APL2 Programming:

Using APL2 with WebSphere
SC18-9442-00

APL Products and Services
IBM Silicon Valley Laboratory
555 Bailey Avenue
San Jose, California 95141
APL2@vnet.ibm.com

mailto:APL2@vnet.ibm.com

Contents

COMERIES ...ttt ettt ettt e bt et e et eh e eb e st e eat e s bt e bt e st e eb e et e ea bt eh e e bt ea bt eateeb e e e e she e bt ea b e eb e e bt entesbeenbeenneeneen i
INOTICES ettt ettt ettt ettt et et e e at e et e e eat e e bt e e ab e eab e e ea et e bt e eabeea bt e ea bt e bt e ehb e e bt e eh b e e bt e eabeeehbeebeeenbe e beeebeenaeeens i1
Programming Interface INfOrmationccoooiiiiiiiiiiiiiieiieee ettt et et e e il
TTAACINATKS ...ttt h bttt e bt et e s bt e e bt e s ab e et e e shteeaeeeabeesabeebeesnbeenseesneeas il
REQUITEA SOTEWATE ..ottt ettt et e et e et e e b e e st e eabeeseeesaeenseesnseenseennseennes v
A (0] 5 7 110 s DO OO OSSO R PSRRI 1
AADSTIACE ..ottt ettt ettt a bttt h bt et eh e bt et e h e et e et e bt e bt ea b e bt e bt ea b e bt e bt et e naeenee 2
MM N o) 1 1o (O S o 1o SRS 3
WebSphere Studio Application Developer INtroductionceevieeiieiieiiieiie ettt 6
INtroduction t0 EXAMPIES......ccciiiiiiiiciiie ettt e e et e e st e e s steeessteeesbeeessaeensseeensaeeessaeennreeas 9
Example 1: Using APL2 from @ SETVIETcccuiiiiiiiiieiieiie ettt ettt et e e be s enee 10
Create an Enterprise Application PTOJECT......cccuviiiiiieiiie ettt ettt e e aee e snaaeesnnee s 11
Create @ WED PrOJECTooviiiiieiie ettt ettt ettt e et e et e e sb e e bt e sabeenseessbeenseeenseenseesnseenseas 13
Create @ Java PaCKAEEoiiiiiieiie ettt e ettt e et e e bt e e eateeeareeennaeeenraeas 15
CLEAE @ SETVICTeiiuiiiiiieit ettt et h ettt b et e e b e s bt et e eatesbe et e ebtesbeenteeatenbeenbenanens 17
Edit the ServIet’s SOUICE COAec..uiiiiiiiiiiiei ettt st ettt e s e b e 20
CIEALE @ SEIVET ...ttt ettt ettt ettt et sat e et eeat e et e e s bt e s et e e bt e eab e e bt e s et e e bt e sateembeesaneenbeesaneennees 24
TESE the SEIVIET ...ttt et s bttt e s bt e et e e e et e et e e sateenbeesaeeaneeas 26
Change the Context ROOt (OPHONAL)cooiiiiiiiiiiiiieciice ettt sttt e e te e esnseeneeas 28
Change URL Mapping (OPtioNal)cccviieiiiieiiiiieeiie et siee et e siee s teeesveeeseaeeeseaeeessseeesnseesssseessseeesnseens 29
Shutting DOWN the SETVETc.iiiuiiiiieiii ettt et et e et e et e et esabeebeesabeeseeenseesaseenseessseenseas 30
Example 2: Using APL2 from a Java Server PaAgecccviiviiiiiiiieiiie ettt e 31
Create an Enterprise Application PrOJECL........c.iiiiieiiiiiiieiieiieeie ettt eaae b eeees 32
Create @ WED PIOJECLeiiiiieiiie ettt ettt e e st e e st e e e sae e e tbeeessbaeensseeessaeesssaaesnsseesnseeennseeas 32
Create @ Java SEIVET PAZEcc..iiiiiiieiie ettt ettt ettt et e st e e es 33
Edit the JSP’S SOUICE COUEoomiiiiiiiiieie ettt ettt et et e st e b 34
TESTTRE TSP ..ttt ettt et h et a e e bt e bt ea b s bt et e st e sbe et e ea b e nbe et eanens 35
Shutting DOWN the S@IVETviiiiiieeiiie ettt e e e et e e et eesaaeessaeesseeesssaeeesseeesnsneesseeens 35
Example 3: Using APL2 from an Enterprise Java Bean...........cccooviieiiiiiiiiiiienieeiicee et 36
Create an Enterprise AppliCation PrOJECT......cccuviiiiiiiiiiieiie ettt e e ee e seaeeeenree s 38
Create an EJB PrOJECTc.oiiiiiiiecieeiece ettt ettt ettt e et e e b e e b e e bt e sabeenseessseeseesnseenseesnseenseas 39
Create @ Java PaCKAZEoiiiiii et et et e e et e e be e e enr e e e aaeeenraeeenraeas 41
Create an EnterpriSe Java BEaN.........cccoooiiiiiiiiiiiiieiieee ettt ettt ettt et eneas 43
Edit the EJB’S SOUICE COUE......couiiiiiiiiiiiieiiee ettt ettt ettt et e b e et e st et e st e ebee e 47
Generate the Deployment and RIMIC Code..........cooiiiiiiiiieiiiiieeitece ettt et e 50
TESt the EJB ...ttt ettt et e h e et e bt e st e e bt e e st e e beesateenbeesaeeeneeas 51
Shutting DOWN the SETVETc.eiiuiiiiieiie ettt et te et e et e e bt esbeebeesabeeseeenseeesseenseesnseenseas 54
Example 4: Using APL2 with the Model-View-Controller Design Patterncccceevciiieniieeiieeccieeeeeeee 55
Create an Enterprise Application PrOJECL........ceiiiiiiiiiriiiiiieie ettt ettt sae e e s eeees 56
(@ (e 1T 1 W a1 B 2 g ([ARSI 57
Create @ WED PrOJECToieiiiiieiie ettt ettt ettt e et e bt e st e e beesabeenseesnbeenseesnseenseesnseenneas 57
Create a Java Package fOr the EJB.........oooiiiiiiieeee ettt e e e e ennee s 58
Create a Java Package for the Servlet and Java bean...........cccoecuieiiiiiiiiiiiii e 58
Create an Enterprise Java BaN..........ccuiiiiiiiiiiiccecee ettt ettt et e e e et e e snrae e enrae s 59
Edit the EJB’S SOUICE COUE........iiuiiiiiiiiiiiiieiecit ettt sttt et et et e b 60
Generate the Deployment and RMIC Code.........c.ooiiiiiiiiiieiiieeieece et 61
Create @ JaAVa BEANc..iiiiiiiiiiiiec ettt et e b e s e nees 62

Edit the Java Bean’s SOUICE COUEuuuueuueeeieeeseseseeeeeeeseeaeeeereeeeeeaeeeeeenesaneeannrennnes 65

CIEALE @ SEIVICTeeneiiietieiie ettt ettt et e h e et e e s bt e e et e e bt e eab e e bt e sabe e bt e sabeebeesabeenbeeeneeanseas 69
Editing the Servlet’s SOUICE CO@ooiuiiiiiiiiiiiieie ettt ettt et aee e e eaeeteesnaeeseeenns 70
Create @ JAVa SETVET PAZEoiiiiiiiiieeiie ettt e e e et e e e st e e e e nbaeeeeenbeeeeenaaeeeeansaeeens 72
Edit the JSP’S SOUICE COUEC ...c.uviiiiiiiiiiiiiieee ettt sttt ettt et e b enees 72
B A (TN o] o) F U213 (o) 4 F SRS 73
Shutting DOWN the SETVETc.iiiuiiiiieie ettt ettt e et e e beesabeebeesabeeseesnseesaseenseesnseenseas 73
Example 5: Deploying an Enterprise Application on WASccooiiiiiiiieeee e 74
EXPOTE the PTOJECLeiiiiieiiece ettt ettt et et e et e et e e b e e bae et e eaeeenbeassseenseesnseenseennns 75
STATT The SEIVET ..ottt ettt et e b e et e b e et e e bt e s st e e sbeeeabeesabeenbeesaeeeneeas 77
Start the AdmINIStrative CONSOLEcciiiiiiiiiiiiieeie ettt et e bt eseae e bt e sabeenbeesaseenseas 77
Configure the SErver t0 USE APL2ooi ittt et e e e st e e s ae e e s saeeesaaeesnnaeesnneees 77
INStAll the APPIICALION....cc.uiiiiieiieiie ettt ettt ettt et e et e e steeebe e aeeesbeesseesaseenseessseenseesnseenseennns 77
RESTAIT the SETVET ...t ettt et b ettt e s bt et e e s st e e beesaeeenbeeeeee 78
TESt the APPLICATIONeiiuiiiiieeiieeie ettt ettt et e et e et e eebe e aeeenbeenseeeabeeseeenseenseesnseenseesnseenseas 78
SUINIMATY ...ttt et e e ettt e e e ettt e e e st eee e e ateeeeeansaeeeeansbbeeesansseeeeaansseaesanssaeesennsseeeeansseeeesnnssnes 79
Appendix: Importing the EXAMPLEScccueeiiiiiiiiiiiiiiieiieeie ettt ettt et et e bt e s b eesnseeseesnseens 80
Testing IMPOTtEd EXOTCISES. . eiuuiiiiiiieiiiieciie ettt ettt et e e e st e e s te e e s aeeessbeeessseesssaeessnseesnsseesnseeennseees 82

1

Notices

(c) Copyright IBM Corp. 1994, 2004. All Rights Reserved.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make

these available in all countries in which IBM operates. Any reference to an IBM product, program, or service is

not intended to state or imply that only IBM's product, program, or service may be used. Any functionally

equivalent product, program, or service that does not infringe on any of IBM's intellectual property rights may

be used instead of the IBM product, program, or service. Evaluation and verification of operation in conjunction

with other products, except those expressly designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject material in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:

IBM Corporation

IBM Director of Licensing
500 Columbus Avenue
Thornwood, NY 10594

Programming Interface Information

This user's guide is intended to help programmers write applications in APL2. It documents General-Use
Programming Interface and Associated Guidance Information provided by APL2. General-use programming
interfaces allow the customer to write programs that obtain the services of APL2.

Trademarks

IBM Trademarks
The following terms are trademarks of the IBM Corporation in the United States or other countries or both:

AIX

APL2

IBM
WebSphere

Other Trademarks
The following terms are trademarks of other companies:

J2EE Sun Microsystems, Inc.
Java Sun Microsystems, Inc.
Linux Linus Torvalds
Windows Microsoft Corporation
Solaris Sun Microsystems, Inc.

Sun Sun Microsystems, Inc.

i1

Required Software

The following software was used to build and run the examples in this document:

Workstation APL2 for Multiplatforms Version 2.0 with Service Level 4
WebSphere Studio Application Developer 5.1.2
WebSphere Application Server Version 5.1

Other versions of the WebSphere software can be used except that WebSphere Application Server Express does
not support the Enterprise Java Beans demonstrated in the later examples.

The examples were built and deployed on Windows XP. The WebSphere Studio Application Developer
windows may have different appearances on other systems.

The examples use an APL2 namespace. The full Workstation APL2 development environment is required to
build namespaces. Either the full Workstation APL2 development environment or the APL2 Runtime Library
can be used to run APL2 namespaces.

Because APL2 namespace files are platform dependent, a different namespace file must be built for each
operating system (AIX, Linux, Solaris or Windows) on which the namespace will be used. The full
Workstation APL2 development environment must be installed on at least one machine for each target
operating system so that the appropriate namespace file can be built.

Installation of either the full Workstation APL2 development environment or the APL2 Runtime Library is
required on each machine that will call APL2.

v

Motivation

Workstation APL2 Version 2.0 Service Level 4 includes a new feature that supports calling APL2 from Java.
Using this facility, it is now possible to deploy APL2 applications for use under WebSphere Application Server.
There are a variety of excellent reasons why you should learn to use APL2 under WebSphere Application
Server. For example,

If you’re a Data Center IT manager who has APL2 programmers as well as Java programmers in your shop,
how do you,,,

Cost-effectively Web-enable APL2 software in which you’ve devoted years of IT investment?

Leverage your IT shop’s application deployment expertise?

Reduce the amount of specialized code you need to deploy APL2 applications?

Reduce your need for specialists in deploying APL2 applications?

Focus your expensive APL2 programmers on business applications rather than deployment code?

Reduce the security risks of APL2 web servers and deployment tools?

Load balance your APL2 applications across multiple machines?
If you’re an APL2 programmer, how do you,,,

Deploy APL2 applications across the Web?

Respond to multiple client requests asynchronously?

Leverage tools for security control and HTTP request and XML parsing?

Get the IT shop to stop asking you to stop using APL2?
The answer to all these questions is to use WebSphere Application Server and the new APL2 Java interface to
call APL2! The IBM WebSphere Application Server can call standard Java components which in turn can call
APL2 applications. By leveraging WebSphere Application Server you can almost completely avoid writing and

maintaining specialized APL2 code to deploy APL2 applications. In addition, you gain the benefits of
WebSphere’s extensive request management, security, and load balancing features.

Abstract

Workstation APL2 Version 2.0 Service Level 4 supports calling APL2 from Java. Using this facility, it is now
possible to deploy APL2 applications for use under WebSphere Application Server. This document explains
how to use WebSphere Studio Application Developer to build Java components that use APL2 and can be used
under WebSphere Application Server.

This document shows how to build an APL2 namespace and use it in the following types of Java components:

Java servlets

Java Server Pages (JSPs)
Java Beans

Enterprise Java Beans (EJBs)

Use of the Model-View-Controller (MVC) design pattern is illustrated using all four types of Java components.

WebSphere Overview

The IBM web site includes this definition of WebSphere Application Server:

“IBM WebSphere Application Server is a high-performance and extremely scalable transaction
engine for dynamic e-business applications.”

What does this mean? A little history of web servers will help explain:

Traditional HTTP web page servers originally only provided clients with access to static HTML pages. Today,
it is still common that most content on web sites is static. So, this is a good model for a large amount of web
content.

However, people quickly realized that some content needed to be dynamic. Responses to user requests would
need to include customized results. Over the years, several features have been added to web servers to address
this problem.

Early web servers supported the Common Gateway Interface (CGI) protocol. CGI enabled the servers to
execute programs in response to user requests. However, these were stand-alone programs which were not
integrated with the server. They had to provide all their own services such as database access, messaging, and
security.

A further development was the addition of using client side code. Applets are Java programs that run on the
client’s machine. Applets were often used to simply provide an enhanced user interface. Sometimes though,
they were used to generate true dynamic pages. But to do this, they often had to reach back to the server to
access server data. This introduced security and management concerns.

The next development was the use of serviets, or server side code, to generate dynamic pages. Servlets are
called directly by the application server. Because servlets are called in the context of the server, they can
exploit services provided by the server. No longer would application writers have to provide their own security,
messaging, and database access services. However, servlets too had a problem. Servlets contained code both to
process the logical content of a request and code to generate HTML. This mixture of code and HTML was hard
to manage. The solution to this problem was the introduction of Java Server Pages, or JSPs.

Java Server Pages format Java output and produce HTML. Like servlets, JSPs contain both HTML and Java
code. However, JSPs typically do not include Java code that processes the logical content of requests.. Rather,
the Java code in JSPs merely retrieves and formats servlet results so they can be included in the output HTML.

By judicious use of servlets and JSPs, application developers could separate the logic portions of their
applications from the presentation portions. This enabled development of applications that were more easily
maintained and reused.

Eventually developers recognized that applications typically have two kinds of logic: application logic and
business logic. Application logic includes decisions about how to process a request. For example, determining
the type of a request is an application logic decision. Business logic includes the core calculations of an
application. For example, calculating a dividend would be a business logic operation. The final step in our
history is the introduction of components which allow the separation of application and business logic. Java

Beans and Enterprise Java Beans, or EJBs, are used to perform business logic. Servlets are now only used to
perform application logic.

Java Beans and EJBs are like servlets; they are written in Java. Java Beans are simple Java classes. EJBs are
more complicated but offer some real benefits; EJBs are reusable and so can be load managed across multiple

machines. Typically, EJBs are used to perform core business logic operations. Java beans are used to handle
the interface between servlets and EJBs.

So, the current state of enterprise application development is this:

Model-View-Controller Design Pattern

Browser Application Server

Controller

Request

> Servlet
! " Model

- = \ S
— Response
y— 1t % > Rl
View
JSPs EJBs

Servlets are used to accept requests, perform application logic and determine how the request should be
processed. The servlets then call one or more Java beans, and in turn EJBs, to perform the core business logic
necessary to fulfill the request. The servlets then pass the beans’ results on to JSPs to generate HTML. This
separation of tasks is so common it has a name, the Model-View-Controller, or MVC, design pattern. The
servlet acts as a controller which manages the processing of the request, the Java beans and EJBs implement the
business model, and the JSP generates the user’s output, or view layer of the application.

Because the MVC design pattern separates the application logic, business logic, and view portions of
applications, it supports easier maintenance and better reusability. It also allows more efficient allocation of
resources. Experts in business logic can focus on the business’s algorithms; experts in application logic can
focus on building applications, and experts in page design can focus on the user interface.

The WebSphere Application Server, or WAS, manages all four types of components. WAS provides a
container in which the components operate and which provides services to them. WAS also provides tools for
administering the applications it is serving. These tools include security control, access control, and load
balancing, among others.

The rest of this document will demonstrate how to use APL2 from servlets, Java Server Pages, Java Beans, and
Enterprise Java Beans. Although it will be shown that it is possible to use APL2 from all these types of
components, the final example should be your guide for robust application development and deployment. The
final example follows the MVC design pattern and uses a servlet to accept requests, a Java Bean and an EJB to
perform the business logic (including a call to APL2) and a Java Server Page to format the output.

WebSphere Studio Application Developer Introduction

The Java 2 Platform, Enterprise Edition (J2EE) specification describes the structure and use of servlets, Java
Server Pages, Java Beans, and Enterprise Java Beans to build J2EE compliant applications. WebSphere Studio
Application Developer, WSAD, is an Integrated Development Environment, an IDE, used for creating and
testing J2EE compliant applications. The J2EE specification also includes rules for how to combine
components into archive files and how the contents of these files should be described for deployment on J2EE

compliant servers such as WebSphere Application Server. WSAD includes tools for managing archive and
employment descriptor files.

All the resources used in a WSAD session are stored in a directory called a workspace. When you first start
WSAD, you will be prompted for the directory you want to use as your workspace. WSAD will then display

the contents of the workspace on the WSAD workbench. The following picture shows a typical WSAD
workbench:

&b JZEE - Apl2DemoEJBBean. java - IBM WebSphere Studio Application Developer

File Edit Source Refactor Mawigate Search Project Run indow Help
5 HRA a0 |8es S| RB| .- et -%-%-® 7% - B %8
E.'? JZEE Hierarchey

78 = @ Enterprise Applications
g ¥ [E| AplzDemoEap

% Cﬁj application Client Modules

A 3 Cormector Modules

@!|E £ web Modules

= ﬁ AplzDermoDip
® aplzDemoSeret
[#] AplzDemolsP
%‘ Servlet mapping {faplzDemoServletURLMaE

public class Apl2DemcEJBBean implements javax.ejb.Ses=Eilc
private javax.ejb.SessionContext mySessionCtx;
private Apllinterp Slave = null;

8% Servlet mapping (fApl2Demnl5P - = AplzDer private AplZobject Function = null;
+-[j5 Welcome File List fex
=1 (g EJB Modules + getSessionContext
= {2Y apl2DemaE BProject wf

= @ Session Beans
-l @ AplZDemoElE
m AplzDemoEBHome
3} aplzDemaE 16
(9% AplzDemcE BEBean
[Entity Beans
% Message-Driven Beans
Maps
% Databases
] Cﬂ Servers
+ B aplzDemoServer b
< | >

dZEEjH_TaFrchy Praject Mavigakar * / elb
*
B/ outline m\@f‘ o x| %

onn.ibrm. aplz. DemaE JB A~
£ import declarations

public javax.ejb.SessionContext getSessionContext ()
return mySessionCtx;

i
fex
« getSessiconContext
«/
public voi1id setSessionContext (Javax.=jk.SessionCo
mySessionCtx = ctx;

3 Tasks (0 items) G o 2 e x

® Apl2DemoEJBBean | J| : | Description
o mySessionChy § javax.ejb. SessionContext
o Slave : AplZinterp
o Function : AplZobject
@ getSessionCantext()
@ .. setSessionContext(SessionContext)
@ y ejbCreatel)
@ .. eibActivatel)
@ .. ejbPassivater)
@ .. ejbRemovel)
fveragefdoublel T vils | S

Snippets | Qutling Tasks |Propetties | Package Explorer | Console | Styles

‘Writable Insert 18T

WSAD provides a variety of tools for working with different types of resources. Each tool is presented in a
view. This workbench shows four view windows. A Java Editor view shows some Java source code; it is in the
upper right hand corner and circled in blue. The Outline view shows a list of the classes, fields, and methods in
the currently displayed Java source code; it is in the lower left corner and circled in green. Views of the same
resource are frequently stacked in tabbed notebooks allowing the user to easily switch between different views.
The J2EE Hierarchy and Project Navigator views are stacked in a tabbed notebook; their tabs are in the left
center and circled in black.

WSAD allows the user to work with projects from several perspectives. Each perspective provides a set of
capabilities aimed at accomplishing a specific type of task or works with specific types of resources. For
example, the Java perspective combines views that you would commonly use while editing Java source files,
while the Debug perspective contains the views that you would use while debugging Java programs. The
picture shows the J2EE Perspective. The Perspective toolbar is in the upper left corner and circled in red; it is
used to switch perspectives.

The J2EE Hierarchy view is the upper left window. It shows the resources in the workspace as they are
arranged in the J2EE Hierarchy. WSAD uses the J2EE Hierarchy to organize applications’ files.

WSAD organizes application files into projects of which there are several types including:

Enterprise Application Project Contains a list of all the projects in an application
Web Project Contains servlets, Java Server Pages, and Java Beans
EJB Project Contains Enterprise Java Beans

Server Projects Contains web server configuration information

The J2EE Hierarchy view shows the workspace’s projects and their components in a tree structure. The
workspace displayed in the picture contains four projects:

An Enterprise Application named Apl2DemoEap
A Web Module named Apl2DemoDwp

An EJB Module named Apl2DemoEJBProject

A Server named Apl2DemoServer

You can create a new project or component by pulling down the File menu and selecting New. You will be
prompted with a list of project and component types. Selecting one of them will lead you to a wizard for
building the resource.

You can open a resource using the default view by double clicking on it. You can use an alternate view by
right-clicking on the resource name and selecting Open With.

The J2EE hierarchy shows the workspace’s resources and their J2EE hierarchical relationships. If you double
click on a resource in the J2EE Hierarchy, the default view will show the resource’s deployment descriptor. A
deployment descriptor lists the components in a resource, its relationships to other resources, and how the
resource should be deployed.

By switching to another workspace perspective or view, you can change the default view for different types of
resources. For example, in the J2EE Perspective’s Project Navigator view, the default view for servlets is the
Java Editor.

This is necessarily a very brief introduction to WebSphere Studio Application Developer. For further
information consult the product’s online help and tutorials.

Introduction to Examples

The rest of this document is a series of examples that show how to use WebSphere Studio Application
Developer to use APL2 in servlets, Java Server Pages, Java Beans and Enterprise Java beans, and how to deploy
an Enterprise Application on WebSphere Application Server.

All the examples use a simple APL2 namespace that calculates the average of a vector of numbers. Build the
namespace like this:

) CLEAR
CLEAR WS
V z<—AVERAGE VECTOR
[1] 7Z< (+/VECTOR) +pVECTORV
)WSID AVERAGE
WAS CLEAR WS
) SAVE
2004-08-05 15.16.39 (GMT-4) AVERAGE
3 11 ONA 'CNS'
1
CNS 'AVERAGE' 'C:\PROGRAM FILES\IBMAPL2W\BIN'
C:\PROGRAM FILES\IBMAPL2W\BIN\AVERAGE.ans

The namespace should placed in a directory that is included in the PATH environment variable.

This namespace is clearly a trivial example; it does not attempt to demonstrate the power of APL2 and such a
simple operation could easily be performed in Java. However, the namespace is sufficient for showing how to
call APL2 from different types of components under WebSphere without adding any confusing complexities
that a sophisticated example might require.

Finally, as you work through the examples, you will find that you are performing some of the same steps over
and over. This is deliberate. WebSphere Studio Application Developer can seem daunting at first. But you
will probably find that after you work through a few examples, the process of building applications is actually
not that complicated. By following the steps of all the examples, you hopefully will gain enough experience
with WSAD that you will feel comfortable navigating through the tool’s facilities by yourself.

Example 1: Using APL2 from a Servlet

A servlet is a Java class that implements methods described by the J2EE specification. These include methods
to handle servlet initialization, destruction, and configuration in addition to methods for processing different
types of client requests. By implementing the appropriate methods, a servlet will be suitable for use by a J2EE
web server. The server calls the servlet’s methods passing argument objects as described by the J2EE
specification. These objects can be used to call services provided by the server.

Servlet authors typically do not write all the different types of methods described by the J2EE specification.
Instead, they write classes that extend the Jjavax.servlet.http.HttpServlet class. The HttpServlet
class provides implementations for all the methods required by J2EE. Servlet authors merely have to provide
their own implementations of those methods they want to override. The doGet and doPost methods, which
process client requests, are typically the only methods overridden. doGet and doPost are passed objects
representing the request and response. The methods use these arguments to determine the contents of the
request and to build the response.

The example demonstrates how to build a servlet that implements the doGet and doPost methods. These
methods are typically used to process requests built by HTML forms. The example servlet expects a request to
contain two parameters named VALUE 1 and VALUE 2. The servlet converts the parameters to numeric
values, computes their average, and builds HTML containing the result.

There are 10 steps in this example:

1. Create an Enterprise Application Project
2. Create a Web Project

3. Create a Java Package

4. Create a Servlet

5. Edit the Servlet’s Source Code

6. Create a Server

7. Test the Servlet

8. Change the Context Roots (Optional)

9. Change the URL Mapping (Optional)
10. Shutting Down the Server

10

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServlet.html

Create an Enterprise Application Project

The first step is to build an Enterprise Application Project. The Enterprise Application Project will eventually
contain a list of all the other projects in the application.

Pull down the File menu and then select New and Enterprise Application Project. This displays the New
Enterprise Application Project wizard:

4k New Enterprise Application Project §|

J2EE Specification version
Select an J2EE specification wersion For the Enterprise Application Project, %

" (Create J2EE 1.2 Enterprise &pplication project

Create an Enterprise Application project according ko
the J2EE 1.2 specification,

{* {reate JZEE 1.3 Enterprise Application project!

Create an Enterprise Application project according ko
the J2EE 1.3 specification,

| Bext = | Cancel

Select Create J2EE 1.3 Enterprise Application project and push Next

11

The wizard now prompts you for the project name:

4 New Enterprise Application Project

Enterprise Application Project

Create an Enterprise Application project containing one or more module
projects,

Project name: | Exercisel Eap

< Back Mext = | Einish |

x|

=

Project location: |C:'|,D|:u:uments and SettingsiAdministrator LIEETAGHD Browse, ..

Cancel

Enter ExerciselEap and push Finish.

The ExerciselEap project should now appear in the list of projects in the Enterprise Applications folder in

the J2EE Hierarchy view.

12

Create a Web Project

Next create a web project. The web project will eventually contain all the web components in the application.
(The Exercisel application only contains one web component, a servlet.)

Pull down the File menu
Select New
Select Dynamic Web Project

This displays the New Dynamic Web Project wizard:

4P New Dynamic Web Project

Dynamic Web Project
Create a Web project For dynamic conkent (HTML files, 15Ps, and Servlets), m

Project name: | ExerciselDwp

Project location: | C\Documents and Settings) Administrator, LIEETAGHOME My Docu Browse. .,

[iZonfigure advanced options:

| | Einish | Cancel

Enter ExerciselDwp in the Project name field and press Finish.

13

You will be prompted to switch to the Web Perspective.

€F Confirm Perspective Switch [z

This kind of project is associaked with the ‘Web Perspective, Do wou wank to
switch b this perspective now?

[Do ok show this message again

Since the Web Perspective will be useful in a little while, press Yes.

The ExerciselDwp project should now appear in the list of projects in the Web Perspective’s Project
Navigator view.

14

Create a Java Package

You must now create a Java package. Java packages contain classes that are related and work together. You
will create a package that will eventually contain just one class, a servlet class.

Pull down the File menu and select New and then Other... to display the New wizard:

4 New [‘5__<|
Select %‘4}
Create a Java package ﬁ
Component Test @ isual Class
+- Data @ Java Project
Eclipse Modeling Framework @ Fedege
EJE @‘ Zlass
Exarmnple EMF Model Creation Wizards 6"’ Interface
12EE N
Scrapbook Page
+- lava @ i ?

Plug-in Development @Saurce ek ey

Remote File Transfer
Server
Simple
Symptom Database
ML Yisualizakion
+- Wieb
Web Services
*ML
+- Examples

| Mexk > | Zancel

Select Java on the left and Package on the right. Then press Next.

The wizard now prompts you for the package name:

x]

4 New Java Package

Java Package

Create a Java package. %

Creates Folders corresponding to packages,

Source Folder: |Exerciselpr,l'Java5u::urce Browse, ., |

Marne: | can.ibm, apl2, exercisel

< Back | | Einish | Zancel

Make sure the Source Folder field shows ExerciselDwp/JavaSource.
Then enter com. ibm.apl2.exercisel in the Name field and press Finish

The com.ibm.apl2.exercisel package should now appear in the Java Resources folder of the
ExerciselDwp project in the Web Perspective’s Project Navigator view.

16

Create a Servlet

You have now finished creating your application’s projects and are ready to create your servlet.

Pull down the File menu and select New and then Servlet to display the New Servlet wizard:

4F New Servlet

Servlet

Create a new Serviet,

| il ef

Falder: | IExzercise1Dwp)JavaSource Browse, .,
Java package: | o, ibrm. apl2. exercisel Browse. ..
Class name: | ExerciselServiet]

Superclass: | javax. serviet.htkp HetpServlet Browse, .,

Mext = | Einish | Cancel

The wizard prompts you to provide a folder, a package name, and a class name. WSAD uses this information to
determine where to put the servlet.

Press Browse next to the folder and navigate to the /ExerciselDwp/JavaSource or type it in the Folder
field.

Press Browse next to the Java package and navigate to the com. ibm.apl2.exercisel or type it in the
Java package field.

Type ExerciselServlet in the Class name field.
Notice the servlet’s superclass is javax.servlet.http.HttpServlet. This is the class that was

mentioned earlier and includes most of the servlet’s function. We will only override a few methods. Press Next
to proceed to this stage in the wizard.

17

The wizard now prompts you for information about what type of methods the servlet should support. The
wizard will automatically generate source code stubs for the methods selected here.

4 New Servlet E'
Servlet
Specify modifiers, interfaces to implement, and method skubs to @
generate,

Maodifiers: [Public [abstract [Final
Options: [Use Single Thread Model

Interfaces: add. ..

Which method stubs would wou like to create?

[init() [koString() [getServletInfol)
[v doPask() [doPut() [doDeletel)
[destroy)) v doGet)

[Inherited abstract rethods

[Constructors from superclass

] Einish | Cancel

< Back

Check Public, doPost, and doGet. Clear all other check boxes and press Next

18

The wizard now prompts you for whether the servlet should be added to the web . xm1 file.

4P New Servlet [g|
Deployment Descriptor
Specify information to add to the deplovment descriptor, @

[v &dd boweb,xml

Servlet Name: | ExerciselSeryvlet

Marne Yalue | Add

Inik
Paramekers:

|

[ExerciselSerylet Add

RL
Mappings:

The web . xm1 file contains the project’s deployment descriptor information. The servlet needs to be added to
the deployment descriptor in order for it to be deployed to the web server. Since we want this servlet to be
deployed, leave this box checked, and press Finish.

The ExerciselServlet. java file should now appear in the com. ibm.apl2.exercisel package in

the Java Resources folder of the ExerciselDwp project in the Web Perspective’s Project Navigator view.
The wizard will also open the ExerciselServlet. java file in a Java Editor. It is ready for editing.

19

Edit the Servilet’s Source Code

When the new servlet wizard finished creating the servlet, it opened a new view showing the servlet’s source
code. You now need to edit this source code.

Add the following line of code to both the doGet and doPost methods (between the curly braces):
processRequest (req, resp):;

Notice both the added lines have an error icon on the left side of the editor view. Position the mouse pointer
over the error icon and hold it there a moment. An error message will be displayed.

Press Ctrl+S (or select Save from the File pull-down menu) to save the source code changes.

Click on the Tasks tab in the bottom view. Notice the Tasks view shows the same two error messages. The
WebSphere Application Developer performs incremental compilation every time you save changes to files.
Any errors discovered during compilation are displayed in the Tasks view. You can double click on an error
message in the task view to navigate to the line with the error. You can also use the Tasks view to fix errors.
Right click on either of the error messages.

Select Quick Fix... from the popup menu

Select Create method ‘processRequest(..)” and push Ok.

Switch to the Java editor view and notice the processRequest method has been added.

Press Ctrl+S and notice the error messages disappear.

20

Now you need to provide the actual code for the processRequest method. Copy and paste the following
code into the processRequest method:

//* Use the servlet’s request object to extract the parameters
String Stringl = reqg.getParameter ("WALUE_1") ;
String String2 = reqg.getParameter ("VALUE_2") ;

//* Make sure they're not empty

if (Stringl == null) Stringl = "0";
if (String2 == null) String2 = "0";
if (Stringl.compareTo("") == 0) Stringl = "0";
if (String2.compareTo ("") == 0) String2 = "0";

//* Extract their numeric wvalues

double Valuel = 0;

double Value2 = 0;

try {Valuel = java.lang.Double.parseDouble(Stringl) ;}
catch (NumberFormatException e) {}

try {Value2 = java.lang.Double.parseDouble(String2) ;}
catch (NumberFormatException e) {}

//* Calculate the average
double Average = 0;
Apl2interp Apl2 = null;
try {
Apl2 = new Apl2interp() ;
Apl2object Vector = new Apl2object (Apl2,
new double[] { Valuel, Value2 });
Apl2.Associate ("AVERAGE", 11, "AVERAGE") ;
Apl2object Result = Apl2.Execute ("AVERAGE", Vector) ;
Average = Result.doubleValue() ;
}
catch (Apl2exception e) {}
if (Apl2 != null) try {Apl2.Stop();} catch (Apl2exception e) {}

//* Use the response object to get a PrintWriter object

//* and build the HTML result.

PrintWriter out = resp.getWriter();

out.println ("<HTML>") ;

out.println ("<HEAD><TITLE>Exercise 1 Average</TITLE></HEAD>") ;
out.println ("<BODY>") ;

out.println ("<p>");

out.println ("Average: " + Average) ;

out.println("</BODY>") ;

out.println ("</HTML>") ;

Press Ctrl+S and notice several new error messages appear in the Tasks view. The Apl2 and PrintWriter classes
can not be resolved because we have not yet imported the packages that contain them. Add the following
statements after the package statement at the beginning of the file:

import com.ibm.apl2.*;
import java.io.PrintWriter;

Press Ctrl+S again to save the changes.
Notice the PrintWriter error message disappeared, but the Apl2 messages did not. This is because the compiler
does not know where to find the Apl2 classes. To fix this, we must add the apl2.jar file to the path used by the

compiler when building classes.

In the Project Navigator view, right click on ExerciselDwp and select Properties. This will display the
Properties dialog for the ExerciselDwp project:

4P Properties for Exercise1Dwp |:|@@

Infa Java Build Path
BeanInfo Path
rullders £ Source] &% Projects W Libraries l Tl ©rder and Export]
e —— JAR= and class Folders on the build path:
Java Compiler
lavador Location +- (3 SERVERIDE_S0_PLUGIMNDIRfjreflibfrt.jar - C:\Program File Add JARs... |
Java JaR Dependencies +1- (WS _S0_PLUGIMNDIRb fivieib35s. jar - C:iProgram Files)IBI
Java Task Tags +- (3 WAS_S0_PLUGINDIR/lib/jzee.jar - C:\Program FilesiIEMiw Add External JARs. .. |
5P Fragment: +1- WS _S0_PLUGIMNDIRE runtime . jar - C:A\Program Files\IBF FEE—— |
Links YalidationRefackaring +- 3 WAS_50_PLUGINDIR/lib)servietevent jar - CYProgram File -
Project References fdd Library. .. |
Server Preference
Skruts &dd Class Eolder. .. |
Yalidation
Web |
Web Content Settings
Web Library Projects |
Web Project Features
WS-I Compliance

£ »

Default outpat Folder:
ExerciselDwpwebContent\WEB-INF fclasses Browse, .,

(0] 4 | Cancel |

Select Java Build path on the left and the Libraries tab on the right.

Press the Add External JARs... button to open the JAR Selection dialog:

22

JAR Selection X

Look, jn: |&i j IiF "
_2 apl2 jar
ty Hecent
Documents
—
[
Dezktop

My Documents

by Computer

My Metwork. File name: |a|:|l2.iar j Open |
Places
Files of twpe: | * jar:* zip j Cancel

Navigate to the \ ibmapl2w\bin folder and select the ap12. jar file. Press Open to close the JAR
Selection dialog and then press Ok to close the project’s Properties dialog.

The Apl2 error messages should all disappear. However, one new error should appear. The code does not
handle IOException exceptions. Use the Tasks view to fix this problem too. Right click on the error message
and select Quick Fix...

4k Quick Fix 3

Byvailable Fixes:

&dd throws declaration

| Ik | Cancel

Select Add throws declaration and press Ok. Then, press Ctrl+S to save the changes.. There should now be no
error messages in the Tasks view. Close the ExerciselServlet. java file.

23

Create a Server

You are now almost ready to test your servlet. The last thing to do is create a server.

First, switch to the Server Perspective by pulling down the Window menu and selecting Open Perspective and
then Server

In the Server Configuration view (in the lower left corner of the workbench), right click on the Servers folder.
Select New and then Server and Server Configuration to display the Create a New Server and Server
Configuration wizard:

4k Create a New Server and Server Configuration

Create a new server and server configuration

Choose the properties For the new server, -
SErVEr Name: | ExerrisesSeryer
Folder: j
aerver bype: - L@ WehSphere version 5.1 ”
@ Express Server
@ SErVEr

@ Test Environment
@' Express Server Attach
@' Server Sttach
Ea WebSphere version 5.0
Ea Web3phere version 4.0
E_E; Apache Tomcak wersion 4.1 w

+

+

+

Description: Runs J2EE projects aut of the workspace on the local besk environment,

Server configuration kype; % wWebsphere +5.1 Server Configuration

Descripkion: & server canfiquration Far ‘\WebSphere version 5.1,

Mext = | Einish | Cancel

Enter ExercisesServer in the server name field. Then, make sure WebSphere version 5.1 and Test
Environment is selected, and press Finish.

The ExercisesServer should now appear in the Servers folder of the Server Configuration view.

24

Recall that when we added the servlet’s source code that used the Apl2 classes, the compiler needed to be
instructed where to find the APL2.jar file. The server will also need this information.

In the Server Configuration view, right click on ExercisesServer and select Open. This opens the server’s
stacked configuration views. Select the Environment tab at the bottom of the stacked views. Add the apl2.jar
file to the server’s Class Path:

Collapse the ws.ext.dirs section.

Expand the Class Path section.

Press Add External JARs...

Navigate to \ibmapl2w\bin and select apl2.jar.
Press Open

Notice that there is an asterisk next to the text in the titlebar of the Environment view. This indicates there is an
unsaved change in this view. Press Ctrl+S to save the change. The asterisk should disappear.

Close the Environment view by clicking the X in the view’s titlebar.

25

Test the Servlet

Now, you are finally ready to test your servlet.

Switch to the J2EE Perspective. You can click on the J2EE Perspective icon on the Perspective Toolbar on the
left edge of the workbench. Then, select the Project Navigator view.

In the Project Navigator view, right click on ExerciselServlet. java and select Run on Server... This
displays the Server Selection dialog:

4 Server Selection [$_<|

Server selection

Select which server to launch, Q

(* Use an existing server

Server Status |
ﬁﬁ.plZDemuServer Mot configured
; ErCisesaerver Mot configured

Skakus: The server will be automatically configured For this project

" Create a new server

5
=)
+ Lg
504
504
+- [z ;

[Set server as project default {do not prompt)

| Einish | Cancel

Check Use an Existing Server and select the ExercisesServer. Then press Finish to start the server.

Note: The server will attempt to open a port and listen for connections through the network. If you have
firewall software installed, you may be prompted to allow the program to have internet access. Answer yes.

Starting the server will take a while. Please be patient. As it is starting, you can select the Console view in the
bottom stacked notebook. The Console view shows the progress and error messages produced by the server.

Eventually, the server will start and produce the following message:

Server serverl open for e-business

Once the server starts, a Web Browser view will open showing the results of the servlet.. It should simply
display the word Average and the value 0.0. This is because the servlet was not passed any parameters and it
used the default values of 0. You could build an HTML page with a form that prompted the user for two values
and passed them to the servlet. For now though, to test the servlet, type the following URL in the web
browser’s address bar:

http://localhost:9080/ExerciselDwp/ExerciselServlet?VALUE 1=4&VALUE 2=6

This should display the average of 4 and 6 as the floating point value 5.0.

Note: If you start the APL2 SVP Monitor window and turn on trace, you can see that each time you hit enter in
the Web Browser view, APL2 signs on and signs off.

27

http://localhost:9080/Exercise1Dwp/Exercise1Servlet?VALUE_1=4&VALUE_2=6

Change the Context Root (Optional)

Notice that the URL in the Web Browser’s address field appears to include the name of the ExerciselDwp
Dynamic Web Project. Actually, it is not the project name; it is the project’s context root. The context root is
used to group your application’s components in the same URL domain. It defaults to the project name.

You may want to change the context root to a more user-friendly name. For example, if the project name is
accountingversion2.1, you could use a version independent name like OnlineBanking. To change the context

root, use the web project’s Properties dialog:

Right click on ExerciselDwp in the Project Navigator view and select Properties.

4P Properties for Exercise1Dwp

Info wehb
BeanInfo Path
External Tools Builders Web Project Type: Crynamic Web Project

Java Build Path
Java Compiler

Javador Location Context Root: | Excercise1Dwp)

Java JAR Dependencies web content folder name: | WebContent

Java Task Tags

J5P Fragmenk

Links Yalidation/Refactoring 12EE level; 1.3 -

Project References

Server Preference

Skruts

validation Setting J5P compilation ko ocour duking project builds will imprave perfarmance
Web when running pages on the server,

Web Content Settings This option is only supported For IBM WwebSphere Application Servers (WS and greater).
Web Library Projects Compile J5P files:

Web Project Features

{* when server displays page
W'S-I Compliance

" when project is built in workspace

v

Restore Defaulks | apply |

(04 | Cancel |

Select Web on the left side of the Properties dialog. The Context Root field displays the context root for this
project. You can change it to something more to your liking. Then, press Apply. You will be prompted

whether you want links that reference the context root fixed. This is because the ExerciselEap Enterprise

28

Application Project’s deployment descriptor includes the ExerciselDwp Dynamic Web Project’s context
root. When you are prompted, press Yes.

Press Ok to close the Properties dialog.

When you change the project’s properties, this does not effect the already running server. To have your
changes effect the server, you must restart either the project or the server.

To restart the project, right click on ExercisesServer in the Server Perspective’s Server Configuration
view and select Restart Project... and then select ExerciselEap. You will see messages in the Console
view indicating the project is restarted. You can then type your modified context root to use the servlet.

Change URL Mapping (Optional)

The URL in the Web Browser’s address field also appears to include the name of the servlet. Again, it is not
the servlet name. Rather, it is the servlet’s URL mapping. The URL mapping is used to map the text used in
URLSs to the servlet name. The URL mapping defaults to the name of the servlet.

You may want to change the URL mapping to a more user-friendly name. For example, if the servlet name is
balanceservletversion7.3, you could use a version independent name like AccountBalances. You can modify

the URL mapping in the project’s employment descriptor.

Navigate to the J2EE Perspective and double click on ExerciselDwp in the J2EE hierarchy. This opens the
employment descriptor views for the project. They are stacked in a tabbed notebook.

Select the Servlets tab and then select ExerciselServlet.

Notice the servlet’s URL mapping is listed on the right. You can change it here. For example, if you replaced
/ExerciselServlet with /MyServlet, the URL to use would become:

http://localhost:9080/ExerciselDwp/MyServlet?VALUE 1=4&VALUE 2=6

Use the Add button to add new context roots. Use the Remove button to remove them. After making changes,
press Ctrl+S to save your changes.

When you change the URL mapping in the project’s deployment descriptor, the change does not effect the
already running server. To have your changes take effect, you must again either restart the project or the server.

To restart the project, right click on ExercisesServer in the Server Configuration view and select Restart

Project... and then select ExerciselEzp. You will see the messages in the Console view indicating the
project is restarted. You can then use your modified context root.

29

http://localhost:9080/Exercise1Dwp/MyServlet?VALUE_1=4&VALUE_2=6

Shutting Down the Server

This completes exercise 1 except for one last step.

When you are satisfied that the servlet is working properly you can close the Web Browser view and stop the
server. To stop the server, navigate to the Server Perspective and the Server Configuration view. Right click on
the ExercisesServer and select Stop. You can monitor the processing of the stop request in the Console
view.

30

Example 2: Using APL2 from a Java Server Page

A Java Server Page, or JSP, is an HTML file with imbedded Java code. When a request is received for a JSP,
the application server detects tags that delimit Java code in the HTML. The server automatically generates a
servlet from the code and the HTML. The server then runs the servlet.

There are several tags to delimit Java code. These include:

<@ > Directives to control the servlet generation and compilation
<& %> Declarations of variables and methods

<% &> Code fragments

<%= %> Code expressions

<%-- --%> Comment

The servlet generated and run by the server automatically includes objects named request and response which
the JSP code can use to call services provided by the server.

For more information about JSPs, consult http://java.sun.com/products/jsp.

The example demonstrates how to build a JSP that prompts the user for two values. The JSP converts the
values to numbers, uses APL2 to compute their average, and returns HTML containing the result.

There are 6 steps in this example:

Create an Enterprise Application Project
Create a Web Project

Create a Java Server Page

Edit the JSP’s Source Code

Test the JSP

Shutting Down the Server

A

31

http://java.sun.com/products/jsp

Create an Enterprise Application Project

Navigate to the J2EE Perspective and the J2EE Hierarchy view.

Select File and New and Enterprise Application Project to display the New Enterprise Application Project
dialog.

Select Create J2EE 1.3 Enterprise Application project and press Next.
Type Exercise2Eap in the Project name field and press Finish.
Exercise2Eap should now appear in the Enterprise Applications folder in the J2EE Hierarchy view.

Create a Web Project

Select File and New and Dynamic Web Project to display the New Dynamic Web Project dialog.
Type Exercise2Dwp in the Project name field.

Check Configure advanced options and press Next.

Ensure the EAR project field contains Exercise2Eap.

Notice you could set the project’s context root in this dialog.

Press Finish.

You will be prompted to switch to the Web Perspective. Since the Web Perspective will be useful in a little
while, press Yes.

Exercise2Dwp should now appear in the Project Navigator view of the Web Perspective.

32

Create a Java Server Page

You have now finished creating the exercise’s projects and are ready to create your JSP.

Select File and New and JSP File to display the New JSP File dialog.

& New JSP File X
J5P File
Specify a name and location For the new 15P file, @
Folder; | [ExercisezDnwap/\WebZontent Browse. .,
File: Marne: | Exercisez 5P, jsp
Markup Language: |HTML j
Cpkions: [Create from page template
| Create as J5P Fragment
-
Model: |Nu:une j

Generate a new blank J5P page.

Mexk > | Einish | Cancel

Ensure /Exercise2Dwp/WebContent is in the Folder field.
Type Exercise2JSP. jsp in the File name field and press Finish.

The Exercise2JSP. Jsp file should now appear in the Exercise2Dwp/WebContent folder in the Web
Perspective’s Project Navigator view.

A new editor view should also open showing the JSP. Notice there are three tabs in the stack of editor views.

The Design tab is a WYSIWYG page editor. The Source tab is a source code editor. The Preview tab displays
how the page will look in a browser. Switch to the Source view of the JSP.

33

Edit the JSP’s Source code

You now need to edit the JSP’s source code.
The automatically generated JSP’s body contains one line: <P>Place content here.</P>

Use copy and paste to replace the body with the following code:

<Hl1>Exercise 2 JSP</H1>

<H2>Average of Two Numbers</H2>

<FORM method="POST" action="/Exercise2Dwp/Exercise2JSP.Jjsp">
<%

String Stringl request.getParameter ("VALUE 1");

String String2 = request.getParameter ("VALUE 2");

if (Stringl == null) Stringl = "0";
if (String2 == null) String2 = "0";
if (Stringl.compareTo("") == 0) Stringl = "0";
if (String2.compareTo("") == 0) String2 = "0";

double Valuel = 0;

double Value2 = 0;

try { Valuel = java.lang.Double.parseDouble (Stringl); }
catch (NumberFormatException e) {}

try { Value2 = java.lang.Double.parseDouble (String2); }
catch (NumberFormatException e) {}

%>

<P>Value 1: <INPUT name="VALUE 1" value="<%=Valuel%>"

maxlength="20" size="20" type="text">

<P>Value 2: <INPUT name="VALUE 2" value="<%$=Valuel2%>"
maxlength="20" size="20" type="text">

<P><INPUT name="SUBMIT" type="submit" value="Average">
</FORM>

<%
double Average = 0;
Apl2interp Apl2 = null;
try |
Apl2 = new Apl2interp();
Apl2.Associate ("AVERAGE", 11, "AVERAGE");
Apl2object Vector = new Apl2object (Apl2, new double[]
{ Valuel, Value2 });
Apl2object Result = Apl2.Execute ("AVERAGE", Vector);
Average = Result.doubleValue();
} catch (Apl2exception e) {}
if (Apl2 != null)
try {Apl2.Stop();} catch (Apl2exception e) { }
%>
<P>
<H4>Calculated Average: <%=Average%$></H4>

34

Press Ctrl+S to save your changes. Notice that several messages appear in the Tasks view indicating the
compiler can not resolve the Apl2 classes. Add the apl2.jar file to the Exercise2Dwp properties:

Right click on Exercise2Dwp in the Project Navigator view. Select Properties to display the Properties for
Exercise2Dwp dialog.

Select Java Build Path on the left. Select the Libraries tab on the right.
Push the Add External JARs... button.

Navigate to \ibmapl2w\bin, select apl2.jar, and press Open.
Press Ok to close the Properties for Exercise2Dwp dialog.

Notice the messages still do not go away. This is because we need to add code to the JSP to import the classes.
There is a <$@ page directive near the top of the JSP. This directive provides information to the server about
how to generate the servlet. Add a line with the following import value to the page directive:
import="com.ibm.apl2.*"

Press Ctrl+S to save the change. There should now be no messages in the Tasks view.

Close the Exercise2JSP. jsp file.

Test the JSP

You are now ready to test your JSP.

In the Project Navigator view, right click on Exercise2JSP. jsp and select Run on Server... to display the
Server Selection dialog:

Check Use an Existing Server and select the ExercisesServer. Then press Finish to start the server.
Starting the server will again take a while. When the server has started and is ready for e-business, the Web
Browser view will show the JSP’s form. The input fields and result will display the default values of 0. Type
some numbers and press enter.

Notice the URL again appears to contain the project and JSP names. Once again, these are not resource names.
Rather, they are the context root and URL mapping. They can be changed for JSPs just as they were for

servlets.

Shutting Down the Server

This completes exercise 2 except for shutting down the server.
Close the Web Browser view.

Navigate to the Server Perspective and the Server Configuration view.
Right click on the ExercisesServer and select Stop.

35

Example 3: Using APL2 from an Enterprise Java Bean

A Enterprise Java Bean, or EJB, is a set of Java classes that together implement business logic and can operate
in an EJB container. An EJB container is a portion of an application server which provides a set of services that
is defined by the J2EE specification.

EJB containers provide a wealth of services including EJB location, transaction processing, messaging, mail,
XML parsing, multithreading, resource management, persistent data management, and security control. By
using these services, authors can reuse standard code rather than having to rewrite these facilities. In addition,
EJBs are platform independent; they are written to use the J2EE EJB container platform rather than any
particular operating system platform. In addition, using the server’s services, as provided by the container, an
EJB can be concurrently used by many different types of applications. EJBs can be written so they can be
distributed across multiple machines and so load balanced by the server.

There are three types of Enterprise Java Beans:

» Session beans represent business logic
» Entity beans represent state information
» Message beans process messages

Since APL2 is well suited for implementation of complicated algorithms such as are used in business logic, the
example demonstrates how to use APL2 in a session bean.

EJBs are designed to be distributed. The EJB architecture includes features which enable a consistent approach
to this distribution. EJBs are never used directly by clients. Instead, they provide a set of interfaces through
which clients can access the EJB. These interfaces work with the server and handle EJB location and network
communication (in the case of distributed EJBs.)

The first two interfaces are called the Home and Object interfaces. The home interface’s create method is used
to create instances of EJB classes. The create method returns an object interface. The client uses the object
interface to make method calls to the instance of the EJB.

The technique used for locating the home interface depends on whether the EJB is on the same or another
machine. The Local interface is used to locate EJBs on the same machine. The Remote interface is used to
locate EJBs on other machines. The EJB container provides a lookup service called the JNDI service. The
client uses a JNDI service and the EJB name to locate a local or remote interface. The client then uses the local
or remote interface to locate the EJB’s home interface.

When an EJB is written, application methods must be placed on either the local or remote interface, or both,
before clients can access the methods.

This use of home, object, local, and remote interfaces enables the EJB container running in the server to manage
the creation and lifetime of EJBs. Unlike servlets, an EJB is not created for each request. Instead, the
container creates and reuses EJBs as they are needed and manages them in a pool. The lifetime of an EJB may
be as long as an application is deployed and started on a server. An EJB may, and often will be, used by many
clients during its lifetime. This is useful for APL2. The APL2 interpreter can be started when the EJB is
created and reused for multiple requests rather than started and stopped for each request.

36

Although the EJB architecture sounds complicated, and it is, developers do not have to write all these different
interfaces and their supporting code. WSAD generates almost all the code. Developers merely have to write
the code that implements their business logic and identify those methods which should be accessible to local
and remote clients.

The example demonstrates how to build a simple EJB that starts an APL2 interpreter and associates a name with
a function in a namespace when it is created, has a method on the remote interface which calls the APL2
function, and shuts down APL2 when the EJB is destroyed. The example uses the Universal Test Client, a
component of WSAD which can be used to test EJBs.

There are 7 steps in this example:

Create an Enterprise Application Project
Create an EJB Project

Create a Java Package

Create an Enterprise Java Bean

Edit the EJB’s Source code

Generate the Deployment and RMIC Code
Test the EJB

Shutting Down the Server

S Ao

37

Create an Enterprise Application Project

Navigate to the J2EE Perspective and the J2EE Hierarchy view.

Select File and New and Enterprise Application Project to display the New Enterprise Application Project
dialog.

Select Create J2EE 1.3 Enterprise Application project and press Next.
Type Exercise3Eap in the Project name field and press Finish.

Exercise3Eap should now appear in the Enterprise Applications folder in the J2EE Hierarchy view.

38

Create an EJB Project

Unlike servlets and JSPs, EJBs are not stored in Web Projects.
because EJBs are not web components and are managed by EJB containers rather than web containers.

Select File and New and EJB Project to display the New EJB Project dialog:

X]

4 New EJB Project

Select an EJB ¥ersion.

Select the EJB spec wersion For the project you want to create.

" Create 1.1 EJB Project,

Create an EJE Project according to the EJE 1.1
specification.

{* Lreate 2.0 EJB Project.;

Create an EJB Project according to the EJE 2.0
specification,

| MNext = |

[S

Cancel

EJBs are stored in EJB projects. This is

Select Create 2.0 EJB Project and press Next to proceed to the next page of the wizard where you will enter the

project name.

39

4F New EJB Project [g

EJE Project

Create an EJB Project and add it to a new or existing Enterprise 3
Application project,

Project name: | Exercise3EIGProject

Project location: |C:'|,D|:u:uments and Settingsiadministrator, LIEETAGHOM — Browse, .,

| Create EJE client JAR project

EAR project: |ExerciseSEap ﬂ Mew..,

< Back Mext > | Einish | Cancel

Type Exercise3EJBProject in the Project name field.

Select Exercise3Eap in the EAR project field. The field is named the EAR project field because Enterprise

Application Projects are stored in Enterprise Archives, or EAR, files.
Press Finish.

Exercise3EJBProject should now appear in the EJB Modules folder in the J2EE Hierarchy view of the
J2EE Perspective.

40

Create a Java Package

You must now create a Java package to hold your EJB’s source code.

Select File and New and Other... to display the New dialog:

4 New

Select

Create a Java package

Camponent Test

+|- Dnaka
Eclipse Modeling Framework,
EJE
Example EMF Model Creation Wizards
JZEE

+- Java
Plug-in Development
Remote File Transfer
Server
Simple
Symptom Database
1ML visualization

+- Web
Web Services
ML

+- Examples

@'-.-‘isual Class
I‘i’r‘ Java Praoject
e8P ackage
@“ lass
@" Interface

Eﬂ;'\. Scrapbook Page
@Suurce Folder

| Mext = | Cancel

Select Java on the left and Package on the right and press Next.

41

4 New Java Package

x]

Java Package

Create a Java package. %

Creates Folders corresponding to packages,

Source Folder: |ExerciseSEJBF‘rDject,l'ejI:uMndule Browse, ., |

Mame: | com.ibm. apl2. ejbs

< Back | | | Einish | Zancel |

Type Exercise3EJBProject/ejbModule in the Source folder field. (You can also use the Browse...
button to navigate to this folder.)

Type com.ibm.apl?2.ejbs in the Name field and press Finish.

If you switch to the Project Navigator view, you can see that the com.ibm.apl2.ejbs package now appears
inthe Exercise3EJBProject project’s ejbModule folder.

42

Create an Enterprise Java Bean

You have now finished creating the exercise’s projects and are ready to create your EJB.

Select File and New and Enterprise Bean to display the New Enterprise Bean dialog:

4F New Enterprise Bean [5_<|

Select

Create an Enterprise Bean @

Select an EJE projeck to create an EJB 1.1 or an EJB 2.0 enterprise bean.

EJE project: |sEisE=e =)o)l Ty

| Mext = | Cancel

Select Exercise3EJBProject in the EJB project field and press Next to proceed to the next stage of the
wizard in which you will select the EJB type.

43

4 Create an Enterprise Bean

Create a 2.0 Enterprise Bean

Select the EJB 2.0 tvpe and the basic properties of the bean.

" Message-driven bean
{* Session bean
" Entity bean with bean-managed persistence (BMP) fields

" Ertity bean with container-managed persistence (CMP) Fields

f'“ i
EJE project: Exercise3EJEProject
Bean name: | Exercise3EIB
Source Faolder: | ejbModule

3

Default package: | com.ibm, aplz . ejbs

< Back | Mext = |

Browse, ..

Cancel

Recall that there are four types of Enterprise Java Beans: message-driven beans, session beans, and entity beans.

Session beans are the appropriate type to use with APL2.
Check Session Bean.
Type Exercise3EJB in the Bean name field.

Verify that the Source folder field contains e jbModule.

Type com.ibm.apl?2.ejbs in the Default package field and press Next to proceed to the next stage in which

you will specify the attributes of the session bean.

44

4 Create an Enterprise Bean

x]

Enterprise Bean Details

Select the session bvpe, kransaction tyvpe, supertvpe and Java classes For the EJE 2.0 @
session bean,

Session bype
" Skakeful (¥ Stateless

Transaction type

* Container " Bean
Eean supertype: |::n1:une:=- j
Bean class: |cum.ibm.aplz.ejbs.ExerciseSEJBBean Package. .. | Class... |
EJE binding name: | eib)comfibr) aplzfeibsExercise3E JBHOMme

[Local client views

Local home intetface: | | |

Local inkerface: | | |

Iv Remote client view

Remate home interface: |n:u:um.iI:um.apIZ.ejbs.ExerciseSEJBHnme Package... | Class... |

Femate inkerface: |l:l:um.i|:|m.apIE.Ejbs.ExerciSESEJB Package... | Class, ., |

<gack | HeES | Ensh | cConce

There are two types of session beans: stateful and stateless. Stateful beans use EJB container services to store
data that persists across uses; stateless beans do not. These services can not be used to store APL2 data because
APL2 data is not serializable so session beans that use APL2 should be stateless.

Select the Session type: Stateless.

Each time a client uses an object interface to call an EJB method, it is called a transaction. Session beans can
either manage their own transactions or let the container do it. Our bean will use the container’s transaction

management.

Select the Transaction type: Container.

45

Although the example uses WSAD’s Universal Test Client which runs on the same machine as the EJB, the
steps shown later in the example demonstrates building an EJB with a method on the remote interface.

Check Remote client view.

Notice that the wizard has used the bean name to generate a lot of other types of names. These names will be
automatically used as the client locates the local, remote, and home interfaces.

Press Finish to generate the EJB.
Switch to the J2EE Hierarchy view. Notice that the Exercise3EJB bean now appears in the Session Beans

folder in the Exercise3EJBProject. Notice also that three resources appear inside Exercise3EJB bean.
These three files contain the Java source code that make up the EJB.

46

Edit the EJB’s Source code

The J2EE hierarchy view shows that the New Enterprise bean wizard generated three resources:

Exercise3EJBHome
Exercise3EJB
Exercise3EJBBean

For this example, only the third, Exercise3EJBBean needs to be edited. So, double click on
Exercise3EJBBean to open the Java Editor. Notice the wizard generated several methods for you. These
methods are called by the server to initialize, terminate, and otherwise manage the EJB. There are two we care
about: e jbCreate and ejbRemove. These methods are called when the EJB is created and destroyed. We
will insert code in them to start and stop an APL?2 interpreter. We will also add some instance variables and a
new method which a client can call.

Add the following statement after the package statement at the top of the file:
import com.ibm.apl2.*;
Add the following two statements after the declaration of mySessionCtx:

private Apl2interp Slave = null;
private Apl2object Function = null;

Add the following code to the e jbCreate method:

Slave = null;
try {
Slave = new Apl2interp();
Function = new Apl2object (Slave, "AVERAGE"):;
Slave.Associate ("AVERAGE", 11, Function);
} catch (Apl2exception Exception) {
if (Slave != null) {
try |
Slave.Stop () ;
} catch (Apl2exception StopException) {
}
Slave = null;
}
throw new javax.ejb.CreateException (
"Unable to initialize APL2 environment");

47

Add the following code to the e jbRemove method:

try f{

Function.Free() ;

Slave.Stop () ;
} catch (Apl2exception Exception) {
}

And finally, add the following method to the end of the file (before the last curly brace):

public double Average (double[] Array) {
double Result = 0;

try {

aplintArray);
aplintArray.Free ()
Result = aplAverage.doubleValue()
aplAverage.Free () ;
} catch (Apl2exception e) {

System.out.println ("Exception message:
e.getMessage ()) ;

}

return Result;

Apl2object aplintArray = new AplZ2object (Slave,
Apl2object aplAverage = Slave.Execute (Function,

System.out.println ("Apl2exception caught");

System.out.println ("Event: " + e.Type + + e.Code);

Notice that many of the inserted lines are flagged with error icons on the left side of the editor. Press Ctrl+S to

save the changes and notice that many error messages also appear in the Tasks view. They are all produced
because the compiler can not find the Apl2 classes. Fix this by adding the apl2.jar file to the project:

Right click on Exercise3EJBProject and select Properties.
Select Java Build Path on the left and the Libraries tab on the right.
Press the Add External JARs... button.

Navigate to \ibmapl2w\bin, select apl2.jar, and press Open.
Press Ok to close the Properties for Exercise3EJBProject dialog.

The messages should all disappear.

If it is not already active, switch to the J2EE Perspective. Then, select the Outline view in the stack of views in

the lower left corner.

The Outline view shows all the fields and methods in the EJB you are editing. Notice that the list includes the

Average method you added to the EJB.

48

The Average method needs to be added to the remote interface so that it can be used by clients.

Right click on the Average method in the Outline view. Select Enterprise Bean, and Promote to Remote
Interface.

Notice the Average method now has a small R next to it. This indicates the method is available through the
remote interface.

Close the Exercise3EJBBean. java file.

49

Generate the Deployment and RMIC Code

Although we have specified the EJB should be a stateless session bean and promoted the Average method to the
remote interface, we do not yet have all the utility code in place to actually implement these protocols and
enable the EJB to communication with the EJB container and be callable by clients. To generate this code, we
instruct WSAD to generate deployment and RMIC code.

In the J2EEHierachy view, right click Exercise3EJBProject and select Generate and then Deployment
and RMIC Code... to display the Generate Deployment and RMIC Code dialog:

Generate Deployment and RMIC Code

Generate Deployment and RMIC Code for the selected Enterprise Beans

The selected beans have changed during this session and need updated deplovment code,

Select all Deselect all Defaulk

Einish | Cancel

Select Exercise3EJB and press Finish.

Using the Project Navigator view, look in the com. ibm.apl2.ejbs package. Notice there are now a large
number of Java source files. These files implement the required interfaces.

50

Test the EJB

You are now ready to test your EJB.

Switch to the Web Perspective’s Project Navigator view.
Expand Exercise3EJBProject, ejbModule, and com. ibm.apl?2.ejbs.
Right click Exercise3EJB. java and select Run on Server... to display the Server Selection dialog.

Check Use an Existing Server, select ExercisesServer, and press Next to display the Select Tasks dialog:

4 Select Tasks §|

Select Tasks

Select the tasks ko complete before launching the server, Q

Tasks for: Exercise3EJBProject

Generate EJB deploy and RIMIC code

< Back | Einish | Cancel

Check Deploy EJB Beans and press Finish.

51

Starting the server will again take a while. Please be patient again.

Unlike the JSP, the EJB does not include any HTML. It can’t even be called directly by a client like the servlet.
So, WSAD will automatically start a program called the Universal Test Client. The Universal Test Client is
used to test EJBs. It enables you to manually call an EJB’s home interface’s create method to create an instance

of the EJB and then call methods on the remote interface.

In the left pane of the Test Client, is a section called EJB References which should contain Exercise3EJB.
Expand Exercise3EJB. This will display the Exercise3EJBHome interface. Expand it too.

This will display the Exercise3 ejbCreate method. Click on this method.

This will make an Invoke button appear in the right pane.

The Test Client view should now look like this:

@ Exercise3ER create)
i Mo UserTransaction loaded
¥ @’ Object References
i Mo obiject references availab
49 Class References
1 Mo class references available
» #1 utilities

F Results

-

4 IBM Universal Test Client geoogl B @
=@ References) & Parameters i
* &® FIB References

* &% CyorriseIER & com.ibrm.apl2.ejbs Exercise3EIB createl)
~ & Eyercise3EBHome®)
= Method Visihility Invoke

Press the Invoke button to invoke the e jbCreate method to create an instance of the EJB.

Invoking the e jbCreate method will return an Exercise3EJB object. Press the Work with Object button
to work with the EJB. This will make an Exercise3EJB 1 reference appear in the list of EJB references.

52

Expand Exercise3EJB_1. The Average method will now appear.

Click on the Average method. The right pane should now change and prompt you for parameters for the

Average method.
Click on the word Expand.

Click on the word Add twice.

Type two numbers in the parameter entry fields.

Press the Invoke button.

The Test Client should now look something like this:

4 IBM Universal Test Client

i el B @

=@ References w5

* &® FIB References
¥ & Exercize2EIR
» & EyercisesE BHome
¥ @ EyercisesElR 1%
= Method Yisibility
2 double Average{doub

i Mo UserTransaction loaded
¥ @’ Object References
i No ohiject references availab
Class References
i Mo class references available
» #1 utilities

-

Recently added:
Exercise3ElR 1

a3 double fverage(double[])

Parameter Value

= double[]: Collapse Add
double: 12.0
double: 36.0
Irvoke

¥ Results from @ com.ibm.apl2.ejbs. Exercise3EIR. Averagel)

(0 24.0 (double)

| workwith object |

Notice that if you start the APL2 SVP Monitor window the Processors dialog (on the Options menu) shows that
APL2 is signed on. And, if you turn on trace, no trace messages appear when you invoke the Average method.

53

Shutting Down the Server

This completes exercise 3 except for shutting down the server.

Close the Test Client view.
Navigate to the Server Perspective and the Server Configuration view.
Right click on the ExercisesServer and select Stop.

54

Example 4: Using APL2 with the Model-View-Controller Design Pattern

The examples so far have introduced you to using servlets and JSPs and the basic concepts behind EJBs. As
you have seen, it is possible to build an application using APL2 and just servlets and JSPs. But to really
leverage the capabilities of WebSphere Application Server, it is recommended that you use the Model-View-
Controller design pattern and use servlets for application logic, EJBs for business logic, and JSPs for the view
layer. This example will illustrate how to build an application using MVC.

The example application will use a servlet to accept incoming requests, parse the input parameters, and pass
them to an EJB. The EJB in turn will use APL2 to perform the calculation (which will again be a simple
average) and return a numeric result. The servlet will then pass the result on to a JSP for formatting and
generation of the response HTML.

Actually, the application servlet will not call an EJB directly. The complexities of using JNDI to look up EJB
interfaces and then the code to use the local, remote, and home interfaces are too great for inclusion in a servlet;
they would clutter up the servlet and conceal the application logic. Instead, a simpler type of component called
a Java Bean will be used as an interface between the servlet and the EJB. The Java bean will perform the
operations necessary to call the EJB.

A Java bean is just a Java class that follows a few simple rules. Briefly, Java beans are serializable; they
implement the Serializable interface defined in the java.io.serializable package. This means all their
contents must able to be written to disk using Java’s serializing facilities. Secondly, Java bean fields are
implemented as Properties. Properties are private fields for which there are two methods, a getter and a setter.
For example, If there is a field named Value, there will be methods named getValue and setValue. Clients of
the bean call the methods to specify and reference the property. They do not access the field directly. Although
properties are very common Java beans, we won’t need them in this example and so we won’t use this facility.

There are 16 steps in this example:

Create an Enterprise Application Project
Create an EJB Project
Create a Web Project
Create a Java Package for the EJB
Create a Java Package for the servlet and Java bean
Create an Enterprise Java Bean
Edit the EJB’s Source code
Generate the Deployment and RMIC Code
Create a Java bean

. Edit the Java bean’s code

. Create a servlet

. Edit the servlet’s code

. Create a JSP

. Edit the JSP’s code

. Test the Application

. Shutting Down the Server

NN RO =

Pt e e e e e \O
NN B WN = O

55

Create an Enterprise Application Project

Navigate to the J2EE Perspective and the J2EE Hierarchy view.

Select File and New and Enterprise Application Project to display the New Enterprise Application Project
dialog.

Select Create J2EE 1.3 Enterprise Application project and press Next.
Type ExercisedEap in the Project name field and press Finish.

ExercisedEap should now appear in the Enterprise Applications folder in the J2EE Hierarchy view.

56

Create an EJB Project

Select File and New and EJB Project to display the New EJB Project dialog:
Select Create 2.0 EJB Project and press Next.

Type Exercised4EJBProject in the Project name field.

Select Exercise4Eap in the EAR project field.

Press Finish.

ExercisedEJBProject should now appear in the EJB Modules folder in the J2EE Hierarchy view of the
J2EE Perspective.

Add the apl2.jar file to the project’s build path:
Right click on Exercise4EJBProject and select Properties.

Select Java Build Path on the left and the Libraries tab on the right.
Press the Add External JARs... button.

Navigate to \ibmapl2w\bin, select apl2.jar, and press Open.

Press Ok to close the Properties for Exercise4 EJBProject dialog.

Create a Web Project

Select File and New and Dynamic Web Project to display the New Dynamic Web Project dialog.
Type Exercised4Dwp in the Project name field.

Check Configure advanced options and press Next.

Ensure the EAR project field contains Exercise2Eap and press Finish.

You will be prompted to switch to the Web Perspective. Press Yes.

Exercised4Dwp should now appear in the Project Navigator view of the Web Perspective.

57

Create a Java Package for the EJB

Select File and New and Other... to display the New dialog:

Select Java on the left and Package on the right and press Next.

Make sure the Source Folder field shows Exercised4EJBProject/ejbModule.
Type com.ibm.apl?2.ejbs in the Name field and press Finish.

Verify the com. ibm.apl?2.ejbs package should now appear in the e jbModule folder of the
ExercisedEJBProject project in the Web Perspective’s Project Navigator view.

Create a Java Package for the Servlet and Java bean

Select File and New and Other... to display the New dialog:

Select Java on the left and Package on the right and press Next.

Make sure the Source Folder field shows Exercise4Dwp/JavaSource.
Then enter com. ibm.apl2.exercised in the Name field and press Finish

Verify the com. ibm.apl2.exercise4 package should now appear in the Java Resources folder of the
ExercisedDwp project in the Web Perspective’s Project Navigator view.

58

Create an Enterprise Java Bean

Switch to the J2EE Perspective.

Select File and New and Enterprise Bean to display the New Enterprise Bean dialog.
Select Exercised4EJBProject in the EJB project field and press Next.

Check Session Bean.

Type Exercise4EJB in the Bean name field.

Verify that the Source folder field contains ejbModule.

Type com.ibm.apl?2.ejbs in the Default package field and press Next.

Select the Session type: Stateless.

Select the Transaction type: Container.

Check Remote client view.

Press Finish to generate the EJB.

Verify the Exercise4EJB bean now appears in the Session Beans folder in the Exercise4EJBProject

in the J2EE Hierarchy view.

59

Edit the EJB’s Source code

Expand Exercised4EJB.

Double click on Exercise4EJBBean to open the Java Editor.

Add the following statement after the package statement at the top of the file:
import com.ibm.apl2.*;

Add the following two statements after the declaration of mySessionCtx:

private Apl2interp Slave = null;
private Apl2object Function = null;

Add the following code to the e jbCreate method:

Slave = null;
try {
Slave = new Apl2interp();
Function = new Apl2object (Slave, "AVERAGE");
Slave.Associate ("AVERAGE", 11, Function);
} catch (Apl2exception Exception) ({
if (Slave != null) {
try {
Slave.Stop () ;
} catch (Apl2exception StopException) {
}
Slave = null;

}

throw new javax.ejb.CreateException (

"Unable to initialize APL2 environment");

Add the following code to the e jbRemove method:

try f{
Function.Free() ;
Slave.Stop () ;
} catch (Apl2exception Exception) {

}

60

Add the following method to the end of the file:

public double Average (double[] Array) {

double Result = 0;

try |
Apl2object aplintArray = new AplZ2object (Slave, Array);
Apl2object aplAverage = Slave.Execute (Function,

aplintArray);

aplintArray.Free ()
Result = aplAverage.doubleValue()
aplAverage.Free();

} catch (Apl2exception e) {
System.out.println ("Apl2exception caught");

System.out.println ("Exception message: " +
e.getMessage()) s
System.out.println ("Event: " + e.Type + " " + e.Code);

}

return Result;

Press Ctrl+S to save your changes.
Add the Average method to the remote interface so that is can be used by clients:
If it is not already active, switch to the J2EE Perspective and select the Outline view.

Right click on the Average method in the Outline view. Select Enterprise Bean, and Promote to Remote
Interface.

Close the Exercise4EJBBean. java file.

Generate the Deployment and RMIC Code

Right click ExercisedEJBProject and select Generate and then Deployment and RMIC Code... to
display the Generate Deployment and RMIC Code dialog:

Select Exercise4EJB and press Finish.

Create a Java Bean

A Java Bean is a Java class that implements the Serializable interface and provides getters and setters for
properties. Java beans provide a convenient mechanism for encapsulating the code required to call EJBs.

Select File and New and Other... to display the New dialog:

4 New [‘5__<|
Select +,9
Create & Java class ﬁ
Component Test @ isual Class
+|- Data @ Java Project
Eclipse Modeling Framewaork, 9 Package
EJE ﬁﬁﬁﬁﬂ&%‘
Exarmnple EMF Model Creation Wizards 6"’ Interface
1ZEE %
acrapbook Page
+- lava @ i ?

Plug-in Development @Saurce el

Remote File Transfer
Server
Simple
Symptom Database
ML Yisualizakion
+- Wieb
Web Services
*ML
+- Examples

| Mexk > | Zancel

Select Java on the left and Class on the right and press Next to display the New Java Class dialog:

4 New Java Class

Java Class

Create a new Java class,

Source Folder: | Exercise4Dwpf lavaSource Browse...

Package: | corn, ibm,apl2, exercised Browse. .,

el

[Enclosing bype: |

Mame: | Exercise4Javabiean|
Modifiers: f* public " default -
[abstract [final B
Superclass: | jawva.lang. Object Browse. ..
Interfaces:

i

Which method stubs would vou like to create?
[public skatic void mainfStringl] args)
[Construckars Fram superclass

v Inherited abstract methods

< Back | | Einish | Cancel

Ensure the Source folder contains Exercise4Dwp/JavaSource.
Ensure the Package field contains com.ibm.apl2.exercised.

Type Exercised4JavaBean in the Name field.

Press the Add... button to display the Implemented Interface Selection dialog:

63

4 Implemented Interfaces Sele... |:|®

Choose inkerfaces:

| java.io.serializable

Matching bypes:

O seridlizable

Cualifier:
f3 java.io - C:fProgram Files/IBMWebSphere Studiofa
< | >

i ‘'java.io.Serislizable’ added.

O Cancel

Type java.io.serializable in the Choose interface field.

Press Add... and then press Ok

Press Finish to close the New Java Class dialog.

64

Edit the Java Bean’s Source Code

Copy the following statements after the import statement at the top of the file:

import com.ibm.apl2?2.ejbs.Exercised4EJB;
import com.ibm.apl2.ejbs.Exercise4EJBHome;
import java.rmi.RemoteException;

import java.util.Hashtable;

import javax.ejb.CreateException;

import javax.naming.Context;

import javax.naming.InitialContext.*;
import javax.naming.InitialContext;

import javax.naming.NamingException;

Copy the following method to the end of the file (before the last curly brace):

public double Average (double Valuel, double Value2) {
final String WEBSPHERE FACTORY =
"com.ibm.websphere.naming.WsnInitialContextFactory";
final String LIBRARY APP NAMING PROVIDER =
"corbaloc:iiop:localhost:2809";
final String JndiName = "ejb/com/ibm/apl2/ejbs/Exercise4dEJBHome";
final String ClassName = "com.ibm.apl2.ejbs.Exercised4dEJBHome";

double Average = 0;

try |
Hashtable Environment = new Hashtable();
Environment.put (Context.INITIAL CONTEXT FACTORY,
WEBSPHERE FACTORY) ;
Environment.put(Context.PROVIDERﬁURL,
LIBRARY APP NAMING PROVIDER) ;

javax.naming.InitialContext InitialContext = new
InitialContext (Environment) ;

java.lang.Object RemoteObject =
InitialContext.lookup (JndiName) ;

Class EjbClass = Class.forName (ClassName) ;
Exercised4EJBHome EjbHome =
(Exercised4EJBHome) javax.rmi.PortableRemoteObject.narrow (
RemoteObject,
EjbClass);
Exercised4EJB Ejb = EjbHome.create();
Average = Ejb.Average (new double[] { Valuel, Value2 });
} catch (NamingException e) {
System.out.println ("NamingException caught.");
} catch (RemoteException e) {
System.out.println ("RemoteException caught.");
} catch (CreateException e) {
System.out.println ("CreateException caught.");
} catch (ClassNotFoundException e) {
System.out.println ("ClassNotFoundException caught.");
}

return Average;

Press Ctrl+S to save the changes.

Five messages should appear in the Tasks view. They are produced because the Web project is not configured
to use the EJB project’s files. Add this configuration information now:

66

Switch to the Project Navigator view and right click on Exercise4Dwp and select Properties to display the
Properties dialog for the Exercise4dDwp project:

4P Properties for Exercise4Dwp |z|@@

Infao Java Build Path
BeanInfo Path

External Toals Builders
Java Build Path
Java Compiler

(% Sayrce P Projects l i, Libraries] Tl ©rder and Expart]
Required projects on the build path:

Javador Location Select Al |
Java JAR Dependencies 'z aplzDemoE IBProject

Java Task Tags 1= Exercise1Dwp preizes Al |
J5P Fragment O1=F ExercisezDwp

Links Yalidation/Fefactoring (1158 Exercise3E BPraject

Project References [¥]1=% Exercise4E JBProject

Server Preference

Skruts

Yalidation

Web

Web Content Settings
Web Library Projects
Web Project Features
WS-I Compliance

Default outpat Folder:

ExercisednapwebContent fWEB-INF classes Browse, ..
ik | Cancel |

Select Java Build Path on the left and Projects on the right.
Check ExercisedEJBProject and press Ok.

The messages in the Tasks view should disappear.

Notes on the code:

The bulk of the Java bean’s code is devoted to locating and establishing a connection with the EJB. The
creation of the InitialContext object establishes a connection with the container’s JNDI service. The
initialContext object is then used to locate, or lookup, the remote interface for the EJB. The
PortableRemoteObject class’s narrow method is then used to locate the EJB’s home interface. Finally, the
home interface’s create method is used to create an instance of the EJB. You should realize that although
these steps are always required when accessing an EJB through a remote interface, you typically would not
perform them in a Java bean called directly from a servlet. You would usually write utility classes and
methods to perform these steps rather than imbedding them in the Java bean. They are only presented here
to give you a flavor of the steps that are required.

Close the Exercise4JavaBean. java file.

68

Create a Servlet

Switch to the Web Perspective and pull down the File menu and select New and then Servlet to display the New
Servlet wizard.

Type /Exercised4Dwp/JavaSource in the Folder field (or use Browse...).
Type com.ibm.apl2.exercise4 in the Java package field.

Type ExercisedServlet in the Class name field.

Press Next.

Check Public, doPost, and doGet. Clear all other check boxes and press Next
Ensure Add to web.xml is checked and press Finish.

Verify the ExercisedServlet. java file appears in the com.ibm.apl2.exercised package in the
Java Resources folder of the Exercise4Dwp project.

69

Editing the Servlet’s Source Code

Add the following line of code to both the doGet and doPost methods:
processRequest (req, resp):;

Copy and paste the following method to the end of the file (before the last curly brace):

private void processRequest (
HttpServletRequest req,
HttpServletResponse resp)
throws ServletException, IOException {
String Stringl = reqg.getParameter ("VALUE 1");
String String2 req.getParameter ("VALUE 2");

//* Make sure they're not empty

if (Stringl == null) Stringl = "0";
if (String2 == null) String2 = "0";
if (Stringl.compareTo("") == 0) Stringl = "0";
if (String2.compareTo("") == 0) String2 = "0";

//* Extract their numeric values
double Valuel = 0;
double Value2 = 0;
try {
Valuel = java.lang.Double.parseDouble (Stringl);
} catch (NumberFormatException e) {}
try {
Value?2 = java.lang.Double.parseDouble (String2);
} catch (NumberFormatException e) {}

//* Use a Java Bean to calculate the average
Exercised4JavaBean Bean = new Exercised4JavaBean () ;

double Average = Bean.Average (Valuel, Value2);

//* Save the result in the request object
req.setAttribute ("Average", new Double (Average));

//* Forward request to the JSP for output formatting

) . forward (req, resp):

}

getServletContext () .getRequestDispatcher ("ExercisedJSP.]

Press Ctrl+S to save the changes.

Notes on the code:

In the first exercise we glossed over the servlet’s code. This servlet is slightly more complicated and you
should understand how it works.

Servlets get passed two parameters: an HttpServletRequest and an HttpServletResponse object. These objects
are used to retrieve information about the request and to build the response. The servlet calls the request
object’s getParameter method to get the contents of two form parameters, VALUE 1 and VALUE 2. These
values are passed in the request’s URL. The response object is not used until the very end of the servlet.

The servlet then uses standard Java facilities to parse the parameter values.

Once the values are parsed, the servlet creates an instance of the Java bean and calls its Average method. The
Java bean returns a double value.

The servlet then uses the request object’s setAttribute method to put the Java bean’s result into a request
attribute named Average. In addition to parameters included in a request’s URL, each request can have

attributes set and referenced by application components. The servlet uses an attribute to pass the bean’s result
to the JSP that builds the response HTML.

The final line of the servlet forwards the request to the JSP. The JSP will then extract the bean’s result from the
attribute and build the response HTML. Servlets always run in a web container. The web container provides a
context through which servlets can call container services. The servlet class includes a method named
getServletContext which returns a reference to this context. The context’s getRequestDispatcher service returns
a reference to a dispatcher service which can be used to forward a request to another component.

WSAD provides a useful facility for exploring Java classes and services provided by objects. WSAD can help
you type method and field names. Try this:

Insert a new line at the end of the servlet’s Average method.
Position the cursor on the new line and type getServletContext(). and pause.

Notice that when you type the period, WSAD displays the list of fields and methods that are available in the
object returned by getServletContext(). If you keep typing and type getR, WSAD displays the list of methods
that begin with getR. You can then use the arrow keys to select the GetRequestDispatcher method. When you
press Enter, the method name is inserted at the end of the line and the cursor is positioned within the method’s
parentheses, ready for you to type parameters. After typing a character string, you can move the cursor after the
closing parenthesis and type another period to get a list of the methods available in the object returned by
getRequestDispatcher.

This is a handy method for remembering the services available in request, response, and context objects.

Once you are done experimenting with the typing aids, delete any extra lines you added and close the
Exercised4Servlet. java file.

71

Create a Java Server Page

Select File and New and JSP File to display the New JSP File dialog.

Ensure /Exercise4Dwp/WebContent is in the Folder field.

Type Exercise4JSP. jsp in the File name field and press Finish.

Verify the Exercise42JSP. jsp file appears in the Exercised4Dwp/WebContent folder.

Edit the JSP’s Source code

Use copy and paste to replace the body of the HTML with the following code:

<H1>Exercise 4 JSP</H1>

<H2>Average of Two Numbers</H2>

<FORM method="POST" action="/ExercisedDwp/ExercisedServliet">
<%

String Valuel = request.getParameter ("VALUE 1");

String Value?2 request.getParameter ("VALUE 2");

if (Valuel == null) Valuel = "0";

if (Value?2 == null) Value2 = "0";

Double Average = (Double)request.getAttribute ("Average");
if (Average == null) Average = new Double (0.0);

s>

<P>Value 1: <INPUT name="VALUE 1" value="<%= Valuel %>"
maxlength="20" size="20" type="text">

<P>Value 2: <INPUT name="VALUE 2" value="<%= Value2Z %>"
maxlength="20" size="20" type="text">

<P><INPUT name="SUBMIT" type="submit" value="Average">
</FORM>

<P><H4>Calculated Average: <%= Average $%$></H4>

Press Ctrl+S to save the changes.
Notes on the code:

Like servlets, JSPs are provided with request and response objects that are used to retrieve information about
the request and to build the response. The JSP objects are always named request and response. The JSP’s code
uses the request object to again get the VALUE 1 and VALUE 2 parameters. These values are used to display
the user’s previous entries in the new HTML that the JSP will build. The JSP uses the request object’s
getAttribute method to retrieve the value of the attribute named Average. Recall, this attribute was set by the
servlet and contains the result returned by the Java bean.

When you are finished examining the code, close the Exercised4JSP. jsp file.

72

Test the Application

You are now ready to test your application.

In the Project Navigator view, expand Exercised4Dwp, Java Resource, and
com.ibm.apl?2.exercised.

Right click on Exercise4Servlet. java and select Run on Server... to display the Server Selection
dialog:

Check Use an Existing Server and select the ExercisesServer and press Next.
Check Deploy EJB beans and press Finish to start the sever.

Starting the server will again take a while. (In fact it will probably take longer than with previous exercises
since more components are starting.) When the server has started and is ready for e-business, the Web Browser
view will show the JSP’s form. The input fields and result will display the default values of 0. Type some
numbers and press enter.

Notice that the URL once again appears to contain the project and servlet names. Once again, these are not
resource names. Rather, they are the context root and URL mapping. They can be changed just as before.

Shutting Down the Server

This completes exercise 4 except for shutting down the server.
Close the Web Browser view.

Navigate to the Server Perspective and the Server Configuration view.
Right click on the ExercisesServer and select Stop.

73

Example 5: Deploying an Enterprise Application on WAS

So far, you have used WebSphere Studio Application Developer’s built-in server to test your applications.
Eventually, you will probably want to put an application into production. To do this, you can deploy your
application to WebSphere Application Server. This example illustrates that process.

There are 7 steps in this example:

Export the Project

Start the Server

Start the Administrative Console
Configure the Server to use APL2
Install the Application

Restart the Server

Test the Application

Nk =

74

Export the Project

The first step in application deployment is to export your enterprise project to a file that can be read by
WebSphere Application Server. WSAD can export to many different types of files. The appropriate type for
WAS is the Enterprise Archive, or EAR file.

Select File and Export... to display the Export dialog:

4 Export E'
Select 2
Expart an Enterprise Spplication project inba an EAR File m

Select an export destination:

S app Client 18R file

@Deplwable features

?f"w- Deployable plug-ins and Fragments
% EAR. File
JHEIR 1AR File

,DFile syskem

JPFTP

38R file

431 Javadac

,@ Project Inkerchange
BIRAR file

0§ symptom database file
;% Team Project Set
Bwar file

,'g Web Service

-.? Zip file

| Blext = | Cancel

Select EAR file and press Next.

4 Export E'

EAR Export
Export Enterprise Application project ko the local file system, %
N

Enterprise Application project name: | Exercised4Eap ﬂ

Destination: | c!Exetrised, ear ﬂ Browse, ..

Advanced. .

< Back | Einish | Cancel

Select Exercise4Eap in the Enterprise Application project name field.

Type a path and EAR file name in the Destination field. Make a note of the path and filename you use; you will
need it later.

Press Finish.

You should now have an EAR file which can be deployed. You can shut down WSAD.

76

Start the Server

In order to deploy the project, WebSphere Application Server will need to be running. So, start it:
Select Start, Programs, IBM WebSphere, Application Server v5.1, Start the Server.

It will take a while for the server to start. You will see progress messages in a console window. When the
server initialization is complete, the console window will automatically close.

Start the Administrative Console

The administrative console is used to configure the server and install applications. Start it:
Select Start, Programs, IBM WebSphere, Application Server v5.1, Administrative Console.

The administrative console is a browser based application. It will initially prompt you for a userid. You can
use any userid. It is not used for security access; it is only used for logging purposes.

Configure the Server to use APL2

Just like the WSAD test servers, the WebSphere Application server needs to be configured so that applications
can load classes from apl2.jar. Configure the server’s classpath:

Expand Servers

Select Application Servers

Select serverl

Select the configuration tab

Scroll down and select Process Definition

Select Java Virtual Machine

Type the path and filename of apl2.jar in the Classpath field.
Press Apply

Click the Save link

Press Save

Install the Application

Now you are ready to install the enterprise application contained in the EAR file you exported from WSAD:

Expand Applications

Select Install New Application

Type the path and file name of the EAR file you exported from WSAD in the Local path field.
Press Next

Keep pressing Next until you have seen all 6 installation steps and then press Finish.

Select Save to Master Configuration

Press the Save button.

Press the Administrative console’s Logout link and shut down the browser.

77

Restart the Server

To enable your changes, you must stop and restart the server:

Select Start, Programs, IBM WebSphere, Application Server v5.1, Stop the Server.
Select Start, Programs, IBM WebSphere, Application Server v5.1, Start the Server.

Test the Application

Open a browser and type the following URL:

http://localhost:9080/Exercised4Dwp/ExercisedServiet

You should see the exercise 4 JSP and be able to calculate the average of two numbers.

When you are satisfied that your application is working properly, you can stop the server:

Select Start, Programs, IBM WebSphere, Application Server v5.1, Stop the Server.

78

http://localhost:9080/Exercise4Dwp/Exercise4Servlet

Summary

These examples have given you a brief introduction to using APL2 in J2EE Enterprise Applications using
WebSphere Studio Application Developer and WebSphere Application Server. You have learned how to build
servlets, Java Server Pages, Java Beans, and Enterprise Java Beans and how to deploy Enterprise Applications.
You have learned that the Model-View-Control design pattern encourages separation of tasks for more efficient
utilization of resources, opportunities for code reuse, and ease of application maintenance.

J2EE and the WebSphere suite of products support an enormous number of features and facilities. These
examples have provided just a small sampling of their capabilities. Although the techniques demonstrated are
sufficient for building full-fledged applications, you may want to learn more about J2EE and WebSphere.
Useful topics for further study include JSP tags, STRUTS, web container services, and entity and message-
driven EJBs. IBM offers a variety of classroom and online courses about WebSphere. For a complete list,
consult this URL:

http://www.ibm.com/services/learning

The authors particularly recommend the following courses:

Servlet and JSP Development with IBM WebSphere Studio V5.1.1
EJB Development using WebSphere Studio Application Developer V5.x

79

http://www.ibm.com/services/learning

Appendix: Importing the Examples

After completing the examples, you may decide to clean up your workspace and delete them. If you later want

to review the examples, you can import them rather than typing them all in again. The examples are available
in the apl2web.zip file. The file is available in the APL2 \samples directory on Windows and in the APL2

/examples/java directory on Unix systems.

Select File and Import... to display the Import dialog:

4 Import

Select

Select an impart source:

Impart a project and its dependent projects from a Zip file,

(%], App Cliert JAR file

(3, EAR File

%,EJ8 J4R file

ﬁ Existing Project into Workspace
%External Features

%Externd Flug-ins and Fragrments
3, File swstem

Fe,FTp

hHEHTTP

IE‘;'“‘HTTF‘ Recording

Wk, 15P Tag Library

Log File

Logging Ukilities %ML Log File
CEEi:F‘ru:uFiIing File:
AProject Interchange
@1, RAR File
@Security Certificate

;’@j Server Configuration
E0symotom Database File

| Mext > |

Cancel

%)

Select Project Interchange and press Next.

80

& Import Project Interchange Contents

Import Projects

-.
Import Projects From a zip File. _]E
~
Fram zip file: | C:\Docurnents and Settingsiadministrator, LIEBTAGHOME\Deskioph apl2web. zip ﬂ Browse, .,

Project locakion rook: | Ci\Documents and Settings'Administrator, LIEBTAGHOMEMy Documents! IEMywsappdeys ﬂ Browse, .,

ﬁExerciselpr
ﬁExerciselEap

[F'= ExercisezDmp

F G ExercisezEap
[FIE2 Exercise E IBProject
ﬁExerciseSEap
'@Exerciseerwp
@ExercisﬂEJBPrnject
ﬁExercisedrEap
FI1ES servers

Deselect Al Select Referenced

< Back | | Eirish | Cancel

Type the path and file name of the apl2web.zip file in the From zip file field.
Press Select All and press Finish.

If you already have some of the example projects, you will be prompted to confirm that you want them
overwritten. Press Ok.

All the example projects should now appear in your workspace.

81

Testing Imported Exercises

The process for running imported exercises is slightly different than was used for the hand built exercises.

The project interchange zip file contains all four exercises’ and the server’s configuration files. The server’s
configuration files contain references to all four exercises. This means that when you try to run any of the
exercises on the server, the server will actually try to start all four enterprise applications. This is fine but to

avoid error messages, it requires that you perform a step that was not originally required for exercises 1 and 2.

Recall that when you tested exercises 3 and 4, in the Server Selection dialog you pressed the Next button and
then checked Deploy EJB Beans. This was required to give the server access to the projects’ EJB beans.

Since the imported server will try to start all four exercises, it will require access to the EJB beans for both
exercises 3 and 4, even if you are only trying to run exercise 1 or 2. So, when you reach the Server Selection
dialog, you should press the Next button and then check Deploy EJB Beans for both the Exercise3EJBProject

and the Exercise4EJBProject projects. Although exercises 1 and 2 will still work, if you do not deploy exercise

3 and 4’s EJB beans, those applications will fail to start and error messages will appear in the Console view.

82

	Contents
	Notices
	Programming Interface Information
	Trademarks
	IBM Trademarks
	Other Trademarks

	Required Software

	Motivation
	Abstract
	WebSphere Overview
	WebSphere Studio Application Developer Introduction
	Introduction to Examples
	Example 1: Using APL2 from a Servlet
	Create an Enterprise Application Project
	Create a Web Project
	Create a Java Package
	Create a Servlet
	Edit the Servlet’s Source Code
	Create a Server
	Test the Servlet
	Change the Context Root (Optional)
	Change URL Mapping (Optional)
	Shutting Down the Server

	Example 2: Using APL2 from a Java Server Page
	Create an Enterprise Application Project
	Create a Web Project
	Create a Java Server Page
	Edit the JSP’s Source code
	Test the JSP
	Shutting Down the Server

	Example 3: Using APL2 from an Enterprise Java Bean
	Create an Enterprise Application Project
	Create an EJB Project
	Create a Java Package
	Create an Enterprise Java Bean
	Edit the EJB’s Source code
	Generate the Deployment and RMIC Code
	Test the EJB
	Shutting Down the Server

	Example 4: Using APL2 with the Model-View-Controller Design Pattern
	Create an Enterprise Application Project
	Create an EJB Project
	Create a Web Project
	Create a Java Package for the EJB
	Create a Java Package for the Servlet and Java bean
	Create an Enterprise Java Bean
	Edit the EJB’s Source code
	Generate the Deployment and RMIC Code
	Create a Java Bean
	Edit the Java Bean’s Source Code
	Create a Servlet
	Editing the Servlet’s Source Code
	Create a Java Server Page
	Edit the JSP’s Source code
	Test the Application
	Shutting Down the Server

	Example 5: Deploying an Enterprise Application on WAS
	Export the Project
	Start the Server
	Start the Administrative Console
	Configure the Server to use APL2
	Install the Application
	Restart the Server
	Test the Application

	Summary
	Appendix: Importing the Examples
	Testing Imported Exercises

