed by the sender, knowing that the message will be delivered despite
system or network failures during the delivery process. This model is
particularly well-suited to high-volume, networked transactional applications, in
which numerous connections cannot be tolerated.

Selecting a Communication Resource Manager: Although it is likely that almost
any distributed function could be implemented using any of these three
communication models, some applications or resource manager requirements
may fit one style better than the others.

64 Computing Technology Reference

Developers of each application or resource manager must choose among the
models in the context of their own requirements. Some of the criteria for
choosing among the three models are:

• The need for real-time synchronization between the partner programs

• The need to communicate between programs that may not be active
simultaneously (for example, due to different operating schedules)

• The need to control the flow of communication and resource synchronization

• The need to keep the communication flow and resource synchronization
hidden

• The need to communicate, where the calling program is not blocked once
the communication is initiated

• The need for request/reply-based processing, where the calling program is
blocked until it receives a response/reply from the partner program.

Some resource managers may determine that one model is well-suited for
certain functions, but not others, leading to the use of multiple models

Communication Resource Managers Coexistence: Because it is sometimes
necessary for an application or resource manager to use multiple
communication resource managers, they must coexist. Examples are:

• A client that issues requests for different services, one accessed through
RPC and another through conversations

• A server that supports both clients using RPC and clients using
conversations

• A server that is invoked using messaging and queuing, and uses RPC during
performance of the service.

3.4.2.2 Object Management Services
Objects provide a way to create parts of applications by associating data with
the programs required to access and maintain the data. These self-contained
units (objects) afford unique opportunities for development efficiency through
improved flexibility and reuse of the implementation. In a distributed context,
objects are useful units for portability and transparent distribution.

In object technology, basic mechanisms support the actions of a using program
invoking an operation on a target object. These mechanisms support the
operation call in such a manner that a number of technical characteristics of
object technology, such as encapsulation, inheritance, and polymorphism, are
supported.

The object manager incorporates IBM′s System Object Model (SOM) and related
distributed SOM technologies6 that address the inherent interoperability
problems of objects. Since each object-oriented language has a unique set of
object characteristics or a unique object model, it has not been possible to write
parts of an application in one language (C+ +) and use these parts from another
language (Smalltalk**). Different compiler implementers for the same language
(C+ +) have implemented different foundation mechanisms. The objects

6 The initial delivered support for this function is named DSOM.

Chapter 3. Distributed Data Processing Technology 65

contained in a binary module compiled by one compiler cannot be used by a
using program compiled by another compiler.

SOM provides a rich, language-neutral object model that supports binary
interfaces defined at the system level and which are independent of a particular
compiler implementation. The SOM object model maps easily into the popular
object-oriented programming languages and the 3GL language base used in
existing systems.

Distributed object support associated with SOM provides a complete
implementation of the industry standard Object Management Group′s Common
Object Request Broker Architecture (CORBA). Because of the seamless
integration, CORBA′s standards apply equally to both local and distributed
objects. The object manager provides CORBA-compliant support for distribution
of objects.

A key advantage of SOM and distributed SOM is location transparency. The
same mechanism that provides access to local objects is extended to access
remote objects. As illustrated in Figure 40 on page 100, the object manager
operates above the common transport semantics in the distributed system so
that this technology is available to configurations involving a variety of
transports. The distribution services are used so that this object service
operates as an integrated part of the overall network. This includes using the
distributed directory to access information about target objects, the security
services to authenticate users, and the transaction manager to synchronize
object operations with other resource requests.

A variety of system and language vendors are working with IBM to provide
implementations across a range of operating system platforms.

3.4.2.3 Distribution Services
Naming: A major goal of the distributed system structure is to achieve a
seamless, single-system image across a heterogeneous collection of systems.
To accomplish this, a consistent approach to naming must be established across
all resources of the distributed system.

Today′s operating systems frequently define one or more namespaces unique to
the system. These namespaces may be defined by operating system convention
or shaped by specific resource managers. In an open, heterogeneous,
distributed environment, the potentially large numbers of resource types and
implementations can create a complex array of naming conventions, with unique
syntax and approaches to context.

Universal Naming: To simplify the tasks of using, administering, and writing
applications in an open, heterogeneous, distributed environment, the Open
Blueprint includes a universal namespace based on the structure implemented
in OSF′s DCE technology. With universal naming, resources of any class, such
as programs, hardware, data, and users, in any location can be referred to by a
name that follows a single set of naming rules.

The universal namespace includes two distinct subnamespaces: the global
namespace and the local, or cell, namespace. Global names use the ISO X.500

66 Computing Technology Reference

or the Internet7 naming standard. Cell names follow the Cell Directory Service
(CDS) naming conventions (untyped) as defined by DCE. Resource names can
be added in either namespace. Cell names refer only to resources within a
single cell. To access resources in a “foreign” cell, the global name of the cell
is combined with the cell-relative name. The global name of the cell can be
either an X.500 or Internet name. Figure 28 shows an example of each of these
universal naming formats.

Universal Naming Using X.500 Global Cell Names

/.../C=US/O=IBM/DIV=CHQ/FUNC=DEVT/PLANNING/PRINTERS/LASER1
|--------------------------------|-----------------|-----|

Global Cell-Relative Printer
Name of Name Name
CellRoot

Universal Naming Using Internet Global Cell Names

/DEVT.CHQ.IBM.COM/PLANNING/PRINTERS/LASER1
|----------------|-----------------|-----|

GLobal Cell-Relative Printer
Name of Name Name
CellRoot

Figure 28. Universal Naming Examples

Over time, new resource managers, APIs, user interfaces, tools, and application
programs will support the universal namespace. Existing system and resource
manager-defined namespaces must, of course, continue to be supported.
Resources may be referenced either by their universal name or through a
resource manager-defined name.

Concatenated Naming: In addition to the disparate syntax and structure of
today′s resource manager namespaces, each is defined within a name (and
usually administrative) scope established by that particular resource manager.
For example, the scope of resource manager names may be limited to a single
instance of the resource manager implementation, a single-system image, a
single user, or a single collection of instances of the resource manager
implementation.

Open Blueprint concatenated naming is an approach to achieving greater
uniformity of these diverse namespaces by “plugging” existing resource
manager unique namespaces into the universal namespace (using a technique
called “junctions”). With concatenated naming, a resource name is formed by
appending a resource manager-specific name to a universal name. Figure 29 on
page 68 shows two examples of concatenated naming.

7 Internet names are handled by the Domain Name Service (DNS), which is a standard TCP/IP application.

Chapter 3. Distributed Data Processing Technology 67

 Concatenated Name for Use with the Print Resource Manager

 /.../C=US/O=IBM/DIV=CHQ/FUNC=DEVT/PLANNING/PRINTERS/SOMD1PRG(PI4079S)
 |--------------------------------|-----------------|----------------|

Global Cell-Relative Print Name
Name of Name in Print resource
CellRoot manager format

 Concatenated Name for Use with the File Resource Manager

 /.../C=US/O=IBM/DIV=CHQ/FUNC=DEVT/PLANNING/PRESENT/CHART4.CGM
 |--------------------------------|----------------|----------------|

Global Cell-Relative File Name
Name of Name in File resource
CellRoot manager format

Figure 29. Concatenated Naming Examples

Concatenated naming, though not as robust a solution as universal naming, can
be accomplished with existing resources at lower cost and less disruption to
current components, while still providing some distinct benefits:

• It provides a common “root” for all resource identification. Without this
concept, specific knowledge of how to find the root of each
resource-manager namespace is needed to locate all resources. With a
common root, it is possible to build universal resource browsers that can
“discover” a resource, even though the browser had no prior knowledge of
its type or existence.

• It establishes a single concept of administrative domain scope and ensures
that all resources have a consistent approach to referring to instances in
“foreign” administrative domains.

Contextual Names: It is not always practical to use fully-qualified universal (or
concatenated) names in every command, interface, or function. From a user
perspective, such references would be time-consuming and error prone. From a
programming perspective, such references require major changes in existing
programming interfaces, and user interfaces. (A universal name can be up to
2048 characters long.)

Hence, it is common practice to use and support contextual names. A contextual
name is a name that represents some portion of a fully-qualified name.
Contextual names are valid only in a context in which the remainder of the
fully-qualified name has been provided.

How context is established is currently an implementation choice of each
resource manager. For existing resource managers, contextual names are often
used to “map” their current programming interfaces to the universal namespace.
For example, some portion of a resource manager-specific name (such as a
device name, disk name, or group name) can be treated as a symbolic reference
to an environment variable that contains the remainder of the fully-qualified
name.

Contextual names also provide a reference scope. For example, a contextual
name may refer to the name of a cell, defaulting to the current cell if not
otherwise specified. Setting this value may implicitly allow all subsequent
operations to be performed within the cell of choice.

68 Computing Technology Reference

Directory: The directory service provides a database of information about
resources in the distributed system. Since resources in the distributed system
follow standard naming conventions, passing these names to the directory
services allow resource manager client functions to learn about the location of a
resource and all information needed to interact with the responsible resource
manager server.

The directory service reduces the need for “side files” and other
statically-defined configuration records. The directory enables a resource
manager server, at the time a resource is created, to export information about
that resource. Hence, client functions can dynamically learn the location of and
how to access a resource, without it having been previously defined as part of
the configuration.

The directory service is based on the DCE directory technology from the Open
Software Foundation. This technology provides truly distributed directory
services. The contents of the directory can be spread across many systems. As
a result, looking up the information associated with a name can involve
interactions with multiple directory servers.

A name is passed to the appropriate directory server to begin the lookup
process. This server inspects consecutive segments of the name hierarchy until
the name has been fully parsed, in which case the directory returns the
associated attribute values. If the directory finds a reference to another
directory server, it passes this referral back to the requesting system, which then
forwards the remainder of the name to the next specified directory server.

With this technique, although there is a single global namespace, no single
directory server needs to contain all of the entries. Furthermore, because the
name is parsed a segment at a time, successive segments can employ unique
syntax, as defined for the server that will handle that name segment. This
feature enables name formation by combining global names with cell names and
even with resource manager-specific names.

The directory service provides two classes of general directory servers, as
defined by DCE: the global directory service (GDS), an X.500-compliant directory
service, and the cell directory service (CDS). Both directory implementations
support distributed naming and server replication for backup or performance
optimization.

CDS uses DCE RPC for all client-to-server protocols (all name resolution
services) and server-to-server protocols (such as replication). GDS uses
communication protocols defined by OSI standards for both client-to-server and
server-to-server protocols. Both CDS and GDS protocols flow across multiple
underlying transports using Common Transport Semantics.

GDS provides a more robust set of name services, including the ability to look
up an entry whose name is not known using attribute values. Both services
allow public reads; however, specific authorization is required to update the
directory.

A single programming interface, X/OPEN Directory Services/X/OPEN Object
Manager (XDS/XOM) allows access to CDS and GDS. Using this API, an
application is not concerned that a name may contain GDS and CDS parts.

Chapter 3. Distributed Data Processing Technology 69

Directory User Interface: The directory service includes a user interface for
storing, retrieving, and searching information in the namespace. This graphical
user interface provides capabilities for “browsing” information stored in GDS,
CDS, or the security registry. In addition, it is an open structure that can be
extended to allow resource manager-specific information to be interpreted and
presented. The resource managers provide the extensions necessary to enable
their unique directory information to be viewed and manipulated by users.

Security: Security is concerned8 with identification and authentication of users,
access control to resources, integrity of information, confidentiality of
information, audit facilities, and management of security information. Security
services are provided by many distributed resource managers.

The identification and authentication resource manager provides identification
and authentication services. The access control resource manager provides
access authorization services. The audit manager allows the specification of
audit activities and collection of audit data. Other services such as information
integrity, information confidentiality (or privacy), and non-repudiation are
provided by other security resource managers.

In security terminology, an entity that requests a service is a principal. There
are various kinds of principals in a system, such as users, servers, and
machines. Each principal is assigned an identity that is managed in the
distributed system such that it is unique across both space and time. Such
identifiers are called universal unique identifiers (UUIDs).9 These unforgeable
identities are not user-friendly and, therefore, principals will also have
user-friendly names such as JOE or WILSON associated with them. In the
distributed system, security decisions are made using UUIDs because
user-friendly names may not be unique. The binding between UUIDs and the
user-friendly names is maintained in the security database, or security registry.

Note: This document uses the term “user” instead of “principal,” except when
the context requires “principal.”

Identification and Authentication: Users can potentially access the distributed
system through many client systems. Authentication can be done through any of
those systems. This process must be done before the use of any system
service.

Authentication of a user proceeds in two steps. Local authentication involves
validation of the user identity by a local identification and authentication
resource manager (where one exists) using traditional approaches. For network
authentication, identity validation with a network identification and authentication
resource manager is also required.

8 The basis of computer security is some level of physical security and software system integrity within any particular
computer. The structure does not address the provision of this security but assumes that it can be provided. The structure
addresses the distributed system issues, including the interoperation of systems having high levels of security with those
having none.

9 The UUID is a computer-oriented identification scheme that provides unique identifiers. UUIDs can be generated efficiently in
many different places in the distributed system without ever having the same value generated more than once. This assumes
that the UUID generator is not tampered with, works correctly, and that the “seed” provided for the generation is properly
defined. The UUID is a 16-byte value that is opaque to all users. The only valid operation on UUIDs is a test for equality.
The 16-byte UUID permits every person in the world to have a computer that generates a UUID every microsecond for three
mill ion years assuming an allocation mechanism that does not waste values.

70 Computing Technology Reference

• Network authentication begins by first locating (using the distributed
directory) the appropriate identification and authentication resource manager
instance that can validate the identity of this user.

• Sufficient identity-based information is then sent to the identification and
authentication resource manager so that it can determine the user′s
credentials. Credentials are the set of information, in addition to the user′s
identity, that can be used by the access control resource manager to make
access decisions. It is expressed as membership of specified groups, such
as administrator, IBM employee, or dept 60510.

Both activities are performed jointly using the same set of identity information
provided by the user. Once local and network authentication are performed
satisfactorily, the user will not have to be authenticated again for the duration of
the session, no matter how many local or remote resource manager services he
or she chooses to access.

Successful completion of local and network authentication is usually referred to
as the equivalent of the successful completion of logon in standalone systems.
Because the distributed system will not require any further identification from the
user, it also possesses the property of single signon, a key user requirement.
Server/machine authentication follows the same pattern, except that server
passwords are stored suitably protected on the system—in a file for example—so
that only the server logon code has access to the data.

When credentials are received from the identification and authentication
resource manager, they are placed in the local security context of the user.
They are available, through the security context management services, to any
resource manager client acting on behalf of the user. When this information is
transmitted to any resource manager, the resource manager can be assured that
it is authentic11.

Secure transmission of the user credentials between nodes is done through one
of the communication resource managers. The integrity of these credentials is
also protected by the communication resource managers during transmission.
Integrity protection enables the recipient resource manager to detect any
possible malicious or unintentional modification of the credentials during
transmission. This is done by embedding credentials in a data structure called a
certificate. Certificates cannot be fabricated by any untrusted party12.

When authorized and requested, the identification and authentication resource
manager can construct certificates that permit a user to pass on his privileges to
a receiving server so that it can gain access to another server. For example, a
user who wants to print a file may pass his or her right to read that file to the
print server, so that the print server can read the file in order to print it. When a
user permits another user to function on its behalf, possibly with some
restrictions, to access a specific service, it is called delegation. When a user

10 The credentials actually contain the UUID of each group, not a string name.

11 If the system is not content-controlled, this information as well as all other information on the system could be compromised.
However, the security system has specific safeguards to preclude user passwords or other crit ical security information from
being captured and reused.

12 If there are no untrusted parties in a position to fabricate the certificate, the certificate can be the user′s identity. When the
path is not completely trusted, cryptographic certif icates are required.

Chapter 3. Distributed Data Processing Technology 71

assumes the credentials of another user entirely with no changes, it is called
impersonation, or forwarding.

Information regarding logon and logoff activity of users will be stored by the
identification and authorization resource managers and may be distributed to
appropriate resource managers. This knowledge is essential for products, such
as office systems, that must be able to deliver mail to an individual.

Another example is the workflow resource manager that may need location
information to distribute pieces of work. This location information cannot be
relied upon because there is no guarantee that the user is still there by the time
the information is used. Resource managers using the information must use the
authentication mechanisms to ensure that the user with whom communication is
established is the one expected.

Access Control: The access control resource manager determines if a user is
allowed to do what he or she is asking to do. It processes the authenticated
identity and credentials against the access control list (ACL) that is maintained
for the resource. The resource manager through which the access attempt is
being made is responsible for initiating an access control check. The access
control function of maintaining access control lists of users or groups of users
with rights to named resources and services is generic.

A syntactically and semantically common form of access control list is defined so
that resources can be moved between systems, along with their access control
information, without changing the security control over them. The common form
of the access control list is the OSF/DCE ACL with the direction being to migrate
to the POSIX ACL when it is defined13. Resource managers use the common
access control resource manager where it is appropriate.

Information Integrity and Confidentiality: Information integrity and information
confidentiality (when information is in storage and during transit) is achieved by
invoking cryptographic services. Information integrity means using matching
encrypted algorithmic results to ensure that the information has not changed.
Information confidentiality means the transformation of the information itself
through encryption so that only those principals that can provide specific keys
can transform the information into a usable form. Non-repudiation guarantees
the identity of the sender of information by using an encrypted “signature.”
Various kinds of cryptographic services are supported. Client code or users are
able to specify the options they want to use, as well as provide appropriate keys
for decryption. Communication resource managers can provide these services
transparently.

Audit Services: Audit services monitor the activities of any principal. These
services are available as APIs and commands. They are available through a
special Graphical User Interface (GUI) from an administrator console as part of
security administration facilities. A set of auditable events is provided from
which the administrator can select appropriate activities to be audited. Audit
reduction tools that integrate audit records from multiple nodes and resource
managers are provided. The audit API is based on extensions to the POSIX
audit APIs.

13 This is the OSF direction also.

72 Computing Technology Reference

Security Administration: A key attribute of security administration is that it can
be performed within administrative scopes that are chosen by the customer.
The distributed system can contain multiple administrative domains with
controlled degrees of trust and delegation among them. Security administration
provides centralized administration by which principals can be registered or
unregistered simultaneously in a number of domains, and/or with a number of
local security resource managers. Security administration includes functions for
authorizing many principals to many resources following well-understood models
of centralized administration. In addition, scaling of the registration and
authorization functions to a large number of domains, as well as resources, is
accomplished through role-based access models. A large number of roles may
be created where each role has access to a large number of resources. Adding
new principals is now achieved by linking principals to specific predefined roles.
Examples of roles are bank tellers, financial credit managers, and loan
managers in a banking system. Enterprise roles may be hierarchically related.
For example, in a large department store, roles may be sales clerks (by
department), department managers, floor managers, store managers, and
regional managers. Security of the security management information is also
critical and is achieved by using the previously discussed mechanisms.

Time: The time resource manager maintains knowledge of the time of day and
synchronizes the system clocks in the distributed system to a limited, but known,
degree of accuracy. Whenever the accuracy of a local clock′s time is beyond
acceptable tolerance, time clients solicit the time from several time servers
within the network. The local clock is then adjusted based on the intersection of
the answers received from the time servers, allowing for processing and network
transmission delays. Time servers synchronize with each other so that
arbitrarily large networks can be synchronized.

Some time servers have access to authoritative quality time providers (such as a
radio signal), so that even networks that are not interconnected are mutually
synchronized14. All quality time providers in the world hold consistent time
values. Therefore, the time resource manager would never attempt to adjust the
clock of a quality time provider, such as the ES/9000* External Time Reference
(ETR).

Adjusting a clock always takes the form of slightly changing its apparent tick
rate, so that the clock gradually comes into synchronization, avoiding local
requesters observing a discontinuity, and, especially, avoiding the appearance of
the clock running backwards. During the period of adjustment, intervals
measured by the local clock would be in error by about one percent.

Time synchronization and adjustment is performed in terms of a time-zone
independent time standard, Universal Coordinated Time, (UTC15). The time
service also maintains knowledge of “human” time, which is adjusted for time
zones and daylight savings. “Human” time exhibits discontinuities and runs
backwards (at changes between daylight-savings and standard times). UTC has
discontinuities only when leap seconds are adjusted. Time values furnished by
humans may be used to determine the offset from UTC to local time, but are
never sufficiently reliable to determine UTC.

14 If they are not synchronized, considerable problems arise if the networks become interconnected.

15 UTC is the accepted (French) acronym replacing the term GMT.

Chapter 3. Distributed Data Processing Technology 73

Transaction Manager: The transaction manager provides synchronization
services so that multiple resource managers can act together to ensure that
resources retain their integrity. The resources managed by each of them
separately remain consistent according to relationships imposed externally,
typically by application programs. The current use of the term transaction
manager differs from earlier usage. This new terminology has been adopted to
accurately reflect technical goals, to accurately reflect the functional parts of the
distributed system structure, and to correlate with standard industry terminology.
Major products, such as Customer Information Control System (CICS*), Encina**,
and Information Management System (IMS), are combinations of the transaction
manager, the transaction monitor, and other functions.

A distinguishing feature of transaction processing is that all the resource
changes associated with a transaction must be committed before the transaction
is complete. If there is a failure during execution of the transaction, all of the
resource changes must be removed. Resources managed in this manner are
called recoverable.

A typical example is a two-part financial application that credits one account and
debits another. If a failure occurs after the credit, but before the debit, the
application would want to back out the credit. The transaction manager interacts
with the resource managers involved in the credit and debit, and ensures that
either both actions complete or that the accounts remain unaltered. If the two
accounts are located in different systems, the transaction managers in each
system cooperate to eliminate any effects of a failed transaction.

Resource managers handle a sequence of operations against their resources
such that the sequence of operations associated with a single transaction either
wholly succeed or wholly fail, and in either case, the state of the resource is
well-defined before and after the transaction. It is said that the resource
operation sequence is atomic and that the integrity of the resource is
maintained. Thus, a particular resource manager is responsible for the integrity
of its resource, which includes recovering from physical or logical damage,
backing out incomplete changes, and retrying operations.

Updates to multiple resources need to appear as a single atomic update called a
logical unit of work. It is this logical unit of work that is the resource managed
by the transaction manager. The transaction manager and resource managers
exchange information about a logical unit of work, using an identifier called the
logical unit of work identifier. A logical unit of work is required either to succeed
wholly (all updates to all resources were applied successfully) or to fail wholly
(none of the updates were applied). Inconsistent states, where some updates
have been applied and some not applied, must not persist.

A single logical unit of work consists of operations on resources managed by
many resource managers, possibly at several different locations. Several
communication models may be used. Services of the transaction manager are
used to coordinate the atomic completion of the distributed logical unit of work.
Resource managers affected by a logical unit of work register their interest with
their local transaction manager and are driven by it through a two-phase commit
protocol. The two-phase commit protocol is used between a transaction
manager and resource managers or other transaction managers to request that
the involved resource managers:

 1. Prepare to commit the changes (this is the first phase, which tests each
resource manager to make sure that a commit can be performed.

74 Computing Technology Reference

 2. Complete the commitment of the changes (this is the second phase).

An instance of the transaction manager operates in each system. When activity
takes place outside a system, the communication resource manager used is
responsible for mediating between the transaction managers in each system.
The transaction manager is not aware of distribution or the type of
communication.

The transaction manager supports three interfaces. These interfaces are
illustrated in Figure 30.

Figure 30. Transaction Manager/Resource Manager Relationships

TX Interface Used between the application program or its transaction monitor
and the transaction manager to indicate when a logical unit of
work begins and ends. In addition, if the logical unit of work is
ending, the application can indicate whether the completion is
correct and the resources can be committed, or the completion
is in error and the resource changes are to be backed-out.

XA Interface Used between the transaction manager and the resource
managers for the interaction needed to allow the transaction
manager to synchronize all of the resource changes.

XA+ Interface Used between the transaction manager and the communication
resource manager to inform a local transaction manager of the
status of a distributed logical unit of work.

The X/Open standard definition of these interfaces is the basis for future
technical work in transaction management, including evolving object-oriented
transaction support. Current transaction management products will continue to
support their existing interfaces. The functions of these current interfaces have
served as a technology base for the X/Open transaction manager support.

Chapter 3. Distributed Data Processing Technology 75

3.4.2.4 Distributed Systems Services Integration
The distributed systems services resource managers work together and with
local operating system services to provide an integrated, single-system image to
using applications and higher-level resource managers. Some aspects of
achieving this integration are as follows:

Directory At the highest level, information stored in the distributed
directory is used by a resource manager to locate the target
server (for the requested resource), select the appropriate
protocol for communication with the target, and bind the
appropriate method or driver code to the logical connection.
The process of resolving the universal name of the resource
returns the network location (network name) and
communication/transport protocol (binding information)
necessary for communication with the target server. This
information (such as LU name, mode name, and TP name) is
then used as input to network services to establish the
appropriate transport connection and binding, and to complete
the binding of the required communication method or driver
code for the logical connection.

Directory User Interface
Used by resource managers to store resource manager specific
information in the directory and enable it to be viewed and
manipulated through the graphical user interface (see
“Directory” on page 69). Alternatively, the resource managers
may use the X/Open Directory Services/X/Open Object Manager
(XDS/XOM) interface to store resource manager specific
information in the directory.

Security Services used to obtain the credentials of the originating user16,
and augment those with credentials for the target server. The
full credentials are then passed to the target server with the
connection request for the target resource and with subsequent
access requests to the target resource, as appropriate, based
on the particular communication resource manager protocol.

Transaction Manager
Interfaces with a communication resource manager whenever
communication with another transaction manager in a remote
system is required to pass synchronization requests for a logical
unit of work. The receiving communication resource manager in
turn interfaces with the transaction manager in the remote
system to pass it the synchronization request17.

Local Operating System Services
Resource managers are dependent on a number of local
operating system services for support of distribution, including
the following:

• Maintaining the identity of the user (referred to as user
context or environment state information) on whose behalf

16 This refers to the user on whose behalf the resource is being accessed. Users’ credentials are established when they signed
on to their workstations and the client security services signed on to the network on their behalf.

17 If the communication resource manager supports a synchronization request protocol, such as the two-phase commit protocol of
LU6.2, a mapping between the transaction manager protocol and the communication resource manager protocol is required.

76 Computing Technology Reference

the work is being done and providing interfaces for
associating the user context with another process or thread
on behalf of the resource manager, as required.

• Providing efficient task scheduling facilities for handling
inbound communication from many clients and servers in
support of resource manager servers of various types.

Applications and resource managers may choose to bypass the communication
services specified by the Open Blueprint and implement their own private
communication model. If this is done, the application or resource manager takes
on the responsibilities described previously to provide an integrated,
single-system image across their using applications and resource managers.

3.4.3 Application Enabling Services

3.4.3.1 Presentation Services
Presentation services provide several types of end-user interface services, all of
which enable distributed processing.

User Interface: The graphical user interface (GUI) has become the focus for the
presentation of information between the network and the user. The goal is to
provide the information in a form that most closely matches objects that users
deal with in the real world. This “look and feel” is accomplished by an
object-oriented user interface in which the user manipulates objects with
“point-and-click” and “drag-and-drop” actions. These objects can represent any
kind of data, including multimedia information.

This user interface is exemplified by IBM′s Common User Access* (CUA*) and
OSF′s Motif**, which are similar in look and feel. IBM has implemented CUA in
the OS/2* Workplace Shell*. The Common Open Software Environment (COSE)
participants model their Common Desktop Environment (CDE) on Motif and CUA.
The CDE is being submitted to X/Open for adoption in the UNIX** environment in
1994.

Presentation Services can be provided either locally or using distributed
techniques. Microsoft Windows and OS/2 Presentation Manager are dominant in
the PC environment and provide local presentation services. At present in the
UNIX** and other environments, the X-windows** system provide presentation
services that can be either local or distributed. Local presentation services can
provide high performance because the video adapter can be connected over a
high-speed local bus directly to the computer processor.

While today there are no common presentation services across desktop
environments, IBM expects Taligent** object frameworks 18 to provide a rich set
of presentation support controls (such as common desktop, window
management, input event management, and multimedia) on all the major
desktop platforms. Because these are object frameworks, they provide
applications with capabilities that can be tailored to meet specific, individual
needs. These object frameworks are the direct users of presentation
management code. Moreover, since these frameworks are implemented using

18 Framework, in this sense, refers to a collection of object classes designed to provide a specific set of functions.

Chapter 3. Distributed Data Processing Technology 77

the Object Manager, the objects that collaborate together on a desktop can be
distributed transparently to other desktop and server systems.

An important aspect of the user interface support is the ability to integrate
application work on the desktop. For example, an action in one application
results in a function occurring in another application, or a change to data in one
application is reflected in the data seen in another. This is accomplished
through shared usage of the object frameworks provided. A specific example of
the usage of an object framework is discussed in “Directory User Interface” on
page 70.

A specific way to accomplish desktop application integration is through
OpenDoc**. OpenDoc is an object framework offering derived from technologies
available from the Component Integration Laboratories** (CIL). CIL is a
consortium that provides a set of open technologies that support the integration
of applications at the user interface. This integration is based on a model of a
document whose parts are supplied by different applications.

OpenDoc describes what a part is, how it is structured, how its data is stored,
how to visualize it, and how to communicate with it. Using OpenDoc,
“containers” are constructed by embedding and linking parts from various
applications into a single composition that has meaning to a user. Applications
using OpenDoc collaborate to produce these compositions through the use of
Object Management Services. OpenDoc technology enables the
“inter-application collaboration” that is a key element of desktop integration.

OpenDoc uses SOM and related distributed technologies as its method for
identifying and locating objects across systems. OpenDoc provides a complete
methodology for development and execution. It offers existing applications a
migration path into the object world without complete redesign.

Print/View: The print and view services are made up of an open, distributed,
print management facility and IBM′s Advanced Function Printing* (AFP*) and
viewing facilities.

The print management services facilitate print submission, print resource
management, and operational tasks in a heterogeneous network environment.
Based on version 2 of the Palladium** print management technology, and
developed jointly at MIT with IBM, Digital**, and Hewlett-Packard**, the
technology conforms to the International Standards Organization (ISO) Document
Printing Application (DPA) standard 10175, and tracks the emerging IEEE POSIX
1003.7.1 standard. Both standards have been endorsed by COSE. Designed
specifically to operate in an open distributed environment, the technology
provides a complete set of end-user functions to submit and control print jobs. It
also provides extensive centralized systems management and operational
functions to manage distributed print resources in this complex environment.

The print management services support industry-standard print data streams,
such as PostScript** and HP** PCL**. When coupled with IBM′s Advanced
Function Printing (AFP) architecture, the result is an industrial-strength,
distributed print solution that includes:

• A high function, device-independent data stream architecture supporting both
printing and viewing of documents without conversion

• A state-of-the-art, bidirectional print protocol (Intelligent Printer Data Stream*
(IPDS*))

78 Computing Technology Reference

• Management of external objects associated with any page or document

• Architected indexing and segmentation of presentation data for viewing and
archiving.

Print: The print resource manager provides high function printing from
anywhere to any printer in the distributed system. It is structured as a client and
two forms of server: a print device supervisor and a print server. The
client-to-server interface uses DCE RPC to deliver large quantities of data, such
as a document to be printed.

Each instance of the print device supervisor manages a single printer and deals
with printing one document at a time.

A print server manages a queue of print jobs that it receives and drives one or
more print device supervisors to print the jobs. The print server exports an
interface for the client to interrogate and manipulate the print queue.

Normally, clients work with a print server, synchronously delivering the
document or the name of the document to be printed. The print server then
takes care of scheduling the actual printing while the client machine proceeds
with other work. The client can use a print device supervisor directly by simply
naming a different logical printer.

The client/server protocol is ISO DPA. Line printer controller and spooler/line
printer daemon (lpr/lpd) input is supported by a function protocol gateway for
inbound print requests. SMB and NCP protocols are supported to access
existing (legacy) print drivers.

View: The View resource manager provides the ability to view, on the
workstation, any printable document based on standard industry formats.
Initially, this support is limited to documents conforming to IBM′s Advanced
Function Presentation* Architecture, MO:DCA. The MO:DCA architecture was
extended to enable the indexing, viewing, and archiving of documents, without
conversion.

Multimedia: Multimedia support allows computer systems to display,
manipulate, control, and retrieve distributed graphics, audio, video, and
animation data. Because multimedia data is digitized, it can also be searched
and manipulated. Multimedia combines the interactivity of a computer with
human modes of communication that makes the computer easy to use. The
multimedia facilities provide an environment in which a heterogeneous set of
multimedia supporting platforms and special-purpose equipment cooperate to
support distributed interactive multimedia applications that process
synchronized, time-based media.

Multimedia tools and applications can include capture and creation, composition
and editing, and the playing of live and stored multimedia data. A key
multimedia application is the support of real-time audio-video conferencing.
Multimedia services can be used in extensions to business applications or
specialized new applications 19.

19 The multimedia resource manager is oriented to support multimedia data in the realm of business applications. The described
support does not support what is typically called video on demand, especially for the home entertainment environment,
including home television set-top boxes and large-scale video serving. However, the distinctions are not always clear. The
two types of solutions will share technology (for example, ATM exploitation) and may share some implementation support.

Chapter 3. Distributed Data Processing Technology 79

System-level multimedia function is fundamentally oriented to the support of the
transmission of time-dependent data, such as audio, video and animation.
Time-dependent (isochronous) data must be transmitted and presented
(“played”) to the end user at a pace sufficient to maintain the usefulness of the
data. For example, if a video was captured at 30 frames per second, it should be
played at the same rate or very close to it. The challenge is to provide the
requisite “real-time” support within the network operating system.

The multimedia resource manager uses presentation management services to
support the playback of multimedia data. Device drivers are used to manage the
specific hardware on which the data is presented, for example, speakers,
displays, or microphones.

Multimedia playback can be standalone (that is, within one system), from a
server based on redirected I/O, or distributed across a network, through the
multimedia distributed resource manager. Systems that provide client
multimedia support to end users typically provide standalone file
system-supported playback, and use file system-supported redirection to support
playback from a file server. The file system may be optimized to provide the
support. The client system will also contain either hardware- or software-based
decompression capabilities.

The multimedia support is oriented to support distributed multimedia (that is,
playback from anywhere in the network), including multiparty audio-video
conferencing. The need to handle very large data streams in real-time with
satisfactory playback performance and synchronization of audio and video data
streams can create stress on many areas in the systems. Thus, multimedia
requires some specific support by the multimedia resource manager:

• Separation of control flow from data flow.

In response to an API request to play multimedia data, the Multimedia
resource manager client uses the directory to find the data. It then
communicates through control flow with its server instance at that location to
set up a data flow path from the source network driver or device driver to the
target device driver at the lowest possible levels of the distributed system.
Once the data flow path is set up, the multimedia data is streamed directly
between the devices involved. In a play situation, the data never enters the
requesting application′s buffers.

• Quality of Service (QoS).

As part of the control flow setup, the multimedia resource manager manages
a commitment process whereby each component along the data flow path is
asked to reserve its applicable resource (such as bandwidth, buffers, or
cycles) to ensure that the multimedia data can be streamed as desired. Only
when all participating components on all the involved nodes can provide the
required levels of service will the data streaming be started.

The multimedia resource manager is object-oriented. Object classes are used to
model multimedia devices and connections. Methods defined for the classes are
used to control the device and network drivers that will do the data streaming.
All communication supporting the set up of data streaming is through the object
manager resource manager.

Multimedia support and its required QoS management depend on file systems,
multiple networking resource managers, and local system services to support

80 Computing Technology Reference

both the resource reservation protocols that will provide end-to-end QoS and the
data streaming of multimedia data.

3.4.3.2 Application Services
Transaction Monitor: Transaction monitor is an industry term for functions that
traditionally were included in IBM′s transaction processing systems, along with
transaction management functions.

The transaction monitor provides an environment for the development and
execution of applications, the transaction programs. The monitor typically
provides an application programming interface and support for efficient
transaction execution. The transaction monitor supports a large number of users
concurrently sharing access to the transaction programs and the resources they
access. Transaction monitors preallocate system and application resources,
such as address spaces, connections to data, and other facilities. The
preallocation allows transaction programs to be scheduled efficiently.

The transaction monitor uses the transaction manager directly, in many cases, to
simplify the application programming implementation of the transaction. The
application can identify or bracket all or portions of its processing to take place
as a logical unit of work (see “Transaction Manager” on page 74). A transaction
monitor also typically provides some application development and system
management support for transaction programs.

The transaction monitor supports distributed transaction application execution. It
uses the directory to find instances of other transaction monitors or specific
resources supported by the transaction monitor. In addition, the transaction
monitor enforces access control over the execution of transaction programs it
manages. Before a user request is scheduled for execution, the monitor checks
the authorization of the user to execute the transaction.

There are presently no formal standards for the transaction monitor application
programming interfaces. The CICS transaction monitor API has been
implemented on all major IBM platforms as well as on several non-IBM
platforms. The IMS transaction monitor API has been implemented on a variety
of platforms supporting applications associated with mainframe systems.

Workflow Manager: Workflow management consists of a set of functions that
help to define, execute, manage, and reengineer business processes across a
heterogeneous system environment. Business processes can be quite diverse,
such as contracting for a purchase or processing a mortgage loan application.
They can also include support activities, such as application development or
installing software updates. The workflow manager is a driver of complex
applications. It is a coordinating agent initiating the execution of work by people,
and the execution of programs in multiple, distributed workflow-managed
processes.

In many companies, valuable process definitions can be buried deep within the
logic of application programs. Changing a process means changing application
programs, which can be time consuming and expensive. Workflow management
makes application programs serve processes by separating the process
definition from the applications performing the process. It helps organizations
design processes, modify them more easily, and execute them more efficiently.
An organization′s processes are an important asset, and companies in control of
their processes have a definite competitive advantage.

Chapter 3. Distributed Data Processing Technology 81

The workflow resource manager contains components to support the
reengineering of business processes through process model definition and
documentation tools, as well as to control and facilitate the execution of those
processes in open and distributed environments.

The workflow manager client function includes support for:

• Process setup and administration:

− Process definition to capture and document work flows and test and
analyze their execution before they are used

− Administrative operations to manage workflow execution

− Registration and configuration services

− Post-execution analysis of logged measurement data.

• Process execution:

− Work list handling, including support for end-user applications

− User-specified workflow client applications.

The workflow manager server function includes support for:

• Management of all process models and instance state data
• Invocation and monitoring of function that is not driven by the end user
• Coordination of the state of multiple instances of multiple processes.

Figure 31. Workflow Manager Structure

The workflow resource manager exploits the services of the other resource
managers:

• Database and File, for access to databases, files, forms, and images

• Directory, to locate people, applications and configurations

82 Computing Technology Reference

• Security, for identification and authentication, authorization, and access
control

• Communication resource managers for all client-to-server and
server-to-server communications.

IBM is a member of the newly formed Workflow Management Coalition whose
goal is to foster interoperability among workflow products. The coalition will
address application programming interfaces for access to workflow management
services as well as formats and protocols for communication among workflow
services.

Mail: Electronic mail is viewed not only as a mechanism for users to exchange
text messages but as a high-level service that other applications can use to send
all types of materials to end users or other application programs. Applications
in the distributed system can use electronic mail to transmit messages in many
different forms. In addition to the interchange of unformatted text messages, the
electronic mail service supports transmission of:

• Formatted documents
• Unstructured data and files
• Programs
• Graphics
• Images
• Video, audio, and other multimedia data.

Mail-enabled applications will use electronic mail service for many purposes.
Some examples include:

• Electronic bulletin boards, conferences, and forums
• Interorganization business communication and transactions, including EDI
• Group scheduling and calendar systems
• Electronic publishing and distribution
• Electronic forms routing and workflow applications.

Electronic mail services have the following characteristics:

• Electronic mail services are completely asynchronous and are driven entirely
by the senders of messages. As long as an application can connect to the
electronic mail service, it can enter a message into the system regardless of
whether the receiving application is presently active in the distributed
system and even if the electronic mail service used by the receiving
application is presently unavailable.

• The electronic mail service is a many-to-many, or multipoint, system in
which any enabled application can direct messages to any other addressable
recipient or recipients without any prior explicit agreement or protocol. If the
electronic mail address of a recipient (application or end user) is known,
electronic mail messages can be sent to it.

• The electronic mail system is completely transparent to the data it sends.
Once the electronic mail envelope is addressed correctly, the electronic mail
system delivers the content of the message to the recipient without
depending on or disturbing the message′s content. After the receiver
retrieves the message, the ability to understand and process the message is
a function of that application.

Figure 32 on page 84 depicts the distributed system model for electronic mail.
Electronic mail-enabled applications use an electronic mail agent as their

Chapter 3. Distributed Data Processing Technology 83

interface to the electronic mail service. This electronic mail agent in turn
communicates with one or more electronic mail servers to store, route, and send
messages. The electronic mail servers in turn communicate to form a
store-and-forward network within the distributed system. At the receiving end,
the messages are retained by a message store and can be retrieved by
applications through their local electronic mail agent.

Figure 32. Electronic Mai l Model

Presently, there are several open interface standard APIs that have become
popular for application access to electronic mail services. Several companies,
including IBM, have sponsored a group called the Vendor Independent
Messaging consortium that has developed a standard application interface to
electronic mail services called Vendor-Independent Messaging (VIM). VIM is
intended to be a multiplatform standard that can be implemented by a variety of
products running in different environments. Other standards also provide similar
(basic) interfaces to electronic mail functions. Most of these standards are being
extended to incorporate more sophisticated services. The Electronic Messaging
Vendors Association (EMA) and the X/Open API Association (XAPIA) have
defined a set of Common Messaging Calls (CMC). CMC is a commonly
mappable subset of several of these definitions that electronic mail-enabled
applications can use to access services that are provided in the implementations
that support one of these standards.

Electronic mail agents should permit electronic mail-enabled applications to use
any of the existing CMC interfaces. Additionally, IBM is working with its vendor
partners and XAPIA to extend the open definition of CMC to encompass some of
the more advanced electronic mail functions.

These electronic mail agents communicate with one or more electronic mail
servers using the common transport semantics.

84 Computing Technology Reference

In addition to the interfaces that are used by applications to access electronic
mail, there is a set of function protocols, known as electronic mail message
transfer protocols, that is widely used in today′s networks. The Internet TCP/IP
protocol supports a SENDMAIL service and Simple Mail Transfer Protocol
(SMTP). Open Systems Interconnect (OSI) systems support the X.400 messaging
protocol. Additionally, value added network providers, like AT&T**, MCI**, and
Compu Serve** support their own protocols and supply gateways to support
X.400 or SMTP. IBM products within the Systems Network Architecture support a
store-and-forward distribution system called SNA Distribution Services (SNADS).
Novell** NetWare** provides a Message Handling Service (MHS) that is widely
used in DOS** systems for electronic mail. Most electronic mail vendors and
network providers have recognized the need to connect to open systems
protocols and at least provide gateway support from their own transfer protocols
to X.400 and SMTP. In the Open Blueprint, electronic mail servers will support
standard X.400, SMTP, and SNADS protocols directly and deliver access to other
important proprietary message transfer standards through gateways.

Electronic mail agents and servers require the services of other resource
managers. Communication services are used to connect agents to servers and
to support server-to-server communication. Directory and security services are
used to establish and authenticate client-to-agent, agent-to-server, and
server-to-server interactions.

Mail-enabled applications can access an electronic mail address book through
their electronic mail agents to determine where and how to send messages to
particular system users or applications. Electronic mail-enabled applications will
use the presentation and object management services to integrate electronic
mail objects with other applications on the common desktop.

Other: The structure we are discussing is still evolving; other application
services may add additional functions in the future. In addition, there are other
platform-specific application services that will be discussed in the Chapter 6,
“IBM Software Platforms” on page 135.

3.4.3.3 Data Access Services
File: The file resource manager provides access to byte-stream and record files
throughout the distributed system, in the image of a single file system. Files are
uniquely nameable through the hierarchic global naming conventions, and each
local file system implementation will integrate access to its files through the
distributed directory name resolution process and access control service.

File APIs can be classified as record, byte stream, or transfer.

Record Supports structured data (records, keys, and indexes).

Byte stream Data structures are left to application conventions.

Transfer Specifies how entire files are copied from one system to another.

File APIs are conveyed from file clients to file servers and among file servers
through function protocols defined by specific file system implementations.

Two file protocols are considered primary:

Chapter 3. Distributed Data Processing Technology 85

• DDM20 (Distributed Data Management).

• Distributed File System (DFS21) for file access in terms of byte streams. It
supports a wide variety of semantics including byte stream requests, client
caching, server-to-server caching, and file system administration.

DDM uses conversation protocols; DFS uses RPC.

As there are a large number of file system protocols22 within the open,
heterogeneous environment, the distributed file system is structured to support
multiple protocols. Any file is accessible through any protocol, subject to the
semantic limitations of the protocol.

Figure 33. Support for the Heterogeneous File Environment

This is illustrated in Figure 33. The structure includes the possibility that a
different file protocol is used between a client workstation and a file server, from
that used between the file server and another file server. The first file server
can, thus, shield the client from the multiplicity of file protocols, as well as
possibly providing local caching of remote files, or exploiting a larger file server
for archiving or back up of files.

File resource manager implementations integrate with the security services to
exploit the user logon context established at the client (not requiring separate
logon or user enrollment). File protocols support transmission over any
standard networking transport by virtue of using transport-independant
communication resource managers. When file gateways are involved, naming,

20 The DDM architecture supports several classes of fi le semantics including record, byte stream, and transfer. It is also used to
support Distributed Relational Database Architecture* DRDA*.

21 DFS is the OSF/DCE file system protocol.

22 Examples of these are System Message Block (SMB), Network File System (NFS**), and Netware Core Protocol** (NCP**).

86 Computing Technology Reference

location independance, and single signon objectives are maintained on an
end-to-end basis (through the gateway).

Database: Relational database facilities are made available through the
Structured Query Language (SQL) by the relational database (RDB) resource
manager.

The RDB is a distributed resource manager that supports clients on machines
with no local database. RDB servers have a local database and also cooperate
with other RDB servers to satisfy a client′s request. Thus, applications running
on any system in a network have access to relational data residing on any other
system in the network.

RDB resource manager clients use the server name specified by the application
in the ISO SQL CONNECT statement to identify the universal name of the desired
database. The universal name is then used to obtain information about the RDB
resource manager database server from the directory. This information enables
the client to establish communication with the server.

The connection to the RDB resource manager server is made using the user
identity established at initial user logon. Authorization for access to the tables
and views is handled by the RDB resource manager server, using the SQL
GRANT and REVOKE concepts that are part of ISO SQL. The user or group
identity to whom authorization is granted is derived from a universally-named
principal or group. Finally, instances of the RDB resource managers cooperate
with the transaction manager on their local system in order to coordinate
database changes among the various RDB resource managers and with
non-database resources.

Two standard RDB resource manager client-to-server protocols are defined:
International Standards Organization′s Remote Database Access (RDA) protocol
and the more advanced Distributed Relational Database Architecture (DRDA)
protocol. Both are function protocols. RDA flows over OSI transport protocols.
DRDA uses the conversational resource manager and can flow across any
transport network supported by Common Transport Semantics.

While many commercial databases do or will support these protocols for
interoperation with other vendor databases, nearly all use proprietary protocols
between their client and server components.

Figure 34 on page 88 shows the use of a functional protocol gateway to support
heterogeneous, distributed data over any installed, supported transport.
Historically, application developers were forced to implement to a specific
database client. To enable a single application to work with any installed client,
X/Open has defined the SQL Call Level Interface (CLI).

The distributed RDB resource manager also provides support for data replication
management for database information23 to allow the performance optimizations
needed for an application to achieve near local performance in the distributed
system.

23 As defined in IBM’s Information Warehouse* strategy.

Chapter 3. Distributed Data Processing Technology 87

Figure 34. Non-DRDA Access to DRDA Data

Hierarchical: In recognition of the need to access widely-used, existing data
structures and formats, data access services provides interfaces to additional
data types. Communication services may be used as the basis for the
development of distributed capabilities for these interfaces. For example,
Micro Focus** and IBM have developed a distributed capability for DL/1, which
provides a consistent application program interface and remote access to DL/1
across several industry platforms, using the conversational model of
communications.

Object Data Base: Object-oriented database is an emerging technology with no
well-accepted standards in place. The object-oriented database resource
manager stores data that is not regular in structure as is, for example, record or
relational table data. Computer aided design (CAD) data used in many
engineering applications is typical of this type of data, but a growing number of
other applications use non-regular data storage and access. IBM has negotiated
a technology, development, and usage agreement with Object Design, Inc. to use
its object-oriented database management system, ObjectStore**, in the
development of software products.

3.4.4 Application Development Tools
From the perspective of the Open Blueprint structure, the application
development (AD) tools are another class of applications. As such, both
applications and development tools can use the structure′s resource managers
and services. The unique role of the tools is to help developers create and
maintain their own applications.

Tool Diversity and Complexity: The information industry has inherited a great
diversity of tools and skills, for example, COBOL on mainframes, C on UNIX
systems, and some variant of BASIC on PCs. There are several client/server

88 Computing Technology Reference

design models that AD must support. And there are various ways of creating
applications: writing them in third- or fourth-generation languages (either
procedural or object-oriented), generating them from models of data and
processes, and by visual construction or “assembly from parts.”

The facilities of the Open Blueprint structure offer major advantages in dealing
with the complexity of distribution and heterogeneity. Rather than having to
spend time and effort building functions that properly belong in the client/server
infrastructure, applications and tools can use the existing resource managers
and services. In addition to the benefits of enhanced developer productivity and
reduced development time, the applications acquire functionality that is
well-tested, fully-functional, and robust. Because the capabilities are based on
established standards, the application components are highly portable and can
easily interoperate with other application components developed separately.

Tool Directions: Application development tool sets are organized around
complete AD solutions, appropriate for the particular development community
that they serve. These AD tool sets support workstations and servers as the
primary environment for AD.

Some AD solutions, especially those targeted to professional developers of
enterprise business critical applications, are language-centered. These include
Smalltalk** and C+ + development facilities, particularly for the workstation. In
the near future, client/server solutions centered around COBOL should be
available.

In other AD solutions, languages play a less central role, for example, those that
offer visual construction from predefined parts or model-driven generation of
distributed applications.

Both include a set of tools and one or more language processors. The
distinction is in which development capability is emphasized to the user.

Indeed, there is a range of AD solutions, with tradeoffs among a number of
factors, such as: productivity, flexibility, performance, and maintainability. The
high-level language solutions offer the most flexibility, given that they can exploit
services at any level in the structure. Generators and visual builders use a
selected set of services that can provide a balance between insulating the
application from changing technology, and optimizing the application for
particular client and server platforms.

Object-Oriented Technology: Use of this technology for application development
provides benefits for developer productivity and quality. In addition, use of the
object-oriented paradigm can result in encapsulated data structures and
associated functions with well-defined interfaces between the objects. These
characteristics make objects particularly well-suited for distributed computing.

IBM is a major participant in this area, as evidenced by the inclusion in the
Distributed Systems Services of the SOM and distributed SOM implementations
of CORBA-compliant object management services. SOM and distributed SOM
are supported in C+ + language solutions as well as object-oriented visual
programming and construction-from-components tools.

In addition to the Application Development Reference which is part of the Library
for Systems Solutions, the International Technical Support Organizations have
written a number of books on designing and developing client/server

Chapter 3. Distributed Data Processing Technology 89

applications on various system platforms. Some recent examples are:
Client/Server Computing: The Design and Coding of a Business Application, and
Client/Server Computing Application Design Guidelines: A Distributed Relational
Data Perspective .

3.4.5 Systems Management Services
Manageability of software and hardware resources is critical to users in the
open, distributed environment. Many enterprises have sophisticated distributed
systems interconnected over complex local and wide area networks. For
example:

• Software must be able to be distributed electronically and installed either
locally or remotely.

• Configuration information for resources should be self-defining and minimize
user involvement.

• Basic error logging and fault isolation functions are required to support
improved and automated problem determination.

• Standard management definitions and protocols should provide for the
collection of error and performance data and the application of changes and
fixes.

• Management facilities for systems administrators are required for both local
and remote resources. Installations should be able to choose either a
centralized or distributed management scheme.

• Standard APIs for management are needed to facilitate interoperability and
application portability.

Figure 35. Systems Management Services Structure

90 Computing Technology Reference

The Open Blueprint includes a structure that allows for resources to be managed
across open, heterogeneous, enterprise-wide, distributed systems. It contains a
systems management component that is based on the SystemView* structure.
The SystemView initiative defines the required management applications,
management services, and structure. The SystemView structure, Open
Blueprint, and Networking Blueprint describe complementary aspects of
capabilities needed to address a heterogeneous enterprise environment:
systems management, systems structure, and networking.

Systems Management Structure: The resource managers use and benefit from
a common set of management services. These services are described as part of
the SystemView disciplines. They are: business management (for example,
asset, license, and security), change management, configuration management,
operations management, performance management, and problem management.
In the Open Blueprint, systems management is shown as an attached component
to emphasize its importance across all resource managers and to indicate that
additional systems management services are needed.

Figure 35 on page 90 illustrates the systems management structure, which is
described in the following sections:

Common Management Services: The common management services are part of
the SystemView* disciplines. They exploit the distribution services (such as
directory and security) and enable all resource managers to use their external
interfaces. The services are related to, and used by, the management
applications of a given discipline. The services perform essential functions, like
data collection. The following common management services provide enhanced
manageability of the distributed enterprise:

• Business management: includes identification and monitoring of system
components through standardized, vital product data structures (such as
hardware serial numbers and manufacturer), as well as license management
of software.

• Change management: is involved in any planned alteration to an information
systems environment, including installation, distribution, planning, and
scheduling functions.

• Configuration management: focuses on making software and hardware
operational, including functions for the application of rules involved with
prerequisites, corequisites, and policy constraints.

• Operations management: is involved with the monitoring of registered
events by “producers” as well as the dispatching of events to “consumers”
of events.

• Performance management: is involved with statistical counters and
tracepoints, including functions for performance probing and performance
tuning.

• Problem management: enables serviceability, including functions for
problem determination and error logging.

Management Protocols: The management protocols supported encompass a
broad range of de jure and de facto standards. These protocols support the
Systems/Network Managers interaction with either the common management
services or other entities managing system resources. The key protocols are
Simple Network Management Protocol (SNMP), Common Management
Information Protocol (CMIP), and Systems Network Architecture/Management

Chapter 3. Distributed Data Processing Technology 91

Services (SNA/MS). Over time, the management protocol supported will also be
provided by the object manager.

Systems/Network Managers: The Systems/Network Managers exploit the data
collected by the common management services to perform analysis and
correlation. They provide systems and network management-specific APIs,
services, and protocols. They allow for management of multiprotocol,
multivendor networks, and enable delivery of integrated management
applications through industry-defined APIs (XMP, SNMP).

The organizing concept in systems/network management is the identification of
managed objects24 which includes the specification of their attributes and
behavior. This provides a concrete description of what is manageable. The how
of management is defined by managing applications that support the
management user and manage the resources of the system.

All systems are managed; that is, they have managed objects. When a system
runs managing applications, it acts in a manager role. The Systems/Network
Managers in the system are sufficient to run managing applications.

Resource managers provide methods that define, create and maintain their
managed objects. They should enable generic managing applications, and
resource manager unique managing applications, where necessary. Requests
from the managing object to the managed object flow through the
Systems/Network Managers.

Functionally, the Systems/Network Managers provide a rich set of services to
manage the data received from a diverse multivendor network of resources,
including devices, LANs, and systems.

To provide for distributed management and increase control of critical resources,
Systems/Network Managers can include system monitoring functions that are
placed appropriately in the network. These monitoring functions collect
management data and allow for customization of information dispatched to the
“manager . ” Trap filtering, threshold processing, and resource utilization are
some of the functions supported.

The Systems/Network Manager functions provide for dynamic network discovery
and visualization of network topology, using presentation services. The
graphical display of multiple protocol topology supports user-definable views
(such as protocol groupings, device groupings, and geography) and layouts.
Continuous monitoring of network status, alerts, and performance thresholds is
supported.

Systems/Network Management Applications: The Systems/Network
management applications support the SystemView* disciplines. They provide
integration, coordination, and distribution of systems management functions.
The management applications exploit the management interfaces (XMP and
SNMP APIs) or other services to obtain the data they need.

Application integration is achieved by using common and integrated
management end-user interfaces and collected management data. Management

24 The OSI X.700 concept of managed objects, representing instances of resources, applies equally to existing resource manager
implementations, as well as new ones designed with object-oriented concepts.

92 Computing Technology Reference

applications use the same end-user interfaces as do other applications. The
presentation services are used to support a common and integrated end-user
interface. The data access services are used to support common and integrated
management data. Separating application logic from end-user interface and
data access ensures that any application provider, not just IBM, can provide new
applications that integrate well into the existing environment.

Coordination of systems and network management for the entire environment is
achieved in two ways:

• Management applications operate on data collected by agents (that is,
resource managers or the services of the Systems/Network Managers) to
manage the resources.

• Management applications can also interact with certain agents using the
management APIs and protocols provided by the Systems/Network
Managers.

Distribution is enabled through the use of distributed systems services, such as
directory and security support. Managing applications and agents can be
located on physically distinct systems. Likewise, managing applications,
management data, and even the management end-user interface can be on
different systems. In each case, factors such as performance and usability need
to be considered to determine placement.

Management Standards: The following industry standards are supported by
Systems/Network Managers:

• The OSI X.700 Management Model

• The SNMP, CMIP, and SNA/MS protocols

• The industry-standard management APIs XMP and SNMP, which enable
portability for management applications.

There are several emerging standards for the common management services:

• POSIX System Administration services (1003.7 group)

• The Desktop Management Task Force (DMTF) Desktop Management
Interface (DMI) APIs for Vital Product Data

• OSF/DME NetLS API for License Management

• X/Open System Management Object Services APIs.

The systems management structure will continue to evolve to support additional
management protocols and APIs as they emerge.

Chapter 3. Distributed Data Processing Technology 93

3.5 Other Efforts
While the Open Blueprint is the vehicle that the authors have selected as a
descriptive model to further develop this discussion of open, distributed systems
and the issues of application distribution, other organizations have also
developed related concepts. To assist the reader in awareness of other
concepts that might well arise in discussion, this section briefly explores some of
them.

The previous detailed discussion of the Open Blueprint will provide the basis for
further development, as explained in the summary following

3.5.1 MUSIC
MUSIC was conceived by the Government Centre for Information Systems in the
U.K., and is presented in Figure 36. The MUSIC framework allows analysis of
applications and systems by categorizing the various functions that are provided.

Figure 36. MUSIC Framework

Although MUSIC can simplify comparison of unlike applications or systems, it is
too general to sustain the level of discussion we intend for this book, and we will
not discuss MUSIC further. Nevertheless, you may find MUSIC to be useful when
examining specific application or system alternatives.

94 Computing Technology Reference

3.5.2 X/OPEN** Distributed Computing Services
The X/OPEN** Distributed Computing Services framework is shown in Figure 37.
The major difference in this figure is the explicit listing of component attributes
in the areas of:

• Availability

• Internationalization

• Manageabil ity

• Security.

Figure 37. X/OPEN** Distributed Computing Services

These attributes apply to any effective distributed system structure. There is
clearly no conflict between the X/OPEN** DCS framework and the figure we are
using. We have elected to organize our discussion around the concept in
Figure 40 on page 100, because we believe that concept is easier to understand.

Chapter 3. Distributed Data Processing Technology 95

3.5.3 X/OPEN** Portability Guide (XPG)
The X/OPEN** Portability Guide has had four versions from 1985 to 1992, adding
more function in each version. They are a recommended set of standards
(including de facto standards) and profiles (options in the standards) which will
assist in portability, as shown in Figure 38.

Since the XPG versions are not intended to describe a system structure, they will
not be discussed further. However, some of the standards they include will be
discussed.

X/OPEN** has also defined a Common Application Environment (CAE). It
describes the application environment which is obtained by following the
X/OPEN** Portability Guides, and is similar to the SAA* picture in Figure 16 on
page 43 (but offers a greater level of detail). We have elected to use the picture
in Figure 40 on page 100 because it makes it easier for us to discuss the
aspects of application and system design. However, there is no conflict with
X/OPEN** CAE.

Figure 38. X/OPEN** Portabil ity Guides (XPG)

96 Computing Technology Reference

3.5.4 Open Software Foundation Distributed Computing Environment
(OSF/DCE**)

OSF** has developed a set of technologies for distributed computing, which it
licenses to interested companies. The key elements of this technology are
shown in Figure 39. DCE** provides distributed application services, such as
Distributed File System; and distributed system services, such as RPC. Although
the DCE** picture does not look exactly like the structure we will use for
discussion, it is clear that DCE** provides key functions of the open distributed
system structure. IBM* and many other system vendors have expressed their
intent to provide DCE** support.

Figure 39. Open Software Foundation (OSF**) Distributed Computing Environment
(DCE**)

Because DCE** addresses only a subset of the system structure, we cannot use
it to organize our entire discussion, but you will see other references to DCE** in
this book.

Chapter 3. Distributed Data Processing Technology 97

3.6 Summary
Having now examined the IBM* Open Blueprint in detail, through the vehicle of
the Open Blueprint Technical Overview (GC23-3808), and reviewed other
structures, it is now necessary to show how the IBM* Open Blueprint structure
will be used as a descriptive framework in this document. A slight adaptation of
the IBM* Open Blueprint figure will be used to assist in the process.

The recent material that has been explored has served as background to the
fundamental objective of this document. This objective, as restated from the
abstract, is to support technical professionals involved in defining solutions to
data processing problems, in multiple configuration environments and multiple
software platforms, including heterogeneous distributed environments.

Before the framework is described we should review some key distribution
concepts which will further assist in acceptance of the framework.

3.6.1 Distribution Concepts Revisited
A distributed system is inherently more complex than a single, stand-alone
system. Making a distributed system practical is a matter of providing a level of
conceptual simplicity to hide physical complexity. At some level, conceptual
simplicity usually means making a physical distinction transparent or invisible to
someone.

There are approaches to distributed systems that provide transparency to the
distinctions between different systems within the distributed system at a very low
level. The single computer image creates the image of a single computer at, or
almost at, the hardware. Programmers can ignore the several real processors,
perhaps to the extent that storage can appear to be shared among processors,
and certainly to the degree that the system can move programs between
processors transparently.

This approach has been possible in environments with considerable
homogeneity, with relatively close coupling, and relatively small numbers of
processors. The approach, however, does not appear to be practical for more
heterogeneous hardware and software and for less closely coupled systems. In
these cases, it is necessary, for practical and efficient operation of the
distributed system, for higher layers of the system to be aware of the distinction
between systems, for example to modify their behavior depending on whether a
resource is local or remote, or to use mechanisms that are native to one system
and different on other systems.

Even so, it is not desirable to show the distinctions to the end user, but rather to
hide the distinction at some level below the end user. Nor is it desirable to
expose all the intricacies of the physical system to a level of software that has to
be aware of only some of them.

Therefore, an appropriate structure provides layers of abstraction, progressively
hiding the complexities of the system, while permitting each element to
efficiently handle those complexities that it must.

For example, an application program may handle distribution explicitly, while
hiding the distribution from its end user. Alternatively, an application program
may execute in a single node, but use programming interfaces to resource
managers that provide transparent access to distributed resources. The

98 Computing Technology Reference

resource manager may provide the transparent access by explicit programming,
or might, itself, take advantage of transparent distributed services.

3.6.2 Local Operating System Services
Local Operating System Services are also key to the descriptive framework.
They are local resource managers and services that support the IBM* Open
Blueprint distributed resource managers. Local resource managers manage
elements such as memory, CPU′s, or devices.

Local Services can include:

• Work management

• Environment state support

• Memory management

• Event handling

• Security context management

• Locking Service

• Accounting

• Tracing

• Journaling

• Language environment

In our discussions, we need to expand on this area because the subject range of
this publication is not only distributed environments but also traditional
environments. Local operating system services will continue to be a key factor
in the development of distributed applications and in all these environments for
several years. This demands a closer examination of local operating system
services than the IBM* Open Blueprint figure represented in Figure 20 on
page 50 permits.

Therefore, in our discussions, we will use a variation of the figure that explicitly
extends the view of local operating system services, as shown in Figure 40 on
page 100. This also makes it easier to discuss existing system components that
were not really designed with distributed processing in mind.

3.6.3 Descriptive Framework
Before we develop our discussion, note that:

• This is not an operating system or processor architecture definition. It is a
framework for discussion.

• The layering is for convenience in understanding.
• Products will evolve to enable the capabilities and options outlined in this

structure.
• A product may provide functions, or an application may request services,

which reside in different layers or in different elements of the same layer.
• We will focus much of our attention on distributed systems, because that is

the direction in which the industry is evolving. We do not mean to imply,
however, that all applications or all systems should be distributed.

• This structure for discussion should be applicable to any system, from IBM*
or from other vendors.

Chapter 3. Distributed Data Processing Technology 99

• The structure organizes a software platform into applications, sets of related
services and resource managers.

Figure 40. Elements of a Software Platform

3.6.3.1 Resource Managers and Services
The resource managers (see section 3.3.4.1, “Resource Manager Concepts” on
page 52 for more on resource managers) are shown as the interfaces they
provide through services as follows:

• Application enabling services

− Presentation services control the end-user interaction with applications.
This includes display, screen management, printing and viewing of
information, and multimedia interaction. All of these modes of
presentation allow for distributing portions of the end-user interface
processing.

− Application services

- Transaction monitors provide an application development and
execution management environment. They typically include a
scheduling function; they interface with data resource managers; and
they provide communication functions to introduce new work into the
system. They manage distributed transactions transparently to the
applications and the end users.

100 Computing Technology Reference

- Workflow manager provides for execution of business processes. It
allows a business process to use application portions that are
distributed, shielding end users, as well as application developers,
from the specifics of the distribution being used.

- Electronic mail is a requirement of nearly all businesses. It can also
serve as a base for higher-level applications.

- Other platform dependent services are possible for future technology
evolution.

− Data access services control access to data in files, data bases
(relational or other), and object oriented formats. They shield
applications and other distributed resource managers from explicit
awareness of the location of data.

Application enabling services make use of communications services to
achieve distribution in a number of ways, called distribution models, which
vary according to which element is aware of the distribution and which
communications model is used.

• Distributed system services

Distributed system services are an additional set of distributed resource
managers that provide communication services and models for the
relationship between communicating programs.

Each program of a pair of programs that work together must have some
understanding of the operation of the other. This understanding, and its
encoding, is called the protocol. Thus, two programs must have a common
protocol to be able to work together.

The following distributed system services are defined:

− Communication services allow distributed application portions to interact
in three styles, or models. Conversational is similar to a human
telephone conversation; RPC (Remote Procedure Call) is similar to
calling an application sub-routine; and Messaging Queuing is similar to
mailing a letter.

− Object management services provide transparent access of local and
remote objects. Data attributes and methods of any specific object are
found at a single location.

− Distribution services include:

- Directory functions resolve actual location information, which
simplifies application development, and allow changes without
impact to programmers or end users.

- Security functions provide for identifying end users and portions of
applications, ensuring only appropriate access to resources, such as
data, is allowed.

- Time services maintain consistent time information across distributed
systems, allowing for such things as time-based data recovery.

- Transaction managers protect the integrity of data. They provide for
backup and recovery, and offer services that synchronize updates to
multiple resources as a single unit of work. Because there may be
several transaction managers in a distributed environment, a 2-phase
commit process synchronizes all the distributed pieces of a specific
unit of work.

Chapter 3. Distributed Data Processing Technology 101

• Network services

Network services are an additional set of distributed resource managers that
transport data from an end-point in one system to an end-point in another.
All the transport mechanisms supported by the network services are
accessible through a transport independent interface. A system can have
more than one transport independent interface, but all transport networks
are accessible through each of the interfaces. The choice of the transport
independent interface used by a requester is not detectable outside the
system and, therefore, has no effect on interoperation.

Network services support a wide range of transport protocols, such as SNA,
TCP/IP, OSI, and NetBIOS. They provide common transportation semantics,
shielding higher level services and applications from the specific protocol
being used to connect two parts of a distributed system.

• Local operating system services

Local operating system services control resources, such as processor time
and storage; data storage on disk, diskette, tape, and so on; and displays
(screens) that are attached to that specific system. Many operating system
services fall into this category. They interact with distributed resource
managers at all levels of the structure.

Local operating system services include an environment state resource
manager that maintains information about the environment in which a
program is executing, such as the name of the user on whose behalf the
work is being done.

• Systems management

Systems management is a crucial element of any distributed system and
interacts with all the elements of the structure.

3.6.4 Conclusion
In the remainder of this document, this framework, as shown in Figure 40 on
page 100, will be used to organize the discussion. In Chapter 6, “IBM Software
Platforms” on page 135, the same structure will be used to discuss a number of
IBM* operating system platforms. These discussions will work from the bottom
up. As we have seen, there are multiple pictures and organizational techniques
that can be used to discuss distributed systems. Many of these are remarkably
similar.

The framework and its relationship to the Open Blueprint provide a critical link
with current structural thinking.

102 Computing Technology Reference

Chapter 4. Configuration Environments

The total computing environment in any large enterprise has become quite
complex during the last decade, and this complexity continues to increase.
Defining functional subsets, providing they correspond to realistic modes of
usage, allows us to simplify planning and design work. System solutions, and
especially distributed system solutions, tend to be associated with particular
configuration environments, some of which are shown in Figure 41.

This section describes one categorization method we have found useful.

The method is built around the way terminals, workstations, and systems are
used by a particular application. The term system is used here to indicate any
hardware equipment capable of executing applications and system software.

Figure 41. Configuration Environments

The categories represent modes of operation rather than physical configurations.
The same hardware might function as a non-programmable terminal
environment for one application and as a LAN environment for another
application. We find that many applications, or major subsets of more complex
applications, are often designed for one of these modes.

Different applications, with a given set of hardware, and with a given degree of
functional distribution, will very likely fall into at least one of the different
categories.

 Copyright IBM Corp. 1994 103

The categories are:

 1. Non-programmable terminal (NPT) environments.

 2. Wide-area network (WAN) environments.

 3. Local-area network (LAN) environments.

 4. Multi-level server environments.

 5. Other interconnected systems and peer-to-peer environments.

The books in The Library for Systems Solutions will generally refer to these
environments when describing their systems solutions.

Except for the NPT environment, where the processing power is available in only
one place, all the other environments have distributed processing power,
allowing distributed systems solutions.

4.1.1.1 Other Approaches
Other ways exist to categorize distributed systems solutions.

As an example, take into consideration the way the functional components of an
application are distributed. If an application is seen as a mixture of presentation
logic, data logic, or business logic, distributed applications might be categorized
as distributed presentation, distributed function, and distributed data
applications. Each category also has the possibility of sub-categories.

This approach to distributed processing is the basis of a model for distribution
used by the Gartner Group.

Distributed applications might also be categorized based on the relationships
between the distributed application components or the style of communications.
With this approach, there are client/server solutions, peer to peer solutions, and
cooperative solutions, just to refer to the most commonly used industry terms.

When multiple levels of distribution are involved, such as in the multi-level
server environment, multiple styles of communication and multiple levels of
functional distribution might coexist in the same application solution.

4.1.1.2 Library for Systems Solutions
The environments used here to categorize system solutions are expected to be
more practical for the purpose of the The Library for Systems Solutions, that is,
to identify the components that provide solutions to specific data processing
problems in specific environments.

Any other categorization method should be easily mappable into the appropriate
environment, if the necessity arises.

4.2 Non-programmable Terminal (NPT) Environments
Non-programmable terminal environments include solutions where the
application uses local or remote terminals as if they were non-programmable
terminals.

With these solutions the processing power is located in only one location or
node, and, as a consequence, all the controls, the management functions, and

104 Computing Technology Reference

the applications processes are also localized in only one place, or to use a
common term, centralized.

Figure 42. Basic Non-programmable Terminals. Simple, or dumb, terminals are the tradit ional instance of a
non-programmable terminal. Minor terminal intelligence, such as setup or customization ability, does not alter the
general classification.

Non-programmable terminals are the most basic forms of computer terminals.
The standard examples are IBM 3270 terminals attached to a mainframe, or
simple ASCII terminals attached to a UNIX** system. Figure 42 illustrates the
simplest forms of this mode.

A non-programmable terminal application is a style of usage and is not
restricted to dumb terminals. Figure 43 illustrates more non-programmable
styles of usage. A personal computer executing a 3270 emulator program is, in
effect, being used in a non-programmable mode. The personal computer might
be coax-connected to its host system, might be on a LAN with a gateway to a
3270-oriented host, or an AS/400* host, or be one of many alternate
configurations. Likewise, a telnet session, in a TCP/IP environment, represents
a more complex instance of a nonprogrammable terminal mode of use.

In each of these cases, the particular application involved is using
non-programmable terminals. The mechanics of connecting the terminals to the
application may be complex -- LAN gateways, telnet, terminal emulators, and so
forth -- but may not be relevant to the application solution.

This same physical environment, as shown in Figure 43, has other modes of use.
The personal computers have their own local applications. There may be a file

Chapter 4. Configuration Environments 105

server on the LAN representing a LAN mode of use, and so forth. The users
switch between these modes of use as they switch applications throughout the
day.

Figure 43. Non-Programmable Terminal Equivalents. Intel l igent systems can be programmed to function as
non-programmable terminals. Such programs are usually called emulators. There are many personal computer
programs, for example, to emulate the IBM 3270 family of terminals. From a design point of view, such systems,
when used with an emulator program, are equivalent to non-programmable terminals.

Planning a distributed solution for an application requires a clear distinction
between the logical user environment for that particular application, and the
physical environment being used.

Categorization is not always easy. Consider the environment shown in
Figure 44. Special-purpose terminals, such as banking terminals, are typically
connected to a local controller, and this controller is connected to an application
host system. The special-purpose terminals may be programmable, but not by
the immediate user, that is, not by the bank tellers, for example. They are,
effectively, fixed-function terminals connected to an intelligent controller. The
connections might be by point-to-point wiring or over a fixed-purpose LAN. For
application planning, we would regard these terminals as non-programmable
terminals. The controller, if it contains any significant amount of variable logic,
is a WAN element, which is discussed later.

Another example of a fixed function terminal is the 3270 gateway, shown in the
same figure. The gateway program is a complex product, but it is probably
transparent to the design of the host application being used from the emulator
sessions in the personal computers.

106 Computing Technology Reference

One common characteristic of non-programmable terminal applications is a
large amount of time, effort, and code devoted to screen formatting and
management. The basic mapping support (BMS) of CICS* is an example of this.
A more striking example is the large amount of code in Microsoft Windows or
IBM OS/2* devoted to the graphics user interface. From the viewpoint of a
personal computer ′s processor, the computer′s display adapter and display
constitute a non-programmable terminal.

4.2.1.1 Other Considerations
Security concerns in this environment tend to focus on good authentication of
users; that is, the focus is on passwords and password control. Communication
security is often ignored. This may be reasonable for leased line, or for direct or
coax connections, but it may not be reasonable for LAN communications.
Current technology is moving many physical terminals, in the guise of terminal
emulators on various workstations, to LANs, but without considering the security
implications of this change. LANs have a unique security exposure in that every
workstation on the LAN can potentially monitor all the data traffic on the LAN.

Administration is completely centralized for this environment. User
administration is usually separate from communications and terminal
administration.

Figure 44. Non-Programmable and Fixed Function Terminals. A complex connection environment, possibly
involving LANs, WANs, gateways, modems, and so forth, does not change the design point of non-programmable
terminals. Fixed-function terminals, not changeable or programmable by their users, can fall into the
non-programmable category, even though the terminals were programmed to produce the fixed functions.

Chapter 4. Configuration Environments 107

4.2.1.2 Summary
Non-programmable terminals, excluding emulators on workstations, have one
particularly strong advantage; they represent the simplest user environment.
With appropriate programming, and design, the user might be able to switch on
a terminal and have the application directly available. The user is not required
to own and maintain a local system (a PC DOS system with a 3270 emulator, for
example).

4.3 Wide Area Network (WAN) Environments
This category includes solutions where the application makes use of remote
terminals that have some level of data processing capability.

Any network application involving some form of leased lines can be considered a
wide area network (WAN) environment. This could include, for example, a
bridge linking two LANs, or an IBM 3174 Control Unit connecting IBM 3270-type
terminals to a remote host. This definition of a wide area network is so general
that it is not very useful. It tends to reflect the physical environment, rather than
a mode of design and use.

We will adopt a narrower sense of a wide area network, using one or more of
the following guidelines:

• It is a network application composed of a host and one or more remote,
limited-function controllers connected to the host by leased lines. The

Figure 45. Typical Wide Area Network Environment

108 Computing Technology Reference

Figure 46. Wide Area Network Mail System. Dial-up bul let in boards are a more general case of a WAN system.
A mail system is a specific instance of the more general case, optimized for the single purpose of mail handling.

limited-function controller implies the existence of a master/slave
relationship. Good examples are bank controllers, IBM 3174 Controllers, and
so forth.

• It is a network application requiring explicit use of dial-up functions. An
example would be dial-up electronic mail systems.

• It is a network application depending on switching functions, as opposed to
mere leased channels by a public carrier.

A dividing line between wide area network environments and interconnected
(peer-to-peer) environments can be rather arbitrary, and no real purpose is
served by attempting to create too many definitions. Likewise, the separation
line between fixed-function terminals (usually implemented with a local
controller), and a WAN local controller is arbitrary, and is usually decided by the
nature of the application under consideration.

Figure 45 illustrates typical WAN application environments. A WAN, as the term
is used in this document, contains one or more of the elements shown in the
figure. The local controllers imply a lower-level functionality that is used in a
master-slave relationship with the central system. The public switched system,
whether it is X.25, ISDN, dial-up, or other, may be a central point in a WAN
design. Depending on the application design, either the central system or the
remote systems may initiate the switched connection. A System/390 is shown
here, but the central system could be almost anything -- AS/400*, a UNIX**
system, a large personal computer -- in which the application is designed for a

Chapter 4. Configuration Environments 109

WAN environment. Figure 46 illustrates a completely different type of WAN
application, based on dial-up connections to a simple server. This could be
generalized to dial-up access to any bulletin board type of server, or dial-up
access to systems such as Prodigy or Compuserve. If one considers all the
existing personal computers with dial-up modems, this type of WAN may become
important for many applications.

4.3.1.1 Other Considerations
Security concerns are usually limited to authentication controls. Communication,
with encryption, for example, is usually ignored except for special situations,
such as bank automatic teller machines. In general, both leased lines and the
public switched line network are perceived as being inherently secure enough
for most applications.

There is no dominant programming characteristic for WAN applications. Our
WAN definition is based on a style of communication, not on a style of
programming or terminal management. Our definition assumes some system
intelligence at both ends of a WAN connection, as opposed to a dial-up
non-programmable terminal connection, and is usually a more complex user
environment than that of a simple non-programmable terminal.

Administration of a WAN application or environment is centralized, from the
viewpoint of the WAN application. The dial-up systems in Figure 46, for
example, will each have their own local administration, but the central post office
application will be administered centrally.

4.4 Local Area Network (LAN) Environments.
This category includes solutions where the systems, the workstations and the
personal computers used by the application are connected to form a local area
network.

Compared to WAN environments, and ignoring other substantial elements of
difference, the LAN features shorter distances and higher communication
bandwidth among its elements. Every station in a LAN has its own data
processing capability, and therefore, the application processes in a LAN
environment have the potential to be distributed.

Most of the solutions that exist for the LAN environment assign to some stations
the role of servers of requests for services coming from other stations, or the
clients. Because of its characteristics, a LAN environment is also sometimes
referred to as a client/server environment or a workgroup environment.

The starting point for almost any LAN environment is the simple file server, as
shown in Figure 47. This is offered by products such as the IBM LAN Server, the
Microsoft LAN Manager, the more basic elements of Novell′s Netware**, and so
forth. Although known as file servers, these systems are also print servers and
can usually share other serial devices.

A basic LAN file server is the key element for many PC-based installations. It
provides:

• Common databases for applications.

• The base for specialized shared data applications, such as many electronic
mail post offices.

110 Computing Technology Reference

• Some degree of data security, since logon and authentication is an option of
all file servers.

• Shared application code, greatly simplifying software distribution and
maintenance.

• Centralized point for operational functions, such as regular backup of data.

LAN servers are not limited to simple file server functions. Figure 48 illustrates
some extensions. Novell′s Netware**, for example, allows additions to the
server code to perform other application functions. LAN server products that
extend significantly beyond the simple file/printer server area are often called
network operating systems (NOS). This term, network operating system, can be
ambiguous. It can mean:

• A software system, residing on a base operating system, that provides
operating system-like functions at the network level: IBM′s LAN Server is an
example of this type.

• A self-contained operating system that only provides network functions to
client systems running other operating systems: Novell′s Netware** is an
example of this type.

• A mixture of the previously mentioned systems, functioning both as a base
operating system for a local user and as a provider of network services:
Microsoft ′s Windows NT is an example of this type.

Figure 47. Simple LAN System. The most common simple LAN environment consists of personal computers
using DOS, Windows, or OS/2*, and using a LAN server as a file server. The LAN server is usually dedicated to
this function.

Chapter 4. Configuration Environments 111

4.4.1.1 Other Considerations
Security and user administration tend to be major problems for LAN based
applications and systems. Each node on the LAN may have its own security
system, although the most common node, DOS, normally has no security; and
the servers have their own security, administered separately for each server. In
addition, communication over the LAN has widely-known eavesdropping
exposures. LAN authentication (password submission and verification) methods
can be complex, because in-clear passwords sent over the LAN represent a
significant security exposure. Larger environments often have multiple servers
offering different functions. Different server applications may incorporate
different styles of administration, making general administration more of a
challenge.

There is a tendency to centralize authentication security in more complex LAN
environments. DCE** is the primary instance of this, using Kerberos functions
for a centralized security server. Novell′s NetWare 4.0 addresses part of the
problem in a different way, by automatically linking multiple server directories.

Local Area Network (LAN) wiring is rapidly replacing all other forms of computer
connections within buildings. It is important to distinguish the LAN as a
communications carrier, from the LAN as an application element.
Non-programmable terminals, for example, may use a LAN for connectivity, but
this is transparent to the application involved. Likewise, peer-to-peer protocols,
such as TCP/IP, also use LANs for connectivity.

Figure 48. More Complex LAN System. Two LANs can be bridged together, appearing as a single LAN for users
and applications. Multiple servers, offering identical or differing services, can appear on the LAN. Some servers
offer functions useful on several different operating systems.

112 Computing Technology Reference

4.4.1.2 Summary
Basic LAN-oriented applications are usually written in client-server mode, using
netbios or TCP/IP protocols, including RPC. This gives the user a powerful, but
more complex, environment. Each LAN node is a peer-level system, and users
are expected to resolve minor difficulties with their local node and basic LAN
functions.

LAN applications (client-server mode) tend to concentrate on passing arguments
and data correctly. Presentation of data (screen formatting) is usually left to the
client system and, in some cases, may not be considered part of the LAN
application. LAN application design usually ignores LAN data transfer rates, as
long as the amount of data being transferred is reasonable.

LANs may be interconnected through bridges, connecting portions of the same
LAN; or through gateways, connecting separate LANs; or through combinations
of these functions. These physical arrangements are usually transparent to LAN
applications.

4.5 Multi-level Server Environments
The mutli-level server environment includes the solutions where the applications
based on one or more LANs require the services of one or more higher level
servers, hierarchically arranged, in addition to those defined on the LAN itself.

Several CICS* systems, as shown in Figure 49, are an excellent example. The
CICS* intersystem communications (ISC) feature can be used to send various
elements of a transaction to other CICS* systems. A transaction application
might execute in CICS/6000*, except for database accesses which are function
shipped through ISC to another system.

A multi-level server design does not presuppose a particular hardware LAN
design. A multi-level server application might exist in a single, simple LAN or
might be spread throughout many interconnected LANs. The hardware
environment is independent of the software application design.

Multi-level servers can be important in producing a total solution for a complex
application. They can be used in distributed applications in a variety of ways:

• A local database can act as a cache for a higher-level database, improving
local query performance while retaining a single master database for the
enterprise.

• Out-of-territory database requests can be managed without excessive
special-case programming.

• The conflict between multiple, distributed databases (as part of right-sizing)
and a single copy of information elements can be partly resolved. For
example, a departmental database may contain inventory information, while
certain applications must access a corporate database for the authoritative
copy of a suppliers shipping address.

Chapter 4. Configuration Environments 113

Figure 49. Multi-level Servers

Some uses of hierarchical servers are implied in other system functions, such as
DCE** name servers. This is transparent to other applications and is not a
reason to categorize an otherwise simple LAN application as a multi-level
application.

Most security concerns for this environment are about the same as for a basic
LAN environment. More attention may be needed to provide consistent user
definitions on the servers used in the hierarchy, but this falls within normal
administrative actions.

One security concern is unique to this environment. Suppose user JOE requests
a service from SERVER1. JOE will be known and authenticated by SERVER1,
perhaps using DCE** or a simple server logon. If SERVER1 must request help
from SERVER2, to satisfy the request of JOE, what is the security environment of
the request from SERVER1 to SERVER2? With DCE**, SERVER2 authenticates
SERVER1 as its user; the original client, JOE, is not relevant to SERVER2 in this
case. (Of course, specific application coding can change this, but security
should be left to the system as much as possible.) Therefore, SERVER1 to
SERVER2 authorization must be high enough for any potential user, and
SERVER1, in its application code, must decide whether JOE is permitted to use
SERVER2 indirectly. Other distributed designs might pass user JOE through to
SERVER2, but this has another set of administrative and practical problems.

114 Computing Technology Reference

4.6 Other Interconnected Systems and Peer-to-Peer Environments
This category includes the solutions where multiple systems are interconnected
to provide functions that are inherently peer-to-peer, such as NJE networking
between MVS systems; or are used by end users in such a variety of ways that
they can only be categorized as interconnected systems.

The standard set of TCP/IP applications is an example of the latter and is
illustrated in Figure 50. Individual standard TCP/IP applications and functions
can be categorized in more specialized ways. For example, telnet emulates
non-programmed terminals; NFS is a file server; ftp is either a file server-type or
peer-to-peer application, depending on how it is used; and so forth. More
sophisticated users tend to use many of the standard applications and, as a
group, the TCP/IP applications can only be categorized as interconnected
systems.

Figure 50. TCP/IP. The standard TCP/IP applications, such as telnet, ftp, NFS, mail, rsh, tftp, DNS, X Windows
(usually), and so forth, are often seen as a single package.

Multiple CICS* systems are often connected in true peer-to-peer applications, in
which each system is sometimes a client and sometimes a server. This can be
generalized to LU6.2 (APPC and CPI-C) applications, although full two-way
applications are rare.

Chapter 4. Configuration Environments 115

Figure 51. Peer-to-Peer Applications. NJE (and RSCS) networks between hosts are pure examples of
peer-to-peer links. There is no sense of a master-slave relationship, and many varieties of requests and data flow
over waiting links. Peer-level directories (or other services) of network operating systems are another example of
generalized interconnected systems.

OS/400* offers excellent peer-to-peer functionality. Users, functions, and jobs
can be distributed throughout a network of AS/400* systems. This built-in
distributed processing capability is an important competitive advantage of the
AS/400*.

Peer systems usually have their own administration, with a small add-on for
administrating the peer-to-peer connection. There is some security
administration for the connection itself. The peer systems usually authenticate
the identity of the other system when the peer connection is established. User
authentication may or may not be required; peer systems may trust other peers
to authenticate users. The major application(s) using the connection may or may
not apply further security controls to specific requests that arrive over the
connection.

Peer-to-peer programming is concerned with conversation control, parameter
sequences, and data, but seldom with presentation (screen design) of data.
Programming is more complex than for client-server code, because the direction
of the connection must be managed by the programs.

Figure 51 illustrates two examples of pure peer-to-peer systems: an NJE
network, and peer-level directories of a network operating system. An
application that is explicitly designed to use these properties has a peer-to-peer
design.

116 Computing Technology Reference

The standard example of a peer-to-peer system, based on LU 6.2, is actually a
description of the communication method, not the application design. If the
application is designed for two-way, peer-level work exchange, then it is a
peer-to-peer application. Many applications using LU 6.2 can be more
accurately described as simple server (WAN or LAN) applications.

Peer systems are often administered separately; that is, there is no single,
central administration database of users, passwords, security controls, and so
forth. This is not a requirement, but is a typical characteristic. Design work
often centers around transaction codes or commands that the peer systems will
recognize when received from other peers. Data exchange is often in binary
blocks, without regard for presentation formatting.

4.7 Other Application Environments
All real-world application solutions will not fit neatly into the categories
described in this section. Nevertheless, these categories are useful for two
reasons:

• Existing solutions, products, methods, tools, design techniques, and expertise
are very often centered in one of the categories described here.

• Complex problems can often be subdivided along the lines of these same
categories.

Understanding some of the application solutions available within each of the
categories can be a tool for developing more complex solutions for specific
situations. This approach has a fundamental requirement: categorize systems
by their mode of usage, not by their physical components. In some cases, the
mode of usage matches the underlying components, but in many cases,
especially when more modern technology is involved, the two are almost
unrelated.

If you attempt to categorize solutions, both known and required solutions, by a
mixture of physical technology and modes of use, you will have a large number
of permutations and combinations. The usefulness of the categories as a design
and organization tool becomes questionable.

Chapter 4. Configuration Environments 117

118 Computing Technology Reference

Chapter 5. Software Environments

Distributed systems design should be a management concern, especially if
business-critical applications are involved.

Information processing technology is changing very rapidly, and many of the new
components are attractive to computer people simply because of the new and
fascinating technology. This fascination, compounded by trade-press
impressions that everyone else is already using the newest technology, creates
strong pressures to use the latest technology, simply because it exists.

Distributed processing should be used to further the business needs of a
company. It should not be used as the justification to simply chase the latest
technology.

Distributed processing is a key component of rightsizing, and can be very
successful when planned well. Planning it well involves much more than buying
a few LAN servers.

Distributed processing is a general concept rather than a specific plan. The
concept covers a large range of possible designs. A key design question is:
“What is being distributed?” Choices are:

• Users. Users are the easiest element to distribute, and this distribution has
been happening for many years. New technologies, especially LANs, have
helped the process by providing higher bandwidth and more responsive
channels to the distributed users.

• Processing. The potential for distributing processing has been present since
the development of personal computers and other workstations. At one time,
the concept was known as cooperative processing. The current term is
client-server, although this term may include more than just distributed
processing.

• Data. Distributed data is, at first appearance, an obvious goal of distributed
processing. It involves complex considerations that are not immediately
obvious, and it is probably the most difficult element in any design.

• Management. Distributed management includes many topics, such as user
management, network management, security management, capacity
management, and so forth. The need for distributed management exists
partly because the other forms of distributed processing exist. This
requirement is often stated in reverse terms, that is, a desire for centralized
management of a distributed environment. However, this centralized point of
management might be exercised from any point in a distributed network.

A well-planned distributed processing implementation will have a clear vision of
what is being distributed and why it is being distributed.

Software, not hardware, is the key element in distributed design. Almost any
combination of hardware can communicate, to some degree.

Software environments, or platforms, have at least two dimensions: a basic
operating system, and higher-level interfaces added to the basic operating
system. For example, UNIX** is a basic operating system, and DCE** is a
higher-level set of functions that can be added.

 Copyright IBM Corp. 1994 119

Families of operating systems exist where there is considerable functional and
file compatibility within a family. The higher-level interfaces provide certain
degrees of compatibility across operating system families. This chapter briefly
discusses several of the operating system families and some of the compatibility
considerations involved when a distributed application crosses multiple families.

As discussed earlier in this document, a software environment is composed of
many layers, as shown in Figure 52, for example. Any large application solution
will use interfaces with several different layers of the software environment. For
example, a distributed OLTP application might use functions of Encina**, DCE**,
DB2, and AIX*.

Figure 52. Software Layers

The operating system is often considered the lowest layer of the environment.
Even lower levels, such as device drivers, are extensions of the operating
system. Higher levels can provide common functions, or shield the application
from some of the particulars of a given operating system, or both. However, it is
unlikely that the higher layers will completely shield an application from all the
characteristic features of the underlying operating system. The transcendent
features include, among others:

• Symbolic file system, if one exists

• The nature of file names, such as absolute names, as with MVS; verses
path-related or relative names, as with UNIX** or DOS.

• File organizations, such as record, byte, or keyed

• Security system structure

120 Computing Technology Reference

• Locking mechanisms, controlling multiple accesses to resources

• Apparent memory organization, for sharing data with multiple tasks

• Program loading functions, for using multiple program modules

• Operator interfaces and functions.

In a few cases, CICS* transaction programs are the best example, the
characteristics of the underlying operating system are completely hidden from
application programs. But, this is rare. Most realistic applications are
influenced by the characteristics of the underlying operating system, especially
when all the elements of the application solution are considered. Functions and
characteristics of various operating systems must be considered when planning
a distributed application.

The following categorization of operating systems is useful for planning
distributed applications:

• Mainframe software environments, such as MVS and VSE

• Proprietary, multi-user systems, such as OS/400* and DEC′s VMS**

• UNIX** and UNIX**-derived systems

• Network operating systems, such as NetWare**

• DOS and DOS-related systems, such as Microsoft Windows, Windows NT**,
and OS/2*

• Standardized higher-level platforms, such as CICS* and DCE**

• Other systems not related to these general families, such as VM/ESA*.

Distributing an application solution within one of these groups is generally easier
than distributing across several groups. The problem is not just programming
interfaces, but includes many working assumptions, training, intuitive
expectations, conflicting meanings of terms, style of usage, and so forth.

5.1 Mainframe Software Environments
While there are a variety of mainframe platforms and operating systems
available, the field is dominated by MVS, and only MVS is considered here. Key
characteristics of the MVS software environment are:

• Symbolic file names, through JCL. This provides a standard approach for
manipulating applications with many files.

• Record oriented file system, with various access methods, including VSAM.

• Absolute file names, with a strong volume orientation.

• An external security reference monitor, usually RACF. Security control is
heavily oriented to generic names and group structures. Mainframes, with
MVS and RACF in particular, offer complete security and integrity structures
and controls.

• There is no single user interface to the system. CICS* and TSO are the most
common interfaces. ISPF under TSO is the most common non-OLTP menu
interface, but many other external faces for MVS can be found.

• COBOL programming, with smaller subsets of PL/1 and assembler language
programming. C compilers exist, but are not widely used.

Chapter 5. Software Environments 121

• Database usage is common, including DB2* and DL1. DL1 is unique to
mainframes; therefore, applications built around DL1 may be difficult to
distribute.

• Elaborate and exacting accounting mechanisms. Local programs, or a
variety of program products, are required to make use of the data. Some
system programming may be necessary to customize the data collected.

• Sophisticated systems management tools and procedures.

• Large body of (COBOL) CICS* transaction programs. CICS* processing,
including back-end work and associated database functions, often is the
dominant workload.

• Complex terminal networks, working through VTAM, almost completely
oriented to 3270-type terminals.

• Very strong batch processing orientation, with well defined operator
functions.

• Major printing subsystems, driving multiple high-speed page printers, with
excellent spooling functions and control.

• Many tuning parameters are available at various system and application
levels.

• Very detailed trace and debugging tools are available; although, to use these
might require considerable expertise and, possibly, some specialized
programming.

• MVS is a mature operating system, with basic compatibility extending over
decades. System software is optimized for performance, availability,
integrity, and maintainability.

• Many, if not most, applications used on a mainframe are developed in-house
by a resident programming staff.

• The EBCDIC character set is used. The common code points, as provided by
3270 terminals, do not include some of the common C, DOS, or UNIX**
characters.

5.2 Proprietary Midrange Software Environments
The primary example here is the AS/400* family. Key characteristics of the
OS/400* software environment are:

• A generalized symbolic file system is not available, although limited
substitutions for hard-coded file names can be made through the command
system.

• Record oriented file system, including keyed access.

• AS/400* security is excellent, but the methods used are unique to the
AS/400* architecture. Matching AS/400* security elements with those of
other operating systems is difficult.

• User access is through a standard full-screen menu system. This menu
system provides the external appearance of OS/400*.

• Single-level addressing, including all files.

• Absolute file names, with no volume orientation. File names can include or
omit an associated library. If a library name is not specified, a controllable
search path through multiple libraries can be used.

122 Computing Technology Reference

• RPG and command-level programming. COBOL is also used, but at a lower
level. C compilers exist but are seldom used.

• The transaction processing terminology is relatively new for this system.
The basic OS/400* system can be used as a low-volume transaction
processor, by entering a program name on the command line. There is
increasing interest in this area, and a new CICS/400* product offers
main-stream transaction processing facilities.

• Database functions are built into OS/400*.

• Moderate accounting and auditing facilities are built into the operating
system.

• System management menus and functions, sufficient for most installations,
are a standard part of OS/400*.

• Terminal networks are usually limited to local terminals. OS/400* has very
good peer networking with other OS/400* systems.

• An acceptable batch processing environment exists, with operator functions.

• High-volume printing is possible, but not usually done on these systems.

• Many applications are purchased, and in-house programming staffs tend to
be minimal.

• The PC support function is widely used, providing a distributed environment
for advanced users.

• Some tuning parameters are available at various system and application
levels.

• Very detailed trace and debugging tools are not commonly used.

• OS/400* is a relatively mature operating system.

• The EBCDIC character set is used. The common code points, as provided by
3270 terminals, do not include some of the common C, DOS, or UNIX**
characters.

• Terminals are often twinax types unique to AS/400* systems, although
3270-type terminals are also supported.

5.3 UNIX** Software Environments
UNIX**-based operating systems are available from a wide range of vendors, and
with a wide range of features. There is no single definition of what constitutes a
UNIX** operating system. Elements and features that tend to make the operating
system more robust are being added. However, the core portion of all UNIX**
systems includes these characteristics:

• UNIX** has no symbolic file system. File names are passed as calling
parameters, derived from calling parameters, or hard coded. This works
well when only one or two files are involved, but works poorly when a large
number of files, possibly with unrelated names, are involved. Applications
often assume their files are located in certain directories, or pass directory
names through environmental variables.

• A byte-level file system is provided. Any record-level functions are up to
application programs.

Chapter 5. Software Environments 123

• File names include a location-dependent path name, or are relative to the
current directory. Moving a file from one disk to another causes its full
name to change. A file can have several names.

• UNIX** security is in line with various system functions, such as login and
open. Specific security permissions are associated with every file. Some
versions of UNIX** offer ACLs (Access Control Lists), in addition to the basic
file access permissions, but these are also tied to individual files. Security
through generic names is not commonly available. In principle, a secure
UNIX** system can be installed and maintained; in practice, this is difficult for
a variety of reasons.

• The UNIX** command line and, to a slightly lesser extent, a window-manager
window, under X windows, are the standard external faces of the system.

• Most programming is in C, although FORTRAN, COBOL, and other compilers
are widely available.

• Transaction systems (OLTP) are not commonly used, although this area is
expected to expand rapidly.

• Complex terminal networks are almost unknown. Complex system networks
are common, usually based on TCP/IP.

• Batch processing functions are primitive.

• No database functions are included in basic UNIX**, but many third-party
products are available.

• UNIX** can, optionally, collect accounting information, but the accuracy and
repeatability does not match that of mainframe systems.

• Native UNIX** system management often consists of editing stanza files.
Many UNIX** vendors have added higher-level system management tools,
such as IBM′s SMIT. These tools differ greatly among vendors. UNIX**
system management tools are important factors for many commercial users,
where skilled UNIX** programmers are not always available.

• Printing subsystems are primitive and usually do not provide full spooling.

• Relatively few tuning parameters are available at various system and
application levels. Tuning tends to be a matter of application design.

• UNIX** is still undergoing changes at several levels and from several
sources. It is not a mature operating system in the same sense as MVS or
OS/400*.

• Good interactive application debugging tools are available, but system-level
trace and debugging tools are sporadic and nonstandard.

• There is a large market in third-party application products, and major
applications or subsystems are often purchased. Nevertheless, there is
almost always some amount of programming activity in any installation.

• The ASCII character set is normally used, providing good exchange with
other ASCII-based systems.

• Terminals are either workstation graphics terminals or ASCII terminals.
3270-type terminals are not supported.

124 Computing Technology Reference

5.4 Network Operating Systems Software Environments
A Network Operating System is not a fully defined concept. It is a moving
definition as technology develops, but it is not, as yet, a full operating system in
the traditional sense. The general premise is a high-bandwidth, shared
connection with all the units in the network. A token-ring LAN or Ethernet LAN
are the most common examples of network hardware. The basic element is
always a file server. The user′s local system, his personal computer using DOS,
for example, automatically redirects certain disk requests to the file server
instead of to the local disk. Novell′s NetWare**, IBM′s LAN Server, and
Microsoft ′s LAN Manager are common examples of a network operating system.

The basic concept is simple. The key element is that the file server can permit
users to share files among themselves. The file server function includes:

• Security controls, governing which users can access which files on the
server.

• Mapping functions, to cause certain directories or disks on the server to
appear as logical disks on the user′s systems.

• Locking services, to allow controlled sharing of files.

At the first level, the programs that use the shared files are executed in each
user ′s system. That is, these application programs are not executed in the
server or under the network operating system. The only program executing
under the network operating system, in the server, is the program to respond to
file server, mapping, or locking requests from the client systems. A program
executing in a client system might reside in a file that happens to be on the
server, but the program is read and executed by the client system. More
advanced server applications can execute in the server, but this is definitely an
advanced level use of the server.

Thus, to a large extent, the use of a file server is transparent to many
applications and users. The key characteristics of the client′s operating system
are not changed by the use of a server. For example, the DOS or UNIX**
characteristics concerning file naming, user interfaces, record interfaces,
programming languages, and so forth, are not changed by the presence of a
network operating system as a server.

Products, such as electronic mail systems, that are built on shared files in file
servers have intrinsic security and integrity exposures that must be understood.
These applications usually require that all users be permitted to write to certain
selected shared files. The application solutions offered by these products can be
very attractive, and the security and integrity exposures can be an accepted risk.
However, the risk should be understood before it is accepted.

In practice, servers offer more functions than the base file-server functions listed
above. For example, almost all commercial products offer print server functions,
allowing clients to redirect print requests to the server. A new term, application
server, is being applied to some systems that might be regarded, at least partly,
as network operating systems. Novell**, for example, uses this term with their
UNIXWare product, and the trade press applies the description to Microsoft′s
Windows NT**. So far, the term application server appears to describe the use
of the system, rather than the fundamental nature of the platform.

A network operating system environment implies the following characteristics:

Chapter 5. Software Environments 125

• A requirement to log onto a server or onto more than one server.

• The availability of additional logical disk drives, provided by the server.

• The availability of some applications implemented through the shared files of
the server. Applications often include electronic mail and relational
databases.

• The availability of application programs that do not depend on shared data
files on the file server disks. This removes the need for all users to have
application copies on their local disk, saving disk space and making
maintenance easier.

Networking products, whether or not part of a network operating system, share a
common problem in managing software updates. For example, electronic mail
systems usually have components that run in each client′s system, and other
components that run in servers. Still other components are passive files,
forming a post office in file servers. There is a potentially severe problem in
installing software updates. If the updates are downward compatible, the
problems are minor. Not all updates are downward compatible, however, and
the network or application manager faces the task of installing new software files
in all clients and servers at the same time.

User and security management, at the enterprise level, is a well-known problem
with network operating systems. In the extreme case, each LAN manager or
NOS must be administered separately and may require users to log onto each
one separately. Newer systems, such as Novell′s Netware** 4.0, are solving
some of these problems. Products that provide administration across systems,
such as IBM′s LANRES, provide additional help in this area.

5.5 DOS and Related Software Environments
Due to the huge number of personal computers sold, DOS, from various vendors,
but all based on Microsoft DOS, is the most widely used operating system.
Microsoft Windows is an extension of DOS that adds significant functions. IBM ′s
OS/2* and Microsoft′s Windows NT** are advanced operating systems that are
derived from DOS and share some common characteristics.

Key characteristics of a DOS software environment are:

• DOS has no symbolic file system. File names are passed as calling
parameters, derived from calling parameters, or hard coded. This works
well when only one or two files are involved, but works poorly when a large
number of files, possibly with unrelated names, are involved. Applications
often assume their files are located in certain directories, or pass directory
names through environmental variables.

• A byte-level file system is provided. Any record-level functions are provided
by application programs or system software extensions such as database
managers.

• File names include a location-dependent path name, or are relative to the
current directory. Moving a file from one disk to another causes its full
name to change. A file cannot have multiple names.

• DOS has no native security protection. Several security products are
available, including IBM′s Secure Workstation Manager, each with different
features and techniques. These products are not widely used, however.
OS/2* has no native security functions. IBM has a statement of direction

126 Computing Technology Reference

indicating that security functions are a future goal. Microsoft Windows has
no native security functions, but third-party products are available. These
products are not widely used, however. Windows NT** is designed with
extensive native security functions and features.

• Graphical User Interfaces (GUIs), such as Microsoft Windows and the OS/2*
Workplace Shell, are becoming the standard external faces of the system,
replacing the previous command level interface of DOS.

• Most programming is currently done in C. Visual programming and
object-oriented techniques are becoming increasingly important.

• Transaction systems (OLTP), resident on these systems, are not widely used,
although OS/2* does have a full CICS* product. CICS* and DCE** client
packages are expected to be important future items.

• Terminal networks are not used and are not needed, because each PC has
enough local processing power. System networks are common, usually
based on LAN file servers.

• DOS, Microsoft Windows, and Windows NT** have no native database
functions. Database functions are provided by Independent Software
Vendors (ISVs) and are widely used. IBM provides DB2/2, a database
manager for OS/2*.

• DOS, Microsoft Windows, and OS/2* have no native accounting facilities.
Some third-party security products offer very basic accounting.

• DOS has very limited native system management facilities. Configuration
and Distribution and Installation (CID) of code and data is a key factor in
OS/2* and similar environments. Windows, Windows NT**, and OS/2* have
substantial systems management tools, all with graphic interfaces.

• Batch processing is rarely used in DOS family software environments. OS/2*
provides the powerful procedures language, REXX.

• Printing subsystems are limited, but on Windows and OS/2* they are
powerful and provide full spooling.

• Relatively few tuning parameters are available at various system and
application levels. Tuning tends to be a matter of application design.

• Most applications are purchased as packages. Corporations are now
developing many in-house applications as well.

• Excellent interactive application debugging tools are available for both
Windows and OS/2*. System-level trace and debugging tools are more
limited.

• The ASCII character set is normally used, providing good exchange with
other ASCII-based systems.

• Today, nearly all PC video adapters have advanced graphics capabilities,
and most desktop displays are in color. Most laptop displays are still
monochrome. Terminals, such as 3270s, can be emulated.

Chapter 5. Software Environments 127

5.6 Higher-level Software Environments
Some application bases, sometimes called subsystems or platforms, are
extensive enough to create their own environment. CICS* is a good example.
CICS* provides a complete environment for application programming. A well
designed CICS* transaction program often can be moved across platforms, such
as MVS, AS/400*, AIX*, OS/2*, HP-UX**, simply by recompiling it. This is very
attractive for distributed processing because it allows for continuous redesign
with minimal reprogramming.

Other higher-level environments are not as encompassing as CICS*, but are just
as important for distributed processing. DCE**, from the Open System
Foundation, is an important example. The DCE** environment addresses
function calls, as from a client program to a server. The DCE** environment
permits a server or a client to be moved among a variety of systems and
platforms, without changing the client-server communication programming.
Programming code within a client or server, for the most part, is not within the
DCE** environment, and it will be sensitive to the underlying operating system
platform. For example, if a server function is ported from AIX to MVS, a certain
amount of reprogramming or redesign might be required. However, the clients
calling the server will be unaware that the server is on a different system and
platform.

TCP/IP sockets programming interfaces and CPI-C (or APPC, or LU6.2)
programming interfaces have some of the elements of higher-level platforms.
The communications interfaces and protocols are rigidly defined and are mostly
independent of the underlying operating system. This eases the migration and
porting of applications across systems and platforms.

Some data and file systems can be considered higher level platforms. Generic
ISAM or VSAM products are available on many platforms, and these can ease
the migration of applications. Likewise, database products, especially relational
database managers using SQL-based access, can be regarded as higher-level
software environments. These are key elements in migrating existing
applications to a more distributed environment. Products, such as Oracle and
DB2*, are available on many bases and help provide a platform-independent
environment for database functions.

The POSIX** (IEEE 1003.1) definition of basic UNIX** and C functions can be
regarded as an application platform, even if the programming interface is not as
high-level as CICS* or SQL. Program code that conforms to this definition is
more easily moved between various vendor′s systems. X Windows, including
Motif**, is widely regarded as a higher-level platform for graphics programming
and is well known for interoperability across multiple platforms.

DCE** offers excellent authentication and communication security for distributed
systems. DCE** has its own user registry that must be administered. For the
near future, this is an additional task for system administrators. In the longer
term, other platforms may link with the DCE** registry for common user
management.

Good use of higher-level software environments is a key factor in successful
migration to distributed processing. Hardware and software technology,
especially for smaller systems, is changing very rapidly. Higher-level
environments, such as CICS* and DCE**, help isolate applications from the more

128 Computing Technology Reference

complex areas of a specific hardware/software base, allowing for easier
accommodation of new technology as it arrives.

5.7 Other Software Environments
Some software environments are unique enough that they cannot be included in
other groups. IBM ′s VM operating system is an example. Other operating
systems can run under VM, each in its own environment. The VM environment
usually implies the use of CMS, a single-user operating system, and mini-disks
in a CMS format.

DEC′s VMS** is a widely used operating system that is not part of another family.
VMS** is available on many different VAX-compatible platforms and on the
newer alpha systems.

For the purpose of planning distributed systems, unique operating system
environments might have to be considered as distinct platforms, subject to all
special cross-platform limitations and considerations.

5.8 Planning Considerations
Extending the scope of users and applications from a traditional centralized
system to a distributed system is a complex undertaking. There are
compatibility and migration issues at many levels. The following list includes
many elements of traditional data processing that are not directly related to
programming. You can use the list to consider before and after conditions for a
planned move to a distributed environment, with the focus on the whole
enterprise, that is, programs, users, operational environment, management
aspects, and so forth. The purpose is to ensure that everyone involved
understands the implications of the planned changes. The elements include:

• User terminals. These are often non-programmable terminals (NPT) or
personal computers emulating non-programmable terminals. Examples are
IBM 3270 family of terminals, IBM AS/400* family terminals, and personal
computers emulating these terminals. Too many different terminal types is
disruptive to users (“Where is the CLEAR key?”), and unproductive for the
enterprise. A move requiring the use of emulated terminals can be
especially confusing to end users.

• User shells. A shell is the immediate program interface driving the user′s
terminal. Examples are the TSO command line, ISPF, the AS/400* menu
system, CICS* terminal control, a VTAM logon screen, and so forth. A
programmer or sophisticated user will deal with many shells, while a clerical
user might see only one. The shell terminology is not usually associated
with traditional computing environments, but the functionality does exist and
is important for planning. User shells can be written in an infinite number of
variations and styles. There is a trade-off between powerful function and
complexity of use. A person using only one shell will learn most of the
options of that shell, while a person who must shift between different shells
will often use only the lowest common denominator functions, and thereby
lose productivity. A well-known shell, such as ISPF, provides an important
comfort factor for many end users. Computer professionals, who routinely
use many different shells, tend to ignore this factor when planning changes.

• Local processing functions and applications. Local processing is work that is
done in the user′s terminal or workstation. Again, this is not part of

Chapter 5. Software Environments 129

traditional terminology, but the effects are familiar to anyone using an
emulator in a personal computer. The user switches between the emulator
session and the local DOS or OS/2* session for different applications. Some
applications, based on HLLAPI,25 for example, may use both the emulation
link and the local session. The move to rightsizing and distributed
processing places growing importance on local processing. The right
balance between local processing, departmental processing, and centralized
processing is the general goal of rightsizing. Moving from a dumb-terminal
environment to a mixed local/remote computing environment can be
confusing for end users, especially if remote emulation, remote server use,
and local applications are all involved.

• Connection to server or host. Traditional connections are usually
point-to-point coax connected to a controller. The controller is attached to
the main system directly through a channel, or through a leased line. In
recent years, this has been expanded to include LAN connections to the
controller, but the functional result is the same as a coax connection. Newer
technologies offer many ways to connect terminals and systems, often in
ways that are transparent to traditional systems. There is a strong tendency
to confuse medium, LANs, for example, with services available over the
medium. Concepts that are clear to computer professionals may be
confusing to end users, unless they are explained very clearly.

• Major applications. Major applications usually justify the expense of the data
processing operation. The operation of the enterprise may depend on these
applications. Higher-level management is aware, to some degree, of these
specific applications, and is concerned if they are not working correctly. It is
important not to lose the sense of major applications if the processing is
decomposed and distributed to several locations. The application function, if
it continues to be important to the enterprise, should continue to exhibit
functional unity. This requirement can be lost if a strong management
presence is not part of any conversion plan.

• Application development and maintenance. Traditionally, applications have
been developed in-house, involving large groups of analysts, designers, and
programmers. This implies that application expertise is available from an
organized, known source. Application development should be a
responsibility, rather than a programming activity. Who is responsible if the
general ledger process begins producing the wrong answers? Application
design responsibility or ownership must not be lost when an application
becomes distributed.

• Batch functions. Full batch operation implies a number of things. It
assumes packaged jobs that can be run, without intervention, by someone
who has little or no knowledge of the job. The batch operator is fully
isolated from the batch application programs, the data, and control files,
such as JCL. It often assumes a major queueing or spooling facility, such as
JES2, to handle massive printing functions. It assumes a method of systems
control to manage the workload. It assumes system facilities to manage file
conflicts, so as to avoid simultaneous updates to a file. It assumes the
ability of a job to request tape mounts as required. It assumes system
integrity in the handling of the job, with automatic recovery and restarts
where appropriate. Auditors prefer well defined batch environments; fully
interactive applications are very difficult to audit. The concept of batch

25 This is a High-Level Language Application Programming Interface that is available with many 3270 emulation programs.

130 Computing Technology Reference

operations, where the operators are several levels removed from the data
and programs being used, is not well developed on some platforms. There
is usually more focus on the interactive parts of an application. Many
commercial applications have important elements that work best in a
traditional batch environment. These must not be overlooked in conversion
plans.

• Files. Files are sometimes called data sets, or simple files, or flat files.
These are files that a program can open, read, and write directly, as
contrasted with a database, where this is not done. File structure might be
defined by the system in terms of records, keys, and so forth; or by
programs, in which case the system sees only a string of bytes. In MVS,
many file formats are available; VSAM is the most sophisticated of these.
Files can be read by multiple users in a distributed manner, through file
servers, NFS, DFS, and so forth; multiple users cannot easily write to these
files, however. The greatest difference between traditional mainframe
systems and newer UNIX**- and DOS-based systems is in their files. This
area must receive considerable attention if a planned solution requires
regular file exchanges across platforms.

• Data sharing. There is frequently a need to share data among processors.
For example, an OLTP system often requires periodic, heavy duty batch
work. This implies a need to share substantial amounts of data. Sharing
large amounts of data across different platforms can be complicated for a
variety of reasons.

• Databases. A database and its associated database manager are seen as a
single entity by the rest of the system. A user requests the database
manager to read or write elements, based on high-level specifications for the
element. SQL is an example of a high-level application interface to a
database. The actual data formats and accesses, at the physical disk level,
are hidden inside the database manager and are not available to the user.
Distributed databases have additional requirements, including use of
two-phase commit functions and programming. The higher-level
environment provided by database managers is a key element of distributed
systems. However, mere existence of an SQL interface does not guarantee
compatibility of different database managers on different platforms.

• Personal computing services. These services include such utility functions
as electronic mail, text editors, text formatters, and so forth. These personal
computing functions should not be confused with personal computers.
Personal computing services, such as electronic-mail and text editing, can
be provided in many ways, and the most effective solutions may involve a
variety of platforms. Day-to-day company work may depend on services,
such as internal electronic mail. Such simple functions may be somewhat
overlooked when designing a complex distributed solution, leading to work
disruptions later. For example, a conversion that involves moving
electronic-mail from fixed function mainframe terminals to new personal
computers for every user has an implicit assumption that all users know how
to manage their new personal computers. This is not a safe assumption.

• User and security administration. It is difficult to mingle different styles of
security systems. For example, RACF is an out-of-line reference monitor that
works with generic name strings. UNIX** uses in-line code, when opening a
file, for example, to test specific protection bits for a single file. Either can
provide acceptable security, but planning and administration are different for
the two models. Kerberos, one element of a three-party security protocol, is

Chapter 5. Software Environments 131

not a complete security system, and is oriented to authentication rather than
authorization.

Current distributed processing technologies have made security
administration more complex. Lack of a detailed security plan is a
characteristic of a hasty, poorly planned migration. User administration
includes functions such as adding and deleting users, and controlling user
access to files and other resources. Large installations usually have a
separate group or department responsible for these functions. Security
depends, to a large extent, on separation of duties. The person controlling
access to the payroll file, the security administrator, for example, might not
be the person who runs the payroll jobs, at least in larger organizations
where company officers do not do the hands-on computer operations. This
type of security is easy to establish on large, traditional systems, but
requires considerable planning in a more distributed environment. Security
aspects, in the largest sense of the word, should be considered from an
auditor ′s viewpoint when designing an important distributed application.

• User training and skills. This is often one of the largest investments required
for information processing, but it seldom appears as a line item when listing
assets. Widely used applications affect many users, in one way or another,
and these users, who are usually not computer people, tend to resist
change. They know how to use an existing system, to the extent necessary
for their job, and are reluctant to accept a new technology unless the
benefits are immediately obvious to them. Any change impacts their
productivity, and continuous change, such as from chasing the newest, least
stable technology, is very disruptive. This factor should be a key
management concern, since it is almost always slighted in system
conversion plans.

• Transaction processing. Transaction processing, largely defined by CICS*, is
often the single most important function of a system. Transaction processing
has many special requirements and is usually seen as a separate element of
data processing.

• Portable and storage media. A tape is the most common example of this
medium. Long-term storage and interchangeability among systems are
factors to be considered. Storage technology for smaller systems is
changing very rapidly, and long-term compatibility of media is a concern.
Standard corporate functions, such as payroll and general ledger, usually
require long-term retention of records. Consideration is required to select a
medium type that will still be in use ten years later.

• Operations services. An operations group ensures that production jobs are
run on schedule. It also ensures that backups are taken and managed
properly, hardware is maintained in a timely manner, printer jams are
cleared, printers have paper, and so forth. It is desirable to differentiate
operators from users or administrators. For security reasons, operators
might not have userids; that is, they might not be permitted to log onto the
system as users. The daily, routine functions performed by operators can
disappear in a poorly planned distributed environment, with potentially
serious results.

• Help desk services. Any sizable installation will have a recognized source
for user assistance. In practice, this service might consist of several
separate components. Obvious hardware problems might be reported to one
group, simple operational problems, such as “I cannot get the logon

132 Computing Technology Reference

display.,” to another group, and so forth. The requirement for help desk
functions usually increases in a distributed environment.

• Software maintenance. Software maintenance, for both locally written and
purchased software, can present a substantial workload. Maintenance
programming comes under the category of application development.
Software maintenance is the process of receiving, testing, installing, and
managing software updates. A well-known example is the handling of IBM
PTF tapes. These tasks can be much more complex in a distributed
environment, and solutions, at least for mission critical applications, must
consider operations with mixed-level software, and must provide an
appropriate solution for the software distribution problem.

• Hardware maintenance. This category includes such unrelated functions as
tape drive cleaning, printer maintenance, cable installation and repair, and
debugging of suspected hardware problems. In traditional installations, this
area includes planned and preventive maintenance. Workstations and small
servers tend to rely on on-call maintenance when a component fails. A move
from traditional to distributed computing often neglects total system
maintenance.

• Responsible manager. In traditional computing installations, this is the DP
Manager or the Operations Manager. If the payroll job is not run on
schedule, for example, the DP Manager is the obvious target for questions
and complaints. Executive management expects that important, or
mission-critical, applications will have an identified responsible manager.
Applications that become extensively distributed may lose the sense of a
responsible manager; this exposure must be considered when designing a
distributed application.

• Logs and audit trails. While these are not important for personal computing,
they can be critical for production work. Auditors are unlikely to accept the
typical informal use of personal computers for the repository and processing
of major financial and company status information. Current distributed
technology is poor in this area, requiring considerable attention to audit
trails when moving applications to a distributed environment. Logs and audit
trails are more a management concern than a technology concern, and tend
to be overlooked in some solutions.

• Systems management, performance management, accounting, capacity
planning, problem management . These are often grouped under the general
heading of systems management. Traditional systems have many functions
and tools for this work. Newer systems tend to have very few functions and
tools in this area. The nature of smaller, distributed systems might reduce
the need for some of these functions, but will increase the need for others.
A poorly planned shift to distributed processing could produce a system that
cannot be managed nearly as well as the previous system.

• Testing environments. Systems with a symbolic file system, such as MVS,
offer a convenient way to test large applications. Many mixtures of test data
and live data can be used, controlled by relatively simple JCL changes.
Other platforms might require source code changes or moderately complex,
and non-standard, shell script changes to juggle test files. The ability to
simulate terminal workloads or replay logs of transactions can be important
test tools. Projection and design of routine, acceptable, production-test
environments is important, and is sometimes overlooked when converting to
new platforms.

Chapter 5. Software Environments 133

• Disaster recovery . This is more a matter of planning and controls not
directly related to specific operating system and hardware functions.
Disaster recovery plans for a distributed environment will probably be quite
different than plans for a centralized system. These plans are likely to
require actions by many people, in the distributed environment, and might
influence some design decisions. Disaster planning should be an early part
of distributed system plans.

134 Computing Technology Reference

Chapter 6. IBM Software Platforms

This chapter provides a description of the term software platform with particular
attention to the concept of resource manager (see 3.3.4.1, “Resource Manager
Concepts” on page 52). The most common IBM software platforms are
described, in alphabetical order, referring to a common structure of functional
layers and services. A distinction is also made between local and distributed
resource managers, based on the functions and the services they provide.

The description of the IBM software platforms provided here is not intended to
replace the existing technical documentation for the individual platforms, to
which users are expected to refer for a complete technical description.

6.1.1 Software Platform Definition
An operating system basically manages the resources of a computing system,
and therefore, determines the functions the system can provide. An operating
system can be seen as an organized collection of resource managers and
services.

The resource managers are the principal structural elements of an operating
system. They maintain the state of a particular resource and provide services
and programming interfaces to applications that wish to access and use a
resource. If a resource manager operates within a single system, such as
storage management, it is a local resource manager. If it operates across
multiple systems, it is a distributed resource manager. Distributed resource
managers include parts that provide the interface that requesters use, called the
client parts, and parts that perform functions on resources, called the server
parts. The client part provides interfaces to allow an application to manipulate a
resource. It also hides the location of the resource, as well as the actual
protocol used to access it. Multiple protocols are supported to deal with a
heterogeneous environment.

An operating system with its set of local and distributed resource managers
constitutes a software platform.

The early operating systems were mostly local computing systems because their
resource managers operated within the boundaries of a single system. If all the
resource managers are local, the system is only aware of its own resources and
is a stand-alone applications system. All the program instructions required by
an application are executed in a single computer.

Over time, operating system technologies have evolved due to the availability of
multiple system architectures, different price/performance ratios, and, above all,
by the evolution in computer communications that allow computers to be
geographically dispersed but still interconnected. The ability to communicate
has not only allowed electronic data transfer and remote operations, but has
also prompted the design of distributed resource managers. Using application
enabling services, an application can access and use resources located on
different software platform and, furthermore, the application itself may be
distributed across software platforms.

 Copyright IBM Corp. 1994 135

The interconnection of multiple software platforms that have distributed resource
managers results in a distributed computing system or, simply, a distributed
system.

The aggregation of heterogeneous software platforms (see section 3.2,
“Historical Heterogenous System Structures” on page 42) results in
heterogeneous distributed systems.

Today′s heterogeneous distributed systems are required or expected to be open
as described in section 2.9, “Open Systems” on page 36 and section 2.3.1,
“Programming Interfaces” on page 8.

Figure 53 shows the elements of a software platform. The resource managers
are shown as the interface they provide through local operating system services
and application enabling services. In this chapter, we will use this figure to
address the requirements of heterogeneous distributed systems, and to describe
how the current IBM software platforms (AIX/6000*, AIX/ESA*, IBM DOS,
MVS/ESA*, OS/2*, OS/400*, VM/ESA*, and VSE/ESA*) qualify as members of a
distributed system.

The distributed system structure is intended to provide a reference for
discussion about distributed systems and does not intend to establish absolute
prerequisites or a mandatory list. Therefore, the functions, facilities, and
services do not necessarily have to be present in every software platform.

Figure 53. Elements of a Software Platform

136 Computing Technology Reference

Each platform is described by the following sequence of functional layers:

• Local operating system services, such as:

− Virtual storage, multiprocessor and multiprocessing, I/O and other
hardware resource managers

− Workload schedulers, including interactive, online transactions, and
batch, and workload management

− Spooling

− Local data access services and storage services for inactive data

− Security services.

• Network services

• Distributed system services

− Communication services
− Object services
− Distribution services.

• Application enabling services

− Presentation services consisting of user interface, printing/viewing and
multimedia services.

− Application services consisting of transaction monitors with their
application interfaces, mail services and workflow manager.

− Distributed data access services including storage services for inactive
data.

In the application enabling services layer, there are platform-dependent
services (for example, the Network Operating System (NOS) in the OS/2
platform described in section 6.6.4.4, “Network Operating System” on
page 196), and therefore, other services are possible for future technology
evolution.

• Application development tools.

• Selected system management services, including:

− Performance management and accounting
− Operations and automation
− Availability and integrity.

Finally, for each platform, there is a table of selected system services and APIs,
in common use in distributed systems, indicating the availability status for the
platform. (Appendix A, “APIs, Protocols, and Facilities Description” on page 227
provides a short description of each API and service).

The products and components mentioned as service providers are only a
selection of the total offering available for each platform. The intention is to
select significant (rather than complete) functions, and to show how the various
products and components can be mapped against a common structure of
functional layers. Some non-IBM products are included when appropriate.

The other books of the Library for Systems Solutions provide a more complete
and detailed description of the solutions available on each software platform for
various system configurations.

Chapter 6. IBM Software Platforms 137

6.2 AIX Version 3
Advanced Interactive Executive Version 3, or AIX* V3 (5756-030), is the native
IBM UNIX** operating system for the RISC System/6000* and is, therefore, also
known as AIX/6000*. The name AIX/6000* will be used in the rest of this section.

AIX/6000* is designed to be an operating system for an open distributed
environment and integrates a wide range of industry standard technologies.

AIX/6000* can be used in a variety of environments, including numeric intensive
scientific applications, graphics intensive engineering applications, and
commercial applications. It can be used as a stand-alone environment with one
or more users, it can be a server, or it can be combined with other systems in a
network for distributed applications.

Figure 54 shows the elements of the AIX/6000* software platform.

Figure 54. Elements of the AIX/6000* Software Platform

138 Computing Technology Reference

6.2.1 Local Operating System Services
The basic structure of a UNIX** operating system can be represented by two
layers (see Figure 8 on page 20):

• The kernel that provides all the base services for the applications.

• A command processing component, called a shell, that provides the user
interface, performs parameter substitution, and calls appropriate command
programs. The shell also provides utilities for editing, program development,
and text processing.

6.2.1.1 Kernel
The system architecture and characteristics of AIX/6000* as follows:

• AIX/6000* is derived from UNIX** System V and is POSIX** IEEE standard
1003.1-1990 conformant and Berkeley Software Distribution 4.3 (BSD 4.3)
compatible. It also meets the specifications of XPG3**. It incorporates
X-windows** from MIT and Motif** from OSF**. Distributed systems support
is provided by the OSF/DCE**.

• The low-level kernel contains the base services for the control of the
RISC/6000* POWER* architecture, the virtual storage and the I/O subsystem.
The low-level kernel shields the kernel from the details of the hardware
architecture. Additional services include multiple preemptable processes (a
process is one unit of work in the UNIX** environment), process creation,
multi-preemptable interrupt levels, time control, and multi-thread.

IBM has stated the intention to include OSF/1** functionality and to conform
to the Common API Specification for UNIX**

• The virtual storage available with AIX/6000* is more than 1000 TB (2••) and is
managed as 16 million segments of 256 MB each. The kernel occupies one
(256 MB) segment, and each process has three segments allocated: one for
program code, one for computational data, and one for the program′s
nesting information save area or stack. Additional segments can be
obtained by the processes for use with private or shared data, shared code,
or mapped files. The RISC/6000* storage access instructions generate an
address of 2•• (4GB); four bits select a segment, providing access to 16
segments, and 28 bits give the offset within the segment. The AIX* process
space is a 2•• address space (4GB), and each process is able to address
only a portion of the system-wide virtual storage space. If desired, segment
registers can be changed, allowing a process to access many more than 16
segments.

Figure 55 on page 141 shows the AIX/6000* single-level virtual storage and
the virtual storage used by an application.

• The real storage that AIX/6000* can use is up to 4GB (2••).

• The file system provided by the kernel is a hierarchical tree-structured
directory that provides access to unstructured files. It has the following
extensions over the traditional UNIX** implementation:

− The logical volume (LV) function allows user file systems to span across
multiple storage devices (file-systems in traditional UNIX** are normally
limited to the size of a single, physical storage device). Logical Volume
services also allow for the addition and removal of physical disk units.
Logical Volume also offers data mirroring without using hardware
mirroring features to improve data availability.

Chapter 6. IBM Software Platforms 139

− Mapped files is an extension of the file system that uses the
single-level-store environment. A mapped file is accessed through the
virtual storage mechanism simply by loading data from the appropriate
address. A virtual storage segment can contain only one file. Multiple
files can be mapped by a single process.

− The kernel file system services are extended to provide the necessary
facilities to manage databases in virtual storage. With the mapped file
facility, a database can be shared and accessed concurrently by many
processes executing different transactions. The services provided
include the ability to perform space management, file and record level
locking, and buffer cache synchronization.

• AIX/6000* is designed to optimize the performance of the RISC/6000*. It
takes advantage of features such as superscalar architecture, floating-point
implementation, high resolution graphics, Micro-Channel Architecture, and
high speed optical serial links for high I/O bandwidth.

Eight I/O adapter slots for external device attachment are available on
RISC/6000* and are connected to the main storage through one I/O bus.

AIXwindows* Environment/6000 (5601-257) provides Wabi (Windows application
binary interface) as a separately ordered and chargeable feature and this allows
support for 13 of the most popular Microsoft** Windows** applications on
RISC/6000*.

High Availability Cluster Multi-Processing/6000 (HACMP, 5765-111) provides for
coordination and operation of multiple AIX/6000* and associated applications
(AIX/6000* clusters) in an open system client/server environment. The clustered
systems are loosely coupled with software services. The HACMP/6000 software
architecture provides reliable, recoverable shared disk resources for database
or online transaction processing servers.

AIX* Parallel System Support Program (PSSP, 5765-296) is software to support
the scalable Scalable POWERparallel System 9076 SP2.

The 9076 SP2 is the evolution of 9076 SP1 and can have up to 128 nodes. Each
node runs a copy of AIX/6000* and PSSP. The nodes are connected through a
High-Performance Switch (HPS) that allows any-to-any communication.

The 9076 SP2 provides a variety of device attachments across multiple interfaces
which includes:

• Fiber Distributed Data Interface (FDDI)

• Ethernet**

• Token-Ring

• Small Computer System Interface (SCSI) adapter to attach disks, tapes,
optical devices and storage subsystems

• High-Performance Parallel Interface (HPPI) for high speed data server and
high speed connectivity to super computers

• ESCON and Block Multiplexor Channel Adapter (BMCA) for high speed
interoperability with IBM S/390 systems.

The Scalable POWERparallel System enables high performance parallel
processing for computational intensive and UNIX** business critical data query
and transactional applications.

140 Computing Technology Reference

PSSP includes System Monitor, Resource Manager, System Data Repository
(SDR), System Management (see section 6.2.6, “System Management” on
page 149), Virtual Shared Disk (VSD) and Communication Subsystem Support
(CSS).

The System Monitor enables the system administrator to monitor and control the
9672 Scalable POWERparallel System as a single system.

The Resource Manager allows space and time sharing of nodes by parallel
programs.

The System Data Repository is a distributed data repository that provides
distributed access to system data on the control workstation and nodes of the SP
system.

The Virtual Shared Disk allows global shared disks to an application, even
though the disks are not physically attached to all nodes.

The Communication Subsystem Support allows message passing through the
HPS among 9076 SP2 nodes.

IBM Transaction Monitors and other Licensed Program Products for AIX/6000*
are supported for the Scalable POWERparallel System in serial mode. IBM DB2
AIX/6000 will be supported for the Scalable POWERparallel System in parallel
mode.

Figure 55. AIX/6000* Virtual Storage

Chapter 6. IBM Software Platforms 141

6.2.1.2 Shell
The command shell is the basic interface to a UNIX** system, interacting with the
user through the keyboard and the terminal display. The shell is actually a
procedures language, a command interpreter, and provides several commands
and utilities. The AIX/6000* provides multiple command shells as follows:

• C Shell

• Bourne Shell**

• Korn Shell**

6.2.1.3 Workload Scheduler
AIX/6000* provides an execution environment for interactive and
real-time-processing applications.

The following features are available to schedule and control the workload:

• Priority control and scheduling of multiple processes.

• Preemptive priority dispatching of ready processes.

• Preemptable kernel.

• Facilities for direct control of virtual storage, enabling a program to lock itself
and its data into real storage. Using these facilities allows the program to
bypass the demand paging algorithms utilized by the kernel to manage the
single-level virtual storage.

6.2.1.4 Spooling
AIX/6000* provides a Simultaneous Peripheral Operations On-Line (Spool) facility
for temporary storage of user related data, mainly output data for later printing.

6.2.1.5 Database
IBM DB2 AIX/6000* (5765-172) is the member of the IBM relational database
family for the AIX/6000* platform. It can be used in a single-user workstation.
The database manager provides SQL capabilities and roll-forward recovery for
database recovery from a system failure.

6.2.1.6 File
AIX/6000* provides the standard UNIX** file system that allows a hierarchical
access to unstructured byte-string files. Facilities allow mapping of an entire file
system in virtual storage and manipulating it as shared storage.

Indexed files are not standard on UNIX** systems. Two products provide this
function with AIX/6000*: AIX* VS COBOL Compiler/6000 (5601-258) for ISAM
organization, and Encina** Structured File Service (5696-237) for indexed files.

6.2.1.7 Storage Services
Unitree** for AIX/6000 (5696-398) provides continuous, multi-level, transparent file
backup and restore, as well as file archival management. It is controlled by
customer specified parameters.

142 Computing Technology Reference

6.2.1.8 Security
AIX/6000* provides security features to meet the C2 level as defined by the U.S.
Department of Defense (DOD). C2 level means that users must have a password
to login and to control access permission for their files, and the system
administrator may trace the individual user′s activities.

AIX/6000* provides protection against unwanted program alterations (for
example, computer viruses) by maintaining control information about programs
defined by a specialized algorithm (program checksum). When a program is
invoked, its current checksum is compared to a previous valid checksum.

To prevent the accidental disclosure of information, AIX/6000* provides features
to clear the content of a real storage page and a disk block space after they
have been released by the program.

6.2.2 Network Services
AIX/6000* supports a wide range of physical connectivity options using the three
main network protocols: SNA, TCP/IP, and OSI.

AIX/6000* running on a RISC/6000* system can communicate as a workstation, as
a peer system, or as a host system. The following connection types are
supported:

• Ethernet** V 2

• IEEE 802.3

• Token-Ring

• X.25

• SDLC

• S/390* ESCON* or parallel channel - (host requires TCP/IP)

• Fiber Distributed Data Interface (FDDI)

• Serial optical channel

• Asynchronous

• Coaxial connection.

TCP/IP provides the following main services:

• File Transfer Protocol (FTP) server facility for file exchange. (see section
6.2.4.3, “Data Access Services” on page 147).

• Terminal passthrough (TELNET) to allow a user client to remotely logon to
another computer with the TELNET server function.

• Simple Mail Transfer Program (SMTP) to allow an end-to-end electronic mail
exchange.

• The agent function of Simple Network Management Protocol (SNMP) for
relaying information to an SNMP manager.

• Remote procedure call (RPC) for distributed applications.

• The socket interface from Berkeley** Software Distribution (BSD) and the
UNIX** sockets, both for writing network applications.

Network Computing System (NCS**) is a standard component of AIX/6000* and
allows programmer to distribute processing power to other systems.

Chapter 6. IBM Software Platforms 143

IBM LoadLeveler* (5765-145) is a distributed, network based, job scheduling
program for RISC/6000* and Scalable POWERparallel System based on NQS**
protocols.

AIX SNA Server/6000 and AIX SNA Gateway/6000 (5765-247, 261) provide
application programming interfaces for SNA LU 0, 1, 2, 3, and 6.2 protocols and
allow user applications to communicate with:

• Traditional 3270 terminals
• Remote job entry stations
• Peer applications.

AIX SNA Server/6000 implements the SNA Advanced Peer-to-Peer Networking
(APPN) technology.

AIX* OSI Services/6000 (5696-385) provides:

• File Transfer Access and Management (FTAM) (see section 6.2.4.3, “Data
Access Services” on page 147).

• Message handling, according to the X.400 standard.

• Virtual Terminal (VT).

• ASN.1 tool kit to develop OSI applications.

• OSI applications can operate over TCP/IP networks.

• OSI/6000 provides gateway to SMTP and FTP services of TCP/IP and Virtual
Terminal to TELNET TCP/IP, thus providing access to applications residing on
OSI networks.

AIX* LAN Distributed Platform/6000 (LANDP/6000 5765-076) provides client/server
distributed capability for applications in a LAN environment connected to
multiple operating systems, such as IBM DOS, OS/2*, AIX/6000*, and OS/400*.
LANDP/6000 provides the user with a consistent programming interface to
request services from the four software platforms and provides:

• SNA communication server facility for LU 0, 1, and 2

• Program-to-program communication with SNA LU 6.2 server

• LAN router supporting NetBIOS on Token-Ring and TCP/IP on token-ring and
Ethernet**

• Store and forward server

• Database server to store, retrieve, and update data within the LAN

• Distributed Computing Environment (DCE**) support.

Multi-Protocol Transport Networking architecture (MPTN) supports CTS (Common
Transport Semantics) in IBM′s Networking Blueprint. CTS provides a common
view of networking protocols and makes applications independent of the
underlying network transport. IBM intends to provide the following AnyNet
functions for AIX/6000*.

• AnyNet APPC over TCP/IP

• AnyNet Sockets over SNA.

3270 Host Connection Program/6000 (5601-260) allows AIX/6000* users and
applications to interact with an IBM S/390 through a 3270 display or printer
emulation session.

144 Computing Technology Reference

IBM Connection Program/400 (5798-RZB) allows AIX/6000* users and applications
to communicate with AS/400*. It allows users to access applications and data
residing on AS/400*.

Table 1 summarizes the AIX/6000* networking capabilities.

Table 1. AIX/6000* Networking Capabilities

Ethernet** TokenRing FDDI X.25 SDLC

SNA YES YES YES YES YES

TCP/IP YES YES YES YES YES

OSI YES YES YES YES -

NetBIOS YES(1) YES(1) - - -

Note: (1) Supported by LANDP/6000

6.2.3 Distributed System Services

6.2.3.1 Communication Services
The communication services capabilities within AIX/6000* are provided for:

• Conversational

CPI-C API for Application Program to Program Communication (APPC) using
LU 6.2 protocol provided by AIX SNA Server/6000.

• Remote Procedure Call

AIX* Distributed Computing Environment (DCE**) (5765-117,118,119,121)
provides RPC that allows programs to work across heterogeneous systems
by masking the differences between data representations and the network
details of different software platforms.

• Messaging and Queuing

The product ezBRIDGE** Transact** (5787-ECY) provides Message Queue
Interface (MQI) to distributed applications running on AIX/6000* platform.

6.2.3.2 Object Management Services
IBM SOMobjects Developer Toolkit and the associated runtime products
Workstation Runtimes and Workgroup Runtimes (5604-480, 483, 485), provide
System Object Module (SOM) technology and Distributed SOM (DSOM)
technology on the AIX/6000* platform. SOMobjects comply with the Object
Management Group ′s (OMG**) Common Object Request Broker Architecture
(CORBA).

6.2.3.3 Distribution Services
• Directory

Global directory services are provided by AIX* DCE Global Directory
Server/6000 (5765-120) and AIX* DCE Global Directory Client/6000 (5765-259).

Cell directory services are provided by AIX* DCE Cell Directory Server/6000
(5765-119) and AIX* DCE Base Services/6000 (5765-117).

• Security

Security services are provided by AIX* DCE Security Server/6000 (5765-118)
and AIX* DCE Base Services/6000 (5765-117). The DCE** security service

Chapter 6. IBM Software Platforms 145

component is integrated within the main distributed services and
data-sharing components. It provides the network with three conventional
services: authentication, authorization, and user account management.
DCE**′s distributed security service incorporates an authentication service
based on the Kerberos** system from MIT.

• Time

Time services are provided by AIX* DCE Base Services/6000 (5765-117).

• Transaction manager

Encina** Server (5696-240) for AIX/6000*, employing the 2-phase commit
protocol to insure transactions and data integrity across distributed systems,
with features such as locking, logging, and recovery.

6.2.4 Application Enabling Services
The application enabling services available with AIX/6000* are described in this
section.

6.2.4.1 Presentation Services
• User Interface

AIX/6000* provides character mode terminals or graphic displays. AIX/6000*
incorporates the X-windows** system from MIT and the Motif** interface from
OSF**. X-windows** provides a network transparent window system that
allows an application program to access a local display terminal
independent of where the application program is actually executing.

X-windows** is based on a client/server model where a client application
communicates with the server, which controls the shared resources of
display, keyboard, and mouse. On a single display, a user can have multiple
windows to execute multiple applications.

• Print/View

AIX/6000* provides standard TCP/IP print services. The line printer
client/line printer daemon (LPR/LPD) function of TCP/IP provides
client/server support for remote printing. The LPR sends data to be printed
to the LPD on a specified server workstation, which manages the specified
printer. The LPD server on the workstation provides access to the attached
printers.

NetWare** for AIX/6000* (5696-236) allows RISC/6000* workstations to act as
servers for NetWare** LAN. It brings the AIX/6000* resources and
applications to PC LAN users. It also provides print sharing for NetWare**
clients and AIX/6000* users.

Print Services Facility/6000 (PSF/6000 5765-140) delivers the IBM Advanced
Function Printing* (AFP*) capabilities to the RISC/6000* platform running the
IBM AIX/6000* operating system. PSF/6000 provides printing solutions for
stand-alone environments, local area network (LAN) environments,
distributed print environments (via TCP/IP and Network File Server** (NFS**)
protocols), and printer sharing between LAN systems and host systems.

• Multimedia

AIX Ultimedia Services/6000 (5696-709) provides API, graphical interface and
tools to support audio and video on RISC/6000*.

146 Computing Technology Reference

6.2.4.2 Application Services
• Transaction monitor

AIX* CICS/6000* (5765-148), a member of the CICS* family, and AIX* Client for
CICS/6000* (5765-152) provide compatibility with the other CICS* family
members through the CICS* API, while interoperability is supported by the
Inter System Communication (ISC) facility.

This facility, which exists across all members of the CICS* family of products
(AIX/6000*, MVS*, OS/2*, OS/400*, VSE), allows CICS* to route transactions to
another CICS* for execution, allows transparent access to remote CICS*
resources, and allows the invocation of remote CICS* applications.

Encina** Monitor (5696-239) for AIX/6000* is a transaction monitor that uses
OSF/DCE** for distributed processing and ensures transaction integrity.
Encina** Server for AIX/6000* provides the capability to access resource
managers that support X/Open interfaces (TX,XA). Encina** Structured File
Services (see section 6.2.4.3, “Data Access Services”) provides transactions
with data access services.

UNIX System Laboratories has expressed the intention to port and support
on the Scalable POWERparallel System 9076 SP2 its transaction monitor
TUXEDO**.

• Mail

Electronic mail support in AIX/6000* is supported through the implementation
of the 4.3 Berkeley Software Distribution (BSD**) Reno level of TCP/IP
(providing mail routing facilities), and the message handling (MH)
application, providing additional facilities for mail applications.

6.2.4.3 Data Access Services
• Relational

IBM DB2 AIX/6000 (5765-172) is the member of the IBM relational database
family DB2 for the AIX/6000* software platform. It can be used in a
single-user workstation and in a client/server environment. The database
manager provides SQL capabilities and roll-forward recovery for a database
recovery from a system failure. IBM DB2 AIX/6000 will be supported on the
Scalable POWERparallel System 9076 SP2 in parallel mode.

Distributed Database Connection Services for AIX/6000* (DDCS/6000
5765-197), announced with DB2 AIX/6000, provides database access for
decision support systems as well as for online transaction processing
applications that may reside on a LAN or in a host.

DDCS/6000 can participate in environments where Distributed Relational
Database Architecture (DRDA) is implemented at the level of the Remote
Unit Of Work (RUOW).

Additional services with client/server capabilities have been announced with
the AIX* Client Support/6000 (5765-205), and the DB2 Client Application
Enabler/6000 (5765-218). These services give AIX/6000* workstation users
the capability to access and update remote relational data bases residing in
software environments where the DRDA RUOW is implemented.

Distributed database technology is also available from vendor products such
as Ingres**, Sybase**, Oracle** and INFORMIX**. The vendor of Oracle** has
expressed the intention to port and support the product on the Scalable
POWERparallel System 9076 SP2.

Chapter 6. IBM Software Platforms 147

• File

The following products provide services for distributed file access:

− Encina** Structured File Services (5696-239) provides a fast, recoverable,
record-oriented data storage mechanism. The file organizations are
binary-tree clustered files, relative-record files, and entry-sequenced
files.

− Network File System (NFS**), a standard component of AIX/6000*, allows
users to have transparent access to file systems distributed over the
network.

− OSI file services allow the exchange and remote management of files
between platforms that implement the FTAM protocols.

− FTP (File Transfer Program), as a standard component of TCP/IP, allows
the exchange of files using TCP/IP.

− NetWare** for AIX/6000* (5696-236) allows RISC/6000* workstations to act
as servers for NetWare** LANs. It makes the AIX/6000* resources and
applications available to PC LAN users. It also provides file sharing for
NetWare** clients and AIX/6000* users.

• Storage Server

− ADSTAR Distributed Storage Manager (ADSM* 5648-020) allows an MVS
or VM system to act as a file backup and archive server for LAN file
servers and workstations. AIX/6000* can be a client of ADSM MVS or
VM.

− ADSTAR Distributed Storage Manager/6000 (ADSM/6000, 5765-203) has
the same storage management functions as ADSM for MVS and VM on a
RISC System/6000*. It allows a RISC/6000* to act as a file backup and
archive server for LAN and workstations. This product operates as a
server for clients running OS/2*, NetWare**, Windows**, DOS,
Macintosh**, SunOS**, DEC** ULTRIX**, HP-UX** and SCO** Open
Desktop** software platforms.

IBM intends to provide ADSM/6000 for backup, recovery and archiving of
data on POWERparallel systems.

− AIX File Storage Facility/6000 (FSF/6000, 5696-708) provides a RISC/6000*
client with automatic client disk space management and file migration to
any standard NFS** server. It migrates the least used client files to the
server disks on policy-based storage management.

6.2.5 Application Development
AIX/6000* provides the standard development environment for UNIX** systems.
Products that extend this facility are available, among them:

• AIX* Software Development Environment Workbench/6000 (5696-524) to
provide the basis for an integrated software development environment.

• AIXwindows Interface Composer/6000 (5756-027) to provide facilities for the
design of graphical user interfaces for applications using OSF/Motif**.

Computer Aided Software Engineering (CASE) packages for the AIX/6000*
platform are provided by several software vendors.

AIX* Parallel Environment (5765-144) provides support for parallel application
development, debug, analysis, execute and tune on POWERparallel systems.

148 Computing Technology Reference

6.2.6 System Management
SystemView* is the IBM systems management strategy for managing, planning,
coordinating, and operating open, heterogeneous distributed systems.
SystemView* includes a SystemView* structure and the SystemView* conforming
products. The SystemView* structure is designed to provide a consistent
end-user interface, shared data, enhanced automation, and increased integration
among systems management products. The structure embraces selected open
standards and architectures and defines conformance criteria for the
SystemView* products. The SystemView* conforming products are, and will be,
developed by IBM and non-IBM vendors.

The System Management Interface Tool (SMIT) facility is a set of menu-driven
services to perform local tasks such as installation, configuration, device
management, problem determination, and storage management. SMIT is
available in both character and graphical interfaces.

AIX* PSSP has a collection of tools to help manage the Scalable POWERparallel
System, the software, the users from a central point of control, and to automate
configuration and management tasks. A SMIT based Configuration Management
Interface (CMI) is provided for management activities.

6.2.6.1 Performance Management and Accounting
A set of tools that allow the tuning of AIX* and application performance is
provided with AIX/6000*. Best/1** for AIX/6000* is a local capacity planning tool
that assists in making reliable capacity planning and performance management
decisions.

6.2.6.2 Operations
AIX* NetView*/6000 (5765-077) provides services for distributed network
management. It manages TCP/IP devices, which include SNMP agents. The
SNMP management includes fault, performance, configuration, and alert
management. It uses a graphical, object-oriented, Motif** based user interface
that allows the network topology to be viewed on top of meaningful maps,
buildings, or devices.

AIX* PSSP allows the administrator and operator to monitor and manage the
Scalable POWERparallel System for a control workstation as a single point of
control.

6.2.6.3 Availability and Integrity
AIX/6000* is an implementation of UNIX**, with specific features designed to
improve total system availability. Some features among others are:

• The ability to dynamically add device drivers without requiring a kernel
rebuild, or a re-IPL

• Specific facilities for file management, such as:

− Logical volume manager to provide disk mirroring for specified volumes.
Once mirroring is activated, management of the data and copies is
automatic and transparent to the application and user.

− Journaled file system for automatic logging of changes to the file
systems structure. If the system crashes, the log is used to rebuild the
file systems automatically on restart.

Chapter 6. IBM Software Platforms 149

− HACMP/6000 to improve application availability in a AIX/6000* clustered
configuration.

6.2.7 Selected APIs, Protocols, and Facilities
Table 2 summarizes selected protocols, facilities, and APIs available with
AIX/6000* and mentioned in this section.

Table 2. AIX/6000* Selected APIs, Protocols,
and Facilities

AIX/6000*

Berkeley**Sockets YES

POSIX** YES

CPI-C YES

APPC YES

APPN YES

NCS** YES

NQS** YES

OSF/DCE** YES

SQL YES

DRDA-RUOW ANN

NFS** YES

FTP YES

FTAM YES

OSF Motif** YES

X-windows** YES

NetWare** server YES

LAN & workstation server YES

SMTP YES

NetView YES

SNMP YES

Note: ANN (announced)

150 Computing Technology Reference

6.3 AIX/ESA*
AIX/ESA* (5756-112) is the IBM S/390 member of the AIX family. It provides a
UNIX** based software platform that operates natively on the ES/9000* processor
family. AIX/ESA* is built upon the Open Software Foundation OSF/1** platform
and provides additional IBM enhancements to exploit large processor
capabilities. AIX/ESA* is designed to address the needs of UNIX** users that
require the high vector and scalar performance, the large capacity, and the high
data bandwidth of the ES/9000* processors and the ESA/390* architecture.
AIX/ESA* is the follow-on to AIX/370 with a high degree of binary and data
compatibility.

Figure 56 shows the elements of the AIX/ESA* software platform

Figure 56. Elements of the AIX/ESA* Software Platform

6.3.1 Local Operating System Services
The basic structure of a UNIX** operating system can be represented by two
layers: (see Figure 8 on page 20).

• The kernel that provides the base services for the applications and that can
be divided into two parts: the low-level kernel that interfaces with the
hardware, and the kernel that interfaces with the applications.

Chapter 6. IBM Software Platforms 151

• A command processing component, called the shell, that interfaces with
users, performs parameter substitution, and calls appropriate command
programs. The shell also includes a set of utilities for editing, program
development, and text processing.

6.3.1.1 Kernel
The system architecture and characteristics of AIX/ESA* are as follows:

• AIX/ESA* is built on the Open Software Foundation OSF/1** operating
system.

• The virtual storage space available to each process (the address space) is
2GB in size and provides isolation of one process code and data from the
other processes in the system. For each fork or exec command that creates
a new process, a new address space is created.

• The low-level kernel is based on the micro-kernel Mach** from Carnegie
Mellon University (CMU), and implements four basic concepts: threads,
tasks, ports, and messages. The thread is an execution unit, and the task is
a protection unit. They implement the traditional process concept of the
UNIX** system. Ports and messages are used to communicate between
tasks within the operating system. Every service and every resource in the
system is represented by a port. Tasks and threads request a service by
sending a message to a particular port. All the services are handled by
user-state tasks (also called servers) in the kernel. Additional services can
be implemented by a user-state task and represented by a collection of
ports.

• The kernel provides services for scheduling, recovery, storage management,
accounting, inter-process communication, multiprocessor, and multi-thread
support. The OSF/1** kernel includes the parallelism extension for
multiprocessors from Encore**, the security functions from Sicureware**, and
the portable Streams environment from Mentan**. The AT&T** streams are
also supported. AIX/ESA* has improved the OSF/1** kernel functions, to
scale up to the ES/9000* processor.

• The AIX/ESA* device drivers are from IBM, and provide support for ES/9000*
attachable devices. With the dynamic kernel extensions capability of
AIX/ESA*, device drivers can be added, modified, and deleted, even while
the system is running. Physical DASD sharing among AIX/ESA* platforms is
not supported.

• The logical volume manager (LVM) has been ported from AIX/6000* and
allows the file systems to span multiple storage devices. While file systems
in traditional UNIX** are limited to the size of a single physical storage
device, the LVM allows file systems of up to 2GBs. It also offers data
mirroring without using hardware mirroring features.

• The program loader of AIX/ESA* supports shared libraries, which means that
applications do not have to maintain private subroutine libraries. The loader
is designed to handle multiple object module formats, which allows use of
programs from different sources, such as BSD** and AIX/370. This gives
AIX/ESA* upward compatibility with AIX/370.

152 Computing Technology Reference

• AIX/ESA* conforms to the standard of POSIX** 1003 and meets the
specifications of XPG4**.

• The processor complex used by AIX/ESA* can have up to 2GBs of central
storage and up to 16TBs of expanded storage.

• The vector facility feature can be used by AIX/ESA* processes for computing
intensive applications.

• AIX/ESA* supports the ESCON* architecture for I/O connectivity available on
the ES/9000* processors (see the channel subsystem in section 6.5.1, “Local
Operating System Services” on page 168) and High Performance Parallel
Interface (HIPPI) connections.

Figure 57 shows the AIX/ESA* virtual storage environment.

Figure 57. AIX/ESA* Virtual Storage

6.3.1.2 Shell
The command shell is the basic interface to a UNIX** system, interacting with the
user through the keyboard and the terminal display. The shell is actually a
procedures language and a command interpreter, and provides several
commands and utilities. The AIX/ESA* Shell includes commands and libraries
from AIX/6000*, Berkeley′s BSD** 4.3, the Bourne Shell**, the C Shell, and the
Korn Shell**.

Chapter 6. IBM Software Platforms 153

6.3.1.3 Workload Scheduler
AIX/ESA* provides workload scheduling for interactive applications and for
intensive computing applications. Sterling Software′s NQS**, which has been
ported to AIX/ESA*, allows submission of batch jobs from UNIX** systems using
the Network Query System (NQS**) protocol.

IBM intends to modify LoadLeveler*(5765-145) for AIX/ESA*.

Network Computing System (NCS**) for AIX/ESA* (5765-060), derived from
HP**/Apollo NCS**, provides a set of object oriented tools for heterogeneous
distributed computing allowing tasks to be distributed across computers in a
network. It allows workstation applications that have occasional numeric
intensive computing (NIC) requirements to schedule the NIC work on the
AIX/ESA* system and to receive the results back at the workstation. The RPC
interface is used by NCS**.

In addition to the traditional UNIX** time-slice or fair-share support, AIX/ESA*
provides an enhanced scheduling algorithm to provide satisfactory service to a
large number of concurrently active users. This includes scheduling policy,
priority manipulation, resource limit, and resource usage.

 A specialized scheduling algorithm has been implemented for intensive
computing applications. The workload scheduler automatically moves the
application to a vector processor whenever the need for vector operations is
detected.

6.3.1.4 Spooling
The Simultaneous Peripheral Operations On-Line (Spool) facility is provided by
AIX/ESA* and is the temporary storage for user-related data, mainly output data
for later printing.

6.3.1.5 Database
At present, no IBM database manager has been ported to AIX/ESA*. Database
technology is available from vendors, such as Ingres**, Sybase**, and
INFORMIX**.

IBM has stated its intention to provide a database manager for AIX/ESA* based
on the SQL* interface.

6.3.1.6 File
AIX/ESA* provides a virtual file system (VFS) concept that allows a seamless
integration of different file systems for the end user. AIX/ESA* supports the
Berkeley** fast file system, the AIX/370 file system, and the NFS** file system.
Under control of VFS, the differences among those file systems are transparent
to the end user. In addition, all three file systems have been fully parallelized to
give improved performance on multiprocessor systems. These file systems are
organized with a hierarchical tree-structured directory, and provide access to
unstructured byte-string files.

154 Computing Technology Reference

6.3.1.7 Storage Services
The Unitree** product provides a mechanism for automatically archiving and
retrieving AIX/ESA* files.

6.3.1.8 Security
AIX/ESA* provides security features to meet the C2 level as defined by the U.S.
Department Of Defense (DOD). Among other specifications, the C2 level
requires that the users have a password to login, and have control access
permission for their files, and also requires that the system administrator may
trace an individual user′s activities.

AIX/ESA* provides:

• Identification and authentication of users

• A privilege mechanism for system administration

• A security auditing capability.

6.3.2 Network Services
AIX/ESA* networking protocols follow the industry standards to allow ease of
interconnection and communication. AIX/ESA* uses RISC/6000 and PS/2
gateway nodes to connect to any local-area and wide-area networks supported
by TCP/IP in RISC/6000 and PS/2. ASCII devices may be connected through a
channel attached RISC/6000, as outboard communication server (OCS), and
through the IBM 3172 for Ethernet** and token-ring LAN connected terminals.

Most of the AIX/ESA* communication is based on TCP/IP. AIX/ESA* TCP/IP
provides the following functions:

• Terminal Passthrough (TELNET) to allow an user client to remotely logon to
another computer with TCP/IP Telnet server function.

• Simple Mail Transfer Program (SMTP) (see section 6.3.4.2, “Application
Services” on page 156).

• File Transfer Protocol (FTP) (see section 6.3.4.3, “Data Access Services” on
page 156).

• Remote Procedure Call (RPC) for distributed applications.

• The socket interface from Berkeley Software Distribution (BSD**) and the
UNIX** sockets, both for writing network applications.

IBM has made a statement of direction (SOD) to implement OSI standards in
AIX/ESA*.

Table 3 summarizes the AIX/ESA* networking capabilities.

Table 3. AIX/ESA* Networking Capabilities

Ethernet** TokenRing FDDI X.25 SDLC

TCP/IP YES YES YES YES -

OSI SOD SOD SOD SOD -

Note: SOD (statement of direction)

Chapter 6. IBM Software Platforms 155

6.3.3 Distributed System Services

6.3.3.1 Communication Services
The communication services capabilities for AIX/ESA* are provided for:

• Remote Procedure Call

IBM has made a statement of direction for implementing the OSF/DCE**
technology in AIX/ESA* for Remote Procedure Call (RPC).

6.3.3.2 Distribution Services
• Directory

IBM intends to include in AIX/ESA* the OSF/DCE** for directory services.

• Security

IBM intends to include in AIX/ESA* the OSF/DCE** for security services.

• Time

IBM intends to include in AIX/ESA* the OSF/DCE** for time services.

6.3.4 Application Enabling Services
The application enabling services available with AIX/ESA* are described in this
section.

6.3.4.1 Presentation Services
• User Interface

The IBM AIXwindows Environment/ESA* (AIXwindows 5696-150) provides a
graphical extension to AIX/ESA* and allows an user to interact with other
systems providing the X-windows** system. The OSF/Motif** interface is also
available.

• Print/View

AIX/ESA* can be connected through TCP/IP to a PS/2* that runs the Print
Service Facility (PSF) under OS/2*. PSF allows the output data to be directed
to a wide range of printers.

6.3.4.2 Application Services
• Transaction Monitor

At present, no IBM transaction monitor has been ported to AIX/ESA*. UNIX
System Laboratories has expressed its intent to port its TUXEDO**
transaction processing system to AIX/ESA*.

• Mail

AIX/ESA* provides the Simple Mail Transfer Protocol (SMTP) to send and
receive mail over a TCP/IP network.

6.3.4.3 Data Access Services
• Relational

At present, no IBM distributed database has been ported to AIX/ESA*.
Database technology is available from vendors, such as Ingres**, Sybase**,
and INFORMIX**.

• File

156 Computing Technology Reference

AIX/ESA* supports industry standard file access protocols such as:

− Network File System (NFS** 5696-149) allowing a user to have
transparent file access across UNIX** , MVS, VM, and AIX software
platforms.

− File Transfer Protocol (FTP) allowing transfer of files to and from remote
workstations and hosts through a TCP/IP network.

6.3.5 Application Development
The AIX/ESA* shell provides the traditional development environment for UNIX**
based systems. This includes editors like VI and ED, and tools like AWK for
pattern scanning, and SCCS (Source Code Control System) for source code
change management.

6.3.6 System Management
SystemView* is the IBM systems management strategy for managing, planning,
coordinating, and operating open, heterogeneous distributed systems.
SystemView* includes a SystemView* structure and the SystemView* conforming
products. The SystemView* structure is designed to provide a consistent
end-user interface, shared data, enhanced automation, and increased integration
among systems management products. The structure embraces selected open
standards and architectures and defines conformance criteria for the
SystemView* products. The SystemView* conforming products are, and will be,
developed by IBM and non-IBM vendors.

6.3.6.1 Performance Management and Accounting
System performance data is available in AIX/ESA* with AIXMON and the AIX
X-Windows Real Time Monitor (XRTM 5665-101). AIXMON collects typical UNIX**
data, and also collects samples for the utilization of system resources, such as
processor storage, vector, and I/O units. XRTM is a real-time monitor, based on
AIXwindows, and offers enhanced graphical presentation of performance data. A
threshold notification service allows a user to set values for specific occurrences
and receive a warning when these thresholds are reached.

6.3.6.2 Operations
For network management, AIX/ESA* provides the agent function of Simple
Network Management Protocol (SNMP). The SNMP manager on a RISC/6000 can
provide network ownership functions with NetView/6000*.

6.3.6.3 Availability and Integrity
AIX/ESA* provides the following facilities for maximum availability:

• Disk mirroring provided by the logical volume manager. Once mirroring is
activated, management of the data and copies is automatic and transparent
to the application and user.

• Software recovery through kernel recovery, with the objective of isolating the
error and allowing the system to continue processing.

• Hardware and device driver recovery. If a processor in a multiprocessor
configuration fails, the failing processor is taken offline, and processing
continues on the remaining processors.

• Reduced maintenance disruption due to the ability to dynamically add device
drivers without requiring a kernel rebuild or reIPL.

Chapter 6. IBM Software Platforms 157

6.3.7 Selected APIs, Protocols, and Facilities
Table 4 summarizes selected protocols, facilities, and APIs available with
AIX/ESA* and mentioned in this section.

Table 4. AIX/ESA* Selected APIs, Protocols
and Facilities

AIX/ESA*

Berkeley** sockets YES

POSIX** YES

CPI-C -

APPC -

APPN -

NCS** YES

NQS** YES

OSF/DCE** SOD

SQL SOD

DRDA-RUOW -

NFS** YES

FTP YES

FTAM SOD

OSF/Motif** YES

X-windows** YES

NetWare** server -

LAN & workstation server -

SMTP YES

NetView* -

SNMP YES

Note: SOD (statement of direction)

158 Computing Technology Reference

6.4 IBM PC DOS
IBM PC DOS is an entry-level operating system designed for personal
computers. It provides a single user, single-task environment which runs on
microprocessors based on the Intel** hardware architecture.

IBM PC DOS results from the evolution of DOS V.1 operating system designed
and developed by Microsoft** for IBM in 1981 for the first PC generation. In this
chapter, the term DOS will be used to indicate IBM PC DOS V.6.3 (5871-AAA) and
below. The content of this section, however, also applies to MS-DOS**, the DOS
version marketed by Microsoft**.

Figure 58 shows the elements of the PC DOS software platform.

Figure 58. Elements of the PC DOS Software Platform

6.4.1 Local Operating System Services
The local operating system services of PC DOS can be described referring to the
kernel, the shell, and the file system.

Chapter 6. IBM Software Platforms 159

6.4.1.1 Kernel
The system architecture and characteristics of the IBM PC Disk Operating
System are as follows:

• Conventional memory.

Personal Computers using DOS can manage 1 megabyte of memory. Only
640KB of this conventional memory is available for use by DOS and
applications. The rest of the conventional memory is occupied by video
display memory, device buffers, and read-only memory. This later part
contains the Basic Input Output System (BIOS), also called the hardware
interface code.

The limitation of a 1MB address space is a carry over from the original IBM
Personal Computer, which used an Intel 8088 microprocessor only capable of
20-bit addressing.

• Extended memory.

Memory above 1MB is called “extended memory” and is only available on
systems that use the Intel 80286 processor or above. In order to use this
memory, the Intel 80286 processor (or above) must be switched from real
mode to protected mode. Real mode of an Intel 80826 is similar to a faster
Intel 8088 processor with access to conventional memory and limited access
to extended memory. In protected mode, the processor has total access to
both conventional and extended memory.

The mode is a function of the operating system. DOS is a real mode
operating system (OS/2 is a protected mode operating system). DOS,
through the BIOS, has extended memory service functions, which allow
access to extended memory via a fairly slow processor mode switching
between real and protected mode.

• Expanded memory.

This type of memory is the result of the work done by Lotus, Intel, and
Microsoft and is called the Lotus/Intel/Microsoft Expanded Memory
Specification, or LIM EMS for short. This memory can be installed on all
PC′s from the Intel 8088 upwards. Expanded memory consists of two
components, a memory manager and the memory itself. The memory
manager may make up to 32MB of memory in the 1MB conventional memory
space. The expanded memory can be remapped by the expanded memory
manager to extended memory.

• The DOS kernel is loaded from disk or diskette, it is called IBMDOS.COM
(MSDOS.SYS) and provides the heart of the operating system. It provides
hardware independent functions, like file and directory management,
memory functions, character input and output device support, and program
management. The DOS kernel uses BIOS functions to communicate with the
hardware. On top of the kernel is the command processor
(COMMAND.COM) which provides the command interpreter and the familiar
C> prompt .

• The DOS code is not protected from the application, and an application error
may cause a system failure.

160 Computing Technology Reference

Figure 59. DOS Real Storage Addressing Range

Figure 59 shows the real storage addressing range used by DOS and by the
applications.

• The file system used by DOS allows the user to organize the files on hard
disks or diskettes into tree-structured directories. A hard disk can be
subdivided into logical disks or partitions, each with its own directory.

• The Basic Input/Output System (BIOS) provides a compatible interface
between the operating system, the software, and the hardware. BIOS allows
the application programmer to request an I/O operation independently of the
physical details of the hardware architecture. I/O operations cannot be
overlapped with instruction execution.

• Device drivers can be written to handle the specific requirements of a
particular device. Device drivers make it possible to include support for new
devices when the need arise.

• I/O devices are connected to central storage through one channel bus.

6.4.1.2 Shell
The DOS shell provides a simple Graphical User Interface (GUI) providing the
user with graphical representations of underlying file objects. The shell GUI
allows the user to manage programs, view the directories and the contents of
the directories, and navigate through them with a graphical interface.

Chapter 6. IBM Software Platforms 161

6.4.1.3 Workload Scheduler
DOS, being a single user, single task operating system, executes one application
at a time, and therefore, does not normally need a sophisticated workload
scheduler. Although a limited manual task swapper is available and also a task
scheduler utility program to run DOS tasks at timed intervals.

6.4.1.4 File
The file system available with DOS is File Allocation Table (FAT), which supports
unformatted data. Several disk caching programs are available to improve disk
performance on systems with more than 1MB of storage.

6.4.2 Network Services
Network communications are implemented in DOS by:

• LAN Support Program (5621-300)

• TCP/IP for DOS (5621-219)

• Network Services/DOS (5621-344)

• PC/Host File Transfer and Terminal Emulator Program (FTTERM 5669-352).

These products allow DOS to handle local and remote networking
communication with PCs running network protocols, and with other software
platforms.

In addition, Personal Communications/3270 (PC/3270, 5622-231) provides 3270
emulation functions for communications with S/370* hosts.

The IBM DOS LAN Requester (DLR) is available with the OS/2 LAN Server
(5621-253) for access to the OS/2 LAN Server. DLR also includes the LAN
Support Program, which provides a common interface across the LAN for both
NetBIOS and token-ring protocols.

TCP/IP for DOS provides the following services and application programming
interfaces:

• Terminal passthrough (TELNET) to allow a DOS client to remotely logon to
another system with a TCP/IP TELNET server function.

• Simple Mail Transfer Protocol (SMTP) to allow an end-to-end electronic mail
exchange.

• SNMP agent function.

• Windows Sockets API with the programmer′s toolkit (5621-256).

• Allows existing NetBIOS applications to be routed through a TCP/IP network.

• File Transfer Protocol (FTP) (see section 6.4.4.3, “Data Access Services” on
page 165).

• Network File System (NFS**, 5621-257). (see section 6.4.4.3, “Data Access
Services” on page 165).

• Line Printer Client (LPR) for remote printer support. (see section 6.4.4.1,
“Presentation Services” on page 164).

• X-windows** server function for client applications.

• Allows existing NetBIOS applications to be routed through a TCP/IP network
(5622-048).

162 Computing Technology Reference

The LAN Distributed Platform for DOS (LANDP/DOS 5622-107) provides a
client/server distributed programming capability well suited to develop
distributed services and applications in an heterogeneous LAN environment.
The LANDP platform allows integration of heterogeneous systems (DOS,
Windows, OS/2*, OS/400* and AIX/6000*) and heterogeneous communication
environments (NETBIOS, TCP/IP, SNA, and X.25). In addition to the programming
services, LANDP also provides several ready-to-use functions, such as 3270
emulation, shared file, electronic journal, store and forward services and
management services.

Network Services/DOS provides CPI-C and APPC interfaces for the DOS
platform. DOS can participate in an SNA subarea environment and in Advanced
Peer-to-Peer Networking (APPN).

FTTERM provides terminal emulation and file transfer to EBCDIC and ASCII
hosts.

Table 5 summarizes the DOS networking capabilities.

Table 5. DOS Networking Capabilities

Ethernet** TokenRing FDDI X.25 SDLC

TCP/IP - YES - YES -

NetBIOS YES YES YES (1) - -

SNA - - - - YES (2)

Note:
(1) Through LAN Support Program (5621-300)
(2) With an SDLC adapter card

6.4.3 Distributed System Services

6.4.3.1 Communication Services
The communication services capability within DOS and Microsoft** Windows**
are provided for:

• Conversational

Inter-process communication services for distributed resource managers on
a LAN is provided by the LAN Support Program which, using the IEEE 802.2
interface, makes the Advance Program-to-Program Communication for the
IBM PC (APPC/PC) available on a token-ring network and a PC network.

• Remote Procedure Call

IBM DCE Client for Windows** (5696-657) software developer′s kit (SDK)
provides RPC and threads services necessary to execute a distributed
application.

6.4.3.2 Distribution Services
• IBM DCE Client for Windows** software developer′s kit (SDK) provides the

following distribution services:

− Cell Directory

− Security

− Time.

Chapter 6. IBM Software Platforms 163

• Transaction Manager

The CICS* for OS/2 transaction monitor (see below) provides transaction
manager functions to ensure transactions and data integrity across
distributed systems.

6.4.4 Application Enabling Services

6.4.4.1 Presentation Services
• User Interface

With TCP/IP for DOS, the X-windows** server allows client applications to
use the graphical interface on the DOS workstation screen.

• Print/View

TCP/IP for DOS delivers the Line Printer Client (LPR) function that provides
client support for distributed printing. LPR sends data to be printed to Line
Printer Daemon (LPD) on a specified server platform to a specified printer.
The LPD server on the target software platform provides access to the
attached printers.

• Multimedia

IBM Storyboard Live! (5604-408) is a multimedia application that allows the
mixing of video, audio, animation and text to produce high quality screen
presentations.

6.4.4.2 Application Services
• Transaction Monitor

CICS* OS/2* V.1 (5688-101) provides CICS* transaction management facilities
to a DOS software platform. It can operate as a client for CICS OS/2 LAN
server, with other CICS family systems, or as a stand-alone system.

CICS applications can communicate with CICS applications on other software
platforms through several mechanisms. This capability exists across all the
CICS monitor family (AIX/6000*, OS/2, OS/400*, MVS/ESA*, VSE/ESA*). These
mechanisms allow CICS to route transactions to another CICS for execution,
allow for transparent access to remote CICS resources, and can invoke a
remote CICS application.

The CICS APIs for distributed transactions are:

− CICS COBOL and C command-level

− Transaction routing, and outbound function shipping over NetBIOS from
the personal workstation to a CICS OS/2 LAN server.

The CICS daisy-chaining concept is available for access to host systems.

• Mail

The Simple Mail Transfer Protocol (SMTP) application of TCP/IP provides
client support for transferring electronic mail messages over the TCP/IP
network.

Mail services are also available with other vendor products, such as Lotus
Notes** and cc:Mail**.

164 Computing Technology Reference

6.4.4.3 Data Access Services
• Relational

IBM DATABASE2 for OS/2* (5622-044) is a data base management member of
the IBM relational database family. It can be used in a single-user
workstation and in a client/server LAN environment. It allows access to an
OS/2 database server from DOS and Windows**. The Database Manager
provides SQL capabilities and roll forward recovery for database recovery
from a system failure. It includes functions for application portability and
DB2 compatibility.

IBM DB2 for OS/2 and Distributed Database Connection Services for OS/2*
(DDCS 5622-056) provide database access for decision support and OLTP
distributed applications. DDCS/2 implements the distributed relational
database architecture (DRDA) at the level of remote unit of work (RUOW).

The distributed database client enabling feature of IBM DB/2 for OS/2 can be
utilized in DOS environments. When combined with DDCS on an OS/2
server, it gives a DOS workstation the capability to access and update
remote relational databases on platforms that use the DRDA architecture.

• File

Services to access and manage distributed data are provided by the
following:

− TCP/IP File Transfer Protocol (FTP) allows file transfer across systems.
FTP supports the transfer of both binary and ASCII files.

− TCP/IP Network File System (NFS**) allows users to have transparent
access to hierarchical file structures. File sharing is also supported.

6.4.5 Application Development
Several editors, compilers, and debuggers are available for application
development on the DOS software platform.

6.4.6 System Management
SystemView* is the IBM systems management strategy for managing, planning,
coordinating, and operating open, heterogeneous distributed systems.
SystemView includes a SystemView structure and the SystemView conforming
products. The SystemView structure is designed to provide a consistent
end-user interface, shared data, enhanced automation, and increased integration
among systems management products. The structure embraces selected open
standards and architectures and defines conformance criteria for the
SystemView products. The SystemView conforming products are, and will be,
developed by IBM and non-IBM vendors.

6.4.6.1 Operations
The following are some of the programs that allow management of DOS
workstations connected to a LAN:

• NetView/PC (5669-024) allows implementation of the NetView service point
concept on the DOS software platform. It collects network management
information, formats it into alerts, and forwards alerts to NetView for
centralized network management. Host connectivity is through a Real Time
Interface Coprocessor (ARTIC**).

• LAN Network Manager (5621-117) and LAN Station Manager (5621-103)
provide heterogeneous LAN management capabilities for token-ring and PC

Chapter 6. IBM Software Platforms 165

network attached stations. LAN Network Manager is conforming to
SystemView, has graphical display, runs on OS/2 workstations and
cooperates with host based Netview for integrated network management.
LAN Station Manager can be run on DOS.

6.4.7 Selected APIs, Protocols, and Facilities
Table 6 summarizes selected protocols, facilities and APIs available with DOS
and mentioned in this section.

Table 6. IBM PC DOS Selected APIs, Protocols,
and Facilities

IBM PC
DOS

Berkeley** Sockets -

POSIX** -

CPI-C(1) YES

APPC(1) YES

APPN(1) YES

NCS** -

NQS** -

OSF/DCE** -

SQL(2) YES

DRDA-RUOW(2) YES

NFS** YES

FTP YES

FTAM -

OSF/Motif** -

X-windows** YES

NetWare** server -

LAN & workstation server -

SMTP YES

NetView* YES

SNMP YES

Note:
(1) With Network Services/DOS
(2) Through DB2 for OS/2* client enabler on DOS and
DDCS on OS/2* server

166 Computing Technology Reference

6.5 MVS/ESA*
MVS/ESA* (V4 5695-047, 048 and V5 5655-068, 069) is a general purpose
operating system that runs on the IBM Enterprise Systems/9000* (ES/9000*)
processor family and all other processors designed to operate with the
Enterprise Systems Architecture/390 (ESA/390*). Among the primary objectives
of MVS/ESA* are high performance, security, reliability, and availability in large
system environments.

MVS/ESA* makes use of advanced technologies in major functional areas that
are critical to implement system-wide solutions. These cover data management,
networking, transaction processing, workload scheduler, workload management,
security, system management, client/server computing, and application
development. MVS/ESA* can manage thousands of users on large ES/9000*
systems, and provides high I/O bandwidth and large storage capacity. In
addition, MVS/ESA* V5 supports the S/390 Parallel Transaction Server 9672, a
solution for online transaction processing.

Figure 60 shows the elements of the MVS/ESA* software platform

Figure 60. Elements of the MVS/ESA* Software Platform

Chapter 6. IBM Software Platforms 167

6.5.1 Local Operating System Services
The system architecture and characteristics of MVS/ESA* are the following:

• MVS/ESA* (Multiple Virtual Storage/ESA*) provides each user of the system
with one (or more) private virtual storage address space of up to 2GB in
size. The address space is used for user data and programs, and each
address space is isolated from the others by the software and the
architecture.

• MVS/ESA* users also have the capability to define additional data spaces of
2GB each and hiperspaces of up to 16TB each for storing data.

Figure 61 shows the MVS/ESA* virtual storage environment.

Figure 61. MVS/ESA* Virtual Storage

• MVS/ESA* can use the expanded storage feature of the ES/9000* and 9672
processors for backing the virtual storage of the address spaces, data
spaces, and hiperspaces.

• The largest central storage is 2GB, while the total system storage size can
be up to 16TB.

• MVS/ESA* cross memory services allow authorized users to access other
address spaces for program and data reference.

• Virtual-to-real storage relationships are controlled by various paging
algorithms, where paging is the process of moving the content of real
storage, in blocks of one or more pages of 4KB each, into auxiliary storage

168 Computing Technology Reference

(external DASD devices), or into expanded storage, or vice-versa, from
auxiliary or expanded storage to real storage.

• Swapping is used to control the number of users concurrently using real
storage and system resources, where swapping is the process of transferring
all the real storage belonging to a user into auxiliary or expanded storage
and vice-versa.

• MVS/ESA* supports tightly-coupled multiprocessors with up to ten
processors and allows multi-processing through multi-tasking.

• The job entry subsystems, JES2 and JES3, both provide facilities for loosely
coupling up to eight MVS images with MVS/ESA* V4, and 32 MVS images
with MVS/ESA* V5.

• MVS/ESA* V4 supports the concept of Sysplex (system complex), a
combination of hardware elements and software services to couple up to
eight MVS systems together and still provide a single image computing
facility.

• MVS/ESA* V5 supports the S/390 Parallel Sysplex, a structure for enabling
parallel processing and data sharing across systems. Up to 32 systems can
be configured in a S/390 Parallel Sysplex. This configuration adds the
multi-system capability to multi-processing through multi-tasking.

• High performance data sharing is made possible through the Coupling
Facility technology: a combination of hardware and software functions
supported by MVS/ESA* V5. In a S/390 Parallel Sysplex, authorized
applications, such as subsystems and MVS/ESA* V5 components, use the
coupling facility services to cache data, share queue status, and access
sysplex lock structures to implement data sharing, subsystems workload
balancing, and rapid recovery from failures. The subsystems and MVS
components transparently provide data sharing, workload balancing, and
recovery benefits to their applications.

• MVS/ESA* permits the use of the Enterprise System Connection (ESCON*)
architecture and also supports the specialized connection High-Performance
Parallel Interface (HPPI) for transmission of data at peak rates greater than
50MB/sec.

• The number of I/O devices locally attachable with MVS/ESA* V4 is 4096, and
a single device may be connected with up to eight channel paths. MVS/ESA*
V5 extends the practical limit to 5500 devices and the theoretical limit to 64K
devices.

• The I/O bandwidth possible with MVS/ESA*, ES/9000 and 9672 processor
families is in the order of hundreds of MB of data per second.

• MVS/ESA* provides features for sharing DASD devices with other MVS
systems.

• MVS/ESA* allows the use of the following hardware facilities:

− The vector facility feature of the ES/9000* processor family for computer
intensive engineering and scientific applications.

− The integrated cryptographic resource facility (ICRF) of the ES/9000*
processor family for applications requiring a high level of data security.

− The data compression facility of selected ES/9000* and 9672 processor
families for users requiring DASD space saving and communication line
transmission time saving.

Chapter 6. IBM Software Platforms 169

− The subsystem storage protection and the subspace group facility to
enhance CICS* availability.

• MVS/ESA* V4 and V5 support the standards defined by POSIX** 1003.1
(system interface), 1003.2 (shell and utilities), and 1003.4a (real-time threads),
all conforming to XPG4**. These services are provided as part of the
OpenEdition* MVS.

• IBM intends to seek XPG4 Base Branding and the X/OPEN** specification
1170 for OpenEdition* MVS.

6.5.1.1 Workload Management
MVS/ESA* provides scheduling facilities for the following categories of workload:

• Interactive workload, which is scheduled using the Time Sharing Option
(TSO) facilities.

• Batch workload, which is scheduled by the job entry subsystem (JES). The
JES accepts work (jobs) into the system, selects jobs for execution,
processes the output, and purges work from the system. Work can be
submitted locally by the operator, by TSO users, by RJE workstations, by
programs, by other software platforms utilizing the Network Job Entry (NJE)
service of JES, and by UNIX** type workstations using NQS (see section 6.5.2,
“Network Services” on page 173).

• Online transaction workload, which is scheduled by transaction monitors
such as CICS* and IMS.

• Transaction programs, which result from APPC conversations and are
scheduled by the specialized MVS service facilities, which are part of the
implementation of the SNA LU 6.2 architecture.

The last two workloads are related to distributed system services or to
distributed applications.

The utilization of system resources is managed by a system component called
the System Resources Manager (SRM). When system resources are
overcommitted, the SRM determines their usage based on installation
specifications. The installation can instruct the SRM to achieve throughput
objectives or response objectives or a mixture of them, and the SRM manages
the workload accordingly. Users may be swapped in and out of the system if
necessary.

The Workload Manager is an MVS/ESA* V5 system component that allows the
installation to define performance goals for the different categories of workload
through service policies. This is different from the SRM installation
specifications where the user defines how to distribute resources among the
categories of workload. With the Workload Manager, the system dynamically
allocates resources to meet the performance goals.

In a S/390 Parallel Sysplex environment, the MVS Workload Manager provides,
to requesting subsystems, information about current local system performance.
This allows the subsystem to make its own management decisions. In a CICS*
environment, CICSPlex System Manager/ESA* (CP/SM) (5695-081) cooperates
with the Workload Manager and VTAM V 4.2 to dynamically route the CICS*
transactions to meet performance goals and to enhance CICS* applications
availability.

170 Computing Technology Reference

IBM intends to improve IMS/ESA* TM for the S/390 Parallel Sysplex environment
to benefit workload balancing and enhanced availability.

6.5.1.2 Spooling
The Simultaneous Peripheral Operations On-Line (Spool) facility is provided by
JES and provides temporary storage for user′s related data, mainly input for
batch execution and output data for later printing. JES provides spool interfaces
for all categories of workload: batch, online transaction, TSO users, and
transaction program conversations. JES can route the spool output data to local
or remote printers connected to the NJE network, thus acting as a print server.
The spool facilities of MVS, VM, and VSE systems can be connected over a
Network Job Entry (NJE) network for distributed management of spool data.

6.5.1.3 Database
DB2* (5665-DB2) is the relational database management system for the
MVS/ESA* platform. It may be used to implement both decision support systems
and traditional transaction applications. The language access interface is the
Structured Query Language (SQL). The Query Management Facility/MVS
(QMF/MVS 5706-254) is available as a high-level SQL based query interface with
graphic functions.

IMS/ESA* Database Manager (5685-012) is the hierarchical database manager for
MVS/ESA*. This database is used by IMS and CICS* transactions and batch
applications for local data storage and data manipulation.

IMS/ESA* V5 DB (5695-176) supports the coupling facility to allow block level data
sharing in a S/390 Parallel Sysplex. Up to 32 systems can concurrently access
IMS databases.

IBM intends to further enhance DB2, IMS/ESA*, CICS/ESA*, DFSMS/MVS* and
MVS/ESA* to provide shared data function in a parallel sysplex environment.

There are other vendor products, such as Adabas**, IDMS** and Oracle**, which
offer database manager services.

6.5.1.4 File
The file services provide storage and access for customer data used by local
applications. The file organization can be formatted data (record file) or
unformatted data (byte-stream).

DFSMSdfp (part of DFSMS/MVS* 5695-DF1) provides the data management
services for MVS/ESA*.

DFSMSdfp allows record data set organization types, such as indexed (VSAM),
sequential, partitioned, and direct, and allows data set sharing across multiple
applications and multiple MVS systems.

DFSMSdfp provides services, through the Object Access Method (OAM), to
access and manage data entities in the form of bit strings, called objects. One
specific usage of OAM is with image processing applications.

The Parallel I/O Access Method (PIOAM 5685-137) is a software file striping
method that allows for very high data transfer rates for sequential data sets.

Chapter 6. IBM Software Platforms 171

MVS/ESA* also provides generation data set groups to allow for tracking and
maintaining versions of data, to provide protection and recovery from application
logic errors, and to simplify management of repetitive batch jobs.

DFSMSdfp permits the use of a hierarchy of storage devices. The device types
include disks, with the advanced functions provided by the IBM 3990 Model 3 and
6 DASD control units (dual copy, DASD fast write, concurrent copy, data striping,
and enhanced cache management), tapes, the IBM 3495 tape library, the IBM
9570 disk array, and the IBM 3995 optical library dataserver.

MVS with OpenEdition* services provides POSIX** standards as a base for
portability in a heterogeneous environment. With the implementation of standard
POSIX** 1003.1, the byte-stream hierarchical directory organization, used in the
UNIX** system, is included in DFSMSdfp.

6.5.1.5 Storage Services
Storage services for the MVS/ESA* platform are provided by the Data Facility
Storage Management Subsystem for MVS (DFSMS/MVS*). DFSMS/MVS*
functions are provided by the following products:

• DFSMSdfp for the management of active data

• DFSMShsm for the management of low activity or inactive data

• DFSMSdss for data movement

• RACF (see section 6.5.1.6, “Security”) for security of data

• Data Facility Sort (DFSORT 5740-SM1) for sorting of data.

DFSMS/MVS* exploits the concurrent copy capability of the IBM 3990 Model 3
and 6 DASD control units, which allows concurrent and unrestricted access to an
application′s active data during backup processing.

The Remote Recovery Data Facility (RRDF 5798-RXX) reduces the time required
to get a remote site in operation in case of a disaster at the primary site.

The Remote Site Recovery (RSR) is a feature of IMS/ESA* V5 (5695-176) and
provides remote recovery for IMS/ESA* V5 Database Manager and IMS/ESA* V5
Transaction Manager. It automates transport, storage and processing of log
data, recovery information and optionally, replication, of databases.

6.5.1.6 Security
Security services in MVS/ESA* are provided by the Resource Access Control
Facility (RACF, V1 5740-XXH, V2 5695-039). A secure environment up to the
specifications known as the B1 level of the U.S. Department Of Defense (DOD)
can be provided.

RACF provides services to protect resources from accidental or deliberate
unauthorized access, modification, or destruction. The functions and facilities
provided by RACF are, among others:

• User identification and verification by userid and password

• Access authorization checking for system managed resources

• Logging and reporting functions for audit purpose.

Additionally, RACF V2 supports the following:

172 Computing Technology Reference

• S/390 Parallel Sysplex, allowing Sysplex data sharing for the RACF data base
using the coupling facility.

• OpenEdition* MVS, allowing user and group registration to the RACF
database. This facility provides security checking and auditing for the
POSIX** environment.

• RACF Secure Signon enables the moving of end-user authentication from
RACF verification processing to another authentication server that could be
implemented within a LAN client/server function. With Secure Signon a user
can enter one logon password for secured access to multiple MVS
applications. With the Secure Signon, RACF now supports the use of an
alternative to the RACF password called PassTicket. A PassTicket can be
generated by the authenticating server and used instead of the password to
authenticate a mainframe application user to RACF. The RACF PassTicket
removes the need to send the RACF passwords across the network in clear
text.

There are other vendor′s products, such as ACF/2** and TOP Secret**, which
also operate in the area of system security.

The Integrated Cryptographic Service Facility/MVS (ICSF/MVS, 5685-051) permits
the use of the Common Cryptographic Architecture (CCA) and contributes to
better data security by providing confidentiality and data integrity. A channel
attached cryptographic engine, the IBM 4753 Network Security Processor, is also
available.

6.5.2 Network Services
MVS/ESA* supports a wide range of connectivity options for the three main
networking architectures: SNA, TCP/IP, and OSI.

SNA networking services are provided by ACF/VTAM (V3 5685-085, V4 5695-117)
with ACF/NCP (5688-231). Several applications are available in the SNA
environment, performing functions such as file transfer, electronic mail,
document exchange, and remote logon.

Among others, services provided under SNA architecture are:

• Advanced Program-to-Program Communications (APPC) using SNA LU 6.2
architecture

• The SNA Advanced Peer-to-Peer Networking (SNA APPN) technology.

TCP/IP support in MVS/ESA* (5735-HAL) provides the following functions,
applications, and application programming interfaces:

• Terminal passthrough (TELNET) allows a user client to remotely logon to
another computer with TCP/IP TELNET server function.

• Simple Mail Transfer Protocol (SMTP) allows an end-to-end electronic mail
exchange.

• Simple Network Management Protocol (SNMP) is provided for network
management.

• File Transfer Protocol (FTP) (see section 6.5.4.3, “Data Access Services” on
page 178).

• Network File System (NFS**) (see section 6.5.4.3, “Data Access Services” on
page 178).

Chapter 6. IBM Software Platforms 173

• Internet Domain Name Server (DNS) for distributed name services.

• X-windows** and Motif** client facilities allow program access to a high
resolution display connected to a system running a graphic server system
(see section 6.5.4.1, “Presentation Services” on page 176).

• Remote Procedure Call (RPC) library for high level program-to-program
communication for distributed applications.

• Network Computing System (NCS**) allows programmers to distribute
processing power to other hosts.

• Berkeley** Socket library for distributed applications communication.
OpenEdition(*) MVS POSIX** 1003.1 integrates the sockets API.

• Network Queuing System/MVS (NQS** 5695-168) allows remote batch job
submission from a UNIX** workstation using NQS** protocol. It runs as a
server for the MVS/ESA* JES2 subsystem.

OSI Communications Subsystem (5685-014) enables MVS to communicate with
other systems running a compatible set of OSI protocols.

OSI provides the following functions and applications:

• OSI message exchange provides message handling according to the X.400
standard in a multi-vendor environment (see section 6.5.4.2, “Application
Services” on page 176).

• OSI file services (see section 6.5.4.3, “Data Access Services” on page 178).

• The Remote Programming Interface (RPI) for development of distributed
applications using COBOL and C languages.

Multi-Protocol Transport Networking (MPTN) architecture supports CTS (Common
Transport Semantics) in IBM′s Networking Blueprint. CTS provides a common
view of networking protocols and makes applications independent of the
underlying network transport. MPTN in MVS/ESA is implemented via
AnyNet/MVS (5685-085, VTAM V3 R4.2 and MPTF Multi-Protocol Transport
Feature - 5695-117, VTAM V4 R2 and the AnyNet Feature), which allows APPC
applications to run over a TCP/IP network and TCP/IP Sockets applications to
run over an SNA network.

NetView provides a complete set of host network management services for the
MVS environment. It can be used as a single point of control for the three
network architectures (SNA, TCP/IP and OSI). In addition, NetView may be used
to manage other architectures and devices through other NetView products.
This implements the service point concept so that the network management
data, including alerts, may be exchanged between NetViews.

The NJE function of MVS/JES provides networking facilities that allow file
transfer and remote job entry between MVS, OS/400, VM, and VSE platforms.
NJE allows these systems to pass data and operate together (see section 6.5.1.1,
“Workload Management” on page 170).

IBM intends to provide the Open System Adapter (OSA) feature of selected
ES/9000* and 9672 processor families. OSA will provide native open systems
connectivity to LANs from the processor. OSA will support FDDI, TokenRing, and
Ethernet** LANs, and offload TCP/IP protocol and NFS** application to improve
the efficiency of the processor as a server.

174 Computing Technology Reference

Table 7 on page 175 summarizes the MVS/ESA* networking capabilities.

Table 7. MVS/ESA* Networking Capabilities

Ethernet** TokenRing FDDI X.25 SDLC

SNA YES YES YES YES YES

TCP/IP YES YES YES YES YES(1)

OSI YES SOD SOD YES YES

Note: (1) Host TCP/IP to host TCP/IP with MTPN

6.5.3 Distributed System Services

6.5.3.1 Communication Services
The communication services capabilities within MVS/ESA* are provided for

• Conversational

APIs for conversation according to the SNA LU 6.2 architecture. Two API′s
are provided, one compliant with SAA CPI-C, and one specifically
implemented for MVS/ESA* known as APPC/MVS Server Facilities, or
APPC/MVS for short.

• Remote Procedure Call

IBM has announced support for OSF/DCE** Remote Procedure Call (RPC) in
the base code of MVS/ESA* V5.

• Messaging and Queuing

Message and Queue Manager MVS/ESA* (MQM, 5695-137) that provides an
asynchronous program-to-program interface for distributed applications.

6.5.3.2 Object Management Services
IBM intends to include, in MVS/ESA*, Object Management Services by
implementing IBM ′s System Object Model (SOM) in conjunction with Distributed
SOM (DSOM). The services will be based on Common Object Request Broker
Architecture (CORBA) as defined by Object Management Group′s (OMG**).

6.5.3.3 Distribution Services
• IBM has announced support for the following OSF/DCE** Base Service in the

base code of MVS/ESA* V5 for clients/servers, which run on a TCP/IP
network:

− Directory

To use this service, an OSF/DCE** Cell server is required for each cell.
AIX DCE Cell Directory Server/6000 (5795-119) on a RISC System/6000* or
IBM DCE Software Developer′s Kit (SDK, 5696-657) on a PS/2* can be
used.

− Security

To use this service, an OSF/DCE** security server is required. AIX DCE
Cell Security Server/6000 (5795-118) on a RISC System/6000* or IBM DCE
Software Developer′s Kit on a PS/2* can be used.

− Time

These OSF/DCE** facilities will allow interoperability and transport
independence for distributed applications.

Chapter 6. IBM Software Platforms 175

• Transaction Manager

CICS* and IMS transaction monitors provide transaction manager functions
by employing 2-phase commit schemes to insure transaction and data
integrity across distributed systems.

6.5.4 Application Enabling Services
The application enabling services available with MVS/ESA* are described in this
section.

6.5.4.1 Presentation Services
• User Interface

Applications can be designed to use the presentation server of a
X-windows** workstation in a TCP/IP network (APIs are provided with
TCP/IP), or ScreenView (5695-047). ScreenView provides graphic and
navigation services on an OS/2 platform as well as host connection services
for host-workstation cooperative processing. ScreenView is a component of
MVS/ESA* (4.2 or later) and provides the common enabling services and
facilities necessary to integrate SystemView* conforming applications.

MVS/ESA* transaction monitors and TSO interactive applications use
character display for terminals. MVS/ESA* has a comprehensive series of
TSO/ISPF dialogues that provide system programming and operations
support through menus and help screens using characters. The transaction
monitors use their own formatting maps to interface with the end users.

• Print/View

The Line Printer Client/Line Printer Daemon (LPR/LPD) functions of TCP/IP
provides client/server support for remote printing. The LPR sends data to be
printed to the LPD on a specific host server for a specific printer. The LPD
server on MVS/ESA* provides local and remote users access to MVS
supported printers. The LPD server on workstations with TCP/IP provides
access to the attached printers.

Print Services Facility/MVS (PSF/MVS 5695-040) provides the MVS platform
with the printing services as defined by the IBM′s Advanced Function
Printing* (AFP*) model and architectures.

LANRES/MVS (LAN Resource Extension and Services, 5695-123) integrates
Novell′s NetWare** LAN Server with the print services by MVS/ESA*.

6.5.4.2 Application Services
• Transaction Monitor

The IBM transaction monitors CICS/ESA* (5655-018), CICS/MVS* (5665-403)
and IMS/ESA* TM (V4 5685-013, V5 5695-176) qualify as distributed
transaction monitors. CICS* can be distributed through multiple CICS*
images, known as regions.

CICS* applications can also communicate with CICS* applications on other
software platforms through several distinct mechanisms. This capability
exists across all of the monitors in the CICS* family of products (AIX/6000,
MVS/ESA*, OS/2*, OS/400*, VSE/ESA*). These mechanisms allow CICS* to
route transactions to another CICS* for execution, allow for transparent
access to remote CICS* resources, and to invoke a remote CICS* application.

176 Computing Technology Reference

IMS can provide distributed transaction monitor functions by routing
transactions to another IMS, utilizing the multiple system coupling facility.

The following APIs are available to assist in developing remote transaction
processing in CICS* and IMS environments:

− CICS* transaction routing, function shipping, and distributed program
link.

− CICS* implementation of LU 6.2 protocol and interface with CPI-C.

− CICS* to TCP/IP sockets interface to enable CICS* applications to
interoperate with partner applications in other platforms connected to a
TCP/IP network.

− CallPath CICS/MVS* (5695-089) to communicate with industry standard
private branch exchanges for telephone applications.

− Message and Queue Manager for MVS/ESA* (MQM MVS/ESA 5695-137)
is an asynchronous program-to-program interface that can be used for
CICS* and IMS applications. MQM for MVS/ESA* uses CICS*
inter-system communication to provide transportation between queue
managers.

− The OpenEdition* DCE** application Server/CICS will provide application
access to CICS* host applications from client workstations, using the
DCE** Remote Procedure Call.

− IMS transaction routing.

− IMS interfaces with APPC/MVS and CPI-C.

− The OpenEdition DCE** Application Server/IMS will provide application
access to IMS host applications from client workstations, using the DCE**
Remote Procedure Call.

CICS* and IMS transaction monitors have logs to record all changes. This
enables recovery of transactions and data if an unrecoverable DASD error or
system failure occurs. Furthermore, MVS/ESA* supports the extended
recovery facility (XRF) for CICS* and IMS. XRF provides early failure
detection and automatically transfers control to a hot standby CICS* or IMS.

In a S/390 Parallel Transaction environment CICSPlex System Manager/ESA*
(CP/SM) can, in case of a CICS* region failure, dynamically route
transactions to other CICS* regions to enhance CICS* applications
availability.

IBM intends to improve IMS/ESA* TM for the S/390 parallel transaction
environment to enhance IMS applications′ availability.

• Mail

A function, provided by OSI message exchange, that allows message
handling according the X.400 standard in a multi-vendor environment.

OfficeVision/MVS* (OV/MVS* 5685-106) with the X.400 DISOSS connection
(MVS 5785-GCF) operates as a CICS* application, can communicate with the
OSI message exchange using the X.400 protocol, and can send messages
through the network, following the X.400 standard.

Chapter 6. IBM Software Platforms 177

6.5.4.3 Data Access Services
• Relational

DB2* (5665-DB2) is the relational data base management system for the MVS
platform. DB2* participates in the Distributed Relational Database
Architecture (DRDA) with platforms that implement the Remote Unit Of Work
(RUOW). This gives the DB2* user the ability to access and update other
relational databases in operating environments that use the same
architecture. The IBM software platforms where the programming for RUOW
has been developed are AIX/6000, OS/2 (client-only function), VM/ESA,
VSE/ESA, and OS/400.

There are other vendor′s products, such as Oracle**, that operate in the area
of distributed database management.

• File

Services to access and manage distributed data are provided by the
following TCP/IP applications and by DFSMSdfp:

− File Transfer Protocol (FTP) allows transfer of files to and from a remote
host, using the same command syntax as UNIX**, and also allows job
submission to MVS JES.

− Network File System (NFS**) allows a user to have transparent access to
formatted files and byte-stream files distributed across the network.
Workstations user can treat the OpenEdition* MVS hierarchical file
system as an extension of their own file system. An MVS platform can
act as a file server for platforms that have the NFS** 3.2 function
installed.

− The Distributed FileManager/MVS (part of ADSM*) provides distributed
file access services in heterogeneous distributed environments. Data
accessed can be record or byte format. ADSM* operates with
SAA-based systems, non-SAA, and non-IBM platforms that support the
Distributed Data Management Architecture (DDM). DDM architecture
defines the target system as the system where data resides, and the
source system as the system where the application resides. The MVS
platform provides the functions of a DDM target system through the
CICS* DDM support. DDM source system functions are implemented by
the Distributed FileManager on the OS2 V2 platform.

The OSI communication subsystem provides an application for remote data
access.

− OSI File Services (5685-046) allows the exchange and remote
management of files between platforms that implement an equivalent set
of file transfer, access, and management (FTAM) protocols.

LAN File Services/ESA (5648-039) provides a file system on MVS/ESA* that is
compatible with file systems on LAN workstations. The Workstation file
system on MVS supports DOS, OS/2* and UNIX** format files, file operations,
multiple directories and locking. Workstations on a LAN can have shared
files on the MVS/ESA* platform for storage intensive applications.

LAN Resource Extension and Services (LANRES 5695-123) integrates Novell′s
NetWare** LAN Server with the storage facilities provided by MVS/ESA*.
High-speed connectivity is achieved by attaching the LAN server station to
an ES/9000* channel. The functions and facilities provided by LANRES are:

− Disk server, where MVS/ESA* disks are used like NetWare** disks.

178 Computing Technology Reference

− Central data distribution, where data can be copied between MVS/ESA*
and the server station.

• Storage Server

− ADSTAR* Distributed Storage Manager (ADSM* 5648-020) allows an MVS
system to act as a file backup and archive server for LAN file server and
workstations. This product operates as a server for OS/2, DOS,
AIX/RISC, SUN** OS, Apple Macintosh**, Windows**, Novell**, DEC**
ULTRIX** and SCO** Open Desktop** software platforms.

6.5.5 Application Development
TSO and ISPF have been the traditional application development tools under
MVS, providing code entry, compile, and debug facilities.

The current IBM strategy for application development and maintenance is
AD/Cycle*.

6.5.6 System Management
SystemView* is the IBM systems management strategy for managing, planning,
coordinating, and operating open, heterogeneous distributed systems.
SystemView* includes a SystemView* structure and SystemView* conforming
products. The SystemView* structure is designed to provide a consistent
end-user interface, shared data, enhanced automation, and increased integration
among systems management products. The structure embraces selected open
standards and architectures and defines conformance criteria for the
SystemView* products. The SystemView* conforming products are, and will be,
developed by IBM and non-IBM vendors.

6.5.6.1 Performance Management and Accounting
The system management facility (SMF) component of MVS/ESA* collects
information that the installation can use to account for the system resources
utilized by various type of workloads processed by the system. The resources
considered are processor time, I/O data transferred, and central and expanded
storage utilized.

MVS/ESA* and the ES/9000* channel subsystem provide information on specific
aspects of system performance and physical resource utilization. On installation
request and specification, the Resource Measurement Facility (RMF, V4 5685-029,
V5 5655-084) collects and reports on this data which can be used for
performance measurement, tuning, and capacity planning. RMF, in addition,
provides real-time display of system performance and system resources usage,
and information about the flow of the workload through the system.

To reduce the complexity of performance management in a S/390 Parallel
Sysplex environment, RMF V5 introduces the concept of single system image for
performance management reporting on sysplex wide data. It also supports the
coupling facility, the Workload Manager of MVS/ESA* V5, and provides
information for CICS* and IMS transaction monitors.

Monitors are available for performance data, tuning, accounting, and capacity
planning for MVS/ESA* transaction monitors, such as IMSPARS (5798-CQP),
CICSPARS (5796-AHJ), DB2* Performance Monitor (5665-354), and NetView
Performance Monitor (5665-333).

Chapter 6. IBM Software Platforms 179

The Enterprise Performance Data Manager (EPDM) (5695-101) or the Service
Level Reporter (SLR) (5665-397) acts as a reporting tool for system management.
Various system logs and data sources from the various monitors are collected
and summarized according to user specifications. EPDM supports the S/390
parallel sysplex and the Workload Manager of MVS/ESA* V5, has a capacity
planner feature, and may act as a centralized reporter for distributed AS/400*
and RISC/6000*

Other vendor′s products, such as Omegamon**, also operate in the area of
performance management and monitoring.

6.5.6.2 Operations
NetView* for MVS/ESA* (5685-111) provides the basis for management of network
and systems operations from a central or remote site. For network operations,
NetView, together with TCP/IP and OSI, can manage SNA and non-SNA
components and heterogeneous LANs.

Automated Operation Control/MVS (AOC/MVS) (5685-151) runs as a NetView
application and automates console operations. AOC/MVS monitors messages
received from MVS, its subsystems, and various related products, and initiates
pre-defined procedures specified for the various messages. AOC/MVS functions
are complemented by a family of automated operation offering products, such as
CICSAO, IMSAO, OPCAO.

AOC/MVS also provides enterprise resource monitoring through a PS/2*
graphical interface where the user can include a S/390 parallel sysplex. Where
appropriate, the resources are monitored at the sysplex level, and the graphical
interface allows an operator to transfer to other system management products
like RMF, SDSF, TSCF, NetView*. AOC/MVS also eases the task of propagating
automation policy to multiple systems.

Operation Planning and Control/ESA* (OPC/ESA*, 5695-007) allows automation,
planning, and control of the processing of the batch workload. This includes:

• Job submission

• Job dependency control

• Job recovery

• Dynamic re-planning

• Graphic display of networks of job dependencies and workload monitoring

• Remote site control through an ACF/VTAM application program

• Automatic restart of OPC/ESA on another MVS/ESA* within a Sysplex, in
case of a system failure.

Other vendor′s products, like CA** 7, operate in the area of operations control.

System Display and Search Facility (SDSF) (5665-488) allows monitoring and
controlling the operation of an MVS/JES2 system. It supports th increased
number of systems in a S/390 parallel sysplex and the MVS Workload Manager
component.

The ESCON Manager (5688-008) simplifies the configuration management by
collecting, unifying and presenting I/O configuration information in a graphical

180 Computing Technology Reference

form. It allows, in a S/390 parallel sysplex environment a multi-system vary
capability for attached devices.

Target System Control Facility (TSCF, 5688-139) provides facilities for S/390* and
Parallel Transaction Server 9672 remote operations. It extends NetView*
systems operations and automation support to control and monitor multiple
target systems.

6.5.6.3 Availability and Integrity
Continuous availability is a combination of high availability and continuous
operations. High availability is the elimination of unplanned outages and mainly
concentrates on fault tolerance and recovery. Continuous operation is the
elimination of planned outages and mainly concentrates on non-disruptive
change and maintenance. Both are considered in the design of MVS/ESA* and
its related hardware components.

MVS/ESA* manages hardware errors by retrying the operation or by fencing the
damaged component. This includes processor storage, I/O channels, control
units, I/O devices, and processors in a multiprocessor system, MVS images and
the coupling facility in a S/390 parallel sysplex. In a multiprocessor system
MVS/ESA* can move the work being done on a failing processor to the
remaining processors.

The operator can also use system commands to fence some discrete hardware
components (device, control unit, channel path, processor storage, processor),
and allow hardware maintenance concurrent with system operations.

With the ESCON* architecture, it is possible to modify the physical configuration
without interrupting the operations through the hardware configuration definition
(HCD) function.

MVS/ESA* has software error recovery logic in every component of the operating
system. In the event of an error, recovery is attempted in such a manner that
the recovery processes are transparent to the user, or if this is not possible, that
the damage is limited to the minimum.

The availability of data is a combination of attributes of the hardware, the
operating system, the transaction manager, and the applications.

MVS/ESA* subsystems CICS*, IMS, DB2*, and IMS/DB employ 2-phase commit
schemes to insure transactions and data integrity across distributed systems.
These subsystems have journaling logs to record all changes. This enables
recovery of jobs, transactions, and data if an unrecoverable DASD error or
system failure occurs.

The dual copy capability (disk mirroring) possible with the advanced functions of
the 3990 Model 3 and 6 control units enable the system to operate after a disk
failure occurs, and concurrent copy can be used to backup databases without
stopping the applications. In addition, the 3990 Model 6 control unit provides a
remote copy extended function for disaster recovery purposes. Two
implementations are available:

• Extended Remote Copy (XRC) which is an ESCON-distance asynchronous
volume shadowing.

• Peer-to-Peer Remote Copy (PPRC) which is an ESCON-distance synchronous
volume copying.

Chapter 6. IBM Software Platforms 181

S/390 parallel sysplex provides the base for developing non-stop, shared data
applications and servers. S/390 parallel sysplex also enhances continuous
operations through the ability of the subsystems and applications to redirect
workload from one system to another in case of a failure.

6.5.7 Selected APIs, Protocols, and Facilities
Table 8 summarizes selected protocols, facilities, and APIs available with
MVS/ESA* and mentioned in this section.

Table 8. MVS/ESA* Selected APIs, Protocols,
and Facilities

MVS/ESA*

Berkeley** Sockets YES

POSIX** YES

CPI-C YES

APPC YES

APPN YES

NCS** YES

NQS** YES

OSF/DCE**(1) ANN

SQL YES

DRDA-RUOW YES

NFS** YES

FTP YES

FTAM YES

OSF/Motif** YES

X-windows** YES

NetWare** server YES

LAN & workstation server YES

SMTP YES

NetView* YES

SNMP YES

Note:
ANN (announced)
(1) base services

182 Computing Technology Reference

6.6 OS/2*
OS/2* V 2.1 (5604-467) is the IBM operating system for the personal computer
industry in general, and in particular, for the IBM PS/2*, PS/1*, PS/ValuePoint*,
and ThinkPad* families of processors. It exploits the 32-bit feature of the
80386/80486 microprocessors family designed by Intel**, and provides the ability
to run existing 16/32-bit OS/2*, DOS, and Windows** applications concurrently.

OS/2* V 2.1 results from the evolution of the 16-bit OS/2* V 1 operating system
designed in 1987.

Figure 62 shows the elements of the OS/2* V 2.1 based software platform.

Figure 62. Elements of the OS/2* V 2.1 Software Platform

6.6.1 Local Operating System Services
OS/2 is a powerful, 32-bit multitasking, single-user operating system, designed
and optimized for IBM PCs and compatible PCs which are based on the Intel x86
processor family. OS/2 includes capabilities for running DOS, Windows**, and
OS/2 applications on a wide range of PC hardware, in an efficient and reliable
manner.

The high-level structure of OS/2 is shown in Figure 63 on page 184.

Chapter 6. IBM Software Platforms 183

Figure 63. OS/2 Structure

The major components of OS/2 are:

• A hardware abstraction layer, which insulates OS/2 from specific hardware
architecture details and provides an interface to specific devices.

• The control program, also called the kernel, which provides the fundamental
operating system facilities.

• Presentation manager (PM) and the workplace shell, which provide the
graphical user interface (GUI) and object-oriented desktop, and support for
running OS/2 PM applications.

• Multiple virtual DOS machines (MVDM), which provide the support for
running DOS applications.

184 Computing Technology Reference

• WIN-OS/2, which provides the support within MVDMs for running Windows
3.1 applications.

Components and subcomponents of OS/2 consist of executable programs and
dynamic link libraries (DLLs), which are loaded when called by other programs.
The DLL concept is very powerful, and major components of the system are
implemented as DLLs.

Components of OS/2 itself can run at one of three protection levels:

• Ring 0, also called kernel mode, running the fundamental OS/2 subsystems
• Ring 2, used mainly for I/O operations, such as display drivers
• Ring 3, where user applications run, as well as many of the OS/2

subsystems.

Programs and data in the lower rings are protected by hardware from being
corrupted by programs running in the higher rings.

6.6.1.1 Hardware Abstraction Layer
Although OS/2 only runs on PCs using the Intel x86 family of processors, there
are many details of the PC hardware which vary between different IBM PCs and
compatible PCs.

OS/2 is insulated from the PC hardware architecture and the hardware devices
(such as disks and video adapters) by a combination of the BIOS (or ABIOS) and
the physical device drivers.

The BIOS, is a layer of firmware provided in ROM on every PC, provides the
lowest level of system software, and insulates the operating system from the
hardware. The BIOS is designed for use with the DOS operating system.

ABIOS is a similar layer of firmware designed for use with multitasking operating
systems such as OS/2. ABIOS is used in IBM PS/2s based on the micro channel
bus, and is implemented either in ROM or is loaded from disk into memory.

Physical device drivers provide installable software modules specific to each
hardware device. Physical device drivers provide a standard interface to OS/2,
and to higher level device drivers (such as display or printer drivers). Devices
such as the keyboard, display, disks, and printer ports all have corresponding
physical device drivers. All but the most basic physical device drivers are
specified in the CONFIG.SYS file and are loaded at boot time.

6.6.1.2 Control Program(Kernel)
The control program is an advanced 32-bit multitasking kernel for the operating
system, providing a range of fundamental facilities.

Protected virtual memory is provided, using paged memory techniques and
based on the hardware capabilities of the Intel x86 processors. Pages are
loaded on demand and swapped out to an intermediate file on disk. Protection
is provided between memory of different tasks using virtual memory, and this is
supported by hardware. Each process can currently use up to 512MB of memory
within a flat memory address space of 4GB.

Both processes and threads are supported. Processes have resources such as
memory and open files associated with them, and can contain one or more

Chapter 6. IBM Software Platforms 185

threads. Threads are executing programs, and can share memory and other
resources within the same process.

Processes are loaded into memory by the loader, and the scheduler then
determines which thread should run next based on a priority scheme. Thread
priority can also be dynamically varied. Threads can be blocked when awaiting
I/O, or can be interrupted when their timeslice has expired. OS/2 thus provides
preemptive multitasking. The dispatcher runs the next ready thread, based on
the decisions made by the scheduler (see section 6.6.1.7, “Workload Scheduler”
on page 189).

External interrupts, such as from hardware devices, can interrupt the currently
running thread. Interrupts are either handled directly or are transferred to
physical device drivers.

A range of interprocess communication capabilities are provided to enable
processes to interoperate and synchronize with each other. These include
shared memory, pipes, queues, and semaphores.

OS/2 includes support for a number of file systems. Built-in support is provided
for the DOS-compatible FAT file system. Installable file systems can also be
loaded to provide support for additional file systems, such as the
high-performance HPFS, and the CDFS for CD-ROMs (see section 6.6.1.10, “File”
on page 189).

The system object module (SOM) provides language-neutral support for
interaction between objects and classes, thus providing the basis for
object-oriented subsystems (such as the Workplace Shell) to be built in OS/2
(see sections 6.6.1.11, “Object Oriented” on page 190 6.6.1.3, “Presentation
Manager and the Workplace Shell”).

OS/2 provides an OS/2 command line which can be used either full-screen or in
a window. The OS/2 command line provides a superset of the facilities provided
by the DOS command line, and supports a primitive batch language. The REXX
procedures language is also supported by OS/2 and provides more powerful
facilities for both batch and interactive programs.

6.6.1.3 Presentation Manager and the Workplace Shell
OS/2′s native graphical user interface is provided by presentation manager (PM),
and the workplace shell provides an object-oriented desktop on top of this.

Presentation manager is an advanced GUI, consisting of a set of DLLs, and PM
display drivers and printer drivers.

PM itself has three major subcomponents. PMWIN is responsible for creating,
maintaining and destroying windows on the PM desktop. PMGPI provides the
API interface enabling applications to use the graphics environment. PMGRE is
the graphics engine which is at the heart of PM.

PMGRE interacts with the PM display drivers and printer drivers, and also with
an intelligent font interface such as Adobe** type manager. In addition,
interfaces are provided for applications to exchange data using the clipboard
and dynamic data exchange, and for PM applications to share access to the
display with other applications, such as Windows** applications.

186 Computing Technology Reference

The PM display driver takes the output from PMGRE, and displays the
information on the screen, usually interacting with the physical device driver.
PM display drivers implement a wide set of functions for a specific device, such
as drawing a character or a circle. Because of the differences between devices,
there will normally be one PM display driver for each screen type (such as VGA,
XGA, or SVGA).

The PM printer driver provides the equivalent capability for printers. Each
printer driver can normally support a wide range of different printers, such as
Postscript printers.

The PM spooler manages the sharing of printers between applications, spooling
the printer output via disk (see section 6.6.1.8, “Spooling” on page 189).

On top of PM, the workplace shell provides an object-oriented user interface
(OOUI) and desktop, which is centered around objects, such as data files,
folders, and printers. The workplace shell is built using object-oriented
techniques based on SOM and PM. The SAA common user access (CUA91)
specification was used as the basis for the workplace shell.

A number of workplace shell objects and utilities are provided along with the
desktop, enabling the user to easily change colors and fonts, or create new
objects, using drag-and-drop and other advanced capabilities of the user
interface.

OS/2 also includes an integrated multimedia subsystem, MMPM/2. MMPM/2
provides the advanced support needed to provide real-time digital audio and
video, including software motion video (see section 6.6.4.1, “Presentation
Services” on page 193).

6.6.1.4 Multiple Virtual DOS Machines
Support for DOS applications is provided by the multiple virtual DOS machines
(MVDM) component of OS/2. MVDM exploits the hardware support of Intel 386
and higher processors for running individual 8086 virtual machines, protected by
hardware from each other and from the main operating system. This enables
support for multiple concurrent DOS applications to be provided in a first-class
way under OS/2.

The 8086 emulation builds on the hardware support to provide an 8086
environment, and traps interrupts and any attempts to access the real hardware,
reflecting these to device drivers. Either emulated DOS or a real copy of DOS
can be run inside this 8086 environment.

DOS emulation then builds on this layer to provide an emulated DOS 5
environment for each virtual machine. Most of the DOS function is implemented
outside the virtual 8086 machine, thus saving precious memory space. DOS
emulation also emulates the EMS, XMS and DPM memory extenders using OS/2
memory. Although each DOS machine is encapsulated, there are a few ″holes in
the wall″, such as named pipes and virtual device drivers, which enable DOS
applications to communicate with OS/2 applications and subsystems. DOS
applications can run either full-screen or windowed (except for some graphics
applications which can only run full-screen). When run in a DOS window,
capabilities, such as the clipboard, are available to the user.

Virtual device drivers emulate the interface provided to DOS applications by DOS
device drivers by interacting with the physical device drivers. This enables

Chapter 6. IBM Software Platforms 187

hardware devices to be shared between DOS and OS/2 applications, and also
reduces the memory needed within each DOS machine. It is also possible to
load DOS device drivers directly in a DOS machine; the DOS machine would
then exclusively own the physical hardware device.

Virtual machine boot (VM boot) enables a real copy of DOS to be loaded and
run in a virtual 8086 machine. This may be used if the application requires
specific DOS facilities not provided by DOS emulation. VM boot can load DOS
from diskette, from a partition on the fixed disk, or from a diskette image on the
fixed disk.

The VDM manager handles the creation, deletion and management of the virtual
DOS and 8086 machines.

MVDM also provides a DOS command line, which can be used either full-screen
or in a window. The DOS command line runs a modified version of the DOS
COMMAND.COM command interpreter in a virtual DOS machine. It provides the
same facilities as the real DOS command line, and supports a primitive batch
language.

6.6.1.5 WIN-OS/2
Support for Windows 3.1 applications is provided by the WIN-OS/2 component.
WIN-OS/2 is a version of Windows 3.1 which has been modified to enable it to
run under MVDM and to share the display with OS/2 applications. WIN-OS/2
uses the underlying MVDM facilities.

WIN-OS/2 consists of three major subcomponents, along with WIN-OS/2 display
drivers and Windows printer drivers. The WIN-OS/2 subcomponents handle
kernel functions, such as memory management, the windowing and user
interface, and the graphics. WIN-OS/2 can use either the ATM or the true type
font managers. Support is also provided for applications to exchange data using
the clipboard and DDE, and for compound documents using OLE. WIN-OS/2
cooperates with PM to share access to the display between applications.

Both full-screen and seamless WIN-OS/2 display drivers are used. These are
based on the Windows display driver, with additions to coordinate access to the
screen with PM.

WIN-OS/2 uses windows printer drivers, and also provides spooling facilities,
either through the PM spooler or using the WIN-OS/2 spooler (see section 6.6.1.8,
“Spooling” on page 189).

6.6.1.6 System Software Extensions
The following services are provided by system software extensions to OS/2*:

• Pen for OS/2* extends OS/2* for pen-based systems, including interpretation
of gestures, and handwriting recognition. Pen for OS/2 can be used to
extend pen-unaware applications, as well as providing API extensions for
writing new pen-aware applications.

• Video IN provides the capability to record software motion video clips, using
appropriate hardware. These software motion video clips can then be
replayed on OS/2* systems using the built-in MMPM/2 facilities (see section
6.6.1.11, “Object Oriented” on page 190).

188 Computing Technology Reference

6.6.1.7 Workload Scheduler
OS/2* V.2 workload may range from interactive processing for personal
productivity, to multiple background DOS and Windows** applications.
Subsystems, such as the communication manager, the database manager, the
LAN server, and CICS* can also operate concurrently.

In OS/2* V.2, multiprogramming allows concurrent execution of multiple
applications, and multitasking distributes processor time among multiple
programs, providing in turn for each one a defined (short) period of processor
time. OS/2* V.2 also provides a preemptive time-slicing scheduler and a
multi-level priority scheme, with dynamic priority variation and round-robin
dispatching within priority levels.

In OS/2*, the thread is the basic unit of execution and concurrency, and CPU
allocation and applications can operate with multiple threads, allowing multiple
parts (threads) of the same program to execute simultaneously. A thread can be
assigned to one of four priority classes, and within each class the scheduler
recognizes 32 priority levels. Priority classes are defined as:

• Time-critical for real-time applications and communications

• Fixed-high for good responsiveness

• Regular for normal execution

• Idle-time for very low priority.

6.6.1.8 Spooling
The Simultaneous Peripheral Operations On-Line (Spool) facility is provided by
OS/2* V.2 for the DOS, Windows**, and workstation user for the temporary
storage of output data for later printing.

6.6.1.9 Database
IBM DATABASE 2 for OS/2* (DB2/2 5622-044) is the relational database
management system. It is a member of the IBM relational database family, and
can be used in a single-user workstation and in a client/server LAN environment.
It includes functions previously provided by Extended Services for OS/2*
(5621-213). DB2/2 provides SQL capabilities and roll-forward recovery for
database recovery after a system failure. It includes functions for application
portability and DB2* compatibility. It has graphical tools to configure and
manage the database and its directories. For distributed relational database
access, see section 6.6.4.3, “Data Access Services” on page 195.

6.6.1.10 File
The following file systems are available, and represent a hierarchy of files on
physical disks:

• Enhanced file allocation table (FAT) for compatibility with DOS files.

• High performance file system (HPFS), which provides support for disk sizes
up to 2GB, caching for reading and writing, and long file names. The file
system exploits the enhanced performance feature of the small computer
system interface (SCSI) disk drives. The HPFS make it possible for OS/2* to
support large databases on personal computers.

• CD-ROM file system (CDFS) for files residing on compact disks.

OS/2* V.2 provides locking and sharing facilities to allow concurrent file access
in a multitasking environment.

Chapter 6. IBM Software Platforms 189

OS/2* V.2 introduces an important feature to the file systems, namely the
extended attributes. This feature allows each file to have up to 64KB of file
related descriptive information, which can be used to create object-oriented file
systems.

6.6.1.11 Object Oriented
The system object model (SOM) is used to build the workplace shell, and
enables developers to integrate their application fully into the workplace shell
using object-oriented technology.

The SOMObjects Toolkit, and associated runtime products, extend the
object-oriented capabilities of SOM. SOM itself supports interaction between
objects and classes within the same process. SOM II extends this to
cross-process interaction, and DSOM extends this further to cross-machine
interaction (see section 6.6.3.2, “Object Management Services” on page 193). A
SOM compiler is available for C programming.

6.6.1.12 Security
OS/2* V.2 is a single-user operating system; therefore, there is less need for
user identification and authentication to grant access to system resources.
OS/2* offers user profile functions that can be used to limit access for individual
users.

IBM has stated the intention to use the PS/2* systems and the OS/2* operating
system as the platform to provide a personal computing environment that
satisfies the requirements of the C2 level of security and integrity as defined by
the United States Department of Defense (DoD).

When OS/2* V.2 participates in distributed processing, it provides security and
auditability services, such as userid and password management. The utilization
of those services is under application control.

6.6.2 Network Services
Network services for OS/2* V.2 are implemented by:

• Communications Manager/2 (CM/2 5622-078)

• Network Transport Services/2 (5622-022)

• TCP/IP for OS/2* (5622-086)

• LAN Server for OS/2* (5621-253)

• NetWare** Requester for OS/2*

• LAN Support Program (5621-300).

These products allow OS/2* to handle local and remote networking
communication with PC′s running Novell** or Microsoft** network protocols, and
systems running on other software platforms.

• SNA/APPN

CM/2 and CM CS/2 are the separation and further enhancement of the
communication manager component included in the IBM OS/2* Extended
Edition and Extended Services for OS/2*. The CM/2 manager supports SNA
and NetBIOS communications. Remote connectivity is provided for SNA,
SDLC, and X.25 protocols. The available APIs are:

190 Computing Technology Reference

− CPI-C APIs are available for Advanced Program-to-Program
Communications (APPC), using SNA LU 6.2 protocol.

The SNA Advanced Peer-to-Peer Networking (APPN) technology is also
supported by the communication manager.

The SNA LU 6.2 protocols provided by the OS/2 communication manager are
used by the IBM Entry LAN to LAN Wide Area Network Program (LTLW
5622-067) to interconnect remote local area networks (LANs) across wide
area networks (WANs).

CM/2 also provides emulation capabilities for IBM 3270, IBM 3101, and DEC**
VT 100 terminals, and file transfer facilities to send or receive files across
emulator sessions and OS/2* or DOS windows.

The SNA gateway is part of the communication manager and is a
non-dedicated server that provides its clients a shared link to a S/390 host.

• NetBIOS

NetBIOS is a protocol for LAN based program-to-program communications.
It runs on Ethernet** and Token-Ring LANs and interfaces with TCP/IP and
OSI. It provides application programming interfaces for LAN applications on
the LAN network.

The IBM Network Transport Services/2 (NTS/2) provide communication
programming interfaces necessary for LAN enablement in those
environments where the OS/2* LAN Server is not required.

• TCP/IP

TCP/IP for OS/2* provides the following services and APIs:

− Terminal passthrough (TELNET) allows a user client to remotely logon to
another computer with TCP/IP TELNET server function.

− Simple Mail Transfer Protocol (SMTP) allows an end-to-end electronic
mail exchange.

− Simple Network Management Protocol (SNMP) allows OS/2* to be both a
managing and a managed system.

− File Transfer Protocol (FTP) (see section 6.6.4.3, “Data Access Services”
on page 195).

− Network File System (NFS**). (see section 6.6.4.3, “Data Access
Services” on page 195).

− LPR/LPD remote printer support (see section 6.6.4.3, “Data Access
Services” on page 195).

− X-windows** server for client applications. The presentation manager is
used as the window manager.

− Remote Procedure Call (RPC) library that allows program-to-program
communication for distributed applications with high level program calls.

− Network Computing System (NCS**) allows high-level calls to procedures
to be executed on other systems on the network.

− Berkeley** socket library for distributed applications communication.

• OSI

The OSI Communications Subsystem for OS/2* (5601-124) with OSI File
Services/2 (5601-211) enables OS/2* users to transfer and manage files
between software platforms where a compatible set of OSI protocols exist.

Chapter 6. IBM Software Platforms 191

The OSI functions and APIs are:

− OSI File Services (see section 6.6.4.3, “Data Access Services” on
page 195)

− The Remote Programming Interface (RPI) for development of distributed
applications using COBOL and C languages.

The LAN Distributed Platform for OS/2* (LANDP/2 5622-108) provides a
client/server distributed programming capability well suited to develop
distributed services and applications in an heterogeneous LAN environment.
The LANDP platform allows integration of heterogeneous systems (DOS,
Windows, OS/2*, OS/400* and AIX/6000*) and heterogeneous communication
environments (NetBIOS, TCP/IP, SNA, and X.25). In addition to the programming
services, LANDP also provides several ready-to-use functions, such as 3270
emulation, shared file, electronic journal, store and forward services and
management services.

Interprocessor communication and data transfer across a network are also
available with Named Pipes. They provide a file-like programming interface for
two-way exchange of data, similar to the API normally used for sequential file
processing.

Multi-Protocol Transport Networking (MPTN) architecture supports CTS (Common
Transport Semantics) in IBM* Networking Blueprint. CTS provides a common
view of networking protocols, and it makes applications independent of the
underlying networking protocols. CTS is implemented in OS/2 through AnyNet/2
(5622-178, 260). AnyNet/2 allows APPC applications to run over the TCP/IP
network and TCP/IP Sockets to run over an SNA network.

Table 9 summarizes the OS/2* networking capabilities.

Table 9. OS/2* Networking Capabilities

Ethernet** TokenRing FDDI X.25 SDLC

SNA YES YES - YES YES

TCP/IP YES YES - YES -

OSI - - - YES -

NetBIOS YES YES YES(1) - -

Note: (1) Through LAN Support Program

6.6.3 Distributed System Services

6.6.3.1 Communication Services
The communication services capabilities within OS/2* are provided for:

• Conversational

CPI-C APIs for conversation, according to the SNA LU 6.2 protocols and
APPC programming interfaces.

• Remote Procedure Call

DCE Client for OS/2 (5696-692) provides RPC that allows programs to work
across heterogeneous systems by masking the differences between data
representations and the network details of different software platforms.

• Messaging and Queuing

192 Computing Technology Reference

The product ezBRIDGE** Transarc** on OS/2 (5787-EDD) provides IBM′s
Message Queue Interface (MQI) to distributed applications running on the
OS/2* platform.

6.6.3.2 Object Management Services
• Object Manager

System Object Module (SOM) technology and Distributed SOM (DSOM)
technology is available on the OS/2* platform with the IBM SOMobjects
Developer Toolkit and the associated runtime products (Workstation Enablers
and Workgroup Enablers) (5604-479, 482, 484). SOMobjects comply with the
Object Management Group′s (OMG**) Common Object Request Broker
Architecture (CORBA).

6.6.3.3 Distribution Services
• Directory

DCE Client for OS/2* (5696-692) for directory services. DCE for OS/2* offers a
Software Developer′s Kit (SDK, 5696-657) for DCE Cell Directory Services.

• Security

DCE Client for OS/2* (5696-692) for security services. DCE for OS/2* offers a
Software Developer′s Kit (SDK, 5696-657) for DCE Security Services.

• Time

DCE Client for OS/2* (5696-692) for time services.

• Transaction Manager

The CICS* for OS/2* transaction monitor has a transaction manager function
to ensure transaction and data integrity across distributed systems. Encina
transaction manager from Transarc**, an IBM Business Partner, will also be
available for OS/2.

6.6.4 Application Enabling Services
The application enabling services available with OS/2* are described in this
section.

6.6.4.1 Presentation Services
• User Interface

The OS/2* Workplace Shell* provides a user interface, based on the
presentation manager, that was developed using the IBM System Object
Model (SOM) object-oriented technology. The Workplace Shell* gives the
user a single interface to manage multiple objects, including devices such as
printers, disk drives, files, and programs. Applications can be integrated
with the Workplace Shell* and represented on the desktop with icons.

The workplace shell provides the cut-and-paste service for graphic and text
information between Presentation Manager, DOS, and Windows**
applications. The workplace shell is integrated with the LAN environment. It
provides an iconic view of LAN-based resources, which can be manipulated
through drag and drop techniques like any other desktop resource.

• Print/View

TCP/IP for OS/2* delivers the Line Printer Client/Line Printer Daemon
(LPR/LPD) functions that provides client/server support for distributed
printing. The LPR sends data to be printed to the LPD on a specified server

Chapter 6. IBM Software Platforms 193

platform for a specified printer. The LPD server on the target software
platform provides users access to the attached printers.

LAN Server for OS/2* and NetWare** for OS/2* allow sharing of print
resources among client workstations connected to a LAN (see section 6.6.4.3,
“Data Access Services” on page 195).

The IBM Print Services Facility/2 (PSF/2 5601-298) provides the OS/2 platform
with the printing services as required by the IBM′s Advanced Function
Printing* (AFP*) model and architectures. PSF/2 can be used as a printer
driver on a stand-alone system, as a print server on a local area network
environment, and as a print server on a distributed print network.

• Multi-Media

OS/2* Multi-Media Presentation Manager/2*, integrated in the OS2* V 2.1,
provides a common programming interface for multi-media applications.
MMPM/2 includes support for multi-media logical devices, such as audio
adapters, CD-ROM drivers, and video disc players.

Multimedia applications can be configured as a stand-alone personal
workstation or as a workgroup system consisting of workstations
interconnected to a LAN server or to a host system.

6.6.4.2 Application Services
• Transaction Monitor

CICS OS/2* V.2 (5648-036) provides CICS* transaction management to
multiple users of LAN attached programmable workstations. ASCII terminals
can also be connected to CICS OS/2* using the Real Time Interface
Co-processor card (ARTIC) and the Programmable Network Access (PNA)
software. CICS OS/2* can operate as a server for CICS OS/2* workstation
clients, as CICS OS/2* standalone, or as a client, and also supports
cooperative processing with other CICS* family systems.

CICS* applications can communicate with CICS* applications on other
software platforms through several distinct mechanisms. This capability
exists across the family of CICS* monitors for the IBM software platforms
(AIX/6000, OS/2*, OS/400*, MVS/ESA*, VSE/ESA*). These mechanisms allow
CICS* to route transactions to another CICS* for execution, allow for
transparent access to certain remote CICS* resources, and allow CICS* to
invoke a remote CICS* application.

The CICS OS/2* APIs provided to develop distributed transactions are:

− CICS* COBOL and C command level

− Transaction Routing, Function Shipping, and Distributed Program Link
(DPL)

− CICS* implementation of LU 6.2 protocols and interface with CPI-C

− External call interface (ECI) that provides an RPC-like communication
between applications and is compatible with CICS* DPL.

IMS Client Server/2* (V2 5622-113) allows an OS/2* application program to
run an IMS transaction transparently to the both the OS/2* application and
the host.

• WorkFlow Manager

194 Computing Technology Reference

FlowMark OS/2 (5621-290) provides a set of workflow management functions
to document, control, and progressively improve business processing.

• Mail

The Simple Mail Transfer Protocol (SMTP) application of TCP/IP provides an
electronic mail protocol for transferring electronic mail messages. The
interface with SMTP is the presentation manager application LaMail. The
LaMail program allows users to view, create, edit, spell check, and send
mail.

Lotus cc:Mail** provides electronic mail exchange among LAN workstations
running the OS/2* workplace shell, DOS, Windows**, Macintosh**, and
UNIX**, with gateways to OfficeVision/VM*, OS/400, and DEC**.

6.6.4.3 Data Access Services
• Relational

IBM Database 2 for OS/2* (DB2/2 5622-044) is a relational database
management system and a member of the IBM relational database family. It
can be used in a single-user workstation and in a client/server LAN
environment. It allows access to an OS/2* database servers from OS/2* DOS
and Windows** database client workstations. DB2/2 provides SQL
capabilities and roll-forward recovery for database recovery from a system
failure. It includes functions for application portability and DB2*
compatibility. It has graphical tools to configure and manage the database
and its directories.

DB2* for OS/2* and Distributed Database Connection Services for OS/2*
(DDCS/2 5622-056) provide database access for decision support systems, as
well as for online transaction processing applications that may reside on a
LAN or in a host. DDCS/2 participates in the Distributed Relational Database
Architecture (DRDA) with platforms that implement the remote unit of work
(RUOW). This allows OS/2* users to access and update relational databases
residing on other operating environments that use the same architecture.
The IBM software platforms that use RUOW are: SQL/DS on VM/ESA*,
OS/400*, DB2* on AIX/6000, MVS/ESA*, and OS/2*.

• File

Services to access and manage distributed data are provided by the
following:

− TCP/IP File Transfer Protocol (FTP) allows transfer of files from one
machine to another. FTP supports the transfer of both binary and ASCII
files, and may use the HPFS file system and its long file names. An
OS/2* TCP/IP node can be an FTP client, or server, or both. An FTP
client includes a presentation manager front end for a graphical
interface.

− TCP/IP Network File System (NFS**) allows a user to have transparent
access to a hierarchical file structure. It allows users to share files. Any
NFS** client, including UNIX** platforms, can share files with an OS/2*
platform.

− OSI File Services/2 (5601-211) enables OS/2* users to transfer and
manage files between software platforms.

− NetWare** requester for OS/2* allows an OS/2* client to request services
from Novell** LAN Servers, and also allows NetWare** clients to utilize
the OS/2* LAN server, allowing shared disk files.

Chapter 6. IBM Software Platforms 195

− LAN Server for OS/2* (5621-253) acts as a central hub for requests from
client workstations in the LAN. The requests are routed from the client
workstation to the server by a LAN requester program (included in the
LAN Server product). The resources that can be shared on a LAN Server
include disk directories, disk files, printers, serially attached devices,
application programs, and network services. Access to those resources
is completely transparent to the workstation client.

− The Distributed FileManager with Distributed Access Services (DAS is of
ADSM* 5648-020) allows OS/2 V2-based applications to access distributed
record data on target systems, as defined by the Distributed Data
Management (DDM) Architecture. ADSM* is intended to provide
distributed file access services in heterogeneous distributed
environments. DFDSM* operates with SAA-based systems, non-SAA,
and non-IBM platforms that support the DDM architecture. The DDM
architecture defines the target system as the system where data resides,
and the source system as the system where the application resides.
DDM source system functions are implemented by the Distributed
FileManager on the OS2 V2 platform. Target system support is currently
provided on the following systems, among others: OS/400 platform, and
MVS and VSE platforms through the CICS* DDM support.

• Storage

ADSTAR Distributed Storage Manager (ADSM*) allows an MVS, VM, or
AIX/6000 system to act as a file backup and archive server for LAN file
servers and workstations. OS/2* can be a client of ADSM* (see section
6.5.4.3, “Data Access Services” on page 178).

6.6.4.4 Network Operating System
OS/2* can provide the functions of a Network Operating System (NOS) with the
LAN Server for OS/2*, which allows application networking. OS/2*, as a network
operating system, provides applications with networking capabilities through its
standard APIs and commands. The NOS is a typical implementation of a
client/server concept, where a server acts as a central hub for requests from the
clients. Network devices, programs, files, and printers can be centralized on a
single server or distributed among multiple servers connected to a LAN. With
Microsoft** LAN Manager, and the NetWare** requester for OS/2*, the client
capability can be extended to Windows** and Novell** platforms.

6.6.5 Application Development
To assist in developing OS/2* applications, these programs are available:

• IBM OS/2* V.2 Tools for Application Development (5621-078, 5604-478) is
designed to provide language-independent development tools (such as the
linker and dialog box editor), detailed documentation, sample programs, and
also the header files and libraries needed to compile and link applications.

The OS/2 toolkit is also included on the Developer Connection CD, which is a
quarterly subscription service CD enabling new releases of tools and beta
versions of OS/2 products to reach developers quickly and easily. It also
includes additional online documentation, such as the OS/2 redbooks. The
Device Driver Source Kit for OS/2 is also provided on a subscription service
CD, and is for developers of OS/2 device drivers. Along with documentation,
it also includes sample device driver source code which can be used as a
basis for developing device drivers for new hardware.

196 Computing Technology Reference

• IBM WorkFrame/2 (5621-302) provides a programmers′ visual workbench,
into which language-specific compilers and editors can be plugged.
Workframe/2 also helps to manage the project-based development of
applications.

• IBM C set++ (5604-464, 465) provides all the language-specific tools needed
to develop C and C++ applications. It includes a full 32-bit C and C++
compiler for OS/2. C is the standard programming language for the PC, and
C++ is an object-oriented version of C, which is being increasingly widely
used. Also included are interactive visual debuggers, class browsers, and
execution trace analyzers.

• IBM C set++ libraries (5604-466) are provided to help developers build
object-oriented applications faster. An example of the available class
libraries is the User Interface Class library, which can be used for developing
OS/2 and Workplace Shell applications in C++.

• VisualAge for OS/2* (5621-387) provides an interactive, visual tool for fast
development of applications. VisualAge is based on the Smalltalk language.

• Multimedia Presentation Manager Toolkit/2 (5604-376) and Ultimedia*
Builder/2 (5604-401) are available to assist in the development of multi-media
applications.

6.6.6 System Management
SystemView* is the IBM systems management strategy for managing, planning,
coordinating, and operating open, heterogeneous distributed systems.
SystemView* includes a structure and the conforming products. The
SystemView* structure is designed to provide a consistent end-user interface,
shared data, enhanced automation, and increased integration among systems
management products. The structure embraces selected open standards and
architectures and defines conformance criteria for the SystemView* products.
The SystemView* conforming products are, and will be, developed by IBM and
non-IBM vendors.

6.6.6.1 Performance Management and Accounting
The System Performance Monitor/2 (SPM/2 5622-010) provides a powerful tool for
monitoring the performance and usage of an OS/2 system, including memory
and disk usage. SPM/2 also includes the ability to present this information
visually. In addition to collecting performance data locally on a given system,
SPM/2 allows data collection from OS/2* LAN servers and LAN requesters. It
also has a distributed feature that allows remote monitoring for servers and
requesters. SPM/2 conforms to SystemView* and is based on presentation
manager.

6.6.6.2 Operations
The following are some of the programs that allow LAN management, and
management of OS/2* workstations connected to a LAN:

• LAN NetView* family is a series of products that allow configuration,
installation, monitoring, and management of LAN systems.

• NetView/PC* (5669-024) allows the implementation of the NetView* Service
Point concept on the OS/2* software platform. It collects network
management information, formats it into alerts, and forwards alerts to
NetView* for centralized network management. Host connectivity is through
any SNA link supported by the OS/2* communication manager.

Chapter 6. IBM Software Platforms 197

• LAN Network Manager (5621-117) and LAN Station Manager (5621-103)
provide heterogeneous LAN management capabilities for token-ring and PC
network attached stations. LAN Network Manager conforms to SystemView*
and uses graphical displays. LAN Network Manager cooperates with a
centralized network management NetView.

• Distributed Console Access Facility (DCAF 5621-414) addresses the need for
a personal computer-based, central site help desk function. It can be used
to facilitate network management, network administration, and application
assistance involving personal computer workstations distributed across SNA
networks and on SNA-connected IBM Token-Ring LANs.

6.6.6.3 Availability and Integrity
In a multitasking environment, a serious error occurring in one application must
not be allowed to damage other applications that are running in the system. In
case of an error, OS/2* terminates the application unless the application has
requested to handle the error. Protection features of the processor architecture
are utilized to protect applications from each other and to protect the operating
system kernel from the applications.

6.6.7 Selected APIs, Protocols, and Facilities
Table 10 summarizes the protocols, facilities, and APIs available with OS/2*.

Table 10. OS/2* Selected APIs, Protocols, and
Facilities

OS2*

Berkeley** Sockets YES

POSIX** -

CPI-C YES

APPC YES

APPN YES

NCS** YES

NQS** -

OSF/DCE** YES

SQL YES

DRDA-RUOW YES

NFS** YES

FTP YES

FTAM YES

OSF/Motif** YES

X-windows** YES

NetWare** server(1) YES

LAN & workstation server(1) YES

SMTP YES

NetView* YES

SNMP YES

Note: (1) Server for LAN attached workstations

198 Computing Technology Reference

6.7 OS/400*
OS/400* (5738-SS1) is the operating system of the Application System/400*
(AS/400*).

The AS/400* system is a family of midrange data processing systems optimized
for application solutions for commercial data processing, office, and
communications environments.

Figure 64 shows the elements of the OS/400* software platform.

Figure 64. Elements of the OS/400* Software Platform

6.7.1 Local Operating System Services
A basic design concept of OS/400* is that the behavior of the system is defined
by the software and not by the hardware. The main characteristics of the
AS/400* system and of the OS/400* software platform are:

• Multi-layered machine interface

• Object-oriented architecture

• Single-level storage.

They have already been discussed in section 2.7, “IBM Application System/400*
(AS/400*)” on page 24.

OS/400* is a multi-user operating system, and multiprocessing is also
implemented.

Chapter 6. IBM Software Platforms 199

The application environment can consist of OS/400* applications and applications
migrated from the System/36 and the System/38 platforms. Applications that
have a mixture of the above are also possible.

DASD sharing with other AS/400* systems is not supported.

IBM intends to include the following POSIX** standards in the OS/400* platform:

• 1003.1 (system interface)
• 1003.2 (shell and utilities)
• 1003.4 (real-time threads).

IBM intends to seek XPG4** Base Branding from X/OPEN for a future release of
OS/400*.

6.7.1.1 Workload Scheduler
OS/400* is a multi-user operating system designed for interactive workloads. No
distinction is made between interactive workloads and other types of workloads,
such as batch. Program management, initiation, and termination occur in
exactly the same way for both batch and interactive programs.

OS/400* provides the system operator with tools to assign system resources to
specific types of workloads (for example, batch), if necessary.

6.7.1.2 Spooling
The Simultaneous Peripheral Operations On-Line (Spool) facility is provided by
the OS/400* for the temporary storage of user related data, mainly output data
for later printing. PC Support/400 (PC/400 5738-PC1) allows a personal computer
to use the AS/400* system printers. Personal computer printer data can be
transparently directed to the AS/400* spool files.

6.7.1.3 Database
The OS/400* relational database support is integrated into the operating system,
which also provides features for a high degree of data integrity. For
user-friendly data access, the SQL/400* (5738-ST1) and Query/400 (5738-QU1)
programs are available.

OS/400* databases can also be accessed using programming languages.
Application programming interfaces are also provided for applications that
require access to hierarchical data structures.

Compatibility is maintained with the S/36 data access interfaces for applications
that have been migrated from the S/36 system environments.

6.7.1.4 Security
There are many levels of security available with OS/400* to simplify the task of
security management. System services based on password control are provided
to control the access to system objects for read, update, add, and delete.
Operating system integrity is protected by denying access to the inner layers of
the machine-level interface.

Cryptographic Support/400 (5738-CR1) provides data protection by encryption. It
allows encrypted data to be sent over the network, or to be stored in the OS/400*
databases.

200 Computing Technology Reference

6.7.2 Network Services
OS/400* supports a wide range of connectivity options for the three main network
protocols, SNA, TCP/IP, and OSI:

• SNA/APPN

SNA communication protocols are provided as an integral part of the
OS/400* operating system, including the LU 6.2 and APPC services.

The SAA CPI-C interface is provided to assist in the development of
distributed applications using the SNA conversation protocol.

The SNA Advanced Peer-to-Peer Networking (APPN) and the Low Entry
Networking (LEN) support are provided by OS/400*. Several applications are
available to perform functions such as file and object transfer, electronic
mail, document exchange, CallPath support, and remote logon.

• TCP/IP

TCP/IP Connectivity Utilities/400 (5738-TC1) allows an OS/400* user to
communicate with other systems over a TCP/IP network. The functions and
applications provided are:

− Terminal passthrough (TELNET) allows a user client to remotely logon to
another computer with the TCP/IP TELNET server function.

− Simple Mail Transfer Protocol (SMTP) allows an end-to-end electronic
mail exchange.

− File Transfer Protocol (FTP) (see section 6.7.4.3, “Data Access Services”
on page 204).

− Network File System (NFS**) (see section 6.7.4.3, “Data Access Services”
on page 204).

IBM intends to include the following functions in TCP/IP for OS/400*:

− Simple Network Management Protocol (SNMP).

− X-windows** and Motif** client facilities to allow programs to access a
high resolution display connected to an X-windows** graphical
workstation acting as a server.

IBM Connection Program/400 (5798-RZB) provides the following functions to
the TCP/IP UNIX** environment:

− 5250 terminal emulation

− OS/400 remote database access using SQL APIs

− Remote print from OS/400 to workstation

− Remote command from OS/400 to workstation.

• OSI

OSI Communication Subsystem/400 (5738-OS1) enables OS/400* to
communicate with other systems over an OSI network.

The OSI functions and applications provided are:

− OSI Message Services/400 (5738-MS1) for message handling according to
the X.400 standard in a multi-vendor environment (see section 6.7.4.2,
“Application Services” on page 203).

− OSI File Services (5738-FS1) (see section 6.7.4.3, “Data Access Services”
on page 204).

Chapter 6. IBM Software Platforms 201

Multi-Protocol Transfer Networking (MPTN) architecture supports CTS (Common
Transport Semantics) of IBM Networking Blueprint. IBM intends to provide
support for MPTN for OS/400 to allow applications to use multiple
communications protocols (such as APPC conversations and TCP/IP sockets)
independently of the underlying transport protocol.

LAN Distributed Platform/400 (LANDP/400 5733-107) provides server capabilities
to programmable workstations running LANDP/DOS and LANDP/OS2. The LAN
Distributed Platform also provides a client/server distributed programming
capability well suited to develop distributed services and applications in an
heterogeneous LAN environment. The LANDP platform allows integration of
heterogeneous systems (DOS, Windows, OS/2*, OS/400* and AIX/6000*) and
heterogeneous communication environments (NETBIOS, TCP/IP, SNA, and X.25).

PC Support/400 connects personal computers connected directly via adapter
cards, or connected through LANs. It allows personal computer users to access
AS/400* resources over the network and can be used for file transfer, print
services, and AS/400* terminal emulation.

Table 11 summarizes the OS/400* networking capabilities.

Table 11. OS/400* Networking Capabilities

Ethernet** TokenRing FDDI X.25 SDLC

SNA YES YES - YES YES

TCP/IP YES YES - YES YES

OSI YES SOD - YES SOD

Note: SOD (statement of direction)

6.7.3 Distributed System Services

6.7.3.1 Communication Services
The communication services capabilities within OS/400* are provided for:

• Conversational

OS/400* provides the CPI-C APIs for APPC conversations using SNA LU 6.2
protocol.

• Remote Procedure Call

IBM has announced the DCE/400 application toolkit PRPQ which enables
application developers to build distributed applications based on DCE RPC.

• Messaging and Queuing

IBM MQM/400 (5733-103) and ezBRIDGE** Transact** (5787-EDA) provides
IBM ′s Message Queue Interface (MQI) to distributed applications running on
OS/400* platform.

6.7.3.2 Distribution Services
• IBM has announced the DCE/400 application toolkit PRPQ which will have the

following client functions for distributed applications:

− Directory

− Security

− Time.

202 Computing Technology Reference

• Transaction Manager

OS/400* has a native transaction manager with journaling capability and
commit control for transaction integrity and recoverability.

CICS/400 transaction monitor provides transaction manager functions by
employing two-phase commit schemes to insure transactions and data
integrity across distributed systems.

6.7.4 Application Enabling Services
The application enabling services available with OS/400* are described in this
section.

6.7.4.1 Presentation Services
• User Interface

OS/400* uses character displays for directly attached terminals. OS/400* has
a comprehensive series of character based dialogues that provide system
operator support through menus and help screens. Graphical user interface
is available using personal computers and software products like Windows
Connection, RUMBA/400, and Easel**.

IBM intends to provide a client/server application between an OS/400
system and a personal workstation running OS/2* or Microsoft** Windows**
with the OS/400 Graphical Operations. It will be based on an iconic,
object-oriented, graphical user interface for using and operating the OS/400
system.

• Print/View

The AFP Utility/400 (5738-AF1) provides the AS/400 platform with distributed
printing services as required by the IBM′s Advanced Function Printing*
(AFP*) model and architectures.

• Multi-Media

Ultimedia Host Support/400 (5799-ENY) provides a multimedia front-desk
interface for desk-top applications.

Ultimedia Video Delivery System/400 (5799-EPJ) enables OS/400 applications
to manage video presentation to users, including the control of video
windows, video devices, and selection of video sources.

6.7.4.2 Application Services
• Transaction Monitor

Transaction processing is a native capability on the OS/400* platform. In
addition, transaction processing is also provided by CICS/400* (5738-DFH),
which is a member of the CICS* family of products. Interoperability with
other CICS* systems is accomplished through Inter-System Communication
(ISC) using:

− Transaction routing

− Function shipping

− Distributed program link

− Distributed transaction processing.

Chapter 6. IBM Software Platforms 203

• Mail

In the office environment, Office Vision/400* (OV/400* 5738-WP1) can interact
with OV/VM* and OV/MVS*, sending notes and documents through the
network. A function provided by OSI Message Services/400 (5738-MS1)
allows message handling according to the X.400 standard, with a direct
connection to OV/400*.

6.7.4.3 Data Access Services
• Relational

Relational database management is a native capability of the OS/400*
platform. OS/400* implements the Distributed Relational Database
Architecture (DRDA) at the level of the Remote Unit Of Work (RUOW). That
architecture provides the OS/400* user with the capability to operate with
other relational database environments that implement the same
architecture. The OS/400* relational databases can also be accessed from
other platforms. The IBM database management systems that implement
DRDA RUOW on other software platforms are DB2 AIX/6000, DB2 on
MVS/ESA*, SQL/DS on VM/ESA* and VSE/ESA*, and OS/2 database manager
(as a RUOW client only).

• File

Services to access and manage distributed data are also provided by the
File Transfer Protocol (FTP) TCP/IP application. FTP allows transfer of files
to and from a remote host, and job submission.

TCP/IP File Server Support/400 (5798-RYW) is a server implementation of
NFS** and allows NFS** clients to access and store files on an OS/400*
system. Files may be either database or document library object (DLO).

OSI Communication Subsystem provides OSI File Services (5738-FS1) for
remote data access. OSI File Services allow the exchange and remote
management of files between platforms that implement an equivalent set of
file transfer, access, and management (FTAM) protocols.

LAN Resource Extension and Services/400 (LANRES/400 5733-CSA)
integrates Novell′s NetWare** LAN server with the storage facilities, print
services and data distribution services provided by OS/400*.

Distributed data management (DDM) is a function of OS/400* that supports
distributed file and distributed relational data access on remote systems that
provide the same DDM functions. Examples are any CICS* systems, other
OS/400* systems and System/36 and System/38 systems.

PC Support/400 allows a personal computer user to access resources on
local or remote AS/400*s, and can also be used for file transfer.

• Storage Server

IBM intends to provide ADSTAR* Distributed Storage Manager/400
(ADSM/400) for the OS/400* system and will support the same clients as the
MVS and VM based products (see section 6.5.4.3, “Data Access Services” on
page 178).

204 Computing Technology Reference

6.7.5 Application Development
The OS/400* participates in the AD/Cycle strategy for application development.
The AD/Cycle Cooperative Development Environment/400* (AD/Cycle CODE/400*)
provides tools for high level programming language application development and
maintenance. The tools operate on OS/2 workstations.

6.7.6 System Management
SystemView* is the IBM systems management strategy for managing, planning,
coordinating, and operating open, heterogeneous distributed systems.
SystemView* includes a SystemView* structure and the SystemView* conforming
products. The SystemView* structure is designed to provide a consistent
end-user interface, shared data, enhanced automation, and increased integration
among systems management products. The structure embraces selected open
standards and architectures and defines conformance criteria for the
SystemView* products. The SystemView* conforming products are, and will be,
developed by IBM and non-IBM vendors.

6.7.6.1 Performance Management and Accounting
Performance management on the OS/400* platform is provided by Performance
Tools AS/400 (5738-PT1). It is a set of commands and programs which, using
data collected by the OS/400*, assists the user in activities such as workload
scheduling, system tuning, performance analysis, and capacity planning.

Accounting services are provided by multiple levels of job accounting, and the
capture of job related information through user accounting codes.

6.7.6.2 Operations
SystemView* System Manager/400 (5738-SM1), together with PC Support/400,
provides centralized system management functions for a network of
interconnected AS/400*s and personal computers.

Local or remote automatic power-on and IPL is provided. Power-off can be done
by an interactive command or under program control.

6.7.6.3 Availability and Integrity
The following features are available to expedite recovery in case of hardware or
software failure:

• Journaling of the changes to records in a file.

• Commitment control for multiple database update operations.

• User auxiliary storage pools (ASPs) that divide the auxiliary storage,
allowing isolation of different applications on different disk arrays.

• Disk mirroring to enable the system to continue to operate after a disk
failure.

Chapter 6. IBM Software Platforms 205

6.7.7 Selected APIs, Protocols, and Facilities
Table 12 summarizes selected protocols, facilities, and APIs available with
OS/400*.

Table 12. OS/400* Selected APIs, Protocols,
and Facilities

OS/400*

Berkeley** Sockets SOD

POSIX** SOD

CPI-C YES

APPC YES

APPN YES

NCS** -

NQS** -

OSF/DCE**(1) ANN

SQL YES

DRDA-RUOW YES

NFS** YES

FTP YES

FTAM YES

OSF/Motif** SOD

X-windows** SOD

NetWare** server YES

LAN & Workstation server -

SMTP YES

NetView* YES

SNMP SOD

Note:
ANN (announced)
SOD (statement of direction)
(1) base service

206 Computing Technology Reference

6.8 VM/ESA*
Virtual Machine/Enterprise System Architecture (VM/ESA* 5684-112) is an
interactive, multi-user operating system. VM/ESA* users can be interactive
users or other operating systems.

VM/ESA Release 2 and subsequent releases can execute on any ESA-capable
processor, while VM/ESA Release 1.5 (S/370 feature) is still available for
execution on non ESA-capable processors.

Figure 65 shows the elements of the VM/ESA* software platform.

Figure 65. Elements of the VM/ESA* Software Platform

6.8.1 Local Operating System Services
The basic structure of a VM system is the virtual machine concept, which
provides the ability to activate multiple software platforms, called the virtual
machines, concurrently on the same hardware processor. Each virtual machine
is provided with I/O devices, processor storage, and hardware capabilities,
including multiprocessing, along with functions and facilities similar to those of a
real machine.

The virtual machine model separates the issues of managing the system
resources from those of managing the users. The result is the separation of
these two elements into the two primary components of the VM operating
system:

Chapter 6. IBM Software Platforms 207

• The control program (CP)

• The conversational monitor system (CMS).

6.8.1.1 Control Pr ogram
The control program, also called a hypervisor because it supervises multiple
supervisors (the managed operating systems), is responsible for resource
management. CP manages and operates the real hardware, and the total
physical resources are divided into multiple logical entities, the virtual machines.
The following are the major features of the VM/ESA* CP:

• Simulation of S/370, S/370-XA, and ESA/390* architectures. Except for timing,
the interface provided by CP for the virtual machine is the same as the
interface that would be provided by a real processor.

The operating systems hosted as guest systems include AIX/370 and
AIX/ESA*, MVS/ESA*, VM/ESA* itself, VSE/ESA*, TPF, and the non-IBM
operating environment, MUMPS**. See Figure 66.

In fact, any operating system that follows the S/370*, S/370-XA*, ESA/370*, or
ESA/390* architecture is capable of executing in a virtual machine.

Figure 66. VM/ESA* Environment

• Isolation of virtual machines. Events inside a virtual machine cannot affect
the operation or the integrity of any other virtual machine.

• Inter-user communication vehicle (IUCV) allows inter-virtual machine
communications through a control program interface, instead of through
shared storage. This communication capability between virtual machines

208 Computing Technology Reference

allows a VM platform to be considered as a sort of “software local area
network,” where some virtual machines might be set up to operate as
servers for the other virtual machines in the system.

For example, virtual machines can be activated as telecommunication
servers, security servers, or data servers. Services between the client
virtual machines and the server virtual machines are exchanged through the
IUCV interface. See Figure 67.

Figure 67. VM Software Local Area Network

• Tightly-coupled multiprocessing support allows multiprocessing operations
for the virtual machines which have been assigned more than one virtual
processing unit (CPU). The dispatchable unit of work for VM/ESA* is the
virtual machine CPU.

• The start interpretive execution (SIE) instruction of the ESA/390* architecture
is utilized to establish the virtual machine execution environment. The SIE
instruction is also used to schedule the virtual machines on the real
hardware and to provide microcode emulation of the virtual machine
architecture. The functions provided under SIE include execution of
privileged instructions, address translation, interrupt handling, and timing
facilities.

• VM/ESA* uses the PR/SM* facility to define up to six preferred virtual
machines. Preferred machines provide better performance because they
benefit from dedicated processor storage and improved I/O operations
through the SIE-assist facility.

Chapter 6. IBM Software Platforms 209

• The vector facility feature can be used by VM/ESA* guests for computing
intensive applications.

• The asynchronous data mover facility (ADMF) can be used by VM/ESA*
preferred guests to move data between expanded and central storage
asynchronously from the CPU.

• The subspace group facility can be used by VM/ESA* guests to enhance
CICS* availability.

• The ESCON* architecture is supported for I/O connectivity available on the
ES/9000 processors (see section 6.5.1, “Local Operating System Services” on
page 168).

• Up to 65,536 devices can be attached, and a single device may be connected
with up to eight channel paths.

• Both central and expanded storage can be utilized. Central storage can be
up to 2GB and expanded storage up to 16TB.

IBM has stated its intention to enhance VM/ESA* to include the following POSIX**
standards, which will conform to XPG4**:

• 1003.1 (system interfaces)

• 1003.2 (shell and utilities)

• 1003.4 (real-time threads).

6.8.1.2 CMS
The conversational monitor system (CMS) is the user management component of
VM. It is an interactive, single-user operating system, designed to run in a
virtual machine created and managed by the CP. The main features of CMS are:

• Interactive computing for program development, text editing, problem
solving, as well as for productivity applications such as CADAM and
OfficeVision/VM* (OV/VM* 5684-084).

• The same language processors and compilers available in VSE and MVS
operating systems, and implementation of many of the access methods used
by those operating systems.

• Its own file system that uses portions of real disks, called minidisks. Each
CMS virtual machine directly manages the format and contents of the
attached minidisks. This is similar to a personal computer environment
where the user directly manages the hard disks. It also implements a
Shared File System (SFS) with hierarchical directories and extensive sharing
capabilities for local and remote users.

• Bimodal execution of either the S/370* architecture with a maximum of 16MB
of virtual storage, or the S/370-XA* architectures with a maximum of 2047MB
of virtual storage.

• CP allows CMS users, using S/370-XA* architecture, to define and share up
to 1022 VM dataspaces, each up to 2GB in size. This facility allows large
amounts of storage to be made available for data sharing among CMS users
and server virtual machines.

• Pipelines provides a programming interface to write chained programs
where the output of one program can be the input for the next. This concept
is similar to the UNIX** pipes concept.

210 Computing Technology Reference

6.8.1.3 Workload Scheduler
The main workload to be managed in a VM/ESA* environment, apart from the
guest operating systems, is the CMS interactive virtual machines. These virtual
machines might also be seen as early examples of today′s personal computing
environments.

The CMS batch facility is a virtual machine available to all CMS users for
running programs that would otherwise tie up their virtual machine. The user
submits the job to CMS Batch for scheduling, execution, and output processing.

To deal with the interactive and batch workload, VM/ESA* uses a scheduling
algorithm that allows all virtual machines to access the processing resources on
a priority basis. The interactive users can be given CPU access more frequently
than the batch users, but for a shorter period of time.

For a user, VM/ESA* Release 2.2 allows specification of a maximum limit of
consumption for the CPU resource, which prevents the user from monopolizing
the system.

6.8.1.4 Spooling
VM/ESA* provides spool facilities for both CMS virtual machines and guest
operating system virtual machines. The RSCS virtual machine (see section 6.8.2,
“Network Services” on page 212) can transfer spool data among MVS/ESA*,
VM/ESA* and VSE/ESA* systems.

6.8.1.5 Database
SQL/DS V3.R4 (5688-103) is the relational database management system for
VM/ESA*. It operates as a virtual machine and may be used for decision support
systems as well as traditional data processing applications. The Query
Management Facility/VM (QMF 5706-255) is available as a high-level query
language with graphic capabilities.

The SQL/DS virtual machine is available to CMS users as a server for the
development, testing, and execution of interactive applications.

A VSE/ESA virtual machine guest of a VM/ESA* system, with the implementation
of the SQL/DS guest sharing feature, can execute transactions to access
information residing on a VM/ESA* SQL/DS virtual machine.

6.8.1.6 File
CMS has it own flat file system. Flat files (minidisks) are contiguous allocations
of disk space owned by a specific user.

The Shared File System (SFS) is an extension of the CMS file system that offers
additional file management and sharing functions. Data sharing is allowed
among users and across multiple VM/ESA* systems. The file structure is a
hierarchy of directories and is managed by an SFS server virtual machine. The
SFS server controls the physical placement of data and the CMS users access to
data in the local VM/ESA* system, or in distributed VM/ESA* systems connected
with either a SNA link, or a transparent service access facility (TSAF) connection.
The SFS uses the coordinated resource recovery (CRR) services to guarantee
the integrity of data (see section 6.8.6.3, “Availability and Integrity” on page 217).

The performance of I/O operations in VM/ESA* can be improved with the IBM
3990 Model 3 and 6 DASD control units for normal caching, fast write

Chapter 6. IBM Software Platforms 211

capabilities, dual copy, and concurrent copy. Data-in-memory caching through
VM dataspaces, virtual disks, and minidisk caching, can provide additional
performance benefits.

6.8.1.7 Storage Services
Data Facility Storage Management Subsystem/VM (DFSMS/VM*) is a feature of
VM/ESA*. It provides a system managed storage environment with, among other
features:

• Customer defined, policy based, automated space management function for
Shared File System files

• Support for fixed block architecture (FBA) disks, in addition to the traditional
Count Key Data (CKD) architecture, allowing easy migration to and from the
two architectures.

6.8.1.8 Security
The Resource Access and Control Facility (RACF 5740-XXH) provides the access
control functions of user identification and verification, resource authorization,
and logging and reporting of access events.

The ES/9000* Integrated Cryptographic Facility is available to VM/ESA* guests.

6.8.2 Network Services
VM supports a wide range of connectivity options for the three main network
protocols, SNA, TCP/IP, and OSI.

• SNA

ACF/VTAM (5684-095) with ACF/NCP provides SNA networking services with
a wide range of connectivity options. Several applications are available in
the SNA environment to perform functions such as, file transfer, electronic
mail, document exchange, and remote logon.

APPC/VM provides the application programming interface for conversations
based on the SNA LU6.2 protocols.

IBM intends to support SNA′s Advanced Peer-to-Peer Networking (APPN)
interface for VM/ESA*.

• TCP/IP

TCP/IP V.2 (5735-FAL) allows VM users to intercommunicate on a TCP/IP
network. Applications include the ability to send mail, transfer files, logon to
a remote host, and to provide multiple server functions for network users.

The major functions and applications provided by TCP/IP are:

− Terminal passthrough (TELNET) allows a user client to remotely logon to
another computer with TCP/IP TELNET server function.

− Simple Mail Transfer Protocol (SMTP) allows an end-to-end electronic
mail exchange.

− Simple Network Management Protocol (SNMP) is provided for network
management.

− File Transfer Protocol (FTP) (see section 6.8.4.3, “Data Access Services”
on page 215).

− Network File System (NFS**) (see section 6.8.4.3, “Data Access
Services” on page 215).

212 Computing Technology Reference

− X-windows** and Motif** client facilities allow program access to an high
resolution display connected to a system running a graphic server
system (see section 6.8.4.1, “Presentation Services” on page 214).

− The Remote Procedure Call (RPC) library allows program-to-program
communication for distributed applications with higher level program
calls.

− Network Computing System (NCS**) allows high level calls to procedures
to be executed on remote systems.

− Berkeley** socket library for distributed applications communication.

SNAlink allows TCP/IP communications over an SNA network.

• OSI

OSI Communication Subsystem (5684-013) provides OSI support in VM/ESA*
environment. The major OSI functions and applications provided are:

− OSI message exchange for message handling according to the X.400
standard (see section 6.8.4.2, “Application Services” on page 214).

− OSI File Services (see section 6.8.4.3, “Data Access Services” on
page 215).

− The Remote Programming Interface (RPI) for development of distributed
applications.

NetView* for VM/ESA* (5756-051), together with VTAM, TCP/IP, and OSI provides
management functions for a heterogeneous network.

The Remote Spooling Communications Subsystem (RSCS 5684-096) is a VM
networking application that runs in a virtual machine and provides data transfer
services. It allows users in a VM system to send messages, files, mail,
commands, and jobs to other systems within a network. The other systems can
be AIX, MVS, VM, and VSE.

The VM pass-through facility (PVM 5684-100) enables VM users on a local or
remote 3270 terminal, or personal workstation that emulates a 3270 display, to
interactively access applications on a remote system, with BSC network and CTC
connections.

Table 13 summarizes the VM/ESA* networking capabilities.

Table 13. VM/ESA* Networking

Ethernet** TokenRing FDDI X.25 SDLC

SNA YES YES YES YES YES

TCP/IP YES YES YES YES YES (1)

OSI YES SOD SOD YES -

Note:
SOD (statement of direction)
(1) Host TCP/IP to host TCP/IP with SNALink

Chapter 6. IBM Software Platforms 213

6.8.3 Distributed System Services

6.8.3.1 Communication Services
The communication services capabilities for VM/ESA* are provided for:

• Conversational

Conversation protocols using the SNA LU 6.2 interface or the APPC/VM
interface are available.

• Remote Procedure Call

IBM intends to include, in VM/ESA*, the OSF/DCE** programming interfaces
for Remote Procedure Call (RPC). The DCE RPC allows programs to work
across heterogeneous systems, masking the differences between data
representations on different software platforms and differences in networking
protocols.

6.8.3.2 Distribution Services
IBM intends to include, in VM/ESA*, the following OSF** DCE** base services
for distributed applications:

− DCE Cell Directory Service (CDS) Client

− DCE Security Service Client

− DCE Distributed Time Service (DTS) Server and Client.

6.8.4 Application Enabling Services
The application enabling services available with VM/ESA* are described in this
section.

6.8.4.1 Presentation Services
• User Interface

VM/ESA* uses character displays for attached terminals. However,
applications can be written to use the presentation server of an X-windows**
workstation in a TCP/IP network (APIs are provided), or the presentation
manager of a PS/2 through an APPC application.

• Print/View

Print Services Facility/VM (PSF/VM 5684-141) provides the VM platform with
the printing services as required by the IBM′s Advanced Function Printing*
(AFP*) model and architectures.

TCP/IP V.2 (5735-FAL) provides a Line Printer Client/Line Printer Daemon
(LPR/LPD) component with client/server support. The client LPR acts as the
CMS print command, and the server LPD can use locally attached printers,
RSCS connections, and remote printers on systems that use LPR/LPD
protocol.

6.8.4.2 Application Services
• Mail

OSI message exchange, provided with OSI Communications Subsystem,
allows message handling according to the X.400 standard in a multi-vendor
environment.

214 Computing Technology Reference

Office Vision/VM* (OVM 5684-084), with the X.400 PROFS* Connection/VM
(5785-GCG), provides mail functions using the X.400 OSI protocol.

6.8.4.3 Data Access Services

• Relational

SQL/DS V3 R4 (5688-103) is the relational database management system for
VM/ESA*. It operates in a virtual machine and may be used for decision
support systems as well as traditional data processing applications.

CMS users can use the SQL/DS virtual machine as a server for development,
testing, and execution of interactive applications.

SQL/DS implements the Distributed Relational Database Architecture (DRDA)
at the level of the Remote Unit of Work (RUOW). Other IBM relational data
base management systems that also implement DRDA at the RUOW level
are DB2 on AIX/6000, DB2* on MVS/ESA*, the OS/400* database manager,
SQL/DS on VSE/ESA*, and the OS/2* database manager (only as a client).

• File

Services to access and manage distributed data are provided by the
following TCP/IP applications:

− File Transfer Protocol (FTP) allows file transfer to and from a remote host
using a command syntax compatible with UNIX**. FTP also allows job
submission.

− Network File System (NFS**) allows a user to have transparent access to
formatted files and byte-stream files distributed over a network.

The OSI Communications Subsystem combined with OSI File Services
(5684-038) provides an application with remote data access capability. OSI
File Services allows the exchange and remote management of files between
platforms that implement an equivalent set of file transfer, access, and
management (FTAM) protocols.

The LAN File Services/ESA (5648-039) provides a file system on VM/ESA* that
is compatible with file systems on LAN workstations. The workstation file
system on VM supports DOS, OS/2*, and UNIX** format files, file operations,
multiple directories, and locking. Workstations on a LAN can have shared
files on the VM/ESA* platform for storage intensive applications.

LAN Resource Extension and Services/VM (LANRES/VM 5684-142) integrates
Novell′s NetWare** LAN server with the storage facilities, print services, and
data distribution services provided by VM/ESA*. High speed connectivity is
achieved by attaching the LAN server PC to an ES/9000 channel using a
special adapter card. The function and facilities provided by LANRES are:

− Disk server, where the VM/ESA* disks are used like NetWare** disks.

− Print server provides for both LAN-to-Host and Host-to-LAN printing.

− Central data distribution, where data can be copied between VM/ESA*
and the server station.

• Storage Server

ADSTAR* Distributed Storage Manager (ADSM*, 5648-020) allows a VM/ESA*
system to act as a file backup and archive server for LAN file servers and
workstations. It operates as a server for OS/2*, DOS, AIX/6000, SUN** OS,

Chapter 6. IBM Software Platforms 215

Apple Macintosh**, Windows**, Novell**, DEC** ULTRIX** and SCO** Open
Desktop** software platforms.

6.8.5 Application Development
VM/ESA* offers extensive testing capabilities for both VM applications and
application development for guest operating systems. VM/ESA* participates in
AD/Cycle with the AD/Cycle Cooperative Development Environment/370
(AD/Cycle CODE/370). It provides a seamless interface between VM/ESA* and
OS/2 for the edit, compile, and debug environments.

6.8.6 System Management
SystemView* is the IBM systems management strategy for managing, planning,
coordinating, and operating open, heterogeneous distributed systems.
SystemView* includes a SystemView* structure and the SystemView* conforming
products. The SystemView* structure is designed to provide a consistent
end-user interface, shared data, enhanced automation, and increased integration
among systems management products. The structure embraces selected open
standards and architectures and defines conformance criteria for the
SystemView* products. The SystemView* conforming products are, and will be,
developed by IBM and non-IBM vendors.

VM/ESA* provides systems management tools for one or more VM systems as
well as for locally attached and remote workstations.

6.8.6.1 Performance Management and Accounting
When accounting record creation is active, CP collects accounting statistics for
each virtual machine while the virtual machine is operating, and data about
resource utilization.

There are several licensed programs that process the data collected by CP
Monitor. Among them are:

• VM Monitor Analysis Program (VMMAP 5664-191) and VM Performance
Reporting Facility (VMPRF 5684-073) that provide reports for performance
measurement, tuning, and capacity planning.

• Real Time Monitor VM/ESA* V1.R5.2 (RTM 5798-DWD) for real time statistical
analysis. This monitor can send alerts to the SystemView* Host
Management Facility/VM (5684-157) when an installation defined threshold is
exceeded, and automatic actions can be initiated.

6.8.6.2 Operations
NetView* for VM/ESA* (5756-051) allows management of multiple remote VM
systems from a single location. With functions provided by SystemView* Host
Management Facility/VM, it is possible to automate console operations.
Furthermore, NetView* can analyze performance data collected by the real time
monitor (RTM) against installation defined thresholds and, if exceeded,
automatically initiate customer specified actions.

VM/ESA* uses the programmable operator facility for automation of host virtual
machine servers. It does this by intercepting all messages and requests
directed to virtual machines, and handling them according to defined actions.

216 Computing Technology Reference

6.8.6.3 Availability and Integrity
The operator can use VM/ESA* CP commands to fence discrete hardware
components (devices, control units, channel paths, and processors) and allow
concurrent hardware maintenance and system operation.

With the ESCON* architecture, it will be possible to install and use devices
without interrupting operations through the VM/ESA* Hardware Configuration
Definition* (HCD*) function.

The CMS coordinated resource recovery (CRR) facility ensures that an
application program can update multiple resources while maintaining resource
integrity. This means that all updates to resources within a transaction are
either done (committed) or not done (backed out). CRR coordinates the updating
of protected resources, whether the resources are within the same processor or
distributed among processors within a TSAF collection or an SNA network.

The dual copy capability (disk mirroring), possible with the advanced functions of
the 3990 model 3 and 6 control units, enables the system to operate after a disk
failure, with no loss of data or interruption to service.

6.8.7 Selected APIs, Protocols, and Facilities
Table 14 summarizes selected protocols, facilities, and APIs available with
VM/ESA*.

Table 14. VM/ESA* Selected APIs, Protocols
and Facilities

VM/ESA*

Berkeley** Sockets YES

POSIX** SOD

CPI-C YES

APPC YES

APPN SOD

NCS** YES

NQS** -

OSF/DCE** SOD

SQL YES

DRDA-RUOW YES

NFS** YES

FTP YES

FTAM YES

OSF/Motif** YES

X-windows** YES

NetWare** server YES

LAN & Workstation server YES

SMTP YES

NetView* YES

SNMP YES

Note: SOD (statement of direction)

Chapter 6. IBM Software Platforms 217

6.9 VSE/ESA*
VSE/ESA* (5750-ACD) is a member of IBM′s family of ESA/390* operating
systems and is designed for transaction and batch processing on small and
intermediate ES/9000* processors.

VSE/ESA* is used primarily in the following environments:

• Primary operating system for low-end ES/9000* systems

• Operating system on distributed ES/9000* nodes managed from a central
site.

Figure 68 shows the elements of the VSE/ESA* software platform

Figure 68. Elements of the VSE/ESA* Software Platform

6.9.1 Local Operating System Services
VSE/ESA* fully exploits the ESA architecture and has the following main
characteristics (the information provided here applies to VSE/ESA* V1.3):

• Virtual storage addressing

− The virtual addressing capability of VSE/ESA* is 2GB, and the complete
range is known as an address space. Work is executed in partitions, and
the maximum number of partitions is 200. A partition can be assigned to
a batch job, to a system function, or to a subsystem, such as CICS*.

218 Computing Technology Reference

− VSE/ESA* allows an application to use dataspaces for additional virtual
storage. Normal address spaces may contain programs and data.
Dataspaces can only contain data and can be up to 2GB in size.

− VSE/ESA* provides virtual disks to allow data, which would otherwise be
stored on DASD, to reside in virtual storage. Virtual disks are
implemented in dataspaces and appear to the user as normal DASD
devices. Data on virtual disks is volatile, and therefore, not appropriate
for permanent files.

− Total virtual storage available for address spaces and dataspaces
(including virtual disks) is 90GB.

− Maximum real storage size is 2GB, and ES9000* expanded storage is not
utilized.

Figure 69 shows the VSE/ESA* virtual storage structure.

Figure 69. VSE/ESA* 1.3 Virtual Storage

• VSE/ESA* is a multi-user, multitasking operating system. Multiprocessing is
not supported.

• VSE/ESA* supports the ESCON* architecture for I/O connectivity on the
ES9000* processors (see section 6.5.1, “Local Operating System Services” on
page 168)

− Up to 1024 local channel attached I/O devices are supported with as
many as four channel paths for a single device.

Chapter 6. IBM Software Platforms 219

− DASD data set sharing among VSE operating systems is possible with
the “lock file” facility.

• VSE/ESA* can be used with the S/370 architecture. In this case, virtual
storage is limited to 16MB, and the ESA architecture for I/O operations is not
available.

IBM has also made a statement of direction to support, on the VSE/ESA*
platform, the following hardware facilities:

• The data compression facility of selected ES/9000* processor family for users
requiring DASD space saving and communication line transmission time
saving.

• The subsystem storage protection facility to enhance CICS* availability.

6.9.1.1 Workload Scheduler
VSE/ESA* can schedule different categories of workload:

• Batch processing through VSE/POWER (5686-033) job entry subsystem. Jobs
can be submitted locally, by Remote Job Entry (RJE), and by Interactive
Computing and Control Facility (ICCF 5686-036) users.

• Online transaction processing through the CICS* transaction monitor.

• ICCF user, which runs as a CICS* application.

VSE/ESA* is a priority scheduler system that utilizes a partition load balancing
algorithm to manage the workload. Partitions can be grouped into classes which
have a user specified priority. Within each class, the partitions are rotated from
the first to the last position, thus giving equal access to the CPU resource.
VSE/ESA* does not swap users out of storage when computing resources are
overcommitted.

6.9.1.2 Spooling
VSE/POWER is a spooling system for automatic storage of user-related data,
mainly output data for later printing, and priority scheduling of jobs queued for
execution. VSE/POWER provides spool interfaces for all categories of workload,
batch, CICS* online transactions, and ICCF users. VSE/POWER can send and
receive spool files over an Network Job Entry (NJE) network connecting the
spooling system of MVS/ESA*, VM/ESA*, and VSE/ESA* platforms.

6.9.1.3 Database
SQL/DS (5798-DQL) provides relational data base services for SQL based
applications in the VSE/ESA* environment.

DL/I DOS/VS (5746-XX1) is the hierarchical database management system for
VSE/ESA*.

Both database managers can be used by CICS* applications and batch
programs.

In addition, there are other vendor products for data management, such as
IDMS**.

220 Computing Technology Reference

6.9.1.4 File
VSE/ESA* supports traditional data access methods, such as VSAM, direct
access, sequential, and partitioned, and provides a service to share data sets
among VSE platforms. The integrity of shared data sets, however, is an
application responsibility.

The functions of the IBM 3990 Model 3 and 6 DASD control (basic cache, dual
copy, DASD fast write) are used by VSE/ESA* to improve performance and data
availability for I/O operations.

6.9.1.5 Storage Services
VSE/ESA* does not have functions that automatically manage space on storage
devices or perform data migration and backup, but there are other vendor
products that provide these services, such as Dynam**.

6.9.1.6 Security
VSE/ESA* provides security through its access panel. The user is required to
enter ID and password to logon to CICS* and to ICCF, and password verification
is done by applications.

In addition, VSE/Access Control Logging and Reporting (ACLR 5746-XE7) can
monitor and report user access to protected data sets, libraries, and programs,
as well as user identification and verification for batch jobs.

Data and network security is provided by database managers and networking
subsystems.

Some vendors provide security packages that can be used for security services,
among them, ACF2**.

6.9.2 Network Services
VSE/ESA* provides networking capabilities for wide area networks (WANs),
LANs, POWER job entry subsystem networking, and network management.

ACF/VTAM (5666-363), ACF/NCP (5668-738, 5668-854) and Emulator Program (EP)
allow WAN communication using SDLC, binary synchronous, start-stop, and X.25
protocols. LAN support in VSE/ESA* allows communication with IBM TokenRing,
Ethernet**, and FDDI.

• SNA

The CPI-C, through CICS* (see section 6.9.4.2, “Application Services” on
page 223), and LU 6.2 programming interfaces used by APPC are available
for conversations over a SNA network.

IBM has also made a statement of direction for Advanced Peer-to-Peer
Networking (APPN) on the VSE/ESA* platform.

• TCP/IP

OpenConnect System** TCP/IP for VSE enables client/server access to
application, by providing TCP/IP network connections to VSE systems.
Connectivity between TCP/IP networks and VSE systems is provided by an
Outboard Communication Server (OCS) gateway, available as software
(5758-PC3) on AIX/6000 and other UNIX** software platforms. The functions
and applications provided are:

Chapter 6. IBM Software Platforms 221

− OpenConnect System** terminal passthrough (TELNET 5758-PC2) client
allows a user to remotely logon to another computer with TCP/IP TELNET
server function.

− OpenConnect System** File Transfer Protocol (FTP 5758-PC0, PC1) client
and server applications (see section 6.9.4.3, “Data Access Services” on
page 223).

IBM and OpenConnect System** intend to include the Sockets application
programming interface in the TCP/IP for VSE/ESA*.

• OSI

The Open System Interconnect (OSI) remote programming Interface (RPI)
enables OSI applications in VSE/ESA* that communicate with the OSI
communication subsystem on VM/ESA* or MVS/ESA* over an SNA network.
This function is provided by ACF/VTAM.

POWER networking provides facilities that allow file transfer and remote job
entry between MVS/ESA*, OS/400*, VM/ESA*, and VSE/ESA* platforms. POWER
networking allows these systems to exchange data and to interoperate (see
section 6.9.1.1, “Workload Scheduler” on page 220).

Table 15 summarizes the VSE/ESA* networking protocols.

Table 15. VSE/ESA* Networking

Ethernet** TokenRing FDDI X.25 SDLC

SNA YES (1) YES YES (1) YES YES

TCP/IP YES (2) YES (2) YES (2) YES (2) YES (2)

OSI - - - - YES (3)

Note:
(1) 3172 required.
(2) TCP/IP gateway provided by OCS on RISC/6000.
(3) OSI applications use VTAM to communicate.

6.9.3 Distributed System Services

6.9.3.1 Communication Services
The communication services capabilities within VSE/ESA* are provided by:

• Conversational

Communication services for distributed applications are available on the
VSE/ESA* platform in the form of conversations provided by SNA LU 6.2
protocols and APPC.

• Messaging and Queuing

The product ezBRIDGE** Transact** (5787-ECX) on VSE/ESA provides IBM′s
Message Queue Interface (MQI) to distributed applications.

6.9.3.2 Distribution Services
• Transaction Manager

CICS transaction monitor qualifies as a transaction manager because it
employs 2-phase commit to ensure transaction and data integrity across
distributed systems.

222 Computing Technology Reference

6.9.4 Application Enabling Services
The application enabling services available within VSE/ESA* are described in
this section.

6.9.4.1 Presentation Services
• User Interface

VSE/ESA* V 1.3, with the VSE/ESA* Workstation Platform (5686-028), the
ScreenView* Feature for VSE/ESA* (5775-BDX), and the OS/2 technology,
provides graphic and navigation services on the OS/2 platform and services
for host-workstation cooperative processing.

VSE/ESA* has a comprehensive series of CICS*/ICCF dialogues, called the
interactive user interface (IUI). IUI is a character interface, providing system
programming and operations support through menus and help screens.

• Print/View

Print Services Facility/VSE (PSF/VSE 5686-040) provides the VSE platform
with the printing services as required by the IBM′s Advanced Function
Printing* (AFP*) model and architectures.

6.9.4.2 Application Services
• Transaction Monitor

CICS/VSE (5686-026) is the transaction monitor on the VSE/ESA* platform and
is a member of the CICS* family of transaction monitors, available on other
IBM software platforms (AIX/6000, OS/2*, OS/400*, MVS/ESA*).

Members of the CICS* family of transaction monitors can communicate
through several distinct mechanisms, such as transaction routing, function
shipping, distributed program link, and distributed transaction processing.
These mechanisms allow CICS* to route transactions to another CICS* for
execution, allow transparent access to remote CICS* resources, and allow
usage of remote CICS* applications.

CICS* also provides an interface to CPI-C for program-to-program
communications, and supports the CICS* Callpath family to communicate
with industry standard private branch exchanges for telephone applications.

The inter-system communication facility (ISC) of CICS*/VSE allows
communication between CICS* and any other CICS* or IMS transaction
monitor.

• Mail

In the office environment, VSE/ESA*, with a DISOSS (5666-270) host-based
application (which runs with the CICS* monitor), can send notes and
documents through the network to other DISOSS systems.

6.9.4.3 Data Access Services
• Relational

SQL/DS (5688-103) is the relational database management system for
VSE/ESA*. It operates in a partition, and may be used as a decision support
system as well as for traditional data processing applications. The Query
Management Facility/VSE (QMF 5666-292) is available as a high level query
language with a graphical user interface.

SQL/DS and VSE/ESA* allow client applications that support Distributed
Relational Database Architecture (DRDA) Remote Unit Of Work (RUOW) to

Chapter 6. IBM Software Platforms 223

access relational data residing in VSE/ESA*. Other platforms that have
implemented the DRDA RUOW are AIX/6000, DOS, MVS/ESA*, OS/2*,
OS/400*, and VM/ESA*.

• File

Distributed Data Management (DDM 5686-018) allows access to VSAM data
sets from AS/400 and work stations running OS/2* with the DDM function
installed. It operates with CICS* transaction monitor as a transaction
program and uses SNA LU 6.2 conversation protocols.

OpenConnect System** File Transfer Protocol allows transfer of files to and
from a remote host or workstation connected to a TCP/IP network, using the
same command syntax as UNIX**.

6.9.5 Application Development
Application development in VSE/ESA* is enhanced by participation in AD/Cycle.
VSE/ESA* participates in Cross System Product/Application Development
(CSP/AD 5668-813) and Cross System Product/Application Execution (CSP/AE
5668-814) application generators and execution platforms. Interactive support is
provided by CICS*.

The VSE workstation platform provides an application development workplace on
an OS/2 workstation, integrated with the VSE/ESA* system.

6.9.6 System Management
SystemView* is the IBM systems management strategy for managing, planning,
coordinating, and operating open, heterogeneous distributed systems.
SystemView* includes a SystemView* structure and the SystemView* conforming
products. The SystemView* structure is designed to provide a consistent
end-user interface, shared data, enhanced automation, and increased integration
among systems management products. The structure embraces selected open
standards and architectures and defines conformance criteria for the
SystemView* products. The SystemView* conforming products are, and will be,
developed by IBM and non-IBM vendors.

6.9.6.1 Performance Management and Accounting
The VSE/ESA* interactive user interface of ICCF provides dialogues that simplify
systems programming and operational tasks. A dialogue gives a snapshot of
system performance factors, such as processor utilization, jobs executing, and
I/O device counts. Accounting services are provided by VSE/POWER.

CICSPARS (5666-329) is available for performance data, tuning, accounting, and
capacity planning for a CICS/VSE transaction monitor.

Other performance monitors and tools are available from other vendors, such as
Omegamon** and Explore**.

6.9.6.2 Operations
NetView* for VSE/ESA* (5686-038) provides network and systems management
functions. It provides remote automatic operations and recovery, network
monitoring and control, along with remote node support.

VSE/Operator Communication Control Facility (OCCF 5746-XC5) provides
services to reduce or automate the operator interaction necessary to run remote

224 Computing Technology Reference

systems. It can also direct messages to NetView* for system interaction and
response.

6.9.6.3 Availability and Integrity
CICS* availability under VSE/ESA* can be improved by the XRF feature, and alert
management can be provided by VSE when used with NetView*.

Hardware maintenance concurrent with systems operations can be provided by
operator action to fence physical resources. The dual copy capability (disk
mirroring) available with the advanced functions of the 3990 Model 3 and 6
control units, enables the system to continue operations after a DASD failure.

6.9.7 Selected APIs, Protocols, and Facilities
Table 16 summarizes selected protocols, facilities, and APIs available with
VSE/ESA*:

Table 16. VSE/ESA* Selected APIs, Protocols
and Facilities

VSE/ESA*

Berkeley** sockets SOD

POSIX** -

CPI-C (1) YES

APPC YES

APPN SOD

NCS** -

NQS** -

OSF/DCE** -

SQL YES

DRDA-RUOW(SQL/DS V3.4) YES

NFS** -

FTP YES

FTAM -

OSF/Motif** -

X-windows** -

NetWare** server -

LAN & Workstation server -

SMTP -

NetView* YES

SNMP -

Note:
SOD (statement of direction)
(1) Through CICS*

Chapter 6. IBM Software Platforms 225

226 Computing Technology Reference

Appendix A. APIs, Protocols, and Facilities Description

This appendix provides a brief description of the services and APIs mentioned in
the summary tables for each of the IBM software platforms.

Berkeley** sockets APIs for the services of Transport Connect Protocol
Internet Protocol (TCP/IP), User Datagram Protocol
(UPD), and Internet Control Message protocol (ICMP)
under TCP/IP. They are peer-to-peer APIs and were
introduced in the UNIX** Berkeley Software
Distribution (BSD) 4.2 generic interfaces for
UNIX**-to-UNIX** network communications.

POSIX** Portable Operating System Interface definition is a set
of specifications for open systems developed by the
Technical Committee on Operating Systems (TCOS) of
the Institute of Electrical and Electronic Engineers
(IEEE**). Some of the POSIX** committees are:

• 1003-0 Open system
• 1003-1 System interfaces
• 1003-1a System interface extensions
• 1003-2 Shell and utilities
• 1003-3 Testing and verifications
• 1003-4 Real-time threads
• 1003-5 ADA language bindings
• 1003-6 Security extension
• 1003-7 System administration
• 1003-8 Networking
• 1003-9 Fortran language bindings
• 1003-10 Supercomputing
• 1003-11 Transaction processing
• 1003-12 Protocol-independent network API
• 1003-13 X.500 namespace and directory services
• 1003-14 Real time profile
• 1003-15 Batch processing
• 1003-16 Multi-processing

POSIX** standards are included in the X/Open
Portability Guide (XPG4**).

CPI-C Common Programming Interface for Communication is
the IBM System Application Architecture* (SAA*) API
for program-to-program communications (using SNA
LU6.2). IBM provides CPI-C language bindings for all
its SAA* compilers.

APPC Advanced Program-to-Program Communication is the
name given to various implementations of
program-to-program communications based on the
conversation model and the SNA LU6.2 architecture.
Actual APPC implementations may differ from platform
to platform and from product to product.

APPN Advanced Peer-to-Peer Networking is an extension to
the IBM SNA architecture for peer-to peer networking.

 Copyright IBM Corp. 1994 227

NCS** Network Computing System is an interface that allows
high level program calls to procedures in a distributed
system that is connected to a TCP/IP network. Its
functions are similar to the RPC functions.

NQS** Network Queueing System allows batch job
submission from workstations to hosts in a TCP/IP
network.

OSF/DCE** DCE is a high level software platform, defined by
OSF**, that provides services for application
interoperability among heterogeneous software
platforms. It consists of such services as:

• Thread services
• Remote Procedure Call
• Time service
• Naming service
• Security service
• Distributed file service.

SQL Structured Query Language is a standard language
interface for relational database access and
manipulation. It can be used for interactive query
language, database programming language, database
definition, and data administration.

DRDA Distributed Relational Database Architecture is the
IBM architecture for distributed relational database
operations.

NFS** Network File System is a distributed file system for
hierarchical file structure. NFS** uses the RPC to
communicate between client and server, and allows
file sharing among users.

FTP File Transfer Program allows file transfer from one
system to another, over a TCP/IP network. FTP
supports the transfer of both binary and ASCII files,
and its services can be invoked using commands or
API calls.

FTAM File Transfer Access and Management is a standard
protocol available with OSI. It allows exchange and
remote management of files between platforms
implementing these protocols.

Motif** Motif** is a graphical user interface developed by the
Open Software Foundation

X-windows** X-windows** is a client/server presentation service
protocol. The X-windows** server is a workstation that
allows its display screen and mouse to be monitored
by a remote X-windows** client. The server can have
several windows, each of which is controlled by one
client. The server provides APIs for remote
programming over the network to share its display,
keyboard, and mouse.

NetWare** server Disk, file, backup, and archive services provided by a
host to a NetWare** client.

228 Computing Technology Reference

LAN & workstation server Disk, file, backup and archive services provided by a
host to a LAN file server and to workstations.

SMTP Simple Mail Transfer Protocol provides an electronic
mail protocol for transferring messages over a TCP/IP
network, from a sender client to a receiver server.

NetView* NetView* is a family of products that provide the basis
for heterogeneous network management and systems
operations from a central or remote site. NetView*
participates in the IBM* SystemView* infrastructure.

SNMP Simple Network Management Protocol is used for
managing TCP/IP multivendor networks. SNMP
separates the job of network management into two
tasks, the agent that monitors the network node, and
the manager that communicates with the distributed
agents for information and command processing.

Appendix A. APIs, Protocols, and Facilit ies Description 229

230 Computing Technology Reference

List of Abbreviations

ABIOS Advanced Basic Input/Output
Bios

API Application Programming
Interface

APPC Advanced Program to
Program Communications

APPN Advanced Peer to Peer
Networking

BIOS Basic Input/Output System

BCU Bus Control Unit

CAE Common Application
Environment

CISC Complex Instruction Set
Computers

CP Central Processor

CPI-C Common Programming
Interface for Communications

CMOS Complementary Metal Oxide
Semiconductor

DMA Direct Memory Access

DME Distributed Management
Environment

DRDA Distributed Relational
Database Architecture

ESCON Enterprise System Connection

EUI End User Interface

FDDI Fiber Distributed Data
Interface

FSV Full System Vendor

FTAM File Transfer Access and
Management

FTP File Transfer Program

HSB High Speed Buffer

ICU Interconnect Unit

IEEE Institute of Electrical and
Electronics Engineers

IMPI Internal Microprogramming
Interface

ISA Industrial Standard
Architecture

IWS Intell igent Workstation

LAN Local Area Network

MLI Machine Level Interface

MVS Multiple Virtual Storage

NCS Network Computing System

NFS Network File System

NOS Network Operating System

NQS Network Queuing System

OSI Open Systems
Interconnections

POSIX Portable Operating System
Interface for X

PWS Programmable Workstation

RDBMS Relational Database
Management System

RISC Reduced Instruction Set
Computers

RYO Roll Your Own

RPC Remote Procedure Call

RUOW Remote Unit of Work

SCSI Small Computer System
Interface

SCV Software Compatible Vendor

SMTP Simple Mail Transfer Protocol

SYSPLEX System Complex

SNA System Network Architecture

SNMP Simple Network Management
Protocol

SQL Structured Query Language

TCM Termal Conduction Module

TCOS Technical Committee on
Operating Systems

TCP/IP Transmission Control
Protocol/Internet Protocol

VLSI Very Large Scale Integration

VRM Virtual Resource Manager

VTA Virtual Storage Translator

WAN Wide Area Network

 Copyright IBM Corp. 1994 231

232 Computing Technology Reference

Index

A
abbreviations 231
Accounting

See Systems Management
acronyms 231
ADSM

AIX/6000 148
MVS/ESA 179
OS/2 196
OS/400 204
VM/ESA 215

Advanced Interactive Executive Family 44
AIX

See Advanced Interactive Executive Family
AIX Version 3 Software Platform 138
AIX/6000 Software Platform 138
AIX/ESA Software Platform 151
AnyNet

AIX/6000 143
MVS/ESA 173
OS/2 190
OS/400 201

API
See Application Programming Interface

APPC
AIX/6000 145
Description 227
DOS 162
MVS/ESA 173
OS/2 190
OS/400 201
VM/ESA 212
VSE/ESA 221

Application Development
AIX/6000 148
AIX/ESA 157
DOS 165
MVS/ESA 179
OS/2 196
OS/400 205
VM/ESA 216
VSE/ESA 224

Application Development Tools 88
Application Enabling Services 77, 99

AIX/6000 146
AIX/ESA 156
DOS 164
MVS/ESA 176
OS/2 193
OS/400 203
VM/ESA 214
VSE/ESA 223
What Are 135

Application Programming Interface 3
Application Services 81

AIX/6000 147
AIX/ESA 156
DOS 164
MVS/ESA 176
OS/2 194
OS/400 203
VM/ESA 214
VSE/ESA 223

Application System/400 24
Architecture 24
As a Mid-range Computer 24
Hardware 24
I/O Processor 24
Internal Microprogramming Interface 24
Machine Interface 24
Multi layered Machine Interface 24
Multi layered Structure 24
Origin 24
Single Level Storage 24
Software 24
Translator 24

Applications 4, 99
APPN

AIX/6000 143
Description 227
DOS 162
MVS/ESA 173
OS/2 190
OS/400 201
VM/ESA 212
VSE/ESA 221

Architecture 4, 12
See also Processor Architecture

Architecture Layer 12
AS/400

See Application System/400
Availabil i ty and Integrity

AIX/6000 149
AIX/ESA 157
MVS/ESA 181
OS/2 198
OS/400 205
VM/ESA 217
VSE/ESA 225

B
Berkeley Sockets

AIX/6000 143
AIX/ESA 155
Description 227
MVS/ESA 173
OS/2 190

 Copyright IBM Corp. 1994 233

Berkeley Sockets (continued)
VM/ESA 212
VSE/ESA 221

Bipolar chips 15

C
CAE

See X/Open Common Application Environment
Call Model

See Communication Services
CISC

See Complex Instruction Set Computers
Client/Server 47

Roles 47
Terminology 47

CMOS chips 15
Common Application Environment 94
Common Management Services

See Systems Management
Common Transport Semantics 60
Communication Layering

See Protocol Layering
Communication Models

See Communication Services
Communication Resource Manager

See Communication Services
Communication Services 63

AIX/6000 145
AIX/ESA 156
Coexistence 65
Conversational 99
DOS 163
Messaging and Queuing 99
MVS/ESA 175
OS/2 192
OS/400 202
Remote Procedure Call 99
Selecting 64
VM/ESA 214
VSE/ESA 222

Complex Instruction Set Computers 21
Configuration Environments 103

Interconnected systems 103
Local Area Network 103
Mult i- level Server 103
Non-programmable Terminal 103
Peer-to-peer 103
Wide Area Network 103

Control Program
See Kernel

Conversation Model
See Communication Services

Conversational 99
AIX/6000 145
DOS 163
MVS/ESA 175
OS/2 192
OS/400 202

Conversational (continued)
VM/ESA 214
VSE/ESA 222

Conversational Model
See Communication Services

CPI-C
AIX/6000 145
Description 227
DOS 162
MVS/ESA 173
OS/2 190
OS/400 201
VM/ESA 212
VSE/ESA 221

D
Data Access Services 85

AIX/6000 147
AIX/ESA 156
Database 85
DOS 165
File 85
File Protocol 85
Hierarchical 85
MVS/ESA 178
Object Data Base 85
OS/2 195
OS/400 204
VM/ESA 215
VSE/ESA 223

Data Processing System 3
Data Processing Technology 3
Data Resource Manager

See Data Access Services
Data Sharing 15
Database 87

AIX/6000 142
AIX/ESA 154
MVS/ESA 171
OS/2 189
OS/400 200
VM/ESA 211
VSE/ESA 220

DCE
See Distributed Computing Environment

DDM
See Distributed Data Management

Descriptive Framework 52
conclusion 102
il lustration 99
open blueprint introduction 52
open blueprint summary 98

Design 4
DFS

See Distributed File System
Directory Service 69

See also Distributed Computing Environment
User Interface 70

234 Computing Technology Reference

Distributed Applications 99
Distributed Computing 94
Distributed Computing Environment 94

AIX/6000 145
AIX/ESA 156
MVS/ESA 175
OS/2 192
OS/400 202
VM/ESA 214

Distributed Computing Support 94
Distributed Data Management 85

MVS/ESA 178
OS/2 195
OS/400 204
VSE/ESA 224

Distributed data processing 41
Distributed Database

AIX/6000 147
AIX/ESA 156
DOS 165
MVS/ESA 178
OS/2 195
OS/400 204
VM/ESA 215
VSE/ESA 223

Distributed File
AIX/6000 147
AIX/ESA 156
DOS 165
MVS/ESA 178
OS/2 195
OS/400 204
VM/ESA 215
VSE/ESA 224

Distributed File System 85
Distributed Processing

See Distributed data processing
See Distributed System Structure

Distributed Resource Manager
See Application Enabling Services

Distributed System
See Distributed data processing
See Distributed System Structure

Distributed System Services 63, 99
AIX/6000 145
AIX/ESA 156
DOS 163
Integration 76
MVS/ESA 175
OS/2 192
OS/400 202
VM/ESA 214
VSE/ESA 222

Distributed System Structure 41
Advanced Interactive Executive family 44
Distributed System Characteristics 48
Distribution Concepts 98
Early structures 41

Distributed System Structure (continued)
Heterogeneous 41
Homogeneous 41
System Application Architecture 43
Unix International Atlas 45

Distributed System Structure Evolution 46
Distributed Systems

See Distributed System Structure Evolution
Distribution Services

AIX/6000 145
AIX/ESA 156
Directory 99
DOS 163
MVS/ESA 175
OS/2 193
OS/400 202
Security 99
Time 99
Transaction Manager 99
VM/ESA 214
VSE/ESA 222

DOS Software 119, 126
DRDA 85

AIX/6000 147
Description 227
DOS 165
MVS/ESA 178
OS/2 195
OS/400 204
VM/ESA 215
VSE/ESA 223

DSOM
See Object Management Services

DSS
See Distributed System Structure Evolution

E
End-user Interface 3
Environment State Resource Manager 99
Environments

See Configuration Environments
EUI

See End-user Interface

F
File 85

AIX/6000 142
AIX/ESA 154
DOS 162
MVS/ESA 171
OS/2 189
VM/ESA 211
VSE/ESA 221

Foundation 94
FSV

See Full System Vendors

Index 235

FTAM
AIX/6000 143, 147
DOS 165
MVS/ESA 173, 178
OS/2 190
OS/400 204
VM/ESA 215

FTP
AIX/6000 143, 147
AIX/ESA 155, 156
Description 227
DOS 165
MVS/ESA 173, 178
OS/2 190, 195
OS/400 204
VM/ESA 215
VSE/ESA 221, 224

Full System Vendors 14

H
Hardware 4
Heterogeneous Operating Systems 43, 44
Heterogeneous Processor Architectures 43, 44
Heterogeneous Systems

See Heterogeneous Operating Systems
Hierarchical 88
High-Performance Switch (HPS) 21
Higher-level Software 119, 128

I
IBM Open Enterprise 36
IBM PC DOS Software Platform 159
IBM Software Platforms 135
IEEE 18, 36
IMPI

See Application System/400, Internal
Microprogramming Interface

Information System 4
Intel x86 32
Interconnected systems 103
Interconnected Sytems 115
Interface

Application Programming 3
End User 3
High Level 10
Low Level 10
Machine Level 3
Programming 3
User 3

Interfaces
See Programming Interfaces

Internal Microprogramming Interface 24
Interoperabil i ty 36

K
Kernel 18

AIX/6000 139
AIX/ESA 151
DOS 159
OS/2 185

L
LAN

See Personal Computer, Local Area Network
LAN file server

MVS/ESA 178
VM/ESA 215

LAN server
AIX/6000 148
Description 227
MVS/ESA 178
OS/2 195
VM/ESA 215

Layering
See Protocol Layering

Layers 7, 10
Local Area Network 103
Local Area Network Environment 110
Local Operating System Services 99

AIX/6000 139
AIX/ESA 151
DOS 159
MVS/ESA 168
OS/2 183
OS/400 199
VM/ESA 207
VSE/ESA 218
What Are 135

Local Resource Managers
See Local Operating System Services

Low Level Kernel 18

M
Machine Interface 3
Machine Level Interface 3
Mail 81

AIX/6000 147
AIX/ESA 156
DOS 164
MVS/ESA 177
OS/2 195
OS/400 204
VM/ESA 214
VSE/ESA 223

Mainframe Software 119, 121
Mainframes 14
Management Protocols

See Systems Management
Message

See Messaging and Queuing

236 Computing Technology Reference

Message Model
See Communication Services

Messaging and Queuing 64, 99
AIX/6000 145
MVS/ESA 175
OS/2 192
OS/400 202
VSE/ESA 222

MI
See Machine Interface

Microkernel 32
Microsoft DOS

See IBM PC DOS Software Platform
Midrange 122
Midrange Software 119
MLI

See Machine Level Interface
Motif

AIX/6000 146
AIX/ESA 156
Description 227
MVS/ESA 173
OS/2 190
OS/400 201
VM/ESA 212

Motorola 68xxx 32
MPTN

See Multi-Protocol Transport Network
MQM

See Messaging and Queuing
Mult i- level Server 103
Multi- level Server Environment 113
Multi-Protocol Transport Network 59

AIX/6000 143
MVS/ESA 173
OS/2 190
OS/400 201

Mult imedia 77
AIX/6000 146
DOS 164
OS/2 194
OS/400 203

Multiple Protocol Support 58
Music 94
MVS/ESA Software Platform 167

N
NCS

AIX/6000 143
AIX/ESA 154
Description 227
MVS/ESA 173
OS/2 190
VM/ESA 212

NetBIOS
AIX/6000 143
DOS 162
OS/2 190

Netview
AIX/6000 149
DOS 165
MVS/ESA 180
OS/2 197
OS/400 205
VM/ESA 216
VSE/ESA 224

NetWare Server
AIX/6000 147
Description 227
MVS/ESA 178
OS/2 195
OS/400 204
VM/ESA 215

Network Operating System 119, 125
See also NOS

Network Services 59, 99
AIX/6000 143
AIX/ESA 155
DOS 162
MVS/ESA 173
NetBIOS 99
OS/2 190
OS/400 201
OSI 99
SNA 99
TCP/IP 99
VM/ESA 212
VSE/ESA 221

NFS
AIX/6000 147
AIX/ESA 155, 156
Description 227
DOS 165
MVS/ESA 173, 178
OS/2 190, 195
OS/400 204
VM/ESA 215

Non-programmable Terminal 103, 104
NOS

See also Network Operating System
OS/2 196

NQS
AIX/6000 143
AIX/ESA 154
Description 227
MVS/ESA 170, 173

O
Object Data Base 88
Object Management Services 65

AIX/6000 145
MVS/ESA 175
OS/2 193

Object Manager
See Object Management Services

Index 237

Object Oriented
OS/2 189
OS/400 199

Online Linking and Embedding(OLE) 30
Open 94
Open Blueprint 46

application development tools 88
application enabling services 77
application services 81
audit services 72
common transport semantics 60
communications services 63
conclusion 102
data access services 85
database 87
descriptive framework 98
directory 69
directory user interface 70
distributed system services 63
distribution services 63, 66
dss integration 76
Goals 51
Introduction 50
mail 83
MPTN architecture 60
mult imedia 79
naming 66
Network Services 59
object data base 88
object management services 63, 65
object oriented technology 89
Open Blueprint Technical Overview 50
platforms 57
presentation services 77
printing and viewing 78
resource manager interfaces 53
security 70, 73
Structure 51
subnetworking 62
summary 98
systems management 90
t ime 73
transaction manager 74
transaction monitor 81
transport network 60, 62
user interface 77
workflow manager 81

open distributed system structure 46
Concepts 52

Open Software Foundation 94
Open Systems 36, 52

Definitions 36
IBM 36
IEEE 36
OSF 36
POSIX 36
Requirements 36
X/Open 36

Commmon Application Environment 36

Open Systems (continued)
X/Open (continued)

Portability Guide 36
OpenDoc 30
Operating Systems 41
Operation

AIX/6000 149
AIX/ESA 157
DOS 165
MVS/ESA 180
OS/2 197
OS/400 205
VM/ESA 216
VSE/ESA 224

OS/2 Software Platform 183
OS/400 Software Platform 199
OS2/2.1 30
OSF

See Open Software Foundation
OSF/DCE

See Distributed Computing Environment
OSI

AIX/6000 143
AIX/ESA 155
MVS/ESA 173
OS/2 190
OS/400 201
VM/ESA 212

Other Software 129

P
Parallel Processing 15
PC DOS

See IBM PC DOS Software Platform
Peer-to-peer 103
Peer-to-peer Systems 115
Performance Management

See Systems Management
Personal Computer 28

Apple Macintosh 28
Application development 36
Applications 29
Architecture 28

I/O Architecture 28
Processor Architecture 28

BIOS 34
C + + 36
CD-ROM 34
Class libraries 36
Complex Instruction Set Computer (CISC) 32
Device Drivers 34
Distributed System Object Model(DSOM) 35
DOS 30
EISA bus 34
Ethernet 35
GUI 29
Hardware 28
Hardware Architecture 34

238 Computing Technology Reference

Personal Computer (continued)
Hardware Devices 34
IBM PCs and compatibles 28
Intel x86 32
Interoperabil i ty 30
ISA bus 34
Local Area Network 28
Microchannel bus 34
Microkernel 32
Motorola 68xxx 32
Mult imedia 29
Object Oriented User Interfaces 29
Object-oriented 36
Object-oriented frameworks 36
Online Linking and Embedding(OLE) 30
OpenDoc 30
Origin 28
OS2/2.1 30
PCMCIA bus 34
Peripheral buses (eg SCSI) 34
Personalities 30
PowerPC 33
Requirements 28
Software 28
Symmetrical multiprocessing(SMP) 33
System 7 31
System Object Model(SOM) 35, 36
System Software 30
Taligent 32
Token-Ring 35
User Interface 29
VESA local bus 34
Video adapters 34
Visual builders 36
Wide Area Network 28
Windows 3.1 29, 30
Windows NT 30
Workplace Shell 29

Personalities 30
Platforms 57

Client 58
Integrity 58
Prerequisites 57
Server 58

Portabil ity 36, 94
Portability Guide

See X/Open Portability Guide
POSIX 18, 36

AIX/6000 139, 145
AIX/ESA 151
Description 227
MVS/ESA 168, 178
OS/400 199
VM/ESA 207

PowerPC 33
Presentation Manager

OS/2 186

Presentation Services 77
AIX/6000 146
AIX/ESA 156
DOS 164
MVS/ESA 176
OS/2 193
OS/400 203
VM/ESA 214
VSE/ESA 223

Print/View 77
AIX/6000 146
AIX/ESA 156
DOS 164
MVS/ESA 176
OS/2 193
OS/400 203
VM/ESA 214
VSE/ESA 223

Processor Architecture 41
Programming Interfaces 8

Open 8
Proprietary 8
Public 8
Standard 8

De facto 8
De jure 8

Proprietary 122
Proprietary Midrange 122
Protocol Layering 56

Q
Queuing

See Messaging and Queuing
Queuing Model

See Communication Services

R
Reduced Instruction Set Computers 21

Architecture 21
I/O 21
Processor 21

First Generation 21
Hardware 21
Non-IBM 21
Objective 21
Origin 21
POWER Architecture 21
Scalable POWERparallel 21
Second Generation 21
Software 21

Remote Procedure Call 63, 99
See also Communication Services
See also Distributed Computing Environment

Resource Manager 52, 99
application enabling services 100
characteristics 55
concepts 52

Index 239

Resource Manager (continued)
Distributed 99
distributed system services 100
elements 59
interface frameworks 53
interfaces 53
Local 99
local operating system services 100
network services 100
relationships 55
summary 100
systems management 54, 100

RISC
See Reduced Instruction Set Computers

Roll Your Own 4
RPC

See Remote Procedure Call
RYO

See Roll Your Own

S
S/36

See Application System/400
S/38

See Application System/400
S/390 Coupling Facility 17
S/390 Mainframes 14

Architecture 14
Bipolar chips 15
Characteristics 14
CMOS chips 15
Coupling Facility 17
Design 14
Drivers of Evolution 14
Evolution 14
Hardware 14
Hardware Structure 14
I/O Architecture 14
Parallel Sysplex 17
Processor Architecture 14
Software 14

S/390 Parallel Query Server 15
S/390 Parallel Sysplex 17
S/390 Parallel Transaction Server 15
SAA

See System Application Architecture
Scalable POWERparallel System 9076 SP2 21
Scalable POWERparallel Systems 21
SCV

See Software Compatible Vendors
Security

AIX/6000 143, 145
AIX/ESA 155
MVS/ESA 172
OS/2 190
OS/400 200
VM/ESA 212
VSE/ESA 221

Security Service 70
See also Distributed Computing Environment
Access Control 72
Audit Services 72
Identification and Authentication 70
Information Integrity and Confidentiality 72
Security Administration 73

Shell 18
AIX/6000 142
AIX/ESA 151
DOS 159
OS/2 186

SMTP
AIX/6000 143
AIX/ESA 155
Description 227
DOS 162
MVS/ESA 173
OS/2 190
OS/400 201
VM/ESA 212

SNA
AIX/6000 143
DOS 162
MVS/ESA 173
OS/2 190
OS/400 201
VM/ESA 212
VSE/ESA 221

SNMP
AIX/6000 143
AIX/ESA 155
Description 227
DOS 162
MVS/ESA 173
OS/400 201
VM/ESA 212

Sockets
See Berkeley Sockets

Software 4, 10
Software Compatible Vendors 14
Software Environments 119

DOS Software 119
Higher-level Software 119
Mainframe Software 119
Midrange Software 119
Network Operating System 119
UNIX Software 119

Software Layers 7
Software Platform

What Is 135
SOM

See Object Management Services
Spooling

AIX/6000 142
AIX/ESA 154
MVS/ESA 171
OS/2 189

240 Computing Technology Reference

Spooling (continued)
OS/400 200
VM/ESA 211
VSE/ESA 220

SQL
See Structured Query Language

Storage Server
AIX/6000 148
MVS/ESA 179
OS/400 204
VM/ESA 215

Storage Services
AIX/6000 142
AIX/ESA 155
MVS/ESA 172
VM/ESA 212
VSE/ESA 221

Structure
See Distributed data processing
See Distributed System Structure

Structured Query Language
AIX/6000 147
Description 227
DOS 165
MVS/ESA 171, 178
OS/2 189, 195
OS/400 204
VM/ESA 211, 215
VSE/ESA 220, 223

Subnetworking 62
Subsystems 7, 8
System 7 31
System Application Architecture 43
System Object Model

See Object Management Services
Systems Management 90, 99

AIX/6000 149
AIX/ESA 157
DOS 165
MVS/ESA 179
OS/2 197
OS/400 205
VM/ESA 216
VSE/ESA 224

Systems Management Structure
See Systems Management

Systems Network Managers
See Systems Management

T
Taligent 32
TCOS 18, 36
TCP/IP

AIX/6000 143
AIX/ESA 155
DOS 162
MVS/ESA 173
OS/2 190

TCP/IP (continued)
OS/400 201
VM/ESA 212
VSE/ESA 221

Technology 4
TELNET

AIX/6000 143
AIX/ESA 155
DOS 162
MVS/ESA 173
OS/2 190
OS/400 201
VM/ESA 212
VSE/ESA 221

Time Service 73
See also Distributed Computing Environment

Transaction Manager 74
AIX/6000 145
DOS 163
MVS/ESA 175
OS/2 192
OS/400 202
VSE/ESA 222

Transaction Monitor 81
AIX/6000 147
DOS 164
MVS/ESA 176
OS/2 194
OS/400 203
VSE/ESA 223

Transport Network 62

U
UI-Atlas

See Unix International Atlas
UNIX

Implementations 18
Model 18
Open Systems 18
Origin 18
Portabil ity 18
POSIX 18
Shell 18
TCOS 18
Util i t ies 18

Unix International Atlas 45
UNIX Software 119, 123
User Interface 77

AIX/6000 146
AIX/ESA 156
DOS 164
MVS/ESA 176
OS/2 193
OS/400 203
VM/ESA 214
VSE/ESA 223

Util i t ies 18

Index 241

V
Virtual Storage

AIX/6000 139
AIX/ESA 151
MVS/ESA 168
OS/2 185
OS/400 199
VM/ESA 207
VSE/ESA 218

Visibil ity
Of Layers 10
Of Software Layers 10

VM/ESA Software Platform 207
VSE/ESA Software Platform 218

W
WAN

See Personal Computer, Wide Area Network
Wide Area Network 103
Wide Area Network Environments 108
Windows 3.1 30
Windows NT 30
Workflow Manager 81

OS/2 194
Workload Management

MVS/ESA 170
Workload Scheduler

AIX/6000 142
AIX/ESA 154
DOS 162
MVS/ESA 170
OS/2 189
OS/400 200
VM/ESA 211
VSE/ESA 220

Workplace Shell
See Shell

Workstations LAN file server
See LAN file server

Workstations LAN server
See LAN server

X
X-Windows

AIX/6000 146
AIX/ESA 156
Description 227
DOS 164
MVS/ESA 173, 176
OS/2 190, 193
OS/400 201
VM/ESA 212, 214

X/Open 94
X/Open Common Application Environment 94
X/Open Distributed Computing 94

X/Open Distributed Computing Support 94
X/Open Portability Guide 94
XPG

See Open Systems, X/Open, Portability Guide
See X/Open Portability Guide

242 Computing Technology Reference

ITSO Technical Bulletin Evaluation RED000

The Library for Systems Solutions
Computing Technology Reference

Publication No. GG24-4100-00

Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this
questionnaire and return it using one of the following methods:

• Mail it to the address on the back (postage paid in U.S. only)
• Give it to an IBM marketing representative for mailing
• Fax it to: Your International Access Code + 1 914 432 8246
• Send a note to REDBOOK@VNET.IBM.COM

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____

Organization of the book
Accuracy of the information
Relevance of the information
Completeness of the information
Value of illustrations

Grammar/punctuation/spell ing
Ease of reading and understanding
Ease of finding information
Level of technical detail
Print quality

Please answer the following questions:

a) If you are an employee of IBM or its subsidiaries:

Do you provide billable services for 20% or more of your time? Yes____ No____

Are you in a Services Organization? Yes____ No____

b) Are you working in the USA? Yes____ No____

c) Was the Bulletin published in time for your needs? Yes____ No____

d) Did this Bulletin meet your needs? Yes____ No____

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organizat ion

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

ITSO Technical Bulletin Evaluation RED000
GG24-4100-00 IBML 

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization
Mail Station P099
522 SOUTH ROAD
POUGHKEEPSIE NY
USA 12601-5400

Fold and Tape Please do not staple Fold and Tape

GG24-4100-00

IBML 

Printed in U.S.A.

GG24-4100-00

	The Library for Systems Solutions Computing Technology Reference
	Abstract
	Contents
	Figures
	Tables
	Special Notices
	Preface
	The Library for Systems Solutions
	How This Document is Organized
	Related Publications
	International Technical Support Organization Publications
	Acknowledgments

	Chapter 1. Introduction
	Chapter 2. Data Processing Technology
	Data Processing Elements
	Data Processing System Evolution
	Software Layers
	Programming Interfaces
	Software Layers Visibility
	Architecture Layer
	Additional Considerations
	IBM S/ 390* Mainframes
	UNIX** Systems
	RISC* Technology and IBM RISC/ 6000*
	IBM Application System/ 400* (AS/ 400*)
	Personal Computers
	Open Systems

	Chapter 3. Distributed Data Processing Technology
	Early Data Processing System Structures
	Operating Systems
	Processor Architectures
	Historical Heterogenous System Structures
	Systems Application Architecture* (SAA*)
	Advanced Interactive Executive* (AIX*) Family
	UI- ATLAS**
	Distributed System Structure Evolution
	Distributed System Characteristics
	The Open Blueprint
	Open Blueprint Concepts and Resource Managers
	Resource Manager Elements
	Network Services
	Distributed System Services
	Application Enabling Services
	Application Development Tools
	Systems Management Services
	Other Efforts
	MUSIC
	X/ OPEN** Distributed Computing Services
	X/ OPEN** Portability Guide (XPG)
	Open Software Foundation Distributed Computing Environment
	(OSF/ DCE**)
	Summary
	Distribution Concepts Revisited
	Local Operating System Services
	Descriptive Framework
	Conclusion

	Chapter 4. Configuration Environments
	Non- programmable Terminal (NPT) Environments
	Wide Area Network (WAN) Environments
	Local Area Network (LAN) Environments.
	Multi- level Server Environments
	Other Interconnected Systems and Peer- to- Peer Environments
	Other Application Environments

	Chapter 5. Software Environments
	Mainframe Software Environments
	Proprietary Midrange Software Environments
	UNIX** Software Environments
	Network Operating Systems Software Environments
	DOS and Related Software Environments
	Higher- level Software Environments
	Other Software Environments
	Planning Considerations

	Chapter 6. IBM Software Platforms
	Software Platform Definition
	AIX Version 3
	Local Operating System Services
	Network Services
	Distributed System Services
	Application Enabling Services
	Application Development
	System Management
	Selected APIs, Protocols, and Facilities
	AIX/ ESA*
	Local Operating System Services
	Network Services
	Distributed System Services
	Application Enabling Services
	Application Development
	System Management
	Selected APIs, Protocols, and Facilities
	IBM PC DOS
	Local Operating System Services
	Network Services
	Distributed System Services
	Application Enabling Services
	Application Development
	System Management
	Selected APIs, Protocols, and Facilities
	MVS/ ESA*
	Local Operating System Services
	Network Services
	Distributed System Services
	Application Enabling Services
	Application Development
	System Management
	Selected APIs, Protocols, and Facilities
	OS/ 2*
	Local Operating System Services
	Network Services
	Distributed System Services
	Application Enabling Services
	Application Development
	System Management
	Selected APIs, Protocols, and Facilities
	OS/ 400*
	Local Operating System Services
	Network Services
	Distributed System Services
	Application Enabling Services
	Application Development
	System Management
	Selected APIs, Protocols, and Facilities
	VM/ ESA*
	Local Operating System Services
	Network Services
	Distributed System Services
	Application Enabling Services
	Application Development
	System Management
	Selected APIs, Protocols, and Facilities
	VSE/ ESA*
	Local Operating System Services
	Network Services
	Distributed System Services
	Application Enabling Services
	Application Development
	System Management
	Selected APIs, Protocols, and Facilities

	Appendix A. APIs, Protocols, and Facilities Description
	List of Abbreviations
	Index
	A
	B
	C
	D
	E
	F
	K
	L
	H
	I
	M
	N
	O
	P
	Q
	R
	S
	U
	T
	V
	W
	X
	ITSO Technical Bulletin Evaluation RED000

