
975

VI

T
ro

u
b

lesh
o

o
tin

g

20Chapter 20

Operating Systems Software
and Troubleshooting

This chapter focuses on the problems that occur in PC systems because of faulty or in-
compatible software. First, it describes the structure of DOS and how DOS works with
hardware in a functioning system. Topics of particular interest are as follows:

■ DOS file structure

■ DOS disk organization

■ DOS programs for data and disk recovery (their capabilities and dangers)

Additionally, the chapter examines two other important software-related issues: using
memory-resident software (and dealing with the problems it can cause) and distinguish-
ing a software problem from a hardware problem.

Disk Operating System (DOS)
Information about DOS may seem out of place in a book about hardware upgrade and
repair, but if you ignore DOS and other software when you troubleshoot a system, you
can miss a number of problems. The best system troubleshooters and diagnosticians
know the entire system—hardware and software.

This book cannot discuss DOS in depth, but if you need to read more about it, Que Cor-
poration publishes some good books on the subject (Using MS-DOS 6.2, Special Edition,
for example).

This section describes the basics of DOS: where it fits into the PC system architecture,
what its components are, and what happens when a system boots (starts up). Under-
standing the booting process can be helpful when diagnosing startup problems. This
section also explains DOS configuration—an area in which many people experience
problems—and the file formats DOS uses, as well as how DOS manages information
on a disk.

976 Chapter 20—Operating Systems Software and Troubleshooting

Operating System Basics
DOS is just one component in the total system architecture. A PC system has a distinct
hierarchy of software that controls the system at all times. Even when you are operating
within an application program such as 1-2-3 or another high-level application software,
several other layers of programs are always executing underneath. Usually the layers can
be defined distinctly, but sometimes the boundaries are vague.

Communications generally occur only between adjoining layers in the architecture, but
this rule is not absolute. Many programs ignore the services provided by the layer di-
rectly beneath them and eliminate the middleman by skipping one or more layers. An
example is a program that ignores the DOS and ROM BIOS video routines and commu-
nicates directly with the hardware in the interest of the highest possible screen perfor-
mance. Although the high-performance goal is admirable, many operating environments
(such as OS/2 and Windows) no longer allow direct access to the hardware. Programs
that do not play by the rules must be rewritten to run in these new environments.

The hardware is at the lowest level of the system hierarchy. By placing various bytes of
information at certain ports or locations within a system’s memory structure, you can
control virtually anything connected to the CPU. Maintaining control at the hardware
level is difficult; doing so requires a complete and accurate knowledge of the system
architecture. The level of detail required in writing the software operating at this level is
the most intense. Commands to the system at this level are in machine language (binary
groups of information applied directly to the microprocessor). Machine language instruc-
tions are limited in their function: you must use many of them to perform even the
smallest amount of useful work. The large number of instructions required is not really a
problem because these instructions are executed extremely rapidly, wasting few system
resources.

Programmers can write programs consisting of machine language instructions, but gener-
ally they use a tool—an assembler—to ease the process. They write programs using an
editor, and then use the assembler to convert the editor’s output to pure machine lan-
guage. Assembler commands are still very low level, and using them effectively requires
that programmers be extremely knowledgeable. No one (in his or her right mind) writes
directly in machine code anymore; assembly language is the lowest level of program-
ming environment typically used today. Even assembly language, however, is losing
favor among programmers because of the amount of knowledge and work required to
complete even simple tasks and because of its lack of portability between different kinds
of systems.

When you start a PC system, a series of machine code programs, the ROM BIOS, assumes
control. This set of programs, always present in a system, talks (in machine code) to the
hardware. The BIOS accepts or interprets commands supplied by programs above it in
the system hierarchy and translates them to machine code commands that then are
passed on to the microprocessor. Commands at this level typically are called interrupts or
services. A programmer generally can use nearly any language to supply these instruc-
tions to the BIOS. A complete list of these services is supplied in the IBM BIOS Interface
Technical Reference Manual.

977

VI

T
ro

u
b

lesh
o

o
tin

g

DOS itself is made up of several components. It attaches to the BIOS, and part of DOS
actually becomes an extension of the BIOS, providing more interrupts and services for
other programs to use. DOS provides for communication with the ROM BIOS in PCs and
with higher-level software (such as applications). Because DOS gives the programmer
interrupts and services to use in addition to those provided by the ROM BIOS, a lot of
reinventing the wheel in programming routines is eliminated. For example, DOS pro-
vides an extremely rich set of functions that can open, close, find, delete, create, rename,
and perform other file-handling tasks. When programmers want to include some of these
functions in their programs, they can rely on DOS to do most of the work.

This standard set of functions that applications use to read from and write to disks makes
data recovery operations possible. Imagine how tough writing programs and using com-
puters would be if every application program had to implement its own custom disk
interface, with a proprietary directory and file retrieval system. Every application would
require its own special disks. Fortunately, DOS provides a standard set of documented file
storage and retrieval provisions that all software can use; as a result, you can make some
sense out of what you find on a typical disk.

Another primary function of DOS is to load and run other programs. As it performs that
function, DOS is the shell within which another program can be executed. DOS provides
the functions and environment required by other software—including operating envi-
ronments such as GEM and Windows—to run on PC systems in a standard way.

The System ROM BIOS
Think of the system ROM BIOS as a form of compatibility glue that sits between the
hardware and an operating system. Why is it that IBM can sell the same DOS to run on
the original IBM PC and on the latest Pentium systems—two very different hardware
platforms? If DOS were written to talk directly to the hardware on all systems, it would
be a very hardware-specific program. Instead, IBM developed a set of standard services
and functions each system should be capable of performing and coded them as programs
in the ROM BIOS. Each system then gets a completely custom ROM BIOS that talks di-
rectly to the hardware in the system and knows exactly how to perform each specific
function on that hardware only.

This convention enables operating systems to be written to what amounts to a standard
interface that can be made available on many different types of hardware. Any applica-
tions written to the operating system standard interface can run on that system. Figure
20.1 shows that two very different hardware platforms can each have a custom ROM
BIOS that talks directly to the hardware and still provides a standard interface to an
operating system.

The two different hardware platforms described in figure 20.1 can run not only the exact
same version of DOS, but also the same application programs because of the standard
interfaces provided by the ROM BIOS and DOS. Keep in mind, however, that the actual
ROM BIOS code differs among the specific machines and that it is not usually possible
therefore to run a ROM BIOS designed for one system in a different system. ROM BIOS

Disk Operating System (DOS)

978 Chapter 20—Operating Systems Software and Troubleshooting

upgrades must come from a source that has an intimate understanding of the specific
motherboard on which the chip will be placed because the ROM must be custom written
for that particular hardware.

Nonstandard
interface

Standard
interface

Standard
interface

System A
hardware

System A ROM BIOS

MS-DOS

Application program

System B
 hardware

System B ROM BIOS

MS-DOS

Application program

Fig. 20.1
A representation of the software layers in an IBM-compatible system.

The portion of DOS shown in figure 20.1 is the system portion, or core, of DOS. This
core is found physically as the two system files on any bootable DOS disk. These hidden
system files usually have one of two sets of names, IBMBIO.COM and IBMDOS.COM
(used in IBM and Compaq DOS), or IO.SYS and MSDOS.SYS (used in MS-DOS and ver-
sions of DOS licensed from Microsoft by original equipment manufacturers [OEMs]).
These files must be the first and second files listed in the directory on a bootable DOS
disk.

Figure 20.1 represents a simplified view of the system; some subtle but important differ-
ences exist. Ideally, application programs are insulated from the hardware by the ROM
BIOS and DOS, but in reality many programmers write portions of their programs to talk
directly to the hardware, circumventing DOS and the ROM BIOS. A program therefore
might work only on specific hardware, even if the proper DOS and ROM BIOS interfaces
are present in other hardware.

Programs designed to go directly to the hardware are written that way mainly to increase
performance. For example, many programs directly access the video hardware to improve
screen update performance. These applications often have install programs that require
you to specify exactly what hardware is present in your system so that the program can
load the correct hardware-dependent routines into the application.

Additionally, some utility programs absolutely must talk directly to the hardware to
perform their function. For example, a low-level format program must talk directly to the
hard disk controller hardware to perform the low-level format of the disk. Such programs
are very specific to a certain controller or controller type. Another type of system-specific
utility, the driver programs, enables extended memory to function as expanded memory

979

VI

T
ro

u
b

lesh
o

o
tin

g

on an 80386-based system. These drivers work by accessing the 80386 directly and utiliz-
ing specific features of the chip.

Another way that reality might differ from the simple view is that DOS itself communi-
cates directly with the hardware. In fact, much of the IBMBIO.COM file consists of low-
level drivers designed to supplant and supersede ROM BIOS code in the system. People
who own both IBM systems and compatibles might wonder why IBM never seems to
have ROM BIOS upgrades to correct bugs and problems with its systems, although for
vendors of most compatible systems, a ROM upgrade is at least a semiannual occurrence.
The reason is simple: IBM distributes its ROM patches and upgrades in DOS. When IBM
DOS loads, it determines the system type and ID information from the ROM and loads
different routines depending on which version of ROM it finds. For example, at least
four different hard disk code sections are in IBM DOS, but only one is loaded for a
specific system.

I have taken a single DOS boot disk with only the system files (COMMAND.COM and
CHKDSK.COM) on it, and booted the disk on both an XT and an AT system, each one
with an identical 640K of memory. After loading DOS, CHKDSK reported different
amounts of free memory, which showed that DOS had taken up different amounts of
memory in the two systems. This is because of the different code routines loaded, based
on the ROM ID information. In essence, DOS, the ROM BIOS, and the hardware are
much more closely related than most people realize.

DOS Components
DOS consists of two primary components: the input/output (I/O) system and the shell.
The I/O system consists of the underlying programs that reside in memory while the
system is running; these programs are loaded first when DOS boots. The I/O system
is stored in the form of two files hidden on a bootable DOS disk. The files are called
IBMBIO.COM and IBMDOS.COM on an IBM DOS disk, but might go by other names for
other manufacturers’ versions of DOS. For example, IO.SYS and MSDOS.SYS are the MS-
DOS file names. No matter what the exact names are, the function of these two files is
basically the same for all versions of DOS. However, each individual system’s ROM BIOS
looks for the system files by name and often does not recognize them by another name.
This is one reason that the OEM version of DOS you use must be the correct one for your
system.

The user interface program, or shell, is stored in the COMMAND.COM file, which also is
loaded during a normal DOS boot-up. The shell is the portion of DOS that provides the
DOS prompt and that normally communicates with the user of the system.

The following sections examine the DOS I/O system and shell in more detail to help you
properly identify and solve problems related to DOS rather than to hardware. Also in-
cluded is a discussion on how DOS allocates disk file space.

The I/O System and System Files
This section briefly describes the two files that make up the I/O system: IBMBIO.COM
and IBMDOS.COM.

Disk Operating System (DOS)

980 Chapter 20—Operating Systems Software and Troubleshooting

IBMBIO.COM (or IO.SYS). IBMBIO.COM is one of the hidden files that the CHKDSK
command reports on any system (bootable) disk. This file contains the low-level
programs that interact directly with devices on the system and the ROM BIOS.
IBMBIO.COM usually is customized by the particular original equipment manufacturer
(OEM) of the system to match perfectly with that OEM’s ROM BIOS. The file contains
low-level drivers loaded in accord with a particular ROM BIOS, based on the ROM ID
information, as well as on a system initialization routine. During boot-up, the DOS vol-
ume boot sector loads the file into low memory and gives it control of the system (see
the “DOS Volume Boot Sectors” section, later in this chapter). The entire file, except the
system initializer portion, remains in memory during normal system operation.

The name used for the file that performs the functions just described varies among ver-
sions of DOS from different OEMs. Many versions of DOS, including Microsoft’s MS-
DOS, use IO.SYS as the name of this file. Some other manufacturers call the file MIO.SYS,
and Toshiba calls it TBIOS.SYS. Using different names for this file is not normally a prob-
lem, until you try to upgrade from one OEM version of DOS to a different OEM version.
If the different OEMs use different names for this file, the SYS command might fail with
the error message No room for system on destination. Today, most OEMs use the stan-
dard IBMBIO.COM name for this file to eliminate problems in upgrading and otherwise
remain standard.

For a disk to be bootable, IBMBIO.COM or its equivalent must be listed as the first file in
the directory of the disk and must occupy at least the first cluster on the disk (cluster
number 2). The remainder of the file might be placed in clusters anywhere across
the rest of the disk (versions 3 and higher). The file normally is marked with hidden,
system, and read-only attributes, and is placed on a disk by the FORMAT command or
the SYS command.

IBMDOS.COM (or MSDOS.SYS). IBMDOS.COM, the core of DOS, contains the DOS disk
handling programs. The routines present in this file make up the DOS disk and device
handling programs. IBMDOS.COM is loaded into low memory at system boot-up by the
DOS volume boot sector and remains resident in memory during normal system opera-
tion.

The IBMDOS.COM program collection is less likely to be customized by an OEM, but still
might be present on a system by a name different from IBMDOS.COM. The most com-
mon alternative name, MSDOS.SYS, is used by Microsoft’s MS-DOS and some OEM ver-
sions of DOS. Another name is TDOS.SYS (used by Toshiba). Most OEMs today stick to
the IBM convention to eliminate problems in upgrading from one DOS version to
another.

IBMDOS.COM or its equivalent must be listed as the second entry in the root directory
of any bootable disk. This file usually is marked with hidden, system, and read-only at-
tributes, and normally is placed on a disk by the FORMAT command or the SYS com-
mand. There are no special requirements for the physical positioning of this file on a
disk.

981

VI

T
ro

u
b

lesh
o

o
tin

g

The Shell or Command Processor (COMMAND.COM). The DOS command processor
COMMAND.COM is the portion of DOS with which users normally interact. The com-
mands can be categorized by function, but IBM DOS divides them into two types by how
they are made available: resident or transient.

Resident commands are built into COMMAND.COM and are available whenever the DOS
prompt is present. They are generally the simpler, frequently used commands such as
CLS and DIR. Resident commands execute rapidly because the instructions for them are
already loaded into memory. They are memory-resident.

When you look up the definition of a command in the DOS manual, you find an indica-
tion of whether the command is resident or transient. You then can determine what is
required to execute that command. A simple rule is that, at a DOS prompt, all resident
commands are instantly available for execution, with no loading of the program from
disk required. Resident commands are also sometimes termed internal. Commands run
from a program on disk are termed external, or transient, and also are often called utilities.

Transient commands are not resident in the computer’s memory, and the instructions to
execute the command must be located on a disk. Because the instructions are loaded into
memory only for execution and then are overwritten in memory after they are used,
they are called transient commands. Most DOS commands are transient; otherwise, the
memory requirements for DOS would be astronomical. Transient commands are used
less frequently than resident commands and take longer to execute because they must
be found and loaded before they can be run.

Most executable files operate like transient DOS commands. The instructions to execute
the command must be located on a disk. The instructions are loaded into memory only
for execution and are overwritten in memory after the program is no longer being used.

DOS Commands. Tables 20.1 through 20.3 show all the resident, batch, and transient
DOS commands and in which DOS version they are supported. If you are responsible for
providing technical support, you should know what DOS commands are available to the
users at the other end of the phone. These tables identify which commands are sup-
ported in any version of DOS released to date.

Table 20.1 Resident DOS Commands

Command DOS Version Number
Name 1.0 1.1 2.0 2.1 3.0 3.1 3.2 3.3 4.x 5.x 6.x

CD/CHDIR × × × × × × × × ×
CHCP × × ×
CLS × × × × × × × × ×

COPY × × × × × × × × × × ×
CTTY × × × × × × × × ×
DATE × × × × × × × × × × ×

Disk Operating System (DOS)

(continues)

982 Chapter 20—Operating Systems Software and Troubleshooting

Table 20.1 Continued

Command DOS Version Number
Name 1.0 1.1 2.0 2.1 3.0 3.1 3.2 3.3 4.x 5.x 6.x

DEL/ERASE × × × × × × × × × × ×

DIR × × × × × × × × × × ×
E×IT × × × × × × ×
E×PAND × ×

LOADHI/LH × ×
MD/MKDIR × × × × × × × × ×
PATH × × × × × × × × ×

PROMPT × × × × × × × × ×
RD/RMDIR × × × × × × × × ×
REN/RENAME × × × × × × × × × × ×

SET × × × × × × × × ×
TIME × × × × × × × × × × ×
TYPE × × × × × × × × × × ×

VER × × × × × × ×
VERIFY × × × × × × × × ×
VOL × × × × × × × × ×

Table 20.2 DOS Batch File Commands

Command DOS Version Number
Name 1.0 1.1 2.0 2.1 3.0 3.1 3.2 3.3 4.x 5.x 6.x

CALL × × × ×
ECHO × × × × × × × × × × ×

FOR × × × × × × × × × × ×
GOTO × × × × × × × × × × ×
IF × × × × × × × × × × ×

PAUSE × × × × × × × × × × ×
REM × × × × × × × × × × ×
SHIFT × × × × × × × × × × ×

Table 20.3 Transient DOS Commands

Command DOS Version Number
Name 1.0 1.1 2.0 2.1 3.0 3.1 3.2 3.3 4.x 5.x 6.x

APPEND × × × ×
ASSIGN × × × × × × × × ×

ATTRIB × × × × × × ×
BACKUP × × × × × × × × ×

983

VI

T
ro

u
b

lesh
o

o
tin

g

Command DOS Version Number
Name 1.0 1.1 2.0 2.1 3.0 3.1 3.2 3.3 4.x 5.x 6.x

BASIC × × × × × × × × × × ×
BASICA × × × × × × × × × × ×
CHCP × × × ×

CHKDSK × × × × × × × × × × ×
COMMAND × × × × × × × × ×
COMP × × × × × × × × × × ×

DEBUG × × × × × × × × × × ×
DISKCOMP × × × × × × × × × × ×
DISKCOPY × × × × × × × × × × ×

DOSKEY × ×
DOSSHELL × × ×
EDIT × ×

EDLIN × × × × × × × × × × ×
EMM386 × ×
EXE2BIN × × × × × × ×

FASTOPEN × × × ×
FC × ×
FDISK × × × × × × × × ×

FIND × × × × × × × × ×
FORMAT × × × × × × × × × × ×
GRAFTABL × × × × × × × × ×

GRAPHICS × × × × × × × × ×
HELP ×
JOIN × × × × × × ×

KEYB × × × ×
KEYBFR × × ×
KEYBGR × × ×

KEYBIT × × ×
KEYBSP × × ×
KEYBUK × × ×

LABEL × × × × × × ×
LIB × × × × × × ×
LINK × × × × × × ×

MEM × × ×
MIRROR × ×
MODE × × × × × × × × × × ×

MORE × × × × × × × × ×
NLSFUNC × × × ×
PRINT × × × × × × × × ×

(continues)

Disk Operating System (DOS)

984 Chapter 20—Operating Systems Software and Troubleshooting

Table 20.3 Continued

Command DOS Version Number
Name 1.0 1.1 2.0 2.1 3.0 3.1 3.2 3.3 4.x 5.x 6.x

QBASIC ×

RECOVER × × × × × × × × ×
REPLACE × × × × × × ×
RESTORE × × × × × × × × ×

SETVER × ×
SHARE × × × × × ×
SORT × × × × × × × × ×

SUBST × × × × × × ×
SYS × × × × × × × × × × ×
TREE × × × × × × × × ×

UNDELETE × ×
UNFORMAT × ×
XCOPY × × × × ×

LIB, LINK, and EXE2BIN are included with the DOS technical-reference manual for DOS versions 3.3 and
higher. EXE2BIN is included with DOS 5.0.

DOS Command File Search Procedure. DOS looks only in specific places for the
instructions for a transient command, or a software application’s executable file. The
instructions that represent the command or program are in files on one or more disk
drives. Files that contain execution instructions have one of three specific extensions to
indicate to DOS that they are program files: .COM (command files), .EXE (executable
files), or .BAT (batch files). .COM and .EXE files are machine code programs; .BAT files
contain a series of commands and instructions using the DOS batch facilities. The places
in which DOS looks for these files is controlled by the current directory and the PATH
command.

In other words, if you type several characters, such as WIN, at the DOS prompt and press
the Enter key, DOS attempts to find and run a program named WIN. DOS performs a
two- or three-level search for program instructions (the file). The first step in looking for
command instructions is to see whether the command is a resident one and, if so, run it
from the program code already loaded. If the command is not resident, DOS looks in the
current directory for .COM, .EXE, and .BAT files, in that order, and loads and executes
the first file it finds with the specified name. If the command is not resident and not in
the current directory, DOS looks in all the directories specified in the DOS PATH setting
(which the user can control); DOS searches for the file within each directory in the ex-
tension order just indicated. Finally, if DOS fails to locate the required instructions,

985

VI

T
ro

u
b

lesh
o

o
tin

g

it displays the error message Bad command or filename. This error message might be mis-
leading because the command instructions usually are missing from the search areas
rather than actually being bad.

Suppose that, at the DOS prompt, I type the command XYZ and press Enter. This com-
mand sends DOS on a search for the XYZ program’s instructions. If DOS is successful, the
program starts running within seconds. If DOS cannot find the proper instructions, an
error message is displayed. Here is what happens:

1. DOS checks internally to see whether it can find the XYZ command as one of the
resident commands whose instructions are already loaded. It finds no XYZ com-
mand as resident.

2. DOS looks next in the current directory on the current drive for files named
XYZ.COM, then for files named XYZ.EXE, and finally for files named XYZ.BAT.
Suppose that I had logged in to drive C:, and the current directory is \ (the root
directory); therefore, DOS did not find the files in the current directory.

3. DOS looks to see whether a PATH is specified. If not, the search ends here. In this
scenario, I do have a PATH specified when my system was started, so DOS checks
every directory listed in that PATH for the first file it can find named XYZ.COM,
XYZ.EXE, or XYZ.BAT (in that order). My PATH lists several directories, but DOS
does not find an appropriate file in any of them.

4. The search ends, and DOS gives me the message Bad command or filename.

For this search-and-load procedure to be successful, I must ensure that the desired pro-
gram or command file exists in the current directory on the current drive, or I must set
my DOS PATH to point to the drive and directory in which the program does exist. This
is why the PATH is so powerful in DOS.

A common practice is to place all simple command files or utility programs in one direc-
tory and set the PATH to point to that directory. Then each of those programs (com-
mands) is instantly available by simply typing its name, just as though it were resident.

This practice works well only for single-load programs such as commands and other
utilities. Major applications software often consists of many individual files and might
have problems if they are called up from a remote directory or drive using the DOS
PATH. The reason is that when the application looks for its overlay and accessory files,
the DOS PATH setting has no effect.

On a hard disk system, users typically install all transient commands and utilities in
subdirectories and ensure that the PATH points to those directories. The path literally is a
list of directories and subdirectories in the AUTOEXEC.BAT file that tells DOS where to
search for files when these files are not in the same directory you are when you enter a
command. The system then functions as though all the commands were resident because

Disk Operating System (DOS)

986 Chapter 20—Operating Systems Software and Troubleshooting

DOS finds the necessary files without further thought or effort on the part of the user.
A path on such a hard drive may look like this:

PATH=C:\DOS;C:\BAT;C:\UTILS;

It is important to know that when DOS loads each time you power up your system, it
looks for two such text files. The first text file DOS looks for is CONFIG.SYS, which also
can be edited by the system user. This file loads device drivers like ANSI.SYS. The follow-
ing is an example of a common CONFIG.SYS file:

FILES=30
BUFFERS=17
SHELL=C:\DOS\COMMAND.COM C:\DOS /E:512 /P
LASTDRIVE=G
DEVICE=C:\DOS\ANSI.SYS

The second text file DOS looks for each time you power up your system is
AUTOEXEC.BAT, which sets the PATH and loads memory-resident programs and
performs other system configuration tasks like creating a C:\> prompt. A typical
AUTOEXEC.BAT file might look like the following:

@ECHO OFF
PROMPT PG
PATH=C:\DOS;C:\BAT;C:\UTILS;
\DOS\MODE CON: RATE=32 DELAY=1
\DOS\DOSKEY

The PATH normally cannot exceed 128 characters in length (including colons, semi-
colons, and backslashes). As a result of that limitation, you cannot have a PATH that
contains all your directories if the directory names exceed 128 characters. For more infor-
mation on the AUTOEXEC.BAT and CONFIG.SYS files, consult Que’s Using DOS 6.2,
Special Edition, or Using IBM PC DOS 6.1.

You can completely short-circuit the DOS command search procedure by simply entering
at the command prompt the complete path to the file. For example, rather than include
C:\DOS in the PATH and enter this command:

C:\>CHKDSK

You can enter the full name of the program:

C:\>C:\DOS\CHKDSK.COM

The latter command immediately locates and loads the CHKDSK program with no search
through the current directory or PATH setting. This method of calling up a program
speeds the location and execution of the program and works especially well to increase
the speed of DOS batch file execution.

A few major software applications have problems if they are called up from a remote
directory or drive using the DOS PATH. Such an application often is made up of many
individual files, including overlay and accessory files. Problems can occur when an appli-
cation expects you to run it from its own directory by making that directory current and

987

VI

T
ro

u
b

lesh
o

o
tin

g

then running the program’s COM or EXE file. Such applications look for their own files
in the current directory. If you did not change to the application’s directory, because the
program does not look for its files by checking the path, the program does not find its
own files. The path entry in AUTOEXEC.BAT has no effect.

Such applications can be called up through batch files or aided by programs that “force-
feed” a path-type setting to the programs; the software then works as though files are
“here” even when they are in some other directory. The best utility for this purpose is
the APPEND command in DOS 3.0 and later versions. For information on the use of the
APPEND command see Que’s Using MS-DOS 6.

DOS History
The following section details some of the differences between the DOS versions that have
appeared over the years.

IBM and MS DOS 1.x to 3.x Versions. There have been many specific DOS versions in
the 1.x to 3.x range from both IBM and Microsoft, as well as a few other OEMs. Table
20.4 lists the file dates and sizes for the major IBM and Microsoft DOS versions. You can
see how DOS has grown over the years!

Table 20.4 System File Sizes

DOS IO.SYS MSDOS.SYS
Version File Dates COMMAND.COM IBMBIO.COM IBMDOS.COM

IBM PC 1.0 08-04-81 3,231 1,920 6,400

IBM PC 1.1 05-07-82 4,959 1,920 6,400

IBM PC 2.0 03-08-83 17,792 4,608 17,152

IBM PC 2.1 10-20-83 17,792 4,736 17,024

IBM PC 3.0 08-14-84 22,042 8,964 27,920

IBM PC 3.1 03-07-85 23,210 9,564 27,760

IBM PC 3.2 12-30-85 23,791 16,369 28,477

MS 3.2 07-07-86 23,612 16,138 28,480

IBM PC 3.3 03-17-87 25,307 22,100 30,159

MS 3.3 07-24-87 25,276 22,357 30,128

IBM DOS 4.xx Versions. DOS 4.xx has had many revisions since being introduced in
mid-1988. Since the first release, IBM has released different Corrective Service Diskettes
(CSDs), which fix a variety of problems with DOS 4. Each CSD is cumulative, which
means that the later ones include all previous fixes. Note that these fixes are for IBM
DOS and not for any other manufacturer’s version.

Table 20.5 shows a summary of the different IBM DOS 4.xx releases and specific infor-
mation about the system files and shell so that you can identify the release you are
using. To obtain the latest Corrective Service Diskettes (CSDs) that update you to the
latest release, contact your dealer—the fixes are free.

Disk Operating System (DOS)

988 Chapter 20—Operating Systems Software and Troubleshooting

Table 20.5 IBM DOS 4.xx Releases

File Name Size Date Version SYSLEVEL Comments

IBMBIO.COM 32810 06/17/88 4.00 — Original release.
IBMDOS.COM 35984 06/17/88
COMMAND.COM 37637 06/17/88

IBMBIO.COM 32816 08/03/88 4.01 CSD UR22624 EMS fixes.
IBMDOS.COM 36000 08/03/88
COMMAND.COM 37637 06/17/88

IBMBIO.COM 32816 08/03/88 4.01 CSD UR24270 Date change fixed.
IBMDOS.COM 36000 11/11/88
COMMAND.COM 37652 11/11/88

IBMBIO.COM 33910 04/06/89 4.01 CSD UR25066 “Death disk” fixed.
IBMDOS.COM 37136 04/06/89
COMMAND.COM 37652 11/11/88

IBMBIO.COM 34660 03/20/90 4.01 CSD UR29015 SCSI support added.
IBMDOS.COM 37248 02/20/90
COMMAND.COM 37765 03/20/90

IBMBIO.COM 34660 04/27/90 4.01 CSD UR31300 HPFS compatibility.
IBMDOS.COM 37264 05/21/90
COMMAND.COM 37765 06/29/90

IBMBIO.COM 34692 04/08/91 4.01 CSD UR35280 HPFS and CHKDSK.
IBMDOS.COM 37280 11/30/90
COMMAND.COM 37762 09/27/91

IBM DOS 5.xx Versions. DOS 5.xx has had several different revisions since being intro-
duced in mid-1991. Since the first release, IBM has released various Corrective Service
Diskettes (CSDs), which fix a variety of problems with DOS 5. Each CSD is cumulative,
which means that the later ones include all previous fixes. Note that these fixes are for
IBM DOS and not any other manufacturer’s version. IBM typically provides more support
in the way of fixes and updates than any other manufacturer. Note that IBM now sup-
ports the installation of IBM DOS on clone systems.

Table 20.6 shows a summary of the different IBM DOS 5.xx releases and specific informa-
tion about the system files and shell so that you can identify the release you are using.
To obtain the latest Corrective Service Diskettes (CSDs) that update you to the latest
release, contact your dealer—the fixes are free.

989

VI

T
ro

u
b

lesh
o

o
tin

g

Table 20.6 IBM DOS 5.xx Releases

File Name Size Date Version SYSLEVEL Comments

IBMBIO.COM 33430 05/09/91 5.00 — Original release.
IBMDOS.COM 37378 05/09/91
COMMAND.COM 47987 05/09/91

IBMBIO.COM 33430 05/09/91 5.00 CSD UR35423 XCOPY and
IBMDOS.COM 37378 05/09/91 QEDIT fixed.
COMMAND.COM 48005 08/16/91

IBMBIO.COM 33430 05/09/91 5.00 CSD UR35748 SYS fixed.
IBMDOS.COM 37378 05/09/91
COMMAND.COM 48006 10/25/91

IBMBIO.COM 33446 11/29/91 5.00 CSD UR35834 EMM386, FORMAT,
IBMDOS.COM 37378 11/29/91 and BACKUP
COMMAND.COM 48006 11/29/91 fixed.

IBMBIO.COM 33446 02/28/92 5.00.1 CSD UR36603 Many fixes;
IBMDOS.COM 37378 11/29/91 Rev. A clone support;
COMMAND.COM 48006 02/28/92 new retail version.

IBMBIO.COM 33446 05/29/92 5.00.1 CSD UR37387 RESTORE and
IBMDOS.COM 37362 05/29/92 Rev. 1 UNDELETE fixed;
COMMAND.COM 48042 09/11/92 >1GB HD fixed.

IBMBIO.COM 33718 09/01/92 5.02 — New retail version;
IBMDOS.COM 37362 09/01/92 Rev. 0 several new
COMMAND.COM 47990 09/01/92 commands added.

IBM and MS DOS 6.xx Versions. There are several different versions of DOS 6.xx from
both Microsoft and IBM. The original release of MS-DOS 6.0 came from Microsoft. One
of the features included in 6.0 was the new DoubleSpace disk compression. Unfortu-
nately, DoubleSpace had some problems with certain system configurations and hard-
ware types. In the meantime, IBM took DOS 6.0 from Microsoft, updated it to fix several
small problems, removed the disk compression, and sold it as IBM DOS 6.1. Microsoft
had many problems with the DoubleSpace disk compression used in 6.0 and released 6.2
as a free bug fix upgrade. Microsoft then ran into legal problems in a lawsuit brought by
Stacker Corporation. Microsoft was found to have infringed on the Stacker software and
was forced to remove the DoubleSpace compression from DOS 6.2, which was released as
6.21. Microsoft then quickly developed a noninfringing disk compression utility called
DriveSpace, which was released in 6.22, along with several minor bug fixes. IBM skipped
over the 6.2 version number and released DOS 6.3 (now called PC DOS), which also in-
cluded a different type of compression program than that used by Microsoft. By avoiding
the DoubleSpace software, IBM also avoided the bugs and legal problems that Microsoft
had encountered. Also included in the updated IBM releases are enhanced PCMCIA and
power management commands.

Disk Operating System (DOS)

990 Chapter 20—Operating Systems Software and Troubleshooting

Table 20.7 shows a summary of the different IBM DOS 6.xx releases.

Table 20.7 IBM and Microsoft DOS 6.xx Releases

File Name Size Date Version SYSLEVEL Comments

IO.SYS 40470 03/10/93 MS — Original Microsoft
MSDOS.SYS 38138 03/10/93 6.00 release.
COMMAND.COM 52925 03/10/93 Rev. A

IBMBIO.COM 40694 06/29/93 IBM — Original IBM
IBMDOS.COM 38138 06/29/93 6.10 release. Has fixes
COMMAND.COM 52589 06/29/93 Rev. 0 over MS version.

IBMBIO.COM 40964 09/30/93 PC — SuperStor/DS
IBMDOS.COM 38138 09/30/93 6.10 compression;
COMMAND.COM 52797 09/30/93 Rev. 0 enhanced PCMCIA.

IO.SYS 40566 09/30/93 MS — DoubleSpace fixes.
MSDOS.SYS 38138 09/30/93 6.20 Enhanced cleanboot
COMMAND.COM 54619 09/30/93 Rev. A and data recovery.

IO.SYS 40774 05/31/94 MS — New DriveSpace disk
MSDOS.SYS 38138 05/31/94 6.22 compression software
COMMAND.COM 54645 05/31/94 Rev. A and minor fixes.

IBMBIO.COM 40758 12/31/93 IBM — Numerous bug fixes;
IBMDOS.COM 38138 12/31/93 6.30 new disk compression
COMMAND.COM 54804 08/12/94 Rev. 0 software.

The Boot Process
The term boot comes from the term bootstrap and describes the method by which the PC
becomes operational. Just as you pull on a large boot by the small strap attached to the
back, a PC can load a large operating system program by first loading a small program
that then can pull in the operating system. A chain of events begins with the application
of power and finally results in an operating computer system with software loaded and
running. Each event is called by the event before it and initiates the event after it.

Tracing the system boot process might help you find the location of a problem if you
examine the error messages the system displays when the problem occurs. If you can see
an error message displayed only by a particular program, you can be sure that the pro-
gram in question was at least loaded and partially running. Combine this information
with the knowledge of the boot sequence, and you can at least tell how far along the
system’s startup procedure is. You usually want to look at whatever files or disk areas
were being accessed during the failure in the boot process. Error messages displayed dur-
ing the boot process as well as those displayed during normal system operation can be
hard to decipher, but the first step in decoding an error message is to know where the
message came from—what program actually sent or displayed the message. The follow-
ing programs are capable of displaying error messages during the boot process:

■ Motherboard ROM BIOS

■ Adapter card ROM BIOS extensions

■ Master partition boot sector

■ DOS volume boot sector

991

VI

T
ro

u
b

lesh
o

o
tin

g

■ System files (IBMBIO.COM and IBMDOS.COM)

■ Device drivers (loaded through CONFIG.SYS)

■ Shell program (COMMAND.COM)

■ Programs run by AUTOEXEC.BAT

This section examines the system startup sequence and provides a detailed account of
many of the error messages that might occur during this process.

How DOS Loads and Starts
If you have a problem with your system during startup and you can determine where in
this sequence of events your system has stalled, you know what events have occurred
and you probably can eliminate each of them as a cause of the problem. The following
steps occur in a typical system startup:

1. You switch on electrical power to the system.

2. The power supply performs a self-test. When all voltages and current levels are
acceptable, the supply indicates that the power is stable and sends the Power Good
signal to the motherboard. The time from switch-on to Power Good is normally
between .1 and .5 seconds.

3. The microprocessor timer chip receives the Power Good signal, which causes it to
stop generating a reset signal to the microprocessor.

4. The microprocessor begins executing the ROM BIOS code, starting at memory
address FFFF:0000. Because this location is only 16 bytes from the very end of the
available ROM space, it contains a JMP (jump) instruction to the actual ROM BIOS
starting address.

5. The ROM BIOS performs a test of the central hardware to verify basic system func-
tionality. Any errors that occur are indicated by audio codes because the video
system has not yet been initialized.

6. The BIOS performs a video ROM scan of memory locations C000:0000 through
C780:0000, looking for video adapter ROM BIOS programs contained on a video
adapter card plugged into a slot. If a video ROM BIOS is found, it is tested by a
checksum procedure. If it passes the checksum test, the ROM is executed; the
video ROM code initializes the video adapter, and a cursor appears on-screen.
If the checksum test fails, the following message appears:

C000 ROM Error

7. If the BIOS finds no video adapter ROM, it uses the motherboard ROM video
drivers to initialize the video display hardware, and a cursor appears on-screen.

8. The motherboard ROM BIOS scans memory locations C800:0000 through
DF80:0000 in 2K increments for any other ROMs located on any other adapter
cards. If any ROMs are found, they are checksum-tested and executed. These
adapter ROMs can alter existing BIOS routines as well as establish new ones.

Disk Operating System (DOS)

992 Chapter 20—Operating Systems Software and Troubleshooting

9. Failure of a checksum test for any of these ROM modules causes this message to
appear:

XXXX ROM Error

10. The address XXXX indicates the segment address of the failed ROM module.

11. The ROM BIOS checks the word value at memory location 0000:0472 to see
whether this start is a cold start or a warm start. A word value of 1234h in this
location is a flag that indicates a warm start, which causes the memory test portion
of the POST (Power-On Self Test) to be skipped. Any other word value in this loca-
tion indicates a cold start and full POST.

12. If this is a cold start, the POST executes. Any errors found during the POST are
reported by a combination of audio and displayed error messages. Successful
completion of the POST is indicated by a single beep.

13. The ROM BIOS searches for a DOS volume boot sector at cylinder 0, head 0, sec-
tor 1 (the very first sector) on the A drive. This sector is loaded into memory at
0000:7C00 and tested. If a disk is in the drive but the sector cannot be read, or if
no disk is present, the BIOS continues with the next step.

14. If the first byte of the DOS volume boot sector loaded from the floppy disk in
drive A is less than 06h, or if the first byte is greater than or equal to 06h, and the
first nine words contain the same data pattern, this error message appears and
the system stops:

602-Diskette Boot Record Error

15. If the disk was prepared with FORMAT or SYS using DOS 3.3 or an earlier version
and the specified system files are not the first two files in the directory, or if a
problem was encountered loading them, the following message appears:

Non-System disk or disk error
Replace and strike any key when ready

16. If the disk was prepared with FORMAT or SYS using DOS 3.3 or an earlier version
and the boot sector is corrupt, you might see this message:

 Disk Boot failure

17. If the disk was prepared with FORMAT or SYS using DOS 4.0 and later versions and
the specified system files are not the first two files in the directory, or if a problem
was encountered loading them, or the boot sector is corrupt, this message appears:

Non-System disk or disk error
Replace and press any key when ready

18. If no DOS volume boot sector can be read from drive A:, the BIOS looks for a mas-
ter partition boot sector at cylinder 0, head 0, sector 1 (the very first sector) of the
first fixed disk. If this sector is found, it is loaded into memory address 0000:7C00
and tested for a signature.

993

VI

T
ro

u
b

lesh
o

o
tin

g

19. If the last two (signature) bytes of the master partition boot sector are not equal to
55AAh, software interrupt 18h (Int 18h) is invoked on most systems. On an IBM
PS/2 system, a special character graphics message is displayed that depicts inserting
a floppy disk in drive A: and pressing the F1 key. For non-PS/2 systems made by
IBM, an Int 18h executes the ROM BIOS–based Cassette BASIC Interpreter. On any
other IBM-compatible system, a message indicating some type of boot error is dis-
played. For example, systems with Phoenix AT ROM BIOS display this message:

No boot device available -
strike F1 to retry boot, F2 for setup utility

20. The master partition boot sector program searches its partition table for an entry
with a system indicator byte indicating an extended partition. If the program finds
such an entry, it loads the extended partition boot sector at the location indicated.
The extended partition boot sector also has a table that is searched for another
extended partition. If another extended partition entry is found, that extended
partition boot sector is loaded from the location indicated, and the search contin-
ues until either no more extended partitions are indicated or the maximum num-
ber of 24 total partitions has been reached.

21. The master partition boot sector searches its partition table for a boot indicator
byte marking an active partition.

22. On an IBM system, if none of the partitions is marked active (bootable), ROM
BIOS–based Cassette BASIC is invoked. On most IBM-compatible systems, some
type of disk error message is displayed.

23. If any boot indicator in the master partition boot record table is invalid, or if more
than one indicates an active partition, the following message is displayed, and the
system stops:

Invalid partition table

24. If an active partition is found in the master partition boot sector, the volume boot
sector from the active partition is loaded and tested.

25. If the DOS volume boot sector cannot be read successfully from the active partition
within five retries because of read errors, this message appears and the system
stops:

Error loading operating system

26. The hard disk DOS volume boot sector is tested for a signature. If the DOS volume
boot sector does not contain a valid signature of 55AAh as the last two bytes in the
sector, this message appears and the system stops:

Missing operating system

27. The volume boot sector is executed as a program. This program checks the root
directory to ensure that the first two files are IBMBIO.COM and IBMDOS.COM.
If these files are present, they are loaded.

Disk Operating System (DOS)

994 Chapter 20—Operating Systems Software and Troubleshooting

28. If the disk was prepared with FORMAT or SYS using DOS 3.3 or an earlier version
and the specified system files are not the first two files in the directory, or if a prob-
lem is encountered loading them, the following message appears:

Non-System disk or disk error
Replace and strike any key when ready

29. If the disk was prepared with FORMAT or SYS using DOS 3.3 or an earlier version
and the boot sector is corrupt, you might see this message:

 Disk Boot failure

30. If the disk was prepared with FORMAT or SYS using DOS 4.0 or a later version and
the specified system files are not the first two files in the directory, or if a problem
is encountered loading them, or the boot sector is corrupt, the following message
appears:

Non-System disk or disk error
Replace and press any key when ready

31. If no problems occur, the DOS volume boot sector executes IBMBIO.COM.

32. The initialization code in IBMBIO.COM copies itself into the highest region of
contiguous DOS memory and transfers control to the copy. The initialization code
copy then relocates IBMDOS over the portion of IBMBIO in low memory that con-
tains the initialization code, because the initialization code no longer needs to be
in that location.

33. The initialization code executes IBMDOS, which initializes the base device drivers,
determines equipment status, resets the disk system, resets and initializes attached
devices, and sets the system default parameters.

34. The full DOS filing system is active, and the IBMBIO initialization code is given
back control.

35. The IBMBIO initialization code reads CONFIG.SYS four times.

36. During the first read, all the statements except DEVICE, INSTALL, and SHELL are
read and processed in a predetermined order. Thus, the order of appearance for
statements other than DEVICE, INSTALL, and SHELL in CONFIG.SYS is of no
significance.

37. During the second read, DEVICE statements are processed in the order in which
they appear, and any device driver files named are loaded and executed.

38. During the third read, INSTALL statements are processed in the order in which
they appear, and the programs named are loaded and executed.

39. During the fourth and final read, the SHELL statement is processed and loads the
specified command processor with the specified parameters. If the CONFIG.SYS file
contains no SHELL statement, the default \COMMAND.COM processor is loaded
with default parameters. Loading the command processor overwrites the initializa-
tion code in memory (because the job of the initialization code is finished).

995

VI

T
ro

u
b

lesh
o

o
tin

g

40. If AUTOEXEC.BAT is present, COMMAND.COM loads and runs AUTOEXEC.BAT.
After the commands in AUTOEXEC.BAT have been executed, the DOS prompt
appears (unless the AUTOEXEC.BAT calls an application program or shell of some
kind, in which case the user might operate the system without ever seeing a DOS
prompt).

41. If no AUTOEXEC.BAT is present, COMMAND.COM executes the internal DATE
and TIME commands, displays a copyright message, and displays the DOS prompt.

These are the steps performed by IBM AT systems, and most IBM-compatible systems
closely emulate them. Some minor variations from this scenario are possible, such as
those introduced by other ROM programs in the various adapters that might be plugged
into a slot. Also, depending on the exact ROM BIOS programs involved, some of the
error messages and sequences might vary. Generally, however, a computer follows this
chain of events in “coming to life.”

You can modify the system startup procedures by altering the CONFIG.SYS and
AUTOEXEC.BAT files. These files control the configuration of DOS and allow special
startup programs to be executed every time the system starts. The User’s Guide and
Reference that comes with DOS 5 has an excellent section on DOS configuration.

File Management
DOS uses several elements and structures to store and retrieve information on a disk.
These elements and structures enable DOS to communicate properly with the ROM BIOS
as well as application programs to process file storage and retrieval requests. Understand-
ing these structures and how they interact helps you to troubleshoot and even repair
these structures.

DOS File Space Allocation
DOS allocates disk space for a file on demand (space is not preallocated). The space is
allocated one cluster (or allocation unit) at a time. A cluster is always one or more sec-
tors. (For more information about sectors, refer to Chapter 14, “Hard Disk Drives and
Controllers.”)

The clusters are arranged on a disk to minimize head movement for multisided media.
DOS allocates all the space on a disk cylinder before moving to the next cylinder. It does
this by using the sectors under the first head, and then all the sectors under the next
head, and so on until all sectors of all heads of the cylinder are used. The next sector
used is sector 1 of head 0 on the next cylinder. (You find more information on floppy
disks and drives in Chapter 13, “Floppy Disk Drives and Controllers,” and on hard disks
in Chapter 14, “Hard Disk Drives and Controllers.”)

DOS version 2.x uses a simple algorithm when it allocates file space on a disk. Every time
a program requests disk space, DOS scans from the beginning of the FAT until it finds a
free cluster in which to deposit a portion of the file; then the search continues for the
next cluster of free space, until all the file is written. This algorithm, called the First
Available Cluster algorithm, causes any erased file near the beginning of the disk to be
overwritten during the next write operation because those clusters would be the first

Disk Operating System (DOS)

996 Chapter 20—Operating Systems Software and Troubleshooting

available to the next write operation. This system prevents recovery of that file and pro-
motes file fragmentation because the first available cluster found is used regardless of
whether the entire file can be written there. DOS simply continues searching for free
clusters in which to deposit the remainder of the file.

The algorithm used for file allocation in DOS 3.0 and later versions is called the Next
Available Cluster algorithm. In this algorithm, the search for available clusters in which to
write a file starts not at the beginning of the disk, but rather from where the last write
occurred. Therefore, the disk space freed by erasing a file is not necessarily reused imme-
diately. Rather, DOS maintains a Last Written Cluster pointer indicating the last written
cluster and begins its search from that point. This pointer is maintained in system RAM
and is lost when the system is reset or rebooted, or when a disk is changed in a floppy
drive.

In working with 360K drives, all versions of DOS always use the First Available Cluster
algorithm because the Last Written Cluster pointer cannot be maintained for floppy disk
drives that do not report a disk change (DC) signal to the controller, and because 360K
drives do not supply the DC signal. With 360K floppy drives, therefore, DOS always
assumes that the disk could have been changed, which flushes any buffers and resets the
Last Written Cluster pointer.

The Next Available Cluster algorithm in DOS 3.0 and later versions is faster than the First
Available Cluster algorithm and helps minimize fragmentation. Sometimes this type of
algorithm is called elevator seeking because write operations occur at higher and higher
clusters until the end of the disk area is reached. At that time, the pointer is reset, and
writes work their way from the beginning of the disk again.

Files still end up becoming fragmented using the new algorithm, because the pointer is
reset after a reboot, a disk change operation, or when the end of the disk is reached.
Nevertheless, a great benefit of the newer method is that it makes unerasing files more
likely to succeed even if the disk has been written to since the erasure, because the file
just erased is not likely to be the target of the next write operation. In fact, it might be
some time before the clusters occupied by the erased file are reused.

Even when a file is overwritten under DOS 3.0 and later versions, the clusters occupied
by the file are not actually reused in the overwrite. For example, if you accidentally save
on a disk a file using the same name as an important file that already exists, the existing
file clusters are marked as available, and the new file (with the same name) is written to
the disk in other clusters. It is possible, therefore, that the original copy of the file can
still be retrieved. You can continue this procedure by saving another copy of the file with
the same name, and each file copy is saved to higher numbered clusters, and each earlier
version overwritten might still be recoverable on the disk. This process can continue
until the system is rebooted or reset, or until the end of the available space is reached.
Then the pointer is set to the first cluster, and previous file data is overwritten.

997

VI

T
ro

u
b

lesh
o

o
tin

g

Because DOS always uses the first available directory entry when it saves or creates a file,
the overwritten or deleted files whose data is still recoverable on the disk no longer ap-
pear in a directory listing. No commercial quick unerase or other unerase utilities there-
fore can find any record of the erased or overwritten file on the disk—true, of course,
because these programs look only in the directory for a record of an erased file. Some
newer undelete programs have a memory-resident delete tracking function that, in es-
sence, maintains a separate directory listing from DOS. Unless an unerase program has a
memory-resident delete tracking function, and that function has been activated before
the deletion, no program can recall the files overwritten in the directory entry.

Because unerase programs do not look at the FAT, or at the data clusters themselves (un-
less they use delete tracking), they see no record of the files’ existence. By scanning the
free clusters on the disk one by one using a disk editor tool, you can locate the data from
the overwritten or erased file and manually rebuild the FAT and directory entries. This
procedure enables you to recover erased files even though files have been written to the
disk since the erasure took place.

Interfacing to Disk Drives
DOS uses a combination of disk management components to make files accessible. These
components differ slightly between floppies and hard disks and between disks of differ-
ent sizes. They determine how a disk appears to DOS and to applications software. Each
component used to describe the disk system fits as a layer into the complete system.
Each layer communicates with the layer above and below it. When all the components
work together, an application can access the disk to find and store data. Table 20.8 lists
the DOS format specifications for floppy disks.

The four primary layers of interface between an application program running on a sys-
tem and any disks attached to the system consist of software routines that can perform
various functions, usually to communicate with the adjacent layers. These layers are
shown in the following list:

■ DOS Interrupt 21h (Int 21h) routines

■ DOS Interrupt 25/26h (Int 25/26h) routines

■ ROM BIOS disk Interrupt 13h (Int 13h) routines

■ Disk controller I/O port commands

Each layer accepts various commands, performs different functions, and generates re-
sults. These interfaces are available for both floppy disk drives and hard disks, although
the floppy disk and hard disk Int 13h routines differ widely. The floppy disk controllers
and hard disk controllers are very different as well, but all the layers perform the same
functions for both floppy disks and hard disks.

Disk Operating System (DOS)

998 Chapter 20—Operating Systems Software and Troubleshooting

Table 20.8 Floppy Disk Format Specifications

Current Formats
Disk Size (in.) 3 1/2" 3 1/2" 3 1/2"
Disk Capacity (KB) 2,880 1,440 720

Media Descriptor Byte F0h F0h F9h

Sides (Heads) 2 2 2

Tracks per Side 80 80 80

Sectors per Track 36 18 9

Bytes per Sector 512 512 512

Sectors per Cluster 2 1 2

FAT Length (Sectors) 9 9 3

Number of FATs 2 2 2

Root Dir. Length (Sectors) 15 14 7

Maximum Root Entries 240 224 112

Total Sectors per Disk 5,760 2,880 1,440

Total Available Sectors 5,726 2,847 1,426

Total Available Clusters 2,863 2,847 713

Interrupt 20h. The DOS Int 21h routines exist at the highest level and provide the most
functionality with the least amount of work. For example, if an application program
needs to create a subdirectory on a disk, it can call Int 21h, Function 39h. This function
performs all operations necessary to create a subdirectory on the disk, including updating
the appropriate directory and FAT sectors. The only information this function needs is
the name of the subdirectory to create. DOS Int 21h would do much more work by using
one of the lower-level access methods to create a subdirectory on the disk. Most applica-
tions programs you run access the disk through this level of interface.

Interrupt 25h and Int 26h. The DOS Int 25h and Int 26h routines provide much lower-
level access to the disk than the Int 21h routines. Int 25h reads only specified sectors
from a disk, and Int 26h only writes specified sectors to a disk. If you were to write a
program that used these functions to create a subdirectory on a disk, the work required
would be much greater than that required by the Int 21h method. For example, your
program would have to perform all these tasks:

■ Calculate exactly which directory and FAT sectors need to be updated

■ Use Int 25h to read these sectors

■ Modify the sectors appropriately to contain the new subdirectory information

■ Use Int 26h to write the sectors back out

999

VI

T
ro

u
b

lesh
o

o
tin

g

 Obsolete Formats
5 1/4" 5 1/4" 5 1/4" 5 1/4" 5 1/4"
1,200 360 320 180 160

F9h FDh FFh FCh FEh

2 2 2 1 1

80 40 40 40 40

15 9 8 9 8

512 512 512 512 512

1 2 2 1 1

7 2 1 2 1

2 2 2 2 2

14 7 7 4 4

224 112 112 64 64

2,400 720 640 360 320

2,371 708 630 351 313

2,371 354 315 351 313

The number of steps would be even greater considering the difficulty in determining
exactly what sectors have to be modified. According to Int 25/26h, the entire DOS-
addressable area of the disk consists of sectors numbered sequentially from 0. A program
designed to access the disk using Int 25h and Int 26h must know the location of every-
thing by this sector number. A program designed this way might have to be modified to
handle disks with different numbers of sectors or different directory and FAT sizes and
locations. Because of all the overhead required to get the job done, most programmers
would not choose to access the disk in this manner, and instead would use the higher-
level Int 21h, which does all the work automatically.

Only disk- and sector-editing programs typically access a disk drive at the Int 25h and
Int 26h level. Programs that work at this level of access can edit only areas of a disk that
have been defined to DOS as a logical volume (drive letter). For example, DEBUG can
read sectors from and write sectors to disks with this level of access.

Interrupt 13h. The next lower level of communications with drives, the ROM BIOS Int
13h routines, usually are found in ROM chips on the motherboard or on an adapter card
in a slot; however, an Int 13h handler also can be implemented by using a device driver
loaded at boot time. Because DOS requires Int 13h access to boot from a drive (and a
device driver cannot be loaded until after boot-up), only drives with ROM BIOS–based
Int 13h support can become bootable. Int 13h routines need to talk directly to the con-
troller using the I/O ports on the controller. Therefore, the Int 13h code is very controller
specific.

Disk Operating System (DOS)

1000 Chapter 20—Operating Systems Software and Troubleshooting

Table 20.9 lists the different functions available at the Interrupt 13h BIOS interface.
Some functions are available to floppy drives or hard drives only, whereas others are
available to both types of drives.

Table 20.9 Int 13h BIOS Disk Functions

Function Floppy Disk Hard Disk Description

00h × × Reset disk system.

01h × × Get status of last operation.

02h × × Read sectors.

03h × × Write sectors.

04h × × Verify sectors.

05h × × Format track.

06h × Format bad track.

07h × Format drive.

08h × × Read drive parameters.

09h × Initialize drive characteristics.

0Ah × Read long.

0Bh × Write long.

0Ch × Seek.

0Dh × Alternate hard disk reset.

0Eh × Read sector buffer.

0Fh × Write sector buffer.

10h × Test for drive ready.

11h × Recalibrate drive.

12h × Controller RAM diagnostic.

13h × Controller drive diagnostic.

14h × Controller internal diagnostic.

15h × × Get disk type.

16h × Get floppy disk change status.

17h × Set floppy disk type for format.

18h × Set media type for format.

19h × Park hard disk heads.

1Ah × ESDI—Low-level format.

1Bh × ESDI—Get manufacturing
 header.

1Ch × ESDI—Get configuration.

Table 20.10 shows the error codes that may be returned by the BIOS INT 13h routines.
In some cases, you may see these codes be referred to when running a low-level format
program, disk editor, or other program that can directly access a disk drive through the
BIOS.

1001

VI

T
ro

u
b

lesh
o

o
tin

g

Table 20.10 INT 13h BIOS Error Codes

Code Description

00h No error.

01h Bad command.

02h Address mark not found.

03h Write protect.

04h Request sector not found.

05h Reset failed.

06h Media change error.

07h Initialization failed.

09h Cross 64K DMA boundary.

0Ah Bad sector flag detected.

0Bh Bad track flag detected.

10h Bad ECC on disk read.

11h ECC corrected data error.

20h Controller has failed.

40h Seek operation failed.

80h Drive failed to respond.

AAh Drive not ready.

BBh Undefined error.

CCh Write fault.

0Eh Register error.

FFh Sense operation failed.

If you design your own custom disk controller device, you need to write an IBM-
compatible Int 13h handler package and install it on the card using a ROM BIOS that
will be linked into the system at boot time. To use Int 13h routines, a program must use
exact cylinder, head, and sector coordinates to specify sectors to read and write. Accord-
ingly, any program designed to work at this level must be intimately familiar with the
parameters of the specific disk on the system on which it is designed to run. Int 13h
functions exist to read the disk parameters, format tracks, read and write sectors, park
heads, and reset the drive.

A low-level format program for ST-506/412 drives needs to work with disks at the Int 13h
level or lower. Most ST-506/412 controller format programs work with access at the Int
13h level because virtually any operation a format program needs is available through
the Int 13h interface. This is not true, however, for other types of controllers (such as
IDE, SCSI, or ESDI), for which defect mapping and other operations differ considerably
from the ST-506/412 types. Controllers that must perform special operations during a
low-level format, such as defining disk parameters to override the motherboard ROM
BIOS drive tables, would not work with any formatter that used only the standard Int
13h interface. For these reasons, most controllers require a custom formatter designed
to bypass the Int 13h interface. Most general purpose, low-level reformat programs that

Disk Operating System (DOS)

1002 Chapter 20—Operating Systems Software and Troubleshooting

perform a nondestructive format (such as Norton Calibrate and SpinRite II) access the
controller through the Int 13h interface (rather than going direct) and therefore cannot
be used for an initial low-level format; the initial low-level format must be done by a
controller-specific utility.

Few high-powered disk utility programs, other than some basic formatting software, can
talk to the disk at the Int 13h level. The Kolod Research hTEST/hFORMAT utilities also
can communicate at the Int 13h level, as can the DOS FDISK program. The Norton
DISKEDIT and NU programs can communicate with a disk at the Int 13h level when
these programs are in their absolute sector mode; they are two of the few utilities that
can do so. These programs are important because they can be used for the worst data
recovery situations, in which the partition tables have been corrupted. Because the parti-
tion tables as well as any non-DOS partitions exist outside the area of a disk that is de-
fined by DOS, only programs that work at the Int 13h level can access them. Most utility
programs for data recovery, such as the Mace Utilities MUSE program, work only at the
DOS Int 25/26h level, which makes them useless for accessing areas of a disk outside of
DOS domain.

Disk Controller I/O Port Commands. In the lowest level of interface, programs talk
directly to the disk controller in the controller’s own specific native language. To do this,
a program must send controller commands through the I/O ports to which the controller
responds. These commands are specific to the particular controller and sometimes differ
even among controllers of the same type, such as different ESDI controllers. The ROM
BIOS in the system must be designed specifically for the controller because the ROM
BIOS talks to the controller at this I/O port level. Most manufacturer-type low-level for-
mat programs also need to talk to the controller directly because the higher-level Int 13h
interface does not provide enough specific features for many of the custom ST-506/412
or ESDI and SCSI controllers on the market.

Figure 20.2 shows that most application programs work through the Int 21h interface,
which passes commands to the ROM BIOS as Int 13h commands; these commands then
are converted into direct controller commands by the ROM BIOS. The controller ex-
ecutes the commands and returns the results through the layers until the desired infor-
mation reaches the application. This process enables applications to be written without
worrying about such low-level system details, leaving such details up to DOS and the
ROM BIOS. It also enables applications to run on widely different types of hardware, as
long as the correct ROM BIOS and DOS support is in place.

Any software can bypass any level of interface and communicate with the level below it,
but doing so requires much more work. The lowest level of interface available is direct
communication with the controller using I/O port commands. As figure 20.2 shows,
each different type of controller has different I/O port locations as well as differences
among the commands presented at the various ports, and only the controller can talk
directly to the disk drive.

1003

VI

T
ro

u
b

lesh
o

o
tin

g

Application program

DOS
INT 21h DOS

INT 25/26h

ROM BIOS
INT 13h

Disk controller I/O ports

Floppy
3F0-3F7

XT ST-412
320-323

AT ST-412
1F0-1F7

PS/2 ST-412
320-324

PS/2 ESDI
3510-3517

PS/2 SCSI
3540-3457

Floppy
drive

Hard disk drive

Fig. 20.2
Relationships between various interface levels.

If not for the ROM BIOS Int 13h interface, a unique DOS would have to be written for
each available type of hard and floppy disk drive and disk. Instead, DOS communicates
with the ROM BIOS using standard Int 13h function calls translated by the Int 13h
interface into commands for the specific hardware. Because of the standard ROM BIOS
interface, DOS can be written relatively independently of specific disk hardware and can
support many different types of drives and controllers.

DOS Structures
To manage files on a disk and enable all application programs to see a consistent disk
interface no matter what type of disk is used, DOS uses several structures. The following
list shows all the structures and areas that DOS defines and uses to manage a disk, in
roughly the order in which they are encountered on a disk:

■ Master and extended partition boot sectors

■ DOS volume boot sector

■ Root directory

■ File allocation tables (FAT)

■ Clusters (allocation units)

■ Data area

■ Diagnostic read-and-write cylinder

A hard disk has all these DOS disk management structures allocated, and a floppy disk
has all but the master and extended partition boot sectors and the diagnostic cylinder.
These structures are created by the DOS FDISK program, which has no application on a
floppy disk because floppy disks cannot be partitioned. Figure 20.3 is a simple diagram
showing the relative locations of these DOS disk management structures on the 32M
hard disk in an IBM AT Model 339.

Disk Operating System (DOS)

1004 Chapter 20—Operating Systems Software and Troubleshooting

Fig. 20.3
DOS disk management structures on an IBM AT Model 339 32M hard disk.

Each disk area has a purpose and function. If one of these special areas is damaged, seri-
ous consequences can result. Damage to one of these sensitive structures usually causes a
domino effect and limits access to other areas of the disk or causes further problems in
using the disk. For example, DOS cannot read and write files if the FAT is damaged or
corrupted. You therefore should understand these data structures well enough to be able
to repair them when necessary. Rebuilding these special tables and areas of the disk is
essential to the art of data recovery.

Master Partition Boot Sectors. To share a hard disk among different operating sys-
tems, the disk might be logically divided into one to four master partitions. Each operat-
ing system, including DOS (through versions 3.2), might own only one partition. DOS
3.3 and later versions introduced the extended DOS partition, which allows multiple
DOS partitions on the same hard disk. With the DOS FDISK program, you can select the
size of each partition. The partition information is kept in several partition boot sectors
on the disk, with the main table embedded in the master partition boot sector. The mas-
ter partition boot sector is always located in the first sector of the entire disk (cylinder 0,
head 0, sector 1). The extended partition boot sectors are located at the beginning of
each extended partition volume.

Each DOS partition contains a DOS volume boot sector as its first sector. With the DOS
FDISK utility, you might designate a single partition as active (or bootable). The master
partition boot sector causes the active partition’s volume boot sector to receive control
when the system is started or reset. Additional master disk partitions can be set up for

Location Disk area name

Master partition boot sector
Hidden (wasted) sectors

DOS volume boot sector
File allocation table #1
File allocation table #2
Root directory
Data area (clusters)

Cylinder 0, Head 0

Cylinder 0, Head 1

32 Meg C:

Cylinder 731, Head 4

Cylinder 732 Diagnostic cylinder

1005

VI

T
ro

u
b

lesh
o

o
tin

g

Novell NetWare and for OS/2 HPFS, PCIX (UNIX), XENIX, CP/M-86, or other operating
systems. None of these foreign operating system partitions can be accessible under DOS,
nor can any DOS partitions normally be accessible under other operating systems. (OS/2
and DOS share FAT partitions, but high-performance file system [HPFS] partitions are
exclusive to OS/2.)

A hard disk must be partitioned to be accessible by an operating system. You must parti-
tion a disk even if you want to create only a single partition. Table 20.11 shows the for-
mat of the Master Boot Record (MBR) with partition tables.

Table 20.11 Master Boot Record (Partition Table)

Offset Length Description

Partition Table Entry #1
1BEh 446 1 byte Boot Indicator Byte (80h = Active, else 00h)

1BFh 447 1 byte Starting Head (or Side) of Partition

1C0h 448 16 bits Starting Cylinder (10 bits) and Sector (6 bits)

1C2h 450 1 byte System Indicator Byte (see table 20.12)

1C3h 451 1 byte Ending Head (or Side) of Partition

1C4h 452 16 bits Ending Cylinder (10 bits) and Sector (6 bits)

1C6h 454 1 dword Relative Sector Offset of Partition

1CAh 458 1 dword Total Number of Sectors in Partition

Partition Table Entry #2
1CEh 462 1 byte Boot Indicator Byte (80h = Active, else 00h)

1CFh 463 1 byte Starting Head (or Side) of Partition

1D0h 464 16 bits Starting Cylinder (10 bits) and Sector (6 bits)

1D2h 466 1 byte System Indicator Byte (see table 20.12)

1D3h 467 1 byte Ending Head (or Side) of Partition

1D4h 468 16 bits Ending Cylinder (10 bits) and Sector (6 bits)

1D6h 470 1 dword Relative Sector Offset of Partition

1DAh 474 1 dword Total Number of Sectors in Partition

Partition Table Entry #3
1DEh 478 1 byte Boot Indicator Byte (80h = Active, else 00h)

1DFh 479 1 byte Starting Head (or Side) of Partition

1E0h 480 16 bits Starting Cylinder (10 bits) and Sector (6 bits)

1E2h 482 1 byte System Indicator Byte (see table 20.12)

1E3h 483 1 byte Ending Head (or Side) of Partition

1E4h 484 16 bits Ending Cylinder (10 bits) and Sector (6 bits)

1E6h 486 1 dword Relative Sector Offset of Partition

1EAh 490 1 dword Total Number of Sectors in Partition

(continues)

Disk Operating System (DOS)

1006 Chapter 20—Operating Systems Software and Troubleshooting

Table 20.11 Continued

Offset Length Description

Partition Table Entry #4
1EEh 494 1 byte Boot Indicator Byte (80h = Active, else 00h)

1EFh 495 1 byte Starting Head (or Side) of Partition

1F0h 496 16 bits Starting Cylinder (10 bits) and Sector (6 bits)

1F2h 498 1 byte System Indicator Byte (see table 20.12)

1F3h 499 1 byte Ending Head (or Side) of Partition

1F4h 500 16 bits Ending Cylinder (10 bits) and Sector (6 bits)

1F6h 502 1 dword Relative Sector Offset of Partition

1FAh 506 1 dword Total Number of Sectors in Partition

Signature Bytes
1FEh 510 2 bytes Boot Sector Signature (55AAh)

A WORD equals two bytes read in reverse order, and a DWORD equals two WORDs read in reverse order.

Table 20.12 shows the standard values and meanings of the System Indicator Byte.

Table 20.12 Partition Table System Indicator Byte Values

Value Description

00h No allocated partition in this entry

01h Primary DOS, 12-bit FAT (Partition < 16M)

04h Primary DOS, 16-bit FAT (16M <= Partition <= 32M)

05h Extended DOS (Points to next Primary Partition)

06h Primary DOS, 16-bit FAT (Partition > 32M)

07h OS/2 HPFS Partition

02h MS-XENIX Root Partition

03h MS-XENIX usr Partition

08h AIX File System Partition

09h AIX Boot Partition

50h Ontrack Disk Manager READ-ONLY Partition

51h Ontrack Disk Manager READ/WRITE Partition

56h Golden Bow Vfeature Partition

61h Storage Dimensions Speedstor Partition

63h IBM 386/ix or UNIX System V/386 Partition

64h Novell NetWare Partition

75h IBM PCIX Partition

1007

VI

T
ro

u
b

lesh
o

o
tin

g

Value Description

DBh Digital Research Concurrent DOS/CPM-86 Partition

F2h Some OEM’s DOS 3.2+ Second Partition

FFh UNIX Bad Block Table Partition

DOS Volume Boot Sectors. The volume boot sector is the first sector on any area of a
drive addressed as a volume (or logical DOS disk). On a floppy disk, for example, this
sector is the first one on the floppy disk because DOS recognizes the floppy disk as a
volume with no partitioning required. On a hard disk, the volume boot sector or sectors
are located as the first sector within any disk area allocated as a nonextended partition,
or any area recognizable as a DOS volume.

This special sector resembles the master partition boot sector in that it contains a pro-
gram as well as some special data tables. The first volume boot sector on a disk is loaded
by the system ROM BIOS for floppies or by the master partition boot sector on a hard
disk. This program is given control; it performs some tests and then attempts to load the
first DOS system file (IBMBIO.COM). The volume boot sector is transparent to a running
DOS system; it is outside the data area of the disk on which files are stored.

You create a volume boot sector with the DOS FORMAT command (high-level format).
Hard disks have a volume boot sector at the beginning of every DOS logical drive area
allocated on the disk, in both the primary and extended partitions. Although all the
logical drives contain the program area as well as a data table area, only the program
code from the volume boot sector in the active partition on a hard disk is executed. The
others are simply read by the DOS system files during boot-up to obtain their data table
and determine the volume parameters.

The volume boot sector contains program code and data. The single data table in this
sector is called the media parameter block or disk parameter block. DOS needs the informa-
tion it contains to verify the capacity of a disk volume as well as the location of impor-
tant features such as the FAT. The format of this data is very specific. Errors can cause
problems with booting from a disk or with accessing a disk. Some non-IBM OEM ver-
sions of DOS have not adhered to the standards set by IBM for the format of this data,
which can cause interchange problems with disks formatted by different versions of
DOS. The later versions can be more particular, so if you suspect that boot sector differ-
ences are causing inability to access a disk, you can use a utility program such as DOS
DEBUG or Norton Utilities to copy a boot sector from the newer version of DOS to a disk
formatted by the older version. This step should enable the new version of DOS to read
the older disk and should not interfere with the less particular older version. This has
never been a problem in using different DOS versions from the same OEM, but might
occur in mixing different OEM versions.

Disk Operating System (DOS)

1008 Chapter 20—Operating Systems Software and Troubleshooting

Table 20.13 shows the format and layout of the DOS Boot Record (DBR).

Table 20.13 DOS Boot Record (DBR) Format

 Offset
Hex Dec Field Length Description

00h 0 3 bytes Jump Instruction to Boot Program Code

03h 3 8 bytes OEM Name and DOS Version (“IBM 5.0”)

0Bh 11 1 word Bytes / Sector (usually 512)

0Dh 13 1 byte Sectors / Cluster (Must be a power of 2)

0Eh 14 1 word Reserved Sectors (Boot Sectors, usually 1)

10h 16 1 byte FAT Copies (usually 2)

11h 17 1 word Maximum Root Directory Entries (usually 512)

13h 19 1 word Total Sectors (If Partition <= 32M, else 0)

15h 21 1 byte Media Descriptor Byte (F8h for Hard Disks)

16h 22 1 word Sectors / FAT

18h 24 1 word Sectors / Track

1Ah 26 1 word Number of Heads

1Ch 28 1 dword Hidden Sectors (If Partition <= 32M, 1 word only)

For DOS 4.0 or Higher Only, Else 00h
20h 32 1 dword Total Sectors (If Partition > 32M, else 0)

24h 36 1 byte Physical Drive No. (00h=floppy, 80h=hard disk)

25h 37 1 byte Reserved (00h)

26h 38 1 byte Extended Boot Record Signature (29h)

27h 39 1 dword Volume Serial Number (32-bit random number)

2Bh 43 11 bytes Volume Label (“NO NAME“ stored if no label)

36h 54 8 bytes File System ID (“FAT12“ or “FAT16“)

For All Versions of DOS
3Eh 62 450 bytes Boot Program Code

1FEh 510 2 bytes Signature Bytes (55AAh)

A WORD is two bytes read in reverse order, and a DWORD is two WORDs read in reverse order.

Root Directory. A directory is a simple database containing information about the files
stored on a disk. Each record in this database is 32 bytes long, and no delimiters or sepa-
rating characters are between the fields or records. A directory stores almost all the infor-
mation that DOS knows about a file: name, attribute, time and date of creation, size, and
where the beginning of the file is located on the disk. (The information a directory does
not contain about a file is where the file continues on the disk and whether the file is
contiguous or fragmented. The FAT contains that information.)

1009

VI

T
ro

u
b

lesh
o

o
tin

g

Two basic types of directories exist: the root directory and subdirectories. They differ prima-
rily in how many there can be and in where they can be located. Any given volume can
have only one root directory, and the root directory is always stored on a disk in a fixed
location immediately following the two FAT copies. Root directories vary in size because
of the varying types and capacities of disks, but the root directory of a given disk is fixed.
After a root directory is created, it has a fixed length and cannot be extended to hold
more entries. Normally, a hard disk volume has a root directory with room for 512 total
entries. Subdirectories are stored as files in the data area of the disk and therefore have
no fixed length limits.

Every directory, whether it is the root directory or a subdirectory, is organized in the
same way. A directory is a small database with a fixed record length of 32 bytes. Entries
in the database store important information about individual files and how files are
named on a disk. The directory information is linked to the FAT by the starting cluster
entry. In fact, if no file on a disk were longer than one single cluster, the FAT would be
unnecessary. The directory stores all the information needed by DOS to manage the file,
with the exception of all the clusters that the file occupies other than the first one. The
FAT stores the remaining information about other clusters the file uses.

To trace a file on a disk, you start with the directory entry to get the information about
the starting cluster of the file and its size. Then you go to the file allocation table. From
there, you can follow the chain of clusters the file occupies until you reach the end of
the file.

DOS Directory entries are 32 bytes long and are in the format shown in table 20.14.

Table 20.14 DOS Directory Format

 Offset
Hex Dec Field Length Description

00h 0 8 bytes File name

08h 8 3 bytes File extension

0Bh 11 1 byte File attributes

0Ch 12 10 bytes Reserved (00h)

16h 22 1 word Time of creation

18h 24 1 word Date of creation

1Ah 26 1 word Starting cluster

1Ch 28 1 dword Size in bytes

Disk Operating System (DOS)

1010 Chapter 20—Operating Systems Software and Troubleshooting

Note

File names and extensions are left-justified and padded with spaces (32h). The first byte of the file
name indicates the file status as follows:

Hex File Status

00h Entry never used; entries past this point not searched.

05h Indicates first character of file name is actually E5h.

E5h “σ” (lowercase sigma) indicates file has been erased.

2Eh “.” (period) indicates this entry is a directory. If the second byte is also 2Eh, the cluster
field contains the cluster number of parent directory (0000h if the parent is the root).

Table 20.15 describes the DOS Directory file attribute byte.

Table 20.15 DOS Directory File Attribute Byte

Bit Positions Hex
7 6 5 4 3 2 1 0 Value Description

0 0 0 0 0 0 0 1 01h Read-only file

0 0 0 0 0 0 1 0 02h Hidden file

0 0 0 0 0 1 0 0 04h System file

0 0 0 0 1 0 0 0 08h Volume label

0 0 0 1 0 0 0 0 10h Subdirectory

0 0 1 0 0 0 0 0 20h Archive (updated since backup)

0 1 0 0 0 0 0 0 40h Reserved

1 0 0 0 0 0 0 0 80h Reserved

Examples
0 0 1 0 0 0 0 1 21h Read-only, archive

0 0 1 1 0 0 1 0 32h Hidden, subdirectory, archive

0 0 1 0 0 1 1 1 27h Read-only, hidden, system, archive

File Allocation Tables (FATs). The file allocation table (FAT) is a table of number en-
tries describing how each cluster is allocated on the disk. The data area of the disk has a
single entry for each cluster. Sectors in the nondata area on the disk are outside the range
of the disk controlled by the FAT. The sectors involved in any of the boot sectors, file
allocation table, and root directory are outside the range of sectors controlled by the FAT.

The FAT does not manage every data sector specifically, but rather allocates space in
groups of sectors called clusters or allocation units. A cluster is one or more sectors desig-
nated by DOS as allocation units of storage. The smallest space a file can use on a disk is
one cluster; all files use space on the disk in integer cluster units. If a file is one byte

1011

VI

T
ro

u
b

lesh
o

o
tin

g

larger than one cluster, two clusters are used. DOS determines the size of a cluster when
the disk is high-level formatted by the DOS FORMAT command.

You can think of the FAT as a sort of spreadsheet that controls the cluster use of the disk.
Each cell in the spreadsheet corresponds to a single cluster on the disk; the number
stored in that cell is a sort of code telling whether the cluster is used by a file and, if so,
where the next cluster of the file is located.

The numbers stored in the FAT are hexadecimal numbers that are either 12 or 16 bits
long. The 16-bit FAT numbers are easy to follow because they take an even two bytes of
space and can be edited fairly easily. The 12-bit numbers are 1 1/2 bytes long, which
presents a problem when most disk sector editors show data in byte units. To edit the
FAT, you must do some hex/binary math to convert the displayed byte units to FAT
numbers. Fortunately (unless you are using the DOS DEBUG program), most of the avail-
able tools and utility programs have a FAT editing mode that automatically converts the
numbers for you. Most of them also show the FAT numbers in decimal form, which most
people find easier to handle.

The DOS FDISK program determines whether a 12-bit or 16-bit FAT is placed on a disk,
even though the FAT is written during the high-level format (FORMAT). All floppy disks
use a 12-bit FAT, but hard disks can use either. On hard disk volumes with more than
16 megabytes (32,768 sectors), DOS creates a 16-bit FAT; otherwise, DOS creates a
12-bit FAT.

DOS keeps two copies of the FAT. Each one occupies contiguous sectors on the disk, and
the second FAT copy immediately follows the first. Unfortunately, DOS uses the second
FAT copy only if sectors in the first FAT copy become unreadable. If the first FAT copy is
corrupted, which is a much more common problem, DOS does not use the second FAT
copy. Even the DOS CHKDSK command does not check or verify the second FAT copy.
Moreover, whenever DOS updates the first FAT, large portions of the first FAT automati-
cally are copied to the second FAT. If, therefore, the first copy was corrupted and then
subsequently updated by DOS, a large portion of the first FAT would be copied over the
second FAT copy, damaging it in the process. After the update, the second copy is usually
a mirror image of the first one, complete with any corruption. Two FATs rarely stay out
of sync for very long. When they are out of sync and DOS writes to the disk and causes
the first FAT to be updated, it also causes the second FAT to be overwritten by the first
FAT. Because of all this, the usefulness of the second copy of the FAT is limited to
manual repair operations, and even then it is useful only if the problem is caught imme-
diately, before DOS has a chance to update the disk.

Clusters (Allocation Units). The term cluster was changed to allocation unit in DOS 4.0.
The newer term is appropriate because a single cluster is the smallest unit of the disk that
DOS can handle when it writes or reads a file. A cluster is equal to one or more sectors,
and although a cluster can be a single sector, it is usually more than one. Having more
than one sector per cluster reduces the size and processing overhead of the FAT and en-
ables DOS to run faster because it has fewer individual units of the disk to manage. The
trade-off is in wasted disk space. Because DOS can manage space only in full cluster
units, every file consumes space on the disk in increments of one cluster.

Disk Operating System (DOS)

1012 Chapter 20—Operating Systems Software and Troubleshooting

Table 20.16 shows default cluster (or allocation unit) sizes used by DOS for the various
floppy disk formats.

Table 20.16 Default Floppy Disk Cluster (Allocation Unit) Sizes

Drive Type Cluster (Allocation Unit) Size

5 1/4-inch 360K 2 sectors (1,024 bytes)

5 1/4-inch 1.2M 1 sector (512 bytes)

3 1/4-inch 720K 2 sectors (1,024 bytes)

3 1/4-inch 1.44M 1 sector (512 bytes)

3 1/4-inch 2.88M 2 sectors (1,024 bytes)

It seems strange that the high-density disks, which have many more individual sectors
than low-density disks, sometimes have smaller cluster sizes. The larger the FAT, the
more entries DOS must manage, and the slower DOS seems to function. This sluggish-
ness is due to the excessive overhead required to manage all the individual clusters; the
more clusters to be managed, the slower things become. The trade-off is in the minimum
cluster size.

Smaller clusters generate less slack (space wasted between the actual end of each file and
the end of the cluster). With larger clusters, the wasted space grows larger. High-density
floppy drives are faster than their low-density counterparts, so perhaps IBM and Micro-
soft determined that the decrease in cluster size balances the drive’s faster operation
and offsets the use of a larger FAT.

For hard disks, the cluster size can vary greatly among different versions of DOS and
different disk sizes. Table 20.17 shows the cluster sizes IBM and most other OEM versions
of DOS select for a particular volume size.

Table 20.17 Default Hard Disk Cluster (Allocation Unit) Sizes

Hard Disk Volume Size Cluster (Allocation Unit) Size FAT type

0M to less than 16M 8 sectors or 4,096 bytes 12-bit

16M through 128M 4 sectors or 2,048 bytes 16-bit

Over 128M through 256M 8 sectors or 4,096 bytes 16-bit

Over 256M through 512M 16 sectors or 8,192 bytes 16-bit

Over 512M through 1,024M 32 sectors or 16,384 bytes 16-bit

Over 1,024M through 2,048M 64 sectors or 32,768 bytes 16-bit

In most cases, these cluster sizes, selected by the DOS FORMAT command, are the mini-
mum possible for a given partition size. Therefore, 8K clusters are the smallest possible
for a partition size of greater than 256M. Although most non-IBM OEM versions of DOS
work like the IBM version, some versions might use cluster sizes different from what this
table indicates. For example, Compaq DOS 3.31 shifts to larger cluster sizes much earlier

1013

VI

T
ro

u
b

lesh
o

o
tin

g

than IBM DOS does. Compaq DOS shifts to 4K clusters at 64M partitions, 8K clusters
at 128M partitions, and 16K clusters at 256M partitions. A 305M partition that uses
8K clusters under IBM DOS has clusters of 16K under Compaq DOS 3.31.

The effect of these larger cluster sizes on disk use can be substantial. A drive containing
about 5,000 files, with average slack of one-half of the last cluster used for each file,
wastes about 20 megabytes [5000*(.5*8)K] of file space on a disk set up with IBM DOS
or MS-DOS. Using Compaq DOS 3.31, this wasted space doubles to 40 megabytes for
the same 5,000 files. Someone using a system with Compaq DOS 3.31 could back up,
repartition, and reformat with IBM DOS, and after restoring all 5,000 files, gain 20 mega-
bytes of free disk space.

Compaq DOS 3.31 does not use the most efficient (or smallest) cluster size possible for a
given partition size because its makers were interested in improving the performance of
the system at the expense of great amounts of disk space. Larger cluster sizes get you a
smaller FAT, with fewer numbers to manage; DOS overhead is reduced when files are
stored and retrieved, which makes the system seem faster. For example, the CHKDSK
command runs much faster on a disk with a smaller FAT. Unfortunately, the trade-off for
speed here is a tremendous loss of space on the disk. (Compaq DOS 4.0 and 5.0 use IBM
DOS and MS-DOS conventions.)

The Data Area. The data area of a disk is the area that follows the boot sector, file allo-
cation tables, and root directory on any volume. This area is managed by the FAT and
the root directory. DOS divides it into allocation units sometimes called clusters. These
clusters are where normal files are stored on a volume.

Diagnostic Read-and-Write Cylinder. The FDISK partitioning program always reserves
the last cylinder of a hard disk for use as a special diagnostic read-and-write test cylinder.
That this cylinder is reserved is one reason FDISK always reports fewer total cylinders
than the drive manufacturer states are available. DOS (or any other operating system)
does not use this cylinder for any normal purpose, because it lies outside the partitioned
area of the disk.

On systems with IDE, SCSI, or ESDI disk interfaces, the drive and controller might allo-
cate an additional area past the logical end of the drive for a bad-track table and spare
sectors for replacing bad ones. This situation may account for additional discrepancies
between FDISK and the drive manufacturer.

The diagnostics area enables diagnostics software such as the manufacturer-supplied
Advanced Diagnostics disk to perform read-and-write tests on a hard disk without cor-
rupting any user data. Low-level format programs for hard disks often use this cylinder as
a scratch-pad area for running interleave tests or preserving data during nondestructive
formats. This cylinder is also sometimes used as a head landing or parking cylinder on
hard disks that do not have an automatic parking facility.

Potential DOS Upgrade Problems
You already know that the DOS system files have special placement requirements on a
hard disk. Sometimes these special requirements cause problems when you are upgrading
from one version of DOS to another.

Disk Operating System (DOS)

1014 Chapter 20—Operating Systems Software and Troubleshooting

If you have attempted to upgrade a PC system from one version of DOS to another, you
know that you use the DOS SYS command to replace old system files with new ones. The
SYS command copies the existing system files (stored on a bootable disk with hidden,
system, and read-only attributes) to the disk in the correct position and with the correct
names and attributes. The COPY command does not copy hidden or system files (nor
would it place the system files in the required positions on the destination disk if their
other attributes had been altered so that they could be copied using COPY).

In addition to transferring the two hidden system files from one disk to another, SYS also
updates the DOS volume boot sector on the destination disk so that it is correct for the
new version of DOS. Common usage of the SYS command is as follows:

SYS C: (for drive C)

or

SYS A: (to make a floppy in drive A bootable)

The syntax of the command is as follows:

SYS[d:][path]d:

In this command line, d:/path specifies an optional source drive and path for the system
files. If the source drive specification is omitted, the boot drive is used as the source
drive. This parameter is supported in DOS 4.0 and later versions only. Versions of DOS
older than 4.0 automatically look for system files on the default drive (not on the boot
drive). The d: in the syntax specifies the drive to which you want to transfer the system
files.

When the SYS command is executed, you usually are greeted by one of two messages:

System transferred

or

No room for system on destination disk

If a disk has data on it before you try to write the system files to it, the SYS command
from DOS versions 3.3 and earlier probably will fail because these versions are not ca-
pable of moving other files out of the way. The SYS command in DOS 4.0 and higher
versions rarely fails because these versions can and do move files out of the way.

Some users think that the cause of the No room message on a system that has an older
version of DOS is that the system files in any newer version of DOS are always larger
than the previous version, and that the new version files cannot fit into the space
allocated for older versions. Such users believe that the command fails because this space
cannot be provided at the beginning without moving other data away. This belief is
wrong. The SYS command fails in these cases because you are trying to install a version
of DOS that has file names different from the names already on the disk. There is no
normal reason for the SYS command to fail when you update the system files on a disk
that already has those files.

1015

VI

T
ro

u
b

lesh
o

o
tin

g

Although the belief that larger system files cannot replace smaller ones might be popular,
it is wrong for DOS 3.0 and later versions. The system files can be placed virtually any-
where on the disk, except that the first clusters of the disk must contain the file
IBMBIO.COM (or its equivalent). After that requirement is met, the IBMDOS.COM file
might be fragmented and placed just about anywhere on the disk, and the SYS com-
mand implements it with no problems whatsoever. In version 3.3 or later, even the
IBMBIO.COM file can be fragmented and spread all over the disk, as long as the first
cluster of the file occupies the first cluster of the disk (cluster 2). The only other require-
ment is that the names IBMBIO.COM and IBMDOS.COM (or their equivalents) must use
the first and second directory entries.

DOS 4.0 and Later Versions. Under DOS 4.0 and later versions, the SYS command is
much more powerful than under previous versions. Because the system files must use the
first two entries in the root directory of the disk as well as the first cluster (cluster 2) of
the disk, the DOS 4.0 and later versions’ SYS command moves any files that occupy the
first two entries but that do not match the new system file names to other available en-
tries in the root directory. The SYS command also moves the portion of any foreign file
occupying the first cluster to other clusters on the disk. Whereas the SYS command in
older versions of DOS would fail and require a user to make adjustments to the disk, the
DOS 4.0 and later versions’ SYS command automatically makes the required adjust-
ments. For example, even if you are updating a Phoenix DOS 3.3 disk to IBM DOS 4.0,
the IBM DOS SYS command relocates the Phoenix IO.SYS and MSDOS.SYS files so that
the new IBMBIO.COM and IBMDOS.COM files can occupy the correct locations in the
root directory as well as on the disk.

DOS 5.0 and 6.0. The SYS command in DOS versions 5.0 and 6.0 goes one step farther:
it replaces old system files with the new ones. Even if the old system files had other
names, DOS 5.0 and higher ensure that they are overwritten by the new system files. If
you are updating a disk on which the old system file names match the new ones, the SYS
command of any version of DOS overwrites the old system files with the new ones with
no moving of files necessary. With the enhanced SYS command in DOS 4.0 and later
versions, it is difficult to make a DOS upgrade fail.

DOS 3.3. The DOS 3.3 SYS command does not move other files out of the way (as SYS
does in DOS 4.0 and later versions); therefore, you must ensure that the first two root
directory entries are either free or contain names that match the new system file names.
As in DOS 4.0 and later versions, the first cluster on the disk must contain the first por-
tion of IBMBIO.COM; unlike DOS 4.0 and later versions, however, the SYS command
under DOS 3.3 does not move any files for you. Necessary manual adjustments, such as
clearing the first two directory entries or relocating a file that occupies the first cluster on
the disk, must be done with whatever utility programs you have available. The DOS 3.3
system files can be fragmented and occupy various areas of the disk.

SYS under DOS 3.3 does not automatically handle updating from one version of DOS to
a version that has different system file names. In that case, because the system file names
are not the same, the new system files do not overwrite the old ones. If you are making
this kind of system change, use a directory editing tool to change the names of the cur-
rent system files to match the new names so that the system file overwrite can occur.

Disk Operating System (DOS)

1016 Chapter 20—Operating Systems Software and Troubleshooting

DOS 3.2. DOS 3.2 or earlier requires that the entire IBMBIO.COM file be con-
tiguous starting with cluster 2 (the first cluster) on the disk. The other system
file (IBMDOS.COM) can be fragmented or placed anywhere on the disk; it does
not have to follow the first system file physically on the disk.

DOS 2.x. DOS 2.x requires that both system files (IBMBIO.COM and IBMDOS.COM)
occupy contiguous clusters on the disk starting with the first cluster (cluster 2). The DOS
2.1 system files are slightly larger than the DOS 2.0 files in actual bytes of size, but the
size change is not enough to require additional clusters on the disk. A SYS change from
DOS 2.0 to DOS 2.1, therefore, is successful in most cases.

Upgrading DOS from the Same OEM. Updating from one version of DOS to a later
version from the same OEM by simply using the SYS command has never been a prob-
lem. I verified this with IBM DOS by installing IBM DOS 2.0 on a system with a hard disk
through the normal FORMAT /S command. I copied all the subsequent DOS transient
programs into a \DOS subdirectory on the disk and then updated the hard disk, in suc-
cession, to IBM DOS 2.1, 3.0, 3.1, 3.2, 3.3, 4.0, 5.0, and even 6.3 using nothing more
than the SYS and COPY (or XCOPY or REPLACE) commands. Between each version
change, I verified that the hard disk would boot the new version of DOS with no prob-
lems. Based on this experiment, I have concluded that you never have to use the FOR-
MAT command to update one DOS version to a later version, as long as both versions are
from the same OEM. I also verified the same operations on a floppy disk. Starting with a
bootable floppy disk created by IBM DOS 2.0, I used SYS and COPY to update that disk to
all subsequent versions of DOS through 6.3 without ever reformatting it. After each ver-
sion change, the floppy disk was bootable with no problems.

You should be able to update a bootable hard disk or floppy disk easily from one DOS
version to another without reformatting the disk. If you are having problems, you prob-
ably are attempting to upgrade to a version of DOS that uses names for the system files
different from those used by the existing DOS, which means that you are moving from a
DOS made by one OEM to a DOS made by a different company. If you are having trouble
and this is not the case, carefully examine the list of requirements at the beginning of
this section. Your problem must be that one of those requirements is not being met.

Downgrading DOS. One important and often overlooked function of the SYS command
is its capability to update the DOS volume boot sector of a disk on which it is writing
system files. Later versions of SYS are more complete than earlier versions in the way
they perform this update; therefore, using SYS to go from a later version of DOS to an
earlier version is sometimes difficult. For example, you cannot use SYS to install DOS 2.1
on a disk that currently boots DOS 3.0 and later versions. Changing from DOS 4.0 or
higher versions back to DOS 3.3 usually works, if the partition is less than or equal to 32
megabytes in capacity. You probably will never see a problem with a later version of SYS
updating a DOS volume boot sector created by an earlier version, but earlier versions
might leave something out when they attempt to change back from a later version. For-
tunately, few people ever attempt to install a lower version of DOS over a higher version.

1017

VI

T
ro

u
b

lesh
o

o
tin

g

Known Bugs in DOS
Few things are more frustrating than finding out that software you depend on every day
has bugs. It’s even worse when DOS does. Every version of DOS ever produced has had
bugs, and users must learn to anticipate them. Some problems are never resolved; you
must live with them.

Sometimes the problems are severe enough, however, that Microsoft, IBM, and other
OEM distributors of DOS issue a patch disk that corrects the problems. If you use IBM
DOS, you can get them from an IBM dealer or download them from the IBM National
Support Center (NSC) BBS (the number is in Appendix B, the “Vendor List”). With MS-
DOS, you can request a patch by calling the technical support number in the front of
your DOS manual. Or, if you have a modem, you can download patches from the
Microsoft Download Service BBS (see Appendix B).

If you have IBM PC DOS, check with your system vendor periodically to find out
whether patches are available. You do not have to go to the dealer from which you pur-
chased PC DOS; any dealer must provide the patches for free when you show you have a
legal license for PC DOS. The proof-of-license page from the PC DOS 4.0 manual satisfies
as a license check. If you ask a dealer who does not know about these patches, or who
does not provide them for some reason, try another dealer. PC DOS is a warranted prod-
uct, and the patches are part of the warranty service.

The following sections detail IBM patches for PC DOS 3.3, PC DOS 4.0, and IBM DOS
5.0. These versions have official IBM-produced patch disks available at no cost from your
nearest IBM dealer, or available from the IBM BBS.

PC DOS 3.3 Bugs and Patches. The PC DOS 3.3 official patches and fixes from IBM
originally were issued by IBM’s National Support Center on September 9, 1987. A second
update, issued October 24, 1987, superseded the first update. These disks fix the follow-
ing two general problems with DOS 3.3:

■ BACKUP did not work properly in backing up a large number of subdirectories in a
given directory. A new version of BACKUP was created to resolve this problem.

■ Systems that had slow serial printers with small input buffers sometimes displayed
a false Out Of Paper error message when attempting to print. A new program,
I17.COM, resolves this problem.

In addition to the two general problems resolved by this patch, IBM PS/2 systems had
a particular problem between their ROM BIOS and DOS 3.3; a special DASDDRVR.SYS
driver was provided on the patch disk to fix these BIOS problems. The versions of
DASDDRVR.SYS supplied on the DOS 3.3 patch disks have been superseded by later ver-
sions supplied elsewhere; DASDDRVR.SYS was placed on the IBM PS/2 Reference disks for
more widespread distribution, and you can obtain it directly from IBM on a special sys-
tem update floppy disk. This driver and the problems it can correct are discussed later in
this chapter, in the section “PS/2 BIOS Update.”

Disk Operating System (DOS)

1018 Chapter 20—Operating Systems Software and Troubleshooting

PC DOS 4.0 and 4.01 Bugs and Patches. Six different versions of IBM DOS 4.0 have
been issued, counting the first version and the five patch disks subsequently released.
The disks are not called patch disks anymore; they are called corrective service disks (CSDs).
Each level of CSD contains all the previous level CSDs. The first CSD issued for PC DOS
4.0 (UR22624) contained a series of problem fixes that later were incorporated into the
standard release version of DOS 4.01. Several newer CSDs have been released since ver-
sion 4.01 appeared. Unfortunately, these more recent updates were never integrated into
the commercially packaged DOS. The only way to obtain these fixes is to obtain the
CSDs from your dealer or from the IBM BBS.

The VER command in any level of IBM DOS 4.x always shows 4.00, which causes much
confusion about which level of CSD fixes are installed on a specific system. To eliminate
this confusion and allow for the correct identification of installed patches, the CSD
UR29015 and later levels introduce to DOS 4.x a new command: SYSLEVEL. This com-
mand is resident in COMMAND.COM and is designed to identify conclusively to the
user the level of corrections installed. On a system running PC DOS 4.x with CSD
UR35284 installed, the SYSLEVEL command reports the following:

DOS Version: 4.00 U.S. Date: 06/17/88

CSD Version: UR35284 U.S. Date: 09/20/91

The following list notes each of the IBM DOS 4.0 Corrective Service Diskettes (CSDs) and
when they first became available.

CSD Date Available

UR22624 08/15/88 (this equals 4.01)

UR24270 03/27/89

UR25066 05/10/89

UR29015 03/20/90

UR31300 06/29/90

UR35284 09/20/91

These CSDs are valid only for the IBM version of DOS—PC DOS 4.0. Microsoft and OEM
versions of DOS may not have corresponding patches. Some OEMs provide patches or
corrections in different ways, and some may not even offer them. Because most OEMs
released their versions of DOS after IBM, other manufacturers have had a chance to in-
corporate fixes in their standard version and may not need to provide patches. If you
have a version of DOS by a manufacturer other than Microsoft or IBM, contact its source
to find out which patch corrections have been applied to your version of DOS. With a
system that can run standard MS-DOS, you can get patches from Microsoft. If you have
an IBM, you must rely on a reputable dealer to get the latest version of DOS.

MS-DOS 4. Microsoft released its version of DOS 4 after IBM had fixed most of the bugs
in PC DOS 4.0. Yet MS-DOS 4.01 introduced some bugs of its own. A patch for MS-DOS
4.x is available for download from the Microsoft Download Service or by calling

1019

VI

T
ro

u
b

lesh
o

o
tin

g

Microsoft technical service. The patch disk for MS-DOS 4.0x is available on the Microsoft
Download service as PD0255.EXE.

IBM DOS 5.0 Bugs and Patches. With the release of its DOS version 5.0, IBM changed
the product name from PC DOS to IBM DOS (version 6.0 of IBM’s DOS has been changed
back to PC DOS). IBM DOS version 5.0 has several CSDs that fix a couple of problems.
The most significant is a defect in the XCOPY command that causes it to fail sometimes
when it uses the /E or /S switches. The following list notes the IBM DOS 5.0 CSDs and
indicates when they first became available:

CSD Date available

UR35423 08/91

UR35748 10/91

UR35834 11/91

UR36603 02/92

UR37387 09/92

Table 20.18 lists the problems fixed by these patch disks.

Table 20.18 IBM DOS 5 Corrective Service Disks (CSDs)

CSD Item Problem

UR35423 XCOPY Wrong output when using /E and /S switches.

UR35423 QBASIC Enables QBASIC and QEDIT compatibility.

UR35748 SYS Corrupted hard file after installing UR35423.

UR35834 DOSSHELL DOSSHELL takes 27 seconds to load.

UR35834 MEUTOINI 4.0 .MEU to 5.0 .INI conversion incomplete.

UR35834 MEM MEM switch hangs system with PC3270.

UR35834 IBMBIO L40SX will not SUSPEND or RESUME.

UR35834 DOSSHELL Can’t edit dialog box if length is maximum.

UR35834 EMM386 Int 19H fails with EMM386 and DOS=HIGH.

UR35834 FORMAT FORMAT on unpartitioned drive; rc = 0.

UR35834 REPLACE REPLACE /A returns error.

UR35834 XCOPY XCOPY /S incorrectly sets error level.

UR35834 GRAPHICS PrtScr of graphics display produces garbage.

UR35834 DOSSHELL DOSSHELL.INI corrupted from CTRL-ALT-DEL.

UR35834 BACKUP BACKUP calls wrong FORMAT.COM from OS/2.

UR35834 MIRROR MIRROR doesn’t enable Interrupts correctly.

UR35834 BACKUP BACKUP /A backs up too large a file.

UR36603 EDIT Alt ### key combo doesn’t work in EDIT.

UR36603 MIRROR MIRROR fails with /T switch and DOS=UMB.

UR36603 IBMBIO L40SX will not SUSPEND or RESUME if DOS=LOW.

Disk Operating System (DOS)

(continues)

1020 Chapter 20—Operating Systems Software and Troubleshooting

Table 20.18 Continued

CSD Item Problem

UR36603 BACKUP BACKUP fails to back up all files.

UR36603 QBASIC QBASIC help msgs missing in nls versions.

UR36603 CHKDSK CHKDSK data loss when sectors per FAT>256.

UR36603 EMM386 DMA transfer may not function on EISA systems.

UR36603 RECOVER RECOVER can corrupt disks with 12-bit FAT.

UR36603 RECOVER RECOVER may not adjust file size correctly.

UR36603 DOSSHELL DOSSHELL incorrectly copies certain file sizes.

UR36603 DOSSWAP Task Swapper destroys CX register.

UR36603 DOSSWAP Task Swapper does not swap EMS memory.

UR36603 DOSSWAP Task Swapper incorrectly swaps large XMS memory.

UR36603 DOSSWAP DOSSHELL overwrites an interrupt vector.

UR36603 DOSSWAP DOSSHELL random skip of swapping application memory.

UR36603 DOSSHELL DOSSHELL uses environment var to set 2nd swap path.

UR37387 RESTORE RESTORE fails to display backup files.

UR37387 IBMDOS FASTOPEN causes bad FAT message.

UR37387 KEYB Pause key doesn’t work on PS/2 25 and 30.

UR37387 IBMDOS Unmapped network drive returns error.

UR37387 MODE MODE and off-line printer across net hangs.

UR37387 IBMDOS RAMDRIVE errors with certain combinations.

UR37387 DOSSHELL Unattended start mode—lose keyboard with DOSSHELL.

UR37387 COMMAND Error with greater than 1G free space.

UR37387 IBMDOS INT 27 returns no data after file create.

UR37387 IBMBIO L40SX loses time during suspend.

UR37387 DOSSHELL CTRL+ESC hangs when returning to DOSSHELL.

UR37387 IBMDOS Extended File Open returns incorrect code.

UR37387 HIMEM Device driver fails to load.

UR37387 HIMEM HIMEM incorrectly identifies memory on EISA.

UR37387 UNDELETE Doesn’t work if partition is a multiple of 128M.

UR37387 UNDELETE Doesn’t handle foreign characters correctly.

UR37387 BACKUP Restore does not ask for second diskette.

UR37387 KEYBOARD Keyboard changes for Latin II countries.

UR37387 MEM Finland MEM/C displays invalid characters.

UR37387 DOSSHELL INT 33 DOSSHELL reentry problem with BASIC.

UR37387 MODE MODE LPT1:, P reports Bad mode.

UR37387 BACKUP Occasionally gets Cannot Restore File error.

1021

VI

T
ro

u
b

lesh
o

o
tin

g

MS-DOS 5.0 Bugs and Patches. As mentioned earlier, the Microsoft Download Service
DOS files listing includes fixes for MS-DOS versions 4.0 and 5.0. When you call the
Microsoft Download Service, you are asked to enter your name and city and to choose a
password. Choose a password you will not forget because when you realize how simple it
is to always have the most current bug fixes for MS-DOS, you will want to call back. After
you enter your name and a password, the following screen appears:

****Microsoft Download Service****
**** Main Menu ****
[I]nstructions on Using This Service
[D]ownload File
[F]ile Index

[W]indows 3.1 Driver Library Update
[N]ew Files & Complete File Listing

[M]icrosoft Information
[A]lter User Settings
[U]tilities - Comments
[L]ength of Call
[E]xit ... Logoff the System
[H]elp - System Instructions
Command:

At the command prompt choose f (for file) to display the following screen:

**** File Sections Available ****

[1] Windows and MS-DOS
[2] Word, Excel and Multiplan
[3] PowerPoint, Publisher and Project
[4] LAN Manager and Microsoft Mail
[5] Languages and Windows SDK
[6] Works and Flight Simulator
[7] MS FOX, MS Access & MS Money
[8] MS Video for Windows

[F]ile Search

[-]Previous Menu
[M]ain Menu

[L]ength of Call
[E]xit ... Logoff the System

Command:

Disk Operating System (DOS)

1022 Chapter 20—Operating Systems Software and Troubleshooting

Choose 1 (for Windows and MS-DOS) to display the following screen:

Windows and MS-DOS Files
[1] Windows for Workgroups Appnotes
[2] Windows 3.1 Driver Library
[3] Windows 3.1 Application Notes
[4] Windows 3.1 Resource Kit
[5] Windows 3.0 Driver Library-SDL
[6] Windows 3.0 Application Notes
[7] Windows 3.0 Resource Kit
[8] MS DOS Files

[-]Previous Menu
[M]ain Menu

[L]ength of Call
[E]xit ... Logoff the System

Command:

Choose 8 (for MS-DOS files).

MS-DOS 5.0 fixes available on the Microsoft Download Service are as follows:

PD0445.EXE Replacement DOSSWAP.EXE

PD0455.EXE ADAPTEC.SYS Driver (for adaptec drives)

PD0488.EXE 8514.VID Video Driver for MS-DOS 5.0 Shell

PD0489.EXE MS-DOS Messages Reference

PD0495.EXE PRINTFIX.COM patch for PRINT problems

PD0646.EXE Updated CHKDSK.EXE and UNDELETE.EXE

PD0315.EXE BACKUP/RESTORE
Supplemental Utilities

MS-DOS 6.0 and IBM PC DOS 6.1. As of this writing, there has been one bug fix for
MS-DOS version 6.0—a new version of SmartDrive, which fixes a problem on some sys-
tems when SmartDrive is used at the same time as DoubleSpace. The fix can be used if
you have experienced cross-linked files you think are related to upgrading to DOS 6.0.
You can download the file, named PD0805.EXE, from the Microsoft Download Service.
The Microsoft Download Service also enables you (free of charge) to download the MS-
DOS 6.0 Supplemental Disk. This supplemental disk contains utilities helpful to the
handicapped. The disk also contains new versions of various utilities that were part of
DOS 5.0, but not included on the DOS 6.0 upgrade disks, including MIRROR, EDLIN,
ASSIGN, JOIN, BACKUP (MSBACKUP is a new menu-based backup program included
with DOS 6), COMP, PRINTER.SYS, and the DVORAK keyboard. Also available is a
utility to fix a problem using the Shift key in Quick Basic 1.1, named PD0415.EXE.

In addition, numerous technical papers on setting up and running MS-DOS 6.0 are
available on the download service. They are listed in table 20.19.

1023

VI

T
ro

u
b

lesh
o

o
tin

g

Table 20.19 MS-DOS Technical Papers

File Name Subject

PD0456.TXT Running MS-DOS in the High Memory Area

PD0457.TXT HIMEM.SYS “ERROR: Unable to Control A20 Line”

PD0459.TXT EMM386.EXE: No Expanded Memory Available

PD0460.TXT Running Both Extended and Expanded Memory

PD0462.TXT Mouse Doesn’t Work with MS-DOS Shell

PD0463.TXT Using the Setver Command

PD0465.TXT Problems Formatting or Reading a Floppy Disk

PD0470.TXT System Fails When You Are Using EMM.386

PD0471.TXT Explanation of the WINA20.386 File

PD0473.TXT Installing MS-DOS from Drive B

PD0474.TXT Windows 3.0 Doesn’t Run in 386 Enhanced Mode

PD0476.TXT IBM PS/1 Fails After MS-DOS Is Installed

PD0477.TXT Setup Stops Before Completing Upgrade to MS

PD0743.TXT MS-DOS 6.0 Installation and Partition Q&A

PD0744.TXT MS-DOS 6.0 General Installation Q&A

PD0745.TXT DoubleSpace Questions and Answers

PD0746.TXT MemMaker Questions and Answers

PD0747.TXT MS-DOS 6.0 Configuration Q&A

PD0748.TXT Backup and Miscellaneous Q&A

PD0771.TXT Repartitioning Your Hard Disk To Upgrade to MS-DOS 6.0

PD0785.TXT Upgrading DR DOS to MS-DOS 6

IBM has since released PC DOS 6.3, which has many fixes and updates. You can get a free
upgrade from the IBM BBS if you have earlier versions of IBM DOS.

PS/2 BIOS Update (DASDDRVR.SYS)
The DASDDRVR.SYS (direct access storage device driver) file is a set of software patches
that fixes various ROM BIOS bugs in several models of the IBM PS/2. DASDDRVR.SYS is
required for specific PS/2 systems using IBM’s PC DOS versions 3.30 or later, to correct
several bugs in the IBM PS/2 ROM BIOS. Before IBM’s PC DOS 4.00 was released, conflict-
ing information indicated that PC DOS 4.00 would include the updates to correct the
PS/2 ROM BIOS problems fixed by DASDDRVR.SYS under PC DOS 3.30. This information
was not accurate, however. In fact, an IBM PS/2 system needs DASDDRVR.SYS with IBM
DOS 5.00 (or any higher version of DOS) even with the most current corrective service
disk (CSD) update.

The PS/2 needs the DASDDRVR.SYS fixes only in the DOS environment. Some users as-
sume, therefore, that the PS/2 problems with DOS are DOS bugs; they are not. The
DASDDRVR.SYS program is provided on the PS/2 Reference disk (included with every
PS/2 system) and is available separately on a special PS/2 system update disk. The disks
contain the device driver program (DASDDRVR.SYS) and an installation program.

Disk Operating System (DOS)

1024 Chapter 20—Operating Systems Software and Troubleshooting

The PS/2 ROM BIOS bugs in the following list are fixed by DASDDRVR.SYS (the problem
numbers are shown in table 20.19, and more detailed information is provided later in
this section):

1. Failures occur in reading some 720K program floppy disks (Models 8530, 8550,
8560, and 8580).

2. Intermittent Not ready or General failure error messages appear (Models 8550,
8560, and 8580).

3. 3 1/2-inch floppy disk format fails when user tries to format more than one floppy
disk (Models 8550, 8560, 8570, and 8580).

4. Combined 301 and 8602 error messages appear at power-on or after power inter-
ruption (Models 8550 and 8560).

5. System clock loses time, or combined 162 and 163 errors appear during system
initialization (Models 8550 and 8560).

6. User is unable to install Power-On Password program with DASDDRVR.SYS in-
stalled (Models 8550, 8560, and 8580).

7. Devices attached to COM2:, COM3:, or COM4: are not detected (Model 8530).

8. Devices that use Interrupt Request level 2 (IRQ2) fail (Model 8530).

9. System performance degradation occurs from processor intensive devices (Models
8550, 8555, and 8560).

10. Error occurs in a microcode routine that enhances long-term reliability of 60/120M
disk drives (Models 8550, 8555, 8570, and 8573).

11. Time and date errors occur when user resets the time or date. Intermittent date
changes occur when the system is restarted by pressing Ctrl-Alt-Del (Model 8530).

If you are an IBM PS/2-system user running PC DOS 3.3 or higher and experiencing any
of these problems, load the DASDDRVR.SYS file. The problems are system specific, and
DASDDRVR.SYS fixes the problems for only the systems listed. IBM requires its dealers to
distribute the System Update disk containing DASDDRVR.SYS to anyone who requests it.
Neither the dealer nor the customer pays a fee for the System Update disk. You also can
obtain copies directly from IBM by calling (800) IBM-PCTB (800-426-7282) and ordering
the PS/2 System Update disk.

Check table 20.20 for detailed descriptions of each of these problems and for the specific
systems affected. Models not listed for a particular problem do not need DASDDRVR.SYS,
and no benefit results from installing it.

1025

VI

T
ro

u
b

lesh
o

o
tin

g

Table 20.20 DASDDRVR.SYS Version Summary

Version File Size Problems Fixed Source

1.10 648 bytes 1-3 DOS 3.3 Fix Disk (08/24/87)

1.20 698 bytes 1-5 Reference Disk, DOS 3.3 Fix Disk
(09/09/87)

1.30 734 bytes 1-6 Reference Disk

1.56 1170 bytes 1-9 Reference Disk (03/90), System
Update Disk 1.01 (part number
64F1500)

1.56 3068 bytes 1-11 Reference Disk (xx/xx), System
Update Disk 1.02 (part number
04G3288)

The first three problem fixes originally were provided by the DASDDRVR.SYS version
1.10 file supplied on the first PC DOS 3.3 fix disk. Fixes for problems 4 and 5 were added
in DASDDRVR.SYS version 1.20, included on all IBM PS/2 Reference disks (30-286, 50/60,
and 70/80) version 1.02 or later, as well as on an updated version of the PC DOS 3.3 fix
disk. The fix for problem 6 was added in DASDDRVR.SYS version 1.30, included on all
50/60 and 70/80 Reference disks version 1.03 or later. Fixes for problems 7 through 9
were added to DASDDRVR.SYS version 1.56, included on all IBM PS/2 Reference disks
dated March 1990 or later. This version of DASDDRVR.SYS also was available separately,
on the IBM PS/2 System Update disk version 1.01. The latest DASDDRVR.SYS (also called
version 1.56, but dated January 1991) can be found on newer Reference disks or on the
IBM PS/2 System Update disk version 1.02.

By using the DASDDRVR.SYS driver file, IBM can correct specific ROM BIOS problems
and bugs without having to issue a new set of ROM chips for a specific system. Using
this file eliminates service time or expense in fixing simple problems, but causes the
inconvenience of having to load the driver. The driver does not consume memory, nor
does it remain in memory (as does a typical driver or memory-resident program); it ei-
ther performs functions on boot only and then terminates, or overlays existing code or
tables in memory, thereby consuming no additional space. Because DASDDRVR.SYS
checks the exact ROM BIOS by model, submodel, and revision, it performs functions
only on those for which it is designed. If it detects a BIOS that does not need fixing, the
program terminates without doing anything. You can load DASDDRVR.SYS on any sys-
tem; it functions only on systems for which it is designed.

Because a system BIOS occasionally needs revising or updating, IBM used disk-based BIOS
programs for most newer PS/2 systems. The Models 57, P75, 90, and 95, in fact, load the
system BIOS from the hard disk every time the system is powered up, during a procedure
called initial microcode load (IML). You can get a ROM upgrade for these systems by ob-
taining a new Reference disk and loading the new IML file on the hard disk. This system
makes DASDDRVR.SYS or other such patches obsolete.

Disk Operating System (DOS)

1026 Chapter 20—Operating Systems Software and Troubleshooting

Installing DASDDRVR.SYS. To install DASDDRVR.SYS, you must update the
CONFIG.SYS file with the following entry and restart the system:

DEVICE=[d:\path\]DASDDRVR.SYS

The drive and path values must match the location and name of the DASDDRVR.SYS file
on your system.

Detailed Problem Descriptions. This section gives a detailed description of the prob-
lems corrected by the most current release of DASDDRVR.SYS and indicates for which
systems the corrections are necessary.

1. Failures occur in reading some 720K program disks.

IBM PS/2 systems affected:

Model 30 286 8530-E01, -E21

Model 50 8550-021

Model 60 8560-041, -071

Model 80 8580-041, -071

Intermittent read failures on some 720K original application software disks. Ex-
ample: Not ready reading drive A: appears when a user attempts to install an
application program. Attempting to perform DIR or COPY commands from the
floppy disk also produces the error message.

2. Intermittent Not ready or General failure error messages are displayed.

IBM PS/2 systems affected:

Model 50 8550-021

Model 60 8560-041, -071

Model 80 8580-041, -071

A very intermittent problem with a floppy disk drive Not ready or a fixed disk
General failure message. This problem can be aggravated by certain programming
practices that mask off (or disable) interrupts for long periods. The update ensures
that interrupts are unmasked on each disk or floppy disk request.

3. A 3 1/2-inch floppy disk format fails when the user tries to format more than one
disk.

IBM PS/2 systems affected:

Model 50 8550-021

Model 60 8560-041, -071

Model 70 8570-Axx (all)

Model 80 8580-Axx (all)

1027

VI

T
ro

u
b

lesh
o

o
tin

g

The DOS FORMAT command fails when a user tries to format multiple 3 1/2-inch
disks. The failure appears as an Invalid media or Track 0 bad—disk unusable

message when the user replies Yes to the prompt Format another (Y/N)? after the
format of the first disk is complete. The error message appears when the user tries
to format the second disk. If a system is booted from a floppy disk, the problem
does not occur. This problem occurs only with DOS 3.3, not with later versions.

4. Combined 301 and 8602 error messages at power-on or after power interruption.

IBM PS/2 systems affected:

Model 50 8550-021

Model 60 8560-041, -071

When power is interrupted momentarily or a system is otherwise switched on and
off quickly, a 301 (keyboard) and 8602 (pointing device) error message may appear
during the Power On Self Test (POST). This error occurs because the system powers
on before the keyboard is ready. The problem is more likely to occur if the system
was reset previously by pressing Ctrl-Alt-Del.

5. System clock loses time or combined 162 and 163 errors during system
initialization.

IBM PS/2 systems affected:

Model 50 8550-021

Model 60 8560-041, -071

Intermittent 162 (CMOS checksum or configuration) and 163 (clock not updating)
Power-On Self Test (POST) errors occur. Various time-of-day problems on specified
IBM PS/2 Model 50 systems; for example, the user turns on the machine in the
morning and finds the time set to the same time the machine was turned off the
day before.

6. User is unable to install Power-On Password program with DASDDRVR.SYS
installed.

IBM PS/2 systems affected:

Model 50 8550-021

Model 60 8560-041, -071

Model 80 8580-041, -071

When a user tries to install the Power-On Password feature with DASDDRVR.SYS
version 1.3 or earlier installed, a message appears that states (incorrectly) that a
password already exists. The user also may be prompted for a password (on warm
boot), even though password security has not been implemented.

Disk Operating System (DOS)

1028 Chapter 20—Operating Systems Software and Troubleshooting

7. Devices attached to COM2:, COM3:, or COM4: are not detected.

IBM PS/2 systems affected:

Model 30 286 8530-E01, -E21

8. Devices that use Interrupt Request level 2 (IRQ2) fail.

IBM PS/2 systems affected:

Model 30 286 8530-E01, -E21

9. System performance degradation occurs from processor intensive devices.

IBM PS/2 systems affected:

Model 50 8550-021, -031, -061

Model 55 SX 8555-031, -061

Model 60 8560-041, -071

10. Error occurs in a microcode routine that enhances long-term reliability of 60/120M
disk drives.

IBM PS/2 systems affected:

Model 50 8550-061

Model 55 SX 8555-061

Model 70 8570-061, -121, -A61, -A21, -B61, -B21

Model P70 8573-061, -121

11. Time and date errors occur when the user resets the time or date. Intermittent date
changes occur when the system is restarted by pressing Ctrl-Alt-Del.

IBM PS/2 systems affected:

Model 30 8530 (all)

OS/2 versions 1.2 and earlier contained these BIOS fixes in the form of a .BIO file for
each specific BIOS needing corrections. These files were automatically loaded by OS/2 at
boot time, depending on the specific system on which it was being loaded.

OS/2 versions 1.3 and later contain the fixes directly in-line in the system files, not as
separate files. When a system running one of these OS/2 versions is booted, OS/2 deter-
mines the model, submodel, and revision bytes for the particular BIOS under which it is
running. Based on this information, OS/2 determines the correct .BIO file to load or the
correct in-line code to run. For example, the IBM PS/2 55SX BIOS is Model F8, Submodel
0C, Revision 00, which causes IBM OS/2 version 1.2 to load the file F80C00.BIO auto-
matically during boot-up. OS/2 versions 1.3 or later use this information to run the
proper fix code contained in the system files. This procedure enables execution of only
those BIOS fixes necessary for this particular system.

1029

VI

T
ro

u
b

lesh
o

o
tin

g

Any symptom described as being resolved by the DASDDRVR.SYS update may have other
causes. If you install the DASDDRVR.SYS update and continue to have problems, con-
sider the errors valid and follow normal troubleshooting procedures to find the causes.

DOS Disk and Data Recovery
The CHKDSK, RECOVER, and DEBUG commands are the DOS damaged disk recovery
team. These commands are crude, and their actions sometimes are drastic, but at times
they are all that is available or needed. RECOVER is best known for its function as a data
recovery program, and CHKDSK usually is used for inspection of the file structure. Many
users are unaware that CHKDSK can implement repairs to a damaged file structure. DE-
BUG, a crude, manually controlled program, can help in the case of a disk disaster, if you
know exactly what you are doing.

The CHKDSK Command. The useful and powerful DOS CHKDSK command also is gen-
erally misunderstood. To casual users, the primary function of CHKDSK seems to be
providing a disk space allocation report for a given volume and a memory allocation
report. CHKDSK does those things, but its primary value is in discovering, defining, and
repairing problems with the DOS directory and FAT system on a disk volume. In han-
dling data recovery problems, CHKDSK is a valuable tool, although it is crude and sim-
plistic compared to some of the after-market utilities that perform similar functions.

The output of the CHKDSK command which runs on a typical (well maybe not typical,
but from my own) hard disk is as follows:

Volume 4GB_SCSI created 08-31-1994 5:05p
Volume Serial Number is 1882-18CF

2,146,631,680 bytes total disk space
 163,840 bytes in 3 hidden files
 16,220,160 bytes in 495 directories
 861,634,560 bytes in 10,355 user files
1,268,613,120 bytes available on disk

 32,768 bytes in each allocation unit
 65,510 total allocation units on disk
 38,715 available allocation units on disk

 655,360 total bytes memory
 632,736 bytes free

A little known CHKDSK function is reporting a specified file’s (or files’) level of fragmen-
tation. CHKDSK also can produce a list of all files (including hidden and system files)
on a particular volume, similar to a super DIR command. By far, the most important
CHKDSK capabilities are its detection and correction of problems with the DOS file man-
agement system.

The name of the CHKDSK program is misleading: it seems to be a contraction of CHECK
DISK. The program does not actually check a disk, or even the files on a disk, for integ-
rity. CHKDSK cannot even truly show how many bad sectors are on a disk, much less
locate and mark them. The real function of CHKDSK is to inspect the directories and
FATs to see whether they correspond with each other or contain discrepancies. CHKDSK

Disk Operating System (DOS)

1030 Chapter 20—Operating Systems Software and Troubleshooting

does not detect (and does not report on) damage in a file; it checks only the FAT and
directory areas (the table of contents) of a disk. Rather than CHKDSK, the command
should have been called CKDIRFAT (for CHECK DIRECTORY FAT) because its most im-
portant job is to verify that the FATs and directories correspond with one another. The
name of the program gives no indication of the program’s capability to repair problems
with the directory and FAT structures.

CHKDSK also can test files for contiguity. Files loaded into contiguous tracks and sectors
of a disk or floppy disk naturally are more efficient. Files spread over wide areas of the
disk make access operations take longer. DOS always knows the location of all of a file’s
fragments by using the pointer numbers in the file allocation table (FAT). These pointers
are data that direct DOS to the next segment of the file. Sometimes, for various reasons,
these pointers might be lost or corrupted and leave DOS incapable of locating some por-
tion of a file. Using CHKDSK can alert you to this condition and even enable you to
reclaim the unused file space for use by another file.

CHKDSK Command Syntax. The syntax of the CHKDSK command is as follows:

CHKDSK [d:\path\] [filename] [/F] [/V]

The d: specifies the disk volume to analyze. The \path\ and filename options specify files
to check for fragmentation in addition to the volume analysis. Wild cards are allowed in
the file-name specification, to include as many as all the files in a specified directory for
fragmentation analysis. One flaw with the fragmentation analysis is that it does not
check for fragmentation across directory boundaries, only within a specified directory.

The switch /F (Fix) enables CHKDSK to perform repairs if it finds problems with the di-
rectories and FATs. If /F is not specified, the program is prevented from writing to the
disk, and all repairs were not really performed.

The switch /V (Verbose) causes the program to list all the entries in all the directories on
a disk and give detailed information in some cases when errors are encountered.

The drive, path, and file specifiers are optional. If no parameters are given for the com-
mand, CHKDSK processes the default volume or drive and does not check files for conti-
guity. If you specify [path] and [filename] parameters, CHKDSK checks all specified files to
see whether they are stored contiguously on the disk. One of two messages is displayed
as a result:

All specified file(s) are contiguous

or

[filename] Contains xxx non-contiguous blocks

The second message is displayed for each file fragmented on the disk and displays the
number of fragments the file is in. A fragmented file is one that is scattered around the
disk in pieces rather than existing in one contiguous area of the disk. Fragmented files
are slower to load than contiguous files, which reduces disk performance. Fragmented
files are also much more difficult to recover if a problem with the FAT or directory on
the disk occurs.

1031

VI

T
ro

u
b

lesh
o

o
tin

g

Utility programs that can defragment files are discussed in Chapter 19. But if you have
only DOS, you have several possible ways to accomplish a full defragmentation. To
defragment files on a floppy disk, you can format a new floppy disk and use COPY or
XCOPY to copy all the files from the fragmented disk to the replacement. For a hard
disk, you must completely back up, format, and then restore the disk. This procedure
on a hard disk is time-consuming and dangerous, which is why so many defragmenting
utilities have been developed.

CHKDSK Limitations. In several instances, CHKDSK operates only partially or not at all.
CHKDSK does not process volumes or portions of volumes that have been created as
follows:

■ SUBST command volumes

■ ASSIGN command volumes

■ JOIN command subdirectories

■ Network volumes

SUBST Problems. The SUBST command creates a virtual volume, which is actually an
existing volume’s subdirectory using another volume specifier (drive letter) as an alias.
To analyze the files in a subdirectory created with SUBST, you must give the TRUENAME
or actual path name to the files. TRUENAME is an undocumented command in DOS 4.0
and later versions that shows the actual path name for a volume that has been created by
the SUBST command.

You also can use the SUBST command to find out the TRUENAME of a particular vol-
ume. Suppose that you use SUBST to create volume E: from the C:\AUTO\SPECS direc-
tory, as follows:

C:\>SUBST E: C:\AUTO\SPECS

After entering the following two commands to change to the E: volume and execute a
CHKDSK of the volume and files there, you see the resulting error message:

C:\>E:

E:\>CHKDSK *.*

Cannot CHKDSK a SUBSTed or ASSIGNed drive

To run CHKDSK on the files on this virtual volume E:, you must find the actual path
the volume represents. You can do so by entering the SUBST command (with no
parameters):

E:\>SUBST

E: => C:\AUTO\SPECS

Disk Operating System (DOS)

1032 Chapter 20—Operating Systems Software and Troubleshooting

You also can find the actual path with the undocumented TRUENAME command
(in DOS 4.0 and later versions only), as follows:

E:\>TRUENAME E:

C:\AUTO\SPECS

After finding the path to the files, you can issue the appropriate CHKDSK command to
check the volume and files:

E:\>CHKDSK C:\AUTO\SPECS*.*

Volume 4GB_SCSI created 08-31-1994 5:05p
Volume Serial Number is 1882-18CF

2,146,631,680 bytes total disk space
 163,840 bytes in 3 hidden files
 16,220,160 bytes in 495 directories
 861,634,560 bytes in 10,355 user files
1,268,613,120 bytes available on disk

 32,768 bytes in each allocation unit
 65,510 total allocation units on disk
 38,715 available allocation units on disk

 655,360 total bytes memory
 632,736 bytes free

All specified file(s) are contiguous

ASSIGN Problems. Similarly, CHKDSK does not process a disk drive that has been al-
tered by the ASSIGN command. For example, if you have given the command ASSIGN
A=B, you cannot analyze drive A: unless you first unassign the disk drive with the AS-
SIGN command, that is, ASSIGN A=A.

JOIN Problems. CHKDSK does not process a directory tree section created by the JOIN
command (which joins a physical disk volume to another disk volume as a subdirectory),
nor does it process the actual joined physical drive because such a drive is an invalid
drive specification, according to DOS. On volumes on which you have used the JOIN
command, CHKDSK processes the actual portion of the volume and then displays this
warning error message:

Directory is joined
tree past this point not processed

This message indicates that the command cannot process the directory on which you
have used JOIN. CHKDSK then continues processing the rest of the volume and outputs
the requested volume information.

1033

VI

T
ro

u
b

lesh
o

o
tin

g

Network Problems. CHKDSK does not process a networked (shared) disk on either the
server or workstation side. In other words, at the file server, you cannot use CHKDSK on
any volume that has any portion of itself accessible to remote network stations. At any
network station, you can run CHKDSK only on volumes physically attached to that
specific station and not on any volume accessed through the network software. If you
attempt to run CHKDSK from a server or a workstation on a volume shared on a net-
work, you see this error message:

Cannot CHKDSK a network drive

If you want to run CHKDSK on the volume, you must go to the specific PC on which the
volume physically exists and suspend or disable any sharing of the volume during the
CHKDSK.

CHKDSK Command Output. CHKDSK normally displays the following information
about a disk volume:

■ Volume name and creation date

■ Volume serial number

■ Number of bytes in total disk space

■ Number of files and bytes in hidden files

■ Number of files and bytes in directories

■ Number of files and bytes in user files

■ Number of bytes in bad sectors (unallocated clusters)

■ Number of bytes available on disk

■ Number of bytes in total memory (RAM)

■ Number of bytes in free memory

■ Error messages if disk errors are encountered

By using optional parameters, CHKDSK also can show the following:

■ Names and number of fragments in noncontiguous files

■ Names of all directories and files on disk

If a volume name or volume serial number does not exist on a particular volume, that
information is not displayed. If no clusters are marked as bad in the volume’s FAT,
CHKDSK returns no display of bytes in bad sectors.

For example, suppose that a disk was formatted under DOS 6.2 with the following
command:

C:\>FORMAT A: /F:720 /U /S /V:floppy_disk

Disk Operating System (DOS)

1034 Chapter 20—Operating Systems Software and Troubleshooting

The output of the FORMAT command looks like this:

Insert new diskette for drive A:
and press ENTER when ready...

Formatting 720K
Format complete.
System transferred

 730,112 bytes total disk space
 135,168 bytes used by system
 594,944 bytes available on disk

 1,024 bytes in each allocation unit.
 581 allocation units available on disk.

Volume Serial Number is 266D-1DDC

Format another (Y/N)?

The status report at the end of the FORMAT operation is similar to the output of the
CHKDSK command. The output of the CHKDSK command when run on this disk would
appear as follows:

C:\>CHKDSK A:

Volume FLOPPY_DISK created 01-16-1994 10:18p
Volume Serial Number is 266D-1DDC

 730,112 bytes total disk space
 79,872 bytes in 2 hidden files
 55,296 bytes in 1 user files
 594,944 bytes available on disk

 1,024 bytes in each allocation unit
 713 total allocation units on disk
 581 available allocation units on disk

 655,360 total bytes memory
 632,736 bytes free

In this case, CHKDSK shows the volume name and serial number information because
the FORMAT command placed a volume label on the disk with the /V parameter, and
FORMAT under DOS 4.0 and later versions automatically places the volume serial num-
ber on a disk. Note that three total files are on the disk, two of which have the HIDDEN
attribute. DOS versions earlier than 5.0 report the Volume Label “FLOPPY_DISK” as a
third hidden file. To see the names of the hidden files, you can execute the CHKDSK
command with the /V parameter, as follows:

C:\>CHKDSK A: /V

Volume FLOPPY_DISK created 01-16-1994 10:18p
Volume Serial Number is 266D-1DDC
Directory A:\
A:\IO.SYS

1035

VI

T
ro

u
b

lesh
o

o
tin

g

A:\MSDOS.SYS
A:\COMMAND.COM

 730,112 bytes total disk space
 79,872 bytes in 2 hidden files
 55,296 bytes in 1 user files
 594,944 bytes available on disk

 1,024 bytes in each allocation unit
 713 total allocation units on disk
 581 available allocation units on disk

 655,360 total bytes memory
 632,736 bytes free

With the /V parameter, CHKDSK lists the names of all directories and files across the
entire disk, which in this example is only three total files. CHKDSK does not identify
which of the files are hidden, it simply lists them all. Note that the DIR command in
DOS versions 5.0 and higher can specifically show hidden files with the /AH parameter.
The DOS system files are the first two files on a bootable disk and normally have HID-
DEN, SYSTEM, and READ-ONLY attributes. After listing how many bytes are used by the
hidden and normal files, CHKDSK lists how much total space is available on the disk.

If you are using DOS 4.0 or a later version, CHKDSK also tells you the size of each alloca-
tion unit (or cluster), the total number of allocation units present, and the number not
currently being used.

Finally, CHKDSK counts the total amount of conventional memory or DOS-usable RAM
(in this case, 640K or 655,360 bytes) and displays the number of bytes of memory cur-
rently unused or free. This information tells you the size of the largest executable pro-
gram you can run.

CHKDSK under DOS versions 3.3 and earlier does not recognize the IBM PS/2 Extended
BIOS Data Area (which uses the highest 1K of addresses in contiguous conventional
memory) and therefore reports only 639K, or 654,336 bytes, of total memory. For most
IBM PS/2 systems with 640K of contiguous memory addressed before the video wall, the
Extended BIOS Data Area occupies the 640th K. DOS 4.0 and later versions provide the
correct 640K report.

During the FORMAT of the disk in the example, the FORMAT program did not find any
unreadable sectors. Therefore, no clusters were marked in the FAT as bad or unusable,
and CHKDSK did not display the xxxxxxxxx bytes in bad sectors message. Even if the
disk had developed bad sectors since the FORMAT operation, CHKDSK still would not
display any bytes in bad sectors because it does not test for and count bad sectors:
CHKDSK reads the FAT and reports on whether the FAT says that there are any bad sec-
tors. CHKDSK does not really count sectors; it counts clusters (allocation units) because
that is how the FAT system operates.

Although bytes in bad sectors sounds like a problem or error message, it is not. The re-
port is simply stating that a certain number of clusters are marked as bad in the FAT and
that DOS therefore will never use those clusters. Because nearly all hard disks are

Disk Operating System (DOS)

1036 Chapter 20—Operating Systems Software and Troubleshooting

manufactured and sold with defective areas, this message is not uncommon. In fact, the
higher quality hard disks on the market tend to have more bad sectors than the lower
quality drives, based on the manufacturer defect list shipped with the drive (indicating
all the known defective spots). Many of the newest controllers allow for sector and track
sparing, in which the defects are mapped out of the DOS readable area so that DOS never
has to handle them. This procedure is almost standard in drives that have embedded
controllers, such as IDE (Integrated Drive Electronics) or SCSI (Small Computer Systems
Interface) drives.

Suppose that you use a utility program to mark two clusters (150 and 151, for example)
as bad in the FAT of the 720K floppy disk formatted earlier. CHKDSK then reports this
information:

Volume FLOPPY_DISK created 01-16-1994 10:18p
Volume Serial Number is 266D-1DDC

 730,112 bytes total disk space
 79,872 bytes in 2 hidden files
 55,296 bytes in 1 user files
 2,048 bytes in bad sectors
 592,896 bytes available on disk

 1,024 bytes in each allocation unit
 713 total allocation units on disk
 579 available allocation units on disk

 655,360 total bytes memory
 632,736 bytes free

CHKDSK reports 2,048 bytes in bad sectors, which corresponds exactly to the two clus-
ters just marked as bad. These clusters, of course, are perfectly good—you simply marked
them as bad in the FAT. Using disk editor utility programs such as those supplied with
the Norton or Mace Utilities, you can alter the FAT in almost any way you want.

CHKDSK Operation. Although bytes in bad sectors do not constitute an error or prob-
lem, CHKDSK reports problems on a disk volume with a variety of error messages. When
CHKDSK discovers an error in the FAT or directory system, it reports the error with one
of several descriptive messages that vary to fit the specific error. Sometimes the messages
are cryptic or misleading. CHKDSK does not specify how an error should be handled; it
does not tell you whether CHKDSK can repair the problem or whether you must use
some other utility, or what the consequences of the error and the repair will be. Neither
does CHKDSK tell you what caused the problem or how to avoid repeating the problem.

The primary function of CHKDSK is to compare the directory and FAT to determine
whether they agree with one another—whether all the data in the directory for files
(such as the starting cluster and size information) corresponds to what is in the FAT
(such as chains of clusters with end-of-chain indicators). CHKDSK also checks
subdirectory file entries, as well as the special . and .. entries that tie the subdirectory
system together.

1037

VI

T
ro

u
b

lesh
o

o
tin

g

The second function of CHKDSK is to implement repairs to the disk structure. CHKDSK
patches the disk so that the directory and FAT are in alignment and agreement. From a
repair standpoint, understanding CHKDSK is relatively easy. CHKDSK almost always
modifies the directories on a disk to correspond to what is found in the FAT. In only a
couple of special cases does CHKDSK modify the FAT; when it does, the FAT modifica-
tions are always the same type of simple change.

Think of CHKDSK’s repair capability as a directory patcher. Because CHKDSK cannot
repair most types of FAT damage effectively, it simply modifies the disk directories to
match whatever problems are found in the FAT.

CHKDSK is not a very smart repair program and often can do more damage repairing the
disk than if it had left the disk alone. In many cases, the information in the directories
is correct and can be used (by some other utility) to help repair the FAT tables. If you
have run CHKDSK with the /F parameter, however, the original directory information
no longer exists, and a good FAT repair is impossible. You therefore should never run
CHKDSK with the /F parameter without first running it in read-only mode (without the
/F parameter) to determine whether and to what extent damage exists.

Only after carefully examining the disk damage and determining how CHKDSK would
fix the problems do you run CHKDSK with the /F parameter. If you do not specify the /F
parameter when you run CHKDSK, the program is prevented from making corrections to
the disk. Rather, it performs repairs in a mock fashion. This limitation is a safety feature
because you do not want CHKDSK to take action until you have examined the problem.
After deciding whether CHKDSK will make the correct assumptions about the damage,
you might want to run it with the /F parameter.

Sometimes people place a CHKDSK /F command in their AUTOEXEC.BAT file—a very
dangerous practice. If a system’s disk directories and FAT system become damaged, at-
tempting to load a program whose directory and FAT entries are damaged might lock
the system. If, after you reboot, CHKDSK is fixing the problem because it is in the
AUTOEXEC.BAT, it can irreparably damage the file structure of the disk. In many cases,
CHKDSK ends up causing more damage than originally existed, and no easy way exists to
undo the CHKDSK repair. Because CHKDSK is a simple utility that makes often faulty
assumptions in repairing a disk, you must run it with great care when you specify the /F
parameter.

Problems reported by CHKDSK are usually problems with the software and not the hard-
ware. You rarely see a case in which lost clusters, allocation errors, or cross-linked files
reported by CHKDSK were caused directly by a hardware fault, although it is certainly
possible. The cause is usually a defective program or a program that was stopped before it
could close files or purge buffers. A hardware fault certainly can stop a program before it
can close files, but many people think that these error messages signify fault with the
disk hardware—almost never the case.

Disk Operating System (DOS)

1038 Chapter 20—Operating Systems Software and Troubleshooting

I recommend running CHKDSK at least once a day on a hard disk system because it is
important to find out about file structure errors as soon as possible. Accordingly, placing
a CHKDSK command in your AUTOEXEC.BAT file is a good idea, but do not use the
/F parameter. Also run CHKDSK whenever you suspect that directory or FAT damage
could have occurred. For example, whenever a program terminates abnormally or a sys-
tem crashes for some reason, run CHKDSK to see whether any file system damage has
occurred.

Common Errors. All CHKDSK can do is compare the directory and FAT structures to see
whether they support or comply with one another; as a result, CHKDSK can detect only
certain kinds of problems. When CHKDSK discovers discrepancies between the directory
and the FAT structures, they almost always fall into one of the following categories (these
errors are the most common ones you will see with CHKDSK):

■ Lost allocation units

■ Allocation errors

■ Cross-linked files

■ Invalid allocation units

The RECOVER Command. The DOS RECOVER command is designed to mark clusters as
bad in the FAT when the clusters cannot be read properly. When a file cannot be read
because of a problem with a sector on the disk going bad, the RECOVER command can
mark the FAT so that those clusters are not used by another file. Used improperly, this
program is highly dangerous.

Many users think that RECOVER is used to recover a file or the data within the file in
question. What really happens is that only the portion of the file before the defect is
recovered and remains after the RECOVER command operates on it. RECOVER marks
the defective portion as bad in the FAT and returns to available status all the data after
the defect. Always make a copy of the file to be recovered before using RECOVER because
the copy command can get all the information, including the portion of the file after the
location of the defect.

Suppose that you are using a word processing program. You start the program and tell it
to load a file called DOCUMENT.TXT. The hard disk has developed a defect in a sector
used by this file, and in the middle of loading it, you see this message appear on-screen:

Sector not found error reading drive C
Abort, Retry, Ignore, Fail?

You might be able to read the file on a retry, so try several times. If you can load the file
by retrying, save the loaded version as a file with a different name, to preserve the data
in the file. You still have to repair the structure of the disk to prevent the space from
being used again.

1039

VI

T
ro

u
b

lesh
o

o
tin

g

After ten retries or so, if you still cannot read the file, the data will be more difficult to
recover. This operation has two phases, as follows:

■ Preserve as much of the data in the file as possible.

■ Mark the FAT so that the bad sectors or clusters of the disk are not used again.

Preserving Data. To recover the data from a file, use the DOS COPY command to make
a copy of the file with a different name; for example, if the file you are recovering has
the name DOCUMENT.TXT and you want the copy to be named DOCUMENT.NEW,
enter the following at the DOS prompt:

COPY document.txt document.new

In the middle of the copy, you see the Sector not found error message again. The key to
this operation is to answer with the (I)gnore option. Then the bad sectors are ignored,
and the copy operation can continue to the end of the file. This procedure produces a
copy of the file with all the file intact, up to the error location and after the error loca-
tion. The bad sectors appear as gibberish or garbage in the new copied file, but the entire
copy is readable. Use your word processor to load the new copy and remove or retype the
garbled sectors. If this file were a binary file (such as a part of a program), you probably
would have to consider the whole thing a total loss because you generally do not have
the option of retyping the bytes that make up a program file. Your only hope then is to
replace the file from a backup. This step completes phase one, which recovers as much of
the data as possible. Now you go to phase two, in which you mark the disk so that these
areas will not be used again.

Marking Bad Sectors. You mark bad sectors on a disk by using the RECOVER com-
mand. After making the attempted recovery of the data, you can use the following
RECOVER command at the DOS prompt to mark the sectors as bad in the FAT:

RECOVER document.txt

In this case, the output of the RECOVER command looks like this:

Press any key to begin recovery of the file(s) on drive C:
XXXXX of YYYYY bytes recovered

The DOCUMENT.TXT file still is on the disk after this operation, but it has been trun-
cated at the location of the error. Any sectors the RECOVER command cannot read are
marked as bad sectors in the FAT and will show up the next time you run CHKDSK. You
might want to run CHKDSK before and after running RECOVER, to see the effect of the
additional bad sectors.

After using RECOVER, delete the DOCUMENT.TXT file because you have already created
a copy of it that contains as much good data as possible.

This step completes phase two—and the entire operation. You now have a new file that
contains as much of the original file as possible, and the disk FAT is marked so that the
defective location will not be a bother.

Disk Operating System (DOS)

1040 Chapter 20—Operating Systems Software and Troubleshooting

Caution

Be very careful when you use RECOVER. Used improperly, it can do much damage to your files and
the FAT. If you enter the RECOVER command without a file name for it to work on, the program
assumes that you want every file on the disk recovered, and operates on every file and subdirectory
on the disk; it converts all subdirectories to files, places all file names in the root directory, and
gives them new names (FILE0000.REC, FILE0001.REC, and so on). This process essentially wipes
out the file system on the entire disk. Do not use RECOVER without providing a file name for it to work
on. This program should be considered as dangerous as the FORMAT command.

When you get the Sector not found error reading drive C:, rather than using the DOS
RECOVER command, use the Norton Disk Doctor, or a similar utility, to repair the prob-
lem. If the error is on a floppy disk, use Norton’s DiskTool before you use Disk Doctor.
DiskTool is designed to help you recover data from a defective floppy disk. Disk Doctor
and DiskTool preserve as much of the data in the file as possible, and afterward mark the
FAT so that the bad sectors or clusters of the disk are not used again. These Norton Utili-
ties also save UNDO information, making it possible for you to reverse any data recovery
operation.

The DEBUG Program
The DOS DEBUG program is a powerful debugging tool for programmers who develop
programs in assembly language. The following list shows some of the things you can do
with DEBUG:

■ Display data from any memory location.

■ Display or alter the contents of the CPU registers.

■ Display the assembly source code of programs.

■ Enter data directly into any memory location.

■ Input from a port.

■ Move blocks of data between memory locations.

■ Output to a port.

■ Perform hexadecimal addition and subtraction.

■ Read disk sectors into memory.

■ Trace the execution of a program.

■ Write disk sectors from memory.

■ Write short assembly language programs.

To use the DEBUG program, make sure that DEBUG.COM is in the current directory or
in the current DOS PATH. The following is the DEBUG command syntax:

DEBUG [d:][path][filename][arglist]

1041

VI

T
ro

u
b

lesh
o

o
tin

g

Entering DEBUG alone at the DOS prompt launches DEBUG. The d: and path options
represent the drive and directory where the file you want to debug is located. The
filename entry represents the file you want to debug. When you want to use DEBUG to
work on a file, the file name is mandatory. The arglist entry represents parameters and
switches that are passed to a program being debugged and can be used only if the file
name is present.

After DEBUG is executed, its prompt is displayed (the DEBUG prompt is a hyphen). At
the DEBUG hyphen prompt, you can enter a DEBUG command.

Because more powerful programs are available for debugging and assembling code, the
most common use for DEBUG is patching assembly language programs to correct prob-
lems, changing an existing program feature, or patching disk sectors.

DEBUG Commands and Parameters. The documentation for DEBUG no longer is pro-
vided in the standard DOS manual. If you are serious about using DEBUG, you should
purchase the DOS Technical Reference Manual, which contains the information you need
to use this program. Many third-party books also provide documentation of the DEBUG
commands and parameters.

As a quick reference to the DEBUG program, the following is a brief description of each
command:

A address assembles macro assembler statements directly into memory.

C range address compares the contents of two blocks of memory.

D address or D range displays the contents of a portion of memory.

E address displays bytes sequentially and enables them to be modified.

E address list replaces the contents of one or more bytes, starting at the specified
address, with values contained in the list.

F range list fills the memory locations in the range with the values specified.

G processes the program you are debugging without breakpoints.

G =address processes instructions beginning at the address specified.

G =address address processes instructions beginning at the address specified. This
command stops the processing of the program when the instruction at the speci-
fied address is reached (breakpoint), and displays the registers, flags, and the next
instruction to be processed. As many as ten breakpoints can be listed.

H value value adds the two hexadecimal values and then subtracts the second from
the first. It displays the sum and the difference on one line.

I portaddress inputs and displays (in hexadecimal) one byte from the specified port.

L address loads a file.

L address drive sector sector loads data from the disk specified by drive and places the
data in memory beginning at the specified address.

Disk Operating System (DOS)

1042 Chapter 20—Operating Systems Software and Troubleshooting

M range address moves the contents of the memory locations specified by range to
the locations beginning at the address specified.

N filename defines file specifications or other parameters required by the program
being debugged.

O portaddress byte sends the byte to the specified output port.

P =address value causes the processing of a subroutine call, a loop instruction, an
interrupt, or a repeat-string instruction to stop at the next instruction.

Q ends the DEBUG program.

R displays the contents of all registers and flags and the next instruction to be
processed.

R F displays all flags.

R registername displays the contents of a register.

S range list searches the range for the characters in the list.

T =address value processes one or more instructions starting with the instructions at
CS:IP, or at =address if it is specified. This command also displays the contents of
all registers and flags after each instruction is processed.

U address unassembles instructions (translates the contents of memory into
assembler-like statements) and displays their addresses and hexadecimal values,
together with assembler-like statements.

W address enables you to use the WRITE command without specifying parameters
or by specifying only the address parameter.

W address drive sector sector writes data to disk beginning at a specified address.

XA count allocates a specified number of expanded memory pages to a handle.

XD handle deallocates a handle.

XM lpage ppage handle maps an EMS logical page to an EMS physical page from an
EMS handle.

XS displays the status of expanded memory.

Changing Disks and Files. DEBUG can be used to modify sectors on a disk. Suppose
that you use the following DEBUG command:

-L 100 1 0 1

This command loads into the current segment at an offset of 100h, sectors from drive B:\
(1), starting with sector 0 (the DOS volume boot sector), for a total of 1 or more sectors.
You then could write this sector to a file on drive C:\ by using these commands:

1043

VI

T
ro

u
b

lesh
o

o
tin

g

-N C:\B-BOOT.SEC

-R CX

CX 0000

:200

-W

Writing 00200 bytes

-Q

The Name command sets up the name of the file to read or write.

The Register command enables you to inspect and change the contents of registers. The
CX register contains the low-order bytes indicating the size of the file to load or save,
and the BX register contains the high-order bytes. You would not need to set the BX
register to anything but 0 unless the file was to be more than 65535 (64K) bytes in size.
Setting the CX register to 200 indicates a file size of 200h, or 512 bytes.

The Write command saves 512 bytes of memory, starting at the default address of offset
100, to the file indicated in the Name command.

After quitting the program, your C:\ drive will have a file called B-BOOT.SEC that con-
tains an image of the DOS volume boot sector on drive B:\.

Memory-Resident Software Conflicts
One area that gives many users trouble is a type of memory-resident software called
Terminate and Stay Resident (TSR) or pop-up utilities. This software loads itself into
memory and stays there, waiting for an activation key (usually a keystroke combination).

The problem with pop-up utilities is that they often conflict with each other, as well as
with application programs and even DOS. Pop-up utilities can cause many types of prob-
lems. Sometimes the problems appear consistently, and at other times they are intermit-
tent. Some computer users do not like to use pop-up utilities unless absolutely necessary
because of their potential for problems.

Other memory-resident programs, such as MOUSE.COM, are usually loaded in
AUTOEXEC.BAT. These memory-resident programs usually do not cause the kind of
conflicts that pop-up utilities do, mainly because pop-up utilities are constantly monitor-
ing the keyboard for the hotkey that activates them (and pop-up utilities are known to
barge into memory addresses being used by other programs in order to monitor the key-
board, or to activate). Memory-resident programs like MOUSE.COM are merely installed
in memory, do not poll the keyboard for a hotkey, and generally do not clash with the
memory addresses used by other programs.

Device drivers loaded in CONFIG.SYS are another form of memory-resident software and
can cause many problems.

Disk Operating System (DOS)

1044 Chapter 20—Operating Systems Software and Troubleshooting

If you are experiencing problems that you have traced to any of the three types of
memory-resident programs, a common way to correct the problem is to eliminate the
conflicting program. Another possibility is to change the order in which device drivers
and memory-resident programs are loaded into system memory. Some programs must be
loaded first, and others must be loaded last. Sometimes this order preference is indicated
in the documentation for the programs, but often it is discovered through trial and error.

Unfortunately, conflicts between memory-resident programs are likely to be around as
long as DOS is used. The light at the end of the tunnel is operating systems like Windows
NT 3.1 and OS/2. The problem with DOS is that it establishes no real rules for how resi-
dent programs must interact with each other and the rest of the system. Windows NT
and OS/2 are built on the concept of many programs being resident in memory at one
time, and all multitasking. These operating systems should put an end to the problem
of resident programs conflicting with each other.

Hardware Problems versus Software Problems
One of the most aggravating situations in computer repair is opening up a system and
troubleshooting all the hardware just to find that the cause of the problem is a software
program, not the hardware. Many people have spent large sums of money on replace-
ment hardware such as motherboards, disk drives, adapter boards, cables, and so on, all
on the premise that the hardware was causing problems, when software was actually the
culprit. To eliminate these aggravating, sometimes embarrassing, and often expensive
situations, you must be able to distinguish a hardware problem from a software problem.

Fortunately, making this distinction can be relatively simple. Software problems often
are caused by device drivers and memory-resident programs loaded in CONFIG.SYS
and AUTOEXEC.BAT on many systems. One of the first things to do when you begin
having problems with your system is to boot the system from a DOS disk that has no
CONFIG.SYS or AUTOEXEC.BAT configuration files on it. Then test for the problem.
If it has disappeared, the cause was probably something in one or both of those files.
To find the problem, begin restoring device drivers and memory-resident programs to
CONFIG.SYS and AUTOEXEC.BAT one at a time (starting with CONFIG.SYS). For ex-
ample, add one program back to CONFIG.SYS, reboot your system, and then determine
if the problem has reappeared. When you discover the device driver or memory-resident
program causing the problem, you might be able to solve the problem by editing
CONFIG.SYS and AUTOEXEC.BAT to change the order in which device drivers and
memory-resident programs are loaded, or you might have to eliminate the problem
device driver or memory-resident program.

DOS can cause other problems, such as bugs or incompatibilities with certain hardware
items. For example, DOS 3.2 does not support the 1.44M floppy drive format; therefore,
using DOS 3.2 on a system equipped with a 1.44M floppy drive might lead you to believe
(incorrectly) that the drive is bad. Make sure that you are using the correct version of
DOS and that support is provided for your hardware. Find out whether your version of
DOS has any official patches available; sometimes a problem you are experiencing might
be one that many others have had, and IBM or Microsoft might have released a fix disk
that takes care of the problem. For example, many PS/2 users have a floppy formatting

1045

VI

T
ro

u
b

lesh
o

o
tin

g

problem under DOS 3.3. They get a track 0 bad message after answering Yes to the
Format another diskette message. This problem is solved by a special driver file on
the DOS 3.3 patch disk.

If you are having a problem related to a piece of application software, a word processor
or spreadsheet, for example, contact the company that produces the software and ex-
plain the problem. If the software has a bug, the company might have a patched or fixed
version available, or it might be able to help you operate the software in a different way
to solve the problem.

Summary
This chapter examined the software side of your system. Often a system problem is in
the software and is not hardware-related. The chapter also examined DOS and showed
how DOS organizes information on a disk. You learned about the CHKDSK, RECOVER,
and DEBUG commands to see how DOS can help you with data and disk recovery.
Finally, the chapter described memory-resident software and some of the problems
it can cause, and informed you how to distinguish a software problem from a hard-
ware problem.

Summary

1046 Chapter 20—Operating Systems Software and Troubleshooting

	CD - Summary of Contents
	CD - Operation Instructions
	CD - Search
	Upgrading & Repairing PCs, 6th Ed.
	Upgrading & Repairing Networks
	Upgrading & Repairing Macs
	Windows 95 Installation & Configuration Handbook
	Windows NT 4.0 Installation & Configuration Handbook
	Upgrading & Repairing PCs, 4th Ed.
	Introduction
	What Are the Main Objectives of This Book?
	Who Should Use This Book?
	What Is in This Book

	Part 1 - PC Hardware Introduction and Overview
	Ch 1 - Personal Computer Background
	Personal Computing History
	The IBM Personal Computer
	The IBM-Compatible Marketplace 14 Years Later
	Summary

	Ch 2 - Overview of System Features and Components
	Types of Systems
	Documentation
	Summary

	Ch 3 - System Teardown and Inspection
	Using the Proper Tools
	Using Proper Test Equipment
	A Word about Hardware
	Disassembly Procedures
	Summary

	Part 2 - Primary System Components
	Ch 4 - Motherboards
	Replacement Motherboards
	Knowing What to Look For (Selection Criteria)
	Motherboard Form Factors
	Summary

	Ch 5 - Bus Slots and I/O Cards
	What Is a Bus?
	The Need for Expansion Slots
	Types of I/O Buses
	System Resources
	Resolving Resource Conflicts
	Summary

	Ch 6 - Microprocessor Types and Specifications
	Processor Specifications
	Intel Processors
	IBM (Intel-Licensed) Processors
	Intel-Compatible
	Math Coprocessors
	Processor Tests

	Ch 7 - Memory
	The System Memory Layout
	Physical Memory
	Testing Memory
	Summary

	Ch 8 - The Power Supply
	Power Supply Function and Operation
	Leave It On or Turn It Off?
	Power Supply Problems
	Power Supply Troubleshooting
	Repairing the Power Supply
	Obtaining Replacement Units
	Summary

	Part 3 - Input/Output Hardware
	Ch 9 - Input Devices
	Keyboards
	Mice
	Game Adapter (Joystick) Interface
	Summary

	Ch 10 - Video Display Hardware and Specifications
	Monitors
	Video Cards
	Adapter and Display Troubleshooting
	Summary

	Ch 11 - Communications and Networking
	Using Communications Ports and Devices
	Understanding the Components of a LAN
	Evaluating File Server Hardware
	Examining Protocols, Frames, and Communications
	Using Low-Level Protocols
	Using LAN Cables
	Evaluating Fast Network Adapters

	Ch 12 - Audio Hardware
	Sound Card Applications
	Sound Card Concepts and Terms
	Sound Card Characteristics
	Sound Card Options
	Sound Card Installation
	Troubleshooting Sound Card Problems
	Summary

	Part 4 - Mass Storage Systems
	Ch 13 - Floppy Disk Drives and Controllers
	Development of the Floppy Disk Drive
	Drive Components
	Types of Floppy Drives
	Analyzing Floppy Disk Construction
	Drive-Installation Procedures
	Troubleshooting and Correcting Problems
	Repairing Floppy Drives
	Summary

	Ch 14 - Hard Disk Drives and Controllers
	Definition of a Hard Disk
	Hard Disk Drive Operation
	Basic Hard Disk Drive Components
	Hard Disk Features
	Hard Disk Interfaces

	Ch 15 - CD-ROM Drives
	What is CD-ROM?
	What Types of Drives Are Available?
	Installing Your Drive
	Software Loaded, Ready to Run
	Summary

	Ch 16 - Tape and Other Mass-Storage Drives
	Tape Backup Drives
	Removable Storage Drives
	Summary

	Part 5 - System Assembly and Maintenance
	Ch 17 - System Upgrades and Improvements
	Upgrading Goals
	Upgrading by Increasing System Memory
	Adding Motherboard Memory
	Upgrading the ROM BIOS
	Upgrading Disk Drives
	Speeding Up a System
	Adding a Hardware Reset Switch
	Upgrading the DOS Version
	Summary

	Ch 18 - Maintaining Your System: Preventive Maintenance, Backups, and Warranties
	Developing a Preventive Maintenance Program
	Using Power-Protection Systems
	Using Data-Backup Systems
	Purchasing Warranty and Service Contracts
	Summary

	Part 6 - Troubleshooting Hardware and Software Problems
	Ch 19 - Software and Hardware Diagnostic Tools
	Diagnostic Software
	The Power-On Self Test (POST)
	IBM Diagnostics
	General Purpose Diagnostics Programs
	Disk Diagnostics
	Data Recovery Utilities
	Configuration Utilities
	Windows Diagnostic Software
	Shareware and Public-Domain Diagnostics
	Summary

	Ch 20 - Operating systems Software and Troubleshooting
	Disk Operating System (DOS)
	Summary

	Part 7 - IBM System Technical Reference Section
	Ch 21 - IBM Personal Computer Family Hardware
	System-Unit Features by Model
	An Introduction to the PC
	PC Models and Features
	PC Technical Specifications
	An Introduction to the PC Convertible
	PC Convertible Specifications and Highlights
	PC Convertible Models and Features
	Memory Cards
	Optional Printers
	Serial/Parallel Adapters
	CRT Display Adapters
	Internal Modems
	Printer Cables
	Battery Chargers
	Automobile Power Adapters
	The IBM 5144 PC Convertible Monochrome Display
	The IBM 5145 PC Convertible Color Display
	An Introduction to the XT
	XT Models and Features
	XT Technical Specifications
	An Introduction to the 3270 PC
	3270 PC Models and Features
	The 3270 System Adapter
	The Display Adapter
	The Extended Graphics Adapter
	Programmed Symbols
	The Keyboard Adapter
	Software
	Windows
	Special Facilities
	The Significance of the 3270
	An Introduction to the XT 370
	XT/370 Models and Features
	An Introduction to the Portable PC
	Portable PC Technical Specifications
	An Introduction to the AT
	AT Models and Features
	AT Technical Specifications
	AT 3270
	The AT-3270
	An Introduction to the XT Model 286
	XT Model 286 Models and Features
	XT Model 286 Technical Specifications
	Summary

	Ch 22 - IBM PS/1, PS/ValuePoint, and PS/2 System Hardware
	Differences between the PS/x Systems
	PS/2 System-Unit Features by Model
	PS/1 System-Unit Features by Model
	PS/ValuePoint System-Unit Features by Model
	PS/2 BIOS Information
	Summary of IBM Hard Disk Drives
	Summary

	Ch 23 - A Final Word
	Manuals
	Machines
	Modems
	Magazines
	The Appendixes
	In Conclusion

