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Scope of this Revision

This is a working draft of the Universal Serial Bus Specification.  The information provided in this document is
preliminary.  It provides a snap-shot of the current work of the group.  Several sections of this document are yet to
be defined.  Also, some topics are discussed in more detail than others.

Revision History

Revision Issue Date Comments

0.7 November 11, 1994 Supersedes 0.6e.

0.8 December 30, 1994 Revisions to Chapters 3-8, 10, and 11.  Added
appendixes.

0.9 April 13, 1995 Revisions to all the chapters.

0.99 August 25, 1995 Revisions to all the chapters.
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Chapter 1
Introduction

1.1 Motivation
The motivation for the Universal Serial Bus comes from three interrelated considerations:

• Connection of the PC to the telephone
It is well understood that the merge of computing and communication will be the basis for the next
generation of productivity applications.  The movement of machine-oriented and human-oriented
data types from one location or environment to another depends on ubiquitous and cheap
connectivity.  Unfortunately, the computing and communication industries have evolved
independently.  The Universal Serial Bus provides a ubiquitous link that can be used across a wide
range of PC to telephone interconnects.

• Ease of use
The lack of flexibility in reconfiguring the PC has been acknowledged as the Achilles heel to its
further deployment.  The combination of user friendly graphical interfaces and the hardware and
software mechanisms associated with new generation bus architectures like PCI, PnP ISA, and
PCMCIA has made computers less confrontational and easier to reconfigure.  However, from the end
user point of view, the PC’s I/O interfaces such as serial/parallel ports, keyboard/mouse/joystick
interfaces, etc., do not have the attributes of plug and play.

• Port expansion
The addition of external peripherals continues to be constrained by port availability.  The lack of a
bi-directional, low-cost, low-to-mid speed peripheral bus has held back the creative proliferation of
peripherals such as telephone/fax/modem adapters, answering machines, scanners, PDA’s,
keyboards, mice, etc.  Existing interconnects are optimized for one or two point products.  As each
new function or capability is added to the PC, a new interface has been defined to address this need.

The Universal Serial Bus is the answer to connectivity for the PC architecture.  It is a fast, bi-
directional, isochronous, low-cost, dynamically attachable serial interface that is consistent with the
requirements of the PC platform of today and tomorrow.

1.2 Objective of the Specification
This document defines an industry standard Universal Serial Bus.  The specification describes the bus
attributes, the protocol definition, types of transactions, bus management, and the programming interface
required to design and build systems and peripherals that are compliant with this standard.

The goal is to enable such devices from different vendors to inter-operate in an open architecture.  The
specification is intended as an enhancement to the PC architecture spanning portable, business desktops,
and home environments.  It is intended that the specification allow system OEMs and peripheral
developers adequate room for product versatility and market differentiation without the burden of
carrying obsolete interfaces or losing compatibility.
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1.3 Scope of the Document
• Target audience

The specification is primarily targeted to peripheral developers and system OEMs, but provides
valuable information for platform operating system/ BIOS/ device driver, adapter IHVs/ISVs, and
platform/adapter controller vendors.

• Benefit
This version of the Universal Serial Bus specification can be used for planning new products,
engineering an early prototype, and preliminary software development.  All final products are
required to be compliant with the Universal Serial Bus Specification 1.0.

1.4 Document Organization
Chapters 1 through 5 provide an overview for all readers, while Chapters 6 through 11 contain detailed
technical information defining the Universal Serial Bus.

Peripheral implementers should particularly read Chapters 5 through 11.

Universal Serial Bus Host Controller implementers should particularly read Chapters 5, 6, 7, 8, 10, and
11.

Universal Serial Bus device driver implementers should particularly read Chapters 5, 9, and 10.

Additionally, readers are also encouraged to read two related documents:  the Universal Serial Bus
Device Class Specification and the Universal Serial Bus Operating System Binding Specification to
obtain specific information on a particular device class and operating systems interface.
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Chapter 2
Terms and Abbreviations

This chapter lists and defines terms and abbreviations used throughout this specification.

Access.bus The Access.bus is developed by the Access.bus Industry Group, based on the
Phillips I2 C technology and a DEC software model.  Revision 2.2 specifies
the bus for 100 kbs operation, but the technology has headroom to go up to
400 kbs.

ACK Acknowledgment.  Handshake packet indicating a positive acknowledgment.

Active Device A device that is powered and not in the suspend state.

ADB See Apple Desktop Bus.

APM An acronym for Advanced Power Management.  APM is a specification for
managing suspend and resume operations to conserve power on a host
system.

Apple Desktop Bus An expansion bus used by personal computers manufactured by Apple
Computer, Inc.

Asynchronous Data Data transferred at irregular intervals with relaxed latency requirements.

AWG# The measurement of wire’s cross section as defined by the American Wire
Gauge standard.

Babble Unexpected bus activity that persists beyond a specified point in a frame.

Bandwidth The amount of data transmitted per unit of time, typically bits per second
(bps) or bytes per second (Bps).

Big Endian Method of storing data that places the most significant byte of multiple byte
values at a lower storage addresses.  For example, a word stored in big
endian format places the least significant byte at the higher address and the
most significant byte at the lower address.  See little endian.

Bit A unit of information used by digital computers.  Represents the smallest
piece of addressable memory within a computer.  A bit expresses the choice
between two possibilities and is typically represented by a logical one (1) or
zero (0).

Bit Stuffing Insertion of a “0” bit into a data stream to cause a electrical transition on the
data wires allowing a PLL to remain locked.

bps Transmission rate expressed in bits per second.

Bps Transmission rate expressed in bytes per second.

Buffer Storage used to compensate for a difference in data rates or time of
occurrence of events, when transmitting data from one device to another.
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Bulk Transfer Non periodic, large bursty communication typically used for a transfer that
can use any available bandwidth and also be delayed until bandwidth is
available.

Bus Enumeration Detecting and identifying Universal Serial Bus devices.

Byte A data element that is eight bits in size.

Capabilities Those attributes of a Universal Serial Bus device that are administerable by
the host.

Characteristics Those qualities of a Universal Serial Bus device that are unchangeable; for
example, the device class is a device characteristic.

CHI An acronym for Concentration Highway Interface.  CHI is a full duplex time
division multiplexed serial interface for digitized voice transfers in
communications systems.  The current specification supports data transfer
rates up to 4.096 Mbs.

Client Software resident on the host that interacts with host software to arrange data
transfer between a function and the host.  The client is often the data provider
and consumer for transferred data.

COM Port Communications port.  On personal computers, an eight-bit asynchronous
serial port is typically used.

Configuring
Software

The host software responsible for configuring a Universal Serial Bus device.
This may be a system configurator or software specific to the device.

Control Pipe Same as a message pipe.

Control Transfer One of four Universal Serial Bus Transfer Types.  Control transfers support
configuration/command/status type communications between client and
function.

CRC See Cyclic Redundancy Check.

CTI Computer Telephony Integration.

Cyclic Redundancy
Check

A check performed on data to see if an error has occurred in transmitting,
reading, or writing the data.  The result of a CRC is typically stored or
transmitted with the checked data.  The stored or transmitted result is
compared to a CRC calculated for the data to determine if an error has
occurred.

Default Address An address defined by the Universal Serial Bus Specification and used by a
Universal Serial Bus device when it is first powered or reset.  The default
address is 00h.

Default Pipe The message pipe created by Universal Serial Bus system software to pass
control and status information between the host and a Universal Serial Bus
device’s Endpoint 0.
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Device A logical or physical entity that performs a function.  The actual entity
described depends on the context of the reference.  At the lowest level,
device may refer to a single hardware component, as in a memory device.  At
a higher level, it may refer to a collection of hardware components that
perform a particular function, such as a Universal Serial Bus interface
device.  At an even higher level, device may refer to the function performed
by an entity attached to the Universal Serial Bus; for example, a data/FAX
modem device.  Devices may be physical, electrical, addressable, and
logical.

When used as a non-specific reference, a Universal Serial Bus device is
either a hub or a function.

Device Address The address of a device on Universal Serial Bus.  The Device Address is the
Default Address when the Universal Serial Bus device is first powered or
reset.  Hubs and functions are assigned a unique Device Address by
Universal Serial Bus software.

Device Endpoint A uniquely identifiable portion of a Universal Serial Bus device that is the
source or sink of information in a communication flow between the host and
device.

Device Resources Resources provided by Universal Serial Bus devices, such as buffer space
and endpoints.  See Host Resources and Universal Serial Bus Resources.

Device Software Software that is responsible for using a Universal Serial Bus device.  This
software may or may not also be responsible for configuring the device for
use.

DMI An acronym for Desktop Management Interface.  A method for managing
host system components developed by the Desktop Management Task Force.

Downstream The direction of data flow from the host or away from the host.  A
downstream port is the port on a hub electrically farthest from the host that
generates downstream data traffic from the hub.  Downstream ports receive
upstream data traffic.

Driver When referring to hardware, an I/O pad that drives an external load.  When
referring to software, a program responsible for interfacing to a hardware
device.  That is, a device driver.

DWORD Double word.  A data element that is 2 words, 4 bytes, or 32 bits in size.

Dynamic Insertion
and Removal

The ability to attach and remove devices while the host is in operation.

E2PROM See EEPROM.

EEPROM Electrically Erasable Programmable Read Only Memory.  Non-volatile
rewritable memory storage technology.

End User The user of a host.

Endpoint See Device Endpoint.

Endpoint Address The combination of a Device Address and an Endpoint Number on a
Universal Serial Bus device.

Endpoint Number A unique pipe endpoint on a Universal Serial Bus device.
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EOF1 End of frame timing point #1.  Used by the hub to monitor and disconnect
bus activity persisting near or past the end of a frame.

EOF2 End of frame timing point #2.  Used by hubs to detect bus activity near the
end of frame.

EOP End of packet.

False EOP A spurious, usually noise induced, event that is interpreted by a packet
receiver as an end of packet.

FireWire Apple Computer’s implementation of the IEEE P1394 bus standard.

Frame The time from the start of one SOF token to the start of the subsequent SOF
token; consists of a series of transactions.

Full-duplex Computer data transmission occurring in both directions simultaneously.

Function A Universal Serial Bus device that provides a capability to the host.  For
example, an ISDN connection, a digital microphone, or speakers.

GeoPort A serial bus developed by Apple Computer, Inc.  Current specification of the
GeoPort supports data transfer rates up to 2 Mbs and provides point to point
connectivity over a radius of 4 ft.

Handshake Packet Packet which acknowledges or rejects a specific condition.  For examples,
see ACK and NACK.

Host The host computer system where the Universal Serial Bus host controller is
installed.  This includes the host hardware platform (CPU, bus, etc.) and the
operating system in use.

Host Controller The host’s Universal Serial Bus interface.

Host Controller
Driver

The Universal Serial Bus software layer that abstracts the host controller
hardware.  Host Controller Driver provides an SPI for interaction with a host
controller.  Host Controller Driver hides the specifics of the host controller
hardware implementation.

Host Resources Resources provided by the host, such as buffer space and interrupts.  See
Device Resources and Universal Serial Bus Resources.

Hub A Universal Serial Bus device that provides additional connections to the
Universal Serial Bus.

Hub Tier The level of connect within a USB network topology given as the number of
hubs that that the data has to flow through.

I 2C Acronym for the Inter-Integrated Circuits serial interface.  The I2C interface
was invented by Philips Semiconductors.

IEEE P1394 A high performance serial bus.  The P1394 is targeted at hard disk and video
peripherals, which may require bus bandwidth in excess of 100 Mb/s.  The
bus protocol supports both isochronous and asynchronous transfers over the
same set of four signal wires.

Industry Standard
Architecture

The 8 and/or 16 bit expansion bus for IBM AT or XT compatible computers.
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Integrated Services
Data Network

An internationally accepted standard for voice, data, and signaling using
public, switched telephone networks.  All transmissions are digital from end-
to-end.  Includes a standard for out-of-band signaling and delivers
significantly higher bandwidth than POTS.

Interrupt Request A hardware signal that allows a device to request attention from a host.  The
host typically invokes an interrupt service routine to handle the condition
which caused the request.

Interrupt Transfer One of four Universal Serial Bus Transfer Types.  Interrupt transfers
characteristics are small data, non periodic, low frequency, bounded latency,
device initiated communication typically used to notify the host of device
service needs.

IRQ See Interrupt Request.

ISA See Industry Standard Architecture.

ISDN See Integrated Services Data Network.

Isochronous Data A stream of data whose timing is implied by its delivery rate.

Isochronous
Transfer

One of four Universal Serial Bus Transfer Types.  Isochronous transfers are
used when working with isochronous data.  Isochronous transfers provide
periodic, continuous communication between host and device.

Jitter A tendency toward lack of synchronization caused by mechanical or
electrical changes.  More specifically, the phase shift of digital pulses over a
transmission medium.

kbs Transmission rate expressed in kilobits per second.

kBs Transmission rate expressed in kilobytes per second.

Line Printer Port A port used to access a printer.  On most personal computers, an eight-bit
parallel interface is typically used.

Little Endian Method of storing data that places the least significant byte of multiple byte
values at lower storage addresses.  For example, a word stored in little endian
format places the least significant byte at the lower address and the most
significant byte at the next address.  See big endian.

LOA Loss of bus activity characterized by a start of packet without a
corresponding end of packet.

LPT Port See Line Printer Port.

LSB Least Significant Bit.

Mbs Transmission rate expressed in megabits per second.

MBs Transmission rate expressed in megabytes per second.

Message Pipe A pipe that transfers data using a request/data/status paradigm.  The data has
an imposed structure which allows requests to be reliably identified and
communicated.

Micro Channel
Architecture

Thirty-two bit expansion bus used on some IBM PS/2 compatible computers.

Modem Acronym for Modulator/Demodulator.  Component that converts signals
between analog and digital.  Typically used to send digital information from
a computer over a telephone network which is usually analog.
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MSB Most Significant Bit.

NACK Negative Acknowledgment.  Handshake packet indicating a negative
acknowledgment.

Non Return to Zero
Invert

Method of encoding serial data in which ones and zeroes are represented by
opposite and alternating high and low voltages where there is no return to
zero (reference) voltage between encoded bits.  Eliminates the need for clock
pulses.

NRZI See Non Return to Zero Invert.

Object Host software or data structure representing a Universal Serial Bus entity.

Packet A bundle of data organized in a group for transmission.  Packets typically
contain three elements:  control information (e.g., source, destination, and
length), the data to be transferred, and error detection and correction bits.

Packet Buffer The logical buffer used by a Universal Serial Bus device for sending or
receiving a single packet.  This determines the maximum packet size the
device can send or receive.

Packet ID A field in a Universal Serial Bus packet that indicates the type of packet, and
by inference the format of the packet and the type of error detection applied
to the packet.

PBX See Private Branch eXchange.

PCI See Peripheral Component Interconnect.

PCMCIA See Personal Computer Memory Card Industry Association.

Peripheral
Component
Interconnect

A 32- or 64-bit, processor independent, expansion bus used on personal
computers.

Personal Computer
Memory Card
International
Association

The organization that standardizes and promotes PC Card technology.

Phase A token, data, or handshake packet; a transaction has three phases.

PID See Packet ID.

Pipe A logical abstraction representing the association between an endpoint on a
device and software on the host.  A pipe has several attributes; for example, a
pipe may transfer data as streams (Stream Pipe) or messages (Message Pipe).

Plain Old
Telephone Service

Basic service supplying standard single line telephones, telephone lines, and
access to public switched networks.

Plug and Play A technology for configuring I/O devices to use non-conflicting resources in
a host.  Resources managed by Plug and Play include I/O address ranges,
memory address ranges, IRQs, and DMA channels.

PnP See Plug and Play.

Polling Asking multiple devices, one at a time, if they have any data to transmit.

POR See Power On Reset.
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Port Point of access to or from a system or circuit.  For Universal Serial Bus, the
point where a Universal Serial Bus device is attached.

POTS See Plain Old Telephone Service.

Power On Reset Restoring a storage device, register, or memory to a predetermined state
when power is applied.

PLL Phase Locked Loop.  A circuit that acts as a phase detector to keep an
oscillator in phase with an incoming frequency.

Private Branch
eXchange

A privately owned telephone switching system which is not regulated as part
of the public telephone network.

Protocol A specific set of rules, procedures, or conventions relating to format and
timing of data transmission between two devices.

Request A request made to a Universal Serial Bus device contained within the data
portion of a SETUP packet.

Retire The action of completing service for a transfer and notifying the appropriate
software client of the completion.

Root Hub A Universal Serial Bus hub attached directly to the host controller.  This hub
is attached to the host; tier 0.

Root Port The upstream port on a hub.

Sample Smallest unit of data on which an endpoint operates; a property of an
endpoint.

SCSI See Small Computer Systems Interface.

Service A procedure provided by an SPI.

Service Interval The period between consecutive requests to a Universal Serial Bus endpoint
to send or receive data.

Service Jitter The deviation of service delivery from its scheduled delivery time.

Service Rate The number of services to a given endpoint per unit time.

Small Computer
Systems Interface

A local I/O bus that allows peripherals to be attached to a host using generic
system hardware and software.

SOF An acronym for Start of Frame.  The SOF is the first transaction in each
frame.  SOF allows endpoints to identify the start of frame and synchronize
internal endpoint clocks to the host.

SPI See System Programming Interface.

Stage One part of the sequence composing a control transfer; i.e., the setup stage,
the data stage, and the status stage.

Stream Pipe A pipe that transfers data as a stream of samples with no defined Universal
Serial Bus structure.

System
Programming
Interface

A defined interface to services provided by system software.

TDM See Time Division Multiplexing.
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Termination Passive components attached at the end of cables to prevent signals from
being reflected or echoed.

Time Division
Multiplexing

A method of transmitting multiple signals (data, voice, and/or video)
simultaneously over one communications medium by interleaving a piece of
each signal one after another.

Time-out The detection of a lack of bus activity for some predetermined interval.

Token Generator See Initiator.

Token Packet A type of packet that identifies what transaction is to be performed on the
bus.

Transaction The delivery of service to an endpoint; consists of a token packet, optional
data packet, and optional handshake packet.  Specific packets are
allowed/required based on the transaction type.

Transfer One or more bus transactions to move information between a software client
and its function.

Transfer Type Determines the characteristics of the data flow between a software client and
its function.  Four Transfer types are defined: control, interrupt, bulk,
isochronous.

Turnaround Time The time a device needs to wait to begin transmitting a packet after a packet
has been received to prevent collisions on Universal Serial Bus.  This time is
based on the length and propagation delay characteristics of the cable and the
location of the transmitting device in relation to other devices on Universal
Serial Bus.

Universal Serial
Bus

A collection of Universal Serial Bus devices and the software and hardware
that allow them to connect the capabilities provided by functions to the host.

Universal Serial
Bus Device

Includes hubs and functions.  See device.

Universal Serial
Bus Interface

The hardware interface between the Universal Serial Bus cable and a
Universal Serial Bus device.  This includes the protocol engine required for
all Universal Serial Bus devices to be able to receive and send packets.

Universal Serial
Bus Resources

Resources provided by Universal Serial Bus, such as bandwidth and power.
See Device Resources and Host Resources.

Universal Serial
Bus Software

The host-based software responsible for managing the interactions between
the host and the attached Universal Serial Bus devices.

USB See Universal Serial Bus.

USBD See Universal Serial Bus Driver.

Universal Serial
Bus Driver

The host resident software entity responsible for providing common services
to clients that are manipulating one or more functions on one or more Host
Controllers.

Upstream The direction of data flow towards the host.  An upstream port is the port on
a device electrically closest to the host that generates upstream data traffic
from the hub.  Upstream ports receive downstream data traffic.

WFEOF2 Wait for EOF2 point.  One of the four hub repeater states.

WFEOP Wait for end of packet.  One of the four hub repeater states.
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WFSOF Wait for start of frame.  One of the four hub repeater states.

WFSOP Wait for start of packet.  One of the four possible hub repeater states.

Word A data element that is two bytes or 16 bits in size.
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Chapter 3
Background

This chapter presents a brief description of the background of the Universal Serial Bus including design
goals, features of the bus, and existing technologies.

3.1 Goals for the Universal Serial Bus
The Universal Serial Bus is specified to be an industry standard extension to the PC architecture with a
focus on Computer Telephony Integration (CTI), consumer, and productivity applications.  The following
criteria were applied in defining the architecture for the Universal Serial Bus:

• Ease of use for PC peripheral expansion

• Low-cost solution that supports transfer rates up to 12 Mbs

• Full support for the real-time data for voice, audio, and compressed video

• Protocol flexibility for mixed-mode isochronous data transfers and asynchronous messaging

• Integration in commodity device technology

• Comprehend various PC configurations and form factors

• Provide a standard interface capable of quick diffusion into product

• Enable new classes of devices that augment the PC’s capability

3.2 Taxonomy of Application Space
Figure 3-1 describes a taxonomy for the range of data traffic workloads that can be serviced over a
Universal Serial Bus.  As can be seen, a 12 Mbs bus comprehends the mid-speed and low-speed data
ranges.  Typically, mid-speed data types are isochronous and low-speed data comes from interactive
devices.  The Universal Serial Bus being proposed is primarily a desktop bus but can be readily applied
to the mobile environment.  The software architecture allows for future extension of the Universal Serial
Bus by providing support for multiple Universal Serial Bus host controllers.
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LOW SPEED
•Interactive Devices

•10-100 Kb/s

MEDIUM SPEED
•Phone, Audio,
Compressed Video

500Kb/s - 10Mbp/s

HIGH SPEED
•Video, Disk

•25-500 Mb/s

PERFORMANCE APPLICATIONS ATTRIBUTES

Keyboard, Mouse 

Stylus 

Game peripherals

Virtual Reality peripherals

Monitor Configuration

ISDN 

PBX 

POTS 

Audio

Video

Disk

Dynamic Attach- Detach

Lower cost 
Hot plug-unplug

Ease of use

Multiple peripherals

Low cost

Ease of use

Guaranteed latency

Guaranteed Bandwidth

Multiple devices

High Bandwidth

Guaranteed latency

Ease of use

Figure 3-1.  Application Space Taxonomy

3.3 Feature List
The Universal Serial Bus specification provides a selection of attributes that can achieve multiple
price-performance integration points and can enable functions that allow differentiation at the system and
component level.  Features are categorized by benefits below:

Easy to use for end user

• Single model for cabling and connectors

• Electrical details isolated from end user; e.g., bus terminations

• Self identifying peripherals, automatic mapping of function to driver and configuration

• Dynamically attachable and reconfigurable peripherals
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Wide range of workloads and applications

• Suitable for device bandwidths ranging from a few kbs to several Mbs

• Supports isochronous as well as asynchronous transfer types over the same set of wires

• Multiple Connections:  Support for concurrent operation of many devices

• Support for up to 127 physical devices

• Supports transfer of multiple data and message streams between the host and devices

• Allows compound devices; i.e., peripherals composed of many functions

• Lower protocol overhead resulting in high bus utilization

Isochronous bandwidth

• Guaranteed bandwidth and low latencies appropriate for telephony, audio, etc.

• Isochronous workload may use entire bus bandwidth

Flexibility

• Wide range of packet sizes, allowing a range of device buffering options

• Wide range of device data rates by accommodating packet buffer size and latencies

• Flow control for buffer handling built into protocol

Robustness

• Error handling/fault recovery mechanism built into protocol

• Dynamic insertion and removal of devices identified in user perceived real-time

• Support for identification of faulty devices

Synergy with PC industry

• Simple protocol to implement and integrate

• Consistent with the PC Plug and Play architecture

• Leverages existing operating system interfaces

Low-cost implementation

• Low cost sub channel at 1.5 Mbs

• Optimized for integration in peripheral and host hardware

• Suitable for development of low cost peripherals

• Low cost cables and connectors

• Utilizes commodity technologies
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Upgrade path

• Architecture upgradeable to support multiple Universal Serial Bus host controllers in a system

3.4 Some Existing Technologies
There are several technologies that are commonly considered to be serial buses.  Each of these buses
were defined for a specific range of application(s).  A few of them are listed below:

• Apple desktop bus (ADB)
This is a proprietary minimalist serial interface that provides a simple read/write protocol to up to 16
devices.  The cost of hardware interface is estimated to be very low.  The ADB supports data rates up
to 90 kbs, just enough to communicate with keyboards, pointing devices, or other desktop I/O
devices.

• Access.bus (A.b)
The Access.bus is being developed by the Access.bus Industry Group, based on the Philips I2C
technology and a DEC software model.  The application space for the Access.bus is primarily
keyboards and pointing devices; however, A.b is more versatile then the ADB.  The protocol has
well defined specifications for the dynamic attach, arbitration, data packets, configuration, and
software interface.  While addressing is provided for up to 127 devices, the practical loading is
limited by cable lengths and power distribution considerations.  Revision 2.2 of the A.b specification
specifies the bus for 100 kbs operation, but the technology has headroom to go up to 400 kbs using
the same separate clock and data wires.

• IEEE P1394
The IEEE P1394 is a high performance serial bus.  The application space for P1394 is primarily hard
disk and video peripherals, which may require bus bandwidth in excess of 100 Mbs.  The protocol
supports both isochronous and asynchronous transfers over the same set of four signal wires, broken
up as differential pair of clock and data signals.  The P1394 specification is very well defined and the
first generation devices, based on the IEEE specification, are just coming to market.  Current pricing
of P1394 solutions is considered competitive relative to SCSI disk interfaces, but not for generic
desktop connectivity.

• CHI
The Concentration Highway Interface (CHI) was developed by AT&T for terminals and digital
switches.  CHI is a full duplex time division multiplexed serial interface for digitized voice transfers
in communications systems.  The protocol consists of a number of fixed time slots that can carry
voice data and control information.  The current specification supports data transfer rates up to
4.096 Mbs.  The CHI bus has four signal wires:  Clock, Framing, Receive data, and Transmit data.
Both, the Framing and the Clock signals are generated centrally (i.e., PBX switch).

• GeoPort
The GeoPort was originally developed by Apple Computer, Inc. to primarily enable Macintosh
telephony applications.  Current specification of the GeoPort supports data transfer rates up to 2 Mbs
and provides point to point connectivity over a radius of 4 ft.  The standard GeoPort specifies a 9-pin
connector (8 pins and an optional 9th power pin) and uses RS-422 signaling.  Additionally, Apple
has defined an alternate 14-pin connector for extended cable lengths.  The GeoPort protocol provides
three different operating modes:  Beaconing, TDM, and Packetized transfer modes.  Apple is
currently licensing the GeoPort specification.



Universal Serial Bus Specification Revision 0.99

27

Chapter 4
Architectural Overview

This chapter presents an overview of the Universal Serial Bus architecture and key concepts.  USB is a
cable bus that supports data exchange between a host computer and a wide range of simultaneously
accessible peripherals.  The attached peripherals share USB bandwidth through a host scheduled token
based protocol.  The bus allows peripherals to be attached, configured, used, and detached while the host
and other peripherals are in operation.  This is referred to as dynamic (or hot) attachment and removal.

Later chapters describe the various components of the USB in greater detail.

4.1 USB System Description
A USB system is described by three definitional areas:

• USB interconnect

• USB devices

• USB host

 The USB interconnect is the manner in which USB devices are connected to and communicate with the
host.  This includes:

• Bus Topology:  Connection model between USB devices and the host.

• Inter-layer Relationships:  In terms of a capability stack, the USB tasks that are performed at each
layer in the system.

• Data Flow Models:  The manner in which data moves in the system over the USB between producers
and consumers.

• Scheduling the USB: USB provides a shared interconnect.  Access to the interconnect is scheduled in
order to support isochronous data transfers.

 USB devices and the USB host are described in detail in subsequent sections.
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4.1.1 Bus Topology
The Universal Serial Bus connects USB devices with the USB host.  The USB physical interconnect is a
tiered star topology.  A hub is at the center of each star.  Each wire segment is a point-to-point
connection between the host and a hub or function, or a hub connected to another hub or function.  Figure
4-1 illustrates the topology of the USB.

Host (Root Tier)

Tier 1

Tier 2

Tier 3

Tier 4

Hub 1

Hub 2 Node

Host
RootHub

Node

Hub 3 Hub 4 Node Node

NodeNodeNode

Figure 4-1.  Bus Topology

4.1.1.1 The USB Host
 There is only one host on any USB system.  The USB interface to the host computer system is referred to

as the host controller.  The host controller may be implemented in a combination of hardware, firmware,
or software. A root hub is integrated within the host system to provide one or more attachment points.

 Additional information concerning the host may be found in Section 4.9 and in Chapter 10, USB Host:
Hardware and Software.
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4.1.1.2 USB Devices
USB devices are:

• Hubs, which provide additional attachment points to the USB

• Functions, which provide capabilities to the system; for example, an ISDN connection, a digital
joystick, or speakers

 USB devices present a standard USB interface in terms of their:

• Comprehension of the USB protocol

• Response to standard USB operations such as configuration and reset

• Standard capability descriptive information

 Additional information concerning USB devices may be found in Section 4.8 and in Chapter 9, USB
Devices.

4.2 Physical Interface
The physical interface of the USB is described in the electrical (Chapter 7) and mechanical (Chapter 6)
specifications for the bus.

4.2.1 Electrical
USB transfers signal and power over a four wire cable, shown in Figure 4-2.  The signaling occurs over
two wires and point-to-point segments.  The signals on each segment are differentially driven into a cable
of 90 Ω intrinsic impedance.  The differential receiver features input sensitivity of at least 200 mV and
sufficient common mode rejection.

There are two modes of signaling.  The USB full speed signaling bit rate is 12 Mbs.  A limited capability
low speed signaling mode is also defined at 1.5 Mbs.  The low speed method relies on less EMI
protection.  Both modes can be simultaneously supported in the same USB system by mode switching
between transfers in a device transparent manner.  The low speed mode is defined to support a limited
number of low bandwidth devices such as mice, since more general use would degrade the bus
utilization.

The clock is transmitted encoded along with the differential data.  The clock encoding scheme is NRZI
with bit stuffing to ensure adequate transitions.  A SYNC field precedes each packet to allow the
receiver(s) to synchronize their bit recovery clocks.

...

...

5 meters max

VBus

GND

D+
D-

VBus

GND

D+
D-

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Figure 4-2.  USB Cable

The cable also carries VBus and GND wires on each segment to deliver power to devices.  VBus is
nominally +5 V at the source.  USB allows cable segments of variable lengths up to several meters by
choosing the appropriate conductor gauge to match the specified IR drop and other attributes such as
device power budget and cable flexibility.  In order to provide guaranteed input voltage levels and proper
termination impedance, biased terminations are used  at each end of the cable.  The terminations also
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permit the detection of attach and detach at each port and differentiate between full speed and low speed
devices.

4.2.2 Mechanical
The mechanical specifications for cables and connectors are provided in Chapter 6.  All devices have an
upstream connection.  Upstream and downstream connectors are not mechanically interchangeable, thus
eliminating illegal loopback connections at hubs.  The cable has four conductors:  a twisted signal pair of
standard gauge and a power pair in a range of permitted gauges.  The connector is four position, with
shielded housing, specified robustness, and ease of attach-detach characteristics.

4.3 Power
The specification covers two aspects of power:

• Power distribution over the USB deals with the issues of how USB devices consume power provided
by the host over the USB.

• Power management deals with how USB software and devices fit into the host-based power
management system.

4.3.1 Power Distribution
Each USB segment provides a limited amount of power over the cable.  The host supplies power for use
by USB devices that are directly connected.  In addition, any USB device may have its own power
supply.  USB devices that rely totally on power from the cable are called bus-powered devices.  In
contrast, those that have an alternate source of power are called self-powered devices.  A hub also
supplies power for its connected USB devices.  The architecture permits bus-powered hubs within certain
constraints of topology that are discussed later in Chapter 11.  Self-powered devices must implement
prescribed power decoupling safety mechanisms.  In Figure 4-4, the keyboard, pen, and mouse can all be
bus-powered devices.

4.3.2 Power Management
A USB host has a power management system which is independent of the USB.  USB system software
interacts with the host’s power management system to handle system power events such as SUSPEND or
RESUME.  Additionally, USB devices can carry USB-defined power management information which
allow them to be power managed by system software or generic device drivers.

The power distribution and power management features of USB allow it to be designed into power
sensitive systems such as battery based notebook computers.

4.4 Bus Protocol
All bus transactions involve the transmission of up to three packets.  Each transaction begins when the
host controller, on a scheduled basis, sends a USB packet describing the type and direction of transaction,
the USB device address, and endpoint number.  This packet is referred to as the Token Packet.  The USB
device that is addressed selects itself by decoding the appropriate address fields.  In a given transaction,
data is transferred either from the host to a device or from a device to the host.  The direction of data
transfer is specified in the token packet.  The source of the transaction then sends a Data Packet or
indicates it has no data to transfer.  The destination in general responds with a Handshake Packet
indicating whether the transfer was successful.

 The USB data transfer model between a source or destination on the host and an endpoint on a device is
referred to as a pipe.  There are two types of pipes:  stream and message.  Stream data has no USB
defined structure while message data does.  Additionally, pipes have associations of data bandwidth,



Universal Serial Bus Specification Revision 0.99

31

transfer service type and endpoint characteristics like directionality and buffer sizes.  Pipes come into
existence when a USB device is configured.  One message pipe, Control Pipe 0, always exists once a
device is powered in order to provide access to the device’s configuration, status, and control
information.

The transaction schedule allows flow control for some stream mode pipes.  At the hardware level, this
prevents buffers from underrun or overrun situations by using a NACK handshake to throttle the data
rate.  The token for a NACK’ed transaction is reissued when bus time is available.  The flow control
mechanism permits the construction of flexible schedules that accommodate concurrent servicing of a
heterogeneous mix of stream mode pipes.  Thus, multiple stream mode pipes can be serviced at different
intervals and with packets of different sizes.

4.5 Robustness
There are several attributes of the USB that contribute to its robustness:

• Signal integrity using differential drivers, receivers, and shielding

• CRC protection over control and data fields

• Detection of attach and detach and system-level configuration of resources

• Self-recovery in protocol, using time-outs for lost or broken packets

• Flow control for streaming data to ensure isochrony and hardware buffer management

• Data and control pipe constructs for ensuring independence from adverse interactions between
functions

4.5.1 Error Detection
The core bit error rate of the USB medium is expected to be close to that of a backplane and any glitches
will very likely be transient in nature.  To provide protection against such transients, each of these
packets includes error protection fields.  When data integrity is required, such as with lossless data
devices, an error recovery procedure may be invoked in hardware or software.

The protocol includes separate CRCs for control and data fields of each packet.  A failed CRC is
considered to indicate a corrupted packet.  The CRC gives 100% coverage on single and double bit
errors.

4.5.2 Error Handling
The protocol optionally allows for error handling in hardware or software.  Hardware handling includes
reporting and retry of failed transfers.  The host controller will retry an error three times before informing
the client software of the error.  The client software can recover in an implementation specific way.

4.6 System Configuration
The USB supports USB devices attaching to and detaching from the USB at any point in time.
Consequently, enumerating the USB is an on-going activity which must accommodate dynamic changes
in the physical bus topology.

4.6.1 Attachment of USB Device
All USB devices attach to the USB via a port on specialized USB devices known as hubs.  Hubs indicate
the attachment or removal of a USB device in its per port status.  The host queries the hub to determine
the reason for the notification.  The hub responds by identifying the port used to attach the USB device.
The host enables the port and addresses the USB device with a control pipe using the USB Default
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Address.  All USB devices are addressed using the USB Default Address when initially connected or
after they have been reset.

The host determines if the newly attached USB device is a hub or a function and assigns a unique USB
address to the USB device.  The host establishes a control pipe for the USB device using the assigned
USB address and endpoint number zero.

If the attached USB device is a hub and USB devices are attached to its ports, then the above procedure is
followed for each of the attached USB devices.

If the attached USB device is a function, then attachment notifications will be dispatched by USB
software to interested host software.

4.6.2 Removal of USB Device
When a USB device has been removed from one of its ports, the hub automatically disables the port and
provides an indication of device removal to the host.  Then the host removes knowledge of the USB
device from any host data structures.

If the removed USB device is a hub, the removal process must be performed for all of the USB devices
which were previously attached to the hub.

If the removed USB device is a function, removal notifications are sent to interested host software.

4.6.3 Bus Enumeration
Bus enumeration is the activity that identifies and addresses devices attached to a bus.  For many buses,
this is done at startup time and the information collected is static.  Since the USB allows USB devices to
attach to or detach from the USB at any time, bus enumeration for this bus is an on-going activity.
Additionally, bus enumeration for the USB also includes the detection and processing of removals.

4.6.4 Inter-Layer Relationship
USB devices are logically divided into a USB device interface portion, a device portion, and a functional
portion.  The host is logically partitioned into the USB host interface portion, the aggregate system
software portion (USB system software and host system software), and the device software portion.

Each of these portions is defined such that a particular USB task is the responsibility of only one portion.
The USB host and USB device portions correspond as shown in Table 4-1.

Table 4-1.  Correlation Between Host and Device Layers

USB Host Portion USB Device Portion

Device Software Function

System Software Device

USB Interface USB Interface

4.7 Data Flow Types
The USB supports functional data and control exchange between the USB host and a USB device as a set
of either uni- or bi- directional fashions.  USB data transfers take place between host software and a
particular endpoint on a USB device.  A given USB device may support multiple data transfer endpoints.
The USB host treats communications with any endpoint of a USB device independently from any other
endpoint.  Such associations between the host software and a USB device endpoint are called pipes.  As
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an example, a given USB device could have an endpoint which would support a pipe for transporting data
to the USB device and another endpoint which would support a pipe for transporting data from the USB
device.

The USB architecture comprehends four basic types of data transfers:

• Control transfers that are used to configure a device at attach time and can be used for other device
specific purposes

• Bulk data transfers which are generated or consumed in relatively large and bursty quantities and has
wide dynamic latitude in transmission constraints

• Interrupt data transfers such as characters or coordinates with human perceptible echo or feedback
response characteristics

• Isochronous or streaming real time data transfers which occupy a prenegotiated amount of USB
bandwidth with a prenegotiated delivery latency

 Any given pipe supports exactly one of the types of transfers described above.  The USB Data Flow
model is described in more detail in Chapter 5.

4.7.1 Control Transfers
Control data is used by USB software to configure devices when they are first attached.  Other driver
software can choose to used control transfers in implementation specific ways.  Data delivery is lossless.

4.7.2 Bulk Transfers
Bulk data typically consists of larger amounts of data such as that used for printers or scanners.  Bulk
data is sequential. Reliable exchange of data is ensured at the hardware level by using error detection in
hardware and, optionally, invoking a limited hardware retry.  Also, the bandwidth taken up by bulk data
can be whatever is available and not being used for other transfer types.

4.7.3 Interrupt Transfers
A small, spontaneous data transfer from a device is referred to as interrupt data.  Such data may be
presented for transfer by a device at any time and is delivered by the USB at a rate no slower than as is
specified by the device.

Interrupt data typically consists of event notification, characters or coordinates that are organized as one
or more bytes.  An example of interrupt data is the coordinates from a pointing device.  Although an
explicit timing rate is not required, interactive data may have response time bounds which the USB must
support.

4.7.4 Isochronous Transfers
Isochronous data is continuous and real-time in creation, delivery, and consumption.  Timing related
information is implied by the steady rate at which isochronous data is received and transferred.
Isochronous data must be delivered at the rate received to maintain its timing.  In addition to delivery
rate, isochronous data may also be sensitive to delivery delays.  For isochronous pipes, the bandwidth
required is typically based upon the sampling characteristics of the associated function.  The latency
required is related to the buffering available at each endpoint.

A typical example of isochronous data is voice.  If the delivery rate of these data streams is not
maintained, glitches in the data stream will occur due to buffer or frame underruns or overruns.  Even if
data is delivered at the appropriate rate, delivery delays may degrade applications requiring real-time turn
around, such as telephony based audio conferencing.
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The timely delivery of isochronous data is ensured at the expense of potential transient losses in the data
stream.  In other words, any error in electrical transmission is not corrected by hardware mechanisms
such as retries.  In practice, the core bit error rate of the USB is expected to be small enough not to be an
issue.  USB isochronous data streams are allocated a dedicated portion of USB bandwidth to ensure that
data can be delivered at the desired rate.  The USB is also designed for minimal delay of isochronous
data transfers.

4.7.5 Allocating USB Bandwidth
USB bandwidth is allocated among pipes.  The USB allocates bandwidth for some pipes when a pipe is
established.  USB devices are required to provide some buffering of data.  It is assumed that USB devices
requiring more bandwidth are capable of providing larger sized buffers.  The goal for the USB
architecture is to ensure that buffering induced hardware delay is bounded to within a few milliseconds.

USB’ bandwidth capacity can be allocated among many different data streams. This allows a wide range
of devices to be attached to the USB.  For example, telephony devices ranging from 1B+D all the way up
to T1 capacity can be accommodated.   Further, different device bit rates, with a wide dynamic range,
can be concurrently supported.

USB bandwidth allocation is blocking; i.e., if allocating an additional pipe would disturb preexisting
bandwidth or latency allocations, further pipe allocations are denied or blocked.  When a pipe is closed,
the allocated bandwidth is freed up and may be reallocated to another pipe.

The USB specification defines the rules for how each transfer type is allowed access to the bus.

4.8 USB Devices
USB devices are divided into device classes such as hub, locator, or text device.  The hub device class
indicates a specially designated USB device which provides additional USB attachment points (refer to
Chapter 11).  USB devices are required to carry information for self-identification and generic
configuration.  They are also required at all times to display behavior consistent with defined USB device
states.

4.8.1 Device Characterizations
All USB devices are accessed by a unique USB address.  Each USB device additionally supports one or
more endpoints with which the host may communicate.  All USB devices must support a specially
designated Endpoint 0 to which the USB device’s USB control pipe will be attached.

Associated with Endpoint 0 is the information required to completely describe the USB device.  This
information falls into the following categories:

• Standard.  This is information whose definition is common to all USB devices and includes items
such as vendor identification, device class, and power management.  Device, configuration, interface
and endpoint descriptions carry configuration related information about the device.  Detailed
information about these descriptors can be found in Chapter 9.

• Class.  The definition of this information varies depending on the device class of the USB device.

• USB Vendor.  The vendor of the USB device is free to put any information desired here.  The
format, however, is not determined by this specification.

 Additionally, each USB device carries USB control and status information.  All USB devices support a
common access method via their USB control pipe.
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4.8.2 Device Descriptions
Two major divisions of device classes exist:  hubs and functions.  Only hubs have the ability to provide
additional USB attachment points.  Functions provide additional capabilities to the host.

4.8.2.1 Hubs
Hubs are a key element in the plug-and-play architecture of USB.  They serve to simplify USB
connectivity from the user’s perspective and provide robustness at low cost and complexity.

Hubs are wiring concentrators and enable the multiple attachment characteristics of USB.  Attachment
points are referred to as ports.  Each hub converts a single attachment point into multiple attachment
points.  The architecture supports concatenation  of multiple hubs.

The upstream port of a hub connects the hub towards the host.   Each of the other downstream ports of a
hub allows connection to another hub or function. Hubs can detect attach and detach at each downstream
port and enable the distribution of power to downstream devices.  Each downstream port can be
individually enabled and configured as either full or low speed.  .   The hub isolates low speed ports from
full speed signaling.

A hub consists of two portions, the Hub Controller and the Hub Repeater.  The repeater is a protocol
controlled switch between the upstream port and downstream ports.  It also has hardware support for reset
and suspend/resume signaling.  The controller provides the interface registers to allow communication
to/from the host.  Hub specific status and control commands permit the host to configure a hub and to
monitor and control its ports.

Figure 4-3 shows a typical hub.

HUBUpstream
Port

Port
#1

Port
#7

Port
#6

Port
#5

Port
#4

Port
#2

Port
#3

Figure 4-3.  A Typical Hub
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Figure 4-4 illustrates  how hubs provide connectivity in a desktop computer environment.

Keyboard Monitor PC

Pen Mouse Speaker Mic Phone Hub

Host/HubHub/FunctionHub/Function

Function Function Function Function Function Hub

Figure 4-4.  Hubs in a Desktop Computer Environment

4.8.2.2 Functions
A function is a USB device that is able to transmit or receive data or control information over the bus.  A
function is typically implemented as a separate peripheral device with a cable that plugs into a port on a
hub.  However, a physical package may implement multiple functions and an embedded hub with a
single USB cable.  This is known as a compound device.  A compound device appears to the host as a
hub with one or more permanently attached USB devices.

Each function contains configuration information that describes its capabilities and resource
requirements.  Before a function can be used, it must be configured by the host.  This configuration
includes allocating USB bandwidth and selecting function specific configuration options.

Examples of functions are:

• A locator device such as a mouse, tablet, or light pen

• An input device such as a keyboard

• An output device such as a printer

• A telephony adapter such as ISDN
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4.9 USB Host:  Hardware and Software
The USB Host interacts with USB devices through the host controller.  The host is responsible for the
following:

• Detecting the attachment and removal of USB devices

• Managing control flow between the host and USB devices

• Managing data flow between the host and USB devices

• Collecting status and activity statistics

• Providing a limited amount of power to attached USB devices

USB system software on the host manages interactions between USB devices and host-based device
software.  There are five areas of interactions between USB system software and device software, they
are:

• Device enumeration and configuration

• Isochronous data transfers

• Asynchronous data transfers

• Power management

• Device and bus management information

Whenever possible, USB software uses existing host system interfaces to manage the above interactions.
For example, if a host system uses Advanced Power Management (APM) for power management, USB
system software connects to the APM message broadcast facility to intercept suspend and resume
notifications.

4.10 Architectural Extensions
The USB architecture comprehends extensibility at the interface between the Host Controller Driver and
USB Driver.  Implementations with multiple host controllers, and associated Host Controller Drivers, are
possible.
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Chapter 5
USB Data Flow Model

This chapter presents information about how data is moved across the USB that affects all implementers.
The information presented is at a level above the signaling and protocol definitions of the system.
Chapter 7 Electrical and Chapter 8 Protocol Layer should be consulted for more details about their
respective parts of the USB system.  This chapter provides framework information that is further
expanded in Chapter 9 USB Devices, Chapter 10 USB Host, and Chapter 11 USB Hub.  This chapter
should be read by all implementers to understand key concepts of USB.

5.1 Implementer Viewpoints
The USB provides communication services between a host and attached USB devices.  However, the
simple view an end user sees of attaching one or more USB devices to a host, as in Figure 5-1, is in fact a
little more complicated to implement than as indicated by the figure.  Different views of the system are
required to explain specific USB requirements from the perspective of different implementers.  Several
important concepts and features must be supported to provide the end user with the reliable operation
demanded from today’s personal computers.  USB is presented in a layered fashion to ease explanation
and allow implementers of particular USB products to focus on the details related to their product.

USB Host USB Device

Figure 5-1.  Simple USB Host/Device View

Figure 5-2 shows a deeper overview of USB identifying the different layers of the system that will be
described in more detail in the remainder of the specification.  In particular, there are four focus
implementation areas:

• USB Physical Device - A piece of hardware on the end of a USB cable that performs some useful
end user function.

• Client Software - Software that executes on the host corresponding to a USB device.  This client
software is typically supplied with the operating system or provided along with the USB device.

• USB System Software -  Software that supports USB in a particular operating system.  Typically
supplied with the operating system independently of particular USB devices or client software.

• USB Host Controller (Host Side Bus Interface) - The hardware and software that allows USB devices
to be attached to a host.

There are shared rights and responsibilities between the four USB system components.  The remainder of
this specification describes the details required to support robust, reliable communication flows between
a function and its client.
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Figure 5-2.  USB Implementation Areas

As shown in Figure 5-2, the simple connection of a host to a device requires interaction between a
number of layers and entities.  The USB Bus Interface layer provides physical/signaling/packet
connectivity between the host and a device.  The USB Device Layer is the view the USB System SW has
for performing generic USB operations with a device.  The Function Layer provides additional
capabilities to the host via an appropriate matched Client SW layer.  The USB Device and Function
layers each have a view of logical communication within their layer that actually uses the USB Bus
Interface Layer to accomplish data transfer.

The physical view of USB communication as described in Chapter 6, 7, and 8 is related to the logical
communication view presented in Chapters 9 and 10.  This chapter describes those key concepts that
affect USB implementers and should be read by all before proceeding to the remainder of the
specification to find those details most relevant to their product.

To describe and manage USB communication, the following concepts are important:

• Bus Topology:  Section 5.2 presents the primary physical and logical components of USB and how
they interrelate.

• Communication Flow Models:  Sections 5.3 through 5.8  describe how communication flows
between the host and devices through the USB and defines the four USB transfer types.

• Bus Access Management:  Section 5.9 describes how bus access is managed within the host to
support a broad range of communication flows by USB devices.

• Special Consideration for Isochronous Transfers:  Section 5.10 presents features of USB specific to
devices requiring isochronous data transfers.  Device implementers for non-isochronous devices will
not need to read that section.



Universal Serial Bus Specification Revision 0.99

41

5.2 Bus Topology
There are four main parts to USB topology:

• Host and Devices:  The primary components of a USB system.

• Physical Topology:  How USB elements are connected.

• Logical Topology:  The roles and responsibilities of the various USB elements and how the USB
appears from the perspective of the host and a device.

• Client software to function relationships:  How client software and its related function interfaces on a
USB device view each other.

5.2.1 USB Host
The host’s logical composition as shown in Figure 5-3 is:

• The USB host controller

• The aggregate USB system software (USB Driver, Host Controller Driver, and Host Software)

• The client

C lien t S W

U S B  H ost
C on tro ller

H ost

U S B  S ystem  S W

A ctual com m un ications flow

Log ica l com m un ications flow

Figure 5-3.  Host Composition

The USB host occupies a unique position as the coordinating entity for the USB.  In addition to its special
physical position, the host has specific responsibilities with regard to the USB and its attached devices.
The host controls all access to the USB.  A USB device only gains access to the USB by being granted
access by the host.  The host is also responsible for monitoring the topology of the USB.

For a complete discussion of the host and its duties, refer to Chapter 10 USB Host:  Software and
Hardware.



Universal Serial Bus Specification Revision 0.99

42

5.2.2 USB Devices
A USB physical device’s logical composition as shown in Figure 5-4 is:

• USB bus interface

• USB logical device

• Function

USB physical devices provide additional functionality to the host.  The types of functionality provided by
USB devices vary widely.  However, all USB logical devices present the same basic interface to the host.
This allows the host to manage the USB-relevant aspects of different USB devices in the same manner.

To assist the host in identifying and configuring USB devices, each device caries and reports
configuration related information.  Some of the information reported is common among all logical
devices.  Other information is specific to the functionality provided by the device.  The detailed format of
this information varies depending on the device class of the device.

For a complete discussion of USB devices, refer to Chapter 9 USB Devices.

USB Logical
Device

Function

Physical Device

USB Bus
Interface

Actual com m unications flow

Logical com m unications flow

Figure 5-4.  Physical Device Composition

5.2.3 Physical Bus Topology
 Devices on the USB are physically connected to the host via a tiered star topology, as illustrated in Figure

5-5.  USB attachment points are provided by a special class of USB device known as a hub.  The
additional attachment points provided by a hub are called ports.  A host includes an embedded hub called
the root hub.  The host provides one or more attachment points via the root hub.  USB devices which
provide additional functionality to the host are known as functions.  To prevent circular attachments, a
tiered ordering is imposed on the star topology of the USB.  This results in the treelike configuration
illustrated in Figure 5-5.
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Figure 5-5.  USB Physical Bus Topology

Multiple functions may be packaged together in what appears to be a single physical device.  For
example, a keyboard and a trackball might be combined in a single package.  Inside the package, the
individual functions are permanently attached to a hub and it is the internal hub that is connected to the
USB.  When multiple functions are combined with a hub in a single package they are referred to as a
compound device.  From the host’s perspective, a compound device is the same as a separate hub with
multiple functions attached.  Figure 5-5 also illustrates a compound device.

5.2.4 Logical Bus Topology
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Figure 5-6.  USB Logical Bus Topology

 While devices physically attach to the USB in a tiered, star topology, the host communicates with each
logical device as if it were directly connected to the root port.  This creates the logical view illustrated in
Figure 5-6 that corresponds to the physical topology shown in Figure 5-5.  Hubs are logical devices also,
but are not shown in Figure 5-6 to simplify the picture.  Even though most host/logical device activities
use this logical perspective, the host maintains an awareness of physical topology to support processing
the removal of hubs.  When a hub is removed, all of the devices attached to the hub must be removed
from the host’s view of the logical topology.  A more complete discussion of hubs can be found in
Chapter 11 USB Hub.
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5.2.5 Client Software to Function Relationship
Even though the physical and logical topology of the USB reflects the shared nature of the bus, client
software(Csw) manipulating a USB function interface is presented with the view that it deals only with
its interface(s) of interest.  Client software for USB functions must use USB software programming
interfaces to manipulate their functions as opposed to directly manipulating their functions via memory
or I/O accesses as with other buses (e.g., PCI, EISA, PCMCIA, etc).  During operation, client software
should be independent of other devices that may be connected to USB.  This allows the designer of the
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Figure 5-7.  Client Software to Function Relationships

device and client software to focus on the hardware/software interaction design details.  Figure 5-7
illustrates a device designer’s perspective of the relationships of client software and USB functions with
respect to the USB logical topology of Figure 5-6.

5.3 USB Communication Flow
USB provides a communication service between software on the host and its USB function.  Functions
can have different communication flow requirements for different client to function interactions.  USB
provides better overall bus utilization by allowing the separation of the different communication flows to
a USB function.  Each communication flow makes use of some bus access to accomplish communication
between client and function.  Each communication flow is terminated at an endpoint on a device. Device
endpoints are used to identify aspects of each communication flow.
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Figure 5-8.  USB Host/Device Detailed View

The diagram in Figure 5-8 shows a more detailed view of Figure 5-2.  The complete definition of the
actual communication flows of Figure 5-2 supports the logical device and function layer communication
flows.  These actual communication flows cross several interface boundaries.  Chapters 6, 7, and 8
describe the mechanical, electrical, and protocol interface definitions of the USB “wire”.  Chapter 9
describes the USB device programming interface that allows a USB device to be manipulated from the
host side of the wire.  Chapter 10 describes two host side software interfaces:

• Host Controller Driver (HCD) - the software interface between the USB host controller and USB
System software.  This interface allows a range of host controller implementations without requiring
all host software to be dependent on any particular implementation.  One USB Driver can support
different host controllers without requiring specific knowledge of a host controller implementation.
A host controller implementer provides a HCD implementation that supports the host controller.

• USB Driver (USBD) - the interface between USB system software and the client software.  This
interface provides clients with convenient functions for manipulating USB devices.

A USB logical device appears to the USB system as a collection of endpoints.  Endpoints are grouped
into endpoint sets which implement an Interface.  Interfaces are views to the function.  System software
manages the device using the Default Pipe (associated with Endpoint 0).  Client software manages an
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Interface using pipe bundles (associated with an Endpoint Set).  Client software requests that data be
moved across the USB between a buffer on the host and an endpoint on the USB device.  The host
controller (or USB device depending on transfer direction) packetizes the data to move it over the USB.
The host controller also coordinates when bus access is used to move the packet of data over the USB.

Figure 5-9 illustrates how communication flows are carried over pipes between endpoints and host side
memory buffers.  The following sections describe endpoints, pipes, and communication flows in more
detail.

Client
Software

Interface

Endpoints

Comm Flows

Buffers

USB Logical Device

Host

Pipes

Figure 5-9.  USB Communication flow

Software on the host communicates with a logical device via a set of communication flows.  The set of
communication flows are selected by the device software/hardware designer(s) to efficiently match the
communication requirements of the device to the transfer characteristics provided by USB.

5.3.1 Device Endpoints
An endpoint is a uniquely identifiable portion of a USB device that is the terminus of a communication
flow between the host and device.  Each USB logical device is composed of a collection of independently
operating endpoints.  Software may only communicate with a USB device via one or more endpoints.
Each logical device has a unique address assigned by the system at device attachment time.  Each
endpoint on a device has a device (design time) determined unique identifier, the endpoint number.  The
combination of the device address and the endpoint number allows each endpoint to be uniquely
referenced.

An endpoint has characteristics that determine the type of transfer service required between the endpoint
and the client software.  Endpoints describe themselves by:

• Their bus access frequency/latency requirements

• Their bandwidth requirements

• Their endpoint number

• The error handling behavior requirements

• Maximum packet size that the endpoint is capable of sending or receiving

• The transfer type for the endpoint (refer to Section 5.4 for details)

• For bulk and isochronous transfer types, the direction data is transferred between the endpoint and
the host

Endpoints start in a disabled state.  Disabled endpoints must not be accessed by the host.
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5.3.1.1 Endpoint 0 Requirements
 All USB devices are required to have an Endpoint with endpoint number 0 that is used to initialize and

generically manipulate the logical device (e.g., to configure the logical device).  Endpoint 0 provides
access to the device’s configuration information and allows generic USB status and control access.
Endpoint 0 supports control transfers as defined in Section 5.5.  Endpoint 0 is always configured once a
device is attached and powered.

5.3.1.2 Non-endpoint 0 Requirements
 Functions can have additional endpoints as required for their implementation.  Low speed functions are

limited to two optional endpoints beyond the required Endpoint 0.  Full speed devices can have additional
endpoints only limited by the protocol definition; i.e., a maximum of 16 input endpoints and 16 output
endpoints.

An endpoint cannot be used until it is configured.  Endpoints, besides endpoint 0, are configured as a
normal part of the device configuration process (refer to Chapter 9).

5.3.2 Pipes
A USB pipe is an association between an endpoint on a device and software on the host.  Pipes represent
the ability to move data between software on the host via a memory buffer and an endpoint on a device.
There are two different, mutually exclusive, pipe communication modes:

• Stream - Data moving through a pipe has no USB defined structure

• Message - Data moving through a pipe has some USB defined structure

USB does not interpret the content of data it delivers through a pipe.  Even though a message pipe
requires that data be structured according to USB definitions, the content of the data is not interpreted by
USB.

Additionally, pipes have associated with them:

• A claim on USB bus access and bandwidth usage

• A transfer type

• The associated endpoint’s characteristics such as directionality and maximum data payload sizes

 Pipes come into existence when a USB device is configured.  Since Endpoint 0 is always configured once
a device is powered, there is always a pipe for Endpoint 0.  This pipe is called the Default Pipe.  This
pipe is used by system software to determine device identification and configuration requirements, and to
configure the device.  The default pipe can also be used by device specific software after the device is
configured.  USB system software retains “ownership” of the default pipe and mediates use of the pipe by
other client software.

 A software client normally requests transfers via a pipe and then either waits or is notified when they are
completed.  A software client can cause a pipe to return all outstanding transfers if it desires.  The
software client is notified that the transfer has completed when the bus transactions associated with it
have completed either successfully or due to errors.

 If there are no transfers pending or in progress for a pipe, the pipe is idle and the host controller will take
no action with regard to the pipe, i.e. the endpoint for such a pipe will not see any bus transactions
directed to it.  The only time bus activity is present for a pipe is due to pending transfers for that pipe.

 If a pipe for non-isochronous transfers encounters a STALL condition (refer to Chapter 8) or three bus
errors are encountered on any packet of a transfer, the transfer is aborted/retired, all outstanding transfers
are also retired, and no further transfers are accepted until the software client recovers from the condition
(in an implementation dependent way) and acknowledges the STALL or error condition via a USBD
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SetPipePolicy call.  An appropriate status informs the software client of the specific transfer result for
error versus STALL (see Chapter 10).  Isochronous transfer type behavior is described below in
Section 5.6.

 A endpoint can inform the host that it is busy by responding with a NAK.  NAKs are not used as a retire
condition for returning a transfer to a software client.  Any number of NAKs can be encountered during
the processing of a given transfer.  A NAK response to a transaction does not constitute an error and is
not counted as one of the three errors described above.

5.3.2.1 Stream Pipes
Stream pipes deliver data in the data packet portion of bus transactions with no USB required structure on
the data content.  Data flows in at one end of a stream pipe and out the other end in the same order.
Stream pipes are always unidirectional in their communication flow.

Data flowing through a stream pipe is expected to interact from what USB believes is a single client.
USB System software is not required to provide synchronization between multiple clients that may be
using the same stream pipe.  Data presented to a stream pipe is moved through the pipe in sequential
order:  first-in, first-out.

A stream pipe to a device is bound to a single device endpoint number in the appropriate direction (i.e.,
corresponding to an IN or OUT token as defined by the protocol layer).  The device endpoint number for
the opposite direction can be used for some other stream pipe to the device.

Stream pipes support bulk, isochronous, and interrupt transfer types explained below.

5.3.2.2 Message Pipes
Message pipes interact with the endpoint in a different manner than stream pipes.  First a request is sent
to the USB device from the host. This request is followed by data transfer(s) in the appropriate direction.
Finally, a status stage follows at some later time by a response from the endpoint.  In order to
accommodate the request/data/status paradigm, message pipes impose a structure on the communication
flow which allows commands to be reliably identified and communicated.  Message pipes allow
communication flow in both directions although the communication flow may be predominately one way.
The pipe for Endpoint 0, the default pipe, is always a message pipe.

USB system software ensures that multiple requests are not sent to an endpoint concurrently.  An
endpoint is only required to service a single message request at a time per endpoint.  Multiple software
clients on the host can make requests via the default pipe, but they are sent to the endpoint in a first-in
first-out order.  An endpoint can control the flow of information during the data and status stages based
on its ability to respond to the host transactions (refer to Chapter 8 for more details).

An endpoint will not normally be sent the next message from the host until the current message’s
processing at the endpoint has been completed.  However, there are error conditions whereby a message
transfer can be aborted by the host and the endpoint can be sent a new message transfer prematurely
(from it’s perspective).  From the perspective of the software manipulating a message pipe, an error on
some part of a transfer retires the current transfer and all queued transfers.  The software client that
requested the transfer is notified of the transfer completion with an appropriate error indication.

A message pipe to a device requires a single device endpoint number in both directions (IN and OUT
tokens).  USB does not allow a message pipe to be associated with different endpoint numbers for each
direction.

Message pipes support the Control transfer type explained below.
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5.4 Transfer Types
USB transports data through a pipe between a memory buffer associated with a software client on the
host and an endpoint on the USB device.  Data transported by message pipes is carried in a USB defined
structure, but USB allows device specific structured data to be transported within the USB defined
message data payload.  USB also defines that data moved over the bus is packetized for any pipe (stream
or message), but ultimately the formatting and interpretation of the data transported in the data payload of
a bus transaction is the responsibility of the client software and function using the pipe.  However, USB
provides different transfer types that are optimized to more closely match the service requirements of the
client software and function using the pipe.  A transfer uses one or more bus transactions to move
information between a software client and its function.

Each transfer type determines various characteristics of the communication flow including:

• Data format imposed by USB

• Direction of communication flow

• Packet size constraints

• Bus access constraints

• Required data sequences

 The designers of a USB device choose the capabilities for the device’s endpoints.  When a pipe is
established for an endpoint, most of the pipe’s transfer characteristics are determined and remain fixed
for the lifetime of the pipe.  Transfer characteristics that can be modified are described for each transfer
type.

 USB defines four transfer types:

• Control Transfers - Bursty, non-periodic, host software initiated request/response communication
typically used for command/status operations.

• Isochronous Transfers - Periodic, continuous communication between host and device typically used
for time relevant information. This transfer type also preserves the concept of time encapsulated in
the data.  This does not imply, however, that the delivery needs of such data is always time-critical.

• Interrupt Transfers - Small data, non-periodic, low frequency, bounded latency, device initiated
communication typically used to notify the host of device service needs.

• Bulk Transfers - Non-periodic, large bursty communication typically used for a transfer that can use
any available bandwidth and also be delayed until bandwidth is available.

 Each transfer type is described in detail in the following four major sections.  The data for any transfer is
carried by the data field of the data packet as described in Section 8.4.3.  Chapter 8 also describes details
of the protocol that are affected by use of each particular transfer type.

5.5 Control Transfers
Control transfers allow access to different parts of a device.  Control transfers are intended to support
configuration/command/status type communication flows between client software and its function.  A
control transfer is composed of a setup bus transaction moving request information from host to function,
zero or more data transactions sending data in the direction indicated by the setup transaction, and a
status transaction returning status information from function to host.  The status transaction returns
“success” when the endpoint has successfully completed processing the requested operation.  Section
8.5.2 describes the details of what packets, bus transactions, and transaction sequences are used to
accomplish a control transfer.  Chapter 9 describes the details of the defined USB command codes.

Each USB device is required to implement endpoint 0 with a control transfer type.  This endpoint is used
by the USB system software as a control pipe.  Control pipes provide access to the USB device’s
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configuration, status, and control information.  A function can provide endpoints for additional control
pipes for its own implementation needs.

The USB Device framework (refer to Chapter 9) defines standard, device class, or vendor specific
requests that can be used to manipulate a device’s state.   Descriptors are also defined that can be used to
contain different information on the device.  Control transfers provide the transport mechanism to access
device descriptors and make requests of a device to manipulate its behavior.

Control transfers are only carried through message pipes.  Consequently, data flows using control
transfers must adhere to USB data structure definitions as described in Section 5.5.1.

USB subsystem will make a “best effort” to support delivery of control transfers between the host and
devices.  A function and its client software cannot request specific bus access frequency or bandwidth for
control transfers.  USB system software may restrict the bus access and bandwidth that a device may
desire for control transfers.  These restrictions are defined in Sections 5.5.3 and 5.5.4.

5.5.1 Data Format
The setup packet has a USB defined structure that accommodates the minimum set of commands
required to enable communication between the host and a device.  The structure definition allows vendor
specific extensions for device specific commands.  The data transactions following setup have no USB
defined structure.  The status transaction also has a USB defined structure.  Specific control transfer
setup/data definitions are in Section 8.5.2 and Chapter 9.

5.5.2 Direction
Control transfers are supported via bi-directional communication flow over message pipes.

5.5.3 Packet Size Constraints
An endpoint for control transfers specifies the maximum data payload size that the endpoint can accept
from or transmit to the bus.  USB defines the allowable maximum control data payload sizes for full
speed devices to be only 8, 16, 32, or 64 bytes.  Low speed devices are limited to only an 8 byte
maximum data payload size.  This maximum applies to the data payloads of the data packets following a
setup; i.e., the size specified is for the data field of the packet as defined in Chapter 8, not including other
protocol required information.  A setup packet is always 8 bytes.  After reset, the host will use only 8
byte maximum sized data payloads until it can determine whether the endpoint supports a larger
maximum data payload size.  The 8 byte maximum data payload is sufficient for standard USB control
operations.  Larger data payload sizes may be useful for class or vendor specific operations.

All control endpoints are required to support a control data payload maximum size of 8 bytes after reset.
An endpoint can be designed to support a larger maximum data payload size.  Such an endpoint reports in
its configuration information the value for its maximum data payload size.  USB does not require that
data payloads transmitted be exactly the maximum size; i.e., if a data payload is less than the maximum,
it does not need to be padded to the maximum size.

All host controllers are required to have support for 8, 16, 32, and 64 byte maximum data payload sizes
for full speed control endpoints and only 8 byte maximum data payload sizes for low speed control
endpoints.  No host controller is required to support larger or smaller maximum data payload sizes.

During configuration, USB system software reads the endpoint’s maximum data payload size and ensures
that no data payload will be sent to the endpoint that is larger than the supported size.  The host will
always use a maximum data payload size of at least 8 bytes.

An endpoint must always transmit data payloads with a data field less than or equal to the endpoint’s
MaxPacketSize (refer to Chapter 9).  When a control transfer involves more data than can fit in one data
payload of the currently established maximum size, all data payloads are required to be maximum sized
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except for the last data payload which will contain the remaining data.  If an endpoint wants to transmit
less data than expected by the client software, a premature, less than maximum sized data payload will be
received by the host controller.  This premature, less than maximum sized data payload causes the host
controller to advance to the status transaction instead of continuing on with another data transaction.  If a
data payload is received that is larger than that expected, the control transfer will be aborted/retired and
the pipe will stall future transfers until the condition is corrected and acknowledged.

5.5.4 Bus Access Constraints
Control transfers can be used by full speed and low speed devices.

An endpoint has no way to indicate a desired bus access frequency for a control pipe.  USB balances the
bus access requirements of all control pipes and the specific transfers that are pending to provide “best
effort” delivery of data between client software and functions.

USB requires that 10% of each frame be reserved to be available for use by control transfers.  This
requirement guarantees that a minimum amount of control transfers between host and devices can be
regularly moved over the bus.  If the currently pending control transfers require less than 10% of the
frame time, the remainder time can be used to support bulk transfers as described later.  If there are more
control transfers than reserved time, but there is additional frame time that is not being used for
isochronous or interrupt transfers, a host controller may move additional control transfers as they are
available. If there are too many pending control transfers than available frame time, control transfers are
selected to be moved over the bus as appropriate.  If there are control transfers pending for multiple
endpoints, control transfers for the different endpoints are selected according to a fair access policy that is
host controller implementation dependent.

Table 5-1.  Full Speed Control Transfer Limits

protocol overhead (bytes)
45  (9-syncs, 9-pids, 6-EP+CRC,6-CRC,8-Setup data

 7-byte interpacket delay (EOP, etc.))
data max Bandwidth Frame BW max Bytes Bytes/frame
payload bytes/sec per transfer transfers Remaining useful data

1 32000 3% 32 28 32
2 62000 3% 31 43 62
4 120000 3% 30 30 120
8 224000 4% 28 16 224

16 384000 4% 24 36 384
32 608000 5% 19 37 608
64 832000 7% 13 83 832

max 1500000 1500

All control transfers pending in a system contend for the same available bus time.  Because of this, the
bus time made available for control transfers to a particular endpoint can be varied by USB system
software at its discretion.  An endpoint and its client software cannot assume a specific rate of service for
control transfers.  Bus time made available to a software client and its endpoint can be changed as other
devices are inserted into and removed from the system or also as control transfers are requested for other
device endpoints.

The bus frequency and frame timing limit the maximum number of successful control transfers within a
frame for any USB system to less than 29 full speed 8 byte data payloads or less than 4 low speed 8 byte
data payloads. Table 5-1 shows information about different sized full speed control transfers and the
maximum number of transfers possible in a frame.  This table was generated assuming zero length status
data stage transaction and 1 data stage transaction.  The table illustrates the possible power of 2 data
payloads less than or equal to the allowable maximum data payload sizes.

The 10% frame reservation for control transfers means that in a system with bus time fully allocated, all
full speed control transfers in the system contend for a nominal 3 control transfers per frame.  Since the
USB subsystem uses control transfers for configuration purposes in addition to whatever other control
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transfers other client software may be requesting, a given software client and its function should not
expect to be able to make use of this full bandwidth for its own control transfer purposes.  Host
controllers are also free to determine how the individual bus transactions for specific control transfers are
moved over the bus within and across frames.  An endpoint could see all bus transactions for a control
transfer within the same frame or spread across several discontiguous frames.  Finally, a host controller,
for various implementation reasons, may not be able to provide the theoretical maximum number of
control transfers per frame.

Table 5-2.  Low Speed Control Transfer Limits

protocol overhead (bytes)
46

data max Bandwidth Frame BW max Bytes Bytes/frame
payload (approx) per transfer transfers Remaining useful data

1 3000 25% 3 46 3
2 6000 26% 3 43 6
4 12000 27% 3 37 12
8 24000 29% 3 25 24

max 187500 187

Both full speed and low speed control transfers contend for the 10% frame time reservation defined
above.  Low speed control transfers should nominally be expected to be transferred over the bus no more
frequently than once every 10 frames.  Low speed control transfers averaged over 10 frames nominally
have 1% of each frame reserved for their use while full speed control transfers have the remaining 9% of
the frame.  Nominally, low speed control transfers have access to a maximum of less than four 8 byte
data payloads per 10 frames.  As above, if a reservation is not being used by one speed, it can be used by
the other.  Table 5-2 shows information about different sized low speed packets and the maximum
number of packets possible in a frame.  Also, since a control transfer is composed of several packets, the
packets can be spread over several frames to spread the bus time required across several frames.

5.5.5 Data Sequences
Control transfers require that a setup bus transaction be sent from the host to a device to describe the type
of control access that the device should perform.  The setup transaction is followed by zero or more
control data transactions that carry the specific information for the requested access.  Finally, a status
transaction completes the control transfer and allows the endpoint to return the status of the control
transfer to the client software.  After the status transaction for a control transfer is completed, the host can
advance to the next control transfer for the endpoint.  As described in Bus Access Constraints above, this
next control transfer will be moved over the bus at some host controller implementation defined time in
the future.

The endpoint can be busy for a device specific numbers of frames during the data and status transactions
of the control transfer.  During these times when the endpoint indicates it is busy (see Chapter 8 and
Chapter 9 for details), the host will retry the transaction at a later time.

If a setup transaction is received by an endpoint before a previously initiated control transfer is
completed, the device must abort the current transfer/operation and handle the new control setup
transaction.  A setup transaction should not normally be sent before the completion of a previous control
transfer.  However, if a transfer is aborted, for example, due to errors on the bus, the host can send the
next setup transaction prematurely from the endpoint’s perspective.

After a STALL condition is encountered or an error is detected by the host, a control endpoint is allowed
to recover by accepting the next setup pid; i.e., recovery actions via some other pipe are not required for
control endpoints, but may be required by implementation for some.  For the default pipe (endpoint 0), a
device reset (by USBD) will ultimately be required to clear the STALL or error condition if the next
setup pid is not accepted.
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USB provides robust error detection, recovery/retransmission for errors that occur during control
transfers.  Transmitters and receivers can remain synchronized with regard to where they are in a control
transfer and recover with minimum effort.  Retransmission of data and status packets can be detected by
a receiver via data retry indicators in the packet.  A transmitter can reliably determine that its
corresponding receiver has successfully accepted a transmitted packet by information returned in a
handshake to the packet.  The protocol allows for distinguishing a retransmitted packet from its original
packet except for a control setup packet.  Setup packets may be retransmitted due to a transmission error;
however, setup packets cannot indicate that a packet is an original or a retried transmission.

5.6 Isochronous Transfers
In non-USB environments, isochronous transfers have the general implication of constant-rate, error-
tolerant transfers.  In the USB environment, requesting an isochronous transfer type provides the
requester with the following:

• Guaranteed access to USB bandwidth with bounded latency

• As long as data is provided to the pipe, a constant data rate through the pipe is guaranteed

• In the case of a delivery failure due to error, no retrying of the attempt to deliver the data

While the USB isochronous transfer type is designed to support isochronous sources and destinations, it is
not required that software using this transfer type actually be isochronous in order to use the transfer type.
Section 5.10 presents more detail on special considerations for handling isochronous data on USB.

5.6.1 Data Format
USB imposes no data content structure on communication flows for isochronous pipes.  USB defines an
optional standard sample header that can be used to allow receivers to know where the transmitter is in
the sample stream.  Use of this standard sample header allows receivers (host or device) to recover from
lost packets.  However, a software client and its endpoint are not required to use this standard format.  An
introduction of this mechanism is presented in Section 5.10.  The endpoint indicates it uses the standard
format in its configuration information described in Chapter 9.

The standard sample header, if used, is located at the beginning of every data packet.  The header is a 2
byte (16 bit) value in little endian format that is the byte count transmitted since the pipe was last
configured or since the last USBD SetPipePolicy call.  This count is modulo 216 since it is in a 16 bit
field.  This count indicates the byte count of the first data byte, i.e. the first packet after reset has a 2 byte
standard sample header with value X followed by the N data bytes for the samples contained within the
data packet.  The next packet time-adjacent data will have a sample header with value X + N.

5.6.2 Direction
An isochronous pipe is a stream pipe and is therefore always unidirectional.  An endpoint description
identifies whether a given isochronous pipe’s communication flow is into or out of the host.  If a device
requires bi-directional isochronous communication flow, two isochronous pipes must be used, one in each
direction.

5.6.3 Packet Size Constraints
An endpoint in a given configuration for an isochronous pipe specifies the maximum size data payload
that it can transmit/receive.  USB system software uses this information during configuration to ensure
that there is sufficient bus time to accommodate this maximum data payload in each frame.  If there is
sufficient bus time for the maximum data payload, the configuration is established; if not, the
configuration is not established.  USB system software does not adjust the maximum data payload size
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for an isochronous pipe as was the case for a control pipe.  An isochronous pipe can simply either be
supported or not in a given USB subsystem configuration.

USB limits the maximum data payload size to 1023 bytes for each isochronous pipe.  Table 5-3 shows
information about different sized isochronous transfers and the maximum number of transfers possible in
a frame.

Table 5-3 Isochronous Transfer Limits

protocol overhead (bytes)
9  (2-syncs,  2-pids, 2-EP+CRC,  2-CRC,

 1 byte interpacket delay)
data max Bandwidth Frame BW max Bytes Bytes/frame
payload per packet packets Remaining useful data

1 150000 1% 150 0 150
2 272000 1% 136 4 272
4 460000 1% 115 5 460
8 704000 1% 88 4 704

16 960000 2% 60 0 960
32 1152000 3% 36 24 1152
64 1280000 5% 20 40 1280

128 1280000 9% 10 130 1280
256 1280000 18% 5 175 1280
512 1024000 35% 2 458 1024

1023 1023000 69% 1 468 1023
max 1500000 1500

Any given transaction for a isochronous pipe need not be exactly the maximum size specified for the
endpoint.  The size of a data payload is determined by the transmitter (client software or function) and
can vary as required from transaction to transaction.  An endpoint can use the optional USB standard
sample header to indicate where in the sample stream this packet starts.  This allows the receiver to
recover from packets lost due to errors.  USB ensures that whatever size is presented to the host controller
is delivered on the bus. The actual size of a data payload is determined by the data transmitter and may
be less than the prenegotiated maximum size.  Bus errors can change the actual size seen by the receiver.
However, these errors can be detected by either CRC on the data or knowledge the receiver has about the
expected size for any transfer.

5.6.4 Bus Access Constraints
Isochronous transfers can only be used by full speed devices.

An endpoint for an isochronous pipe does not include information about bus access frequency.  All
isochronous pipes normally move exactly one data packet each frame (i.e., every 1 ms).  Errors on the
bus or delays in OS scheduling of client software can result in no packet being transferred for a frame.
An error indication is returned as status to the client software in such a case.  A device can also detect
this situation by tracking SOF tokens and noticing two SOF tokens without an intervening data packet for
an isochronous endpoint.

The bus frequency and frame timing limit the maximum number of successful isochronous transfers
within a frame for any USB system to less than 151 full speed 1 byte data payloads.  Finally, a host
controller, for various implementation reasons, may not be able to provide the theoretical maximum
number of isochronous transfers per frame.

5.6.5 Data Sequences
Isochronous transfers do not support data retransmission in response to errors on the bus. A receiver can
determine that a transmission error occurred.  The low level USB protocol does not allow handshakes to
be returned to the transmitter of an isochronous pipe.  Normally handshakes would be returned to tell the
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transmitter whether a packet was successfully received or not.   For isochronous transfers, timeliness is
more important than correctness/retransmission, and given the low error rates expected on the bus, the
protocol is optimized assuming transfers normally succeed.  Isochronous receivers can determine whether
they missed data during a frame.  Also, a receiver can determine how much data was lost.  Section 5.10
describes further details about these USB mechanisms.

An endpoint for isochronous transfers never stalls since there is no handshake to report a STALL
condition.  The host and client software can never encounter this case.  Errors are reported as status
associated with an isochronous transfer, but the isochronous pipe is not stalled in an error case.  If an
error is detected, the host continues to process the data associated with the next frame of the transfer.
Limited error detection is possible since the protocol for isochronous transactions doesn’t allow per
transaction handshakes.

5.7 Interrupt Transfers
The Interrupt transfer type is designed to support those devices that need to communicate small amounts
of data infrequently, but with bounded service periods.  Requesting a pipe with an interrupt transfer type
provides the requester with the following:

• Guaranteed maximum service period for the pipe

• Retry of transfer attempts at the next period, in the case of occasional delivery failure due to error on
the bus

5.7.1 Data Format
USB imposes no data content structure on communication flows for interrupt pipes.

5.7.2 Direction
An interrupt pipe is a stream pipe and is therefore always unidirectional.  Further, an interrupt pipe is
only input to the host.  Output interrupt pipes are not supported by USB.

5.7.3 Packet Size Constraints
An endpoint for an interrupt pipe specifies the maximum size data payload that it will transmit.  The
maximum allowable interrupt data payload size is 64 bytes or less for full speed.  Low speed devices are
limited to 8 bytes or less maximum data payload size.  This maximum applies to the data payloads of the
data packets; i.e., the size specified is for the data field of the packet as defined in Chapter 8, not
including other protocol required information.  USB does not require that data packets be exactly the
maximum size; i.e., if a data packet is less than the maximum, it does not need to be padded to the
maximum size.

All host controllers are required to have support for up to 64 byte maximum data payload sizes for full
speed interrupt endpoints and 8 bytes or less maximum data payload sizes for low speed interrupt
endpoints.  No host controller is required to support larger maximum data payload sizes.

USB system software determines the maximum data payload size that will be used for a interrupt pipe
during device configuration.  This size remains constant for the lifetime of a device’s configuration.
USB software uses the maximum data payload size determined during configuration to ensure that there
is sufficient bus time to accommodate this maximum data payload in its assigned period.  If there is
sufficient bus time, the pipe is established; if not, the pipe is not established.  USB software does not
adjust the bus time made available to an interrupt pipe as was the case for a control pipe.  An interrupt
pipe can simply either be supported or not in a given USB subsystem configuration.  However, the actual
size of a data payload is still determined by the data transmitter and may be less than the maximum size.
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An endpoint must always transmit data payloads with a data field less than or equal to the endpoint’s
MaxPacketSize.  A software client can request an interrupt transfer that requires multiple bus transactions
without requiring a transfer complete notification per transaction.  This can be achieved by specifying a
buffer that can hold the desired data size.  The size of the buffer is a multiple of MaxPacketSize with
some remainder.  The endpoint must transfer each transaction except the last as MaxPacketSize and the
last transaction is the remainder.  The multiple data transactions are moved over the bus at the period
established for the pipe.

When an interrupt transfer involves more data than can fit in one data payload of the currently
established maximum size, all data payloads are required to be maximum sized except for the last data
payload which will contain the remaining data.  If an endpoint wants to transmit less data than expected
by the client software, a premature, less than maximum sized data payload will be received by the host
controller.  This premature, less than maximum sized data payload causes the host controller to retire the
current transfer and advance to the next transfer.  If a data payload is received that is larger than that
expected, the interrupt transfer will be aborted/retired and the pipe will stall future transfers until the
condition is corrected and acknowledged.

5.7.4 Bus Access Constraints
Interrupt transfers can be used by full speed and low speed devices.

The bus frequency and frame timing limit the maximum number of successful interrupt transfers within a
frame for any USB system to less than 108 full speed 1 byte data payloads or 14 low speed 1 byte data
payloads.  Finally, a host controller, for various implementation reasons, may not be able to provide the
above maximum number of control transfers per frame.

Table 5-4 shows information about different sized full speed interrupt transfers and the maximum number
of transfers possible in a frame.  Table 5-5 shows similar information for low speed interrupt transfers.

Table 5-4 Full Speed Interrupt Transfer Limits

protocol overhead (bytes)
13  (3-syncs,  3-pids, 2-EP+CRC, 2-CRC,

 3 byte interpacket delay)
data max Bandwidth Frame BW max Bytes Bytes/frame
payload per packet packets Remaining useful data

1 107000 1% 107 2 107
2 200000 1% 100 0 200
4 352000 1% 88 4 352
8 568000 1% 71 9 568

16 816000 2% 51 21 816
32 1056000 3% 33 15 1056
64 1216000 5% 19 37 1216

max 1500000 1500

An endpoint for an interrupt pipe specifies its desired bus access period.  A full speed endpoint can
specify a desired period from 1 ms to 1024 ms.  Low speed endpoints are limited to only specifying
10 ms - 1024 ms.  USB software will use this information during configuration to determine a period that
can be sustained.  The period provided by the system may be shorter than that desired by the device up to
the shortest period defined by USB.  The client software and device can only depend on the fact that the
host will ensure that the time duration between two error free transfers (or two transfer attempts) with the
endpoint will be no longer than the desired period.  Note that errors on the bus can prevent an interrupt
transfer from being successfully delivered over the bus and consequently exceed the desired period.  The
period between any two transfer attempts can also vary over time, although it will never exceed the
desired period in error free cases.  Also, the endpoint is only polled when the software client has an
interrupt transfer pending.  If the bus time for performing an interrupt transfer arrives and there is no
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interrupt transfer pending, the endpoint will not be given an opportunity to transfer data at that time.
Once a transfer is requested, it will be transferred at the next allocated period.

Table 5-5.  Low Speed Interrupt Transfer Limits

protocol overhead (bytes)
13

data max Bandwidth Frame BW max Bytes Bytes/frame
payload (approx) per packet packets Remaining useful data

1 13000 7% 13 5 13
2 24000 8% 12 7 24
4 44000 9% 11 0 44
8 64000 11% 8 19 64

max 187500 187

Interrupt transfers are moved over the USB by accessing an interrupt endpoint every period.  The host has
no way to determine whether an endpoint will source an interrupt without accessing the endpoint and
requesting an interrupt transfer.  If the endpoint has no interrupt data to transmit when accessed by the
host, it responds with a NAK.  An endpoint should only provide interrupt data when it has an interrupt
pending to avoid having a software client erroneously notified of transfer complete.  A zero length data
payload is a valid transfer and may be useful for some implementations.

5.7.5 Data Sequences
Interrupt transfers may use either alternating data toggle bits such that the bits are toggled only upon
successful transfer completion or a continuously toggling of data toggle bits.  The host in any case must
assume that the device is obeying full handshake/retry rules as defined in Chapter 8.  A device may
choose to always toggle DATA0/DATA1 PIDs so that it can ignore handshakes from the host.  However,
in this case, the client software can miss some data packets when an error occurs because the host
controller interprets the next packet as a retry of a missed packet.

If a stall condition is detected on an interrupt pipe due to transmission errors or a STALL handshake
being returned from the endpoint, all pending transfers are retired.  Removal of the stall condition is
achieved via software intervention through a separate control pipe.  This recovery must also reset the data
toggle bit to DATA0 for the endpoint.  The software client must also call USBD SetPipePolicy to reset
the host’s data toggle to DATA0, acknowledge and clear the stall condition on the host.

Interrupt transfers are retried due to errors detected on the bus that affect a given transfer.

5.8 Bulk Transfers
The bulk transfer type is designed to support devices that need to communicate relatively large amounts
of data at highly variable times where the transfer can be deferred until bandwidth is available.
Requesting a pipe with a bulk transfer type provides the requester with the following:

• Access to the USB on a bandwidth available basis

• Retry of transfers, in the case of occasional delivery failure due to error on the bus

• Guaranteed delivery of data, but no guarantees of bandwidth or latency

Bulk transfers occur only on a bandwidth available basis.  For a USB with large amounts of free
bandwidth, bulk transfers may happen relatively quickly; while for a USB with little bandwidth available,
bulk transfers may trickle out over a relatively long period of time.

5.8.1 Data Format
USB imposes no data content structure on communication flows for bulk pipes.
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5.8.2 Direction
A bulk pipe is a stream pipe and, therefore, always has communication flowing either into or out of the
host for a given pipe.  If a device requires bi-directional bulk communication flow, two bulk pipes must
be used, one in each direction.

5.8.3 Packet Size Constraints
An endpoint for bulk transfers specifies the maximum data payload size that the endpoint can accept
from or transmit to the bus.  USB defines the allowable maximum bulk data payload sizes to be only 8,
16, 32, or 64 bytes.  This maximum applies to the data payloads of the data packets; i.e.; the size
specified is for the data field of the packet as defined in Chapter 8, not including other protocol required
information.

A bulk endpoint is designed to support a maximum data payload size.  A bulk endpoint reports in its
configuration information the value for its maximum data payload size.  USB does not require that data
payloads be transmitted exactly the maximum size; i.e., if a data payload is less than the maximum, it
does not need to be padded to the maximum size.

All host controllers are required to have support for 8, 16, 32, and 64 byte maximum packet sizes for bulk
endpoints.  No host controller is required to support larger or smaller maximum packet sizes.

During configuration, USB system software reads the endpoint’s maximum data payload size and ensures
that no data payload will be sent to the endpoint that is larger than the supported size.

An endpoint must always transmit data payloads with a data field less than or equal to the endpoint’s
reported MaxPacketSize. When a bulk transfer involves more data than can fit in one maximum sized
data payload, all data payloads are required to be maximum size except for the last data payload which
will contain the remaining data.  If an endpoint transmits less data than expected by the client software, a
premature, less than maximum sized  data payload will be received by the host controller.  This
premature, less than maximum sized data payload causes the host controller to retire the current transfer
and advance to the next transfer.  If a data payload is received that is larger than that expected, the pipe
will stall and all pending bulk transfers for that endpoint will be aborted/retired.

5.8.4 Bus Access Constraints
Bulk transfers can only be used by full speed devices.

An endpoint has no way to indicate a desired bus access frequency for a bulk pipe.  USB balances the bus
access requirements of all bulk pipes and the specific transfers that are pending to provide “good effort”
delivery of data between client software and functions.  Providing control transfer bus access has priority
over providing bulk transfer bus access.

There is no frame time guaranteed to be available for bulk transfers as there was for control transfers.
Bulk transfers are only moved over the bus on a bandwidth available basis.  If there is frame time that is
not being used for other purposes, bulk transfers will be moved over the bus.  If there is no time in a
frame available for bulk transfers, no bulk transfers will be moved in that frame.  If there are too many
pending bulk transfers than available frame time, bulk transfers are selected to be moved over the bus as
appropriate.  If there are bulk transfers pending for multiple endpoints, bulk transfers for the different
endpoints are selected according to a fair access policy that is host controller implementation dependent.

All bulk transfers pending in a system contend for the same available bus time.  Because of this, the bus
time made available for bulk transfers to a particular endpoint can be varied by USB system software at
its discretion.  An endpoint and its client software cannot assume a specific rate of service for bulk
transfers.  Bus time made available to a software client and its endpoint can be changed as other devices
are inserted into and removed from the system or also as bulk transfers are requested for other device
endpoints.
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The bus frequency and frame timing limit the maximum number of successful bulk transfers within a
frame for any USB system to less than 72 8 byte data payloads. Table 5-6 shows information about
different sized bulk transfers and the maximum number of transfers possible in a frame.  Host controllers
are free to determine how the individual bus transactions for specific bulk transfers are moved over the
bus within and across frames.  An endpoint could see all bus transactions for a bulk transfer within the
same frame or spread across several discontiguous frames.  Finally, a host controller, for various
implementation reasons, may not be able to provide the above maximum number of transfers per frame.

Table 5-6 Bulk Transfer Limits

protocol overhead (bytes)
13  (3-syncs,  3-pids,  2-EP+CRC, 2-CRC

 3 byte interpacket delay)
data max Bandwidth Bandwidth max Bytes Bytes/frame
payload bytes/sec per packet packets Remaining useful data

1 107000 1% 107 2 107
2 200000 1% 100 0 200
4 352000 1% 88 4 352
8 568000 1% 71 9 568

16 816000 2% 51 21 816
32 1056000 3% 33 15 1056
64 1216000 5% 19 37 1216

max 1500000 1500

5.8.5 Data Sequences
Bulk transfers use data toggle bits that are toggled only upon successful transaction completion to
preserve synchronization between transmitter and receiver when transfers are retried due to errors.  Bulk
transfers are initialized to DATA0 when the endpoint is configured by an appropriate control transfer.
The host will also start the first bulk transfer with DATA0.  If a bulk pipe is stalled, the data toggle on the
host is reset to DATA0 when the stall is acknowledged by the software client via USBD SetPipePolicy.
The endpoint has its stall condition cleared via an appropriate control transfer.  That action also resets the
endpoint’s data toggle to DATA0.

Bulk transfers are retried due to errors detected on the bus that affect a given transfer.

5.9 Bus Access for Transfers
Accomplishing any data transfer between the host and a USB device requires some use of the USB
bandwidth.  Supporting a wide variety of isochronous and asynchronous devices requires that each
device’s transfer requirements are accommodated.  The process of assigning bus bandwidth to devices is
called Transfer Management.  There are several entities on the host that coordinate the information
flowing over USB: Client software, USB Driver (USBD), and Host Controller Driver (HCD).
Implementers of these entities need to know the key concepts related to bus access:

• Transfer Management - The entities and the objects that support communication flow over USB.

• Transaction Tracking - The USB mechanisms that are used to track transactions as they move
through the USB system.

• Bus Time - The time it takes to move a packet of information over the bus.

• Device/Software Buffer Size - The space required to support a bus transaction.

• Bus Bandwidth Reclamation - Conditions where bandwidth that was allocated to other transfers but
wasn’t used and can now be possibly reused by control and bulk transfers.

The previous sections focused on how client software relates to a function and what the logical flows are
over a pipe between the two entities.  This section focuses on the different parts of the host and how they
must interact together to support moving data over the USB.  This information may also be of interest to



Universal Serial Bus Specification Revision 0.99

60

device implementers to understand aspects of what the host is doing when a client requests a transfer, and
how that transfer is presented to the device.

5.9.1 Transfer Management
Transfer Management involves several entities that operate on different objects in order to move transfers
over the bus:

• Client Software - Consumes/Generates function specific data to/from a function endpoint via calls
and callbacks with USBD interface.

• USB Driver (USBD) - Converts data from client to/from transfers to/from its endpoint via
calls/callbacks with HCD interface.

• Host Controller Driver (HCD) - Converts transfers to/from transactions (as required by a Host
Controller implementation) and organizes them for manipulation by the Host Controller. Interactions
between the host controller driver and its hardware is implementation dependent and outside the
scope of the USB specification.

• Host Controller - Takes transactions and generates bus activity via packets to move function specific
data across the bus for each transaction.

Figure 5-10 shows how the entities are organized as information flows between client software and the
USB.  The objects of primary interest to each entity are shown at the interfaces between entities.

Transfers

USBD

Host Controller

Transaction List

Client Software

Data

Transactions

Packets

USB

HCD
Interface

Transaction

Transaction

USBD
Interface

HCD

HW/SW
Interface

Figure 5-10.  USB Information Conversion From Client Software to Bus
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5.9.1.1 Client Software
Client software determines what transfers need to be made with a function.  It uses appropriate OS
specific interfaces to request its desired function transfers and data movement.  Client software is only
aware of the set of pipes (i.e., the interface) it needs to manipulate its function.  The client is aware and
adheres to all bus access and bandwidth constraints as described previously in each transfer type section.
The requests made by the client software are presented via the USBD interface.

Some clients may manipulate USB functions via other device class interfaces defined by the OS and may
themselves not make direct USBD calls.  However, there is always some lowest level client that makes
USBD calls to pass transfers to USBD.  All transfers presented are required to adhere to the prenegotiated
bandwidth constraints set when the device was attached to the bus and configured.  If a function is moved
from a non-USB environment to USB, the driver that would have directly manipulated the function
hardware via memory or I/O accesses is the lowest client software in the USB environment that now
interacts with USBD to manipulate its USB function.

After client software has requested a transfer of its function and the request has been serviced, the client
software gets notified of the completion status of the transfer.  If the transfer involved function to host
data transfer, the client software can access the data in the data buffer associated with the completed
transfer.

The USBD interface is defined in Chapter 10.

5.9.1.2 USB Driver (USBD)
USBD is involved in mediating bus access at two general times while a device is attached to the bus,
during configuration and during normal transfers.  When a device is attached and configured, USBD is
involved to ensure that the desired device configuration can be accommodated on the bus.  It receives
configuration requests from the configuring software which describe the desired device configuration:
endpoint(s), transfer type(s), transfer period(s), data size(s), etc.  USBD either accepts or rejects a
configuration request based on bandwidth availability and the ability to accommodate that request type
on the bus.  If accepted, USBD creates a pipe for the requester of the desired type and with appropriate
constraints as defined for the transfer type.

The configuration aspects of USBD are typically OS environment specific and heavily leverage the
configuration features of the OS to avoid defining additional (redundant) interfaces.

Once a device is configured, the software client can request transfers to move data between it and its
function endpoints.

5.9.1.3 Host Controller Driver (HCD)
HCD is responsible for tracking the transfers in progress and ensuring that USB bandwidth and frame
time maximums are never exceeded.  When transfers are made for a pipe, HCD adds them to the
transaction list.  When a transfer is complete, HCD notifies the requesting software client of the
completion status for the transfer.  If the transfer involved data transfer from the function to the software
client, the data has been placed in the client indicated data buffer.

Transfers are defined as part of the Host Controller Driver interface (see Chapter 10).

5.9.1.4 Transaction List
The transaction list is a description of the current outstanding set of bus transactions that need to be run
on the bus.  A typical transaction list consists of a series of frame descriptions in some host controller
implementation dependent representation.  Only HCD and its host controller have access to the specific
representation.  Each frame description contains transaction descriptions in which parameters such as



Universal Serial Bus Specification Revision 0.99

62

data size in bytes, the device address and endpoint number, and the memory area to which data is to be
sent or received are identified.

A transaction list and the interface between HCD and its Host Controller is typically represented in an
implementation dependent fashion and is not defined explicitly as part of the USB specification.

5.9.1.5 Host Controller
The Host Controller has access to the transaction list and translates it into bus activity.  In addition, the
Host Controller provides a reporting mechanism whereby the status of a transaction can be obtained
(done, pending, stalled, etc.).  The Host Controller converts transactions into appropriate implementation
dependent activities that result in USB packets moving over the bus topology rooted in the root hub.

The Host Controller ensures that the bus access rules defined by the protocol are obeyed; e.g.,
inter-packet timings, time-outs, babble, etc.  The Host Controller Driver interface provides a way for the
Host Controller to participate in whether a new pipe is allowed access to the bus.  This is done because
host controller implementations can have restrictions/constraints on the minimum inter-transaction times
they may support for combinations of bus transactions.

The interface between the transaction list and the Host Controller is hidden within an HCD and Host
Controller implementation.  The Host Controller is typically implemented in hardware.

5.9.2 Transaction Tracking
A USB function sees data flowing across the bus in packets as described in Chapter 8.  The host
controller uses some implementation dependent representation to track what packets to transfer to/from
what endpoints at what time or in what order.  Most client software doesn’t want to deal with packetized
communication flows since this involves a degree of complexity and interconnect dependency that limits
the implementation.  USB system software (USBD and HCD) provides support for matching data
movement requirements of a client to packets on the bus.  The host controller uses transfers to track
information about one or more transactions that combine to deliver a transfer of information between the
client software and the function.  Figure 5-11 summarizes how transactions are organized into transfers
for the four transfer types.  Detailed protocol information for each transfer type can be found in Chapter
8.  More information about client software views of transfers can be found in Chapter 10.
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Figure 5-11.  Transfers for Communication flows

Even though transfers track the bus transactions that need to occur to move a specific data flow over
USB, host controllers are free to choose how the particular bus transactions are moved over the bus
subject to the USB defined constraints; e.g., exactly one transaction per frame for isochronous transfers.
In any case, an endpoint will see transactions in the order they appear within a transfer unless errors
occur.  For example, Figure 5-12 shows two transfers, one each for two pipes where each transfer
contains three transactions.  For any transfer type, a host controller is free to move the first transaction of
the first transfer followed by the first transaction of the second transfer somewhere in the frame 1, while
moving the second transactions of each transfer in opposite order somewhere in the frame 2.  If these are
isochronous transfer types, that is the only degree of freedom a host controller has.  If these are control or
bulk transfers, a host controller could further move more or less transactions from either transfer within
either frame.  Functions cannot depend on seeing transactions within a transfer back to back within a
frame.
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Figure 5-12.  Arrangement of Transfers to Transactions

5.9.3 Calculating Bus Transaction Times
When the USB system software allows a new pipe to be created for the bus, it must calculate how much
bus time is required for a given transaction.  That bus time is based on the maximum packet size
information reported for an endpoint, the protocol overhead for the specific transaction type request, the
overhead due to signaling imposed bit-stuffing, inter-packet timings required by the protocol, inter
transaction timings, etc.  These calculations are required to ensure that the time available in a frame is
not exceeded.  The equations used to determine transaction bus time are:

KEY

Data_bc Byte count of data payload

Host_Delay Time required for the host to prepare for or recover
from the transmission; host controller implementation
specific

Floor() Integer portion of argument

Hub_LS_Setup      The time provided by the host controller for hubs to
enable low speed ports;  Measured as the delay from end
of PRE PID to start of low speed SYNC; minimum of 4
full speed bit times.

BitStuffTime Function that calculates theoretical additional time
required due to bit stuffing in signaling
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Full Speed (Input)

Non-Isochronous Transfer (Handshake Included)

= 9088 + (83.375 * Floor(3.167 + BitStuffTime(Data_bc))) +
Host_Delay

Isochronous Transfer (No Handshake)

= 7254 + (83.375 * Floor(3.167 + BitStuffTime(Data_bc))) +
Host_Delay

Full Speed (Output)

Non-Isochronous Transfer (Handshake Included)

= 9088 + (83.375 * Floor(3.167 + BitStuffTime(Data_bc))) +
Host_Delay

Isochronous Transfer (No Handshake)

= 6253 + (83.375 * Floor(3.167 + BitStuffTime(Data_bc))) +
Host_Delay

Low Speed (Input)

= 64028 + (2 * Hub_LS_Setup) +

(676.67 * Floor(3.167 + BitStuffTime(Data_bc))) + Host_Delay

Low Speed (Output)

= 63724 + (2 * Hub_LS_Setup) +

(667.0 * Floor(3.167 + BitStuffTime(Data_bc))) + Host_Delay

The Bus Times are in nanoseconds and take into account propagation delays due to distance the device is
from the host.  These are the most precise equations that should be used to calculate Bus Time.
However, different implementations may choose to use coarser approximations of these times.

The actual bus time taken for a given transaction will almost always be less than that calculated since bit
stuffing overhead is data dependent.  Worst case bit stuffing is calculated as 1.1667 times the raw time
(i.e. the BitStuffTime function multiplies the Data_bc by 1.1667 in the equations).  This means that there
will almost always be time unused on the bus (subject to data pattern specifics) after all regularly
scheduled transactions have completed.  By placing all bulk/control transfer packets at the end of a
frame, bit stuffing time can be calculated as less than worst case.  This more aggressive calculation
comes at the cost of having some bulk/control transfer’s transaction fail in a given frame every once in a
while due to exceeding the frame time when enough of the previous transfers require worst case bit
stuffing.  The failed transaction can be retried, will seldom happen given random data patterns, and can
result in a better allocation estimate for isochronous and interrupt transfer times.  In any case, the bus
time made available due to less bit stuffing can be reused as discussed in Section 5.9.5.

The Host_Delay term in the equations is host controller and system dependent and allows for additional
time a host controller may require due to delays in gaining access to memory or other implementation
dependencies.  This term is incorporated into an implementation of these equations by using the Transfer
Constraint Management functions provided by the Host Controller Driver interface.  These equations are
typically implemented by a combination of USBD and HCD software working in cooperation.  The
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results of these calculations are used to determine whether a transfer or pipe creation can be supported in
a given USB configuration.

5.9.4 Calculating Buffer Sizes in Functions/Software
Client software and functions both need to provide buffer space for pending data transactions awaiting
their turn on the bus.  For non-isochronous pipes, this buffer space only needs to be large enough to hold
the next data packet.  If more than one transaction request is pending for a given endpoint, the buffering
for each transaction must be supplied.  Methods to calculate precise absolute minimum buffering a
function may require because of specific interactions defined between its client software and the function
are outside the scope of the USB specification.

The host controller is expected to be able to support an unlimited number of transactions pending for the
bus subject to available system memory for buffer and descriptor space, etc.  Host controllers are allowed
to limit how many frames into the future they allow a transaction to be requested.

For isochronous pipes, Section 5.10.5 describes details affecting host side and device side buffering
requirements.  In general, buffers need to be provided to hold approximately twice the amount of data
that can be transferred in 1 ms.

5.9.5 Bus Bandwidth Reclamation
USB bandwidth and bus access are granted based on a calculation of worst case bus transmission time
and required latencies.  However, due to the constraints placed on different transfer types and the fact
that the bit stuffing bus time contribution is calculated as a constant but is data dependent, there will
frequently be bus time remaining in each frame time versus what the frame transmission time was
calculated to be.  In order to support the most efficient use of the bus bandwidth, control and bulk
transfers are candidates to be moved over the bus as bus time becomes available.  Exactly how a host
controller supports this is implementation dependent.  A host controller can take into account the transfer
types of pending transfers and implementation specific knowledge of remaining frame time to reuse
reclaimed bandwidth.

5.10 Special Considerations for Isochronous Transfers
Support for isochronous data movement between the host and a device is one of the system capabilities
supported by USB.  Delivering isochronous data reliably over USB requires careful attention to detail.
The responsibility for reliable delivery is shared by several USB entities:  the device/function, the bus,
the host controller, and one or more software agents.  Since time is a key part of an isochronous transfer,
it is important for USB designers to understand how time is dealt with in USB by these different entities.

In any communication system, the transmitter and receiver must be synchronized enough to deliver data
robustly.  In an asynchronous communication system, data can be delivered robustly by allowing the
transmitter to detect that the receiver has not received a data item correctly and simply retrying
transmission of the data.

In an isochronous communication system, the transmitter and receiver remain time and data synchronized
to deliver data robustly.  USB doesn’t support transmission retry of isochronous data so that minimal
bandwidth can be allocated to isochronous transfers and time synchronization is not lost due to a retry
delay.  However, it is critical that a USB isochronous transmitter/receiver pair still remain synchronized
both in normal data transmission cases and in cases where errors occur on the bus.

In many systems that deal with isochronous data, a single global clock is used to which all entities in the
system synchronize; e.g., the PSTN - Public Switched Telephone Network.  Given that a broad variety of
devices with different natural frequencies may be attached to USB, no single clock can provide all the
features required to satisfy the synchronization requirements of all devices and software while still
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supporting the cost targets of mass market PC products.  USB defines a clock model that allows a broad
range of devices to coexist on the bus and have reasonable cost implementations.

This section presents options or features that can be used by isochronous endpoints to minimize behavior
differences between a non-USB implemented function and a USB version of the function.  An example is
included to illustrate the similarities and differences of non-USB and USB versions of a function.

The remainder of the section presents key concepts of:

• USB Clock Model  - What clocks are present in a USB subsystem that have impact on isochronous
data transfers.

• USB Frame Clock to Function Clock Synchronization Options - How the USB Frame clock can
relate to a function clock.

• Start of Frame Tracking - Responsibilities/Opportunities of Isochronous endpoints with respect to the
Start of Frame (SOF) token and USB Frames.

• Data Prebuffering - Requirements on accumulating data before generation/transmission/consumption.

• Error Handling - Isochronous specific details for error handling.

• Buffering for Rate Matching - Equations that can be used to calculate buffer space required for
isochronous endpoints.

5.10.1 Example Non-USB Isochronous Application
The example used is a reasonably general case example.  Other simpler or more complex cases are
possible and the relevant USB features identified can be used or not as appropriate.

The example consists of an 8 kHz mono microphone connected through a mixer driver that sends the
input data stream to 44 kHz stereo speakers.  The mixer expects the data to be received and transmitted at
some sample rate and encoding.  A rate matcher driver on input and output converts the sample rate and
encoding from the natural rate and encoding of the device to the rate and encoding expected by the
mixer.  Figure 5-13 illustrates this example.
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Figure 5-13.  Non-USB Isochronous Example

A master clock (can be provided by software driven from the real time clock) in the PC is used to awaken
the mixer to ask the input source for input data and to provide output data to the output sink.  In this
example, assume it awakens every 20 ms.  The microphone and speakers each have their own sample
clocks that are unsynchronized with respect to each other or the master mixer clock.  The microphone
produces data at its natural rate (1 byte samples, 8000 times a second) and the speakers consume data at
their natural rate (4 byte samples, 44100 times a second).  The three clocks in the system can drift and
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jitter with respect to each other.  Each rate matcher may also be running at a different natural rate than
either the mixer driver, the input source/driver or output sink/driver.

The rate matchers also monitor the long term data rate of their device compared to the master mixer
clock and interpolate an additional sample or merge two samples to adjust the data rate of their device to
the data rate of the mixer.  This adjustment may be required every couple of seconds, but typically occurs
infrequently.  The rate matchers provide some additional buffering to carry through a rate match.

Note that some other application might not be able to tolerate sample adjustment and would need some
other means of accommodating master clock to device clock drift or else would require some means of
synchronizing the clocks to ensure that no drift could occur.

The mixer always expects to receive exactly a service period of data (20 ms service period) from its input
device and produce exactly a service period of data for its output device.  The mixer can be delayed up to
less than a service period if data or space is not available from its input/output device.  The mixer
assumes that such delays don’t accumulate.

The input and output devices and their drivers expect to be able to put/get data in response to a hardware
interrupt from the DMA controller when their transducer has processed one service period of data.  They
expect to get/put exactly one service period of data.  The input device produces 160 bytes (10 samples)
every service period of 20 ms.  The output device consumes 3528 bytes (882 samples) every 20 ms
service period.  The DMA controller can move a single sample between the device and the host buffer at
a rate much faster than the sample rate of either device.

The input and output device drivers provide 2 service periods of system buffering.  One buffer is always
being processed by the DMA controller.  The other buffer is guaranteed to be ready before the current
buffer is exhausted.  When the current buffer is emptied, the hardware interrupt awakens the device
driver and it calls the rate matcher to give it the buffer.  The device driver requests a new transfer with
the buffer before the current buffer is exhausted.

The devices can provide two samples of data buffering to ensure that they always have a sample to
process for the next sample period while the system is reacting to the previous/next sample.

The service periods of the drivers are chosen to survive interrupt latency variabilities that may be present
the OS environment.  Different OS environments will require different service periods for reliable
operation.  The service periods are also selected to place a minimum interrupt load on the system since
there may be other software in the system that requires processing time.

5.10.2 USB Clock Model
Time is present in the USB system via clocks.  In fact, there are multiple clocks in a USB system that
must be understood:

• Sample clock - This clock determines the natural data rate of samples moving between client
software on the host and the function.  This clock does not need to be different between non-USB
and USB implementations.

• Bus clock - This clock runs at a 1.000 ms period (1 kHz frequency) and is indicated by the rate of
Start of Frame(SOF) packets on the bus.  This clock is somewhat equivalent to the 8 MHz clock in
the non-USB example.  In the USB case, the bus clock is often a lower frequency clock than the
sample clock, whereas the bus clock is almost always a higher frequency clock than the sample clock
in a non-USB case.

• Service clock - This clock is determined by the rate at which client software runs to service transfers
that may have accumulated between executions.  This clock also can be the same between the USB
and non-USB cases.

In most OS environments that exist today, it is not possible to support a broad range of isochronous
communication flows if each device driver must be interrupted for each sample for fast sample rates.
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Therefore multiple samples, if not multiple packets, will be processed by client software and then given
to the host controller to sequence over the bus according to the prenegotiated bus access requirements.
Figure 5-14 presents an example for a reasonable USB clock environment equivalent to the non-USB
example above.
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This example shows a typical round trip path of information from a microphone as an input device to a
speaker as an output device.  The clocks, packets, and buffering involved are also shown.  This figure
will be explored in more detail in the following sections.

The focus of this example is to identify the differences introduced by USB compared to the previous
non-USB example.  The differences are in the areas of buffering, synchronization given the existence of a
USB bus clock, and delay.  The client software above the device drivers can be unaffected in most cases.

5.10.3 Clock Synchronization
In order for isochronous data to be manipulated reliably, the three clocks identified above must be
synchronized in some fashion.  If the clocks are not synchronized, several clock to clock attributes can be
present that can be undesirable:

• Clock drift - Two clocks that are nominally running at the same rate, can, in fact, have
implementation differences that result in one clock running faster or slower than the other over long
periods of time.  If uncorrected, this variation of one clock compared to the other can lead to having
too much or too little data when data is expected to always be present at the time required.

• Clock jitter - A clock may vary its frequency over time due to changes in temperature, etc.  This may
also alter when data is actually delivered compared to when it is expected to be delivered.

• Clock to clock phase differences - If two clocks are not phase locked, different amounts of data may
be available at different points in time as the beat frequency of the clocks cycle out over time.  This
can lead to quantization/sampling related artifacts.

The bus clock provides a central clock with which USB hardware devices and software can synchronize
to one degree or another.  However, the software will, in general, not be able to phase or frequency lock
precisely to the bus clock given the current support for “real time”-like operating system scheduling
support in most PC operating systems.  Software running in the host can, however, know that data moved
over USB is packetized.  For isochronous transfer types, a single packet of data is moved exactly once
per frame and the frame clock is reasonably precise.  Providing the software with this information allows
it to adjust the amount of data it processes to the actual frame time that has passed.

USB devices on the other hand can either synchronize their sample clock to the bus or not, in order to
minimize or eliminate the problems outlined above:

• Derived Device Clock - Derive the device sample clock from the bus clock

• Non-derived Device Clock - The device sample clock has no easy hardware synchronizable
relationship to the bus clock

5.10.3.1 Derived Device Clock
There are two further possibilities for a derived device clock:

• Bus Synchronization - Derive the device sample clock from the bus clock, where the device clock
tracks the drift/jitter of the bus clock.

• External Clock Synchronization - Synchronize the bus clock to an external global clock associated
with a device; e.g., PSTN clock.

Each of these approaches is described in more detail next.  Additionally, if the clocks are not an integer
multiple of each other, the size of the data transaction per frame must vary over time ±±1 sample
compared to the average size transaction.
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5.10.3.1.1 Bus Synchronization
Some functions can derive their sample clock from the 1 kHz bus clock.  In this case, clock drift and
jitter will be limited to the tolerances defined for the bus clock.  It is not possible to phase lock the
precise time at which data is actually moved between the host and an endpoint during a frame, but data
prebuffering (discussed in Section 5.10.5 below) will allow data to be moved reliably over USB without
extraordinary efforts.

5.10.3.1.2 External Synchronization
Telephony devices are expected to be commonly attached to USB.  These devices are all synchronized to
a global (atomic) PSTN clock.  There may also be other devices that have access to a very stable clock.
USB provides support for its bus clock to be synchronized to, at most, one external clock at any point in
time.  This allows the USB bus clock to have even better long term drift characteristics by virtue of
synchronizing with a more reliable external clock.

A device can indicate that it provides a master clock.  If there is at least one master clock device on the
bus, during configuration USB selects (one of) the master clock(s) to be the master clock.  The software
client for the device is informed it is the master clock and the client can then adjust the bus clock
according to the feedback information reported by the master clock.  The feedback information is device
specific and is not defined by USB.  Refer to Chapter 10 for more details on the bus clock control
mechanisms.  If there is no master clock, the USB host controller will adhere to the bus clock tolerances
specified in Chapter 7.

5.10.3.2 Non-derived Device Clock
Some devices on USB may not be able to directly synchronize their clocks to the USB bus clock.  In this
case, USB assumes that the software client monitors the device to take function specific action to keep
the sample clock and service clocks synchronized as appropriate.  Some feedback communication flow
must exist from a function to the software client to allow it to determine where the function sample clock
is in time.  This feedback may be derived from some other communication flow involving the device, it
may be a side band communication flow multiplexed on some other pipe, or a device can make use of the
USB defined feedback mechanism.

5.10.4 USB Feedback Mechanism
The example in Figure 5-14 shows the USB defined two byte sample header at the beginning of every
packet to enable the input endpoint’s device driver to recover from lost packets.  A similar header is
present on the output pipe to allow the output endpoint to recover from lost packets.  Finally, an interrupt
pipe is associated with the output endpoint that provides the feedback information of what the level is for
the endpoint buffer.  This interrupt information is useful to the output device driver so that it knows
where the transducer is in its output buffer.  This information can be used by the driver to adjust its data
to keep the endpoint buffer from over/under flowing.

5.10.5 Data Prebuffering
USB requires that devices prebuffer data before processing/transmission to allow the host more flexibility
in managing when each pipe’s transaction is moved over the bus from frame to frame.

For transfers from function to host, the endpoint must accumulate samples during frame X until it
receives the Start of Frame (SOF) token packet for frame X+1.  It “latches” the data from frame X into its
packet buffer and is now ready to send the packet containing those samples during frame X+1.  When it
will send that data during the frame is determined solely by the host controller and can vary from frame
to frame.
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For transfers from host to function, the endpoint will accept a packet from the host sometime during
frame Y.  When it receives the SOF for frame Y+1, it can then start processing the data received in frame
Y.

Time:

Frame:

Data on Bus:

OUT Process:

IN Process

Ti Ti+1 Ti+2 Ti+3 ... Tm Tm+1 ...

Fi Fi+1 Fi+2 Fi+3 ... Fm Fm+1 ...

D0 D1 D2 ... D0 D1 ...

D0 D1 ... D0 ...

D0 D1 ... D0 ...

Figure 5-15.  Data Prebuffering

This approach allows an endpoint to use the SOF token as a stable clock with very little jitter/drift when
the host controller moves the packet over the bus while also allowing the host controller to vary within a
frame precisely when the packet is actually moved over the bus.  This prebuffering introduces some
additional delay between when a sample is available at an endpoint and when it moves over the bus
compared to an environment where the bus access is at exactly the same time offset from SOF from
frame to frame.

Figure 5-15 shows the time sequence where for a function to host transfer (IN Process), data D0 is
accumulated during frame Fi at time Ti, and transmitted to the host during frame FI+1.  Similarly, for a host
to function transfer (OUT Process), data D0 is received by the endpoint during frame Fi+1 and processed
during frame Fi+2.

5.10.6 SOF Tracking
Functions supporting isochronous pipes must receive and comprehend the SOF token to support
prebuffering as previously described.  Given that SOFs can be corrupted, a device must be prepared to
recover from a corrupted SOF.  These requirements limit isochronous transfers to full speed devices only,
since low speed devices don’t see SOFs on the bus.  Also, since SOF packets can be damaged in
transmission, devices that support isochronous transfers need to be able to synthesize the existence of an
SOF that they may not see due to a bus error.

Isochronous transfers require the appropriate data to be transmitted in the corresponding frame.  USB
requires that when an isochronous transfer is presented to the host controller, it identifies the frame
number for the first frame.  The host controller must not transmit the first transaction before the indicated
frame number.  Each subsequent transaction in the transfer must be transmitted in succeeding frames.  If
there are no transactions pending for the current frame, then the host controller must not transmit
anything for an isochronous pipe.  If the indicated frame number is passed, the host controller must skip
(i.e., not transmit) all transactions until the one corresponding to the current frame is reached.

5.10.7 Error Handling
Isochronous transfers provide no data packet retries (i.e., no handshakes are returned to a transmitter by a
receiver) so that timeliness of data delivery is not perturbed.  However, it is still important for the agents
responsible for data transport to know when an error occurs and how the error affects the communication
flow.  In particular, for a sequence of data packets (A,B,C,D), USB allows sufficient information such
that a missing packet (A,_,C,D) can be detected and won’t unknowingly be turned into an incorrect data
or time sequence (A,C,D or A,_,B,C,D).  The protocol provides four mechanisms that support this:
exactly 1 packet per frame, SOF, CRC, and bus transaction timeout.

Isochronous transfers require exactly 1 data transaction every frame for normal operation.  USB does not
dictate what data is transmitted in each frame.  The data transmitter/source determines specifically what
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data to provide.  This regular data per frame provides a framework that is fundamental to detecting
missing data errors.  Any phase of a transaction can be damaged during transmission on the bus, and
Chapter 8 describes how each error case affects the protocol.

Since every frame is preceded by an SOF packet and a receiver can see SOFs on the bus, a receiver can
determine that its expected transaction didn’t occur between two SOFs.  Additionally, since even an SOF
packet can be damaged, a device must be able to reconstruct the existence of a missed SOF as described
in Section 5.10.6.

A data packet may be corrupted on the bus; therefore, CRC protection allows a receiver to determine that
the data packet it received was corrupted.

Finally, the protocol defines the details that allow a receiver to determine via bus transaction timeout that
it isn’t going to receive its data packet after it has successfully seen its token packet.

Once a receiver has determined that a data packet was not received, it may need to know the size of the
data that was missed in order to recover from the error with regard to its functional behavior.  If the
communication flow is always the same data size per frame, then the size is always a known constant.
However, in some cases the data size can vary from frame to frame.  In this case, the receiver and
transmitter have an implementation dependent mechanism to determine the size of the lost packet.  An
implementation can use the USB defined standard sample header for their implementation.  Using the
USB defined sample header feedback mechanism allows the receiver to determine in the next packet the
length of the previous packet.

In summary, whether a transaction is actually moved successfully over the bus or not, the transmitter and
receiver always advance their data/buffer streams one transaction per frame to keep data per time
synchronization.  The detailed mechanisms described above allow detection, tracking, and reporting of
damaged transactions so that a function or its client software can react to the damage in a function
appropriate fashion.  The details of that function/application specific reaction are outside the scope of the
USB specification.

5.10.8 Buffering for Rate Matching
Given that there are multiple clocks that affect isochronous communication flows in USB, buffering is
required to rate match the communication flow across USB.  There must be buffer space available both in
the device per endpoint and on the host side on behalf of the client software.  These buffers provide space
for data to accumulate until it is time for a transfer to move over USB.  Given the natural data rates of the
device, the maximum size of the data packets that move over the bus can also be calculated.  Figure 5-16
shows the equations used to determine buffer size on the device and host and maximum packet size that
must be requested to support a desired data rate.  These equations allow a device and client software
design time determined service clock rate (variable X), sample clock rate (variable C) and sample size
(variable S).  USB only allows one transaction per bus clock.  These equations should provide design
information for selecting the appropriate packet size that an endpoint will report in its characteristic
information and the appropriate buffer requirements for the device/endpoint and its client software.
Figure 5-14 shows actual buffer, packet, and clock values for a typical isochronous example.
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X Service Clock

1KHz Bus Clock

C Sample Clock
(S byte/sample)

M = (2 * N * P)  Byte Buffer
for 2 Services,

N = (CEIL(1KHz / X)) packets
per service

B = 2 * P
Byte Buffer
(2 Packets)

P = (CEIL(C / 1KHz) * S)
Byte Packets

Isochronous Rate (Clock) Matching
By Buffering

Figure 5-16.  Packet and Buffer Size Formulas for Rate Matched Isochronous Transfers

The USB data model assumes that devices have some natural sample size and rate.  USB supports the
transmission of packets that are multiples of sample size to make error recovery handling easier when
isochronous transactions are damaged on the bus.  If a device has no natural sample size or if its samples
are larger than a packet, it should describe its sample size as being one byte.  If a sample is split across a
data packet, the error recovery can be harder when an arbitrary transaction is lost.  In some cases, data
synchronization can be lost unless the receiver knows in what frame number each partial sample is
transmitted.  Furthermore, if the number of samples can vary due to clock correction (e.g., for a
non-derived device clock), then it may be difficult or inefficient to know when a partial sample is
transmitted.  Therefore, USB does not split samples across packets.
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Chapter 6
Mechanical

This chapter provides the mechanical specification for the cables and connectors for USB hubs,
functions, and hosts.  The specification includes the dimensions, materials, electrical, and reliability
requirements.

6.1 Architectural Overview
The physical topology of a USB channel consists of connecting a hub or function to another hub,
function, or host.  There are two possible speeds at which the channel can operate.  The fully rated speed
of 12 Mbs requires the use of a shielded cable with two internal power conductors and two internal signal
conductors.  For lower cost and lower speed, a sub-channel at 1.5 Mbs is allowed by the specification
with the use of unshielded cabling.

The present plug and receptacle (series A) are to be used for those devices on which the external cable is
permanently attached to devices such as keyboards, mice, and hubs.  There may be internal connectors
that will need to meet the electrical requirements of the USB specification, but the mechanical aspects of
the internal connector are not part of the USB specification.

For those devices that require an external connector so that the USB cabling is detachable, such as
printers, scanners, and modems, a series B connector and receptacle will be added to the specification at
a later date.  All cables that have a series A and series B connector should meet the construction
requirements of the fully rated channel.

Series A and B connectors cannot be interchanged; therefore, there is no possibility that the integrity of
the bus will be compromised.

6.2 Dimensioning Requirements
Default tolerances are listed Table 6-1, unless otherwise specified.  The dimensions are in millimeters.

Table 6-1.  Default Tolerances

Over 1 to
5

Over 5 to
30

Over 30
to 100

Over 100
to 300

Over 300
to 1000

Over 1000
to 3000

Over 3000
to 5000

±0.3 ±0.4 ±0.6 ±0.8 ±1.6 ±2.5 ±10
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6.3 Cable
All hubs and functions as defined in this specification will have one permanently attached cable or be
terminated with a series B connector.

The standard USB cable will consist of one pair of 20-28 AWG wire for power distribution with another
28 AWG pair twisted, with a shield and overall jacket.  This will be used for typical peripherals operating
at the rated 12 Mbs signaling.

An alternative cable of identical gauge but without the twisted conductors and shield can be used for
1.5 Mbs signaling.  This will be used in a sub-channel application where the wider bandwidth is not
needed.

In all other respects, the mechanical specifications for the sub-channel will be identical to the fully rated
specification.

6.3.1 Cable Specification
This specification defines the detailed requirements of a twisted pair, 28 AWG, PVC, round cable with two
power leads (non twisted) for fully rated devices as well as a four-conductor cable with an overall jacket for
the sub-channel devices.

6.3.1.1 Applicable Documents

Underwriters’ Laboratory, Inc.

UL-STD-94 Tests for Flammability of Plastic Materials
for Parts in Devices and Appliances

UL-Subject-444 Communication Cables

American Standard Test Materials

ASTM-D-4565 Physical and Environmental Performance
Properties of Insulation and Jacket for
Telecommunication Wire and Cable, Test
Standard Method

ASTM-D-4566 Electrical Performance Properties of
Insulation and Jacket for Telecommunication
Wire and Cable, Test Standard Method
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6.3.1.2 Requirements

Mechanical

Material/Finish:

Outer Jacket:  Polyvinyl Chloride (PVC)

Color:  Recommended; Frost White

Conductor Insulation:  Semi-Rigid PVC for power conductors and Polyethylene or
equivalent meeting the requirements of  Table 6-4 for the signal pair (fully rated 12 Mbs
only).

Conductors:  Refer to Table 6-2 for power distribution conductors.  The signaling conductor
pair is 28 AWG.

Table 6-2.  Conductors - Pair for Power Distribution

Gauge and Conductor Outer Diameter

28 AWG - .84 ±.05 mm

26 AWG - 1.00 ±.05 mm

24 AWG - 1.10 ±.07 mm

22 AWG - 1.30 ±.07 mm

20 AWG - 1.50 ±.08 mm

Cable Construction:

Fully Rated:  Cable shall consist of four conductors; one twisted pair with 28 AWG
conductors (data pair), one non-twisted pair (power distribution pair) with an overall jacket.
The twisted pair shall have one twist per 6-8 cm.

Sub-Channel:  Cable shall consist of four conductors; one pair with 28 AWG conductors
(data pair), one pair for power distribution with an overall jacket.

Outer Jacket:
A.  Outside Diameter:

Fully Rated and Sub-Channel:  3.4 to 5.3 mm.

Conductor Insulation:
A.  Outside Diameter:  Refer to Table 6-2.
C.  Color:  Refer to Table 6-5.
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Conductors:
Fully Rated:

A.  28 AWG stranded - Twisted Pair
B.  Non Twist - One pair per Table 6-2 stranded selected as
needed for proper DC power distribution.
C.  Shield:  Required for EMI compliance.  Suggest aluminized
mylar wrap with a 28 AWG drain wire and 65% min. coverage tinned
copper mesh over the foil.

Sub-Channel:
A.  28 AWG stranded - Pair.
B.  Non Twist - One pair per Table 6-2 stranded selected as needed for 
proper DC power distribution.

Break Strength:  45 Newtons minimum when tested in accordance with
ASTM-D-4565.

Electrical:

Voltage Rating:  30 V (rms) maximum.

Conductor Resistance:  When tested in accordance with ASTM-D-4565.  Refer to Section 6.4 for
limitations on DC voltage drop.

     Table 6-3.  Conductor Resistance

Gauge DC Resistance (max.)

28 0.232 Ω/m

26 0.145 Ω/m

24 0.0909 Ω/m

22 0.0574 Ω/m

20 0.0358 Ω/m

Resistance Unbalance:  The resistance unbalance between the two conductors shall not exceed 5%
when tested in accordance with ASTM-D-4566.

Length:  Maximum cable length shall not exceed 5 m.

Fully rated only:
Attenuation:  The attenuation of the signal pair measured in accordance with ASTM-D-4566
shall not exceed the values in Table 6-4.

Characteristic Impedance:  The characteristic impedance of the signal pair shall be
90 Ω ±15%, when measured in accordance with ASTM-D-4566 over the frequency
range of 1-16 MHz.
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Propagation delay of fully rated twisted signal pair must be less than 6.35 ns/m over the
frequency range of 1-16 MHz.  Refer to Section 6.5 if the cabling cannot meet this
requirement.

Table 6-4.  Signal Attenuation

Frequency (MHz) Attenuation (maximum) dB/3.5 m

0.064 4.00

0.256 5.60

0.512 6.80

0.772 7.80

1.000 9.80

4.000 20.0

8.000 29.0

10.000 33.0

16.000 43.0

Environmental:

Temperature Rating:  -40 °C to 60 °C storage; 0 °C to 40 °C operating.

Laboratory Approvals:  Item shall be UL listed per UL Subject 444.  Class 2, Type CM for
Communication Cable Requirements.

Flammability:  Plastic material used in the construction of this item shall meet the Flammability
Requirements of NEC Article 800.

Marking:  Item shall be legibly and permanently marked with the vendor name or symbol, UL File
Number, Type CM (UL).

Qualification:  All suppliers, when requested, must be able to supply appropriate documentation to
show conformance to the requirements of this chapter.

All electrical measurements should be made with a sample cable removed from the reel or container.
The cable must rest on a non-conductive surface or be on aerial supports.
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Table 6-5.  Cable Color Code

Wire Color

+ Data Green

- Data White

VCC Red

Ground Black

6.3.2 Connector (Series A)

6.3.2.1 Plug (Series A)
A four-position plug with shielded housing compatible with the cabling as described in Section 6.3.  The
following guidelines ensure intermateability.  The recommended color is frost white for the overmold.
Internal plastic features can be frost white or equivalent.

Figure 6-1.  Plug Connector
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Figure 6-2.  Plug Contact Detail

The termination of the conductors to the plug contacts may be done as deemed appropriate by the
connector’s manufacturing process.
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6.3.2.2 Receptacle (Series A)

Figure 6-3.  Receptacle

There are four variants of the receptacle available for general use.  They are vertical, right angled, panel
mount, and stacked right angled with SMT as well as through hole variants.  However, as long as the
interface requirements of the specification are met, it is up to the implementer as to what form the
receptacle will take.  Internal plastic features should be frost white or equivalent.
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6.3.2.3 Connector Mating Features (Series A)

Figure 6-4.  Connector Mating Features
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6.3.2.4 Receptacle PWB Foot Print (Series A)

Figure 6-5.  PWB Footprint for Receptacle (SMT)
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Figure 6-6.  PWB Footprint for Receptacle (Throughhole)
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Figure 6-7.   PWB Footprint for Receptacle (Stacked Right Angle)

6.3.3 Serial Bus Icon
The USB icon, shown in Figure 6-8, should be molded into the connector and also placed on the product
for ease of identifying the USB port.  It is recommended that the icon on the product and the one on the
plug be adjacent to each other when the plug and receptacle are mated.

Figure 6-8.  USB ICON artwork
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6.3.4 Plug/Receptacle Mechanical and Electrical Requirements

6.3.4.1 Contact Numbering (Series A)

Table 6-6.  Contact Numbering

Contact Number Signal Name Comment

1 VCC Cable power

2 - Data

3 + Data

4 Ground Cable ground

6.3.4.2 Ratings

Voltage: 30 Vac (rms).

Current: 1 A maximum per contact not to exceed 30 °C T-Rise.

Temperature: -40 °C to 60 °C storage; 0 °C to 40 °C operating.

6.3.4.3 Performance and Test Description
Product is designed to meet electrical, mechanical, and environmental performance requirements
specified in Table 6-7.  Unless otherwise specified, all tests shall be performed at ambient environmental
conditions.  Cable construction and/or part number used for testing must be included with test report.
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Table 6-7.  Test Requirements and Procedures Summary

Test Description Requirement Procedure

Examination of product Meets requirements
of Section 6.3

Visual, dimensional, and functional compliance

ELECTRICAL

Termination resistance 15 mΩ maximum
initial

10 mΩ maximum
change from initial

EIA 364-23

Subject mated contacts assembled in housing to
20 mV maximum open circuit at 100 mA
maximum.  See Figure 6-9.

Insulation resistance 1000 MΩ minimum EIA 364-21

Test between adjacent contacts of mated and
unmated connector assemblies

Dielectric withstanding
voltage

750 Vac at sea level EIA 364-20

Test between adjacent contacts of mated and
unmated connector assemblies

Capacitance 2 pF maximum EIA 364-30

Test between adjacent circuits of unmated
connectors at 1 kHz

MECHANICAL

Vibration, random No discontinuities of
1 µs or longer
duration.
See Note (a)

EIA 364-28 Condition V Test letter A.  Subject
mated connectors to 5.35 G's rms.  Fifteen
minutes in each of three mutually perpendicular
planes.  See Figure 6-10.

Physical shock No discontinuities of
1 µs or longer
duration.
See Note (a)

EIA 364-27 Condition H.  Subject mated
connectors to 30 G's half-sine shock pulses of
11 ms duration.  Three shocks in each direction
applied along three mutually perpendicular
planes, 18 total shocks.  See Figure 6-10 for the
test setup.

Durability See Note (a) EIA 364-09

Mate and unmate connector assemblies for 1500
cycles at maximum rate of 200 cycles per hour
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Table 6-7.  Test Requirements and Procedures Summary (Continued)

Test Description Requirement Procedure

Mating force 35 Newtons
maximum

EIA 364-13

Measure force necessary to mate connector
assemblies at maximum rate of 12.5 mm per
minute.

Unmating force 10 Newtons
minimum

EIA 364-13

Measure force necessary to unmate connector
assemblies at maximum rate of 12.5 mm per
minute.

Cable Retention Cable shall not
dislodge from
cable crimp

Apply axial load of 25 Newtons to the cable.

ENVIRONMENTAL

Thermal shock See Note (a) EIA 364-32 Test Condition I.

Subject mated connectors to five cycles between
-55 °C and 85 °C.

Humidity See Note (a) EIA-364-31 Method II Test Condition A. Subject
mated connectors to 96 hours at 40 °C with 90 to
95% RH.

Temperature life See Note (a) EIA-364-17 Test Condition 3 Method A.  Subject
mated connectors to temperature life at 85 °C for
250 hours.

Note:

(a) Shall meet visual requirements, show no physical damage, and shall meet requirements of additional
tests as specified in Test Sequence in Table 6-8.
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Table 6-8.  Product Qualification Test Sequence

Test or Examination Test Group (a)

1 2 3

Test Sequence (b)

Examination of product 1,10 1,5 1,9

Termination resistance 3,7 2,4

Insulation resistance 3,7

Dielectric withstanding
voltage

4,8

Capacitance 2

Vibration 5

Physical shock 6

Durability 4

Mating force 2

Unmating force 8

Thermal shock 5

Humidity 6

Cable Retention 9

Temperature life 3(c)

Notes:
(a) Refer to Section 6.3.4.4.
(b) Numbers indicate sequence in which tests are performed.
(c) Precondition samples with 10 cycles durability.

6.3.4.4 Sample Selection
Samples shall be prepared in accordance with applicable manufacturers’ instructions and shall be selected
at random from current production.  Test groups 1, 2, and 3 shall consist of a minimum of eight
connectors.  A minimum of 30 contacts shall be selected and identified.  Unless otherwise specified,
these contacts shall be used for all measurements.
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Figure 6-9.  Termination Resistance Measurement Points
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Figure 6-10.  Vibration and Physical Shock Mounting Fixture

6.3.4.5 Additional Requirements
Flammability:  Plastic material used in the construction of this item, shall be rated 94V-0, per
UL-STD-94.

Marking:  USB icon per Figure 6-8 on plug.  Recommended that OEM’s add an icon near the receptacle
on end product where possible or practical.

Qualification:  All suppliers when requested must be able to supply appropriate documentation to show
conformance to the requirements of this chapter.
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6.4 Cable Voltage Drop Requirements
The USB physical layer specification requires that the maximum power distribution voltage drop between two
hubs or between hubs and functions should be 350 mV max.  The table below lists the nominal lengths of
power distribution cabling for each gauge of conductor.  The following is a formula for the voltage drop to an
unpowered hub of 350 mV.

Vunpowered _hub = Vswitch + 4 * Vconnector + 2 * Vcable

Where: Vswitch = Imax * (board resistance and FET resistance) = 100 mV (max. by
definition)

Vconnector = Imax  * 25 mΩ (connector resistance) = 12.5 mV

Vcable  = Imax  * cable resistance

Imax  = 500 mA

With the above information, Vcable =  100 mV, assuming two connectors are used in the cable assembly,

For a 100 mV drop using copper wire at 20 °C, Table 6-9 lists cable lengths with a current of 500 mA.  Refer
to Figure 6-11.

Table 6-9.  Cable Lengths vs. Gauge

Gauge Resistance Length (Max.)

28 0.232 Ω/m .86 m

26 0.145 Ω/m 1.38 m

24 0.091 Ω/m 2.20 m

22 0.057 Ω/m 3.48 m

20 0.036 Ω/m 5.00 m

NOTE:  This table does not include additional temperature effects (approximately 10%).

Figure 6-11.  Cable and Connector Voltage Drop Distribution

It is recommended that each individual implementer verify proper DC voltage drop.  If the implementer
uses different materials than above, then it is responsible for proper DC voltage at the unpowered hub.

To meet the 5 meter maximum length requirement of this specification, a wire range of 20 AWG to
28 AWG is needed for the DC power distribution conductors.
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Note:  For typical  functions that do not require 500 mA, smaller wire gauges can be used as appropriate
per the voltage drop requirements.

6.5 Propagation Delay
If the cabling you have selected cannot meet the requirements of Section 6.3.1.2, then use Table 6-10 to
limit the cable length for fully rated channels.

Table 6-10.  Propagation Delay vs. Cable Length

Cable Propagation Delay Specification Maximum Cable Length

9.0 ns/m 3.5 m

8.0 ns/m 3.9 m

7.0 ns/m 4.5 m

6.5 ns/m 4.8 m

Note:  The implementation must use the shortest cable that meets the requirements of
Sections 6.4 and 6.5.

6.6 Grounding
The shield must be terminated to the connector plug for completed assemblies.  At the host end, the
shield, DC power, and chassis ground should be bonded together.  The complete bus should have only
one DC ground point at the host end.  All other devices should not connect the shield or DC return to
chassis ground.  This prevents circulating low frequency currents.  However, AC coupling is permitted
for EMI compliance.  The coupling impedance must be less than 250 kΩ at 60 Hz and not greater than
15 Ω between 3 and 30 MHz.  The dielectric voltage rating of the capacitor must be 250 Vac (rms).

6.7 Regulatory Information
Recommendation and guidelines for the installation of this cabling per applicable local regulations are
the responsibility of the OEM.  It is recommended that guidelines such as EIA CB8-1981[4] and
ANSI/NFPA 70-1984 as well as local codes and regulations be followed.
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Chapter 7
Electrical

This chapter describes the electrical specification for the USB.  It contains signaling, power distribution,
and physical layer specifications.

7.1 Signaling
The signaling specification for the USB is described in the following subsections.

7.1.1 USB Driver Characteristics
The USB uses a differential output driver to drive the USB data signal on to the USB cable.  The static
output swing of the driver in its low state must be below the VOL of 0.3 V with a 1.5 kΩ load to 3.6 V
and in its high state must be above the VOH of 3.0 V with a 15 kΩ load to ground.  The output
impedances in both the high and low state must be well balanced to minimize signal skew.  Slew rate
control on the driver is required to minimize the radiated noise and cross talk.  The driver’s outputs must
support three-state operation to achieve bi-directional half duplex operation.  High impedance is also
required to isolate the port from downstream devices which are being hot inserted or which are connected
but powered down.  The driver must tolerate voltage the signal pins of -0.5 V to 3.8 V with respect to its
local ground reference without damage.  It must tolerate this voltage for 10.0 µs while the driver is active
and driving, and tolerate the condition indefinitely when the driver is in its high impedance state.

7.1.1.1 Full Speed (12 Mbs) Driver Characteristics
A full speed USB connection is made through a shielded, twisted pair cable with a characteristic
impedance (Z0) of 90 Ω ±15%.  The impedance of each of the drivers must be 45 Ω ± 〉15%.  For a
CMOS implementation, this impedance will typically be realized by a CMOS driver with an impedance
significantly less than 45 Ω with a discrete series resistor making up the balance (see Figure 7-1).  The
signal swings at the driver’s signal pins must meet the static levels after the first round cable delay when
driving the above cable.  The data line rise and fall times must be between 4 ns and 20 ns and be well
matched to minimize RFI emissions and signal skew.

3030ΩΩ

E quiv Output Imped E quiv Output Imped ≈ 1515ΩΩ

D+D+

3030ΩΩ
D-D-

(45(45ΩΩ Imped) Imped)

(45(45ΩΩ Imped) Imped)

OEOEDataData
IdenticalIdentical
CMOSCMOS
B uffer sB uffer s

Figure 7-1.  Example CMOS Driver Circuit
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7.1.1.2 Low Speed (1.5 Mbs) Driver Characteristics
A low speed USB connection is made through a unshielded, untwisted wire cable. The rise and fall time
of the signals on this cable must be greater than 75 ns to keep RFI emissions under FCC class B limits,
and less than 300 ns to limit timing delays and signaling skews and distortions. The driver must reach the
specified static signal levels with minimal reflections and ringing when driving the above cable.

VSS

* (See note)

*(Slight impedance mismatch shown)

Signal pins
pass  output
spec levels

after one round
trip cable delay

One Bit
Time

(12Mb/s)

Driver
Signal Pins

VOL (max)

VOH (min)

Round
Trip

Cable
Delay

Figure 7-2.  Full Speed Driver Signal Waveforms

VSS

Signal pins
pass output
spec levels

with minimal
reflections and

ringing

One Bit
Time

(1.5Mb/s)

Driver
Signal Pins

VOL (max)

VOH (min)

Figure 7-3.  Low Speed Driver Signal Waveforms

7.1.1.3 Driver Usage
Full speed buffers are used on the upstream ports (towards the host) of all hubs and full speed functions.
All devices with hubs must be full speed devices.  Low speed buffers are used only on the upstream ports
of low speed functions.  The downstream ports of the host and all hubs are required to be capable of both
driver characteristics, such that any type of device can be plugged in to these ports (see Figure 7-4 and
Figure 7-5).

7.1.2 Receiver Characteristics
A differential input receiver must be used to accept the USB data signal.  The receiver must feature an
input sensitivity of at least 200 mV over a common mode input voltage of at least 1.0 V to 3.0 V with
respect to its local ground reference.  The receiver must tolerate static input voltages between -0.5 V to
3.8 V with respect to its local ground reference without damage.  In addition to the differential receiver,
there must be a single-ended receiver for each of the two data lines.  They must have a switching
threshold between 0.6 V and 1.5 V.  It is required that the single-ended receiver have a typical hysteresis
of between 100 mV and 200 mV to reduce its sensitivity to noise (refer to the hysteresis specification in
Section 7.3.2).
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7.1.3 Signal Termination
The USB is terminated at the hub and function ends as shown below.  Full speed and low speed devices
are differentiated by the position of the pullup resistor on the downstream end of the cable.  Full speed ( )
devices are terminated as shown in Figure 7-4 with the pullup on the D+ line.  Low speed (L.S.) devices
are terminated as shown in Figure 7-5 with the pullup on the D- line.

The pullup terminator is a 1.5 kΩ ±5% resistor tied to a voltage source between 3.0 V and 3.6 V
referenced to the local ground.  The pulldown terminators are  resistors of 15 kΩ ±5% connected to their
local ground.

F.S./L.S. USB
Transceiver

(45ΩΩOutputs)

Host or
Hub Port

Twisted Pair Shielded

R1

D+

D-D-

D+

R1

F.S. USB
Transceiver

(45ΩΩOutputs)

Hub Port 0
or

Full Speed Function

5 Meters max.
Z0=90ΩΩ±±15%

R1=15KΩΩ
R2=1.5KΩΩ

R2

Figure 7-4.  Full Speed Device Cable and Resistor Connections

F.S./L.S. USB
Transceiver

(45ΩΩOutputs)

Host or
Hub Port

Untwisted, Unshielded

R1

D+

D-D-

D+

R1

Slow Slew Rate
Buffers

L.S. USB
Transceiver

Low Speed Function

3 Meters max.

R1=15KΩΩ
R2=1.5KΩΩ

R2

Figure 7-5.  Low Speed Device Cable and Resistor Connections
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7.1.4 Signaling Levels
Table 7-1 shows a summary of the USB signaling levels.  The signaling levels are described in the
following sections.

Table 7-1.  Signaling Levels

Bus State Signaling Levels

From Originating Driver At Receiver

Differential “1” (D+) - (D-) >  200 mV and D+ or D- > Vse0

Differential “0” (D+) - (D-) < -200 mV and D+ or D- > Vse0

Idle (‘J’ State):
Low Speed
Full Speed

Differential “0”
Differential “1”

Non-idle (‘K’ State):
Low Speed
Full Speed

Differential “1”
Differential “0”

Start of Packet
(SOP)

Data lines switch from ‘J’ to ‘K’ State

End of Packet
(EOP)

D+ and D- < Vse0 for 2 bit times1

followed by a ‘J’ for 1 bit time
D+ and D- < Vse0 for > 0.6 bit
times2 followed by a ‘J’ State

Disconnect
(Upstream only)

(n.a.) D+ and D- < Vse0 for ≥ 2.5 µs

Connect
(Upstream only)

(n.a.) D+ or  D- > Vse0 for ≥ 2.5 µs

Reset
(Downstream only)

D+ and D- < Vse0 for ≥10 ms D+ and D- < Vse0 for ≥ 2.5 µs
(must be recognized by 5.5 µs)

Resume From a suspended state, data lines switch from ‘J’ to static ‘K’ State.
Host ends resume by sending a low speed EOP and returning the data
lines to the ‘J’ state

Note 1:  The width of EOP is defined in bit times relative to the speed of transmission.

Note 2:  The width of EOP is defined in bit times relative to the device type receiving the EOP.

7.1.4.1 Connect and Disconnect Signaling
All ports on the downstream side of the host or a hub have pull-down resistors on both the D+ and D-
lines.  All devices have a pull-up resistor on one of the data lines on their upstream port.  The type of
device determines which data line has the pullup resistor.  Full speed devices have the pullup on the D+
line (see Figure 7-4) and low speed devices have the pullup on the D- line (see Figure 7-5).  When there
are no devices driving the data lines, these resistors create a quiescent bias condition on the lines such
that the data line with the pull-up is around 3.0 V and the other data line is near ground.  This is called
the idle state or the ‘J’ state.
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When no function is attached to the downstream port of the host or hub or the pull-up resistor on an
attached device is not powered, the pull-down resistors will cause both D+ and D- to be pulled below the
single-ended low threshold of 0.6 V at the host or hub port.  This creates a state called a single-ended
zero (SE0) on the downstream port. A disconnect condition is indicated if an SE0  persists on a
downstream port for more than 2.5 µs (30 full speed bit times).  (An alternate method for disconnect
detect that samples the state of the data lines at the end of frame is given in Chapter 11.)  Note that
disconnect signaling applies only in an upstream direction (see Figure 7-6).

A connect condition will be detected when a device is connected to the host or hub’s port, and one of the
data lines is pulled above the single-ended high threshold level of 1.5 V for more than 2.5 µs (30 full
speed data bit times) .  (An alternate method for connect detect that samples the state of the data lines at
the end of frame is given in Chapter 11.)  The data line that is high when the port state changes from
disconnected to connected determines whether the connected device is a full speed device or a low speed
device.  Figure 7-7 shows a full speed device connection sequence, and Figure 7-8 shows a low speed
device connection sequence.

VOH (min)

VSE0 (max)

VSE0 (min)

VOL (max)

VSS

Device
Disconnected

Disconnect
Detected

≥≥ 2.5µµs

Figure 7-6.  Disconnect Detection

VOH (min)

VSE0 (max)

VSE0 (min)

VOL (max)

VSS

Device
Connected

D-

D+

Connect
Detected

≥≥ 2.5µµs

Figure 7-7.  Full Speed Device Connect Detection
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VOH (min)

VSE0 (max)

VSE0 (min)

VOL (max)

VSS

Device
Connected

D+

D-

Connect
Detected

≥≥ 2.5µµs

Figure 7-8.  Low Speed Device Connect Detection

7.1.4.2 Data Signaling
Data transmissions within a packet is done with differential signals.  A differential one on the bus is
represented by D+ being at least 200 mV more positive than D- as seen at the receiver, and a differential
0 is represented by D- being at least 200 mV more positive than D+ as seen at the receiver.  Signal cross
over point must  be at or above one-half the static high signal swing level..

The start of a packet (SOP) is signaled by the originating port by driving the D+ and D- lines from the
idle state (‘J’ state) to the inverted value (‘K’ state).  This switch in levels represents the first bit of the
Sync field.  Hubs must limit the distortion of the length of the first bit after SOP when it is retransmitted
to less than 5 ns.  Distortion can be minimized by matching the nominal data delay through the hub with
the output enable delay of the hub.

The single-ended 0 state is used to signal an end of packet (EOP).  The single-ended 0 state is indicated
by both D+ and D- being below 0.6 V. EOP will be signaled by driving D+ and D- to the single-ended 0
state for two bit times followed by driving the lines to the ‘J’ state for one bit time.  The transition from
the single-ended 0 to the ‘J’ state defines the end of the packet.  The ‘J’ state is asserted for 1 bit time and
then both the D+ and D- output drivers are placed in their high-impedance state.  This returns the bus to
the idle state.  Figure 7-9 shows the signaling for start and end of a packet.
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VOH (min)

VSE0 (max)

VSE0 (min)

VOL (max)

VSS Bus Idle
First Bit

of Packet
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VSE0 (min)
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VSS
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Bus
Floats
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Strobe

Figure 7-9.  Packet Transaction Voltage Levels

7.1.4.3 Reset Signaling
A reset is signaled downstream on the bus by the presence of an extended  SE0 at the upstream port of a
device.  After the reset is removed, the device will be in the attached, but not yet configured state (refer
to Section 9.2).  Note that reset signaling applies only in the downstream direction.

The reset signal can be generated by host command from any hub port or the host controller.  All devices
connected to that port and directly downstream of that port are reset.  The reset signal propagates through
all hubs downstream of the signaling hub, including any ports that are disabled.  The reset signal must be
generated for a minimum of 10 ms.  If the power voltage level to a segment of the bus is not at the
specified level, the reset needs to be extended such that the reset lasts for at least 10 ms after the power
supply has stabilized.

A active device  (powered and not in the suspend state) seeing a single-ended zero on its upstream port
for more than 2.5 µs can treat that signal as a reset.  All active devices seeing the SE0 must have
interpreted the signaling as a reset after 5.5 µs.  A device that recognizes a reset from a SE0 between 32
and 64 full speed bit times or 4 and 8 low speed bit times satisfies these requirements.  Active hubs with
disabled downstream ports obey these same rules.  The downstream port must begin signaling the reset
between 2.5 µs and 5.5 µs (i.e., between 32 and 64 full speed bit times) after seeing the SE0 on their
upstream port.

Reset can wake a device from the suspended mode.  It is recommended that the device wait for its clocks
to stabilize before accepting the reset to avoid spurious single-ended zero events from causing the device
to reset.  Hubs have to wait until their clocks have stabilized to recognize the reset and propagate it
downstream on its disabled ports.  Since a hub may take up to 10 ms to wakeup, there may be up to 10
ms per tier delay for the reset to propagate.
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After the reset is removed, all devices that received the reset are set to their default USB address.  All
ports on a hub that receives a reset are disabled.  The port that generated the reset will also be disabled.
A bus-powered hub that receives a reset on its root port removes power from all its downstream ports.

All hubs must be able to establish connectivity and all devices must be able to accept a USB address 10
ms after the reset is removed.  Failure to establish connectivity or accept an address may cause the device
not to be recognized by the USB enumerator.  In the case of a hub, it may also cause any devices
connected to the hub not to be recognized.  All other requests for data or service, except SETUP packets
(see Section 8.4.5.4), can be NAK’ed for a period up to 5.0 seconds after which the device is declared
defective and is not recognized.

A special case for reset signaling exists for self-powered hubs.  If the self-powered hub is disconnected
from its upstream port or if the power on that port is switched off, the hub must detect that condition.  It
must reset its internal functions and send a reset signal on all its downstream ports.  This prevents a
disconnected branch of the network remaining configured and confusing the enumeration process when
the branch is reattached.  The self-powered hub must monitor the power lines on its upstream cable to
detect if it has been disconnected.

7.1.4.4 Suspending
All devices must support the suspend mode.  They can be go into the suspended mode from any powered
state.  They go into the suspend state when they see a constant idle (‘J’) state on their bus lines for more
than 3.0 ms.  Any bus activity will keep a device out of the suspend state.  The SOF packet (refer to
Section 8.4.2) is guaranteed to occur once a frame to keep full speed devices awake.  Hubs that are not in
the suspend state keep low speed devices wake by generating a low speed EOP on enabled ports attached
to low speed devices (refer to Section 11.2.11).  When a device is in the suspend state, it draws less than
500 µA from the bus.

All devices can be awakened from the suspend state by switching the bus state to ‘K’, by normal bus
activity or by signaling a reset.  Some devices have the ability to be awakened by actions associated with
their internal functions and then cause signaling on their upstream connection to wake or alert the rest of
the system.  This feature is called remote wake-up and is described in Section 7.1.4.5.

7.1.4.4.1 Global Suspend
Global suspend is used when no communication is desired anywhere on the bus and the whole network is
placed in the suspend state.  The host signals the start of suspend by ceasing all its transmissions
(including the SOF token).  As each device on the bus recognizes the lack of activity and that the bus is
in the idle state for the appropriate length of time, it goes into its suspend state.

7.1.4.4.2 Selective Suspend
The system software may want to conserve power by suspending only certain segments of the topology,
while continuing regular operation on the remaining segments.  Segments of the network can be
selectively put into the suspend state by disabling the hub port to which that segment is attached.  The
disabled port will block activity to this segment of the bus and the attached devices will go into suspend
after the appropriate delay as described above.

Any non-hub device can be suspended in this way.  Any hub not involved in connecting the remaining
devices to the host may also be suspended by disabling the port to which it is attached.  Devices that are
selectively suspended can still alert the system with a remote wake-up signaling, although the process is
slightly different.
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7.1.4.5 Resume
Once a device is in the suspend state, its operation can be resumed by receiving signaling on the bus, or it
can signal the system to resume operation if it has the remote wake-up capability.  Hubs play an
important role in the propagation and generation of resume signaling.

(Note that the host can wake up the entire bus by resetting it.  This requires that the entire bus must be re-
enumerated and reconfigured.)

7.1.4.5.1 Resume Signaling from Global Suspend
If the entire network is in the suspend state, it can be awakened by either a device with the remote wake-
up capability or by the host.  The resume is signaled by a device driving its upstream connection or the
host driving its downstream connections to the ‘K’ state.  The ‘K’ state will be propagated by the system
hubs to all devices on enabled ports.  A device seeing a ‘K’ will wake up and prepare itself for normal
operation.  The process for the host signaling resume and a device signaling remote wake-up is given in
the next two paragraphs.

The host can signal resume at any time.  It does this by forcing a ‘K’ state on all its enabled, root hub
downstream ports.  Hubs that receive this ‘K’ state will immediately propagate it to all their enabled
downstream ports and begin to resume normal operation (e.g., restarting local clocks).  Devices which
see the ‘K’ state on their upstream connections will begin to resume their normal operation.  The host
will hold the ‘K’ state for at least 20 ms.  At the end of that time, the host will generate an low speed
EOP, return the bus to the ‘J’ state and resume normal bus operation.  This  EOP tears down any hub
connectivity and returns the bus to normal operation.  The host must resume sending packets on the bus
within 3.0 ms in order to prevent devices on the bus from re-entering the suspend state.

A device which wants to wake up the network cannot issue its remote wake-up until its upstream
connection has been in the idle state for at least 5.0 ms.  After that time the device can issue a ‘K’ state
signal upstream to wake the system.  It must hold the ‘K’ state for a minimum of 10 ms and a maximum
of 15 ms.  If the next upstream device is a hub and that port is enabled, then the hub sends the ‘K’ state to
all its enabled ports, including the port which received the resume signal and its own upstream port, and
begins its wake-up sequence.  (The case where the upstream resume signaling encounters a disabled port
is covered in the next section.)  The ‘K’ state resume signaling propagates upward until it reaches the
host’s root hub.  Within a few microseconds, the host turns on all its enabled ports and drives the ‘K’
state back downstream, insuring that all devices connected to enabled ports see the resume signaling.
From this point, the process proceeds as in the last paragraph.  Those hubs which are signaling in the
upstream direction maintain that connectivity until the hub is awake and for at least 1 ms after it is
awake.  A hub must wake up within 10 ms of receiving the first resume signaling.  When they are awake,
these hubs turn the connectivity of their root port around and reflect the root port value on their enabled
downstream ports.  Since the host is still sending a ‘K’ state, the state of the signaling through the hub
will not change until the host ends the resume signaling and resumes normal operation.  The hub will
remain in a downward directed connectivity until it receives the low speed EOP from the host at which
time normal hub operation resumes.

Ten milliseconds after the host ends its resume signaling, all devices must be able to respond to their
USB address (as with reset) or be able to be programmed with an USB device address if they are in the
“unaddressed” state.  (This timing is the same as for a reset signal - see reset signaling section.)  This will
allow the system to confirm the existence of the device after the resume.  A hub must be able to accept
port status and control commands 10 milliseconds after the end of the resume signaling.

7.1.4.5.2 Resume Signaling from Selective Suspend
The process of resuming a selectively suspended bus segment is slightly different.  The host can resume a
suspended segment by merely re-enabling the port controlling that segment.  The normal bus activity will
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wake up all the devices.  The host will have to give each tier of devices sufficient time (10 ms) before
expecting to get any response from those devices.

A device with the remote wake-up capability can also signal the host with resume signaling on a
selectively suspended segment.  If the device is directly tied to the disabled port, the ‘K’ state signaling it
sends to the port will cause its port status to change.  The hub reports the status change to the host.  The
host can re-enable the port and query the signaling device.  If there are intervening hubs between the
device and the disabled port, then the intervening hubs propagate the resume signaling up to the disabled
port as in the global resume case.  The resume signaling causes the port status to change and the process
continues as above with the host re-enabling the port and allowing 10 ms before accessing any devices on
the re-enabled segment.

If the entire network is put into the suspend mode with a segment selectively suspended, remote wake-up
devices can still cause the resume of the entire network.  This case is covered in the next section.

7.1.4.5.3 Hub Resume Signaling
The hub’s role in resume signaling is twofold.  It propagates the ‘K’ state resume signaling as described
in the Global Resume section above, and it acts as a remote wake-up device for certain bus events.  A
hub will be the generator of resume signaling if it is in the suspend state and a device is attached to or
disconnected from any of its ports.  It also generates resume signaling if it receives a resume signal (‘K’
state) on one of its disabled ports.

If the hub detects any of the above conditions, it will be awakened from its suspend state.  Once awake, it
will send the resume signaling upstream for 10 to 15 ms.  At the end of that time, it will turn its root port
connection around and reflect the root port state on its enabled downstream ports.  The host’s resume
signaling will cause the devices connected to enabled downstream ports to awaken.  The resume process
proceeds as before.

7.1.5 Data Encoding/Decoding
The USB employs NRZI data encoding when transmitting packets.  In NRZI encoding, a 1 is represented
by no change in level and a 0 is represented by a change in level.  Figure 7-10 shows a data stream and
the NRZI equivalent.  (The high level represents the ‘J’ state on the data lines in this and subsequent
figures showing NRZI encoding.)  A string of zeros causes the NRZI data to toggle each bit time.  A
string of ones causes long periods with no transitions in the data.

00 11 11 00 11 00 11 00 00 00 11 00 00 11 11 00

DDaattaa

NNRRZZII

IIddllee

IIddllee

Figure 7-10.  NRZI Data Encoding
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Figure 7-11.  Flow Diagram for NRZI

7.1.6 Bit Stuffing
In order to ensure adequate signal transitions, bit stuffing is employed by the driver when transmitting a
packet on the USB. A zero is inserted after every six consecutive ones in the data stream before the data
is NRZI encoded to force a transition in the NRZI data stream.  This gives the receiver logic a data
transition to guarantee the data and clock lock. The receiver must decode the NRZI data, recognize the
stuffed bits and discard them.  Bit stuffing is enabled beginning with the Sync Pattern and throughout the
entire transmission.  The data “one” that ends the Sync Pattern is counted as the first one in a sequence.
Bit stuffing is always enforced, without exception.  If required by the bit stuffing rules, a zero bit will be
inserted even if it is the last bit before the end-of-packet (EOP) signal.

Data Encoding Sequence:

 Bit Stuffed Data

 Raw Data

 NRZI
 Encoded Data

Idle

Sync Pattern

Sync Pattern

Sync Pattern

Packet Data

Packet Data

Stuffed Bit

Six Ones

Packet Data

Figure 7-12.  Bit Stuffing
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Figure 7-13.  Flow Diagram for Bit Stuffing

7.1.7 Sync Pattern
The following NRZI bit pattern is used as a synchronization pattern and is prefixed to each packet. This
pattern is equivalent to a data pattern of seven zeroes followed by a one (0x80).

Idle

S YNC PAT T ER N

NR Z I Data
E ncoding

PID0 PID1

Figure 7-14.  Sync Pattern
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7.1.8 Initial Frame Interval and Frame Adjustability
The USB defines a frame interval to be 1.0 ms long.  The frame interval is measured from the start of the
Start of Frame (SOF) PID in one frame to the same point in the SOF token of the next frame. The
permitted tolerance on the initial frame interval is ±0.05% (500 ppm). This tolerance includes
inaccuracies from all sources:  initial frequency accuracy, crystal capacitive loading, supply voltage on
the oscillator, temperature, and aging.

The host controller must be able to adjust the frame interval.  If the host’s data rate is not centered on
12 Mbs, then the initial ±0.05% frame interval accuracy can be met by changing the number of bits per
frame from the nominal of 12,000. An additional adjustability of ±15 full speed bit times is required to
allow the host to synchronize to an external time reference.  The frame interval can be reprogrammed by
no more than one full speed bit time each adjustment and no more frequently than once in four frames.

Hubs and certain full speed functions need to track the frame interval.  They also are required to have an
adjustability of at least ±15 full speed bit times to track the host’s changes in the frame timing.

7.1.9 Data Signaling Rate
The full speed data rate is nominally 12 Mbs.  The data rate tolerance for host, hub, and full speed
functions is ±0.25% (2500 ppm).  The accuracy of the host controller’s data rate must be known to better
than ±0.05% (500 ppm) in order to meet the frame interval accuracy.  This tolerance includes
inaccuracies from all sources: initial frequency accuracy, crystal capacitive loading, supply voltage on
the oscillator, temperature, and aging.  The jitter in the data rate must be less than 400 ps.

The low speed data rate is nominally 1.5 Mbs.  The permitted frequency tolerance for low speed
functions is ±1.5% (15000 ppm).  This tolerance includes inaccuracies from all sources:  initial frequency
accuracy, crystal capacitive loading, supply voltage on the oscillator, temperature, and aging.  The jitter
in the low speed data rate must be less than 10 ns.  This tolerance allows the use of resonators in low
cost, low speed devices

7.1.10 Data Signal Rise and Fall Time
The output rise time and fall time are measured between 10% and 90% of the signal.  Edge transition
time for the rising and falling edges of full speed data signals is 4 ns (minimum), 20 ns (maximum)
measured with a capacitive load (CL) of 50 pF.  The rise and fall times must be well matched.  The rise
and fall time of low speed signals is 75 ns (minimum), 300 ns (maximum) into a capacitive load of
350 pF.

Low Speed:  C L = 350pFFull Speed:  C L = 50pF

Differential
Data Lines

10%

Rise Time

90%

Fall Time

tFtR

10%

90%CL

CL

Figure 7-15.  Data Signal Rise and Fall Time

7.1.11 Data Source Signaling
This section covers the timing characteristics of data produced and sent from a device (the data source).
Section 7.1.13 covers the timing characteristics of data that is transmitted through the repeater section of
a hub.  In this section, TPERIOD is defined as the actual period of the data rate which can have a range as
defined in Section 7.1.9.
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7.1.11.1 Data Period
The source of data can have some variation (skew) in the pulse widths of the data transmitted.  The time
between any set of data transitions is N * TPERIOD ± skew time, where ‘N’ is the number of bits between the
transitions.  The data period is measured with the same capacitive load used for rise and fall times and is
measured between the crossover points of the data lines as shown in Figure 7-16.

TPERIOD

Differential
Data Lines

 Crossover
Points

 Paired
Transitions

Consecutive
Transitions

Figure 7-16.  Data Pulse Widths

For full speed transmissions, the pulse width skew time for any consecutive differential data transitions
must be within ±4.0 ns and within ±2.0 ns for any set of paired differential data transitions.  For low
speed transmissions, the pulse width skew time for any consecutive differential data transitions must be
within ±30 ns and within ±10 ns for any set of paired differential data transitions.  These skew numbers
include timing variations due to differential buffer delay and rise/fall time mismatches and to noise and
other random effects.

7.1.11.2 EOP Timing
The width of the SE0 in the EOP is 2 * TPERIOD ± skew time. The data period is measured with the same
capacitive load used for rise and fall times and is measured at the same level as the differential signal
crossover points of the data lines (see Figure 7-17).

TPERIOD

Differential
Data Lines

EOP
Width

Data
Crossover

Level

Figure 7-17.  EOP Width Timing

For full speed transmissions, the EOP width skew must be within ±5 ns.  For low speed transmissions, the
EOP width must be within ±40 ns.  These skew numbers include timing variations due to differential
buffer delay and rise/fall time mismatches and to noise and other random effects.

7.1.11.3 Bus Turnaround Time / Interpacket Delay
A new device may not begin driving the bus until the previous device has completed the EOP sequence
and has disabled its drivers.  This is assured by not allowing the new device to drive the bus until it has
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detected that the bus is in the ‘J’ state after the SE0 in the EOP for at least two bit times.  This minimum
of two bit times applies to all devices, including back to back host packet transmissions.

If a function is expected to provide a response to a host transmission, the response must  be seen on the
upstream end of the cable within 5.9 bit times of the bus returning to the ‘J’ state after the EOP as seen
on the upstream end of its cable. The maximum bus turnaround time for a function, not including allowed
worst case cable delays is five bit times.  This maximum bus turnaround time prevents a full speed
receiving agent from timing out after 16 bit times on a response in a maximum depth topology (refer to
Section 7.1.14).  However, these timings apply to both full speed and low speed devices.

The maximum delay a host has to respond to a data packet sent by a function (if a handshake is required)
is six bit times, measured as above.  There is no maximum delay between packets in separate
transactions.

7.1.12 Cable Delay
Only one data transition is allowed on a USB cable at a time.  Therefore, the maximum allowed round
trip cable delay has to be less than 80 ns.  This allows a full speed signal edge to propagate to the far end
of the cable and return and settle within one full speed bit time.  Independent of cable velocity, the
maximum cable length is 5.0 m for full speed devices and 3.0 m for low speed devices.

Data Line
Crossover

Point

50% Point of
Initial Swing

VSS

VSS

Driver End
of Cable

Round Trip
Cable Delay
80ns (max)

Receiver
End of Cable

One Way
Cable
Delay
30ns
(max)

Figure 7-18. Cable Delay

For devices that have detachable cables, the maximum one-way data delay on a cable is 30 ns and is
measured as shown in Figure 7-18.

7.1.13 Hub Signaling Timings
The propagation of a full speed, differential data signal through a hub is shown in Figure 7-19.  The
downstream signaling is measured without a cable connected to the port and with a 50 pF capacitive load.
The total delay through the cable and hub electronics must be a maximum of 70 ns.  If the hub has a USB
standard detachable cable, then the delay through hub electronics must be a maximum of 40 ns to allow
for a worst case cable delay of 30 ns.  The delay through this hub is measured in both upstream and
downstream directions as shown in Figure 7-19B, from data line crossover at the input port to data line
crossover at the output port.
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Figure 7-19.  Hub Propagation Delay of  Full Speed Differential Signals

Low speed propagation delay for differential signals is measured in the same fashion as for full speed
signaling.  The maximum low speed hub delay is 400 ns.  This allows for the slower low speed buffer
propagation delay and rise and fall times.

When the hub acts as a repeater, it must reproduce the received signal accurately on its outputs.  This
means that for differential signals, the propagation delays of a ‘J’ to ‘K’ state transition must match
closely to the delays of a ‘K’ to ‘J’ state transition.  The maximum skew allowed between these two
delays (as measured in Figure 7-19) for a hub plus cable is 3.0 ns.  For a hub alone, the maximum skew is
2.0 ns.

An exception to this case is the skew that can be introduced in the SOP ‘J’ to ‘K’ state transition (refer to
Section 7.1.4.2).  In this case, the delay to the opposite port includes the time to enable the output buffer.
However, the delays should be closely matched to the normal hub delay and the maximum additional
delay over a normal  ‘J’ to ‘K’ transition is 5.0 ns.  This limits the maximum distortion of the first bit in
the packet.  (Note:  Because of this distortion of the SOP transition relative to the next ‘K’ to ‘J’ state
transition, the first sync field bit should not be used to synchronize receiver to the data stream.)

The SE0 has to be propagated through a hub in the same way as the differential signaling. The
propagation delay for sensing an SE0 (SE0-) must be no less than the greater of the ‘J’ to ‘K’ or  ‘K’ to
‘J’ differential data delay (to avoid truncating the last data bit in a packet) but not more than 10 ns greater
than the larger differential delay (to prevent creating a bit stuff error at the end of the packet).  SE0
delays are shown in Figure 7-20.

Since the sense levels for the SE0 state are not at the midpoint of the signal swing, the width of the
Single-ended 0 state will be changed as it passes through each hub.  A hub may not change the length of
a full speed single-ended 0 state by more than 10 ns as measured by the difference of the SE0- and SE0+
delays (see Figure 7-20).  A single-ended 0 from a low speed device has long rise and fall times and is
subject to greater skew, but this conditions exists only on the cable from the low speed device to the port
to which it is connected.  Thereafter, the signaling uses full speed buffers and their faster rise and fall
times.  The single-ended 0 from the low speed device cannot be changed by more than 400 ns as it passes
through the hub to which the device is connected.  This time allows for some signal conditioning in the
low speed port to reduce its sensitivity to noise.
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Figure 7-20.  Timing of EOP

7.1.14 Maximum End to End Signal Delay
A device expecting a response to a transmission will time out the transaction if it does not see the start of
packet (SOP) transition within 16 bit times after the end of  the transmission (after the SE0 to ‘J’ state
transition in the EOP).  This can occur between an IN token and the following data packet or between a
data packet and the handshake packet (refer to Chapter 8).  A time-out will cause the device expecting to
receive a packet to declare the transaction in progress invalid.  The host will proceed with the next
transaction after it sees a time-out.

The following diagram depicts the configuration of seven signal hops (cables) that results in worst
allowable case signal delay.  The maximum propagation delay from the upstream end of a hub’s cable to
any downstream port connector is 70 ns.

Hub 6Host
Controller

Function

Cable Delay + Hub delay ≤≤ 70ns (All Cables 5 meters max)

Hub 5 Hub 4 Hub 3 Hub 2 Hub 1

Figure 7-21.  Worst Case End to End Signal Delay Model

7.2 Power Distribution
The power distribution specification for USB is presented in the following paragraphs.

7.2.1 Classes of Devices
The power sourcing and sinking requirements of different device classes can be simplified with the
introduction of the concept of a unit load.  A unit load is defined to be 100 mA.

USB supports a range of devices as categorized by their power consumption; these include:

• Bus-powered hubs - Draws all of the power to any internal functions and downstream ports from the
USB connector power pins.  May draw up to one load upon power up and a total of five loads, which
is split between any embedded functions and external ports.  External ports in a bus-powered hub
supply can  supply only one load per port regardless of the current drawn on the other ports of that
hub.
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• Self-powered hubs - Power for the internal functions and downstream ports does not come from
USB, although the USB interface may draw up to one load from its upstream connection to allow the
interface to function when the remainder of the hub is powered down.  The hub must supply five unit
loads on all of its external downstream ports.

• Low power, bus-powered functions - All power to these devices comes from USB connector.  They
may draw no more than one unit load at any time.

• High power, bus-powered functions -  All power to these devices comes from USB connector.
They must draw no more than one unit load upon power up and may draw up to five unit loads after
being configured.

• Self-powered functions - May draw up to one load from their upstream connection to allow the
interface to function when the remainder of the hub is powered down.  All other power comes from
an external (to USB) source.

The hub on the host in a desktop computer is a self-powered hub.  The same hub in a notebook computer
can be defined to be either a self-powered or bus-powered hub.

All devices, whether they are bus-powered or self-powered, can only draw (sink) current from the bus.
They must not supply current upstream to a host or hub port.  On power up, all devices need to insure that
their upstream port is not enabled, so that the device is able to receive the reset signaling, and that the
maximum operating current drawn by a device is one unit load.  If a device draws power from the bus, its
internal supply derived from Vbus must be stable within 100 ms of Vbus reaching 4.4 V.  All devices which
are drawing power from the bus must be able enter the suspend state and reduce their current
consumption from Vbus to less than 500 µA (refer to Sections 7.1.4.4 and 9.3.5.1.)

7.2.1.1 Bus-powered Hubs
The above requirements can be met for bus-powered hubs with a power control circuit as shown in
Figure 7-22.  Bus-powered hubs often contain at least one embedded function.  Power is always available
to the hub’s controller, which permits host access to power management and other configuration registers
during the enumeration process.  An embedded function may require that its power be switched, so that
upon power-up the entire device (hub and embedded functions) draws no more than one unit load.  Power
switching on any embedded function may be implemented either by removing its power or by shutting
off the clock.  Switching on the embedded function is not required if the aggregate power drawn by it and
the hub controller is less than one unit load.  The total current drawn by an bus-powered device is the
sum of the current to the hub controller, any embedded function(s), and the downstream ports.

Figure 7-22 shows the partitioning of power based upon the maximum upstream current of five loads:
one unit load for the hub controller and the embedded function, and one load for each of the downstream
ports.  The maximum number of downstream ports that can be supported is limited to four.  If more ports
are required, then the hub will need to be self-powered.  If the embedded function(s) and hub controller
draw more than one unit load, then the number of ports must be appropriately reduced.  Power control to
a bus-powered hub may require a regulator.  If present, it is always enabled to supply the hub controller.
The regulator can also power the embedded functions(s).  Inrush current limiting must also be
incorporated into the regulator subsystem.
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Figure 7-22.  Compound Bus-powered Hub

Power to downstream ports must be switched.  The hub controller supplies a software controlled on/off
signal from the host, which is in the “off” state when the device is powered up or after reset signaling.
When switched to the “on” state, the switch implements a soft turn-on function, which prevents excessive
transient current from being drawn from the upstream port.  The voltage drop across the upstream cable,
connectors and switch in an bus-powered hub must not exceed 350 mV at maximum rated current.

7.2.1.2 Self-powered Hubs
Self-powered hubs have a local power supply that furnishes power to any embedded functions and to all
downstream ports, as shown in Figure 7-23.  Power for the hub controller, however, may be supplied
from either the upstream port (a “hybrid” powered hub) or the local power supply.  The advantage of
supplying the hub controller from the upstream supply is that communication from the host is possible
even if the device’s power supply remains off.  This makes it possible to differentiate between a
disconnected and an unpowered device.
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Figure 7-23.  Compound Self-Powered Hub
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Power is provided to all downstream ports from the local power supply.  The number of ports that can be
supported is limited only by what the local supply can deliver and by safety concerns.  A reasonable
maximum is seven ports.  Each port must be capable of supplying at least five unit loads.  However, no
single port can deliver more than 5.0 A in order to meet regulatory safety limits. Current limiting on the
downstream ports may need to be partitioned into two or more port subgroups in order to deliver
sufficient power to all ports without exceeding the current available through one port.  If all seven ports
were wired in parallel, the available current at a given port would be 7 * 500 mA = 3.5 A.  This is very
close to the safety limit.  By implementing two current limit circuits, the maximum current  that needs to
be supplied in operation is reduced to 1.5 A to 2.0 A, which gives a comfortable margin to the safety
limit.

7.2.1.2.1 Overcurrent Protection
The host and all self-powered hubs must implement overcurrent protection for safety reasons, and they
must have a way to detect the overcurrent condition and report it to the USB software.  Should the
aggregate current drawn by a group of  downstream ports exceed a preset value, the overcurrent protector
removes power from all downstream ports and reports the condition through the hub to host controller.
The preset value cannot exceed 5.0 A and should be sufficiently above the maximum allowable port
current such that power up or dynamic attach transient currents do not trip the overcurrent protector.  If
an overcurrent condition occurs on any port, subsequent operation of the USB is not guaranteed, and once
the condition is removed, it may be necessary to reinitialize the bus as would be done upon power-up.
Overcurrent limiting methods can include poly fuses, standard fuses, or some type of solid state switch.
The only requirements are that current be limited to five unit loads per port and that the host is notified of
an overcurrent condition.

Current limiting should not occur even if illegal topologies are configured, due to the protection afforded
by power switching in high power functions and bus-powered hubs.  Instead, the overcurrent circuits are
used to protect from catastrophic device failures, software errors that turn on devices when the current
budget has been exceeded, and user actions such as shorting out the connector pins.

7.2.1.2.2 Power Supply Isolation
Figure 7-23 assumes that the local power supply shares a common ground with the upstream and
downstream ports.  Its Vbus, however, is isolated from the Vbus of the upstream port.  There is an additional
requirement that the chassis ground (if one exists) of the self-powered hub be DC isolated from the USB
signal ground.  Chassis ground connects to the ground of a 120 Vac power cable, and there is no
guarantee that AC grounds from two different outlets are at the same potential.  Failure to observe this
precaution could result in large low frequency currents running through USB ground paths.

7.2.1.3 Low-Power, Bus-Powered Functions
A low power function is one that draws less than one unit load from the USB cable when fully
operational.  The regulator block must both limit inrush current and supply the necessary voltage for the
proper signaling levels.  Figure 7-24 shows a typical bus-powered low power function, such as a mouse.
Low power regulation can be integrated into the function silicon.  For higher currents, in the range of
20 mA to 100 mA, an IC linear regulator may be used.  Low power functions must be capable of
operating with input Vbus voltages as low as 4.40 V measured at the plug end of the cable.
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Figure 7-24.  Low-Power Function

7.2.1.4 High-Power, Bus-Powered Functions
A function is defined as being high powered if, when fully powered, it draws over one and a maximum of
five unit loads from the USB cable.  A high-power function requires staged switching of power.  It must
first come up in a reduced power state of less than one unit load.  At bus enumeration time, its total
power requirements are obtained and compared against the available power budget.  If sufficient power
exists in the power budget, the remainder of the function may be powered on.  If insufficient power is
available, the remainder of the function is not powered and a power limit warning message is sent to the
client.  A high-power function is shown in Figure 7-25.  The function’s electronics have been partitioned
into two sections; the function controller contains the minimum amount of circuitry necessary to permit
enumeration and power budgeting.  The remainder of the function resides in the function block.  High
power functions must be capable of operating in their low power (one unit load) mode with an input
voltage as low as 4.40 V, so that it will work even when plugged into an bus-powered hub.  They must
also be capable of operating at full power (up to five unit loads) with an input Vbus voltage of 4.75 V
measured at the upstream plug end of the cable.

FunctionFunction Controller

Upstream V bus

Upstream
Data Port

On/Off

Regulator

1 unit load 
(max)

5 unit loads(max)

Figure 7-25.  High-Power, Bus-Powered Function

7.2.1.5 Self-powered Functions
Figure 7-26 shows a self-powered function.  The function controller is powered either from the upstream
bus via a low power regulator or from the local  power supply.  The advantage of the former scheme is
that it permits detection and enumeration of a self-powered function whose local power supply is turned
off.  When the function controller is externally powered, the maximum upstream power that it can draw
is one unit load, and the regulator block must implement inrush current limiting.  The amount of power
that the function block may draw is limited only by the local power supply.  Because the local power
supply is not required to power any downstream bus ports, it does not need to implement current limiting,
soft start, or power switching.
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Self-powered functions must adhere to the same ground and Vbus isolation rules as those of self-powered
hubs.

FunctionFunction Controller

Upstream V bus

Upstream
Data Port

Regulator1 unit load (max)

Local Power
  Supply

Regulator

Figure 7-26.  Self-powered Function

7.2.2 Voltage Drop Budget
The voltage drop budget determined from:

• The voltage supplied by host or powered hub ports is 4.75 V to 5.25 V.

• Bus-powered hubs can have a maximum drop of 350 mV from their cable plug where they attach to a
source of power to their output port connectors where they supply a source of power.

• All hubs and functions must be able to provide configuration information with as little as 4.40 V at
the connector end of their upstream cables.  Only low power functions need to be able to be fully
operational with this minimum voltage.

• Functions drawing more than one unit load must operate with a 4.75 V minimum input voltage at the
connector end of their upstream cables.

Figure 7-27 shows the minimum allowable voltages in a worst case topology consisting of an bus-
powered hub driving an bus-powered function.

Host or
Powered Hub

4.75V (min)

Bus-Powered
Hub

Bus-Powered
Function

4.40V (min)

Figure 7-27.  Worst Case Voltage Drop Topology

These requirements place stringent restrictions on cable and connector IR drops (refer to Section 6.4) and
port switch drops.  However, they should be achievable with existing technologies at a reasonable cost.

7.2.3 Dynamic Attach and Detach
The act of plugging or unplugging a hub or function does not affect the functionality of another device on
other segments of the network.  Unplugging a function will stop the transaction between that function and
the host.  However, the hub to which this function was attached will recover from this condition and will
alert the host that the port has been disconnected.
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7.2.3.1 Inrush Current Limiting
When a function or hub is plugged into the network, it has a certain amount of on-board capacitance
between Vbus and ground.  Also, the regulator will supply current to its output bypass capacitance and to
the function as soon as power is applied.  As a result, if no measures are taken to prevent it, there can be
a surge of current into the device sufficient to pull the Vbus on the hub below its minimum operating
level.  Inrush currents can also occur when a high power function is switched into its high power mode.
This problem must be solved by limiting the inrush current and by providing sufficient capacitance in
each hub to prevent the power  supplied to the other ports from going out of tolerance.  An additional
motivation for limiting inrush current is to minimize contact arcing, thereby prolonging connector contact
life.

The target maximum droop in the hub Vbus is 330 mV or about 10% of the nominal signal swing from the
function.  In order to meet this target, the following conditions must be met:

• The maximum load that can be placed at the downstream end of a cable is 10 µF in parallel with
44 Ω.  The 10 µF capacitance represents any bypass capacitor directly connected across the Vbus

lines in the function plus any capacitive effects visible through the regulator in the device.  The 44 Ω
resistor represents one unit current load generated by the device during connect.

• If more bypass capacitance is required in the device due to large swings in the load current, then the
device must incorporate some form of surge current limiting for current in the cable such that it
matches the characteristics of the above load.

• The hub port Vbus power lines must be bypassed with no less than a 120 µF tantalum capacitor
(equivalent aluminum capacitor values are under test) .  Good standard bypass methods should be
used to minimize inductances between the bypass capacitors and the connectors.  The bypass
capacitors themselves should have a low dissipation factor to allow decoupling at higher frequencies.

The upstream port of a hub is also required to meet the above requirements.  Furthermore, an bus-
powered hub must provide additional surge limiting in the form of a soft start circuit when it enables
power to its downstream ports.

Signal pins are protected from excessive currents during dynamic attach by being recessed in the
connector such that the power pins make contact first.  This guarantees that the power rails to the
downstream device are referenced before the signal pins make contact.  Also, the hub port signal lines are
disabled and in a high impedance state during connect, allowing no current to flow for standard signal
levels.

7.2.3.2 Dynamic Detach
When a device is detached from the network with power flowing in the cable, the inductance of the cable
will cause a large flyback voltage to occur on the open end of the device cable.  This flyback voltage is
not destructive.  Proper bypass measures on the hub ports will suppress any coupled noise.  The
frequency range of this noise is inversely dependent on the length of the cable to a maximum of 60 MHz
for a one meter cable.  This will require some low capacitance, very low inductance bypass capacitors on
each hub port connector.  The flyback voltage and the noise it creates is also moderated by the bypass
capacitance on the device end of the cable.  Also, there must be some minimum capacitance on the
device end of the cable to insure that the inductive flyback on the open end of the cable does not cause
the voltage on the device end to reverse polarity.  A minimum of 1.0 µF is recommended for bypass
across Vbus.

Again, signal pins are protected from excessive voltages during dynamic detach by being recessed in the
connector such that they break contact before the power pins.
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7.3 Physical Layer
The physical layer specifications are described in the following subsections.

7.3.1 Environmental
The operating environment for USB is 0 °C to 70 °C ambient.

USB must meet FCC class B, UL, and VDE requirements for a typically configured network.

7.3.2 Bus Timing/Electrical Characteristics

Table 7-2.  Electrical Characteristics

Parameter Symbol Conditions Min Max Unit

Supply Voltage:

Powered (Host or Hub) Port VBUS 4.75 5.25 V

Bus-powered Hub Port VBUS 4.40 5.25 V

Supply Current:

Powered Host/Hub Port (out) ICCPRT 500 mA

Bus-powered Hub Port (out) ICCUPT 100 mA

High Power Function (in) ICCHPF 500 mA

Low Power Function (in) ICCLPF 100 mA

Unconfig. Function / Hub (in) ICCINIT 100 mA

Suspended Device ICCS 500 µA

Leakage Current:

Hi-Z State Output Leakage ILO 0 V< VIN<3.3 V -10 +10 µA

Input Levels:

Differential Input Sensitivity VDI |(D+)-(D-)| 0.2 V

Single Ended Signal  “0” VSE0 0.6 1.5 V

Output Levels:

Initial Differential Signal
Amplitude

VDOI |(D+)-(D-)|
Note 4,5

2.0

Driver Output Low VOL RL of 1.5 kΩ to
3.6 V

0.3 V

Driver Output High VOH RL of 15 kΩ to
GND V

3.0 3.6 V
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Parameter Symbol Conditions Min Max Unit

Capacitance:

Transceiver Capacitance CIN Pin to GND 20 pF

Downstream Hub Port
Bypass Capacitance

CHPB Vbus to GND
(Tantalum)

120 µF

Root Port (Hub or Function)
Bypass Capacitance

CRPB Vbus to GND
Note 6

1.0 10.0 µF

Signal Timings:

Frame Interval 0.9995 1.0005 ms

   Full Speed Timings :

Full Speed Data Rate Ave. Bit Rate 11.970 12.030 Mbs

Output Rise Time tR Note 1, 4 4 20 ns

Output Fall Time tF Note 1, 4 4 20 ns

Source Differential Driver Skew
to Consecutive Transition
to Paired Transition

tDSK1

tDSK2

Note 2, 3, 4
-4
-2

4
-2

ns
ns

Source SE0 Driver Skew tSESK Note 3,4 -5 5 ns

Hub Differential Data Delay
(with cable)
(without cable)

tHDD1

tHDD2

Note 2,3,4
70
40

ns
ns

Hub Differential Driver Skew
(with cable)
(without cable)

tHDSK1

tHDSK2

Note 3,4
-4
-3

4
3

ns
ns

Hub SE0 Delay
Relative to tHDD

tSE0D Note 3,4 0 10 ns

Hub Single Ended Driver Skew tHSESK Note 4 -10 10 ns

Receiver Data Jitter tJR Note 3, 4 20 ns

Cable Delay:
Round Trip Delay
One Way Prop. Delay

tCRT

tC1W

80
30

ns
ns

    Low Speed Timings:

Data Rate Ave. Bit Rate 1.4775 1.5225 Mb/s

Output Rise Time tLR Note 1, 4 75 300 ns

Output Fall Time tLF Note 1, 4 75 300 ns
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Parameter Symbol Conditions Min Max Unit

Source Differential Driver Skew
to Consecutive Transition
to Paired Transition

tLDSK1

tLDSK2

Note 2, 3, 4
-30
-10

30
10

ns
ns

Source SE0 Driver Skew tLSESK Note 3,4 -5 5 ns

Receiver Data Jitter JLJR Note 3, 4 160 ns

Note 1:  Measured from 10% to 90% of the data signal.

Note 2:  Timing difference between the differential signals.

Note 3:  Measured at 50% swing point of data signals.

Note 4:  Load is RL on each output =  1.3 kΩ to 2.7 V and CL = 50 pF to GND

Note 5:  This is the voltage see at the receiver end of the cable immediately after a transition has occurred.

Note 6:  The maximum load specification is the maximum effective capacitive load allowed that meets the target hub
VBUS droop of 330 mV.
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Chapter 8
Protocol Layer

This chapter presents a bottom-up view of the protocol starting with field and packet definitions.  This is
followed by a description of packet transaction formats for different transaction types.  Link layer flow
control and transaction level fault recovery are then covered.  The chapter finishes with a discussion of
retry synchronization, babble, and loss of bus activity recovery.

8.1 Bit Ordering
Bits are sent out onto the bus LSB first, followed by next LSB, through to MSB last.  In the following
diagrams, packets are displayed such that both individual bits and fields are represented (in a left to right
reading order) as they would move across the bus.

8.2 SYNC Field
All packets begin with a synchronization (SYNC) field, which is a coded sequence that generates a
maximum edge transition density.  The SYNC field appears on the bus as the binary string ‘KJKJKJKK’,
in its NRZI encoding.  It is used by the input circuitry to align incoming data with the local clock and is
defined to be eight bits in length.  SYNC serves only as a synchronization mechanism and is not shown in
the following packet diagrams (refer to Section 7.1.7).  The last two bits in the SYNC field are a marker
that is used to identify the first bit of the PID.  All subsequent bits in the packet must be indexed from
this point.

8.3 Packet Field Formats
Field formats for the token, data, and handshake packets are described in the following section.  Packet
bit definitions are displayed in unencoded data format.  The effects of NRZI coding and bit stuffing have
been removed for the sake of clarity.  All packets have distinct start and end of packet delimiters.  The
start of packet (SOP) is part of the SYNC field, and the end of packet (EOP) delimiter is described in
Section 7.4.2.

8.3.1 Packet Identifier Field
A packet identifier (PID) immediately follows the SYNC field of every USB packet.  A PID consists of a
four bit packet type field followed by a four-bit check field as shown in Figure 8-1.  The PID indicates
the type of packet and, by inference, the format of the packet and the type of error detection applied to
the packet.  The four-bit check field of the PID insures reliable decoding of the PID so that the remainder
of the packet is interpreted correctly.  The PID check field is generated by performing a ones complement
of the packet type field.

(MSb)(LSb)

PID 2 PID 3PID 10
PID PID 0 PID 1 PID

2
PID 3

Figure 8-1.  PID Format

The host and all functions must perform a complete decoding of all received PID fields.  Any PID
received with a failed check field or which decodes to a non-defined value is assumed to be corrupted
and it, as well as the remainder of the packet, is ignored by the packet receiver.  If a function receives an
otherwise valid PID for a transaction type or direction that it does not support, the function must not
respond.  For example, an IN only endpoint must ignore an OUT token.  PID types, codings, and
descriptions are listed in Table 8-1.
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Table 8-1.  PID Types

PID Type PID Name Code Description

Token OUT

IN

SOF

SETUP

b0001

b1001

b0101

b1101

Address + endpoint number in host -> function
transaction

Address + endpoint number in function -> host
transaction

Start of frame marker and frame number

Address + endpoint number in host -> function
transaction for setup to a control endpoint

Data DATA0

DATA1

b0011

b1011

Data packet PID even

Data packet PID odd

Handshake ACK

NAK

STALL

b0010

b1010

b1110

Receiver accepts error free data packet

Rx device cannot accept data or Tx device cannot send
data

Endpoint is stalled

Special PRE b1100 Host-issued preamble.  Enables downstream bus traffic
to LS devices.

PIDs are divided into four coding groups:  token, data, handshake, or special, with the first two
transmitted PID bits (PID<1:0>) indicating which group.  This accounts for the distribution of PID codes.

8.3.2 Address Fields
Function endpoints are addressed using two fields, the function address field and the endpoint field.  A
function needs to fully decode both Address and Endpoint fields.  Address or endpoint aliasing is not
permitted, and a mismatch on either field must cause the token to be ignored.  Accesses to non-initialized
endpoints will also cause the token to be ignored.

8.3.2.1 Address Field
The function address (ADDR) field specifies the function, via its address, that is either the source or
destination of a data packet, depending on the value of the token PID.  As shown in Figure 8-2, a total of
128 addresses are specified as ADDR<6:0>.  The ADDR field is specified for IN, SETUP, and OUT
tokens.  By definition, each ADDR value defines a single function.  Upon reset and power-up, a
function’s address defaults to a value of 0 and must be programmed by the host during the enumeration
process.  The 0 default address is reserved for default and cannot be assigned for normal operation.
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(LSb) (MSb)

Addr
  4

Addr
  5

Addr
6

Addr
  3

Addr
  2

Addr
  1

Addr
  0

Figure 8-2.  ADDR Field

8.3.2.2 Endpoint Field
An additional four-bit endpoint (ENDP) field, shown in Figure 8-3, permits more flexible addressing of
functions in which more than one sub-channel is required.  Endpoint numbers are function specific.  The
endpoint field is defined for IN, SETUP, and OUT token PIDs only.  All functions must support one
control endpoint at 0.  Low speed devices support a maximum of two endpoint addresses per function:  0
plus one additional endpoint.  Full speed functions may support up to the maximum of 16 endpoints.

Endp
 2

Endp
 3

Endp
1

Endp
0

(LSb) (MSb)

Figure 8-3.  Endpoint Field

8.3.3 Frame Number Field
The frame number field is an 11-bit field that is incremented by the host on a per frame basis.  The frame
number field rolls over upon reaching its maximum value of x7FF, and is sent only for SOF tokens at the
start of each frame.

8.3.4 Data Field
The data field may range from 0 to 1023 bytes and must be an integral numbers of bytes.  Figure 8-4
shows the format for multiple bytes.  Data bits within each byte are shifted out LSB first.

(MSb) (LSb)(MSb)(LSb)

Byte N Byte N+1

D0 D5D4D3D2D1 D6 D7 D0D7

Byte N-1

Figure 8-4.  Data Field Format

Data packet size varies with the transfer type as described in Chapter 5.

8.3.5 Cyclic Redundancy Checks
Cyclic redundancy checks (CRCs) are used to protect the all non-PID fields in token and data packets.  In
this context, these fields are considered to be protected fields.  The PID is not included in the CRC check
of a packet containing a CRC.  All CRCs are generated over their respective fields in the transmitter
before bit stuffing is performed.  Similarly, CRCs are decoded in the receiver after stuffed bits have been
removed.  Token and data packet CRCs provide 100% coverage for all single and double bit errors.  A
failed CRC is considered to indicate that one or more of the protected fields is corrupted and causes the
receiver to ignore those fields, and, in most cases, the entire packet.

For CRC generation and checking, the shift registers in the generator and checker are seeded with an all
ones pattern.  For each data bit sent or received, the high order bit of the current remainder is XORed
with the data bit and then the remainder is shifted left one bit and the low order bit set to ‘0’.  If the result
of that XOR is ‘1’, then the remainder is XORed with the generator polynomial.

When the last bit of the checked field is sent, the CRC in the generator is inverted and sent to the checker
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MSB first.  When the last bit of the CRC is received by the checker and no errors have occurred, the
remainder will be equal to the polynomial residual.

Bit stuffing requirements must be met for the CRC, and this includes the need to insert a zero at the end
of a CRC if the preceding six bits were all ones.

8.3.5.1 Token CRCs
A five-bit CRC field is provided for tokens and covers the ADDR and ENDP fields of IN, SETUP, and
OUT tokens or the time stamp field of an SOF token.  The generator polynomial is:

G(X) = X5 + X2 + 1

The binary bit pattern that represents this polynomial is ‘00101’.  If all token bits are received without
error, the five-bit residual at the receiver will be ‘01100’.

8.3.5.2 Data CRCs
The data CRC is a 16-bit  polynomial applied over the data field of a data packet.  The generating
polynomial is:

G(X) = X16 + X15 +  X2 + 1

The binary bit pattern that represents this polynomial is ‘1000000000000101’.  If all data and CRC bits
are received without error, the 16-bit residual will be ‘1000000000001101’.

8.4 Packet Formats

This section shows packet formats for token, data, and handshake packets.  Fields within a packet are
displayed in the order in which bits are shifted out onto the bus in the order shown in the figures.

8.4.1 Token Packets

Figure 8-5 shows the field formats for a token packet.  A token consists of a PID, specifying either IN,
OUT, or SETUP packet type, and ADDR and ENDP fields.  For OUT and SETUP transactions, the
address and endpoint fields uniquely identify the endpoint that will receive the subsequent data packet.
For IN transactions, these fields uniquely identify which endpoint should transmit a data packet.  Only
the host can issue token packets.  IN PIDs define a data transaction from a function to the host.  OUT and
SETUP PIDs define data transactions from the host to a function.

ADDRPID

8 bits 7 bits

ENDP

4 bits

CRC5

5 bits

Figure 8-5.  Token Format

Token packets have a five-bit CRC which covers the address and endpoint fields as shown above.  The
CRC does not cover the PID, which has its own check field.  Token and SOF packets are delimited by an
EOP after three bytes of packet field data.  If a packet decodes as an otherwise valid token or SOF but
does not terminate with an EOP after three bytes, it must be considered invalid and ignored by the
receiver.

8.4.2 Start of Frame Packets

Start of Frame (SOF) packets are issued by the host at a nominal rate of once every 1.00 ms ±0.05.  SOF
packets consist of a PID indicating packet type followed by an 11-bit frame number field as illustrated in
Figure 8-6.
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Frame NumberPID

8 bits 11 bits

CRC5

5 bits

Figure 8-6.  SOF Packet

The SOF token comprises the token-only transaction that distributes a start of frame marker and
accompanying frame number at precisely timed intervals corresponding to the start of each frame.  All
full speed functions, including hubs, must receive and decode the SOF packet.  The SOF token does not
cause any receiving function to generate a return packet; herefore, SOF delivery to any given function
cannot be guaranteed.  The SOF packet delivers two pieces of timing information.  A function is
informed that a start of frame has occurred when it detects the SOF PID.  Frame timing sensitive
functions, which do not need to keep track of frame number, need only decode the SOF PID; they can
ignore the frame number and its CRC.  If a function needs to track frame number, then it must
comprehend both the PID and the time stamp.

8.4.3 Data Packets

A data packet consists of a PID, a data field, and a CRC as shown in Figure 8-7.  There are two types of
data packets, identified by differing PIDs:  DATA0 and DATA1.  Two data packet PIDs are defined to
support data toggle synchronization (refer to Section 8.6).

PID CRC16

16 bits

DATA

0-1023 bytes8 bits

Figure 8-7.  Data Packet Format

Data must always be sent in integral numbers of bytes.  The data CRC is computed over only the data
field in the packet and does not include the PID, which has its own check field.

8.4.4 Handshake Packets

Handshake packets, as shown in Figure 8-8, consist of only a PID.  Handshake packets are used to report
the status of a data transaction and can return values indicating successful reception of data, flow control,
and stall conditions.  Only transaction types that support flow control can return handshakes.  Handshakes
are always returned in the handshake phase of a transaction and may be returned, instead of data, in the
data phase.  Handshake packets are delimited by an EOP after one byte of packet field.  If a packet
decodes as an otherwise valid handshake but does not terminate with an EOP after one byte, it must be
considered invalid and ignored by the receiver.

PID

8 bits

Figure 8-8.  Handshake Packet

There are three types of handshake packets:

• ACK  indicates that the data packet was received without bit stuff or CRC errors over the data field and
that the data PID was received correctly.  ACK may be issued either when sequence bits match and the
receiver can accept data or when sequence bits mismatch and the sender and receiver must resynchronize
to each other (refer to Section 8.6 for details).  An ACK handshake is applicable only in transactions
which data has been transmitted and where a handshake is expected.  ACK can be returned by the host
for IN transactions and by a function for OUT transactions.
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• NAK  indicates that a function was unable to accept data from the host (OUT) or that a function has no
data to transmit to the host (IN).  NAK can only be returned by functions in the data phase of IN
transactions or the handshake phase of OUT transactions, and the host can never issue a NAK.  NAK is
used for flow control purposes to indicate that a function is temporarily unable to transmit or receive
data, but will eventually be able to do so without need of host intervention.  NAK is also used by
interrupt endpoints to indicate that no interrupt is pending.

• STALL  is returned by a function in response to an IN token or after the data phase of an OUT (see
Figure 8-9 and Figure 8-13).  STALL indicates that a function is unable to transmit or receive data, and
that the condition requires host intervention to remove the stall.  Once a function’s endpoint is stalled, the
function must continue returning STALL until the condition causing the stall has been cleared through
host intervention.  The host is not permitted to return a STALL under any condition.

8.4.5 Handshake Responses
Transmitting and receiving functions must return handshakes based upon an order of  precedence detailed
in Table 8-2 through Table 8-4.  Not all handshakes are allowed, depending on the transaction type and
whether the handshake is being issued by a function or the host.

8.4.5.1 Function Response to IN Transactions
Table 8-2 shows the possible responses an function may make in response to an IN token.  If the function
is unable to send data, due to a stall or a flow control condition, it issues a STALL or NAK handshake,
respectively.  If the function is able to issue data, it does so.  If the received token is corrupted, the
function returns no response.

Table 8-2.  Function Responses to IN Transactions

Token Received
Corrupted

Function Tx
Endpoint Stalled

Function Can
Transmit Data

Action Taken

Yes Don’t care Don’t care Return no response

No Yes Don’t care Issue STALL handshake

No No No Issue NAK handshake

No No Yes Issue data packet
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8.4.5.2 Host Response to IN Transactions
Table 8-3 shows the host response to an IN transaction.  The host is able to return only one type of
handshake, an ACK.  If the host receives a corrupted data packet, it discards the data and issues no
response.  If the host cannot accept data from a function, (due to problems such as internal buffer
overrun) this condition is considered to be an error and the host returns no response.  If the host is able to
accept data and the data packet is received error free, the host accepts the data and issues an ACK
handshake.

Table 8-3.  Host Responses to IN Transactions

Data Packet
Corrupted

Host Can
Accept Data

Handshake Returned by Host

Yes N/A Discard data, return no response

No No Discard data, return no response

No Yes Accept data, issue ACK

8.4.5.3 Function Response to an OUT Transaction

Handshake responses for an OUT transaction are shown in Table 8-4.  A function, upon receiving a data
packet, may return any one of the three handshake types.  If the data packet was corrupted, the function
returns no handshake.  If the data packet was received error free and the function’s receiving endpoint is
stalled, the function returns a STALL handshake.  If the transaction is maintaining sequence bit
synchronization and a mismatch is detected (refer to Section 8.6 for details), then the function returns
ACK and discards the data.  If the function can accept the data and has received the data error free, it
returns an ACK handshake.  If the function cannot accept the data packet due to flow control reasons, it
returns a NAK.

Table 8-4.  Function Responses to OUT Transactions in Order of Precedence

Data Packet
Corrupted

Receiver
Stalled

Sequence Bits
Mismatch

Function Can
Accept Data

Handshake Returned
by Function

Yes N/A N/A N/A None

No Yes N/A N/A STALL

No No Yes N/A ACK

No No No Yes ACK

No No No No NAK

8.4.5.4 Function Response to a SETUP Transaction

Setup defines a special type of host to function data transaction which permits the host to initialize an
endpoint’s synchronization bits to those of the host.  Upon receiving a Setup transaction, a function must
accept the data.  Setup transactions cannot be stalled or NAKed and the receiving function must accept
the Setup transfer’s data.  If a non-control endpoint receives a SETUP PID, it must ignore the transaction
and return no response.
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8.5 Transaction Formats

Packet transaction format varies depending on the endpoint type.  There are four endpoint types:  bulk,
control, interrupt, and isochronous.

8.5.1 Bulk Transactions

Bulk transaction types are characterized by the ability to guarantee error free delivery of data between the
host and a function by means of error detection and retry.  Bulk transactions use a three phase transaction
consisting of token, data, and handshake packets as shown in Figure 8-9.  Under certain flow control and
stall conditions, the data phase may be replaced with a handshake resulting in a two phase transaction in
which no data is transmitted.

Token

Data

FunctionHost

IN  OUT

Idle

DATA0/
DATA1

ACK

DATA0/
DATA1

Idle

ACK

NAK STALL

Idle

STALLNAK

Figure 8-9.  Bulk Transaction Format

When the host wishes to receive bulk data, it issues an IN token.  The function endpoint responds by
returning either a DATA packet or, should it be unable to return data, a NAK or STALL handshake.  A
NAK indicates that the function is temporarily unable to return data, while a STALL indicates that the
endpoint is permanently stalled and requires host software intervention.  If the host receives a valid data
packet, it responds with an ACK handshake.  If the host detects an error while receiving data, it returns
no handshake packet to the function.

When the host wishes to transmit bulk data, it first issues an OUT token packet followed by a data
packet.  The function then returns one of three handshakes.  ACK indicates that the data packet was
received without errors and informs the host that that it may send the next packet in the sequence.  NAK
indicates that the data was received without error but that the host should resend the data because the
function was in a temporary condition preventing it from accepting the data at this time (e.g., buffer full).
If the endpoint was stalled, STALL is returned to indicate that the host should not retry the transmission
because there is an error condition on the function.  If the data packet was received with a CRC or bit
stuff error, no handshake is returned.

Figure 8-10 shows the sequence bit and data PID usage for bulk reads and writes.  Data packet
synchronization is achieved via use of the data sequence toggle bits and the DATA0/DATA1 PIDs.  Bulk
endpoints must have their toggle sequence bits initialized via a separate control endpoint.
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OUT (0) OUT (0/1)

IN (0) IN (1) IN (0/1)

DATA1

...

...
DATA0

DATA0 DATA1

DATA0/1

DATA0/1

OUT (1)Bulk
Write

Bulk
Read

Figure 8-10.  Bulk Reads and Writes

The host always initializes the first transaction of a bus transfer to the DATA0 PID.  The second
transaction uses a DATA1 PID, and successive data transfers alternate for the remainder of the bulk
transfer.  The data packet transmitter toggles upon receipt of ACK, and the receiver toggles upon receipt
and acceptance of a valid data packet (refer to Section 8.6).

8.5.2 Control Transfers
Control transfers minimally have two transaction stages:  Setup and Status.  A control transfer may
optionally contain a data stage between the setup and status stages.  During the Setup stage, a Setup
transaction is used to transmit information to the control endpoint of a function.  Setup transactions are
similar in format to an OUT, but use a SETUP rather than on OUT PID.  Figure 8-11 shows the Setup
transaction format.  A Setup always uses a DATA0 PID for the data field of the Setup transaction.  The
function receiving a Setup must accept the Setup data and respond with an ACK handshake or, if the data
is corrupted, discard the data and return no handshake.

FunctionHost

Idle

DATA0

ACK

 SETUP

Idle

Token

Data

Handshake

Figure 8-11.  Control Setup Transaction

The data stage, if present, of a control transfer consists of one or more IN or OUT transactions and
follows the same protocol rules as bulk transfers.  All the transactions in the data stage must be in the
same direction, i.e., all INs or all OUTs.  The amount of data to be sent during the data phase and its
direction are specified during the Setup stage.  If the amount of data exceeds the prenegotiated data
packet size, the data is sent in multiple transactions (INs or OUTs) which carry the maximum packet size.
Any remaining data is sent as a residual in the last transaction.

The status stage of a control transfer is the last operation in the sequence.  A status stage is delineated by
a change in direction of data flow from the previous stage and always uses a DATA1 PID.  If, for
example, the data stage consists of OUTs, the status is a single IN transaction.  If the control sequence
has no data stage, then it consists of a Setup stage followed by a Status stage consisting of an IN
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transaction.  Figure 8-12 shows the transaction order, the data sequence bit value and the data PID types
for control read and write sequences.  The sequence bits are displayed in parentheses.

SETUP (0) OUT (1) OUT (0/1)

IN (0) IN (0/1)

Setup
Stage

Data
Stage

Control
Write

 Status
Stage

DATA0 DATA0

...

...
DATA1 DATA1

DATA1

IN (1)

OUT (1)

DATA1

DATA0/1

DATA0/1

OUT (0)

IN (1)Control
Read

DATA0 DATA1

SETUP (0)

IN (1)No-data
Control

DATA0 DATA1

SETUP (0)

Setup
Stage

 Status
Stage

Figure 8-12.  Control Read and Write Sequences

8.5.2.1 Reporting Status Results
The status stage reports to the host the outcome of the previous setup and data stages of the transfer.
Three possible results may be returned:

• The command sequence completed successfully

• The command sequence failed to complete

• The function is still busy completing command

Status reporting is always in the function to host direction.  The following table summarizes the type of
responses required for each.  Control write transfers return status information on the data phase of the
transfer.  Control read transfers return status information on the handshake phase after the host has issued
a zero length data packet during the previous data phase.

Table 8-5.  Status Phase Responses

Status Response Control Write
Transfer (sent during
data phase)

Control Read Transfer
(send during handshake
phase)

Function completes 0 length data packet ACK handshake

Function has an error STALL handshake STALL handshake

Function is busy NAK handshake NAK handshake

For control reads, the host sends a zero length data packet to the control endpoint.  The endpoint’s
handshake response indicates the completion status.  NAK indicates that the function is still processing
the command and that the host should continue the status phase.  ACK indicates that the function has
completed the command and is ready to accept a new command and STALL indicates that the function
has an error that prevents it from completing the command.

For control writes, the function responds with either a handshake or a zero length data packet to indicate
its status.  A NAK indicates that the function is still processing the command and that the host should
continue the status phase, return of a zero length packet indicates normal completion of the command,
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and STALL indicates that the function has an error that prevents it from completing the command.
Control write transfers which return azero length data packet during the data phase always cause the host
to return an ACK handshake to the function.

If, during a data or status stage, a command endpoint is sent more data or is requested to return more data
than was indicated in the setup stage, it should return a STALL.  If a control endpoint returns STALL
during the data stage, there will be no status stage for that control transfer.

8.5.2.2 Error Handling on the Last Data Transaction
If the ACK handshake on an IN transaction gets corrupted, the function and the host will temporarily
disagree on whether the transaction was successful.  If the transaction is followed by another IN, the
toggle retry mechanism will detect the mismatch and recover from the error.  If the ACK was on the last
IN of a control transfer, then the toggle retry mechanism cannot be used and an alternative scheme must
be used.

The host which successfully received the data of the last IN, issues an OUT setup transfer, and the
function, upon seeing that the token direction has toggled, interprets this action as proof that the host
successfully received the data.  In other words, the function interprets the toggling of the token direction
as implicit proof of the host’s successful receipt of the last ACK handshake.  Therefore, when the
function sees the OUT setup transaction, it advances to the status phase.

Control writes do not have this ambiguity.  The host, by virtue of receiving the handshake, knows for sure
if the last transaction was successful.  If an ACK handshake on an OUT gets corrupted, the host does not
advance to the status phase and retries the last data instead.  A detailed analysis of retry policy appears in
Section 8.6.4.

8.5.3 Interrupt Transactions

Interrupt transactions consist solely of IN.  Upon receipt of an IN token, a function may return data,
NAK, or STALL.  If the endpoint has no new interrupt information to return, i.e., no interrupt is pending,
the function returns a NAK handshake during the data phase.  A stalled interrupt endpoint causes the
function to return a STALL handshake if it is permanently stalled and requires software intervention by
the host.  If an interrupt is pending, the function returns the interrupt information as a data packet.  The
host, in response to receipt of the data packet, issues either an ACK handshake if data was received error
free or returns no handshake if the data packet was received corrupted.
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Figure 8-13.  Interrupt Transaction Format

When an endpoint is using the Interrupt transfer mechanism for actual interrupt data, the data toggle
protocol must be followed.  This allows the function to know that the data has been received by the host
and the event condition may be cleared.  This ‘guaranteed’ delivery of events allows the function to only
send the interrupt information until it has been received by the host rather than having to send the
interrupt data every time the function is polled and until host software clears the interrupt condition.
When used in the toggle mode, an interrupt endpoint is initialized to the DATA0 PID and behaves the
same as the bulk IN transaction shown in Figure 8-10.

An Interrupt endpoint may also be used to communicate rate feedback information for certain types of
isochronous functions.  When used in this mode, the data toggle bits should be changed after each data
packet is sent to the host without regard to the presence or type of handshake packet.

8.5.4 Isochronous Transactions

ISO transactions have a token and data phase, but no handshake phase, as shown in Figure 8-14.  The
host issues either an IN or an OUT token followed by the data phase in which the endpoint (for INs) or
the host (for OUTs) transmits data.  ISO transactions do not support a handshake phase or retry
capability.

Token

Idle

Idle

IN OUT

DATA0/
DATA1

DataDATA0/
DATA1

FunctionHost

Figure 8-14.  Isochronous Transaction Format
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ISO transactions do not support toggle sequencing, and the data PID is always DATA0.  The packet
receiver does not examine the data PID.

8.6 Data Toggle Synchronization and Retry

USB provides a mechanism to guarantee data sequence synchronization between data transmitter and
receiver across multiple transactions.  This mechanism provides a means of guaranteeing that the
handshake phase of a transaction was interpreted correctly by both the transmitter and receiver.
Synchronization is achieved via use of the DATA0 and DATA1 PIDs and separate data toggle sequence
bits for the data transmitter and receiver.  Receiver sequence bits toggle only when the receiver is able to
accept data and receives an error free data packet with the correct data PID.  Transmitter sequence bits
toggle only when the data transmitter receives a valid ACK handshake.  The data transmitter and receiver
must have their sequence bits synchronized at the start of a transaction, and the mechanism for doing this
varies with the transaction type.  Data toggle synchronization is not supported for ISO transfers.

8.6.1 Initialization via SETUP Token
Control transfers use the SETUP token for initializing host and function sequence bits.  Figure 8-15
shows the host issuing a SETUP packet to a function followed by an OUT.  The numbers in the circles
represent the transmitter and receiver sequence bits.  The function must accept the data and ACK the
transaction.  When the function accepts the transaction, it must reset its sequence bit so that both the
host’s and function’s sequence bits are equal to ‘1’ at the end of the SETUP transaction.

Tx
(1)

  Rx
(X->1)

Tx
(1)

Rx
(1)

Rx
(X)

SETUP

DATA0

ACK

Accept
data

Host Device

 Tx
(X-1)

Figure 8-15.  SETUP Initialization

8.6.2 Successful Data Transactions
Figure 8-16 shows the case where two successful transactions have occurred.  For the data transmitter,
this means that it toggles its sequence bit upon receipt of an ACK.  The receiver toggles its sequence bit
only if it receives a valid data packet and the packet’s data PID matches the receiver’s sequence bit.

During each transaction, the receiver compares the transmitter sequence bit (encoded in the data packet
PID as either DATA0 or DATA1) with its receiver sequence bit.  If data cannot be accepted, then the
receiver must issue a NAK.  If data can be accepted and the receiver’s sequence bit matches the PID
sequence bit, then data is accepted.  Sequence bits may only change if a data packet is transmitted.  Two-
phase transactions in which there is no data packet leave the transmitter and receiver sequence bits
unchanged.
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Figure 8-16.  Consecutive Transactions

8.6.3 Data Corrupted or Not Accepted
If data cannot be accepted or the received data packet is corrupted, the receiver will issue a NAK or
STALL handshake, or will time out, depending on the circumstances, and the receiver will not toggle its
sequence bit.  Figure 8-17 shows the case where a transaction is NAKed and then retried.  Any non-ACK
handshake or time out will generate similar retry behavior.  The transmitter, having not received an ACK
handshake, will not toggle its sequence bit.  As a result, a failed data packet transaction leaves the
transmitter’s and receiver’s sequence bits synchronized and untoggled.  The transaction will then be
retried and, if successful, will cause both transmitter and receiver sequence bits to toggle.
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Figure 8-17.  NAKed Transaction with Retry

8.6.4 Corrupted ACK Handshake

The transmitter is the last and only agent to know for sure whether a transaction has been successful, due
to its receiving an ACK handshake.  A lost or corrupted ACK handshake can lead to a temporary loss of
synchronization between transmitter and receiver as shown in Figure 8-18.  Here the transmitter issues a
valid data packet, which is successfully acquired by the receiver; however, the ACK handshake is
corrupted.



Universal Serial Bus Specification Revision 0.99

137

Tx
(0)

  Rx
(0->1)

  Tx
(0->0)

Rx
(1)

Tx
(0)

Rx
(0)

TKN

DATA0

Failed ACK

Tx
(0)

Rx
(1)

  Tx
(0->1)

Rx
(1)

Tx
(0)

Rx
(1)

TKN

DATA0

ACK

Transfer i Transfer i
(retried)

Tx
(1)

  Rx
(1->0)

  Tx
(1->0)

Rx
(0)

Tx
(1)

Rx
(1)

TKN

DATA1

ACK

Transfer i + 1

Ignore
 data

Accept
data

Figure 8-18.  Corrupted ACK Handshake with Retry

At the end of transaction <i>, there is a temporary loss of coherency between transmitter and receiver, as
evidenced by the mismatch between their respective sequence bits.  The receiver has received good data,
but the transmitter does not know whether it has successfully sent data.  On the next transaction, the
transmitter will resend the previous data using the previous DATA0 PID.  The receiver’s sequence bit
and the data PID will not match, so the receiver knows that it has previously accepted this data.
Consequently, it discards the incoming data packet and does not toggle its sequence bit.  The receiver
then issues an ACK, which causes the transmitter to regard the retried transaction as successful.  Receipt
of ACK causes the transmitter to toggle its sequence bit.  At the beginning of transaction <i+1>, the
sequence bits have toggled and are again synchronized.

The data transmitter must guarantee that any retried data packet be identical in length to that sent in the
original transaction.  If the data transmitter is unable, because of problems such as a buffer underrun
condition, to transmit the identical amount of data as was in the original data packet, it must abort the
transaction by generating a bit stuffing violation.  This causes a detectable error at the receiver and
guarantees that a partial packet will not be interpreted as a good packet.  The transmitter should not try to
force an error at the receiver by sending a known bad CRC.  A combination of a bad packet with a “bad”
CRC may be interpreted by the receiver as a good packet.

8.6.5 Low Speed Transactions

USB supports signaling at two speeds:  full speed (FS) signaling at 12.0 Mbs and low speed (LS)
signaling at 1.5 Mbs.  Hubs disable downstream bus traffic to all ports to which LS devices are attached
during full speed downstream signaling.  This is required both for EMI reasons and to prevent any
possibility that an LS device might misinterpret downstream a FS packet as being addressed to it.  Figure
8-19 shows an IN LS transaction in which the host issues a token and handshake and receives a data
packet.



Universal Serial Bus Specification Revision 0.99

138

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA

SYNC PID SYNC  PID

Token sent at low speed

. . .ENDP  EOP

Hub disables low
speed port outputs

SYNC PID SYNC  PID

Preamble
sent at full speed

Handshake sent at low speed

 EOP

Data packet sent at low speed

SYNC  PID CRC  EOPDATA

Hub disables low
speed port outputs

Hub enables low
speed port outputs

Hub enables low
speed port outputs

Hub setup

Hub setup

Preamble
sent at full speed

Figure 8-19.  Low Speed Transaction

All downstream packets transmitted to LS devices require a preamble.  The preamble consists of a SYNC
followed by a PID, both sent at full speed.  Hubs must comprehend the PRE PID; all other USB devices
must ignore it and treat it as undefined.  After the end of the preamble PID the host must wait at least 4
full speed bit times during which hubs must complete the process of configuring their repeater sections to
accept LS signaling.  During this hub setup interval, hubs must drive their FS and LS ports to their
respective idle states.  Hubs must be ready to accept low speed signaling from the host before the end of
the hub setup interval.  Low speed connectivity rules are summarized below:

1. Low speed devices are identified during enumeration and the hub ports to which they are connected
are identified as low speed.

2. All downstream low speed packets must be prefaced with a preamble (sent at full speed) which turns
on the output buffers on low speed hub ports

3. Low speed hub port output buffers are turned off upon receipt of EOP and are not turned on again
until a preamble PID is detected

4. Upstream connectivity is not affected by whether a hub port is full or low speed

The start of LS signaling commences with the host issuing SYNC at low speed, followed by the
remainder of the packet.  The end of packet is identified by End of Packet (EOP), at which time all hubs
tear down connectivity and disable any ports to which LS devices are connected.  Hubs do not switch
ports for upstream signaling; LS ports remain enabled in the upstream direction for both LS and FS
signaling.

LS and FS transactions maintain a high degree of protocol commonality.  However, LS signaling does
have certain limitations which include:

• Data payload limited to eight bytes, maximum

• LS only supports Interrupt and Control types of transfers

• The SOF packet is not received by LS devices
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8.7 Error Detection and Recovery
USB is designed to permit reliable end to end communication in the presence of errors on the physical
signaling layer.  This includes the ability to reliably detect the vast majority of possible errors and to
recover from errors on a transaction type basis.  Control transactions, for example, require a high degree
of data reliability; they support end to end data integrity using error detection and retry.  ISO
transactions, by virtue of their bandwidth and latency requirements, do not permit retries and must
tolerate a higher incidence of uncorrected errors.

8.7.1 Packet Error Categories
USB employs three error detection mechanisms:  bit stuff violations, PID check bits, and CRCs.  A bit
stuff violation exists if a packet receiver detects seven or more consecutive bit times without a
differential (J -> K or K -> J) transition, as detected on the physical D+ and D- lines, between the start
and end of a packet.  A PID error exists if the four PID check bits are not complements of their respective
packet identifier bits.  A CRC error exists if the computed checksum remainder at the end of a packet
reception is not zero.

With the exception of the SOF token, any packet that is received corrupted causes the receiver to ignore
it and discard any data or other field information that came with the packet.  Table 8-6 lists error
detection mechanisms, the types of packets to which they apply, and the appropriate packet receiver
response.

Table 8-6.  Packet Error Types

Field Error Action

PID PID Check, Bit Stuff Ignore packet

Address Bit Stuff, Address CRC Ignore token

Frame Number Bit Stuff, Frame Number CRC Ignore Frame Number Field

Data Bit stuff, Data CRC Discard data

8.7.2 Bus Turnaround Timing
The host and USB function need to keep track of how much time has elapsed from when the transmitter
completes sending a packet until it begins to receive a packet back.  This time is referred to as the bus
turnaround time and is tracked by the packet transmitter’s bus turnaround timer.  The timer starts
counting on the SE0 to ‘J’ transition of the EOP strobe and stops counting when the ‘J’ to ‘K’ SOP
transition is detected.  Both devices and the host require turnaround timers.  USB devices expect the host
to reply within 16 bit times.  The host time-out interval must be slightly greater than that of devices to
insure that the host does not attempt to issue the next token before a device has timed out.  The bus
turnaround time is equal to the worst case round trip delay plus the maximum device response delay
(refer to Section 7.1.14).
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Figure 8-20.  Bus Turnaround Timer Usage

As shown above, the device uses its bus turnaround timer between token and data or data and handshake
phases.  The host uses its timer between data and handshake or token and data phases.

If the host receives a corrupted data packet, it must wait before sending out the next token.  This wait
interval  guarantees that the host does not attempt to issue a token immediately after a false EOP.

8.7.3 False EOPs
False EOPs must be handled in a manner which guarantees that the packet currently in progress
completes before the host or any other device attempts to transmit a new packet.  If such an event were to
occur, it would constitute a bus collision and have the ability to corrupt up to two consecutive
transactions.  Detection of false EOP relies upon the fact that a packet into which a false EOP has been
inserted will appear as a truncated packet with a CRC failure.  (The last 16 bits of the packet will have a
very low probability of appearing to be a correct CRC.)

The host and devices handle false EOP situations differently.  When a device sees a corrupted data
packet, it issues no response and waits for the host to send the next token.  This scheme guarantees that
the device will not attempt to return a handshake while the host may still be transmitting a data packet.  If
a false EOP has occurred, the host data packet will eventually end, and the device will be able to detect
the next token.  If a device issues a data packet that gets corrupted with a false EOP the host will ignore
the packet and not issue the handshake.  The device, expecting to see a handshake from the host, will
time out.

If the host receives a corrupted data packet, it assumes that a false EOP may have occurred and waits for
16 bit times to see if there is any subsequent upstream traffic.  If no bus transitions are detected within
the 16 bit interval and the bus remains in the ‘J’ state, the host may issue the next token.  Otherwise, the
host waits for the device to finish sending the remainder of its packet.  The 16 bit times guarantees two
conditions.  The first condition is to must make sure that the device has finished sending its packet.  This
is guaranteed by a time-out interval (with no bus transitions) greater than the worst case 6-bit time bit
stuff interval.  The second condition is that the transmitting device’s bus turnaround timer must be
guaranteed to expire.  Note that the time-out interval is transaction speed sensitive.  For full speed
transactions, the host must wait 16 FS bit times; for LS transactions, it must wait 16 LS bit times.

If the host receives a data packet with a valid CRC, it assumes that the packet is complete and need not
delay in issuing the next token.
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8.7.4 Babble and Loss of Activity Recovery

USB must be able to detect and recover from conditions which leave it waiting indefinitely for an end of
packet or which leaves the bus in something other than the idle state at the end of a frame.  There are two
such fault conditions:  loss of activity and babble.  Loss of activity (LOA) is defined as detection of a
start of packet (SOP) followed by lack of bus activity and no end of packet (EOP).  Babble is defined as
the SOP followed by the presence of bus activity beyond a certain point in time within a frame.  Both
LOA and babble are characterized by a device waiting for EOP at the end of a frame.  LOA and babble
have the potential to either deadlock the bus or force out the beginning of the next frame.  Neither is
acceptable, and both must be prevented from occurring.  As the USB component responsible for
controlling connectivity, hubs are responsible for babble/LOA detection and recovery.  All devices that
fail to complete their transmission at the end of a frame are prevented from transmitting past a frame’s
end by having the nearest hub disable the port to which the offending device is attached.  Details of the
hub babble/LOA recovery mechanism appear in Section 11.2.9.
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Chapter 9
USB Device Framework

9.1 Introduction
A USB device may be divided into three layers.  The bottom layer is a bus interface that transmits and
receives packets.  The middle layer handles routing data between the bus interface and various endpoints
on the device.  An endpoint is the ultimate consumer or provider of data.  It may thought of as a source or
sink for data.  The top layer is the functionality provided by the serial bus device; for instance, a mouse
or ISDN interface.

This chapter describes the common attributes and operations of the middle layer of a USB device.  These
attributes and operations are used by the function-specific portions of the device to communicate through
the bus interface and ultimately with the host.

9.2 USB Device States
A USB device has several possible states.  Some of these states are visible to the USB and the host and
others are internal to the USB device.  This section describes those states.

9.2.1 Visible Device States
This section describes USB device states that are externally visible.  Note:  USB devices perform a reset
operation in response to a Reset request to the upstream port from the host.  When reset signaling has
completed, the USB device is reset.  The Reset state is not visible to the host.
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Table 9-1.  Visible Device States

Attached Powered Address Configured Suspended State

No -- -- -- -- Device is not attached to USB.
Other attributes are not significant.

Yes No -- -- -- Device is attached to USB, but is
not powered.  Other attributes are
not significant.

Yes Yes No -- -- Device is attached to USB and
powered, but has not been
assigned a unique address.  Device
responds at the default address.

Yes Yes Yes No -- Device is attached to USB,
powered, and a unique device
address has been assigned.
Device is not configured.

Yes Yes Yes Yes No Device is attached to USB,
powered, has unique address, is
configured, and is not suspended.
Host may use now use the function
provided by the device.

Yes Yes Yes Yes Yes Device is, at minimum, attached to
USB and is powered at the
minimum suspend level,  It may
also have a unique address and be
configured for use.  However, since
the device is suspended, the host
may not use the device’s function.

9.2.1.1 Attached
A USB device may be attached or detached from the USB.  The state of a USB device when detached
from the USB is not defined by this specification.  This specification only addresses required operations
and attributes once the device is attached.

9.2.1.2 Powered
USB devices may obtain power from an external source and/or from USB through the hub to which they
are attached.  Externally powered USB devices are termed self-powered.  These devices may already be
powered before they are attached to the USB.  A device may support both self-powered and bus-powered
configurations.  Some device configurations support either power source.  Other device configurations
may only be available if the device is externally powered.  Devices report their power source capability
through the Configuration Descriptor.  The current power source is reported as part of a device’s status.
Devices may change their power source at any time; e.g., from self- to USB powered.  If a configuration
is capable of supporting both power modes, then the power maximum reported for that configuration is
the maximum the device will draw in either mode.  The device must observe this maximum, regardless of
its mode.  If a configuration supports only one power mode and the power source of the device changes,
then the device will loose its current configuration and address and return to the attached state.
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A hub port must be powered in order to detect port status changes, including attach and detach.  Hubs do
not provide any downstream power until they are configured, at which point they will provide power as
allowed by their configuration and power source.  A USB device must be able to be addressed within a
specified time period from when power is initially applied (refer to Chapter 7).  After an attachment to a
port has been detected the host shall enable the port, which will also reset the device attached to the port.
After being reset, a USB device is unconfigured and only responds to the USB default address.

9.2.1.3 Address Assigned
All USB devices use the default address when initially powered or after the device has been reset.  Each
USB device is assigned a unique address by the host after attachment or after reset.  A USB device
maintains its assigned address while suspended.

9.2.1.4 Configured
Before the USB device’s function may be used, the device must be configured.  From the device’s
perspective, configuration involves writing a non-zero value to the device configuration register.

9.2.1.5 Suspended
In order to conserve power, USB devices automatically enter the Suspended state when the device has
observed no bus traffic for a specified period (refer to Chapter 7). When suspended, the USB device
maintains any internal status including its address and configuration.

All devices must suspend if bus activity has not been observed for the  length of time specified in
Chapter 7.  Attached devices must be prepared to suspend at any time they are powered, whether they
have been assigned a non-default address or are configured.  Bus activity may cease due to the host
entering a suspend mode of its own.  In addition, a USB  device shall also enter the suspended state when
the hub port it is attached to is disabled.  This is referred to as selective suspend.

A USB device exits suspend mode when there is bus activity.  A USB device may also request the host
exit suspend mode or a selective suspend by using electrical signaling to indicate Remote Wakeup.  The
ability of a device to signal remote wakeup is optional.  If a USB device is capable of remote wakeup
signaling, the device must support the ability of the host to enable and disable this capability.

9.3 Generic USB Device Operations
All USB devices support a common set of operations.  This section describes those operations.

9.3.1 Dynamic Attachment and Removal
USB devices may be attached and removed at any time.  The hub that provides the attachment point or
port is responsible for reporting any change in the state of the port.

The host enables the hub port where the device is attached upon detection of an attachment, which also
has the effect of resetting the device.  A reset USB device has the following characteristics:

• Responds to the default USB address

• Is unconfigured

• Is not initially suspended

When a device is removed from a hub port, the host is notified of the removal.  The host responds by
disabling the hub port where the device was attached.
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9.3.2 Address Assignment
When a USB device is attached, the host is responsible for assigning a unique address to the device after
the device has been reset by the host and the hub port where the device is attached has been enabled.

9.3.3 Configuration
A USB device must be configured before its function may be used.  The host is responsible for
configuring a USB device.  The host typically requests configuration information from the USB device to
determine the device’s capabilities.

As part of the configuration process, the host sets the device configuration and, where necessary, sets the
maximum packet size for endpoints that require such limitation.

Within a single configuration, a device may support multiple interfaces.  An interface is a related set of
endpoints that present a single feature or function of the device to the host.  The protocol used to
communicate with this related set of endpoints and the purpose of each endpoint within the interface may
be specified as part of a device class or vendor specific class definition.

In addition, an interface within a configuration may have alternate settings that redefine the number or
characteristics of the associated endpoints.  If this is the case, the device shall support the Get Interface
and Set Interface requests to report or select a specific alternative setting for a specific interface.

Within each configuration, each interface descriptor contains fields that identify the interface number and
the alternate setting.  Interfaces are numbered from zero to one less than the number of concurrent
interfaces supported by the configuration.  Alternate settings range from zero to one less than the number
of alternate settings for a specific interface.  The default setting when a device is initially configured is
alternate setting zero.

9.3.4 Data Transfer
Data may be transferred between a USB device endpoint and the host in one of four ways.  For the
definition of the four types of transfers (refer to Chapter 5).  Some endpoints may be capable of different
types of data transfers.  However, once configured, a USB device endpoint uses only one data transfer
method.

9.3.5 Power Management
Power management on USB devices involves the issues described in the following sections.

9.3.5.1 Power Budgeting
For bus-powered devices, power is a limited resource.  When a host detects the attachment of a bus-
powered USB device, the host needs to evaluate the power requirements of the device.  If USB device
power requirements exceed available power, the device is not configured.

No USB device may require more than 100 mA when first attached.  A configured bus-powered USB
device attached to a self-powered hub may use up to 500 mA; however, some ports may not be able
supply this much power and thus the device will not be usable.

All USB devices must support a suspended mode that requires less than 500 µa.  A USB device
automatically suspends when the bus is inactive, as previously described.

9.3.5.2 Remote Wakeup
Remote Wakeup allows a suspended USB device to signal a host that may also be suspended.  This
notifies the host that it should resume from its suspended mode, if necessary, and service the external
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event that triggered the suspended USB device to signal the host.  A USB device reports its ability to
support Remote Wakeup in a Configuration Descriptor.  If a device supports Remote Wakeup, it must
also allow the capability to be enabled and disabled using the standard USB requests.

Remote Wakeup is accomplished using electrical signaling described elsewhere in this document.

9.4 USB Device Requests
All USB devices respond to requests from the host on the device’s default pipe.  These requests are made
using control transfers.  The request and the request’s parameters are sent to the device in the setup
packet.  The host is responsible for establishing the values passed in the following fields.  Every setup
packet has eight bytes, used as follows:

Offset Field Size Value Description

0 bmRequestType 1 Bit-map Characteristics of Request

D7 Data xfer direction
0 = Host to device
1 = Device to host

D6..5 Type
0 = Standard
1 = Class
2 = Vendor
3 = Reserved

D4..0 Recipient
0 = Device
1 = Interface
2 = Endpoint
3 = Other
4..31 = Reserved

1 bRequest 1 Value Specific Request (refer to Table 9-2)

2 wValue 2 Value Word-sized field that varies according to
request

4 wIndex 2 Index or
Offset

Word sized field that varies according to
request - typically used to pass an index
or offset

6 wLength 2 Count Number of bytes to transfer if there is a
data phase

9.4.1 bmRequestType
This bit-mapped field identifies the characteristics of the specific request.  In particular, this field
identifies the direction of data transfer in the second phase of the control transfer.  The state of the
direction bit is ignored if the wLength field is zero, signifying there is no data phase.

The USB Specification defines a series of Standard requests that all devices must support.  In addition, a
device class may define additional requests.  A device vendor may also define requests supported by the
device.
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Requests may be directed to the device, an interface on the device, or a specific endpoint on a device.
This field also specifies the intended recipient of the request.  When an interface or endpoint is specified,
the wIndex field identifies the interface or endpoint.

9.4.2 bRequest
This field specifies the particular request.  The Type bits in the bmRequestType field modify the meaning
of this field.  This specification only defines values for the bRequest field when the bits are reset to zero
indicating a Standard request (refer to Table 9-2).

9.4.3 wValue
The contents of this field vary according to the request.  It is used to pass a parameter to the device
specific to the request.

9.4.4 wIndex
The contents of this field vary according to the request.  It is used to pass a parameter to the device
specific to the request.

9.4.5 wLength
This field specifies the length of the data transferred during the second phase of the control transfer.  The
direction of data transfer (host to device or device to host) is indicated by the Direction bit of the
bRequestType field.  If this field is zero, there is no data transfer phase.

9.5 Standard Device Requests
This section describes the standard device requests defined for all USB devices (refer to Table 9-2).

USB devices must respond to standard device requests whether the device has been assigned a non-
default address or the device is currently configured.
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Table 9-2.  Standard Device Requests

bmRequestType bRequest wValue wIndex wLength Data

10000000B GET_CONFIGURATION Zero Zero One Configuration
Value

10000000B GET_DESCRIPTOR Descriptor
Type and
Descriptor
Index

Zero or
Language
ID

Descriptor
Length

Descriptor

10000001B GET_INTERFACE Zero Interface One Alternate
Interface

100000010B GET_MAX_PACKET Zero Endpoint Two Maximum
Packet Size

10000000B
10000001B
10000010B

GET_STATUS Zero Zero
Interface
Endpoint

Two Device,
Interface or
Endpoint
Status

00000000B SET_ADDRESS Device
Address

Zero Zero None

00000000B SET_CONFIGURATION Configuration
Value

Zero Zero None

00000000B SET_DESCRIPTOR Descriptor
Type and
Descriptor
Index

Zero or
Language
ID

Descriptor
Length

Descriptor

00000001B
00000010B

SET_IDLE Idle State Interface
Endpoint

Zero None

00000001B SET_INTERFACE Alternate
Interface

Interface Zero None

00000010B SET_MAX_PACKET Maximum
Packet Size

Endpoint Zero None

00000000B SET_REMOTE_WAKEUP Remote
Wakeup
State

Zero Zero None

00000000B
00000001B
00000010B

SET_STATUS Status Value Zero
Interface
Endpoint

Zero None
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Table 9-3.  Standard Request Codes

bRequest Value

GET_CONFIGURATION 1

GET_DESCRIPTOR 2

GET_INTERFACE 3

GET_MAX_PACKET 4

GET_STATUS 5

SET_ADDRESS 6

SET_CONFIGURATION 7

SET_DESCRIPTOR 8

SET_IDLE 9

SET_INTERFACE 10

SET_MAX_PACKET 11

SET_REMOTE_WAKEUP 12

SET_STATUS 13

Table 9-4.  Descriptor Types

Descriptor Types Value

DEVICE 1

CONFIGURATION 2

STRING 3

INTERFACE 4

ENDPOINT 5

If an unsupported or invalid request is made to a USB device, the device responds by indicating a stall
condition on the default pipe.  After the stall condition is cleared on the host, system software will access
the default pipe as usual.  If for any reason, the device becomes unable to communicate via its default
pipe due to an error condition, the device must be reset to clear the condition and restart the default pipe.
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9.5.1 Get Configuration
This request returns the current device configuration.

bmRequestType bRequest wValue wIndex wLength Data

10000000B GET_CONFIGURATION Zero Zero One Configuration
Value

If the returned value is zero, the device is not configured.

9.5.2 Get Descriptor
This request returns the specified descriptor if the descriptor exists.

bmRequestType bRequest wValue wIndex wLength Data

10000000B GET_DESCRIPTOR Descriptor
Type and
Descriptor
Index

Zero or
Language ID
(refer to
Section 9.7.5)

Descriptor
Length

Descriptor

The wValue field specifies the descriptor type in the high byte and the descriptor index in the low byte.
See Table 9-4.  The wIndex field specifies the Language ID for string descriptors or is reset to zero for
other descriptors.  The wLength field specifies the number of bytes to return.  If the descriptor is longer
than the wLength field, only the initial bytes of the descriptor are returned.  If the descriptor is shorter
than the wLength field, the returned data is padded with trailing bytes of zero.

The Standard request to a device supports three types of descriptors:  DEVICE, CONFIGURATION, and
STRING.  A request for a configuration descriptor returns the configuration descriptor, all interface
descriptors, and endpoint descriptors for all of the interfaces in a single request.  The first interface
descriptor immediately follows the configuration descriptor.  The endpoint descriptors for the first
interface follow the first interface descriptor.  If there are additional interfaces, their interface descriptor
and endpoint descriptors follow the first interface’s endpoint descriptors.

All devices must provide a device descriptor and at least one configuration descriptor.  If a device does
not support a requested descriptor, it responds by returning a buffer of zeroes.  A non-zero value as the
first byte of a descriptor indicates the buffer contains a valid descriptor.

9.5.3 Get Interface
This request returns the selected alternate setting for the specified interface.

bmRequestType bRequest wValue wIndex wLength Data

10000001B GET_INTERFACE Zero Interface One Alternate
Setting

Some USB devices have configurations with interfaces that have mutually exclusive settings.  This
request allows the host to determine the currently selected alternative setting.
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9.5.4 Get Maximum Packet
This request returns the current maximum packet size for all data transfers for the specified endpoint.

bmRequestType bRequest wValue wIndex wLength Data

100000010B GET_MAX_PACKET Zero Endpoint Two Maximum
Packet Size

The endpoint is specified in the wIndex field.  The wLength field must be set to two.  The maximum
packet size is returned in the two byte data transfer from the device to the host.

9.5.5 Get Status
This request returns status for the specified recipient.

bmRequestType bRequest wValue wIndex wLength Data

10000000B
10000001B
10000010B

GET_STATUS Zero Zero
Interface
Endpoint

One Device,
Interface or
Endpoint
Status

The Recipient bits of the bRequestType field specify the desired recipient.  The data returned is the
current status of the specified recipient.

A GetStatus request to a device returns the following information:

D7 D6 D5 D4 D3 D2 D1 D0

Reserved (Reset to zero) Remote
Wakeup

Power

The Power bit indicates whether the device is currently bus-powered or self-powered.  If D0 is reset to
zero, the device is bus-powered.  If D0 is set to one, the device is self-powered.

The Remote Wakeup bit indicates whether the device is currently enabled to request remote wakeup.  The
default mode for devices which support remote wakeup is disabled.  If D1 is reset to zero, the ability of
the device to signal remote wakeup is disabled.  If D1 is set to one, the ability of the device to signal
remote wakeup is enabled.

A GetStatus request to an interface returns the following information:

D7 D6 D5 D4 D3 D2 D1 D0

Reserved (Reset to zero) Idle

If an interface is not currently transferring data, the Idle field is set to one.  If the interface is transferring
data, the Idle field is reset to zero.

A GetStatus request to an endpoint returns the following information:

D7 D6 D5 D4 D3 D2 D1 D0

Reserved (Reset to zero Idle
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If an endpoint is not currently transferring data, the Idle field is set to one.  If the endpoint is transferring
data, the Idle field is reset to zero.

9.5.6 Set Address
This requests sets the device address for all future device accesses.

bmRequestType bRequest wValue wIndex wLength Data

00000000B SET_ADDRESS Device
Address

Zero Zero None

The wValue field specifies the device address to use for all subsequent accesses.

As noted elsewhere, requests actually may result in up to three stages.  In the first stage, the setup packet
is sent to the device.  In the optional second stage, data is transferred between the host and the device.  In
the final stage, status is transferred between the host and the device.  The direction of data and status
transfer depends on whether the host is sending data to the device or the device is sending data to the
host.  The status stage is always in the opposite direction of the data stage.  If there is no data stage, the
status stage is from the device to the host.

Stages after the initial setup packet assume the same device address as the setup packet.  The USB device
does not change its device address until after the status stage of this request is completed successfully.
Note that this is a difference between this request and all other requests.  For all other requests, the
operation indicated must be completely before the status stage.

9.5.7 Set Configuration
This request sets the device configuration.

bmRequestType bRequest wValue wIndex wLength Data

00000000B SET_CONFIGURATION Configuration
Value

Zero Zero None

The wValue field specifies the desired configuration.  This value must be zero or match a configuration
value from a Configuration Descriptor.  If the value is zero, the device is placed in its unconfigured state.

9.5.8 Set Descriptor
This request is optional.  If a device supports this request, existing descriptors may be updated or new
descriptors may be added.

bmRequestType bRequest wValue wIndex wLength Data

00000000B SET_DESCRIPTOR Descriptor
Type and
Descriptor
Index

Language ID
(refer to
Section 9.7.5)

Descriptor
Length

Descriptor

The wValue field specifies the descriptor type in the high byte and the descriptor index in the low byte
(refer to Table 9-4).  The wIndex field specifies the Language ID for string descriptors or is reset to zero
for other descriptors.  The wLength field specifies the number of bytes to transfer from the host to the
device.
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9.5.9 Set Idle
This request is optional.  If an interface or endpoint supports this request, the interface or endpoint may
be idled or set active (not idle) by the host.

bmRequestType bRequest wValue wIndex wLength Data

00000001B
00000010B

SET_IDLE Idle State Interface
Endpoint

Zero None

An idled interface or endpoint does not transfer data between the host and the device. Idling an active
endpoint or interface discards all data queued by the device for the corresponding endpoint or interface.
The current status of the interface or endpoint is reported by Get Status.

9.5.10 Set Interface
This request allows the host to select an alternate setting for the specified interface.

bmRequestType bRequest wValue wIndex wLength Data

00000001B SET_INTERFACE Alternative
Setting

Interface Zero None

Some USB devices have configurations with interfaces that have mutually exclusive settings.  This
request allows the host to select the desired alternative interface.

9.5.11 Set Maximum Packet
This request establishes the maximum packet size for all data transfers for the specified endpoint.

bmRequestType bRequest wValue wIndex wLength Data

00000010B SET_MAX_PACKET Maximum
Packet Size

Endpoint Zero None

The endpoint is specified in the wIndex field.  The maximum packet size is specified in the wValue field.
The wLength field must be set to zero to indicate there is no data transfer associated with this request.
This request may be used after a device has been configured, but the associated pipe must be idle.

9.5.12 Set Remote Wakeup
This request enables or disables the ability of a USB device to signal Remote Wakeup, if the capability is
supported by the device.

bmRequestType bRequest wValue wIndex wLength Data

00000000B SET_REMOTE_WAKEUP State
0 = Disable
1 = Enable

Zero Zero None

A USB device reports its ability to signal Remote Wakeup in a Configuration Descriptor.  The current
Remote Wakeup setting, enabled or disabled, is reported in the device response to a Get Status request.
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9.5.13 Set Status
This request is used to reset change status bits of the specified recipient.

bmRequestType bRequest wValue wIndex wLength Data

00000000B
00000001B
00000010B

SET_STATUS Status to
Reset

Zero
Interface
Endpoint

Zero None

The Recipient bits of the bRequestType specify the desired recipient.  The wValue field identifies the bits
to be reset.  Only those bits that are set to one in the wValue field are reset to zero on the device,
interface, or endpoint.

9.6 Descriptors
USB devices report their attributes using descriptors.  A descriptor is a data structure with a defined
format.  Each descriptor begins with a byte-wide field that contains the number of bytes in the descriptor
followed by a byte-wide field that identifies the descriptor type.

Using descriptors allows concise storage of the attributes of individual configurations because each
configuration may reuse descriptors or portions of descriptors from other configurations that have the
same characteristics.  In this manner, the descriptors resemble individual data records in a relational
database.

Where appropriate, descriptors contain references to string descriptors that provide displayable
information describing a descriptor in human-readable form.  The inclusion of string descriptors is
optional.  However, the reference fields within descriptors are mandatory.  If a device does not support
string descriptors, string reference fields must be reset to zero to indicate no string descriptor is available.

If a descriptor returns with a value in its length field that is less than defined by this specification, the
descriptor is invalid and should be rejected by the host.  If the descriptor returns with a value in its length
field that is greater than defined by this specification, the extra bytes are ignored by the host, but the next
descriptor is located using the length returned rather than the length expected.

Class and vendor specific descriptors may be returned in one of two ways.  Class and vendor specific
descriptors that are related to standard descriptors are returned in the same data buffer as the standard
descriptor immediately following the related standard descriptor.  If, for example, a class or vendor
specific descriptor is related to an interface descriptor, the related class or vendor specific descriptor is
placed between the interface descriptor and the interface’s endpoint descriptors in the buffer returned in
response to a GET_CONFIGURATION_DESCRIPTOR request.

Class or vendor specific descriptors that are not related to a standard descriptor are returned using class or
vendor specific requests.

9.7 Standard USB Descriptor Definitions

9.7.1 Device
A device descriptor describes general information about a USB device.  It includes information that
applies globally to the device and all of the device’s configurations.  A USB device has only one device
descriptor.

All USB devices have an endpoint zero used by the default pipe.  The maximum packet size of a device’s
endpoint zero is described in the device descriptor.  Endpoints specific to a configuration and its
interface(s) are described in the configuration descriptor.  A configuration and its interface(s) do not
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include an endpoint descriptor for endpoint zero.  Other than the maximum packet size, the
characteristics of endpoint zero are defined by this specification and are the same for all USB devices.

The bNumConfigurations field identifies the number of configurations the device supports.

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant DEVICE Descriptor Type

2 bcdUSB 2 BCD USB Specification Release Number in
Binary-Coded Decimal (i.e. 2.10 is
0x210).  This field identifies the release of
the USB Specification that the device and
its descriptors are compliant with.

4 bDeviceClass 1 Class Class code (assigned by USB)

5 bDeviceSubClass 1 SubClass Subclass code (assigned by USB)

6 idVendor 2 ID Vendor ID (assigned by USB)

8 idProduct 2 ID Product ID (assigned by manufacturer)

10 bcdDevice 2 BCD Device release number in Binary-Coded
Decimal

12 wMaxPacketSize0 2 Number Maximum packet size for endpoint zero

14 iManufacturer 1 Index Index of string descriptor describing
manufacturer

15 iProduct 1 Index Index of string descriptor describing
product

16 iSerialNumber 1 Index Index of string descriptor describing the
device’s serial number

17 bNumConfigurations 1 Number Number of possible configurations

9.7.2 Configuration
The configuration descriptor describes information about a specific device configuration.  The descriptor
contains a bConfigurationValue field with a value that, when used as a parameter to the Set
Configuration request, causes the device to assume the described configuration.

The descriptor describes the number of interfaces provided by the configuration.  Each interface may
operate independently.  For example, an ISDN device might be configured with two interfaces, each
providing 64 kBs bi-directional channels that have separate data sources or sinks on the host.  Another
configuration might present the ISDN device as a single interface, bonding the two channels into one
128 kBs bi-directional channel.
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When the host requests the configuration descriptor, all related interface and endpoint descriptors are
returned.  See Get Configuration.

A USB device has one or more configuration descriptors.  Each configuration has one or more interfaces.
Each interface has one or more endpoints.  An endpoint is not shared among interfaces within a single
configuration unless the endpoint is used by alternate settings of the same interface.  Endpoints may be
shared among interfaces that are part of different configurations without this restriction.

Once configured, devices may support limited adjustments to the configuration.  If a particular interface
has alternate settings, an alternate may be selected after configuration if the interface is idle.  Within an
interface an isochronous endpoint’s maximum packet size may also be adjusted.

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDecsriptorType 1 Constant CONFIGURATION

2 wTotalLength 2 Number Total length of data returned for this
configuration.  Includes the combined
length of all descriptors (configuration,
interface, endpoint and class or vendor
specific) returned for this configuration.

4 bNumInterfaces 1 Number Number of interfaces supported by this
configuration

5 bConfigurationValue 1 Number Value to use as an argument to Set
Configuration  to select this configuration

6 iConfiguration 1 Index Index of string descriptor describing this
configuration

7 bmAttributes 1 Bitmap Configuration characteristics

D7 Bus Powered
D6 Self Powered
D5 Remote Wakeup
D4..0 Reserved (reset to 0)

A device that uses power from the bus
and a local source sets both D7 and D6.
The actual power source at runtime may
be determined using the Get Status
device request.

If a device supports remote wakeup, D5
is set to one (1).

8 MaxPower 1 mA Maximum power consumption of USB
device from bus in this specific
configuration when the device is fully
operational.  Expressed in 2 mA units (i.e.
50 = 100 mA).

Note:  If the device in this configuration is
operational using bus power and when
self powered, this field specifies the worst
case value.
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9.7.3 Interface
This descriptor describes a specific interface provided by the associated configuration.  A configuration
provides one or more interfaces, each with its own endpoint descriptors describing a unique set of
endpoints within the configuration.  When a configuration supports more than one interface, the
endpoints for a particular interface immediately follow the interface descriptor in the data returned by the
Get Configuration request.  An interface descriptor is always returned as part of a configuration
descriptor.  It cannot be directly accessed with a Get or Set Descriptor request.

An interface may include alternate settings that allow the endpoints and/or their characteristics to be
varied after the device has been configured.  The default setting for an interface is always alternate
setting zero.  The Set Interface request is used to select an alternate setting or to return to the default
setting.  The Get Interface request returns the selected alternate setting.

Alternate settings allow  a portion of the device configuration to be varied while other interfaces remain
in operation.  If a configuration has alternate settings for one or more of its interfaces, a separate interface
descriptor and its associated endpoints are included for each setting.

If a device configuration supported a single interface with two alternate settings, the configuration
descriptor would be followed by an interface descriptor with the bInterfaceNumber and bAlternateSetting
fields set to zero and then the endpoint descriptors for that setting, followed by another interface
descriptor and its associated endpoint descriptors.  The second interface descriptor’s bInterfaceNumber
field would also be set to zero, but the bAlternateSetting field of the second interface descriptor would be
set to one.

If an interface only uses endpoint zero, no endpoint descriptors follow the interface descriptor and the
interface identifies a request interface that uses the default pipe attached to endpoint zero.  In this case
the bNumEndpoints field shall be set to zero.

An interface descriptor never includes endpoint zero in the number of endpoints.

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant INTERFACE Descriptor Type

2 bInterfaceNumber 1 Number Number of interface.  Zero-based value
identifying the index in the array of
concurrent interfaces supported by this
configuration.

3 bAlternateSetting 1 Number Value used to select alternate setting for
the interface identified in the prior field

4 bNumEndpoints 1 Number Number of endpoints used by this
interface (excluding endpoint zero).  If
this value is zero, this interface only uses
endpoint zero.

5 bInterface 1 Number Interface code (assigned by USB)

6 iInterface 1 Index Index of string descriptor describing this
interface
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9.7.4 Endpoint
Each endpoint used for an interface has its own descriptor.  This descriptor contains the information
required by the host to determine the bandwidth requirements of each endpoint.  An endpoint descriptor
is always returned as part of a configuration descriptor.  It cannot be directly accessed with a Get or Set
Descriptor request.  There is never an endpoint descriptor for endpoint zero.

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant ENDPOINT Descriptor Type

2 bEndpointAddress 1 Endpoint The address of the endpoint on the USB
device described by this descriptor

3 bmAttributes 1 Bit Map This field describes the endpoint’s
attributes when it is configured using the
bConfigurationValue.

Bit 0 .. 1:Transfer Type
  00   Control
  01   Isochronous
  10   Bulk
  11   Interrupt
Bit 2: Direction (0 = out)

All other bits are reserved

4 wMaxPacketSize 2 Number Maximum packet size this endpoint is
capable of sending or receiving when this
configuration is selected

6 wSampleSize 2 Number The number of bytes in the native sample
size for the endpoint.

8 bInterval 1 Number Interval for polling endpoint for data
transfers.  Expressed in milliseconds.

This field is ignored for Bulk and Control
endpoints.  For isochronous endpoints
this field must be set to one (1).  For
interrupt endpoints this field may range
from 1 to 255.
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9.7.5 String
String descriptors are optional.  As noted previously, if a device does not support string descriptors, all
references to string descriptors within device, configuration, and interface descriptors must be reset to
zero.

String descriptors use UNICODE encodings as defined by The Unicode Standard, Worldwide Character
Encoding, Version 1.0, Volumes 1 and 2, The Unicode Consortium, Addison-Wesley Publishing
Company, Reading, Massachusetts.  The strings in a USB device may support multiple languages.  When
requesting a string descriptor, the requester specifies the desired language using a sixteen-bit language ID
(LANGID)  defined by Microsoft for Windows as described by Developing International Software for
Windows 95 and Windows NT, Nadine Kano, Microsoft Press, Redmond, Washington.  String index zero
(0) for all languages returns an array of two-byte LANGID codes supported by the device.  A USB device
may omit all string descriptors.

The UNICODE string descriptor is not NULL terminated.  The string length is indicated by the first byte
of the descriptor.  The string length does not include the bLength or bDescriptorType fields.

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant STRING Descriptor Type

2 bString N Number UNICODE encoded string

9.8 Device Class Definitions
All devices must support the above registers and descriptor definitions.  Most devices provide additional
registers and possibly, descriptors for device-specific extensions.  In addition, devices may provide
extended services which are common to a group of devices.  In order to define a class of devices, the
following information must be provided to completely define the appearance and behavior of the device
class.

9.8.1 Descriptors
If the class requires any specific definition of the standard descriptors, the class definition must include
those requirements as part of the class definition.  In addition, if the class defines a standard extended set
of descriptors, they must also be fully defined in the class definition.  Any extended descriptor definitions
should follow the approach used for standard descriptors; for example, all descriptors should begin with a
length field.

9.8.2 Interface(s) and Endpoint Usage
When a class of devices is standardized, the interfaces used by the devices including how endpoints are
used must be included in the device class definition.  Devices may further extend a class definition with
proprietary features as long as they meet the base definition of the class.

9.8.3 Requests
All of the requests specific to the class must be defined.
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9.9 Device Communications
The USB communications model characterizes data and control traffic between the host and a given
device across the USB interconnect.  The host and the device are divided into the distinct layers
described by Figure 9-2.

Client

USB Bus
Interface

USB Device

Function

Host DeviceInterconnect

USB Bus
Interface

USB System

Actual communications flow

Logical communications flow

Figure 9-2.  Interlayer Communications Model

The actual communication on the host, as indicated by vertical arrows, takes place via SPIs.  The
interlayer relationships on the device are implementation-specific.  Between the host and device, all
communications must ultimately occur on the physical USB wire.  However, there are logical host-device
interfaces between horizontal layers.  Between client software, resident on the host, and the function
provided by the device, the communications are typified by a contract based on the needs of the
application currently using the device and the capabilities provided by the device.  This client-function
interaction creates the requirements for all of the underlying layers and their interfaces.
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This section describes the communications model from the point-of view of the device and its layers.
Figure 9-3 describes, based on the overall view introduced in Chapter 8, the device’s view of its
communication with the host.

SIE
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a collection of
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Default Pipe
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to an interface

Pipe, represents connection abstra ction between two horizontal layers

Data transport mechanism

USB-relevant format of transported data

USB
Framed

Data

No USB
Format

Interface x

Endpoint
Zero

Figure 9-3.  Device Communications

The USB Bus Interface handles interactions among the electrical and protocol layers (refer to Chapters 7
and 8).  The USB Device layer presents a uniform abstraction of the USB device to the host.  It is this
layer that is primarily described here.  The Function layer uses the capabilities provided by the USB
Device layer, combined into a given interface, to support the requirements of a host-based application.
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A USB Device acts as a collection of endpoints, each capable of supporting different types of pipes.
Each pipe can support one of the following transfer types at a time:

• Control

• Isochronous

• Interrupt

• Bulk

These transfer types are described in more detail in Chapter 5.  Each of the transfer types, however,
require the associated endpoint to behave in a certain fashion.  A given endpoint may support a variety of
transfer types.  However, once a pipe is associated with an endpoint, the endpoint only uses a single
transfer type.  In this section, when discussing the behavior of an endpoint for a given transfer type, it is
assumed that the endpoint has been associated with a pipe supporting that specific transfer type.  The
basic communication mechanisms used by endpoints are:

• Pipe Mode

• Start of Frame (SOF) Synchronization

• Handshakes

• Data Toggles

The mode of a pipe indicates whether the data flow across the pipe is stream or message mode.  Devices
may use the SOF as generated by the host to synchronize their internal clocks.  Devices may use
handshakes and data toggles to implement error and flow control.

Traffic between a client and a function may require a certain transport rate.  The client, USB and the
function all will be using, at best, slightly different clock rates.  To ensure that all of the required data can
be delivered with minimum buffering required, the various clocks must be synchronized.  Refer to
Chapter 5 for a discussion of the synchronization options.  Additionally, in order to support the just-in-
time delivery capability implied by clock synchronization, the size of the data packets transmitted
between the host and the device will br normalized such that variations in size over time are minimized.
To support data flows in which the loss of data is acceptable as long as the loss can be accurately
communicated, sample headers may be used by the host and the device to communicate the expected
transmission volumes.  Refer to Chapter 5 for the definition of sample headers.

These basic communication mechanisms are described, from the device’s point of view, in greater detail
below.  Each of the different transfer types uses these basic communication mechanisms in different
ways.

9.9.1 Basic Communication Mechanisms
This section describes in more detail the basic communication mechanisms as supported by the USB
Device layer.

9.9.1.1 Pipe Mode
A pipe supports either stream or message mode transfers.  In stream mode, the data flow is considered to
be a unidirectional serial stream of samples.  In message mode, data is delivered as a related set of bytes.
Message mode pipes are always considered to be capable of being bi-directional.

A stream mode pipe is always unidirectional.  When in the stream mode, the endpoint expects to receive
a token either requesting the endpoint to send data or alerting it that data will be sent to it.  The amount
of data sent will always be equal to or less than  the current MaxPacketSize for the endpoint.

Message transfers begin with a command from the host to the device.  The device may respond to the
command with data, the host may follow the command with data for the device, or the command may
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require no data to be transmitted in which case a NULL data packet will be sent. In message mode, an
endpoint must keep track of where it is in the phase sequence defined by the mode.  An endpoint expects
the first transaction of a message sequence to be a setup for the subsequent communication.  After setup
is received, an endpoint usually expects to receive a token requesting the endpoint to send data (IN token)
or alerting it that data will be sent to the endpoint (OUT Token).  The endpoint will know what the
direction of the subsequent transactions will be, based on the setup command that started the series of
transactions.  Some setup commands do not require subsequent transactions to or from an endpoint.
Setup transactions are always eight bytes or less.  The subsequent transactions will always be of a size
equal to or less than the current MaxPacketSize for the endpoint.

9.9.1.2 Synchronization
The host provides a special SOF token to the bus at regularly timed intervals.  The interval between
SOF’s, within error tolerances (refer to Chapter 7), is 1 ms.  Endpoints may use the receipt of this token
to synchronize their associated clock to the USB clock.  This enables endpoints to match their rate of data
consumption or production to the host’s rate.

Not all endpoints require SOF synchronization.  Some endpoints requiring synchronization have clocks
which cannot be synchronized to the 1 ms bus clock provided by USB.  Such devices have two choices.
They can attempt to have the entire USB synchronize to them or such devices may periodically adjust
their transfer rate as they compensate for the difference between the USB clock and their own clock.

USB provides for a maximum of one client per USB instance to adjust the host’s SOF generation.  This
client performs the adjustment based on feedback provided by an associated device.  The rate of SOF
token generation remains 1 ms, however.  Refer to Chapter 10 for a complete discussion of this
adjustment mechanism.  If an endpoint has not been configured to adjust the USB clock using the SOF
handshake, or if the endpoint is not capable of so adjusting the clock, then the endpoint must continually
adjust its data flow.

Therefore, as noted above, there are three possible types of synchronization interaction for an endpoint
with regard to SOF.  The endpoint may:

1. Synchronize its clock exactly to the existing USB clock.

2. Adjust the bus clock.

3. Synchronize with the host by adjusting its data flow.

It is important to note that an endpoint requiring synchronization, which can not implement the type of
synchronization described in (1), and which can implement the type described in (2), must also
implement the type described in (3).  This is because such an endpoint cannot be guaranteed that it will
be chosen as the endpoint to adjust the bus clock.  Only one device on the entire USB will be used to
adjust the SOF.

9.9.1.3 Handshakes
Endpoints use the handshake phase of USB transactions to communicate error and data flow needs to the
host.  Endpoints may also receive handshakes from the host to communicate error conditions.  The types
of handshakes used by the endpoint vary according to the transfer type supported.  These handshakes are
described in detail in Chapter 8.

9.9.1.4 Data Toggles
When an error or flow control situation occurs, some pipes are allowed to skip the frame in which the
condition occurred and  transfer the data scheduled for that frame during a subsequent frame.  In some
cases, it is possible that the receiver of the data had indicated to the transmitter that the data had been
successfully received, but that the transmitter believes, due to a bus error, that the data was not received
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successfully.  The transmitter will then retransmit the same data.  The receiver needs some mechanism to
understand that the data it is now receiving is a retransmission of data it has already received and not new
data.

USB provides this information by using data toggles which are the PIDs for the data phase of
transactions.  Depending on the transfer type, the endpoint needs to understand data toggles and generate
or process data PIDs accordingly.  Refer to Chapter 8 for a more complete discussion of data toggles.

Table 9-5.  USB Communications Mechanisms

Control Isochronous Interrupt Bulk

Pipe Mode Message Stream Stream Stream

Synchronization None Bus, external, or
software

None None

Handshakes Yes Not used Yes Yes

Data Toggles Yes Ignored Yes Yes

Required Buffering Minimum of
Eight Bytes

Twice frame
traffic

Single transaction Single transaction

Error and Status
Handling

Guaranteed
delivery reports
fatal errors only

Reports missing
or corrupt data -
no retries

Guaranteed
delivery reports
fatal errors only

Guaranteed delivery
reports fatal errors
only
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Chapter 10
USB Host:  Hardware and Software

This information was not available at the time of printing.
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Chapter 11
Hub Specification

This chapter describes the architectural requirements for the USB hub.  It contains a description of the
two principal sub-blocks:  the hub repeater and the hub controller.  The chapter also describes the hubs
operation for error recovery, reset, and suspend/resume.  The second half of the chapter defines hub
command behavior and hub descriptors.

The hub specification supplies sufficient information to permit an implementer to design a USB hub
which conforms to the USB specification.

11.1 Overview
Hubs provide the electrical interface between USB devices and the host and are directly responsible for
supporting many of the attributes that make USB user friendly and hide its complexity from the user.
Listed below are the major aspects of USB functionality that hubs must support:

• Connectivity behavior

• Power management

• Device connect/disconnect detection

• Bus fault detection and recovery

• Full/Low speed device support

A hub consists of two components, the hub repeater and the hub controller.  The repeater is responsible
for connectivity setup and tear-down.  It also supports exception handling such as bus fault detection and
recovery and connect/disconnect detect.  The hub controller provides the mechanism for host to hub
communication.  Hub specific status and control commands permit the host to configure a hub and to
monitor and control its individual downstream ports.

11.2 Functional Characteristics

11.2.1 Hub Architecture
Figure 11-1 shows a hub and the locations of its root and downstream ports.  A hub consists of a repeater
section and a hub controller section.  The repeater is responsible for managing connectivity on a per
packet basis, while the hub controller provides status and control and permits host access to the hub.
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...
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Figure 11-1.  Hub Architecture

11.2.2 Hub Connectivity
Hubs display differing connectivity behavior depending on whether they are propagating packet traffic,
reset, or resume signaling.

11.2.2.1 Packet Signaling Connectivity
The hub repeater contains one port that must always connect in the upstream direction (referred to as the
root port) and one or more downstream ports.  Upstream connectivity is defined as being towards the
host, and downstream connectivity is defined as being towards a device.  Figure 11-2 shows the packet
signaling connectivity behavior for hubs in the upstream and downstream directions.

Downstream
Connectivity

 Upstream
Connectivity

Root
port

Downstream
ports

Figure 11-2.  Hub Connectivity

If a downstream hub port is enabled and the hub detects an SOP on that port, connectivity is established
in an upstream direction to the root port of that hub, but not to any other downstream ports.  This means
that when a function or a hub transmits a packet upstream, only those hubs in line between the
transmitting device and the host will see the packet.  When SOP on an upstream port is detected, all other
downstream ports are locked.  This guarantees that hub connectivity will not be modified until the next
EOP is detected or until the hub times out at the end of the frame.
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In the downstream direction, hubs operate in a broadcast mode.  When a hub detects an SOP on its root
port, it establishes connectivity to all enabled downstream ports.  If a port is not enabled, it does not
receive any bus activity from the root port.

11.2.2.2 Reset Connectivity
Reset connectivity is always in the downstream direction.  In response to an SE0 on its root port, a hub
immediately propagates the SE0 to all of its enabled downstream ports.  If the SE0 signal persists long
enough to be unambiguously identified as a reset, then the hub also drives an SE0 onto all disabled ports.
Connectivity is maintained as long as the SE0 reset signaling persists on the hub’s root port.

11.2.2.3 Resume Connectivity
Hubs exhibit differing connectivity behaviors for upstream and downstream directed resume signaling.  A
hub which is in the suspend state reflects resume signaling from its root port to all of its enabled ports.
Figure 11-3 illustrates hub upstream and downstream resume connectivity.

Downstream
Connectivity

 Upstream
Connectivity

Downstream
ports
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Figure 11-3.  Resume Connectivity

If a hub is in the suspend state and detects resume signaling from a downstream port, the hub reflects that
signaling upstream to its root and also to all of its enabled downstream ports.  Resume signaling is not
reflected to disabled ports.

11.2.3 Port Enable/Disable
All downstream ports must be capable of being enabled and disabled.  A disabled port has its output
buffers placed in the Hi-Z state and cannot drive the bus downstream, except for reset.  Its differential
receiver must also be placed into a state where it cannot establish connectivity based on upstream bus
transitions detected at the port.  The single ended receivers of a port always remain active, since they
must be able to detect connect and disconnect events.  Only downstream ports can be disabled; the root
port remains enabled at all times.

All of a hub’s downstream ports are disabled on power-up or when a hub is reset.  An individual port is
disabled when a disconnect, loss of bus activity, or babble condition is detected on that port.  Ports may
be selectively disabled or enabled via host commands.  A hub reports the status of each downstream port
to the host via a command.
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11.2.4 Bus State Evaluation
Bus state evaluation is done at the end of the frame and is able to detect the SE0 and the differential ‘1’
and ‘0’ bus states.  Power must be applied to the downstream port under evaluation.  When no device is
connected to a downstream hub port, its pull-down resistors force both D+ and D- to an SE0.

Connect/Disconnect detect can only be performed after Vbus is applied to the downstream port.  (This
requirement only affects hubs whose downstream ports are power switched).  When a device is
connected, the bus state changes from the disconnected to the attach detect state. Low speed (LS) devices
pull up D- to an SE1 and leave D+ at SE0. Full speed (FS) devices pull up D+ to an SE1 and leave D- at
SE0.  Each downstream hub port must be capable of detecting and differentiating between LS and FS
device connections once a device is connected.  The differential ‘J’ and ‘K’ states are undefined until a
device is attached and the device’s speed has been ascertained.

When a connect or disconnect occurs, it must be reflected in the hub status by the end of the frame in
which the event occurred unless the hub is in the reset or suspend modes.  A hub in the suspend mode is
awakened by a connect or disconnect event and must be capable of reporting the event upon waking up.
A hub in the reset state must detect which ports have connections upon coming out of reset.  Connect and
disconnect changes are reported on a per-port basis.

11.2.5 Full vs. Low Speed Behavior
Hubs must differentiate between full speed (FS) and low speed (LS) devices during bus enumeration.
Devices attached to a hub are determined to be either FS or LS by detecting which data line (D- or D+) is
pulled high.  Full speed signaling must not be transmitted to low speed devices.  Doing so would cause
EMI problems due to the use of unshielded cables on LS devices.  The hub controller is always
communicated to using full speed signaling.

If a port is enumerated as low speed, the hub port’s output buffers are configured to operate at the slow
slew rate (75-300 ns), and the port will not propagate downstream directed traffic unless it is prefaced
with a preamble PID.  Low speed signaling immediately follows the PID and is propagated to both low
and full speed devices.  Full speed will never misinterpret low speed traffic because no low speed data
pattern can generate a valid full speed PID.  When low speed signaling is enabled, a hub continues to
propagate downstream signaling to all ports until a downstream EOP is detected, at which time the output
drivers for the low speed ports are turned off and will not be turned on again until the hub receives
another PRE PID.  If a port is disabled, then no signaling is propagated to the port.  Hubs must be able to
enable their low speed port drivers within four FS bit times of having received the last bit of the PRE
PID.  A detailed description of low speed transactions appears in Section 8.6.5.

If a downstream port is enabled, it propagates upstream directed bus signaling independently of whether
the port was enumerated as low speed or full speed.  Hubs implement slew rate selectable output buffers
only in the downstream direction; in the upstream direction, they transparently propagate both low and
high speed traffic using fast (4-20 ns) edge rates.  Therefore, low speed devices do not append a preamble
onto their upstream traffic.

11.2.5.1 Low Speed Keep-Alive
All hub ports to which low speed devices are connected generate a low speed keep-alive strobe, which
consists of two low speed bit times of SE0 followed by at least 0.5 bit times of ‘J’ state.  Low speed
devices use the strobe to prevent themselves from going into suspend in the absence of low speed bus
traffic.  The hub repeater generates the keep-alive from its internal SOF counter, and the keep-alive
strobe must start no later than the second EOF point and must complete no later than the EOP of the
token packet.
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11.2.6 Hub Port States
Hubs support three port states which correspond to conditions such as whether a device is attached to the
port or not, and whether the port is enabled or not.  The states described below are relevant only for the
downstream ports when they are powered on.  Upstream ports are always enabled.  Figure 11-4 details
the transitions between the three port states.

11.2.6.1 Disconnected
A port transitions to its disconnected state in the presence of global conditions such as power-on or reset,
or in the presence of per-port events such as disconnect detect.  While in the disconnected state, a port’s
output buffers are placed in the Hi-Z state, and the port cannot send or receive packet traffic other than a
single ended 0 during reset.  However, its single ended receivers are able to detect attach. In order for a
disconnect to be reported, the hub must continuously detect an SE0 for at least 32 full speed bit times,
which is approximately 2.5 µs.

11.2.6.2 Attached
A port transitions to the attached state when the hub controller detects that a device has been connected
to the port.  When a device is attached to a downstream hub port, the combination of hub and device pull-
up resistors will drive a ‘J’ state onto the bus.  The host detects the hub port’s state and the device’s speed
by querying the port status. When in the attached state, a port’s output buffers are in the Hi-Z state, and it
cannot send or receive packet traffic.  A port in the attached state will transition to the disconnected state
if a disconnect is detected on that port.

11.2.6.3 Enabled
A port transitions to the enabled state from the attach detect state via a command from the host.  Enabling
a port permits it to receive and propagate upstream directed packet traffic and to selectively receive and
drive downstream packet traffic (refer to Section 11.2.5 for details).  A port returns to the attached state if
the host issues a disable command or in the presence of certain hub errors, such as babble and loss of bus
activity.  A port returns to the disconnected state if a disconnect is detected.

Reset # power_on

Disconnected else

connect_detect

Attach
Detect

else

Enabled

wrt_to_enable

else

disconn_detect

disconn_detect

(wrt_to_disable #
error) & !disconn_detect

Figure 11-4.  Hub Port State Diagram
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11.2.7 Bus Signaling States
The USB signaling medium consists of two wires and supports three defined states:  ‘J’, ‘K’, and SE0,
which are encoded as either differential or single ended voltage levels.  ‘ J’ and ‘K’ states are defined
only when a device is attached.  This fact places certain restrictions on signaling during resume and
connect.

• A device can only signal the ‘K’ state resume signal if the port to which it is attached is in the
attached state. (However, connect change of state will also signal resume.)

• A device being attached must resolve itself to its idle or ‘J’ state within 10 ms of having been
attached to the bus.

For details on the definitions of the bus signaling states consult Chapter 7.

11.2.7.1 Hub State Operation
The hub state operation is shown in Figure 11-5.  Upon coming out of reset or power-up, a hub starts in
the WFSOP state.  The hub waits for a start of a packet (SOP) to be detected on its root port or any of its
enabled downstream ports.  If an SOP is detected, the hub establishes connectivity and transitions to its
WFEOP state.  It remains in this state until an end of packet is encountered or until the end of frame
occurs.  Under normal circumstances, a hub repeater will transition back and forth between WFSOP and
WFEOP.

A hub in the idle (WFSOP) state responds to the end of frame (EOF1) point by transitioning to the
WFSOF state.  If a hub is in the WFSOP state at EOF1, it transitions to the WFSOF state.  Transitions
from WFSOP and WFEOP to WFSOF are not errors, but simply mean that the hub is nearing the end of
its frame and cannot establish connectivity until the start of the next frame.

WFEOF2 is a special state which is entered only when a babble or LOA is detected near the end of a
frame.  If a hub repeater is still in the WFEOP state (i.e., it has not received an EOP) when the EOF1
point is encountered, it transitions to the WFEOF2 state.  It will remain there until its EOF2 point or an
upstream EOP occurs, at which time it transitions to WFSOF and awaits the next Downstream SOP
(DSOP), which will normally be the SOP associated with the SOF packet, and indicates the start of the
next frame.  When a DSOP occurs, the hub returns to the WFEOP state and waits for the end of the
packet.

If a hub is still in its WFEOF2 state when EOF2 occurs, the port that established connectivity must be
disabled, regardless of the bus state.  If, when EOF2 occurs, a hub is in the WFSOF state and its bus is in
the ‘J’ state, then the previously connected port’s state (enabled or disabled) must remain unchanged.  If
the port is in any other state, the port must be disabled.  A disabled port will report as a change of port
status any change of bus state.  The bus state can be read via a hub command that returns the state of each
wire.
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Figure 11-5.  Hub Repeater States

The hub repeater maintains state across each packet that is detected and repeated by the hub.  The
repeater state machine does not need to track more than a single packet and need not, for example, track
across multiple packets in a transaction.  Figure 11-6 shows how hub states change in the course of a
normal packet transmission.

...

WFSOP WFEOP WFSOP

J JK SE0

Hub enables ou tput buffers Hub disables outputs

Figure 11-6.  Hub States Across a Packet

Hub state operation at the end of a frame must be able to detect loss of bus activity and babble conditions
and guarantee that upstream connectivity is torn down before the start of the next frame.  For details on
end of frame behavior, refer to Section 11.2.10.5.

11.2.8 Hub I/O Buffer Requirements
All hub ports must be able to detect and generate the ‘J’, ‘K’, and SE0 bus signaling states.  This requires
that hub ports be able to independently drive and monitor their D+ and D- outputs.  Each hub port must
have single ended receivers on the D+ and D- lines as well as a differential receiver.  Details on voltage
levels and drive requirements appear in Chapter 7.  Figure 11-7 shows I/O circuitry for a typical hub port.
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Figure 11-7.  Hub Port I/O Driver and Receiver

Table 11-1 defines the hub I/O section’s input and output signals.

Table 11-1.  Hub I/O Section Signals

Signal Name Direction Description

D+, D- I/O External USB data lines

RxD O Received differential data

RxD+ O Received single-ended value on D+ line

RxD- O Received single-ended value on D- line

TxD+ I Transmitted data value

TxD- I Transmitted data value

OE I Output enable/disable on output buffers

D+ and D- are the I/O lines that connect to the USB physical medium.  When placed in the Hi-Z state,
they are pulled to near the ground or Vcc rails by resistors on the hub and device.  RxD is the differential
received data.  RxD+ and RxD- are the received single ended data.  TxD+ and TxD- are used to send
differential data and single ended reset and EOP signaling.  OE disabled the output drivers.
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11.2.8.1 Pull-up and Pull-down Resistors

Hubs, and the devices to which they connect, use a combination of pull-up and pull-down resistors to
control D+ and D- in the absence of their being actively driven.  These resistors establish voltage levels
used to signal connect and disconnect and also maintain the data lines at their idle values when not being
actively driven.  Each hub downstream port requires a pull down (Rpd) on each data line; the hub root
port requires a pull-up (Rpu) on its D+ line.

11.2.8.1.1 Edge Rate Control
Downstream hub ports must support both low speed and full speed edge rates.  Full speed signaling
specifies a rise/fall time of 4-20 ns.  Low speed rise/fall times must be within a 75-300 ns range.  Edge
rate on a downstream port must be selectable, based upon whether a downstream device was detected as
being full speed or low speed.  The hub root port always uses full speed signaling, and its output buffers
must always operate with full speed edge rates.

11.2.9 Hub Fault Recovery Mechanisms
Hubs are the key USB component for establishing connectivity between the host and other devices.  It is
vital that any connectivity faults, especially those that might result in a deadlock, be detected and
prevented from occurring.  Hubs need to handle connectivity faults that occur when they are in a repeater
only mode.  Hubs must also be able to detect and recover from lost or corrupted packets which are
addressed to the hub controller.  Since the hub controller is, in fact, another USB device, it must adhere
to the same time-out rules as other USB devices.

11.2.9.1 Hub Controller Fault Recovery
The hub controller must be able to respond to and recover from corrupted and missing packet
transmissions.  These include lost or corrupted token, data, and handshake packets.  The following table
describes the possible field level errors which the hub controller can detect and its responses.

Table 11-2.  Packet Error Types

Field Error Action

PID PID check, bit stuff Ignore packet

Address Bit stuff, address CRC Ignore token

Data Bit stuff, data CRC Discard data
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11.2.9.2 Hub Controller Time-out
The hub controller has a bus turnaround timer whose interval is 16 FS bit times.  The bus turnaround
timer is reset and enabled on the SE0 to ‘J’ transition of an EOP (as detected by the hub) of a packet for
which a reply from the host is expected.  The counter is reset and disabled if a ‘J’ to ‘K’ SOP transition
from the host occurs before the time-out interval has elapsed.  Should the timer expire, the hub controller
must tear down hub connectivity, return the repeater to its WFSOP state, and wait for the next token.

The hub controller must enable its bus turnaround timer after receiving a SETUP or an OUT token (while
it waits for the data packet) or after the data phase of an IN transaction (while it waits for a handshake).
The hub bus turnaround timer is only active for a host to hub controller transaction; when a hub operates
in the repeater mode, this timer is not activated.

11.2.9.3 False EOP
Hub handling of false EOP differs depending on whether the hub is operating as a repeater or is being
accessed.  A hub operating as a repeater transparently propagates signaling, and cannot differentiate
between a “good” EOP and a “false” EOP.  If any EOP occurs, the hub tears down connectivity and waits
for the next SOP.  If the packet transmitter continues sending, the hub re-establishes connectivity on the
next ‘J’ to ‘K’ transition.  From a hub’s point of view, a false EOP makes a single packet look like two
valid, separate packets.  The hub does not participate in false EOP error detection or recovery process
when operating in the repeater mode.

The hub controller detects and recovers from false EOP the same as any other USB device, as described
in Section 8.7.3.

11.2.9.4 Repeater Fault Recovery
Hubs must be able to detect and recover from conditions which leave them waiting indefinitely for an end
of packet or which leaves the bus in something other than the idle state at the end of a frame.  There are
two such hub fault conditions: loss of activity and babble.  Loss of activity (LOA) is defined as detection
of a start of packet (SOP) followed by lack of bus activity and no end of packet (EOP).  Babble is defined
as the SOP followed by the presence of bus activity beyond a certain point in time within a frame.  Both
LOA and babble are characterized by a hub waiting for EOP at the end of a frame.  Hubs have no notion
of allocated bandwidth and must rely upon a frame timer to detect LOA or babble conditions.  The
recovery mechanism utilizes the requirement that hubs track the host’s frame timing and recover before
the beginning of the next frame.

Hub fault recovery only operates in the upstream direction.  The host is responsible for detecting and
recovering from its own downstream directed errors.  Babble and LOA detection and recovery must meet
the following requirements:

• Devices driving illegal states at the end of a frame must be isolated from the bus.

• Hubs must return the bus to the idle state before the start of the next frame if the connectivity has
been established in an upstream direction.

Under non-fault conditions, these requirements are met by virtue of a hub receiving an EOP with every
packet and having no bus traffic occur past the end of a frame.  Before describing how hubs implement
fault recovery, the hub frame will be described.

11.2.9.5 Hub Frame Timer
Each hub has a frame timer whose timing is derived from the host-generated SOF token and tracks the
host SOF packet in both phase and period.  The frame timer is reset each time an SOF is detected and is
responsible for generating End of Frame (EOF) points.  The hub frame timer must track the host SOF and
be capable of remaining synchronized to the host SOF for the loss of up to two consecutive SOF tokens.
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All hubs must have an EOF timer, and it is used to identify two distinct points in time:  a point (EOF1)
beyond which connectivity must be torn down and the bus returns to idle, and a point (EOF2) by which
the bus must have been returned to idle.  The delay between EOF1 and EOF2 corresponds to the timing
skews between the host and the hub plus time required for certain events to occur and is illustrated in
Figure 11-8.
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SOF Command
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SOF
PID

1st EOF
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EOF1 EOF2

2nd  EOF
Point

EOP

Figure 11-8.  Host - Hub EOF Skew

11.2.10 Hub Repeater States
For upstream connections, a hub repeater transitions between four states: wait for start of packet
(WFSOP), wait for end of packet (WFEOP), wait for EOF2 point (WFEOF2), and wait for start of frame
(WFSOF).  The EOF1 and EOF2 points are described in Section 11.2.10.5.1.  The four states are
described below.

11.2.10.1 Wait for Start of Packet
The Wait for Start of Packet (WFSOP) is the state a hub occupies when there is no packet currently being
propagated to or through the hub.  Hubs transition to their WFSOP state upon coming out of reset.  In the
WFSOP state, all of a hub’s ports are in the high impedance state, and all of its enabled ports are in the
receive mode with their output buffers in the Hi-Z state.  If the root port or any enabled downstream port
detects an SOP, the hub establishes connectivity and transitions to the Wait for End of Packet state.

11.2.10.2 Wait for End of Packet
During the Wait for End of Packet (WFEOP) state, the hub has established its connectivity and is
receiving packet traffic on one of its ports.  The hub transparently propagates the traffic in either the
upstream or downstream direction.  Connectivity is maintained until the hub transitions out of this state.
A hub transitions out of the WFEOP state when it detects an EOP or if it encounters an end of frame
(EOF1) point (refer to Section 11.2.9.5).  Detection of EOP causes the hub to transition back to WFSOP
and is the normal sequence.  If EOF1 is detected, the hub transitions to the WFEOF2 state.

11.2.10.3 Wait for EOF2 Point
The  WFEOF2 state is entered only when the hub detects its EOF1 point and is still waiting for an EOP
from a downstream port.  This condition is potentially indicative of babble or loss of bus activity.  A hub
repeater remains in the WFEOF2 state until an EOP is detected or until its EOF2 point occurs.

11.2.10.4 Wait for Start of Frame
A hub repeater enters the Wait for Start of Frame (WFSOF) state either when EOF1 is detected and the
hub is in the WFSOP state (normal end of frame behavior) or when the hub is in the WFEOF2 state and
an EOP or EOF2 point is detected (babble/LOA) behavior.



Universal Serial Bus Specification Revision 0.99

216

11.2.10.5 Hub Behavior Near EOF
Hub behavior near the end of frame is diagrammed in Figure 11-9.  There are two end of frame timing
markers, EOF1 and EOF2, corresponding to the first and second EOF points.  All hubs, upon detection of
EOF1, transmit an EOP upstream for two bit times, drive the bus to a ‘J’ state for one bit time, and then
float the bus.  Starting with EOF1, hubs are not permitted to re-establish upstream connectivity until the
end of the next downstream packet which will usually be the SOF token packet.
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Figure 11-9.  Hub Behavior Near End of Frame

Hub behavior is summarized below:

1. At the first EOF point, all hubs will transmit an upstream EOP, followed by a ‘J’ state and then float
the bus), unless connectivity is already established in the downstream direction.  The EOP must not
truncate or lengthen any EOP already in progress.

2. Hubs will not allow further connectivity to be established in the upstream direction after EOF1.

3. Hubs that were in the WFEOP state at EOF1 must watch for EOPs on the downstream port on which
connectivity was established.  They must monitor the bus from EOF1 to EOF2.

4. If an EOP from downstream is detected by a hub in the WFEOF2 state in the EOF1 to EOF2
window, the hub will transition to the WFSOF state and should see a ‘J’ (idle) on its port.

5. At EOF2, all ports will be sampled for their state and a port will be disabled if it is not in the proper
state (refer to Table 11-3).  At EOF2, hubs still in WFEOF2 transition to the WFSOF state.
Connectivity is still not allowed from downstream until after a packet is received from the host.

Table 11-3.  Hub Behavior at EOF2

Not ‘J’ State ‘J’ State

WFSOF Disable port Do not disable port

WFEOF2 Disable port Disable port

11.2.10.5.1 Skew Requirements
The host and hubs, while all synchronized to the host’s SOF, are subject to certain skews which dictate
the length of time between the EOF points, host behavior near EOF, and the next SOF.  Figure 11-10
illustrates critical end of frame timing points.
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Figure 11-10.  EOF Timing Points

11.2.10.5.2 Host - Hub Skew
The timing skew between the host’s SOF point and the hub’s SOF timer is minimized by the requirement
that the hub track the host.  Sources of skew include the fact that hubs may miss SOFs, and the host
frame counter can be adjusted to track an external master clock.  The 12 MHz clock is the only clock
actually specified, so this is the best granularity available by specification.  Assuming a fixed host SOF
timing and that two consecutive SOFs can be missed, the maximum cumulative host-hub skew without
host timing wander is ±3 clocks.  Assuming that the host clock may be adjusted by up to one bit time per
frame, then the host can walk away from the hub by 1 + 2 + 3 = 6 clocks.  The maximum host-hub skew
is the sum of these two components or ±9 clocks.

The second EOF point must be sufficiently separated from the SOF point to permit hubs to recover and
be ready to receive the SOF token from the host.  A hub must finish sending its EOP before a hub to
which it is attached reaches its second EOF point.  This means that all hub EOF2 points must occur at
least one bit time before the host issues SOF.  All hub EOF2 points must lie within a ±9 bit time window;
therefore, EOP must lie outside this window and complete at least 2 x 9 + 1 = 19 bit times before host
SOF.

The next step is calculating how long it takes to generate EOP and how far back from SOF it must occur.
Transmitting EOP requires four bit times.  Therefore, a hub must start sending its EOP no later than
19 + 4 = 23 bit times before SOP.  For a hub to be sure that it starts no later than the 23rd bit time, it must
start 9 bit times before that or at bit time 32. which is the value of the 1st EOF point.  The earliest that a
hub might start sending EOP is 9 bit times before the first EOF point or at bit time 41.

A hub must not see a packet from the host start after the hub reaches its first EOF point.  This could be as
early as 41 bit times before SOF.  Hub propagation delay must also be figured into the delay budget.  The
per-hub delay is approximately one bit time; so for a worst case topology of six hubs away from the host,
there will be an additional 6 bit times of delay.  Therefore, the host’s EOF point for transmit is
41 + 6 = 47 bit times from SOF, relative to the host’s SOF timer.  If the host is still transmitting at bit 47
and not able to complete before SOF, it must force an error via a bit stuffing violation (recommend 16
1’s), followed by an EOP.  If the host is still receiving a packet or an EOP at bit 41, it should treat the
packet as being in error.  Table 11-4 summarizes hub and host EOF timing points.
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Table 11-4.  Hub and Host EOF Timing Points

Description Number of
Bits From
Start of SOF

Notes

EOF1 32 End of frame point #1

EOF2 10 End of frame point #2

Host invalidates full speed
Tx packet

47 Latest that host may start a full speed
packet

Host invalidates low
speed Tx packet

184 Latest that host may start a low speed
packet (rounded up to the nearest LS bit
time)

Host invalidates Rx
packet

41 Host treats any packet still being
received at bit time 41 as bad

11.2.11 Suspend and Resume
Hubs must support suspend and resume both as a USB device and also in terms of propagating the
suspend and resume signaling.  Hubs support both global and selective suspend and resume. Selective
suspend and resume are implemented via per port enable/disable.  Global suspend is implemented by the
host through the hub’s root port.  Global resume may occur either from the host or from a hub’s
downstream port.

11.2.11.1 Hub Receiving Suspend
A hub enters the suspend state if it fails to detect a valid SOF for 3.0 ms on its root port.  When placed
into the suspend state, a hub puts its hub repeater state controller into the idle (WFSOP) state and
maintains static values of all its control and status bits.

11.2.11.2 Hub Receiving Resume
Hub resume may be initiated  by a ‘J’ to ‘K’ transition on the root port, or enabled downstream port, or
by the connect/disconnect of a device on any downstream port.  A hub responds to resume signaling on a
downstream port by immediately driving a ‘K’ state onto its upstream port and onto all enabled
downstream ports.  This is the one instance in which hubs must reflect upstream signaling to their
downstream ports.  Upon receiving a resume from a downstream port, the hub begins the process of
returning to a fully operational state (e.g., restart clocks).  When the hub is operational, it will invert the
connectivity so that the ‘K’ state on the hub’s upstream port is sustaining the ‘K’ on its downstream ports.
The hub may not invert the connectivity any faster than 1.0 ms nor slower than 15 ms after receiving a
resume from a downstream port.  The resume signal propagates upstream until it reaches the host.  The
host reflects the ‘K’ signaling downstream for at least 20 ms, which guarantees that all devices will have
time to wake up.  Hubs must be able to propagate SOF tokens downstream immediately after the end of
resume.  The hub controller must be able to receive packet traffic no later than 10 ms after the end of
resume.  The host terminates the resume sequence by driving an EOP.  The EOP is interpreted as a valid
end of packet, causes all hubs to tear down their connectivity, and informs all devices on the bus that the
resume sequence has completed.
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A hub responds to a resume on its root port by driving a ‘J’ to ‘K’ transition onto all of its enabled
downstream ports.  The resume signaling persists until an EOP state is detected at the root port.

Note:  a host may not start a resume sequence until 5 ms after the last bus activity.  This allows the hub to
get into the suspend state so that it will resume all ports and not just the full speed ones.

11.2.11.3 Hub Issuing Selective Suspend
The host may selectively place bus segments into the suspend state by disabling hub ports to that
segment.  This feature permits segments of the bus to be suspended for power conservation purposes.
When disabled, a port does not propagate any downstream bus traffic, and in the absence of traffic, the
downstream devices will enter their suspend states.  A full speed device goes into the suspend mode
whenever it does not receive any traffic on its port for 3.0 ms.

11.2.11.4 Hub Issuing Selective Resume
Devices connected to a hub’s downstream port may be enabled by having the hub re-enable the port.  The
next downstream packet will cause FS devices to awake, and the next LS packet will bring LS devices
out of suspend.  Devices must be able to respond to host traffic with at least a NAK within 10 ms of
coming out of resume, and must not drive anything onto the bus until they are able to respond correctly.

11.2.12 USB Hub Reset Behavior
USB hubs must be able to generate reset via a host command and be reset via bus signaling on their root
port.  The following sections describe hub reset behavior and its interactions with resume, attach detect,
and power-on.

11.2.12.1 USB Device Receiving Reset
Reset signaling is defined only in the downstream direction.  A suspended device must interpret the start
of reset as a resume signaling event and begin its wake-up sequence.  The device must be awake and
reset 10 ms after  having first received the reset.  An active device may start its reset sequence if it
detects 2.5 µs or more of continuous SE0 signaling and must start its reset sequence if it sees 5.5 µs of
SE0.  The 2.5 µs lower limit is set by a need to prevent LS EOP strobes (which are 1.3 µs long) from
being interpreted as reset.

11.2.12.2 Hub Receiving SE0 on Root Port
Figure 11-11 shows the timing for a non-suspended hub receiving an SE0 on its root port.

SE0

t = 0 t = 2.5us t = 5.5us

Root port

Enabled
DS ports

Disabled
DS ports

Bus floats

Bus floats

SE0

SE0

Hub reset complete

t >= 10 ms

Figure 11-11.  Reset and Port Signaling
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If the hub is active, it must drive an SE0 onto all enabled downstream ports within 35 ns, and it must
drive SE0 onto all disabled downstream ports no sooner than 2.5 µs and no later than 5.5 µs after having
detected the ‘J’ to SE0 transition on its root port.  The reset must persist for a minimum of 10 ms to
guarantee that suspended devices have time to wake up and detect reset.  The hub continues to reflect the
SE0 on its root port onto all downstream ports until the SE0 is removed from the root port.  At this time,
all the hub’s downstream ports are disabled, and the downstream bus is driven only by the hub’s
pulldown resistors and by pullup resistors on any attached, powered devices’ resistors.  When a hub in the
suspend state sees a ‘J’ to SE0 bus transition on its root port, it wakes up (a process which may require up
to 10 ms).  Once awake, the hub enters the reset timing sequence shown in Figure 11-11.

If a hub is active, the hub controller must start its reset operation no sooner than 2.5 µs and no later than
5.5 µs after receiving reset on its root port.  If the hub was suspended, the hub must wake and complete
its reset operation within 10 ms.  After completion of reset, a hub controller is in the following state:

• All downstream ports are disabled and in their high impedance state

• Hub controller default address is 0

• Hub repeater controller states reset

• Power shut off to power-switched downstream ports

Note that if a bus contains hubs with power switched ports, the host reset will not propagate all the way
downstream.  The host has to guarantee that each tier is reset when it goes through the enumeration
process, and the enumeration reset is done on a tier by tier basis.  (However, the powered off devices are
effectively reset, if they are off long enough, and self-powered devices/hubs below them reset themselves
and their downstream ports.)

11.2.12.3 Reset Port Command
A hub can exercise per-port resets via the reset port command.  This command specifies a port number.
In response to a reset port command, the hub drives an SE0 onto its downstream port for 10 msec, and
then returns the bus to the ‘J’ state.  Resetting a port via the reset command does not disable the port.
Port reset is an atomic command; the 10 ms delay between start and end of reset is controlled by the hub.
The hub must be able to return to the host the status of the reset so that the hub does not have to keep
track of elapsed time.  Reset can be issued to enabled and/or disabled ports.

11.2.12.4 Device Detach Detection
A hub is able to detect a detach event by means of a continuous SE0 persisting for at least 2.5 µs detected
at a downstream port.  In response to a detach event, the hub disables the port and drives its output
buffers to a Hi-Z.  Device detach can only be detected while there is no downstream traffic on the bus
and the port must be power-switched on.

11.2.12.4.1 Device Attach Behavior
Device attach detection requires that the port in question be power-switched on (if power switching is an
option).  When a device is attached, a hub can detect an attach via an SE0 to DIFF1 or DIFF0 bus
transition.  This  requires that disabled ports not be driven by the hub while attach detection is being
performed.  This should not be a problem, as the port will have been disabled and its output drivers
floated by detection of the previous detach event.  The host can determine the device’s speed by
examining whether D+ or D- is pulled high.  Figure 11-12 shows the relationship between device attach
and reset.  ∆t1 corresponds to the minimum width reset pulse, which is specified at 10 ms.
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Figure 11-12.  Device Attach Timing

Before a port to which a device has been connected can be enabled, we must be assured that the device
has been reset.  Since we cannot rely on loss of Vbus, caused by a disconnect event, to reset the device,
we must instead perform a reset before enabling the port.  This is performed via an atomic reset on enable
command.  After an attach event has been detected, the host may issue a port enable command, which
first asserts reset onto the its port for 10 ms, then de-asserts reset and enables the port.  After reset, the
host assumes that the device has been successfully reset and enables the port.  Devices in a powered state
must be able to respond to a host access within 10 ms of having reset removed.

11.2.12.5 Power Bringup and Reset
Since USB components may be hot plugged and hubs may implement power switching, it is necessary to
comprehend the delays between power switching and/or device attach and when the device’s internal
power has stabilized.

Figure 11-13 shows the case where a device is connected to a hub whose port is power switched on.
There are two delays that need to be taken into consideration.  ∆t3 is the amount of time required for the
hub port switch to operate.  ∆t4 is the time required for the device’s internal power rail to stabilize.  If a
device were plugged into an already powered port, then only ∆t4 would need to be considered.  ∆t3 is a
function of the type of hub port switch, and this parameter may be read via a hub controller command.
∆t4 must be less than 100 ms.  It is necessary to specify a worst-case upper limit on ∆t4, since it is device
specific and cannot be reported until after the power-on and reset sequences are completed.

Hub port
power-on

∆t3

Hub port
 power OK

Device
power OK

Attach
Detect

Assert
reset

∆t4

Figure 11-13.  Power-on Timing

As Figure 11-13 shows, it is possible to detect a device attach before its internal power has stabilized.
One must guarantee a minimum of 10 ms during which a device’s internal power is stable and reset is
asserted.  Therefore, reset cannot be asserted immediately after device attach unless it can be guaranteed
to persist for 10 ms after the device’s internal power has stabilized.

USB devices must power on in such a manner that they do not drive D+ or D- (except with the pullup
resistor) during the reset process.  This is required so the upstream hub can drive reset downstream and be
assured that the downstream device will see the reset signaling.
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11.2.13 Hub Power Distribution Requirements
Hubs can supply a specified amount of power to downstream components and are responsible for
reporting their power distribution capabilities to the host during enumeration.  USB requirements
stipulate that generalized legal bus topologies be supported while at the same time preventing power-up
of illegal topologies.  An illegal power topology is one that violates the power contract established during
enumeration.

Hubs may be either locally powered or bus powered, or a combination of the two.  For example, a hub
may derive power for its SIE and root port pull-up resistors from the bus while obtaining power for its
downstream ports from a local power supply.  A hub can only supply power in a downstream direction,
and must never drive power upstream.  A complete discussion of hub power distribution appears in
Section 7.2.

Bus powered hubs must have  port power switching for its downstream ports.  The purpose for power
switching is to guarantee that when a hub or bus segment is connected to USB, no illegal power
topologies are encountered.  Bus powered hubs are required to power off all downstream ports when the
hub comes out of power-up or when it receives a reset on its root port.  Ports may also be switched on and
off under host software control.  An implementation may provide power switching on a per port basis or
have a single switch for all the ports.  Per port software resets issued by the host to a hub port do not
affect the status of the power switching for that port.  A hub port must be powered on in order to perform
connect detection from the upstream direction.

11.2.14 Overcurrent Indication
For reasons of safety, all locally powered hubs must implement current limiting on their downstream
ports.  Under no conditions may more than 5 A be drawn from any USB hub port.  (The actual
overcurrent trip point may be lower than this figure).  If an overcurrent condition occurs, even if it is only
momentary, it must be reported to the hub controller.  This is done via an overcurrent state that is
reflected through hub commands.  The overcurrent detect state is entered on overcurrent detect and
cleared by a host command or upon reset.  Detection of overcurrent must disable all affected ports.  If the
overcurrent condition has caused a permanent disconnect of power (such as a blown fuse), the hub must
report it upon coming out of reset or power-up.

Overcurrent protection may be implemented over all downstream ports in aggregate, or on a per port
basis.  The ports may optionally be split into two or more subgroups, each with its own overcurrent
protection circuit.
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11.3 Hub Endpoint Organization
The Hub Class defines one additional endpoint beyond Endpoint 0, which is required for all devices: the
Status Change endpoint.  The host system receives port and hub status change notifications through the
Status Change endpoint.  The Status Change endpoint supports interrupt transfers.  If the hub has not
detected changes on any of its ports, nor any hub status changes, the hub returns a NAK to requests on the
Status Change endpoint.  When the hub detects any status change, the hub responds with data describing
the entity that changed.  Host software driving the hub is responsible for examining the data transferred to
determine which entity changed.  Hubs are logically organized as shown in Figure 11-14 below.

Port 1 Port N

Port 3Port 2

Change-Detect
Endpoint

ENDPOINT 0:
Configuration
Information

UPSTREAM CONNECTION

Figure 11-14.  Example Hub Organization

11.3.1 Hub Information Architecture and Operation
Hub Descriptors and  Hub/Port Status and Control are accessible through the default pipe.  When a hub
detects a change on a port or when the hub changes its own state, the Status Change endpoint transfers
data to the host in the form specified in Section 11.3.3.

USB hubs detect changes in port states.  Devices attached to the ports on a hub can cause various
hardware events.  In addition, host system software can cause changes to a hub’s state by sending
commands to the hub.  Since there are two sources of changes to the hub, USB hubs report change
information for each of the hardware-caused events.  The hub continues to report a status change when
polled until that particular event has been successfully acknowledged by the host.  Using this reporting
mechanism, system software determines what changes occurred since the last event reported by the hub.
This approach makes it possible to minimize the device state information that system software must
carry.
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Figure 11-15.  Relationship of Status, Status Change, and Control Information to Device States

Host software uses the interrupt pipe associated with the Status Change endpoint to detect changes in hub
and port status.

11.3.2 Port Change Information Processing
Hubs report a port's status through port commands on a per-port basis.  Host software acknowledges a
port change by clearing the change state corresponding to the status change reported by the hub. The
acknowledgment clears the change state for that port so future data transfers to the Status Change
endpoint do not report the previous event.  This allows the process to repeat for further changes (see
Figure 11-16).
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Figure 11-16.  Port Status Handling Method
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11.3.3 Hub and Port Status Change Bitmap
The Hub and Port Status Change Bitmap, shown in Figure 11-17, indicates whether the hub or a port has
experienced a status change.  This bitmap also indicates which port(s) have had a change in status.  The
hub returns this value on the Status Change endpoint.  Hubs report this value in byte-increments.  That is,
if a hub has six ports, it returns a byte quantity and reports a zero in the invalid port number bit locations.
System software is aware of the number of ports on a hub (this is reported in the hub descriptor) and
decodes the Hub and Port Status Change Bitmap accordingly.  The hub reports any changes in hub status
on bit 0 of the Hub and Port Status Change Bitmap.

The Hub and Port Status Change Bitmap size varies from a minimum size of one byte.  Hubs only report
as many bits as there are ports on the hub, subject to the byte-granularity requirement (i.e., round up to
the nearest byte).

012N

Port 1 change detected
Hub change detected

Port N change detected

Port 2 change detected

Figure 11-17.  Hub and Port Status Change Bitmap

Any time the Status Change endpoint is polled by the host controller and any of the Status Changed bits
are non-zero, then the Hub and Port Status Change Bitmap is returned.  Hubs sample the change at the
End of Frame (EOF2) in preparation for a potential data transfer in the subsequent USB frame.  If a
change was detected, then data will be transferred through the Status Change endpoint in the subsequent
USB frame.  Figure 11-18 shows the sampling mechanism for hub and port change bits.
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11.4 Hub Configuration
Hubs are configured through the standard USB configuration device commands.  An unconfigured hub
behaves like all other unconfigured devices with respect to power requirements and addressability.
Unconfigured hubs do not turn power onto the downstream ports.  Configuring a hub enables the Status
Change endpoint and, if the hub implements gang-mode power switching, powers on (but does not
enable) all downstream ports.  Hubs that implement per-port power switching do not automatically power
on the downstream ports upon configuration (system software is responsible for individually turning port
power on).

System software examines hub descriptor information before configuration to determine the hub’s
characteristics.  System software ensures that illegal power toplogies are not allowed by not configuring a
hub in such cases.

11.5 Descriptors
Hub descriptors are derived from the general USB device framework.  Hub descriptors define a hub
device and the ports on that hub.  The host accesses hub descriptors through the hub’s default pipe.

The USB Device (Chapter 9) defines the following descriptors:

• Device

• Configuration

• Interface

• Endpoint

• String (optional)

The hub class defines an additional descriptor:  the hub descriptor.  In addition, vendor-specific
descriptors are allowed in the USB device framework.  Hubs support standard USB device commands as
defined in Chapter 9.
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11.5.1 Standard Descriptors
The hub class pre-defines certain fields in standard USB descriptors.  Other fields are either
implementation-dependent or not applicable to this class.

Device Descriptor

bDeviceClass = (assigned by USB)

bDeviceSubClass = (assigned by USB)

wMaxPacketSize0 = 8 bytes

Interface Descriptor

bNumEndpoints = 1

bInterface = this value identifies the standard hub interface

Configuration Descriptor

MaxPower = The sum of the current source capability of all the downstream ports.  

Note:  This value does not include the current requirements of the
hub controller function, which is reported separately in the hub
class-defined hub descriptor (refer to Section 11.5.2.1).

Endpoint Descriptor (for Status Change Endpoint)

bEndpointAddress = Implementation dependent

wMaxPacketSize = 8 bytes

bmAttributes = Direction = In, Transfer Type = Interrupt (0b00000111 )

The hub class driver retrieves a device configuration from host system software using the GetDescriptor
device request.  The first endpoint descriptor returned by GetDescriptor request is, by specification, the
Status Change endpoint descriptor.  Hubs may define additional endpoints beyond the minimum required
by this class definition.  However, hubs conforming to this class standard always return the Status Change
endpoint as the first endpoint descriptor in the standard interface.
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11.5.2 Class-specific Descriptors

11.5.2.1 Hub Descriptor

Table 11-5.  Hub Descriptor

Field Offset Bytes Definition Required?

DescLength 0 1 Number of bytes in this descriptor, including this
byte.

Y

NbrPorts 1 1 Number of downstream ports that this hub supports. Y

HubCharacteristics 2 2 Bits 0-1: Power Switching Mode

00 - Ganged power switching (all ports’ power at
once)

01 -  Individual port power switching

1X - No power switching (ports always powered
on when hub is on, and off when hub is off).

Bit 2: Identifies a Compound Device

0 - Hub is not part of a compound device

1 - Hub is part of a compound device

Bit 3-4: Over-current Protection Mode

00 -Global Over-current Protection.  The hub
reports over-current as a summation of all
ports’ current draw, without a breakdown of
individual port over-current status.

01 - Individual Port Over-current Protection.  The
hub reports over-current on a per-port basis.
Each port has an over-current indicator.

1X -No Over-Current Protection.  This option is
only allowed for bus-powered hubs that don’t
implement over-current protection.

Bits 5-15: Reserved

Y

PwrOn2PwrGood 4 1 Time (in 2 ms intervals) from the time power on
sequence begins on a port until power is good on
that port.  System software uses this value to
determine how long to wait before accessing a
powered-on port.

Y
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Field Offset Bytes Definition Required?

HubContrCurrent 5 1 Maximum current requirements of the hub controller
electronics, in mA.

Y

DeviceRemovable_
First32

6 Variable,
from 1 to
4 bytes

Indicates if a port has a removable device attached
(applies to first 32 ports).  If a non-removable device
is attached to a port, that port will never receive an
insertion change notification.  This field is reported
on byte-granularity.  Within a byte, if no port exists
for a given bit location, then the bit representing the
port characteristics returns “0”.

Bit definition:

0 - Device is removable

1 - Device is not removable (permanently
attached)

This is a bitmap corresponding to the individual ports
on the hub:

Bit 0: Reserved for future use.

Bit 1: Port 1

Bit 2: Port 2

ETC.

Bit 31: Port 31

Y
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11.6 Requests

11.6.1 Standard Requests
Hubs place no special requirements on standard requests.

11.6.2 Class-specific Requests
The hub class defines the following new commands:

• GetHubDescriptor

• SetHubDescriptor (optional)

• GetHubStatus

• AckHubChange

• GetPortStatus

• AckPortChange

• EnableDisablePort

• EnablePortWithReset

• ResetPort

• GetResetStatus

• SetPortPower

• GetBusState (optional)

The characteristics of the Hub class-specific requests are1:

• bRequestType

− Data Xfer Direction: Defined by particular request (below)

− Request Type:  Class (code = 1)

− Recipient: Device (code = 0)

• bRequest: Defined by particular request (below)

• wValue: Defined by particular request (below)

• wIndex: Defined by particular request (below)

• wLength: Defined by particular request (below)

 

                                                       
1 Refer to the USB Device Request definition in Chapter 9.
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11.6.2.1 GetHubDescriptor

Purpose: This request returns the hub descriptor.

Data Size: 8 bytes

Request Codes:

bRequestType:  0xA0 (defined below)

Data Xfer Direction: 1 = Device to Host

Request Type: 01 = Class

Command Recipient: 00000 = Device

bRequest: 0x00

wValue: 0x0000 (indicates hub descriptor)

wIndex: 0x0000

wLength: 0x0008

Return Values: Returns the entire Hub Descriptor.
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11.6.2.2 SetHubDescriptor

Purpose: This request is optional.  This request writes data to a class-specific descriptor.
The wValue code below specifies the Hub Descriptor.  Hubs currently only have
one descriptor defined.  Host system software provides the data that is to be
transferred to the hub during the data transfer phase of the control transaction.
This command writes the entire hub descriptor at once.

Hubs that do not support this request respond with a STALL handshake in the
data phase and a STALL handshake in the status phase.

Data Size: 8 bytes

Request Codes:

bRequestType:  0x20 (defined below)

Data Xfer Direction: 0 = Host to Device

Request Type: 01 = Class

Command Recipient: 00000 = Device

bRequest: 0x01

wValue: 0x0000 (indicates hub descriptor)

wIndex: 0x0000

wLength: 0x0008
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11.6.2.3 GetHubStatus

Purpose: This request returns the current hub status and the states that have changed since
the previous acknowledgment.

Data Xfer Direction: Device to Host (code = 1)

Data Size: 2 bytes

Request Codes:

bRequestType: 0xA0

Data Xfer Direction: 1 = Device to Host

Request Type: 01 = Class

Command Recipient: 00000 = Device

bRequest: 0x02

wValue: 0x0000

wIndex: 0x0000

wLength: 0x0002

Return Values: First byte: Hub Status Field byte (see Table 11-6 below for definition)

Second byte: Hub Change Field byte (see Table 11-7 below for definition)

The fields returned are organized in such a way to allow system software to determine which states have
changed.  The bit locations in the Status and Change fields correspond in a one-to-one fashion where
applicable.

Status Field

Change Field
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Table 11-6.  Hub Status Field

BIT DESCRIPTION

0 Local Power Status:    This is the state of the local power supply.

This bit only applies to self-powered hubs whose USB Interface Engine (SIE) is bus-
powered.  This bit reports whether local power has been removed for such hubs.  This bit
allows system software to determine the reason for the removal of power to devices
attached to this hub.

If the hub does not support this feature, then this bit is RESERVED and follows the
definition of the RESERVED bits below.

This bit reports the power status for the SIE and the remainder of the hub.
0 = Local power has been lost.  Power to all the ports has been shut off.
1 = All power operations are normal for all ports.

NOTE: This bit is always “1” for self-powered hubs whose SIE is self-powered and
for Bus-Powered hubs .

1 Over-Current Indicator:
This bit only applies to hubs that report over-current conditions on a global hub basis (as
reported in the Hub Descriptor’s HubCharacteristics  bits).

If the hub does not report over-current on a global hub basis, then this bit is RESERVED
and follows the definition of the RESERVED bits below.

This bit indicates that the sum of all the ports’ current has exceeded the specified maximum
and power to all the ports has been shut off.  For more details on Over-Current protection,
see Section 7.2.1.3.1 (Over-Current Protection) in the “Self-Powered Hubs” section of the
USB Specification.

This bit indicates an over-current condition due to the sum of all ports’ current consumption.
0 = All power operations normal.
1 = An over-current condition exists on a hub-wide basis.

2-7 Reserved

These bits return a “0” when read.  Software should ignore these bits.
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Table 11-7.  Hub Change Field

BIT DESCRIPTION

0 Local Power Status Change: (corresponds to Local Power Status, Bit 0 above)
This bit only applies to locally-powered (i.e., self-powered) hubs whose USB Interface
Engine (SIE) is bus-powered.

If the hub does not support this feature, then this bit is RESERVED and follows the
definition of the RESERVED bits below.

This bit reports whether a change has occurred to the local power status.

0 = No change has occurred on Local Power Status
1 = Local Power Status has changed

1 Over-Current Indicator Change: (corresponds to Over-Current Indicator, Bit 1 above)
This bit only applies to hubs that report over-current conditions on a global hub basis (as
reported in the Hub Descriptor’s HubCharacteristics bits).

If the hub does not report over-current on a global hub basis, then this bit is RESERVED
and follows the definition of the RESERVED bits below.

This bit reports whether a change has occurred to the Over-Current Indicator.  This bit is
only set if an Over-Current condition has occurred (i.e., acknowledgment of this change by
system software will not cause another change to be reported).

0 = No change has occurred on the Over-Current Indicator
1 = Over-Current Indicator has changed (i.e., Over-Current condition has occurred).

2-7 Reserved

These bits return a “0” when read.  Software should ignore these bits.
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11.6.2.4 AckHubChange

Purpose: This request acknowledges and resets state change information for the hub.

Data Size: Not applicable

Request Codes:

bRequestType:  0x20 (defined below)

Data Xfer Direction: 0 = Host to Device

Request Type: 01 = Class

Command Recipient: 00000 = Device

bRequest: 0x03

wValue: 0x0001 - Resets Local Power Status Change

0x0002 - Resets Over-Current Indicator Change

Note: These values may be combined to reset more than one change condition.  For
example, to reset both of the above cases, system software would issue a wValue
of 0x0003.  Future values in this field will continue to allow such behavior.

wIndex: 0x0000

wLength: 0x0001

Return Values: None
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11.6.2.5 GetPortStatus

Purpose: This request returns the current port status for the specified port and the fields
that have changed since the previous acknowledgment.

Data Size: 4 bytes

Request Codes:

bRequestType:  0xA0 (defined below)

Data Xfer Direction: 1 = Device to Host

Request Type: 01 = Class

Command Recipient: 00000 = Device

bRequest: 0x04

wValue: 0x0000

wIndex: Port Number (0 is an invalid number here)

wLength: 0x0002

Return Values: First byte: Port Status Field byte (refer to Table 11-8 below for definition)

Second byte: Port Change Field byte (refer toTable 11-9 below for
definition)

The fields returned are organized in such a way to allow system software to determine which states have
changed.  The bit locations in the Status and Change fields correspond in a one-to-one fashion where
applicable.

Status Field

Change Field
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Table 11-8.  Port Status Field

BIT DESCRIPTION

0 Current Connect Status:   This bit reflects whether or not a device is currently connected to this port.  This value
reflects the current state of the port, and may not correspond directly to the event that caused the Insertion Status
Change (Bit 0 in Port Change Field below) to be set.

0 = no device is present on this port
1 = a device is present on this port

NOTE: This bit is always “1” for ports that have non-removable devices attached.

1 Port Enabled/Disabled:    Ports can be enabled by host software only.  Ports can be disabled by either a fault
condition (disconnect event or other fault condition, including an over-current indication) or by host software.

0 = Port is disabled
1 = Port is enabled

2 Remote Wakeup Status:   

This bit indicates that the device on this port is waking up due to a remote condition.

0 = Not a remote wakeup source

1 = Device is a remote wakeup source

3 Port Power:  This bit reports and controls a port’s power state.  Since hubs can implement different methods
of port power switching, the meaning of this field varies depending on the type of power
switching used.  The device descriptor reports the type of power switching implemented by the
hub.

0 = This port is powered OFF
1 = This port is powered ON

NOTE:  Hubs that do not support power switching always return a “1” in this field.

4 Low Speed Device Attached:  (only relevant if a device is attached)

0 = Full Speed device attached to this port
1 = Low speed device attached to this port

5 Over-Current Indicator:
This bit only applies to hubs that report over-current conditions on a per-port hub basis (as
reported in the Hub Descriptor’s HubCharacteristics bits).

If the hub does not report over-current on a per-port hub basis, then this bit is RESERVED and
follows the definition of the RESERVED bits below.

This bit indicates that the device attached to this port has drawn current that exceeds the
specified maximum and this port’s power has been shut off.  Port power shutdown is also
reflected in the Port Power bit above. For more details, see Section 7.2.1.3.1 (Over-Current
Protection) in the “Self-Powered Hubs” section of  the USB Specification.

This bit indicates an over-current condition due to the device attached to this port.
0 = All power operations normal for this port.
1 = An over-current condition exists on this port.  Power has been shut off to this port.

6-15 Reserved

These bits return a “0” when read.  Software should ignore these bits.
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Table 11-9.  Port Change Field

BIT DESCRIPTION

0 Connect Status Change:   Indicates a change has occurred in the port’s Current Connect Status (see bit 0 in Port
Status Field above).  The hub device sets this bit for any changes to the port device connect status, even if system
software has not cleared a connect status change.2

0 = No change has occurred on Current Connect Status
1 = Current Connect Status has changed

NOTE: For ports that have non-removable devices attached, this bit is set only after a
RESET condition to indicate to system software that a device is present on this port.

1 Port Enable/Disable Change:  This bit is only activated when a change in the port’s enable/disable status was
detected due to hardware changes.  This bit is not set if system software caused a port enable/disable change (see
EnableDisablePort command on page 242.)

0 = No change has occurred on Port Enabled/Disabled status

1 = Port Enabled/Disabled status has changed

2 Remote Wakeup Change:  This bit reflects a change in the Remote Wakeup Status bit in the Port Status Field.

0 = No change has occurred on Remote Wakeup
1 = Remote Wakeup Status has changed

3 Over-Current Indicator Change:
This bit only applies to hubs that report over-current conditions on a per-port hub basis (as
reported in the Hub Descriptor’s HubCharacteristics bits).

If the hub does not report over-current on a per-port hub basis, then this bit is RESERVED and
follows the definition of the RESERVED bits below.

This bit reports whether a change has occurred to the port Over-Current Indicator.

0 = No change has occurred on Over-Current Indicator
1 = Over-Current Indicator has changed

4-15 Reserved

These bits return a “0” when read.  Software should ignore these bits.

                                                       
2 If, for example, the insertion status changes twice before system software has cleared the changed condition,
hub hardware will be “setting” an already-set bit (i.e., the bit will remain set).  However, the hub will transfer
the change bit only once when the host controller requests a data transfer to the Status Change endpoint.
System software will be responsible for determining state change history in such a case.



Universal Serial Bus Specification Revision 0.99

241

11.6.2.6 AckPortChange

Purpose: This request resets state change information for a port.

Data Size: Not applicable

Request Codes:

bRequestType: 0x20

Data Xfer Direction: 0 = Host to Device

Request Type: 01 = Class

Command Recipient: 00000 = Device

bRequest: 0x05

wValue: 0x0001 - Clears Connect Status Change

0x0002 - Clears Port Enable/Disable Change

0x0004 - Clears Remote Wakeup Change

0x0008 - Clears Over-Current Condition Change

Note: These values may be combined to reset more than one change condition.  For
example, to reset the first two conditions above, system software would issue a
wValue of 0x0003.  Future values in this field will continue to allow such
behavior.

wIndex: Port Number (0 is an invalid number here)

wLength: 0x0000
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11.6.2.7 EnableDisablePort

Purpose: This request enables or disables a port. Ports can be enabled by host software
only.  Ports can be disabled by either a fault condition (disconnect event or other
fault condition, including an over-current indication) or by host software.

Data Size: Not applicable

Request Codes:

bRequestType: 0x20 (defined below)

Data Xfer Direction: 0 = Host to Device

Request Type: 01 = Class

Command Recipient: 00000 = Device

bRequest: 0x06

wValue: 0x0000 - Enable port

0x0001 - Disable port

wIndex: Port Number (0 is an invalid number here)

wLength: 0x0000
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11.6.2.8 EnablePortWithReset

Purpose: This request resets and then immediately enables a port.

Data Size: Not applicable

Request Codes:

bRequestType: 0x20 (defined below)

Data Xfer Direction: 0 = Host to Device

Request Type: 01 = Class

Command Recipient: 00000 = Device

bRequest: 0x07

wValue: 0x0000

wIndex: Port Number (0 is an invalid number here)

wLength: 0x0000
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11.6.2.9 ResetPort

Purpose: This request resets the specified port.

Data Size: Not applicable

Request Codes:

bRequestType: 0x20 (defined below)

Data Xfer Direction: 0 = Host to Device

Request Type: 01 = Class

Command Recipient: 00000 = Device

bRequest: 0x08

wValue: 0x0000

wIndex: Port Number (0 is an invalid number here)

wLength: 0x0000 (no data transfer phase)
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11.6.2.10 GetResetStatus

Purpose: This request gets the status of the reset state for a port.

Data Size: 1 byte

Request Codes:

bRequestType: 0xA0 (defined below)

Data Xfer Direction: 1 = Device to Host

Request Type: 01 = Class

Command Recipient: 00000 = Device

bRequest: 0x09

wValue: 0x0000

wIndex: Port Number (0 is an invalid number here)

wLength: 0x0001

Return Values: 0x00 - Port is not in reset

0x01 - Port is in reset

All other values are undefined.
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11.6.2.11 SetPortPower   (hubs with individual port power switching only)

Purpose: This request sets a port’s power state.  This request only applies to hubs with
individual port power switching.  Hubs with gang-mode port power switching
respond to the SetConfiguration device request to power the ports.  Refer to
Section 11.4.  This command has no effect on hubs with gang-mode power
switching.

Hubs that implement gang-mode power switching respond to this request with a
STALL handshake in the data phase and a STALL handshake in the status phase.

Data Size: Not applicable

Request Codes:

bRequestType: 0x20 (defined below)

Data Xfer Direction: 0 = Host to Device

Request Type: 01 = Class

Command Recipient: 00000 = Device

bRequest: 0x0A

wValue: 0x0000 - Turn port power OFF

0x0001 - Turn port power ON

wIndex: Port Number (0 is an invalid number here)

wLength: 0x0001

Return Values: None

Note: Gang-powered hubs turn on power to all of the ports when the hub is configured.
Power is turned off to all of the ports when the hub is returned to the
unconfigured state.
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11.6.2.12 GetBusState  (optional diagnostic command)

Purpose: This request reads the bus state value, as sampled at the last EOF2.

Hubs may implement an optional diagnostic aid to facilitate system debug.  Hubs
implement this aid through this optional command. This diagnostic feature
provides a glimpse of the USB bus state as sampled at the last EOF2 sample
point.

Hubs that implement this diagnostic feature should store the bus state at each
EOF2 state, in preparation for a potential GetBusState command in the following
USB frame.

Hubs that do not support this request respond with a STALL handshake in the
data phase and a STALL handshake in the status phase.

Data Size:  1 byte

Request Codes:

bRequestType:   0xA0 (defined below)

Data Xfer Direction: 1 = device to host

Request Type: 01 = class

Command Recipient: 00000 = device

bRequest: 0x0B

wValue: 0x0000

wIndex: Port Number (0 is an invalid number here)

wLength: 0x0001

Return Values:

b7      b6      b5      b4      b3      b2      b1      b0

-------------undefined-------------------   D+      D-
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Appendix A
Legacy Device Support

Port consolidation for external peripheral devices is a primary goal for USB.  It follows that existing
(legacy) devices like keyboards and mice will migrate to USB in the future to free up much needed
port/connector space and to reduce form factors.

This appendix identifies issues the OEM must address to support legacy devices across USB.  We will
further limit discussion to virtualizing operating systems that are USB aware.  Specific recommendations
and guidelines will center around the Windows 95 device abstraction model.

Legacy Support Definitions
The adjective legacy carries a literal and an abstract interpretation.  In the literal interpretation, “legacy
device” means “current/existing device” (for instance, a legacy mouse implies today’s PS/2 mouse).  In
the abstract interpretation, “legacy device” means “having the same functionality as the current/existing
device” (for instance, a new USB keyboard that provides identical functionality of a current PS/2
keyboard).

Existing Device Support
Port consolidation of I/O peripherals on PC systems will occur gradually over time.  Customers, however,
are not willing to replace all their peripheral devices in order to purchase a new computer that lacks a
legacy port (a parallel port, for instance).  In order to compel these customers to accept USB as the
primary I/O peripheral bus, we must provide a mechanism for supporting existing legacy devices (a
printer in this example) on USB.  Current/existing legacy devices can be supported via a USB dongle that
translates USB transmissions and routes data appropriately to standard legacy device protocols.

Legacy device support via a USB dongle only makes sense when connecting devices that can bear the
cost of the dongle.  For instance, there is no compelling reason to provide dongles for legacy PS/2 style
mice and keyboards on USB because these devices are extremely inexpensive to replace.  Serial and
parallel ports, on the other hand, generally have high priced peripherals (printers, plotters, etc.) attached,
which must be supported.

USB Device Interface to a Non-USB Aware OS/Application
Two options exist for supporting USB devices in legacy OS/Applications:  dedicated USB device drivers
and runtime emulation of standard PC resources.  The case of runtime emulation of standard PC
resources can be accomplished strictly in hardware, strictly in software (via the BIOS), or as a
combination of hardware and software emulation.  (Refer to the section titled Emulation Requirements
for device resource maps).

A full discussion of USB services for real-mode, non-virtualizing operating systems (DOS in particular)
is beyond the scope of the Universal Serial Bus Specification.  A separate specification should define
explicit support for USB in real mode operating systems like DOS.  Note, however, that rudimentary
DOS support is possible via runtime emulation of legacy device resources as outlined in the Design
Guidelines section below.
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Design Guidelines

Legacy Device Support by Dedicated Device Drivers
In the case of operating systems such as Windows NT and UNIX, it is possible to provide device drivers
to trap and virtualize access to standard legacy device I/O ports.  This would not require changes to
existing legacy device drivers.  Windows 95 virtualizes device resources and while in the windows mode,
applications cannot directly access hardware ports.  However, Windows 95 does provide a “real mode
DOS” where applications are free to directly access I/O registers.  Most high performance games directly
access keyboard/mouse/joystick ports and bypass the BIOS altogether to achieve “cutting edge”
performance.

Legacy Device Support in Virtualizing Operating Systems
Most modern virtualizing operating systems provide a level of abstraction from physical device
resources.  The communication device model of the Windows 95 Architecture is shown in Figure A-1.

Figure A-1.  Windows 95 Communications Device Architecture

This model hides the specifics of the communication port from applications.  The port drivers hook into
VCOMM.386, which provides virtualized hardware resources to real mode virtual machines (VM’s),
16-bit system VM’s, and Win32 processes.  In such an abstract model, support for a USB device (say a
keyboard) merely involves replacing the 8042 port driver with a USB keyboard specific port driver.

Runtime Emulation of Legacy Device Resources
Given that the vast majority of PC systems run some form of DOS/WINDOWS, it follows that register
emulation will be required to move legacy devices to the USB.  Because of the need to support legacy
software with no intervening drivers, legacy device emulation requires the host to divert the USB data
that would have normally gone through HCS to the compatible I/O register space.  This data can still be
sent through the normal USB transfer mechanism for symmetry purposes, but must minimally be echoed
and packaged correctly at the I/O register space.

The sections below outline the legacy device resources (interrupts, memory mappings, and I/O port
addresses) that must be preserved for emulation of standard legacy devices.
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Keyboard
• Emulation of standard ports 60h and 64h.

• BIOS changes to 8042 notification resources as defined in Table A-1.

 Table A-1.  Keyboard Notification Resources

INT Trigger Address Bytes Contents/Description

INT 15h SW Keyboard scan code intercept
(Function 4Fh)

INT 09h HW 0000:0024 4 IRQ1, keyboard interrupt

INT 16h SW 0000:0058 4 Keyboard I/O determined by AH

INT 1Bh SW 0000:0066 4 <CTRL BREAK> service

• Trap accesses to standard keyboard memory resources as defined in Table A-2.

Table A-2.  Keyboard Memory-mapped Resources

Address Bytes Contents

0040:0015 1 Previous scan code

0040:0016 1 Key click loudness

0040:0017 2 Keyboard bit status

0040:0019 1 Accumulator for ALT key input

0040:001A 2 Keyboard buffer pointer head

0040:001C 2 Keyboard buffer pointer tail

0040:001E 32 Keyboard type ahead buffer (16 entries)

0040:0071 1 Break Bit (bit 7)

0040:0080 2 Keyboard buffer begin

0040:0082 2 Keyboard buffer end

0040:0096 1 Enhanced shift status

0040:0097 1 Keyboard LED flags
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Locator
Locator refers to a broad class of auxiliary pointing devices:  mouse, joystick, trackball, writing tablet,
etc.  This section only addresses the primary auxiliary pointing device (mouse).  The PC interface to
standard PS/2 type mouse is rather simplistic in nature.  BIOS changes for USB mouse are outlined in
Table A-3.

Table A-3.  Locator Device Notification Resources

INT Trigger Address Bytes Contents/Description

INT 15h SW Auxiliary input interface function
determined by AL, (AH = C2h)

INT 74h HW 0000:01D0 4 IRQ12, Auxiliary input

Serial Port
• Trap all accesses to standard ports 3F8-3FFh and 2F8-2FFh

(COM1 and COM2 respectively).

• BIOS changes to notification resources as defined in Table A-4.

Table A-4.  Serial Port Notification Resources

INT Trigger Address Bytes Contents/Description

INT 0Bh HW 0000:002C 4 IRQ3, Comm, secondary

INT 0Ch HW 0000:0030 4 IRQ4, Comm, primary

INT 14h SW 0000:0050 4 Serial port I/O function determined by AH
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• Trap accesses to serial port memory resources as defined in Table A-5.

Table A-5.  Serial Port Memory-mapped Resources

Address Bytes Contents

0040:0000 2 Base address of Comm Port 0

0040:0002 2 Base address of Comm Port 1

0040:0004 2 Base address of Comm Port 2

0040:0006 2 Base address of Comm Port 3

0040:007C 1 Time out for Comm Port 0

0040:007D 1 Time out for Comm Port 1

0040:007E 1 Time out for Comm Port 2

0040:007F 1 Time out for Comm Port 3

Parallel Port
• Trap all access to standard ports 378-37Bh and 278-27Bh

(LPT1 and LPT2 respectively).

• BIOS changes to parallel port notification resources as defined in Table A-6.

Table A-6.  Parallel Port Notification Resources

INT Trigger Address Bytes Contents/Description

INT 05h SW 0000:0014 4 Print screen CPU, bound exceeded

INT 0Fh HW 0000:003C 4 IRQ7, printer interrupt

INT 17h SW 0000:005C 4 Printer I/O function determined by AH
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• Trap accesses to parallel port memory resources as defined in Table A-7.

Table A-7.  Parallel Port Memory-mapped Resources

Address Bytes Contents

0040:0008 2 Base address of Printer Port 0

0040:000A 2 Base address of Printer Port 1

0040:000C 2 Base address of Printer Port 2

0040:0078 1 Time out for Printer Port 0

0040:0079 1 Time out for Printer Port 1

0040:007A 1 Time out for Printer Port 2

0040:0100 1 Print screen status

Tradeoffs — Hardware versus Software Emulation
Given that the vast majority of PC systems run some form of DOS/WINDOWS, it follows that emulation
of legacy port resources will be required to move legacy devices to the USB.  Due to timing constraints
on some legacy devices (namely serial port handshaking in certain COM applications), there exists the
possibility that software-only emulation is insufficient.

Arguably, hardware emulation of standard legacy I/O ports offers the best opportunity to circumvent
timing constraints on data turnaround.  Hardware emulation of 8042 and 16550 (keyboard/mouse and
serial port respectively) is best accomplished in the host USB controller.  However, this requires
processing resources in the host controller on the order of an embedded microcontroller (such as an 8051)
and increases the cost of such a host controller.
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Appendix B
Boot Device Support

Definition
In the Plug and Play BIOS Specification (Version 1.0A, May 5, 1994), a boot device is defined as:

any device which must be initialized prior to loading the Operating System.  Strictly
speaking, the only required boot device is the Initial Program Load (IPL) device upon which
the operating system is stored.  However, the definition of boot devices is extended to
include a primary input device and a primary output device since these I/O devices may be
required for communication with the user.

For the purposes of this specification, we further refine the above definition and introduce the following
terminology:

A boot device provides primary input or primary output support during the boot process.
Examples are display, keyboard, and mouse.

A bootable device provides storage for software needed to boot the computer (the IPL
device).  Examples are hard disk, floppy, and CD-ROM.

This appendix addresses issues the OEM must address to support primary input and output boot devices
across the USB.  (Appendix C addresses IPL support  for bootable devices on USB)  This appendix limits
discussion of boot device support to integrated USB implementations; we will not address support for boot
device support on USB add-in adapter cards.

Boot Device Requirements
One might argue that USB keyboards can be supported by not requiring keyboard during the boot process
(i.e., keyboardless boot).  The solution here involves loading the USB-aware services early in the
operating system load sequence, which then provides the keyboard driver.  Although this solution appears
compelling for keyboard support, one must examine the consequences.  First, many option ROMs require
the user to press <F1> if a failure occurs during the option ROM’s device scan.  Secondly, there is the
problem of multiple boot configurations, where the user must select which OS to boot from a menu via
the keyboard (or mouse).

Complete support for boot devices involves BIOS knowledge of the USB, and host emulation of standard
legacy device ports, as described in Appendix A.

Partial USB Enumeration by ROM/BIOS
The PC BIOS uses input devices to control various features.  The BIOS must be able to activate USB
boot devices early in the boot process.  Before the IPL sequence is initiated to load system software, the
POST routine in the host’s BIOS must detect, enumerate, and configure only the USB devices required to
support the boot sequence.  In order to minimize expense of host side firmware and ensure boot time is
minimal, the host should enable only those USB devices it intends to use during the boot process.
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BIOS enumeration of the USB will follow a breadth-first algorithm.  The intent is to enable the absolute
closest device.

Example algorithm for breadth vs. depth for enumeration:

 while (boot devices still outstanding)
    {
    enumerate first device/hub
    if (device is a hub)
        enumerate one level deep for each port on hub
    if (found a required boot device)
        update count of outstanding boot devices
    }

Only a single instance of a boot device is required during the boot process.  OEM’s should provide non-
volatile storage to store a specific identifier for the boot device to enable.  In this manner, a device can be
moved within the USB topology and still remain the primary boot input/output device.  If the host system
does not provide non-volatile storage and multiple instances of a particular device type are installed, then
the system BIOS will only enable the first boot device it finds.

Mixed Mode Systems
Until such time as USB replaces all current legacy ports/connectors on PC systems, there will be a period
of functionality overlap.  One can envision a PC with PS/2 mouse and keyboard connectors, also having
the capability of supporting additional keyboards and mice via USB.  The legacy hierarchy must be
protected in these circumstances when identifying the system’s primary input and pointing device.

Specifically, a USB-aware BIOS must search for and initialize legacy input and pointing devices before
scanning USB for this functionality.  In the case where both PS/2 and USB mice and keyboards are
connected, the BIOS should assign the PS/2 devices as the primary boot devices.
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Appendix C
Initial Program Load IPL

Initial Program Load (IPL) refers to the sequence of steps required to boot an operating system.  This
sequence is the final component of the system BIOS Power-On Self-Test (POST) before control is passed
onto the operating system.  During the POST sequence, the system BIOS selects an Input, Output, and
IPL device. Based on the other devices in the system, any Plug and Play device that is a boot device is
enabled to provide the boot services.  This appendix explores the final actions of the POST procedure,
which include:

1. Configure the IPL device
2. Initiate the INT 19h IPL sequence, commonly referred to as the system bootstrap loader
3. Transfer control to the operating system

Scope of USB IPL Services
In current PC architecture, the IPL device can be any device supported by an option ROM if it intercepts
Interrupt 13h and provides the requested services.  Many option ROMs additionally capture INT 19h to
control the bootstrap process (effectively loading and executing the first sector of the operating system).

IPL service for USB devices shares much in common with Remote Program Load (RPL) in the PC
environment.  Current PC BIOS boot architecture provides no specific support for RPL.  Consequently,
RPL devices resort to hooking the INT 19h bootstrap vector or INT 18h, the alternate bootstrap vector.
Unfortunately, hooking these vectors can interfere with system specific security features, and even result
in bootstrap failures.

Consider this excerpt from the Plug and Play BIOS Specification, Version 1.0A, May 5, 1994:

An Option ROM which takes control of Interrupt 19h presents a major problem to a Plug
and Play system BIOS.  The system BIOS can no longer control which device will be the
Initial Program Load (IPL) device since it no longer controls the bootstrap sequence.
Given this dilemma, the system BIOS POST will recapture Interrupt 19h away from an
option ROM if the primary Initial Program Load (IPL) device  is either a Plug and Play ISA
device or a device that is known to the system BIOS (e.g., ATA compatible IDE fixed disk).

This appendix will address IPL support for the case of a fully integrated USB port on the motherboard.  A
further assumption is made that the USB IPL device is known to the system BIOS.  In this case, no option
ROM scan is required to identify USB IPL services, thus avoiding the problems identified with capturing
INT 19h and circumventing security of the system BIOS INT 19h bootstrap flow.

Configuring the IPL Device
More than one bootable device may be attached to USB.  Moreover, the user’s expectation is that a
bootable device may be moved to a different node connector without affecting the boot process.  Thus,
the BIOS must support some form of non-volatile storage to remember which device to boot from.  This
way, when the BIOS enumerates the USB, it will continue to boot from the same device even if the
device is moved to a different node connection and there are multiple occurrences of the device.

Once enumerated, configuration consists of establishing a single control and single data channel to the
bootable device.
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Managing Boot Sector Data Flow

Bootstrap Flow via Plug and Play BIOS Extensions
In this model, the OEM provides a USB option ROM that intercepts the system bootstrap sequence and
retrieves the boot sector from the USB device.  As noted above, it is unwise to intercept INT19h and
control the entire bootstrap flow, as this circumvents system security and may lead to failure.  If the OEM
wishes USB devices to have last priority in boot order, then its INT 18h (the alternate bootstrap) should
be intercepted by the option ROM.  Alternately, INT 19h can be intercepted for the purpose of hooking
USB specific INT 13h services and immediately re-establishing the system default INT 19h bootstrap
sequence.

Ideal Bootstrap Flow <Pending Further Development>
Ideally, USB should be treated as a known device to the system BIOS.  In this model, booting from a
USB device is much like booting from floppy or an IDE fixed disk.  USB specific BIOS code is added to
the standard INT 19h bootstrap sequence; however, this code is not device specific, as is the case in
hooking INT 13h I/O services.  The goal of this methodology is to provide a mechanism for reading boot
sector that is common to all storage class USB devices.  The BIOS would then provide a simple method
to read blocks of data from “any” bootable device.

Requirements for this functionality are as follows:

• The USB device classes for storage devices will define a flag in the device header information to
identify the device’s IPL capability/support.  <TBD, as of this specification revision>

• The BIOS must provide a simple method to read blocks of data from boot device.

− Feasible to accomplish this as a command to read boot block information.  The system BIOS
provides link for that data to be read in memory.  This data link is used to load the rest of data
until real drivers take over.

− Read of boot sector is the same for all devices.

Transferring Control to the Operating System
The very last function of the system BIOS POST after loading and validating the operating system boot
sector is to transfer control.  In an ISA system, control is transferred without any parameters.  In a Plug
and Play system BIOS, parameters will be passed to the operating system (refer to Table C-1).

Table C-1.  Register Definitions for IPL Control Transfer

Register Description

ES:DI Pointer to system BIOS Plug and Play Installation Check Structure

DL Physical device number the OS is being loaded from (normally 80h, assuming the
device supports INT 13H interface).

In a non-Plug and Play operating environment, this information has no meaning.  However, a Plug and
Play operating system will look for a Plug and Play system BIOS and use any information it may need.
The physical device number is passed to allow the operating system to continue to load from the current
physical device, instead of assuming a physical device of 00h or 80h.


