Chapter 7

Memory

This chapter looks at memory from both a physical and logical point of view. The chap-
ter discusses the physical chips and SIMMs (Single Inline Memory Modules) that you can
purchase and install. The chapter also looks at the logical layout of memory and defines
the different areas and uses of these areas from the system’s point of view. Because the
logical layout and uses are within the “mind” of the processor, memory remains as per-
haps the most difficult subject to grasp in the entire PC universe. This chapter contains
much useful information that removes the mysteries associated with memory and en-
ables you to get the most out of your system.

The System Logical Memory Layout

The original PC had a total of 1M of addressable memory, and the top 384K of that was
reserved for use by the system. Placing this reserved space at the top (between 640K and
1024K instead of at the bottom, between OK and 640K) led to what today is often called
the conventional memory barrier. The constant pressures on system and peripheral manu-
facturers to maintain compatibility by never breaking from the original memory scheme
of the first PC has resulted in a system memory structure that is (to put it kindly) a mess.
More than a decade after the first PC was introduced, even the newest Pentium-based
systems are limited in many important ways by the memory map of the first PCs.

Someone who wants to become knowledgeable about personal computers must at one
time or another come to terms with the types of memory installed on their system—
the small and large pieces of different kinds of memory, some accessible by software
application programs, and some not. The following sections detail the different kinds
of memory installed on a modern PC. The kinds of memory covered in the following
sections include the following:

m Conventional (Base) memory
m Upper Memory Area (UMA)
m High Memory Area (HMA)

m Extended memory

Chapter 7—Memory

Expanded memory (obsolete)

® Video RAM memory

Adapter ROM and Special Purpose RAM
m Motherboard ROM BIOS

Subsequent sections also cover preventing memory conflicts and overlap, using memory
managers to optimize your system’s memory, and making better use of memory. In an
AT system, the memory map extends beyond the 1M boundary and can continue to 16M
on a system based on the 286 or higher processor, or as much as 4G (4,096M) on a
386DX or higher. Any memory past 1M is called extended memory.

Figure 7.1 shows the logical address locations for an IBM-compatible system. If the pro-
cessor is running in Real Mode, then only the first megabyte is accessible. If the processor
is in Protected Mode, then the full 16 or 4,096 megabytes are accessible. Each symbol is
equal to 1K of memory, each line or segment is 64K, and this map shows the first two
megabytes of system memory.

= Program-accessible memory (standard RAM)

= Graphics Mode Video RAM

= Monochrome Text Mode Video RAM

= Color Text Mode Video RAM

= Video ROM BIOS (would be "a" in PS/2)

Adapter board ROM and special-purpose RAM (free UMA space)

= Additional PS/2 Motherboard ROM BIOS (free UMA in non-PS/2 systems)
= Motherboard ROM BIOS

= IBM Cassette BASIC (would be "R" in IBM compatibles)

= High Memory Area (HMA), if HIMEM.SYS is loaded.

SO TSSO <O=E® -
1]

Conventional (Base) Memory:

BODDDD: ..ottt e
DI00D0D: ...ttt e i a s
D20000: ...ttt e
B30000D: ...ttt a s
DADDDD: .. ottt a e
B50000D: ...t i
DBODDD: . ..ottt i e s
B70000: ..ottt e
BBODDD: ... ittt a s
BO0DDD: ..ottt e

Upper Memory Area (UMA):

: 0---1---2---3---4---5---6---7---8---9---A---B---C---D---E---F---
0AD000: GG
0B0000: MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

: 0---1---2---3---4---5---6---7---8---9---A---B---C---D---E---F---
0C0000: VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
0D0000: aa

: 0---1---2---3---4---5---6---7---8---9---A---B---C---D---E---F---w

The System Logical Memory Layout

QEQQQQ: rrrrrrrrrrrrrrrrrrrrrrrr e e e e e P e e rrrrrrrrrrrrrrrrrrrrr
OF0000: RRRRRRRRRRRRRRRRRRRRRRRRbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbRRRRRRRR

Extended Memory:

© Q---1--:2---8---4---5---6---7---8---9---A---B---C---D---E---F---
100000: hh

Extended Memory Specification (XMS) Memory:

L L
20000 . e e e
IR 1111/
T4 : .ottt a e
IS/
TBOOD: ..ottt e a s
70000 . e a e
T8O ..ottt a ey
T oo e
TADDDO . . e e e a e
TBOOD: ..ottt e
TODDDD: oottt e II
TDO00D: .ottt a e
=01 1L
L1 1L/

Fig. 7.1
The logical memory map.

To save space, this map is ended after the end of the second megabyte. In reality, this map contin-
ues to the maximum of 16M or 4,096M of addressable memory.

Conventional (Base) Memory

The original PC/XT-type system was designed to use 1M of memory workspace, some-
times called RAM (Random-Access Memory). This 1M of RAM is divided into several
sections, some of which have special uses. DOS can read and write to the entire mega-
byte, but can manage the loading of programs only in the portion of RAM space called
conventional memory, which at the time the first PC was introduced was 512K. The other
512K was reserved for use by the system itself, including the motherboard and adapter
boards plugged into the system slots.

IBM decided after introducing the system that only 384K was needed for these reserved
uses, and the company began marketing PCs with 640K of user memory. Thus, 640K
became the standard for memory that can be used by DOS for running programs and is
often termed the 640K memory barrier. The remaining memory after 640K was indicated
as reserved for use by the graphics boards, other adapters, and the motherboard ROM
BIOS.

Chapter 7—Memory

Upper Memory Area (UMA)

The term Upper Memory Area (UMA) describes the reserved 384K at the top of the first
megabyte of system memory on a PC/XT and the first megabyte on an AT-type system.
This memory has the addresses from AO0OOO through FFFFF. The way the 384K of upper
memory is used breaks down as follows:

m The first 128K after conventional memory is called video RAM. It is reserved for use
by video adapters. When text and graphics are displayed on-screen, the electronic
impulses that contain their images reside in this space. Video RAM is allotted the
address range from AOOOO-BFFFF.

m The next 128K is reserved for the software programs, or adapter BIOS, that reside in
read-only memory chips on the adapter boards plugged into the system slots. Most
VGA-compatible video adapters use the first 32K of this area for their on-board
BIOS. The rest can be used by any other adapters installed. Adapter ROM and
special purpose RAM are allotted the address range from CO000-DFFFF.

m The last 128K of memory is reserved for motherboard BIOS, the basic input-output
system, which is stored in read-only RAM chips or ROM. The POST (Power-On Self
Test) and bootstrap loader, which handles your system at bootup until DOS takes
over, also reside in this space. Most systems only use the last 64K of this space,
leaving the first 64K free for remapping with memory managers. The motherboard
BIOS is allotted the address range from EOOOO-FFFFF.

Not all the 384K of reserved memory is fully used on most AT-type systems. For example,
according to IBM’s definition of the PC standard, reserved video RAM begins at address
A0000, which is right at the 640K boundary, but this reserved area may not be used,
depending on which video adapter is installed in the system. Some adapters do not use
the area beginning at AOOOO, instead using a higher address. Different video adapters

use varying amounts of RAM for their operations depending mainly on the mode they
are in.

In fact, although the top 384K of the first megabyte was originally termed reserved
memory, it is possible to use previously unused regions of this memory to load device
drivers (like ANSL.SYS) and memory-resident programs (like MOUSE.COM), which frees
up the conventional memory they would otherwise require. The amount of free UMA
space varies from system to system depending on the adapter cards installed on the sys-
tem. For example, most SCSI adapters and network adapters require some of this area for
built-in ROMs or special-purpose RAM use.

Segment Addresses and Linear Addresses. One thing that can be confusing is the
difference between a segment address and a full linear address. The use of segmented
address numbers comes from the internal structure of the Intel processors. They use a
separate register for the segment information and another for the offset. The concept is
very simple. For example, assume that I am staying in a hotel room, and somebody asks
for my room number. The hotel has ten floors, numbered from zero through nine; each

The System Logical Memory Layout

floor has 100 rooms, numbered from 00 to 99. The hotel also is broken up into segments
of ten rooms each, and each segment can be specified by a two-digit number from 00 to
99. I am staying in room 541. If the person needs this information in segment:offset
form, and each number is two digits, I could say that I am staying at a room segment
starting address of 54 (room 540), and an offset of 01 from the start of that segment. I
could also say that I am in room segment 50 (room 500), and an offset of 41. You could
even come up with other answers, such as that [am at segment 45 (room 450) offset 91
(450+91=541). That is exactly how segmented memory in an Intel processor works. No-
tice that the segment and offset numbers essentially overlap on all digits except the first
and last. By adding them together with the proper alignment, you can see the linear
address total.

A linear address is one without segment:offset boundaries, such as saying room 541. It is

a single number and not comprised of two numbers added together. For example, a SCSI

host adapter might have 16K ROM on the card addressed from D4000 to D7FFF. These

numbers expressed in segment:offset form are D400:0000 to D700:0FFF. The segment

portion is composed of the most significant four digits, and the offset portion is com- Il
posed of the least significant four digits. Because each portion overlaps by one digit, the

ending address of its ROM can be expressed in four different ways, as follows:

D000:7FFF = D000 segment
+ T7FFF offset
= D7FFF total

D700:0FFF = D700 segment
+ OFFF offset
= D7FFF total

D7F0:00FF = D7F0 segment
+ O0OFF offset
= D7FFF total

D7FF:000F = D7FF segment

+ 000F offset

= D7FFF total

As you can see in each case, although the segment and offset differ slightly, the total
ends up being the same. Adding together the segment and offset numbers makes possible
even more combinations, as in the following examples:

D500:2FFF = D500 segment
+ 2FFF offset
= D7FFF total

D6EE:111F = DGEE segment

+ 111F offset

1l
o
N
n
bl
n

total

Chapter 7—Memory

As you can see, several combinations are possible. The correct and generally accepted
way to write this address as a linear address is D7FFF, whereas most would write the
segment:offset address as DO0O: 7FFF. Keeping the segment mostly zeros makes the
segment:offset relationship easier to understand and the number easier to comprehend.
If you understand the segment:offset relationship to the linear address, you now know
why when a linear address number is discussed, it is five digits, whereas a segment num-
ber is only four.

Video RAM Memory. A video adapter installed in your system uses some of your
system’s memory to hold graphics or character information for display. Some adapters,
like the VGA, also have on-board BIOS mapped into the system’s space reserved for such
types of adapters. Generally, the higher the resolution and color capabilities of the video
adapter, the more system memory the video adapter uses. It is important to note that
most VGA or Super VGA adapters have additional on-board memory used to handle the
information currently displayed on-screen and to speed screen refresh.

In the standard system-memory map, a total of 128K is reserved for use by the video card
to store currently displayed information. The reserved video memory is located in seg-
ments AOOO and BOOO. The video adapter ROM uses additional upper memory space in
segment C000.

The location of video adapter RAM is responsible for the 640K DOS conventional memory
barrier. DOS can use all available contiguous memory in the first megabyte—which
means all—of memory until the video adapter RAM is encountered. The use of adapters
such as the MDA and CGA allows DOS access to more than 640K of system memory. The
video memory wall begins at AOOOO for the EGA, MCGA, and VGA systems; but the MDA
and CGA do not use as much video RAM, which leaves some space that can be used by
DOS and programs. The previous segment and offset examples show that the MDA
adapter enables DOS to use an additional 64K of memory (all of segment A000), bringing
the total for DOS program space to 704K. Similarly, the CGA enables a total of 736K of
possible contiguous memory. The EGA, VGA, or MCGA is limited to the normal maxi-
mum of 640K of contiguous memory because of the larger amount used by video RAM.
The maximum DOS-program memory workspace therefore depends on which video
adapter is installed. Table 7.1 shows the maximum amount of memory available to DOS
using the referenced video card.

Table 7.1 DOS Memory Limitations Based on Video Adapter Type

Video Adapter Type Maximum DOS Memory
Monochrome Display Adapter (MDA) 704K
Color Graphics Adapter (CGA) 736K
Enhanced Graphics Adapter (EGA) 640K
Video Graphics Array (VGA) 640K
Super VGA (SVGA) 640K

eXtended Graphics Array (XGA) 640K

The System Logical Memory Layout

Using this memory to 736K might be possible depending on the video adapter, the types
of memory boards installed, ROM programs on the motherboard, and the type of system.
You can use some of this memory if your system has a 386 or higher processor. With
memory manager software, such as EMM386 that comes with DOS, that can operate the
386+ Memory Management Unit (MMU), you can remap extended memory into this
space.

The following sections examine how standard video adapters use the system’s memory.
Figures show where in a system the monochrome, EGA, VGA, and IBM PS/2 adapters use
memory. This map is important because it may be possible to recognize some of this as
unused in some systems, which may free up more space for software drivers to be loaded.

Monochrome Display Adapter Memory (MDA). Figure 7.2 shows where the origi-
nal Monochrome Display Adapter (MDA) uses the system’s memory. This adapter uses
only a 4K portion of the reserved video RAM from BOOOO-BOFFF. Because the ROM code
used to operate this adapter is actually a portion of the motherboard ROM, no additional
ROM space is used in segment C000.

Empty Addresses
Original Monochrome Adapter RAM
Additional Memory used in VGA Monochrome Text Mode

= .
oo

DABDDOD: ...ttt
0B000O: MMMMmmmmmmmmmmmmmmmmmmmmmmmmmmmM. o« v v v e e e e e e s s i a e

Fig. 7.2
The Monochrome Display Adapter memory map.

Note that although the original Monochrome Display Adapter only used 4K of memory
starting at BOOOO, a VGA adapter running in Monochrome emulation mode (Mono Text
Mode) activates 32K of RAM at this address. A true Monochrome Display Adapter has
no on-board BIOS, and instead is operated by driver programs found in the primary
motherboard BIOS.

Color Graphics Adapter (CGA) Memory. Figure 7.3 shows where the Color Graphics
Adapter (CGA) uses the system’s memory. The CGA uses a 16K portion of the reserved
video RAM from B8000-BBFFF. Because the ROM code used to operate this adapter is a
portion of the motherboard ROM, no additional ROM space is used in segment C000.

Chapter 7—Memory

= Empty Addresses

o -
I

Original Color Graphics Adapter (CGA) RAM
¢ = Additional Memory used in VGA Color Text Mode
:0---1---2---3---4---5---6---7---8---9---A---B---C---D---E---F
AL
OBOOOOD: ...t e Cccceececcecececccctecceecccccecececcccee
Fig. 7.3

The Color Graphics Adapter (CGA) memory map.

The CGA card leaves memory from AOOOO-B7FFF free, which can be used by memory
managers for additional DOS memory space. However, this precludes using any graphics
mode software such as Windows. The original CGA card only used 16K of space starting
at B8000, whereas a VGA adapter running in CGA emulation (Color Text) mode can
activate 32K of RAM at this address. The original CGA card has no on-board BIOS and is
instead operated by driver programs found in the primary motherboard BIOS.

Enhanced Graphics Adapter (EGA) Memory. Figure 7.4 shows where the Enhanced
Graphics Adapter (EGA) uses the system’s memory. This adapter uses all 128K of the
video RAM from AOOOO-BFFFF. The ROM code used to operate this adapter is on the
adapter itself and consumes 16K of memory from C0O000-C3FFF.

. = Empty Addresses
G = Enhanced Graphics Adapter (EGA) Graphics Mode Video RAM
M = EGA Monochrome Text Mode Video RAM
C = EGA Color Text Mode Video RAM
V = Standard EGA Video ROM BIOS
R = Standard Motherboard ROM BIOS
. 9---1---2---3---4---5---6---7---8---9---A---B---C---D---E---F---
0AD000: GG
0B0000O: MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMCCCCCCCCCCCCCCCCcccccccececcecccece
:9---1---2---3---4---5---6---7---8---9---A---B---C---D---E---F---
OCO000: VVVVVVVVVVVVVVV Y . i e it e st s et ae s ean s nanannnnnennn
L1 1L
10 1 2 3 4 5 6 7---8---9 A B C D E F
L] L1
OF0000: RR
Fig. 7.4

The Enhanced Graphics Adapter (EGA) memory map.

The original IBM EGA card only used 16K of ROM space at C0O000. Aftermarket compat-
ible EGA adapters can use additional ROM space up to 32K total. The most interesting
thing to note about EGA (and this applies to VGA adapters as well) is that segments AOOO
and BOOO are not all used at all times. For example, if the card is in a graphics mode,
then only segment AOOO would appear to have RAM installed, whereas segment BOOO

The System Logical Memory Layout

would appear completely empty. If you switched the mode of the adapter (through soft-
ware) into Color Text mode, then segment AOOO would instantly appear empty, and the
last half of segment BOOO would suddenly “blink on”! The Monochrome text mode RAM
area would practically never be used on a modern system, because little or no software
would ever need to switch the adapter into that mode. Figure 7.4 also shows the stan-
dard motherboard ROM BIOS so that you can get a picture of the entire UMA.

The EGA card became somewhat popular after it appeared, but this was quickly over-
shadowed by the VGA card that followed. Most of the VGA characteristics with regard
to memory are the same as the EGA because the VGA is backward compatible with EGA.

Video Graphics Array (VGA) Memory. All VGA (Video Graphics Array) compatible
cards, including Super VGA cards, are almost identical to the EGA in terms of memory
use. Just as with the EGA, they use all 128K of the video RAM from AOO0O0-BFFFF, but
not all at once. Again the video RAM area is split into three distinct regions, and each

of these regions is used only when the adapter is in the corresponding mode. One minor
difference with the EGA cards is that virtually all VGA cards use the full 32K allotted

to them for on-board ROM (C0000 to C7FFF). Figure 7.5 shows the VGA adapter mem-
ory map.

. = Empty Addresses
G = Video Graphics Array (VGA) Adapter Graphics Mode Video RAM
M = VGA Monochrome Text Mode Video RAM
C = VGA Color Text Mode Video RAM
V = Standard VGA Video ROM BIOS
R = Standard Motherboard ROM BIOS
: 0---1---2---3---4---5---6---7---8---9---A---B---C---D---E---F---
0A0000: GGG
0B0000: MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
: 0---1---2---3---4---5---6---7---8---9---A---B---C---D---E---F---
0C0000: VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVY . e e e e e e naanns
(01T T
10 1 2 3 4 5 6 7---8---9---A---B C D E F
BEDDDD: ..o ottt et e e
OF0000: RR
Fig. 7.5

The VGA (and Super VGA) adapter memory map.

You can see that the typical VGA card uses a full 32K of space for the on-board ROM
containing driver code. Some VGA cards may use slightly less, but this is rare. Just as
with the EGA card, the video RAM areas are only active when the adapter is in the par-
ticular mode designated. In other words, when a VGA adapter is in graphics mode, only
segment AOOO is used; and when it is in color text mode, only the last half of segment
B0O0O is used. Because the VGA adapter is almost never run in monochrome text mode,
the first half of segment BOOO remains unused (BOOOO-B7FFF). Figure 7.5 also shows the
standard motherboard ROM BIOS so that you can get a picture of how the entire UMA is
laid out with this adapter.

Chapter 7—Memory

IBM created VGA, and the first systems to include VGA adapters were the PS/2 systems
introduced in April 1987. These systems had the VGA adapter built directly into the
motherboard. Because IBM had written both the video and motherboard BIOS, and they
were building the VGA on the motherboard and not as a separate card, they incorporated
the VGA BIOS driver code directly into the motherboard BIOS. This meant that segment
C000 did not have an on-board video ROM as in most of the compatibles that would
follow. Although this may sound like a bonus for the PS/2 systems—they still had the
additional ROM code—it was merely located in segment EOOO instead! In fact, the PS/2
systems used all of segment EOOO for additional motherboard ROM BIOS code, whereas
segment EOOO remains empty in most compatibles.

Many compatibles today have their video adapter built into the motherboard. Systems
that use the LPX (Low Profile) motherboard design in an LPX- or Slimline-type case in-
corporate the video adapter into the motherboard. In these systems, even though the
video BIOS and motherboard BIOS may be from the same manufacturer, they are always
set up to emulate a standard VGA-type adapter card. In other words, the video BIOS
appears in the first 32K of segment CO0O just as if a stand-alone VGA-type card were
plugged into a slot. The built-in video circuit in these systems can be easily disabled via a
switch or jumper, which then allows a conventional VGA-type card to be plugged in. By
having the built-in VGA act exactly as if it were a separate card, disabling it allows a new
adapter to be installed with no compatibility problems that might arise if the video driv-
ers had been incorporated into the motherboard BIOS.

When the VGA first appeared on the scene, it was built into the PS/2 motherboard. So
that you could add VGA to other systems, IBM also introduced at that time the very first
VGA card. It was called the PS/2 Display Adapter, which was somewhat confusing at the
time because it was designed for standard ISA bus-compatible systems and not for the
PS/2s, which mostly used the new Micro Channel Architecture bus and already had VGA
built-in. Nevertheless, this card was sold to anybody who wanted to add VGA to their
ISA bus system. The IBM VGA card (PS/2 Display Adapter) was an 8-bit ISA card that had
the same IBM-designed video chip and circuits as were used on the PS/2 motherboard.

If you were involved with the PC industry at that time, you might remember how long it
took for clone video card manufacturers to accurately copy the IBM VGA circuits. It took
nearly two years (almost to 1989) before you could buy an aftermarket VGA card and
expect it to run everything an IBM VGA system would with no problems. Some of my
associates who bought some of the early cards inadvertently became members of the
video card manufacturer’s “ROM of the week” club! They were constantly finding prob-
lems with the operation of these cards, and many updated and patched ROMs were sent
to try and fix the problems. Not wanting to pay for the privilege of beta testing the latest
attempts at VGA compatibility, I bit the bullet and took the easy way out. I simply
bought the IBM VGA card—PS/2 Display Adapter. At that time, the card listed for $595,
but I could usually expect a 30 percent discount in purchasing it at the local computer
store. That is still about as much as you would pay for the best Local Bus Super VGA
cards on the market today. In fact, you can now buy basic VGA clone cards for less than
$20 that are actually faster and better than the original IBM VGA card!

The System Logical Memory Layout

I remember purchasing the IBM VGA card, not only because it was so expensive, but also
because the card actually proved somewhat difficult to purchase! When I arrived to buy
it at my local IBM authorized retailer (after first calling to see that they had one in stock),
I asked for it by name. I said: “I am here to purchase an IBM PS/2 Display Adapter.” The
salesman asked what type of system I was going to install it in. I replied that I was going
to put it in the AT clone I had assembled. Then I met resistance! The salesman told me
that I could not use that in my clone because it was designed for PS/2 systems only.

I told him he was mistaken and that the card is in fact designed for any IBM-compatible
system with an ISA bus and is supposed to give the system the same graphics capability
of the new PS/2s. The salesman maintained that the card was only for PS/2 systems, and
I finally had to say “Look, I have cash, will you sell me the card or not?” Lo and behold I
emerged from the store victorious, with the card in hand!

Although the card worked very well, and although I never did find any compatibility
problems, I did later run into some interesting problems with the memory use of this
card. This was my first introduction to what I call scratch pad memory use by an adapter. I
found that many different types of adapters may use some areas in the UMA for mapping
scratch pad memory. This refers to memory on the card that stores status information,
configuration data, or any other temporary type information of a variable nature. Most
cards keep this scratch pad memory to themselves and do not attempt to map it into the
processor’s address space, but some cards do place this type of memory in the address
space so that the driver programs for the card can use it. Figure 7.6 shows the memory
map of the IBM PS/2 Display Adapter (IBM’s VGA card).

= Empty Addresses

= Video Graphics Array (VGA) Adapter Graphics Mode Video RAM
= VGA Monochrome Text Mode Video RAM

VGA Color Text Mode Video RAM

= IBM VGA Video ROM BIOS

= IBM VGA Scratch Pad memory (used by the card)

DTOHO<O=E®-
1]

= Standard Motherboard ROM BIOS

0A0000:

$0---1---2---83---4---5---6---7---8---9---A---B---C---D---E---F---

GGG
080000 : MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
: @---1---2---3---4---5---6---7---8---9---A---B---C---D---E---F---
0C0000: VVVVVVVVVVVVVVVVVVVVVVVV. .SSSSSS. ST
ODOOOD: .. e ettt et e e e e e e e e e e

: @---1---2---3---4---5---6---7---8---9---A---B---C---D---E---F
DEQOOD: .. ve ettt et e e e e e e e e e e e
OF0000: RR

Fig. 7.6

IBM’s somewhat strange ISA-bus VGA card (PS/2 Display Adapter) memory map.

There is nothing different about this VGA card and any other with respect to the Video
RAM area. What is different is that the ROM code that operates this adapter only con-
sumes 24K of memory from CO000-CSFFF. Also strange is the 2K “hole” at C6000, and

Chapter 7—Memory

the 6K of scratch pad memory starting at C6800, as well as the additional 2K of scratch
pad memory at CAOOO. In particular, the 2K “straggler” area really caught me off guard
when [installed a SCSI host adapter in this system that had a 16K on-board BIOS with a
default starting address of C8000. I immediately ran into a conflict that completely dis-
abled the system. In fact, it would not boot, had no display at all, and could only beep
out error codes that indicated that the video card had failed. I first thought that I had
somehow “fried” the card, but removing the new SCSI adapter got everything function-
ing normally. I also could get the system to work with the SCSI adapter and an old CGA
card substituting for the VGA, so I immediately knew a conflict was underfoot. This
scratch pad memory use was not documented clearly in the technical-reference informa-
tion for the adapter, so it was something that I had to find out by trial and error. If you
have ever had the IBM VGA card and had conflicts with other adapters, now you know
why! Needless to say, nothing could be done about this 2K of scratch pad memory hang-
ing out there, and I had to work around it as long as I had this card in the system. I
solved my SCSI adapter problem by merely moving the SCSI adapter BIOS to a different
address.

As a side note, I have seen other VGA-type video adapters use scratch pad memory, but
they have all kept it within the CO000-C7FFF 32K region allotted normally for the video
ROM BIOS. By using a 24K BIOS, I have seen other cards with up to 8K of scratch pad
area, but none—except for IBM’s—in which the scratch pad memory goes beyond
C8000.

As you can see in the preceding figures, each type of video adapter on the market uses
two types of memory: video RAM, which stores the display information; and ROM code,
which controls the adapter, must exist somewhere in the system’s memory. The ROM
code built into the motherboard ROM on standard PC and AT systems controls adapters
such as the MDA and CGA. All the EGA and VGA adapters for the PC and AT systems use
the full 128K of video RAM (not all at once of course) and up to 32K of ROM space at the
beginning of segment C0O00. IBM’s technical-reference manuals say that the memory
between CO000 and C7FFF is reserved specifically for ROM on video adapter boards.
Note that the VGA and MCGA built into the motherboards of the PS/2 systems have the
ROM-control software built into the motherboard ROM in segments EOOO and FOOO and
require no other code space in segment C000. Also note that you can often use your
memory manager software (such as what comes with DOS) to map extended memory
into the monochrome display area (32K worth), which can get you an extra 32K region
for loading drivers and resident programs.

Adapter ROM and Special Purpose RAM Memory. The second 128K of upper memory
beginning at segment COO0O is reserved for the software programs, or BIOS (basic input-
output system), on the adapter boards plugged into the system slots. These BIOS pro-
grams are stored on special chips known as read-only memory (ROM), which have fused
circuits so that the PC cannot alter them. ROM is useful for permanent programs that
always must be present while the system is running. Graphics boards, hard disk control-
lers, communications boards, and expanded memory boards, for example, are adapter
boards that might use some of this memory.

The System Logical Memory Layout

On systems based on the 386 CPU chip or higher, memory managers like the MS-DOS 6
MEMMAKER, IBM DOS RAMBOOST, or aftermarket programs like QEMM by Quarter-
deck, can load device drivers and memory-resident programs into unused regions in the
UMA.

Video Adapter BIOS. Although 128K of upper memory beginning at segment C000 is
reserved for use by the video adapter BIOS, not all this space is used by various video
adapters commonly found on PCs. Table 7.2 details the amount of space used by the
BIOS on each type of common video adapter card.

Table 7.2 Memory Used by Different Video Cards

Type of Adapter Adapter BIOS Memory Used
Monochrome Display Adapter (MDA) None - Drivers in Motherboard BIOS
Color Graphics Adapter (CGA) None - Drivers in Motherboard BIOS
Enhanced Graphics Adapter (EGA) 16K onboard (C0000-C3FFF)
Video Graphics Array (VGA) 32K onboard (C0000-C7FFF)
Super VGA (SVGA) 32K onboard (C0000-C7FFF)

Some more advanced graphics accelerator cards on the market do use most or all the
128K of upper memory beginning at segment C000 to speed the repainting of graphics
displays in Windows, OS/2, or other graphical user interfaces (GUIs). In addition, these
graphics cards may contain 2M of on-board memory in which to store currently dis-
played data and more quickly fetch new screen data as it is sent to the display by the
CPU.

Hard Disk Controller and SCSI Host Adapter BIOS. The upper memory addresses
C0000 to DFFFF also are used for the BIOS contained on many hard drive controllers.
Table 7.3 details the amount of memory and the addresses commonly used by the BIOS
contained on hard drive adapter cards.

Table 7.3 Memory Addresses Used by Different Hard Drive Adapter Cards

Disk Adapter Type Onboard BIOS Size BIOS Address Range
IBM XT 10M Controller 8K C8000-C9FFF

IBM XT 20M Controller 4K C8000-C8FFF

Most XT Compatible Controllers 8K C8000-C9FFF

Most AT Controllers None Drivers in Motherboard BIOS
Most IDE Adapters None Drivers in Motherboard BIOS
Most ESDI Controllers 16K C8000-CBFFF

Most SCSI Host Adapters 16K C8000-CBFFF

Chapter 7—Memory

The hard drive or SCSI adapter card used on a particular system may use a different
amount of memory, but it is most likely to use the memory segment beginning at C800
because this address is considered part of the IBM standard for personal computers. Vir-
tually all the disk controller or SCSI adapters today that have an on-board BIOS allow
the BIOS starting address to be easily moved in the CO00 and DO0OO segments. The loca-
tions listed in table 7.3 are only the default addresses that most of these cards use. If the
default address is already in use by another card, then you have to consult the documen-
tation for the new card to see how to change the BIOS starting address to avoid any
conflicts.

Figure 7.7 shows an example memory map for an Adaptec AHA-1542CF SCSI adapter.

Empty Addresses

Video Graphics Array (VGA) Adapter Graphics Mode Video RAM
VGA Monochrome Text Mode Video RAM

VGA Color Text Mode Video RAM

Standard VGA Video ROM BIOS

SCSI Host Adapter ROM BIOS

Standard Motherboard ROM BIOS

DI<OE®-
L | | R | R | I 1}

: 0---4---2---3---4.--5---6---7---8---9---A---B---C---D---E---F---
0A0000: GGG
0B0000: MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMCCCCCCCCCCCCCCCCCCCCCcCCccccccee

. 0---1---2---83---4---5---6---7---8---9---A---B---C---D---E---F---
0C0000: VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVY . e e aaa e
ODOOOOD: ..ottt e HHHHHHHHHHHHHHHH

. 0---1---2---83---4---5---6---7---8---9---A---B---C---D---E---F---
DEDDODOD: ..ottt e
OF0000: RR

Fig. 7.7
Adaptec AHA-1542CF SCSI adapter default memory use.

Note how this SCSI adapter fits in here. Although no conflicts are in the UMA memory,
the free regions have been fragmented by the placement of the SCSI BIOS. Because most
systems do not have any BIOS in segment E000, that remains as a free 64K region. With
no other adapters using memory, this example shows another free UMB (Upper Memory
Block) starting at C8000 and continuing through CBFFF, which represents an 80K free
region. Using the EMM386 driver that comes with DOS, memory can be mapped into
these two regions for loading memory-resident drivers and programs. Unfortunately,
because programs cannot be split across regions, the largest program you could load is
80K, which is the size of the largest free region. It would be much better if you could
move the SCSI adapter BIOS so that it was next to the VGA BIOS, as this would bring the
free UMB space to a single region of 144K. It is much easier and more efficient to use a
single 144K region than two regions of 80K and 64K respectively. Fortunately, it is pos-
sible to move this particular SCSI adapter, although doing so does require that several
switches be reset on the card itself. One great thing about this Adaptec card is that a
sticker is placed directly on the card detailing all the switch settings! This means that

The System Logical Memory Layout

you don’t have to go hunting for a manual that may not be nearby. More adapter card
manufacturers should place this information right on the card.

After changing the appropriate switches to move the SCSI adapter BIOS to start at C8000,
the optimized map would look like figure 7.8.

. = Empty Addresses
G = Video Graphics Array (VGA) Adapter Graphics Mode Video RAM
M = VGA Monochrome Text Mode Video RAM
C = VGA Color Text Mode Video RAM
V = Standard VGA Video ROM BIOS
H = SCSI Host Adapter ROM BIOS
R = Standard Motherboard ROM BIOS
: 0---1---2---3---4---5---6---7---8---9---A---B---C---D---E---F---
0AD000: GGG
0B0000: MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
: 0---1---2---3---4---5---6---7---8---9---A---B---C---D---E---F---
0C0000: VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVHHHHHHHHHHHHHHHH. ||
L0
0 1 2 3---4---5 6---7---8---9---A---B---C---D E F
DEDDDD: ..o vttt et e a s
OF0000: RR
Fig. 7.8

Adaptec AHA-1542CF SCSI adapter with optimized memory use.

Notice how the free space is now a single contiguous block of 144K. This represents a far
more optimum setup than the default settings.

Network Adapters. Network adapter cards also can use upper memory in segments
C000 and DO000. The exact amount of memory used and the starting address for each
network card vary with the type and manufacturer of the card. Some network cards do
not use any memory at all. A network card might have two primary uses for memory.
They are as follows:

m |PL (Initial Program Load or Boot) ROM
m Shared Memory (RAM)

An IPL ROM is usually an 8K ROM that contains a bootstrap loader program that allows
the system to boot directly from a file server on the network. This allows the removal of
all disk drives from the PC, creating a diskless workstation. Because no floppy or hard
disk would be in the system to boot from, the IPL ROM gives the system the instructions
necessary to locate an image of the operating system on the file server and load it as if it
were on an internal drive. If you are not using your system as a diskless workstation, it
would be beneficial to disable any IPL ROM or IPL ROM socket on the adapter card. Note
that many network adapters do not allow this socket to be disabled, which means that
you lose the 8K of address space for other hardware even if the ROM chip is removed
from the socket!

Chapter 7—Memory

Shared memory refers to a small portion of RAM contained on the network card that is
mapped into the PC’s Upper Memory Area. This region is used as a memory window
onto the network and offers very fast data transfer from the network card to the system.
IBM pioneered the use of shared memory for its first Token Ring network adapters, and
now shared memory is in common use among other companies’ network adapters today.
Shared memory was first devised by IBM because they found transfers using the DMA
channels were not fast enough in most systems. This had mainly to do with some quirks
in the DMA controller and bus design, which especially affected 16-bit ISA bus systems.
Network adapters that do not use shared memory will either use DMA or Programmed
1/O (PIO) transfers to move data to and from the network adapter. Although shared
memory is faster than either DMA or PIO for ISA systems, it does require 16K of Upper
Memory Area space to work. Most standard performance network adapters use PIO be-
cause this makes them easier to configure, and they require no free UMA space; whereas
most high performance adapters will use shared memory. The shared memory region on
most network adapters that use one is usually 16K in size and may be located at any user-
selected 4K increment of memory in segments C0O00 or D0O0O.

Figure 7.9 shows the default memory addresses for the IPL ROM and shared memory of
an IBM Token Ring network adapter.

= Empty Addresses

= Video Graphics Array (VGA) Adapter Graphics Mode Video RAM
= VGA Monochrome Text Mode Video RAM

= VGA Color Text Mode Video RAM

Standard VGA Video ROM BIOS

= Token Ring Network Adapter IPL ROM

= Token Ring Network Adapter Shared RAM

TZH<O=EZ®-
1]

Standard Motherboard ROM BIOS

© Q---1--:2---8---4---5---6---7---8---9---A---B---C---D---E---F---

0AQ000: GGGGGGGGGGGGGEGEGGEGEGGEGEEGEGEEGEGEEGEGEEGEGGEGEGGEGEGGEGEGGEGE
©B0OQO: MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCE
$0---1--:2---83---4---5---6---7---8---9---A---B---C---D---E---F---
0CO000: VVVVVVVVVVVVVVVVVVVVVVVVVVVWVVWY. Lo ITIIIIII........
ODOOOO: .. ovveeee et et e NNNNNNNNNNNNNNNN. .o s s
$0Q---1---2---8---4---5---6---7---8---9---A---B---C---D---E---F
Y=
0F@000: RR
Fig. 7.9

Token Ring network adapter default memory map.

I have also included the standard VGA video BIOS in Figure 7.9 because nearly every
system would have a VGA-type video adapter as well. Note that these default addresses
for the IPL ROM and the shared memory can easily be changed by reconfiguring the
adapter. Most other network adapters are similar in that they also would have an IPL
ROM and a shared memory address, although the sizes of these areas and the default
addresses may be different. Most network adapters that incorporate an IPL ROM option

The System Logical Memory Layout

can disable the ROM and socket such that those addresses are not needed at all. This
helps to conserve UMA space and prevent possible future conflicts if you are never going
to use the function.

Notice in this case that the SCSI adapter used in Figure 7.9 would fit both at its default
BIOS address of DCO0O as well as the optimum address of C8000. The Token Ring shared
memory location is not optimum and causes the UMB space to be fragmented. By adjust-
ing the location of the shared memory, this setup can be greatly improved. Figure 7.10
shows an optimum setup with both the Token Ring adapter and the SCSI adapter in the
same machine.

. = Empty Addresses

G = Video Graphics Array (VGA) Adapter Graphics Mode Video RAM

M = VGA Monochrome Text Mode Video RAM

C = VGA Color Text Mode Video RAM

V = Standard VGA Video ROM BIOS

H = SCSI Host Adapter ROM BIOS

I = Token Ring Network Adapter IPL ROM ||

N = Token Ring Network Adapter Shared RAM

R = Standard Motherboard ROM BIOS
:9---1---2---3---4---5---6---7---8---9---A---B---C---D---E---F---

0A0000: GGGEG

0B0000: MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
:0---1---2---3---4---5---6---7---8---9---A---B---C---D---E---F---

0C0000: VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVHHHHHHHHHHHHHHHHAAAAAAAAAAAAAAAA

0L
: 0---1---2---3---4---5---6---7---8---9---A---B---C---D---E---F---

DEQOOD: ..ttt et e

OF0000: RR

Fig. 7.10

Adaptec AHA-1542CF SCSI adapter with optimized memory use.

This configuration allows a single 120K Upper Memory Block (UMB) that can very effi-
ciently be used to load software drivers. Notice that the IPL ROM was moved to DO00O,
which places it as the last item installed before the free memory space. This is because if
the IPL function is not needed, it can then be disabled, and the UMB space would in-
crease to 128K and still be contiguous. If the default settings are used for both the SCSI
and network adapters, the UMB memory would be fragmented into three regions of 16K,
40K, and 64K, which would function but is hardly optimum.

Other ROMS in the Upper Memory Area. In addition to the BIOS for hard drive
controllers, SCSI adapters, and network cards, upper memory segments CO00 and DO0OO
are used by some terminal emulators, security adapters, memory boards, and various
other devices and adapter boards. Some adapters may require memory only for BIOS
information, and others may require RAM in these upper memory segments. For
information on a specific adapter, consult the manufacturer’s documentation.

Chapter 7—Memory

Motherboard BIOS Memory. The last 128K of reserved memory is used by the
motherboard BIOS (Basic Input-Output System, which is usually stored in a read-only
memory chip). The BIOS programs in ROM control the system during the boot-up proce-
dure and remain as drivers for various hardware in the system during normal operation.
Because these programs must be available immediately, they cannot be loaded from a
device like a disk drive. The main functions of the programs stored in the motherboard
ROM are as follows:

m Power-On Self Test, the POST, is a set of routines that tests the motherboard,
memory, disk controllers, video adapters, keyboard, and other primary system
components. This routine is useful when you troubleshoot system failures or
problems.

m The bootstrap loader routine initiates a search for an operating system on a floppy
disk or hard disk. If an operating system is found, it is loaded into memory and
given control of the system.

m The Basic Input-Output System (BIOS) is the software interface, or master control
program, to all the hardware in the system. With the BIOS, a program easily can
access features in the system by calling on a standard BIOS program module in-
stead of talking directly to the device.

Both segments EO0O and FOOO in the memory map are considered reserved for the
motherboard BIOS, but only some AT-type systems actually use this entire area. PC/XT-
type systems require only segment FOOO and enable adapter card ROM or RAM to use
segment E000. Most AT systems use all of FOOO for the BIOS, and may decode but not use
any of segment E000. By decoding an area, the AT motherboard essentially grabs control
of the addresses, which precludes installing any other hardware in this region. In other
words, it is not possible to install any other adapters to use this area. That is why most
adapters that use memory simply do not allow any choices for memory use in segment
E000. Although this may seem like a waste of 64K of memory space, any 386 or higher
system can use the powerful Memory Management Unit (MMU) in the processor to map
RAM from extended memory into segment EOOO as an Upper Memory Block and subse-
quently use it for loading software. This is a nice solution to what otherwise would be
wasted memory. Under DOS, the EMM386 driver controls the MMU remapping
functions.

PC/XTSystem BIOS. Many different ROM-interface programs are in the IBM mother-
boards, but the location of these programs is mostly consistent. The following figures
show the ROM BIOS memory use in segments EOOO and FO0O.

Figure 7.11 shows the memory use in an IBM PC and XT with a Type 1 (256K)
motherboard.

The System Logical Memory Layout

. = Empty Addresses
b = IBM ROM (Cassette) BASIC Interpreter
R = Motherboard ROM BIOS
: 0---1---2---3---4---5---6---7---8---9---A---B---C---D---E---F---
DEQOOD: ..ttt it e
OFQ000:ciiiiiiiii bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbRRRRRRRR
Fig. 7.11

Motherboard ROM BIOS memory use in an original IBM PC and XT.

Figure 7.12 shows the memory use in an XT with a 640K motherboard as well as in the
PS/2 Model 25 and Model 30. These systems have additional BIOS code compared to the
original PC and XT. Note that Cassette BASIC remains in the same addresses.

Empty Addresses

o -
1}

IBM ROM (Cassette) BASIC Interpreter
R = Motherboard ROM BIOS
: 0---1---2---3---4---5---6---7---8---9---A---B---C---D---E---F---
DEQOOD: ...ttt e

0F0000: RRRRRRRRRRRRRRRRRRRRRRRRbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbRRRRRRRR

Fig. 7.12
Motherboard ROM BIOS memory use in IBM XT (Type 2) and PS/2 Models 25 and 30.

Figure 7.13 shows the motherboard ROM BIOS memory use in most PC- or XT-
compatible systems. These systems lack the Cassette BASIC Interpreter found in
IBM’s BIOS.

= Empty Addresses

o -
1}

Standard XT Motherboard ROM BIOS
. 0---1---2---3---4---5---6---7---8---9---A---B---C---D---E---F---
(/1L
OF0000: ...ttt e i RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

In compatible XT type systems, the BIOS length may vary, but 32K is common.

Fig. 7.13
Motherboard ROM BIOS memory use in most PC- or XT-compatibles.

AT System BIOS. Figure 7.14 shows the motherboard BIOS use in an IBM AT or XT-286
system.

Chapter 7—Memory

Empty Addresses

o -
1}

IBM ROM (Cassette) BASIC Interpreter
R = Motherboard ROM BIOS
: 0---1---2---3---4---5---6---7---8---9---A---B---C---D---E---F---
DEQOOD: ...ttt it i

OF0000: RR

Fig. 7.14
Motherboard ROM BIOS memory use in an IBM AT and XT-286.

Figure 7.15 shows the motherboard ROM BIOS memory use of most AT-compatible sys-
tems. These systems lack the IBM Cassette BASIC, but do usually include a built-in Setup
program.

= Empty Addresses
Standard Motherboard ROM BIOS

o -
I

BEDDODOD: ...ttt i
OF0000: RR

Fig. 7.15
Motherboard ROM BIOS memory use of most AT-compatible systems.

Note that the standard AT-compatible system BIOS uses only segment FOOO (64K). In
almost every case, the remainder of the BIOS area (segment E000) is completely free and
can be used as UMB space.

IBM PS/2 ROM-BIOS. The motherboard BIOS memory use by PS/2 models with a 286
or higher processor, including ISA and MCA systems, is shown in figure 7.16. This shows
that PS/2 systems use more of the allocated ROM space for their motherboard ROM
BIOS. The extra code contains VGA drivers (PS/2 systems have built-in VGA adapters),
and additional code to run the system in protected mode.

. = Empty Addresses
b = IBM ROM (Cassette) BASIC Interpreter
Motherboard ROM BIOS

j=v]
1}

© Q---1---2---8---4---5---6---7---8---9---A---B---C---D---E---F---
0E@000: RR
OF0000: RRRRRRRRRRRRRRRRRRRRRRRRbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbRRRRRRRR

Fig. 7.16
IBM PS/2 motherboard ROM BIOS memory map.

The System Logical Memory Layout

Note that some of the newest PS/2 systems no longer have the Cassette BASIC interpreter
in ROM. In those systems, additional BIOS code fills that area.

PS/2 Models with 286 and higher processors have additional Advanced BIOS code, to
be used when the systems are running protected-mode operating systems such as OS/2.
Non-PS/2 systems, that don’t have the Advanced BIOS code, can still easily run OS/2,
but must load the equivalent of the Advanced BIOS software from disk rather than
having it loaded from ROM.

Some compatible systems with a SCSI hard disk and host adapter need a special pro-
tected-mode driver for the adapter to work under OS/2 because the on-board BIOS runs
only in real mode and not in protected mode. IBM SCSI adapters, however, are unique
in that they include both real- and protected-mode BIOS software on-board and operate
hard disks under any operating system with no need for drivers. Again, this is not really
that much of a bonus or feature because this same type of protected mode operating
driver code can simply be loaded from disk (bootup occurs in real mode) during the OS/2
boot process. In fact, many of the Advanced BIOS routines originally in the PS/2 BIOS
have been enhanced, so that many of the built-in BIOS routines are being discarded and
superseded by loaded routines anyway. The way things have turned out, there is simply
no inherent advantage to the Advanced BIOS code in the PS/2 systems.

IBM Cassette Basic. The ROM maps of most IBM compatibles equal the IBM system
with which they are compatible—with the exception of the Cassette BASIC portion. This
section examines the origins of Cassette BASIC (also called ROM BASIC) and investigates
reasons why you would ever see this in a modern system. A variety of related error mes-
sages from compatible systems are explored as well.

It may come as a surprise to some personal computer users, but the original IBM PC actu-
ally had a jack on the rear of the system for connecting a cassette tape recorder. This was
to be used for loading programs and data to or from a cassette tape. At the time the PC
was introduced, the most popular personal computer was the Apple II, which also had
the cassette tape connection. Tapes were used at the time because floppy drives were very
costly, and hard disks were not even an option yet. Floppy drives came down in price
quickly at the time, and the cassette port never appeared on any subsequent IBM sys-
tems. The cassette port also never appeared on any compatible system.

The original PC came standard with only 16K of memory in the base configuration. No
floppy drives were included, so you could not load or save files from disks. Most com-
puter users at the time would either write their own programs in the BASIC (Beginners
All-purpose Symbolic Instruction Code) language or run programs written by others.
Various versions of the BASIC language were available, but the Microsoft version had
become the most popular. Having a Microsoft BASIC interpreter was essential in the early
days of personal computing, yet these interpreters would take 32K of memory when
loaded. That meant you would need 32K of RAM just for the language interpreter and
additional memory for your program and data. To make the system cheaper and to
conserve memory, IBM contacted Microsoft and licensed the MS-BASIC interpreter.

Chapter 7—Memory

They then built the BASIC interpreter directly into the motherboard ROM BIOS, where it
occupied the 32K address range F6000-FDFFF. This meant that although the system only
came with 16K, you could use all 16K for your own programs and data because no addi-
tional memory was required to run the BASIC language interpreter. To save and load
programs, this BASIC language was designed to access the cassette port on the back of
the system.

If you purchased a floppy drive for your PC system, you would also need DOS (Disk Op-
erating System) to run it. Because the BASIC built into the ROM on the PC motherboard
did not have the code required to operate the floppy drive for storing and retrieving files,
an extension or overlay to the ROM BASIC interpreter was located on the DOS disk.
Called Advanced BASIC, or BASICA.COM, this program on the DOS disk was actually
constructed as an overlay to the ROM BASIC, and would not function independently.
Because no compatibles ever had ROM BASIC (no compatibles ever had a cassette tape
recorder port either), the BASICA extensions found on the IBM DOS disks would not run
in any compatible. At that time, there was no such thing as a separately available generic
MS-DOS as there is today.

Compaq was one of the first to solve this problem. They went to Microsoft and licensed
the DOS separately from IBM, thus producing their own version called Compaq DOS. On
the Compaq DOS disks, they included a version of the Microsoft BASIC interpreter called
GWBASIC.EXE (Graphics Workstation BASIC) that was complete as a stand-alone pro-
gram. In other words, it was not constructed as an overlay for the ROM BASIC (which
was absent from the Compaq), but was a version complete all by itself. This stand-alone
GWBASIC version of the MS-BASIC interpreter would run on any system, IBM or com-
patible, because it did not depend on the existence of the ROM BASIC, as did IBM’s
BASICA program. In some strange way, perhaps the reliance of the IBM BASICA on the
IBM ROM BASIC was one way to make the IBM PS/2 different from the compatibles.
Because any compatible vendor could license the complete BASIC interpreter (and DOS
as well) directly from Microsoft, the IBM ROM BASIC became an unimportant feature.

What is really strange is that IBM kept this ROM BASIC and BASICA relationship all the
way through most of the PS/2 systems! The 486 PS/2 system I am using right now came
standard with a built-in SCSI adapter and a standard 400M SCSI drive. (I have long since
outgrown that drive and in fact have just installed a 4G drive in this portable machine!)
And yet this system still has the ROM BASIC wasting 32K of space! I liken this to humans
having an appendix. The ROM BASIC in the IBM systems is a sort of vestigial organ—a
left-over that had some use in prehistoric ancestors, but that has no function today!

You can catch a glimpse of this ROM BASIC on IBM systems that have it by disabling all
the disk drives in the system. In that case, with nothing to boot from, most IBM systems
unceremoniously dump you into the strange (vintage 1981) ROM BASIC screen. When
this occurs, the message looks like this:

The IBM Personal Computer Basic
Version C1.10 Copyright IBM Corp 1981
62940 Bytes free

Ok

The System Logical Memory Layout

Many people used to dread seeing this because it usually meant that your hard disk had
failed to be recognized! Because no compatible systems ever had the Cassette BASIC in-
terpreter in ROM, they had to come up with different messages to display for the same
situations in which an IBM system would invoke this BASIC. Compatibles that have an
AMI BIOS in fact display a confusing message as follows:

NO ROM BASIC - SYSTEM HALTED

This message is a BIOS error message that is displayed by the AMI BIOS when the same
situations occur that would cause an IBM system to dump into Cassette BASIC, which
of course is not present in an AMI BIOS (or any other compatible BIOS for that matter).
Other BIOS versions display different messages. For example, under the same circum-
stances, a Compaq BIOS displays the following:

Non-System disk or disk error
replace and strike any key when ready

This is somewhat confusing on Compaq’s part, because this very same (or similar) error
message is contained in the DOS Boot Sector, and would normally be displayed if the
system files were missing or corrupted.

In the same situations that you would see Cassette BASIC on an IBM system, a system
with an Award BIOS would display the following:

DISK BOOT FAILURE, INSERT SYSTEM DISK AND PRESS ENTER
Phoenix BIOS systems will display either:

No boot device available -

strike F1 to retry boot, F2 for setup utility

or

No boot sector on fixed disk -
strike F1 to retry boot, F2 for setup utility

The first or second Phoenix message appears depending on exactly which error actually
occurred.

Although the message displayed varies from BIOS to BIOS, the cause is the same for all
of them. Two things can generally cause any of these messages to be displayed, and they
both relate to specific bytes in the Master Boot Record, which is the first sector of a hard
disk at the physical location Cylinder 0, Head 0, Sector 1.

The first problem relates to a disk that has either never been partitioned or has had

the Master Boot Sector corrupted. During the boot process, the BIOS checks the last

two bytes in the Master Boot Record (first sector of the drive) for a “signature” value of
55AAR. If the last two bytes are not 55AAh, then an Interrupt 18h is invoked, which calls
the subroutine that displays the message you received as well as the others indicated or
on an IBM system that invokes Cassette (ROM) BASIC itself.

Chapter 7—Memory

The Master Boot Sector (including the signature bytes) is written to the hard disk by the
DOS FDISK program. Immediately after you low-level format a hard disk, all the sectors
are initialized with a pattern of bytes, and the first sector does NOT contain the 55AAh
signature. In other words, these ROM error messages are exactly what you see if you
attempt to boot from a hard disk that has been low-level formatted, but has not yet been
partitioned.

Now consider the second situation that can cause these messages, and potentially your
other problem causing the same message. If the signature bytes are correct, then the
BIOS executes the Master Partition Boot Record code, which performs a test of the Boot
Indicator Bytes in each of the four partition table entries. These bytes are at offset 446
(1BEh), 462 (1CEh), 478 (1DEh), and 494 (1EEh) respectively. They are used to indicate
which of the four possible partition table entries contain an active (bootable) partition. A
value of 80h in any of these byte offsets indicates that table contains the active partition,
whereas all other values must be O0Oh. If more than one of these bytes is 80h (indicating
multiple active partitions), or any of the byte values is anything other than 80h or 00h,
then you see the following error message:

Invalid partition table

If all these four Boot Indicator Bytes are OOh, indicating no active (bootable) partitions,
then you also see Cassette BASIC on an IBM system or the other messages indicated
earlier depending on which BIOS you have. This is exactly what occurs if you were to
remove the existing partitions from a drive using FDISK, but had not created new parti-
tions on the drive, or had failed to make one of the partitions Active (bootable) with
FDISK before rebooting your system.

In the latest PS/2 systems, IBM has finally done away with the ROM BASIC once and for
all. DOS versions through 5.x from IBM included the BASICA interpreter, however with
the introduction of DOS 6, IBM eliminated BASICA because the newer systems did not
have the ROM portion anyway. Microsoft included GWBASIC in MS-DOS versions up
to and including 4.x and eliminated it in later versions. All DOS 5 and higher versions
(IBM and MS) have a special crippled version of the Microsoft QuickBASIC Compiler
now included rather than GWBASIC or BASICA. The compiler is crippled so that you
can compile programs in memory, but cannot create EXE files on disk. The run-time
compiler executes virtually all the older interpreted BASIC programs, so newer systems
have no need for the old GWBASIC or BASICA interpreters. If you want the full version
of QuickBASIC that will compile a program and save it as an EXE file, you must purchase
the full version of QuickBASIC.

The System Logical Memory Layout

ROM Versions. Over the years, the BIOS in various PC models has undergone changes
almost always associated with either a new system or a new motherboard design for an
existing system. There are several reasons for these changes. The introduction of the XT,
for example, gave IBM a good opportunity to correct a few things in the system BIOS and
also add necessary new features, such as automatic support for a hard disk. IBM retrofit-
ted many of the same changes into the PC’s BIOS at the same time.

Because an in-depth knowledge of the types of BIOS is something a programmer might
find useful, IBM makes this information available in the technical-reference manuals
sold for each system. A new ROM BIOS technical-reference manual covers all IBM
systems in one book. Complete ROM BIOS listings (with comments) accompanied early
IBM system documentation, but that information is not supplied for later IBMs.

Even if you aren’t a programmer, however, certain things about system BIOS are impor-
tant to know. IBM has had many different BIOS versions for the PC and PS/2 families.
Sometimes a system has different versions of BIOS over the course of a system’s availabil-
ity. For example, at least three versions of BIOS exist for each of the PC, XT, and AT
systems. Because a few important changes were made in the software stored in BIOS,
knowing which BIOS is in your system can be useful.

To determine which ROM BIOS module is installed in your system, first check your
system documentation. If you have a 386 or later system, a few lines of text at the top
of your screen during the POST probably identifies the manufacturer, BIOS revision
number, and date of manufacture. The BIOS version you have also may be indicated by
the manufacturer’s name, version number, and date encoded in the chip.

On IBM systems, the ROM BIOS contains an ID byte (the second-to-last byte). The value
of the byte at memory location FFFFE (hexadecimal) corresponds to the system type or
model. Table 7.4 shows information about the different ROM BIOS versions that have
appeared in various IBM systems.

Chapter 7—Memory

Table 7.4 IBM BIOS Model, Submodel, and Revision Codes

Bus Type/

System Type CPU Speed Clock Width
PC 8088 4.77 MHz ISA/8
PC 8088 4.77 MHz ISA/8
PC 8088 4.77 MHz ISA/8
PC-XT 8088 4.77 MHz ISA/8
PC-XT 8088 4.77 MHz ISA/8
PC-XT 8088 4.77 MHz ISA/8
PCjr 8088 4.77 MHz ISA/8
PC Convertible 8088 4.77 MHz ISA/8
PS/2 25 8086 8 MHz ISA/8
PS/2 30 8086 8 MHz ISA/8
PS/2 30 8086 8 MHz ISA/8
PS/2 30 8086 8 MHz ISA/8
PC-AT 286 6 MHz ISA/16
PC-AT 286 6 MHz ISA/16
PC-AT 286 8 MHz ISA/16
PC-XT 286 286 6 MHz ISA/16
PS/1 286 10 MHz ISA/16
PS/2 25 286 286 10 MHz ISA/16
PS/2 30 286 286 10 MHz ISA/16
PS/2 30 286 286 10 MHz ISA/16
PS/2 35 SX 386SX 20 MHz ISA/16
PS/2 35 SX 386SX 20 MHz ISA/16
PS/2 40 SX 386SX 20 MHz ISA/16
PS/2 40 SX 386SX 20 MHz ISA/16
PS/2 L40 SX 386SX 20 MHz ISA/16
PS/2 50 286 10 MHz MCA/16
PS/2 50 286 10 MHz MCA/16
PS/2 507 286 10 MHz MCA/16
PS/2 50Z 286 10 MHz MCA/16
PS/2 55 SX 386SX 16 MHz MCA/16
PS/2 55 LS 386SX 16 MHz MCA/16
PS/2 57 SX 386SX 20 MHz MCA/16
PS/2 60 286 10 MHz MCA/16
PS/2 65 SX 386SX 16 MHz MCA/16
PS/2 70 386 386DX 16 MHz MCA/32
PS/2 70 386 386DX 16 MHz MCA/32
PS/2 70 386 386DX 16 MHz MCA/32

PS/2 70 386 386DX 20 MHz MCA/32

The System Logical Memory Layout

ROM BIOS ID Submodel ST506
Date Byte Byte Rev. Drive Types
04/24/81 FF — — —
10/19/81 FF — — —
10/27/82 FF — — —
11/08/82 FE — — —
01/10/86 FB 00 01 —
05/09/86 FB 00 02 —
06/01/83 FD — — —
09/13/85 F9 00 00 —
06/26/87 FA 01 00 26
09/02/86 FA 00 00 26
12/12/86 FA 00 01 26
02/05/87 FA 00 02 26
01/10/84 FC — — 15
06/10/85 FC 00 01 23
11/15/85 FC 01 00 23
04/21/86 FC 02 00 24
12/01/89 FC 0B 00 44
06/28/89 FC 09 02 37
08/25/88 FC 09 00 37
06/28/89 FC 09 02 37
03/15/91 F8 19 05 37
04/04/91 F8 19 06 37
03/15/91 F8 19 05 37
04/04/91 F8 19 06 37
02/27/91 F8 23 02 37
02/13/87 FC 04 00 32
05/09/87 FC 04 01 32
01/28/88 FC 04 02 33
04/18/88 FC 04 03 33
11/02/88 F8 0C 00 33
? F8 1E 00 33
07/03/91 F8 26 02 None
02/13/87 FC 05 00 32
02/08/90 F8 1C 00 33
01/29/88 F8 09 00 33
04/11/88 F8 09 02 33
12/15/89 F8 09 04 33
01/29/88 F8 04 00 33

(continues)

Chapter 7—Memory

Table 7.4 Continued

Bus Type/
System Type CPU Speed Clock Width
PS/2 70 386 386DX 20 MHz MCA/32
PS/2 70 386 386DX 20 MHz MCA/32
PS/2 70 386 386DX 25 MHz MCA/32
PS/2 70 386 386DX 25 MHz MCA/32
PS/2 70 486 486DX 25 MHz MCA/32
PS/2 70 486 486DX 25 MHz MCA/32
PS/2 P70 386 386DX 16 MHz MCA/32
PS/2 P70 386 386DX 20 MHz MCA/32
PS/2 P75 486 486DX 33 MHz MCA/32
PS/2 80 386 386DX 16 MHz MCA/32
PS/2 80 386 386DX 20 MHz MCA/32
PS/2 80 386 386DX 25 MHz MCA/32
PS/2 90 XP 486 486SX 20 MHz MCA/32
PS/2 90 XP 486 487SX 20 MHz MCA/32
PS/2 90 XP 486 486DX 25 MHz MCA/32
PS/2 90 XP 486 486DX 33 MHz MCA/32
PS/2 90 XP 486 486DX 50 MHz MCA/32
PS/2 95 XP 486 486S5X 20 MHz MCA/32
PS/2 95 XP 486 4875X 20 MHz MCA/32
PS/2 95 XP 486 486DX 25 MHz MCA/32
PS/2 95 XP 486 486DX 33 MHz MCA/32
PS/2 95 XP 486 486DX 50 MHz MCA/32

The ID byte, Submodel byte, and Revision numbers are in hexadecimal.
— = This feature is not supported.

None = Only SCSI drives are supported.

? = Information is unavailable.

The date that the BIOS module design was completed is important: It has the same
meaning as a version number for software. (IBM later began to code an official revision
number, as indicated in the last column of table 7.4) You can display the date by enter-
ing the following four-statement BASIC program:

10 DEF SEG=&HF000

20 For X=&HFFF5 to &HFFFF
30 Print Chr$(Peek(X));

40 Next

An easier way to display the date is to use the DOS DEBUG program. First run DEBUG at
the DOS prompt by entering the following command:

DEBUG

The System Logical Memory Layout

ROM BIOS ID Submodel ST506
Date Byte Byte Rev. Drive Types
04/11/88 F8 04 02 33
12/15/89 F8 04 04 33
06/08/88 F8 0D 00 33
02/20/89 F8 0D 01 33
12/01/89 F8 0D ? ?
09/29/89 F8 1B 00 ?

? F8 50 00 ?
01/18/89 F8 0B 00 33
10/05/90 F8 52 00 33
03/30/87 F8 00 00 32
10/07/87 F8 01 00 32
11/21/89 F8 80 01 ?

? F8 2D 00 ?

? F8 2F 00 ?

? F8 11 00 ?

? F8 13 00 ?

? F8 2B 00 ?

? F8 2C 00 ?

? F8 2E 00 ?

? F8 14 00 ?

? F8 16 00 ?

? F8 2A 00 ?

Then at the debug “-” prompt, enter the following command to display the ROM BIOS
date:

D FFFE:5 L 8

If you are interested in a ROM upgrade for your system, you can contact the mother-
board or even the BIOS manufacturer, such as Phoenix, Award, or AMI. Occasionally,
the BIOS may be updated to fix problems or add support for new peripherals.

Extended Memory

As mentioned previously in this chapter, the memory map on a system based on the 286
or higher processor can extend beyond the 1 megabyte boundary that exists when the
processor is in real mode. On a 286 or 386SX system, the extended memory limit is 16M;
on a 386DX, 486, or Pentium system, the extended memory limit is 4G (4,096M).

For an AT system to address memory beyond the first megabyte, the processor must be
in protected mode—the native mode of these newer processors. On a 286, only programs
designed to run in protected mode can take advantage of extended memory. 386 and

Chapter 7—Memory

higher processors offer another mode, called virtual real mode, which enables extended
memory to be, in effect, chopped into 1 megabyte pieces (each its own real-mode ses-
sion) and for several of these sessions to be running simultaneously in protected areas of
memory. Although several DOS programs can be running at once, each still is limited to
a maximum of 640K of memory because each session simulates a real-mode environ-
ment, right down to the BIOS and Upper Memory Area. Running several programs at
once in virtual real mode, which is termed multitasking, requires software that can man-
age each program, keeping them from crashing into one another. OS/2 does this now,
and the new Windows 4 will allow this as well.

The 286 and higher CPU chips also run in what is termed real mode, which enables full
compatibility with the 8088 CPU chip installed on the PC/XT-type computer. Real mode
enables you to run DOS programs one at a time on an AT-type system just like you
would on a PC/XT. However, an AT-type system running in real mode, particularly a
386-, 486-, or Pentium-based system, is really functioning as little more than a turbo PC.
The 286 can emulate the 8086 or 8088, but it cannot operate in protected mode at the
same time.

Extended memory is basically all memory past the first megabyte, which can only be
accessed while the processor is in protected mode.

XMS Memory. The extended memory specification (XMS) was developed in 1987 by
Microsoft, Intel, AST Corp., and Lotus Development to specify how programs would use
extended memory. The XMS specification functions on systems based on the 286 or
higher and allows real-mode programs (those designed to run in DOS) to use extended
memory and another block of memory usually out of the reach of DOS.

Before XMS, there was no way to ensure cooperation between programs that switched
the processor into protected mode and used extended memory. There was no way for
one program to know what another had been doing with the extended memory because
none of them could see that memory while in real mode. HIMEM.SYS becomes an arbi-
trator of sorts that first grabs all the extended memory for itself and then doles it out to
programs that know the XMS protocols. In this manner, several programs that use XMS
memory can operate together under DOS on the same system, switching the processor
into and out of protected mode to access the memory. XMS rules prevent one program
from accessing memory that another has in use. Because Windows 3.x is a program man-
ager that switches the system to and from protected mode in running several programs
at once, it has been set up to require XMS memory to function. In other words,
HIMEM.SYS must be loaded for Windows to function.

Extended memory can be made to conform to the XMS specification by installing a de-
vice driver in the CONFIG.SYS file. The most common XMS driver is HIMEM.SYS, which
is included with Windows and recent versions of DOS, including DOS 6. Other memory
managers, like QEMM, also convert extended memory into XMS-specification memory
when you add their device drivers to CONFIG.SYS.

The System Logical Memory Layout

High Memory Area (HMA) and the A20 line. The High Memory Area (HMA) is an area
of memory 16 bytes short of 64K in size starting at the beginning of the first megabyte of
extended memory. It can be used to load device drivers and memory-resident programs,
to free up conventional memory for use by real-mode programs. Only one device driver
or memory-resident program can be loaded into HMA at one time, no matter its size.
Originally this could be any program, but Microsoft decided that DOS could get there
first, and built capability into DOS 5 and newer versions.

The HMA area is extremely important to those who use DOS 5 or higher because these
DOS versions can move their own kernel (about 45K of program instructions) into this
area. This is accomplished simply by first loading an XMS driver (such as HIMEM.SYS)
and adding the line DOS=HIGH to your CONFIG.SYS file. Taking advantage of this DOS
capability frees another 45K or so of conventional memory for use by real-mode pro-
grams by essentially moving 45K of program code into the first segment of extended
memory. Although this memory was supposed to be accessible in protected mode only,
it turns out that a defect in the design of the original 286 (which fortunately has been
propagated forward to the more recent processors as a “feature”) accidentally allows
access to most of the first segment of extended memory while still in real mode.

The use of the High Memory Area is controlled by the HIMEM.SYS or equivalent driver.
The origins of this memory usage are interesting because they are based on a bug in the
original 286 processor carried forward to the 386, 486, and Pentium.

The problem started from the fact that memory addresses in Intel processors are dictated
by an overlapping segment and offset address. By setting the segment address to FFFF,
which itself specifies an actual address of FFFFO, which is 16 bytes from the end of the
1st megabyte, and then specifying an offset of FFFF, which is equal to 64K, you can cre-
ate a memory address as follows:

FFFF segment
+ FFFF offset

= 10FFEF total

This type of address is impossible on a 8088 or 8086 system that has only 20 address
lines and therefore cannot calculate an address that large. By leaving off the leading
digit, these processors interpret the address as OFFEF, in essence causing the address to
“wrap around” and end up 16 bytes from the end of the first 64K segment of the first
megabyte. The problem with the 286 and higher was that when they were in real mode,
they were supposed to operate the same way, and the address should wrap around to the
beginning of the first megabyte also. Unfortunately a “bug” in the chip left the 21st
address line active (called the A20 line), which allowed the address to end up 16 bytes
from the end of the first 64K segment in the second megabyte. This memory was sup-
posed to be addressable only in protected mode, but this bug allowed all but 16 bytes
of the first 64K of extended memory to be addressable in real mode.

Chapter 7—Memory

Because this bug caused problems with many real-mode programs that relied on the
wrap to take place, when IBM engineers designed the AT, they had to find a way to dis-
able the A20 line while in real mode, but then re-enable it when in protected mode.
They did this by using some unused pins on the 8042 keyboard controller chip on the
motherboard. The 8042 keyboard controller was designed to accept scan codes from the
keyboard and transmit them to the processor, but there were unused pins not needed
strictly for this function. So IBM came up with a way to command the keyboard control-
ler to turn on and off the A20 line, thus enabling the “defective” 286 to truly emulate an
8088 and 8086 while in real mode.

Microsoft realized that you could command the 8042 keyboard controller to turn back
on the A20 line strictly for the purpose of using this “bug” as a feature that enabled
you to access the first 64K of extended memory (less 16 bytes) without having to go
through the lengthy and complicated process of switching into protected mode. Thus
HIMEM.SYS and the High Memory Area was born! HIMEM.SYS has to watch the system
to see if the A20 line should be off for compatibility, or on to enable access to the HMA
or while in protected mode. In essence, HIMEM becomes a control program that ma-
nipulates the A20 line through the 8042 keyboard controller chip.

Expanded Memory

Some older programs can use a type of memory called Expanded Memory Specification or
EMS memory. Unlike conventional (the first megabyte) or extended (the second through
16th or 4,096th megabytes) memory, expanded memory is not directly addressable by
the processor. Instead it can only be accessed through a small 64K window established
in the Upper Memory Area (UMA). Expanded memory is a segment or bank-switching
scheme in which a custom memory adapter has a large number of 64K segments on-
board combined with special switching and mapping hardware. The system uses a free
segment in the UMA as the home address for the EMS board. After this 64K is filled with
data, the board rotates the filled segment out and a new, empty segment appears to take
its place. In this fashion, you have a board that can keep on rotating in new segments to
be filled with data. Because only one segment can be seen or operated on at one time,
EMS is very inefficient for program code and is normally only used for data.

Segment DOOO in the first megabyte usually is used for mapping. Lotus, Intel, and
Microsoft—founders of the LIM specification for expanded memory (LIM EMS)—
decided to use this segment because it is largely unused by most adapters. Programs
must be written specially to take advantage of this segment-swapping scheme, and then
only data normally can be placed in this segment because it is above the area of contigu-
ous memory (640K) that DOS can use. For example, a program cannot run while it is
swapped out and therefore not visible by the processor. This type of memory generally
is useful only in systems that do not have extended (processor-addressable) memory
available to them.

The figure 7.17 shows how expanded memory fits with conventional and extended
memory.

The System Logical Memory Layout

Conventional and EXTENDED Memory EXPANDED Memory

16M/4G 32M

AN AN
1117777\ 7777///
ASSNNNN U A SNNANNNY

AN ANV
zavieeiiss
ANSNNNN VA SNRNNNY

EXTENDED EXPANDED
Memory Memory
M Divided into
Motherboard logical pages
ROM and
896K — < theMgl[\;IpSe\(jvii:tgow
EMS Window <«<— 416K Pages (64K)
832K of "bank-switched"
768K Adapter ROM memory appear in the
Video EMS Window usually
RAM at segment D000
640K
Conventional
(Base)
Memory
512K
256K
0K 0K

Fig. 7.17
Conventional, extended, and expanded memory.

Intel originally created a custom purpose memory board that had the necessary EMS
bank-switching hardware. They called these boards Above Boards, and they were sold
widely many years ago. EMS was designed with 8-bit systems in mind and was appropri-
ate for them because they had no capability to access extended memory. 286 and newer
systems, however, have the capability to have 15 or more megabytes of extended
memory, which is much more efficient than the goofy (and slow) bank-switching EMS
scheme. The Above Boards are no longer being manufactured, and EMS memory—as a
concept as well as functionally—is extremely obsolete. If you have any antique software
that still requires EMS memory, you are advised to upgrade to newer versions that can
use extended memory directly. It is also possible to use the powerful Memory Manage-
ment Unit (MMU) of the 386 and higher processors to convert extended memory to
function like LIM EMS, but this should only be done if there is no way to use the ex-
tended memory directly. EMM386 can convert extended to expanded and, in fact, was
originally designed for this purpose, although today it is more likely being used to map

Chapter 7—Memory

extended memory into the UMA for the purposes of loading drivers and not for EMS.
The EMM386 driver is included with DOS versions 5 and newer as well as with Windows.
If you have several versions on hand, as a rule, always use the newest one.

Preventing ROM BIOS Memory Conflicts and Overlap

As detailed in previous sections, CO00 and D0OOO are reserved for use by adapter-board
ROM and RAM. If two adapters have overlapping ROM or RAM addresses, usually neither
board operates properly. Each board functions if you remove or disable the other one,
but they do not work together.

With many adapter boards, you can change the actual memory locations to be used with
jumpers, switches, or driver software, which might be necessary to allow two boards to
coexist in one system. This type of conflict can cause problems for troubleshooters. You
must read the documentation for each adapter to find out what memory addresses the
adapter uses and how to change the addresses to allow coexistence with another adapter.
Most of the time, you can work around these problems by reconfiguring the board or
changing jumpers, switch settings, or software-driver parameters. This change enables
the two boards to coexist and stay out of each other’s way.

Additionally, you must ensure that adapter boards do not use the same IRQ (interrupt
request line), DMA (direct memory access) channel, or I/O Port address. You can easily
avoid adapter board memory, IRQ, DMA channel, and I/O Port conflicts by creating a
chart or template to mock up the system configuration by penciling on the template the
resources already used by each installed adapter. You end up with a picture of the system
resources and the relationship of each adapter to the others. This procedure helps you
anticipate conflicts and ensures that you configure each adapter board correctly the first
time. The template also becomes important documentation when you consider new
adapter purchases. New adapters must be configurable to use the available resources in
your system.

ROM Shadowing

Computers based on the 386 or higher CPU chip, which provide memory access on a

32- or 64-bit path, often use a 16-bit data path for system ROM BIOS information. In
addition, adapter cards with on-board BIOS may use an 8-bit path to system memory. On
these high-end computers, using a 16- or 8-bit path to memory is a significant bottleneck
to system performance. In addition to these problems of width, most actual ROM chips
are available in maximum speeds far less than what is available for the system’s dynamic
RAM. For example, the fastest ROMs available are generally 150ns to 200ns, whereas the
RAM in a modern system is rated at 60ns. Because ROM is so slow, any system accesses to
programs or data in ROM cause many additional wait states to be inserted. These wait
states can slow the entire system down tremendously, especially considering that many
of the driver programs used constantly by DOS reside in the BIOS chips found on the
motherboard and many of the installed adapters. Fortunately, a way was found to trans-
fer the contents of the slow 8- or 16-bit ROM chips into much faster 32-bit main
memory. This is called shadowing the ROMs.

The System Logical Memory Layout

Virtually all 386 and higher systems enable you to use what is termed shadow memory for
the motherboard and possibly some adapter ROMs as well. Shadowing essentially moves
the programming code from slow ROM chips into fast 32-bit system memory. Shadowing
slower ROMs by copying their contents into RAM can greatly speed up these BIOS rou-
tines—sometimes making them four to five times faster. The shadowing is accomplished
by using the powerful Memory Management Unit (MMU) in the 386 and higher proces-
sors. With the appropriate instructions, the MMU can take a copy of the ROM code,
place it in RAM, and enable the RAM such that it appears to the system at exactly the
same addresses where it was originally located. This actually disables the ROM chips
themselves, which are essentially shut down. The system RAM that is now masquerading
as ROM is fully write-protected so that it acts in every way just like the real ROM, with
the exception of being much faster, of course! Most systems have an option in the sys-
tem Setup to enable shadowing for the motherboard BIOS (usually segment FOOO) and
the video BIOS (usually the first 32K of segment C000). Some systems will go farther and
offer you the capability to enable or disable shadowing in (usually 16K) increments
throughout the remainder of the CO00 and D000 segments.

The important thing to note about shadowing is that if you enable shadowing for a
given set of addresses, anything found there when the system is booting will be copied to
RAM and locked in place. If you were to do this to a memory range that had a network
adapter’s shared memory mapped into it, the network card would cease to function.

You must only shadow ranges that contain true ROM and no RAM.

Some systems do not offer shadowing for areas other than the motherboard and video
BIOS. In these systems, you can use a memory manager such as EMM386 (that comes
with DOS and Windows) to enable shadowing for any range you specify. It is preferable
to use the system’s own internal shadowing capabilities first because the system shadow-
ing uses memory that would otherwise be discarded. Using an external memory manager
such as EMM386 for shadowing costs you a small amount of extended memory, equal to
the amount of space you are shadowing.

If you enable shadowing for a range of addresses and one or more adapters or the system
in general no longer works properly, then you may have scratch pad memory or other
RAM within the shadowed area, which is not accessible as long as the shadowing re-
mains active. In this case, you should disable the shadowing for the system to operate
properly. If you can figure out precisely which addresses are ROM and which are RAM
within the Upper Memory Area, you can selectively shadow only the ROM for maximum
system performance.

Total Installed Memory versus Total Usable Memory

One thing that most people don't realize is that not all the SIMM or other RAM memory
you purchase and install in a system will be available. Because of some quirks in system
design, the system usually has to “throw away” up to 384K of RAM to make way for the
Upper Memory Area.

Chapter 7—Memory

For example, most systems with 4M of RAM (which is 4,096K) installed show only
3,712K installed during the POST or when running Setup. This showing indicates that
4,096K - 3,712K = 384K of missing memory! Some systems may show 3,968K with the
same 4M installed, which works out to 4,096K - 3,968K = 128K missing.

If you run your Setup program and check out your base and extended memory values,
you will find more information than just the single total shown during the POST. In
most systems with 4,096K (4M), you have 640K base and 3072K extended. In some sys-
tems, Setup reports 640K base and 3328K extended memory, which is a bonus. In other
words, most systems come up 384K short, but some come up only 128K short.

This shortfall is not easy to explain, but it is consistent from system to system. I cur-
rently take six to nine hours of class time in my seminars to fully explore, explain, and
exploit memory, but this explanation must be more brief! Say that you have a 486
system with two installed 72-pin (36-bit) 1M SIMMs. This setup results in a total installed
memory of 2M in two separate banks because the processor has a 32-bit data bus, and
one parity bit is required for every eight data bits. Each SIMM is a single bank in this
system. Note that most cheaper 486 systems use the 30-pin (9-bit) SIMMs of which four
are required to make a single bank. The first bank (or SIMM in this case) starts at address
000000 (the first Meg), and the second starts at 100000 (the second Meg).

One of the cardinal rules of memory is that you absolutely cannot have two hardware
devices wired to the same address. This means that 384K of the first memory bank in this
system would be in direct conflict with the Video RAM (segments AOOO and B000), any
adapter card ROMs (segments CO00 and D000), and of course the motherboard ROM
(segments EOOO and FO00). This means that all SIMM RAM that occupies these addresses
must be shut off or the system will not function! Actually, a motherboard designer can
do three things with the SIMM memory that would overlap from AOOOO-FFFFF, as shown
in the following list:

m Use the faster RAM to hold a copy of any slow ROMs (shadowing), disabling the
ROM in the process.

m Turn off any RAM not used for shadowing, eliminating any UMA conflicts.

m Remap any RAM not used for shadowing, adding to the stack of currently installed
extended memory.

Most systems shadow the motherboard ROM (usually 64K) and the video ROM (32K),
and simply turn off the rest. Some motherboard ROMs allow additional shadowing to

be selected between C8000-DFFFF, usually in 16K increments. Note that you can only
shadow ROM, never RAM, so if any card (such as a network card for example) has a RAM
buffer in the C8000-DFFFF area, you must not shadow the RAM buffer addresses or the
card does not function. For the same reason, you cannot shadow the AOOOO-BFFFF area
because this is the video adapter RAM bulffer.

Most motherboards do not do any remapping, which means that any of the 384K not
shadowed is simply turned off. That is why enabling shadowing does not seem to use

The System Logical Memory Layout

any memory. The memory used for shadowing would otherwise be discarded in most
systems. These systems would appear to be short by 384K compared to what is physically
installed in the system. In my example system with 2M, no remapping would result in
640K of base memory and 1,024K of extended memory, for a total of 1,664K of usable
RAM—384K short of the total (2,048K — 384K).

More-advanced systems shadow what they can and then remap any segments that do
not have shadowing into extended memory so as not to waste the non-shadowed RAM.
PS/2 systems, for example, shadow the motherboard BIOS area (EOOOO-FFFFF or 128K in
these systems) and remap the rest of the first bank of SIMM memory (256K from A000O-
DFFFF) to whatever address follows the last installed bank. Note that PS/2 systems have
the video BIOS integrated with the motherboard BIOS in EOOOO-FFFFF, so no separate
video BIOS exists to shadow as compared to other systems. In my example system with
two 1M 36-bit SIMMs, the 256K not used for shadowing would be remapped to 200000-
23FFFF, which is the start of the third megabyte. This affects diagnostics because if you
had any memory error reported in those addresses (200000-23FFFF), it would indicate a
failure in the FIRST SIMM, even though the addresses point to the end of installed ex-
tended memory. The addresses from 100000-1FFFFF would be in the second SIMM, and
the 640K base memory 000000-09FFFF would be back in the first SIMM. As you can see,
figuring out how the SIMMs are mapped into the system is not easy!

Most systems that do remapping can only remap an entire segment if no shadowing is
going on within it. The video RAM area in segments AOOO and BOOO can never contain
shadowing, so at least 128K can be remapped to the top of installed extended memory in
any system that supports remapping. Because most systems shadow in segments FOOO
(motherboard ROM) and C000 (Video ROM), these two segments cannot be remapped.
This leaves 256K maximum for remapping. Any system remapping the full 384K must
not be shadowing at all, which would slow down the system and is not recommended.
Shadowing is always preferred over remapping, and remapping what is not shadowed is
definitely preferred to simply turning off the RAM.

Systems that have 384K of “missing” memory do not do remapping. If you want to de-
termine if your system has any missing memory, all you need to know are three things.
One is the total physical memory actually installed. The other two items can be discov-
ered by running your Setup program. You want to know the total base and extended
memory numbers recognized by the system. Then simply subtract the base and extended
memory from the total installed to determine the missing memory. You will usually find
that your system is “missing” 384K, but may be lucky and have a system that remaps
256K of what is missing and thus shows only 128K of memory missing. Virtually

all systems use some of the missing memory for shadowing ROMs, especially the
motherboard and video BIOS. So what is missing is not completely wasted. Systems
“missing” 128K will find that it is being used to shadow your motherboard BIOS (64K
from FOOOO-FFFFF) and video BIOS (32K from C0000-C8000). The remainder of segment
C0000 (32K from C8000-CFFFF) is simply being turned off. All other segments (128K
from AOOOO-BFFFF and 128K from DOO0O-EFFFF) are being remapped to the start of the
fifth megabyte (400000-43FFFF). Most systems simply disable these remaining segments

Chapter 7—Memory

rather then take the trouble to remap them. Remapping requires additional logic and
BIOS routines to accomplish, and many motherboard designers do not feel that it is
worth the effort to reclaim 256K. Note that if your system is doing remapping, any
errors reported near the end of installed extended memory are likely in the first bank of
memory because that is where they are remapped from. The first bank in a 32-bit system
would be constructed of either four 30-pin (9-bit) SIMMs or one 72-pin (36-bit) SIMM.

Adapter Memory Configuration and Optimization

Ideally, adapter boards would be simple “plug-and-play” devices that require you to
merely plug the adapter into a motherboard slot and then use it. However, sometimes it
almost seems that adapter boards (except on EISA and MCA systems) are designed as if
they were the only adapter likely to be present on a system. Rather than adapter boards
being plug-and-play, they usually require you to know the upper memory addresses and
IRQ and DMA channels already on your system and then to configure the new adapter
so that it does not conflict with your already-installed adapters.

Adapter boards use upper memory for their BIOS and as working RAM. If two boards
attempt to use the same BIOS area or RAM area of upper memory, a conflict occurs that
can keep your system from booting. The following sections cover ways to avoid these
potential conflicts and how to troubleshoot them if they do occur. In addition, these
sections discuss moving adapter memory to resolve conflicts and provide some ideas on
optimizing adapter memory use.

Adding adapters to EISA and MCA systems is somewhat more simple because these sys-
tem architectures feature auto-configure adapter boards. In other words, EISA and MCA
systems work with adapters to determine available upper memory addresses, IRQs, and
DMA channels and automatically configure all adapters to work optimally together.

How to Determine What Adapters Occupy the UMA. You can determine what
adapters are using space in upper memory in the following two ways:

m Study the documentation for each adapter on your system to determine the
memory addresses they use.

m Use a software utility that can quickly determine for you what upper memory areas
your adapters are using.

The simplest way (although by no means always the most foolproof) is to use a software
utility to determine the upper memory areas used by the adapters installed on your sys-
tem. One such utility, Microsoft Diagnostics (MSD), comes with Windows 3 and DOS 6
or higher versions. You also can download MSD from the Microsoft BBS (see the vendor
list for the number). This utility examines your system configuration and determines not
only the upper memory used by your adapters, but also the IRQs used by each of these
adapters. Many other utilities can accomplish the same task, but most people already
have a copy of MSD—whether they know it or not!

The System Logical Memory Layout

After you run MSD or another utility to determine your system’s upper memory configu-
ration, make a printout of the memory addresses used. Thereafter, you can quickly refer
to the printout when you are adding a new adapter to ensure that the new board does
not conflict with any devices already installed on your system.

Moving Adapter Memory to Resolve Conflicts. After you identify a conflict or poten-
tial conflict by studying the documentation for the adapter boards installed on your
system or using a software diagnostic utility to determine the upper memory addresses
used by your adapter boards, you may have to reconfigure one or more of your adapters
to move the upper memory space used by a problem adapter.

Most adapter boards make moving adapter memory a somewhat simple process, enabling
you to change a few jumpers or switches to reconfigure the board. The following steps
help you resolve most conflicts that arise because adapter boards conflict with one
another:

1. Determine the upper memory addresses currently used by your adapter boards and
write them down.

2. Determine if any of these addresses are overlapping, which results in a conflict.

3. Consult the documentation for your adapter boards to determine which boards can
be reconfigured so that all adapters have access to unique memory addresses.

4. Configure the affected adapter boards so that no conflict in memory addresses
occurs.

For example, if one adapter uses the upper memory range C8000-CBFFF and another
adapter uses the range CAOOO-CCFFF, you have a potential address conflict. One of these
must be changed.

Optimizing Adapter Memory Use. On an ideal PC, adapter boards would always come
configured so that the upper memory addresses they use immediately follow the upper
memory addresses used by the previous adapter, with no overlap that would cause con-
flicts. Such an upper memory arrangement would not only be “clean,” but also would
make it much more simple to use available upper memory for loading device drivers and
memory-resident programs. However, this is not the case. Adapter boards often leave
gaps of unused memory between one another, which is, of course, preferable to an over-
lap, but still is not the best use of upper memory.

Users who want to make the most of their upper memory might consider studying the
documentation for each adapter board installed on their system to determine a way to
compact the upper memory used by each of these devices. For example, if it were pos-
sible on a particular system, using the adapters installed on it, the use of upper memory
could be more simple if you configured your adapter boards so that the blocks of
memory they use fit together like bricks in a wall, rather than look like a slice of

Chapter 7—Memory

Swiss cheese, as is the case on most systems. The more you can reduce your free upper
memory to as few contiguous chunks as possible, the more completely and efficiently
you can take advantage of the upper memory area.

Taking Advantage of Unused Upper Memory. On systems based on the 386 or higher
CPU chip, memory-resident programs and device drivers can be moved into the upper
memory area by using a memory manager like the DOS 6.x MEMMAKER utility or
Quarterdeck’s QEMM. These memory management utilities examine the memory-resi-
dent programs and device drivers installed on your system, determine their memory
needs, and then calculate the best way to move these drivers and programs into upper
memory, thus freeing the conventional memory they used.

Using MEMMAKER and QEMM is quite simple. Make a backup of your CONFIG.SYS and
AUTOEXEC.BAT files so that you have usable copies if you need them to restore your
system configuration, and then run either MEMMAKER from the DOS prompt or use the
installation program on the QEMM diskette. Both programs install required device driv-
ers in your CONFIG.SYS file, and then begin optimizing your memory configuration.
Both do an outstanding job of freeing up conventional memory, although QEMM can
free more conventional memory automatically than most other utilities. With careful
fine-tuning, an individual using only the raw DOS HIMEM.SYS and EMM386.EXE drivers
can perform feats of memory management that no automatic program can do!

The following sections cover using memory management software to optimize conven-
tional memory, as well as additional ways to configure your system memory to make
your system run as efficiently as possible. It is important to note that the DOS
HIMEM.SYS and EMM386.EXE play an integral role in MEMMAKER's capability to move
device drivers and memory-resident programs into upper memory. The next two sections
describe using HIMEM.SYS and EMM386.EXE to configure extended and expanded
memory.

Using HIMEM.SYS (DOS). The DOS device driver HIMEM.SYS, which has been included
with Windows DOS 4.0 and higher, is used to configure extended memory to the XMS
specification as well as to enable the use of the first 64K of extended memory as the High
Memory Area (HMA). HIMEM.SYS is installed by adding a line invoking the device driver
to your CONFIG.SYS file.

The XMS extended memory specification was developed by Microsoft, Intel, AST Corp.,
and Lotus Development in 1987 and specifies how programs can use memory beyond
the first megabyte on systems based on the 286 CPU chip or higher. The XMS specifica-
tion also allows real-mode programs (those designed to run in DOS) to use extended
memory in several different ways.

Using EMM386.EXE (DOS). The program EMM386.EXE, which is included with DOS
5.0 and higher, is used primarily to map XMS memory (extended memory managed
by HIMEM.SYS) into unused regions of the Upper Memory Area (UMA). This allows

The System Logical Memory Layout

programs to be loaded into these regions for use under DOS. EMM386 also has a second-
ary function of using XMS memory to emulate EMS version 4 memory, which can then
be used by programs that need expanded memory. For more information on using
EMM386.EXE, refer to Que’s Using MS-DOS 6 or your DOS manual.

MS-DOS 6.x MEMMAKER. You can increase the amount of conventional memory avail-
able to software applications on systems based on the 386 chip and above by running
the MS-DOS 6.x utility MEMMAKER. DOS 5 had the capability, using EMM386, to map
extended memory into the Upper Memory Area so that DOS can load memory-resident
programs and drivers into the UMA. Unfortunately, this required an extensive knowl-
edge of the upper memory configuration of a particular system, as well as trial and error
to see what programs can fit into the available free regions. This process was difficult
enough that many people were not effectively using their memory under DOS (and Win-
dows). To make things easier, when DOS 6 was released, Microsoft included a menu
driven program called MEMMAKER that determines the system configuration and auto-
matically creates the proper EMM386 statements and inserts them into the CONFIG.SYS
file. By manipulating the UMA manually or through MEMMAKER and loading device
drivers and memory-resident programs into upper memory, you can have more than
600K of free conventional memory.

Over the course of months or years of use, the installation programs for various software
utilities often install so many memory-resident programs and device drivers in your
AUTOEXEC.BAT and CONFIG.SYS files that you have too little conventional memory
left to start all the programs you want to run. You may want to use MEMMAKER to free
up more conventional memory for your programs. When you run the MEMMAKER util-
ity, it automatically performs the following functions to free up more memory:

m Moves a portion of the DOS Kkernel into the high memory area (HMA)

m Maps free XMS memory into unused regions in the Upper Memory Area (UMA) as
Upper Memory Blocks (UMBs), into which DOS can then load device drivers and
memory-resident programs to free up the conventional memory these drivers and
programs otherwise use

m Modifies CONFIG.SYS and AUTOEXEC.BAT to cause DOS to load memory-resident
programs and device drivers into UMBs

Before running MEMMAKER, carefully examine your CONFIG.SYS and AUTOEXEC.BAT
files to identify unnecessary device drivers and memory-resident programs. For example,
the DOS device driver ANSI.SYS is often loaded in CONFIG.SYS to enable you to use
color and other attributes at the DOS prompt as well as to remap the keys on your key-
board. If you are primarily a Windows user and do not spend much time at the DOS
prompt, then you can eliminate ANSIL.SYS from your CONFIG.SYS file to free up the
memory the driver is using.

Chapter 7—Memory

After you strip down CONFIG.SYS and AUTOEXEC.BAT to their bare essentials (it is ad-
visable to make backup copies first), you are ready to run MEMMAKER to optimize your
system memory. To run MEMMAKER, exit from any other programs you are running;
start your network or any memory-resident programs and device drivers you absolutely
need; and at the DOS prompt, type the following:

MEMMAKER

The MEMMAKER setup runs in two modes—Express and Custom. Express setup is prefer-
able for those who want to enable MEMMAKER to load device drivers and memory-
resident programs into high memory with the minimum amount of user input, unless
they have an EGA or VGA (but not a Super VGA) monitor. If you have an EGA or VGA
monitor, choose Custom Setup and answer Yes in the advanced options screen where it
asks whether MeMMAKER should use monochrome region (BO000-B7FFF) for running
programs. Use the defaults for the rest of the options in Custom Setup unless you are
sure that one of the defaults is not correct for your system. Custom setup is probably not
a good idea unless you are knowledgeable about optimizing system memory and particu-
lar device drivers and memory-resident programs on the system.

When MEMMAKER finishes optimizing the system memory, the following three lines are
added to CONFIG.SYS:

DEVICE=C:\DOS\HIMEM.SYS
DEVICE=C:\DOS\EMM386.EXE NOEMS
DOS=HIGH,UMB

In addition, MEMMAKER modifies each line in CONFIG.SYS and AUTOEXEC.BAT that
loads a device driver or memory-resident program now being loaded into UMBs. Various
DEVICE= lines in your CONFIG.SYS are changed to DEVICEHIGH=, and various lines in
your AUTOEXEC.BAT have the LH (LoadHigh) command inserted in front of them. For
example, the line DEVICE=ANSI.SYS is changed to DEVICEHIGH=ANSI.SYS. In your
AUTOEXEC.BAT, lines like C:\DOS\DOSKEY are changed to LH C:\DOS\DOSKEY. The
DEVICEHIGH and LH commands load the device drivers and memory-resident programs
into UMBs. MEMMAKER also adds codes to specify where in upper memory each pro-
gram will be loaded. For example, after you run MEMMAKER, a statement like this might
be added to your AUTOEXEC.BAT:

LH /L:1 C:\DOS\DOSKEY

The “/L:1” causes the resident program DOSKEY to load into the first UMB region. On
many systems, MEMMAKER configures the system to free up 620K of conventional
memory.

For detailed information on using the MEMMAKER utility, consult your DOS 6 manual
or Que’s Using MS-DOS 6.2, Special Edition. If you have MS-DOS, you can get help on
MEMMAKER by typing HELP MEMMAKER at the DOS prompt.

IBM-DOS 6.x RAMBoost. The IBM-DOS 6.x RAMBoost utility, licensed from Central
Point, which supplies some of the DOS 6 utilities, works much like MEMMAKER to free
up additional conventional memory. After you make backup copies of CONFIG.SYS and

The System Logical Memory Layout

AUTOEXEC.BAT and strip down these files to only what you need to load, enter the
following at the DOS prompt:

RAMSETUP

RAMBoost calculates the best way to load your memory-resident programs and device
drivers into UMBs. RAMBoost gives results roughly equivalent to the MS-DOS 6
MEMMAKER utility. On many systems, it frees up 620K of conventional memory.

Third-Party Memory Managers. Although MEMMAKER and RAMBoost do a good job
of freeing-up conventional memory on most systems, memory management utilities like
Quarterdeck’s QEMM, and Qualitas’ 386MAX can do a better job on many systems with
more complex configurations, and therefore, numerous memory-resident programs and
device drivers. The following sections provide information about QEMM and 386MAX.

Quarterdeck QEMM. One of the strengths of QEMM is how simple it is to install and
use. Before running the QEMM INSTALL program, make a backup of your CONFIG.SYS
and AUTOEXEC.BAT files so that you have usable copies if you need them to restore
your system configuration. Then exit any program you are running. At the DOS prompt,
log in to the drive where the QEMM install diskette is located and run the INSTALL pro-
gram. QEMM copies its files to the C:\QEMM directory (or another directory if you
want).

Then the INSTALL program loads the Optimize utility, which calculates the upper
memory needed for your memory-resident programs and device drivers and determines
the proper region of upper memory for each. During this process, your system is
rebooted several times (or when prompted, you may have to turn off your system and
then restart it). When Optimize is finished, you can type MEM at the DOS prompt to
find out how much free conventional memory your system has.

After QEMM is installed and running on your system, each time you add a memory-
resident program or device driver, or any time you add or remove an adapter board
(which might change the configuration of upper memory), you need to again run
OPTIMIZE. For additional information on installing and running QEMM, and for
troubleshooting help, consult your QEMM user manual.

One of the best features of QEMM is that it comes with a system configuration diagnostic
utility called MANIFEST. This program is much like MSD, but offers more information
and detail in many areas.

Qualitas 386MAX. Before running the 386MAX INSTALL program, make a backup
copy of your CONFIG.SYS and AUTOEXEC.BAT files in case you need them later to re-
store your system. Then exit any program you are running, log in to the drive with the
386MAX install diskette, and run INSTALL. 386MAX copies its files to the C:\386MAX
subdirectory (or any directory you choose). Then the INSTALL program loads the MAXI-
MIZE utility, which determines where in upper memory to place each memory-resident
program and device driver.

Chapter 7—Memory

When MAXIMIZE finishes, you can type MEM at the DOS prompt to find out how much
free conventional memory your system has.

As with MEMMAKER and QEMM, 386MAX uses codes to specify which region of upper
memory each memory-resident program and device driver is loaded into. Whenever you
add a new device driver or memory-resident program to your system, or when you add
or remove an adapter, you must again run MAXIMIZE.

Physical Memory

The CPU and motherboard architecture dictates a computer’s physical memory capacity.
The 8088 and 8086, with 20 address lines, can use as much as 1M (1,024K) of RAM. The
286 and 386SX CPUs have 24 address lines; they can keep track of as much as 16M of
memory. The 386DX, 486, and Pentium CPUs have a full set of 32 address lines; they
can keep track of a staggering 4 gigabytes of memory.

When the 286, 386, 486, and Pentium chips emulate the 8088 chip (as they do when
running a single DOS program), they implement a hardware operating mode called real
mode. Real mode is the only mode available on the 8086 and 8088 chips used in PC and
XT systems. In real mode, all Intel processors—even the mighty Pentium—are restricted
to using only 1M of memory, just as their 8086 and 8088 ancestors, and the system de-
sign reserves 384K of that amount. Only in protected mode can the 286 or better chips
use their maximum potential for memory addressing.

Pentium-based systems can address as much as 4 gigabytes of memory. To put these
memory-addressing capabilities into perspective, 4 gigabytes (4,096M) of memory cost-
ing the going rate of about $30 per megabyte for fast (60 nanoseconds or less) RAM chips
would total $122,880!! Of course, you could probably negotiate a much better price with
a chip vendor if you planned to buy 4 gigabytes of SIMMs! Even if you could afford all
this memory, the largest SIMMs available today are 72-pin versions with 64M capacity.
Most Pentium motherboards have only four to eight SIMM sockets, which allows a maxi-
mum of 256M to 512M if all four or eight sockets are filled. Not all systems accept all
SIMMs, so you might have a limitation of less than this amount for many Pentium and
486 systems.

On many systems, accessing RAM chips installed directly on a motherboard is faster than
accessing memory through an expansion slot. Even without considering this speed ad-
vantage, you have the advantage of saving slots. The more memory chips you can get on
the motherboard, the fewer adapter slots you need to use. A system that does not have a
memory expansion slot faces a large reduction in speed if you use a memory expansion
board made for a standard 16-bit slot.

Physical Memory

Some 386 and 486 motherboards may have problems addressing memory past 16M due
to DMA (Direct Memory Access) controller problems. If you install an ISA adapter that
uses a DMA channel and you have more than 16M of memory, you have the potential
for problems because the ISA bus only allows DMA access to 16M. Attempted transfers
beyond 16M cause the system to crash. Most modern 486 motherboards enable you to
install a maximum of 64M on the motherboard using four 16M SIMMs.

Because the PC hardware design reserves the top 384K of the first megabyte of system
memory for use by the system itself, you have access to 640K for your programs and
data. The use of 384K by the system results in the 640K conventional memory limit.

The amount of conventional memory you can actually use for programs depends on the
memory used by device drivers (such as ANSIL.SYS) and memory-resident programs (such
as MOUSE.COM) you load in your CONFIG.SYS and AUTOEXEC.BAT files. Device drivers
and memory-resident programs usually use conventional memory.

RAM Chips

A RAM chip temporarily stores programs when they are running and the data being used
by those programs. RAM chips are sometimes termed volatile storage because when you
turn off your computer or an electrical outage occurs, whatever is stored in RAM is lost
unless you saved it to your hard drive. Because of the volatile nature of RAM, many com-
puter users make it a habit to save their work frequently. (Some software applications can
do timed backups automatically.)

Launching a computer program instructs DOS to bring an EXE or COM disk file into
RAM, and computer programs reside in RAM as long as they are running. The CPU ex-
ecutes programmed instructions in RAM. RAM stores your keystrokes when you use a
word processor. RAM stores numbers used in calculations. The CPU also stores results in
RAM. Telling a program to save your data instructs the program to store RAM contents
on your hard drive as a file.

If you decide to purchase more RAM, you need the information on RAM chips and their
speeds presented in the following sections to help ensure that you don’t slow down your
computer when you add memory.

Physical Storage and Organization

RAM chips can be physically integrated into the motherboard or adapter board in several
forms. Older systems used individual memory chips, called Dual In-line Pin (DIP) chips,
that were plugged into sockets or soldered directly to a board. Most modern systems use
a memory package called a Single In-line Memory Module (SIMM). These modules combine
several chips on a small circuit board plugged into a retaining socket. A SIPP, or Single
In-line Pin Package, is similar to a SIMM, but it uses pins rather than an edge connector
to connect to the motherboard. It would be possible to convert a SIPP to a SIMM by
cutting off the pins, or to convert a SIMM to a SIPP by soldering pins on.

Chapter 7—Memory

Several types of memory chips have been used in PC system motherboards. Most of these
chips are single-bit-wide chips, available in several capacities. The following is a list of
available RAM chips and their capacities:

16K by 1 bit

64K by 1 bit

128K by 1 bit

256K by 1 bit
(or 64K by 4 bits)

1M by 1 bit
(or 256K by 4 bits)

4M by 1 bit
(or 1M by 4 bits)

16M by 1 bit
(or 4M by 4 bits)

64M by 1 bit
(or 16M by 4 bits)

These devices, used in the original IBM PC with a Type 1
motherboard, have a small capacity compared with the
current standard. You won't find much demand for these
chips except from owners of original IBM PC systems.

These chips were used in the standard IBM PC Type 2
motherboard and in the XT Type 1 and 2 motherboards.
Many memory adapters, such as the popular vintage AST
6-pack boards, use these chips also.

These chips, used in the IBM AT Type 1 motherboard,
often were a strange physical combination of two 64K
chips stacked on top of one another and soldered
together. True single-chip versions were used also for
storing the parity bits in the IBM XT 286.

These chips once were very popular in motherboards
and memory cards. The IBM XT Type 2 and IBM

AT Type 2 motherboards, as well as most compatible
systems, used these chips.

These 1M chips are very popular in systems today
because of their low cost. These chips are most often
used in SIMMs because of their ease of installation and
service. (See the section entitled “Single In-Line Memory
Modules (SIMMSs)” for more information.)

Four-megabit chips have gained popularity recently

and now are used in many compatible motherboards
and memory cards. They are used primarily in 4M and
8M SIMMs and generally are not sold as individual chips.

16-megabit chips are gaining popularity in Pentium-
based systems in which as much as 256 megabytes
can be installed on some systems. The use of these
chips in SIMMs allow for 16M or larger capacities
for a single SIMM.

64-megabit chips are the most recent on the market.
These chips allow enormous SIMM capacities of 64M
or larger! Because of the high expense and limited
availability of these chips, you see them only in the
most expensive systems.

Figure 7.18 shows a typical memory chip. Each marking on the chip is significant.

Physical Memory

F MEA1258-10

BE0G B4 BC
UEa

Fig. 7.18
The markings on a typical memory chip.

The -10 on the chip corresponds to its speed in nanoseconds (a 100-nanosecond rating).
MB81256 is the chip’s part number, which usually contains a clue about the chip’s
capacity. The key digits are 1256, which indicate that this chip is 1 bit wide, and has a
depth of 256K. The 1 means that to make a full byte with parity, you need nine of these
single-bit-wide chips. A chip with a part number KM4164B-10 indicates a 64K-by-1-bit
chip at a speed of 100 nanoseconds. The following list matches common chips with their
part numbers:

Part Number Chip

4164 64K by 1 bit
4464 64K by 4 bits
41128 128K by 1 bit
44128 128K by 4 bits
41256 256K by 1 bit
44256 256K by 4 bits
41000 1M by 1 bit
44000 1M by 4 bits

Chips wider than 1 bit are used to construct banks of less than 9, 18, or 36 chips (de-
pending on the system architecture). For example, in the IBM XT 286, which is an AT-
type 16-bit system, the last 128K bytes of memory on the motherboard consist of a bank
with only six chips; four are 64K-by-4 bits wide, and two parity chips are 1 bit wide,
storing 18 bits.

In figure 7.18, the “F” symbol centered between two lines is the manufacturer’s logo for
Fujitsu Microelectronics. The 8609 indicates the date of manufacture (ninth week of
1986). Some manufacturers, however, use a Julian date code. To decode the chip further,
contact the manufacturer if you can tell who that is, or perhaps a memory chip vendor.

Memory Banks

Memory chips (DIPs, SIMMs, and SIPPs) are organized in banks on motherboards and
memory cards. You should know the memory bank layout and position on the
motherboard and memory cards.

Chapter 7—Memory

You need to know the bank layout when adding memory to the system. In addition,
memory diagnostics report error locations by byte and bit addresses, and you must use
these numbers to locate which bank in your system contains the problem.

The banks usually correspond to the data bus capacity of the system’s microprocessor.
Table 7.5 shows the widths of individual banks based on the type of PC:

Table 7.5 Memory Bank Widths on Different Systems

30-Pin 72-Pin
Bank Size SIMMs per SIMMs per

Processor Data Bus (w/Parity) Bank Bank
8088 8-bit 9-bits 1 1 (4 banks)
8086 16-bit 18-bits 2 1 (2 banks)
286 16-bit 18-bits 2 1 (2 banks)
386S5X, SL, SLC 16-bit 18-bits 2 1 (2 banks)
386DX 32-bit 36-bits 4 1

486SLC, SLC2 16-bit 18-bits 2 1 (2 banks)
486SX, DX, DX2, DX4 32-bit 36-bits 4 1

Pentium 64-bit 72-bits 8 2

The number of bits for each bank can be made up of single chips or SIMMs. For example,
in a 286 system that would use an 18-bit bank, you could make up a bank of 18 indi-
vidual 1-bit-wide chips, or you could use four individual 4-bit-wide chips to make up the
data bits, and two individual 1-bit-wide chips for the parity bits. Most modern systems
do not use chips, but instead use SIMMs. If the system has an 18-bit bank, then it likely
would use 30-pin SIMMs and have two SIMMs per bank. All the SIMMs in a single bank
must be the same size and type. As you can see, the 30-pin SIMMs are less than ideal for
32-bit systems because you must use them in increments of four per bank! Because these
SIMMs are available in 1M and 4M capacities today, this means that a single bank has to
be 4M or 16M of memory, with no in-between amounts. Using 30-pin SIMMs in 32-bit
systems artificially constricts memory configurations and such systems are not recom-
mended. If a 32-bit system uses 72-pin SIMMs, then each SIMM represents a separate
bank, and the SIMMSs can be added or removed on an individual basis rather than in
groups of four. This makes memory configuration much easier and more flexible.

Older systems often used individual chips. For example, the IBM PC Type 2 and XT Type
1 motherboard contains four banks of memory labeled Bank O, 1, 2, and 3. Each bank
uses nine 64K-by-1-bit chips. The total number of chips present is 4 times 9, or 36 chips,
organized as shown in figure 7.19.

Physical Memory

|

| =

H]
=1

-
=]
=
L= |

Left Side
Bank 3 Bank 2 Bank1 Bank O

—=1 =1 =
=
i b i
| w |
| =11
|
=
I |

—
L
1 =1
=1
T

=
L= |

1
i
=]
|

|

| (=]

Top View of System Board

Fig. 7.19
A memory bank on a PC Type 2 or XT Type 1 motherboard.

This layout is used in many older 8-bit motherboards, including the Type 1 and 2 PC
motherboards and the Type 1 and 2 XT motherboards. Most PC or XT clones also fol-
lowed this scheme. Note that the parity chip is the leftmost chip in each bank on the
XT motherboard.

The physical orientation used on a motherboard or memory card is arbitrary and deter-
mined by the board’s designers. Documentation covering your system or card comes in
very handy. You can determine the layout of a motherboard or adapter card through
testing, but this takes time and may be difficult, particularly after you have a problem
with a system.

Parity Checking

One standard IBM has set for the industry is that the memory chips in a bank of nine
each handle one bit of data: eight bits per character plus one extra bit called the parity
bit. The parity bit enables memory-control circuitry to keep tabs on the other eight bits—
a built-in cross-check for the integrity of each byte in the system. If the circuitry detects
an error, the computer stops and displays a message informing you of the malfunction.
Some modern SIMMs have only three chips, however, with each chip handling three of
the nine bits.

IBM established the odd parity standard for error checking. The following explanation
may help you understand what is meant by odd parity. As the eight individual bits in a
byte are stored in memory, a special chip called a 74LS8280 parity generator/checker on the
motherboard (or memory card) evaluates the data bits by counting the number of 1s in
the byte. If an even number of 1s is in the byte, the parity generator/checker chip creates
a 1 and stores it as the ninth bit (parity bit) in the parity memory chip. That makes the

Chapter 7—Memory

total sum for all nine bits an odd number. If the original sum of the eight data bits is an
odd number, the parity bit created is 0, keeping the 9-bit sum an odd number. The value
of the parity bit is always chosen so that the sum of all nine bits (eight data bits plus one
parity bit) is an odd number. Remember that the eight data bits in a byte are numbered O
123 4567. The following examples may make it easier to understand:

Data bit number: 01234567 Parity

Parity bit value: 10110011 0
In this example, because the total number of data bits with a value of 1 is an odd num-
ber (5), the parity bit must have a value of O to ensure an odd sum for all nine bits.
The following is another example:

Data bit number: 012834567 Parity

Parity bit value: 00110011 1
In this example, because the total number of data bits with a value of 1 is an even num-
ber (4), the parity bit must have a value of 1 to create an odd sum for all nine bits.

When the system reads memory back from storage, it checks the parity information.

If a (9-bit) byte has an even number of bits with a parity bit value of 1, that byte must
have an error. The system cannot tell which bit has changed, or if only a single bit has
changed. If three bits changed, for example, the byte still flags a parity-check error; if two
bits changed, however, the bad byte may pass unnoticed. The following examples show
parity-check messages for three types of systems:

For the IBM PC: PARITY CHECK x
For the IBM XT: PARITY CHECK x yyyyy (z)
For the IBM AT and late model XT: PARITY CHECK x yyyyy

Where x is 1 or 2:
1 = Error occurred on the motherboard

2 = Error occurred in an expansion slot

yyyy represents a number from 00000 through FFFFF that indicates, in hexadecimal
notation, the byte in which the error has occurred.
Where (z) is (S) or (E):

(S) = Parity error occurred in the system unit

(E) = Parity error occurred in the expansion chassis

Physical Memory

An expansion chassis was an option IBM sold for the original PC and XT systems to add more
expansion slots. This unit consisted of a backplane motherboard with eight slots, one of which
contained a special extender/receiver card cabled to a similar extender/receiver card placed in the
main system. Due to the extender/receiver cards in the main system and the expansion chassis, the
net gain was six slots.

When a parity-check error is detected, the motherboard parity-checking circuits generate
a non-maskable interrupt (NMI), which halts processing and diverts the system’s attention
to the error. The NMI causes a routine in the ROM to be executed. The routine clears the
screen and then displays a message in the upper left corner of the screen. The message
differs depending on the type of computer system. On some older IBM systems, the ROM
parity-check routine halts the CPU. In such a case, the system locks up, and you must
perform a hardware reset or a power-off/power-on cycle to restart the system. Unfortu-
nately, all unsaved work is lost in the process. (An NMI is a system warning that software
cannot ignore.)

Most systems do not halt the CPU when a parity error is detected; instead, they offer
you a choice of either rebooting the system or continuing as though nothing happened.
Additionally, these systems may display the parity error message in a different format
from IBM, although the information presented is basically the same. For example, many
systems with a Phoenix BIOS display these messages:

Memory parity interrupt at xxxx:xxxx
Type (S)hut off NMI, Type (R)eboot, other keys to continue

or

I/0 card parity interrupt at xxxx:xxxx
Type (S)hut off NMI, Type (R)eboot, other keys to continue

The first of these two messages indicates a motherboard parity error (Parity Check 1), and
the second indicates an expansion-slot parity error (Parity Check 2). Notice that the ad-
dress given in the form xxxx:xxxx for the memory error is in a segment:offset form rather
than a straight linear address such as with IBM’s error messages. The segment:offset ad-
dress form still gives you the location of the error to a resolution of a single byte.

Note that you have three ways to proceed after viewing this error message. You can press
S, which shuts off parity checking and resumes system operation at the point where the
parity check first occurred. Pressing R forces the system to reboot, losing any unsaved
work. Pressing any other key causes the system to resume operation with parity checking
still enabled. If the problem recurs, it is likely to cause another parity-check interruption.
In most cases, it is most prudent to press S, which disables the parity checking so that
you can then save your work. It would be best in this case to save your work to a floppy
disk to prevent the possible corruption of a hard disk. You should also avoid overwriting
any previous (still good) versions of whatever file you are saving, because in fact you
may be saving a bad file due to the memory corruption. Because parity checking is now

Chapter 7—Memory

disabled, your save operations will not be interrupted. Then you should power the sys-
tem off, restart it, and run whatever memory diagnostics software you have to try and
track down the error. In some cases, the POST finds the error on the next restart, but in
most cases you need to run a more sophisticated diagnostics program, perhaps in a con-
tinuous mode to locate the error.

The AMI BIOS displays the parity error messages in the following forms:
ON BOARD PARITY ERROR ADDR (HEX) = (XXXXX)

or
OFF BOARD PARITY ERROR ADDR (HEX) = (xxxxXx)

These messages indicate that an error in memory has occurred during the POST, and the
failure is located at the address indicated. The first one indicates the error occurred on
the motherboard, whereas the second message indicates an error in an expansion slot
adapter card. The AMI BIOS also can display memory errors in the following manner:

Memory Parity Error at xxxxx
or
I/0 Card Parity Error at xxxxx

These messages indicate that an error in memory has occurred at the indicated address
during normal operation. The first one indicates a motherboard memory error, and the
second indicates an expansion slot adapter memory error.

Although many systems enable you to continue processing after a parity error, and even
allow for the disabling of further parity checking, continuing to use your system after a
parity error is detected can be dangerous if misused. The idea behind letting you con-
tinue using either method is to give you time to save any unsaved work before you
diagnose and service the computer, but be careful how you do this.

When you are notified of a memory parity error, remember the parity check is telling you that
memory has been corrupted. Do you want to save potentially corrupted data over the good file
from the /ast time you saved? Definitely not! Make sure that you save your work to a different file
name. In addition, after a parity error, save only to a floppy disk if possible and avoid writing to the
hard disk; there is a slight chance that the hard drive could become corrupted if you save the
contents of corrupted memory.

After saving your work, determine the cause of the parity error and repair the system.
You may be tempted to use an option to shut off further parity checking and simply
continue using the system as if nothing were wrong. Doing so resembles unscrewing the
oil pressure warning indicator bulb on a car with an oil leak so that the oil pressure light
won'’t bother you anymore!

Physical Memory

IBM PS/2 systems have a slightly different way of communicating parity-check errors
than the older IBM systems. To indicate motherboard parity errors, the message looks
like this:

110
XXXXX

To indicate parity errors from an expansion slot, the message looks like this:

111
XXXXX

In these messages, the xxxxx indicates the address of the parity error. As with most IBM
systems, the system is halted after these messages are displayed, thus eliminating any
possibility of saving work.

Single In-Line Memory Modules (SIMMs)

For memory storage, most modern systems have adopted the single in-line memory
module (SIMM) as an alternative to individual memory chips. These small boards plug
into special connectors on a motherboard or memory card. The individual memory chips
are soldered to the SIMM, so removing and replacing individual memory chips is impos-
sible. Instead, you must replace the entire SIMM if any part of it fails. The SIMM is
treated as though it were one large memory chip.

IBM compatibles have two main physical types of SIMMs—30-pin (9 bits) and 72-pin

(36 bits)—with various capacities and other specifications. The 30-pin SIMMs are smaller
than the 72-pin versions, and may have chips on either one or both sides. SIMMs are
available both with and without parity bits. Until recently, all IBM-compatible systems
used parity-checked memory to ensure accuracy. Other non-IBM-compatible systems like
the Apple Macintosh have never used parity-checked memory. For example, Apple com-
puters use the same 30-pin or 72-pin SIMMs as IBM systems, but Apple computers as a
rule do not have parity-checking circuitry, so they can use slightly cheaper 30-pin SIMMs
that are only eight bits wide instead of nine bits (eight data bits plus one parity bit) as is
required on most IBM-compatible systems. They also can use 72-pin SIMMs that are only
32-bits wide rather than 36-bits (32 data bits plus 4 parity bits) as is required on most
IBM compatibles. You can use the parity SIMMs in Apple systems; they will simply ig-
nore the extra bits. If you use non-parity SIMMs in an IBM compatible that requires
parity-checked memory, you instantly get memory errors, and the system cannot
operate. If you service both IBM and Apple systems, you could simply stock only

parity SIMMs because they can be used in either system.

Recently, a disturbing trend has developed in the IBM compatible marketplace. Some
of the larger vendors have been shipping systems with parity checking disabled! These
systems can use slightly cheaper non-parity SIMMs like the Apple systems. The savings
amounts to about $10 per 4M SIMM, which can result in a savings to the manufacturer
of about $20 for a typical 8M configuration. Because most buyers have no idea that the
parity checking has been taken away (how often have you seen an ad that says “now

Chapter 7—Memory

featuring NO PARITY CHECKING”?), the manufacturer can sell its system that much
cheaper. Because several of the big names have started selling systems without parity,
most of the others have been forced to follow to remain price competitive. Because
nobody wants to announce this information, it has remained as a sort of dirty little
secret within the industry! What is amazing is that the 386 and higher processors all
contain the parity circuitry within them, so no additional circuits are needed on the
motherboard. It is solely the cost of the parity chips on the SIMMs that is being saved.

How can they do this? Well most newer motherboards have a method by which parity
checking can be disabled to accommodate non-parity SIMMs. Most older motherboards
absolutely required parity SIMMs because there was no way to disable the parity check-
ing. Some newer motherboards have a jumper to enable or disable the parity circuitry.
Some include this as a SETUP option, and some systems check the memory for parity bits
and if they are not detected in all banks, parity checking is automatically disabled. In
these systems, installing a single non-parity SIMM normally causes parity checking to be
disabled for all memory. I have often found parity checking to be the first alert to system
problems, so I am not thrilled that virtually all newer systems come with non-parity
SIMMs. Fortunately, this can be rectified by specifying parity SIMMs when you order a
new machine. If you don’t specify parity SIMMs, then surely you will get the cheaper
non-parity versions. Also make sure that your motherboard has parity checking enabled
as well, because most are not coming configured with it enabled.

Figures 7.20 and 7.21 show typical 30-pin (9-bit) and 72-pin (36-bit) SIMMs, respectively.
The pins are numbered from left to right and are connected through to both sides of the
module. Note that all dimensions are in both inches and millimeters (in parentheses).

653 (16.59)
647 (16.43) 200 (5.08)
MAX.

3.505 (89.03)
3.495 (88.77)

[~—.133 (3.38)
250 (6.35) TYP.

—
+E’L\ PN *L“"’m *Lfggf:?s) ié’iiéi:ié’iJL

080 (2.03) TYP.
TYP.

Fig. 7.20
A typical 30-pin (9-bit) SIMM.

Physical Memory

4.25 (107.95) &3/& (8.89)
—>| =133 (3.38) TYP.

[N
N
a

=

q i B i : g B g <)
Al _\
8 \
™ .
© .
g s PIN 1 — _ L
S V|| |«——1.75 (44.45) —
< 055 (1.40)
o
g 3.75 (95.25)
S 047 (1.19)
—| |[=—.080 (2.03)

Fig. 7.21
A typical 72-pin (36-bit) SIMM.

A SIMM is extremely compact, considering the amount of memory it holds. SIMMs are
available in several capacities, depending on the version. Table 7.6 lists the different
capacities available for both the 30-pin and 72-pin SIMMs.

Table 7.6 SIMM Capacities

Capacity Parity SIMM Non-Parity SIMM

30-Pin SIMM Capacities

256K 256K x 9 256K x 8
™M 1M x9 1M x8
4M 4M x 9 4M x 8
16M 16M x 9 16M x 8

72-Pin SIMM Capacities

™ 256K x 36 256K x 32
M 512K x 36 512K x 32
4M 1M x 36 1M x 32
M 2M x 36 2M x 32
16M 4M x 36 4M x 32
32M 8M x 36 8M x 32
64M 16M x 36 16M x 32

Dynamic RAM SIMMs of each type and capacity are available in different speed ratings.
These ratings are expressed in nanoseconds (billionths of a second, abbreviated ns).
SIMMs have been available in many different speed ratings ranging from 120ns for some
of the slowest, to 50ns for some of the fastest available. Many of the first systems to use
SIMMs used versions rated at 120ns. These were quickly replaced in the market by 100ns
and even faster versions. Today, you can generally purchase SIMMs rated at 80ns, 70ns,
or 60ns. Both faster and slower ones are available, but they are not frequently required

Chapter 7—Memory

and are difficult to obtain. If a system requires a specific speed, then you can almost
always substitute faster speeds if the one specified is not available. There are no problems
in mixing SIMM speeds, as long as you use SIMMs equal or faster than what the system
requires. Because often very little price difference exists between the different speed ver-
sions, I usually buy faster SIMMs than are needed for a particular application, as this may
make them more usable in a future system that may require the faster speed.

Several variations on the 30-pin SIMMs can affect how they work (if at all) in a particular
system. First, there are actually two variations on the pinout configurations. Most sys-
tems use a generic type of SIMM, which has an industry standard pin configuration.
Many older IBM systems used a slightly modified 30-pin SIMM, starting with the XT-286
introduced in 1986 through the PS/2 Models 25, 30, 50, and 60. These systems require a
SIMM with different signals on five of the pins. These are known as IBM-style 30-pin
SIMMs. You can modify a generic 30-pin SIMM to work in the IBM systems and vice
versa, but purchasing a SIMM with the correct pinouts is much easier. Be sure you
identify to the SIMM vendor if you need the specific IBM-style versions.

Another issue with respect to the 30-pin SIMMs relates to the chip count. The SIMM
itself acts as if it were a single chip of 9-bits wide (with parity), and it really does not
matter how this total is derived. Older SIMMs were constructed with nine individual
1-bit-wide chips to make up the total, whereas many newer SIMMs use two 4-bit-wide
chips and one 1-bit-wide chip for parity, making a total of three chips on the SIMM.
Accessing the 3-chip SIMMs can require adjustments to the refresh timing circuits on the
motherboard, and many older motherboards could not cope. Most newer motherboards
automatically handle the slightly different refresh timing of both the 3-chip or 9-chip
SIMMs, and in this case the 3-chip versions are more reliable, use less power, and gener-
ally cost less as well. If you have an older system, most likely it will also work with the
3-chip SIMMs, but some do not. Unfortunately, the only way to know is to try them.
To prevent the additional time required to change them for 9-chip versions should the
3-chip versions not work in an older system, it seems prudent to recommend sticking
with the 9-chip variety in any older systems.

The 72-pin SIMMs do not have different pinouts and are differentiated only by capacity
and speed. These SIMMs are not affected by the number of chips on them. The 72-pin
SIMMs are ideal for 32-bit systems like 486 machines because they comprise an entire
bank of memory (32 data bits plus 4 parity bits). When you configure a system that uses
a 72-pin SIMM, you can usually add or remove memory in single SIMM modules (except
on systems that use interleaved memory schemes to reduce wait states). The 30-pin
SIMMs are clumsy when used in a system with a 32-bit memory architecture because
these SIMMSs must be added or removed in quantities of four to make up a complete
bank. A 386SX or a 286 system would require only two 9-bit SIMMs for a single bank of
memory so the 30-pin SIMMs are a better match.

Remember that some 486 systems (such as the PS/2 90 and 95 systems) use interleaved
memory to reduce wait states. This requires a multiple of two 36-bit SIMMs because in-
terleaved memory accesses are alternated between the SIMMs to improve performance.

Physical Memory

A bank is the smallest amount of memory that can be addressed by the processor at one time and
usually corresponds to the data bus width of the processor. If the memory is interleaved, then a
virtual bank may be twice the absolute data bus width of the processor.

You cannot always replace a SIMM with a greater-capacity unit and expect it to work. For
example, the IBM PS/2 Model 70-Axx and Bxx systems accept 72-pin SIMMs of 1M or 2M
capacity, which are 80ns or faster. Although an 80ns 4M SIMM is available, it does not
work in these systems. The PS/2 Model 55 SX and 65 SX, however, accept 1M, 2M, or

4M 72-pin SIMMs. A larger-capacity SIMM works only if the motherboard is designed to
accept it in the first place. Consult your system documentation to determine the correct
capacity and speed to use.

SIMMs were designed to eliminate chip creep, which plagues systems with memory chips
installed in sockets. Chip creep occurs when a chip works its way out of its socket, caused
by the normal thermal expansion and contraction from powering a system on and off.
Eventually, chip creep leads to poor contact between the chip leads and the socket, and
memory errors and problems begin.

The original solution for chip creep was to solder all the memory chips to the printed
circuit board. This approach, however, was impractical. Memory chips fail more fre-
quently than most other types of chips and soldering chips to the board made the units
difficult to service.

The SIMM incorporates the best compromise between socketed and soldered chips. The
chips are soldered to the SIMM, but you can replace the socketed SIMM module easily. In
addition, the SIMM is held tight to the motherboard by a locking mechanism that does
not work loose from contraction and expansion, but is easy for you to loosen. This solu-
tion is a good one, but it can increase repair costs. You must replace what amounts in
some cases to an entire bank rather than one defective chip.

For example, if you have a 486DX4 with one 60ns 8M SIMM that goes bad, you could
replace it for about $250 or less from chip suppliers who advertise in the computer maga-
zines. This is certainly more expensive than replacing a single 256K chip costing about
$2 each. Of course, 8M SIMMs are used on systems never designed for single chips. It
would take 288 256K chips to equal the memory storage of one 8M SIMM. Troubleshoot-
ing a problem with a single SIMM device is much easier than troubleshooting 288 dis-
crete chips. In addition, one SIMM is more reliable than 288 individual chips!

All systems on the market today use SIMMs. Even Apple Macintosh systems use SIMMs.
The SIMM is not a proprietary memory system but rather an industry-standard device.
As mentioned, some SIMMs have slightly different pinouts and specifications other than
speed and capacity, so be sure that you obtain the correct SIMMs for your system.

Chapter 7—Memory

SIMM Pinouts

Tables 7.7 and 7.8 show the interface connector pinouts for both 30-pin SIMM varieties,
as well as the standard 72-pin version. Also included is a special presence detect table
that shows the configuration of the presence detect pins on various 72-pin SIMMs. The
presence detect pins are used by the motherboard to detect exactly what size and speed
SIMM is installed. Industry-standard 30-pin SIMMs do not have a presence detect feature,
but IBM did add this capability to its modified 30-pin configuration.

Table 7.7

Industry-Standard and IBM 30-Pin SIMM Pinouts

Pin Standard SIMM Signal Names IBM SIMM Signal Names
1 +5 Vdc +5 Vdc

2 Column Address Strobe Column Address Strobe

3 Data Bit 0 Data Bit 0

4 Address Bit 0 Address Bit 0

5 Address Bit 1 Address Bit 1

6 Data Bit 1 Data Bit 1

7 Address Bit 2 Address Bit 2

8 Address Bit 3 Address Bit 3

9 Ground Ground

10 Data Bit 2 Data Bit 2

11 Address Bit 4 Address Bit 4

12 Address Bit 5 Address Bit 5

13 Data Bit 3 Data Bit 3

14 Address Bit 6 Address Bit 6

15 Address Bit 7 Address Bit 7

16 Data Bit 4 Data Bit 4

17 Address Bit 8 Address Bit 8

18 Address Bit 9 Address Bit 9

19 Address Bit 10 Row Address Strobe 1

20 Data Bit 5 Data Bit 5

21 Write Enable Write Enable

22 Ground Ground

23 Data Bit 6 Data Bit 6

24 No Connection Presence Detect (Ground)
25 Data Bit 7 Data Bit 7

26 Data Bit 8 (Parity) Out Presence Detect (1M = Ground)
27 Row Address Strobe Row Address Strobe

28 Column Address Strobe Parity No Connection

29 Data Bit 8 (Parity) In Data Bit 8 (Parity) I/O

w
o

+5 Vdc

+5 Vdc

Physical Memory

Table 7.8 Standard 72-Pin SIMM Pinout

Pin SIMM Signal Name
1 Ground

2 Data Bit 0

3 Data Bit 16

4 Data Bit 1

5 Data Bit 17

6 Data Bit 2

7 Data Bit 18

8 Data Bit 3

9 Data Bit 18

10 +5 Vdc

11 Column Address Strobe Parity
12 Address Bit 0

13 Address Bit 1

14 Address Bit 2

15 Address Bit 3

16 Address Bit 4

17 Address Bit 5

18 Address Bit 6

19 Reserved

20 Data Bit 4

21 Data Bit 20

22 Data Bit 5

23 Data Bit 21

24 Data Bit 6

25 Data Bit 22

26 Data Bit 7

27 Data Bit 23

28 Address Bit 7

29 Block Select O

30 +5 Vdc

31 Address Bit 8

32 Address Bit 9

33 Row Address Strobe 3
34 Row Address Strobe 2
35 Parity Data Bit 2

36 Parity Data Bit O

37 Parity Data Bit 1

38 Parity Data Bit 3

39 Ground

(continues)

Chapter 7—Memory

Table 7.8 Continued

Pin SIMM Signal Name
40 Column Address Strobe 0
41 Column Address Strobe 2
42 Column Address Strobe 3
43 Column Address Strobe 1
44 Row Address Strobe 0

45 Row Address Strobe 1

46 Block Select 1

47 Write Enable

48 Reserved

49 Data Bit 8

50 Data Bit 24

51 Data Bit 9

52 Data Bit 25

53 Data Bit 10

54 Data Bit 26

55 Data Bit 11

56 Data Bit 27

57 Data Bit 12

58 Data Bit 28

59 +5 Vdc

60 Data Bit 29

61 Data Bit 13

62 Data Bit 30

63 Data Bit 14

64 Data Bit 31

65 Data Bit 15

66 Block Select 2

67 Presence Detect Bit 0

68 Presence Detect Bit 1

69 Presence Detect Bit 2

70 Presence Detect Bit 3

71 Block Select 3

72 Ground

Note that the 72-pin SIMMs employ a set of four pins to indicate the type of SIMM to
the motherboard. These presence detect pins are either grounded or not connected to
indicate the type of SIMM to the motherboard. This is very similar to the industry-
standard DX code used on modern 35mm film rolls to indicate the ASA (speed) rating
of the film to the camera. Unfortunately, unlike the film standards, the presence detect

Physical Memory

signaling is not a standard throughout the PC industry. Different system manufacturers
sometimes use different configurations for what is expected on these 4 pins. Table 7.9
shows how IBM defines these pins.

Table 7.9 72-Pin SIMM Presence Detect Pins

70 69 68 67 SIMM Type IBM Part Number

N/C N/C N/C N/C Not a valid SIMM N/A

N/C N/C N/C Gnd 1 MB 120ns N/A

N/C N/C Gnd N/C 2 MB 120ns N/A

N/C N/C Gnd Gnd 2 MB 70ns 92F0102

N/C Gnd N/C N/C 8 MB 70ns 64F3606

N/C Gnd N/C Gnd Reserved N/A

N/C Gnd Gnd N/C 2 MB 80ns 92F0103

N/C Gnd Gnd Gnd 8 MB 80ns 64F3607

Gnd N/C N/C N/C Reserved N/A 1

Gnd N/C N/C Gnd 1 MB 85ns 90X8624

Gnd N/C Gnd N/C 2 MB 85ns 92F0104

Gnd N/C Gnd Gnd 4 MB 70ns 92F0105

Gnd Gnd N/C N/C 4 MB 85ns 79F1003 (square notch)
L40-SX

Gnd Gnd N/C Gnd 1 MB 100ns N/A

Gnd Gnd N/C Gnd 8 MB 80ns 79F1004 (square notch)
L40-SX

Gnd Gnd Gnd N/C 2 MB 100ns N/A

Gnd Gnd Gnd Gnd 4 MB 80ns 87F9980

Gnd Gnd Gnd Gnd 2 MB 85ns 79F1003 (square notch)
L40SX

N/C = No Connection (open)

Gnd = Ground

Pin 67 = Presence detect bit O
Pin 68 = Presence detect bit 1
Pin 69 = Presence detect bit 2
Pin 70 = Presence detect bit 3

RAM Chip Speed

Memory-chip speed is reported in nanoseconds (ns). (One nanosecond is the time that
light takes to travel 11.72 inches.) PC memory speeds vary from about 10ns to 200ns.
When you replace a failed memory module, you must install a module of the same type
and speed as the failed module. You can substitute a chip with a different speed only if
the speed of the replacement chip is equal to or faster than that of the failed chip.

Chapter 7—Memory

Some people have had problems when “mixing” chips because they used a chip that did
not meet the minimum required specifications (for example, refresh timing specifica-
tions) or was incompatible in pinout, depth, width, or design. Chip access time always
can be less (that is, faster) as long as your chip is the correct type and meets all other
specifications.

Substituting faster memory usually doesn’t provide improved performance because the
system still operates the memory at the same speed. In systems not engineered with a
great deal of “forgiveness” in the timing between memory and system, however, substi-
tuting faster memory chips might improve reliability. Faster RAM chips may improve
your system performance also when the motherboard was designed for faster chips than
the manufacturer installed. For example, if your motherboard was designed for 70ns
chips, but the manufacturer installed cheaper 80ns RAM, you may get a slight perfor-
mance boost from removing all the old RAM chips and installing faster ones. However,
do not mix chip speeds by replacing only some 80ns chips with 70ns ones.

The same common symptoms result when the system memory has failed or is simply not
fast enough for the system’s timing. The usual symptoms are frequent parity-check errors
or a system that does not operate at all. The POST also might report errors. If you're un-
sure of what chips to buy for your system, contact the system manufacturer or a repu-
table chip supplier.

Testing Memory

The best way to test memory is to install and use it, with your PC system acting as the
testing tool. Numerous diagnostic programs are available for testing memory. Many
advanced diagnostic programs are discussed in Chapter 20 “Software and Hardware
Diagnostic Tools.” Many of these programs, such as the Norton Utilities NDIAGS pro-
gram, are very inexpensive and yet offer very complete memory diagnostic capabilities.
One word of advice is that all memory testing should be done on a system booted from
a plain DOS disk with no memory managers or other resident programs loaded.

Parity Checking

As mentioned previously, the memory chips handle eight bits per character of data plus
an extra bit called the parity bit. Memory-control circuitry uses the parity bit to cross-
check the integrity of each byte of data. When the circuitry detects an error, the com-
puter stops and displays a message informing you of the malfunction. Parity checking is
the first line of defense for memory and other system errors. Note that many newer sys-
tems are coming with non-parity SIMMs to save money. This eliminates parity checking,
and increases the likelihood that errors go undetected.

Power-On Self Test

The Power-On Self Test (POST), which is in ROM, can be an effective test for problem
memory. When you turn on your system, the POST checks the major hardware compo-
nents including memory. If the POST detects a bad memory chip, it displays a warning.
A more sophisticated disk-based program, however, usually does a better job.

Summary

Advanced Diagnostic Tests

A number of diagnostic programs can be used to test RAM chips and other system com-
ponents. For example, Norton Utilities includes a utility called NDIAGS that tests RAM
chips for defects. Other utility packages that can be used to test RAM chips are discussed
in Chapter 20 “Software and Hardware Diagnostic Tools.” For IBM computers, the Ad-
vanced Diagnostics Disk contains utilities that can be used to test your system RAM.

Such programs should be used any time you receive a memory parity error message, or
a memory error in the POST (Power-On Self Test). Even if you do not receive error mes-
sages, if a properly running system suddenly begins locking up or if strange characters
appear on-screen, you should run a good diagnostic program. Software diagnostics can
help you spot trouble before a hardware problem destroys data.

Summary

This chapter discussed memory from both a physical and a logical point of view. The
types of chips and SIMMs that physically comprise the memory in a PC system were
discussed, and the logical arrangement of this memory was examined. The terms used to
describe the different regions and the purpose for each region were covered. The chapter
also looked at ways of reorganizing the system memory and taking advantage of unused
areas.

	CD - Summary of Contents
	CD - Operation Instructions
	CD - Search
	Upgrading & Repairing PCs, 6th Ed.
	Upgrading & Repairing Networks
	Upgrading & Repairing Macs
	Windows 95 Installation & Configuration Handbook
	Windows NT 4.0 Installation & Configuration Handbook
	Upgrading & Repairing PCs, 4th Ed.
	Introduction
	What Are the Main Objectives of This Book?
	Who Should Use This Book?
	What Is in This Book

	Part 1 - PC Hardware Introduction and Overview
	Ch 1 - Personal Computer Background
	Personal Computing History
	The IBM Personal Computer
	The IBM-Compatible Marketplace 14 Years Later
	Summary

	Ch 2 - Overview of System Features and Components
	Types of Systems
	Documentation
	Summary

	Ch 3 - System Teardown and Inspection
	Using the Proper Tools
	Using Proper Test Equipment
	A Word about Hardware
	Disassembly Procedures
	Summary

	Part 2 - Primary System Components
	Ch 4 - Motherboards
	Replacement Motherboards
	Knowing What to Look For (Selection Criteria)
	Motherboard Form Factors
	Summary

	Ch 5 - Bus Slots and I/O Cards
	What Is a Bus?
	The Need for Expansion Slots
	Types of I/O Buses
	System Resources
	Resolving Resource Conflicts
	Summary

	Ch 6 - Microprocessor Types and Specifications
	Processor Specifications
	Intel Processors
	IBM (Intel-Licensed) Processors
	Intel-Compatible
	Math Coprocessors
	Processor Tests

	Ch 7 - Memory
	The System Memory Layout
	Physical Memory
	Testing Memory
	Summary

	Ch 8 - The Power Supply
	Power Supply Function and Operation
	Leave It On or Turn It Off?
	Power Supply Problems
	Power Supply Troubleshooting
	Repairing the Power Supply
	Obtaining Replacement Units
	Summary

	Part 3 - Input/Output Hardware
	Ch 9 - Input Devices
	Keyboards
	Mice
	Game Adapter (Joystick) Interface
	Summary

	Ch 10 - Video Display Hardware and Specifications
	Monitors
	Video Cards
	Adapter and Display Troubleshooting
	Summary

	Ch 11 - Communications and Networking
	Using Communications Ports and Devices
	Understanding the Components of a LAN
	Evaluating File Server Hardware
	Examining Protocols, Frames, and Communications
	Using Low-Level Protocols
	Using LAN Cables
	Evaluating Fast Network Adapters

	Ch 12 - Audio Hardware
	Sound Card Applications
	Sound Card Concepts and Terms
	Sound Card Characteristics
	Sound Card Options
	Sound Card Installation
	Troubleshooting Sound Card Problems
	Summary

	Part 4 - Mass Storage Systems
	Ch 13 - Floppy Disk Drives and Controllers
	Development of the Floppy Disk Drive
	Drive Components
	Types of Floppy Drives
	Analyzing Floppy Disk Construction
	Drive-Installation Procedures
	Troubleshooting and Correcting Problems
	Repairing Floppy Drives
	Summary

	Ch 14 - Hard Disk Drives and Controllers
	Definition of a Hard Disk
	Hard Disk Drive Operation
	Basic Hard Disk Drive Components
	Hard Disk Features
	Hard Disk Interfaces

	Ch 15 - CD-ROM Drives
	What is CD-ROM?
	What Types of Drives Are Available?
	Installing Your Drive
	Software Loaded, Ready to Run
	Summary

	Ch 16 - Tape and Other Mass-Storage Drives
	Tape Backup Drives
	Removable Storage Drives
	Summary

	Part 5 - System Assembly and Maintenance
	Ch 17 - System Upgrades and Improvements
	Upgrading Goals
	Upgrading by Increasing System Memory
	Adding Motherboard Memory
	Upgrading the ROM BIOS
	Upgrading Disk Drives
	Speeding Up a System
	Adding a Hardware Reset Switch
	Upgrading the DOS Version
	Summary

	Ch 18 - Maintaining Your System: Preventive Maintenance, Backups, and Warranties
	Developing a Preventive Maintenance Program
	Using Power-Protection Systems
	Using Data-Backup Systems
	Purchasing Warranty and Service Contracts
	Summary

	Part 6 - Troubleshooting Hardware and Software Problems
	Ch 19 - Software and Hardware Diagnostic Tools
	Diagnostic Software
	The Power-On Self Test (POST)
	IBM Diagnostics
	General Purpose Diagnostics Programs
	Disk Diagnostics
	Data Recovery Utilities
	Configuration Utilities
	Windows Diagnostic Software
	Shareware and Public-Domain Diagnostics
	Summary

	Ch 20 - Operating systems Software and Troubleshooting
	Disk Operating System (DOS)
	Summary

	Part 7 - IBM System Technical Reference Section
	Ch 21 - IBM Personal Computer Family Hardware
	System-Unit Features by Model
	An Introduction to the PC
	PC Models and Features
	PC Technical Specifications
	An Introduction to the PC Convertible
	PC Convertible Specifications and Highlights
	PC Convertible Models and Features
	Memory Cards
	Optional Printers
	Serial/Parallel Adapters
	CRT Display Adapters
	Internal Modems
	Printer Cables
	Battery Chargers
	Automobile Power Adapters
	The IBM 5144 PC Convertible Monochrome Display
	The IBM 5145 PC Convertible Color Display
	An Introduction to the XT
	XT Models and Features
	XT Technical Specifications
	An Introduction to the 3270 PC
	3270 PC Models and Features
	The 3270 System Adapter
	The Display Adapter
	The Extended Graphics Adapter
	Programmed Symbols
	The Keyboard Adapter
	Software
	Windows
	Special Facilities
	The Significance of the 3270
	An Introduction to the XT 370
	XT/370 Models and Features
	An Introduction to the Portable PC
	Portable PC Technical Specifications
	An Introduction to the AT
	AT Models and Features
	AT Technical Specifications
	AT 3270
	The AT-3270
	An Introduction to the XT Model 286
	XT Model 286 Models and Features
	XT Model 286 Technical Specifications
	Summary

	Ch 22 - IBM PS/1, PS/ValuePoint, and PS/2 System Hardware
	Differences between the PS/x Systems
	PS/2 System-Unit Features by Model
	PS/1 System-Unit Features by Model
	PS/ValuePoint System-Unit Features by Model
	PS/2 BIOS Information
	Summary of IBM Hard Disk Drives
	Summary

	Ch 23 - A Final Word
	Manuals
	Machines
	Modems
	Magazines
	The Appendixes
	In Conclusion

