APL 2 Language Summary
SX26-3851-01

APL Productsand Services
IBM Silicon Valley Laboratory
555 Bailey Avenue
San Jose, California 95141
APL2@vnet.ibm.com

Copyrights
© Copyright IBM Corporation 1984, 2011 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corporation

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

Contents

Notices

We Would Like to Hear from Y ou
Introducing APL2

Primitive Functions

Primitive Operators

System Functions

System Variables

System Commands

Defined Functions and Operators
Error Reports and Error Codes

Glossary

O O OO0 0O O O o0 o0 o o

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

Notices

Referencesin this publication to IBM products, programs, or services do not imply that IBM intends to make
these availablein al countriesin which IBM operates. Any reference to an IBM product, program, or serviceis
not intended to state or imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe on any of IBM'sintellectual property rights may
be used instead of the IBM product, program, or service. Evaluation and verification of operation in conjunction
with other products, except those expressly designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject material in this document. The
furnishing of this document does not give you any license to these patents. Y ou can send license inquiries, in
writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.SA.

APL2 Language Summary SX26-3851-01 4
© Copyright IBM Corporation 1984, 2011

Programming I nterface | nfor mation

This language summary isintended to help programmers write applications in APL2. It documents General-Use
Programming Interface and Associated Guidance Information provided by APL2. General-use programming
interfaces allow the customer to write programs that obtain the services of APL2.

APL2 Language Summary SX26-3851-01 5
© Copyright IBM Corporation 1984, 2011

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other countries or both:

APL2
IBM

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

WeWould Liketo Hear from You

APL 2 Language Summary

Please let us know how you feel about this online documentation by placing a check mark in one of the columns
following each question below:

To return this form, print it, write your comments, and mail it to:

International Business Machines Corporation
APL Products and Services - H36A/F40

555 Bailey Avenue

San Jose, California 95141

USA

For postage-paid mailing, please give the form to your IBM representative.

Y ou can aso send us your comments by email. To send us thisform, copy it to afile, write your comments
using afile editor, and then send it to:

apl2@vnet.ibm.com

Overall, how satisfied are you with the online documentation?

Very Very
Satisfied Dissatisfied
1 2 3 4
Overall Satisfaction

Areyou satisfied that the online documentation is:

Accurate

Complete

Easy to find

Easy to understand

Well organized
Applicable to your tasks

Please tell us how we can improve the online documentation:

Thank you! May we contact you to discuss your responses?

__Yes ___No
Name:
Title:
APL2 Language Summary SX26-3851-01 7

© Copyright IBM Corporation 1984, 2011

Company or Organization:

Address:

Phone:

E-mail:

Please do not use this form to request IBM publications. Please direct any requests for copies of publications, or
for assistance in using your IBM system, to your IBM representative or to the IBM branch office servicing your
locality.

APL2 Language Summary SX26-3851-01 8
© Copyright IBM Corporation 1984, 2011

Introducing APL 2

If you're new to APL, this material may provide some understanding of what it is all about; we'll discuss the
syntax and characteristics of the language.

If you're not new to APL, we still recommend looking through what follows. APL 2 offers capabilities that are
not present in other versions of APL. Reading this may acquaint you with some features you are not familiar
with, particularly if the versions you have used have not included APL 2-style nested arrays.

Here are the major sections of this introduction:
e APL - What Is|t?

o Getting Started in APL
e Fundamentals

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

APL - What Is|t?

APL2 isageneral-purpose language that enjoys extensive use in such diverse applications as commercial data
processing, system design, mathematical and scientific computation, and the teaching of mathematics and other
subjects. It has proved to be particularly useful in data base applications, where its computational power and
communication facilities combine to enhance the productivity of both application programmers and end users.

When implemented as a computing system, APL2 is used from a typewriter-like keyboard. Statements that
specify the work to be done are entered by typing them, and in response, the computer displays the result of the
computation. The result appears at a device that accompanies the keyboard, such as video display or printer. In
addition to work that is performed purely at the keyboard and its associated display, entries may also invoke the
use of printers, disk files, or other remote devices.

Theletters"APL" originated with the initials of a book written by Dr. Kenneth E. Iverson, A Programming
Language (New Y ork: Wiley, 1962). Dr. Iverson developed the APL language first at Harvard, and then at
IBM, in collaboration with Adin Falkoff and others. The term APL now refers to the language that is an
outgrowth of that work.

APL2 isaparticular implementation of that language including array extensions researched by Trenchard More,
elaborated by James A. Brown in his doctoral dissertation, and developed at IBM under the direction of Dr.
Brown.

For additional highlights of the language, see:
o Power, Relevance, and Simplicity

e A Short Example of the Use of APL
e The Characteristics of APL

Power, Relevance, and Simplicity

A programming language should be relevant. That is, you should have to write only what is logically necessary
to specify the job you want done. This may seem an obvious point, but many programming languages force you
to be concerned as much with the internal requirements of the machine as with your own statement of your
problem. APL2 takes care of those internal considerations automatically.

A programming language needs both power and simplicity: The power to handle large or complicated tasks, and
the simplicity to state what must be done briefly and neatly, in away that is easy to read and easy to write. You
might think that power and simplicity are competing requirements, but that is not necessarily so. The power of
APL as a programming language comes in part from its simplicity; it is this ssimplicity that makes it
simultaneously well suited to the beginner and to the advanced user.

A Short Example of the Use of APL

Problems can often be solved in APL without writing programs, or even dealing with named variables. Simply
typing in the expression to be evaluated causes the result to be displayed. Let's try out an example:

Many bacteria can duplicate themselves once every half hour. If asingle infectious organism
began reproducing at 9 o'clock in the morning, how fast would the resultant colony grow?

APL2 Language Summary SX26-3851-01 10
© Copyright IBM Corporation 1984, 2011

Let's compute the number of bacteria at noon, 6 PM, and midnight. In other words, 3 hours, 9 hours, and 15
hours later. It's a doubling process, so we want 2 to some power. We write this as

2% ...
where . . . isnot APL, it just indicates we haven't finished yet. Since the doubling happens twice every hour,
we continue like this

242% ...

Show the hours we are interested in, and we have told the system all it needs to know to solve the problem:
2+2%x3 9 15

64 262144 1073741824

So by noon there are 64 bacteria, but by 6 PM there are more than a quarter of amillion, and by midnight there

areover abillion!

Several distinctive features of APL2 areillustrated in this example: familiar symbols, such as x for
multiplication, are used where possible, other symbols are introduced where necessary to make the notation
linear (such asthe = instead of araised expression for the power function), and (very important!) a group of
numbers can be worked on together.

The Characteristics of APL

The primitive objects of the language are arrays (lists, tables, lists of tables, and so forth). For example, A+B
is meaningful for any arrays A and B.

The syntax issimple. Thereis no hierarchy of function precedence, and built-in functions and user-defined
functions (programs) are treated alike.

Therules of programming grammar are few. The definitions of the built-in functions are independent of the
type of datato which they apply, and they have no hidden side effects.

The sequence control issimple. One statement type embraces all types of non-sequential flow (return,
conditional execution, case, goto), and the termination of the execution of any function always returns control to
the point of use.

External communication is established by means of datathat is directly shared between APL and other systems
or subsystems. These shared variables are treated both syntactically and semantically like other data. A
subclass, called system variables, provides convenient communication between APL programs and their
environment.

The utility of the built-in functions, called primitive functions, is vastly enhanced by operators which modify
their behavior in a systematic manner. For example,

e Reduction (denoted by /) modifies afunction to apply over al elements of alist, asin +/L for
summation of the elements of L.
e Axis specification (denoted by [n]) alows functionsto be applied to atable in a specified direction.

In addition, APL 2 allows you to define both functions and operators for your own needs, and such user-defined

programs are syntactically equivalent to primitive functions and operators.

APL2 Language Summary SX26-3851-01 11
© Copyright IBM Corporation 1984, 2011

The number of primitive functionsis small enough that each is represented by a single easily-read and easily-
written symbol, yet the set of primitives embraces operations from simple addition to complex types of
formatting and advanced mathematical concepts such as hyperbolic cosine and matrix inversion.

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

12

Getting Started in APL

Here are some topics that can help you get started using APL :

APL Is Interactive
Who Typed What?

Expressions
The APL Character Set

APL IsInteractive

The APL2 system takes one APL 2 expression at atime, converts it to machine instructions (the computer's
internal language), executes it, and then proceeds to the next line. Thisisin contrast to traditional program
compilers which convert complete programs to machine language before executing any expressions. This
allows you a high degree of interaction with the computer. If something that you enter isinvalid, you will get
quick feedback on the problem before you proceed further.

Who Typed What?

Typicaly APL2 conducts a long-running conversation between the user and the APL system. The conversation
isrecorded in alog, managed by an APL2 component called the Session Manager. When you start APL, the
Session manager opens any existing log, letting you review or reuse previous information in it. The period of
time during which the log is open is called an APL2 session.

During an APL 2 session, you and APL 2 will take turns adding information to the log. While you type
information in, APL2 waits for some signal from you that it isits turn to use the information and display the
resultsin the log. The normal signal from you is pressing the Enter key. When you press Enter, the session
manager changes a mode indicator from Input to Running. (Thisindicator is normally in the lower left corner of
the log window.) When it is your turn again, the mode is changed back to Input.

The session manager mode indicator is very useful while you and APL2 are "talking" to each other. However it
does not help when you go back later to review the conversation. If you have a color display, you can tell the
APL 2 session manager to display input and output in different colors, but even that is of no use when reviewing
earlier APL2 sessions, since thelog isjust a standard operating system file recording the conversation.

When APL2 displaysinformation for you, it starts each new line at the left margin. After it finishes displaying
any such output, it signalsto you that it is ready for you to type in another keyboard input by indenting six
spaces from the left margin and halting. This position is another indication that it's ready for you to take "your
turn", and is userful when rereading the log.

2+2
4

3x4
12
Expressions

A typical expressionin APL2 isof the form:

APL2 Language Summary SX26-3851-01 13
© Copyright IBM Corporation 1984, 2011

AREA«3x4
The effect of the statement isto assign to the name AREA the value that is the result of 3x4 to theright of the
assignment arrow («). The expression may be read informally as"AREA is three times four."

If the leftmost part of an expression is not a name followed by an assignment arrow, the result of the expression
isdisplayed. For example:

3x4

12
PERIMETER«2x (3+4)
PERIMETER

14

The leftmost part of the expression is significant here, because APL2's order of evaluation is right-to-left. The
leftmost part of the line, therefore, isthe last part to be evaluated. But we'll get to the order of evaluation rules a
little later on.

In this documentation, CAPITALS inthe Courier APL?2 font are used to indicate the portions of the
examples that you might actually see on your display, even though you can use lower case lettersin an actual
APL 2 session, and can choose whether you wish to seeitalic or upright characters. Traditionally APL systems
have used italic capitals, so you will see that convention used throughout the literature.

In addition to the Enter key, you can send other signals to APL 2 by using the session manager's Signals menu.
These signals are normally used while APL2 is running, rather than waiting for input from you. The Attention
signal says "stop when it's convenient”, and the I nterrupt signal says "stop immediately".

The APL Character Set

The characters that may occur in a statement fall into four main classes: alphanumeric, operational, special, and
blank.

e Alphanumeric characters are used in names and constants.

o Operational characters are used to represent operations (called functions) that are to be applied to data,
or in some cases, represent what are called operators, that modify the way functions behave.

e Specia charactersinclude characters like parentheses that are not functions or operators, but affect the
interpretration of the expression.

e Theblank serves as a separator to mark divisions between names.

APL2 Language Summary SX26-3851-01 14
© Copyright IBM Corporation 1984, 2011

Fundamentals

The topics here provide a more complete overview of the language than the section on Getting Started in APL,

but are till not aformal presentation. Y ou will find complete details in the chapters on Arrays and Syntax and
Expressionsin APL2 Programming: Language Reference.

Names

Numbers

Functions

Operators

Data

Assigning Valuesto Names
Order of Evaluation

Errors

Summaries of facilities provided by specific language elements can be found under:

Primitive Functions
Primitive Operators
System Functions
System Variables
System Commands

See also Defined Operations.

Again, the Language Reference provides complete information.

Names

Valid characters for forming names are:

ABCDEFGHIUJUKLMNOPQRSTUVWIXYZA
abcdefghijklmnopgrstuvwzxyzA _
CuéadaadcgcééeiiiAnrdbOOUTUOUB®BAILIOUNDNTINS
0123456789 _

Names of workspaces, functions, variables, operators, and labels may be formed of any sequence of the above
characters, except that the characters on the last line above cannot start a name.

Valid namesinclude:

A

ABc
SALES_REPORT
TAX1984

A

Here are some examples of I nvalid names:

A B

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

15

contains a space
1984 TAX

starts with a numeric digit
_REPORT

startswith " _"
DATA.3

"."isn't dlowed

The environment in which APL 2 operations take place is bounded by a workspace. The same name may be
used to designate different objects (that is, variables, functions, operators, and labels) in different workspaces,
without interference. It is also possible for aworkspace to have the same name as an object it holds.

The workspace name is normally limited to eight characters, and the characters must form avalid APL name.
(By using a specia syntax, though, it is possible to use any name supported by the operating system as a
workspace file name.)

The names of variables, functions, operators, and labels, however, may be of any desired length - up to 255
characters, which is probably longer than any name you would ever want to deal with.

Numbers

All numbers entered or displayed arein decimal, either in conventional form (including a decimal point if
appropriate) or in scaled form. The scaled form consists of an integer or decimal fraction called the multiplier
followed immediately by an "E" and then by an integer (which must not include a decimal point) called the
scale. The scale specifies the power of ten by which the multiplier isto be multiplied. Thus1.44E2 is
equivalentto 144.

APL 2 supports complex numbers, which are normally represented with a"J" separating the real and imaginary
parts. Polar forms are also available, with the angle expressed in either radians or degrees. For example, the
sguare root of negative one may be entered as 0J1 in its standard form, as 0R1.570796327 in polar radian
form, or as 1D90 in polar degree form. Complex numbers are always displayed using the J form.

Negative numbers are represented by an overbar immediately preceding the number. For example, ~1.44 and
T144E" 2 are equivalent negative numbers. Note that the overbar (7) used to start a negative number differs
from the bar (-) that denotes the subtract and negative functions. This avoids ambiguity in use of optional
spaces when entering data.

53
53

573
573

5-3
2

5 -3

Conversely, the overbar cannot be used as a function:

X5

Ye3

X-Y
2

APL2 Language Summary SX26-3851-01 16
© Copyright IBM Corporation 1984, 2011

_ -X

5
XY
VALUE ERROR
XY
A

X
SYNTAX ERROR

X

A

X" Y isavalid name, but does not currently have avalue. ~Y isnot avalid name, but is treated as a single token,
because its characters are all alphanumeric.

Functions

The word function derives from aword that means to execute or to perform. A function executes some action on
its argument (or arguments) to produce aresult that may serve as an argument to another function. For example:

12
14

Functions represented by symbols, such as +, -, x and +, are called primitive functions. They are automatically
available for use in any workspace without having to copy them from somewhere.

Other functions are represented by names. They include user-defined functions (which are APL programs), and
system functions. System functions, like primitive functions, are automatically available for use in any
workspace, but they have distinguished names that begin with the O character, followed by a sequence of |etters.
For example, ODL is a system function used to wait (delay execution) for a specified length of time.

A function that takes one argument, such asthe - in (-6) above, issaid to be monadic; afunction that takes
two arguments, such as the times function, is said to be dyadic. Monadic functions always have their argument
on theright in APL. Dyadic functions (whether primitive, system, or user-defined) take aright argument and a
left argument.

In al cases, the same symbol or name can represent both monadic and dyadic functions. For example, X-Y
denotes subtraction of Y from X (adyadic function), and -y denotes negation of Y (a monadic function). In fact
APL 2 assumes that every function defined to be dyadic can also be called monadically. This characteristic is
called ambi-valence.

User functions can also be defined to be niladic (taking no argument). There are no primitive or system
functions which are niladic, and the system treats a niladic function much asif it were avariable.

See also Terminology: Functions versus Operators.

Operators

The normal operation of afunction may be altered by applying an operator to it. For example, + and x are
primitive functions which apply independently to each element of an array.

APL2 Language Summary SX26-3851-01 17
© Copyright IBM Corporation 1984, 2011

A«5 6 7

B«2 3 4
A+B

7 9 11
AXB

10 18 28

Applying the / operator to produce +/ and x/ modifies their normal operation, creating derived functions
which apply between the items of a single argument. Using the same data as in the previous example:

+/A
18

x /B
24

The / operator can be used with any dyadic function. Operators apply equally to user-defined functions, and, in
fact, the operators themselves may be user-defined.

See also Terminology: Functions versus Operators.

Terminology: Functions versus Operators

Computer languages have sometimes created confusion between the terms function and operator. In APL, it's
important to differentiate the terms.

o A function takes data objects as arguments and returns new data as a result.
e Anoperator takes functions (or occasionally data objects) as operands and returns a new function,
called a derived function. The new derived function acts like any other function.

Note that we referred to operators as taking operands, and functions as taking arguments. Thisdistinction is
mostly useful when identifying the way that atoken is being used. An operator always has an operand on its
left. If it isadyadic operator, it will have a second operand on itsright. You can, if you wish, put parentheses
around the operator and its operands. Once you have done that, you will see the arguments to the derived
function outside the parentheses.

For example, p isafunction called Reshape which accepts aleft argument telling it how it should reshape its
right argument. ™ is an operator called Each which appliesits operand to each item of the derived function
argument(s).

3p4 A Create 3 instances of the number 4
4 4 4

2 3(p)4 5
4 4 555

2 3p74 5
4 4 555

The last two expressions are exactly equivalent. The parentheses just help us see that p is an operand, while 2
3and 4 5 arearguments. APL2 itself doesn't need the parentheses to recognize that.

Data
Dataused in APL2 is one of two types, either numeric or character. Datais produced by:

o Explicit entry at the keyboard.

APL2 Language Summary SX26-3851-01 18
© Copyright IBM Corporation 1984, 2011

o Execution of APL2 functions and operators.
e Useof shared variables, system variables, system functions, and system commands.

The following topics provide information about data:

Arrays

Rank and Shape
Variables and Constants
Bracket Indexing

Index Origin
Adding More Structure to Arrays

Arrays

APL2 functions apply to collections of individual dataitems called arrays. An array is an ordered collection of
items arranged along rectangular dimensions (called axes). The items of the array are numbers, characters, or
other arrays, in any combination. For example, an array might be alist of three items, wherethefirstisa
character, the second a number, and the third a character string (which isreally a subarray containing alist of
characters).

Rank and Shape

Therank of an APL2 array isthe number of dimensions or axesthat it has. If you are familiar with some other
computer languages, you may be thinking of the term dimension as the amount of data that can be stored; that's
not what we mean here. We are referring to the axes, not the length of the data. For our purposes, adimension
and an axis are synonymous. When we want to refer to the amount of data along each of those dimensions,
that's what we will call shape.

For example, asimple list of numbers has only one dimension - only length - and therefore is of rank one:

Ve2 3 5 7 11 13 17 19

\4
2357 11 13 17 19
In APL, datain alist form likethisis referred to as a vector.

An example of arank-two object would be atable of humbers:

M« 2 5 p 110

M
1234 5
6 789 10
(WEe'll talk about p and 1 in a moment)

In APL2, two-dimensional datalikethisisreferred to as a matrix.

Either of these examples could just as easily have used character data, or a mixture of numeric and character
data.

APL2 Language Summary SX26-3851-01 19
© Copyright IBM Corporation 1984, 2011

A scalar has no dimensions and is of rank zero. APL 2 supports arrays of up to rank 64, though most of us have
trouble visualizing anything beyond rank 3 or 4.

The shape of an array may be measured by using the shape function, denoted by the rho (p) symbol:

%
235 7 11 13 17 19
pVvV
8
A« 'ABCDEF'
pA
6

The shape function returns a count of the number of items along each of the dimensions. In the case of the
vectors above, there was only one dimension. A matrix, because it is two-dimensional, will return two numbers:

N
1 2 3 4
5 6 7 8
9 10 11 12

pN
3 4

M
HELLO
THERE

pM
2 5

We showed an example above of how a vector is entered at the keyboard, but a matrix cannot be directly
entered. You'll have to use afunction to tell APL2 the shape that you want. A matrix is commonly formed by
listing the items of data that the matrix isto contain, and then using the reshape function to create the desired
shape. The reshape function uses the same rho symbol that the shape function uses, but has a left argument
stating the desired resultant shape. (Note that the two functions are closely related. The result of monadic p for
an array shows the left argument of the dyadic p required to create that array.)

The numeric matrix shown above, for instance, could be formed like this:

Ne 34 p123456789 1011 12

The number of numbers used to the left of the p-symbol determines the rank of the object being formed. Here,
the two numbers 3 4 create arank two object - amatrix. In asimilar fashion, the rank of an object may be
measured by counting the number of numbers that are returned with the monadic use of the p-symbol... in other
words, measuring the shape of the shape:

Ne 34 p123456789 1011 12

N
1 2 3 4
5 6 7 8
9 10 11 12
pN
34
PPN
2
APL2 Language Summary SX26-3851-01 20

© Copyright IBM Corporation 1984, 2011

The right argument for the reshape function may be in any form. It could be a directly-entered list of items as
we discussed above, or it could be data already stored under a name:

Ve2 3 5 7 11 13 17 19

M«2 4oV
M
2 3 5 7

11 13 17 19
A«3 2p'ABCDEF'
A

AB

CD

EF
B«2 4pA
B

ABCD

EFAB

The rank and shape of the right argument to p are of no concern. Its dataitems are just used in sequence to build
the result array. If the right argument has extraitems, they are ignored. If it doesn't have enough (asin the last
example above) the function simply goes back to the beginning of the array, and continues selecting items as it
needs.

Arrays of arbitrary shape and rank may be produced by the same scheme. For example:

T«2 3 4p'ABCDEFGHIJKLMNOPQRSTUVWX'"
T

ABCD

EFGH

IJKL

MNOP

QRST

UVWX
pT

2 3 4

Thisthree-dimensional array has two planes, each with three rows and four columns. Three-dimensional arrays
are displayed with a blank line separating the planes, and higher-dimensional arrays simply extend this scheme.

Variables and Constants
An array that is stored under aname s caled avariable, because its value may be varied at any time simply by

reassigning a new value to the name. All of the names that we have shown in the discussion of Rank and Shape
are variables.

A constant is anumber or string of numbers or a character or string of characters that appears explicitly in an
APL2 expression.

A single number entered by itself is accepted by the system asascalar. A constant vector may be entered by
listing the numeric components in order, separated by one or more spaces.

A scalar character constant may be entered by placing the character between single quotation marks (asin
'A'), and a character vector may be entered by listing the characters between single quotation marks (asin
'THIS IS TEXT'). The blanksare part of the data, and are treated like the other characters, but the enclosing

APL2 Language Summary SX26-3851-01 21
© Copyright IBM Corporation 1984, 2011

guotation marks are not part of the data. That last example is twelve characters long, because it includes the two
blanks, but not the two quotation marks.

To include a single quotation mark character within a character constant you must enter it asapair of single
quotation marks. Thus, the contraction of CANNOT isentered as ' CAN' 'T'. APL2 displaysitasCaAN' T, and it
consists of five characters.

There are no specia considerations for entering double quotation mark characters:

'Do you know what "rank" means?'
Do you know what "rank" means?

'No, I don''t'
No, I don't

Bracket Indexing
Note: The examples here assume the default index origin.

The items of an array may be selected by bracket indexing. For example:

V<2 3 5 7 11 13 17 19

VI[3 1 5]
52 11
(2357 11 13 17 19)[3 1 5]
52 11
A«'ABCDEFGH'
A8 5 1 4]
HEAD
"ABCDEFGH' [8 5 1 4]
HEAD

The numbers within the square brackets indicate the positions of the data that is being selected. If any of the
indices are out of range, you'll get an error message:

"ABCDEFGH' [8 5 1 35]
INDEX ERROR

'"ABCDEFGH' [8 5 1 35]

A

Elements may be selected from any array by indexing in the manner shown for vectors, except that indices must
be provided for each dimension.

M
2 3 5 7
11 13 17 19
M[2;3]
17
M[2 1;2 3 4]
13 17 19
3 5 7

Note: Scalars are a special case, because they have no dimensions. Y ou can't use bracket indexing for them, but
you can use the similar "Index" (1) function.

APL2 Language Summary SX26-3851-01 22
© Copyright IBM Corporation 1984, 2011

That last example introduced the idea of using bracket indexing to select a cross section of the array. All rows
(listed before the semicolon) and all columns (listed after the semicolon) are selected, and then arranged in the
order specified. Of course you can select cross sections of arrays of any dimension. The shape of the result will
directly correspond to the shapes of the vectors used to select the items.

PM[2 1;2 3 4]

T
ABCD
EFGH
IJKL
MNOP
QRST
UVWX
T[2;1;4]

T[2;1 2 3;1 2 3 4]
MNOP
QRST
UVWX

pT[2;1 2 3;1 2 3 4]
3 4

As aspecia convention, you can omit the indices along one or more axes, but not the associated semicolons, to
select al itemsin order along that axis. Thus the last examples above can be written more simply as

Index Origin

The indexing used in examples throughout this document is called origin Z because the first element along each
axis (or dimension) is selected by theindex 1. Thisisthe default for a new workspace, but you may also use
origin 0 indexing by setting theindex origin to 0. The index origin is controlled by a system variable denoted
by 010. Thus:

Ve«2 3 5 7 11 13 17 19
OI0«1
VIl 2 3]

13

O0I0«0
V[0 1 2]

13
012

The 1 function shown above is called Interval, because it produces a progression of integers. The first integer in
the progression is010, and the interval between valuesis 1.

In APL2, you always have the choice of using either origin 1 or origin 0. You may find that the use of origin 0
may make some applications easier to write. Thisis especially true where certain mathematical operations are

APL2 Language Summary SX26-3851-01 23
© Copyright IBM Corporation 1984, 2011

being performed. Calculations involving number-base conversions, for example, are often cleaner if you're
working in origin 0. Some indexing operations themselves are also alittle cleaner. For example:

tod' [1+4N>6]

OI0«0

rod' [N>6]
oo DD
gooo
However, origin 0 can also be confusing at times, simply because most of us grew up being accustomed to
thinking of series of numbers as starting with one instead of zero. [Neither of these is correct, of course; in our
hearts we all know that the number series really begins at negative infinity.] Y ears of seeing lists numbered "1,
2, 3"insteadof "0, 1, 2"tendsto leaveitsmark. Throughout our lives we have seen that

1. House numbers start with 1 (Number 0 Downing Street?)
2. Magazine page 0 is consistently missing
3. Days of the month start with 1 (it'sreally hard to find an exception here)

So, rather than complicating your life by bucking thisingrained bias, APL2 uses origin 1 asits default. Y ou can
always changeit, but that's what you'll see in any new workspace.

Adding More Structureto Arrays
Let's assume that we have an array named 2, which contains two pieces of data: a string of numeric data having

thevalue1l 2 3, andasimilar string of numeric data having thevalue4 5 6. A then can be represented asa
two-item vector. We can think of the array aslooking like this:

The outer box represents A, which contains two items. Each item is a three-item vector. In APL2, an item of an
array can be any other array. Arrays containing items which are other arrays are called nested arrays.

It's very easy to create such an array in APL2. Just use parentheses to group the items:

MORE« (1 2 3) (4 5 6)
PMORE
2
MORE
123 456

PMORE tells us that the shape of MORE is 2; i.e. that it has two items. Note that when APL 2 displays a nested
array it adds ablank in front of the first item in each nested group. Y ou can also request a display with boxes by
using aDISPLAY function which we provide. (See DISPLAY under workspaces in the APL2 User's Guide.)
APL2 Language Summary SX26-3851-01 24
© Copyright IBM Corporation 1984, 2011

) COPY 1 DISPLAY DISPLAY
DISPLAY MORE

|l 23 L4 56

€

The degree of nesting of an array is called depth. A smple scalar has adepth of 0. The simple vector (or even
an n-dimensional array) has adepth of 1. Thismeansthat all of itsitems are simple scalars, that is, either single
numbers or single characters. The depth of MORE aboveis 2. A depth of 2 meansthat at |east one of itsitems
has a depth of 1.

APL 2 provides a depth function (=) which shows the depth of an array.

=1 2 3
1

=MORE
2

The matrix M, below, shows the use of nested arrays to add headings to a table and to substitute ' NONE ' for
items whose value is 0. The matrix has five rows and three columns. Each item in the first row is a character
vector, and each item in the first column is a character vector. NONE in the last row, last column, isalso a
character vector. The depth of Mis 2.

M
FOOD CALORIES PROTEIN
milk 160 9
apple 60 1
bread 75 2
jelly 50 NONE

Assigning Valuesto Names

The left arrow is used to assign avalue to a name. As we have usually shown it throughout this material, the
arrow is near the left end of an APL statement, with only the associated name to its left.

HYPOTENEUSE« ((LEG1*2) + (LEG2*2)) *.5

When used this way the APL statement eval uates the expression and assigns the result to the name instead of
displaying the resuilt.

But a specification arrow (asthe left arrow is often called) can be used in the middle of an APL statement as
well. In this case the value assigned to the name is made available for additional operations. Consider a function

called REPORT_SALES Which takes aregion number as an argument; and another function called
REGION_FOR which takes a city name and returns a region number. Y ou might use these functions as follows:

REPORT_SALES REGION_FOR 'Chicago'

But if you needed the the region number for several statements, you might instead decide to do something like:

APL2 Language Summary SX26-3851-01 25
© Copyright IBM Corporation 1984, 2011

REGION«REGION_FOR 'Chicago’
REPORT_SALES REGION

Many APL users prefer to keep the statements simple, with the names assigned at the left end of the statements.
But it isalso legal to combine the above two statements into one:

REPORT_SALES REGION<«REGION_FOR 'Chicago'

In this statement REPORT_SALES isthe last operation performed. Since the last operation is not specification,
aresult will be displayed if REPORT_SALES produces one.

Any number of assignment arrows may occur in an expression. Displaying any intermediate result in an APL2
expression can be obtained by including the characters "oO«" to the left of any portion of the expression. For
example:

A«2+0«3xB«4
12

A
14

B

4

The cases covered so far are called simple specification (or simple assignment). The reason for that becomes
obvious as you look at some of the other things you can do with a specification arrow:

¢ |Indexed Specification
e Vector Specification
e Selective Specification

Indexed Specification

If the token to the left of a specification arrow is aright bracket, the bracket operation isfirst performed, then
the value to the right of the specification arrow is assigned to the items selected by the bracket indexing.

A<l 2 3
A[2]«4
A

A[2 3]«5 6
A

A2 31«2
A

Note that the bracket operation can produce either asingle item or multiple items. When multiple items are
produced, the shape must be conformable with the expression on the right, which means that either the rank and
dimensions must agree, or that the right expression must be asingle item so that it can be extended to all
selected items, as in the last example above.

Vector Specification

Y ou can use asingle left arrow to assign values to a set of names from the items of a vector.:

APL2 Language Summary SX26-3851-01 26
© Copyright IBM Corporation 1984, 2011

(A B)«1l4 4
14
4

The shape of the vector has to agree with the number of names being assigned; and normally the expression has
to be avector. But there is one case where APL even relaxes that rule:

(MY THREE VARIABLES) «0
MY

0
THREE

0

(Talk about a confusing choice of names.)

The trick there isthat the expression to the right of the left arrow is a scalar rather than a vector, so it has no
shape. Thisis an example of an APL principle called scalar extension. Having no shape, the scalar can take on
whatever shapeit is needed for.

The expression on the right also need not be a simple vector. It can be an arbitrarily nested array:

(ADR"NUM ADR STREET)«555 ('Bailey' 'Avenue')
ADR STREET

Bailey Avenue
PADR™ STREET

2

Selective Specification

If the token to the left of a specification arrow is aright parenthesis, the expression within the paired
parentheses is performed symbolically (but not actually evaluated), and the value to the right of the arrow is
assigned to the resulting item or items. Thisis called selective specification and has a number of restrictions.
The supported functions are:

Monadict & . ¢ ,I[X] ¢I[x]
Dyadic (L1 = o & 1t 4 0 ¢ t[X] 4[X] 0[X] ¢[X]

Derived 1O\ LO/ LO\I[X] LO/I[X]

Selective specification is normally used to replace selected items within an array. In this case the shape of the
array containing replacement data must agree with the shape of the selected items.

Sometimes selected items are not simple data items, but are themselves subarrays. When awhole subarray is
replaced as an item, the structure of the replacement item is not relevant. The replacement could have a different
shape, rank, or depth from the item it is replacing.

In ordinary cases, selective specification can be understood if you understand how the selection expression
works when it is not on the left of an assignment. For example:

Ve 10 20 30 40
21V

APL2 Language Summary SX26-3851-01 27
© Copyright IBM Corporation 1984, 2011

10 20
(21V)«100 200
\%

100 200 30 40

The function Take does not select the first two items of v, it selects the locations of the first two items of v. This
resulting vector of locationsis considered a simple vector even if the items at those locations are deeply nested.
The data on the right of the assignment then replaces data at those locations.

Various selections and replacements are shown below for the matrix M. The examples assume that each
selective specification expression uses the original specification of M.

M«3 4p'ABCDEFGHIJKL'
M
ABCD
EFGH
IJKL
(2 30IM)«'O"
M
ABCD
EFOH
IJKL
(1(2 4)0IM)«'Vx"
M
AVCx
EFOH
IJKL
(2 1tTM) «'eB"
M
eV Cx
BFOH
IJKL
(,M)«112
M
2 3 4
6 7 8
0 11 12
M«3 4p'ABCDEFGHIJKL'
(41,8M) «'ox=0O"
M
odCD
*FGH
+~JKL

The last example above demonstrates the application of several functionsin selective specification. The
positions replaced were the first four taken in row-major order after M was transposed (its rows and columns
interchanged). These are the characters AE1B, which are then replaced with the o » =0, respectively.

The example below shows that scalars being selectively assigned to a nonscalar array of locations are replicated
as necessary.

M«3 4p'ABCDEFGHIJKL'
((1 3)(1 4)0IM)«'*"
M

BC

EFGH

* JK*

Restrictions

APL2 Language Summary SX26-3851-01 28
© Copyright IBM Corporation 1984, 2011

If B isashared variable, then

((B=" ') /B)«'~"

is an error because the leftmost mention of B is areference of the shared variable and causes B to receive a new
value.

Order of Evaluation

In APL2, the order of evaluation isfrom right to left, with afew qualifications that we will get to in a moment.
In particular, there is no hierarchy among the functions, such as multiplication being executed before addition.
All functions are treated alike. This should come as areal relief if you have used other programming languages.
(The C language, for example, has 15 levels of precedence!)

It would be confusing enough to try to define a hierarchy among the very complete set of primitive functions
provided by APL2, but even that wouldn't begin to be enough. APL2 allows you to define your own functions,
which behave just like the primitive functions. Would you appreciate having to specify a precedence for every
routine you write, compared with every other routine you or anyone else has ever written?

So, despite theinitial shock at learning that 2x3+4 is 14 in APL (right to left, not multiplication first), it is
soon reassuring to know without worrying about it that in

2 FOO 3 + 4
the addition happens before calling FOO, whilein

2 + 3 FOO 4
the addition happens |ast.

Exceptions to the Rule

Now we take up the few qualifications which modify the basic right-to-left order. In order of execution priority
they are:

Parentheses

Bracket notation.
Specification object.
V ector notation.
Operand binding.

agrwbdPE

followed by the basic rule,
6. Normal function processing order.
Parentheses

Parentheses are used in the familiar way to control the order of evaluation in a statement. Any expression within
matching parentheses is evaluated before applying any function to the result outside the matching pair.
Parentheses are always permissible if they are properly paired and what isinside evaluatesto an array, a
function, or an operator. There are no restrictions on levels of nesting.

APL2 Language Summary SX26-3851-01 29
© Copyright IBM Corporation 1984, 2011

Parentheses are often used to surround the left argument of afunction, so that it is evaluated in one complete
piece. For example, (7-3) x2 is8 whereas 7-3x2 is1.

Parentheses are not needed for the right argument of afunction, because of APL's normal evaluation order.
This, combined with the careful design of many APL functions so that the primary dataisin the right argument,
means that fewer parentheses are required in APL than in most languages.

Priority of Bracket Operations

Brackets provide a very useful notation, but one that does not fit in perfectly with the rest of APL syntax. Like
parentheses, brackets completely override the order of processing for the expressions contained within them.
But unlike parentheses, brackets are an implied function or operator (depending on what isto the left of the left
bracket), and are tightly bound to the closest function or datathat can be identified on their left.

For discussion of brackets as afunction, see Bracket Index. Use of brackets as an operator is restricted to
specific primitive and derived functions, and is discussed with those functions or the operators deriving them, as
a"with axis" variant.

The tight binding of bracket notation to the token on the left takes priority over all other language constructs
except parentheses.

A<l 2 3
A[2]«4
A
14 3
A A[2]
14 3 4
112 35 8[4]
RANK ERROR
11 2 3 5 8[4]

A A
(1 123 5 8)I[4]
3

Priority of Specification

Normally the token to the left of aleft arrow isthe name of avariable, or an unused name that can become the
name of avariable. The left arrow is called Specification or Assignment, and associates the name on its left with
the evaluated expression on itsright. Although Specification is not, formally, afunction or operator, it does
make the value of the expression to its right available for further use in the APL expression, much asif it were a
function result. (But thisis done only if the value isrequired. Unlike areal function, if assignment isthe last
operation the value is not displayed.)

Two constructions can be used to modify this normal behavior:

o If thetoken to the left of a specification arrow is aright bracket, indexed specification is performed.
« If thetoken to the left of a specification arrow is aright parenthesis, selective specification is performed.

In either case, note that if the value is used further in the expression, it is the value to the right of the
specification arrow that is propagated, not the value of the named variable or variables.

A<l 2 3

APL2 Language Summary SX26-3851-01 30
© Copyright IBM Corporation 1984, 2011

2+A

345

2+A[2]«10
12

B« 'HELLO'

2+ (A B)«l 2
3 4

A
1

B
2

Vector Notation and itsPriority

A series of value expressions separated from each other by nothing but spacesis treated as a vector. Here are
some examples:

In that last example, (2 3) isavalue expression which isthen combined with the remainder of the expression
to form athree-item nested array. Here are some additional examples which extend that concept:

2 'ABC'
1 (2+43) 4
AA«2 3
1 AA 4

Note that the last example has exactly the same value as the last example in the previous group.

Order of Evaluation

Like other APL expressions, the items within a vector notation are evaluated from right to left:

A<l
A (A«2) A
221

But forming a vector using vector notation takes precedence over applying an array to the function or operator
onitsright.

123+ 456
57 9

A<l

3 A+11
4 2

Vector notation does not take precedence over assignment.

A<l

A Be2 3
1 23

A
1

B

APL2 Language Summary SX26-3851-01 31
© Copyright IBM Corporation 1984, 2011

Nor does it take precedence over bracket indexing.

A«l 2 3
A A[2]
123 2

Operand Binding

Monadic Operators

Most operators are monadic; which means they take an operand on the left. Thereislittle chance of confusion
with these. Working from right to left, APL 2 finds an operator, then looks to its left for an operand.

o Ifitfindsan array, it first applies the vector notation rule, then uses the resulting array as an operand.

o If it findsafunction, that becomes the operand.

o If it finds another operator, APL2 knowsthat it will first have to produce a derived function from that
operator, and the derived function will then become the operand for the first operator.

An example will make the last case clear. The Each (™) operator appliesits operand function to each item (at the
top level) of the data argument. The Reduce (/) operator applies its operand function between each item (at the
top level) of the data argument. Thus:

x/2 3 71

In thefirst case x is applied between each item, so is used as a multiplication:

2x3x7 1

6

In the second case x is applied to each item, so it becomes a monadic function which returns the sign of the
value:

(x2) (x3) (x71)
111

(Actually, the function would do that even without the . See Scalar Functions.)

All that was background. Now we are ready for the real example:

x/"(2 3 71) (2 3 4)

APL2 Language Summary SX26-3851-01 32
© Copyright IBM Corporation 1984, 2011

Looking from right to left we can see that APL2 will first create two vectors and then combine them into one
nested vector. Now it encountersthe ™" operator, so it looksto itsleft. It sees /, which is also an operator; so
cannot be an operand. Continuing left it seesthat it can form the derived function x /, which is a product
reduction. It can then use that function as the operand for ™, like this:

(x/2 3 71) (x/2 3 4)

"6 24

Dyadic Operators

APL2 includes only one primitive dyadic operator, the Array Product operator, but users can define additional
dyadic operators. The Array Product operator, when used with aleft and right function, produces any of an
infinite variety of Inner Product derived functions. The specific inner product derived function correspoonding
to the original mathematical use of thetermis +. x, which forms products of pairs of values from the left and
right argument data, and sums groups of those products.

A«2 3p16
B«3 4p112
A

123

4 56
B

1 2 3 4

5 6 7 8

9 10 11 12

Multiplying the first row of A by each of the first two columns of B gives:

+/1 2 3 x 159
38

+/1 2 3 x 26 10
44

+ . x does that for each row of A combined with each column of B:

A+.XB
38 44 50 56
83 98 113 128

The point to focus on right now is not why anyone would want such an oddly defined facility (though it does
turn out to be extrordinarily useful), but why APL2 analyzes the syntax of the expression the way it does. Note
that the right-most part of the expression is xB, which APL 2 is quite capable of evaluating on its own:

B
11
11
11
N

D e x

1
1
1

ot aterribly exciting result, but it does say that all items of B are positive.

But APL2 does not evaluate the expression that way. Thisisthefirst real example that we have seen showing

that operands take priority over normal right-to-left function processing. When APL 2, scanning right to left,

encountersthe x, it has to look further anyway to find out whether there is aleft argument, i.e. to decide

APL2 Language Summary SX26-3851-01 33
© Copyright IBM Corporation 1984, 2011

whether x isthe monadic Direction function or the dyadic Product function. When it finds the dyadic operator
symbol . it knowsthat x is being used as an operand.

To carry this one step further, / which we also used above, is a monadic operator. How should APL2 evaluate
an expression like +. x /? x / is aderived function which could become the right operand to +. , but +. x isalso
aderived function which could become the left operand to /. The answer isthat the right operand of an dyadic
operator is bound more tightly than the left operand of an operator. i.e,,

+.x/ A Is equivalent to
(+.x)/ p this
+.(x/) A not to this

Errors

Entry of a statement that cannot be executed will invoke an error report. Newcomers to APL 2 often tend to
worry needlessly about typing inputs that result in errors. These error reports are some of the most helpful aids
that you could ask for toward learning the language. APL 2 error reports are designed to be clear, concise, and
precise.

As opposed to doing everything that you could do to prevent generating errors, it may be helpful to deliberately

try out many of the error conditions. Thisis agood way of learning how various functions are defined. Learning
by doing is always preferable. And don't worry that you may enter something that you shouldn't have... nothing

that you can enter can hurt the machine. This gives you full freedom to experiment.

An APL2 error report indicates the nature of the error and displays carets, indicating both where the error
occurred and where the execution halted. For example:

Bel 2 3 + A¢d 5
LENGTH ERROR
Be«l 2 3+A«4 5

A A

There's awealth of information available from these error reports. Let's see just what this message istelling us:

Bel 2 3 + A«4d 5 Here is the line that you typed in.
LENGTH ERROR Two lengths are incompatible
Bel 2 3+A«4 5 Here is your input line

(unneeded blanks have been removed)

A A Scan position and error position

There will typically be two carets under the line of code. The left caret shows you how far APL2 got in its right-
to-left scan of the line (here, the system hasrecognizedthat 1 2 3 isanumeric vector to be treated as a left
argument, and it has stopped at the assignment arrow, which it has not yet processed). Theright caret shows
you the point of the actual error. Normally, that will indicate which function APL 2 was evaulating when the
error occurred. In this example, the arguments to the + function aren't compatible with each other, so the
requested addition can't be performed.

Sometimes one caret will be "on top of" the other, so it will look like there is only one.

APL2 Language Summary SX26-3851-01 34
© Copyright IBM Corporation 1984, 2011

Primitive Functions

In this section we use L to refer to the left argument, R to refer to the right argument, and X to refer to an axis
value.

Y ou will find below a complete Alphabetic List of primitive function names, from each entry of which you can
get to information about that function. In addition, you can use any of the following lists to get to that same
information:

Primitive Function Symbols
Thislist shows which symbols are used monadically and dyadically, and the function names associated
with each usage.

Scalar Functions
Functions which transform simple scalar values within any array, no matter how the data is structured,
and produce results whose structure matches their arguments.

Structural Functions
Functions which retain part or all of the data in their arguments, but produce results whose structure has
been changed.

Information Functions
Functions which return information about the structure or content of their arguments, but do not return
the dataitself.

Non-scalar transform Functions
Functions which transform data and either work on certain types of structures, or return data structures
different from their arguments.

APL2 Language Summary SX26-3851-01 35
© Copyright IBM Corporation 1984, 2011

Alphabetic List of Functions

Add

And

Binomidl

Bracket Index

Catenate

Catenate with Axis

Ceiling

Circle Functions (trigonometric)
Conjugate

Direction (sign)

Disclose

Disclose with Axis
Divide

Drop

Drop with Axis

Enclose

Enclose with Axis
Encode

Enlist (structure to vector)

Equal
Execute

Exponential

Factorial

Find

First

Floor

Format (default)

Format by Example
Format by Specification
Grade Down

Grade Down with Collating Sequence
Grade Up

Grade Up with Collating Sequence
Greater Than

Greater Than or Equal to
Index (select items)

ndex with Axis

|ndex of

Interval

Laminate (add dimension)
Less Than

Less Than or Equal to

L ogarithm

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

Magnitude (absolute value)
Match

Matrix Divide
Matrix Inverse
Maximum
Member
Minimum
Multiply

Nand

Natural Logarithm
Negative

Nor

Not

Not Equal
Or

Partition

Partition with Axis

Pi Times

Pick

Power

Ravel (array to vector)
Ravel with Axis

Reciprocal

Reshape

Residue (remainder)
Reverse

Reverse with Axis
Roll

Rotate

Rotate with Axis
Shape

Subtract

Take

Take with Axis
Transpose
Transpose (reversed axes)
Without

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

Names and Valences of Primitive Function Symbols

Symbol Monadic Use Dyadic Use
+ Conjugate Add
- Negative Subtract
X Direction Multiply
+ Reciprocal Divide
* Exponential Power
| Magnitude Residue
[Celling Maximum
I Floor Minimum
® Natural Logarithm L ogarithm
? Rall Ded
! Factorial Binomial
o Pi Times Circle Functions
B Matrix Inverse Matrix Divide
A And
v Or
A Nand
Nor

~ Not Without
< Less Than
< Less Than or Equal
= Equal
> Greater Than or Equal
> Greater Than
* Not Equal
= Depth Match

Ravel Catenate or Laminate
P Shape Reshape
> Disclose Pick
c Enclose Partition
¢ Reverse Rotate
® Transpose (reversed axes) Transpose
! Drop
1 First Take
[] Bracket Index
i Index
A Grade Up Grade Up with Collating Sequence
\ Grade Down
1 Interval Index of

Grade Down with Collating Sequence

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

Symbol Monadic Use Dyadic Use

€ Find

€ Enlist Member

[y Execute

7 Format (default) Format by Example or Format by Specification
L Decode

T Encode

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

39

Scalar Functions

Monadic

These functions apply to scalar items within an arbitrarily structured array, and produce a result with the same
structure.

Note: Trigonometric functions are provided as dyadic Circle Functions.

Syntax Name

-R Negative

<R Reciprocal

[R Ceiling

R Floor

IR Magnitude (absolute value)
xR Direction (sign)
+R Conjugate

*R Exponential

®R Natural Logarithm
IR Factorial

OR Pi Times

?R Roll

~R m

Dyadic

These functions apply to scalar items within any pair of arbitrarily but equivalently structured arrays, and
produce a result with the same structure. They also permit scalar extension, replicating a scalar item to agree

with the shape of the other argument.

Syntax Name

L+R
L-R
LXR
L+R
L|R
LR
LR
LoR
L+R
LeR
LAR

Add

Subtract

Multiply

Divide

Residue (remainder)

Maximum

Minimum

Circle Functions (trigonometric)
Power

L ogarithm
And

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

40

Syntax Name

LVR Or
L~R Nand
LR Nor

L<R LessThan

L<R LessThanor Equal to
L=R Equa

L>R Greater Than

L=R Greater Than or Equal to

L#R Not Equal

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

Structural Functions

The following functions manipul ate data structures without affecting the values of individual items.

Monadic

Syntax Name

R First

oR Reverse

¢ [X] R Reverse with Axis

8R Transpose (reversed axes)
R Ravel (array to vector)

, [X]R Ravel with Axis

€ER Enlist (structure to vector)
cR Enclose

< [X] R Enclose with Axis

SR Disclose

> [X] R Disclose with Axis

Dyadic

Syntax Name
LpR Reshape
LoR Rotate

L¢ [X] R Rotate with Axis

L&R Transpose

L,R Catenate

L, [X]R Catenate with Axis

L, [X]R Laminate (add dimension)
L~R Without

LTR Take

L1 [X] R Take with Axis
LIR Drop

L4 [X] R Drop with Axis
LOR Index (select items)

L0 [X]R Index with Axis
A[I] Bracket Index
LoR Pick

L<R Partition

Lec [X] R Partition with Axis

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

42

| nfor mation Functions

Monadic
Syntax Name
PR Shape
=R Depth

AR Grade Up

VR Grade Down
Dyadic

Syntax Name

L=R Match

LeR Member

L1R Index of

LeR Find

LAR Grade Up with Collating Sequence
LYR Grade Down with Collating Sequence

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

43

Non-scalar transform Functions

Monadic

Syntax Name

1R Interval

IR Format (default)
$R Execute

HR Matrix Inverse

Dyadic

Syntax Name

LiR Decode

LTR Encode

L?R Ded

LBR Matrix Divide

L!R Binomial

L3R Format by Example
L3R Format by Specification

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

Add

Sum of L and R.

541 2 3
6 7 8

12 3+4 5 6
579

L,R: Numeric

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

45

And

A 1if bothL andR are 1; a 0 otherwise.

0 01 10101
0001

L,R: Boolean

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

46

Binomial

The number of combinations of R thingstaken L at atime.

218
28

L,R: Numeric (If R isanegative integer, L must be integer.)

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

a7

Bracket I ndex

The items of A specified by index arrays T.

LANG«'APPLE PIE'

LANGI[1 7 4]
APL
Ml«2 2p14
M1[;2]
2 4

A: Nonscalar array
1: Simple array of nonnegative integers
Implicit argument: 010

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

48

Catenate

L and R joined along the last axis.

Mle2 2p14
M2«2 2p'ABCD'
M2, M1

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

49

Catenatewith Axis

L and R joined along axis X.

Ml«2 2p14
M2«2 2p'ABCD'
M2, [11M1

wWkEk Q>
SN O o

X: Simple scalar, nonempty, nonnegative integer
Implicit argument: 010

See also Laminate for non-integral values of X.

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

50

Ceiling

For area R: the smallest integer greater than or equal to R.

R: Numeric
Implicit argument: OCT

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

51

Circle Functions

L specifies the function to be performed on R. The values of 1. and the functions they represent are shown in the

table below.

101.5708
1

20.25
0.9689124217

R: Numeric
L: Integer; "12<L<12

L Function
1 Arcsinr
2 ArccosR
3 Arctan R
4 (T1+R*2) .5
5 Arcsinh R
6 Arccosh R
-7 Arctanh R
8 - (80R)
"9 R

10 +R

11 0J1xR

12 *0J1XR

o J] o Ul W N L ol H

10
11

12

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

Function
(1-R*2) x.5
Siner
Cosiner
Tangent R
(1+4R*2) *.5
Sinhr

Coshr

Tanh R

-(T1-rR*2)*.5forr=0
(T1-rR#*2) «.5forr<0

Rea R

IR
Imaginary R
Phase R

52

Conjugate
R with the imaginary part negated.

+.4 75 374 304
0.4 75 33 4 "3J4

R: Numeric

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

Deal

L integers selected at random from 1 R without replacement.

ORL«16807
5?5
51243

R: Simple scalar or 1-item vector; nonnegative integer lessthan 2+31
L: Simple scalar or 1-item vector; nonnegative integer less than or equal to R
Implicit arguments: 010, ORL

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

Decode

The base 10 representation of R, where R is anumber of base L. The value of a polynomial having coefficients
R at point L.

211 001
9

60 60 6011 30 20
5420

L,R: Simple numeric arrays

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

55

Depth
Levels of nesting of R: 0 for asimple scalar; 1 plus the depth of the deepest item for other arrays.
=4

=2 2p14

=2 2pl 2 3 (4 5)

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

56

Direction

Forared R: "1 if Risnegative; 0 if R iszero; 1 if R iSspositive. For an imaginary R: the nonreal number of
magnitude 1 that has the same phase as R.

x5 0 5
101

x3J4 ~3J4
0.6J0.8 0.6J0.8

R: Numeric

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

57

Disclose

R restructured into an array whose rightmost axes come from the axes of the items of R.

>(1 2 3)(4 5 6)
123
4 56

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

58

Disclose with Axis

R restructured into an array; X specifies the axes of the array into which items of R are structured.

>[1] ("ABCD') ('EFGH"')

X: Simple scalar or vector; nonnegative integers
Implicit argument: 0I0

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

59

Divide
I, divided by R.

0 8+0 0.4
1 20

L,R: Numeric

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

60

Drop

For apositive scalar L: removes thefirst L items of R.
For anegative scalar L.: removesthelast L items of R.

241 2 3 4
3 4

241 2 3 4
12

L: Simple scalar or vector; integer

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

61

Drop with Axis

For apositive scalar L: removes thefirst L, items of the Xth axis of R.
For anegative scalar L.: removesthe last L. items of the Xth axis of R.

(In amatrix, for example, if X is 1, L rows are dropped from R; if X is 2, L columns are dropped from R.)

H«2 4p'ABCDEFGH'
24 [2]H

CD

GH

L: Simple scalar or vector; integer

R: Nonscalar array

X: Simple scalar or vector; nonnegative integers
Implicit argument: 010

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

62

Enclose

A scalar array whose only item isR.

R«2 3p16
cR

[N
Ul
o w

pP<R
=cR

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

63

Enclose with Axis

An array whose items are those in the axes of R specified by X.

R«2 3p'ABCDEF'
c[1]R
AD BE CF
pc[1l]R
3
=c[1]R
2

X: Simple scalar or vector; nonnegative integers
Implicit argument: 010

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

Encode

The base L representation of R, where R is a base 10 number.

2 2 2 2 2716

10000
60 60 60715420
1 30 20

L,R: Simple numeric arrays

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

65

Enlist

A simple vector whose items are the simple scalarsin R.

R«<9 (7 8) (2 3p16)
€R
978123456

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

66

Equal

A 1if Lisequa toR; a0 otherwise.

20 30 40=40 30 20
010

Implicit argument: OCT

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

67

Execute

The evaluation of the result of the APL 2 expression represented by the character vector R.

$'3+4"
7

R: Simple character scalar or vector

If the argument is empty, or represents a defined function or operator without an explicit result, then ¢R has no
result. Execute of a branch statement is permitted only if ¢ isthe leftmost operation on the line.

APL2 Language Summary SX26-3851-01 68
© Copyright IBM Corporation 1984, 2011

Exponential

e to the rth power.

*0 1 2
1 2.718281828 7.389056099

R: Numeric

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

69

Factorial

For apositive integer R: the product of al positive integers through R.

14 3 5
24 6 120

R: Numeric, excluding negative integers

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

70

Find

A Boolean array 7 that correspondsto R. Z contains a 1 where pattern 1, begins in the corresponding position of
R. All other itemsof z are 0.

'AB'€'ABABAB'
101010

Implicit argument: OCT

APL2 Language Summary SX26-3851-01 71
© Copyright IBM Corporation 1984, 2011

First
Thefirst item of R. If R is empty, the prototype of R.

t'ME' 'THEE'
ME

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

72

Floor

For ared R: the largest integer that does not exceed R.

R: Numeric
Implicit argument: OCT

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

73

Format (default)

A simple character array whose appearance is the same as the display of R.

M«2 3p16
M
123
4 5 6
peM
25

Implicit argument: OPP

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

74

Format by Example

A character array containing the datain R formatted using format model L. L includes control characters and
decorators. The control characters are:

Pad zeros to this position

Float decorator if negative

Float decorator if nonnegative

Float decorator

Do not float nearest decorator

Normal digit

Decorator to right ends the field

Use next decorator to right for scaled form
Fill empty positions of field with OFC [3]
Pad zeros to this position if nonzero
Decimal point

, Controlled comma

OW 00 3 & U1 i W N - O

All other characters are decorators and are floated if requested.

' $53.50'%2 2p14
$1.00 $2.00
$3.00 $4.00

L: Simple character vector
R: Simplereal array
Implicit argument: OFC [15]

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

Format by Specification

A character array containing datain R formatted using column specifications I.. Each pair of itemsin L
corresponds to a column.

Thefirst of each pair sets column width; the second sets display precision and format (positive for conventional
or negative for scaled).

A single pair of integers extends the specification to all columns. A singleinteger L. isinterpreted as (0, L) .

5 3 4 0%2 2p14
1.000 2
3.000 4

L: Simpleinteger vector
R: Array of depth 2 or less whose items are simple real scalars or vectors
Implicit argument: OFC [4 6]

APL2 Language Summary SX26-3851-01 76
© Copyright IBM Corporation 1984, 2011

Grade Down

A vector of integers that can be used as an index to sort the subarrays along the first axis of R into descending
order.

N«23 11 13 31 12
YN

4 1352
N [YN]

31 23 13 12 11

R: Simple nonscalar real numeric array
Implicit argument: 010

APL2 Language Summary SX26-3851-01 77
© Copyright IBM Corporation 1984, 2011

Grade Down with Collating Sequence

Same as Grade Down (VR) except that the collating sequence used is defined by L.

'ABCDE'V'BEAD'
2413

L: Simple nonempty nonscalar character array
R: Simple nonscalar character array
Implicit argument: 010

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

78

Grade Up

A vector of integers that can be used as an index to sort the subarrays along the first axis of R into ascending
order.

N«23 11 13 31 12
AN

25314
N [AN]

11 12 13 23 31

R: Simple nonscalar real numeric array
Implicit argument: 010

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

79

Grade Up with Collating Sequence

Same as Grade Up (AR) except that the collating sequence used is defined by L.

'ABCDE'A'BEAD'
314 2

L: Simple nonempty nonscalar character array
R: Simple nonscalar character array
Implicit argument: 010

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

80

Greater Than

A 1 if L isgreater than R; a 0 otherwise.

20 30 40>40 30 20
001

L,R: Rea numeric
Implicit argument: OCT

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

81

Greater Than or Equal to

A 1 if L isgreater than or equal to R; a 0 otherwise.

20 30 40=40 30 20
011

L,R: Rea numeric
Implicit argument: OCT

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

82

| ndex

Selects cross sections of R using alist of index arrays L.

0IO0«1
Ve2 2.3 75 999 .01
30V

5
(e3 4) v
5 999

L: Scalar or vector of nonnegative integers of depth no greater than two.
R: Any array.
Implicit argument: 010

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

83

| ndex of

The position of the first occurrencein L of eachiteminR.

789 718 76 729
21513

L: Vector
Implicit arguments: 010, OCT

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

| ndex with AXis

Selects cross sections of R using alist of index arrays L that corresponds to axes X.

O0IO«1
A«2 3 4p124
A
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
20[1]1Aa
13 14 15 16
17 18 19 20
21 22 23 24

L: Scalar or vector of nonnegative integers of depth no greater than two.
R: Any array.

X: Simple scalar or vector; nonnegative integers. Xe1 ppR

Implicit argument: 010

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

85

| nterval

R consecutive ascending integers beginning with 0T 0.

14
1234

R: Simple scalar or 1-item vector; nonnegative integer lessthan 2+31
Implicit argument: 0I0

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

86

L aminate

For afractional X: I, and R joined to form a new axis of length 2.

'ONE', [.5] 'TWO'
ONE
TWO

X: Simple nonempty fractional scalar between ~1+010 and 010+ (ppL) [ppR
Implicit argument: 010

See also Catenate with Axisfor integral values of X.

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

87

Less Than

A 1if LislessthanR; a0 otherwise.

20 30 40

L,R: Rea numeric
Implicit argument: OCT

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

88

Less Than or Equal to

A 1 if L islessthan or equal to R; a 0 otherwise.

20 30 40=<40 30 20
110

L,R: Rea numeric
Implicit argument: OCT

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

89

L ogarithm

The base L. logarithm of R.

5 10125 100
32

L,R: Numeric; nonzero

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

90

Magnitude

Distance between 0 and R.

|6 75 374
6 55

R: Numeric

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

91

M atch

A 1 if L and R are the same in structure and data; a 0 otherwise.

'YES NO'='YES', 'NO'
0

'YES NO'='YES ', 'NO'
1

Implicit argument: OCT

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

92

Matrix Divide

The solution of a system of linear equations of a vector 1. and a nonsingular matrix r, or, if R has more rows
than columns, aleast squares approximation.

1 482 2p1 0 0 2
12

L,R: Simple numeric arrays of rank 2 or less

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

93

Matrix I nver se

The inverse of a nonsingular matrix.

B2 2p1 0 0 2

[eNe)

1
0 0.5

R: Simple numeric array of rank 2 or less

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

94

Maximum

Thelarger of 1. and R.

4 0.571 6
4 6

L,R: Red

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

95

M ember

A Boolean array 7 that has the same shape as .. Anitem of z is 1 if the corresponding item of L. can be found
anywherein R. Anitem of Z is 0 otherwise.

8 76 7 97 8 9 7
11011

Implicit argument: OCT

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

96

Minimum
The smaller of L and R.

0.4 6[1 0.5
0.4 0.5

L,R: Red

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

97

Multiply

The product of 1. and R.

0 1x3 4
0 4

L,R: Numeric

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

98

Nand

AlifethernLorris0O; 0ifbothL andr arel.

0011~1 010
1101

L,R: Boolean

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

99

Natural Logarithm

The logarithm of R to the base e.

el 2
0 0.6931471806

R: Numeric; nonzero

APL2 Language Summary SX26-3851-01 100
© Copyright IBM Corporation 1984, 2011

Negative

NegativeR if R is positive; positive R if R isnegative.

APL2 Language Summary SX26-3851-01 101
© Copyright IBM Corporation 1984, 2011

Nor

A 1if bothL and R are 0; a 0 otherwise.

00111 010
0100

L,R: Boolean

APL2 Language Summary SX26-3851-01 102
© Copyright IBM Corporation 1984, 2011

Not

A 1 for eachitem of R that is0; a 0 for each item of R that is 1.

APL2 Language Summary SX26-3851-01 103
© Copyright IBM Corporation 1984, 2011

Not Equal

A 1 if L isnot equal to R; a0 otherwise.

20 30 40#40 30 20
101

Implicit argument: OCT

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

104

Or

A lifethernLorris1; 0if bothL andr are0.

0011vi 010
1011

L,R: Boolean

APL2 Language Summary SX26-3851-01 105
© Copyright IBM Corporation 1984, 2011

Partition

Partitions R into an array of vectors, with break points wherever corresponding items of L increase. Where 1.=0
the corresponding items of R are omitted.

)LOAD 1 DISPLAY
DISPLAY 1 1 2<'ABC!

:

DISPLAY

(SAVES#' ')cSAVES«' A STITCH IN TIME'

>
&ﬂ STITCH

IN

TIME

€

M«%3 3pl 10 3.142 2 100 6.283 3 1000 9.425
DISPLAY M

ll 10 3.142
2 100 6.283
3 1000 9.425

'=M) cM

DISPLAY (~nAf!
I
b
1 10 3.142
o
2 100 6.283
Ba > >
1000 9.425

L: Simple scalar or vector of nonnegative integers.

R: Nonscalar.

When 1.=0 the corresponding item does not appear in the result.

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

106

Partition with Axis

Partitions R into an array of vectors specified by 1. along axis X.

)LOAD 1 DISPLAY
DISPLAY N«4 3p112

DISPLAY 1 0 1 1c[1IN
{ - > -
HinEE

[7 10 8 11 [9 12

L: Simple scalar or vector of nonnegative integers.
R: Nonscalar.

X: Simple scalar or one item vector.

Implicit argument: 010

When 1.=0 the corresponding item does not appear in the result.

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

107

Pick
Anitem of R as specified by the path indixes L.

Re«<'ONE' 'TWO'
2 1oR
T

L: Integer scalar or vector whose depth is 2 or less.
Implicit argument: 010

APL2 Language Summary SX26-3851-01 108
© Copyright IBM Corporation 1984, 2011

Pi Times
The product of pi and R.

ol
3.141592654

R: Numeric

APL2 Language Summary SX26-3851-01 109
© Copyright IBM Corporation 1984, 2011

Power
L raised to the Rth power.

2 10+4
16 0.01

2

Fractional values are also supported, yielding roots. When <R is an even integer there are two real roots. Since
APL 2 supports complex numbers, there are always multiple possible roots. The result given is the one with the
smallest nonnegative angle in the complex plane. (This rule ensures that a positive real root will be returned if
thereisone.)

16 » +1 2 3 4
16 4 2.5198421 2
2.5198421 ~ 3

16
16x.75 A 4th root cubed

8

L,R: Numeric

APL2 Language Summary SX26-3851-01 110

© Copyright IBM Corporation 1984, 2011

Ravel

A vector consisting of the items of R taken in row-major order.

R«2 2p'ABCD'
;R

ABCD
p,R

APL2 Language Summary SX26-3851-01 111

© Copyright IBM Corporation 1984, 2011

Ravel with Axis

An array whose contiguous subarrays are R, but structured by either combining axes (if X isinteger) or forming
anew axisof length 1 (if x isafraction).

[2 312 2 2p18

12314
56 78
,[1.1110 15
10
15

X: Simple scalar fraction, simple scalar, vector of nonnegative integers, or empty
Implicit argument: 010

APL2 Language Summary SX26-3851-01 112
© Copyright IBM Corporation 1984, 2011

Reciprocal

1 divided by R.

+5 .2
0.2 5

R: Numeric; nonzero

APL2 Language Summary SX26-3851-01 113
© Copyright IBM Corporation 1984, 2011

Reshape

Theitems of R in an array of shape L.

Re3 4p112
2 6pR

L: Simple scalar or vector; nonnegative integers

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

114

Residue

For area and positive L: the remainder of R divided by L.

0 8/9 15
9 7

L,R: Numeric
Implicit argument: OCT

APL2 Language Summary SX26-3851-01 115
© Copyright IBM Corporation 1984, 2011

Reverse

An array with the items of R reversed along the last axis.

R«3 3p'ABCDEFGHI'

oR
CBA
FED
IHG
APL2 Language Summary SX26-3851-01 116

© Copyright IBM Corporation 1984, 2011

Reversewith AXis

An array with items of R reversed along the Xth axis.

R«3 3p'ABCDEFGHI'
¢[1]IR

GHI

DEF

ABC

X: Scalar or 1-item vector; nonnegative integer
Implicit argument: 0I0

APL2 Language Summary SX26-3851-01 117
© Copyright IBM Corporation 1984, 2011

Roll

A random integer from 1 R.

ORL«1144108930
210 10 10 10
3177

R: Positive integer
Implicit arguments: 010, ORL

APL2 Language Summary SX26-3851-01 118
© Copyright IBM Corporation 1984, 2011

Rotate

An array with items of R rotated | L. positions along the last axis. The sign of L. determines the direction of

rotation.

Re3 4p112
2 1 "1¢R
1 2
8 5
10 11

N oYW
O J

1

L: Simple integer

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

119

Rotate with Axis

An array with items of R rotated | L. positions along the Xth axis. The sign of L. determines the direction of
rotation.

Re3 4p112

01 1 2 ¢[1]IR
11 8

3 12

7 4

O Ul

1

N OO

L: Simple integer
X: Nonempty simple scalar; nonnegative integer
Implicit argument: 010

APL2 Language Summary SX26-3851-01 120
© Copyright IBM Corporation 1984, 2011

Shape

The length of each axis of R.

Re3 4p112
PR

34

APL2 Language Summary SX26-3851-01 121

© Copyright IBM Corporation 1984, 2011

Subtract

L mMinusR.

L,R: Numeric

APL2 Language Summary SX26-3851-01 122
© Copyright IBM Corporation 1984, 2011

Take

For apositive scalar L.: the first L items of R.
For anegative scalar L: the last L items of R.

211 2 3 4
12

211 2 3 4
3 4

L: Simple scalar or vector; integer

APL2 Language Summary SX26-3851-01 123
© Copyright IBM Corporation 1984, 2011

Takewith Axis

For apositive scalar L: the first L, items of the Xth axis of R.
For anegative scalar L: the last L, items of the Xth axis of R.

(Thatis, if Xis 1, L rowsaretaken fromR; if X is 2, L, columns are taken from Rr.)

H«2 4p'ABCDEFGH'
21 [2]H

AB

EF

L: Simple scalar or vector; integer

R: Nonscalar array

X: Simple scalar or vector; nonnegative integers
Implicit argument: 010

APL2 Language Summary SX26-3851-01 124
© Copyright IBM Corporation 1984, 2011

Transpose
If L selects all axes of R, produces an array similar to R, but with the axes permuted according to L.

If L includes repetitions of axes, produces adiagonal cross section of R.

2 1 382 2 2p18

~N WUl
o > oY N

L: Simple scalar or vector; nonnegative integer

APL2 Language Summary SX26-3851-01 125
© Copyright IBM Corporation 1984, 2011

Transpose (rever sed axes)

An array similar to R, but with the order of the axes of R reversed.

R«2 3p'ABCDEF'
&R
AD

CF

APL2 Language Summary SX26-3851-01 126
© Copyright IBM Corporation 1984, 2011

Without

Theitemsin L that do not occur in R.

'DIET'~'TEARS'
DI

L: Scalar or vector
Implicit argument: OCT

APL2 Language Summary SX26-3851-01 127
© Copyright IBM Corporation 1984, 2011

Primitive Operators

In this section we use the following notation:

LO left operand of the operator

RO right operand of the operator

X axis along which the operator is applied
L left argument of the derived function

R right argument of the derived function
Syntax Name

LO/R Compress

LO/ [X]R Compresswith Axis

L LO” R Each, Deriving Dyadic

LO" R Each, Deriving Monadic
LO\R Expand

LO\ [X]R Expand with Axis

L LO.RO R Inner Product

L °.RO R Outer Product

LO/R Reduce

L LO/R Reduce N-wise

L LO/ [X]R Reduce N-wise with Axis
LO/ [XIR Reducewith Axis

LO/R Replicate
LO/ [X]IR Replicate with Axis
LO\R Scan

LO\ [X]R Scanwith Axis

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

128

Compress

Selects subarrays along the last axis under the control of the vector 1.O. Thisis a special case of Replicate,
where LO is Boolean.

1001 1/'PLEAT'
PAT

APL2 Language Summary SX26-3851-01 129

© Copyright IBM Corporation 1984, 2011

Compresswith Axis

Selects subarrays along the last axis under the control of the vector L.O. Thisis aspecia case of Replicate with
AXxis, where LO is Boolean.

10 1/[113 2p16

Ul
o N

APL2 Language Summary SX26-3851-01 130
© Copyright IBM Corporation 1984, 2011

Each, Deriving Dyadic

The result of function 1O applied between corresponding pairs of items of L and R.

APL2 Language Summary SX26-3851-01 131
© Copyright IBM Corporation 1984, 2011

Each, Deriving Monadic

The result of function 1O applied to each item of R.

P 'TOM' 'DICK'
3 4

APL2 Language Summary SX26-3851-01 132
© Copyright IBM Corporation 1984, 2011

Expand

Expansion of the last axis of R under control of Boolean vector L.

A«1 01 001

A\1 2 3
102003

A\ 'ABC'
A B C

See also Scan, the same operator symbol with afunction as an operand.

APL2 Language Summary SX26-3851-01 133
© Copyright IBM Corporation 1984, 2011

Expand with Axis

Expansion of the xth axis of R under control of Boolean vector L.

1 0 1\[1]2 3p16

[N
o N
oo w

Note: Expand along the first axis can also be represented using the \ symbol.

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

134

|nner Product

The result of the 1.0 reduction of each row of 1., against each column of R, in all combinations with function
RO.

R«2 3p16
L«2 2pl0x14
L+. xR

90 120 150

190 260 330

APL2 Language Summary SX26-3851-01 135

© Copyright IBM Corporation 1984, 2011

Outer Product

Result of function RO applied between pairs of items, one from L, and one from R, in all combinations.

(14)°.x15
12 3 4 5
24 6 8 10
36 9 12 15
4 8 12 16 20

APL2 Language Summary SX26-3851-01 136
© Copyright IBM Corporation 1984, 2011

Reduce

The result of the expression produced by inserting function L.O between adjacent pairs of items along the last
axisof R.

+/1 2 3 45
15

If thelast axis of R isempty, LO is not applied. Instead the identity function related to it is applied to the
prototype of R. Only primitive functions have known identity functions, so use of adefined function as .0 with
an empty right argument generates DOMAIN ERROR. In general the identity function produces a value which
could be used as an argument to the original function so that its result would be the same as its other argument.
Thus the identity functions for addition and subtraction produce 0, while the identity functions for
multiplication and division produce 1.

The identity functions for Minimum and Maximum are of special interest, since they return the largest positive
value and most negative value that can be represented in the machine. These can be used in many contexts as if
they were infinity. Note that the identity for Minimum must be positive, and that for Maximum must be
negative, to satisfy the definition of an identity.

See also Reduce N-wise, a variant which produces a dyadic derived function, and Replicate, the same operator
symbol with an array as an operand.

APL2 Language Summary SX26-3851-01 137
© Copyright IBM Corporation 1984, 2011

Reduce N-wise

Same as Reduce, except L specifies the number of items along the last axis of R to be considered in each
application of the derived function LO/ to the subarrays along the last axis.

2+/16
3579 11

2=/'HELLO"
0010

APL2 Language Summary SX26-3851-01 138
© Copyright IBM Corporation 1984, 2011

Reduce N-wise with AXxis

Same as Reduce with axis, except L defines the number of items along the Xth axis to be considered in each
application of the function to the subarrays along the xth axis.

3+/[114 3p112
12 15 18
21 24 27

APL2 Language Summary SX26-3851-01 139
© Copyright IBM Corporation 1984, 2011

Reduce with Axis

Result of the expression produced by inserting function 1O between adjacent pairs of items along the Xth axis
of R.

+/[1]13 4p112
15 18 21 24

Note: Reduce along the first axis can aso be represented using the / symbol.

APL2 Language Summary SX26-3851-01 140
© Copyright IBM Corporation 1984, 2011

Replicate

Repetition of each subarray along the last axis as specified by array operand L.

12 3 4/'ABCD!
ABBCCCDDDD

See also Reduce, the same operator symbol with a function as an operand.

APL2 Language Summary SX26-3851-01 141
© Copyright IBM Corporation 1984, 2011

Replicate with Axis

Repetition of each subarray along the xth axis as specified by array operand L.

Te3 2p16
2 710 1/[11T

UOoORr K
Ao NN

Note: Replicate along the first axis can also be represented using the / symbol.

APL2 Language Summary SX26-3851-01 142
© Copyright IBM Corporation 1984, 2011

Scan

The 1th item aong the last axisis determined by the LO reduction of It [ppR]R.

+\1 2 3 45
13 6 10 15

See also Expand, the same operator symbol with an array as an operand.

APL2 Language Summary SX26-3851-01 143
© Copyright IBM Corporation 1984, 2011

Scan with Axis

The 1th item aong the xth axis is determined by the LO reduction of It [X]R.

+\[1]2 3p16
123
579

Note: Scan along the first axis can also be represented using the X symbol.

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

144

System Functions

Syntax

Z«OAF R
Z«L 0OAT
Z«OCR R
Z«ODL R
Z«L 0OEA
Z«0OEC R
Z«0OES R
Z«L OES
Z«OEX R
Z«OFX R
Z«L 0OFX
Z«ONA R
Z«L ONA
Z«ONC R
Z«ONL R

Z«L 0ONL R

Z«OSVC R

Description and Example

Atomic Function

Attributes

Character Representation

Delay

Execute Alternate

Execute Controlled

Event Simulation (standard error message)

Event Simulation (tailored error message)
Expunge

Fix

Fix (with execution properties)

Name Association (Inquire)

Name Association (Define)

Name Class

Name List (default)

Name List (qualified)

Shared Variable Control (Inquire)

Z<«L 0OSVC R Shared Variable Control (Set)

Z«OSVO R

Shared Variable Offer (Inguire)

Z<«L 0OSVO R Shared Variable Offer (Offer)

7«0OSVQ R
7«OSVR R
7«0OSVS R

Z«L 0OTF R

Z«0OUCS R

Shared Variable Query
Shared Variable Retraction
Shared Variable State
Transfer Form

Universal Character Set

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

145

Atomic Function
Z«OAF R
OAF convertsintegersto characters and characters to integers.

Note: OAF depends on internal representations. Refer to DUCS for system-independent mapping.

OAF 'A1B'
65 236 66

OAF 65 236 66
A1B

APL2 Language Summary SX26-3851-01 146
© Copyright IBM Corporation 1984, 2011

Attributes

Z«L OAT R

OAT returns an attribute vector for each object name specified in R. L. specifies the type of attributes to be
returned. The values of L. and their meanings are:

1 Vaence-integer vector (explicit result, function valence, operator valence)
Fix time-integer vector (year, month, day, hour, minute, second, millisecond)

3 Execution properties-Boolean vector (nondisplayable, nonsuspendable, ignore attention, reflect domain
error)

4 Size of avariable-integer vector (full CDR size, data CDR size)

) LOAD 1 EXAMPLES

SAVED 1993-12-17 09.28.00 (GMT-7)
ONC 3 4p'HOW AND TYPE'

2 4 3

This had nothing to do with OAT directly, but just told us that HOW isavariable, AND is an operator, and TYPE
isafunction.

1 OAT 3 4p'HOW AND TYPE'

100
122
110
All three of them have aresult. The variable has no valence; the operator is dyadic, producing a dyadic

function; and the function is monadic, with no operator valence.

2 OAT 3 4p'HOW AND TYPE'
00 00O0O 0
1991 6 29 8 0 0 244
1991 6 29 8 0 0 244
3 OAT 3 4p'HOW AND TYPE'
00O00O0
0000
0000
4 OAT 3 4p'HOW AND TYPE'
8224 8190
0 0
0 0

APL2 Language Summary SX26-3851-01 147
© Copyright IBM Corporation 1984, 2011

Character Representation

Z«OCR R

OCR provides a character matrix representation of the defined function or defined operator named in R.

An empty matrix is returned for system functions, and for locked user programs or external objects.

)LOAD 1 UTILITY
SAVED 1993-12-17 09.30.46 (GMT-7)
OCR 'MAT'
A«MAT B
A A is a matrix containing all items of B.
A«, [11+ppB] (1 1,pB)peB

APL2 Language Summary SX26-3851-01 148
© Copyright IBM Corporation 1984, 2011

Delay

Z«ODL R

ODL halts processing for about R seconds and returns the actual length of the pause.

ODL 3
3.01

APL2 Language Summary SX26-3851-01 149
© Copyright IBM Corporation 1984, 2011

Execute Alter nate
Z«L 0OEA R

OEA executesR. If R failsor isinterrupted, L is executed.

VZ«L DIV R
[1] Z«'| /10" OEA(FL),'+',¥R
[2] v

2 DIV 4

1 pIvail
0 DIV O

1 DIV O
1.797693135E308

In case you are wondering, | /10 produces the largest representable number. Note that the Divide primitive
would have done this:
0+0
1
1+0
DOMAIN ERROR
1+0

AN

APL2 Language Summary SX26-3851-01 150
© Copyright IBM Corporation 1984, 2011

Execute Controlled

Z«0OEC R

OEC executes the APL2 expression represented by R. The result is a 3-item vector containing:

1. Return code

Expression with aresult that would display (2+3)
Expression with aresult that would not display (A<2+3)
Expression with no explicit result (F X where F has no result)

0 Error (2+'A")
1
2
3
4 Branchto aline (-3)
5 Branch escape(-)
2. OET

3. Result of expression or OEM

Example:
OEC

1 00
OEC

2 00

l2+2l
4
'Xe2+2!
4

OEC 'X=»2+2'

0 2 2
OEC
4 00

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

SYNTAX ERROR
X+2+2
A
l_>2+2 1
4

151

Event Simulation

Z«OES R Monadic - standard error message
Z«L OES R Dyadic - tailored error message

The monadic form of OES simulates an event and produces an error report for the event based on the value of R.

e IfRisSemptyor 0 0, noerrorissignalled.
o If Risapairof integers, itisassignedto OET, and if it isastandard error code, the associated message is
used in OEM.

e If Risacharacter vector, OET iSsetto 0 1, and R isused as the message in OEM.
The dyadic form does the same thing, but uses 1. as the error message and R asthe OET code.

OES 0 O resetsthevaluesof OET and OEM to their defaults.

VCALL Where
'Not numeric' OES (0#t0pWhere) /5 4
OES (1#p,Where) /5 3
OES (6#]| 10eWhere) /'Not a 7-digit number'
1 OK'
\Y
CALL 'HOME'
Not numeric
CALL 'HOME'
A
CALL 123 4567
LENGTH ERROR
CALL 123 4567
A
CALL 123456
Not a 7-digit number
CALL 123456

A

CALL 1234567

U WN -

OK

APL2 Language Summary SX26-3851-01 152
© Copyright IBM Corporation 1984, 2011

Expunge
Z«OEX R

OEX erases object R from the workspace. Returnsa 1 if the name is available for use; otherwise, returnsa 0.

XA«1
OEX 'XA'
1
OEX 'XA!
1
OEX 'X$°
0
Note that 0EX doesn't care whether the nameis currently in use, but it does return 0 for something that is an

invalid name.

APL2 Language Summary SX26-3851-01 153
© Copyright IBM Corporation 1984, 2011

Fix

Z«OFX R Monadic - no execution properties
Z«L OFX R Dyadic - with execution properties

OFX establishes in the active workspace the defined function or operator whose character representation isin R,
either asamatrix or avector of vectors.

If the operation succeeds, the name of the program is returned as the explicit result. If R isnot avalid function
or operator definition, a scalar integer is returned indicating the (origin dependent) row or item of R where the
problem was detected.

For the dyadic form, execution properties are specified by Boolean vector 1.. When the monadic form is used,
the execution properties are defaultedto0 0 0 0.

Theitems of L, and their corresponding execution properties are:

No display
No suspension
Ignore attention

1
2
3
4] Nonresource error becomes DOMAIN ERROR

—/ /e

]
]
]
]

A 1 inanitem of L turns the corresponding execution property on; a 0 turns the corresponding execution
property off.

OFX 'Z«L PLUS R' 'Z«L+R'

PLUS

3 PLUS 4
7

OCR 'PLUS'
Z«L PLUS R
Z«L+R

1 0 0 0 OFX OCR 'PLUS'
PLUS

3 PLUS 4
7

OCR 'PLUS'

pOCR 'PLUS'
00

pOCR '+
00

Now no one can see how amazingly simple that function is, just as they can't see how the primitive function
works.

APL2 Language Summary SX26-3851-01 154
© Copyright IBM Corporation 1984, 2011

Name Association

Z«ONA R Monadic - Inquire
Z«L ONA R Dyadic - Define

The dyadic form of ONA associates names R with external objects that are accessed through an associated
processor. L is a 2-item integer vector as follows:

[1] Array passed to the processor
[2] Associated processor number

The monadic form queries the association of objects named in R. It returns the left arguments previously passed
to dyadic ONA when the association was established, or 0 0 if the name does not represent an external object.

For more information about associated processors, see the User's Guide.

ONA 'FILE'
00
3 11 ONA 'FILE'
1
ONA 'FILE'
311
APL2 Language Summary SX26-3851-01 155

© Copyright IBM Corporation 1984, 2011

Name Class

Z«ONC R

ONC returns the name class of each object named in R. The meaning of the returned values are:

1 Invalid
Unused but valid
L abel
Variable
Function
Operator

s W NN O

) LOAD 1 EXAMPLES
SAVED 1993-12-17 09.28.00 (GMT-7)
ONC 3 4p'HOW AND WHEN'
240

APL2 Language Summary SX26-3851-01 156
© Copyright IBM Corporation 1984, 2011

Name L ist

7«ONL R Monadic - default
Z«L ONL R Dyadic - qualified

ONL returns a matrix containing names of user-defined objects (labels, variables, functions, and/or operators) in
the active workspace whose current name class is a member of R. External objects are also included if an
association to them is active.

The dyadic form adds additional control by restricting the returned list to names whose first character isin L.

) LOAD 1 EXAMPLES
SAVED 1993-12-17 09.28.00 (GMT-7)
ONL 2 A List variables
ABSTRACT
CHANGE_ACTIVITY
COIBM
DCS
DESCRIBE
GPAPL2
GPDESC
HOW
TIMER
pONL 2
9 15
PONL 4 A How many operators?
18 7
'CDE' ONL 4
COMMUTE
CR
EL
ELSE
ER

APL2 Language Summary SX26-3851-01 157
© Copyright IBM Corporation 1984, 2011

Shared Variable Control

Z«OSVC R Monadic - Inquire
Z«L OSVC R Dyadic - Set

The dyadic form of 0svC sets the Access Control Vector (ACV) for shared variables named in R to valuesin
Boolean vector L, and returns the effective control, which isan OR of the control specified in L. and the control
imposed by the share partner. The ACV is a4-bit vector indicating:

My sets to the shared variable are controlled.

My partner's sets to the shared variable are controlled.

My references of the shared variable are controlled.

My partner's references of the shared variable are controlled.

o O o -
o O - O
o B O O
R O O O

The monadic form of OSVC returns the access control vectors (ACVs) currently effective control on the
variables named in R.

100 OSVO 'CMD'
1

osvo 'CMD!
2

gsvCc 'CMD!
0001

1010 OSvC 'CMD'
1011

When AP 100 matched the offer, it set the ACV to control its own references, so that it could reliably accept
each command passed to it.

APL2 Language Summary SX26-3851-01 158
© Copyright IBM Corporation 1984, 2011

Shared Variable Offer

Z«OSVO R Monadic - Inquire
Z«L 0OSVO R Dyadic - Offer

The dyadic form of 0SvO offersto share variables named in R with processors named in L, and returns the
degree of coupling:

0 The name cannot be offered as a shared variable.
1 An offer has been made, but not yet accepted by the partner.
2 The variable is shared with the specified partner.

Note: Most processors are running asynchronously with the intepreter, so the normal response to an initial offer
is 1. The functions SVOFFER and SVOPAIR inthe UTILITY workspace are strongly recommended, since
they ensure that offers are accepted.

The monadic form of 0SVO checks the current state of a prior offer, returning one of the values listed above. (0
isreturned if the variable has not been offered.)

If the dyadic form is used with a variable that was previously offered, and if the processor number matches the
previous offer, then the function behaves like the monadic form.

100 OSvO 'CMD'
. osvo 'CMD!
? 100 OSvVO 'CMD'
i 101 OSvO 'CMD'

Thethird 0svO was treated asiif it was a query, but the fourth one responded that an offer could not be made
since that name had already been offered to a different processor.

APL2 Language Summary SX26-3851-01 159
© Copyright IBM Corporation 1984, 2011

Shared Variable Query

Z«0OSVQ R

If R isan empty vector, 0SVQ returns a numeric vector of processors making share offersto you. If R contains

one or more integers, the result isamatrix of names of variables being offered by the processorslisted in R.

Session A

t0AI A Who am I?
1001

1002 OSVO 'TALK'

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

Session B

TOAT
1002

osvo 10
1001

gsvQ 1001
TALK

160

Shared Variable Retraction

Z«0OSVR R

OSVR requests retraction of the shared variable or variables named in R and returns their prior degree of
coupling. For the meanings of the degree of coupling values, see Shared Variable Offer.

100 OSVO 'CMD'
1

OSVR 'CMD'
2

Between the time that the offer was made and the time it was retracted, AP 100 had matched the offer, thus
explaining the response of 2.

APL2 Language Summary SX26-3851-01 161
© Copyright IBM Corporation 1984, 2011

Shared Variable State

Z«0OSVS R

OsVs returns the Access State Vector (ASV) of each variable named in R. The ASV is a4-item Boolean vector
containing one of the following three combinations of values:

1010 Y ou have set avalue that your partner has not yet referenced.
0101 Y our partner has set a value that you have not yet referenced.
0011 Both partners have seen the current value, or no value has been set since the variable was
shared.
1234 OSVO 'TEST'
1
TEST«'HELLO'
gsvs 'TEST'!
1010

In this case no one matched the share offer, so the (missing) partner will never reference the value.

APL2 Language Summary SX26-3851-01 162
© Copyright IBM Corporation 1984, 2011

Transfer Form
Z«L 0OTF R

If Risavalid APL name, OTF returns the transfer form as specified in L of the variable or displayable defined
functions or defined operators named in R. 2 OTF also supports associations to external objects.

If R isavalid transfer form, of the type specified in L, the object is established in the active workspace, and its
name s returned.

L must be either 1 for migration form or 2 for extended form. Migration form isintended for compatibility with
systems without the data extensionsin APL 2. It does not support external objects, mixed or nested arrays, or
complex numbers.

NUMS«3 8 2

MIX«'APL' 2

2 OTF 'NUMS'
NUMS«+3 8 2

2 OTF 'MIX'
MIX« ('APL') (2)

1 OTF 'NUMS'
NNUMS 1 3 3 8 2

1 OTF 'MIX'

) CLEAR
CLEAR WS

2 OTF 'NUMS«3 8 2°'
NUMS

NUMS
382

APL2 Language Summary SX26-3851-01 163
© Copyright IBM Corporation 1984, 2011

Universal Character Set

Z«0UCS R

OuUCs converts integers to characters and characters to integers using the 1SO 10646 standard, which includes
the Unicode subset. DUCS supports the 2-byte Unicode character set.

For character arguments, OUCS returns a numeric result containing the Unicode code points for the characters.
For extended characters not in the 2-byte Unicode character set, it returns the numeric values stored in the
characters, unchanged.

For numeric arguments, OUCS returns a character result based on the Unicode code pointsin the argument. If
the Unicode character represented by a code point is not in the APL2 character set, it returns an extended
character with the value from the argument, unchanged.

Oucs 'A1B!
65 9075 66

Oucs 65 9075 66
A1B

Contrast thiswith OAF, which returns system-dependent results. For ASCII-based systems,

OAF 'AlB'
65 236 66

For EBCDIC-based systems,

OAF 'A1B'
193 178 194

APL2 Language Summary SX26-3851-01 164

© Copyright IBM Corporation 1984, 2011

System Variables

Syntax Description and Example
OAT Account Information

OAvV Atomic Vector

OCT«X Comparison Tolerance
OEM Event Message

OET Event Type
OFC«X Format Control

OIO«X [ndex Origin

oLC Line Counter

OLX«X Latent Expression

ONLT Nationa Language Tranglation
OPP«X Printing Precision

OPR«X Prompt Replacement

OPW«X Printing Width

ORL«X Random Link

OSVE«X Shared Variable Event
X«OSVE

oTc Termina Control
aTs Time Stamp

O0TZ«X TimeZone

OuL User Load

OWA Workspace Available

X«O Evaluated | nput/Output
OeX

O«X Character |nput/Output
X«

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

165

Account I nformation
OAT

The meanings of the OAT items are:

[1] Account number (also shared variable processor ID)
[2] Computetime

[3] Connect time

[4] Keyingtime

Times are in milliseconds.

OAI
1001 70870 30097000 30026130

APL2 Language Summary SX26-3851-01 166
© Copyright IBM Corporation 1984, 2011

Atomic Vector

OAV

The 256 possible single-byte characters, sorted in sequence.

16 16pOAV
PSS () <+, -/
0123456789 :;<=>?
@ABCDEFGHIJKLMNO
PQRSTUVWXYZ [\] A_
“abcdefghijklmno
pgrstuvwxyz{|}~0
CuédaaacééeiiiAA
00B8660GUTOUSGE LRT
éiéﬁﬁNéQaJﬂ%ji$i
it ®AV > «
e
1eVINBFHO .
aBcopapr¥PeoviRen
Frzs#ExpoovAY

The character set represented by OAV is system-dependent. On workstation systems, 0AV contains the APL2

ASCII characters, as defined by IBM code page 910. On mainframe systems, OAV contains the APL2 EBCDIC

characters, as defined by IBM code page 293.

Note that the first 32 positions of the ASCII character set contain control characters, so the first two lines of the
above display are shown here as blanks. Use of the characters in those positions may cause side effects such as

unexpected line breaks.

In addition to being different across systems, quite a number of the charactersin the APL2 code pages are
different from those defined by various national language code pages. For system-independent mapping of
characters, or to use characters not in DAV, see the DUCS system function, which uses Unicode code points.

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

167

Comparison Tolerance
OCT«X

A value used by some primitive functions to determine whether two numbers can be considered equal; the
defaultis1E™13.

2=2.00000000000001
OCT«0

2=2.00000000000001
0

Note: No number iswithin ocT of 0.

APL2 Language Summary SX26-3851-01 168
© Copyright IBM Corporation 1984, 2011

Event M essage
OEM

Text of the error message associated with the first (i.e. current) line of the state indicator.

OEM

pOEM
30

2+'A"
DOMAIN ERROR

2 + 1 A 1

AYA

OEM
DOMAIN ERROR

2 + 1 A 1

AYAY

pOEM
312

-0

POEM
30
APL2 Language Summary SX26-3851-01 169

© Copyright IBM Corporation 1984, 2011

Event Type

OET

A 2-integer code that indicates the type of error associated with the first line of the state indicator. Event type
codesfall into severa maor classes. The codes and their meanings are summarized by each mgjor classin the

following lists.

Note: OET isalso set by the OES system function. In this case its values may be application defined.

Defaults:

No error
01 Unclassified event

Resource Errors:

11 INTERRUPT

12 SYSTEM ERROR

13 WS FULL

14 SYSTEM LIMIT - symbol table

15 SYSTEM LIMIT - interface unavailable
16 SYSTEM LIMIT - interface quota

17 SYSTEM LIMIT - interface capacity

18 SYSTEM LIMIT - array rank

19 SYSTEM LIMIT - array Size

1 10 sYSTEM LIMIT - array or interna function depth
1 11 sYSTEM LIMIT - prompt length

1 12 gYSTEM LIMIT - value unrepresentable
1 13 sSYSTEM LIMIT -implementation restriction
Syntax Error:

21 Required operand or right argument omitted
2 2 [11-formed line

23 Name class

2 4 Invalid operation in context

2 5 Compatibility setting prohibits this syntax
ValueError:

31 Name with no value

3 2 Function with no result

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

170

Implicit Argument Errors:

OPP ERROR
OIO ERROR
OCT ERROR
OFC ERROR
ORL ERROR
OPR ERROR

[A L)
N oW N

Explicit Argument Errors:

51 VALENCE ERROR
5 2 RANK ERROR
53 LENGTH ERROR
5 4 DOMAIN ERROR
55 INDEX ERROR
5 6 AXIS ERROR

) CLEAR
CLEAR WS

OET
00

2+IAI
DOMAIN ERROR

2+IAI

AA

OET
5 4

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

171

Format Control
OFC«X

Characters used for the Format function (1.3 X). See Format by Example and Format by Specification. The
meanings of the OFC items are:

Decimal character
Thousands indicator
Fill for blanks

Fill for overflow
Print-as-blank

1
2
3
4
5
6] Negative indicator

(1]
(2]
(3]
(4]
(5]
(6]

Starting with adefault OFC:

e

Lox0_7

' $888,888.00'%1234.5
$x+1,234.50

Now let's use the European convention for comma and period, and change the fill character.

OFC«', .=0_""
' $888,888.00'%1234.5
$==1.234,50

Finally, here is something we can do about overflows:

' 5550'%2 1pl123 45678
DOMAIN ERROR
' 5550'%2 1pl123 45678
A A
OFCe', .=x_""
' 5550'%2 1pl123 45678
123

* % Kk %

APL2 Language Summary SX26-3851-01 172
© Copyright IBM Corporation 1984, 2011

Index Origin
OIO0«X

Index of the first item of a nonempty vector.

OIO A The default
1

'"ABCD' [0]
INDEX ERROR

"ABCD"' [0]

A

"ABCD' [2]
B

O0I0«0

"ABCD' [2]
C

OI0«2

'"ABCD' [2]
OIO ERROR

"ABCD' [2]

A

Only 0 or 1 arevalid values.

APL2 Language Summary SX26-3851-01 173
© Copyright IBM Corporation 1984, 2011

Line Counter

OLC

Line numbers of defined functions or operators that are in execution or halted; the most recently activated line

number isfirst.

)SI
LOG[6]
CMD [7]
CMVC_VIEW [4]
DIALOG1 [9]
CANSWER [21]
*
AP124[9]
DIALOG1 [33]
CANSWER [21]
*

oLC
6 7 4 9 21 9 33 21

Note that immediate execution levels, marked with = inthe) ST list above, are not included in the OLC vector.

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

174

L atent Expression

OLX«X

OLX isan APL2 statement to be executed automatically by the Execute function (¢) when the workspace is
loaded. The defaultis ' ', which in effect means to do nothing, and prompt for input.

APL2 Language Summary SX26-3851-01 175
© Copyright IBM Corporation 1984, 2011

National Language Trandation
ONLT
National language in which system messages are displayed and system commands can be entered.

Note: ONLT is not fully implemented on the workstation APL 2 systems. The variable cannot be set to effect,
and always reports the name of the file currently in use for messages. The - nl t invocation option can be used
to specify the name of of the messagefile.

APL2 Language Summary SX26-3851-01 176
© Copyright IBM Corporation 1984, 2011

Printing Precision
O0PP«X

The number of significant digits displayed for numbers.

OPP A The default
10

ol A Value of pi
3.141592654

OPP«4

ol
3.142

Note that values are automatically rounded to the precision.

OPP«15

ol
3.14159265358979

OPP«20

ol
3.141592653589793

The maximum is supported value is 16; any larger values are treated as if that had been specified.

APL2 Language Summary SX26-3851-01 177
© Copyright IBM Corporation 1984, 2011

Prompt Replacement

OPR«X

A character that replaces the prompt string during character () input.

VZ«NAME
[1] O«'Enter your name:
[2] Z«Ov
OPR A Default is blank
NAME
Enter your name: Bob
Bob
OPR« " x!
NAME

Enter your name: Bob
* Kk k ok k ok k k Kk kX k x x *x x x BOD
OPR« "'
NAME
Enter your name: Bob
Enter your name: Bob

Note that in the last case OPR was set to an empty vector, indicating no replacement, rather than the default

single blank.

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

178

Printing Width
OPWeX

The maximum number of characters per line of output.

OPW A The default
79
79p'123456789-"
123456789-123456789-123456789-123456789-123456789-123456789-123456789-123456789
OPW«30 A The minimum
79p'123456789-"
123456789-123456789-123456789-
123456789-123456789-1234
56789-123456789-12345678
9

APL2 Language Summary SX26-3851-01 179
© Copyright IBM Corporation 1984, 2011

Random Link
ORL«X

Base number for computing random numbers.

ORL A Initial CLEAR WS value

16807
?6 A Roll a die
1
?6
5
ORL
1622650073
ORL«16807 A Restore default
26 6 A Roll 2 dice
15

Valid values are positive integer scalarslessthan ~1+2+31.

APL2 Language Summary SX26-3851-01 180
© Copyright IBM Corporation 1984, 2011

Shared Variable Event

OSVE«X
X«OSVE

On assignment: Specifies the amount of time in seconds to be used in await for a shared variable event and
starts the timer.

On use: Suspends execution until the specified number of seconds has elapsed or a shared variable event occurs.
When an event occurs, returns the time remaining in the timer. Will return immediately if an unhandled event
has aready occurred. Completion of reference clears any record of events to that point.

VSERVE [O]

Z«Name SERVE Value

A Assigng "Value" to "Name",

A then waits up to 30 seconds

an for any partner request.

A Returns length of time waited.
A

OSVE«0 A Reset previous signals
Z«OSVE A Finishes immediately
$Name, '«Value'
OSVE«30 A Maximum wait

] Z«30-0SVE

RPOWooJoauIdWNDREFLO
[J A i R e

APL2 Language Summary SX26-3851-01 181
© Copyright IBM Corporation 1984, 2011

Terminal Control
aTc

Terminal control characters. Theitems of OTC are:

[1] Backspace
[2] New line (or Carriage Return)
[3] Linefeed

Notethat ~2t0TcC isthe norma PC convention for end of record in files.

APL2 Language Summary SX26-3851-01 182
© Copyright IBM Corporation 1984, 2011

Time Stamp
oTs

Current system date and time. The items of OTS are:

[1] Year

[2] Month

[3] Day

[4] Hour

[5] Minute
[6] Second
[7]1 Millisecond

All values are integers.

APL2 Language Summary SX26-3851-01 183
© Copyright IBM Corporation 1984, 2011

Time Zone
OTZ«X

Offset in hours between local time and Greenwich Mean Time; The values are negative for locations west of
GMT.

OTZz
7

3 11 ONA 'GETENV'
1

GETENV <'TZ'

pst8pdt
A simpleform of TZ is being used here, that assumes normal US rules for the beginning and end of daylight
savingstime. Theresult of 0Tz was ~ 7 rather than ~ 8 because daylight savings time was in effect.

APL2 Language Summary SX26-3851-01
© Copyright IBM Corporation 1984, 2011

184

User Load
OuL

Number of users.

OuL
1
On PC systems, you always get 1, since they are single user systems. On Unix and mainframe systems, you will

get the number of userslogged on to the operating system.

APL2 Language Summary SX26-3851-01 185
© Copyright IBM Corporation 1984, 2011

Workspace Available
OWA

Number of available (unused) bytesin the active workspace.

CLEAR WS
OWA
2090096
2x1024+2
2097152

Note that the default for the -ws invocation option is 4M, which really means 4 x1 024 = 2. The amount actually
available is aways somewhat |ess than that, because of internal tables.

APL2 Language Summary SX26-3851-01 186
© Copyright IBM Corporation 1984, 2011

Evaluated | nput/Output

X<«
OeX

On assignment, displays the value and starts a new line in the session input/output stream.

On reference, displays 0 : to prompt for input, evaluates the expression entered in response, and uses that result
asthevaue of O.

VZ<«QUAD
[1] O«'First message'
[2] O«'Second message'
[3] 7«0V

QUAD

First message
Second message
O:

242
4

APL2 Language Summary SX26-3851-01 187
© Copyright IBM Corporation 1984, 2011

Character | nput/Output

MeX
X<

On assignment, displays the value and |eaves the cursor on the same line. (Note that 0T C characters may be
imbedded in the value. They will be honored if so, and can cause a single vector to be displayed on multiple
lines, or the cursor to be positioned somewhere other than the last character.)

On reference, obtains raw input from the keyboard (or AP 101 stack). Frequently such input follows a m output
request. In this case the output prompt data on the same line occupies space in the result of 0, but has been
converted as specified by OPR.

VZ<«QQUAD
[1] fNe'First °
[2] [«'Second '
[3] Z<«0OV

QQUAD
First Second 2+2

2+2

APL2 Language Summary SX26-3851-01 188

© Copyright IBM Corporation 1984, 2011

System Commands

System command keywords can be entered in any combination of uppercase and lowercase |etters.

Braces { },brackets [1, €lipses. . ., andthe | symbol are used here as metasyntax, indicating lists of
options, optional data, repeated fields, and alternatives respectively. They should never appear in the system
commands you actually enter.

The following symbols are used, in lower case, throughout the list of system commands. They should be
replaced by usage-specific values as indicated:

Symbol Definition
ext file extension
file file name
libno A positive integer, 1 to 32767, associated with an APLnnnnn library definition.
name Any valid APL name
Any valid operating system directory specification, such as C. \ My\ FOLDER or
path /ul/ userid/fol der.
wsname 1 to 64 aphanumeric characters, the first alphabetic.

The following list shows the syntax of each system command, and provides a brief comment on its usage. Full
details are provided in APL2 Programming: Language Reference.

) CHECK WS [OFF|ON|ALL|SLOP]
) CHECK TRACE {OFF|SERVICE|STMT |EXEC|SYNT |FREE |NS}
) CHECK DUMP

Obtain diagnostic information.

The) CHECK WS commands control internal validation of the workspace.

The) CHECK TRACE commands control tracing of internal interpreter events.

) CHECK DUMP causes an immediate SY STEM ERROR.

Note: The) CHECK commands can create large amounts of output and significantly degrade

performance. They are best used under the direction of your IBM support personnel.
) CLEAR

Clear the active workspace.

) CONTINUE
Save the active workspace as CONTINUE and end the APL 2 session.
) COPY {' [path\]lfile.ext' | [libno]l wsname} [name]| (name) ...]

Copy all or specified objects into the active workspace from a saved workspace.
If name isenclosed in parentheses, it must be a simple character scalar, vector, or matrix. Itsrows are
interpreted as APL names, and these objects are copied instead of the array itself.
)DROP {' [path\]lfile.ext' | [libno] wsname}
Delete aworkspace file or transfer file.
JEDITOR [1 | editorname [-u]l]

Query the active editor, or select an editor. Editor 1 isthe line editor.
) ERASE name| (name) [name| (name) ...]

APL2 Language Summary SX26-3851-01 189
© Copyright IBM Corporation 1984, 2011

Delete objects from the active workspace.
If name isenclosed in parentheses, it must be a simple character scalar, vector, or matrix. Itsrows are
interpreted as APL names, and these objects are erased instead of the array itself.
)FNS [[name | name-name] ...]
List names of defined functionsin the active workspace.
) HOST [command]
Query the name of the operating system, or issue an operating system command from the APL 2 session.
)IN {'[path\]lfile.ext' | [libno] wsname} [name ...]
Read objects from atransfer file into the active workspace.
JLIB ['path' | libno] [[name | name-name] ...]
List workspace namesin alibrary or directory.
)LOAD {' [path\]lfile.ext' | [libno] wsname}
Bring aworkspace from alibrary into the active workspace.
JNMS [[name | name-name] ...]
List namesin the active workspace. See also) FNS,) OPS, and) VARS.
) OFF
End the APL 2 session.
)OPS [[name | name-name] ...]
List names of defined operators in the active workspace.

)OUT {' [path\]lfile.ext' | [libno] wsname} [name ...]
Write objects to atransfer file. (Replaces any existing fileid.)
) PCOPY {' [path\]file.ext' | [libno] wsname} [name]| (name) ...]

Copy objects into the active workspace without replacing existing objects.
If name isenclosed in parentheses, it must be a simple character scalar, vector, or matrix. Itsrows are
interpreted as APL names, and these objects are copied instead of the array itself.
)PIN {'[path\]lfile.ext' | [libno] wsname} [name ...]
Read objects from atransfer file into the active workspace without replacing existing objects.
) RESET [number]
Clear al or aportion of the state indicator - sameas) SIC.
) SAVE ['[path\]file.ext' | [libno] wsname]
Save the active workspace.
)SI [number]
Display al or part of the state indicator.
)SIC [number]
Clear al or the specified number of levels of the state indicator.
) SINL [number]
Display the state indicator and the local variables at each level.
) SIS [number]
Display the state indicator and the current statement at each level.
) SYMBOLS [number]
Query or modify the symbol table size.

) VARS [[name | name-name] ...]
List the names of user variablesin the active workspace.
JWSID ['[path\]lfile.ext' | [libno] wsname]

Query or assign the workspace identifier.

APL2 Language Summary SX26-3851-01 190
© Copyright IBM Corporation 1984, 2011

Defined Functions and Operators

Many problems can be solved by merely entering APL 2 expressions in immediate execution mode. However,
when a series of expressions needs to be entered repeatedly in different situations, when a general solution can
be applied to several similar problems, or when expressions should be executed based on certain conditions, you
may prefer to define an operation (a function or operator) to hold the necessary code.

A defined function or operator isfixed or established in the active workspace in one of the following ways:

Created or modified using an editor (see the APL2 User's Guide)
Created or replaced using OFX or OTF

Copied, using) COPY or) PCOPY

Retrieved from atransfer fileusing) INor) PIN

(System Commands shows the syntax of the four commands in the last two points above.)

When a defined function or operator is invoked, the statementsin it are executed. The syntax and order of
evaluation when invoking defined functions and operators is the same as for primitive functions and operators.

The definition of afunction or operator begins with aheader line followed by one or more APL statement lines,
each of which isin the same format used when entering an APL expression directly. Here is an example of a
defined function which rounds a number to a specified number of decimal places. If no number of placesis
given, 2 isassumed.

Z«Y ROUND X

A Round value X to Y decimal places
A Default Y to 2 if not specified
-+ (0#0ONC 'Y') /RN

Y2 A Default for Y
RN:Z« (10x-Y) x| .5+Xx10+Y

Let'stry it out:

4 ROUND o1 nm Pi to 4 digits
3.1416

ROUND o1
3.14

Although we wrote this thinking about rounding one number, it also works for an array of any shape, rank, or
depth,

ROUND 3 7.286

3 7.29
ROUND 2 2p (14)=+7
0.14 0.29
0.43 0.57
ROUND (1 (2 3 (4 5)))=7

0.14 0.29 0.43 0.57 0.71
Details of defined functions and operators are covered in the following sections:

APL2 Language Summary SX26-3851-01 191
© Copyright IBM Corporation 1984, 2011

Operation Header

Branching
Execution

Debug Controls

APL2 Language Summary SX26-3851-01 192
© Copyright IBM Corporation 1984, 2011

Operation Header

The operation header isthe first line of a defined operation. The header establishes the syntax for the defined
operation, including:

Name of the operation

Valence of the operation, and in the case of defined operators, also the valence of the derived function
Parameter names

Nature of the result - explicit or not explicit

Local names

These topics are covered in the following sections:

Nature of the result
Defined Function Vaence
Defined Operator Vaence
Local Names

The name of the operation and its parameter names are discussed with function and operator valences.
Nature of theresult

If the operation has (or may have) an explicit result, the first thing shown on the header line is a name by which
the result will be referred to within the operation, followed by a specification arrow. Although this follows the
form of an APL specification statement, no result value is assigned by the header itself. A result is returned only
if some statement within the operation is evaluated and causes a value to be assigned to the result. Note that the
name of the result islocal to the operation. (See Local Names.)

Defined Function Valence

A defined function can have two, one, or no arguments. The name of the function is shown with parameters on
either side where arguments are permitted. Thus (ignoring the optional result) there are three valid forms:

la name ra
name ra
name

The 1a and ra fieldsindicate whether aleft argument or right argument respectively can be provided to the
function. The values shown on the header line are parameter names which are local to the operation. (See Local
Names.) These are ordinary array names within the function, and their values can be modified if desired.
Changes to the values do not affect the data values used by the caller when invoking the function.

If two arguments are shown in adefined function, the function is ambi-valent, which means that it can be
invoked with either one or two arguments. The function definition should check for the possibility that it was
called with only aright argument. If not, aVALUE ERROR will occur when the function tries to use the missing
argument.

Defined Operator Valence

APL2 Language Summary SX26-3851-01 193
© Copyright IBM Corporation 1984, 2011

A defined operator can have two or one operands, and its derived function can have two or one arguments.
These valences are shown by listing operand parametersinside a pair of parentheses, with argument parameters
outside the parentheses.

Since an operator must always have at least one operand, there will always be either two or three names inside
the parentheses. Since the left operand is required, the first name will always be a parameter (operand) name,
and the second will always be the name of the operator.

The derived function must always take at least one argument, so there will always be a parameter to the right of
the closing parenthesis. Here are the valid formats (excluding the optional result):

(lo mop) ra

la (lo mop) ra
(lo dop ro) ra

la (lo dop ro) ra

The 1a and ra fields are the arguments to the derived function, and follow the same rules as was described for
those fields under Defined Function Valence.

The 1o and ro fields contain operand parameter names which are local to the operation. (See Local Names.)
These names can be (in fact must be) used exactly as the operands used in invoking the operator would be used.
If afunction is passed as an operand, then the parameter must be used as a function of the proper valence. It
cannot be inspected asiif it were avariable. Note that ONC can be used within the operator definition to
determine whether a function or array was passed. Thisis permitted even if a constant or a primitive or derived
function was passed, cases that ONC treats as invalid when specified directly.

OCR 'TEST'
Z« (LEFT TEST RIGHT)X
Z« (ONC 'LEFT') (ONC 'RIGHT')

+TESTx3
33

4 TESTx3
2 3

+/TEST 7 3
32

aNCc '+
1

ONC '+/!
1

aNc 7!

If an operand is an array, its value can be modified by assignment within the defined operator. If it isafunction,
its definition can be replaced using OFX or OTF. Either way, changes to the operand within the operator do not
affect the function or array used by the caller when invoking the operator.

L ocal Names

The argument, operand, and result parameters have value only within the context of the defined operation.
When execution of the operation is completed, the parameter names are no longer associated with the values
they had during execution. Thus, they are called local nhames because their values are local to (exist only during
execution of) the defined operation.

APL2 Language Summary SX26-3851-01 194
© Copyright IBM Corporation 1984, 2011

In addition to parameter names, you can declare other constructed names to be local to the operation. These can
be names that hold intermediate values, set system variables especially for the operation, or are otherwise not
needed after the operation has been executed.

Such names are identified by listing them on the header line after the valence and parameter definition,
separated from it and from each other by semicolons. Note that system variables can also be listed as local
names. This allows them to be set within the operation without affecting the value they have outside of it.

Statement labels (used for branch targets) are also local names. They do not need to be listed in the header.

Loca names are not completely private to the operation which defines them aslocal. Localizing a name really
only separates it temporarily from any value it had before the operation was invoked. If one defined function
localizes aname and assigns it a new value, then calls a second function, the second function will see the local
value.

OCR'SAY_V'
SAY_ V
'V contains' V
Vel
SAY_ V
V contains 3
OCR'TEST'
TEST;V
Ve2.9
SAY_V
TEST
V contains 2.9
SAY_V
V contains 3

APL2 Language Summary SX26-3851-01 195
© Copyright IBM Corporation 1984, 2011

Branching and L abels

A branch expression explicitly determines the next line of a defined function or operator to be executed. It
consists of a branch arrow (») and an expression:

s>expression

The expression must evaluate to a number, or to a vector of zero or more numbers. The numbersrefer to linesin
your program (function or operator). But you should never "hard code” references to a specific line, sinceit is
very likely that at some later time you or someone else may modify the program in away that causes lines to be
added or removed. Instead you should always use labels on the lines you need to refer to, and then use those
labels asif they were numeric variablesin your branch expressions. Labels are local names, even though they
are not listed in the program header. Here is an example of a function which uses a branch label:

Z«Y ROUND X

A Round value X to Y decimal places
A Default Y to 2 if not specified
-+ (0#0ONC 'Y') /RN

Y2 a Default for Y
RN:Z« (10*-Y) x| .5+Xx10*Y

Right now, RN evaluates as 5 (since the header counts as line 0), but if you added or deleted a comment earlier
in the function that would change.

Note: The behavior of the statement using RN is explained in Branching Example.

The possible branch actions depend on the value of the branch expression:

If the Branch Expressioniis... Then the Next Action Is...

Line number n within the program Line n of the program is evaluated.

0 or any other line number The program ends, and evaluation of the expression that

not within the program invoked it is resumed.

Empty vector Next sequential expression (either the next expression to the

right of adiamond in the same line, or else the next line, if
thereis one, of the program).

Vector of numbers The first number determines the branch action.

For further details, see:

Conditional Branch

Branch to Escape

Branch in a Line with Diamonds
Looping Is Rarely Needed

Branching is also used in immediate execution to resume execution of a suspended immediate execution
statement, defined function, or defined operator. This use of branching is discussed in Resume or Restart
Execution.

APL2 Language Summary SX26-3851-01 196
© Copyright IBM Corporation 1984, 2011

Explanation of Branching Example

Z«Y ROUND X

A Round value X to Y decimal places
A Default Y to 2 if not specified

> (0#0ONC 'Y') /RN

Y2 A Default for Y
RN:Z« (10*-Y) x| .5+Xx10*Y

This function contains the branch statement:

- (0=0ONC 'Y') /RN
which APL2 evaluates as follows:

e ONC 'Y' will return 2 if avalue has been associated with parameter Y; or 0 if no value has been
associated with it. Thisis atest for whether the optional |eft argument was provided.

e 0= will convert thisto 0 if thereisaleft argument, or 1 if thereisnone.

e 1/RN will return 1 copy of the value 5, and the branch will be taken; while 0 /RN will return an empty
result, so evaluation will continue with the next sequential statement.

See Conditional Branch for more general discussion and guidance.

Conditional Branch

When a branch expression takes different values depending on relationships or conditions, the branch iscalled a
conditional branch. It is constructed by using - with relational and selection operations.

The statement -» (0#0NC 'Y') /RN isaconditional branch statement because its value may be RN or the
empty vector, depending on the value of the relationship in parentheses.

Conditions for branch expressions evaluateto 0 or 1. Therelational functions(< < = = > =)areoften
used to express simple conditions.

Below are three frequently used conditional branch expressions. In each case, the condition evaluatesto 0 or 1.

Form Description
»(condition) /0 Exit from the function or operator if the condition is true.

Continue with the next sequential expression if the condition isfalse.
»(condition...)/label... Begin evaluation at the labeled lineif the condition is true.

Continue with the next sequential expression if the condition isfalse.

Any number of conditional expressions can be used as long as there are the same
number of labels. If more than one condition istrue, the first true one applies.

»labelxcondition Begin evaluation at the labeled line if the condition is true.

APL2 Language Summary SX26-3851-01 197
© Copyright IBM Corporation 1984, 2011

Form Description
Exit from the function or operator if the condition is false.

Note: Compression isthe most commonly used operation in constructing branch expressions. It works equally
well for aone- or several-way branch. It is not origin dependent. Reshape or Take could also be used, but are
seen much less frequently.

Branch to Escape

A branch arrow with no expression on the right causes the defined operation to immediately terminate. The
function or operator ends without providing aresult, as do al functions or operatorsin its calling chain. The
expression which invoked the first function or operator in the chain is also aborted, and the system prompts for
user input. See OEC for an exception.

Note that, unlike the) s1C command, this does not clear all levels of the execution stack. If aprogramis
suspended, and a new statement is entered which invokes a function, leading ultimately to a - without an
expression, the system state will return to the point at which the statement was entered, and the originally
suspended program will remain on the execution stack.

Branch in aLinewith Diamonds

When a branch expression is one of several expressions separated by diamonds, evaluation continues with the
expression to the right of the branch expression if the branch is not taken. This can be useful for if constructs:

+(~condition) /1+0LC ¢ expression

or until constructs:

expression ¢ - (~condition) /0OLC

L ooping I s Rarely Needed

Many programmers who come to APL 2 after using other languages structure their function and operator
definitions with the equivalent of DO loops, working with data an item at atime. This approach should be
avoided:

e Looping forces APL2 to interpret each expression in the loop each timeit is evaluated. This makes your
APL programs run much more slowly than they should.

e Looping forces you to maintain control variables, and provide logic that increments them and checks for
loop termination. APL already has all that logic built in, and it is almost certainly more efficient and
more trouble free than any you could provide.

APL2's array processing and operators help you avoid most looping.

o Scalar functions are entirely data-driven. They allow computations to be performed where the data itself
controls the limits of the operation. Y ou can do arithmetic on entire collections of numbersin asingle

APL2 Language Summary SX26-3851-01 198
© Copyright IBM Corporation 1984, 2011

operation. Because so many of APL2's functions are independent of data structure, it is also true in many
cases that defined functions, even those written to handle one dataitem at atime, will automatically
extend to handle arbitrary arrays.

o Structural functions allow you to rearrange arrays in awide variety of ways. Y ou can easily reshape an
array to an equivalent one with a different number of rows or axes, so that you can apply operations to
particular groupings of data. Y ou can reverse items, transpose axes, rotate individual rows or columns
by varying amounts, and much more.

e The Axis operator, described as awith axis variant of the primitive functions and operators to which it
applies, allows you to apply operations along particular axes.

e The Reduce and Scan operators allow you to apply arbitrary functions between dataitemsin the array.

e The Boolean arrays produced by comparisons, together with the complete set of Boolean functions and
the Replicate and Expand operators, allow you to focus on the subset of the data which satisfies any
arbitrarily complex set of conditions.

e The Each operator (see Each, Deriving Monadic and Each, Deriving Dyadic) is, in apractical sense, the
equivalent of aDO loop, except that the loop limits are implicit in the data

APL2 Language Summary SX26-3851-01 199
© Copyright IBM Corporation 1984, 2011

Execution

When the name of a defined operation appears in an expression, its context is evaluated following the same
evaluation rules that apply to primitive operations. The execution of the operation is controlled by its definition
and its execution properties.

Each statement in the definition is executed in sequence or as directed by branching statements. If the function
has been defined with an explicit result, the last specification of the result parameter name is returned as the
result of executing the operation. This result isthen available for further evaluation of the expression in which
the defined operation appears.

Calling Sequence
Suspension of Execution
State Indicator
Execution Properties

Calling Sequence

If astatement in a defined operation contains the name of a defined function or operator, that operation is called
and flow of control passesto it. While the called operation is executing, the calling operation is said to be
pendent, waiting to complete execution. If the called function or operator, in turn, calls another, it is pendent
along with the original calling operation.

As each operation (or immediate execution expression) isinvoked, it is placed in the execution stack. When
execution of an operation or expression completes, it is removed from the execution stack.

The number of levels of called functions or operators is not limited except by the space available within the
workspace. Pendent operations take up space in the execution stack; a sequence of called and calling operations
may create aws FULL condition if there isalarge number of them or if any of them requires a sizable work
areafor calculation.

A function that callsitself isrecursive. Local copies of the function behave as separate functionsin the
execution stack. Names |ocalized by the function may have different values for each level on the stack.

Suspension of Execution

A defined operation becomes pendent if it calls another one. Thisis not the same thing as being suspended.
Execution of a defined operation may be suspended in either of two ways:

e By anattention
e By aninterrupt or an error

Using the Signals menu of the APL 2 session manager, you can suspend execution of a defined operation (or an
expression) by signalling:

Attention
to suspend execution at the end of the current statement being executed. (Unless an operation with the
ignore attention property is active or pendent.)

Interrupt

APL2 Language Summary SX26-3851-01 200
© Copyright IBM Corporation 1984, 2011

to cause the system to behave as though an error were encountered.

If an error is encountered in a statement during execution of the defined operation, or if an interrupt is signaled,
execution of the operation is suspended immediately and a message and the suspended operation are displayed.
For example:

OCR 'F'!
Z«F X
Z«10+X
F O
DOMAIN ERROR
F[1] 2Z«10+X
A A

Aswith other errors, DEM and OET are set, and OEA or OEC can be used to recover from the error.
State Indicator
The state indicator isaterm applied to a number of user views of the content of the execution stack. The views

are presented in the calling sequence of defined operations, beginning with the most recently invoked, and may
include:

e The names of the defined functions and operators

e The names which were localized when each operation was invoked

e The currently uncompleted statement for each operation level

e Theline numbers within the operation definition for those statements
e Current scan and evaluation positions within those statements

Statements entered as input, rather than taken from defined operations, show an asterisk rather than operation
name and line number.

If Editor 1isin use, operations that are in definition mode may also be shown.

The OLC system function provides limited information about the state indicator. More complete information is
available using the system commands) ST,) SIS and) SINL:

OCR 'F'!
Z«F X
Z«10+X

F O
DOMAIN ERROR
F[1l] Z«10+X

)SI
F[1]
) SIS
F[1] Z«10=+X
« F O
) SINL
F[1] Z X
APL2 Language Summary SX26-3851-01 201

© Copyright IBM Corporation 1984, 2011

While an operation is suspended, local names are available for inspection. However, any global values
associated with those names are hidden or shadowed.

Statements remain in the state indicator until they have been cleared. If aworkspace that hasitemsin the state
indicator is saved, the state indicator is also saved. There are several ways, listed below, to clear the state
indicator. The one you use depends on what you are trying to accomplish and the situation that caused
statements to be put in the state indicator.

Escape
)SIC

Resume or Restart Execution
Caution on Reinvoking Suspended Operations

No matter what technique is used to modify the state indicator, 0EM and OET are always set to values
appropriate to the statement at the top of the state indicator.

Escape

Escape (-), a branch arrow with no expression to its right, abandons further attempts to execute the suspended
function and the calling sequence that led to its being invoked. Escape clears the state indicator down to and
including the next . For example:

Y ou can then correct the error and restart the function.

VF[1] 'Ze«''Cannot divide by 0''' OEA 'Z«10+X'V
F O
Cannot divide by 0

Because only one calling sequence was in the state indicator, asingle » cleared it. Thisis not the casein the
following example:

)SI
D[1]
B[2]

)SI
B[2]

)SI
)SIC

The system command) SIC clearsthe state indicator entirely.) SIC n clearsn lines from the display of the
state indicator.

APL2 Language Summary SX26-3851-01 202
© Copyright IBM Corporation 1984, 2011

DI[1]
B12]
')sIC 1
B12]
))SIC
) SI

Note:) RESET isasynonymfor) SIC.
Resume or Restart Execution

Y ou may be able to modify variables or defined operations in the workspace and resume execution from the
point at which it was halted by entering -1 0.

A<l
N+2 %A

VALUE ERROR
N+2xA
FAWAN
A«Q
N«3
»>10

5

Note that the new value of A was not used. APL 2 had already computed 2 x2A and was waiting to do the
addition. The »1 0 resumed at that point, in mid statement.

Alternatively, for an error within a defined operation, you can correct the line in error by editing the operation,
and then enter »0LC to direct the system to start over for the current line. Of course thisis only one possibility;
you could use any valid form of the branch expression.

OCR 'F!'
7Z«F X
Z«10+X

F O
DOMAIN ERROR
F[1] 2Z«10+X

AN AN

VF[1l] Z«'|/10' OEA '10+X'V
SI WARNING

>1
1.797693135E308

The expression | /10 produces the largest representable number.

Themessage ST WARNING isdisplayed when editing affects aline of an operation appearing in the state
indicator (if you edit the line or delete or insert lines before it).

Do Not Resume Execution by Invoking the Operation Again

If you correct the error in the operation and then invoke the operation again, the state indicator is not cleared.
After the operation has executed, the earlier uncorrected version remainsin the state indicator.

APL2 Language Summary SX26-3851-01 203
© Copyright IBM Corporation 1984, 2011

OCR 'F'
VZ«F X
[1]1Z«10+XV

F O
DOMAIN ERROR
F[1] Z«10+X

A A

VF[1] Z«'|/10' OEA '10+X'V

SI WARNING

F O

1.797693135E308
) SIS

F[1] Z«'|/10' OEA '10=+X'
ANAN

* F O
A

If you decide not to resume the current operation, use -» or) SIC to clear the state indicator before invoking the
operation a second time.

Note: This also appliesto expressions entered directly from the keyboard.
Execution Properties

A defined operation has four execution properties, which can be set independently with dyadic O0FX, or all set
on at the same time using ¥ to open or close function definition mode. The following describes the execution
effect of setting each property.

1000 The defined function or operator may not be displayed or edited using the APL 2 editors; may
not be extracted using OCR (Character Representation) or OTF (Transfer Form); and may not be
traced.

0100 The defined function or operator is not suspended by an error or an interrupt. Instead the
defined operation is terminated and the signal is raised in the environment from which it was
called. See Suspension of Execution for additional information.

0010 The defined function or operator ignores attentions and stop control settings during its
execution.

0001 The defined function or operator converts any error other than aresource error into a DOMAIN
ERROR. (INTERRUPT, SYSTEM ERROR,WS FULL,and SYSTEM LIMIT areclassified as
resource errors.)

The execution properties of acalled function or operator during an execution sequence are determined by "or-
ing" its properties with those of the calling function or operator. For example, suppose function F has the
nonsuspendable property (0 1 0 0) and function G has the error conversion property (0 0 0 1).If F calls
G, both the nonsuspendable property and the error conversion property areimposedon G (0 1 0 1). Because
execution properties are inherited by called functions and operators, if alocked function calls an unlocked
function, the unlocked function behaves as though it were locked.

The execution properties of a defined operation can be inspected by using OAT (Attributes). Execution
properties can be changed only by using OFX, and only if the operation can be displayed. Note that the
definition of OCR is such that, for displayable operations, the properties can be set as follows:

properties OFX OCR 'program'

APL2 Language Summary SX26-3851-01 204
© Copyright IBM Corporation 1984, 2011

program

The default function or operator definition provided by the APL 2 editors has none of these properties.

APL2 Language Summary SX26-3851-01 205
© Copyright IBM Corporation 1984, 2011

Debug Controls

APL2 includes two facilities for analyzing the behavior of defined functions and operators:

e Trace Control
o Stop Control

Trace Control
A traceis an automatic display of information generated by the execution of each selected line of a defined
function or operator. If atrace request isin effect for a statement, the following information is displayed
whenever the statement is executed:

« Function or operator name

e Linenumber in brackets

e Final array value (or branch) produced by that statement

Trace on aline containing multiple expressions separated by diamonds causes trace output for each expression
evaluated.

The trace control for a defined operation is designated by prefixing TA to its name. For example, atrace may be
setonlines 1, 3, and 6 of adefined operation RS by entering:

TARS«1 3 6

A trace may be set on all lines by entering:

TARS«1n
wheren is at least as great as the number of linesin the operation.

A traceisturned off by setting the trace control to 1 0.
Global names beginning with TA may not be used for any purpose other than trace control.

Trace controls can be both set and referenced. A reference to atrace control vector returns only valid line
numbers (in increasing order) upon which atrace has been set.

Trace settings are ignored if the "nondisplayable" execution property is set.
Stop Control

A defined operation can be made to stop during execution. If a stop request isin effect for a statement,
processing stops just before the statement is to be executed, and the following information is displayed:

e Operation name
e Line number in brackets

Execution may be resumed by entering a branch statement.

APL2 Language Summary SX26-3851-01 206
© Copyright IBM Corporation 1984, 2011

The stop control for adefined operation is designated by prefixing SA to its name. For example, a stop may be
setonlines 1, 3, and 6 of adefined operation RS by entering:

SARS«1 3 6

A stop may be set on al lines by entering:

SARS«1n
wheren isat least as great as the number of linesin the operation.

A stop isturned off by setting the stop control to 1 0.
Global names beginning with SA may not be used for any purpose other than stop control.

Stop controls may be both set and referenced. A reference to a stop control vector returns only valid line
numbers (in increasing order) upon which a stop has been set.

Stop control settings are ignored if the execution property "ignore weak attention™ is set.

APL2 Language Summary SX26-3851-01 207
© Copyright IBM Corporation 1984, 2011

Error Reportsand Error Codes

e Interrupts and Errorsin APL2 Expressions
o Interpreter Messages
o Interpreter Event Codes

APL2 Language Summary SX26-3851-01 208
© Copyright IBM Corporation 1984, 2011

Interruptsand Errorsin APL2 Expressions

Interrupts and errors in expressions typically result in three lines of output:
e A brief event description
e Theexpression that was interrupted or isin error
e Two carets pointing to tokens within the expression

Hereis an example of an incorrect APL expression being entered, and the output that results:

2+'X! Expression as entered
DOMAIN ERROR Event description
2+'X! Expression in error
AN Carets pointing to the expression

The |eft caret indicates how far APL2 interpreted the statement from right to left. The right caret indicates
where the error was detected or the interrupt occurred. In the above example, APL2 interpreted the entire
expression. The error was detected by the Divide primitive because its right argument was not numeric.

Sometimes only one caret is seen because the point where the error was detected and the point to which APL2
had interpreted the expression are the same.

The error message can be retrieved using OEM (event message). Further information on the category of error can
be obtained using OET (event type).

When an error or interrupt accurs while a defined function or defined operator is running, APL 2 displays an
error message similar to that shown above for statements entered by the user. The difference is that the name of
the operation and the line number precede the display of the statement in error.

Hereis an example of an interrupt signalled by the user, because the function seemed to be taking too long. The
reason for the problem was that the function was waiting for a value to be set in shared variable CTL.

GETLOCK 'DBASE' Function started
INTERRUPT Event description
GETLOCK[7] Z«CTL Statement where event occurred
A 2 pointers on top of each other
APL2 Language Summary SX26-3851-01 209

© Copyright IBM Corporation 1984, 2011

| nterpreter M essages

The following messages are listed al phabetically by event description. An information panel is available for
each of them. See Interrupts and Errorsin APL2 Expressions for a general discussion of interpreter message
format and content.

Oxx ERROR (implicit errors)
AXIS ERROR

CLEAR WS

DEFN ERROR

DOMAIN ERROR

IMPROPER LIBRARY REFERENCE
INCORRECT COMMAND

INDEX ERROR

INTERRUPT

LENGTH ERROR

LIBRARY I/0 ERROR

NOT COPIED

NOT ERASED

NOT FOUND

NOT SAVED, THIS WS IS wsid
NOT SAVED, LIBRARY FULL
RANK ERROR

SI WARNING

SYNTAX ERROR

SYSTEM ERROR

SYSTEM LIMIT

VALENCE ERROR

VALUE ERROR

WS FULL

WS INVALID

Implicit Errors

This section covers a group of messages of the form

Oxx ERROR

The first token in each message is the name of an APL 2 system variable. It may be any one of the following:

OCT ERROR OET «»> 4 3

A primitive function that uses OCT as an implicit argument was called when OCT had an inappropriate value or
no value. OCT isan implicit argument of monadic [and | ; andof dyadic< < = = > # = | € 1 ~ande.

oCcT must be asimplereal scalar lessthan 1. It cannot be negative, but it can be zero, which indicates that all

comparisons must be exact.

APL2 Language Summary SX26-3851-01 210
© Copyright IBM Corporation 1984, 2011

OFC ERROR OET «-»> 4 4

OFC had an inappropriate value or no value when dyadic Format (1.¥R) was called. Format by Example
(character left argument) depends on the first five items of OFC. Format by Specification (numeric left
argument) depends on the first, fourth, and sixth items of OFC.

OFC must be asimple character vector. Only itsfirst six characters are significant. If shorter than six, defaults
are used for the unspecified characters. The defaults and meanings of the six positions, in order, are:

[1] Character for decimal point

[2] , Character for thousands indicator

[3] * Fill for blanks with pattern code 8

[4] 0 Fill for DOMAIN ERROR overflows

[5] Pattern code character to be replaced by blank
[6] Indicator for a negative number

OIO ERROR OET <> 4 2

An attempt was made to execute a primitive function that uses 010 as an implicit argument when 010 had an
inappropriate value or no value. 010 isan implicit argument of bracket indexing; dyadic I > and &; and the
monadic and dyadic formsof y A 1 and 2.

The only acceptable valuesfor 010 are 0 and 1.

OPP ERROR OET «» 4 1

An attempt was made to use monadic Format (¥R) or to display an array when 0PP had an inappropriate value
or no value.

OPP must be a positive integer. Values larger than 16 aretreated asif 16 had been specified.

OPR ERROR OET «»> 4 7

An attempt was made to use the m system variable to create a character prompt immediately followed by a
request for character input. However, 0PR has no value or an inappropriate one.

OPR must be either an empty character vector or asingle character.

ORL ERROR OET «» 4 5

APL2 Language Summary SX26-3851-01 211
© Copyright IBM Corporation 1984, 2011

The Roll or Deal primitive (monadic or dyadic ?) was called when ORL had an inappropriate value or no value.

ORL must be a positive integer lessthan ~1+2+31.

AXISERROR

AXIS ERROR OET «» 5 6

Bracket notation is being used to the right of afunction or operator, and one of the following problems exists:

e Thefunction or operator is not defined with an axis. This would include any defined function or
operator. It also includes primitive operators except for / or \; and non-scalar primitive functions unless
awith Axisformis explicitly defined for them. (See Scalar Functions and the Alphabetic List of
Functions.)

e Theindicated axisisincompatible with the function or operator and the given arguments. This includes
cases where the axisis not avalid integer (except Catenate, which allows decimal values), is not an
element of 1 pparray, or produces derived function arguments which are not compatible.

e Theaxis specification includes semicolons. Semicolons can be used inside brackets only when the
notation is used for indexing an array. The token to the left of the bracket notation is currently afunction
or operator. It may be that it was intended to be be an array.

CLEAR WS

CLEAR WS

The current active workspace was replaced with a clear workspace. Thisis an informational message, not an
error.

DEFN ERROR

DEFN ERROR

The v or an editing command was misused:

A syntactically incorrect v or ¥ command was entered to begin edit mode.

Aninvalid character was used outside of a quoted string or comment.

The object cannot be edited. For example, a numeric variable or alocked function.
Aninvalid edit command was entered (inside brackets) while in function edit mode.

The closing v or ¥ was entered to establish an invalid object.

A v or ¥ was entered on an unnumbered line to close a definition.

An attempt was made to name an object with a name already in use in the active workspace.

DOMAIN ERROR

APL2 Language Summary SX26-3851-01 212
© Copyright IBM Corporation 1984, 2011

DOMAIN ERROR OET «> 5 4

Thiserror issignalled in any of the following cases:

The data type of an argument or operand is invalid for the primitive operation it is being given to. This
includes character data when only numeric datais allowed. It also includes unsupported types of
numeric values, such as decimal values when integers are required, values other than 0 or 1 for Boolean
operations, €etc.

The depth of an argument or operand isinvalid for the primitive operation it is being given to. The
Depth primitive (monadic =) can be used to check the depth, or the DI SPLAY function from the
workspace of the same name can be use to get avisual representation of the data.

A calculation requires or produces data that is beyond the range of the system implementation but does
not fit any of the categoriesof SYSTEM LIMIT (thiscan occur with some mathematical functions).

A nonresource error occurred in a defined function or operator whose fourth execution property is set to
convert nonresource errorsto aDOMAIN ERROR. (Seedyadic OFX).

A derived function from the slash operator or inner product was presented with an empty argument but
no identity function existed for the function operand.

IMPROPER LIBRARY REFERENCE

IMPROPER LIBRARY REFERENCE

An undefined library number was specified for any of the system commands which accept library numbers.
Library numbers are defined using environment variables or apl 2. i ni keyword definitions of the form
APLnnnnn. The notation nnnnn shown here must aways be replaced by exactly 5 digits. Here is an example
of adefinition for library 123:

APL00123=C:\MYSTUFF\LIB123

INCORRECT COMMAND

INCORRECT COMMAND

The APL2 system command entered isinvalid or has invalid parameters. See System Commands for the names
and syntax of the supported commands.

INDEX ERROR

INDEX ERROR OET «»> 5 5

APL2 Language Summary SX26-3851-01 213
© Copyright IBM Corporation 1984, 2011

Anindex specified for Bracket Indexing (R [I1), Index (T 1R), or Pick (I=R) is outside the bounds of the array
(R as shown here). Depending on 010, those bounds are either 1 ton or 0 ton -1, wheren isthe length of the
array along the dimension being indexed.

INTERRUPT

INTERRUPT OET «» 1 1

An interrupt was signaled during processing, and execution is halted. Execution can be resumed with -1 0 or
restarted by branching to aline number in the defined operation. If execution is not resumed or restarted, the
state indicator should be cleared using -» or) SIC.

LENGTH ERROR

LENGTH ERROR OET «> 5 3

Two arguments to a function (or perhaps an argument and an operand of an operator) have lengths which are
incompatible with respect to an axis along which the values are being processed. A length of 1 iscompatible
with any length by scalar extension.

Note that for the Expand operator (LO\R), the requirement is that the number of 1'sin the operand must be

compatible with the length of the right argument axis along which it is being applied. Scalar extension applies
only if the operand is of length 1.

LIBRARY |I/O ERROR

LIBRARY I/O ERROR

An access error is preventing successful completion of a system command that is attempting to read or write a
workspace or transfer file. The message usually arises while writing, and may indicate either a write-protected
device or an undefined directory path.

NOT COPIED

NOT COPIED: object-names

The listed objects were not copied for one of the following reasons:

e« A) PCOPY wasissued, and the objects aready exist in the active workspace.
e Theobjects do not fit in the active workspace.

APL2 Language Summary SX26-3851-01 214
© Copyright IBM Corporation 1984, 2011

e) IN finds objects which are not valid transfer forms. One possible reason is that an APL2 mainframe
transfer file contains underbarred letters, or was downloaded with EBCDIC/ASCII conversion.

e) OUT could not write explicitly named objects because they do not exist in the active workspace.

e) OUT could not write explicitly named objects because they are either system names or locked user
programs. (See the "no display"” attribute of OFX.)

NOT ERASED

NOT ERASED: object-names

The listed objects were not erased by the) ERASE command because the objects do not exist in the active
workspace.

NOT FOUND

NOT FOUND

One of the following problems was found:

e Theworkspace specified with a) COPY,) DROP or) LOAD command does not exist.
« Thefile specified by the) 1N command cannot be found or is not a transfer file.

NOT SAVED, THISWSISwsid

NOT SAVED, THIS WS IS wsid

One of the following problems was found:

e The) SAVE system command wasissued in aCLEAR WS with no specified workspace name. Reissue
the) SAVE command, and include the name under which you want the workspace to be saved.

o Theworkspace named in the) SAVE command existsin the library but is not the same as the name of
the active workspace. If you want to replace the saved workspace, issue the) WS 1D command first,
changing the name of the active workspace to match.

NOT SAVED, LIBRARY FULL

NOT SAVED, LIBRARY FULL

The disk to which you are attempting to save the workspace or transfer fileisfull, or so nearly full that thereis
not enough room for the workspace. Y ou can identify the disk involved as follows:

APL2 Language Summary SX26-3851-01 215
© Copyright IBM Corporation 1984, 2011

e Ifthe) SAVE or) oUT command provided a path and file name in quotes, or if) SAVE provided no
name and) WSID displays a quoted name, then the drive is either the one explicitly listed at the
beginning of the path or the drive from which APL2 was started.

e Ifthe) SAVE or) oUT command provided an unquoted workspace name, or if) SAVE provided no
name and) WS ID displays an unquoted name, then the drive is defined by alibrary setting for
APLnnnnn where nnnnn isthe library number provided on the command (extended to 5 digits) or
01001 if no library number is given. The library defintion either lists the drive explicitly, or it isthe
drive from which APL2 was started.

Y ou may need to take one or more of the following actions to recover:

e Erase unneeded files on the drive that is full.

o Savethe workspace on adifferent drive. See the comments above on how the drive is determined.

o If an older version of the workspace or transfer file already exists,) DROP it first, and then reissue the
) SAVE or) OUT.

Warning: Remember that it is possible to lose your workspace altogether if you do this. There might be
apower failure before you have a chance to save the new copy, or it might be that the new versionis
enough larger that it won't fit even after dropping the old one.

e Try saving the workspace in adifferent format. In many cases transfer files created by) OUT take less
space than workspaces stored by) SAVE. In some cases the reverseistrue.

o Don't forget that for reasonably small workspaces you could also save to aremovable diskette. Even
very large workspaces can often be saved to diskettes by using) OUT and naming objects explicitly.

RANK ERROR
RANK ERROR OET «> 5 2

An array specified as an argument or operand has arank that is incompatible with another argument or operand.
If the array is nested, the incompatibility may exist below the top level of structure.

SI WARNING
SI WARNING

A defined function or operator was altered while it was on the execution stack. There are two basic ways that
programs can be altered:

e If the function or operator was replaced by the) IN,) COPY or) PCOPY command; or by the OFX or
OTF system function, the copy used for future callsis changed, but the copy already being executed is
left asit was. NO ST WARNING isneeded or produced.

APL2 Language Summary SX26-3851-01 216
© Copyright IBM Corporation 1984, 2011

Note: The EDIT workspace uses OFX, so it behavesthisway. Thisisalso true at present if the object
was edited using v-edit when) EDITOR xxx isin effect, for example) EDITOR APLEDIT, but that
behavior may change in the future.

« If thefunction or operator was modified using Editor 1 or the session manager's object editor, the copy
already being executed is modified as well as the permanent copy. ST WARNING may or may not be
produced, depending on the nature of the changes. If the changes don't affect resumption of the
statement currently being executed they may be accepted without displaying the message.

When a program has been suspended there are two ways to get it going again. Y ou may either resumeit or
restart it.

resume
Begin executing exactly where the program was stopped. Thisis often in the middle of aline, and can be
done by entering »1 0.

restart
Begin execution with some complete statement of the current function. Thisis done by entering ~OLC to
restart at the beginning of the line that was being executed.

If changes are made to the copy on the stack, and those changes make it impossible to resume the statement
currently being executed, then any attempt later to do so will also result in ST WARNING at that point in time.
This can occur if:

o Thefunction is suspended (stopped while it was executing) in mid-statement, and -1 0 is used to resume
it.

e Thefunction is pendent (has called another function which has not returned to it) and the function it
called then does return.

e Thefunction is either suspended or pendent, and the update makes |local hames become global, or global
names become local. This may make it impossible to resume or restart the program at all.

SYNTAX ERROR

SYNTAX ERROR OET «»> 2 n

The displayed APL 2 expression is constructed improperly. The second item of OET provides information about
the type of problem diagnosed:

OET Description

21 Required operand or right argument omitted

2 2 I11-formed line, for example unmatched parentheses or brackets

2 3 Invalid name class, for example assigning a value to a constant or label
2 4 Invalid operation in context

SYSTEM ERROR

APL2 Language Summary SX26-3851-01 217
© Copyright IBM Corporation 1984, 2011

SYSTEM ERROR OET «»> 1 2

A fault occurred in the internal operation of the APL 2 system, or the active workspace was damaged. This can
be caused by a workspace file being partially overwritten, or by an improperly coded auxiliary processor or
Processor 11 external routine. But if none of those conditions are suspect, you should report the problem to IBM
asapossible error in the APL2 product.

SYSTEM LIMIT

SYSTEM LIMIT OET «» 1 n

The requested operation or action exceeds some implementation limit. See the implementation limits
documented in the APL2 User's Guide. Note that if the limit exceeded involves shared variables, you may be
ableto avoid the restriction using parametersin the apl 2svp. pr mfile.

VALENCE ERROR

VALENCE ERROR OET «» 5 1

An attempt has been made to specify aleft argument for a monadic function, or to specify asingle argument for
adyadic function.

Note: Defined functions whose header shows a left argument are actually ambi-valent, rather than dyadic. This

means that the left argument is optional. Functions can be coded to alow for an omitted left argument by
checking its name class. For example:

-+ (0=0ONC leftarg)/NOLEFT A Go handle monadic call

If this check is not made, an omitted left argument will typically result inaVALUE ERROR during execution
rather than aVALENCE ERROR during function call. To avoid this, functions which must be called dyadically
should include a statement like this:

OES (0=0ONC leftarg)/5 1 a VALENCE ERROR if no left arg

VALUE ERROR

VALUE ERROR OET «» 3 n

There are two cases which you can distinguish by the value of OET:

APL2 Language Summary SX26-3851-01 218
© Copyright IBM Corporation 1984, 2011

OET Description
31 The variable being referenced does not currently have a value.
32 An attempt was made to use the result of a function that does not return aresult.

Note: VALUE ERROR may aso occur while executing a defined function that expected two arguments but was
called with only aright argument. See VALENCE ERROR for suggestions on this.

WSFULL

WS FULL OET «> 1 3

An operation requires more workspace storage than is currently available. The workspace size is controlled by
the - ws invocation option, which defaults to 4 megabytes. Note that the workspace size limit is independent of
the amount of real storage on the computer, or even of the amount of available disk space you have.

If the workspace size exceeds the amount of available real storage, the operating system will swap parts of it, or
other thingsin real storage, to disk. This can cause dramatic losses in performance, but does not cause ws
FULL and is not under APL2's control.

If the amount that needs to be swapped exceeds the available space on the drive containing the swap file, the
system will go into emergency recovery mode, and may crash. Thiswill still not causews FULL (thoughitis
likely to be much worse) and is not under APL2's control.

It isyour responsibility to choose a workspace size which islarge enough to avoid ws FULL but not so large
that it exceeds swap capabilities. For good performance you should choose a size significantly smaller than the
amount of real memory you have. Practical limits depend on how you have customized your system, and what
applications are sharing it with APL 2.

Sometimes atrivial change in an APL algorithm can cause a massive change in storage requirements. For
example, a Boolean array can be stored eight elements per byte. Including a single non-Boolean value in the
array (a2 or ~ 1, for example) causes the entire array to take 32 times as much space asit did before.
Intermediate results may also require much more storage than the values ultimately saved. An outer product, for
example, may use agreat deal of storage, even if it isimmediately reduced to a much more manageable array.

WSINVALID
WS INVALID
The) LOAD or) COPY command was issued to access afile that is not avalid APL2 workspace. Possible causes
include:
o transfer from another system through an intermediary that performed ASCII or line-end conversion.

o aworkspace that was saved by APL2 on a different operating system than you are currently running.
This includes workspaces written by APL2/PC on the same system, as well as workspaces written on

APL2 Language Summary SX26-3851-01 219
© Copyright IBM Corporation 1984, 2011

other types of systems by IBM APL2 products. Such workspaces can only be processed if they are read
astransfer files, i.e. written using) OUT and read using) IN.
« afilewritten or modified by something other than the APL2 interpreter.

APL2 Language Summary SX26-3851-01 220
© Copyright IBM Corporation 1984, 2011

Interpreter Event Codes

The following system functions return codes which indicate whether they were successful, or what kinds of
problems they encountered:

OEC Execute Controlled
OEX Expunge

OFX Fix
ONA Name Association

ONC Name Class

OSVO Shared Variable Offer (Inquire)

See also OET - Event Type for a system variable containing event codes.

APL2 Language Summary SX26-3851-01 221
© Copyright IBM Corporation 1984, 2011

Glossary

argument
An argument is datathat is being passed to afunction. It may be asingle item, alist of items, or an n-
dimensional array. Each item may be a number, a character, or a collection of subitems, and these kinds
of items may be mixed in an array.

dyadic
A function which accepts both aleft and right argument, or an operator which requires both a left and
right operand.

function
A function accepts argument data and transforms it in some way to produce result data. It is possiblein
APL for user functionsto be niladic, i.e. to be passed no data explicitly, but most functions are either
monadic, requiring one array as aright argument; or ambi-valent, requiring aright argument array and
permitting a left argument array.

monadic
A function which accepts only aright argument, or an operator which accepts only aleft operand.

operand
An Operand isafunction, or occasionally data, that is being passed to a operator. The function may be a
primitive, system, or defined function.

operator
An operator accepts functions or occasionally data as operands and applies its operands in some way to
produce a derived function. For example, the Reduction operator can be given the Plus function as an
operand, to produce a derived function that will perform a summation over the items within its argument
data. An operator must be defined as either monadic, requiring one function or array as a left operand; or
dyadic, requiring both aleft operand and aright operand. Either way, the derived functions they produce
can be monadic or ambi-valent, like other functions.

primitive
An APL term referring to functions and operators which are built in to the language, and are represented
by a special one-character symbol.

progression of integers
Most APL systems (including this one) provide an optimized format for storing arrays that are integral
progressionsinitially created using 1. These would include:

A«11000000
B«5x12000000

C« 8+13000000
D« 4x9+14000000

Altogether there are ten million items in those four arrays, yet they take about as much space as a dozen
or so fractional numbersin asingle array! Y ou never have to worry about things like this to make your
APL functions work correctly, but it's something to keep in mind when working with large arrays.
shared variable
The APL 2 system provides facilities which makes it possible for two independent processes to cooperate
by sharing common data. 0SVC provides controls so that the processes can serialize their access to the
data using any of a number of protocols. The processes can be an APL session and an Auxiliary
Processor, or two APL sessions. Using APL 2's cooperative processing facilities, the processes may be
running on different machines.
state indicator
During processing, APL2 must, of course, keep track of function calling sequences so that when one
function completes it can resume execution of its caller. The information required for thisincludes an
executable image of the function, the position within the function from which the call was made, and the

APL2 Language Summary SX26-3851-01 222
© Copyright IBM Corporation 1984, 2011

current values of any local variables. The cumulation of thisinformation for all active calling levelsis
the state of the system, and various parts of it can be queried using the OL.C function and the) ST,
) SINL, and) SIS system commands. The state can be partialy or fully reset using - or the) sIC
system command.

system command
System commands are intended for communication between the user and the APL 2 system. They cannot
be issued directly by an APL program, and use a syntax beginning with aright parenthesiswhich is
intentionally chosen to be invalid as an APL statement.

APL2 Language Summary SX26-3851-01 223
© Copyright IBM Corporation 1984, 2011

	Copyrights
	Contents
	Notices
	Programming Interface Information
	Trademarks

	We Would Like to Hear from You
	Introducing APL2
	APL - What Is It?
	Power, Relevance, and Simplicity
	A Short Example of the Use of APL
	The Characteristics of APL

	Getting Started in APL
	APL Is Interactive
	Who Typed What?
	Expressions
	The APL Character Set

	Fundamentals
	Names
	Numbers
	Functions
	Operators
	Terminology: Functions versus Operators

	Data
	Arrays
	Rank and Shape
	Variables and Constants
	Bracket Indexing
	Index Origin
	Adding More Structure to Arrays

	Assigning Values to Names
	Indexed Specification
	Vector Specification
	Selective Specification

	Order of Evaluation
	Parentheses
	Priority of Bracket Operations
	Priority of Specification
	Vector Notation and its Priority
	Operand Binding

	Errors

	Primitive Functions
	Alphabetic List of Functions
	Names and Valences of Primitive Function Symbols
	Scalar Functions
	Monadic
	Dyadic

	Structural Functions
	Monadic
	Dyadic

	Information Functions
	Monadic
	Dyadic

	Non-scalar transform Functions
	Monadic
	Dyadic

	Add
	And
	Binomial
	Bracket Index
	Catenate
	Catenate with Axis
	Ceiling
	Circle Functions
	Conjugate
	Deal
	Decode
	Depth
	Direction
	Disclose
	Disclose with Axis
	Divide
	Drop
	Drop with Axis
	Enclose
	Enclose with Axis
	Encode
	Enlist
	Equal
	Execute
	Exponential
	Factorial
	Find
	First
	Floor
	Format (default)
	Format by Example
	Format by Specification
	Grade Down
	Grade Down with Collating Sequence
	Grade Up
	Grade Up with Collating Sequence
	Greater Than
	Greater Than or Equal to
	Index
	Index of
	Index with Axis
	Interval
	Laminate
	Less Than
	Less Than or Equal to
	Logarithm
	Magnitude
	Match
	Matrix Divide
	Matrix Inverse
	Maximum
	Member
	Minimum
	Multiply
	Nand
	Natural Logarithm
	Negative
	Nor
	Not
	Not Equal
	Or
	Partition
	Partition with Axis
	Pick
	Pi Times
	Power
	Ravel
	Ravel with Axis
	Reciprocal
	Reshape
	Residue
	Reverse
	Reverse with Axis
	Roll
	Rotate
	Rotate with Axis
	Shape
	Subtract
	Take
	Take with Axis
	Transpose
	Transpose (reversed axes)
	Without

	Primitive Operators
	Compress
	Compress with Axis
	Each, Deriving Dyadic
	Each, Deriving Monadic
	Expand
	Expand with Axis
	Inner Product
	Outer Product
	Reduce
	Reduce N-wise
	Reduce N-wise with Axis
	Reduce with Axis
	Replicate
	Replicate with Axis
	Scan
	Scan with Axis

	System Functions
	Atomic Function
	Attributes
	Character Representation
	Delay
	Execute Alternate
	Execute Controlled
	Event Simulation
	Expunge
	Fix
	Name Association
	Name Class
	Name List
	Shared Variable Control
	Shared Variable Offer
	Shared Variable Query
	Shared Variable Retraction
	Shared Variable State
	Transfer Form
	Universal Character Set

	System Variables
	Account Information
	Atomic Vector
	Comparison Tolerance
	Event Message
	Event Type
	Format Control
	Index Origin
	Line Counter
	Latent Expression
	National Language Translation
	Printing Precision
	Prompt Replacement
	Printing Width
	Random Link
	Shared Variable Event
	Terminal Control
	Time Stamp
	Time Zone
	User Load
	Workspace Available
	Evaluated Input/Output
	Character Input/Output

	System Commands
	Defined Functions and Operators
	Operation Header
	Nature of the result
	Defined Function Valence
	Defined Operator Valence
	Local Names

	Branching and Labels
	Explanation of Branching Example
	Conditional Branch
	Branch to Escape
	Branch in a Line with Diamonds
	Looping Is Rarely Needed

	Execution
	Calling Sequence
	Suspension of Execution
	State Indicator
	Escape
)SIC
	Resume or Restart Execution
	Do Not Resume Execution by Invoking the Operation Again

	Execution Properties

	Debug Controls
	Trace Control
	Stop Control

	Error Reports and Error Codes
	Interrupts and Errors in APL2 Expressions
	Interpreter Messages
	Implicit Errors
	AXIS ERROR
	CLEAR WS
	DEFN ERROR
	DOMAIN ERROR
	IMPROPER LIBRARY REFERENCE
	INCORRECT COMMAND
	INDEX ERROR
	INTERRUPT
	LENGTH ERROR
	LIBRARY I/O ERROR
	NOT COPIED
	NOT ERASED
	NOT FOUND
	NOT SAVED, THIS WS IS wsid
	NOT SAVED, LIBRARY FULL
	RANK ERROR
	SI WARNING
	SYNTAX ERROR
	SYSTEM ERROR
	SYSTEM LIMIT
	VALENCE ERROR
	VALUE ERROR
	WS FULL
	WS INVALID

	Interpreter Event Codes

	Glossary

